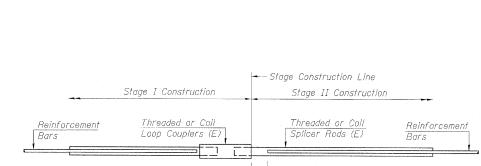
STATE OF ILLINOIS DEPARTMENT OF TRANSPORTATION

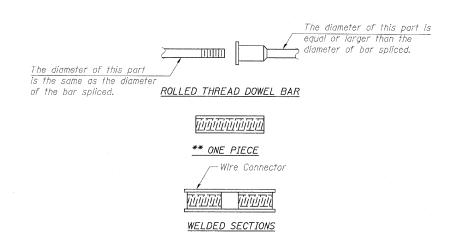
Bar splicer assemblies shall be of an approved type and shall develop in tension at least 125 percent of the yield strength of the lapped reinforcement bars.


Splicer rods shall be of minimum 60 ksi yield strength, threaded or coiled full length. All reinforcement bars shall be lapped and fied to the splicer rods or dowel bars. Bar splicer assemblies shall be epoxy coated according to the requirements for reinforcement bars.

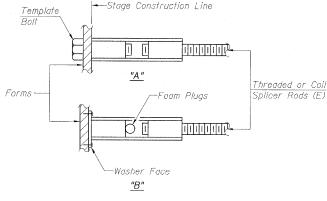
Other systems of similar design may be submitted to the Engineer for approval. Approval shall be based on certified test results from an approved testing laboratory that the proposed bar splicer assembly satisfies the following requirements:

(Tension in Kips)
Minimum *Pull-out Strength = 0.66 x fy x A (Tension in kips)

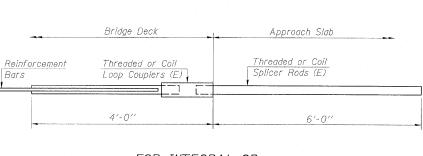
Where fy = Yield strength of lapped reinforcement bars in ksi. A_I = Tensile stress area of lapped reinforcement bars. * = 28 day concrete


	BAR SPLIC	ER ASSEMBLI	ES	
Bar Size to be Spliced	Splicer Rod or Dowel Bar Length	Strength Requirements		
			Min. Pull-Out Strength kips - tension	
#4	1'-8''	14.7	7.9	
#5	2'-0''	23.0	12.3	
#6	2'-7"	33.1	17.4	
#7	3′-5′′	45.1	23.8	
#8	4'-6''	58,9	31.3	
#9	5′-9′′	75.0	39,6	
#10	7'-3''	95.0	50.3	
#11	9'-0''	117.4	61.8	

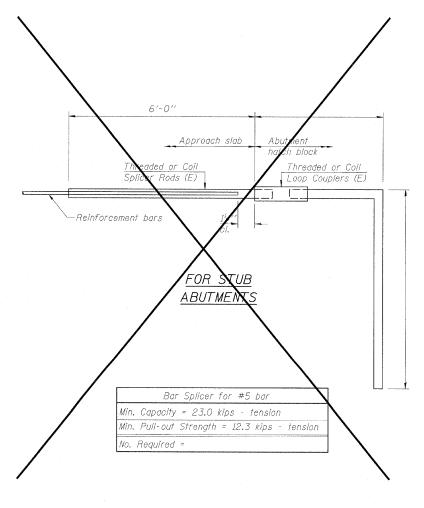
STANDARD


Bar Size	No. Assemblies Required	Location Deck	
#5	364		
#6	16	End Diaphragms	
#5	4	Abutments	
#7	12	Abutments	
#5	32	Piers	
#7	12	Piers	

BAR SPLICER ASSEMBLY DETAILS US ROUTE 52 AND IL ROUTE 23 OVER CROOKED LEG CREEK F.A.P. ROUTE 68 SECTION (3) BR-1 LASALLE COUNTY STATION 419+80.00 STRUCTURE NUMBER 050-0240


BAR SPLICER ASSEMBLY ALTERNATIVES

**Heavy Hex Nuts conforming to ASTM A 563, Grade C, D or DH may be used.


INSTALLATION AND SETTING METHODS

"A": Set bar splicer assembly by means of a template bolt. "B" : Set bar splicer assembly by nailing to wood forms or cementing to steel forms. (E) : Indicates epoxy coating.

FOR INTEGRAL OR SEMI-INTEGRAL ABUTMENTS

	Bar	Splicer	for #5	bar	
Min.	Capacity	= 23.0	kips -	tension	
Min.	Pull-out	Strength	= 12.3	kips -	tension
No.	Required	= 72			

