LEGEND -	RSV	ENGINEERING	INC.	(NOW	BLOOM	CONSULTANTS,	LLC)	TEST	BORING	LOGS
----------	-----	--------------------	------	------	-------	--------------	------	------	---------------	------

A-1 to A-7 (and subgroups)	Engineering classifications of soil samples in accordance with AASHTO M 145 standard specification.
BLOWS/150mm	Number of blows required to drive a standard soil sampling device 150 mm as conducted in accordance with AASHTO T 206 standard specification.
q _u , kPa	Unconfined compression strength of soil sample in kilopascals determined in accordance with AASHTO T 208 standard specification.
STRAIN, %	Actual strain of soil sample at failure (15 percent maximum allowed) during unconfined compression strength test (see AASHTO T 208 specification).
WATER CONTENT, %	Natural moisture content of soil sample in percent determined in accordance with AASHTO T 265 standard specification.

RSV ENGINEERING, INC.	BORING	LOC			SCH	AUMBURG,	ILL	INOI
JOB NO: 98600 CLIENT: ILLINOIS DEPARTMENT PROJECT: Interstate Route 14 Improvements - Peor LOCATION: Retaining Wall Ramp A-3 SN 072-8555 BORING RIG & METHOD: CME-75 w/Hollow Stem Auge	OF TRANSPO	ORTATION			BORING STATIO OFFSET SURF E	N: 10	#A3N- 0+674 Om R†	14
SOIL DESCRIPTION	ELEV.	DEPTH	SAMPLE From - To	REC.	BLOWS/ 150mm	q _u kPa	STRAIN	CONTE
110mm Root Zone Material: Black Silty	196.05	+	0.00-0.30		Auger	, , , ,		-
Loam A-4: Organic matter noted			0.30-0.76	356	4 11-19	431H	k	14
Hard to Very Stiff Br & Gr Clay Loam A-6			1.07-1.52	432	8 12-11	431H	ķ	18
	193.73	-	1.83-2.29	457	5 8-11	335	15	15
Hard to Very Stiff Br & Gr Clay Loam A-6		-	2.59-3.05	457	7 10–11	488	15	20
nara to tary attitudi at or olay could at	192.21		3.35-3.81	457	3 5-8	201	15	14
Stiff Br & Gr Silty Loam A-7-6			4.11-4.57	457	2 4-7	153	15	25
	190-68	5	4.88-5.33	229	5 8-15	124	15	18
		-	5.64-6.10	457	8 14-18	469	15	13
•	¥		6.40-6.86	457	8 14-17	440	15	12
			7.16-7.62	457	7 15–20	431	15	13
Hard to Very Stiff Br Loam A-4			7.92-8.38	457	10 16-18	431	15	14
175mm Sand seam noted at 8.1m		-	8.69-9.14	457	6 9-11	278	15	13
		10	9.45-9.91	457	8 12 - 15	335	15	12
			10.21-10.67	457	5 8-12	316	15	13
		ļ	10.97-11.43	457	7 12-17	316	15	14
Very Dense to Extremely Dense Br Sand A-1-b	184.28	-	11.73-12.19	330	16 24-35			13
REMARKS						*Benotes Penetron		
WATER Drym ELEV. DURING DRILL	ING ▽	CORE SIZ	E	um	DATE:		r 1. (

BORING LOG BORING BORING LOG BORING BORING LOG BORING LOG BORING LOG BORING NO: 98600 CLIENT: ILLINOIS DEPARTMENT OF TRANSPORTATION BORING RIG & METHOD: CNE-75 w/Hollow Stem Augers SUIL DESCRIPTION BORING RIG & METHOD: CNE-75 w/Hollow Stem Augers SUIL DESCRIPTION BORING RIG & METHOD: CNE-75 w/Hollow Stem Augers SUIL DESCRIPTION BORING RIG & METHOD: RIGHT RIGHT RECEIVE TRANSPORTATION SUIL DESCRIPTION BORING RIG & METHOD: NPQ STRAIN FROM - 10 om 150cm wPQ X wery Dense to Extremely Dense Br Sand 183.21 12.50-12.95 77-92
SOIL DESCRIPTION ELEV. DB71H FROM - 10 mm 150mm kPg x ery Dense to Extremely Dense Br Sand 183.21 12.50-12.95 77-92
183.21 12.50-12.95 77-92

Drym ELEV. DURING DRILLING

m ELEV. AT COMPLETION

CASING LENGTH

FOR ELEV. 189.46 AFTER 24 HRS.

TYCASING DIAMETER

CORE SIZE

Penetrometer Estimate

50 mm ST

Yd

\$ REMARKS WATER WATER WATER

REC.

An approximation of the unconfined compressive strength of the soil sample in kilopascals obtained with the use of a calibrated hand penetrometer device.

#Denotes Calibrated
Penetrometer Estimate

mm DATE: Mar 1, 00
m DRILLER: Fehl
mm INSPECTOR: Shook

50 mm diameter thin-walled tube (Shelby Tube) relatively undisturbed soil sample obtained in accordance with AASHTO T 207 standard specification.

Dry unit weight of soil specimen in kilograms per cubic meter.

Length of sample recovered in millimeters.

ROUTE NO. SECT. F.A.I. 74 (72-7) R-3 PEORIA FED. ROAD DIST. ILLINOIS FED. AID PROJECT

STATE OF ILLINOIS DEPARTMENT OF TRANSPORTATION

BORING LOGS XIII

MSE WALL NO. 8 - RAMP A-3 F.A.I. ROUTE 74 SECTION (72-7) R-3 PEORIA COUNTY STA. 10+426.116 TO STA. 10+673.439 (RAMP A-3) STRUCTURE NUMBER 072-8556

PARSONS TRANSPORTATION GROUP CHICAGO, ILLINOIS

SCALE N.T.S. SHEET NO. 22 DRAWING NO. 6-25-04