Structural Geotechnical Report

Proposed Retaining Wall #8

IDOT PTB 198-003

FAI-80 (I-80) over Des Plaines River Bridge

Will County, Illinois

Prepared for

Illinois Department of Transportation Contract Number: D-91-204-19

Project Design Engineer Team WSP USA

Geotechnical Consultant GSG Consultants, Inc.

GSG CONSULTANTS, INC. Engineers. Scientists. Construction Managers

Engineers - Scientists - Construction Managers 735 Remington Road, Schaumburg IL 60173 Tel: 630.994.2600, www.gsg-consultants.com

> October 20, 2022 Updated June 7, 2024

June 7, 2024

David Skaleski, P.E. Project Manager WSP USA 30 N. LaSalle Street, Suite 4200 Chicago, Illinois 60602

Structural Geotechnical Report Proposed Retaining Walls #8 FAI-80 (I-80) over Des Plaines River Bridge Will County, IL PTB 198-003

Dear Mr. Skaleski:

Attached is a copy of the Structural Geotechnical Report for the above referenced project. The report provides a description of the site investigation, site conditions, and foundation and construction recommendations. The site investigation for the proposed retaining wall #8 and ramp AA embankment construction included advancing ten (10) soil borings to depths of 20 to 53.5 feet.

Should you have any questions or require additional information, please call us at 630-994-2600.

Sincerely,

Matthew J Heron, P.E. Project Engineer

Matthew J Herry

Ala E Sassila, Ph.D., P.E. Principal

AluSaMa

TABLE OF CONTENTS

1.0	INTRO	DUCTION	1
	1.1	Existing Retaining Wall Information	2
	1.2	Proposed Retaining Wall Information	3
2.0	SITE S	UBSURFACE CONDITIONS	4
	2.1	Subsurface Exploration and Laboratory Testing	4
	2.2	Laboratory Testing Program	5
	2.3	Subsurface Soil Conditions	6
	2.4	Subsurface Bedrock Conditions	6
	2.5	Groundwater Conditions	7
3.0	GEOTE	ECHNICAL ANALYSES	9
	3.1	Embankment Settlement	9
	3.2	Seismic Parameters	9
4.0	GEOTE	ECHNICAL WALL DESIGN RECOMMENDATIONS	11
	4.1	Retaining Wall Type Recommendations	11
	4	.1.1 Sheet Pile Walls	
	4	.1.2 Soldier Pile and Lagging Walls	11
	4	.1.3 Recommended Wall Type	11
	4.2	Retaining Wall Design Recommendations	12
	4	.2.1 Lateral Earth Pressures and Loading	13
	4.3	Soldier Pile and Lagging Retaining Wall	15
	4.4	Global Slope Stability	17
	4	.4.1 Global Slope Stability Results	18
	4.5	Drainage Recommendations	19
5.0	CONST	TRUCTION CONSIDERATIONS	20
	5.1	Site Preparation	20
	5.2	Existing Utilities and Structures	20
	5.3	Site Excavation	21
	5.4	Borrow Material and Compaction Requirements	21
	5.5	Groundwater Management	21
	5.6	Temporary Sheeting, Soil Retention and Stage Construction	22
6.0	HMIT	ATIONS	

Exhibits

Exhibit 1 Project Location Map

Exhibit 2 Existing Site Conditions at Proposed Retaining Wall Location

Tables

Table 1	Improvement Summary
Table 2	Summary of Subsurface Exploration Borings
Table 3	Rock Quality Designation
Table 4	Rock Core Summary and Classification
Table 5	Anticipated Embankment Settlement
Table 6	Seismic Parameters
Table 7	LRFD Load Factors for Retaining Wall Analyses
Table 8	Lateral Soil Parameters
Table 9	Equivalent Height of Soil for Vehicular Loading on RW Parallel to Traffic
Table 10	Recommended Bearing Resistance for Retaining Wall
Table 11	Soldier Pile Wall Description
Table 12	Retaining Wall Global Slope Stability Analyses Results

Appendices

Appendix A Preliminary GPE and Cross-sections

Appendix B Soil Boring Location Plan and Subsurface Profile

Appendix C Soil Boring Logs

Appendix D Soil Parameter Tables
Appendix E Laboratory Test Results

Appendix F Slope Stability Analyses Exhibits

Structural Geotechnical Report
Proposed Retaining Wall #8
FAI-80 (I-80) over Des Plaines River Bridge
Will County, Illinois
IDOT PTB 198-003

1.0 INTRODUCTION

GSG Consultants, Inc. (GSG) completed a geotechnical investigation for the proposed Retaining Wall #8 and associated Ramp AA embankment in the City of Joliet in Will County, Illinois. The purpose of the investigation was to explore the subsurface conditions, to determine engineering properties of the subsurface soil, and develop design and construction recommendations for the proposed construction. **Exhibit 1** shows the general project location.

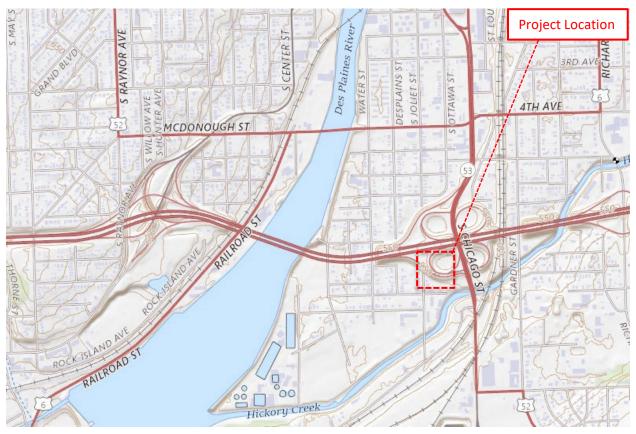


Exhibit 1 – Project Location Map

(Source: USGS Topographic Maps, usgs.gov)

1.1 Existing Retaining Wall Information

The overall proposed improvements at this location will include the realignment of the existing Chicago Street Exit Ramp to EB I-80 as part of the relocation of the Chicago Street bridge. The realignment of Ramp AA will require a retaining wall to separate the new embankment from Ramp A (EB-80 exit ramp). According to the proposed Phase 1 plan drawings provided, the proposed retaining wall will be in both a "cut" and "fill" section of the existing ramp embankment. **Exhibit 2a, 2b and 2c** shows the existing conditions where the proposed retaining wall and embankment will be constructed.

Exhibit 2a – Existing Chicago Street Exit Ramp to EB I-80, Looking East

Exhibit 2b - Existing Chicago Street Exit Ramp to EB I-80, Looking West

Exhibit 2c – Existing and Proposed Retaining Wall Location, Looking from Top

1.2 Proposed Retaining Wall Information

Based on the preliminary GPE Plan provided by WSP (dated 10/07/22), the proposed wall will be in a "cut" and "fill" section. It is anticipated that the proposed wall will consist of a soldier pile wall and have a maximum exposed height of approximately 15.0 feet. The proposed retaining wall will be approximately 514 feet in length along a portion of the realigned ramp between Sta. 7+40 and Sta. 12+25. The new retaining wall will be constructed to separate Ramp AA and Ramp A, due to the grade difference. Starting at Sta. 12+00, a new embankment will be constructed for Ramp AA to connect to the I-80 mainline. It is anticipated that the new embankment will be less than 10 feet in height.

Table 1 presents a summary of the proposed retaining wall and embankment.

Wall Name	* Wall Stations	Approximate Length (ft)	Maximum Anticipated Exposed Wall Height (ft)	Maximum Anticipated Embankment Height (ft)
Retaining Wall #8	Sta. 7+40 to Sta. 12+25	514	15.0	n/a
Ramp AA	Sta. 12+00 to	300	n/a	10

Table 1 – Improvement Summary

Sta. 15+00

Embankment

^{*} Based on proposed Ramp AA Stationing

2.0 SITE SUBSURFACE CONDITIONS

This section describes the subsurface exploration program and laboratory testing program completed as part of this project. The proposed locations and depths of the soil borings were selected in accordance with IDOT requirements. The borings were completed in the field based on field conditions and accessibility.

2.1 Subsurface Exploration and Laboratory Testing

The site subsurface exploration for the proposed retaining wall structure was conducted between May 4 and June 17, 2022. The investigation included advancing ten (10) borings to depths of 20.0 to 53.5 feet. The locations of these soil borings were reviewed by WSP and adjusted in the field as necessary based on utilities and access. Elevations and as-drilled locations for the borings were gathered by GSG's field crew using GPS surveying equipment. The approximate as-drilled locations of the soil borings are shown on the Soil Boring Location Plan & Subsurface Profiles (Appendix B). Table 2 presents a summary of the borings used for the analyses.

Table 2 – Summary of Subsurface Exploration Borings

Boring ID	Station **	Offset (ft)	Northing	Easting	Depth (ft)	Surface Elevation (ft)
RWB-66	7+92.36	25.25 LT	1764314.625	1052995.002	42.0*	546.72
RWB-67	8+72.79	15.70 LT	1764313.88	1052914.01	33.5	546.06
RWB-68	9+47.55	11.93 LT	1764308.113	1052839.378	46.5*	548.11
RWB-69	10+21.84	18.45 LT	1764292.23	1052765.815	38.0	551.38
RWB-70	10+88.61	32.89 LT	1764288.99	1052685.791	47.5*	551.16
RWB-71	11+54.05	25.79 LT	1764336.67	1052625.379	32.0	551.17
RWB-72	12+29.54	22.11 LT	1764413.097	1052585.048	53.5*	549.43
SSB-38	12+77.35	20.92 LT	1764468.248	1052579.929	20.0	547.76
SSB-39	13+67.05	6.89 LT	1764554.225	1052625.206	20.0	549.31
SSB-40	14+62.05	18.89 LT	1764624.778	1052694.998	20.0	554.82

^{*} Depth includes Bedrock Core (10 feet)

Copies of the Soil Boring Logs are provided in Appendix C.

The soil borings were drilled using truck mounted Diedrich D-50 (hammer efficiency 98%), CME-75 (hammer efficiency 91%) and Geoprobe 7822DT (hammer efficiency 92%) drill rigs, each

^{**} Based on proposed Ramp AA Stationing

equipped with 3¼-inch I.D. hollow stem augers and an automatic hammer. Soil sampling was performed according to AASHTO T 206, "Penetration Test and Split Barrel Sampling of Soils." Soil samples were obtained at 2.5-foot intervals to the planned boring termination depths or auger refusal on bedrock. Water level measurements were made in each boring when evidence of free groundwater was detected on the drill rods or in the samples. The boreholes were also checked for free water immediately after auger removal, and before filling the open boreholes with soil cuttings and surface patching with asphalt where necessary to match the existing pavement.

GSG's field representative inspected, visually classified and logged the soil samples during the subsurface exploration activities and performed unconfined compressive strength tests on cohesive soil samples using a calibrated Rimac compression tester and a calibrated hand penetrometer in accordance with IDOT procedures and requirements. Representative soil samples were collected from each sample interval and were placed in jars and returned to the laboratory for further testing and evaluation.

2.2 Laboratory Testing Program

All samples were inspected in the laboratory to verify the field classifications. A laboratory testing program was undertaken to characterize and determine engineering properties of the subsurface soils encountered in the area.

The following laboratory tests were performed on representative soil and rock samples:

- Moisture content ASTM D2216 / AASHTO T-265
- Atterberg Limits ASTM D4318 / AASHTO T-89 / AASHTO T-90
- Dry Unit Weight ASTM D7263
- Unconfined Compression Strength on Rock ASTM D2938

The laboratory tests were performed in accordance with test procedures outlined in the most current IDOT Geotechnical Manual, and per ASTM and AASHTO requirements. Based on the laboratory test results, the soils encountered were classified according to the AASHTO and the Illinois Division of Highways (IDH) classification systems. The results of the laboratory testing program are included in the Laboratory Test Results (Appendix E) and are also shown along with the field test results in the Soil Boring Logs (Appendix C).

2.3 Subsurface Soil Conditions

This section provides a brief description of the soils encountered in the borings performed in the vicinity of the proposed retaining wall and embankment. Variations in the general subsurface soil profile were noted during the drilling activities. Detailed descriptions of the subsurface soils are provided in the soil boring logs and are shown graphically in the Boring Location Plan & Subsurface Profiles. The soil boring logs provide specific conditions encountered at each boring location and include soil descriptions, stratifications, penetration resistance, elevations, location of the samples, and laboratory test data. Unless otherwise noted, soil descriptions indicated on boring logs are visual identifications. The stratifications shown on the boring logs represent the conditions only at the actual boring locations and represent the approximate boundary between subsurface materials; however, the actual transition may be gradual.

The surface elevations of the borings ranged between 554.8 and 546.1 feet. Borings drilled off the shoulder of Ramp AA noted between 2 and 12 inches of topsoil; while borings trough the pavement noted 7 to 13 inches of asphalt. The borings then noted brown and gray silty clay fill to elevations between 549.2 and 541.7 feet. Below the fill materials, the borings encountered stiff to hard brown and gray silty clay to elevations between 544.8 and 533.2 feet, followed by gray stiff to hard silty clay and silty clay loam to elevations between 534.0 and 526.0. Below these silty clay layers, the borings encountered loose to very dense brown and gray sand to elevations between 519.0 and 506.0 feet and were terminated upon encountering bedrock. Cobbles were noted throughout the borings at various depths. The borings were terminated upon encountering practical auger refusal or split-spoon refusal on apparent bedrock between elevations 546.1 and 551.4 feet.

The brown and gray silty clay fill had unconfined compressive strengths ranging from 1.0 to 5.4 tsf, with an average strength of 2.4 tsf. The brown and gray silty clay had unconfined compressive strengths ranging from 1.4 to 6.4 tsf with an average strength of 3.2 tsf. The gray silty clay loam/silty clay had unconfined compressive strengths ranging from 1.0 to 5.2 tsf with an average strength of 2.7 tsf. The native sand has an SPT blow count (N) values ranging from 6 to 100 blows per foot (bpf) with an average value of 20 bpf.

2.4 Subsurface Bedrock Conditions

When bedrock was encountered, the extracted bedrock cores were visually inspected, classified and the Rock Quality Designation (RQD) was determined for borings RWB-66, RWB-68, RWB-70

Joliet, Illinois

and RWB-72 according to ASTM D 6032, "Standard Test Method for Determining Rock Quality Designation (RQD) of Rock Core" and as per the IDOT geotechnical manual by totaling all sections with a length in excess of four inches (4") and dividing it by the total length of the core run. The RQD is given a classification based upon the numeric value as indicated in **Table 3**. Photographs of the rock cores are included with the respective soil borings in **Appendix C**.

Table 3 - Rock Quality Designation

Rock Quality Designation	Descriptions
< 25%	Very Poor
25 – 50%	Poor
51 – 75%	Fair
76 – 90%	Good
91 – 100%	Excellent

Table 4 provides a summary of the RQD values and unconfined compressive strength values of the rock cores extracted during the site investigation.

Table 4 - Rock Core Summary and Classification

Boring Number	Core Run	Core Depth (feet)	Type of Rock	RQD (%)	RQD Classification	Depth (ft)/ Unconfined Compression Strength (psi)
RWB-66	1	32.0-42.0	Limestone	56.2	Fair	37.0 / 11,261
RWB-68	1	36.5-46.5	Limestone	51.2	Fair	43.5 / 18,300
RWB-70	1	37.5-47.5	Limestone	55.8	Fair	43.5 / 13,823
RWB-72	1	43.5-53.5	Limestone	61.7	Fair	45.5 / 18,516

The soil boring logs provide bedrock conditions encountered at each boring location. Limestone bedrock was encountered between 32.0 and 43.5 feet (Elev. 514.7 to 505.9 feet), where rock coring was performed. The bedrock cores consisted of limestone that was slightly weathered and slightly to heavily fractured. RQD values ranged from 51.5 to 61.7 percent: Fair based upon the values indicated in **Table 4**.

2.5 Groundwater Conditions

Water levels were checked in each boring to determine the general groundwater conditions present at the site and were measured while drilling and after each boring was completed.

PTB 198-003 - Retaining Wall #8

Joliet, Illinois

Groundwater was observed while drilling in boring RWB-72 at elevation 508.4 feet (41 feet below grade). Groundwater was not encountered during or immediately after drilling at the any of the remaining borings. None of the borings were left open after leaving the site due to safety concerns.

Based on the observed water levels and soil color change from brown to gray, it is anticipated that the long-term groundwater level may be at elevations between 544.8 to 529.4 feet. Perched water may also be present within the fill materials observed in the borings. Water level readings were made in the boreholes at times and under conditions shown on the boring logs and stated in the text of this report. However, it should be noted that fluctuations in groundwater level may occur due to variations in the rainfall, other climatic conditions, or other factors not evident at the time measurements were made and reported herein.

3.0 GEOTECHNICAL ANALYSES

This section provides GSG's geotechnical analysis for the design of the proposed retaining wall and embankment based on the results of the field exploration, laboratory testing, and geotechnical analysis. Subsurface conditions between borings may vary from those encountered at the boring locations. If structure locations, loadings, or elevations are changed, we request that GSG be contacted so that we may re-evaluate our recommendations.

3.1 Embankment Settlement

It is anticipated that fill soils will be required to construct the proposed wall and embankment. Up to 5 feet of new fill may be required to construct the new retaining wall at station 11+00 to 12+50. Up to 10 feet of new fill is anticipated to construct the new embankment between Stations 12+00 to 15+00.

The embankment behind the proposed wall was evaluated with respect to settlement. Based on the proposed embankment heights of 5 to 10 feet, analyses were performed at the boring locations to evaluate the anticipated amount of total settlement. The maximum estimated settlement within the native cohesive and non-cohesive soils were calculated as shown in **Table 5.**

Table 5 – Anticipated Embankment Settlement

Structure Name	Structure Stations *	Embankment Height (ft)	Anticipated Total Settlement (inches)	Differential Settlement (%)
Retaining Wall #8	Sta. 7+40 to Sta. 12+25	5	0.8	<0.5
Ramp AA Embankment	Sta. 12+00 to Sta. 15+00	10	1.35	<0.5

^{*} Based on proposed Ramp AA Stationing

3.2 Seismic Parameters

The seismic hazard for the site was analyzed per the IDOT Geotechnical Manual, IDOT Bridge Design Manual, and AASHTO LRFD Bridge Design Specifications. The Seismic Soil Site Class was determined per the requirements of All Geotechnical Manual Users (AGMU) Memo 9.1, Design Guide for Seismic Site Class Determination, and the "Seismic Site Class Determination" Excel spreadsheet provided by IDOT. A global Site Class Definition was determined for this project, and

was found to be Soil Site Class D. The Seismic Performance Zone (SPZ) was determined using Figure 2.3.10-2 in the IDOT Bridge Manual and was found to be Seismic Performance Zone 1.

The AASHTO Seismic Design Parameters program was used to determine the peak ground acceleration coefficient (PGA), and the short (SDS) and long (SD1) period design spectral acceleration coefficients for the proposed structure. For this section of the project, the S_{DS} and the S_{D1} were determined using 2020 AASHTO Guide Specifications as shown in **Table 6**. Given the site location and materials encountered, the potential for liquefaction is minimal.

Table 6 – Seismic Parameters

Building Code Reference	PGA	S _{DS}	S _{D1}
2020 AASHTO Guide for LRFD Seismic Bridge Design	0.049g	0.167g	0.095g

4.0 GEOTECHNICAL WALL DESIGN RECOMMENDATIONS

This section provides retaining wall design parameters including recommendations on foundation type, bearing capacity, settlement, and lateral earth pressures. The foundations for the proposed retaining wall must provide sufficient support to resist the dead and live loads, as well as seismic loading.

4.1 Retaining Wall Type Recommendations

It is anticipated that the wall will primarily be in cut sections. There are various types of retaining walls that could be utilized for retaining earth embankments in fill areas or excavation slopes in cut areas. This section discusses several earth retaining structures that could be used for the proposed project. Based on the proposed grading, the proposed walls will be in a cut area, adjacent to the proposed roadway. Several typical wall types are described in the section below.

4.1.1 Sheet Pile Walls

Sheet pile walls are typically used in cut areas when continuous support must be provided to maintain existing structures or other adjacent facilities. Sheet piles are also used in wide trench excavations when the use of trench boxes becomes impractical. This type of wall can also be covered with CIP panels for aesthetics. The installation of sheet pile walls requires the use of specialty equipment to drive the piles into the ground. As the retaining walls will be in excess of 15 feet in height, tie-backs will likely be required for design.

4.1.2 Soldier Pile and Lagging Walls

Soldier pile and lagging walls are typically used in cut areas where the existing ground surface needs to be maintained during construction or when a near vertical excavation is needed. The wall may be constructed with driven steel piles or steel piles placed in drilled holes and backfilled with concrete. The depth of the soldier pile is normally estimated to be two times the wall exposed height.

4.1.3 Recommended Wall Type

Based on the proposed GPE plan and location of the wall within a predominantly cut area, a soldier pile wall may be considered for this project. Design plans indicate that the wall location would require cutting into the base of the existing embankment, but also filling to reach the proposed roadway subgrade.

PTB 198-003 - Retaining Wall #8

Joliet, Illinois

GSG evaluated the global and external stability, and settlement to determine the suitability of the retaining wall for this section of the project. The wall section should be analyzed to determine that adequate factors of safety relative to sliding and overturning failure.

4.2 Retaining Wall Design Recommendations

The engineering analyses performed for evaluation of the retaining wall options followed the current AASHTO Load and Resistance Factor Design (LRFD) Methodology as required by IDOT. LRFD methodology incorporates the use of load factors and resistance factors to account for uncertainty in applied loads and load resistance of structure elements separately. The AASHTO LRFD Bridge Design Specifications outline load factors and combinations for various strength, extreme event, service, and fatigue limit states. Section 11, which outlines geotechnical criteria for retaining walls, of the AASHTO Specifications requires the evaluation of bearing resistance failure, lateral sliding, and overturning at the strength limit state and excessive vertical displacement, excessive lateral displacement, and overall stability at the service limit state. The selected wall should be also evaluated with respect to the collision load. **Table 7** outlines the load factors used in evaluation of the retaining wall in accordance with AASHTO Specification Tables 3.4.1-1 and 3.4.1-2.

Table 7 - LRFD Load Factors for Retaining Wall Analyses

	Type of Load	Sliding and Eccentricity Strength	Bearing Resistance Strength I	Sliding and Eccentricity Extreme II	Bearing Resistance Extreme II	Settlement Service I
Load Factors for Vertical Loads	Dead Load of Structural Components (DC)	0.90	1.25	1.00	1.00	1.00
	Vertical Earth Pressure Load (EV)	1.00	1.35	1.00	1.00	1.00
	Earth Surcharge Load (ES)		1.50			
	Live Load Surcharge (LS)		1.75		0.50	1.00
Load Factors for Horizontal Loads	Horizontal Earth Pressure Load (EH) Active At-Rest AEP for anchored walls	1.50	1.50 1.35 1.35	1.00	1.00	1.00
Loads	Earth Surcharge (ES)	1.50	1.50			
	Live Load Surcharge (LS)	1.75	1.75	0.50	0.50	1.00
Load Factor for Vehicular Collision				1.00	1.00	

4.2.1 Lateral Earth Pressures and Loading

The wall should be designed to withstand earth and live lateral earth pressures. The lateral earth pressures on retaining walls depend on the type of wall (i.e. restrained or unrestrained), the type of backfill and the method of placement against the wall, and the magnitude of surcharge weight on the ground surface adjacent to the wall. The active earth pressure coefficient (Ka), and the passive earth pressure coefficient (Kp) were determined in accordance with AASHTO Section 3.11.5.3 and 3.11.5.4. **Table 8** present soil design properties for the retaining wall for the anticipated soil types at the site and provide recommended lateral soil modulus and soil strain parameters that can be used for laterally loaded pile analysis via the p-y curve method based on the encountered subsurface conditions. The long term (drained conditions) should be considered for design.

Table 8 – Lateral Soil Parameters - RWB-66 to RWB-72								
		Lo	ong-term/Draine	ed	Soil Para	meters u	sed in L-Pile	
Elevation Range (feet)	Soil Description	Active Earth Pressure Coefficient (K _a)	Passive Earth Pressure Coefficient (K _p)	At-Rest Earth Pressure Coefficient (K _o)	Coefficient of Lateral Modulus of Subgrade Reaction (k _{py} , pci)	Soil Strain (E ₅₀)	Soil Type	
	New Engineered Clay Fill	0.41	2.46	0.58	500	0.01	Stiff Clay w/o free water (Reese)	
	New Engineered Granular Fill	0.33	3.00	0.50	90	N/A	Sand (Reese)	
0.5 - 3.5 (549.0 - 545.5)	FILL: Brown and Gray Silty Clay	0.41	2.46	0.58	1,000	0.005	Stiff Clay w/o free water (Reese)	
3.5 - 10.0 (545.5 - 539.0)	Stiff to Hard Brown and Gray Silty Clay	0.36	2.77	0.53	1,000	0.005	Stiff Clay w/o free water (Reese)	
10.0 - 18.0 (539.0 - 531.0)	Stiff to Hard Gray Silty Clay / Silty Clay Loam	0.36	2.77	0.53	1,000	0.005	Stiff Clay w/o free water (Reese)	
18.0 - 35.0 (531.0 - 514.0)	Medium Dense to Very Dense Light Brown Sand	0.22	4.60	0.36	60	N/A	Sand (Reese)	
35.0 - 50.0 (514.0 - 499.0)	Gray Limestone	0.17	5.83	0.29	125	N/A	Limestone	
23.0 - 26.0** (526.0 - 523.0) RWB-68 thru RWB-70	Medium Stiff to Stiff Brown and Gray Silty Clay Loam	0.41	2.46	0.58	100	0.01	Stiff Clay w/o free water (Reese)	

^{*}The initial p-y modulus, E_{py} , varies linearly with depth. To obtain E_{py} use the equation $E_{py}=k_{py}*z$, where k_{py} is the coefficient of lateral modulus of subgrade reaction given in the table and z is the distance from the surface to the center point of the layer in inches.

The estimated shear strength of the Rock Mass (Sm) was calculated based on equation 10.4.6.4-1 (AASHTO 2012), using the laboratory compressive strength data in Table 4, resulting in strengths ranging from 1,700 to 3,450 psi. These strengths are preliminary and the p-y curve method should be used for final analysis. Using an estimated friction angle for the rock mass of 45 degrees, gives a shear strength of the rock mass of 3.3 ksf. The passive resistance of vertical elements can be considered as 0.75 (LRFD-9, Table 11.5.7-1, 2020).

Traffic and other surcharge loads should be included in the retaining wall design as applicable. A live load surcharge shall be applied where vehicular load is expected to act on the surface of the

^{**} Layer only noted in Boring RWB-68, RWB-69 and RWB-70

Ioliet Illinois

backfill within a distance equal to one-half the wall height behind the back face of the wall in accordance with AASHTO 3.11.6.4. The live load surcharge may be estimated as a uniform horizontal earth pressure due to an equivalent height (Heq) of soil. **Table 9** provides the equivalent heights of soils for vehicular loadings on retaining walls.

Table 9 - Equivalent Height of Soil for Vehicular Loading on Retaining Walls Parallel to Traffic

Retaining Wall Height (ft)	Heq Distance from Wall Back face to Edge of Traffic				
	0 feet	1.0 feet or Further			
5	5.0 feet	2.0 feet			
10	3.5 feet	2.0 feet			
≥20	2.0 feet	2.0 feet			

Reference: AASHTO LRFD Table 3.11.6.4-2

The retaining wall design should include a drainage system to allow movement of any water behind the wall, and not allowing hydrostatic (seepage) pressures to develop in the active soil wedge behind the wall. This could be accomplished by placing a Geocomposite Wall Drain over the entire length of the back face of the wall connected to 6-inch diameter perforated drain pipe and backfilling a minimum of 2 feet of free draining materials, Porous Granular Embankment, as measured laterally from the back of the wall. The backfill should be placed in accordance with the IDOT SSRBC.

Heavy compaction equipment should not be allowed closer than five (5) feet to the retaining wall to prevent inducing high lateral earth pressures and causing wall yielding and/or other damage. The passive lateral earth pressure coefficient (Kp) from the upper 3.5 feet of level backfill at the toe of the wall should be neglected, unless the soil is confined or protected by a concrete slab or well drained pavement. The passive lateral earth pressure coefficient from the upper 3.5 feet of soil for a descending slope at the wall toe should also be neglected, regardless of any surface protection.

4.3 Soldier Pile and Lagging Retaining Wall

Soldier pile walls are generally constructed at 8 to 10-foot centers along the retaining wall alignment into the bearing stratum. The soldier piles could either be driven or drilled. Driving piles is normally less expensive but the designs are limited to H-pile and small W-sections, and may be limited based on cobbles and bedrock observed in the borings. Drilled soldier piles can utilize larger W-sections, built up plate sections or multiple W-sections. For drilled piles, the pile

Inliet Illinois

will be placed into the hole and centered, and the annular space around each pile section will be filled with flowable grout. The lagging and piles should be designed based on structural analysis.

Resistance to lateral movement or overturning of the soldier pile is furnished by passive resistance of the soil below the depth of excavation. The design should include a structural evaluation of the pile section to meet applied shear and moment, and an evaluation of overturning to determine embedment depth and other design requirements. The walls shall be designed to withstand earth and live lateral earth pressures. The lateral earth pressures on retaining walls depend on the type of wall (i.e. restrained or unrestrained), the type of backfill and the method of placement against the wall, and the magnitude of surcharge weight on the ground surface adjacent to the wall. Soldier pile walls are considered flexible and such the earth loads may be calculated using active earth pressure for load above the design grade, and both active and passive earth pressures below the design grade. The active earth pressure coefficient (Ka), and the passive earth pressure coefficient (Kp) are shown in **Table 8**.

The simplified earth pressure distributions shown in the AASHTO Standard Specifications for Highway Bridges could be used for the wall design. **Table 8** also provides recommended lateral soil modulus and soil strain parameters that can be used for laterally loaded pile analysis via the p-y curve method based on the encountered subsurface conditions. The passive resistance in front of the wall should be ignored for the upper 3.5 feet due to excavation activities and frost-heave condition. Construction equipment surcharge loads should be added to the lateral earth pressure.

In order to limit wall deflections and provide additional resistance, the soldier pile and lagging retention system could be restrained with tie-back anchors. The soldier pile and lagging retention system restrained with tie-backs will be subjected to "trapezoidal" lateral soil pressures. For tall retaining walls, the "trapezoidal" pressure will result in greater lateral forces and moments compared to the cantilever design.

Soldier pile and lagging walls over 15 feet in height typically require additional lateral resistance to maintain stability and/or limit wall movements. This lateral resistance can be provided using ground anchors, buried deadmen or soil nails. For highway applications, anchored soldier pile walls are typically less than 33 feet in height due to excessive top of wall deflections, excessive soldier pile bending stresses, and high stresses at the wall-anchor connection. Anchor

Joliet, Illinois

terminology, minimum anchor length and embedment guidelines are shown in AASHTO Figure 11.9.1-1. Anchor spacing is controlled by many factors including anchor (or deadmen) capacity, temporary (unsupported) cut slope stability, subsurface obstructions in the anchorage zone, and the structural capacity of lagging or facing elements. Performance or proof testing shall be performed on every production anchor in accordance with the requirements in AASHTO Section 11.9.8.1. Excavation shall not proceed more than 3.0 feet below the level of ground anchors until the ground anchors have been accepted by the Engineer. Where backfill is placed behind an anchored wall, either above or around the unbonded length, special designs and construction specifications shall be provided to prevent anchor damage.

Arching of the soil between soldier piles can increase the effective width of a soldier pile up to 3 times for granular soil and 2 times for cohesion soils (Trenching and Shoring Manual, Section 6.2, 2011).

Piers drilled through soil and a nominal depth into bedrock should be designed on the basis of an allowable bearing pressure. Piers are normally drilled a nominal depth into the rock to ensure bearing entirely on competent rock and to extend the pier through the upper fractured zones of the rock. An increase in allowable bearing with embedment depth should be based on encountering more competent rock with depth.

For an unrestrained wall system, it is recommended to increase the embedment depth of the soldier pile by 1.2 (i.e. 20%) to account for rotation of the vertical wall elements (Trenching and Shoring Manual, Section 6.1, 2011).

4.4 Global Slope Stability

Based on the preliminary information provided by WSP, the retaining wall should be designed for external stability of the wall system. The parameters in **Table 11** were used to evaluate the proposed soldier pile wall in order to reach a minimum Factor of Safety of 1.5.

PTB 198-003 - Retaining Wall #8

Joliet, Illinois

Table 11 – Soldier Pile Wall Description at Station 12+00

*Based on preliminary drawings provided

Description	Value
Maximum total retained height of retaining wall (H)*	17.0 feet
Minimum Embedment length below bottom of concrete facing to reach F.S. = 1.5*	2.0 feet
Minimum soldier pile bottom tip elevation(s) to reach F.S. of 1.5	533.0 feet

^{*}Additional embedment may be required for lateral pressures and structural design of the wall system

The actual wall width, and total height of the wall should be based on structural analysis performed by a Licensed Structural Engineer in the State of Illinois.

Slide2 is a comprehensive slope stability analysis software used to evaluate the proposed wall for the project based on the limit equilibrium method. The proposed wall was analyzed based on the preliminary grading and the soils encountered while drilling. Circular failure analyses were evaluated using the simplified Bishops analyses methods for the proposed wall geometries. Based on the proposed geometry and the soil borings, global stability analyses were performed.

4.4.1 Global Slope Stability Results

Circular failure analyses were evaluated for both a short term (undrained) and long term (drained) condition based on the proposed geometry (**Tables 11**) for the proposed soldier pile wall. The analyses were performed at Station 10+50. The results of the analyses are shown in **Table 12**.

Table 12 – Retaining Wall Global Slope Stability Analyses Results

Analysis Exhibit	Location	Wall Type	Analysis Type	Factor of Safety	Minimum Factor of Safety
Exhibit 1	Station 10+50	Soldier Pile	Circular – Short Term	6.3	1.5
Exhibit 2			Circular – Long Term	1.9	1.5

Based on the analyses performed, the proposed retaining wall meets the minimum factor of safety of 1.5. Copies of the slope stability analyses are included in the Slope Stability Analyses Exhibits (**Appendix F**).

PTB 198-003 - Retaining Wall #8

Joliet, Illinois

4.5 Drainage Recommendations

The wall design should include drainage system to prevent the buildup of hydrostatic forces behind the wall. This could be accomplished with the installation of drainage blankets, geocomposite drainage panels, or gravel drains behind the facing of the wall with outlet pipes below the facing to collect and remove surface water away from the face of the soldier pile wall. If weep holes are to be used, it is recommended that a geocomposite wall drain to be placed over the interlocks and area of the weep holes. If drainage is not provided, hydrostatic pressure should be included in the wall design and the horizontal earth pressure should be determined in accordance with AASHTO article 3.11.3.

Joliet, Illinois

5.0 CONSTRUCTION CONSIDERATIONS

All work performed for the proposed project should conform to the requirements in the IDOT Standard Specifications for Road and Bridge Construction (2022). Any deviation from the requirements in the manuals above should be approved by the design engineer.

5.1 Site Preparation

All trees, pavements, vegetation, landscaping, and surface topsoil should be cleared and removed from the vicinity of the proposed construction. Where possible, the engineer may require proof-rolling of the subgrade with a 35-ton loaded truck or other pneumatic-tired vehicle of similar size and weight. The purpose of the proof-rolling is to locate soft, weak, or excessively wet soils present at the time of construction. Proof-rolling should be performed during a time of good weather and not while the site is wet, frozen, or severely desiccated. Any unsuitable materials observed during the evaluation and proof-rolling operations should be undercut and replaced with compacted structural fill and/or stabilized in-place. The possible need for, and extent of, undercutting and/or in-place stabilization required can best be determined by the geotechnical engineer at the time of construction. Once the site has been properly prepared, at grade construction may proceed.

Foundation aggregate fill should not be placed upon wet or frozen subgrade soils. If the subgrade or structural fill becomes frozen, desiccated, wet, disturbed, softened, or loose, the affected materials should be scarified, dried and moisture conditioned, and compacted to the full depth of the affected area or the soils should be removed. Rainfall and runoff can soften soils and affect the load bearing capacity of the soils. All water entering the foundation excavation should be removed prior to placement of backfill materials above the wall bottom.

5.2 Existing Utilities and Structures

Based on the existing site conditions, utilities exist along the project corridor. Before proceeding with construction, all existing underground utility lines or structures that will interfere with construction should be completely relocated from the proposed construction areas. Where possible, existing utility lines that are to be abandoned in place should be removed and/or plugged with a minimum of 2 feet of cement grout. All excavations resulting from underground utilities or structure removal activities should be cleaned of loose and disturbed materials, including all previously placed backfill, and backfilled with suitable fill materials in accordance

with the requirements of this section. During the clearing and stripping operations, positive surface drainage should be maintained to prevent the accumulation of water.

5.3 Site Excavation

Site excavations are expected to encounter various types of soils as described in the Subsurface Exploration section of this report. The contractor will be responsible to provide a safe excavation during the construction activities of the project. All excavations should be conducted in accordance with applicable federal, state, and local safety regulations, including, but not limited to the Occupational Safety and Health Administration (OSHA) excavation safety standards. Excavation stability and soil pressures on temporary shoring are dependent on soil conditions, depth of excavations, installation procedures, and the magnitude of any surcharge loads on the ground surface adjacent to the excavation. Excavation near existing structures and underground utilities should be performed with extreme care to avoid undermining existing structures. Excavations should not extend below the level of adjacent existing foundations or utilities unless underpinning or other support is installed. It is the responsibility of the contractor for field determinations of applicable conditions and providing adequate shoring (if needed) for all excavation activities.

5.4 Borrow Material and Compaction Requirements

If borrow material is to be used for onsite construction, it should conform to Section 204 "Borrow and Furnish Excavations" of the IDOT Construction Manual (2022). The fill material should be free of organic matter and debris and should be placed and compacted in accordance with Section 205, Embankment, of the IDOT Construction Manual. Should fill be placed during cool, wet seasons, the use of granular fill may be necessary since weather conditions will make compaction of cohesive soils more difficult.

5.5 Groundwater Management

Long term groundwater may be between elevations 544.8 to 529.4 feet. GSG does not anticipate that groundwater related issues occur during construction activity, however perched water may be encountered within the existing fill materials. If rainwater run-off or groundwater is accumulated at the base of excavations, the contractor should remove accumulated water using conventional sump pit and pump procedures and maintain a dry and stable excavation. The location of the sump should be determined by the contractor based on field conditions. During earthmoving activities at the site, grading should be performed to ensure that drainage is maintained throughout the construction period. Water should not be allowed to accumulate in

the foundation area either during or after construction. Undercut and excavated areas should be sloped toward one corner to facilitate removal of any collected rainwater or surface run-off. Grades should be sloped away from the excavations to minimize runoff from entering.

If water seepage occurs during excavations or where wet conditions are encountered such that the water cannot be removed with conventional sumping, we recommend placing open grade stone similar to IDOT CA-7 to stabilize the bottom of the excavation below the water table. The CA-7 stone should be placed 12 inches above the water table, in 12-inch lifts, and should be compacted with the use of a heavy smooth drum roller or heavy vibratory plate compactor until stable. The remaining portion of the excavation beneath the footings should be backfilled using approved structural fill.

5.6 Temporary Sheeting, Soil Retention and Stage Construction

Temporary soil retention systems (TSRS) may be required for portions of the construction. Based on the soil profile, a cantilevered sheet pile system could be used. The sheet pile retaining system should be designed in accordance with the IDOT Bridge Design Manual, Section 3.13.1, Temporary Sheet Piling Design, Temporary Soil Retention Systems. The design of the TSRS is the responsibility of the contractor.

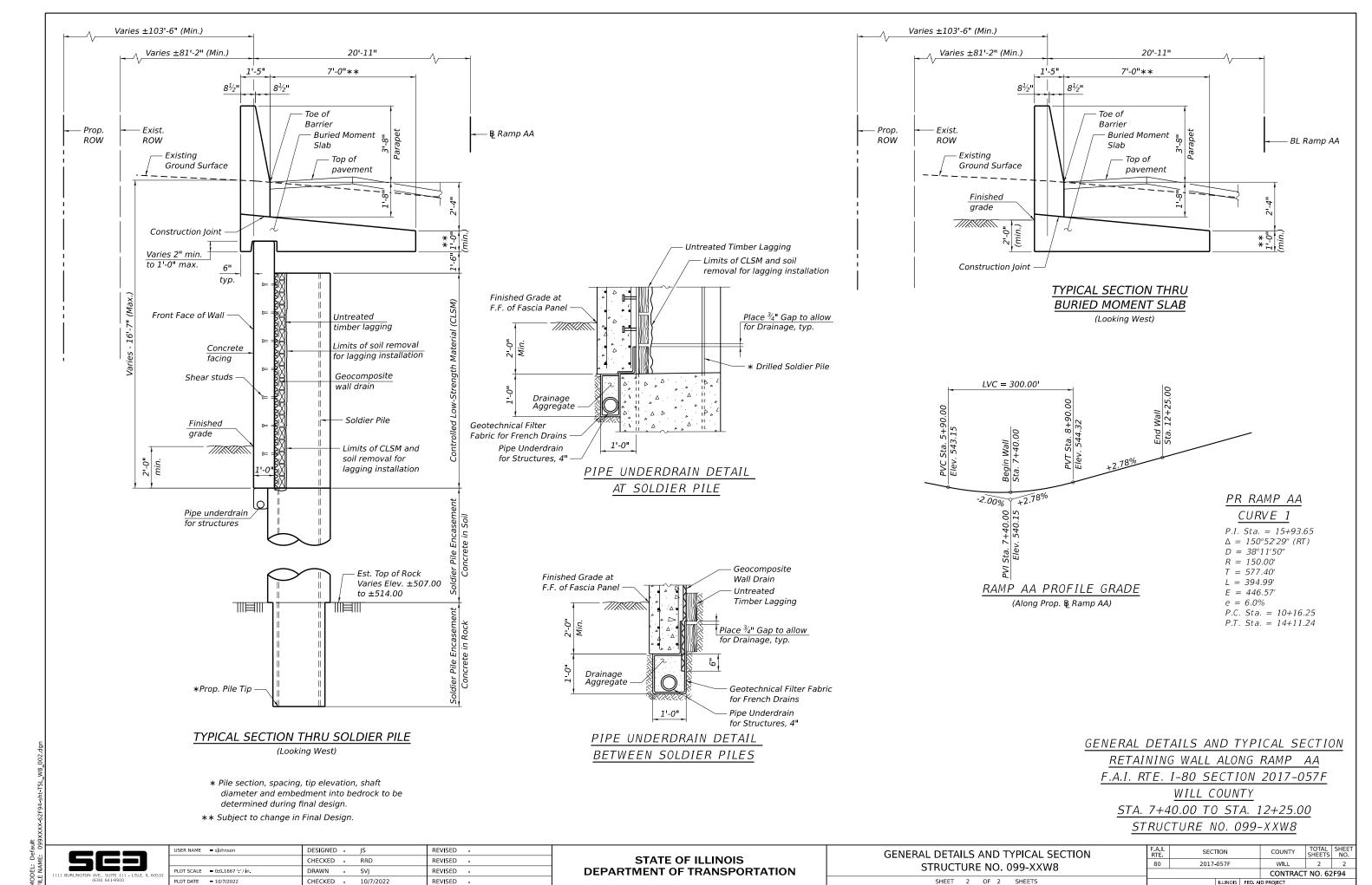
The IDOT Temporary Sheet Piling Design procedures include limitations if the required embedment depths fall below soil layers with a Qu value larger than 4.5 tsf or N-values larger than 45 blows or rock, because the sheet piling may not penetrate these layers. Refer to the soil boring logs for the elevations to the hard stratum. If adequate retained heights cannot be obtained using the IDOT Temporary Sheet Piling Design Guide, then a Temporary Soil Retention System shall be designed by the Contractor. The Temporary Soil Retention Systems should include surcharge loads from the excavated materials, construction equipment and truck traffic as necessary. The retention system should extend to a sufficient depth below excavation bottom to provide the required lateral passive resistance if the active case is used for the design. Embedment depths should be determined based on the principles of force and moment equilibrium. The retention system should be designed for at-rest condition if the adjacent railroad embankment cannot withstand the anticipated horizontal and vertical movements of the construction excavation.

The retention system shall be designed by an Illinois licensed structural engineer in accordance with the IDOT Bridge Design Manual. The design of the temporary soil retention system (TSRS)

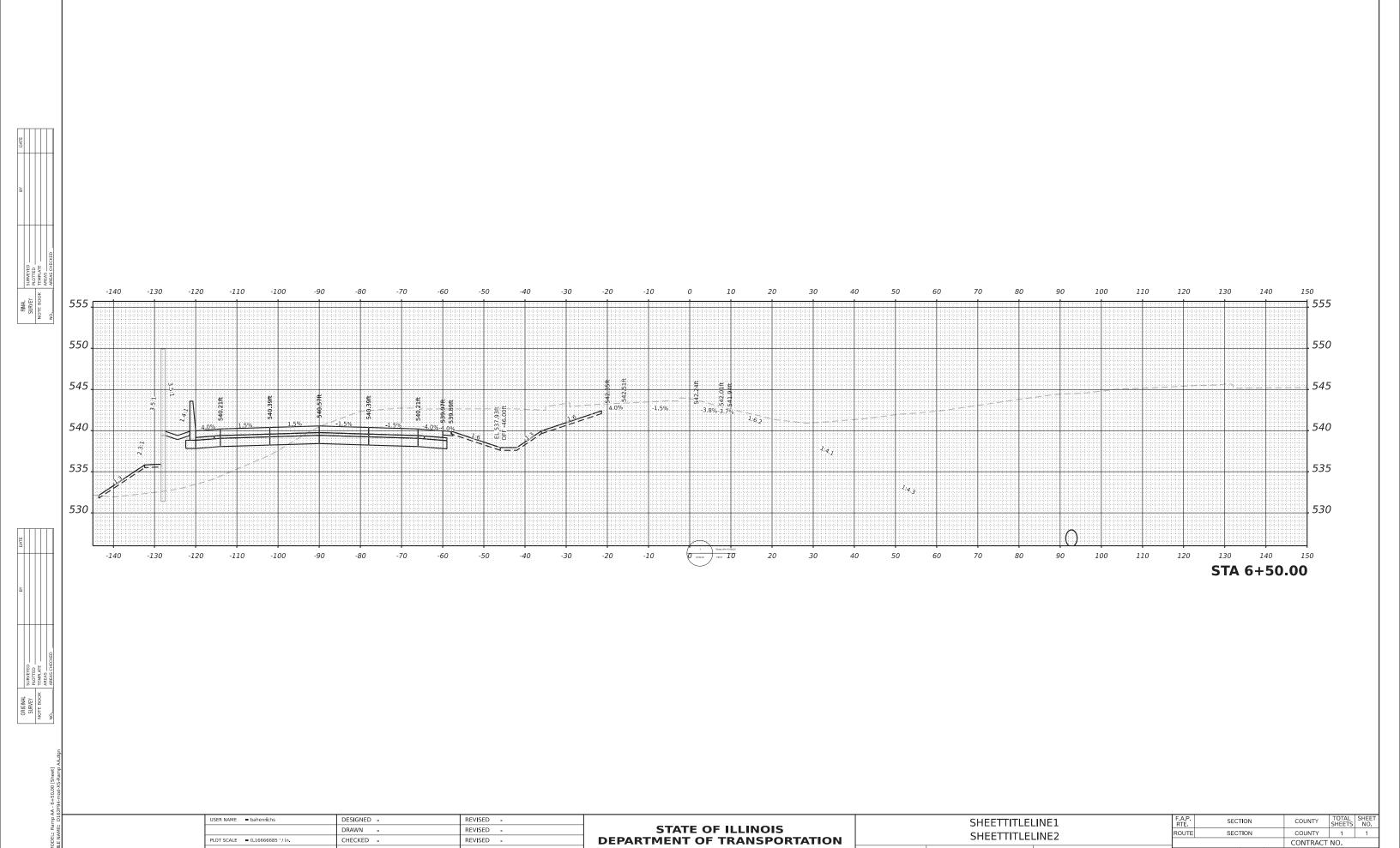
PTB 198-003 - Retaining Wall #8

Joliet, Illinois

is the responsibility of the contractor. The contractor should submit the TSRS plans to the structural design team for review prior to commencing construction of the TSRS.


Joliet, Illinois

6.0 **LIMITATIONS**


This report has been prepared for the exclusive use of the Illinois Department of Transportation (IDOT) and its Design Section Engineer consultant. The recommendations provided in the report are specific to the project described herein and are based on the information obtained at the soil boring locations within the proposed project area. The analyses have been performed and the recommendations provided in this report are based on subsurface conditions determined at the location of the borings. This report may not reflect all variations that may occur between boring locations or at some other time, the nature and extent of which may not become evident until during the time of construction. If variations in subsurface conditions become evident after submission of this report, it will be necessary to evaluate their nature and review the recommendations presented herein.

Appendix A Preliminary GPE and Cross-sections

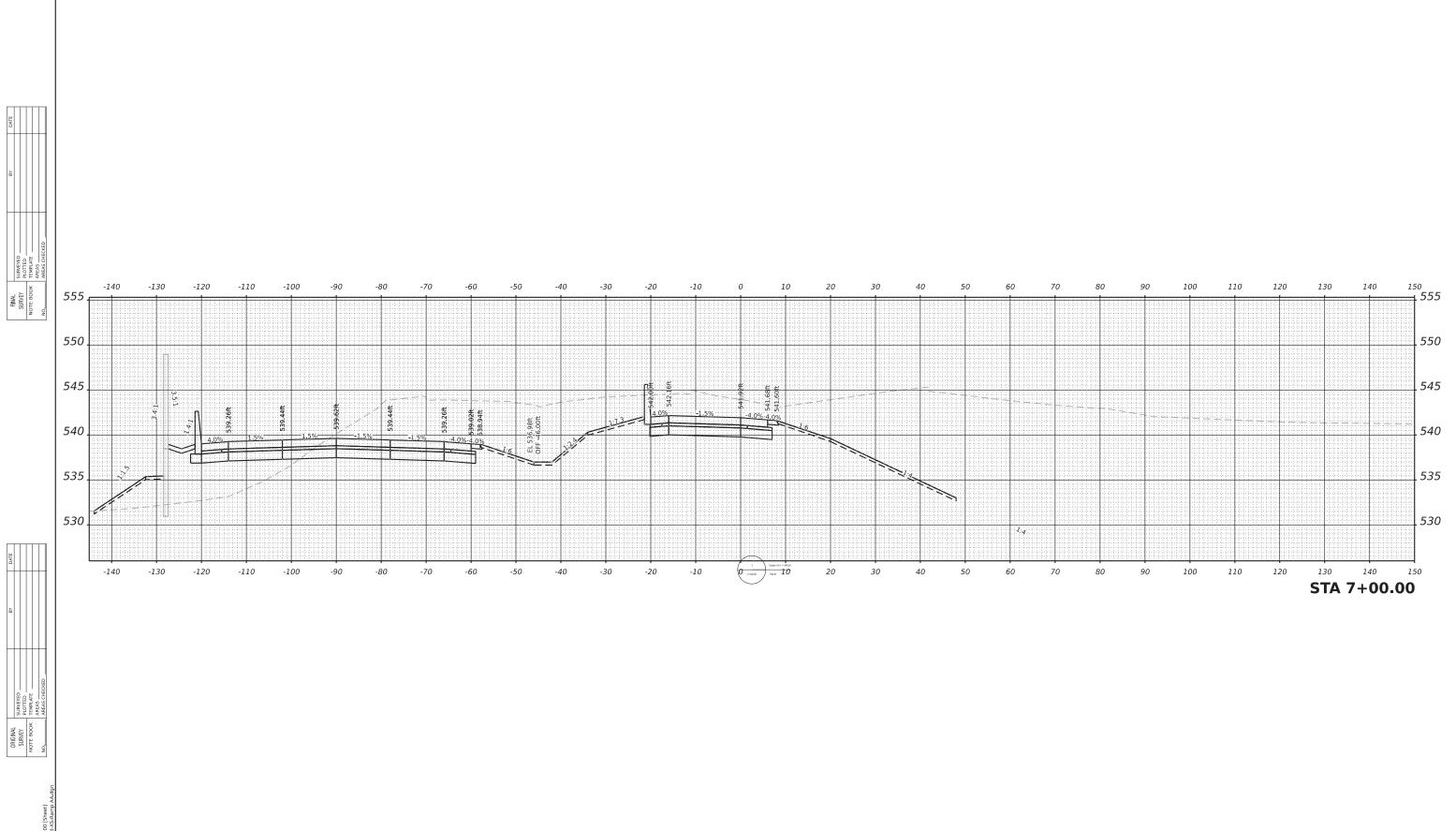
DESIGN SPECIFICATIONS HIGHWAY CLASSIFICATION NOTES: Benchmark: Iron Rod with Cap Sta. 67+63.19, 388.39' RT * Measured along F.F. of Wall 2020 AASHTO LRFD Bridge Design Chicago Street Ramp AA N 1,764,330.037 and E 1,052,698.888 ** Pile Section, spacing, tip elevation, shaft 1. Stations and offsets are measured from the & of Ramp AA to the Specifications, 9th Edition Functional Class: Interstate Functional Class: Interstate diameter and embedment into bedrock front face of cast-in-place concrete facing ADT: 91,100 (2017); 133,500 (2040) ADT: 6,600 (2017); 14,400 (2040) Existing Structures: None. to be determined during final design DESIGN STRESSES ADTT: 19,241 (2017); 28,169 (2040) ADTT: 2,470 (2017); 5,350 (2040) Traffic Control: Traffic will be detoured during construction. FIELD UNITS DHV: XXX DHV: XXX No Salvage. Design Speed: 70 m.p.h. fc = 3,500 psiDesign Speed: xx m.p.h. fy = 60,000 psi (Reinforcement) Posted Speed: 65 m.p.h. Posted Speed: xx m.p.h. End Soldier Pile Wall and Buried Moment Slab fy = 50,000 psi (M270 Grade 50) Soldier Piles One-Way Traffic One-Way Traffic Sta. 12+25 Directional Distribution: 100% Directional Distribution: 100% Elev. 554.53 514'- $1\frac{3}{8}$ " (measured along F.F. of wall) 27'-10³/8" 14 Spaces at 30'-0" = 420'-0" 66'-3" - Sta. 11+74.22 Top of Exposed Panel Buried Moment Slab Only Toe of Barrier Sta. 8+66.25 Kink Point Elev. 553.57 Sta. 10+95.23 Top of Parapet Elev. 544.45 Sta. 10+16.25 Elev. 550.94 Existing grade Elev. 548.38 Begin Wall at F.F. of wall Begin Soldier Sta. 9+26.25 Sta. 7+40 Pile Wall Elev. 545.53 Sta. 8+06.25 Elev. 542.09 Elev. 542.74 3-4 typ. Elev. 551.67 /// - Elev. 544.11 Elev. 538.80 Est. Top of Rock Elev. 535.83 Finished grade at F.F. of wall Est. Top of Rock Bottom of wall panel Buried Elev. ±507.00 Buried Elev. ±514.00 ** Drilled Soldier Piles ELEVATION (Looking at Front Face of Wall) Prop. Light Pole, typ Stations End Wall Sta. 12+25.00 Begin Wall Offset 20.9' LT ₩B-66 Sta. 7+40.00 Offset 20.9' LT Begin Soldier Pile Wall Sta. 8+06.25 Proposed & Ramp AA Offset 20.9' LT Proposed Pipe Underdrain, typ. RAMP AA Buried Moment Slab, typ. RWB-68**◆** Edge of Pavement Edge of Moment Slab .RWB-69 Front Face of Wall 0 0 0 0 0 RWB-70 Ramp A Edge of Pavement Kink Point Range 10E, 3 P.M. Sta. 10+16.25 Offset 20.9' LT LEGEND Structure Location GENERAL PLAN AND ELEVATION Soil Borings F.F. Front Face RETAINING WALL ALONG RAMP AA F.A.I. RTE. 80 - SEC 2017-057F - E Exist. Underground Electric B.F. Back Face PLANWILL COUNTY ----- Exist. Underground Sanitary Sewer Construction Joint STA. 7+40.00 TO STA. 12+25.00 Prop. Pipe Underdrain E Expansion Joint LOCATION SKETCH STRUCTURE NO. 099-XXXX Exist. ROW JSER NAME = sjohnson DESIGNED - JS REVISED -SECTION GENERAL PLAN AND ELEVATION **STATE OF ILLINOIS** CHECKED - RRD REVISED -2017-057F 80 WILL STRUCTURE NO. 099-XXW8 REVISED -**DEPARTMENT OF TRANSPORTATION** CONTRACT NO. 62F94 PLOT DATE = 10/7/2022 CHECKED - 10/7/2022 SHEET 1 OF 2 SHEETS REVISED -10/7/2022 12:48:12 PM

10/7/2022 12:48:33 PM

CHECKED -

DATE

PLOT DATE = 9/30/2022


REVISED -

REVISED -

SHEETTITLELINE2

SCALE: SCALE SHEET 0 OF 1 SHEETS STA.

CONTRACT NO.

STATE OF ILLINOIS DEPARTMENT OF TRANSPORTATION

COUNTY TOTAL SHEET NO.

COUNTY 1 1

CONTRACT NO.

SECTION

SECTION

ROUTE

SHEETTITLELINE1

SHEETTITLELINE2

SCALE: SCALE SHEET 0 OF 1 SHEETS STA.

MODEL: Ramp AA - 7+00.00 [Sheet]

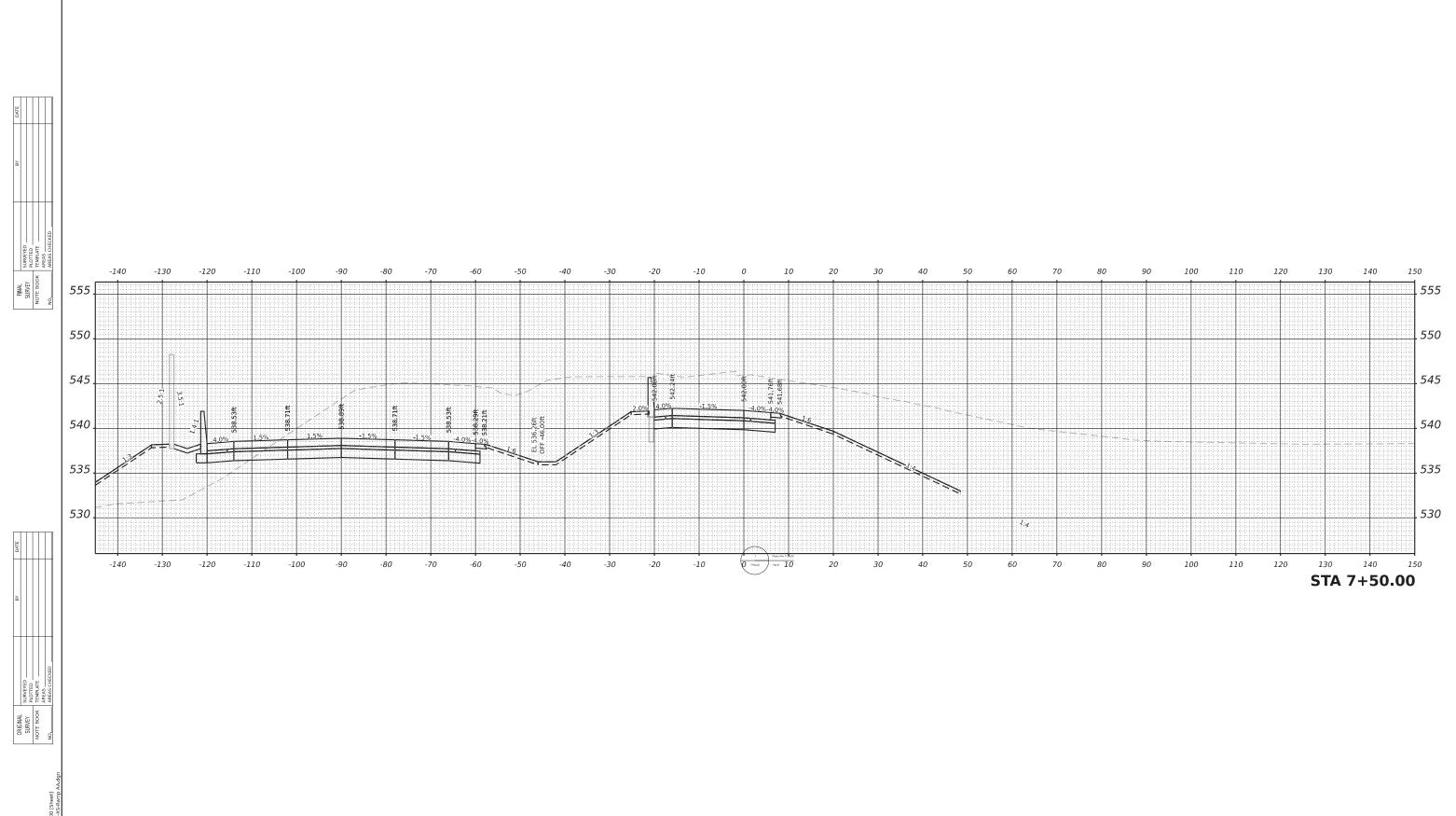
USER NAME = bahenrichs

PLOT DATE = 9/30/2022

DESIGNED -

DRAWN -

CHECKED -


DATE

REVISED -

REVISED -

REVISED -

REVISED -

STATE OF ILLINOIS DEPARTMENT OF TRANSPORTATION

COUNTY TOTAL SHEET NO.

COUNTY 1 1

CONTRACT NO.

SECTION

SECTION

ROUTE

SHEETTITLELINE1

SHEETTITLELINE2

SCALE: SCALE SHEET 0 OF 1 SHEETS STA.

MODEL: Ramp AA - 7+50.00 [Sheet]

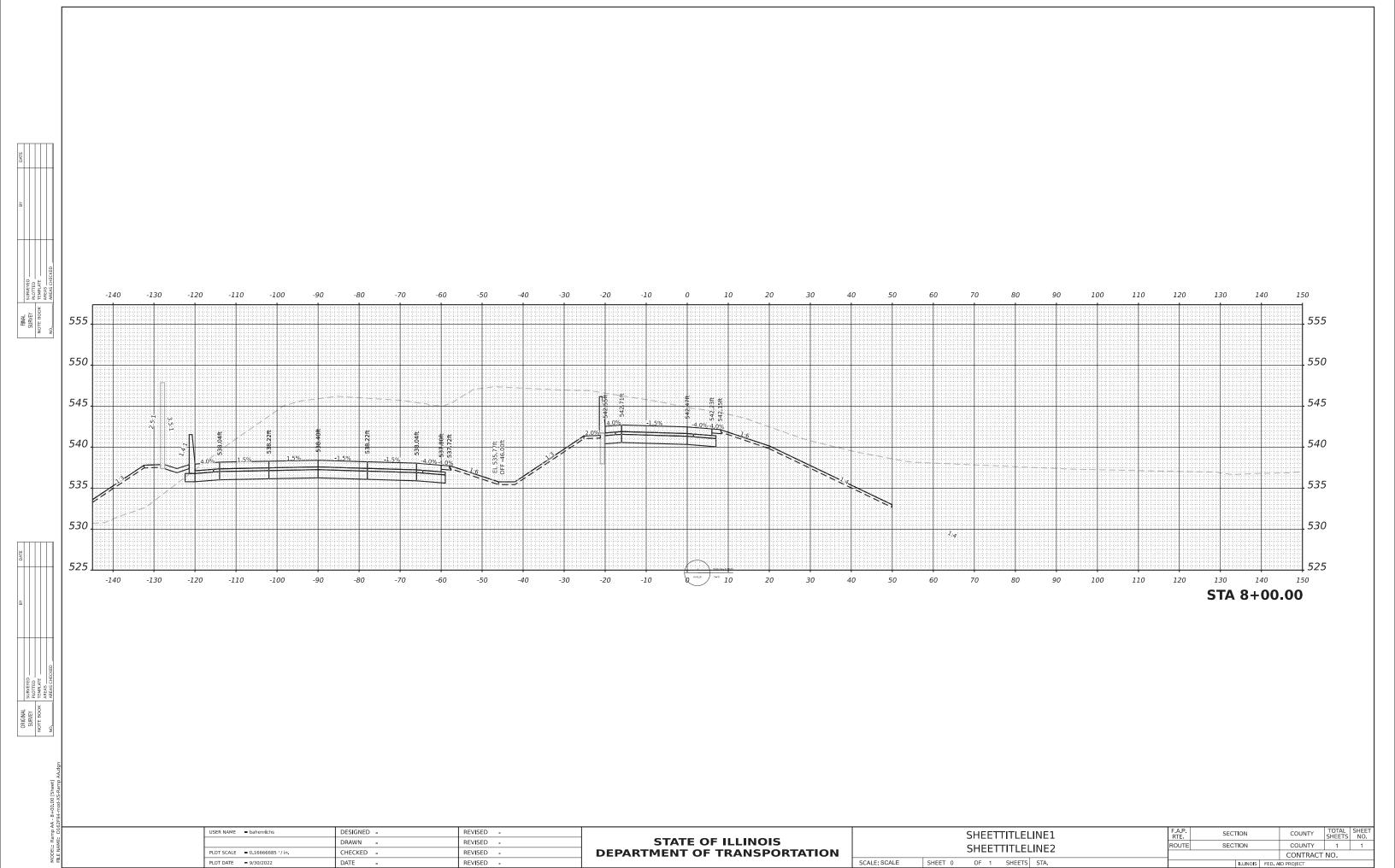
USER NAME = bahenrichs

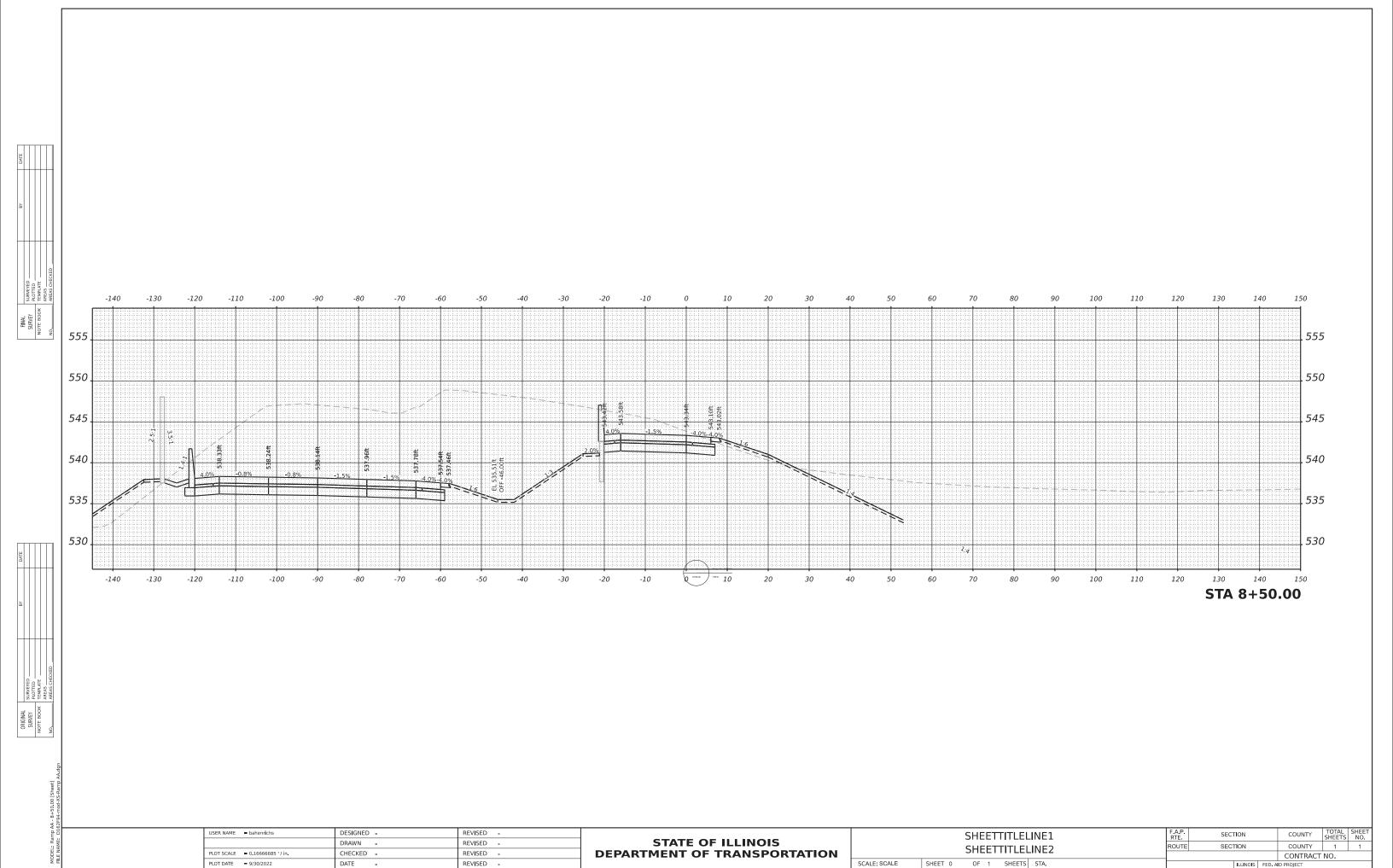
PLOT DATE = 9/30/2022

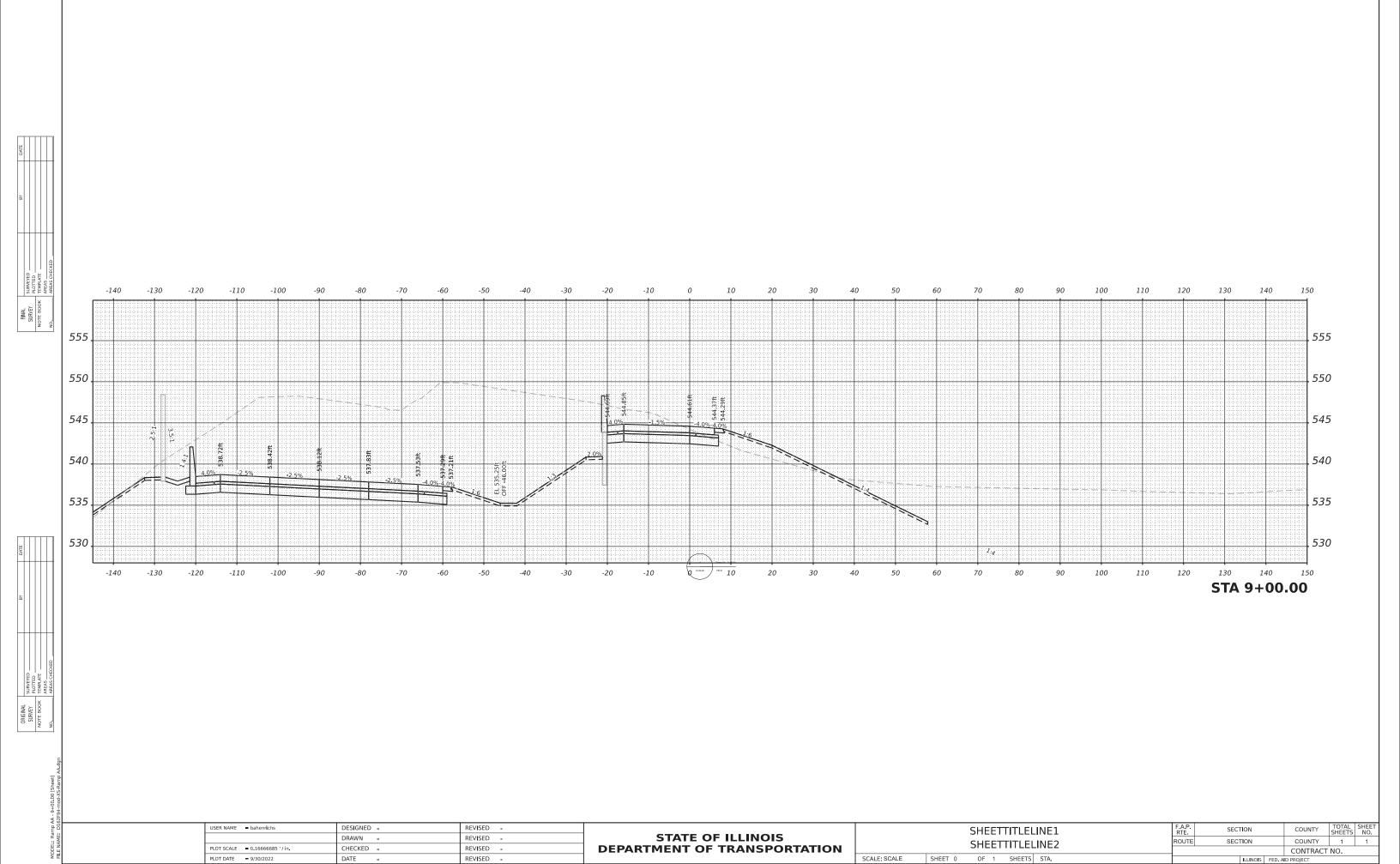
DESIGNED -

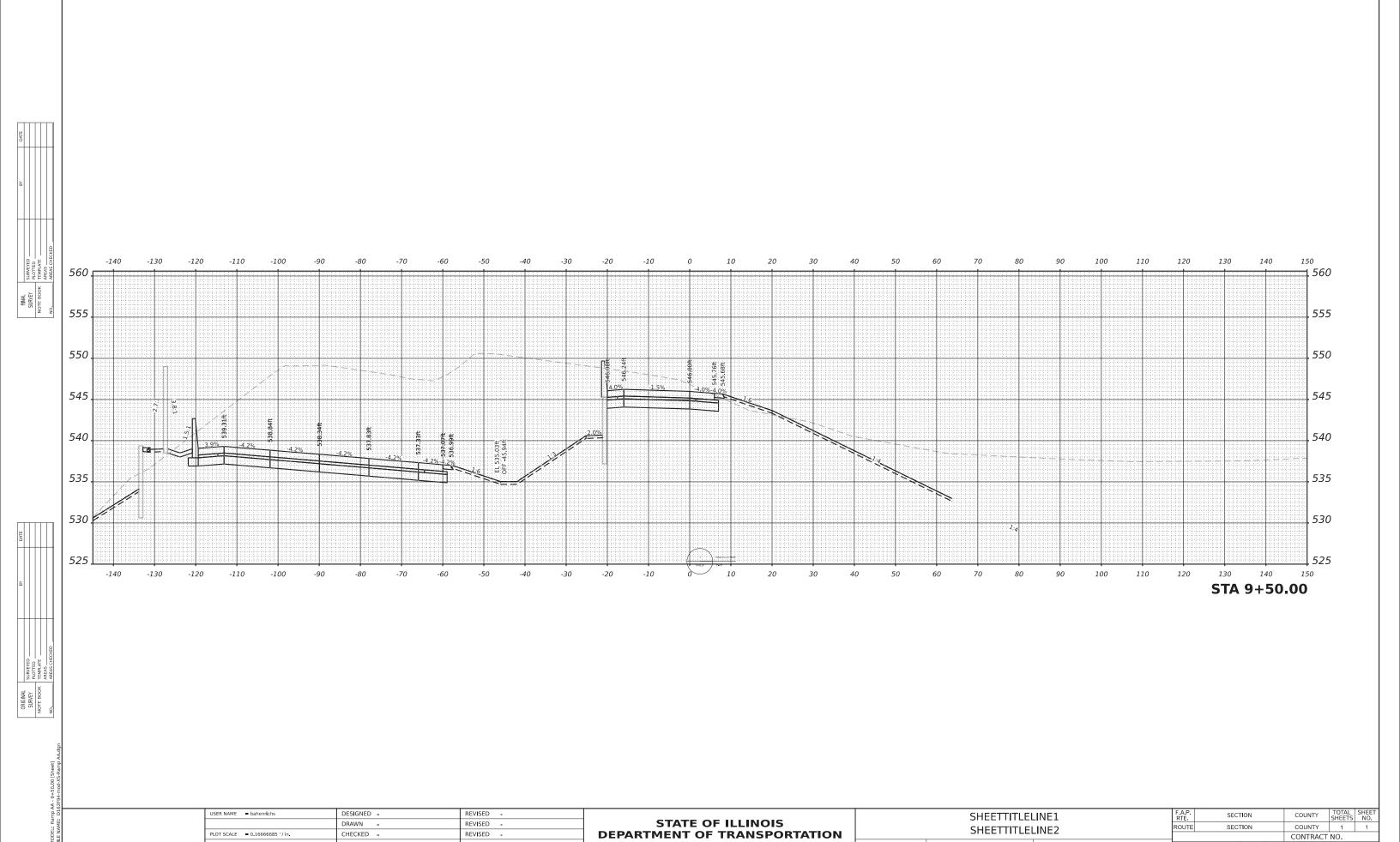
DRAWN -

CHECKED -


DATE


REVISED -


REVISED -


REVISED -

REVISED -

SCALE: SCALE SHEET 0 OF 1 SHEETS STA.

CONTRACT NO.

PLOT SCALE = 0.16666685 '/ in.

PLOT DATE = 9/30/2022

CHECKED -

DATE

REVISED -

COUNTY TOTAL SHEET NO.

COUNTY 1 1

CONTRACT NO.

SECTION

SECTION

ROUTE

SHEETTITLELINE1

SHEETTITLELINE2

SCALE: SCALE SHEET 0 OF 1 SHEETS STA.

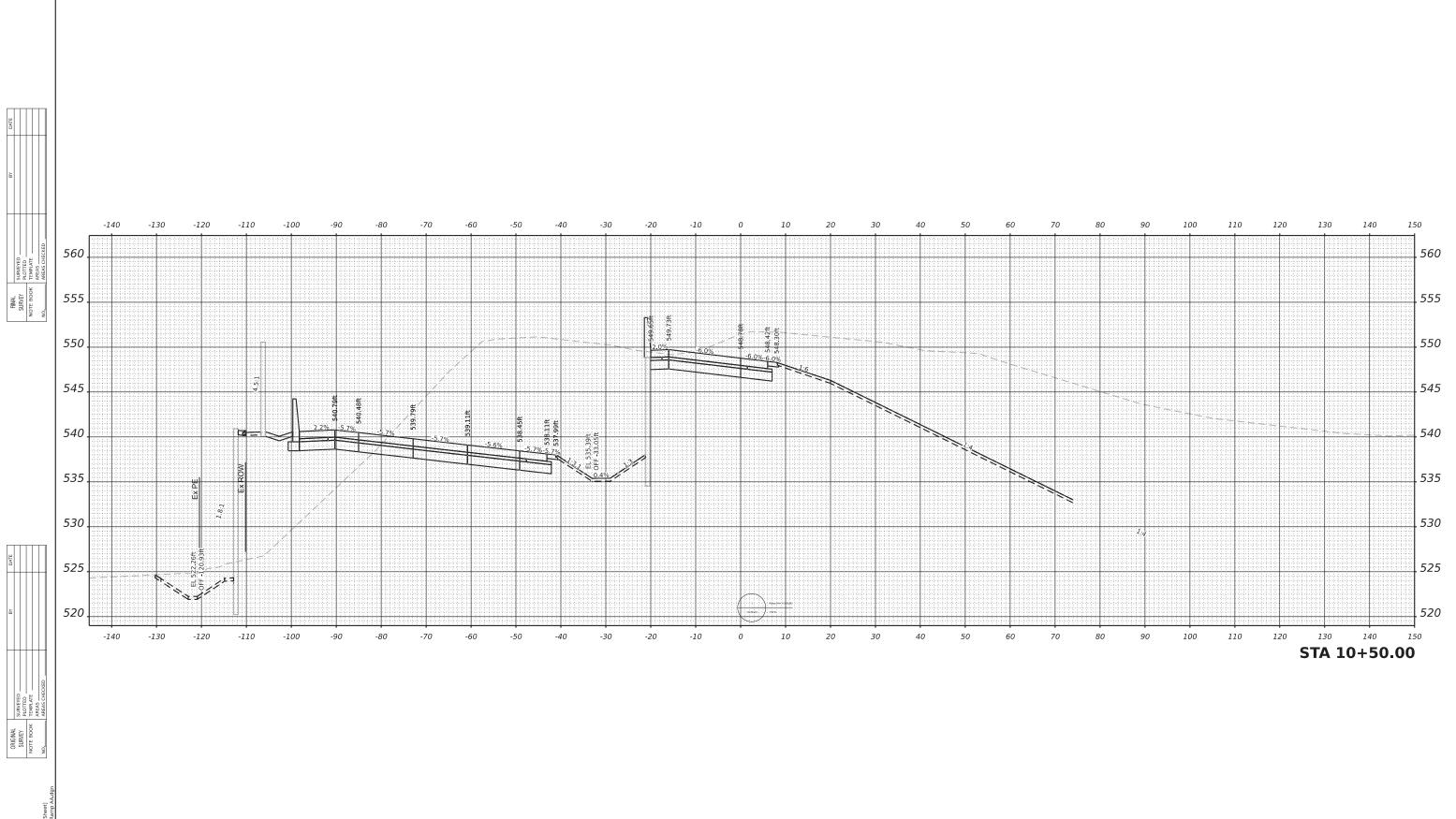
MODEL: Ramp AA - 10+00.00 [Sheet]

USER NAME = bahenrichs

PLOT DATE = 9/30/2022

DESIGNED -

DRAWN -


CHECKED -

DATE

REVISED -

REVISED -

REVISED -

COUNTY TOTAL SHEET NO.

COUNTY 1 1

CONTRACT NO.

SECTION

SECTION

SHEETTITLELINE1

SHEETTITLELINE2

SHEET 0 OF 1 SHEETS STA.

SCALE: SCALE

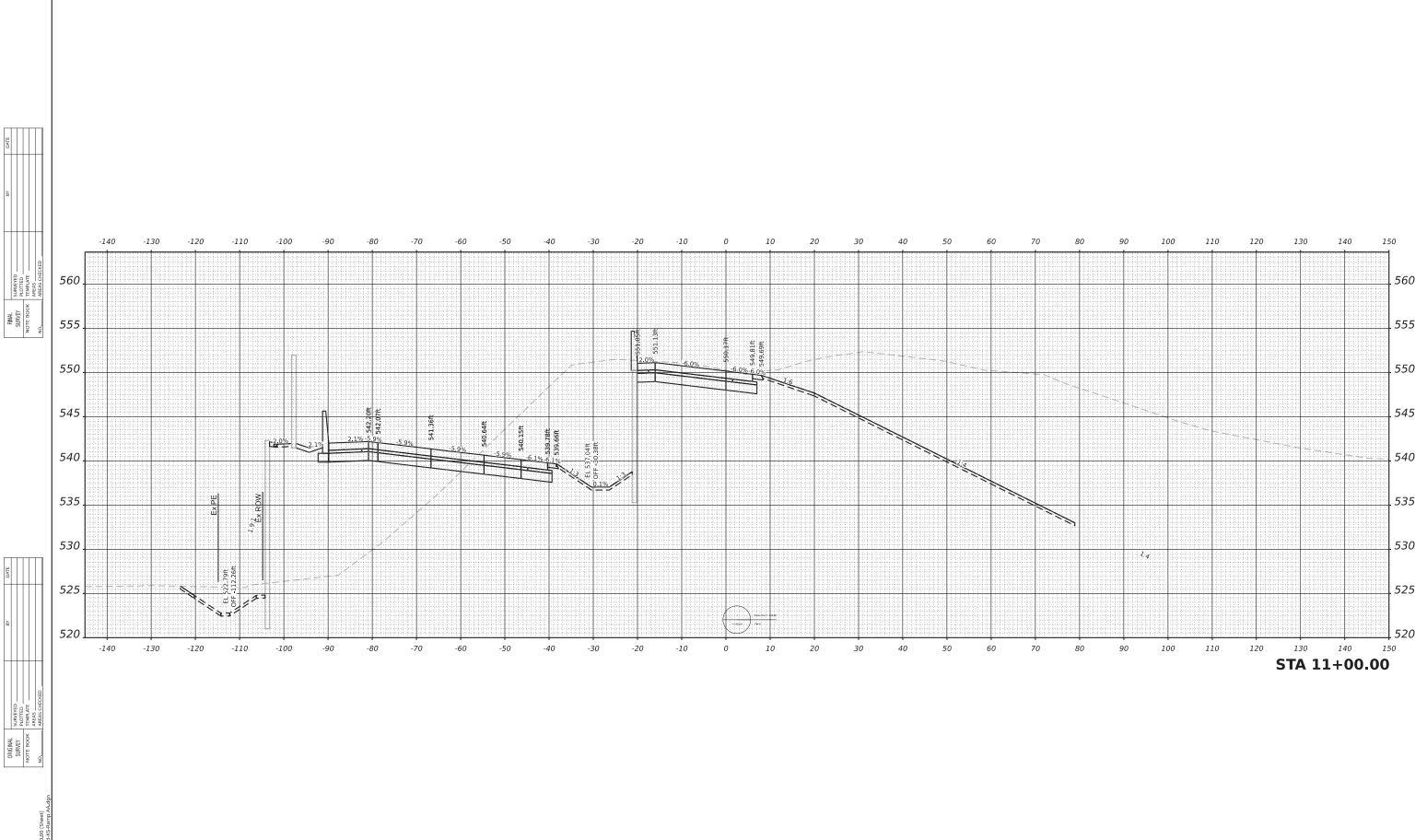
MODEL: Ramp AA - 10+50.00 [Sh

USER NAME = bahenrichs

PLOT DATE = 9/30/2022

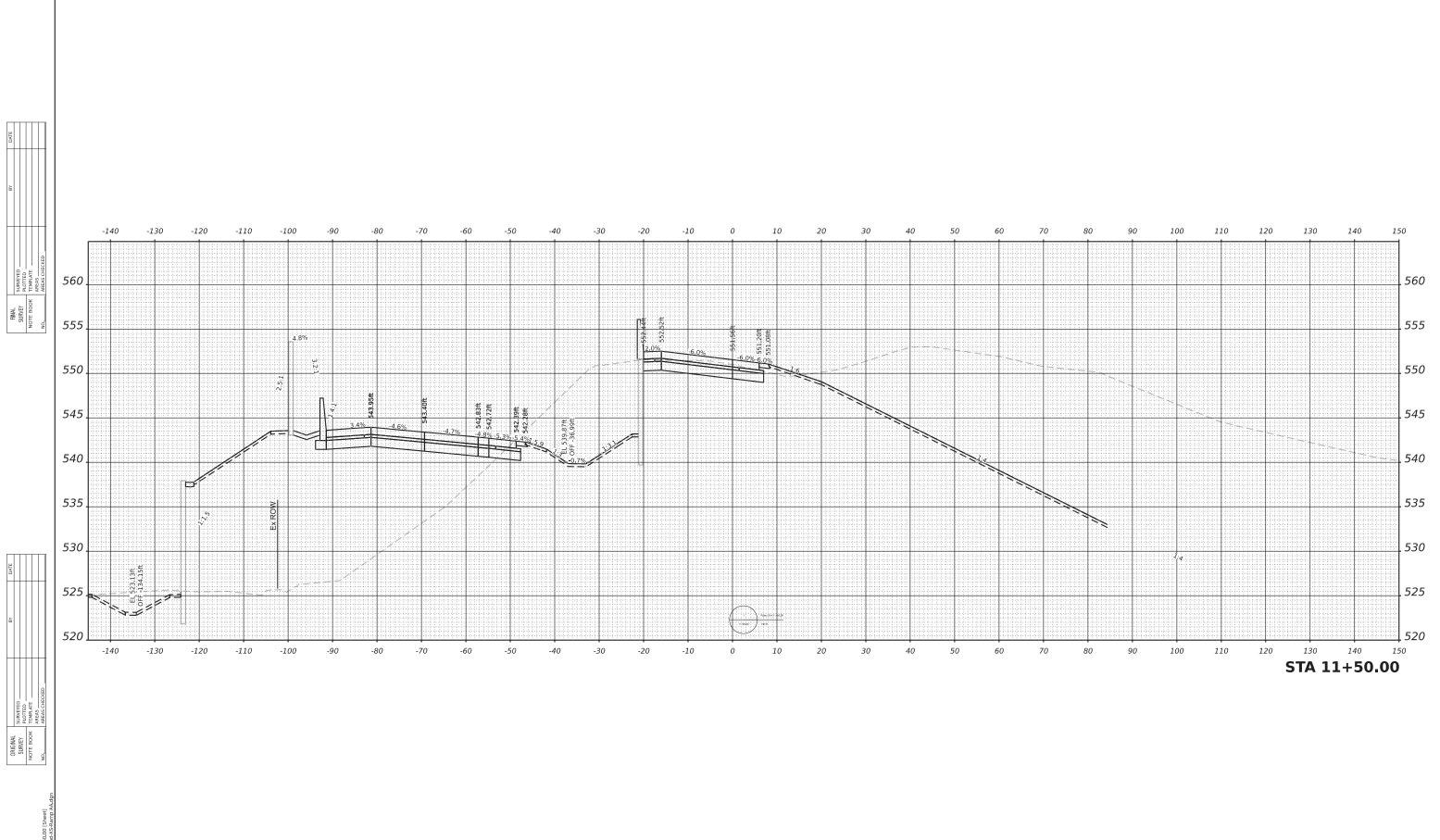
DESIGNED -

DRAWN -


CHECKED -

DATE

REVISED -


REVISED -

REVISED -

MODEL: Ramp AA - 11+00.00 [Sheet]

STATE OF ILLINOIS DEPARTMENT OF TRANSPORTATION

COUNTY TOTAL SHEET NO.

COUNTY 1 1

CONTRACT NO.

SECTION

SECTION

ROUTE

SHEETTITLELINE1

SHEETTITLELINE2

SCALE: SCALE SHEET 0 OF 1 SHEETS STA.

MODEL: Ramp AA - 11+50.00 [She

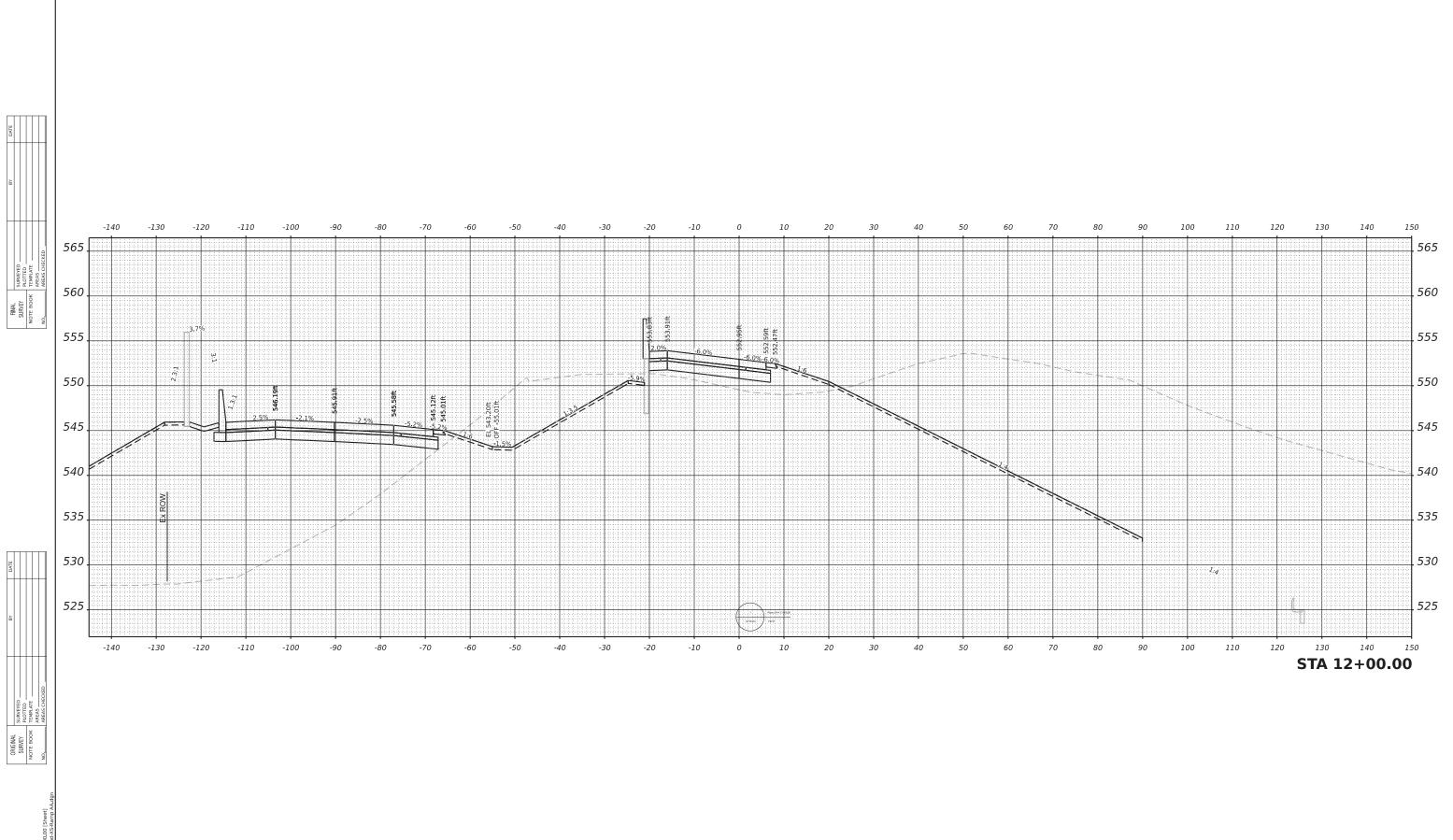
USER NAME = bahenrichs

PLOT DATE = 9/30/2022

PLOT SCALE = 0.16666685 '/ in.

DESIGNED -

DRAWN -


CHECKED -

DATE

REVISED -

REVISED -

REVISED -

COUNTY TOTAL SHEET NO.

COUNTY 1 1

CONTRACT NO.

SECTION

SECTION

ROUTE

SHEETTITLELINE1

SHEETTITLELINE2

SCALE: SCALE SHEET 0 OF 1 SHEETS STA.

MODEL: Ramp AA - 12+00.00 [Sheet]

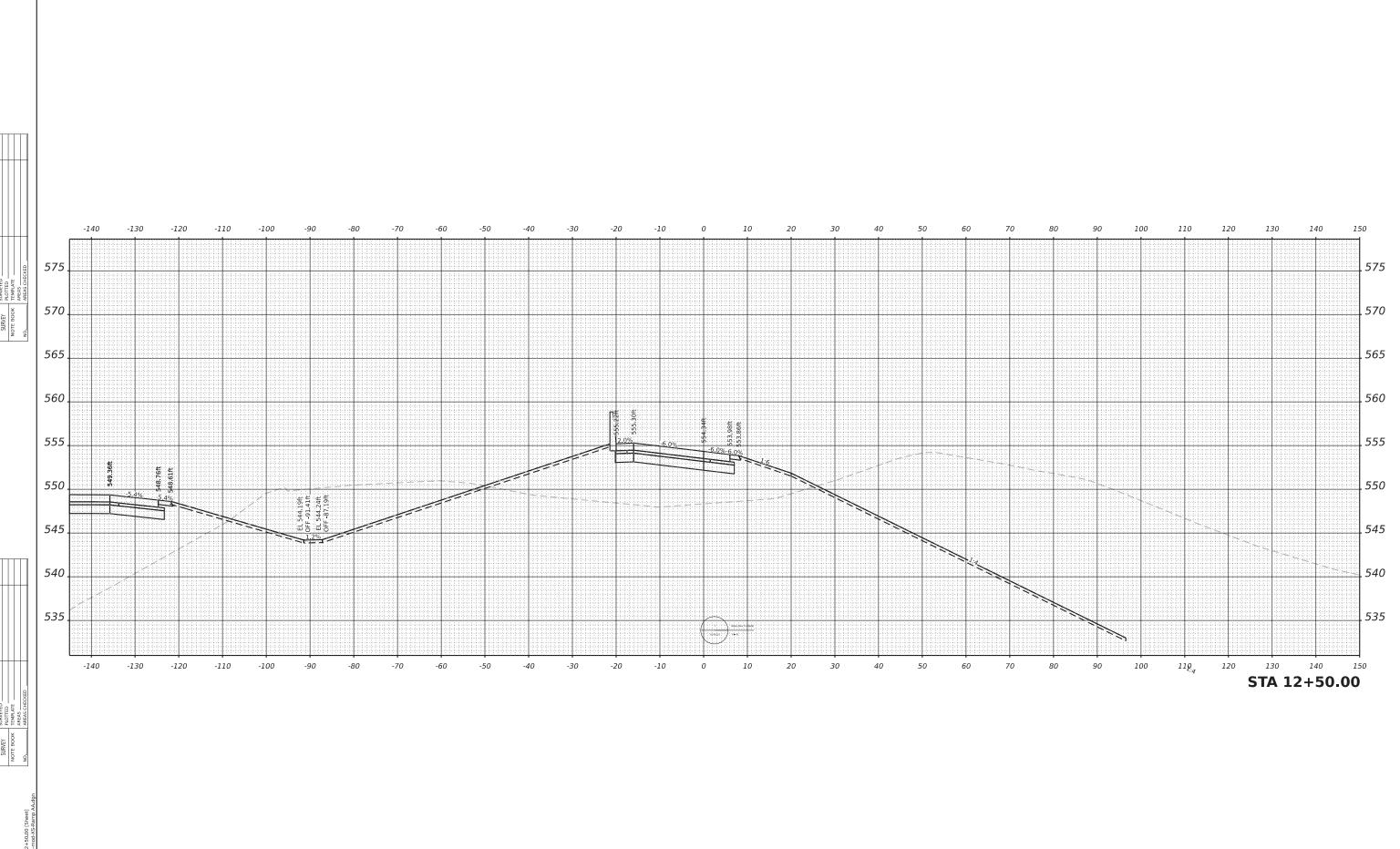
USER NAME = bahenrichs

PLOT DATE = 9/30/2022

PLOT SCALE = 0.16666685 '/ in.

DESIGNED -

DRAWN -


CHECKED -

DATE

REVISED -

REVISED -

REVISED -

COUNTY TOTAL SHEET NO.

COUNTY 1 1

CONTRACT NO.

SECTION

SECTION

ROUTE

SHEETTITLELINE1

SHEETTITLELINE2

SCALE: SCALE SHEET 0 OF 1 SHEETS STA.

MODEL: Ramp AA - 12+50.00 [S]

USER NAME = bahenrichs

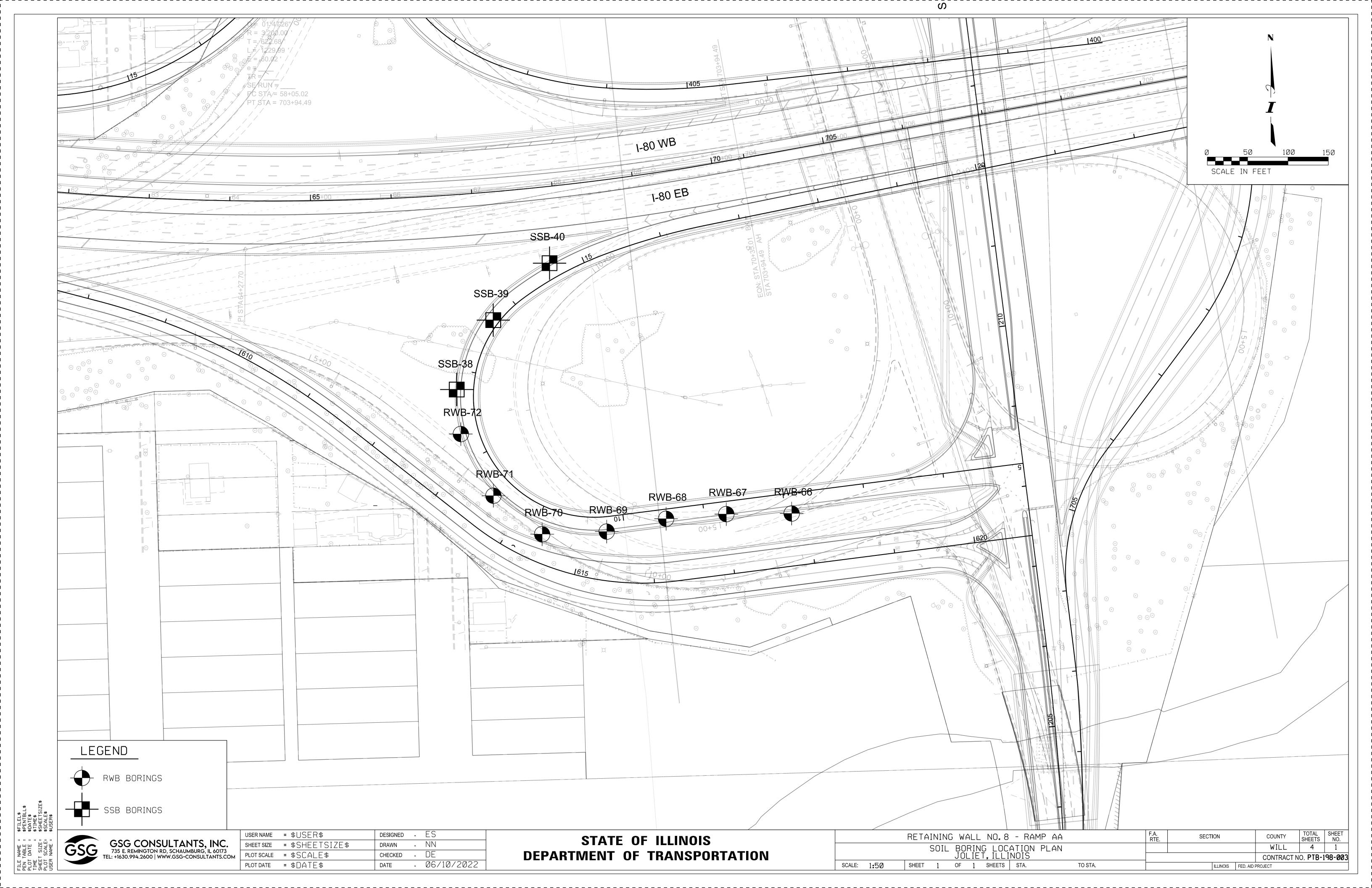
PLOT DATE = 9/30/2022

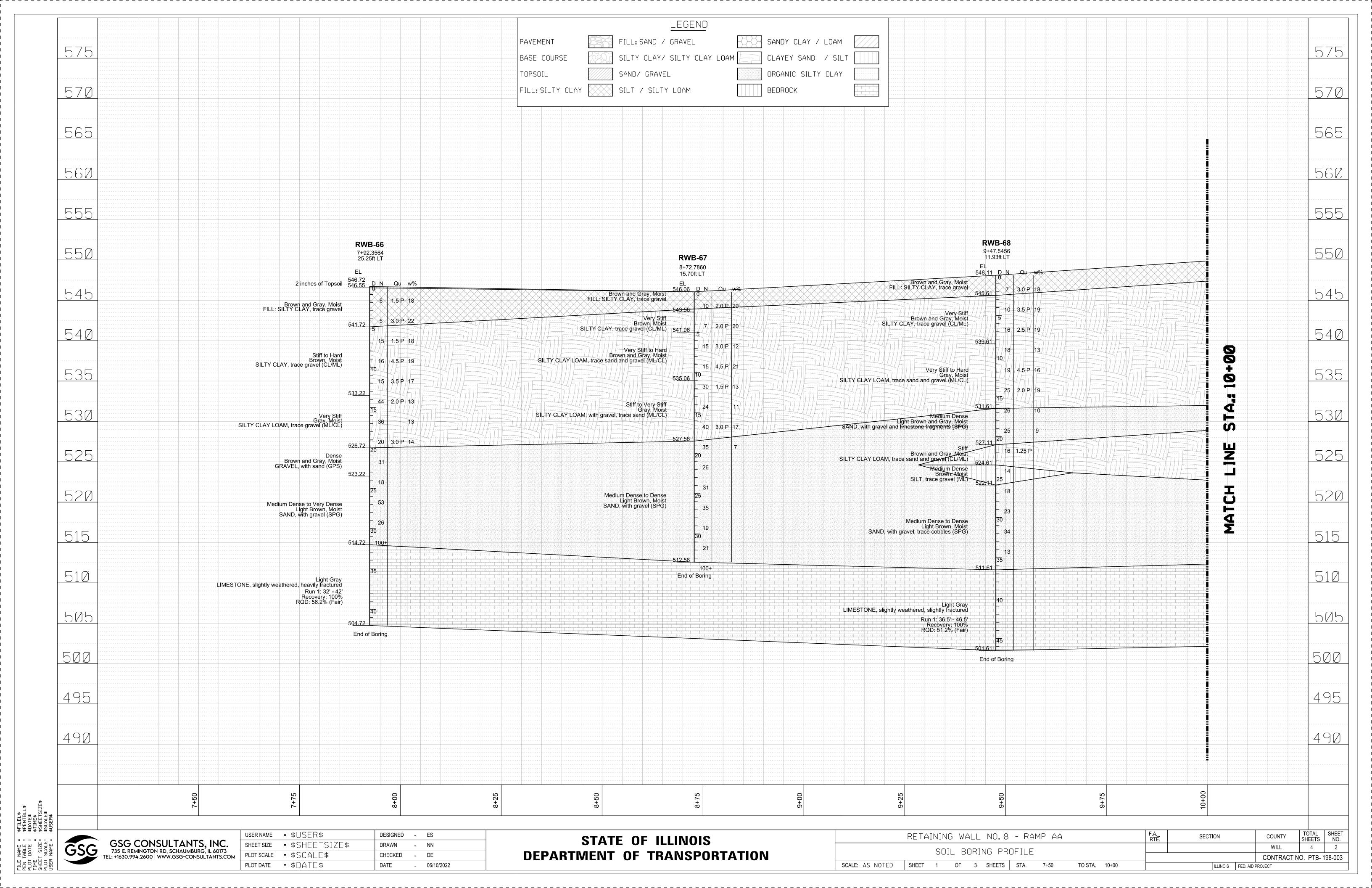
PLOT SCALE = 0.16666685 '/ in.

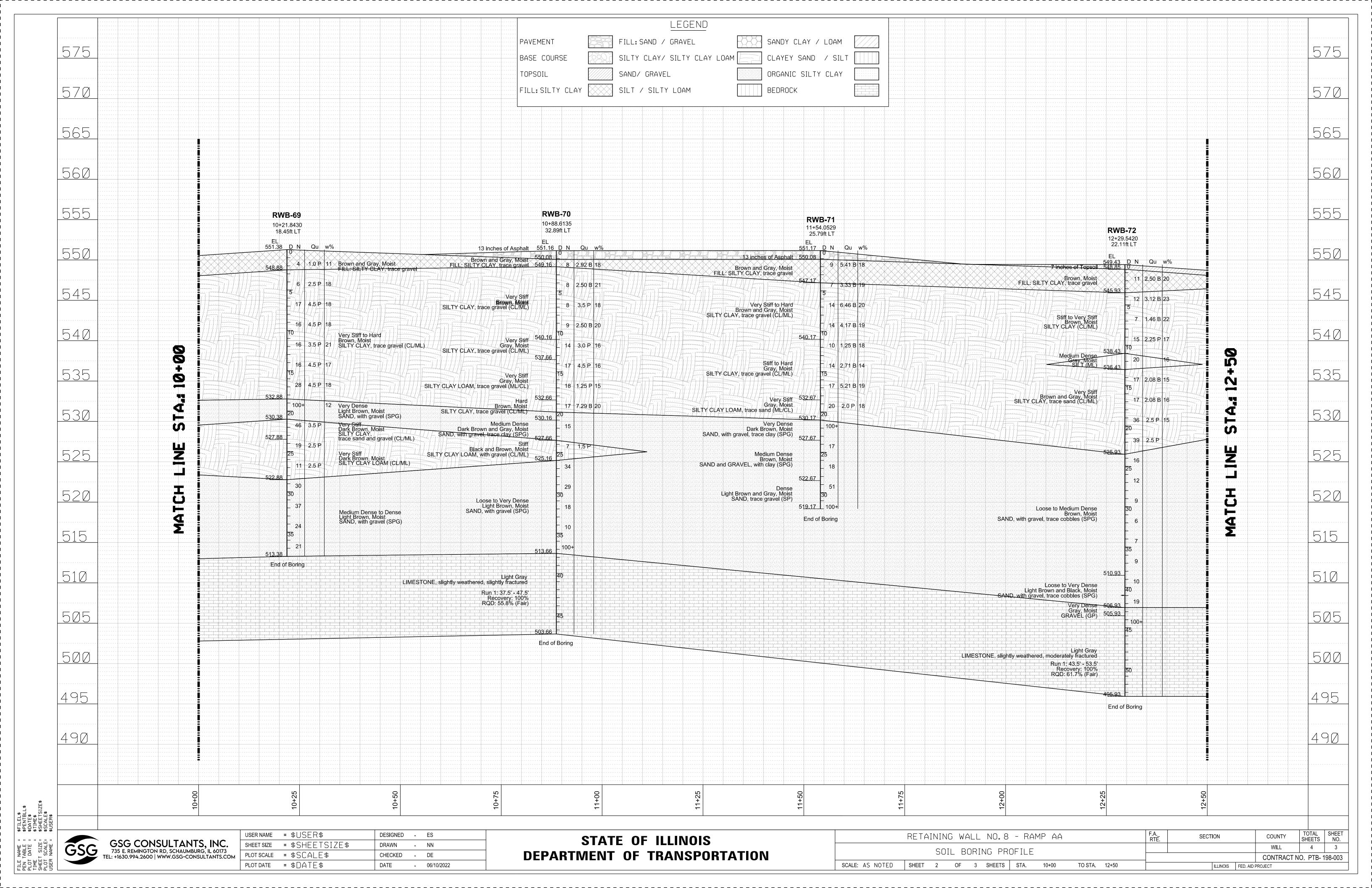
DESIGNED -

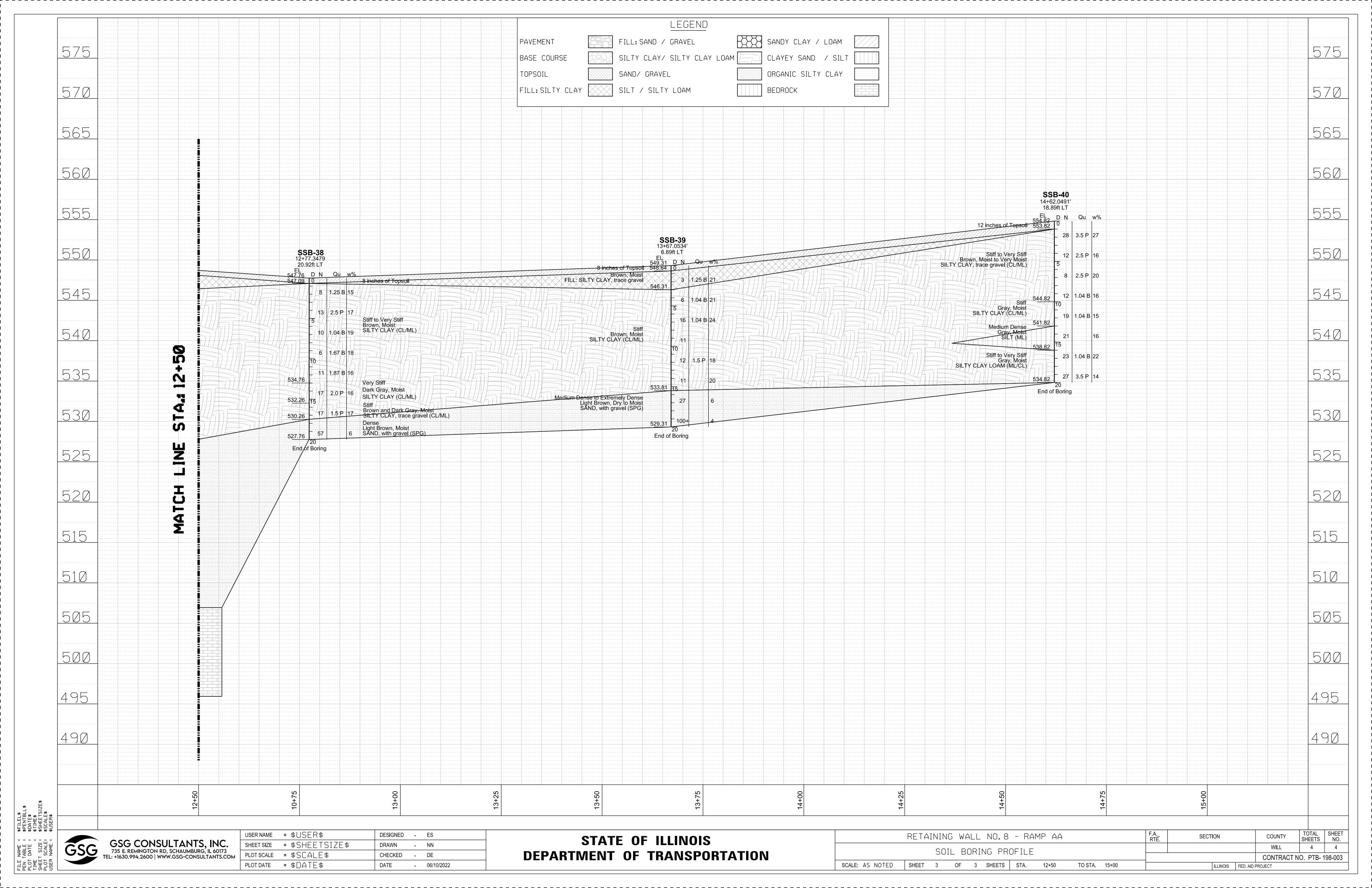
DRAWN -

CHECKED -


DATE


REVISED -


REVISED -


REVISED -

Appendix B
Soil Boring Location Plan and Subsurface Profile

Appendix C Soil Boring Logs

Page $\underline{1}$ of $\underline{2}$

Date 6/13/22

ROUTE _	I-80	DE	SCR	IPTION	1	Re	etaining Wall No. 8 - Rai	mp AA	LC	OGGI	ED BY	k	(A
SECTION	I-80 over Des Plaine	s River	_ ı	OCAT	TION _	, SEC.	16, TWP . 35 N, RNG . 10	0 E,					
COUNTY	Will D	DRII RILLING	LLIN	G RIG		Diedri	ide , Longitude ch D-50 HSA	HAMMER HAMMER	TYPE EFF (%)		<u>uto</u> 98	
STRUCT. I	NO	_	D E P	B L O	U C S	М О І	Surface Water Elev Stream Bed Elev	N/A	_ ft	D E P	B L O	U C S	M O I
BORING N Station Offset	O. RWB-66 7+92.3564 25.25ft LT		H (ft)	W S (/6")	Qu (tsf)	S T (%)	Upon Completion _	Dry N/A	ft	T H (ft)	W S (/6")	Qu (tsf)	S T (%)
	Surface Elev. 546.72 Topsoil			(,0,)	(131)	(70)	After Hrs	N/A	_ π	(11)	(10)	(131)	(70)
Brown and	Gray, Moist Y CLAY, trace gravel			2			Brown and Gray, Mois GRAVEL, with sand (G Cobbles at 21.0 feet				19		
				4	1.5 P	18					15 16		8
				1 2	2.0	22	Medium Dense to Very Light Brown, Moist	y Dense	523.22	_	6		42
		541.72	-5	2	3.0 P	22	SAND, with gravel (SP	PG)		-25	0		13
Stiff to Har Brown, Mo SILTY CLA		<u> </u>		4			Cobbles at 26.0 feet				20		
				6 9	1.5 P	18	CODDICS at 20.0 loct			_	28 25		7
				3							5		
				7	4.5 P	19				-30	10		7
				4						_	50/6"		
				6 9	3.5 P	17	Split Spoon Refusal at Light Gray	32.0 feet	514.72	_			5
Very Stiff		533.22		7			LIMESTONE, slightly with the avily fractured	weathered,					
Gray, Mois SILTY CLA (ML/CL)	t AY LOAM, trace gravel		-15	14 30	2.0 P	13	Run 1: 32' - 42' Recovery: 100% RQD: 56.2% (Fair)			-35			
				10		13				_			
Sand and	gravel seam at 17.0 fee	t	_	22						_			
			_	6	3.0	14				_			
		526.72	-20	12	Р					-40			

Page $\underline{2}$ of $\underline{2}$

Date 6/13/22

ROUTE	I-80)	_ DES	SCRI	PTION	1	Re	etaining Wall No. 8 - Ra	amp AA	LOGGED BY	KA
						ION _	, SEC.	16, TWP . 35 N, RNG . 1	0 E,		
COUNTY	Will	DR	DRII RILLING	LLIN	G RIG THOD		Diedri	ide , Longitude ch D-50 HSA	HAMMER TYI HAMMER EF	PE Aut F (%) 98	
STRUCT. NO. Station				D E P T	B L O W	U C S	M O I S	Surface Water Elev Stream Bed Elev	N/A ft	İ	
BORING NO. Station Offset	7+9: 25.2	2.3564 25ft LT		Н	S	Qu (tsf)	Т	Groundwater Elev.: First Encounter Upon Completion	Dry_ft	: !	
Offset	ace Elev	546.72				(tsf)	(%)	Upon Completion After Hrs.	N/A ft		

Retaining Wall #8 Boring Number: RWB-66, Run 1

Top

Depth = 32.0 ft Elev. = 514.7 ft

Depth = 42.0 ft Elev. = 504.7 ft Bottom

Boring No.	Depth (ft)	Recovery (%)	RQD (%)	RQD Classification	Description	Depth (ft)/ Unconfined Compression Strength (psi)
RWB-66	32.0′ – 42.0′	100.0	56.2	Fair	Gray Limestone Slightly Weathered, Heavily Fractured	37.0 / 11,261

Page $\underline{1}$ of $\underline{1}$

Date 6/14/22

ROUTE I-80	DE	SCR	IPTION	1	R	etaining Wall No. 8 - Ramp AA	_ LOGG	ED BY	k	(A
					1 -4:4	16, TWP. 35 N, RNG. 10 E,				
COUNTY Will D	DRI	LLIN	G RIG		Diedri	ICH D-50 HAMMER TY			uto	
D	RILLING	ME ز	THOD			HSA HAMMER EI	FF (%)	!	98	I
STRUCT. NO.		D	В	U	M	Surface Water Elev. N/A	ft D	В	U	M
Station		E P	L	С	0	Stream Bed Elev. N/A	ft E	L	C	0
POPINO NO DIVIDICA		T	O W	S	S	Outside the floor	T	O W) S	S
BORING NO. RWB-67 Station 8+72.7860		H	s	Qu	T	Groundwater Elev.: First Encounter Dryt		s	Qu	T
Offset 15.70ft LT						Upon Completion N/A	ft			
Ground Surface Elev. 546.06	ft	(ft)	(/6")	(tsf)	(%)	After HrsN/A	ft (ft)	(/6")	(tsf)	(%)
Brown and Gray, Moist						Medium Dense to Dense				
FILL: SILTY CLAY, trace gravel						Light Brown, Moist	_			
			3			SAND, with gravel (SPG) (continued)		33		
			3	2.0	20	Cobbles at 21 feet		13		5
	543.56	_	7	Р			_	13		
Very Stiff Brown, Moist										
SILTY CLAY, trace gravel		_	2			Cobbles at 23.5 feet	_	35		
(CL/ML)			2	2.0	20	Copples at 23.5 leet		22		6
	541.06	<u> </u>	5	P	20			a		
Very Stiff to Hard	341.00	-5		-			25			
Brown and Gray, Moist		_					_			
SILTY CLAY LOAM, trace sand and gravel (ML/CL)			4					13		
and graver (ML/CL)			7	3.0	12			12		8
			8	Р			_	23		
		_	3			Cobbles at 28.5 feet	_	7		
			7	4.5	21	Cobbles at 20.3 leet		11		9
		-10	ρ	P 7.0	-		-30	ρ		
		-10		-			30			
	535.06						_			
Stiff to Very Stiff			6					9		
Gray, Moist SILTY CLAY LOAM, with gravel,			12	1.5	13			10		7
trace sand (ML/CL)			18	Р			_	11		
Sand seam at 12 feet										
		_	9			Auger refusal at 33.5 feet	12.56	50/2"		
			12		11	End of Boring		30/2		NR
		15	12		''		25			'
		<u>-15</u>					35			
		_					_			
			4							
			18	3.0	17					
			22	Р			_			
Medium Dense to Dense	527.56		27				_			
Light Brown, Moist			15		7					
SAND, with gravel (SPG)		-20	20		'		40			

Page $\underline{1}$ of $\underline{2}$

Date 6/14/22

DESCRIPTION Retaining Wall No. 8 - Ramp AA LOGGED BY KA I-80 ROUTE SECTION __ I-80 over Des Plaines River __ LOCATION _, SEC. 16, TWP. 35 N, RNG. 10 E, Latitude , Longitude Diedrich D-50 **DRILLING RIG HAMMER TYPE** — DRILLING METHOD HSA HAMMER EFF (%) 98 U M D R U M STRUCT. NO. Surface Water Elev. N/A ft Ε С L 0 Ε L С 0 Stream Bed Elev. N/A ft Station Ρ S S 0 Ρ ı 0 ı BORING NO. RWB-68 Т Т W S W S Groundwater Elev.: S Qu Т Н S Qu T
 Station
 9+47.5456

 Offset
 11.93ft LT
 Dry_ft First Encounter Upon Completion N/A ft (ft) (/6") (%) (ft) (/6")(%) (tsf) (tsf) Ground Surface Elev. 548.11 After Hrs. N/A ft Brown and Gray, Moist FILL: SILTY CLAY, trace gravel 527.11 2 Stiff 6 3 Brown and Gray, Very Moist 6 3.0 1.3 25 SILTY CLAY LOAM, trace sand 4 10 Ρ Ρ 545.61 and gravel (CL/ML) Very Stiff Brown and Gray, Moist 524.61 SILTY CLAY, trace gravel (CL) 3 Medium Dense 4 Brown, Very Moist 4 19 6 29 3.5 SILT, trace gravel (ML) 6 Ρ 8 522.11 3 Medium Dense to Dense 9 Light Brown, Moist 8 19 9 2.5 11 SAND, with gravel, trace cobbles 8 Р (SPG) Very Stiff to Hard 4 10 Gray, Moist SILTY CLAY LOAM, trace sand 8 13 14 10 10 -10 and gravel (ML/CL) Sand seam at 9 feet 3 6 8 16 25 4.5 10 11 Р 6 9 10 2.0 19 Р 6 15 7 531.61 511.61 Auger refusal at 36.5 feet 13 Medium Dense Light Gray Light Brown and Gray, Moist 13 LIMESTONE, slightly weathered, SAND, with gravel and limestone fragments (SPG) slightly fractured 13 Run 1: 36.5' - 46.5' <u>11</u> 9 Recovery: 100% RQD: 51.2% (Fair) 14

Page $\underline{2}$ of $\underline{2}$

Date 6/14/22 **DESCRIPTION** Retaining Wall No. 8 - Ramp AA **LOGGED BY** KA I-80 ROUTE SECTION I-80 over Des Plaines River LOCATION, SEC. 16, TWP. 35 N, RNG. 10 E, Latitude , Longitude Diedrich D-50 **DRILLING RIG** HAMMER TYPE Auto COUNTY _ — DRILLING METHOD HSA HAMMER EFF (%) 98 R U M Surface Water Elev. __ STRUCT. NO. N/A ft Ε L С 0 Stream Bed Elev. Station ____ Ρ s 0 ı BORING NO. RWB-68 Т W S Groundwater Elev.: S Qu Т
 Station
 9+47.5456

 Offset
 11.93ft LT
 First Encounter Dry_ft Upon Completion _ N/A ft (ft) (/6") (%) (tsf) Ground Surface Elev. 548.11 After Hrs. N/A ft Light Gray LIMESTONE, slightly weathered, slightly fractured Run 1: 36.5' - 46.5' Recovery: 100% RQD: 51.2% (Fair) (continued) 501.61 End of Boring

Joliet, Illinois

Retaining Wall #8 Boring Number: RWB-68, Run 1

Top

Depth = 36.5 ft Elev. = 511.6 ft

Depth = 46.5 ft Elev. = 501.6 ft Bottom

Boring No.	Depth (ft)	Recovery (%)	RQD (%)	RQD Classification	Description	Depth (ft)/ Unconfined Compression Strength (psi)
RWB-68	36.5' – 46.5'	100.0	51.2	Fair	Light Gray Limestone Slightly Weathered, Slightly Fractured	43.5 / 18,300

Page <u>1</u> of <u>1</u>

Date 6/17/22

DESCRIPTION Retaining Wall No. 8 - Ramp AA LOGGED BY DD I-80 ROUTE SECTION I-80 over Des Plaines River LOCATION, SEC. 16, TWP. 35 N, RNG. 10 E, Latitude , Longitude CME-75 **DRILLING RIG HAMMER TYPE** Auto COUNTY _ Will DRILLING METHOD HSA HAMMER EFF (%) 91 R U M D R U M STRUCT. NO. Surface Water Elev. N/A ft Ε L С 0 Ε L С 0 Station ____ Stream Bed Elev. N/A ft Р S S 0 Ρ ı 0 ı BORING NO. RWB-69 Т W S Т W S Groundwater Elev.: S Qu Т Н S Qu Т
 Station
 10+21.8430

 Offset
 18.45ft LT
 First Encounter Dry ft Upon Completion N/A ft (ft) (/6") (%) (ft) (/6")(%) (tsf) (tsf) Ground Surface Elev. <u>551.38</u> After Hrs. N/A ft Brown and Gray, Moist FILL: SILTY CLAY, trace gravel 530.38 2 Very Stiff 4 Dark Brown, Moist 2 17 1.0 3.5 19 SILTY CLAY, trace sand and 2 29 Ρ Ρ 548.88 gravel (CL/ML) Very Stiff to Hard Brown, Moist 527.88 SILTY CLAY, trace gravel 2 Very Stiff 4 (CL/ML) Dark Brown, Moist 2 10 2.5 18 2.5 12 SILTY CLAY LOAM (CL/ML) 4 Ρ 9 Ρ 5 4 8 5 4.5 18 2.5 11 9 Р 6 522.88 3 Medium Dense to Dense 11 Light Brown, Moist 18 6 4.5 16 7 SAND, with gravel (SPG) 10 14 Р 4 11 6 12 21 7 3.5 10 25 Р 6 Cobbles at 33.5 feet 8 4.5 17 10 8 8 Р 14 3 8 8 10 4.5 18 8 20 11 Ρ 513.38 Auger refusal at 38.0 feet End of Boring Very Dense 42 Light Brown, Moist 50/4" 12 SAND, with gravel (SPG)

Page $\underline{1}$ of $\underline{2}$

Date 6/15/22

ROUTE	I-80	DE	SCR	IPTION	ı	R	etaining Wall No. 8 - Ramp AA	LC)GGI	ED BY	k	(A
SECTION	I-80 over Des Plaine	s River	ı	ОСАТ	ION	SEC	16, TWP. 35 N, RNG . 10 E,					
						Latitu	do Longitudo					
COUNTY	Will D	DRI	LLIN 2 ME			Diedri	ch D-50 HAMMER HSA HAMMER	TYPE			uto	
	D	KILLING		Inob			HAWIWER	EFF (%)	; 	98	
STRUCT. NO			D	В	U	M	Surface Water Elev. N/A	_ ft	D	В	U	M
Station			E	L	С	0	Stream Bed Elev. N/A	_ ft	E	L	С	0
			P T	O W	S	S			P T	O W	S	l
BORING NO.	RWB-70		H	S	Qu	T	Groundwater Elev.:		H	S	Qu	S
Station	10+88.6135 32.89ft LT				Qu	'	First Encounter Dry	_ π	•••	"	Qu	'
	face Elev. <u>551.16</u>		(ft)	(/6")	(tsf)	(%)	Upon Completion N/A	_ IL ff	(ft)	(/6")	(tsf)	(%)
13 inches of			()	(- ,	(/	(***)	After Hrs N/A Hard	_ ''	(-)	(- /	(,	(***)
13 mones of 7	чэрпан		_	-			Brown, Moist		_			
D	NA-:-4	550.08		2			SILTY CLAY, trace gravel	530.16		6		
Brown and G	ray, Moist CLAY, trace gravel		_	3	2.9	18	(CL/ML) (continued)		_	6		11
Very Stiff	JLAT, trace graver	549.16		5	2.9 B	10	Medium Dense	_		9		''
Brown, Moist			_				Dark Brown and Gray, Moist SAND, with gravel, trace clay		_			
SILTY CLAY,							(SPG)	F07.00				
(CL/ML)			_	2			Stiff	527.66	_	5		
				3	2.5	21	Black and Brown, Moist			3	1.5	19
			<u> </u>	5	В		SILTY CLAY LOAM, with gravel		-25	1	P	
			5				(CL/ML)		-23			
			_	1				525.16	_	1		
				3			Loose to Very Dense	020.10		6		
			_	4	3.5	18	Light Brown, Moist			17		9
				4	Р		SĂND, with gravel (SPG)			17		
				3						42		
				4	2.5	20			_	14		6
			10	5	В				-30	15		
									_			
) / O'''		540.16										
Very Stiff Gray, Moist			_	4		10			_	36		40
SILTY CLAY,	trace gravel			6 8	3.0	16				9		10
(CL/ML)	3			0	Р				_	9		
Very Stiff		537.66	- —	4					_	4		
Gray, Moist				8	4.5	16				4		12
SILTY CLAY	LOAM, trace gravel		45	9	P	'0				6		'-
(ML/CL)			15		'				-35			
			_						_			
				5						8		
			_	8	1.3	15			_	14		9
				10	Р	-		513.66	_	50/1"		-
							Split Spoon Refusal at 37.5 feet	J 10.00	_			
		532.66		1						1		
		552.50	_	6					_	1		
				7	7.3	20				1		
			-20	10	В				-40	1		

Page $\underline{2}$ of $\underline{2}$

Date 6/15/22

ROUTE	I-80	DE	SCRI	PTION	ı	Re	etaining Wall No. 8 - Ra	amp AA	_ LOGGED BY	KA
					ION _	, SEC.	16, TWP. 35 N, RNG. 1	10 E,		
COUNTY _	Will D	DRI DRILLING	J ME	G RIG THOD		Diedri	ide , Longitude ch D-50 HSA	HAMMER TY HAMMER EF	'PE Au F (%) 98	<u>ito</u> 8
STRUCT. NO Station	O		D E P	B L O	U C S	М О І	Surface Water Elev. Stream Bed Elev.	N/A f	t	
Station Offset	0. RWB-70 10+88.6135 32.89ft LT		H	W S	Qu (tof)	S T	Groundwater Elev.: First Encounter Upon Completion After Hrs.	Dry f	t t	
	rface Elev. <u>551.16</u>	6 ft	(π)	(/6")	(tsf)	(%)	After Hrs.	N/A f	<u>t</u>	
Light Gray LIMESTONI slightly fract	E, slightly weathered, ured		_							
Run 1: 37.5' Recovery: 1 RQD: 55.8%	- 47.5' 00% 5 (Fair) <i>(continued)</i>									
			_							
			<u>-45</u>							
		503.66								
End of Borin	ıg									
			_							
			-50							
			_							
			_							
			-55							
			_							
			_							
			-60	I	I	I	11			

Joliet, Illinois

Retaining Wall #8 Boring Number: RWB-70, Run 1

Тор

Depth = 37.5 ft Elev. = 513.7 ft

Depth = 47.5 ft Elev. = 503.7 ft

Bottom

Boring No.	Depth (ft)	Recovery (%)	RQD (%)	RQD Classification	Description	Depth (ft)/ Unconfined Compression Strength (psi)
RWB-70	37.5′ – 47.5′	100.0	55.8	Fair	Light Gray Limestone Slightly Weathered, Slightly Fractured	43.5 / 13,823

Page $\underline{1}$ of $\underline{1}$

Date 6/16/22

ROUTE	I-80	DE	SCR	PTION	I	Re	etaining Wall No. 8 - Ramp AA	LC	OGG	ED BY	k	(A
SECTION	I-80 over Des Plaine	s River	ı	OCAT	ION	SFC.	16, TWP. 35 N, RNG. 10 E,					
						Latitu	de Longitude					
COUNTY	Will D	DRI	LLIN 2 ME			CM	HAMMER HAMMER				uto	
	D	KILLING		Inob			<u>HSA</u> HAMMER	EFF (%	_		91	
STRUCT. NO.			D	В	U	M	Surface Water Elev. N/A	_ ft	D	В	U	M
Station			E	L	С	0	Stream Bed Elev. N/A	ft	E	L	С	0
			P	0	S	ı			P	0	S	ı
BORING NO.	RWB-71		H	W S	Qu	S	Groundwater Elev.:		H	W	Qu	S
Station	11+54.0529 25.79ft LT				Qu	•	First Encounter Dry	_ ft		"	Qu	'
	ace Elev. <u>551.17</u>		(ft)	(/6")	(tsf)	(%)	Upon Completion N/A	_ ¦Լ	(ft)	(/6")	(tsf)	(%)
13 inches of A		"	(,	(- /	(00.7	(//	After HrsN/A	_ ''	(,	(,	(00.7)	(//
13 Inches of F	чэрнан		_	-			Gray, Moist		_			
Daniel and On	M-:-4	550.08		5			SILTY CLAY LOAM, trace sand	530.17		50/6"		
Brown and Gr	ay, Moist CLAY, trace gravel		_	4	5.4	18	(ML/CL) (continued)	_	_	30/0		8
TILL. OILTT	LAT, liace graver			5	Э. 4 В	10	Very Dense					
			_				Dark Brown, Moist SAND, with gravel, trace clay		_			
							(SPG)	F07.07				
		E 17 17	_	2			Medium Dense	527.67	_	31		
Very Stiff to H	ard	547.17		4	3.3	19	Brown, Moist			11		9
Brown and Gr	ay, Moist		<u> </u>	3	В		SAND and GRAVEL, with clay		-25	6		
SILTY CLAY,	trace gravel		3				(SPG) Cobbles at 23.5 to 27.5 feet		25			
(CL/ML)			_				Copples at 25.5 to 27.5 feet					
				4						10		
			_	6	6.5	20				7		6
				8	В					11		
								522.67				
				4			Dense			5		
				7	4.2	19	Light Brown and Gray, Moist to Wet			23		19
			10	7	В		SAND, trace gravel (SP)		-30	28		
			_						_			
0		540.17					0, , , , , ,			F0/0"		
Stiff to Hard Gray, Moist				3	4.0	40	Clay seam at 31.0 feet			50/3"		
SILTY CLAY,	trace gravel			3 7	1.3	18		519.17				6
(CL/ML)	3			'	В		Split Spoon Refusal at 32.0 feet					
							End of Boring			_		
			_	3					_	-		
				6	2.7	14						
			45	8	В.	''				<u> </u> 		
			15						35	-		
			_						-			
				5						1		
			_	6	5.2	19			_			
				11	В					1		
									_	1		
		532.67		1						1		
				8								
			_	8	2.0	18			_			
			-20	12	Р				-40			

Page $\underline{1}$ of $\underline{2}$

Date 6/16/22

ROUTE	I-80	DE	SCR	IPTION	1	R	<u>etaining Wall No. 8 - Ra</u>	amp AA	LC	OGG	ED BY	k	(A
SECTION	-80 over Des Plaine	es River		LOCAT	ION _	, SEC.	16, TWP . 35 N, RNG .	10 E,					
COUNTY	Will D	DRI	LLIN	G RIG		Latitu CN	ide , Longitude 1E-75	HAMMER	TYPE			uto	
	D	RILLING	G ME	THOD			<u>1E-75</u> HSA ∥)	!	91	
STRUCT. NO. Station			D E P	B L O	U C S	М О І	Surface Water Elev. Stream Bed Elev.	N/A N/A	_ ft _ ft	D E P	B L O	U C S	М О І
Station Offset	RWB-72 12+29.5420 22.11ft LT		T H	W S	Qu	S T	Groundwater Elev.: First Encounter Upon Completion	N/A	_ ft	T H	W S	Qu	S T
Ground Surfa	ace Elev549.43	3 ft	(ft)	(/6")	(tsf)	(%)	After Hrs.	N/A	_ ft	(ft)	(/6")	(tsf)	(%)
/ inches of Top	psoil	548.85					Very Stiff Brown and Gray, Mois	st to Verv					
FILL: SILTY C	LAY, trace gravel			3			Moist				4		
	, 3		_	4	2.5	20	SILTY CLAY, trace sa (continued)	and (CL/ML)		_	12	2.5	28
				7	В		Cobbles at 21 feet				27	Р	
Stiff to Very St	iff	545.93		3			Loose to Medium Der	nse	525.93	_	8		
Brown, Moist				5	3.1	23	Brown, Dry to Moist				9		7
SILTY CLAY (JL)		5	7	В		SAND, with gravel, tra (SPG)	ace copples		-25	7		
			_							_			
				3							6		
			_	3	1.5	22				_	6		11
				4	В						6		
			_	6						_	4		
				7	2.3	17					4		2
			-10	8	Р					-30	5		
			_							_			
Medium Dense	 e	538.43		3							4		
Gray, Moist			_	7		16				_	2		8
SILŤ (ML)				13							4		
Very Stiff		536.43		-									
Brown and Gra	ay, Moist to Very		_	4						_	6		
Moist	trace sand (CL/ML)			7	2.1	15					4		9
SILTT CLAT, I	lace salid (CL/ML)		-15	10	В					-35	3		
			_							_			
				3							9		
Cobbles at 16.	5 feet		_	6	2.1	16				_	6		6
				11	В						3		
									F46.05				
			_	8					510.93	_	5		
				13	2.5	15					3		13
			-20	23	Р					-40	7		

Page $\underline{2}$ of $\underline{2}$

Date 6/16/22

ROUTE	I-80	DE	SCRI	PTION	1	R	etaining Wall No. 8 - Ra	amp AA	LOGGE	D BY K	<u>A</u>
						Latitu	. 16, TWP. 35 N, RNG. 1 ude_, Longitude				
COUNTY _	Will D	DRII RILLINC	J ME	G RIG		CM	ME-75 HSA	HAMMER I HAMMER I		Auto 91	
	D		D E P	B L O	U C S	M O I	Surface Water Elev Stream Bed Elev	N/A N/A	_ ft _ ft		
Station Offset	. RWB-72 12+29.5420 22.11ft LT rface Elev. 549.43		T H (ft)	W S (/6")	Qu (tsf)	S T (%)	Groundwater Elev.: First Encounter Upon Completion After Hrs.	508.4 N/A N/A	_ ft <u>▼</u> _ ft _ ft		
SAND, with (SPG) (conti	and Black, Moist gravel, trace cobbles	506.93	<u></u>	4 8 11		11					
Very Dense Gray, Moist GRAVEL (G Split Spoon I Light Gray		505.93		50/2"		10					
LIMESTONE moderately f	E, slightly weathered, ractured		-45								
Run 1: 43.5' Recovery: 10 RQD: 61.7%	00% 5 (Fair)	495.93									
End of Born	9										

Boring Number: RWB-72, Run 1

Top

Depth = 43.5 ft Elev. = 505.9 ft

Depth = 53.5 ft Elev. = 495.9 ft Bottom

Boring No.	Depth (ft)	Recovery (%)	RQD (%)	RQD Classification	Description	Depth (ft)/ Unconfined Compression Strength (psi)
RWB-72	43.5′ – 53.5′	100.0	61.7	Fair	Light Gray Limestone Slightly Weathered, Moderately Fractured	45.5 / 18,516

Page $\underline{1}$ of $\underline{1}$

Date 5/10/22 DESCRIPTION Embankment - Ramp AA LOGGED BY KA I-80 ROUTE SECTION I-80 over Des Plaines River LOCATION, SEC. 16, TWP. 35 N, RNG. 10 E, Latitude , Longitude Geoprobe 7822DT **DRILLING RIG** Auto HAMMER TYPE COUNTY _ — DRILLING METHOD HAMMER EFF (%) 92 R U M Surface Water Elev. ___ STRUCT. NO. N/A ft Ε С L 0 Station ____ Stream Bed Elev. N/A ft Р s 0 ı BORING NO. SSB-38 Т W S Groundwater Elev.: S Qu Т
 Station
 12+77.3479

 Offset
 20.92ft LT
 First Encounter Dry_ft Upon Completion _ N/A ft (ft) (/6") (%) (tsf) **Ground Surface Elev.** <u>547.76</u> After Hrs. N/A ft 8 inches of Topsoil 547.09 Stiff to Very Stiff 2 Brown, Moist 3 SILTY CLAY (CL/ML) 1.3 15 5 В 3 Cobbles at 3.5 feet 7 17 2.5 6 Ρ 2 4 1.0 19 6 В 2 2 1.7 18 4 В 2 4 16 1.9 7 В 534.76 Very Stiff Dark Gray, Moist 7 SILTY CLAY (CL/ML) 8 16 2.0 Cobbles at 13.5 feet 9 Р 532.26 Stiff Brown and Dark Gray, Moist 10 SILTY CLAY, trace gravel 7 1.5 17 (CL/ML) 10 Ρ Cobbles at 16.5 feet Dense Light Brown, Moist SAND, with gravel (SPG) 22 Cobbles at 17.5 feet 24 6 33

Page $\underline{1}$ of $\underline{1}$

Date 5/10/22 DESCRIPTION Embankment - Ramp AA LOGGED BY KA I-80 ROUTE SECTION I-80 over Des Plaines River LOCATION, SEC. 16, TWP. 35 N, RNG. 10 E, Latitude Longitude Geoprobe 7822DT **DRILLING RIG** HAMMER TYPE Auto COUNTY _ — DRILLING METHOD HAMMER EFF (%) 92 R U M Surface Water Elev. __ STRUCT. NO. N/A ft Ε L С 0 Station ____ Stream Bed Elev. N/A ft Ρ s 0 ı BORING NO. SSB-39 Т W S Groundwater Elev.: S Qu Т
 Station
 13+67.0534'

 Offset
 6.89ft LT
 First Encounter Dry_ft Upon Completion _ N/A ft (ft) (/6") (%) (tsf) N/A ft Ground Surface Elev. 549.31 After Hrs. 8 inches of Topsoil 548.64 Brown, Moist 1 FILL: SILTY CLAY, trace gravel 1 1.3 21 2 В 546.31 Stiff Brown, Moist 1 SILTY CLAY (CL/ML) 3 21 1.0 3 3 5 Cobbles at 6.5 feet 1.0 24 11 В 2 No recovery at 8.5 feet 5 NR 6 3 4 18 Cobbles at 11.5 feet 1.5 8 Р 3 Low recovery at 13.5 feet 4 7 533.81 Medium Dense to Extremely 9 Light Brown, Dry to Moist 14 6 SAND, with gravel (SPG) 13 Cobbles at 18.5 feet 20 32 4 ₋₂₀50/5.5

Page $\underline{1}$ of $\underline{1}$

Date 5/10/22

ROUTE I-80	DESC	RIPTION	l		Embankment - Ramp	AA	${\color{red}LOGGED}\ {\color{blue}BY}\ _$	KA
SECTION 1-80 over De				SEC.	16, TWP. 35 N, RNG.	10 E,		
COUNTY Will	DRILL DRILLING N	ING RIG	G	eoprob	de Longitude de 7822DT HSA	HAMMER TYP HAMMER EFF	E Auto (%) 92	
STRUCT. NO	E	D B L P O	U C S	M O I	Surface Water Elev. Stream Bed Elev.	N/A ft		
Station 14+62 Offset 18.89	2.0491' 9ft LT	T W H S ft) (/6")	Qu (tsf)	S T (%)	Groundwater Elev.: First Encounter Upon Completion After Hrs.	Dry ft N/A ft		
Ground Surface Elev 12 inches of Topsoil		_	(131)	(70)	After Hrs.	Ν/Α_ π		
Stiff to Very Stiff Brown, Moist to Very Mois SILTY CLAY, trace grave (CL/ML)	SI	4 12 16	3.5 P	27				
	_	3 5 -5 7	2.5 P	16				
	_	1 1 3 5	2.5 P	20				
	_	3 5 7	1.0	16				
Stiff Gray, Moist SILTY CLAY (CL/ML)	544.82 - —	3	1.0	15				
	 541.82	15	В					
Medium Dense Gray, Moist SILT (ML) Cobbles at 13.5 feet		4 9 12		16				
Stiff to Very Stiff Gray, Moist SILTY CLAY LOAM (ML/0 Cobbles at 16.5 feet	538.82 —	4 8 15	1.0 B	22				
		9 11 -20 16	3.5 P	14				

Appendix D
Soil Parameter Tables

Table a – Summary of Soil Parameters
Retaining Wall #8 (RWB-66 through RWB-72)

Depth Range		In situ Unit	Undra	ined	Drai	ned
(Elevation CCD, feet)	Soil Description	Weight γ (pcf)	Cohesion C (psf)	Friction Angle φ (°)	Cohesion C' (psf)	Friction Angle φ' (°)
	New Engineered Clay Fill	125	1,000	0	100	25
	New Engineered Granular Fill	125	0	30	0	30
0.5 - 3.5 (549.0 - 545.5)	FILL: Brown and Gray Silty Clay	138	2,400	0	240	25
3.5 - 10.0 (545.5 - 539.0)	Stiff to Hard Brown and Gray Silty Clay	138	3,200	0	320	28
10.0 - 18.0 (539.0 - 531.0)	Stiff to Hard Gray Silty Clay / Silty Clay Loam	138	2,700	0	270	28
18.0 - 35.0 (531.0 - 514.0)	Medium Dense to Very Dense Light Brown Sand	126	0	40	0	40
35.0 - 50.0 (514.0 - 499.0)	Gray Limestone	150	0	45	0	45
23.0 - 26.0* (526.0 - 523.0)	Medium Stiff to Stiff Brown and Gray Silty Clay Loam	126	750	0	75	25

^{*} Layer only noted in Borings RWB-68, RWB-69 and RWB-70

Table b – Summary of Soil Parameters
Embankment Ramp AA (SSB-38 through SSB-40)

			Undra	ined	Draiı	ned
Depth Range (Elevation CCD, feet)	Soil Description	In situ Unit Weight γ (pcf)	Cohesion C (psf)	Friction Angle φ (°)	Cohesion C' (psf)	Friction Angle φ' (°)
	New Engineered Clay Fill	125	1,000	0	100	25
	New Engineered Granular Fill	125	0	30	0	30
0.5 - 3.5 (549.0 - 545.5)	FILL: Brown Silty Clay	132	1,200	0	120	25
3.5 - 10.0 (545.5 - 539.0)	Stiff to Very Stiff Brown Silty Clay	137	1,800	0	180	28
10.0 - 18.0 (539.0 - 531.0)	Stiff to Very Stiff Gray Silty Clay / Silty Clay Loam	133	1,300	0	130	28
18.0 - 20.0 (531.0 - 529.0)	Medium Dense to Extremely Dense Light Brown Sand	135	0	42	0	42

Appendix E

Laboratory Test Results

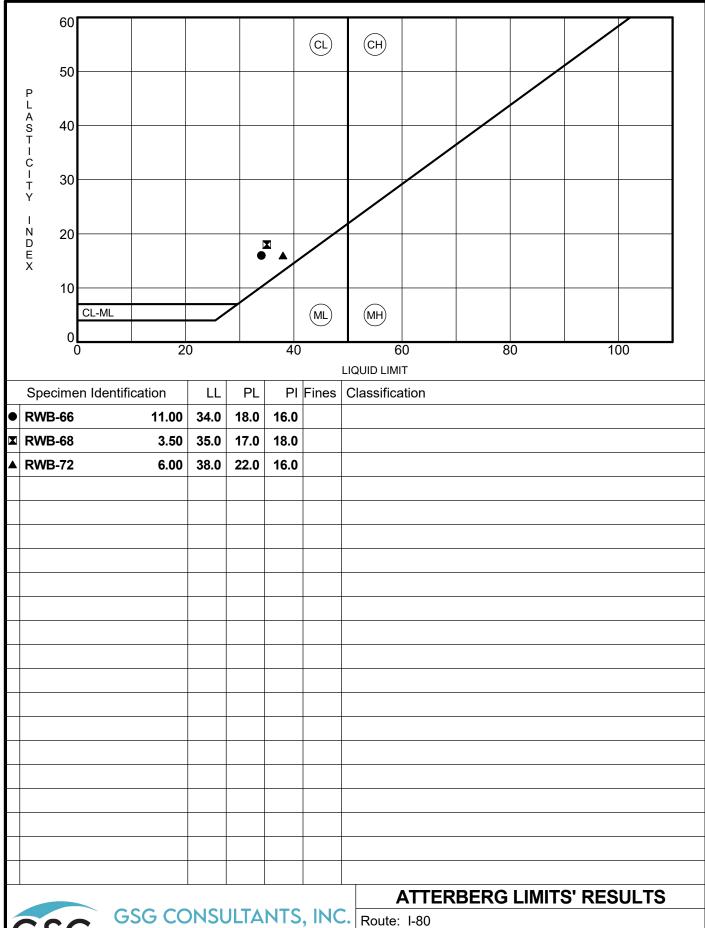


Table D-1 – Atterberg Limits

Boring ID	Sample Depth (ft)	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	Soil Classification
RWB-66	11-12.5	34.0	18.0	15.0	CL
RWB-68	3.5-5	35.0	17.0	18.0	CL
RWB-72	6-7.5	38.0	22.0	16.0	CL

Table D-2 – Dry Unit Weight

Boring ID	Sample Depth (ft)	Dry Unit Weight (pcf)	Wet Unit Weight (pcf)
RWB-67	11-12.5	120.2	138.3
RWB-69	3.5-5	109.2	128.8
RWB-71	6-7.5	106.9	122.1

735 Remington Road, Schaumburg, IL 60173 Tel: 630.994.2600, www.gsg-consultants.com

Section: I-80 over Des Plaines River

County: Will

Project Name:

WSP_198-003 I-80

GSG CONSULTANTS, INC. 735 Remington Road, Schaumburg, IL 60173 Tel: 630.994.2600, www.gsg-consultants.com

21-007

Project No:

Boring ID:			RV	VB 6	5					<u>Bulk</u>	/Prep		M	1C/CS	
Sample Depth	(ft):			37	'-38.5				T	ester:	MB	Т	ester:	ME	3
Lithological D	escription	:								Date:	06/15/2	2	Date:	06/15	/22
Formation Na	me:					Load	d Direc	tion:	V	ERTICAL	<u> </u>	ngle D	rilled:	VERTI	CAL
Appearance (e	.g. cracks, sł	nearing	g, spalling):												
Bulk Density	Determir	natio	n						Мо	isture (Condition	ı - D22	16		
	1		2		3	Α	verage	Э	Coi	ntainer	D				
Height, <i>in</i> .	4.938	5	4.9435	2	1.9395	4	4.9405		cor	ntainer,	9			226.4	
Diameter, in.	1.985	5	1.9770	1	.9755		1.9793		cor	ntainer -	wet rock	c, g		801.5	
Specimen Mas	ss, <i>g</i>		652.5		Ratio	(2.0-2.5)			cor	ntainer -	dry soil,	g		792.8	
Bulk Density, p	ocf		163.5		2.	.50			mo	isture c	ontent, <i>w</i>	%		1.5	
Preparation (Check					Y	es	N	lo	Reaso	n/Readin	gs If No):		
Ends Flat with	in 0.02 mı	m pri	or to capping?	1			X								
Ends perpend	icular to s	ide w	ithin 0.25 deg	rees?)		Χ								
Ends parallel t	o each ot	her w	ithin 0.25 deg	rees	•		X								
Axial Loading	9						Remar	ks							
Seating Load	(≤1000 psi))			1000				ave b	een mad	e for the s	pecimer	n to me	et the	7
Rate of Loadin	ng (73-145	psi/s)			75		require	d toler	ance	s of D45	43. See IH3	Proced	ure for	efforts	
Time to Failure	e (2-15 mii	า)		2	min 25	sec	made.								
Load @ Failur	e, <i>lbf</i>				34,650										
Uniaxial Comp	oressive St	treng	th, <i>psi</i>		11,261										
After Pre	paration					After	Break	(check	k applicable appearance)						
			Type 1 Reasonably well-formed cones on both ends, less than 1 in. [25 mm] of cracking through caps Type 4 Diagonal fracture with no cracking through ends; tap with harmer to distinguish from Type 1	[25 mm]	end, ver throu defined	Type 2 primed cone or critical cracks in gift caps, no cone on other cone or cone on other caps. Type 5 fractures at the cone on cone on other caps. Type 5 fractures at the cone on other caps.	op or monly aps)		Simil of	Type 3 nnar vertical crain both ends, no formed cones Type 6 ar to Type 5 but cylinder is pointed.	end d				
						Form				TF-RCS	Review		DE	06/02/0	_
						Revisi	on Dat	е	10	0/21/202	1 Review	/ Date		06/22/2	<u> </u>

GSG CONSULTANTS, INC. 735 Remington Road, Schaumburg, IL 60173 Tel: 630.994.2600, www.gsg-consultants.com

Project Name:		WSP	_198-	003 I-80			Projec	t No:		21-2007	7		
Boring ID:		R\	NB-6	8			<u>B</u>	ulk/Pre	<u>ep</u>	M	C/CS		
Sample Depth	(ft):		4	43.5			Tester		MB	Tester:	MB		
Lithological De	escription:		li	me stone			Date	06,	/20/22	Date:	06/20/2	22	
Formation Nar	ne:				Load Dire	ection:	vertic	al	Angl	e Drilled:	vertica	ıl	
Appearance (e.	g. cracks, sh	earing, spalling):			-								
Bulk Density I	Determin	ation					Moistur	e Con	dition - D	2216			
Ī	1	2		3	Avera	ge	Containe	er ID					
Height, <i>in</i> .	4.4355	4.4355		1.4390	4.436		containe	r, <i>g</i>			226.4		
Diameter, in.	1.9735	1.9735	1	1.9750	1.974	0	containe	r + we	et rock, g		691.0		
Specimen Mas	s, <i>q</i>	606.7		Ratio	(2.0-2.5)		containe				685.3		
Bulk Density, <i>p</i>		170.2			25		moisture						
Preparation C	heck				Yes	N	lo Rea	son/R	eadings If	No:			
Ends Flat withi	n 0.02 mn	n prior to capping	?		Х								
Ends perpendi	cular to si	de within 0.25 deg	grees?	•	Х								
Ends parallel to	o each oth	ner within 0.25 deg	grees	?	Х								
Axial Loading					Rema	arks							
Seating Load (≤1000 psi)			1000			ave been m	ade fo	r the speci	men to mee	et the		
Rate of Loadin	g (73-145	psi/s)	75 required toler				ances of D	4543. S	ee IH3 Pro	cedure for	efforts		
Time to Failure	e (2-15 min)	3	min 53	sec made								
Load @ Failure	e, lbf			56,006									
Uniaxial Comp	ressive St	rength, <i>psi</i>		18,300									
After Pre	paration			ı	After Brea	k (check	k applicable appearance)						
Aug-68 depth- 43.5-	1-8-1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Type 1 Reasonably well-formed cones on both ends, less than 1 in. [25 mm] of cracking through caps Type 4 Diagonal fracture with no cracking through ends; tap with hammer to distinguish from Type 1	n. [25 mm]	Well-forend, very through through defined	Type 2 rmed cone on one tical cracks running gh caps, no well- cone on other end Type 5 ractures at top or 1 (occur commonly unbonded caps)		Type 3 Columnar vertica through both end formed co	cracking s, no well- nes					
		-			Form ID		TF-RC	S I	Reviewed E	Зу			

Revision Date

10/21/2021

Review Date

GSG CONSULTANTS, INC. 735 Remington Road, Schaumburg, IL 60173 Tel: 630.994.2600, www.gsg-consultants.com

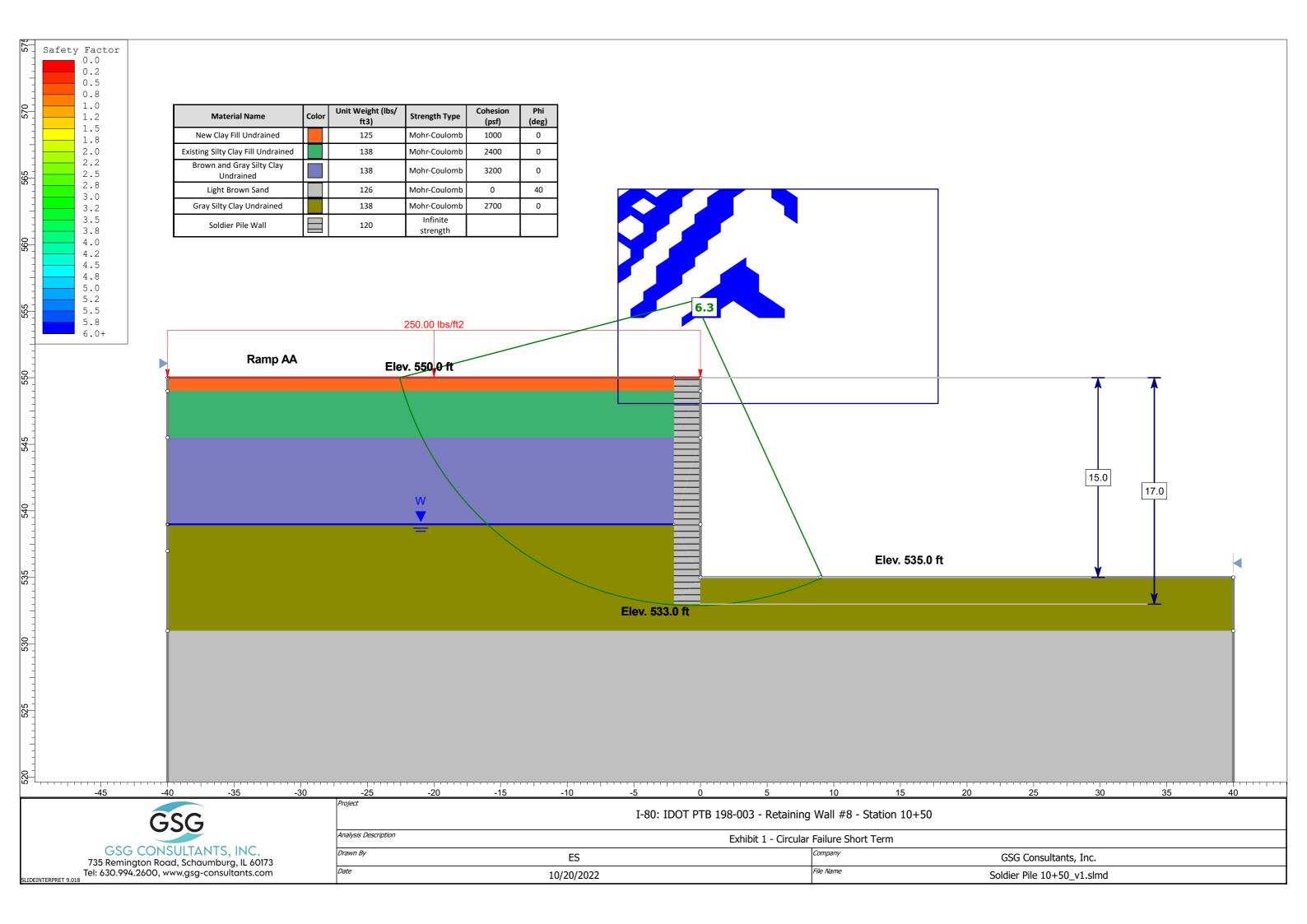
Project Name:			WSP_	198-	-003 I-80				Р	roject I	No:		21-2007	7	
Boring ID:			RW	∕B-7	0					<u>Bulk</u>	/Prep	<u>)</u>	<u>M</u>	C/CS	
Sample Depth	(ft):				43.5				Te	ester:	Ν	1B	Tester:	МВ	
Lithological De	escription	:		li	me stone	1				Date:	06/2	20/22	Date:	06/20/	22
Formation Nar	ne:					Loa	d Direc	ction:	V	ertical		Angle	Drilled:	vertica	al
Appearance (e.	g. cracks, sł	earin	g, spalling):												
Bulk Density	Determin	atio	n						Moi	isture (Cond	ition - D2	2216		
	1		2		3	A	verag	е	Con	tainer	ID				
Height, <i>in</i> .	4.742)	4.7315	4	1.7370		4.7368		con	tainer,	g			226.6	
Diameter, in.	1.983)	1.9765	•	1.9765		1.9787		con	tainer -	+ wet	rock, g		801.4	
Specimen Mas	s, g		645.4		Ratio	(2.0-2.5)		con	tainer -	+ dry	soil, g		793.3	
Bulk Density, p	ocf		168.8		2.	39			moi	sture c	onten	t, w%		1.4	
Preparation C	heck					Υ	'es	N	lo	Reaso	n/Rea	adings If I	No:		
Ends Flat withi	n 0.02 mr	n pri	or to capping?				Χ								
Ends perpendi	cular to s	ide v	vithin 0.25 degi	rees	?		Χ								
Ends parallel to	o each ot	her v	vithin 0.25 deg	rees	?		Χ								
Axial Loading							Remar	·ks							
Seating Load (≤1000 psi)				1000				ave be	en mac	le for t	the specim	nen to me	et the	
Rate of Loadin	g (73-145	psi/s)	75 required toler					ances	of D45	43. Se	e IH3 Proc	edure for	efforts	
Time to Failure	e (2-15 mir	1)		2 min 54 sec made.											
Load @ Failure	e, lbf			42,501											
Uniaxial Comp	ressive St	reng	th, <i>psi</i>		13,823										
After Pre	paration					After	Break	(check	appli	cable ap	peara	nce)			
A. A. 43.5 ->	H		Type 1 Reasonably well-formed cones on both ends, less than 1 in. [25 mm] of cracking through caps Type 4 Diagonal fracture with no cracking through ends; tap with hammer to distinguish from Type 1	[25 mm]	Well-feend, ver through defined	Type 2 primed cone in trical cracks gh caps, no cone on other trical cracks and tric	running well-ner end		through	Type 3 ara vertical crack to both ends, no formed cones X Type 6 for to Type 5 but ylinder is point.	end				
						Form	ID			TF-RCS	Re	eviewed By	,		

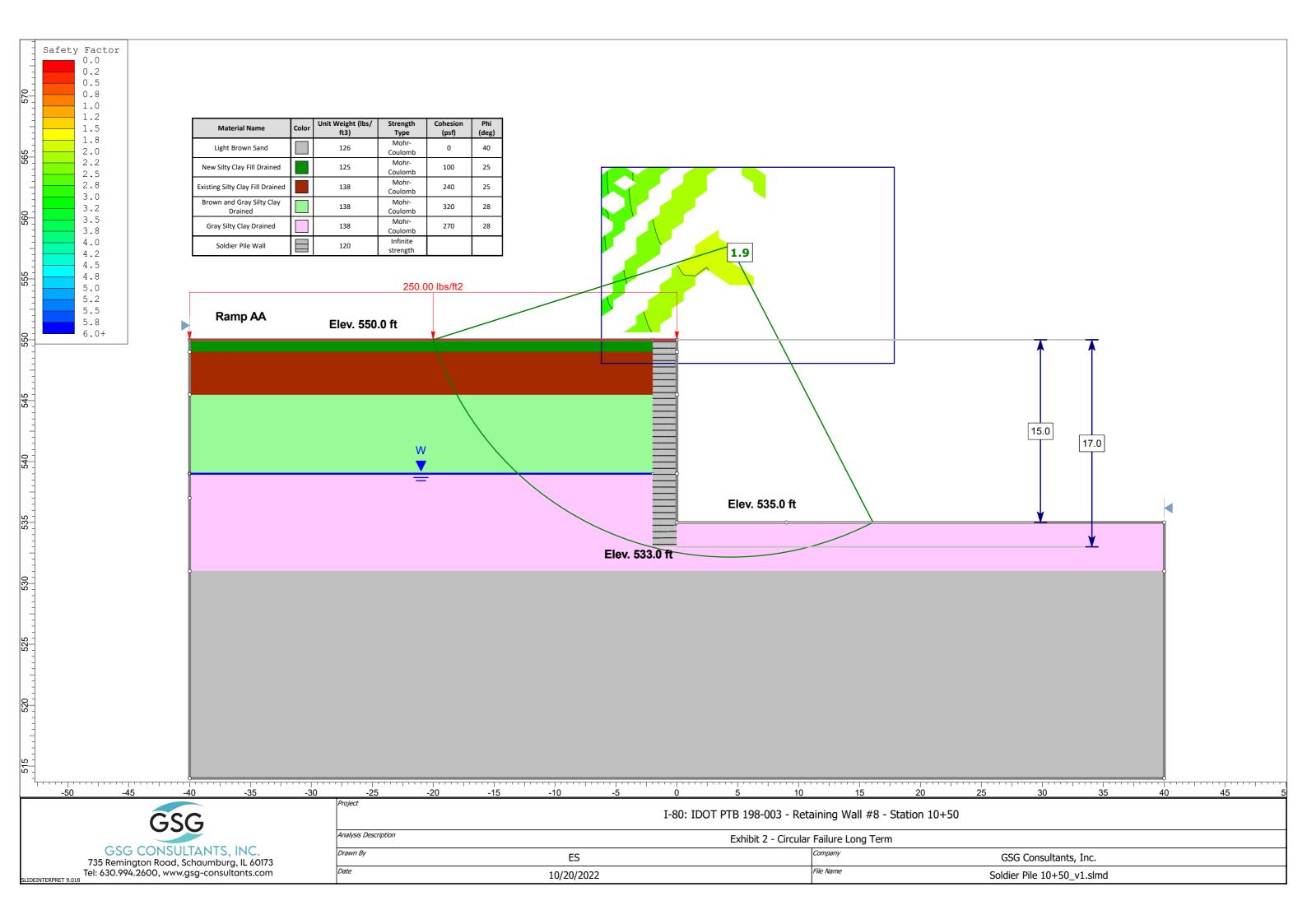
Revision Date

10/21/2021

Review Date

GSG CONSULTANTS, INC. 735 Remington Road, Schaumburg, IL 60173 Tel: 630.994.2600, www.gsg-consultants.com


,				The state of the s					
Project Name:		WSP	_198-003 I-80			Project N	lo:	21-200	7
Boring ID:		RV	VB-72			<u>Bulk</u>	/Prep	M	IC/CS
Sample Depth	(ft):		45.5			Tester:	MB	Tester:	МВ
Lithological D	escription:		lime stone			Date:	06/20/22	Date:	06/20/2
Formation Na	me:			Load Direction	on:	vertical	Ang	gle Drilled:	vertica
Appearance (e	g. cracks, sh	earing, spalling):							
Bulk Density	Determin	ation				Moisture (Condition -	D2216	
	1	2	3	Average		Container I	D		
Height, <i>in</i> .	4.7230	4.7205	4.7255	4.7230		container, g		226.8	
Diameter, in.	1.9870	1.9920	1.9935	1.9908		container +	wet rock, و	7	816.6
Specimen Mas	ss, <i>g</i>	645.8	Ratio	(2.0-2.5)		container +	dry soil, g		802.8
Bulk Density, <i>p</i>	ocf	167.4	2.3	37		moisture co	ontent, w%		2.4
Preparation (Check			Yes	N	lo Reaso	n/Readings	If No:	
Ends Flat with	in 0.02 mm	n prior to capping?)	Х					
Ends perpend	rees?	Χ							
Ends parallel t	o each oth	er within 0.25 deg	rees?	Χ					
Axial Loading	9			Remarks					
Seating Load ((≤1000 psi)		1000	Best effor	ts h	ave been mad	e for the spe	cimen to me	et the
Rate of Loadir	ng (73-145 ₎	osi/s)	75		toler	rances of D454	13. See IH3 P	rocedure for	efforts
Time to Failure	e (2-15 min)	4 min 2	sec made.					
Load @ Failur	e, <i>lbf</i>		57,636						
Uniaxial Comp	oressive Str	ength, <i>psi</i>	18,516						
After Pre	paration	1		After Break (c	hecl	k applicable ap	pearance)		
RWB-72	A SOLUTION OF THE SOLUTION OF	Type 1 Reasonably well-formed cones on both ends, less than 1 in. [25 mm] of cracking through caps Type 4 Diagonal fracture with no cracking through ends; tap with hammer to distinguish from Type 1	end, vert throug defined of Side fr	Type 2 medical cone on one medical cracks running in caps, no well-cone on other end Type 5 actures at top or (occur commonly unbonded caps)		Type 3 Columnar vertical cathrough both ends, no formed cones X Type 6 Similar to Type 5 but of cylinder is pointe	end **		
				Form ID		TF-RCS	Reviewed	Ву	
			j.					,	


Revision Date

10/21/2021

Review Date

Appendix F
Slope Stability Analysis Exhibits

