STRUCTURE GEOTECHNICAL REPORT

Interstate 80 Bridge over BNSF R.R., UP R.R. and Gardner St.

Section 2013-008B & 2013-009B

IDOT Job Number D-91-244-13 (PTB 152, Item 004)

Existing SN 099-0060 (EB) & 099-0061 (WB)

Proposed SN 099-0902 (EB) & 099-0903 (WB)

Joliet, Will County, Illinois

Submitted to:

c/o HNTB
One South Wacker Drive
Suite 900
Chicago, Illinois 60606

Prepared by:

Geo Services, Inc. 805 Amherst Court Suite 204 Naperville, Illinois 60565 (630) 305-9186

GSI Job No. 13125

Revised: October 5, 2015

Revised: October 5, 2015 September 11, 2015 June 12, 2015 April 17, 2015 June 24, 2014

HBP Illinois Partners, JV One South Wacker Drive, Suite 900 Chicago, Illinois 60606

Attn: Ms. Amy Foster, P.E. **HNTB** Corporation

Job No. 13125

Re: Structure Geotechnical Report

Interstate 80 Bridge over BNSF R.R., UP R.R. and Gardner St.

Section 2013-008B & 2013-009B

Proposed SN 099-0902 (EB) and 099-0903 (WB) Existing SN 099-0060 (EB) and 099-0061 (WB)

IDOT Job Number: D-91-244-13 (PTB 152, Item 004)

Joliet, Will County, Illinois

Dear Ms. Foster:

The following report presents the geotechnical analysis and recommendations for the replacement and widening of the bridge structures carrying Interstate 80 over the BNSF R.R., UP R.R. and Gardner St. A total of seventeen (17) structural soil borings (BSB-01 thru BSB-16 and BSB-01A) were completed. In addition, two (2) survey borings (BSB-52 and BSB-53) were also completed to supplement the boring information of the geotechnical investigation. Copies of these boring logs, along with plan and profiles are included in this report.

If there are any questions regarding the information submitted herein, please do not hesitate to contact us.

Very truly yours,

GEO SERVICES, Inc.

Richard Realeza Staff Engineer

enc.

richard@geoservicesinc.net

Stephen A. Bucher, P.E.

Styphen a. Du

Senior Geotechnical Engineer

stephenbucher@geoservicesinc.net

TABLE OF CONTENTS

SECTION 01: INTRODUCTION	2
SECTION 02: PROJECT DESCRIPTION	2
SECTION 03: SUBSURFACE INVESTIGATION PROCEDURES	<u>4</u>
SECTION 04: LAB TESTING PROGRAM	4
SECTION 05: SUBSURFACE CONDITIONS	<u>5</u>
SECTION 06: WATER TABLE CONDITIONS	7
SECTION 07: ANALYSIS	7
Mining Activity	7
Site Seismic Parameters	
Settlement, Bearing Capacity, and Slope Stability	8
Overturning, Sliding, and Eccentricity	10
SECTION 08: BRIDGE FOUNDATION RECOMMENDATIONS Foundation Recommendations	11
Pile Recommendations	
Pile Foundations Considerations	
Approach Slab Recommendations	12
SECTION 09: RETAINING WALL RECOMMENDATIONS	13
Recommended Wall Types	13
Shallow Foundation Recommendations	13
SECTION 10: LATERAL SOIL PARAMETERS	15
SECTION 11: GENERAL CONSTRUCTION CONSIDERATIONS	16
SECTION 12: GENERAL QUALIFICATIONS	16

APPENDIX A – General Notes

APPENDIX B – Site Location Map

APPENDIX C – Soil Boring Plan APPENDIX D – Boring and Rock Core Logs

APPENDIX E – Pile Length and Capacity Tables

APPENDIX F – Slope Stability Results

APPENDIX G – Lab Test Results

SECTION 01: INTRODUCTION

This report presents the results of the geotechnical investigation for the bridge replacement and widening of the Interstate 80 over the BNSF R.R., UP R.R. and Gardner St. Project, IDOT Job Number: D-91-196-09 (PTB 152, Item 004). The results of the seventeen (17) structure borings (BSB-01 thru BSB-16 and BSB-01A), and two (2) survey borings (BSB-52 and BSB-53) completed by Geo Services, along with plan and profile drawings, are included with this report.

Boring locations were selected by Geo Services, Inc. and were reviewed and approved by HBP Illinois Partners, JV (HBP), and the Illinois Department of Transportation (IDOT). Boring locations were marked in the field by Geo Services, Inc. (GSI) personnel after review of accessibility and utility locations. Estimated ground surface elevations at the as-drilled boring locations were taken from the topographic and cross-section drawings provided by HBP. The as-drilled locations for the borings are shown on the Boring Location Diagram found in Appendix C section of the report.

This report includes a description of subsurface conditions, location diagram, profiles and boring logs, as well as recommendations pertaining to the design and construction of the new bridge foundations, earth embankment, retaining walls and general construction considerations for the site.

SECTION 02: PROJECT DESCRIPTION

The existing bridges (SN 099-0060 EB and SN 099-0061 WB) were constructed in 1964 and were repaired in 1990, 1998, 2001, and 2011. The existing dual structures consist of a seven span structure composed of a three-span unit, single span and a three-span unit. The existing bridge structures are composed of reinforced concrete deck, which is carried by W36 rolled steel beams supported by pile bent abutments, and multi-column concrete piers founded on steel piles. The EB bridge measures 483'-5" back to back abutments, and the WB bridge measures 477'-1" back to back abutments. Out to out deck width of the existing bridges is approximately 48'-0" feet and skews of approximately 13° and 9° per the existing drawings.

It is intended to remove and replace the bridge structure. The bridges are proposed to be widened at each side of the median lanes/shoulders to approximately \pm 63 feet for the eastbound structure and \pm 65 feet for the westbound structure.

The new bridges (SN 099-0902 EB and SN 099-0903 WB) will be 3-span bridge superstructures that have an overall width of approximately 128 feet, out to out with an approximate length of 394 feet, back-to-back abutments. The new bridges are proposed to be supported on semi-integral abutments, and a deep foundation system. In addition, the proposed bridge superstructure will have an MSE retaining wall that sets parallel to the abutment with dog-ear configuration wingwalls. Per TS&L, the estimated

substructure pile cap and foundation footing elevations were provided by HBP. The estimated substructure elevations at the bridge and walls are shown on the following Tables 1 and 2.

Table 1 – Estimated Bridge Substructure Elevations

Substructure	Approximate Station	Estimated Bottom of substructure elevation (feet) 1
West Abutment	Sta. 711+38	570.10
Pier 1	Sta. 712+72	539.50
Pier 2	Sta. 714+23	529.10
East Abutment	Sta. 715+34	567.70

Notes: 1. Piles assumed to be embedded 1.0-ft into the pile cap.

Table 2 – Estimated Retaining Wall Elevations

Wall Location	Estimated bottom of footing/leveling pad elevation (feet) 1
West Abutment (WB & EB)	546.53
East Abutment (WB & EB)	540.36

Based on the foundation loads provided by HBP, the total service loads at the top of foundation are shown on the following Table 3 - Preliminary Factored Loads for the Substructures:

Table 3 – Preliminary Factored Loads for the Bridge Substructures

Location	Total Dead Load (kips)	Total Live Load (kips)	Estimated Total Factored Loads (kips)
West Abutment	1,650	710	2,360
Pier 1	4,050	1,550	5,600
Pier 2	3,550	1,450	5,000
East Abutment	1,450	670	2,120

SECTION 03: SUBSURFACE INVESTIGATION PROCEDURES

The borings were performed during the months of October, 2013, March to May, 2014, and June, 2015 with a truck-mounted drilling rig. Borings were performed at the top of the bridge deck (BSB-01, BSB-01A, BSB-02 thru BSB-04, BSB-15, and BSB-16), below the bridge structure outside Gardner Street, BNSF and UP R.R. (BSB-05 thru BSB-14), and in the median portion of the existing East Abutment (BSB-52 and BSB-53). All of the borings were advanced by means of hollow stem augers and continued with rotary drilling techniques. Representative soil samples were obtained employing split spoon sampling procedures in accordance with AASHTO Method T-206. Bedrock cores were obtained in all of bridge structure borings using an NX-size double tube core barrel with a diamond impregnated bit. Samples obtained in the field were returned to our laboratory for further examination and testing.

Split spoon sampling involves driving a 2.0-inch outside diameter split-barrel sampler into the soil with a 140-pound weight falling freely through a distance of 30 inches. Blow counts are recorded at 6" intervals and the blow counts are shown on the boring logs. The number of blows required to advance the sampler the last 12 inches is termed the Standard Penetration Resistance (N). The N value is an indication of the relative density of the soil.

SECTION 04: LAB TESTING PROGRAM

The test procedures were performed in accordance with test procedures discussed in the IDOT Geotechnical Manual. All split-spoon samples obtained from the drilling operation were visually classified in the field. Cohesive samples were tested for unconfined compressive strength using an IDOT modified RIMAC test device and/or calibrated penetrometer in the field.

The soil testing program included performing water content, density and either unconfined compression and/or calibrated penetrometer tests on the cohesive samples recovered. Water content tests were performed on the non-cohesive samples recovered. These tests were performed upon representative portions of the samples obtained in the field. In addition to the regular lab testing program, Organic Content (AASHTO T-194) test was performed on select samples from borings, and unconfined compressive testing was performed on rock cores obtained from the field as indicated on the rock core logs.

The results of the above testing, along with a visual classification of the material based upon both the Illinois textural classification and the AASHTO Soil Classification System, are indicated on the boring logs.

SECTION 05: SUBSURFACE CONDITIONS

Boring logs can be found in Appendix C. The stratification lines shown on the boring logs represent the approximate boundary between soil types, and the actual transition may be gradual.

Surface conditions at the boring locations taken along the roadway or shoulder areas of Interstate 80 consisted of existing asphalt and concrete pavement over crushed stone base and then stiff to hard clay to clay loam fill materials that extended to elevations ranging from approximately 530 to 577 feet for borings performed at the existing abutments. Below the Interstate 80 Bridge near Gardner Street, BNSF and UP railroads where borings BSB-05 to BSB-14 were drilled, surface conditions varied from concrete pavement, sand, gravel and/or topsoil to underlying crushed stone, sand, cinders and stone fill to an approximate elevation of 525 feet. Beneath the surficial materials, interstratified layers of fill materials including medium dense sand and gravel, medium stiff to stiff clay, and clay loam were encountered to elevations varying from approximately 507 to 512 feet. A 5-foot thick layer of organic silty loam was noted below the fill at boring BSB-15 beginning at approximate elevation 528 feet. Also, a 3-foot thick layer of buried topsoil (organic content = 6.7%) was encountered below the fill at boring BSB-53 beginning at approximate elevation 526 feet.

The fill soils had moisture contents within the range of 12% to 23% with an average of 19%. Moisture contents of the cohesive soils are within the range of 26% to 44% with an average of 35%. The granular soils had moisture contents within the range of 6% to 18% with an average of 7%. Buried topsoil had a moisture content of 35%. Organic soil had moisture contents within the range of 31% to 67% with an average of 49%.

Below the native overburden soils, bedrock was encountered at elevations varying from approximately 479 to 509 feet. The rock cores obtained indicated Silurian System, Niagaran Dolomite. A summary of the bedrock information obtained during our exploration is tabulated in Table 4.

Table 4 – Bedrock Information Summary

Boring (Run)	Station	Offset	RQD	Approximate Top of Bedrock Elevation (feet)	Approximate Elevation of Qu Test (feet)	Unconfined Compressiv e Strength, Q _u (tsf)
BSB-01A (Run 1)	Sta. 710+93	55.2' Left	40.0%		509.0	950
BSB-01A (Run 2)	Sta. 710+93	55.2' Left	0.0%	513.1	n/a	n/a
BSB-01A (Run 3)	Sta. 710+93	55.2' Left	18.0%		488.1	845
BSB-02 (Run 1)	Sta. 710+92	10.6' Right	21.0%	511.4	510.2	439
BSB-03 (Run 1)	Sta. 711+69	23.0' Left	52.0%	505.7	502.6	843
BSB-04 (Run 1)	Sta. 711+50	52.6' Right	45.5%		509.7	618
BSB-04 (Run 2)	Sta. 711+50	52.6' Right	10.6%	510.4	493.7	594
BSB-04 (Run 3)	Sta. 711+50	52.6' Right	14.0%		491.6	382
BSB-05 (Run 1)	Sta. 712+72	65.3' Left	58.0%	512.8	511.8	1,038
BSB-06 (Run 1)	Sta. 712+70	9.2' Right	41.0%	511.0	506.8	938
BSB-07 (Run 1)	Sta. 713+13	11.2' Left	21.0%	513.7	512.9	1,088
BSB-08 (Run 1)	Sta.713+00	67.1' Right	23.0%	514.4	507.6	1,209
BSB-09 (Run 1)	Sta. 713+77	66.2' Left	43.0%	512.2	509.3	280
BSB-10 (Run 1)	Sta. 713+67	7.7' Right	0.0%		n/a	n/a
BSB-10 (Run 2)	Sta. 713+67	7.7' Right	45.0%	514.4	507.4	337
BSB-10 (Run 3)	Sta. 713+67	7.7' Right	0.0%		n/a	n/a
BSB-11 (Run 1)	Sta. 714+35	6.9' Left	33.0%	509.1	508.1	434
BSB-12 (Run 1)	Sta. 714+21	67.5' Right	32.0%	512.4	509.9	561
BSB-13 (Run 1)	Sta. 715+06	67.3' Left	50.0%	509.1	508.0	663
BSB-14 (Run 1)	Sta. 714+93	11.0' Right	39.0%	512.2	503.5	1,452
BSB-15 (Run 1)	Sta. 715+97	23.2' Left	64.0%	512.2	510.2	1,332
BSB-16 (Run 1)	Sta. 715+78	50.7' Right	81.0%	517.8	513.2	876

SECTION 06: WATER TABLE CONDITIONS

Groundwater was encountered before switching to rotary drilling techniques in 7 of the borings at elevations ranging from approximately 561 feet to 572 feet for the abutment borings (BSB-01 and BSB-16), and elevations ranging from approximately 517 feet to 529 feet for the borings drilled below the bridge (BSB-05A, BSB-10, BSB-12, BSB-13, and BSB-14). Due to the nature of rotary-wash drilling, it was not possible to obtain accurate water levels after drilling. Perched water levels may occur within granular layers above the rock. Fluctuations in the amount of water accumulated and in the hydrostatic water table can be anticipated depending on variations in precipitation and surface runoff.

SECTION 07: ANALYSIS

Mining Activity

According to readily available ISGS sources, there are no documented coal mining operations in the vicinity of the project site and seismic activity is noted to be very low.

Site Seismic Parameters

For LFRD design, according to the AASHTO LRFD Bridge Design Specification 2012 (with 2013 Interims), the project site has a Horizontal Response Spectral Acceleration (S_1) of 0.040 at a period of 1.0 second and 5% critical dampening. The site also has a Horizontal Response Spectral Acceleration (S_s) of 0.104 at a period of 0.2 seconds and 5% critical dampening. The following table shows recommended seismic design data in accordance with the AASHTO LRFD Bridge Design Specification 2012 (with 2013 Interims).

Table 5 – Seismic Design (Approximately 1000-Year Return Period)

Seismic Performance Zone (SPZ)	1
Design Spectral Acceleration at 1 second (S _{D1})	0.068
Design Spectral Acceleration at 0.2 seconds (S _{Ds})	0.125
Soil Site Class	С

The project site is considered to be in a low seismic area and is considered a non-extreme event. Liquefiable layers are not expected to impact the design of the new bridge and wall structures.

Settlement, Bearing Capacity, and Slope Stability

The proposed bridge structure will have an MSE wall structure at the abutments and widening areas at the shoulders and median portions of the bridge. Approximate maximum exposed heights (top of leveling pad to top of approach slab) of 32'-10" at the West Abutment and 35'-9" at the East Abutment have been evaluated for settlement, bearing capacity, and slope stability. The leveling pads for the MSE walls are proposed at elevation 546.5 feet at the West Abutment and 540.4 feet at the East Abutment.

For bearing resistance, widening fill areas with maximum fill heights of 32'-10" feet at the West Abutment and 35'-9" feet at the East Abutment have been analyzed. A resistance factor of 0.65 has been used for the LRFD soil bearing resistance calculations per AASTHO Table 11.5.7-1. The factored bearing resistances of the soils, as shown in the following Table 6, are insufficient to support the high embankment loads due to the low unconfined compressive strengths of the clay to clay loam fills and organic silty loam at the abutment areas. Aggregate Column Ground limprovement (ACGI) at the abutment areas will be needed to support the new embankment loads. The width of aggregate column ground improvement zone will be about 25 feet and will span along the length of the abutment walls until wall height is less than 10 feet. Recommended limits of the ACGI will be about 100 feet offset at left and right from the I-80 centerline.

For estimated settlements, borings BSB-03, which had strata of medium stiff clay loam fill, and BSB-15 which had strata of clay to clay loam fill to organic silty loam were used as "worst-case scenario" for analysis. Settlement at the West Abutment was calculated to be approximately 1 to 1.5 inches. Settlement at the East Abutment was calculated to be approximately 3 to 3.5 inches. An estimated 50% and 90% consolidation of the compressible deposits will occur in 2 and 6 months, respectively. Consequently, downdrag will affect the design of the piles at both the West and East Abutment since the phased construction schedule will not allow time for 90% consolidation to occur prior to pile driving. Feasible alternatives such as designing piles to carry the additional downdrag loadings or precoring to reduce downdrag stresses may be considered. See subsection *Pile Foundation Considerations* for more discussion.

A slope stability program (STABL v3.0) was utilized to calculate factors of safety (FOS) at the walls using wall heights of 32'-10" feet at the West Abutment and 35'-9" feet at the East Abutment, and a vertical geometry with a slope of 1.5H:1V. At boring BSB-15 location, which has been used as "worst-case scenario" for slope stability analysis, we calculate factor of safety of less than 1.5 for drained conditions. In order to satisfy the Factor of Safety requirement (FOS≥1.5) per IDOT requirements, ground improvements in the area of boring BSB-15 at the East Abutment WB portion of the proposed bridge and walls will be required to increase the FOS. No slope stability issues were identified at the West Abutment.

The following Table 6 shows the summary of the estimated bearing resistances, settlements, and slope stability factor of safety calculated at abutment/footing locations:

Table 6 – Factored Bearing Resistance, Settlement, and Slope Stability Summary for the Retaining Walls

	West Abutment				East Abutmer	nt
Analyses	Estimated Equivalent Uniform Bearing Pressure	Without Ground Improve- ments	With Ground Improve- ment	Estimated Equivalent Uniform Bearing Pressure	Without Ground Improve- Ments	With Ground Improve- ments
Factored Bearing Resistance (psf) 1	8,500	5,800	8,500+	9,000	6,100	9,000+
Estimated Settlement (inches)	n/a	1.0 to 1.5	<1	n/a	3 to 3.5	<1
Slope Stability (FOS)	n/a	1.53 (Undrained) 1.52 (Drained)	n/a	n/a	2.0 (Undrained) 1.37 (Drained)	2.01 (Undrained) 2.01 (Drained)

Note: 1. Factored Bearing Resistance is computed for a resistance factor of 0.65 as required for MSE walls. The factored bearing resistance indicated in the table is prior to remedial treatments. Minimum depth of foundation is approximately 3.5 feet below proposed grade.

To increase bearing resistances and decrease settlement for support of the new embankment fill of the MSE walls at the West and East Abutment portions of the bridge, ground improvements, such as the use of Aggregate Column Ground Improvements (ACGI) will be needed. Settlement is estimated to be less than 1 inch after ground improvements. By incorporating ground improvements in the slope stability analysis, the FOS was increased to ≥1.5.

Other means of remedial treatments such as undercutting/replacement or preloading may be feasible; however, these are not recommended. Undercutting is not recommended due to deep undercutting to about 20 feet below the MSE wall footing foundation, and the need for a temporary earth retention system to construct the ground improvement. Preloading due to the construction of the proposed MSE wall on the early phase of stage construction may be able to reduce the excessive and/or differential settlements at the abutments; however, inadequate bearing at the abutments remains an issue, and ground improvements (i.e. aggregate columns) will be necessary to improve bearing capacity and reduce settlements at the abutments.

Overturning, Sliding, and Eccentricity

The contractor should provide a design for the MSE wall's internal stability by a qualified and approved vendor. Per AASHTO, the wall block, which extends a distance of 0.7H (H= exposed wall height) from the outside face of the wall, is to be considered a solid reinforced soil mass. The reinforced mass minimum dimensions needed to provide the external stability (based on overturning and sliding analyses) of the proposed MSE wall are satisfied. In addition, the 0.7H width of the reinforced mass is adequate based on the global and external stability analyses for the proposed MSE wall.

Overturning, sliding, and eccentricity have been checked using the reinforced block. At worst-case scenario, the borings BSB-03 at the West Abutment and BSB-15 at the East Abutment were selected for analyses. Maximum wall heights of 32'-10" feet at the West Abutment and 35'-9" feet at the East Abutment were also used in the calculations. The point of pivot was considered at the toe and the adjacent embankment and traffic pressures were applied. Table 7 is a summary of the factors of safety for overturning, sliding, and calculated eccentricities. The computed factors of safety (FS) satisfy the requirements set for overturning and sliding friction.

Table 7 – Factors of Safety for MSE Wall Soil Block Overturning. Sliding and Eccentricity

Location	Factor of Safety for MSE Wall Soil Block Overturning at Toe ¹	Factor of Safety for MSE Wall Soil Block Sliding ²	Calculated Eccentricity (feet) ³
West Abutment	3.4	3.6	3.3
East Abutment	3.5	3.6	3.5

Notes: 1. Required FS=2.0

- 2. Required FS=1.5
- 3. Eccentricity must be no greater than B/6 (where B is estimated as 0.7H)

SECTION 08: BRIDGE FOUNDATION RECOMMENDATIONS

Foundation Recommendations

Based on the results of the borings, type of structure, and estimated loading, feasible foundations for support include deep foundation systems consisting of driven Metal H-piles at both abutments and at the pier sections of the bridges. Driven Metal H-piles are preferred over drilled shafts due to anticipated shaft drilling difficulties through very dense granular materials, and the need for extended steel casing due to non-cohesive soils.

We recommend that an economic analysis for each foundation option presented below be considered before choosing a foundation system for the design.

Pile Recommendations

Based on the results of the borings and proposed foundation loadings, H-piles (driven to refusal) may be used for the support of the proposed substructures. Based on IDOT Pile Calculation spreadsheets for the pier and abutments sections of the bridge, the maximum allowable stress while driving Metal Shell piles occurred at shallow depth (less than about 10 to 12 feet); therefore, Metal Shell piles are not recommended at the bridge substructures.

The selection of pile type should be determined by economic considerations if either pile types are feasible for the design of the bridge. Pile data for the H-piles is included in Appendix E. Pile capacities and lengths were calculated to the piles' Maximum Nominal Required Bearing and Factored Resistance Available, based on a LRFD resistance factor of 0.55. We anticipate hard driving to occur starting at elevation ranges of 523 to 533 feet, and driving shoes are required to penetrate H-piles through the dense sand and gravel, and fractured rock.

For the new driven piles at the abutment areas, it is estimated settlement of ¼ inch or less excluding the elastic shortening of the pile due to loading.

Tables and graphs for estimated pile lengths for various pile sizes and pile capacities at each substructure unit are summarized in the Appendix section of the report.

Pile Foundations Considerations

As per the IDOT Design Guide AGMU Memo 10.2, dated August 2011, the Washington State DOT (WSDOT) formula has replaced the FHWA Gates Formula as the standard method of construction verification. A modified IDOT static method was used to develop

the SGR pile design tables. Nominal required bearing was calculated from LRFD skin-friction (with pile type correction factors) and end-bearing calculations. A value of 1.04 is used for Bias Factor Ratio (I_G). A geotechnical resistance factor (Φ_G) of 0.55 was used in calculations for the factored resistance available (FRA). Pile lengths were picked with respect to the loadings and geometry of the proposed structures.

When Steel H-piles are used, the Steel H-piles shall be according to AASHTO M270 Grade 50.

Due to the magnitude of settlements estimated for the MSE wall fill at the abutments, downdrag is anticipated to affect the design of the piles. For design of piles accounting for downdrag, a downdrag stress occurring throughout the embankment fill soils to elevation ranges at approximately 522 to 535 feet has been applied. Pile capacity tables have been included in Appendix E for both abutments with downdrag. Installation of corrugated steel pipe sleeves from the bottom of the abutment to the bottom of the leveling pad within the MSE wall mass is recommended prior to constructing the MSE wall and driving piles. The annular space within the pile sleeves will be backfilled with dry, loose sand.

The pile tables, provided in Appendix E, are estimates and test piles should be used for final pile length selections. We recommend that a minimum of one test pile be performed at each substructure unit (especially at the north end of WB West Abutment) due to variability of the top of bedrock elevation (i.e. top of rock elevation between borings B-1 and B-1A). Variation in pile lengths should be expected. The piles should be driven until satisfactory driving resistance is developed in accordance with an appropriate pile driving formula. The test piles shall be driven to 110 percent of the Nominal Required Bearing indicated in the pile data information. The pile size and capacity selected should be based on economic considerations and the loads imposed on the structures.

Approach Slab Recommendations

The new approach slab will be supported on either new or existing embankment fill. Shallow footings for the "sleeper" below the slab should be designed for a maximum applied service bearing pressure of 2,000 psf situated on new embankment fill. The new fill should be compacted per IDOT specifications for earth embankment. Any organics or soft, yielding subgrade (if any) should be removed prior to new fill placement. A qualified geotechnical engineer should observe the subgrade prior to any base course is placed. Settlement of the approach slab is calculated on the order of less than 0.4 inches.

SECTION 09: RETAINING WALL RECOMMENDATIONS

Recommended Wall Types

It is proposed that an MSE type retaining wall be considered for the new fill required at the abutments. The maximum retaining wall height is to be approximately 36 feet. Based on the soil conditions shown on the boring logs, and wall/site geometry, the proposed wall structures are feasible and recommended for use. Other wall systems such as T-type cantilever wall can also be considered for embankment support.

Economic, construction and scheduling factors should be evaluated for the decision of retaining wall design. The following provides a general discussion of soil conditions as they relate to the retaining wall construction.

Shallow Foundation Recommendations

The proposed walls around the bridge abutments are proposed to be an MSE retaining wall system bearing on shallow foundations, which is considered a viable option for design of the retaining wall. Based on our analyses of soil bearing resistance and estimated settlements, aggregate column ground improvements are recommended for support of the retaining walls at both abutments. Per our preliminary analysis, we estimate a triangular spacing of 7 feet (center-to-center) and a diameter of 30 inches may be appropriate for the aggregate column ground improvements. The aggregate columns are anticipated to extend to top of bedrock at approximate elevation 503 feet at the West Abutment, and 513 feet at the East Abutment. In addition, the width of aggregate column ground improvement zone will be about 25 feet and will span along the length of the abutment walls until wall height is less than 10 feet (about 100 feet offset left and right from the I-80 centerline). If ground improvements are performed, the factored bearing resistances summarized in Table 6 will increase to provide the required bearing capacity needed per wall location. As noted at the bottom of each table, it will be important to observe the soils exposed during construction to determine the actual extent of undercutting that will be needed. Also, two (2) survey borings (BSB-52 and BSB-53) were completed to delineate the extent of the soft soils encountered in boring BSB-15 area. The results of the survey borings show that BSB-53 had noted about 3foot of buried topsoil below the existing fill at approximate elevation 526 feet, which is near the elevation where the organic silt was encountered at boring BSB-15. Overexcavation may not be an economical solution since the soft soils encountered at borings BSB-15 and BSB-53 are about 14 to 20 feet below the MSE wall footing foundation. Consequently, it is recommended that aggregate column ground improvements be used at the MSE walls at both abutments.

Soil should be verified in the field at the time of construction by an experienced Geotechnical Engineer or representative. Actual extents of any remedial treatments will be determined at this time. If soils with less than adequate bearing strength are noted

at the foundation level during footing construction, the weaker soils encountered at the base of the footings should be undercut to reach suitable bearing soils, and the undercut area filled with lean concrete or an approved compacted structural (granular) fill material. All placement of structural fill for footing support should be in accordance with the IDOT Standard Specifications and the Guide Bridge Special Provisions (GBSP).

Ground improvements, such as aggregate columns will be required to increase bearing resistances and reduce settlement for support of the new embankment fill in the area of the MSE walls at both the West and East Abutment portions of the bridge. At the East Abutment area, bulging of the aggregate column elements in the organic silt layer may be a concern when the ACGI are constructed. In order to prevent the bulging issue of the constructed aggregate columns, we recommend installing either grouted or sleeved type aggregate columns to maintain the integrity of the aggregate column. Without a grouted or a sleeved aggregate column, the aggregate columns could laterally bulge into the high moisture organic soils and prevent the aggregate column from being properly densified or compacted.

For excavations extending into the higher portions of the embankments and at the piers (if needed), a Temporary Soil Retention System (TSRS), or an option to use a temporary MSE wall, to be designed by the Contractor (or as directed by the Engineer, as specified in IDOT GBSP 44) will likely also be required to support the embankment during excavation and wall construction. The retention system should be designed by an IL-licensed Structural Engineer.

To provide adequate frost protection, we recommend the bottom of the retaining wall be a minimum of 3.5 feet below final grade.

Embankment fill behind the retaining wall should be placed in compliance with Section 205 of the IDOT Standard Specifications for Road and Bridge Construction. Backfill behind the wall should consist of a compacted, free-draining granular material. The retaining wall should be checked and designed by an Illinois Licensed Structural Engineer.

SECTION 10: LATERAL SOIL PARAMETERS

On the following table is a summary of lateral soil parameters to be used for design of the deep foundation system, retaining walls at the abutments, and temporary soil retention system.

Table 8 - Soil Parameters for Lateral Resistance

Material (elevation, feet)	Unit Weight (pcf)	Drained Friction Angle (°)	Undrained Cohesion (psf)	Lateral Modulus of Subgrade Reaction (pci)	Strain
Stiff to Very Stiff Clay to Clay Loam Fill (577 to 530)	125	28	1,800	700	0.007
Organic Silty Loam/Buried Topsoil (528 to 522) ²	100	20	-	30	0.020
Medium Dense to Dense Loams, Sand & Gravel (530 to 520)	125	32	-	100	-
Dense to Very Dense Loams, Sand, Gravel & Fractured Rock (520 to 509)	132	34	-	250	-

Notes:

- 1. Values recommended for use in design from L-pile Software Manual.
- 2. Organic Silty Loam and Buried Topsoil encountered at borings BSB-15 and BSB-53, respectively.

Table 9 – Bedrock Parameters for Lateral Resistance

Material	Unit Weight (pcf)	Young's Modulus (psi)	Uniaxial Compressive Strength (psi)	RQD (%)	Strain (k _m)
Sound Bedrock	150	2 x 10 ⁶	See Lab Data on Rock Core Logs	21% to 84%	0.0001

Allowances should be made for any surcharge loads adjacent to the retaining structure. According to the NAVFAC Design Manual 7.02, for a concrete base on natural loams, sands and gravels or approved granular structural fill beneath the proposed gravity wall leveling pad area (or at other applicable areas of the proposed wall), a friction angle of 28 degrees may be used, leading to a coefficient value of 0.53. A value of 0.34 may be used for the coefficient of friction between the concrete base and drained cohesive soils (this assumes a concrete base on the stiff cohesive soils).

At the abutments, it is recommended that a lateral active earth pressure of 40 psf per foot of depth be used above the water table assuming a free-draining granular backfill is utilized. For non-yielding walls with granular backfill, a lateral at-rest pressure of 50 psf per foot should be used, assuming proper drainage. Allowances should be made for any surcharge loads adjacent to the retaining structure. Drainage should be provided behind the walls at the abutments.

SECTION 11: GENERAL CONSTRUCTION CONSIDERATIONS

Traffic will be maintained utilizing staged construction. Since the proposed wall construction is considered a fill situation, the use of IDOT Temporary Sheet Piling (TSP) Design Charts may not be feasible at the proposed abutment areas per IDOT Design Guide 3.13.1. Also, due to high blow count loams, sands, gravels, and stone, and the limitation of the usage of TSP system, the IDOT Temporary Sheet Piling Design Charts may not be feasible at the proposed pier areas. The contractor will likely need to design and install a Temporary Soil Retention System (TSRS) or temporary MSE wall. The soil and bedrock parameters for lateral resistance shown in Tables 8 and 9 (see Section 10) may be used for design of temporary retention system.

All soils which become softened or loosened at the base of foundation excavation areas or subgrade areas should be carefully recompacted or removed prior to placement of foundation concrete or fill material. No foundation concrete or structural fill should be placed in areas of ponded water or frozen soil.

During excavation for the proposed improvements, movement of adjacent soils into the excavation should be prevented. All excavations should be performed in accordance with the latest Occupational Safety and Health Administration (OSHA) requirements. Allowances should be made for any surcharge loads adjacent to the retaining structures.

SECTION 12: GENERAL QUALIFICATIONS

The analysis and recommendations presented in this report are based upon the data obtained from the soil borings performed at the indicated locations and from any other information discussed in this report. This report does not reflect any variations that may occur between borings or across the site. In addition, the soil samples cannot be relied on to accurately reflect the strata variations that usually exist between sampling locations. The nature and extent of such variations may not become evident until construction. If variations appear evident, it will be necessary to reevaluate the recommendations of the report. In addition, it is recommended that Geo Services, Inc. be retained to perform construction observation and thereby provide a complete professional geotechnical engineering service through the observational method.

This report has been prepared for the exclusive use of our client for specific application to the project discussed and has been prepared in accordance with generally accepted geotechnical engineering practices. No other warranties, either expressed or implied, are intended or made. In the event that any changes in the nature, design or location of the project as outlined in this report are planned, the conclusions and recommendations contained in this report shall not be considered valid unless the changes are reviewed and the conclusions of this report modified or verified in writing by the geotechnical engineer. Also note that Geo Services, Inc. is not responsible for any claims, damages, or liability associated with any other party's interpretation of this report's subsurface data or reuse of the report's subsurface data or engineering analyses without the express written authorization of Geo Services, Inc.

APPENDIX A GENERAL NOTES

GENERAL NOTES

<u>CLASSIFICATION</u>

American Association of State Highway & Transportation Officials (AASHTO) System used for soil classification.

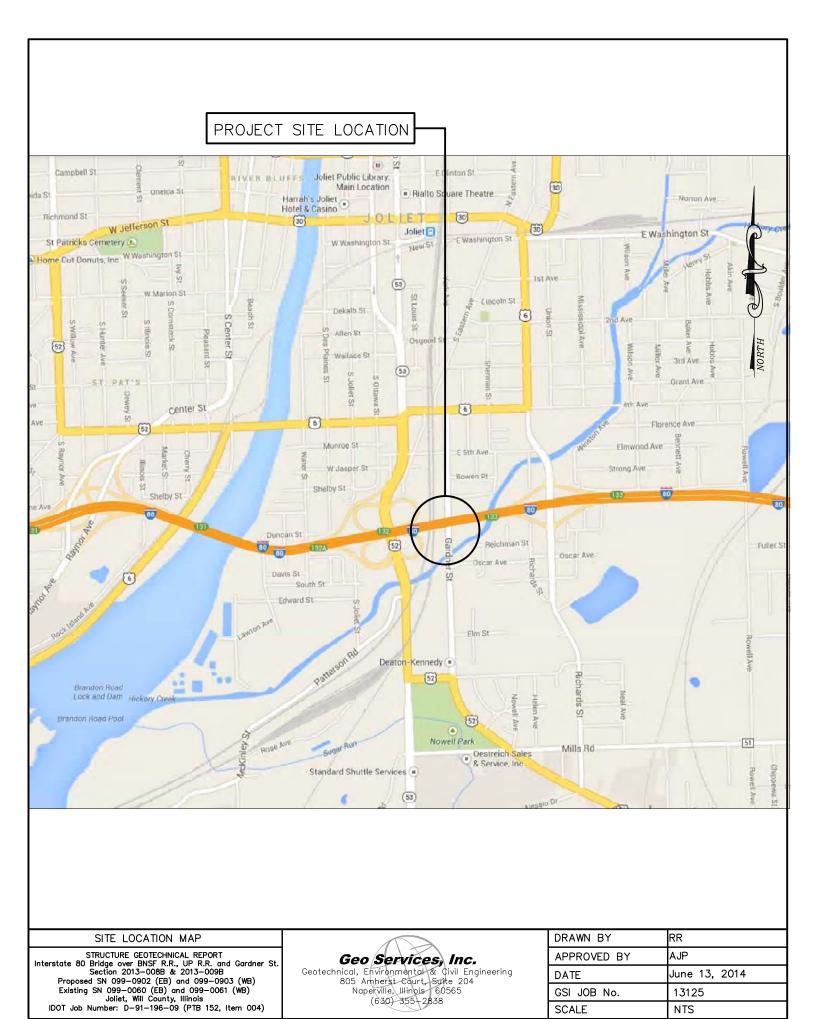
Cohesionless Soils	Col	hesion	ıless	Soils
--------------------	-----	--------	-------	-------

Relative	No. of Blows	<u>TERMINOLOGY</u>
<u>Density</u>	per foot N	
		Streaks are considered to be paper thick.
Very Loose	0 to 4	Lenses are considered to be less than 2
Loose	4 to 10	inches thick. Layers are considered to
Medium Dense	10 to 30	be less than 6 inches thick. Stratum are
Dense	30 to 50	considered to be greater than 6 inches thick.
Very Dense	Over 50	•

Cohesive Soils	
Consistency	Unconfined Compressive Strength - qu (tsf)
Very Soft	Less than 0.25
Soft	0.25 - 0.5
Medium Stiff	0.5 - 1.0
Stiff	1.0 - 2.0
Very Stiff	2.0 - 4.0
Hard	Over 4.0

DRILLING AND SAMPLING SYMBOLS

SS:	Split Spoon 1-3/8" I.D., 2" O.D.	HS:	Housel Sampler
ST:	Shelby Tube 2" O.D., except where noted	WS:	Wash Sample
AS:	Auger Sample	FT:	Fish Tail
DB:	Diamond Bit - NX: BX: AX	RB:	Rock Bit
CB:	Carboloy Bit - NX: BX: AX	WO:	Wash Out
OS:	Osterberg Sampler		


Standard "N" Penetration: Blows per foot of a 140 lb. hammer falling 30" on a 2" O.D. Split Spoon

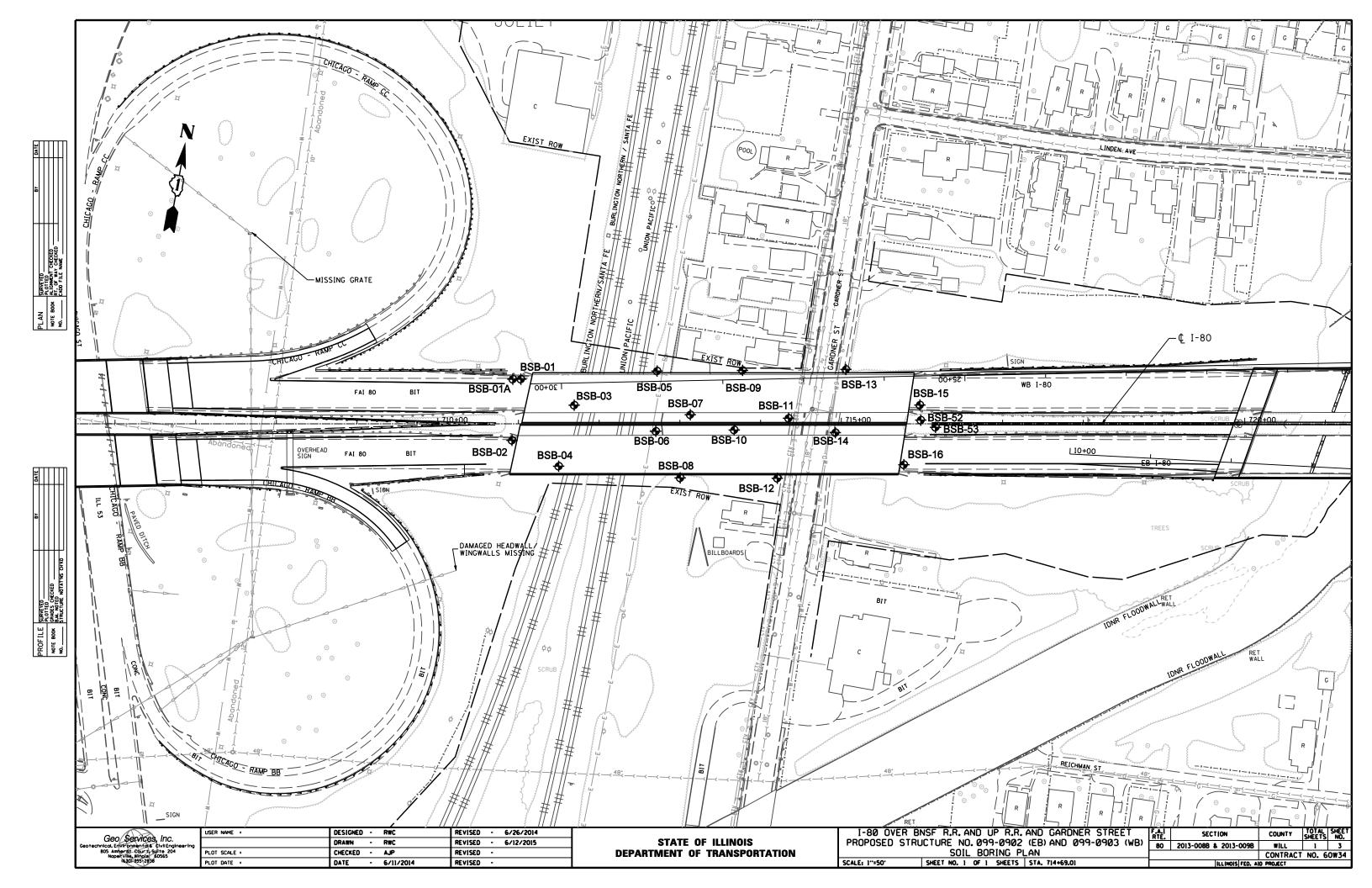
WATER LEVEL MEASUREMENT SYMBOLS

WL:	Water	WD:	While Drilling
WCI:	Wet Cave In	BCR:	Before Casing Removal
DCI:	Dry Cave In	ACR:	After Casing Removal
WS:	While sampling	AB:	After Boring

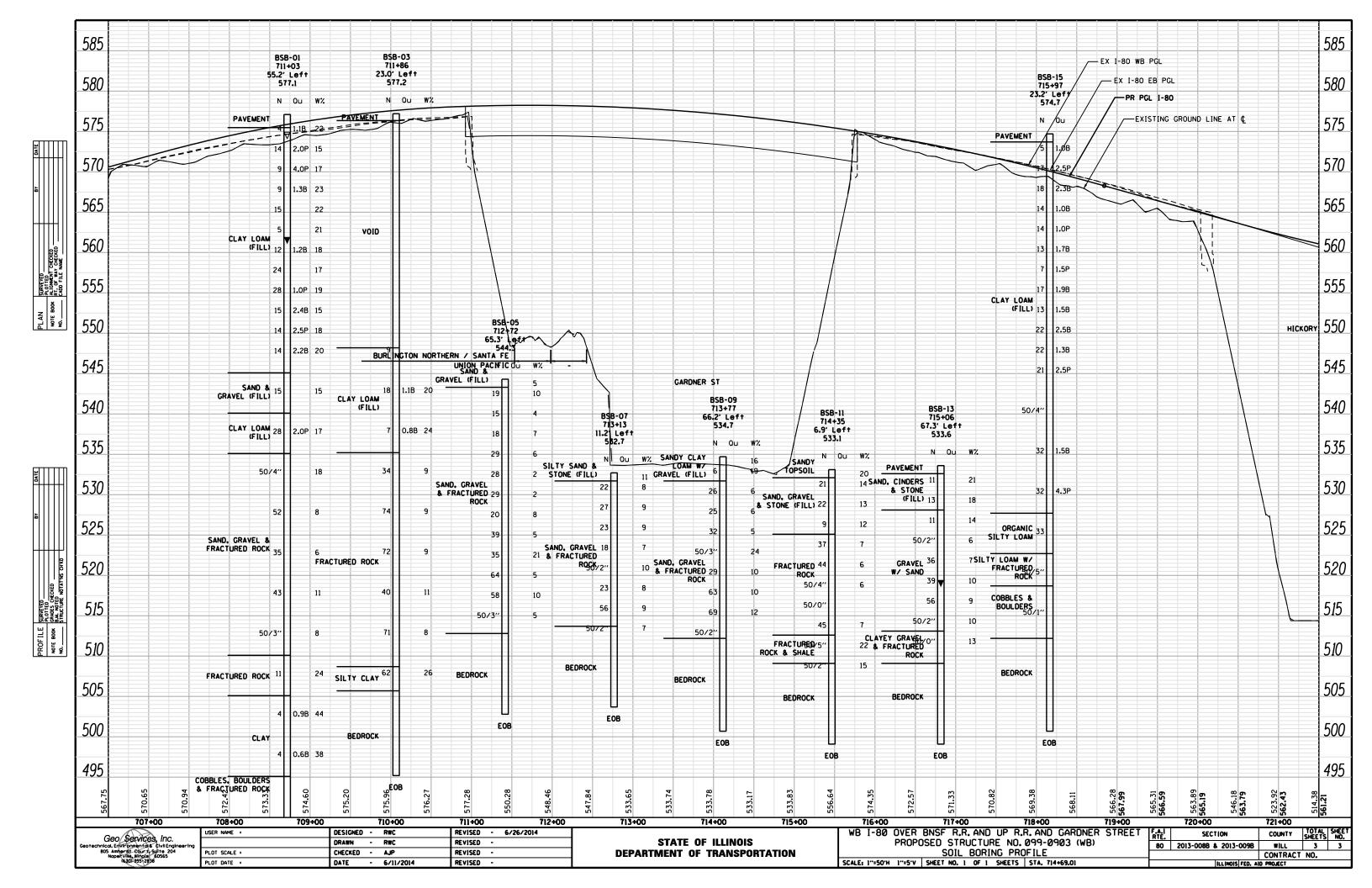
Water levels indicated on the boring logs are the levels measured in the boring at the times indicated. In pervious soils, the indicated elevations are considered reliable ground water levels. In impervious soils, the accurate determination of ground water elevations is not possible in even several days observation, and additional evidence on ground water elevations must be sought.

APPENDIX B SITE LOCATION MAP

GSI JOB No.


SCALE

13125


NTS

© Geo Services, Inc.

APPENDIX C BORING LOCATION PLAN & PROFILE

APPENDIX D BORING & ROCK CORE LOGS

GSI Job No. <u>13125</u>

SOIL BORING LOG

Page $\underline{1}$ of $\underline{3}$

Date 3/11/14

	ROUTE	F.A.I R	TE. 80	DE	SCRI	PTION			I-80 Phase II (Near Te	erm)	LC	OGGE	D BY	N	IW
	SECTION _	2013-00	8B & 201	3-009B	_ ι	_OCAT	ION _	SW 1/	4, SEC. 15, TWP. T35N	, RNG. R10E	, 3 rd PM				
	COUNTY _	Will	[ORILLING	MET	THOD		Hollow	Stem Auger/Rotary	_ HAMMER	TYPE	(CME A	utoma	tic
	STRUCT. NO Station)			D E P	B L O	U C S	M O I	Surface Water Elev. Stream Bed Elev.	n/a n/a		D E P	B L O	U C S	M O I
	BORING NO. Station Offset Ground Sur	55.	11+03 .20ft Left		H (ft)	W S (/6")	Qu (tsf)	S T (%)	Groundwater Elev.: First Encounter Upon Completion After Hrs.	561.1 574.1	_ ft ∑	H (ft)	W S (/6")	Qu (tsf)	S T (%)
	7.5" ASPHAI				(,	(, 0,)	(10.7	(70)	CLAY LOAM-brown 8		_ ''	(1.6)	(, 0,)	(101)	(70)
									hard (Fill) (continued)				9		
	CLAY LOAM	I-brown & d	rav-stiff to	575.48		1						_	14	1.0	19
	hard (Fill)		,,		_	2	1.1	22					14	Р	
				-	∇_	2	В								
						4		1-					8		4-
					<u> </u>	6 8	2.0 P	15				 -25	6	2.4 B	15
						3							4		
15						4	4.0	17					5	2.5	18
4/20/					_	5	Р					_	9	Р	
3.GPJ															
5_LOC						4	1.3	23					3 7	2.2	20
3\1312					- <u>10</u>	-	В					-30	7	В	
LOGS					_							_			
ORING						5									
125 BC						7 8		22	SAND & GRAVEL-bro	own modium	545.10				
RM)/13						0			dense (Fill)	JWII-IIIEGIGIII					
R TER													6		
I (NEA						2		21					6 7		15
IASE					- <u>15</u>	3						- <u>35</u>	8		
-80 PH					_							_			
NTB,					<u>. </u>	3									
Z:/PROJECTS/2013/13125 HNTB, I-80 PHASE II (NEAR TERM)/13125 BORING LOGS/13125_LOG.GPJ 4/20/15						4 8	1.2 B	18	CLAY LOAM-brown 8	arav-verv	540.10				
313/13									stiff (Fill)	. 3.0, 701,					
CTS/20					_	7						_	8		
ROJE						11		17					11	2.0	17
Z:\PF					-20	13						-40	17	Р	

GSI Job No. 13125

SOIL BORING LOG

Page $\underline{2}$ of $\underline{3}$

Date 3/11/14

SAND, GRAVEL & FRACTURED ROCK-gray-dense to very dense		ROUTE	F.A.I RTE. 8	30 DE S	SCRI	PTION			I-80 Phase II (Near Te	rm)	LC	OGGE	ED BY	N	IW
STRUCT. NO		SECTION _	2013-008B &	k 2013-009B	_ L	OCAT	ION _	SW 1/	4, SEC. 15, TWP. T35N,	RNG. R10E,	3 rd PM				
Station		COUNTY _	Will	DRILLING	MET	HOD		Hollow	Stem Auger/Rotary	_ HAMMER 1	TYPE .	(CME A	<u>utoma</u>	tic
Station 711+03 H S Qu T First Encounter 561.1 ft T H S Qu T First Encounter 561.1 ft T H S Qu T First Encounter 561.1 ft T H S Qu D		Station			E P	L O	С	0 1	Surface Water Elev Stream Bed Elev	n/a n/a		E P	L O	С	M O I
CLAY LOAM-brown & gray-very stiff (Fill) (continued) SAND, GRAVEL & FRACTURED ROCK-gray-dense to very dense (continued) SAND, GRAVEL & FRACTURED ROCK-gray-dense to very dense 535.10 SAND, GRAVEL & FRACTURED ROCK-gray-dense to very dense 50/4" 18 50/4" 18		Station Offset	711+0 55.20ft	03 Left	н	S		Т	First Encounter Upon Completion	574.1	$_{oldsymbol{-}}$ ft $oldsymbol{igsigma}$	Н	S		S T (%)
SAND, GRAVEL & FRACTURED ROCK-gray-dense to very dense		CLAY LOAM	/I-brown & gray-v	/ery		` ,	. ,		SAND, GRAVEL & FR ROCK-gray-dense to v	RACTURED	<u></u>			. ,	
				JRED		50/4"							46		
To State					<u>-45</u>			18				-65	50/3"		8
FRACTURED ROCK-gray-medium dense	15										510.10				
23 8 8 29	-0G.GPJ 4/20/					10				gray-medium			4		
Sobject Sobj	LOGS\13125_I				-50			8				-70			24
13	RM)/13125 BORING								CLAY-medium stiff		505.10				
- 10 - 1 - 1 - 2 0.6 HAIB 11	ASE II (NEAR TEF				-55	15		6					2		44
10 1 1 2 0.6	13125 HNTB, I-80 PHA														
$\begin{bmatrix} \frac{\alpha}{60} \\ \frac{1}{60} \end{bmatrix}$ 25 $\begin{bmatrix} \frac{1}{100} \\ \frac{1}{100} \end{bmatrix}$ $\begin{bmatrix} \frac{1}{100} \\ \frac{1}{100} \end{bmatrix}$ 2 $\begin{bmatrix} \frac{1}{100} \\ \frac{1}{100} \end{bmatrix}$	ROJECTS\2013\					18		11					2	0.6	38

GSI Job No. 13125

SOIL BORING LOG

Page $\underline{3}$ of $\underline{3}$

Date <u>3/11/14</u>

	ROUTE	F.A.I RTE. 80	DESC	CRIPTION			I-80 Phase II (Near Te	erm) LC	OGGED BY NW
	SECTION _	2013-008B & 201	3-009B	LOCAT	ION _	SW 1/	4, SEC. 15, TWP. T35N	, RNG. R10E, 3 rd PM	
	COUNTY	Will	DRILLING N	METHOD		Hollow	Stem Auger/Rotary	_ HAMMER TYPE	CME Automatic
	STRUCT. NO. Station			D B E L P O	U C S	M O I	Surface Water Elev. Stream Bed Elev.	n/aft ft	
	Station Offset	BSB-01 711+03 55.20ft Left		T W H S (ft) (/6")	Qu (tsf)	S T (%)	Upon Completion	561.1 ft ▼ 574.1 ft ∑	
Γ		race Elev. 577.1	<u>0</u> ft ((11) (76)	(tSI)	(%)	After Hrs.	ft	
	CLAY-mediur	n stiff (continued) g @ -84.0'. Boring cuttings. See Rock	493.10	-85 					
Z:\PROJECTS\2013\13125 HNTB, I-80 PHAS			_ _ _	-95 					

ROCK CORE LOG

PAGE <u>1</u> of <u>1</u> DATE <u>3/11/2014</u> LOGGED BY JK 3125

Geo Services Inc. Geotechnical, Environmental & Civil Engineering	ROCK CORE LOG	DATE <u>3/11/201</u>
Geotechnical, Environmental & Givil Engineering 805 Amherst Court, Suite 204 Naperville, Wilhois 60565 (630) 355 2838		LOGGED BY <u>JK</u>
(630) 355+2838		GSI JOB No. 1
ROUTE	DESCRIPTION <u>I-80 Reconstruction (Near Term Phase</u>	e 2)
SECTION	LOCATION SEC 15, T35N, R10E, SW 1/4, 3rd PM	

CORING METHOD Rotary Wash

COUNTY Will

STRUCT. NO. ___ O T R R ET E _ CORING BARREL TYPE & SIZE <u>NX Double Swivel-10 ft</u> Core Diameter 2.0 in Station ___ Top of Rock Elev.

BORING NO. BSB-01 Station 711+03 Offset 55.2' Left Ground Surface Elev. 577.1	Begin Core Elev. <u>n/α</u>	H	R U N	E R Y (%)	D (%)	M E (min /ft)	N G T H (tsf)
RUN 1 (-84.0' to -92.0') (-84.0' to -89.3') Cobbles, boulde (-89.3' to -91.0') Silty Clay with 1 (-91.0' to -92.0') Clayey sand, gro	ractured rock.	 		95.0	n/a	n/a	n/a

GSI Job No. 13125

SOIL BORING LOG

Page $\underline{1}$ of $\underline{2}$

Date 4/4/14

ROUTE _	F.A.I R	TE. 80	_ DES	SCRI	PTION			I-80 Phase II (Near Te	erm)	LOGGI	ED BY	N	IW
SECTION	2013-00	8B & 2013-0	009B	_ L	OCAT	ION _	SW 1/	4, SEC. 15, TWP. T35N	, RNG. R10E, 3 rd	PM			
COUNTY	Will	DR	ILLING	MET	HOD		Hollow Stem Auger/Rotary		_ HAMMER TYP	E	CME Autom		tic
Station BORING N	NOB	SB-01A		D E P T H	B L O W S	U C S Qu	M O I S T	Surface Water Elev. Stream Bed Elev. Groundwater Elev.: First Encounter	n/a ft n/a ft n/a ft	P	B L O W S	U C s Qu	M O I S T
Offset _	55 Surface Elev.	.20ft Left	 	(ft)	(/6")	(tsf)	(%)	Upon Completion After Hrs.	n/a ft		(/6")	(tsf)	(%)
	ALT, 15.0" C	ONCRETE	575.48					Blind Drill (continued)					

Z:PROJECTS/2013/13125 HNTB, I-80 PHASE II (NEAR TERM)/13125 BORING LOGS/13125_LOG.GPJ 4/20/15

SOIL BORING LOG

GSI Job No. 13125 **Page** 2 **of** 2

Date 4/4/14

ROUTE _	F.A.I RTE. 80	0 DE	SCRI	PTION			I-80 Phase II (Near Te	LC	LOGGED BY _			W	
SECTION	2013-008B &	2013-009B	_ L	OCAT	ION _	SW 1/4	4, SEC. 15, TWP. T35N, RNG. R10E, 3		3 rd PM				
COUNTY	Will	DRILLING	MET	HOD		Hollow	Stem Auger/Rotary	_ HAMMER TYPE		(OME A	utoma	tic
STRUCT. N Station	IO		D E P	B L O	U C S	M O I	Surface Water Elev. Stream Bed Elev.	n/a n/a	ft ft	D E P	B L O	U C S	M O I
Station _	O. BSB-01 710+9	3	H	W S	Qu	S T	Groundwater Elev.: First Encounter	n/a	ft	T H	W S	Qu	S T
Offset Ground S	55.20ft L urface Elev. <u>5</u>	<u>eft</u> 77.10 ft	(ft)	(/6")	(tsf)	(%)	Upon Completion _ After Hrs	n/a	ft ft	(ft)	(/6")	(tsf)	(%)
Blind Drill (d	continued)						Blind Drill (continued)		'				
Drillers Not -41.0' to -64	e: Rough drilling fro	om					Drillers Observation: A bedrock Borehole continued with coring.		509.10	-65 -70 -75			

ROCK CORE LOG

GSI Job No. ____13125___

Page $\underline{1}$ of $\underline{2}$

Date ___4/4/14__

ROUIE	F.A.IRTE. 80	_ DESCRIPTION _		I-80 Phas	se II (Near	lerm)		_ LO	GGED	BY	NVV
SECTION _	2013-008B & 2013-0	009B LOCATIO	N SW 1/-	4, SEC. 15,	, TWP. T3	5N, RNG. R1	0E, 3	rd PM			
COUNTY _	Will CO	ORING METHOD	Rotary Was	sh				R		CORE	S
- · · ·	•			& SIZE _	NX Do Swivel-	10 ft D	С	E C O	R Q	T I	T R E
		Core Diame		2 513.10	_ in	E P	O R	V E	D	ME	N G
BORING NO.	BSB-01A 710+93	Top of Rock Begin Core		510.40	ft ft	T	E	R		_	Т
Station Offset	55.20ft Left					Н		Y			Н
	face Elev. 577.10	ft				(ft)	(#)	(%)	(%)	(min/ft)	(tsf)
Light gray & p	YSTEM, NIAGARAN Sorous with horizontal burnerous intersecting ho	pedding. Highly fractu	ured & weat	thered from	า -71.2' to	509.10	-	100	40		950.0
Light gray & p	YSTEM, NIAGARAN S porous with horizontal b us intersecting horizontal	pedding. Highly fractu	ured & weat	thered thro	ughout is	-80 -80 -80 -80 -80 -80 -80 -80 -80 -80	-	97	0		
						_	"	91	10		
										1	

The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

ROCK CORE LOG

GSI Job No. ____13125___

Page $\underline{2}$ of $\underline{2}$

Date 4/4/14

ROUTE	F.A.I RTE. 80	DESCRIPTION	I-80 Phase	e II (Near Term)		LC	GGED	BY	NW
SECTION	2013-008B & 2013-00	09B LOCATION SV	V 1/4, SEC. 15,	TWP. T35N, RN 0	G. R10E,	3 rd PM	T		
COUNTY	Will COF	RING METHOD Rotary	Wash			R		CORE	S
				NX Double		E C	R	_	T
		CORING BARREL TY	PE & SIZE	Swivel-10 ft	D C		Q	T	R E
Station		Core Diameter	2	in	EC	V		M	N
BORING NO.	BSB-01A	Top of Rock Elev.	513.10	 _ ft	PF		D	E	G
Station	710+93	Begin Core Elev.	510.40	_ ft	T E	R	•		T H
Offset	55.20ft Left						(0/)	(mains/ft)	
Ground Surf		_ ft			(ft) (#	(%)	(%)	(min/ft)	(tsf)
Light gray & p	orous with horizontal be	RIES DOLOMITE - Run 3 edding. Weathered & fractured with clay seams from -9:	ured throughout	ontinued)					
becoming mg	my weathered a nacture	sa with day scame norm of	0.0 10 00.0 . (0.	onunaoay	-90				845.0
					-90				
					_				
SILLIDIAN SV	STEM NIAGARAN SE	RIES DOLOMITE - Run 4		482.10) - <u>95</u>	100	0		
Light gray & p	orous. Highly weathered	d & fractured throughout w	rith some thin cla	ay	- "	100			
partings & che	ert nodules.								
				479.10	, \dashv				
End Of Boring	g @ -98.0'. Boring backt	filled with cuttings.							
					-100				
					_				
					_				
					<u>-105</u>				
					\dashv				
					\dashv				

Color pictures of the cores

Cores will be stored for examination until 5 yrs after const.

PAGE <u>1</u> of <u>3</u> DATE <u>4/5/2014</u> LOGGED BY JK

Geo Services, Inc.	ROCK CORE LOG	ATE _	4/5/2	2014			
Geotechnical, Environmental & Civil Engineering 805 Amherst Court, Suite 204 Naperville, Illinois 60565	L	OGGED	BY_	JK			
(630) 355+2838		SI JOB	No.	13	125		
ROUTE	DESCRIPTION <u>I-80 Reconstruction (Near Term Phase</u>	2)					
SECTION	LOCATION SEC 15, T35N, R10E, SW 1/4, 3rd PM						
COUNTY Will	CORING METHOD Rotary Wash					_	
Station	CORING BARREL TYPE & SIZE NX Double Swivel—10 : Core Diameter 2.0 in Top of Rock Elev. 513.1 Begin Core Elev. 509.1	_ P	CORE RU	R E C O V E R	R · Q · D ·	OORE ME	STRENGT
Offset <u>55.2' Left</u> Ground Surface Elev. <u>577.1</u>		(ft)	N (#)	Υ (%)	(%)	(min	Н
SILURIAN SYSTEM, NIAGARAN SERIES RUN 1 (-68.0' to -78.0') Light gray & porous with horizontal -78.0' with numerous intersecting h	bedding. Highly fractured & weathered from -71.2 ' to			100.0	40.0	n/a	950 @

PAGE <u>2</u> of <u>3</u> DATE <u>4/5/2014</u> LOGGED BY JK GSI JOB No. <u>13125</u>

Geo Services, Inc.

Geotechnical, Environmental & Givil Engineering
805 Amherst Court, Suite 204
Naperville, Illinois 60565
(630) 355-2838

ROUTE	DESCRIPTION I-80 Reconstruction (Near Term Phase 2))					
SECTION	LOCATION SEC 15, T35N, R10E, SW 1/4, 3rd PM						
COUNTY Will	CORING METHOD Rotary Wash	D	С	R	R	С	S
	CORING BARREL TYPE & SIZE NX Double Swivel-10 ft	E	0	E		0	Т
Station	Core Diameter 2.0 in	P T	R E	C 0	Q·	R ET	R E
BORING NO. BSB-01A	Top of Rock Elev. 513.1 Begin Core Elev. 509.1	Н	R	V E	D	l M	N G
Station 710+93 Offset 55.2' Left			U N	R	•	Ε	T
Ground Surface Elev. 577.1		(ft)		(%)	(%)	(min /ft)	
SILURIAN SYSTEM, NIAGARAN SERIES	DOLOMITE	_	2	,		n/a	
	bedding. Highly fractured & weathered throughout with vertical fractures. Numerous clay seams throughout. rilling fluid.						
		_					

PAGE <u>3</u> of <u>3</u> DATE <u>4/5/2014</u> LOGGED BY JK

Geo Services, Inc.	ROCK CORE LOG	ATE _	4/5/	<u>′2014</u>			
Geotechnical, Environmental & Çivil Engineering 805 Amherst Court, Suite 204 Naperville, Illinois 60565	L	OGGED	BY	JK			
(630) 355+2838		SI JOE	3 No.	_13	125		
ROUTE	DESCRIPTION <u>I-80 Reconstruction (Near Term Phase</u>	2)					
SECTION	LOCATION SEC 15, T35N, R10E, SW 1/4, 3rd PM						
COUNTY Will	CORING METHOD Rotary Wash		I 0		_		
Station	CORING BARREL TYPE & SIZE NX Double Swivel—10 : Core Diameter 2.0 in	D E P T	C O R E	R E C O	R Q	C O R E	S T R E
BORING NO. BSB-01A Station 710+93 Offset 55.2' Left	Top of Rock Elev. <u>513.1</u> Begin Core Elev. <u>509.1</u>	- H -	R U N	V E R	D	M E	N G T
Ground Surface Elev. <u>577.1</u>		(ft)		(%)	(%)	(min /ft)	H (tsf)
SILURIAN SYSTEM, NIAGARAN SERIES RUN 3 (-87.0' to -95.0') Light gray & porous with horizontal highly weathered & fractured with cl	bedding. Weathered & fractured throughout becoming		3	97.0	18.0	n/a	845 ⊕
SILURIAN SYSTEM, NIAGARAN SERIES	DOLOMITE			100.0	0.0	n/a	n/a
RUN 4 (-95.0' to -98.0')	ed & fractured throughout with some thin clay						

GSI Job No. 13125

SOIL BORING LOG

Page $\underline{1}$ of $\underline{2}$

Date __3/26/14

	ROUTE	F.A.I RTE. 80	DE	SCRI	PTION			I-80 Phase II (Near T	erm)	LC	OGGE	ED BY	N	IW
	SECTION	2013-008B & 2	013-009B	[_OCAT	ION _	SW 1/	4, SEC. 15, TWP . T351	N, RNG. R10E,	3 rd PM				
	COUNTY _	Will	DRILLING	MET	THOD		Hollow	Stem Auger/Rotary	HAMMER	TYPE	(CME A	utoma	tic
	STRUCT. No Station	0.		Р	B L O	U C S	M O I	Surface Water Elev. Stream Bed Elev.	n/a n/a	_ ft _ ft	D E P	B L O	U C S	M O I
	Station _ Offset	0. BSB-02 710+92 20.50ft Rig	ht	H	S	Qu	S T	Groundwater Elev.: First Encounter Upon Completion	n/a	_ ft	H	W S	Qu	S T
		irface Elev. 570		(ft)	(/6")	(tsf)	(%)	After Hrs.		_ ft	(ft)	(/6")	(tsf)	(%)
	6.0" ASPHA	ALT, 12.0" CONCRI						gray-medium dense (continued)				11		
	CLAY LOAN	M-brown & gray-stiff	575.40 f to		5	2.8	19					16		14
	Haiu (Fill)				5	Р				553.90		13		
					5			CLAY LOAM-brown very stiff (Fill)	& gray-stiff to			8		
					7	3.1	18				_	10	2.2	17
					11	В					<u>-25</u>	13	В	
					4							6		
15					5	2.8	20					9	1.9	18
J 4/20				_	/	Р					_	14	В	
OG.GP					7						_	8		
3125_L				_	7	4.3 P	19					11 14	2.9	17
068/1				10	11	Р					-30	14	В	
RING L					5									
125 BO					6	1.8 P	13	CIL TV CL AV L CANA	hanna O	544.90				
M)\131					8	Р		SILTY CLAY LOAM- gray-medium dense			_			
R TER					3							9		
II (NE/					6	2.9	21					13	1.5	14
HASE				<u>-15</u>	9	В					- <u>35</u>	14	Р	
Z:/PROJECTS\2013\13125 HNTB, I-80 PHASE II (NEAR TERM)\13125 BORING LOGS\13125_LOG.GPJ 4/20/15					,									
3 HNTE				_	9	2.3	17				_			
3/1312			F50.00		14	Р								
S\2013		Y LOAM-brown &	558.90											
DJECT	gray-mediur	n dense (Fill)			7 10		13					10 13		17
Z:\PRC				-20	4.4		13				-40	17		''

GSI Job No. 13125

SOIL BORING LOG

Page $\underline{2}$ of $\underline{2}$

Date 3/26/14

	ROUTE _	F.A.I RTE. 80	DES	CRIPTION	١		I-80 Phase II (Near Term)	LOG	GED BY	N	IW
	SECTION	2013-008B & 2013	3-009B	LOCA	TION	SW 1/	4, SEC. 15, TWP. T35N, RNG. R10E	, 3 rd PM			
	COUNTY	Will	RILLING	METHOD		Hollow	Stem Auger/Rotary HAMMER	TYPE	CME A	utoma	itic
	Station BORING N Station Offset	NO. BSB-02 710+92 20.50ft Right		D B E L P O T W H S (ft) (/6")	U C S Qu	M O I S T	Surface Water Elev. n/a Stream Bed Elev. n/a Groundwater Elev.: First Encounter Upon Completion After Hrs.	_ ft	D B L D O O O O O O O O O O O O O O O O O O	U C S Qu	M O I S T
		Surface Elev. <u>576.9</u> AY LOAM-brown &	0 ft	(ft) (/6")	(tsf)	(%)	SAND, GRAVEL & FRACTURED	_ ft ('	(/6")	(tsf)	(%)
	gray-medii (continued	um dense (Fill) // // // // // // // // // // // // //	534.90 -				ROCK-brown & gray-medium dense to very dense (continued)	_ _ _			
			_	9 -45 15		27			50/4" 65		7
NG LOGS\13125_LOG.GPJ 4/20/15	CLAYEY S GRAVEL- (Apparent	brown-medium dense	529.90 - - -			27	Drillers Observation: Apparent bedrock Borehole continued with rock coring.	511.40 510.90	70		
Z:/PROJECTS/2013/13125 HNTB, 1-80 PHASE II (NEAR TERM)\13125 BORING LOGS\13125_LOG.GPJ 4/20/15	SAND, GF ROCK-bro dense to v	RAVEL & FRACTURED own & gray-medium very dense	524.90		m ·	12		- - -	75 ————————————————————————————————————		

GSI Job No. ____13125___

Page $\underline{1}$ of $\underline{1}$

Date __3/26/14__

ROUIE	F.A.IRTE. 80	DES	CRIPTION		1-80 Phas	se II (Nea	r Lerm)			_ LO	GGED	BY	NW
SECTION _	2013-008B & 201	13-009B	LOCATION	SW 1/4	, SEC. 15,	, TWP. T3	35N, RNG	. R10	DE, 3 ^r	d PM			
COUNTY	Will	CORING M	ETHOD Rot	ary Was	h					R		CORE	s
_				,		NX Do	uble .			E C	R	Т	T R
STRUCT. NO.	<u> </u>		ORING BARREL	TYPE 8	SIZE _	Swivel-	-10 ft	D	С	Ö	Q.	i	E
Station			Core Diameter		2	in		E	O R	V E	D	M E	N G
BORING NO.			Top of Rock Elev Begin Core Elev		511.40 510.90	ft ft		P T	E	R		_ =	T
Station Offset	710+92 20.50ft Right		begin core Elev	·	010.00			Н		Υ			Н
	face Elev. 576.9							(ft)	(#)	(%)	(%)	(min/ft)	(tsf)
Light gray to	YSTEM, NIAGARAN gray with horizontal ed throughout with i	bedding. Po	orous & weather	red rust s zontal & v	staining thi	roughout.	510.90	-70 -70 -75	1	100	21		439.0
End Of Boring	g @ -76.0'. Boring b	ackfilled wi	th cuttings.				500.90						
								-					
								-80					
								\dashv					
							-						
								\dashv					
							•						
								- <u>85</u>					

PAGE <u>1</u>	of <u>1</u>
DATE <u>3/26/</u>	′2014
LOGGED BY	JK
GSI JOB No.	13125

Geo Services, Inc.
Geotechnical, Environmental & Givil Engineering
805 Amherst Court, Suite 204
Naperville, Ullinois 60565
(630) 355+2838

ROUTE	DESCRIPTION <u>I-80 Reconstruction (Near Term Phase 2)</u>)					
SECTION	LOCATION SEC 15, T35N, R10E, SW 1/4, 3rd PM						
COUNTY Will	CORING METHOD Rotary Wash			Ь	В		
STRUCT. NO Station BORING NO BORING NO Station	CORING BARREL TYPE & SIZE NX Double Swivel—10 ft Core Diameter 2.0 in Top of Rock Elev. 511.4 Begin Core Elev. 510.9	E P T H	CORE RUN (#)	RECOVERY (%)	R · Q · D · (%)	C O R E T - M E (min /ft)	S T R E N G T H (tsf)
	DOLOMITE edding. Porous & weathered rust staining throughout. nerous intersecting horizontal & vertical fractures.		1	100.0	21.0	n/a	439 9 -66.7'

GSI Job No. 13125

SOIL BORING LOG

Page $\underline{1}$ of $\underline{2}$

Date 5/15/14

	ROUTE _	F.A.I I	RTE. 80	DES	SCRIF	PTION			I-80 Phase II (Near Ter	rm)	LO	GGE	D BY	N	1D
	SECTION	2013-0	08B & 2013	-009B	_ L	OCAT	ION _	SW 1/-	4, SEC. 15, TWP. T35N,	RNG. R10E,	3 rd PM				
	COUNTY	Wil	<u> </u>	RILLING	MET	HOD			Mud Rotary	_ HAMMER T	YPE _	(CME A	<u>utoma</u>	tic
	Station BORING N Station Offset	NO	BSB-03 711+86 3.00ft Left	<u> </u>	D E P T H	§ ∽8or⊞	၁၀၈ မှာ	MOIST	Upon Completion _	n/a n/a n/a	_ ft _ ft _ ft	DEPTH	вчомо	D C w Qu	M O I S T
		Surface Elev. PHALT, 7.0"			(ft)	(/6")	(tsf)	(%)	After Hrs VOID (continued)		_ ft	(ft)	(/6")	(tsf)	(%)
LOG.GPJ 4/20/15	VOID		CONCRETE	576.35	-5						548.20	-25			
GS\13125_					-10				CLAY LOAM-brown & gray-medium stiff to stif		-	-30	7 2		
JEAR TERM)/13125 BORING LC													3		
SE II (N					- <u>15</u>							- <u>35</u>	6 12	1.1 B	20
Z:/PROJECTS/2013/13125 HNTB, I-80 PHASE II (NEAR TERM)/13125 BORING LOGS/13125_LOG.GPJ 4/20/15											-	3	2		
Z:\PRO					 -20							 -40	3 4	0.8 B	24

Z:/PROJECTS/2013/13125 HNTB, I-80 PHASE II (NEAR TERM)/13125 BORING LOGS/13125_LOG.GPJ 4/20/15

GSI Job No. 13125

SOIL BORING LOG

Page <u>2</u> of <u>2</u>

Date 5/15/14

ROUTE	F.A.I RTE. 80	D	ESCRI	PTION			I-80 Phase II (Near Te	erm)	LC	GGE	ED BY	N	/ID
SECTION	2013-008B & 20)13-009B		LOCAT	ION _	SW 1/	4, SEC. 15, TWP. T35N	, RNG. R10E,	3 rd PM				
COUNTY	Will	DRILLIN	IG ME	THOD			Mud Rotary	_ HAMMER 1	YPE .	(OME A	utoma	tic
Station			P	B L O	U C S	M O I	Surface Water Elev. Stream Bed Elev.	n/a n/a	ft ft	D E P	B L O	U C S	M 0 1
Station Offset	BSB-03 711+86 23.00ft Lef	t	T H (ft)	W S (/6")	Qu (tsf)	S T (%)	Upon Completion	n/a n/a	ft	T H (ft)	W S (/6")	Qu (tsf)	S T (%)
CLAY LOAM-I	orown & 577 stiff to stiff (Fill)	<u>7.20</u> ff		(,0)	(131)	(70)	After Hrs. FRACTURED ROCK to very dense (continu	-brown-dense			(10)	(131)	(70)
FRACTURED to very dense	ROCK-brown-de	535.2 Inse	20	15							22		
				16		9				-65	36		8
			-50	19 23 51		9	SILTY CLAY-gray-ver	y dense	508.70	-70	16 25 37		26
				19			Drillers Observation: A bedrock Borehole continued w coring.		505.70 505.20	_			
				35 37		9				-75			
			-60	26 20 20		11				-80			

GSI Job No. ____13125___

Page <u>1</u> of <u>1</u>

Date __5/15/14_

ROUTE	F.A.I RTE. 80	DESCRI	IPTION		I-80 Pha	<u>se II (Nea</u>	ır Term)			_ LO	GGED	BY	MD
SECTION _	2013-008B & 2013	3-009B I	LOCATION	SW 1/4	, SEC. 15	, ТWP. ТЗ	35N, RNG	6. R10)E, 3 ^r	ⁱ PM			
COUNTY _	Will	CORING METH	HOD Rota	ary Was	h					R	_	CORE	s
						NX Do				E C	R	т	T R
)		ING BARREL	TYPE 8	SIZE _	Swivel	-10 ft	D	С	0	Q	i	E
Station		Coi	re Diameter		2	in		E P	O R	V E	D	M E	N G
BORING NO.			o of Rock Ele gin Core Elev		505.70 505.20	ft ft		T	E	R			T
Station Offset	711+86 23.00ft Left	be(gin Core Elev	·	303.20	_ "		н		Υ			Н
	face Elev. 577.2	<u>10</u> ft						(ft)	(#)	(%)	(%)	(min/ft)	(tsf)
SILURIAN SY Light gray & p fractures from fractures thro	YSTEM, NIAGARAN porous with rust stain n -72.0' to -73.9', -75.	SERIES DOL ing. Weathere .2' to -75.5' &	ed with horizo from -76.6' to	ontal bec	dding. Ver Some hoi	tical rizontal	505.20		1	100	52		839.0

Color pictures of the cores

Cores will be stored for examination until <u>5 yrs after const.</u>

PAGE <u>1</u> of <u>1</u> DATE <u>5/15/2014</u> LOGGED BY JK

Geo Services, Inc.	ROCK CORE LOG	DATE _	<u>5/15</u>	<u>/201</u>	4		
Geotechnical, Environmental & Civil Engineering 805 Amherst Court, Suite 204 Naperville, Illinois 60565		OGGED	BY	JK			
(630) 355+2838		GSI JOE	3 No.	_13	125		
ROUTE	DESCRIPTION <u>I-80 Reconstruction (Near Term Phase</u>	2)					
SECTION	LOCATION						
COUNTY Will	CORING METHOD Rotary Wash						
Station	CORING BARREL TYPE & SIZE NX Double Swivel—10 Core Diameter 2.0 in Top of Rock Elev. 505.7 Begin Core Elev. 505.2	_ D _ft E P T H	CORE	RECOV	R · Q · D	C O R E T	S T R E N
Station 711+69 Offset 23.0' Left Ground Surface Elev. 577.2		- (ft)	R U N (#)	E R Y (%)	(%)	M E (min /ft)	T H
	DOLOMITE ng. Weathered with horizontal bedding. Vertical 75.2' to -75.5' & from -76.6' to -77.5'. Some			100.0	52.0	n/a	839 ©

GSI Job No. 13125

SOIL BORING LOG

Page $\underline{1}$ of $\underline{2}$

Date 5/21/14

	ROUTE	F.A.I RTE. 80	DESCR	CRIPTION			I-80 Phase II (Near T	LOGGED BY			MD		
	SECTION _	2013-008B & 20	13-009B	LOCAT	ION _	SW 1/	4, SEC. 15, TWP. T35N	I, RNG. R10E,	3 rd PM				
	COUNTY _	Will	DRILLING ME	THOD			Mud Rotary	HAMMER T	YPE _	С	ME A	utoma	tic
	BORING NO. Station Offset	BSB-04 711+50 52.60ft Righ	T H	B L O W S	U C S Qu	M O I S T	Surface Water Elev. Stream Bed Elev. Groundwater Elev.: First Encounter Upon Completion		ft ft ft	D E P T H	B L O W S	U C S Qu	M O I S T
	Ground Sur 2.25" ASPHA	face Elev. 577.	<u>.40</u> ft (π)	(/6")	(tsf)	(%)	After Hrs. VOID (continued)		ft	(ft)	(/6")	(tsf)	(%)
25_LOG.GPJ 4/20/15	CONCRETE	BRIDGE DECK	576.61	-			CLAY LOAM-brown 8	& gray spotted	- - - - - 548.40	-25	1		
068/131				0			black-loose to dense	(Fill)	-	-30	2 3	2.8 P	17
Z:/PROJECTS\2013\13125 HNTB, I-80 PHASE II (NEAR TERM)\13125 BORING LOGS\13125_LOG.GPJ 4/20/15									- - - -	-35	2 10 21		17
Z:\PROJECTS\2013\1									-		4 4 5		25

Z.PROJECTS/2013/13125 HNTB, I-80 PHASE II (NEAR TERM)\13125_BORING LOGS\13125_LOG.GPJ 4/20/15

GSI Job No. 13125

SOIL BORING LOG

Page $\underline{2}$ of $\underline{2}$

Date 5/21/14

ROUTE	F.A.I RTE. 80	_ DES	SCRI	PTION			I-80 Phase II (Near T	erm)	LC	OGGE	D BY	N	1D
SECTION	2013-008B & 2013-	009B	_ L	OCAT	ION _	SW 1/4	4, SEC. 15, TWP. T35N	N, RNG. R10E,	3 rd PM				
COUNTY	Will DF	RILLING	MET	HOD			Mud Rotary	HAMMER	TYPE	(CME A	utoma	tic
Station BORING NO.	BSB-04 711+50		D E P T H	вгоже	U C S Qu	M O I S T	Surface Water Elev. Stream Bed Elev. Groundwater Elev.: First Encounter		_ ft	D E P T H	B L O W S	U C s Qu	M O I S T
Offset	711+50 52.60ft Right ace Elev. 577.40		(ft)	(/6")	(tsf)	(%)	Upon Completion After Hrs.	n/a	_ ft	(ft)	(/6")	(tsf)	(%)
	orown & gray spotted dense (Fill)						FRACTURED ROCK-brown-mediur dense (continued)		_ "				
				4	0.0	00				_	45		
		532.40	 -45	6 10	3.3 B	22	Drillers Observation:		512.90	-65	50/5"		9
GRAVEL-gray	-medium dense			2		1	Drillers Observation: A Bedrock Borehole continued v coring.	Apparent	510.40 509.90				
			-50	3						-70 			
FRACTURED ROCK-brown- dense	medium dense to	525.40		14									
			-55	10		6							
			-60	24 17 15		14				-80			

GSI Job No. ____13125

Page <u>1</u> of <u>2</u>

Date 5/21/14

F.A.I RTE. 80 DESCRIPTION I-80 Phase II (Near Term) LOGGED BY MD SECTION 2013-008B & 2013-009B LOCATION SW 1/4, SEC. 15, TWP. T35N, RNG. R10E, 3rd PM CORE R S Will CORING METHOD Rotary Wash Ε R Т NX Double С Т R STRUCT. NO. CORING BARREL TYPE & SIZE Swivel-10 ft D С 0 Q Ε Т Station Ε 0 ٧ Ν М **Core Diameter** Ρ Ε R D Ε G 510.40 BORING NO. BSB-04 Top of Rock Elev. ___ Т Т Ε R 509.90
 Station
 711+50

 Offset
 52.60ft Right
 Begin Core Elev. _ 711+50 Н Υ Н (ft) (#) (%) (min/ft) (tsf) (%) Ground Surface Elev. 577.40 ft SILURIAN SYSTEM, NIAGARAN SERIES DOLOMITE 509.90 100 28 618.0 Light gray with horizontal to wavy bedding. Highly fractured & weathered with clay seams throughout. SILURIAN SYSTEM, NIAGARAN SERIES DOLOMITE 100 11 Light gray & porous with horizontal to wavy bedding. Highly fractured & weathered with clay seams throughout. 594.0 14 SILURIAN SYSTEM, NIAGARAN SERIES DOLOMITE 100 Light gray & porous with horizontal to wavy bedding. Highly fractured & weathered with clay seams throughout. 382.0

Color pictures of the cores		:S
Cores will be stored for exami	nation until	5 yrs after const.

GSI Job No. ____13125___

Page $\underline{2}$ of $\underline{2}$

Date ___5/21/14__

ROUTE	F.A.I RTE. 80	DESCRIPTION	I-80 Pha	ase II (Near Term)			_ LO	GGED	BY	MD
SECTION	2013-008B & 2013-00	9B LOCATION S	SW 1/4, SEC. 15	5, TWP. T35N, RNO	3. R1	0E, 3	rd PM			
COUNTY	Will COR	RING METHOD Rota	ry Wash				R E	R	CORE	S
		CORING BARREL	TYPE & SIZE	NX Double Swivel-10 ft	D	С	CO	Q.	T	R E
Station		Core Diameter	2	in	E	O R	V	D	M E	N G
BORING NO. Station	711+50	Top of Rock Elev Begin Core Elev.		ft ft	T H	E	R		_	T H
Offset	52.60ft Right	- 4			(ft)	(#)	(%)	(%)	(min/ft)	(tsf)
Ground Surfa					(11)	(")	(70)	(70)	(11111710)	(131)
Light gray & po	STEM, NIAGARAN SEI orous with horizontal to oughout. (continued)	wavy bedding. Highly fra	actured & weath	ered with						
				488.40						
End Of Boring	@ -89.0'. Boring backf	illed with cuttings.								
					90					
					_					
					_					
					-95					
					_					
					-100					
					_					
					_					
					-105					
					_					

Color pictures of the cores

Yes

Cores will be stored for examination until

5 yrs after const.

PAGE <u>1</u> of <u>3</u> DATE <u>5/21/2014</u> LOGGED BY JK

Geo Services, Inc.	ROCK CORE LOG	DATE _	5/21	/201·	4		
Geotechnical, Environmental & Civil Engineering 805 Amherst Court, Suite 204 Naperville, Illinois 60565	l	OGGE	BY	JK			
(630) 355+2838		GSI JOI	3 No.	_13	125		
ROUTE	DESCRIPTION <u>I-80 Reconstruction (Near Term Phase</u>	2)					
SECTION	LOCATION						
COUNTY Will	CORING METHOD <u>Rotary Wash</u>		T -		_		
Station	CORING BARREL TYPE & SIZE NX Double Swivel—10 Core Diameter 2.0 in Top of Rock Elev. 510.4 Begin Core Elev. 509.9		CORE RUN (#)	R E C O V E R Y (%)	R · Q · D · %	ET ME (min	RENGTH
SILURIAN SYSTEM, NIAGARAN SERIES RUN 1 (-67.5' to -75.5') Light gray with horizontal to wavy b throughout.	DOLOMITE edding. Highly fractured & weathered with clay seams	- -	1	100.0	45.5	n/a	618 @ -67.7

BSB-04 RUN 1		3/25	
13015			

PAGE 2 __ of <u>_3</u> DATE <u>5/21/2014</u> LOGGED BY JK

Geo Services, Inc. Geotechnical, Environmental & Civil Engineering	ROCK CORE LOG D	ATE _	5/21	<u>/2014</u>	1		
Geotechnical, Environmental & Civil Engineering 805 Amherst Court, Suite 204 Naperville, Illinois 60565	L	OGGED	BY	JK			
(630) 355-2838	G	SI JOE	3 No.	_13	125		
ROUTE	DESCRIPTION <u>I-80 Reconstruction (Near Term Phase 2</u>	()					
SECTION	LOCATION						
	CORING METHOD Rotary Wash						
Station	CORING BARREL TYPE & SIZE NX Double Swivel—10 from Core Diameter 2.0 in Top of Rock Elev. 510.4 Begin Core Elev. 509.9		CORE RUN (#)	% ≺лп<оопл	R · Q · D · %	3 3 mg	N G T I
SILURIAN SYSTEM, NIAGARAN SERIES RUN 2 (-75.5' to -84.0') Light gray & porous with horizontal clay seams throughout.	to wavy bedding. Highly fractured & weathered with	-80.5 84.0		100.0	10.6	n/a	594 @ -83.7'
		_					

PAGE <u>3</u>	of <u>3</u>
DATE <u>5/21/</u>	′2014
LOGGED BY	JK
GSI JOB No.	13125

Geo Services, Inc.	ROCK CORE LOG	ATE _	<u>5/21</u>	/201 _·	4		
Geotechnical, Environmental & Givil Engineering 805 Amherst Court Suite 204 Naperville, Illinois 60565	L	OGGED	BY	JK			
(630) 355+2838	G	SI JOE	3 No.	_13	125		
ROUTE	DESCRIPTION <u>I-80 Reconstruction (Near Term Phase</u>	2)					
SECTION	LOCATION						
COUNTY Will	CORING METHOD <u>Rotary Wash</u>						
Station	CORING BARREL TYPE & SIZE <u>NX Double Swivel-10 to the Core Diameter 2.0 in to the Core Diameter 2.0 in the Core Diameter </u>	1 -	C O R E	RECO	R · Q	C O R E T	STR
BORING NO. BSB-04 Station 711+50 Offset 52.6' Right	Top of Rock Elev. 510.4 Begin Core Elev. 509.9	·	RUN	V E R	D	I M E	N G T
Ground Surface Elev. 577.4		(ft)		(%)	(%)	(min /ft)	
SILURIAN SYSTEM, NIAGARAN SERIES RUN 3 (-84.0' to -89.0') Light gray & porous with horizontal clay seams throughout.	DOLOMITE to wavy bedding. Highly fractured & weathered with		3	100.0	14.0	n/a	382 © -85.8'

GSI Job No. 13125

SOIL BORING LOG

Page <u>1</u> of <u>1</u>

Date __10/24/13_

	ROUTE _	F.A.I R	RTE. 80	DE	SCRI	PTION			I-80 Phase II (Near To	erm)	L0	OGGE	ED BY	7	Z
	SECTION	2013-00	08B & 2013	-009B	L	OCAT	ION _	SW 1/	4, SEC. 15, TWP. T35N	I, RNG . R10E,	3 rd PM				
	COUNTY	Will	D	RILLING	MET	THOD		Hollow	Stem Auger/Rotary	HAMMER	TYPE	(CME A	utoma	tic
	Station	NO			D E P	B L O	U C S	M O I	Surface Water Elev. Stream Bed Elev.	n/a n/a		D E P	B L O	U C S	M 0 -
	Station _	O. <u>E</u> 65 65 64 65 65 65	712+72 5.30ft Left	 	H (ft)	W S (/6")	Qu (tsf)	S T (%)	Groundwater Elev.: First Encounter Upon Completion After Hrs.	525.8 Dry	_ ft	H (ft)	W S (/6")	Qu (tsf)	S T (%)
		RAVEL-dark		<u> </u>	(,	(, 0,)	(10.)	(70)	SAND, GRAVEL & FI	RACTURED	_ 11	(,	(, 0,)	(10.7	(70)
	CAND CE	RAVEL & FRA	ACTUBED	543.30		9			ROCK-brown & gray- dense to very dense (medium (continued)			11		
	ROCK-bro	wn & gray-m	edium			9		10	,	,			11 16		21
	dense to ve	ery dense				10							19		
						5							15		
					_	7 8		4					43 21		5
					<u>-5</u>							<u>-25</u>			
						7							25		
2					_	9		7				_	27		10
4/20/1						11							31		
.GPJ															
LOG						6							50/3"		
13125					 -10	17 12		6				-30			5
.0GS					10							50			
NG L						15					E10.00				
5 BO					_	17		2	Borehole continued w	vith rock	512.80				
1)/1312						11			coring.						
TERM															
VEAR						11									
SE II (I						14 15		2				-35			
) PHA															
B, I-8(7									
F HN						8		8							
3/1312						12									
\$\201;					V _										
JECT.						13		F							
Z:/PROJECTS\2013\13125 HNTB, I-80 PHASE II (NEAR TERM)\13125 BORING LOGS\13125_LOG.GPJ 4/20/15					 -20	15 24		5				-40			

GSI Job No. ____13125___

Page $\underline{1}$ of $\underline{1}$

Date __10/24/13_

ROUIE	F.A.IRIE. 80	DE	ESCRIPTION		I-80 Phas	<u>se II (Neal</u>	r lerm)			_ LO	GGED	BY	IZ
SECTION	2013-008B & 2	2013-009B	LOCATION	SW 1/4	, SEC. 15,	TWP. T3	5N, RNG	3. R10	DE, 3 ^r	d PM			
COUNTY	Will	CORING	METHOD Rot	tary Was	h					R E	R	CORE	S T
STRUCT. NO. Station			CORING BARREL	_ TYPE &		NX Do Swivel-		D E	C O	L C O >	Q	T I M	R E N
BORING NO.	BSB-05	;	Core Diameter Top of Rock Ele	ev	2 512.80	_ in _ ft		P	R	Ε	D.	E	G
Station	712+72		Begin Core Ele	v	512.80	_ ft		T H	Е	R Y	•		T H
Offset Ground Surf	65.30ft Le	eπ 4.30 ft						(ft)	(#)	(%)	(%)	(min/ft)	(tsf)
SILURIAN SY	STEM, NIAGAR	AN SERIES					512.80		1	100	58		
Light gray & fi	ne grained with h I fractures with in	norizontal be	edding. Numerous iorizontal fractures	s horizont s from -34	al fractures 4.9' to -36.	s to 1' & from					30		1038.0
End Of Boring	g @ -41.5'. Boring	g backfilled	with cuttings.				502.80						
			•					_					
								-45					
								_					
								-50					
												l .	

PAGE <u>1</u>	of <u>1</u>
DATE <u>10/24</u>	/2013
LOGGED BY	JK
GSI JOB No.	13125

Geo Services, Inc.
Geotechnical, Environmental & Givil Engineering
805 Amherst Court, Suite 204
Naperville, Ullinois 60565
(630) 355-2838

ROUTE	DESCRIPTION <u>I-80 Reconstruction (Near Term Phase 2)</u>)					
SECTION	LOCATION SEC 15, T35N, R10E, SW 1/4, 3rd PM						
COUNTY Will	CORING METHOD Rotary Wash			В	В		
	CORING BARREL TYPE & SIZE NX Double Swivel-10 ft		0	ВE	R	CO	S T
	Core Diameter 2.0 in	P T	R E	00	Q	R ET	R E
BORING NO. BSB-05	Top of Rock Elev. <u>512.8</u> Begin Core Elev. <u>512.8</u>	H	R	V E	D	1	Ν
Station <u>712+72</u> Offset <u>65.3' Left</u>	012.0		U N	R	•	M E	G T
Ground Surface Elev. 544.3		(ft)		Y (%)		(min /ft)	H (+of)
	DOLOMITE ontal bedding. Numerous horizontal fractures to ecting horizontal fractures from -34.9' to -36.1'	_	1	100.0	58.0	n/a	1038 © -32.5'
& from -38.7' to -39.5'.	g						
	-	 -36.5					
		_					
		_					
	-	<u> </u>					

Z:PROJECTS\2013\13125 HNTB, I-80 PHASE II (NEAR TERM)\13125 BORING LOGS\13125 LOG.GPJ 4/20/15

GSI Job No. 13125

SOIL BORING LOG

Page <u>1</u> of <u>1</u>

Date __10/25/13_

SECTION 2013-008B & 2013-009B LOCATION SW 1/4, SEC. 15, TWP. T35N, RNG. R10E, 3 rd PM	ROUTE	F.A.I RTE. 80	DE	SCRI	PTION	-		I-80 Phase II (Near T	erm)	LC	OGGE	ED BY		ΓΖ	
STRUCT. NO. Station D B U M E C C O S I	SECTION _	2013-008B & 2013-	-009B	_ L	OCAT	ION _	SW 1/	4, SEC. 15, TWP . T351	N, RNG. R10E,	3 rd PM					
Station	COUNTY	Will DI	RILLING	MET	HOD		Hollow	Stem Auger/Rotary	HAMMER	TYPE	YPECME A			utomatic	
SAND, GRAVEL, ASPHALT & STONE-medium dense (Fill) SAND, GRAVEL & FRACTURED ROCK-brown-dense (continued) SAND, GRAVEL & STONE-medium dense to dense (Fill) SAND, GRAVEL & SAND, GRAVEL & FRACTURED ROCK-brown-dense (continued) SAND, GRAVEL & GRAV	Station BORING NO. Station	BSB-06 712+70		E P T	L O W	C S	0 1 8	Stream Bed Elev. Groundwater Elev.: First Encounter	n/a Dry to 10.0'	_ ft _ ft	E P T	L O W	C S	0 1 8	
STONE-medium dense (Fill) 5	Ground Surf	ace Elev. 543.50	ft	(ft)	(/6")	(tsf)	(%)	After Hrs.		ft	(ft)	(/6")	(tsf)	(%)	
SAND, GRAVEL & 540.50 SAND, GRAVEL & 7				_							_				
T					_									40	
SAND, GRAVEL & STONE-brown-medium dense to dense (Fill)							'							13	
STONE-brown-medium dense to dense (Fill) 7 8 -5 8 15 17 12 -25 30 518.00 SANDY CLAY LOAM with GRAVEL-gray-very dense 14 6 39 10	CAND ODAY	(EL 0	540.50												
14 SANDY CLAY LOAM with GRAVEL-gray-very dense 37 39 10	STONE-brow				5							15			
14 SANDY CLAY LOAM with GRAVEL-gray-very dense 37 39 10	dense (Fill)				1		8							12	
14 SANDY CLAY LOAM with GRAVEL-gray-very dense 37 39 10				<u>-5</u>	8					518 00	- <u>25</u>	30			
15 6 39 10					44					010.00		0.7			
17 46				_			6	OTAVEL-gray-very o	ICHSC		_	-		10	
 					17							46			
SAND, GRAVEL & FRACTURED								SAND, GRAVEL & F	RACTURED	515.50					
9 ROCK-brown-very dense 16					-			ROCK-brown-very de	ense					00	
10 8 29 22 -10 11 -10 45					44		8				-30	15		22	
533.00	CANID ODAY	(EL A ED A OTUBED	533.00						24071125	513.00					
SAND, GRAVEL & FRACTURED SILTY GRAVEL & FRACTURED ROCK-brown-dense 36 ROCK-gray-very dense 51/5"					36							51/5"			
15 9					1		9							10	
17 Borehole continued with rock					1/			Borehole continued v	with rock	511.00	_				
coring.															
9 14 10							10								
<u>-15</u> 18 <u>-35</u>				- <u>15</u>	18						- <u>35</u>				
-				_							_				
17											_				
21					1		8								
				_	27						_				
				_	20		11				_				

GSI Job No. ____13125___

Page $\underline{1}$ of $\underline{1}$

Date __10/25/13

ROUTE	F.A.I RTE	. 80	DESCRIPTION $_$		I-80 Pha	se II (Nea	ar Term)			_ LO	GGED	BY	TZ
SECTION	2013-008E	3 & 2013-009	B LOCATION	SW 1/-	4, SEC. 15	, TWP. T	35N, RNG	. R10	E, 3 ^r	d PM			
COUNTY	Will	CORIN	IG METHOD R	otary Was	sh					R		CORE	S
STRUCT N	0		CORING BARRE	TVDE	9 CI7E	NX Do Swivel				E C	R	т	T R
Station	O		COKING BAKKE	LIIFE	_		<u>-10 It</u>	D	С	0	Q	1	E
_			Core Diamete		2			E P	O R	V E	D	M E	N G
BORING NO	D. <u>BSI</u>	B-06	Top of Rock E		511.00 511.00	ft ft		T	E	R		_	T
Station _			Begin Core El	ev	311.00	"		н	_	Υ	-		Н
Offset Ground Su	9.20π urface Elev.	t Right 543.50	ft					(ft)	(#)	(%)	(%)	(min/ft)	(tsf)
SILURIAN S	SYSTEM. NIAC	GARAN SERII	ES DOLOMITE				511.00		1	86	71	, ,	
Light gray w	vith horizontal b	edding. Highl	y fractured & weatl	hered witl	h clay sear	ns from							
-32.3 10 -30	J.J & IIOIII -4 1.	4 10 -42.5.											
								-35					
								-					000.0
													938.0
								-					
								-40					
								_					
								-					
								=					
							501.00						
End Of Bor	ing @ -42.5'. B	oring backfille	d with cuttings.										
								-					
								-45					
								\dashv					
								-					
								\perp					
								-50					
								\dashv					

Color pictures of the cores Yes

Cores will be stored for examination until <u>5 yrs after const.</u>

PAGE <u>1</u> of <u>1</u> DATE 10/25/2013 LOGGED BY JK

Geo Services, Inc.	ROCK CORE LOG	DATE _	10/2	5/20	<u>13</u>		
Geotechnical, Environmental & Civil Engineering 805 Amherst Court, Suite 204 Naperville, Illinois 60565		_OGGE[BY	JK			
(630) 355+2838		GSI JOI	3 No.	13	125		
ROUTE	DESCRIPTION <u>I-80 Reconstruction (Near Term Phase</u>	2)					
SECTION	LOCATION SEC 15, T35N, R10E, SW 1/4, 3rd PM						
COUNTY Will	CORING METHOD Rotary Wash						
Station	CORING BARREL TYPE & SIZE NX Double Swivel—10 Core Diameter 2.0 in	<u>f</u> t E P T	C O R E	R E C O	R Q	C O R E T	S T R E
BORING NO. <u>BSB-06</u> Station 712+70 Offset 9.2' Right	Top of Rock Elev. 511.0 Begin Core Elev. 511.0	- Ĥ -	R U N	V E R Y	D	I M E	N G T
Ground Surface Elev. 543.5		(ft)	1	(%)	(%)	(min /ft)	
SILURIAN SYSTEM, NIAGARAN SERIES RUN 1 (-32.5' to -42.5') Light gray with horizontal bedding. H-32.5' to -36.5' & from -41.4' to	lighly fractured & weathered with clay seams from						-36.7'

GSI Job No. 13125

SOIL BORING LOG

Page <u>1</u> of <u>1</u>

Date __10/22/13_

	ROUTE	F.A.I R	ΓΕ. 80	DES	SCRI	PTION			I-80 Phase II (Near T	erm)	LOGGED BY _	TZ
	SECTION _	2013-00	8B & 2013	3-009B	_ ι	_OCAT	ION _	SW 1/	4, SEC. 15, TWP. T351	N, RNG. R10E, 3 rd P	М	
	COUNTY	Will	[DRILLING	MET	ГНОD		Hollow	Stem Auger/Rotary	HAMMER TYPE	CME Auto	matic
	STRUCT. NO. Station				D E P	B L O	U C S	M O I	Surface Water Elev. Stream Bed Elev.			
	BORING NO. Station Offset	7	13+13		H	W S	Qu	S T	Groundwater Elev.: First Encounter Upon Completion	n/a ft		
	Ground Surf			0 ft	(ft)	(/6")	(tsf)	(%)	After Hrs.	ft		
	SILTY SAND	& STONE-	-black									
		(EL 0 ED 1		531.70		10						
	SAND, GRAV ROCK-brown				_	12		8				
	dense to very		Jaiaiii			16 6		°				
						-						
						1						
						11						
						11		9				
					<u>-5</u>	16						
					_							
						13						
2						11		9				
/20/1						12						
PJ 4						-						
)G.G					_	12						
5_LC						9		7				
11312					-10							
OGS												
NGL												
30RII					_	20		10				
125 E						50/2"		10				
M)\13					_							
TERI						†						
EAR						23						
<u>Z</u>					_	11		8				
HASE					- <u>15</u>	12						
80 Pł					_	-						
TB, I-						23						
2 HN						30		9				
1312						26						
2013\												
STS\2				E40 70	_	50/2"		7				
OJE	Borehole conf	tinued with	rock	513.70		3012		'				
Z:/PROJECTS/2013/13125 HNTB, I-80 PHASE II (NEAR TERM)/13125 BORING LOGS/13125_LOG.GPJ 4/20/15	coring.				-20	1						

GSI Job No. ____13125___

Page <u>1</u> of <u>1</u>

Date __10/22/13_

ROUTE	F.A.I RTE. 80	DESCRIPTION	I-80 Phas	e II (Near Term)			_ LO	GGED	BY	TZ
SECTION _	2013-008B & 2013-0	009B LOCATION SW	1/4, SEC. 15,	TWP. T35N, RNO	3. R10	E, 3 ^{rc}	PM			
COUNTY	Will CO	PRING METHOD Rotary W	Vash				R		CORE	s
_				NX Double			E C	R	т	T R
)		E & SIZE _	Swivel-10 ft	D	С	Ö	Q		E
Station		Core Diameter	2	_ in	E	0	V	<u>:</u>	M	N
BORING NO.		Top of Rock Elev.	513.70	_ ft ft	P	R E	E R	D .	E	G T
Station Offset	713+13 11.20ft Left	Begin Core Elev.	513.70	_ π	H	_	Y	•		Ĥ
Ground Su		— ft			(ft)	(#)	(%)	(%)	(min/ft)	(tsf)
SILURIAN S	YSTEM, NIAGARAN SE			513.70		1	100	21		
Light gray to	gray & cherty with horiz	contal bedding. Highly fracture 3.5' to -23.8' & from -24.8' to -	ed & weathere	d	- <u>20</u>					1088.0
tilloughout v	vitir clay seams mom -25	0.5 to -25.6 & 110111 -24.6 to -	20.5 .		_					1000.0
					-					
					_					
					$\overline{}$					
					-25					
					-					
					\Box					
					_					
End Of Borin	ng @ -29.0'. Boring back	cfilled with cuttings.		503.70						
	.5 @				-30					
					-					
					_					
					-35					
					-33					
					\dashv					
					$\overline{}$					
					\dashv					

Color pictures of the cores

Yes

Cores will be stored for examination until

5 yrs after const.

PAGE _1 ___ of _1

DATE _10/22/2013

LOGGED BY _JK

GSI JOB No. _13125

Geo Services, Inc. Geotechnical, Environmental & Civil Engineering	
Reotechnical, Environmental & Givil Engineering 805 Amherst Court, Suite 204 Naperville, Illinois 60565 (630) 355-2838	

ROUTE	DESCRIPTION <u>I-80 Reconstruction (Near Term Phase 2)</u>)					
SECTION	LOCATION SEC 15, T35N, R10E, SW 1/4, 3rd PM						
COUNTY WIII	CORING METHOD Rotary Wash			-	_		
Station	CORING BARREL TYPE & SIZE NX Double Swivel—10 ft Core Diameter 2.0 in Top of Rock Elev. 513.7 Begin Core Elev. 513.7	P H	CORE RUN	RECOVERY (CORE ME in	
Ground Surface Liev		(ft)		(%)	(%) 21.0	/ft)	
	rizontal bedding. Highly fractured & weathered 23.5' to -23.8' & from -24.8' to -26.5'.				25		-19.8'

Z:PROJECTS\2013\13125 HNTB, I-80 PHASE II (NEAR TERM)\13125 BORING LOGS\13125 LOG.GPJ 4/20/15

GSI Job No. 13125

SOIL BORING LOG

Page <u>1</u> of <u>1</u>

Date __10/28/13_

ROUTE	F.A.I RTE. 80	_ DE	SCRI	PTION			I-80 Phase II (Near T	erm)	L0	OGGE	D BY		ſΖ
SECTION	2013-008B & 2013-	009B	L	OCAT	ION _	SW 1/-	4, SEC. 15, TWP . T35N	N, RNG. R10E,	3 rd PM				
COUNTY	Will DF	RILLING	MET	THOD		Hollow	Stem Auger/Rotary	HAMMER	TYPE	(OME A	<u>utoma</u>	ıtic
Station BORING NO. Station Offset	BSB-08 713+00 67.10ft Right		D E P T H	B L O W S	U C S Qu	M O I S T	Upon Completion	n/a Dry to 20.0' n/a	_ ft _ ft _ ft	D E P T H	B L O W S	U C s Qu	M O I S T
	EL, ASPHALT &	ft	(ft)	(/6")	(tsf)	(%)	After Hrs. GRAVEL with SAND			(ft)	(/6")	(tsf)	(%)
STONE-mediu				5 6 14		13	Borehole continued v coring.	d)	514.40				
				9 10 12		13							
GRAVEL with to very stiff	SAND-brown-dense	529.90		13 15 21		5							
				50/5"		11				-30			
				15 16 19		4							
				9 14 27		5							
				30 36 50/5"		12							
				50/1"		7							

GSI Job No. ____13125___

Page $\underline{1}$ of $\underline{1}$

Date __10/28/13_

ROUIE	F.A.IRTE. 80	DESCRIPTION	1-80 Pha	se II (Near	l erm)		_ LO	GGED	RA	IZ
SECTION	2013-008B & 2013-00	98 LOCATION SW	1/4 SEC 15	TWP T35	N RNG R1	0F 3	rd PM			
_				,	,	<u>JL, J</u>			0005	
COUNTY	Will COR	RING METHOD Rotary W	ash				R	R	CORE	S T
STRUCT NO	·	CORING BARREL TYPE	. & SI7E	NX Dou Swivel-1	∩ ft		С		Т	R
Station		_	_		D E	C	O V	Q	I I	E N
		Core Diameter _	2 514.40	in ft	P	R	E	D.	M E	G
BORING NO. Station	BSB-08 713+00	Top of Rock Elev Begin Core Elev	514.40	— "t	Т	E	R		_	Т
Offset	67.10ft Right				Н		Y			Н
	face Elev. <u>535.40</u>	_ _ ft			(ft)	(#)	(%)	(%)	(min/ft)	(tsf)
	STEM, NIAGARAN SER		. 4lawa !	٠ مائنیں	514.40	1	100	23		
clay seams. V	ertical fractures from -22	umerous horizontal fractures 2.7' to -23.3', -23.9' to -25.2',	throughout 26.0' to -27-	7.2' & from		-				
-29.4' to -30.1	1'.				_	1				
					_	-				
					25	1				
					_					
						-				
					_	-				
						1				1209.0
					_					
					30					
					504.40					
End Of Boring	g @ -31.0'. Boring backfi	illed with cuttings.								
					_	-				
					_					
					35	<u> </u>				
					_	1				
						1				
					_	-				
					_					
						1				
					40	4				
					_	-				

PAGE _	1	of	1
DATE	0/28/2	013	
LOGGED	BY JK		
	! No 1		:

Geo Services, Inc.

Geotechnical, Environmental & Civil Engineering

805 Amherst Court, Suite 204

Naperville, Ullinois 60565

(630) 355-2838

			, 110.		120		
ROUTE	DESCRIPTION <u>I-80 Reconstruction (Near Term Phase 2)</u>)					
SECTION	LOCATION SEC 15, T35N, R10E, SW 1/4, 3rd PM						
COUNTY Will	CORING METHOD Rotary Wash						
STRUCT. NO Station BORING NO Station	CORING BARREL TYPE & SIZE NX Double Swivel—10 ft Core Diameter 2.0 in Top of Rock Elev. 514.4 Begin Core Elev. 514.4	D E P T H	CORE RUN (#)	RECOVERY (%)	R · Q · D · %	C O R E T M E (min /ft)	SHREZGHH (tsf)
	DOLOMITE J. Numerous horizontal fractures throughout with some —22.7' to —23.3', —23.9' to —25.2', —26.0' to —27.2'		````		23.0		

Z:PROJECTS\2013\13125 HNTB, I-80 PHASE II (NEAR TERM)\13125 BORING LOGS\13125 LOG.GPJ 4/20/15

GSI Job No. 13125

SOIL BORING LOG

Page <u>1</u> of <u>1</u>

Date __10/23/13_

ROUTE	F.A.I RTE. 80	_ DE	DESCRIPTION I-80 Phase II (Near Term)			LOGGED BY			TZ				
SECTION	2013-008B & 2013-	009B	L	OCAT	ION _	SW 1/-	4, SEC. 15, TWP . T351	N, RNG. R10E,	3 rd PM				
COUNTY	Will DF	RILLING	MET	THOD		Hollow	Stem Auger/Rotary	HAMMER	TYPE	(OME A	utoma	tic
Station BORING NO.	BSB-09 713+77		D E P T H	B L O W S	U C S	M O I S T	Surface Water Elev. Stream Bed Elev. Groundwater Elev.: First Encounter	n/a n/a	_ ft	D E P T H	B L O W S	U C S	M O I S T
Offset	66.20ft Left ace Elev. 534.70		(ft)		(tsf)	(%)	Upon Completion After Hrs.	n/a	ft	(ft)	(/6")	(tsf)	(%)
SANDY CLAY		'`		2	(12)	(1-7	SAND, GRAVEL & F ROCK-brown & gray dense to very dense	RACTURED -medium	_ 11		50/2"	()	(13)
				3		19			512.20		00/2		
	EL & FRACTURED	531.70					Drillers Observation: bedrock	Apparent	312.20				
ROCK-brown dense to very	& gray-medium dense			6 12		6	Borehole continued v	with rock	510.70				
			<u>-5</u>	14			coring.			<u>-25</u>			
				9		6							
				15									
				10									
			-10	14 18		5				-30			
										_			
			_	23 50/3"		24				_			
			_										
			_	11 11 18		10							
			<u>-15</u>	10						<u>-35</u>			
				17 27 36		10							
				25									
				32 37		12							

GSI Job No. ____13125___

Page $\underline{1}$ of $\underline{1}$

Date __10/23/13_

ROUIE	F.A.IRTE. 80	DESCRIPTION	I-80 Pha	<u>se II (Near</u>	Term)		_ LO	GGED	BY	IZ
SECTION	2013-008B & 2013-0	009B LOCATION SV	V 1/4, SEC. 15	, TWP. T35	5N, RNG. R1	0E, 3	rd PM			
COUNTY						•	R		CORE	s
	VVIII	TROCALLY	vvasii	NIV 5			E	R		T
STRUCT, NO.		CORING BARREL TY	PF & SI Z F	NX Dou Swivel-1	10 ft		С		T	R
Station			_		D	C	O V	Q	I I	E
		Core Diameter	2	<u>in</u>	E	R	E	D.	M E	N G
BORING NO.		Top of Rock Elev.	512.20 510.70	ft ft	T T	E	R		_	Ť
Station		Begin Core Elev.	310.70	"	н		Υ			Н
Offset	66.20ft Left face Elev. 534.70	ft			(ft)	(#)	(%)	(%)	(min/ft)	(tsf)
	/STEM, NIAGARAN SI				510.70	1	100	43	, ,	, ,
Light gray witl at -31.1', -31.	h horizontal to wavy be 2', -31.75' & -32.5'. Hig	edding & some chert inclusions that the second in the seco	ons. Horizontal rom -24.0' to -2	fractures 24.8' &		- 1	100	40		
from -28.9' to	-30.0'.					1				280.0
						1				
						_				
					_	-				
						-				
					-30	<u> </u>				
					50	<u>'</u>				
						1				
					_					
						-				
						-				
End Of Boring	g @ -34.0'. Boring back	kfilled with cuttings			500.70					
Ziid Oi Boiiii	9 66 0 1.0 . Bornig bao	Milliod Willi Odtalligo.			-35	;				
					50	1				
					_	4				
						4				
					_	+				
						1				
						,				
					40	1				
]				
						1				
					_	-				
						1				
					_	1				

PAGE <u>1</u> of <u>1</u>
DATE _10/23/2013
LOGGED BY JK
GSL JOB No. 13125

Geo Services, Inc.

Geotechnical, Environmental & Givil Engineering
805 Amherst Court, Suite 204
Naperville, Illinois 60565
(630) 355-2838

		i ool	, 140.		120		
ROUTE	DESCRIPTION <u>I-80 Reconstruction (Near Term Phase 2)</u>)					
SECTION	LOCATION SEC 15, T35N, R10E, SW 1/4, 3rd PM						
COUNTY Will	CORING METHOD Rotary Wash						
· · · · · · · · · · · · · · · · · · ·	CORING BARREL TYPE & SIZE NX Double Swivel—10 ft Core Diameter 2.0 in Top of Rock Elev. 512.2 Begin Core Elev. 510.7	P T H	CORE RUN	RECOVERY		COREL ME in	
SILURIAN SYSTEM, NIAGARAN SERIES RUN 1 (-24.0' to -34.0') Light gray with horizontal to wavy b				(%) 100.0	(%) 43.0	/ft) n/a	

GSI Job No. 13125

SOIL BORING LOG

Page <u>1</u> of <u>1</u>

Date __10/22/13_

	ROUTE	F.A.I RTE. 80	DES	SCRI	PTION			I-80 Phase II (Near Te	erm)	LOGGED BY	TZ
	SECTION	2013-008B & 2013	-009B	_ ι	_OCAT	ION _	SW 1/	4, SEC. 15, TWP. T35N	, RNG. R10E, 3 rd P	М	
	COUNTY	Will D	RILLING	MET	THOD		Hollow	Stem Auger/Rotary	_ HAMMER TYPE	CME Automa	atic
	STRUCT. NO. Station			D E P	B L O	U C S	М О І	Surface Water Elev. Stream Bed Elev.			
	Station Offset	BSB-10 713+67 7.70ft Right ace Elev. 531.90		T H (ft)	W S (/6")	Qu (tsf)	S T (%)	Groundwater Elev.: First Encounter Upon Completion After Hrs.		<u></u>	
		LOAM-dark brown									
					3 4 5		15				
	SAND, GRAV COBBLES-bla	EL & ack-very loose (Fill)	528.90	_	2 2		9				
	SAND CDAV	EL & FRACTURED	526.40		2		9				
4/20/15	ROCK-brown	LL & FRACTURED			6 14 26		6				
3125_LOG.GPJ					6 16		5				
DRING LOGS/13				10	18						
RM)\13125 BC		N. (5)	518.90		19 23		6				
SE II (NEAR TE	SAND & GRA	VEL-brown		<u>▼</u>	13 17 13		9				
INTB, I-80 PHAS				<u>-10</u>	50/5"		7				
Z:\PROJECTS\2013\13125 HNTB, I-80 PHASE II (NEAR TERM)\13125 BORING LOGS\13125_LOG.GPJ 4/20/15	Borehole cont coring.	inued with rock	514.40				7				
Z:\PROJE				-20							

GSI Job No. ____13125___

Page 1/////

Date __10/22/13_

ROUIE	F.A.IRIE. 80	DESCRIPTION	I-80 Ph	ase II (Ne	ar Lerm)			_ LO	GGED	BA	IZ
SECTION	2013-008B & 2013-009	9B LOCATION S	SW 1/4. SEC. 1	5. TWP . T	35N. RNG .	R10F	- 3 ^{rc}	ⁱ PM			
				-,•••	, 1410		_, _	R		CORE	s
COUNTY	Will CORI	NG METHOD Rotar	y Wash					E	R	CORE	T
STRUCT. NO.		CORING BARREL T	YPE & SIZE		ouble el-10 ft	_		С		T	R
0 4 41			2	in			c o	0 V	Q .	M	E N
BORING NO.	BSB-10	Core Diameter Top of Rock Elev				Р	R	Ε	D	E	G
Station	713+67	Begin Core Elev.	514.40	ft		T H	E	R Y	•		T H
Offset	7.70ft Right	- - <u>-</u> .					,4A	-	(0/)	(min/ft)	
	face Elev. 531.90	ft	DOLOMITE				(#)	(%)		(min/ft)	(tsf)
	Run 1, SILURIAN SYSTE erty, & highly weathered 8		S DOLOMITE		514.40		1	100	0		
Light gray, on	orty, a riigiliy woatiloroa t	a naotarea un oagnoat.				-					
					512.40						
Roller Bit		t				-20					
Drillers Obser	vation: Weathered & frac	turea rock.				_					
Rock Core - F	Run 2, SILURIAN SYSTE	M NIAGARAN SERIES	S DOLOMITE		510.90	-	2	94			
Light gray to g	gray with horizontal to wa	vy bedding & chert nodu	ules throughout	t. Highly			-	01			
weathered & f -27.0' to -29.0	fractured from -21.0' to -2	23.0' & from -27.0' to -29	9.0'. Clay seam	s from	-						
-27.0 10 -23.0	, .				=						
						_					
					-						
						-25					337.0
					=						
					_						
						-					
					-						
					_						
Dook Coro F	Due 2 CH LIDIAN CVCTE		2 DOLOMITE		502.90		3	100	0		
	Run 3, SILURIAN SYSTE nighly weathered. Highly fi					_	3	100	U		
	3 ,	•	•		-	-30					
					500.90						
End Of Boring	g @ -31.0'. Boring backfill	led with cuttings.				_					
					-						
						-					
					-						
					_						
						_					
					-	-35					
						\dashv					
					-						
					_						

PAGE	1	of	2
DATE	10/22	/2013	
LOGGE	D BY	JK	
GSI JO	DR No	1.31.25	5

ROUTE	DESCRIPTION <u>I-80 Reconstruction (Near Term Phase 2</u>	2)					
SECTION							
COUNTY Will	CORING METHOD Rotary Wash				_		_
Station	CORING BARREL TYPE & SIZE NX Double Swivel—10 f Core Diameter 2.0 in Top of Rock Elev. 514.4 Begin Core Elev. 514.4	D t E P T H	CORE RUN (#)	к кап<оопи	R · Q · D · %	C O R T - M E (mft)	STRENGTH (tsf)
SILURIAN SYSTEM, NIAGARAN SERIES RUN 1 (-17.5' to -19.5') Light gray, cherty, & highly weather		1	100.0	·			
(19.5' to -21.0') Roller Bit Drillers Observation: Weathered & fro							
	o wavy bedding & chert nodules throughout. Highly to -23.0' & from -27.0' to -29.0'. Clay seams from		2	93.8	45.0	n/a	337 @ -24.5'

PAGE 2	of <u>_2</u>	
DATE <u>10/22</u>	/2013	
LOGGED BY	JK	
GSI JOB No.	13125	

Geo Services, Inc.	ROCK	CORE	LOG	DATE _	10/2	2/20	13		
Geotechnical, Environmental & Givil Engineering 805 Amherst Court, Suite 204 Naperville, Ulinois 60565				LOGGED	BY	_JK			
(630) 355+2838				gsi joe	3 No.	13	<u> 125</u>		
ROUTE	DESCRIPTION <u>I-80</u>) Reconstruc	tion (Near Term Phase	2)					
SECTION	LOCATION SEC 15	5, T35N, R10E	E, SW 1/4, 3rd PM						
COUNTY Will	CORING METHOD	Rotary Wash	1						_
STRUCT. NO	Core Diameter	2.0 in		_ _	C O R E	R E C O	R Q	C O R ET	S T R E
BORING NO. BSB-10 Station 713+67 Offset 7.7' Right	Top of Rock Elev. Begin Core Elev.	514.4 514.4		— н —	R U N	V E R	Ď ·	- М Е	N G T
Ground Surface Elev. 531.9				(ft)	(#)	(%)	(%)	(min /ft)	
SILURIAN SYSTEM, NIAGARAN SERIES RUN 3 (-29.0' to -31.0') Light gray & highly weathered. Highl		lay seams th	nroughout.		. 3	100.0	0.0	n/a	n/a
				_					
				_					
				_	1				

GSI Job No. 13125

SOIL BORING LOG

Page <u>1</u> of <u>1</u>

Date __10/30/13_

	ROUTE	F.A.I RTE. 80	DE	SCRI	PTION			I-80 Phase II (Near T	erm)	LC	GGE	ED BY	7	ΓZ
	SECTION _	2013-008B & 20	13-009B	ι	_OCAT	ION _	SW 1/	4, SEC. 15, TWP. T35N	I, RNG. R10E,	3 rd PM				
	COUNTY _	Will	DRILLING	MET	THOD		Hollow	Stem Auger/Rotary	HAMMER	TYPE _	(CME A	utoma	itic
	Station BORING NO	DBSB-11 714+35		D E P T H	B L O W S	U C S Qu	M O I S T	Surface Water Elev. Stream Bed Elev. Groundwater Elev.: First Encounter		_ ft	D E P T H	B L O W S	ပပ ၈ Qu	M O I S T
	Offset	6.90ft Left	.10 ft	(ft)	(/6")	(tsf)	(%)	Upon Completion After Hrs.	n/a		(ft)	(/6")	(tsf)	(%)
		Y TOPSOIL-black	532.10		(- 7	()	20	FRACTURED ROCK		512.60	_	(-)	(55.)	(7-5)
		STONE, GRAVEL & brown-loose to	6		10 12		14	SHALE-very dense				50/5"		22
	mediam den	13C (1 III)			9						_			
					8					509.10	_	50/2"		15
					10 12		13	Borehole continued w coring.	vith rock	-	- <u>25</u>			
4/20/15					3 4 5		12							
	FRACTURE to very dens	ED ROCK-gray-dens e	<u>525.10</u> e		8		7				_			
LOGS/13125				 10	40		,				-30			
3125 BORING					19 24 20		6				_			
EAR TERM)/1					50/4"									
PHASE II (NE				- <u>15</u>			6				- <u>35</u>			
5 HNTB, I-80	Cobbles & B -17.5'	Boulders from -16.0' 1	to		50/0"									
3/2013/1312											_			
Z:\PROJECTS\2013\13125 HNTB, I-80 PHASE II (NEAR TERM)\13125 BORING LOGS\13125_LOG.GPJ				-20	37 21 24		7				-40			

GSI Job No. ____13125___

Page <u>1</u> of <u>1</u>

Date <u>10/30/13</u>

ROUTE	F.A.I RTE. 80	DESCRIPTION		I-80 Phase	II (Near Term)		L	OGGED	BY	TZ
SECTION _	2013-008B & 201	3-009B LOCATIO	ON SW 1/4,	SEC. 15, T	WP. T35N, RN 0	3 . R10E	., 3 rd PM			
COUNTY	Will	CORING METHOD _	Rotary Wash		NIV D. III.	_	R	R	CORE	S T
Station				2 509.10	NX Double Swivel-10 ft in ft	E	C O V R E	Q D	T I M E	R E N G
BORING NO. Station Offset	BSB-11 714+35 6.90ft Left	Begin Core		509.10	ft		E R Y			T H
	face Elev. 533.1	10 ft				(ft)	(#)	(%)	(min/ft)	(tsf)
Light gray to		I SERIES DOLOMITE to wavy bedding. Highl om -24.0' to -29.7'.		fractured v	509.10 with clay		1 100	33		434.0
Fnd Of Boring	a @ -34.0'. Boring b	ackfilled with cuttings.			499.10					

PAGE _1 ___ of _1

DATE _10/30/2013

LOGGED BY _JK

GSI JOB No. _13125

Geo Services, Inc.
Geotechnical, Environmental & Givil Engineering
805 Amherst Court, Suite 204
Naperville, Ulinois 60565
(630) 355+2838

ROUTE	DESCRIPTION <u>I-80 Reconstruction (Near Term Phase 2)</u>)					
SECTION	LOCATION SEC 15, T35N, R10E, SW 1/4, 3rd PM						
COUNTY Will	CORING METHOD Rotary Wash				_		
STRUCT. NO Station BORING NO. BSB-11 Station	CORING BARREL TYPE & SIZE NX Double Swivel—10 ft Core Diameter 2.0 in Top of Rock Elev. 509.1 Begin Core Elev. 509.1	E P T H	CORE RUN (#)	RECOVERY (%)	R · Q · D · %	C O R E T - M E (min /ft)	
SILURIAN SYSTEM, NIAGARAN SERIES RUN 1 (-24.0' to -34.0') Light gray to gray with horizontal to clay partings & some chert nodules	o wavy bedding. Highly weathered & fractured with				33.0	n/a	

GSI Job No. 13125

SOIL BORING LOG

Page <u>1</u> of <u>1</u>

Date __10/30/13_

	ROUTE	F.A.I RTE	. 80	_ DES	CRI	PTION			I-80 Phase II (Near To	erm) L	OGGE	ED BY		ΓZ
	SECTION _	2013-008B	& 2013-C	009B	_ L	OCAT	ION _	SW 1/	4, SEC. 15, TWP. T35N	I, RNG. R10E, 3 rd PM				
	COUNTY _	Will	DR	ILLING	MET	HOD	!	Hollow	Stem Auger/Rotary	HAMMER TYPE	(CME A	utoma	tic
	Station BORING NO. Station	BSE 714 67.50f	3-12 +21		D E P T H	B L O W S	U C S Qu	M O I S T	Surface Water Elev. Stream Bed Elev. Groundwater Elev.: First Encounter Upon Completion	n/a ft517.9 ft ▼	D E P T H	B L O W S	U C s Qu	M O I S T
	Ground Sur	face Elev.		ft	(ft)	(/6")	(tsf)	(%)	After Hrs.	ft	(ft)	(/6")	(tsf)	(%)
	12.0" SANDY CRUSHED S GRAVEL,SA	STONE,		532.40	_	4		15	Borehole continued w	512.40 /ith rock				
		ack-medium d	lense to	-	_	7			J. J.		_			
				-		3 5 5		23			-25			
20/15				-		12 16 20		15						
Z:\PROJECTS\2013\13125 HNTB, I-80 PHASE II (NEAR TERM)\13125 BORING LOGS\13125_LOG.GPJ 4/20/15				-		5 7 10		21						
BORING LOGS/1		VEL & FRACT n-medium den	ΓURED	522.90	-10 —	7		16			30			
4R TERM)/13125				-	_	10								
D PHASE II (NEA				- - - -	 - <u>15</u> ▼	22 24		7						
13125 HNTB, I-8(-		13 15 19		7						
PROJECTS\2013\				-	-20	19 50/3"		10						

GSI Job No. ____13125___

Page $\underline{1}$ of $\underline{1}$

Date __10/30/13_

ROUTE	F.A.I RTE	. 80	DESCRIPTION		I-80 Pha	se II (Nea	ar Term)			LOC	GGED	BY	TZ
SECTION	2013-008B	8 & 2013-009	B LOCATIO	ON SW	1/4, SEC. 15	, TWP. T	35N, RNG	i. R10E	, 3 rd F	PM			
COUNTY _	Will	CORII	NG METHOD _	Rotary W	ash					R		CORE	S
STRUCT. NO	O		CORING BAF	RREL TYPE	& SIZE	NX D Swive	ouble I-10 ft			E C	R ·	Ţ	T R
Station _			Core Diame	otor	2	in		1 1		0 V	Q	I M	E N
BORING NO). BSE	3-12	Top of Roo	k Elev	512.40	ft				E	D	E	G T
Station _	714	+21	Begin Core	Elev	512.40	ft		T H		R Y	•		H
Offset	67.50t Irface Elev.	ft Right 533.40	ft						#) ((%)	(%)	(min/ft)	(tsf)
			IES DOLOMITE				512.40			97	32	, ,	
Light gray w	ith rust staining	a & horizonta	al fractures throug y vertical fracture	ghout, beco	oming highly	/ 06 2' to							
-31.0'.	a iraciureu wili	n intersecting	y vertical fracture	s & clay se	ams 110m -2	10.2 10		_					
													561.0
								_					
								-25					
								_					
								_					
								4					
								<u>-30</u>					
End Of Bori	na @ -31.0'. B	oring backfill	ed with cuttings.				502.40						
		G											
								$\overline{}$					
								-35					
								<u>-40</u>					

Color pictures of the cores

Cores will be stored for examination until

5 yrs after const.

PAGE <u>1</u> of <u>1</u> DATE 10/30/2013 LOGGED BY JK

Geo Services, Inc.	ROCK CORE LOG	DATE _	10/3	0/20	13		
Geotechnical, Environmental & Civil Engineering 805 Amherst Court, Suite 204 Naperville, Illinois 60565		OGGED	BY	JK			
(630) 355+2838		GSI JOE	3 No.	_13	125		
ROUTE	DESCRIPTION <u>I-80 Reconstruction (Near Term Phase</u>	2)					
SECTION	LOCATION SEC 15, T35N, R10E, SW 1/4, 3rd PM						
COUNTY Will	CORING METHOD <u>Rotary Wash</u>						
Station	CORING BARREL TYPE & SIZE NX Double Swivel—10 Core Diameter 2.0 in	<u>f</u> t E P T	C O R	REC	R Q	CORT	STR
BORING NO. BSB-12 Station 714+21 Offset 67.5' Right	Top of Rock Elev. <u>512.4</u> Begin Core Elev. <u>512.4</u>	- H -	E R U N	O V E R Y	D ·	ET M E (min	E N G T H
Ground Surface Elev533.4		(ft)	(#)	(%)	(%)	/ft)	1
	DOLOMITE zontal fractures throughout, becoming highly weathere il fractures & clay seams from -26.2' to -31.0'.		_ 1 	97.0	32	n/a	561 w -23.5'

Z:/PROJECTS/2013/13125 HNTB, I-80 PHASE II (NEAR TERM)/13125 BORING LOGS/13125_LOG.GPJ 4/20/15

GSI Job No. 13125

SOIL BORING LOG

Page <u>1</u> of <u>1</u>

Date __10/20/13_

ROUTE	F.A.I RTI	E. 80	_ DES	SCRI	PTION			I-80 Phase II (Near Te	erm)	LC	OGGE	D BY		Z
SECTION	2013-008	B & 2013-0	09B	_ L	OCAT	ION _	SW 1/-	4, SEC. 15, TWP. T35N	, RNG. R10E,	3 rd PM				
COUNTY	Will	DRI	LLING	MET	HOD		Hollow	Stem Auger/Rotary	_ HAMMER	TYPE	(CME A	utoma	tic
STRUCT. NO. Station			_	D E P	B L O	U C S	М О І	Surface Water Elev. Stream Bed Elev.	n/a n/a	_ ft _ ft	D E P	B L O	U C S	М О І
BORING NO. Station Offset	71 67.3	5+06 Oft Left	_ _ _	H (ft)	W S (/6")	Qu (tsf)	S T (%)	Upon Completion	518.6 n/a	ft	H (ft)	W S (/6")	Qu (tsf)	S T (%)
Ground Surf					(10)	(toi)	(/0)	After Hrs.				(10)	(toi)	(70)
4.0" CONCRE 8.0" CRUSHE			533.27	_				CLAYEY GRAVEL &		513.10	_			
SAND, CINDE			532.60		4			FRACTURED ROCK				31		
STONE-media		Fill)		_	5		21	dense			_	35		13
					6							50/0"		
				_										
					5									
					6		18			509.10				
				-5	7			Borehole continued w	ith rock		-25			
		;	528.10					coring.						
GRAVEL with														
SAND-brown- very dense	mealum ae	nse to			3									
very defice					4		14							
				_	7						_			
				_	10						_			
					50/2"		6							
				<u>-10</u>							-30			
				_							_			
					24									
				_	17		7				_			
					19									
					17		40							
				_	18 21		10				_			
				<u>V-15</u>	21						- <u>35</u>			
				_							_			
					14									
				_	26		9				_			
				_	30									
				_							_			
					50/2"									
							10							
				-20				I			-40			

GSI Job No. ____13125___

Page <u>1</u> of <u>1</u>

Date <u>10/20/13</u>

ROUTE	F.A.I RTE. 80	DESCRIPTION	I-80 Phase	e II (Near Term)		_ LOG	GED	BY	TZ
SECTION _	2013-008B & 2013-00	9B LOCATION	SW 1/4, SEC. 15,	TWP. T35N, RN 0	3. R10E, 3	rd PM			
COUNTY	Will COR	ING METHOD Ro	otary Wash	NX Double		R E	R	CORE	S T
STRUCT. NO. Station		CORING BARRE	r <u>2</u>	Swivel-10 ft _ in	D C E O	0 V	Q .	T I M	R E N
BORING NO. Station Offset	BSB-13 715+06 67.30ft Left	Top of Rock E Begin Core Ele		_ ft _ ft	P R T E H	E R Y	D	E	G T H
Ground Surf	ace Elev. 533.60	ft			(ft) (#)	(%)	(%)	(min/ft)	(tsf)
SILURIAN SY Light gray mo	STEM, NIAGARAN SER ttled gray with horizontal ctures becoming highly fr	RIES DOLOMITE to wavy bedding. Fin	ne grained with some d with clay seams fror	509.10 m -30.6'	25 1	89	50		663.0
E LOCE :	O 04 51 D :	L. I. 20		499.10					
End Of Boring	g @ -34.5'. Boring backfil	led with cuttings.			35				

Color pictures of the cores Yes

Cores will be stored for examination until 5 yrs after const.

PAGE _1 ___ of _1

DATE _10/20/2013

LOGGED BY _JK

GSI JOB No. _13125

ROUTE	DESCRIPTION <u>I-80 Reconstruction (Near Term Phase 2)</u>)		•			
SECTION	LOCATION SEC 15, T35N, R10E, SW 1/4, 3rd PM						
COUNTY Will	CORING METHOD Rotary Wash						
Offset 67.3' Left	CORING BARREL TYPE & SIZE NX Double Swivel—10 ft Core Diameter 2.0 in Top of Rock Elev. 509.1 Begin Core Elev. 509.1	P H	CORE RUN	RECOVERY		Э ы пм−т	
Ground Surface Elev533.6		(ft)	(#)	(%)	(%) 50.0		(tsf)
	tal to wavy bedding. Fine grained with some horizontal & weathered with clay seams from -30.6' to -34.5'.					.,, -	-25.6°

Z.PROJECTS/2013/13125 HNTB, 1-80 PHASE II (NEAR TERM)\13125_BORING LOGS\13125_LOG.GPJ 4/20/15

GSI Job No. 13125

SOIL BORING LOG

Page <u>1</u> of <u>1</u>

Date __10/21/13_

ROUTE	F.A.I RTE. 80	DESC	RIPTION			I-80 Phase II (Near Term)	LC	OGGE	TZ		
SECTION	2013-008B & 2013-	009B	LOCAT	ION _	SW 1/4	4, SEC. 15, TWP. T35N, RNG. R10E	, 3 rd PM				
COUNTY	Will DF	RILLING N	IETHOD		Hollow	Stem Auger/Rotary HAMMER	TYPE		CME A	utoma	tic
Station BORING NO. Station Offset	BSB-14 714+93 11.00ft Right ace Elev. 533.20	_ _ _	D B L O O T W S (/6")	U C S Qu (tsf)	M O I S T (%)	Surface Water Elev. n/a Stream Bed Elev. n/a Groundwater Elev.: 519.7 Upon Completion n/a After Hrs.	_ ft _ ft <u>▼</u> _ ft	D E P T H	B L O W S (/6")	U C S Qu (tsf)	M O I S T (%)
		532.87				SAND, GRAVEL & FRACTURE	_				
CLAY LOAM-oblack-very stiff	lark brown &	_	5 6 7	3.0 P	19	ROCK-brown & gray-very dense (continued) Drillers Observation: Apparent bedrock	512.20 510.70		50/2"		
	VEL & STONE-dark -medium dense (Fill)	530.20	4 5 6		12	Borehole continued with rock coring.					
CLAY LOAM-c		527.70	_5 0					<u>-25</u>			
black-dense (F	ill)	525.20	15 17 20		18						
SILTY CLAY-d black-very stiff	ark brown to	_	2 3 4	2.5 P	26						
SILTY LOAM-t dense	orown-medium	<u>522.70</u> —	7 11 15		18						
	EL & FRACTURE & gray-very dense	<u>520.20</u> <u>▼</u>	19 20 -15 23		10						
		_	26 50/3"		8						
			21 50/4"		12						

GSI Job No. ____13125___

Page $\underline{1}$ of $\underline{1}$

Date __10/21/13_

ROUTE	F.A.I RTE. 80	DESCRIPTION _	I-80 F	Phase II (Nea	r Term)			LO	GGED	BY	TZ
SECTION	2013-008B & 2013-00	OGR LOCATION	SW 1/4, SEC.	15 TWP T3	SSN RNG	R10I	= 3 rd	РМ			
				10, 1111111	, o. t, 141 0		<u>-, υ</u>			2000	_
COUNTY	Will COR	RING METHODR	Rotary Wash			-		R E	R	CORE	S T
STRUCT NO		CODING BARR	EL TYPE & SIZE	NX Do Swivel-				c		т	R
-					10 11	D	C	0	Q	l Na	E
		Core Diamete		in 0 ft		E P	O R	V E	D	ME	N G
BORING NO. Station	BSB-14 714+93	Top of Rock Begin Core E				T	E	R			Т
Offset						н		Υ			Н
Ground Surfa		_ _ ft				(ft)	(#)	(%)	(%)	(min/ft)	(tsf)
Light gray & fir fractures throu from -28.4' to		al bedding.Weather n -22.9' to -23.7', -25	ed with numerous	s horizontal 4' to -28.1' &	510.70		1	99	39		1452.0
End Of Boring	@ -32.5'. Boring backf	illed with cuttings.									
						\dashv					
						-					
						-35					
						\dashv					
						-					
						_					
						-40					
						\dashv					
						\dashv					
						1	- 1				

Color pictures of the cores

Cores will be stored for examination until 5 yrs after const.

PAGE <u>1</u> of <u>1</u> DATE 10/21/2013 LOGGED BY JK

Geo Services, Inc. Geotechnical, Environmental & Civil Engineering	ROCK	CORE	LOG	DATE	10/2	1/20	13		
Geotechnical, Environmental & Civil Engineering 805 Amherst Court, Suite 204 Naperville, Illinois 60565				LOGG	D BY	_JK			
(630) 355-2838				GSI J	DB No	. <u>13</u>	3125		
ROUTE	DESCRIPTION <u>I-80</u>) Reconstruc	tion (Near Term Phas	e 2)					
SECTION	LOCATION <u>SEC 15</u>	, T35N, R10E	E, SW 1/4, 3rd PM						
COUNTY Will	CORING METHOD	Rotary Wash	1						
STRUCT. NO Station BORING NO Station	. Core Diameter _	2.0 in		O ft E	O R E	RECOVERY	R ·Q ·D ·	CORE - ME	STRENGTH
Ground Surface Elev. 533.2				(fi) (#)	(%)	(%)	(min /ft)	(tsf)
SILURIAN SYSTEM, NIAGARAN SERIES RUN 1 (-22.5' to -32.5') Light gray & fine grained with horizofractures throughout. Clay seams fronce -28.1' & from -28.4' to -28.6'.	ontal bedding. Wea					99.8	39.0	n/a	1452 (

GSI Job No. 13125

SOIL BORING LOG

Page $\underline{1}$ of $\underline{2}$

Date <u>3/17/14</u>

	ROUTE		F.A	.I RTE	. 80		DES	CRI	PTION			I-80 Phase II (Near 1	Term)	L0	OGGE	ED BY	N	IW
	SECTION		2013	3-008E	3 & 20	13-0	09B	_ L	OCAT	ION _	SW 1/	4, SEC. 15, TWP. T35	N, RNG. R10E	, 3 rd PM				
	COUNTY		V	Vill		DRI	LLING	MET	HOD		Hollow	Stem Auger/Rotary	HAMMER	TYPE	(CME A	utoma	tic
	STRUCT. Station BORING N Station Offset	NO.		BSI 715	B-15 5+97		_	DEPTH	B L O W S	U C S Qu	M O I S T	Surface Water Elev. Stream Bed Elev. Groundwater Elev.: First Encounter Upon Completion	n/a _Dry to 10.0'	_ ft _ ft	D E P T H	B L O W S	U S Qu	M O I S T
	Ground	Surfa	ce Ele	ev	574	.70	_ _ ft	(ft)	(/6")	(tsf)	(%)	After Hrs.		_ ft	(ft)	(/6")	(tsf)	(%)
	6.0" ASPI STONE	HALT	, 6.0"	'CRU	SHED							CLAY to CLAY LOAI gray-stiff to hard (Fill)			_			
	CLAY to (CLAY	'LOA	M-bro	wn &		573.70		1			g. ay o to mana (i)	, (00.1			6		
	gray-stiff t	to har	d (Fill)					2	1.0	18					7	1.5	17
									3	В						6	В	
									9		0.4					8		4-
								 -5	13 4	2.5 P	21				 -25	9 13	2.5 B	15
								<u>-:</u>							25			
									10							8		
10								_	9	2.3	19				_	10	1.3	16
1/20/1							•		9	В						12	В	
3PJ 4								_										
L0G.(6							7		
3125_								_	7 7	1.0 B	22				_	8 13	2.5 P	15
JGS/1								-10	,	В					-30	13		
NG L(
BOR									7	1.0	25							
13125							•		7	Р								
ERM)∖																		
AR T									4						_	50/4"		
N N									5	1.7	21							15
HASE								- <u>15</u>	8	В					<u>-35</u>			
-80 -80 -																		
ÅNTB,									3	1.5	22				_			
3125 1									4	P P								
013/1;																		
CTS\2									5						_	8		
Z.PROJECTS\2013\13125 HNTB, I-80 PHASE II (NEAR TERM)\13125 BORING LOGS\13125_LOG.GPJ 4/20/15									7	1.9	17					13	1.5	20
Z:\P								-20	10	В					-40	19	В	

GSI Job No. 13125

SOIL BORING LOG

Page $\underline{2}$ of $\underline{2}$

Date 3/17/14

	ROUTE		F.A.I R	TE. 80	DI	ESCRI	PTION			I-80 Phase II (Near Term)		LC	GGE	D BY	N	W
	SECTION		2013-00	8B & 20	13-009B	ı	LOCAT	ION _	SW 1/	4, SEC. 15, TWP. T35N, RN 0	G. R10E,	3 rd PM				
	COUNTY		Will		DRILLIN	G ME	THOD		Hollow	Stem Auger/Rotary H	AMMER	TYPE .	(CME A	<u>utoma</u>	tic
	STRUCT. Station BORING I Station Offset	NO	E 7 23	SB-15 15+97 20ft Left		P T H	B L O W S	U C S Qu (tsf)	M O I S T	Surface Water Elev. Stream Bed Elev. Groundwater Elev.: First Encounter Upon Completion After Hrs.	to 10.0' n/a	_ ft _ ft	D E P T H (ft)	B L O W S	U C S Qu (tsf)	M O I S T
	CLAY to 0	CLAY	LOAM-b	rown &	<u> </u>			(131)	(70)	Drillers Observation: Cobbl		_ π	(10)	(10)	(131)	(70)
	gray-stiff t	o naro	u (FIII) (C	ontinuea ₎						Boulders (continued)		,				
												512.20				
										Drillers Observation: Appar bedrock	ent					
							9	4.3	21	Borehole continued with ro	ck	510.70				
						<u>-45</u>	40	Р		coring.			- <u>65</u>			
/15	ORGANIO	^ QII 7		1 black	527.7	<u> </u>										
PJ 4/20	(A-7)	JOIL	I I LOAN	I-DIACK		_	1									
LOG.G						_	10		07							
S\13125						- <u>50</u>	12 21		67				-70			
NG LOG																
5 BORII					522.7	_										
RM)\1312	SILTY LO ROCK-br															
AR TEF							37					•				
SE II (NE							50/5"		14							
80 PHAS					F40 7	<u>55</u> 							<u>-13</u>			
-INTB, I.	Drillers Of Boulders	bserva	ation: Co	bbles &	518.7	<u> </u>										
113125							1									
TS\2013							F0/4"									
Z:/PROJECTS/2013/13125 HNTB, I-80 PHASE II (NEAR TERM)/13125 BORING LOGS/13125_LOG.GPJ 4/20/15							50/1"					,	_			
Z:\F						-60							-80			

GSI Job No. ____13125___

Page <u>1</u> of <u>1</u>

Date <u>3/17/14</u>

ROUTE	F.A.I RTE. 80	DESCR	RIPTION		I-80 Pha	se II (Neai	r Term)			_ LO	GGED	BY	NW
SECTION _	2013-008B & 2013	-009B	LOCATION	SW 1/4	, SEC. 15	, TWP . T3	5N, RNG	. R10)E, 3 ^r	^d PM			
COUNTY	Will C	ORING MET	HOD Rot	ary Was	h					R E	6	CORE	S T
STRUCT NO		COR	ING BARREL	TVDE 9	CIZE	NX Do				C	R	Т	R
			ING DARKEL	. 1176 0	_	Swivel-	10 11	D	С	0	Q	1	E
		Co	re Diameter		2 512.20	in ft		E P	O R	V E	D	ME	N G
BORING NO. Station	<u>BSB-15</u> 715+97		p of Rock Elegin Core Elev		512.20	— 'l' ft		Т	E	R		_	Т
Offset	23.20ft Left		·9 • • · · • · • · • ·	·				Н		Y			Н
Ground Surf	face Elev. <u>574.70</u>							(ft)	(#)	(%)	(%)	(min/ft)	(tsf)
Light gray with -65.5' to -68.7	(STEM, NIAGARAN in horizontal bedding. in Some horizontal fraction of the state of	Highly fractu actures.	red & weathe	ered with	clay parti	ings from	510.70	-65 	1	100	64		1332.0
							-	-80					
							-	_					
							-						

Color pictures of the cores Yes

Cores will be stored for examination until <u>5 yrs after const.</u>

Geo Services Inc. ROCK CORE LOG

PAGE <u>1</u> of <u>1</u> DATE <u>3/17/2014</u> LOGGED BY JK GSI JOB No. <u>13125</u>

Geo Services, IIIC.
Geotechnical, Environmental & Civil Engineering
805 Amherst Court, Suite 204
Naperville, Illinois 60565
(630) 355+2838
, ,

ROUTE	DESCRIPTION <u>I-80 Reconstruction (Near Term Phase 2</u>)					
SECTION	LOCATION SEC 15, T35N, R10E, SW 1/4, 3rd PM						
COUNTY Will	CORING METHOD Rotary Wash		_				
STRUCT. NO Station BORING NO Station	CORING BARREL TYPE & SIZE NX Double Swivel-10 ft Core Diameter 2.0 in Top of Rock Elev. 512.2 Begin Core Elev. 510.7	D E P T H	CORE RUN #	RECOVERY (%)	R · Q · D · %	C O R E - M E (m/ft)	
SILURIAN SYSTEM, NIAGARAN SERIES RUN 1 (-64.0' to -74.0') Light gray with horizontal bedding. H-65.5' to -68.7'. Some horizontal f	lighly fractured & weathered with clay partings from			100.0	64.0	n/a	

Z.PROJECTS/2013/13125 HNTB, I-80 PHASE II (NEAR TERM)\13125_BORING LOGS\13125_LOG.GPJ 4/20/15

GSI Job No. 13125

SOIL BORING LOG

Page $\underline{1}$ of $\underline{2}$

Date 3/19/14

ROUTE	F.A.I RTE. 80	DES	3CRI	PTION			I-80 Phase II (Near Term)				LOGGED BY				
SECTION	2013-008B & 2013-	-009B	_ [OCAT	ION _	SW 1/4	4, SEC. 15, TWP. T35N	I, RNG. R10E,	3 rd PM						
COUNTY	WillD!	RILLING	MET	[HOD		Hollow	Stem Auger/Rotary	HAMMER T	YPE	(OME A	utoma	tic		
Station BORING NO. Station Offset	BSB-16 715+78 50.70ft Right		D E P T H	B L O W S	U C S Qu (tsf)	M O I S T	Surface Water Elev. Stream Bed Elev. Groundwater Elev.: First Encounter Upon Completion		ft ft <u>▼</u>	DEPTH (ft)	B L O W S (/6")	U C S Qu (tsf)	M O I S T (%)		
	ace Elev. <u>575.30</u> T, 12.0" CONCRETE		(11)	(/0)	(toi)	(70)	After Hrs. CLAY to CLAY LOAN	1-brown &	π	(11)	(10)	(ເລາ)	(70)		
CRUSHED ST	FONE-very loose	573.88		1 2 2		12	gray-stiff to hard (Fill)	(continued)			3 4 7	2.5 B	21		
CLAY to CLAY gray-stiff to har	Y LOAM-brown & rd (Fill)	571.30	-5	1 2 2	1.5 P	14					3 5 6	1.5 B	16		
		- -	- _	3 2 3	1.8 B	22					4 5 7	4.0 P	16		
				1 3 3	1.5 P	19					5 5 6	2.7 B	17		
				2 3 3	1.0 P	22									
		-	-15	3 3 6	1.5 B	20				-35	8 10 14		18		
		-		3 5 6	2.1 B	19									
				2 4 6	1.3 P	22				-40	8 14 17	3.3 B	17		

GSI Job No. 13125

SOIL BORING LOG

Page $\underline{2}$ of $\underline{2}$

Date 3/19/14

	ROUTE	F.A.I RTE. 8	<u>0</u> DE	SCRI	PTION			I-80 Phase II (Near Te	erm) L	OGGED BY	JH
	SECTION	2013-008B &	2013-009B	I	LOCAT	ION _	SW 1/	4, SEC. 15, TWP. T35N	, RNG. R10E, 3 rd PM	1	
	COUNTY	Will	DRILLIN	G ME	THOD		Hollow	Stem Auger/Rotary	_ HAMMER TYPE	CME Auton	natic
	STRUCT. NO. Station			D E P	B L O	U C S	M O I	Surface Water Elev. Stream Bed Elev.	n/aft n/aft		
	Station Offset	BSB-1 715+7 50.70ft R	8 Light	H (ft)	W S (/6")	Qu (tsf)	S T (%)	Groundwater Elev.: First Encounter Upon Completion	n/a ft		
	CLAY to CLA	ace Elev. <u>5</u> Y LOAM-brown rd (Fill) <i>(continu</i>	&		7 8	1.9 B	21	After Hrs.	π		
3125 BORING LOGS/131.	SANDY CLAY	dark brown-stiff	523.30		5 4 6	1.9 B	31				
Z:\PROJECTS\2013\13125 HNTB, I-80 P	Boulders	/ation: Cobbles /ation: Apparen	\(\int \text{ \) —— ——							

GSI Job No. ____13125___

Page <u>1</u> of <u>1</u>

Date 3/19/14

ROUTE F.A.I RTE. 80 DESCRIPTION I-80 Phase II (Near Term) LOGGED BY JH SECTION 2013-008B & 2013-009B LOCATION SW 1/4, SEC. 15, TWP. T35N, RNG. R10E, 3rd PM R CORE S COUNTY _____ Will CORING METHOD Rotary Wash Ε R Т NX Double С Т R STRUCT. NO. CORING BARREL TYPE & SIZE Swivel-10 ft D С 0 Q Ε Т Ε 0 ٧ Ν Core Diameter Р Ε Top of Rock Elev. 517.80 ft R D Ε G BORING NO. BSB-16 Т Т Ε R **Begin Core Elev.** <u>515.30</u> **ft**
 Station
 715+/8

 Offset
 50.70ft Right
 715+78 Υ Н (ft) (%) (%) (min/ft) (#) (tsf) Ground Surface Elev. 575.30 ft SILURIAN SYSTEM, NIAGARAN SERIES DOLOMITE 515.30 98 81 Light gray & porous with horizontal bedding. Some horizontal fractures. 876.0 End Of Boring @ -70.0'. Boring backfilled with cuttings.

Color pictures of the cores	Yes
Cores will be stored for examination until	5 yrs after const.
The HOLess of the section of the section of	

PAGE <u>1</u> of <u>1</u> DATE <u>3/20/2014</u> LOGGED BY MD

Geo Services, Inc.	ROCK CORE LOG	DA	TE <u> </u>	3/20	<u>/201</u>	4		
Geotechnical, Environmental & Civil Engineering 805 Amherst Court, Suite 204 Naperville, Illinois 60565		LO	GGED	BY	MD			
(630) 355+2838		GSI	JOE	No.	_13	125		
ROUTE	DESCRIPTION <u>I-80 Reconstruction (Near Term Phase</u>	2)						
SECTION	LOCATION SEC 15, T35N, R10E, SW 1/4, 3rd PM							
COUNTY Will	CORING METHOD <u>Rotary Wash</u>	— _г						_
Station	CORING BARREL TYPE & SIZE NX Double Swivel—10 Core Diameter 2.0 in	<u>f</u> t	D E P T	CORE	RECO	R Q	C O R ET	S T R E
BORING NO. BSB-16 Station 715+78 Offset 50.7' Right	Top of Rock Elev. 517.8 Begin Core Elev. 515.3	-	H	R U N	V E R	Ď	I M E	NGT
Ground Surface Elev. 575.3			(ft)		(%)	(%)	(min /ft)	
SILURIAN SYSTEM, NIAGARAN SERIES RUN 1 (-60.0' to -70.0') Light gray & porous with horizontal				1	98.0	81.0	n/a	876 ©

GSI Job No. 13125

SOIL BORING LOG

Page $\underline{1}$ of $\underline{2}$

Date 6/1/15

ROUTE	F.A.I RT	E. 80	DESC	CRIPTION			I-80 Phase II (Near 1	Term)	LOGGE	ED BY	N	W
SECTION _	2013-008	BB & 2013-00)9B	LOCAT	ION _	SW 1/	4, SEC. 15, TWP. T35I	N, RNG. R10E, 3 rd	d PM			
COUNTY	Will	DRIL	LING IV	METHOD		Hollow	Stem Auger/Rotary	HAMMER TY	PE Di	edrich	Autom	atic
BORING NO.	BS	SB-52 15+98	- - - - -	D B L P O T W H S	U C S	M O I S T	Surface Water Elev. Stream Bed Elev. Groundwater Elev.: First Encounter Upon Completion	n/a f Dry to 10.0' f	t E P T	B L O W S	U C % Qu	M O I S T
Ground Surf	ace Elev.	574.50	_ ft (1	ft) (/6")	(tsf)	(%)	After Hrs.	f	t (ft)	(/6")	(tsf)	(%)
Z:\PROJECTS\2013\13125 HNTB, I-80 PHASE II (NEAR TERM)\13125 BORING LOGS\13125_LOG.GPJ 6/11/15 Pijip pull	11.0'.						Blind drill to -41.0'. (a	continued)				

Z.PROJECTS/2013/13125 HNTB, 1-80 PHASE II (NEAR TERM)\13125 BORING LOGS\13125_LOG.GPJ 6/11/15

GSI Job No. 13125

SOIL BORING LOG

Page $\underline{2}$ of $\underline{2}$

Date 6/1/15

ROUTE F.A.I RTE	E. 80 DESCF	DESCRIPTION I-80 Phase II (Near Term)						LOGGED BY				
SECTION 2013-008E	3 & 2013-009B	LOCAT	ION _	SW 1/4	4, SEC. 15, TWP. T351	N, RNG. R10E,	3 rd PM					
COUNTY Will	DRILLING ME	THOD		Hollow	Stem Auger/Rotary	TYPE	TYPE Diedrich Automatic					
STRUCT. NO. Station BORING NO. Station 715	B-52 E P T	L O W	U C S	M O I S T	Surface Water Elev. Stream Bed Elev. Groundwater Elev.: First Encounter		_ ft	D E P T H	B L O W S	U C S Qu	M O I S T	
Station 715 Offset 4.50	ft Left 574.50 ft (ft) (/6")	(tsf)	(%)	Upon Completion	n/a	ft	(ft)	(/6")	(tsf)	(%)	
Ground Surface Elev. _Blind drill to -41.0'. <i>(continu</i>		, (10)	(LSI)	(70)	After Hrs.		_ π 514.00		(10)	(toi)	(70)	
CLAY LOAM-brown & gra	533.50	10 12 17	1.3 P	14	SILTY LOAM & FRA ROCK-gray-very den		314.00		24 50/5"		18	
CLAYEY CINDERS & STO brown & black-dense (Fill)		42		44	Drillers Observation: Bedrock End Of Boring @ -63		511.50					
		19 5 13		11	backfilled with cutting	JS.		- <u>65</u>				
CLAY LOAM-dark brown oblack-dense (Fill)		18 21 25		15								
CLAYEY GRAVEL & STC brown & gray-medium der dense (Fill)	nse to -	9 17 15		18								
		6 9 13		25								
CLAYEY SAND & GRAVE & gray-dense		24 22 5 19		17								
GRAVEL with Sand-brown dense	519.00	50/5"		9								
	516.50							_				
SILTY SAND & GRAVEL-brown-very dens	se - 	50/5"		11				-80				

GSI Job No. 13125

SOIL BORING LOG

Page $\underline{1}$ of $\underline{2}$

Date 6/2/15

ROUTE	F.A.I RT	E. 80	DESC	RIPTION			I-80 Phase II (Near T	erm)	LC	OGGE	D BY	N	IW
SECTION _	2013-008	BB & 2013-00	9B	LOCAT	ION _	SW 1/	4, SEC. 15, TWP. T351	N, RNG. R10E,	3 rd PM				
COUNTY _	Will	DRIL	LING M	IETHOD		Hollow	Stem Auger/Rotary	HAMMER T	YPE .	Di	<u>edrich</u>	Autom	atic
Station BORING NO. Station Offset	. BS 71 4.30	SB-53 6+17 off Right	- I	D B L P O T W S	U C S Qu	M O I S T	Surface Water Elev. Stream Bed Elev. Groundwater Elev.: First Encounter Upon Completion		_ ft _ ft _ ft	D E P T H	B L O W S	U C S Qu (tsf)	M O I S T
C.IPROJECTS/2013/13/125 HNTB, I-80 PHASE II (NEAR TERM)/13/125 BORING LOGS/13/125_LOG.GPJ 6/11/15 Purple purple illip p purple illip pu		573.70		ft) (/6")	(tsf)	(%)	After Hrs. Blind drill to -41.0'. (d		_ ft			(tsf)	(%)

Z.PROJECTS\2013\13125 HNTB, I-80 PHASE II (NEAR TERM)\13125 BORING LOGS\13125_LOG.GPJ 6/11/15

GSI Job No. 13125

SOIL BORING LOG

Page $\underline{2}$ of $\underline{2}$

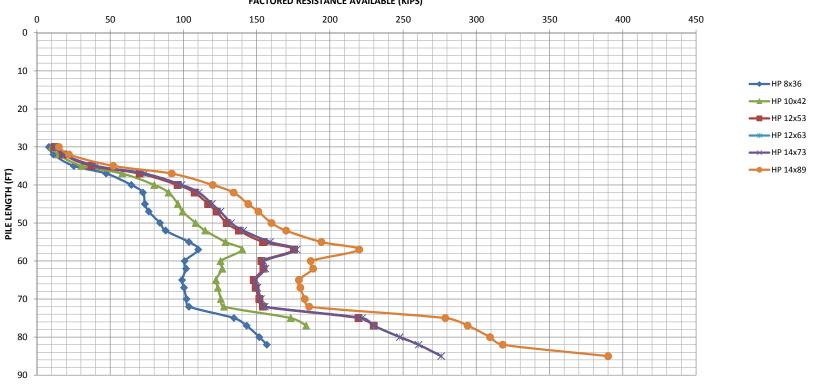
Date 6/2/15

ROUTE	F.A.I RTE. 80	DES	SCRI	PTION			I-80 Phase II (Near T	erm)	LC	LOGGED BY			NW	
SECTION	2013-008B & 2013-	-009B	_ L	OCAT	ION _	SW 1/4	4, SEC. 15, TWP. T351	N, RNG. R10E,	3 rd PM					
COUNTY	Will DI	RILLING	MET	HOD		Hollow	Stem Auger/Rotary	ГҮРЕ	YPE Diedrich Automatic					
Station BORING NO.	BSB-53		DEPTH	B L O W s	U C S	M O I S T	Surface Water Elev. Stream Bed Elev. Groundwater Elev.: First Encounter		_ ft	DEPTH	B L O W S	U C S Qu	M O I S T	
	716+17 4.30ft Right		(ft)	(/6")	(tsf)	(%)	Upon Completion	n/a	ft	(ft)	(/6")	(tsf)	(%)	
	ace Elev. 573.70 1.0'. (continued)	π	(11)	(10)	(131)	(70)	After Hrs.		_ π 513.20		(10)	(131)	(70)	
CLAY LOAM-o		532.70		10 11	4.2	18	FRACTURED ROCK dense	(-gray-very	511.70		50/5"		8	
		F20 70		16	В		Drillers Observation: Bedrock	Possible		_				
SAND, GRAVI STONE-black-	EL, CINDERS & dense (Fill)	530.70	_	28			End Of Boring @ -63 backfilled with cutting	3.0' . Boring Js.	510.70					
& GRAVEL-da gray-medium o		529.20	- <u>45</u>	13 22		12				- <u>65</u>				
				12		8								
				13 14		8								
TOPSOIL-blac	:k	525.70												
Organic Conte	ent = 6.7%		 -50	5 6 12	1.4 B	35								
SILTY CLAY L Gravel-dark bro	OAM with own & gray spotted	523.20		6										
black-medium				6 9		26								
SAND, GRAVI ROCK-brown-	EL & FRACTURED very dense	520.70	_	25										
			- <u>55</u>	22 39		10				- <u>75</u>				
				35 34 28		10								
SANDY LOAM Rock-gray-ven	1 with Fractured y dense	515.70	-60	33 27 21		13				-80				

APPENDIX E PILE LENGTH AND CAPACITY TABLES

Estimated Pile Lengths and Capacities for the West Abutments of the Proposed I-80 over Gardner St. and BNSF RR

	Boring BSB-01 and BSB-03 - West Abutment WB (Ground Surface Elevation against Pile during driving = 546.53, Pile Cutoff Elevation = 571.10													
	HP 82	x36	HP 1	0x42	HP 12	2x53	HP 1	2x63	HP 1	4x73	HP 1	4x89		
Estimated Pile Length (ft.)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)	Factored Resistance Available, FRA (Kips)	Nominal Required Bearing NRB (Kips)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)		
30	8	15	10	18	12	22	12	22	15	27	15	27		
32	11	21	15	27	18	32	18	33	21	39	22	40		
35	25	46	31	56	37	68	40	73	47	86	52	95		
37	47	86	58	106	70	128	74	134	87	158	92	167		
40	65	117	80	146	96	175	99	179	117	212	120	218		
42	72	132	90	164	108	196	111	201	131	238	134	244		
45	74	134	96	175	117	213	119	217	142	257	144	262		
47	76	139	99	181	123	223	125	228	148	270	151	275		
50	84	153	108	197	130	236	133	241	157	285	160	291		
52	88	160	115	209	138	251	141	256	167	303	170	309		
55	104	189	129	234	154	281	159	289	188	342	194	353		
57	110	200	140	255	176	319	177	322	217	395	220	400		
60	101	183	125	228	153	279	155	281	185	336	187	340		
62	102	185	127	230	155	281	156	284	186	339	189	343		
65	99	180	122	222	148	269	149	271	177	322	179	325		
67	100	183	124	225	149	271	151	274	178	323	180	327		
70	102	186	126	228	152	276	153	278	181	329	183	332		
72	104	189	128	232	154	281	156	283	184	334	186	338		
75	135	245	173	315	220	399	222	404	275	500	279	507		
77	143	260	184	335	230	419	230	419	290	527	294	535		
80	152	276					248	450	305	555	309	562		
82	157	286					261	474	318	578	318	578		
85							276	497			390	705		

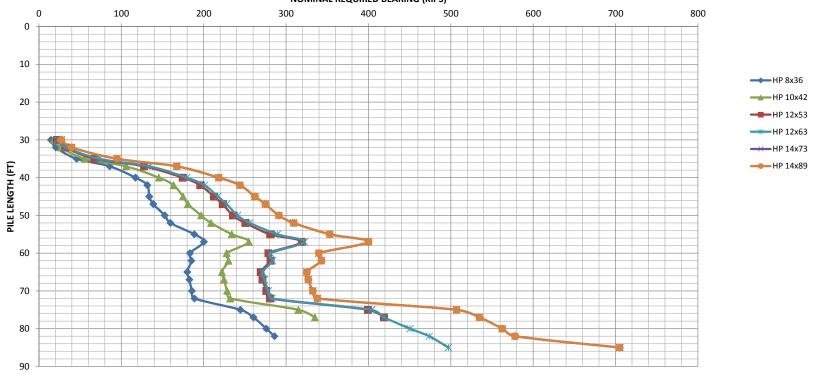

Note: All piles reach Max Available NRB based on Pile Driving Stresses through soil layers.

PILE BEARING (FRA) VS. ESTIMATED PILE LENGTH

BORING BSB-01 and BSB-03 West Abutment WB

Begin Friction at Elevation 546.53, Pile Cutoff (Pile Length = 0 feet) at 571.1

FACTORED RESISTANCE AVAILABLE (KIPS)



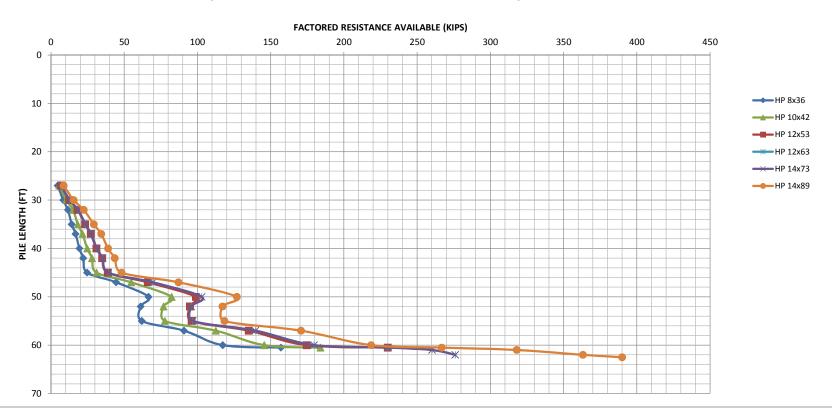
PILE BEARING (NRB) VS. ESTIMATED PILE LENGTH

BORING BSB-01 and BSB-03 West Abutment WB

Begin Friction at Elevation 546.53, Pile Cutoff (Pile Length = 0 feet) at 571.1

NOMINAL REQUIRED BEARING (KIPS)

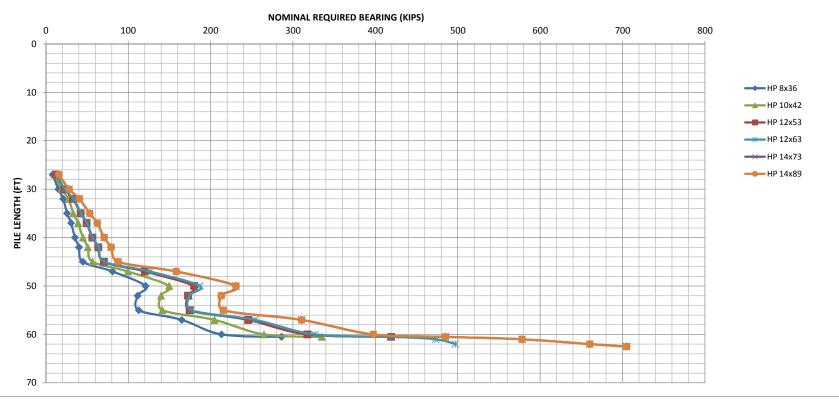
Estimated Pile Lengths and Capacities for the West Abutments of the Proposed I-80 over Gardner St. and BNSF RR


	Boring BSB-02 and BSB-04, West Abutment EB (Ground Surface Elevation against Pile during driving = 546.53, Pile Cutoff Elevation = 571.10)													
	HP 8:	x36	HP 1	0x42	HP 12	2x53	HP 1	2x63	HP 1	4x73	HP 1	4x89		
Estimated Pile Length (ft.)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)		
27	5	8	6	10	7	12	7	13	8	15	9	16		
30	8	15	10	19	12	23	13	23	15	28	15	28		
32	12	21	15	27	18	33	19	34	22	40	22	41		
35	14	26	18	33	23	42	24	43	29	52	29	53		
37	17	31	22	39	27	49	27	50	34	62	34	62		
40	19	35	25	45	31	56	31	57	38	70	39	71		
42	22	40	28	51	35	63	35	64	43	78	44	79		
45	25	45	31	57	39	71	39	71	48	87	48	88		
47	45	81	55	100	66	120	70	126	82	149	87	158		
50	67	121	82	150	99	180	103	187	122	221	127	231		
52	61	111	77	140	95	173	96	174	116	210	117	213		
55	62	113	78	141	96	175	97	176	117	213	118	215		
57	91	165	113	205	135	246	140	254	165	300	171	310		
60	117	213	146	265	175	317	180	327	213	386	219	397		
60.5	157	286	184	335	230	419	230	419	260	473	267	485		
61							260	473	318	578	318	578		
62							276	497			363	660		
63											390	705		
			-				-							

Note: All piles reach Max Available NRB based on Pile Driving Stresses through soil layers. RED denotes pile length in bedrock.

PILE BEARING (FRA) VS. ESTIMATED PILE LENGTH

BORING BSB-02 and BSB-04 West Abutment EB


Begin Friction at Elevation 546.53, Pile Cutoff (Pile Length = 0 feet) at 571.1

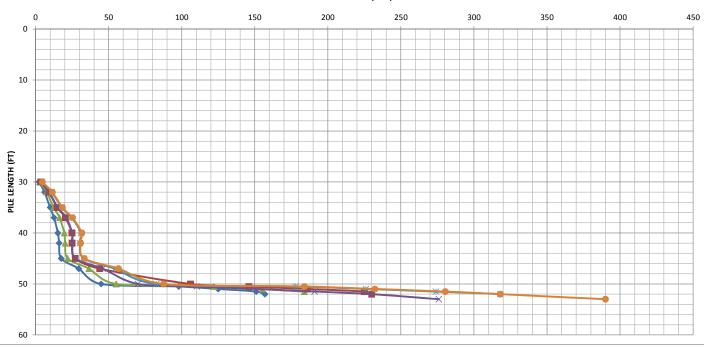
PILE BEARING (NRB) VS. ESTIMATED PILE LENGTH

BORING BSB-02 and BSB-04 West Abutment EB

Begin Friction at Elevation 546.53, Pile Cutoff (Pile Length = 0 feet) at 571.1

Estimated Pile Lengths and Capacities for the East Abutments of the Proposed I-80 over Gardner St. and BNSF RR

	Boring BSB-13 and BSB-15 East Abutment WB (Ground Surface Elevation against Pile during driving = 540.36 Pile Cutoff Elevation = 568.7)													
	НР 8	3x36	HP 1	0x42	HP 12	HP 12x53		HP 12x63		4x73	HP 14x89			
Estimated Pile Length (ft.)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)	Factored Resistance Available, FRA (Kips)	Nominal Required Bearing NRB(Kips)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)		
30	2	4	3	5	3	6	4	7	4	8	5	8		
32	6	11	8	14	9	17	9	17	11	20	11	21		
35	10	18	12	22	15	27	15	28	18	33	18	33		
37	13	23	16	30	20	37	21	38	25	45	25	46		
40	15	28	20	36	25	45	25	46	31	57	32	57		
42	16	29	20	37	25	45	25	46	30	55	31	56		
45	18	32	22	40	27	49	27	50	33	60	33	61		
47	30	54	37	66	44	80	46	83	54	98	57	103		
50	45	81	55	100	106	193	70	127	83	150	88	159		
50.5	98	178	122	221	146	265	110	201	178	324	184	335		
51	125	227	155	282	186	338	151	274	226	411	232	422		
51.5	151	275	184	335	225	410	191	347	274	498	280	510		
52	157	286			230	419	230	419	318	578	318	578		
53							276	497			390	705		
		•												


Note: All piles reach Max Available NRB based on Pile Driving Stresses through soil layers. RED denotes pile length in bedrock.

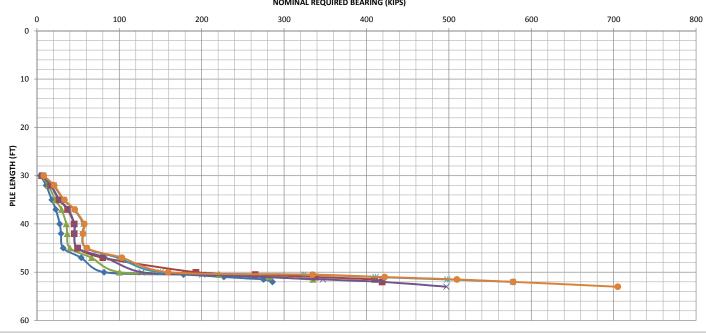
PILE BEARING (FRA) VS. ESTIMATED PILE LENGTH

BORING BSB-13 and BSB-15 East Abutment WB

Begin Friction at Elevation 540.36, Pile Cutoff (Pile Length = 0 feet) at 568.7

FACTORED RESISTANCE AVAILABLE (KIPS)

HP 10x42
HP 12x53
HP 12x63


── HP 14x73

──HP 14x89

PILE BEARING (NRB) VS. ESTIMATED PILE LENGTH **BORING BSB-13 and BSB-15 East Abutment WB**

Begin Friction at Elevation 540.36, Pile Cutoff (Pile Length = 0 feet) at 568.7

NOMINAL REQUIRED BEARING (KIPS)

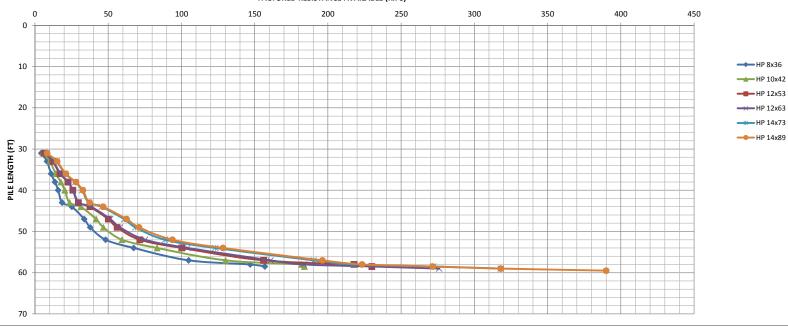
→ HP 8x36 ──HP 10x42 ──HP 12x53 → HP 12x63

── HP 14x73

──HP 14x89

Estimated Pile Lengths and Capacities for the East Abutments of the Proposed I-80 over Gardner St. and BNSF RR

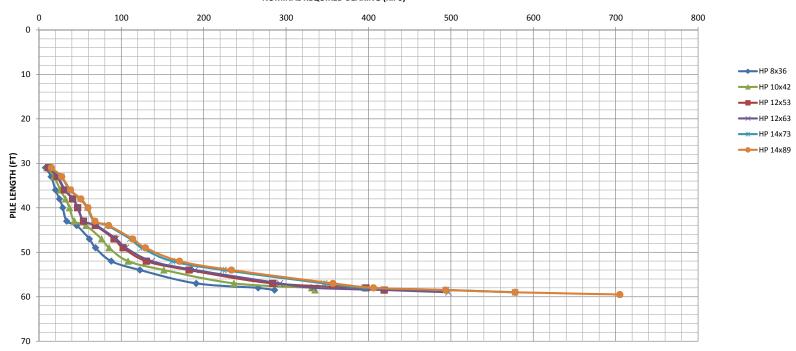
	Boring BSB-14 and BSB-16, East Abutment EB (Ground Surface Elevation against Pile during driving = 540.36 Pile Cutoff Elevation = 568.7)												
		Boring BS	B-14 and BSB-16, I	East Abutment EB	Ground Surface E	levation against P	ile during driving	= 540.36 Pile Cut	toff Elevation = 5	68.7)			
	HP 8	3x36	HP 10	0x42	HP 1:	2x53	HP 12	2x63	HP 1	4x73	HP 14x89		
Estimated Pile Length (ft.)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)	Factored Resistance Available, FRA (Kips)	Nominal Required Bearing NRB(Kips)	Factored Resistance Available, FRA (Kips)	(Kips)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)	
31	4	8	5	10	6	12	7	12	8	14	8	15	
33	8	15	10	18	12	22	12	23	15	27	15	28	
36	11	20	14	26	17	31	17	32	21	38	21	38	
38	14	25	18	32	23	41	23	41	27	50	28	51	
40	16	29	20	37	26	47	26	47	32	59	33	59	
43	19	34	24	43	30	54	30	55	37	67	37	68	
44	25	46	31	57	38	68	38	70	46	83	47	85	
47	34	61	42	76	50	91	51	94	61	111	63	114	
49	38	69	47	85	56	102	58	106	69	125	71	129	
52	48	88	59	108	72	130	75	137	89	161	94	171	
54	67	123	83	152	100	182	104	189	123	224	128	234	
57	105	191	130	237	156	284	161	292	190	346	196	357	
58	147	266	182	331	218	397	184	334	217	395	223	406	
58.5	157	286	184	335	230	419	230	419	272	494	272	494	
59							276	497	318	578	318	578	
59.5											390	705	
												-	


Note: All piles reach Max Available NRB based on Pile Driving Stresses through soil layers. RED denotes pile length in bedrock.

PILE BEARING (FRA) VS. ESTIMATED PILE LENGTH

BORING BSB-14 and BSB-16 East Abutment EB

Begin Friction at Elevation 540.36, Pile Cutoff (Pile Length = 0 feet) at 568.7


FACTORED RESISTANCE AVAILABLE (KIPS)

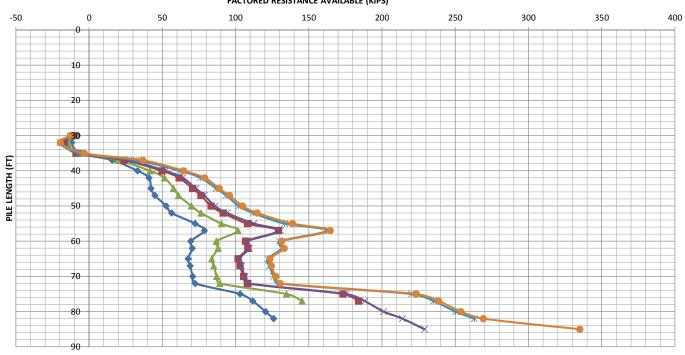
PILE BEARING (NRB) VS. ESTIMATED PILE LENGTH BORING BSB-14 and BSB-16 East Abutment EB

Begin Friction at Elevation 540.36, Pile Cutoff (Pile Length = 0 feet) at 568.7

NOMINAL REQUIRED BEARING (KIPS)

Estimated Pile Lengths and Capacities for the West Abutments of the Proposed I-80 over Gardner St. and BNSF RR

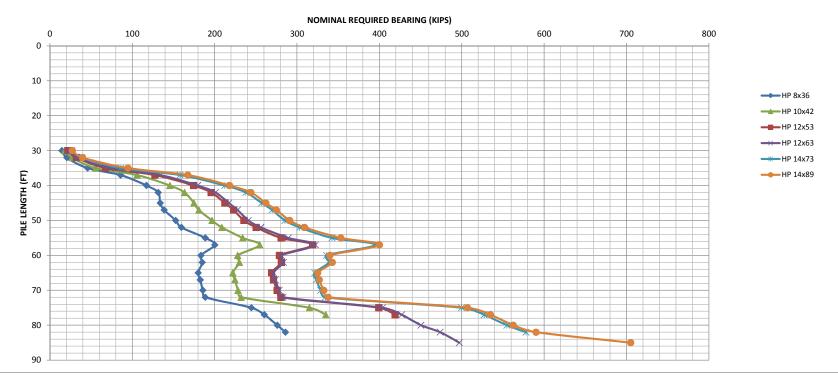
	Boring BSB-01 & BSB-03 - West Abutment WB (Ground Surface Elev. against Pile during driving = 546.53, Pile Cutoff Elevation = 571.10, Downdrag Elevation = 535.0)											
	HP 8	x36	HP 1	.0x42	HP 1:	2x53	HP 12	2x63	HP 14	x73	HP 1	4x89
Estimated Pile Length (ft.)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)	Factored Resistance Available, FRA (Kips)	Nominal Required Bearing NRB (Kips)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)
30	-8	15	-9	18	-11	22	-11	22	-13	27	-13	27
32	-12	21	-14	27	-17	32	-17	33	-20	39	-20	40
35	-6	46	-8	56	-9	68	-6	73	-7	86	-3	95
37	16	86	20	106	24	128	27	134	32	158	37	167
40	33	117	42	146	50	175	52	179	62	212	65	218
42	41	132	51	164	61	196	64	201	76	238	79	244
45	42	134	58	175	71	213	73	217	87	257	89	262
47	45	139	61	181	76	223	79	228	94	270	96	275
50	53	153	70	197	83	236	86	241	102	285	105	291
52	56	160	76	209	92	251	94	256	112	303	115	309
55	72	189	90	234	108	281	113	289	134	342	139	353
57	79	200	102	255	129	319	131	322	162	395	165	400
60	69	183	87	228	107	279	108	281	130	336	132	340
62	70	185	88	230	108	281	109	284	132	339	133	343
65	68	180	84	222	102	269	103	271	122	322	123	325
67	69	183	85	225	103	271	104	274	123	323	124	327
70	71	186	87	228	106	276	106	278	126	329	127	332
72	72	189	89	232	108	281	109	283	129	334	130	338
75	103	245	135	315	173	399	175	404	220	500	223	507
77	112	260	145	335	184	419	188	427	235	527	239	535
80	120	276					201	450	250	555	254	562
82	126	286					214	474	263	578	269	590
85							229	497			335	705
					•							


Note: All piles reach Max Available NRB based on Pile Driving Stresses through soil layers. Downdrag elevation taken at the approximated bottom elevation of the existing fill.

PILE BEARING (FRA) VS. ESTIMATED PILE LENGTH

BORING BSB-01 and BSB-03 West Abutment WB

Begin Friction at Elevation 546.53, Pile Cutoff (Pile Length = 0 feet) at 571.1, Downdrag Elevation = 535.0


→ HP 8x36 → HP 10x42

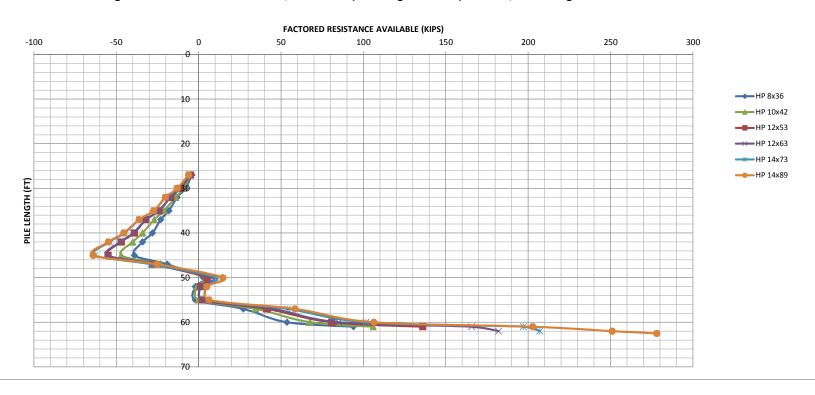
→ HP 12x53 → HP 12x63 → HP 14x73 → HP 14x89

PILE BEARING (NRB) VS. ESTIMATED PILE LENGTH

BORING BSB-01 and BSB-03 West Abutment WB

Begin Friction at Elevation 546.53, Pile Cutoff (Pile Length = 0 feet) at 571.1, Downdrag Elevation = 535.0

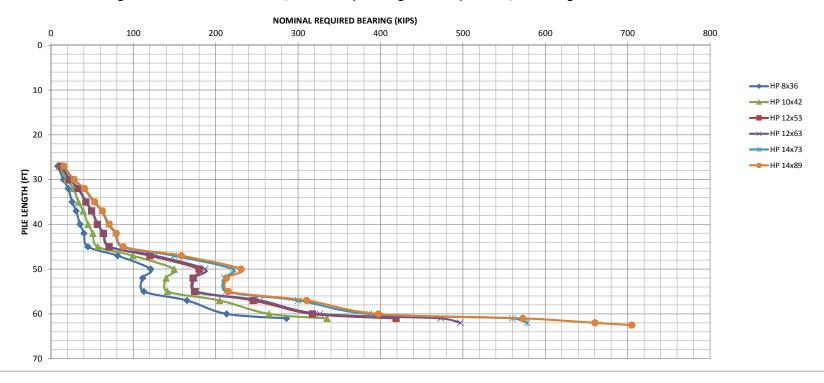
Estimated Pile Lengths and Capacities for the West Abutments of the Proposed I-80 over Gardner St. and BNSF RR


	E			ment EB (Ground S			ng = 546.53, Pile C					
	HP 8	x36	HP 1	0x42	HP 1:	2x53	HP 12	2x63	HP 14	HP 14x73		4x89
Estimated Pile Length (ft.)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)	Factored Resistance Available, FRA (Kips)	Nominal Required Bearing NRB(Kips)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)
27	-4	8	-5	10	-5	12	-5	13	-6	15	-6	16
30	-8	15	-9	19	-11	23	-11	23	-13	28	-13	28
32	-13	21	-14	27	-17	33	-17	34	-20	40	-20	41
35	-18	26	-21	33	-24	42	-24	43	-27	52	-27	53
37	-23	31	-27	39	-32	49	-32	50	-36	62	-36	62
40	-28	35	-34	45	-39	56	-40	57	-45	70	-45	71
42	-34	40	-40	51	-47	63	-48	64	-54	78	-55	79
45	-39	45	-47	57	-55	71	-55	71	-63	87	-64	88
47	-19	81	-23	100	-28	120	-25	126	-29	149	-25	158
50	3	121	4	150	5	180	8	187	11	221	15	231
52	-2	111	-1	140	1	173	1	174	5	210	5	213
55	-2	113	0	141	2	175	2	176	6	213	6	215
57	27	165	35	205	41	246	45	254	54	300	58	310
60	54	213	68	265	81	317	85	327	101	386	106	397
61	94	286	106	335	136	419	166	473	197	560	203	573
62							182	497	207	578	251	660
62.5											278	705

Note: All piles reach Max Available NRB based on Pile Driving Stresses through soil layers. RED denotes pile length in bedrock. Downdrag elevation taken at the approximated bottom elevation of the existing fill.

PILE BEARING (FRA) VS. ESTIMATED PILE LENGTH

BORING BSB-02 and BSB-04 West Abutment EB


Begin Friction at Elevation 546.53, Pile Cutoff (Pile Length = 0 feet) at 571.1, Downdrag Elevation = 525.0

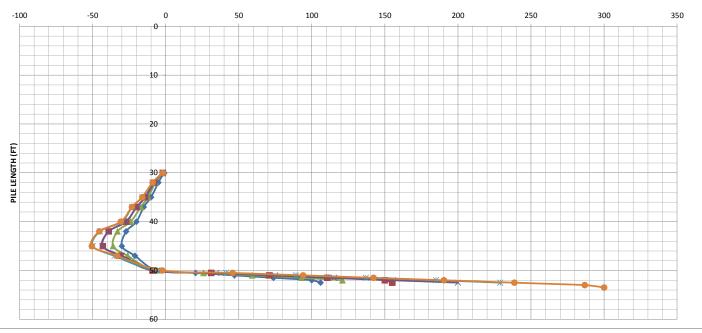
PILE BEARING (NRB) VS. ESTIMATED PILE LENGTH

BORING BSB-02 and BSB-04 West Abutment EB

Begin Friction at Elevation 546.53, Pile Cutoff (Pile Length = 0 feet) at 571.1, Downdrag Elevation = 525.0

Estimated Pile Lengths and Capacities for the East Abutments of the Proposed I-80 over Gardner St. and BNSF RR

		Boring BSB-13 &	BSB-15 East Abutmo	ent WB (Ground Sui	rface Elev. against F	Pile during drivin	g = 540.36 Pile Cut	off Elevation = 56	8.7, Downdrag El	evation = 522.0)		
	HP 8	x36	HP 1	0x42	HP 12:	HP 12x53 HP 12x63			HP 1	4x73	HP	14x89
Estimated Pile Length (ft.)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)	Factored Resistance Available, FRA (Kips)	Nominal Required Bearing NRB (Kips)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)
30	-1	4	-2	5	-2	6	-2	7	-2	8	-2	8
32	-5	11	-7	14	-8	17	-8	17	-9	20	-9	21
35	-10	18	-12	22	-14	27	-14	28	-16	33	-16	33
37	-15	23	-17	30	-20	37	-20	38	-23	45	-23	46
40	-20	28	-24	36	-27	45	-27	46	-30	57	-31	57
42	-27	29	-33	37	-39	45	-39	46	-45	55	-45	56
45	-30	32	-36	40	-43	49	-43	50	-50	60	-51	61
47	-21	54	-26	66	-31	80	-30	83	-35	98	-33	103
50	-6	81	-7	100	-9	121	-6	127	-6	150	-2	159
50.5	20	130	26	161	31	193	35	201	41	237	46	247
51	47	178	59	221	71	265	75	274	89	324	94	335
51.5	74	227	93	282	111	338	115	347	137	411	142	422
52	100	275	121	335	150	410	156	420	185	498	190	510
52.5	106	286			155	419	200	497	229	578	239	597
53											287	685
53.5											300	705

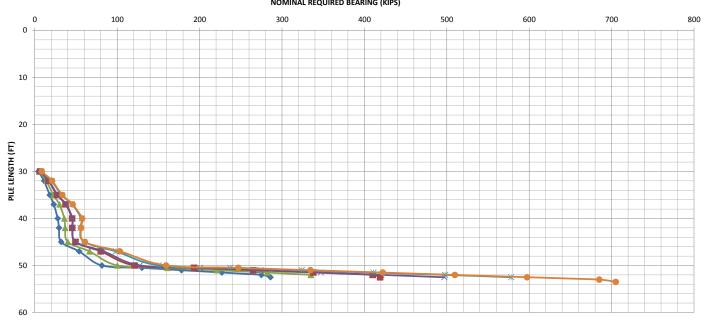

Note: All piles reach Max Available NRB based on Pile Driving Stresses through soil layers. RED denotes pile length in bedrock. Downdrag elevation taken at the approximated bottom elevation of the existing fill.

PILE BEARING (FRA) VS. ESTIMATED PILE LENGTH

BORING BSB-13 and BSB-15 East Abutment WB

Begin Friction at Elevation 540.36, Pile Cutoff (Pile Length = 0 feet) at 568.7, Downdrag Elevation = 522.0

FACTORED RESISTANCE AVAILABLE (KIPS)


→ HP 8x36 → HP 10x42 → HP 12x53 → HP 12x63

→ HP 14x73 → HP 14x89

PILE BEARING (NRB) VS. ESTIMATED PILE LENGTH BORING BSB-13 and BSB-15 East Abutment WB

Begin Friction at Elevation 540.36, Pile Cutoff (Pile Length = 0 feet) at 568.7, Downdrag Elevation = 522.0

HP 8x36

HP 10x42

HP 12x53

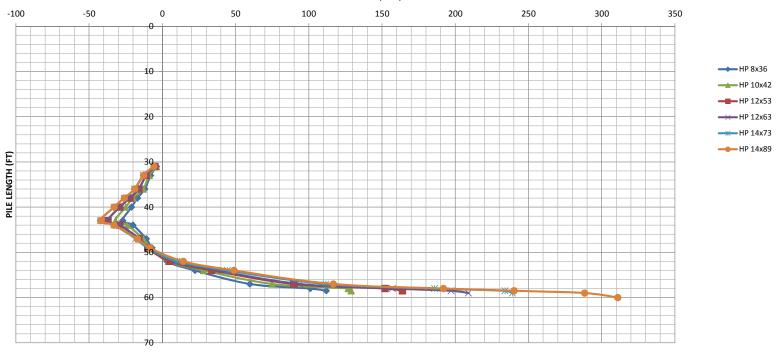
HP 12x63

—× HP 14x73

→ HP 14x89

Estimated Pile Lengths and Capacities for the East Abutments of the Proposed I-80 over Gardner St. and BNSF RR

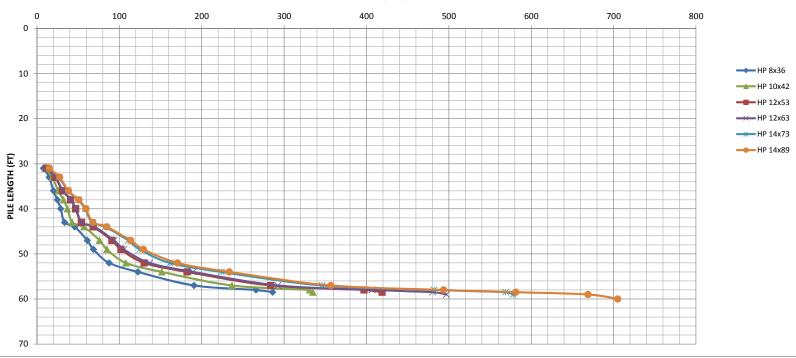
				•			F40 26 Bile 6:4					
				ent EB (Ground Sur			-					
	HP 8	x36	HP 1	0x42	HP 12:	x53	HP 12	2x63	HP 1	4x73	HP	14x89
Estimated Pile Length (ft.)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)	Factored Resistance Available, FRA (Kips)	Nominal Required Bearing NRB(Kips)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)
31	-4	8	-4	10	-5	12	-5	12	-6	14	-6	15
33	-8	15	-9	18	-11	22	-11	23	-13	27	-13	28
36	-12	20	-13	26	-16	31	-16	32	-19	38	-19	38
38	-17	25	-20	32	-22	41	-23	41	-26	50	-26	51
40	-21	29	-25	37	-29	47	-29	47	-33	59	-33	59
43	-27	34	-32	43	-37	54	-37	55	-42	67	-42	68
44	-20	46	-24	57	-29	68	-29	70	-33	83	-33	85
47	-11	61	-13	76	-16	91	-16	94	-18	111	-17	114
49	-7	69	-8	85	-10	102	-9	106	-10	125	-8	129
52	3	88	4	108	5	130	8	137	10	161	14	171
54	22	123	28	152	34	182	37	189	44	224	49	234
57	60	191	75	237	90	284	94	292	112	346	117	357
58	101	266	127	331	152	397	157	407	186	482	192	494
58.5	112	286	129	335	164	419	197	480	234	569	240	581
59							209	497	239	578	288	669
60											311	705


Note: All piles reach Max Available NRB based on Pile Driving Stresses through soil layers. RED denotes pile length in bedrock. Downdrag elevation taken at the approximated bottom elevation of the existing fill.

PILE BEARING (FRA) VS. ESTIMATED PILE LENGTH

BORING BSB-14 and BSB-16 East Abutment EB

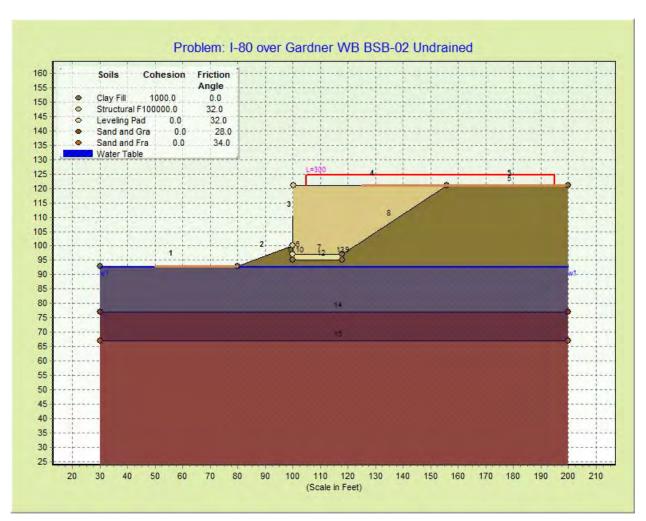
Begin Friction at Elevation 540.36, Pile Cutoff (Pile Length = 0 feet) at 568.7, Downdrag Elevation = 526.0


FACTORED RESISTANCE AVAILABLE (KIPS)

PILE BEARING (NRB) VS. ESTIMATED PILE LENGTH BORING BSB-14 and BSB-16 East Abutment EB

Begin Friction at Elevation 540.36, Pile Cutoff (Pile Length = 0 feet) at 568.7, Downdrag Elevation = 526.0

NOMINAL REQUIRED BEARING (KIPS)

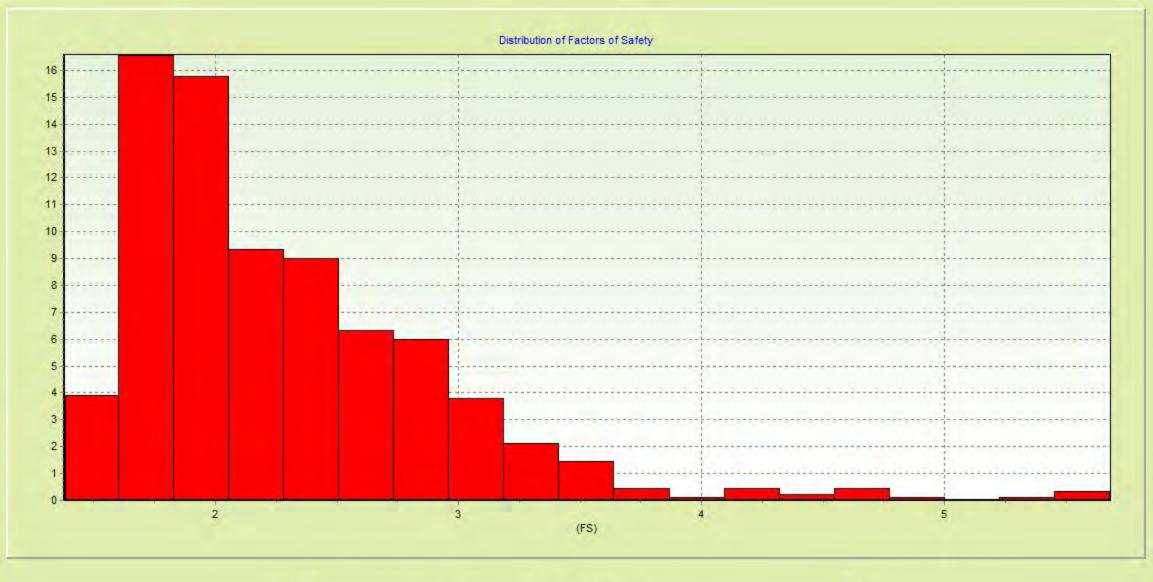


APPENDIX F SLOPE STABILITY RESULTS

STABL for Windows 3.0 - Results Name: I-80 over Gardner WB BSB-02 Undrained

======= DATA SUMMARY ===========

Profile Data

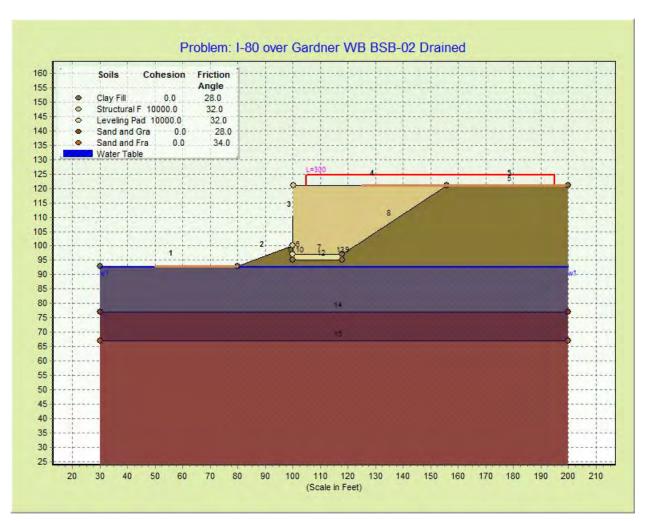

I I Ullic Data					
Segment Number	Left Extreme X	Left Extreme Y	Right Extreme X	Right Extreme Y	Soil Under Segment
1	30	93	80	93	1
2	80	93	100	100	1
3	100	100	100.1	121	2
4	100.1	121	156	121	2
5	156	121	200	121	1
6	100	100	100	97	2
7	100	97	118	97	3
8	118	97	156	121	1
9	118	97	118	95	1
10	100	97	100	95	3

STABL for Windows 3.0 - Results Name: I-80 over Gardner WB BSB-02 Undrained

Segment Number	Left Extreme X	Left Extreme Y	Right Extreme X	Right Extreme Y	Soil Under Segment
11	100	95	100	97	3
12	100	95	118	95	1
13	118	95	118	97	1
14	30	77	200	77	4
15	30	67	200	67	5

Soil Properties

Soil Number	Wet Unit Weight	Saturated Unit Weight	Cohesive Intercept	Friction Angle	Ru	Pressure Head	Water Table	Soil Name
1	120	125	1000	0	0	0	1	Clay Fill
2	120	125	100000	32	0	0	1	Structural Fill
3	120	125	0	32	0	0	1	Leveling Pad
4	120	125	0	28	0	0	1	Sand and
5	130	132	0	34	0	0	1	Sand and Frac

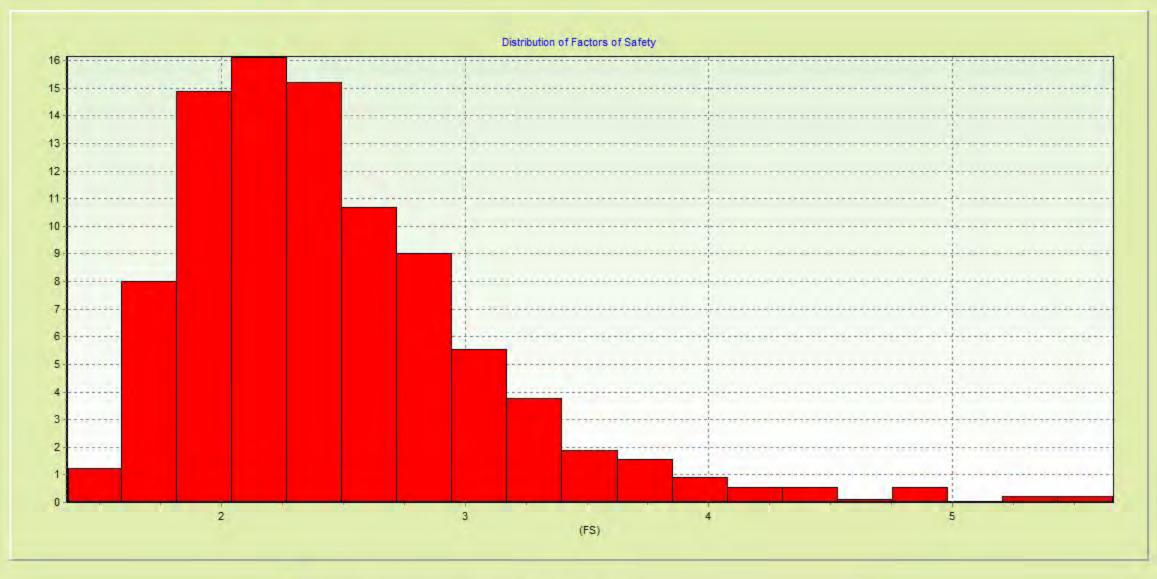


	Factor of safety distribution	
Surface	Factor of Safety	
Surface # 1	1.53	
Surface # 2	1.534	
Surface #3	1,535	
Surface # 4	1,536	
Surface # 5	1.536	
Surface # 6	1.538	
Surface # 7	1.544	
Surface # 8	1,546	
Surface # 9	1.551	
Surface # 10	1,554	
	and the same of th	

STABL for Windows 3.0 - Results Name: I-80 over Gardner WB BSB-02 Drained

======= DATA SUMMARY ===========

Profile Data

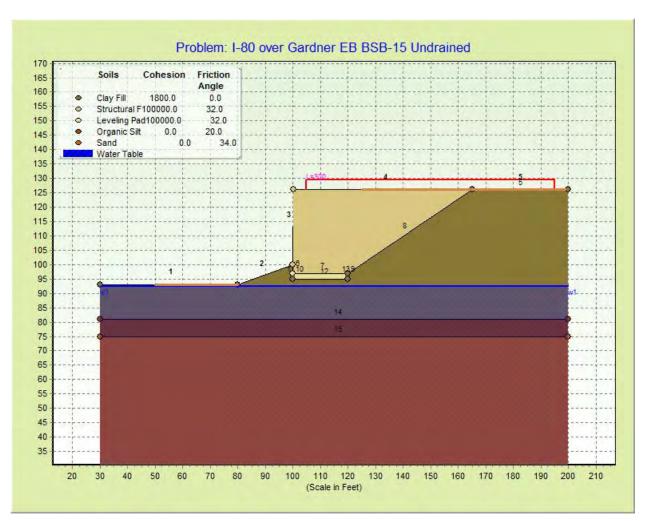

I I Ullic Data					
Segment Number	Left Extreme X	Left Extreme Y	Right Extreme X	Right Extreme Y	Soil Under Segment
1	30	93	80	93	1
2	80	93	100	100	1
3	100	100	100.1	121	2
4	100.1	121	156	121	2
5	156	121	200	121	1
6	100	100	100	97	2
7	100	97	118	97	3
8	118	97	156	121	1
9	118	97	118	95	1
10	100	97	100	95	3

STABL for Windows 3.0 - Results Name: I-80 over Gardner WB BSB-02 Drained

Segment Number	Left Extreme X	Left Extreme Y	Right Extreme X	Right Extreme Y	Soil Under Segment
11	100	95	100	97	3
12	100	95	118	95	1
13	118	95	118	97	1
14	30	77	200	77	4
15	30	67	200	67	5

Soil Properties

Soil Number	Wet Unit Weight	Saturated Unit Weight	Cohesive Intercept	Friction Angle	Ru	Pressure Head	Water Table	Soil Name
1	120	125	0	28	0	0	1	Clay Fill
2	120	125	10000	32	0	0	1	Structural Fill
3	125	130	10000	32	0	0	1	Leveling Pad
4	120	125	0	28	0	0	1	Sand and
5	130	132	0	34	0	0	1	Sand and Frac



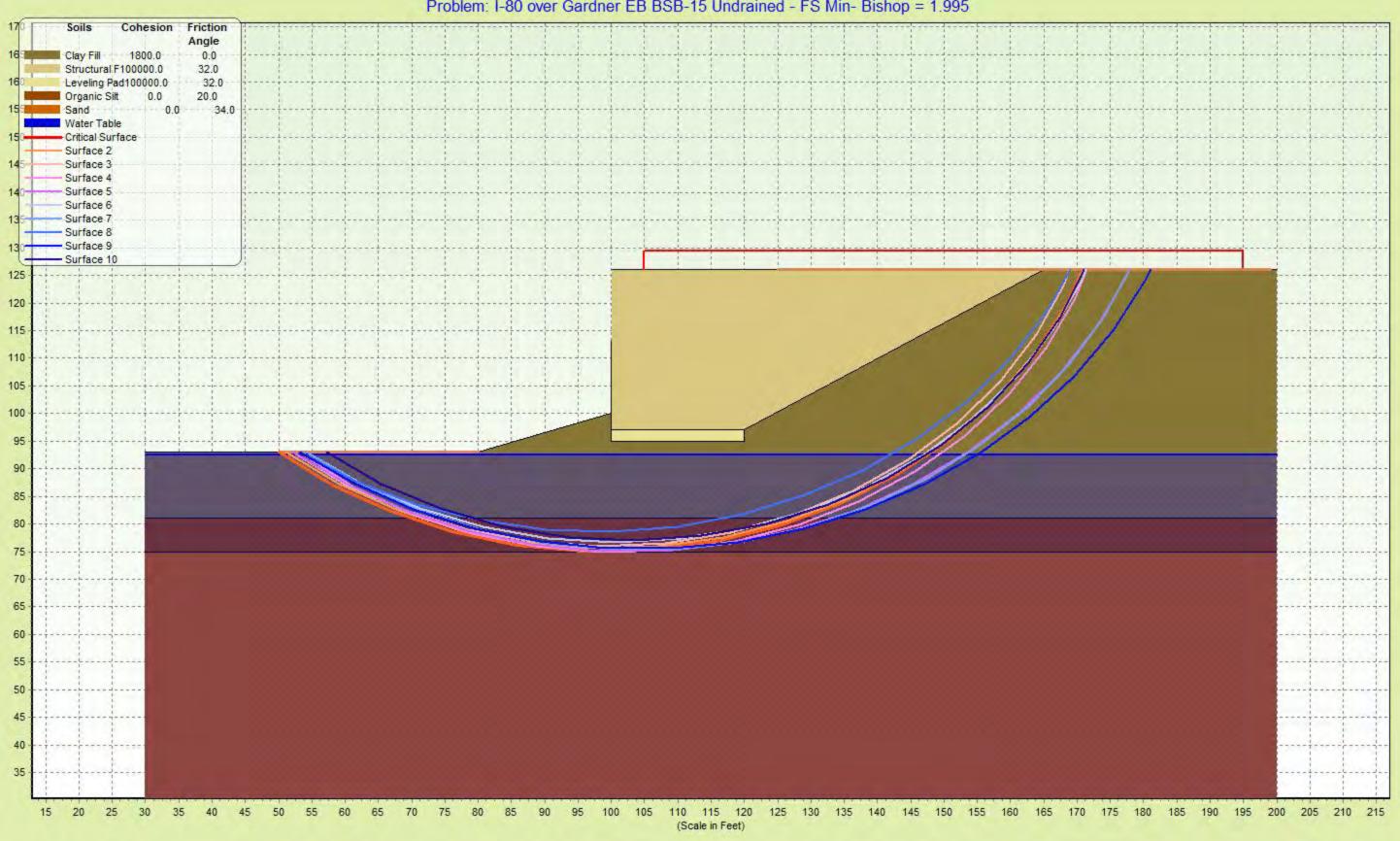
400	Factor of safety distribution	
Surface	Factor of Safety	
Surface #1	1.518	
Surface # 2	1.521	
Surface # 3	1.524	
Surface # 4	1.525	
Surface # 5	1.525	
Surface # 6	1.538	
Surface # 7	1.565	
Surface #8	1.574	
Surface # 9	1.579	
Surface # 10	1.584	

STABL for Windows 3.0 - Results Name: I-80 over Gardner EB BSB-15 Undrained

======= DATA SUMMARY ===========

Profile Data

I Tollie Data					
Segment Number	Left Extreme X	Left Extreme Y	Right Extreme X	Right Extreme Y	Soil Under Segment
1	30	93	80	93	1
2	80	93	100	100	1
3	100	100	100.1	126	2
4	100.1	126	165	126	2
5	165	126	200	126	1
6	100	100	100	97	2
7	100	97	120	97	3
8	120	97	165	126	1
9	120	97	120	95	1
10	100	97	100	95	3

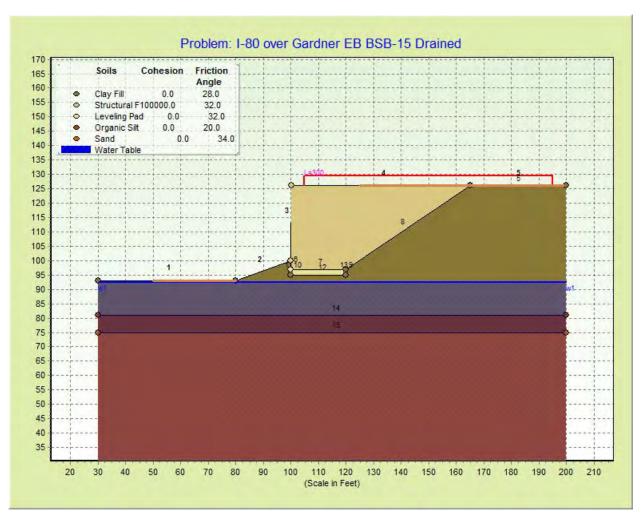

STABL for Windows 3.0 - Results Name: I-80 over Gardner EB BSB-15 Undrained

Segment Number	Left Extreme X	Left Extreme Y	Right Extreme X	Right Extreme Y	Soil Under Segment
11	100	95	100	97	3
12	100	95	120	95	1
13	120	95	120	97	1
14	30	81	200	81	4
15	30	75	200	75	5

Soil Properties

Soil Number	Wet Unit Weight	Saturated Unit Weight	Cohesive Intercept	Friction Angle	Ru	Pressure Head	Water Table	Soil Name
1	120	125	1800	0	0	0	1	Clay Fill
2	120	125	100000	32	0	0	1	Structural Fill
3	120	125	100000	32	0	0	1	Leveling Pad
4	100	110	0	20	0	0	1	Organic Silty
5	130	132	0	34	0	0	1	Sand

Problem: I-80 over Gardner EB BSB-15 Undrained - FS Min- Bishop = 1.995



	Factor of safety distribution	
Surface	Factor of Safety	
Surface #1	1.995	
Surface # 2	2.014	
Surface # 3	2.014	
Surface # 4	2.062	
Surface # 5	2.063	
Surface # 6	2.067	
Surface # 7	2.085	
Surface # 8	2.109	
Surface # 9	2.109	
Surface # 10	2.112	

STABL for Windows 3.0 - Results Name: I-80 over Gardner EB BSB-15 Drained

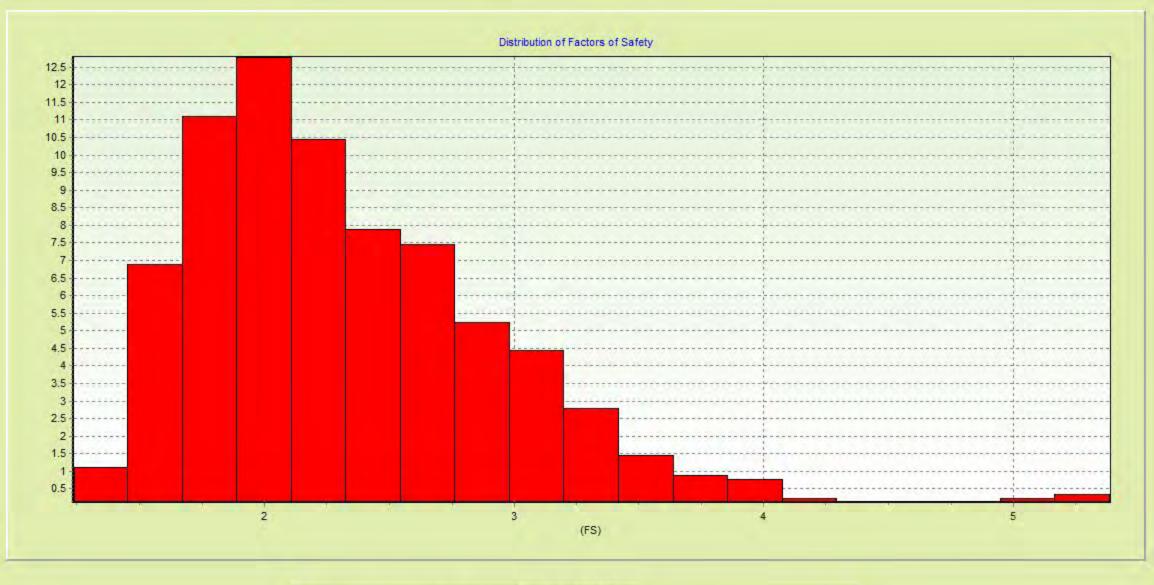
======= DATA SUMMARY ============

Profile Data

I Tollie Data					
Segment Number	Left Extreme X	Left Extreme Y	Right Extreme X	Right Extreme Y	Soil Under Segment
1	30	93	80	93	1
2	80	93	100	100	1
3	100	100	100.1	126	2
4	100.1	126	165	126	2
5	165	126	200	126	1
6	100	100	100	97	2
7	100	97	120	97	3
8	120	97	165	126	1
9	120	97	120	95	1
10	100	97	100	95	3

STABL for Windows 3.0 - Results Name: I-80 over Gardner EB BSB-15 Drained

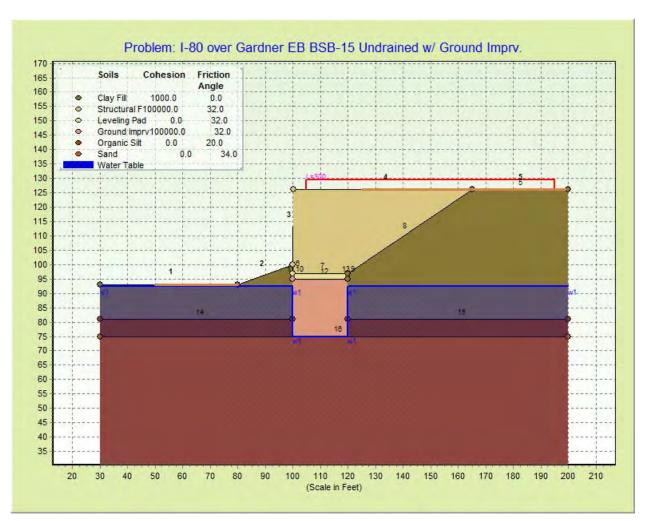
Segment Number	Left Extreme X	Left Extreme Y	Right Extreme X	Right Extreme Y	Soil Under Segment
11	100	95	100	97	3
12	100	95	120	95	1
13	120	95	120	97	1
14	30	81	200	81	4
15	30	75	200	75	5


Soil Properties

Soil Number	Wet Unit Weight	Saturated Unit Weight	Cohesive Intercept	Friction Angle	Ru	Pressure Head	Water Table	Soil Name
1	120	125	0	28	0	0	1	Clay Fill
2	120	125	100000	32	0	0	1	Structural Fill
3	120	125	0	32	0	0	1	Leveling Pad
4	100	110	0	20	0	0	1	Organic Silty
5	130	132	0	34	0	0	1	Sand

(Scale in Feet)

100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215


35

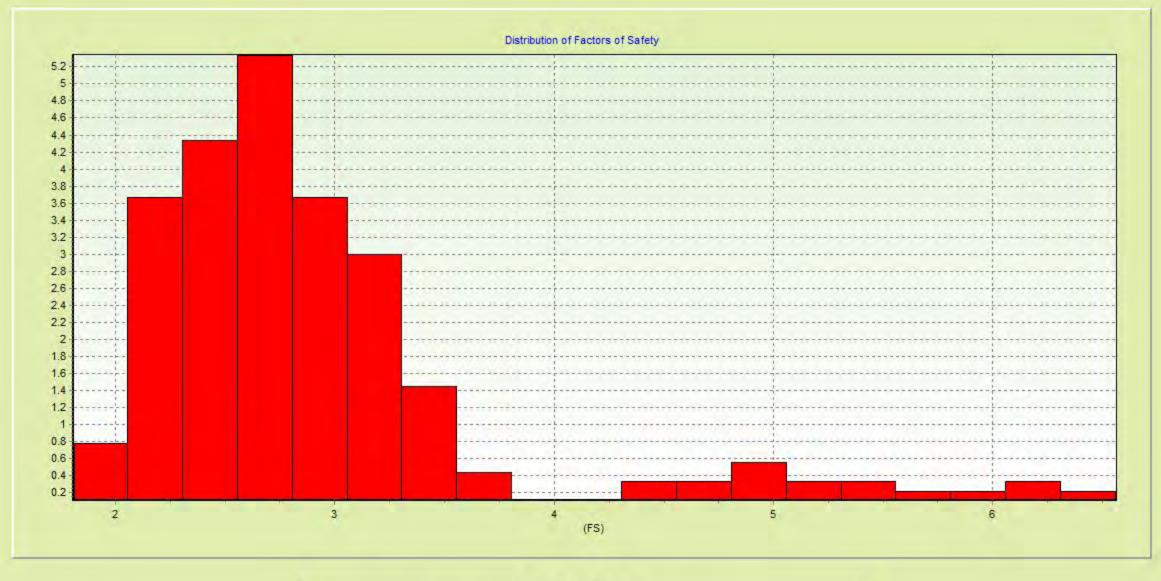
L.	Factor of safety distribution	
Surface	Factor of Safety	
Surface #1	1.371	
Surface # 2	1.375	
Surface # 3	1.383	
Surface # 4	1.398	
Surface # 5	1.414	
Surface # 6	1.416	
Surface # 7	1.43	
Surface # 8	1.441	
Surface # 9	1.449	
Surface # 10	1.45	

STABL for Windows 3.0 - Results Name: I-80 over Gardner EB BSB-15 Undrained w/

======= DATA SUMMARY ============

Profile Data

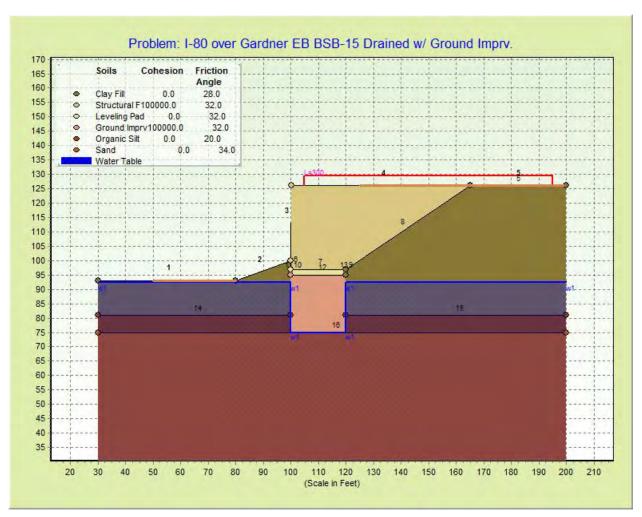
Tronic Data					
Segment Number	Left Extreme X	Left Extreme Y	Right Extreme X	Right Extreme Y	Soil Under Segment
1	30	93	80	93	1
2	80	93	100	100	1
3	100	100	100.1	126	2
4	100.1	126	165	126	2
5	165	126	200	126	1
6	100	100	100	97	2
7	100	97	120	97	3
8	120	97	165	126	1
9	120	97	120	95	1
10	100	97	100	95	3


STABL for Windows 3.0 - Results Name: I-80 over Gardner EB BSB-15 Undrained w/

Ground Imprv.

Segment Number	Left Extreme X	Left Extreme Y	Right Extreme X	Right Extreme Y	Soil Under Segment
11	100	95	100	97	3
12	100	95	120	95	6
13	120	95	120	97	1
14	30	81	100	81	4
15	120	81	200	81	4
16	30	75	200	75	5

Soil Properties


Soil Number	Wet Unit Weight	Saturated Unit Weight	Cohesive Intercept	Friction Angle	Ru	Pressure Head	Water Table	Soil Name
1	120	125	1000	0	0	0	1	Clay Fill
2	120	125	100000	32	0	0	1	Structural Fill
3	120	125	0	32	0	0	1	Leveling Pad
4	100	110	0	20	0	0	1	Organic Silty
5	130	132	0	34	0	0	1	Sand
6	125	130	100000	32	0	0	1	Ground Imprv.

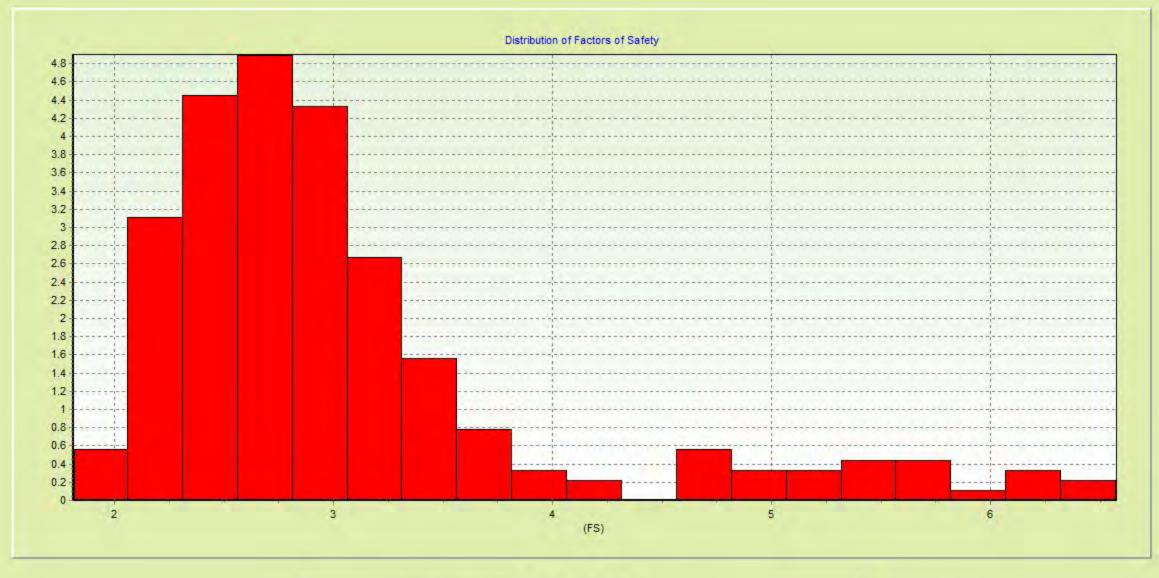
the same	Factor of safety distribution	1
Surface	Factor of Safety	
Surface # 1	2.007	
Surface # 2	2.01	
Surface #3	2.013	
Surface # 4	2.018	
Surface # 5	2.043	
Surface # 6	2.044	
Surface # 7	2.05	
Surface # 8	2.075	
Surface # 9	2.081	
Surface # 10	2.085	
1		
	The second secon	

STABL for Windows 3.0 - Results Name: I-80 over Gardner EB BSB-15 Drained w/

======= DATA SUMMARY ============

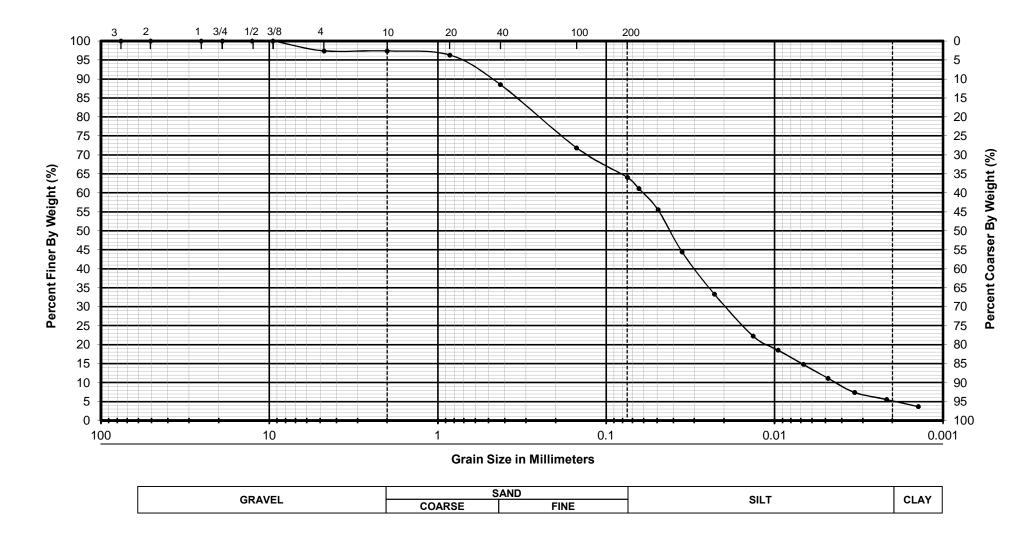
Profile Data

I Tollie Data					
Segment Number	Left Extreme X	Left Extreme Y	Right Extreme X	Right Extreme Y	Soil Under Segment
1	30	93	80	93	1
2	80	93	100	100	1
3	100	100	100.1	126	2
4	100.1	126	165	126	2
5	165	126	200	126	1
6	100	100	100	97	2
7	100	97	120	97	3
8	120	97	165	126	1
9	120	97	120	95	1
10	100	97	100	95	3

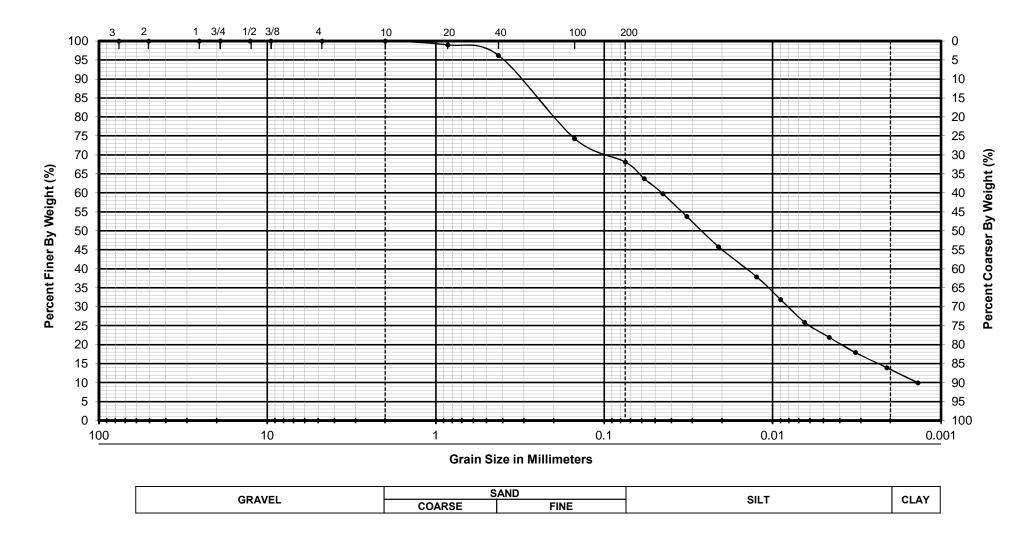

STABL for Windows 3.0 - Results Name: I-80 over Gardner EB BSB-15 Drained w/

Ground Imprv.

Segment Number	Left Extreme X	Left Extreme Y	Right Extreme X	Right Extreme Y	Soil Under Segment
11	100	95	100	97	3
12	100	95	120	95	6
13	120	95	120	97	1
14	30	81	100	81	4
15	120	81	200	81	4
16	30	75	200	75	5


Soil Properties

Soil Number	Wet Unit Weight	Saturated Unit Weight	Cohesive Intercept	Friction Angle	Ru	Pressure Head	Water Table	Soil Name
1	120	125	0	28	0	0	1	Clay Fill
2	120	125	100000	32	0	0	1	Structural Fill
3	120	125	0	32	0	0	1	Leveling Pad
4	100	110	0	20	0	0	1	Organic Silty
5	130	132	0	34	0	0	1	Sand
6	125	130	100000	32	0	0	1	Ground Imprv.



Factor of safety distribution						
Surface	Factor of Safety					
Surface #1	2.011					
Surface # 2	2.018					
Surface # 3	2.033					
Surface # 4	2.036					
Surface # 5	2.039					
Surface # 6	2.075					
Surface # 7	2.098					
Surface # 8	2.108					
Surface # 9	2.109					
Surface # 10	2.121					

APPENDIX G LAB TEST RESULTS

Boring No.	BSB-15	CLASSIFICATION		PARTICLE SIZE ANALYSIS-AASHTO T88
Sample No.	17			
Depth	48.5'-50.0'	ORGANIC SIL	TY LOAM	I-80 Phase II
Liquid Limit	62	A-7		Will County, Illinois
Plastic Limit	51	black	(
Plasticity Index	11	Group Index	9	
Test By	MT	% Gravel	2.6	Geo Services, Inc. Geotechnical, Environmental and Civil Engineering
Date	6/9/14	% Sand	33.3	Geotechnical, Environmental and Civil Engineering An MBE - DBE Firm
Reviewed By	RR	% Silt	58.5	1235 E. Davis St., Arlington Heights, IL 60005
Job No	13125	% Clay	5.6	Phone 847-253-3845 ● Fax 847-253-0482

Boring No.	BSB-16	CLASSIFIC	ATION	PARTICLE SIZE ANALYSIS-AASHTO T88
Sample No.	17			
Depth	48.5'-50.0'	SILTY LO	DAM	I-80 Phase II
Liquid Limit	37	A-6		Will County, Illinois
Plastic Limit	23	dark bro	own	
Plasticity Index	14	Group Index	8	
Test By	MT	% Gravel	0.0	Geo Services, Inc. Geotechnical, Environmental and Civil Engineering
Date	6/10/14	% Sand	31.9	Geotechnical, Environmental and Civil Engineering An MBE - DBE Firm
Reviewed By	RR	% Silt	54.2	1235 E. Davis St., Arlington Heights, IL 60005
Job No	13125	% Clay	13.9	Phone 847-253-3845 • Fax 847-253-0482

1235 E. Davis Street

Arlington Heights, Illinois 60005

Phone: (847) 253-3845 Fax: (847) 253-0482

UNCONFINED COMPRESSIVE STRENGTH of INTACT ROCK CORE SPECIMENS - ASTM D 7012

 Project Name
 I-80 Reconstruction (Near Term Phase 2)
 Date
 11/7/13

 Location
 Various
 Job No.
 13125

 County
 Will
 Tested By:
 RWC

 Sample Type
 Drilled Bedrock Core Sample
 FWC

Sample	Depth	Length	Diameter	Weight	Load	Area	Unit Weight	Compressi	ve Strength
No.	(ft)	(in)	(in)	(g)	(lbs)	(in ²)	(lbs ft ³)	(tsf)	(psi)
BSB-01A Run 1	68.1	4.079	2.049	592.2	43490	3.30	167.7	950	13189
BSB-01A Run 3	89.0	4.074	2.047	575.8	38610	3.29	163.6	845	11738
BSB-02 Run 1	66.7	4.167	2.050	601.0	20140	3.30	166.4	439	6102
BSB-03 Run 1	74.6	4.099	2.056	594.2	38840	3.32	166.3	843	11705
BSB-04 Run 1	67.7	4.091	2.054	586.9	28600	3.31	164.9	622	8635
BSB-04 Run 2	83.7	4.088	2.057	587.2	27530	3.32	164.6	596	8284
BSB-04 Run 3	85.8	3.994	2.061	564.6	17710	3.33	161.4	382	5311
BSB-05 Run 1	32.5	4.099	2.052	570.0	47700	3.31	160.1	1038	14424
BSB-06 Run 1	36.7	4.079	2.056	564.8	43260	3.32	158.8	938	13030
BSB-07 Run 1	19.8	4.121	2.050	592.2	49870	3.30	165.8	1088	15109
BSB-08 Run 1	27.8	4.129	2.070	588.5	56520	3.37	161.3	1209	16795
BSB-09 Run 1	25.4	4.077	2.047	499.7	12810	3.29	141.8	280	3892
BSB-10 Run 2	24.5	4.097	2.052	549.6	15470	3.31	154.5	337	4678
BSB-11 Run 1	25.0	4.094	2.074	539.0	20360	3.38	148.4	434	6027
BSB-12 Run 1	23.5	4.166	2.059	600.5	25930	3.33	164.8	561	7788
BSB-13 Run 1	25.6	4.099	2.066	561.2	30860	3.35	155.5	663	9205
BSB-14 Run 1	29.7	4.111	2.051	588.7	66650	3.30	165.0	1452	20173
BSB-15 Run 1	64.5	4.085	2.051	571.5	61120	3.30	161.2	1332	18500
BSB-16 Run 1	62.1	4.107	2.055	607.8	40360	3.32	169.9	876	12168

1235 E. DAVIS STREET ARLINGTON HEIGHTS, IL 60005 (847) 253-3845 FAXES (847) 253-0482

Organic Matter in Soils by Wet Combustion AASHTO T 194

Project Name I-80 Phase II							Date	6/11/15
	Location Will County, Illinois				- Job No			13125
Sample Location	BSB-53							
Sample No								
Depth	42.5'-50.0'							
Total Organic Matter %								
Comments:	-							