



Millennia Professional Services, Ltd

11 Executive Drive, Suite 12, Fairview Heights, Illinois, 62208 • 618-624-8610

## Structure Geotechnical Report

US 51 over ICRR  
Route FAP 322 (US 51)  
Section 3VB-2  
Jackson County, Illinois  
Proposed SN 039-0084

**Prepared For:**  
TWM, Inc.  
4904 Old Collinsville Road  
Swansea, Illinois 62226

**Prepared By:**  
Millennia Professional Services, Ltd.  
11 Executive Drive, Suite 12  
Fairview Heights, Illinois 62208  
618-624-8610

Authored By:  
Joseph L. Olson, P.E.  
[jolson@millennia.pro](mailto:jolson@millennia.pro)  
Millennia Project No. MG 23035.12/MG24067.02  
Original: February 16, 2024  
Revised: March 21, 2025  
Revised: May 2, 2025

## Table of Contents

|                                                                  |    |
|------------------------------------------------------------------|----|
| 1.0 PROJECT DESCRIPTION AND PROPOSED STRUCTURE INFORMATION ..... | 3  |
| 1.1 Introduction .....                                           | 3  |
| 1.2 Project Description .....                                    | 3  |
| 1.3 Proposed Structure Information .....                         | 3  |
| 2.0 SUBSURFACE EXPLORATION AND LABORATORY TESTING .....          | 5  |
| 2.1 Subsurface Exploration (by others) .....                     | 5  |
| 2.2 Laboratory Testing (by others) .....                         | 5  |
| 2.3 Data .....                                                   | 5  |
| 3.0 SUBSURFACE CONDITIONS .....                                  | 6  |
| 3.1 Generalized Subsurface Profile .....                         | 6  |
| 3.2 Groundwater .....                                            | 7  |
| 4.0 GEOTECHNICAL EVALUATIONS .....                               | 8  |
| 4.1 Earthwork and Slope Stability .....                          | 8  |
| 4.2 Settlement .....                                             | 9  |
| 4.3 Seismicity .....                                             | 9  |
| 4.4 Mining Activity .....                                        | 10 |
| 5.0 FOUNDATION EVALUATIONS AND DESIGN RECOMMENDATIONS .....      | 11 |
| 5.1 Driven Piles .....                                           | 11 |
| 5.2 Drilled Shafts .....                                         | 13 |
| 5.3 Lateral Load Capacity Considerations .....                   | 14 |
| 6.0 CONSTRUCTION CONSIDERATIONS .....                            | 17 |
| 6.1 Temporary Sheet Piling and Soil Retention .....              | 17 |
| 6.2 Driven Pile Installation .....                               | 17 |
| 6.3 Drilled Shaft Construction .....                             | 17 |
| 6.4 Subgrade, Fill, and Backfill .....                           | 17 |
| 7.0 CLOSING .....                                                | 18 |

Appendix A - Vicinity Map, Figure 1  
    Type, Size, and Location Plan w/ Boring Locations, Figure 2  
    Subsurface Profile, Figure 3

Appendix B - Boring Logs and Core Photos

Appendix C - Slope Stability Profiles

Appendix D - Liquefaction Analysis Spreadsheets

Appendix E - Mine Activity Map

Appendix F - Estimated Pile Length Spreadsheets

**Structure Geotechnical Report**  
**US 51 over ICRR**  
**Route FAP 322, Section 3VB-2**  
**Proposed SN 039-0084**  
**Jackson County, Illinois**

## **1.0 Project Description and Proposed Structure Information**

### **1.1 Introduction**

This report summarizes the results of a geotechnical investigation performed for the design of the replacement structure for the existing bridge carrying US 51 over the Illinois Central Railroad (ICRR), approximately three miles north of DeSoto, Illinois. The purpose of this study was to provide a geotechnical assessment for the proposed new structure based on subsurface conditions encountered at the borings performed by the Illinois Department of Transportation (IDOT) in 2021 and by Terracon in 2025. This report describes the exploration procedures used, presents the field and laboratory data, includes an assessment of the subsurface conditions in the area, and provides geotechnical recommendations for design and construction.

### **1.2 Project Description**

The project consists of the removal and replacement of the existing US 51 bridge over ICRR in Jackson County, Illinois. The general site area is shown on the attached Vicinity Map, Figure 1 in Appendix A. The approximate locations of the borings performed for this study are presented on the Type, Size and Location (TSL) Plan, Figure 2 in Appendix A. The TSL was prepared by TWM, Inc.

The ICRR line is oriented roughly north and south beneath the existing US 51 overpass structure. The original bridge was built in 1926 and reconstructed in 1983. The existing bridge, SN 039-0052, is a three-span structure measuring approximately 151 feet long and 38 feet wide. The abutments and interior piers are supported by steel H-piles. It is our understanding that the existing structure will be replaced by a three-span bridge using integral abutments. Based on the information provided, it appears that staged construction will be required to maintain traffic during construction.

### **1.3 Proposed Structure Information**

The proposed structure, SN 039-0084, will be a three-span bridge supported by steel H-piles at the abutments and drilled shafts at the interior piers. The bridge length will be approximately 177 feet from abutment to abutment, with a deck width of approximately 43 feet. The superstructure will be supported by integral abutments. The preliminary TSL indicates the roadway profile across the bridge will increase by approximately 14 inches. No information is currently available for the embankments, so it is assumed that grade changes will not exceed 14 inches. The TSL indicates the existing 2H:1V endslopes will be extended up to the new abutments.

Factored loads for the bridge provided by TWM are presented in the following table.

**Table 1.1**  
**Factored Axial Loads by Foundation Location (kips)**

| Load Limit State | West Abutment | Pier 1 | Pier 2 | East Abutment |
|------------------|---------------|--------|--------|---------------|
| Strength I       | 1,076         | 2,088  | 2,088  | 1,076         |

## **2.0 Subsurface Exploration and Laboratory Testing**

### **2.1 Subsurface Exploration (by others)**

From May 3 to May 7, 2021, IDOT District 9 personnel conducted a subsurface exploration at the site, consisting of three structure borings designated as 1-S, 2-S, and 3-S. On January 9, 2025, Terracon drilled two additional borings designated as B-4S and B-5S. The approximate locations of the borings are indicated on the TSL, Figure 2 in Appendix A.

The borings were advanced using hollow-stem auger, solid-stem auger, and rock core drilling methods. Samples were obtained at 2.5-foot intervals until bedrock was encountered in Borings 1-S, 2-S, and 3-S. Split-spoon samples were recovered using a 2-inch outside-diameter, split-barrel sampler, driven by a 140-pound automatic hammer. Unconfined compression tests were performed on selected split-spoon samples using a Rimac field testing machine. Borings B-4S and B-5S were drilled with no sampling to bedrock, followed by rock coring. The soil sampling sequence for each boring and resulting unconfined compressive strengths are reported on the boring logs in Appendix B.

The underlying bedrock was cored for a depth of about 10 to 20 feet at all boring locations. The core samples recovered were measured in the field for percent recovery and RQD value. Rock coring equipment and methods are recorded on the boring logs, along with material descriptions. Photographs were taken of the rock core samples and are included in Appendix B with the core logs.

### **2.2 Laboratory Testing (by others)**

A laboratory testing program consisting of natural moisture contents and unconfined compressive strength of rock core specimens was conducted by IDOT and Terracon to determine selected engineering properties of the obtained samples. The results of the individual tests are presented on the boring logs in Appendix B.

### **2.3 Data**

The results of the field tests and measurements were recorded on field logs and appropriate data sheets in the field. These data sheets and logs contain information concerning the drilling methods, samples attempted and recovered, indications of the presence of various subsurface materials, and the observation of groundwater. The field logs and data sheets also contain the engineer's interpretations of the conditions between samples, based on the performance of the equipment and cuttings brought to the surface by the drilling tools.

The boring logs are an interpretation of the subsurface conditions based on a combination of the field and laboratory data. The analyses and conclusions contained in this report are based on these field and laboratory test results and on the interpretations of the subsurface conditions as reported in the Boring Logs. Only data pertinent to the objectives of this report have been included on these Logs; therefore, these records should not be used for other purposes.

### 3.0 Subsurface Conditions

Details of the subsurface conditions encountered at the borings are shown on the boring logs. The general subsurface conditions encountered and their pertinent engineering characteristics are described in the following paragraphs. Conditions represented by the borings should be considered applicable only at the boring locations on the dates shown; the reported conditions may be different at other locations and at other times.

#### 3.1 Generalized Subsurface Profile

The soils at the site are predominantly made up of cohesive soils overlying bedrock. The upper approximately 25 feet is most likely embankment material from the original road construction. The possible fill was visually classified as silty clay. Below this is approximately 15 feet of natural cohesive soil, generally consisting of silty clay. The standard penetration test N-values range from 3 to 25 blows per foot (bpf), unconfined compressive strength values obtained from Rimac testing range from 0.2 to 3.1 tons per square foot (tsf). Moisture contents range from 15 to 37 percent.

Bedrock consisting of sandstone was encountered at all but one of the boring locations, at elevations ranging from 402.1 to 399.3. Shale was encountered at Boring B-5S at an elevation of 387.9. All of the borings were advanced into bedrock, for total rock core lengths varying from 10.0 to 20.0 feet. The bedrock was cored at each boring to the elevations presented in the table below.

**Table 3.1**  
**Approximate Bedrock Elevations**

| Boring No. | Approximate Top of Bedrock Elevation (ft.) |
|------------|--------------------------------------------|
| 1-S        | 401.0                                      |
| 2-S        | 402.1                                      |
| 3-S        | 400.5                                      |
| B-4S       | 399.3                                      |
| B-5S       | 387.9                                      |

The rock cores recovered at the site consist of sandstone, clay shale, shale, and limestone. The sandstone and shale were observed to be moderately hard and weathered. The clay shale was of low hardness, highly weathered, and contained some coal. The limestone was hard. Core recoveries varied from 0 to 100 percent, and Rock Quality Designation (RQD) values varied from 0 to 95 percent. A majority of the lower recovery and RQD values resulted from a malfunction with the coring equipment at Boring 2-S. Uniaxial compressive strength testing performed on select samples of the rock cores yielded compressive strength values that range from 72 to 12,986 psi. Summaries of the rock core compressive strength testing and rock core photographs are presented in Appendix B.

### **3.2 Groundwater**

Groundwater was observed during drilling at boring 3-S, at a depth of 43.5 feet (Elevation 398.0). Groundwater was not encountered at the other borings prior to introducing drilling fluids as part of the rock coring process. The presence or absence of groundwater at a particular location does not necessarily indicate that groundwater will be present or absent at that location at other times. Groundwater levels may vary significantly over time due to the effect of seasonal variations in precipitation, or other factors not evident at the time of exploration.

## 4.0 Geotechnical Evaluations

### 4.1 Earthwork and Slope Stability

Millennia performed slope stability assessments to verify the new integral abutments would be adequately supported by the proposed end slopes. End slopes are currently planned for 2H:1V inclinations, extending up from approximate railroad grade to the new abutments. The new integral abutments will be set approximately 13 feet outside of the existing abutments.

The parameters used for the stability assessments were based on the results of the field and laboratory investigations, along with Millennia's experience in the area, and are shown on the Slope Stability Profiles provided in Appendix C.

The global stability assessments were conducted for short term (undrained, or total stress), long term (drained, or effective stress), and seismic conditions using SLOPE/W, a computer program from GeoStudio. The results are summarized in the following table:

**Table 4.1**  
**Summary of Global Stability Results**

| Analysis Location       | Minimum Computed Factor of Safety |           |         |
|-------------------------|-----------------------------------|-----------|---------|
|                         | Short Term                        | Long Term | Seismic |
| East Abutment End Slope | 2.1                               | 1.5       | 1.0     |
| West Abutment End Slope | 2.4                               | 1.5       | 1.1     |

The minimum desired safety factor with regard to the potential for massive, global slope failure is 1.5 for static conditions. For the seismic condition, a factor of safety 1.0 or greater is desired. On this basis, the results of the stability assessments at the sections summarized above are considered acceptable for the short term, long term, and seismic conditions.

Some of the silty soils can be potentially erosive, a mechanism of soil movement unrelated to global stability. Future erosion and shallow, superficial slumps are always a possibility, despite the results of advanced computer modeling for slope stability. Maintaining healthy vegetation, along with appropriate erosion control practices, will reduce the potential for these issues to become problematic.

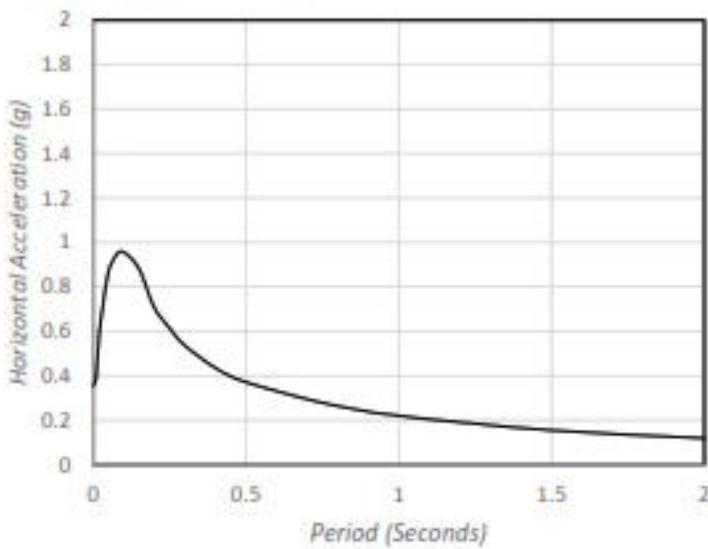
In addition, the geotechnical conditions between the boring locations are essentially unknown. If the contractor exposes conditions during excavation and other earthwork activities that differ from those indicated at the boring locations, Millennia should be notified to assess the effect (if any) of the unanticipated conditions upon the findings of the global slope stability assessment.

## 4.2 Settlement

The proposed grade changes will be minimal for the new bridge profile. Therefore, issues related to settlement are not anticipated and have not been evaluated.

## 4.3 Seismicity

Although several significant areas of seismic activity are present in the central United States, the site area is most directly affected by the New Madrid and Wabash Seismic Zones, located in south and east-central Illinois. Seismic design parameters for this site have been determined using the IDOT 2024 Seismic Manual – DRAFT Sections 1, 2, 3, 4 and 8. The seismic data required for TSL plans is presented below.


### **Seismic Data**

*2023 AASHTO Seismic Hazard*

*Site Class: C*

*Latitude: 37.8525° N, Longitude: -89.2317° W*

*Performance Level: Operational*



$$\text{Vertical Acceleration} = \frac{2}{3} * \text{Horizontal Acceleration}$$

$$SD1 = 0.221g$$

$$SDC = B$$

Based on published information and the IDOT Liquefaction Design Guide, liquefaction analyses are typically performed for the upper 60 feet of a soil profile, since the effects of liquefaction are unlikely to manifest below that depth. The results of the analysis yielded values that appear to provide a factor of safety that is resistant to liquefaction. The potential for liquefaction may be ignored for this project. Appendix D includes the Liquefaction Analysis spreadsheets for each boring.

#### 4.4 Mining Activity

A review of underground coal mines and industrial mineral mines was made using the Illinois State Geological Survey (ISGS) ILMINES website for mapped mines in Illinois. Based on this information, portions of the existing structure have been undermined, and the proposed abutments will be located above an inactive underground coal mine. The mine boundary is shown on the figure included in Appendix E. It should be noted that the location of features, including mine boundaries, may be offset by 500 feet or more. In addition, the plotted mine boundaries are not always based on a final mine map, and undocumented mines are occasionally discovered.

The mine was known as the Ward Mine (ISGS Index No. 267), operated by Chicago Fuel Company from 1902 to 1925. The mining operations removed coal from the Herrin Coal Seam. The coal was approximately 85 feet below ground surface and averaged 6 to 7 feet in thickness.

Subsidence is the surface manifestation of the collapse or failure of the structural support at the mine level. Subsidence may manifest itself as vertical movements ranging from a few inches to two or three feet and as lateral or rotational ground movements that can result in significant architectural or even structural damage. Railroad, agricultural, residential and some commercial developments are common in the area of the project site. Many builders and owners in the area are unaware of, or ignore, the risks associated with subsidence and build without modifications to the design of their structures. Most owners manage the risk for damage through mine subsidence insurance policies.

The risk of subsidence is difficult to quantify without extensive studies. A study of the mine workings would require drilling several borings into the mine and viewing the mine openings with a borehole camera. Soil and rock samples could be taken at each borehole and the engineering properties of the materials could be measured. Geophysical techniques, such as seismic reflection or refraction techniques, could also be used to help define the mine limits. A study of this type is costly and is rarely performed.

## 5.0 Foundation Evaluations and Design Recommendations

### 5.1 Driven Piles

The bridge structures may be supported on driven pile foundations. Pile capacities and driving depths have been assessed using the IDOT pile design spreadsheet "Pile Capacity and Length Estimates." Steel H-piles and metal shell piles are both considered to be feasible for this site. However, metal shell piles are not recommended because of the proximity of rock where a possibility of pile damage during driving may occur. Hard driving is anticipated to penetrate a sufficient distance into sandstone to achieve the maximum factored capacity, particularly for the heavier sections. Numerous available pile sections may be suitable, and final selection would be based on availability and structural requirements such as pile spacing, installation requirements, etc.

The abutments have been assessed for selected pile sections. Copies of a typical input spreadsheet giving the input parameters for each substructure, and the corresponding summary sheets for the various pile types that are analyzed by the spreadsheet, are included in Appendix F. These tables provide the pile embedment length to develop various capacities, up to that approaching the factored design capacity of the pile. The tables were prepared for pile lengths corresponding to selected depths of the input stratigraphy. Data for key assumptions such as pile cutoff elevation and ground surface elevation against pile driving were provided to Millennia by TWM.

Integral abutments are being considered for the new bridge structures. The pile selections were determined using the IDOT Integral Abutment Feasibility Analysis spreadsheet.

The piles exhibited in the tables in Appendix F are the pile sections that are readily available in accordance with the IDOT Geotechnical Manual. The tables on the following pages summarize the information provided in Appendix F. Steel H-piles should be driven into rock to their maximum required bearing, as indicated on the IDOT pile design length spreadsheets. It should be noted that H-Piles driven into sandstone may run shorter (or longer) than the IDOT pile design length spreadsheets estimate. The piles should be fitted with reinforced tips to reduce the potential for damage during driving.

**Table 5.1**  
**Estimated Pile Lengths – East Abutment (Boring 2-S)**

| Pile Type and Size | Nominal Required Bearing (kips) | Factored Resistance Available (kips) | Estimated Pile Length (ft) | Pile Cutoff Elevation (ft) |
|--------------------|---------------------------------|--------------------------------------|----------------------------|----------------------------|
| HP 8x36            | 271                             | 149                                  | 38                         | 438.09                     |
| HP 10x42           | 335                             | 184                                  | 38                         | 438.09                     |
| HP 10x57           | 454                             | 250                                  | 40                         | 438.09                     |
| HP 12x53           | 418                             | 230                                  | 39                         | 438.09                     |
| HP 12x63           | 497                             | 273                                  | 39                         | 438.09                     |
| HP 12x74           | 589                             | 324                                  | 40                         | 438.09                     |
| HP 12x84           | 664                             | 365                                  | 41                         | 438.09                     |
| HP 14x73           | 578                             | 318                                  | 39                         | 438.09                     |
| HP 14x89           | 705                             | 388                                  | 40                         | 438.09                     |
| HP 14x102          | 810                             | 445                                  | 41                         | 438.09                     |
| HP 14x117          | 929                             | 511                                  | 42                         | 438.09                     |

**Table 5.2**  
**Estimated Pile Lengths – West Abutment (Boring 3-S)**

| Pile Type and Size | Nominal Required Bearing (kips) | Factored Resistance Available (kips) | Estimated Pile Length (ft) | Pile Cutoff Elevation (ft) |
|--------------------|---------------------------------|--------------------------------------|----------------------------|----------------------------|
| HP 8x36            | 286                             | 157                                  | 40                         | 437.98                     |
| HP 10x42           | 335                             | 184                                  | 40                         | 437.98                     |
| HP 10x57           | 454                             | 250                                  | 41                         | 437.98                     |
| HP 12x53           | 418                             | 230                                  | 40                         | 437.98                     |
| HP 12x63           | 497                             | 273                                  | 40                         | 437.98                     |
| HP 12x74           | 589                             | 324                                  | 41                         | 437.98                     |
| HP 12x84           | 664                             | 365                                  | 42                         | 437.98                     |
| HP 14x73           | 578                             | 318                                  | 40                         | 437.98                     |
| HP 14x89           | 705                             | 388                                  | 41                         | 437.98                     |
| HP 14x102          | 810                             | 445                                  | 42                         | 437.98                     |
| HP 14x117          | 929                             | 511                                  | 43                         | 437.98                     |

## 5.2 Drilled Shafts

Millenia understands that drilled shafts are being considered as the foundation element for the interior bridge piers. Limited data was available from the rock cores collected during the 2021 subsurface exploration. Therefore, additional rock cores were obtained (by others) near the proposed locations for Pier 1 and Pier 2, in order to evaluate the existence of voids, seams, or other discontinuities within and below the planned bearing elevation of the drilled shaft foundations. Samples of the bedrock were also tested for uniaxial compressive strength.

Drilled shafts may be designed for side resistance within the bedrock socket in conjunction with tip resistance, if needed. The recommended side and tip resistance values for the bedrock socket are presented in the following tables.

**Table 5.3**  
**Factored Side Resistance in Bedrock – Pier 1**

| Material            | Elevation Range (ft.) | Nominal Side Resistance (ksf) | Geotechnical Resistance Factor ( $\phi$ ) | Factored Side Resistance (ksf) |
|---------------------|-----------------------|-------------------------------|-------------------------------------------|--------------------------------|
| Sandstone           | 400-390               | 6.5                           | 0.55                                      | 3.6                            |
| Clay Shale and Coal | 390 and below         | 2.9                           | 0.45                                      | 1.3                            |

**Table 5.4**  
**Factored Tip Resistance in Bedrock – Pier 1**

| Material            | Elevation Range (ft.) | Nominal Tip Resistance (ksf) | Geotechnical Resistance Factor ( $\phi$ ) | Factored Tip Resistance (ksf) |
|---------------------|-----------------------|------------------------------|-------------------------------------------|-------------------------------|
| Clay Shale and Coal | 390 and below         | 46.8                         | 0.40                                      | 20.0                          |

**Table 5.5**  
**Factored Side Resistance in Bedrock – Pier 2**

| Material  | Elevation Range (ft.) | Nominal Side Resistance (ksf) | Geotechnical Resistance Factor ( $\phi$ ) | Factored Side Resistance (ksf) |
|-----------|-----------------------|-------------------------------|-------------------------------------------|--------------------------------|
| Shale     | 388-378               | 2.9                           | 0.45                                      | 1.3                            |
| Limestone | 378-368               | 16.5                          | 0.50                                      | 8.3                            |

**Table 5.6**  
**Factored Tip Resistance in Bedrock – Pier 2**

| Material  | Elevation Range (ft.) | Nominal Tip Resistance (ksf) | Geotechnical Resistance Factor ( $\phi$ ) | Factored Tip Resistance (ksf) |
|-----------|-----------------------|------------------------------|-------------------------------------------|-------------------------------|
| Shale     | 388-378               | 46.8                         | 0.40                                      | 20.0                          |
| Limestone | 378-368               | 137.5                        | 0.50                                      | 68.7                          |

It should be assumed that the upper 2 feet of the socket will not contribute to side resistance in consideration of uncertainties caused by the potential for weathering of the upper bedrock surface. Uplift resistance of the shaft should only rely on the bedrock socket side friction. An uplift resistance factor of 0.40 is recommended based on AASHTO LRFD Bridge Design Specifications (2020).

Assuming that the drilled shafts are properly installed as discussed herein, total shaft settlement should be less than approximately 1 inch, with differential settlements up to approximately half the total.

Because of the variability in weathering, rock type and hardness, shafts should be designed to penetrate the bedrock at least two shaft diameters, regardless of applied load. Shafts should be constructed no closer than three shaft diameters, center to center, so that stress overlap at the bearing level and possible installation problems associated with caving can be avoided.

### 5.3 Lateral Load Capacity Considerations

Lateral load resistance and induced lateral deflection are typically assessed using finite difference computer models based on the lateral modulus-of-subgrade reaction, such as LPILE. Recommended design values for driven pile foundations are presented in tables on the following pages.

**Table 5.7**  
**Parameters for Use in LPILE Analysis – East Abutment**

| Elevation (ft) | LPILE Soil Type           | Effective Unit Weight (pcf) | Undrained Cohesion (psf) | Unaxial Compressive Strength (psi) | Strain at 50% Maximum Stress | Angle of Internal Friction (degrees) | p-y Soil Modulus $K_{\text{static}}$ (pci) |
|----------------|---------------------------|-----------------------------|--------------------------|------------------------------------|------------------------------|--------------------------------------|--------------------------------------------|
| 439-435        | Stiff Clay w/o Free Water | 120                         | 1,000                    | N/A                                | 0.009                        | N/A                                  | 350                                        |
| 435-430        | Stiff Clay w/o Free Water | 120                         | 1,500                    | N/A                                | 0.007                        | N/A                                  | 500                                        |
| 430-425        | Soft Clay (Matlock)       | 120                         | 500                      | N/A                                | 0.020                        | N/A                                  | 30                                         |
| 425-400        | Stiff Clay w/o Free Water | 120                         | 1,000                    | N/A                                | 0.009                        | N/A                                  | 350                                        |

pcf = pounds per cubic foot    psf = pounds per square foot    psi = pounds per square inch    pci = pounds per cubic inch

\*= submerged value

**Table 5.8**  
**Parameters for Use in LPILE Analysis – West Abutment**

| Elevation (ft) | LPILE Soil Type           | Effective Unit Weight (pcf) | Undrained Cohesion (psf) | Unaxial Compressive Strength (psi) | Strain at 50% Maximum Stress | Angle of Internal Friction (degrees) | p-y Soil Modulus K <sub>static</sub> (pci) |
|----------------|---------------------------|-----------------------------|--------------------------|------------------------------------|------------------------------|--------------------------------------|--------------------------------------------|
| 439-435        | Stiff Clay w/o Free Water | 120                         | 3,000                    | N/A                                | 0.005                        | N/A                                  | 1,000                                      |
| 435-432        | Stiff Clay w/o Free Water | 120                         | 1,250                    | N/A                                | 0.008                        | N/A                                  | 425                                        |
| 432-430        | Stiff Clay w/o Free Water | 120                         | 2,500                    | N/A                                | 0.006                        | N/A                                  | 850                                        |
| 430-420        | Stiff Clay w/o Free Water | 120                         | 1,250                    | N/A                                | 0.008                        | N/A                                  | 425                                        |
| 420-417        | Soft Clay (Matlock)       | 120                         | 500                      | N/A                                | 0.020                        | N/A                                  | 30                                         |
| 417-400        | Stiff Clay w/o Free Water | 120                         | 1,250                    | N/A                                | 0.008                        | N/A                                  | 425                                        |

pcf = pounds per cubic foot   psf = pounds per square foot   psi = pounds per square inch   pci = pounds per cubic inch  
\*= submerged value

**Table 5.9**  
**Parameters for Use in LPILE Analysis – Pier 1**

| Elevation (ft) | LPILE Soil Type           | Effective Unit Weight (pcf) | Undrained Cohesion (psf) | Unaxial Compressive Strength (psi) | Strain at 50% Maximum Stress | Angle of Internal Friction (degrees) | p-y Soil Modulus K <sub>static</sub> (pci) |
|----------------|---------------------------|-----------------------------|--------------------------|------------------------------------|------------------------------|--------------------------------------|--------------------------------------------|
| 410-400        | Stiff Clay w/o Free Water | 120                         | 1,750                    | N/A                                | 0.004                        | N/A                                  | 575                                        |
| 400-390        | Strong Rock (Limestone)   | 145                         | N/A                      | 1,300                              | N/A                          | N/A                                  | N/A                                        |
| 390-380        | Stiff Clay w/o Free Water | 125                         | 5,200                    | N/A                                | 0.004                        | N/A                                  | 1,500                                      |

pcf = pounds per cubic foot   psf = pounds per square foot   psi = pounds per square inch   pci = pounds per cubic inch  
\*= submerged value

**Table 5.10**  
**Parameters for Use in LPILE Analysis – Pier 2**

| Elevation (ft) | LPILE Soil Type           | Effective Unit Weight (pcf) | Undrained Cohesion (psf) | Unaxial Compressive Strength (psi) | Strain at 50% Maximum Stress | Angle of Internal Friction (degrees) | p-y Soil Modulus K <sub>static</sub> (pci) |
|----------------|---------------------------|-----------------------------|--------------------------|------------------------------------|------------------------------|--------------------------------------|--------------------------------------------|
| 410-388        | Stiff Clay w/o Free Water | 120                         | 1,000                    | N/A                                | 0.009                        | N/A                                  | 350                                        |
| 388-378        | Stiff Clay w/o Free Water | 125                         | 5,200                    | N/A                                | 0.004                        | N/A                                  | 1,500                                      |
| Below 378      | Strong Rock (Limestone)   | 145                         | N/A                      | 10,000                             | N/A                          | N/A                                  | N/A                                        |

pcf = pounds per cubic foot                    psf = p  
pounds per cubic inch \*= submerged value

psf = pounds per square foot

psi = pounds per square inch

pci =

Piles and drilled shafts should be maintained at a spacing no closer than three pile diameters, center-to-center, so that stress overlap at the bearing level can be avoided, to reduce lateral capacity interaction, and so that possible installation problems associated with one structural member do not impact the integrity of the adjacent member.

## **6.0 Construction Considerations**

### **6.1 Temporary Sheeting and Soil Retention**

The construction activities should be performed in accordance with the current IDOT Standard Specifications for Road and Bridge Construction. Trenching, excavating, and bracing should be performed in accordance with Occupational Safety and Health Administration (OSHA) regulations, and other applicable regulatory agencies. In accordance with the OSHA excavation standards, the soil at the site is considered to be Type B, which requires a side slope for excavations no steeper than 1.0H:1.0V. However, worker safety and classification of the excavation soil is the responsibility of the contractor. The excavation side slopes for structure foundations may interfere with existing utilities. This will require a temporary soil retention system such as a cantilever sheet pile wall, sheeting, or other temporary support.

Traffic along US 51 will be maintained by utilizing staged construction. It appears as though either a temporary sheet pile, which includes cantilever temporary sheet piling, or a soil retention system, will be feasible at the abutments. Cantilever sheet pile systems may be designed using IDOT Design Guide 3.13.1 – Temporary Sheet Piling Design. If sheet pile designs are selected, designers should note bedrock elevations. Temporary soil retention systems should be designed by an Illinois licensed structural engineer retained by the construction contractor.

### **6.2 Driven Pile Installation**

The driven piles are to be furnished and installed according to the requirements of Section 512 of the IDOT Specifications. Millennia recommends that at least one test pile be driven at each substructure location, in accordance with Section 512.15. The piles should be fitted with reinforced tips to reduce the potential for damage during driving. Piles set in rock are to be installed in accordance with 512.17 of the IDOT Specifications.

### **6.3 Drilled Shaft Construction**

Drilled shaft construction should be performed in accordance with Section 516 of the IDOT Specifications. It is recommended that drilled shaft construction be performed by an experienced, knowledgeable contractor familiar with the conditions in the project area. Groundwater seepage and caving of the drilled shaft excavations could be problematic without appropriate planning. The contractor should be prepared to handle water seepage and sloughing of the walls. The use of permanent casing construction methods may be required at the pier locations.

Shafts should be cast the same day drilled to reduce the potential for bearing surface deterioration and caving. For stable, relatively dry holes, the base of each shaft excavation should be pumped as necessary to prevent the accumulation of water. For relatively dry holes, the concrete may be placed by central drop free-fall using a funnel. The concrete should be vibrated near the surface to obtain a consolidated placement. Concrete should be placed by tremie methods when more than two inches of water is present in the excavation.

### **6.4 Subgrade, Fill, and Backfill**

Earthwork activities including backfill and fill should be performed in accordance with Section 205 of the IDOT Specifications.

## 7.0 Closing

This report has been prepared for the exclusive use of Oates Associates, Inc., and the Illinois Department of Transportation for use in the design and construction of the proposed new structure carrying US 51 over the Illinois Central Railroad (ICRR) in Jackson County, Illinois. This report has been prepared in accordance with generally accepted soil and foundation engineering practices. No other warranty, expressed or implied, is made to the professional advice and recommendations included herein. This report is not for use by parties other than those named or for purposes other than those stated herein. It may not contain sufficient information for the use of other parties or for other purposes.

If there is a substantial lapse of time between the submission of this report and the start of work at the site, or if conditions have changed due to natural causes or construction operations at or adjacent to the site, this report should be reviewed by Millennia to determine the applicability of the analyses and recommendations considering the changed conditions and time lapse. The report should also be reviewed by Millennia if changes occur in structure locations, sizes, and types, or in the planned loads, elevations, grading plans, and project concepts.

These analyses and recommendations are based on data obtained from the borings performed for this study and other pertinent information presented herein. This report does not reflect any variations between, beyond, or below the borings. Should such variations become evident, it may be necessary to re-evaluate the recommendations of this report after performing on-site observation during the construction period and noting the characteristics of any such variation.

We appreciate this opportunity to be of service to you and would be pleased to discuss any aspect of this report with you at your convenience.

Sincerely,

**Millennia Professional Services**



Joseph L. Olson, P.E.  
Senior Geotechnical Engineer



Date signed: 5/2/2025  
License expires: 11/30/2025



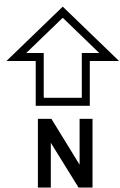
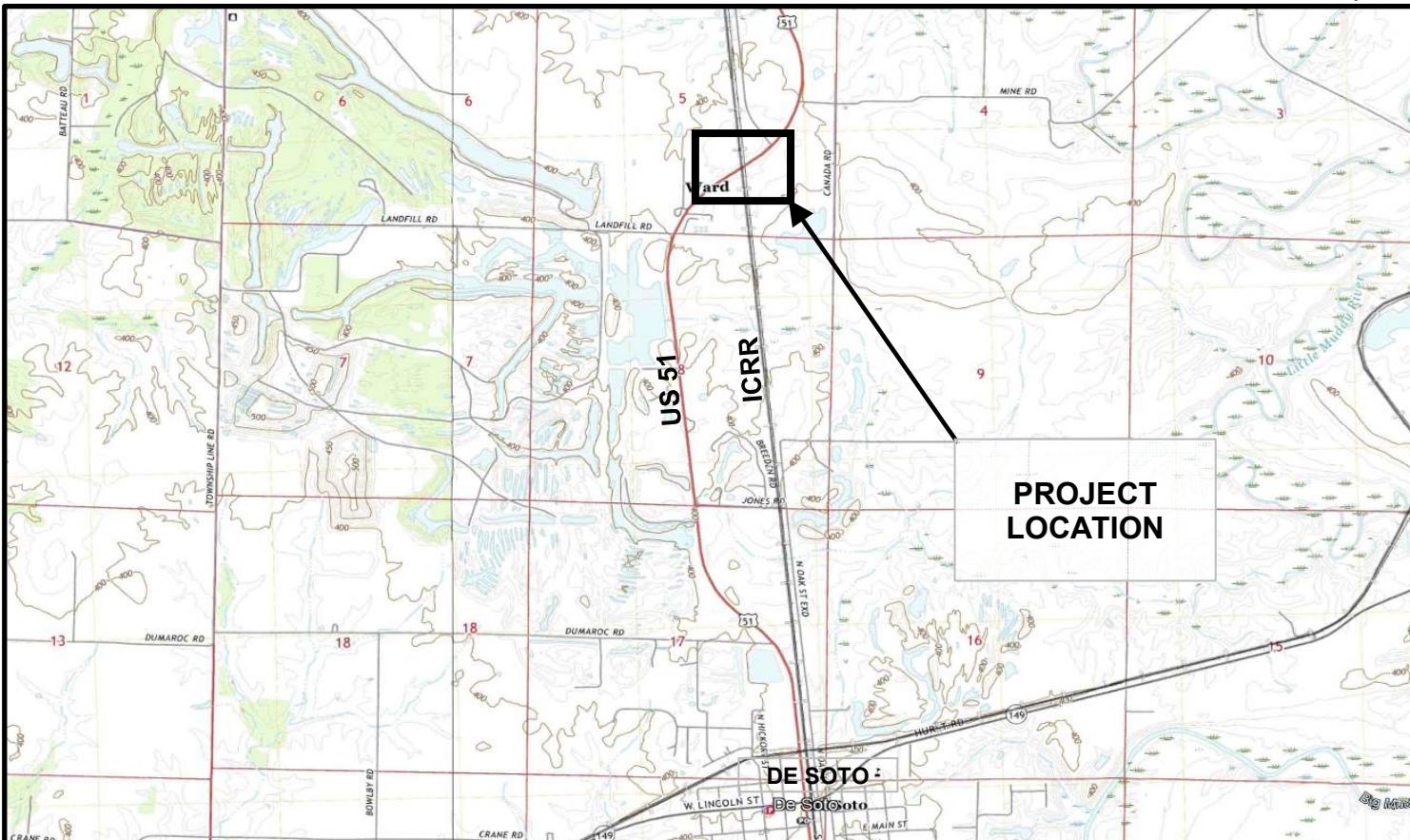
Millennia Professional Services

11 Executive Drive, Suite 12, Fairview Heights, Illinois, 62208 • 618-624-8610

## Appendix A

**Vicinity Map, Figure 1**  
**Type, Size and Location Plan w/ Boring Locations, Figure 2**  
**Subsurface Profile, Figure 3**





## **Millennia Professional Services**

11 Executive Drive #12, Fairview Heights, IL

Phone: (618) 624-8610

Fax: (618) 624-8611

Project No.: MG23035.12



**FIGURE 1: VICINITY MAP**

# US 51 over ICRR Jackson County, Illinois

Drawn by:

J. Stauffer

Checked by:

J. Olson

Image obtained from USGS TopoView

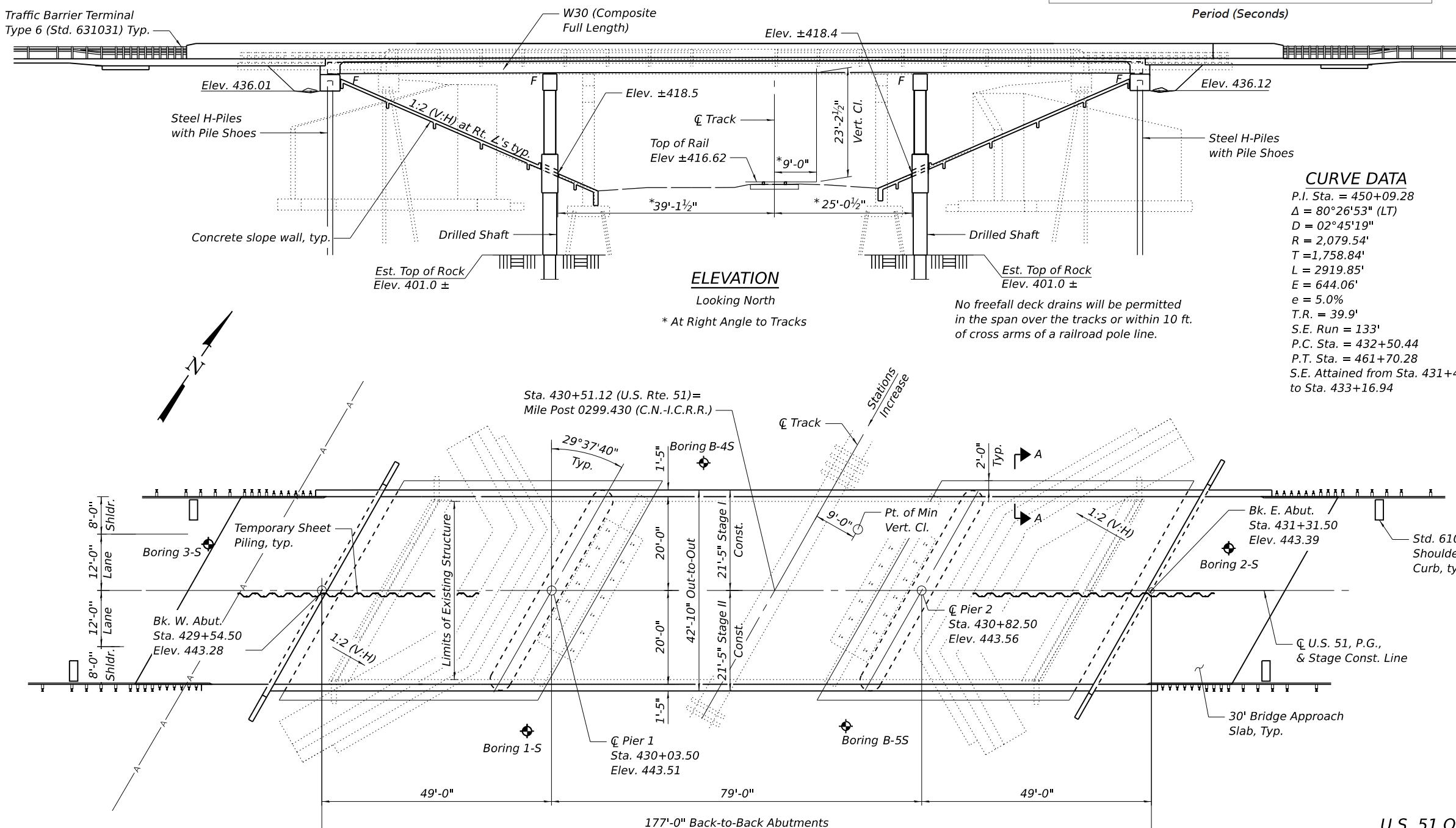
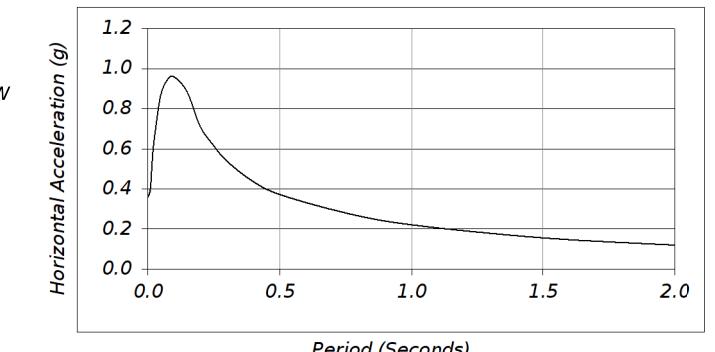
\*Not to scale

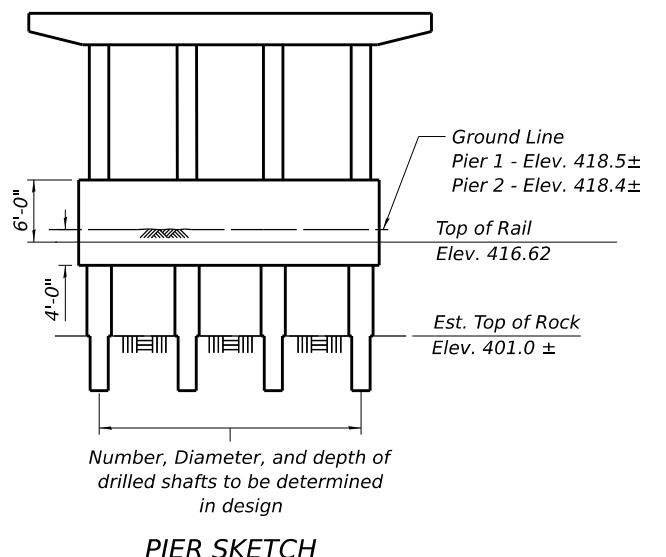
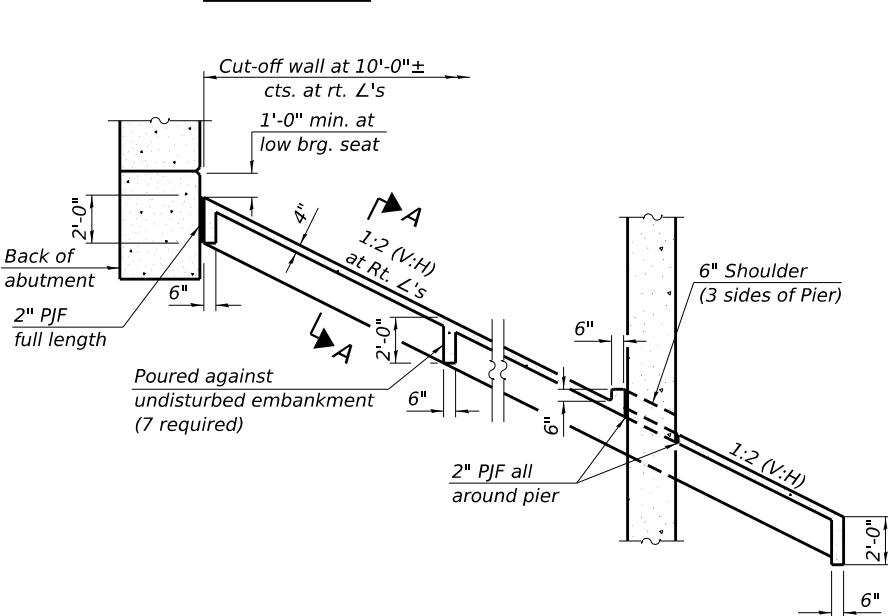
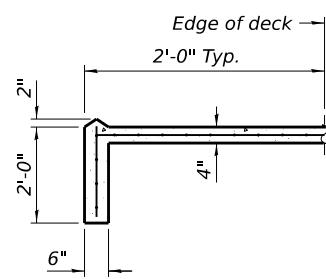
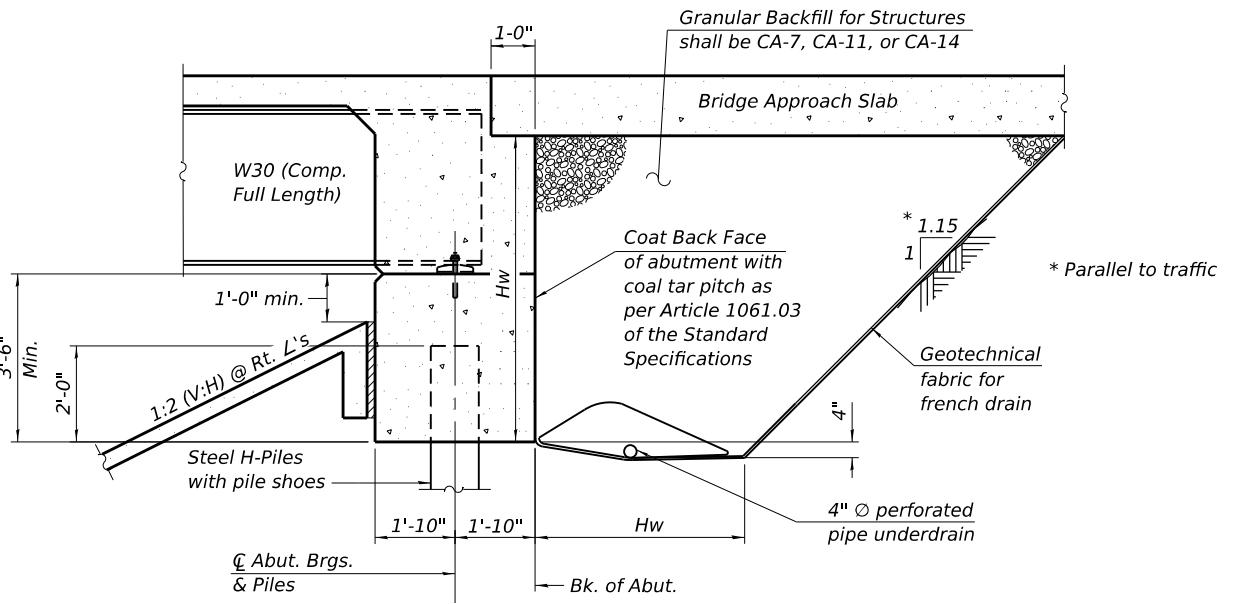
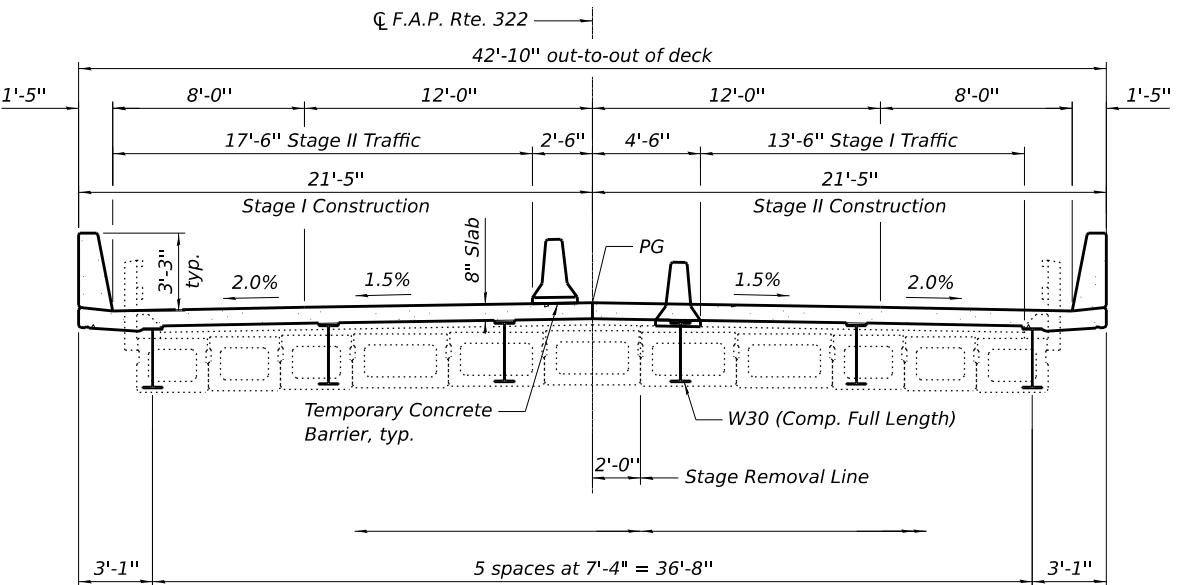
Project No.:

MG23035.12

Date:

1/22/2023



Bench Mark: Chiseled "square" on N.W. wingwall of S.N. 039-0052, Elev. 441.75






Existing Structure: SN 039-0052 was reconstructed in 1983 as F.A.P. Rte 322, Sect. 3VB-2. It is a three-span PPC deck-beam bridge supported by reinforced concrete stub abutments and hammerhead piers supported on steel H-Piles. The back-to-back abutment length is 151'-0" and the out-to-out deck width is 38'-0". The structure is skewed 29°37'40" left forward. Staged construction will be utilized to maintain traffic.

Salvage: None

### SEISMIC DATA

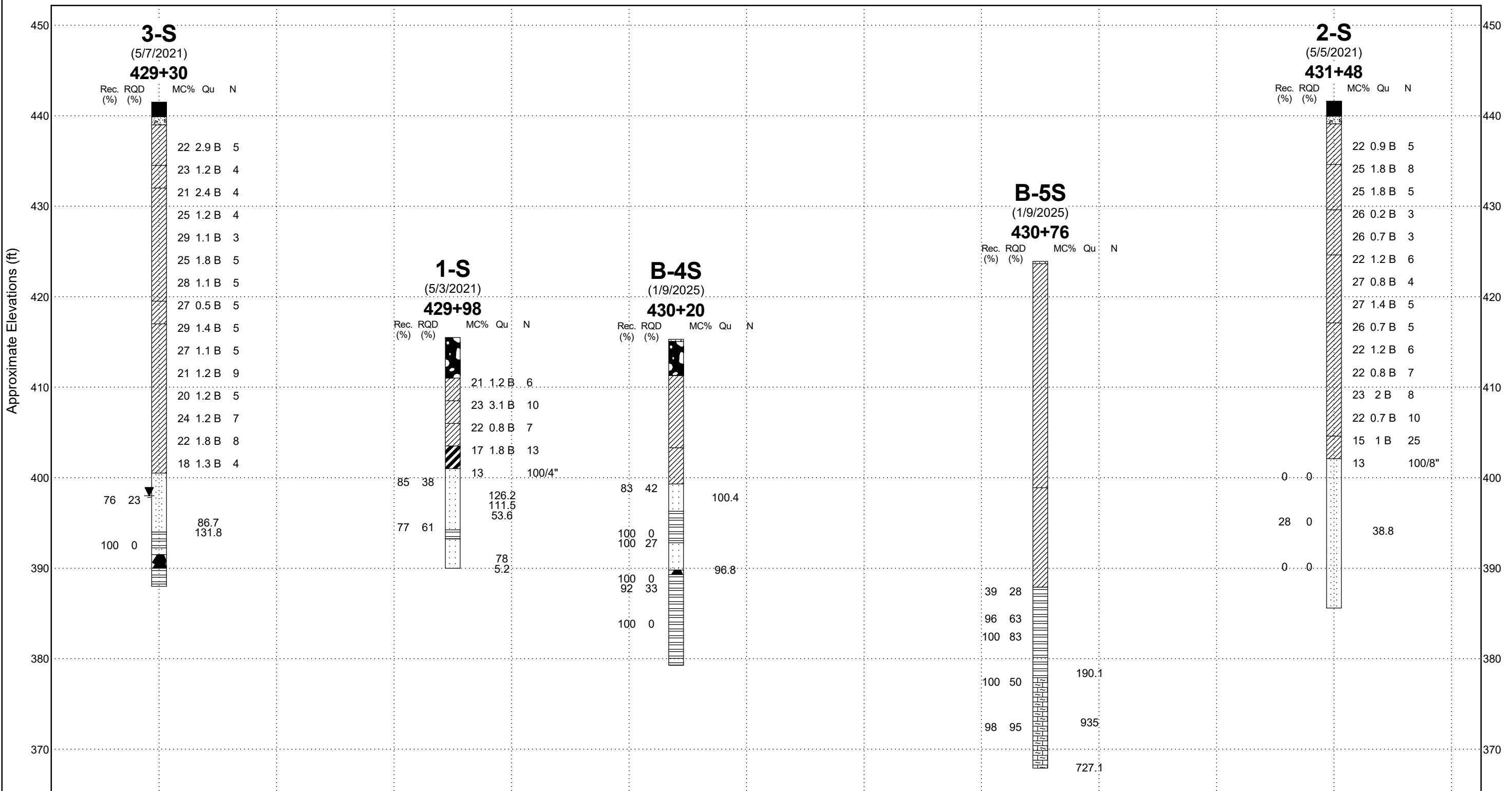
2023 AASHTO Seismic Hazard  
Site Class C  
Latitude 37.85° N, Longitude 89.23° W  
Operational Category: Recovery  
Performance Level: Operational  
SD1 = 0.221g  
SDC B





DETAILS  
U.S. 51 OVER CANADIAN NATIONAL - ILL. CENTRAL R.R.

F.A.P. RTE 322 - SEC. 3VB-3


JACKSON COUNTY

STA. 430+51.12

STRUCTURE NO. 039-0084

COUNTY Jackson  
 SECTION 3VB-2 (Ex.)  
 ROUTE US 51  
 MPS PROJECT NO. 24067.02
**SUBSURFACE PROFILE**  
**FIGURE 3**
**LEGEND**

 EL = Elevation (ft)  
 D = Depth Below Existing Ground Surface (ft)  
 N = SPT N-Value (AASHTO T206)  
 Qu = Unconfined compressive Strength (tsf)  
 Failure Mode (B= Bulge, S= shear, P= penetrometer)  
 MC% = Moisture Content Percentage

**WATER TABLE LEGEND**  
 ▼ = First Encountered  
 ▽ = Upon Completion  
 ▾ = After \_\_\_ hours


## MATERIAL GRAPHICS KEY

| GRAPHIC SYMBOLS | TYPICAL DESCRIPTIONS                         |
|-----------------|----------------------------------------------|
|                 | SAND, LOAMY SAND                             |
|                 | SANDY CLAY, SANDY CLAY LOAM, SANDY LOAM      |
|                 | CLAY (low to high plasticity, if applicable) |
|                 | CLAY LOAM, SILTY CLAY, SILTY CLAY LOAM       |
|                 | SILT, SILT LOAM                              |
|                 | AGGREGATE FILL                               |
|                 | ASPHALT                                      |
|                 | COAL                                         |
|                 | CONCRETE                                     |
|                 | EXISTING FILL, POSSIBLE FILL                 |
|                 | SHALE, WEATHERED SHALE, CLAY SHALE           |
|                 | LIMESTONE, WEATHERED LIMESTONE               |
|                 | SANDSTONE, WEATHERED SANDSTONE               |

NOTE: CONDITIONS BETWEEN AND BELOW BORINGS ARE UNKNOWN. MATERIAL CLASSIFICATIONS ARE BASED UPON BORINGS PERFORMED FOR THIS SURVEY, AND ARE SUBJECT TO CHANGE.



Millennia Professional Services

11 Executive Drive, Suite 12, Fairview Heights, Illinois, 62208 • 618-624-8610

## Appendix B

### **Boring Logs**





# ROCK CORE LOG

Date 5/3/21

ROUTE US 51 DESCRIPTION US 51 over ICRR LOGGED BY L. Estel

**SECTION** 3VB-2 (Ex.) **LOCATION** 3 mi. N of Desoto (near Ex. Pier #1), SEC. 5, TWP. 8S, RNG. 1W, PM

COUNTY Jackson CORING METHOD Conventional rotary with polymer modified water R — CORE S

STRUCT. NO. 039-0052 CORING BARREL TYPE & SIZE NV3 5FT NWJ D C O V Q . I R E N  
Station 430+42.72

|                                      |                                    |            |            |            |            |            |            |
|--------------------------------------|------------------------------------|------------|------------|------------|------------|------------|------------|
| BORING NO. <u>1-S</u>                | Top of Rock Elev. <u>401.00</u> ft | P <u>T</u> | R <u>E</u> | E <u>R</u> | D <u>.</u> | E <u>Y</u> | G <u>T</u> |
| Station <u>429+98</u>                | Begin Core Elev. <u>400.00</u> ft  |            |            |            |            |            |            |
| Offset <u>30.0ft Rt</u>              |                                    | H          |            | Y          |            |            | H          |
| Ground Surface Elev. <u>415.5</u> ft |                                    | (ft)       | (#)        | (%)        | (%)        | (min/ft)   | (tsf)      |

Hard Brown, Dry SANDSTONE (Field Hardness: Moderately Hard)

**Color pictures of the cores** Yes, attached

**Cores will be stored for examination until 5 years after construction**

The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938).

The Strength column represents the uniaxial compressive strength of the core sample (A-RQD is the ratio of the total length of sound core specimens >4" to total length of core run

Illinois Department of Transportation  
 District Nine Materials  
 Unconfined Compressive Strength

US 51  
 Jackson Co. 039-0052  
 Boring 1-S  
 5-3-21 Lab # 016



| Boring # | Specimen# | Thickness | L/D ratio | Depth  | Unconfined Reading | Compressive Str (psi) |
|----------|-----------|-----------|-----------|--------|--------------------|-----------------------|
| 1-S      | 1         | 4.0"      | 2.25:1    | 17'    | 4,360              | 1,753 psi             |
| 1-S      | 2         | 4.0"      | 2.25:1    | 17.25' | 3,850              | 1,548 psi             |
| 1-S      | 3         | 3.9"      | 2.19:1    | 18'    | 1,850              | 744 psi               |
| 1-S      | 4         | 3.8"      | 2.13:1    | 24'    | 2,695              | 1,084 psi             |
| 1-S      | 5         | 3.2"      | *1.80:1   | 24.5'  | 180                | 72 psi                |

\*Desirable specimen length to diameter ratios are between 2.0:1 and 2.5:1. The results may differ from results obtained from a test specimen that meets the requirements.

Foundation Core Instructions  
 for the diameter  
 (Pounds divided by 2.487)=psi

Use 1.78"

$$\frac{\pi d^2}{4} = 2.487$$



**ROUTE** US 51 **DESCRIPTION** US 51 over ICRR **LOGGED BY** L. Estel

**SECTION 3VB-2 (Ex.) LOCATION 3 mi. N of Desoto (near Ex. E. Abut.), SEC. 5, TWP. 8S, RNG. 1W, PM**

**COUNTY** Jackson **DRILLING METHOD** Hollow Stem Auger (8" O.D., 3.25" I.D.) **HAMMER TYPE** Auto SPT 140 lb (HE = 86.5%)

**STRUCT. NO.** 039-0052  
**Station** 430+42.72

|                       |                       |                   |                       |                                                                                                                                                                                                                                                                                  |                       |                       |                   |                       |
|-----------------------|-----------------------|-------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------|-------------------|-----------------------|
| D<br>E<br>P<br>T<br>H | B<br>L<br>O<br>W<br>S | U<br>C<br>S<br>Qu | M<br>O<br>I<br>S<br>T | Surface Water Elev. _____ ft<br>Stream Bed Elev. _____ ft<br>Groundwater Elev.:<br><input checked="" type="checkbox"/> First Encounter _____ ft<br><input checked="" type="checkbox"/> Upon Completion _____ ft<br><input checked="" type="checkbox"/> After _____ Hrs. _____ ft | D<br>E<br>P<br>T<br>H | B<br>L<br>O<br>W<br>S | U<br>C<br>S<br>Qu | M<br>O<br>I<br>S<br>T |
| (ft)                  | (tsf)                 | (%)               |                       |                                                                                                                                                                                                                                                                                  | (ft)                  |                       | (tsf)             | (%)                   |

Cored Pavement, 19.75 in. HMA  
over 10 in. CONCRETE

M. Stiff Tan/Brown, Moist SILTY  
CLAY

Stiff Brown and mottled Red,  
Moist SILTY CLAY 434.60

V. Soft Grey, Moist SILTY CLAY 429.60

427.10  
M. Stiff Grey, Moist SILTY CLAY

424.60  
Stiff Grey, Moist SILTY CLAY

422.10

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer, E-Estimated) Abbreviations W.O.H - Sampler Advanced By Weight of Hammer, W.O.P - Advanced by Weight of Pipe, B.S. - Before Seating The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206) BBS, from 137 (Rev. 8-99)



**Illinois Department  
of Transportation**

Division of Highways  
District 9

# SOIL BORING LOG

Page 2 of 2

Date 5/5/21

ROUTE US 51 DESCRIPTION US 51 over ICRR LOGGED BY L. Estel

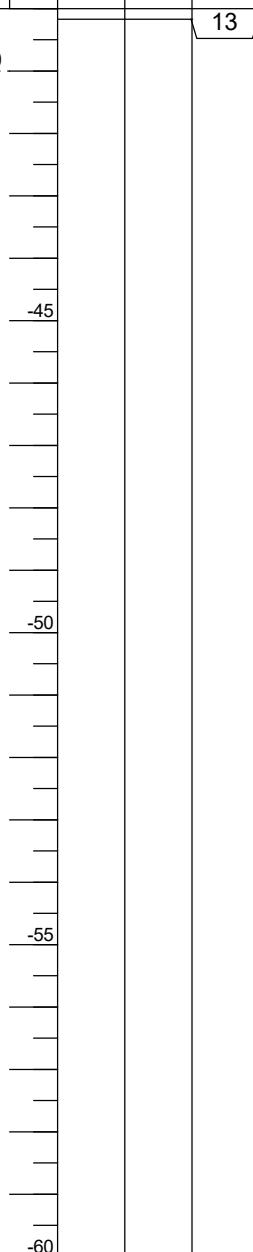
SECTION 3VB-2 (Ex.) LOCATION 3 mi. N of Desoto (near Ex. E. Abut.), SEC. 5, TWP. 8S, RNG. 1W, PM

COUNTY Jackson DRILLING METHOD Hollow Stem Auger (8" O.D., 3.25" I.D.) HAMMER TYPE Auto SPT 140 lb (HE = 86.5%)

STRUCT. NO. 039-0052  
Station 430+42.72

BORING NO. 2-S  
Station 431+48  
Offset 9.0ft Lt  
Ground Surface Elev. 441.6 ft

| D | B | U     | M   | Surface Water Elev. _____ ft                                  |
|---|---|-------|-----|---------------------------------------------------------------|
| E | L | C     | O   | Stream Bed Elev. _____ ft                                     |
| P | O | S     | I   | Groundwater Elev.:                                            |
| T | W | Qu    | S   | <input checked="" type="checkbox"/> First Encounter _____ ft  |
| H | S | (tsf) | (%) | <input checked="" type="checkbox"/> Upon Completion _____ ft  |
|   |   |       |     | <input checked="" type="checkbox"/> After _____ Hrs. _____ ft |


Hard Reddish Brown, Moist  
Weathered SANDSTONE

No free water encountered


To Convert "N" values to "N60",  
multiply by 1.44; Hammer  
Efficiency = 86.5%

Ground surface elevation  
referenced to BM 039-0052, Cut  
Square on NW Hub Guard SN  
039-0052; EL. 441.75. (continued)

Borehole continued with rock  
coring.



The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer, E-Estimated)  
Abbreviations W.O.H - Sampler Advanced By Weight of Hammer, W.O.P - Advanced by Weight of Pipe, B.S. - Before Seating  
The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206) BBS, from 137 (Rev. 8-99)



**Illinois Department  
of Transportation**

Division of Highways  
District 9

# ROCK CORE LOG

Page 1 of 1

Date 5/5/21

ROUTE US 51 DESCRIPTION US 51 over ICRR LOGGED BY L. Estel

SECTION 3VB-2 (Ex.) LOCATION 3 mi. N of Desoto (near Ex. E. Abut.), SEC. 5, TWP. 8S, RNG. 1W, PM

COUNTY Jackson CORING METHOD Conventional rotary with polymer modified water

STRUCT. NO. 039-0052 CORING BARREL TYPE & SIZE NV3 5FT NWJ

Station 430+42.72

Core Diameter 2 in

| R<br>E<br>C<br>O<br>V<br>E<br>R<br>Y | R<br>.Q<br>.D<br>.      | CORE<br>T<br>I<br>M<br>E | STRENGTH          |
|--------------------------------------|-------------------------|--------------------------|-------------------|
| D<br>E<br>P<br>T<br>H                | C<br>O<br>R<br>E<br>(#) | (%)                      | (min/ft)<br>(tsf) |

Top of Rock Elev. 402.10 ft

Begin Core Elev. 400.60 ft

BORING NO. 2-S  
Station 431+48  
Offset 9.0ft Lt  
Ground Surface Elev. 441.6 ft

Hard Reddish Brown, Dry SANDSTONE with CLAY SHALE

400.60

|                                                                                                           |    |   |    |      |
|-----------------------------------------------------------------------------------------------------------|----|---|----|------|
| 1                                                                                                         | 0  | 0 | 10 |      |
| -45                                                                                                       |    |   |    |      |
| 2                                                                                                         | 28 | 0 | 10 | 38.8 |
| -50                                                                                                       |    |   |    |      |
| 3                                                                                                         | 0  | 0 | 10 |      |
| -55                                                                                                       |    |   |    |      |
| 385.60                                                                                                    |    |   |    |      |
| Bottom of hole @ 56.0 ft                                                                                  |    |   |    |      |
| No free water encountered                                                                                 |    |   |    |      |
| To Convert "N" values to "N60", multiply by 1.44; Hammer Efficiency = 86.5%                               |    |   |    |      |
| Ground surface elevation referenced to BM 039-0052, Cut Square on NW Hub Guard<br>SN 039-0052; EL. 441.75 |    |   |    |      |
| -60                                                                                                       |    |   |    |      |

Color pictures of the cores Yes, attached

Cores will be stored for examination until 5 years after construction

The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

RQD is the ratio of the total length of sound core specimens >4" to total length of core run

BBS, form 138 (Rev. 8-99)

Illinois Department of Transportation  
District Nine Materials  
Unconfined Compressive Strength

US 51  
Jackson Co. 039-0052  
Boring 2-S  
5-5-21 Lab #17



| Boring # | Specimen# | Thickness | L/D ratio | Depth | Unconfined Reading | Compression Str (psi) |
|----------|-----------|-----------|-----------|-------|--------------------|-----------------------|
| 2-S      | 1         | 3.0"      | *1.7:1    | 46.5' | 1,340              | 539                   |

\*Desirable specimen length to diameter ratios are between 2.0:1 and 2.5:1. The results may differ from results obtained from a test specimen that meets the requirements.

Foundation Core Instructions  
for the diameter  
(Pounds divided by 2.487)=psi

Use 1.78"

$$\frac{\pi d^2}{4} = 2.487$$



ROUTE US 51 DESCRIPTION US 51 over ICRR LOGGED BY L. Estel

**SECTION** 3VB-2 (Ex.) **LOCATION** 3 mi. N of Desoto (near Ex. W. Abut.), SEC. 5, TWP. 8S, RNG. 1W, PM

**COUNTY** Jackson **DRILLING METHOD** Hollow Stem Auger (8" O.D., 3.25" I.D. **HAMMER TYPE** Auto SPT 140 lb (HE = 86.5%))

**STRUCT. NO.** 039-0052  
**Station** 430+42.72

|                       |                       |                       |                       |                                                                                                                                                                                                                                                                                        |                       |                       |                       |                       |
|-----------------------|-----------------------|-----------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| D<br>E<br>P<br>T<br>H | B<br>L<br>O<br>W<br>S | U<br>C<br>S<br>Q<br>u | M<br>O<br>I<br>S<br>T | Surface Water Elev. _____ ft<br>Stream Bed Elev. _____ ft<br>Groundwater Elev.:<br><input checked="" type="checkbox"/> First Encounter _____ 398.0 ft<br><input checked="" type="checkbox"/> Upon Completion _____ ft<br><input checked="" type="checkbox"/> After _____ Hrs. _____ ft | D<br>E<br>P<br>T<br>H | B<br>L<br>O<br>W<br>S | U<br>C<br>S<br>Q<br>u | M<br>O<br>I<br>S<br>T |
| (ft)                  | (tsf)                 | (%)                   |                       |                                                                                                                                                                                                                                                                                        | (ft)                  |                       | (tsf)                 | (%)                   |

Cored Pavement, 19" HMA over  
10.5" CONCRETE

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer, E-Estimated) Abbreviations W.O.H - Sampler Advanced By Weight of Hammer, W.O.P - Advanced by Weight of Pipe, B.S. - Before Seating The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206) BBS, from 137 (Rev. 8-99)



**Illinois Department  
of Transportation**

Division of Highways  
District 9

# SOIL BORING LOG

Page 2 of 2

Date 5/7/21

ROUTE US 51 DESCRIPTION US 51 over ICRR LOGGED BY L. Estel

SECTION 3VB-2 (Ex.) LOCATION 3 mi. N of Desoto (near Ex. W. Abut.), SEC. 5, TWP. 8S, RNG. 1W, PM

COUNTY Jackson DRILLING METHOD Hollow Stem Auger (8" O.D., 3.25" I.D.) HAMMER TYPE Auto SPT 140 lb (HE = 86.5%)

STRUCT. NO. 039-0052  
Station 430+42.72

BORING NO. 3-S  
Station 429+30  
Offset 10.0ft Lt  
Ground Surface Elev. 441.5 ft

| D | B | U     | M   | Surface Water Elev. _____ ft                                  |
|---|---|-------|-----|---------------------------------------------------------------|
| E | L | C     | O   | Stream Bed Elev. _____ ft                                     |
| P | O | S     | I   | Groundwater Elev.:                                            |
| T | W | Qu    | S   | <input checked="" type="checkbox"/> First Encounter _____ ft  |
| H | S | (tsf) | (%) | <input checked="" type="checkbox"/> Upon Completion _____ ft  |
|   |   |       |     | <input checked="" type="checkbox"/> After _____ Hrs. _____ ft |

(Brown with streaks of Black)  
(continued) 400.50

Hard Brownish Red, Dry  
Weathered SANDSTONE


Bottom of hole @ 53.5 ft

To Convert "N" values to "N60"  398.00  
multiply by 1.44; Hammer  
Efficiency = 86.5%

Ground surface elevation  
referenced to BM 039-0052, Cut  
Square on NW Hub Guard SN  
039-0052; EL. 441.75.

Borehole continued with rock  
coring.

-45  
-50  
-55  
-60



**Illinois Department  
of Transportation**

Division of Highways  
District 9

# ROCK CORE LOG

Page 1 of 1

Date 5/7/21

ROUTE US 51 DESCRIPTION US 51 over ICRR LOGGED BY L. Estel

SECTION 3VB-2 (Ex.) LOCATION 3 mi. N of Desoto (near Ex. W. Abut.), SEC. 5, TWP. 8S, RNG. 1W, PM

COUNTY Jackson CORING METHOD Conventional rotary with polymer modified water

STRUCT. NO. 039-0052 CORING BARREL TYPE & SIZE NV3 5FT NWJ

Station 430+42.72

Core Diameter 2 in  
Top of Rock Elev. 400.50 ft  
Begin Core Elev. 398.00 ft

BORING NO. 3-S  
Station 429+30  
Offset 10.0ft Lt  
Ground Surface Elev. 441.5 ft

| R<br>E<br>C<br>O<br>V<br>E<br>R<br>Y | R<br>.Q<br>.D<br>.      | CORE<br>T<br>I<br>M<br>E | S<br>T<br>R<br>E<br>N<br>G<br>T<br>H |
|--------------------------------------|-------------------------|--------------------------|--------------------------------------|
| D<br>E<br>P<br>T<br>H<br>(ft)        | C<br>O<br>R<br>E<br>(#) | (%)                      | (min/ft)<br>(tsf)                    |
| 398.00                               | 1                       | 76                       | 23 10                                |
| -45                                  |                         |                          | 86.7                                 |
| 394.00                               |                         |                          | 131.8                                |
| 392.25                               | 2                       | 100                      | 0 10                                 |
| 391.50                               |                         |                          |                                      |
| 390.00                               |                         |                          |                                      |
| 388.00                               |                         |                          |                                      |
| -55                                  |                         |                          |                                      |
| Bottom of hole @ 53.5 ft             |                         |                          |                                      |
| -60                                  |                         |                          |                                      |
| -60                                  |                         |                          |                                      |

Color pictures of the cores Yes, attached

Cores will be stored for examination until 5 years after construction  
Ground surface elevation referenced to BM 039-0052, Cut Square on NW Hub Guard  
SN 039-0052; EL. 441.75.

Cores will be stored for examination until 5 years after construction

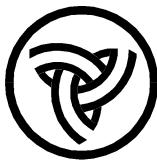
The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

RQD is the ratio of the total length of sound core specimens >4" to total length of core run

Illinois Department of Transportation  
 District Nine Materials  
 Unconfined Compressive Strength

US 51  
 Jackson Co. 039-0052  
 Boring 3-S  
 5-7-21 Lab #18




| Boring # | Specimen# | Thickness | L/D ratio | Depth | Unconfined Reading | Compression Str (psi) |
|----------|-----------|-----------|-----------|-------|--------------------|-----------------------|
| 3-S      | 1         | 3.4"      | *1.9:1    | 45.5' | 2,995              | 1,204                 |
| 3-S      | 2         | 3.8"      | 2.1:1     | 47.0' | 4,550              | 1,830                 |

\*Desirable specimen length to diameter ratios are between 2.0:1 and 2.5:1. The results may differ from results obtained from a test specimen that meets the requirements.

Foundation Core Instructions  
 for the diameter  
 (Pounds divided by 2.487)=psi

Use 1.78"

$$\frac{\pi d^2}{4} = 2.487$$



**Illinois Department  
of Transportation**

Division of Highways  
Terracon

# SOIL BORING LOG

Page 1 of 2

Date 1/9/25

ROUTE US 51 DESCRIPTION Structure Over ICRR LOGGED BY KEG

SECTION 3VB-3 LOCATION 3 mi N of Desoto, Lat. 37.8525 Long. -89.2318, SEC. 5, TWP. 8S, RNG. 1W

COUNTY Jackson DRILLING METHOD SSA + NQ2 Rock Coring @ 16ft HAMMER TYPE

STRUCT. NO. 039-0052  
Station 430+42.72

BORING NO. B-4S  
Station 430+20  
Offset 28.0 ft LT  
Ground Surface Elev. 415.30 ft

| D<br>E<br>P<br>T<br>H | B<br>L<br>O<br>W<br>S | U<br>C<br>S<br>Qu | M<br>O<br>I<br>S<br>T | Surface Water Elev. _____ ft | D<br>E<br>P<br>T<br>H | B<br>L<br>O<br>W<br>S | U<br>C<br>S<br>Qu | M<br>O<br>I<br>S<br>T |
|-----------------------|-----------------------|-------------------|-----------------------|------------------------------|-----------------------|-----------------------|-------------------|-----------------------|
|                       |                       |                   |                       | Stream Bed Elev. _____ ft    |                       |                       |                   |                       |
|                       |                       |                   |                       | Groundwater Elev.: _____ ft  |                       |                       |                   |                       |
|                       |                       |                   |                       | First Encounter _____ ft     |                       |                       |                   |                       |
|                       |                       |                   |                       | Upon Completion _____ ft     |                       |                       |                   |                       |
|                       |                       |                   |                       | After _____ Hrs. _____ ft    |                       |                       |                   |                       |

TOPSOIL, approximately 3 inches 415.05

Track Ballast Aggregate

411.30

Brown SILTY CLAY trace sand

-5

403.30

Brown SILTY CLAY with gravel

-10

399.30

Brown, SANDSTONE, Fine  
Grained (Field Hardness:  
Moderately Hard)  
Borehole continued with rock  
coring  
Bottom of hole @ 36 feet


-15

No free water encountered

-20

Elevation referenced to BM  
039-0052, EL. 441.75

End of Boring



ROUTE US 51 DESCRIPTION Structure over ICRR LOGGED BY KEG

**SECTION** 3VB-3 **LOCATION** 3 mi N of Desoto, Lat. 37.8525 Long. -89.2318, **SEC. 5, TWP. 8S, RNG. 1W, PM**

**COUNTY** Jackson **CORING METHOD** NQ2 Rock Coring **R** **CORE** **S**

STRUCT. NO. 039-0052 CORING BARREL TYPE & SIZE    D    C    O    . Q    M    R     
Station 430+42.72 E    F    G    H    V    S    T    N

BORING NO. B-4S Top of Rock Elev. 399.30 ft P R E D E G  
 Station 430+20 Begin Core Elev. 399.30 ft T E R . T  
 Offset 28.0ft LT H Y H  
 Ground Surface Elev. 415.3 ft (ft) (#) (%) (%) (min/ft) (tsf)

Brown. SANDSTONE. Fine Grained (Field Hardness: Moderately Hard) R-1 83 42

100.4  
886.39

|                                                 |        |  |  |
|-------------------------------------------------|--------|--|--|
| M. Stiff, Tan Clay                              | 396.50 |  |  |
| Gray, CLAY SHALE (Field Hardness: Low Hardness) | 395.70 |  |  |
|                                                 | -20    |  |  |

|        |     |     |    |  |
|--------|-----|-----|----|--|
|        | R-2 | 100 | 0  |  |
| 392.80 | R-3 | 100 | 27 |  |

Red Brown, SANDSTONE, Fine Grained (Field Hardness: Moderately Hard)

|                                            |        |     |     |     |      |
|--------------------------------------------|--------|-----|-----|-----|------|
| Black, COAL                                | 389.80 | -25 |     |     | 96.8 |
| Gray, SHALE (Field Hardness; Low Hardness) | 389.30 |     | R 4 | 100 | 0    |

|                                             |     |     |    |  |
|---------------------------------------------|-----|-----|----|--|
| Gray, STRAHL (Field Hardness: Low Hardness) | R-4 | 100 | 0  |  |
|                                             | R-5 | 92  | 33 |  |

|  |     |     |   |  |
|--|-----|-----|---|--|
|  | R-6 | 100 | 0 |  |
|--|-----|-----|---|--|

11. *What is the primary purpose of the following statement?*

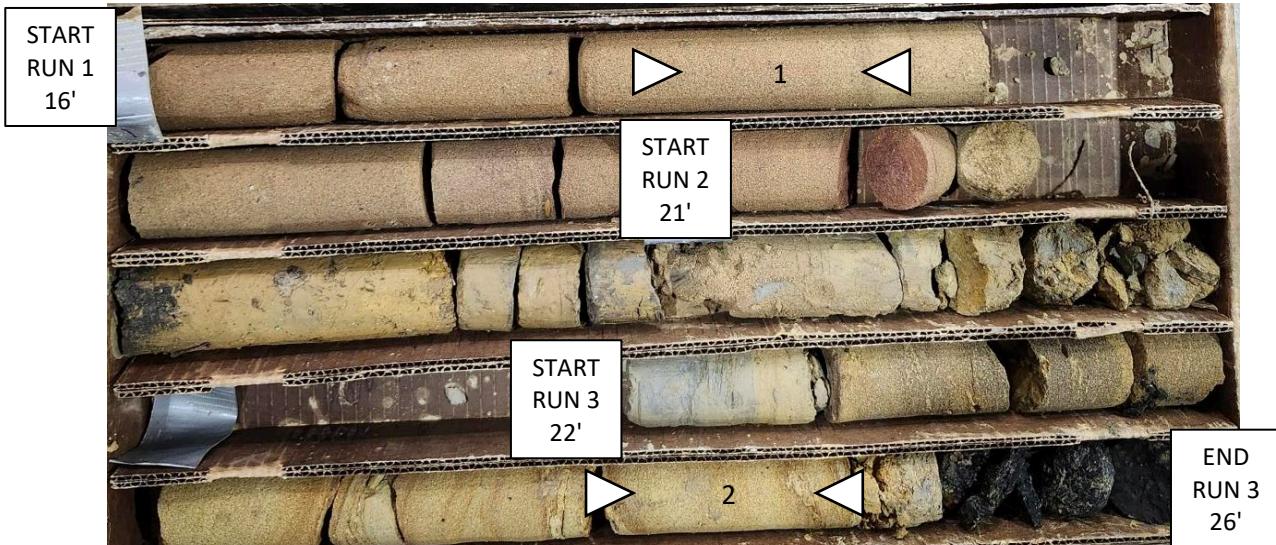
|                                                 |        |     |  |  |
|-------------------------------------------------|--------|-----|--|--|
| Bottom of hole @ 36 feet                        |        |     |  |  |
| Elevation referenced to BM 039-0052, EL. 441.75 |        | -35 |  |  |
| End of Boring                                   | 379.30 |     |  |  |

**Color pictures of the cores** \_\_\_\_\_ Yes \_\_\_\_\_

**Cores will be stored for examination until** 5 years

The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

RQD is the ratio of the total length of sound core specimens >4" to total length of core run


# Illinois Department of Transportation

## District Nine Materials

### Unconfined Compressive Strength

**Route:** US 51 over Canadian National-ICRR  
**County:** Jackson County  
**Structure:** 039-0052

**Lab#:**  
**Date Drilled:** 1/21/2025  
**Boring:** B-4S



| Boring | Specimen # | Thickness (in.) | L/D Ratio | Depth | Load (lbs) | USC (psi) |
|--------|------------|-----------------|-----------|-------|------------|-----------|
| B-4S   | 1          | 4.08            | 2.1       | 17    | 4,230      | 1,395     |
| B-4S   | 2          | 3.31            | 1.7       | 25    | 4,180      | 1,344     |

\*Desirable specimen length to diameter (L/D) ratios are between 2.0:1 and 2.5:1. The results may differ from results obtained from a test specimen that meets the requirements.

# Illinois Department of Transportation

## District Nine Materials

### Unconfined Compressive Strength

**Route:** US 51 over Canadian National-ICRR  
**County:** Jackson County  
**Structure:** 039-0052

**Lab#:**  
**Date Drilled:** 1/9/2025  
**Boring:** B-4S Continued



| Boring | Specimen # | Thickness (in.) | L/D Ratio | Depth | Load (lbs) | USC (psi) |
|--------|------------|-----------------|-----------|-------|------------|-----------|
|        |            |                 |           |       |            |           |

\*Desirable specimen length to diameter (L/D) ratios are between 2.0:1 and 2.5:1. The results may differ from results obtained from a test specimen that meets the requirements.



**Illinois Department  
of Transportation**

Division of Highways  
Terracon

# SOIL BORING LOG

Page 1 of 2

Date 1/9/25

ROUTE US 51 DESCRIPTION Structure over ICRR LOGGED BY KEG

SECTION 3VB-3 LOCATION 3 mi N of Desoto, Lat. 37.8524 Long. -89.2315, SEC. 5, TWP. 8S, RNG. 1W

COUNTY Jackson DRILLING METHOD SSA + NQ2 Rock Coring @ 36ft HAMMER TYPE

STRUCT. NO. 039-0052  
Station 430+42.72

BORING NO. B-5S  
Station 430+76  
Offset 51.0 ft RT  
Ground Surface Elev. 423.90 ft

| D<br>E<br>P<br>T<br>H | B<br>L<br>O<br>W<br>S | U<br>C<br>S<br>Qu | M<br>O<br>I<br>S<br>T | Surface Water Elev. _____ ft | D<br>E<br>P<br>T<br>H | B<br>L<br>O<br>W<br>S | U<br>C<br>S<br>Qu | M<br>O<br>I<br>S<br>T |
|-----------------------|-----------------------|-------------------|-----------------------|------------------------------|-----------------------|-----------------------|-------------------|-----------------------|
|                       |                       |                   |                       | Stream Bed Elev. _____ ft    |                       |                       |                   |                       |
|                       |                       |                   |                       | Groundwater Elev.: _____ ft  |                       |                       |                   |                       |
|                       |                       |                   |                       | First Encounter _____ ft     |                       |                       |                   |                       |
|                       |                       |                   |                       | Upon Completion _____ ft     |                       |                       |                   |                       |
|                       |                       |                   |                       | After _____ Hrs. _____ ft    |                       |                       |                   |                       |

TOPSOIL, approximately 3 inches 423.65

Brown SILTY CLAY trace sand

|               |  |  |  |                                                                                                                                                                                                           |               |            |  |  |
|---------------|--|--|--|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------|--|--|
| <u>423.65</u> |  |  |  | Brown SILTY CLAY trace sand<br>(continued)                                                                                                                                                                | <u>398.90</u> | <u>-25</u> |  |  |
| <u>-5</u>     |  |  |  | Brown SILTY CLAY with gravel                                                                                                                                                                              |               |            |  |  |
| <u>-10</u>    |  |  |  |                                                                                                                                                                                                           |               |            |  |  |
| <u>-15</u>    |  |  |  |                                                                                                                                                                                                           |               |            |  |  |
| <u>-20</u>    |  |  |  | Gray, SHALE (Field Hardness:<br>Medium Hardness)<br>Borehole continued with rock<br>coring<br>Bottom of hole @ 36 feet<br>No free water encountered<br>Elevation referenced to BM<br>039-0052, EL. 441.75 | <u>387.90</u> | <u>-35</u> |  |  |

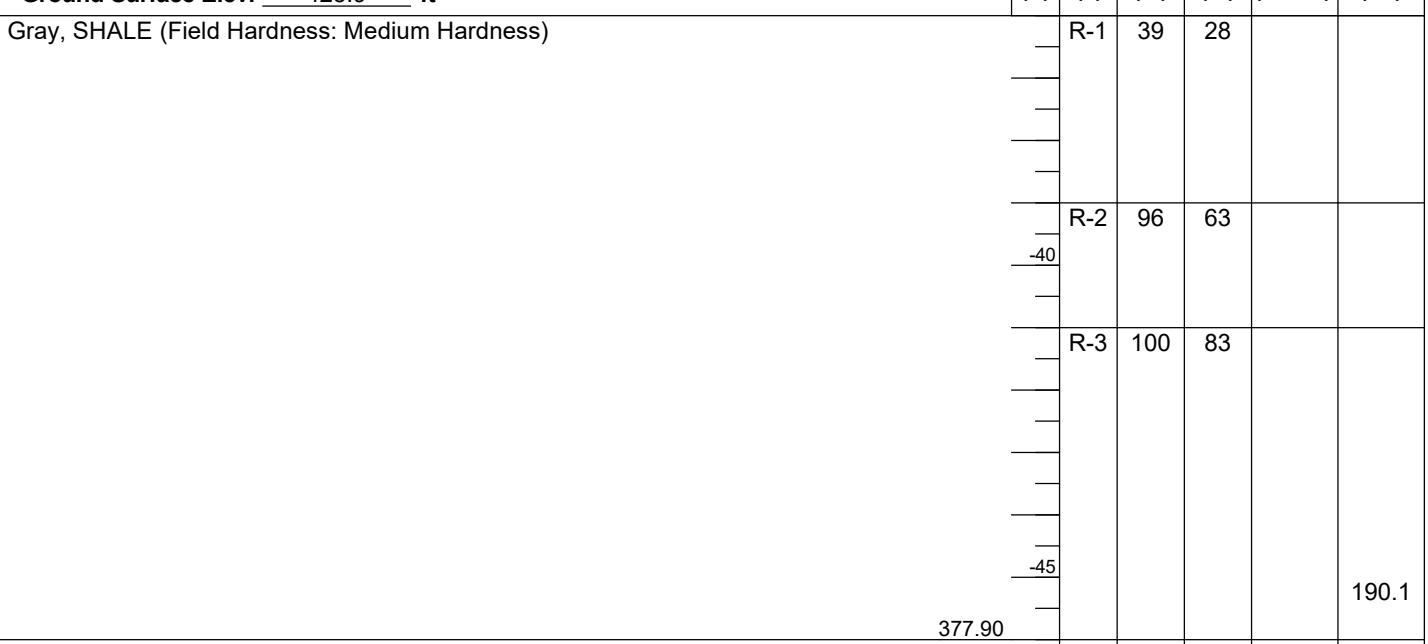


**Illinois Department  
of Transportation**

Division of Highways  
District 9

# ROCK CORE LOG

Page 2 of 2


Date 1/9/25

ROUTE US 51 DESCRIPTION Structure over ICRR LOGGED BY KEG


SECTION 3VB-3 LOCATION 3 mi N of Desoto, Lat. 37.8524 Long. -89.2315, SEC. 5, TWP. 8S, RNG. 1W, PM

|                                      |                                      |   |      |          |   |
|--------------------------------------|--------------------------------------|---|------|----------|---|
| COUNTY <u>Jackson</u>                | CORING METHOD <u>NQ2 Rock Coring</u> | R | R    | CORE     | S |
| STRUCT. NO. <u>039-0052</u>          | CORING BARREL TYPE & SIZE <u></u>    | E | Q    | TIME     | T |
| Station <u>430+42.72</u>             | Core Diameter <u>2</u> in            | D | D    |          | R |
| BORING NO. <u>B-5S</u>               | Top of Rock Elev. <u>387.90</u> ft   | P | .    |          | E |
| Station <u>430+76</u>                | Begin Core Elev. <u>387.90</u> ft    | T | .    |          | O |
| Offset <u>51.0ft RT</u>              |                                      | H | (ft) | (min/ft) | R |
| Ground Surface Elev. <u>423.9</u> ft |                                      |   | (#)  | (tsf)    | G |

Gray, SHALE (Field Hardness: Medium Hardness)



Gray, LIMESTONE (Field Hardness: Hard)



Bottom of hole @ 36 feet

Elevation referenced to BM 039-0052, EL. 441.75

End of Boring

367.90

727.1

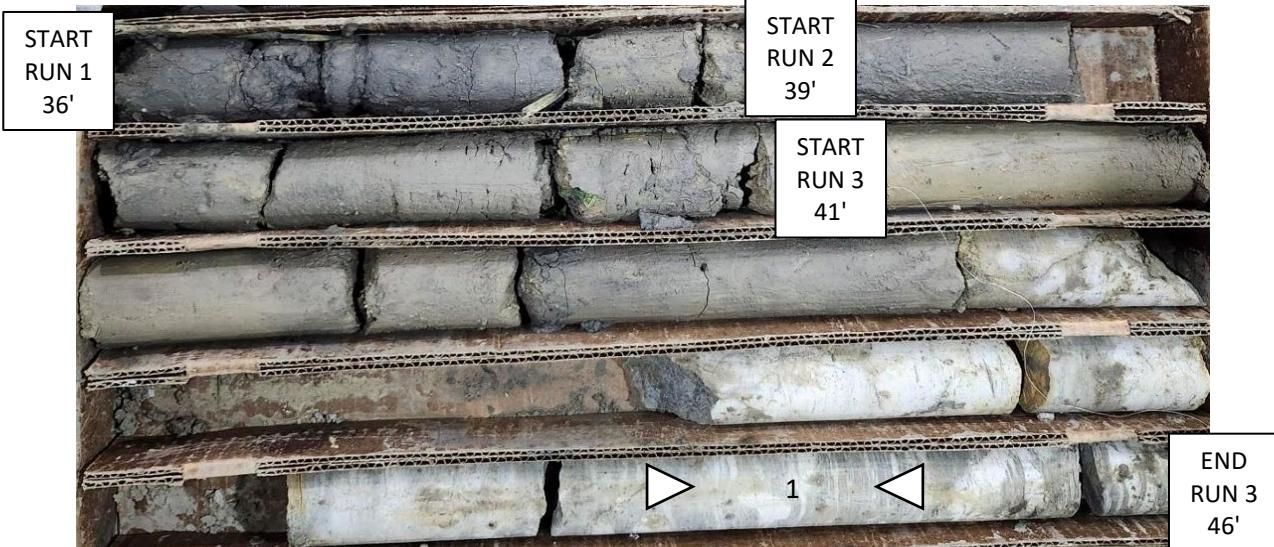
Color pictures of the cores Yes

Cores will be stored for examination until 5 years

The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

RQD is the ratio of the total length of sound core specimens >4" to total length of core run

BBS, form 138 (Rev. 8-99)


# Illinois Department of Transportation

## District Nine Materials

### Unconfined Compressive Strength

**Route:** US 51 over Canadian National-ICRR  
**County:** Jackson County  
**Structure:** 039-0052

**Lab#:**  
**Date Drilled:** 1/10/2025  
**Boring:** B-5S



| Boring | Specimen # | Thickness (in.) | L/D Ratio | Depth | Load (lbs) | USC (psi) |
|--------|------------|-----------------|-----------|-------|------------|-----------|
| B-5S   | 1          | 3.48            | 1.8       | 45    | 8,210      | 2,640     |

\*Desirable specimen length to diameter (L/D) ratios are between 2.0:1 and 2.5:1. The results may differ from results obtained from a test specimen that meets the requirements.

# Illinois Department of Transportation

## District Nine Materials

### Unconfined Compressive Strength

**Route:** US 51 over Canadian National-ICRR  
**County:** Jackson County  
**Structure:** 039-0052

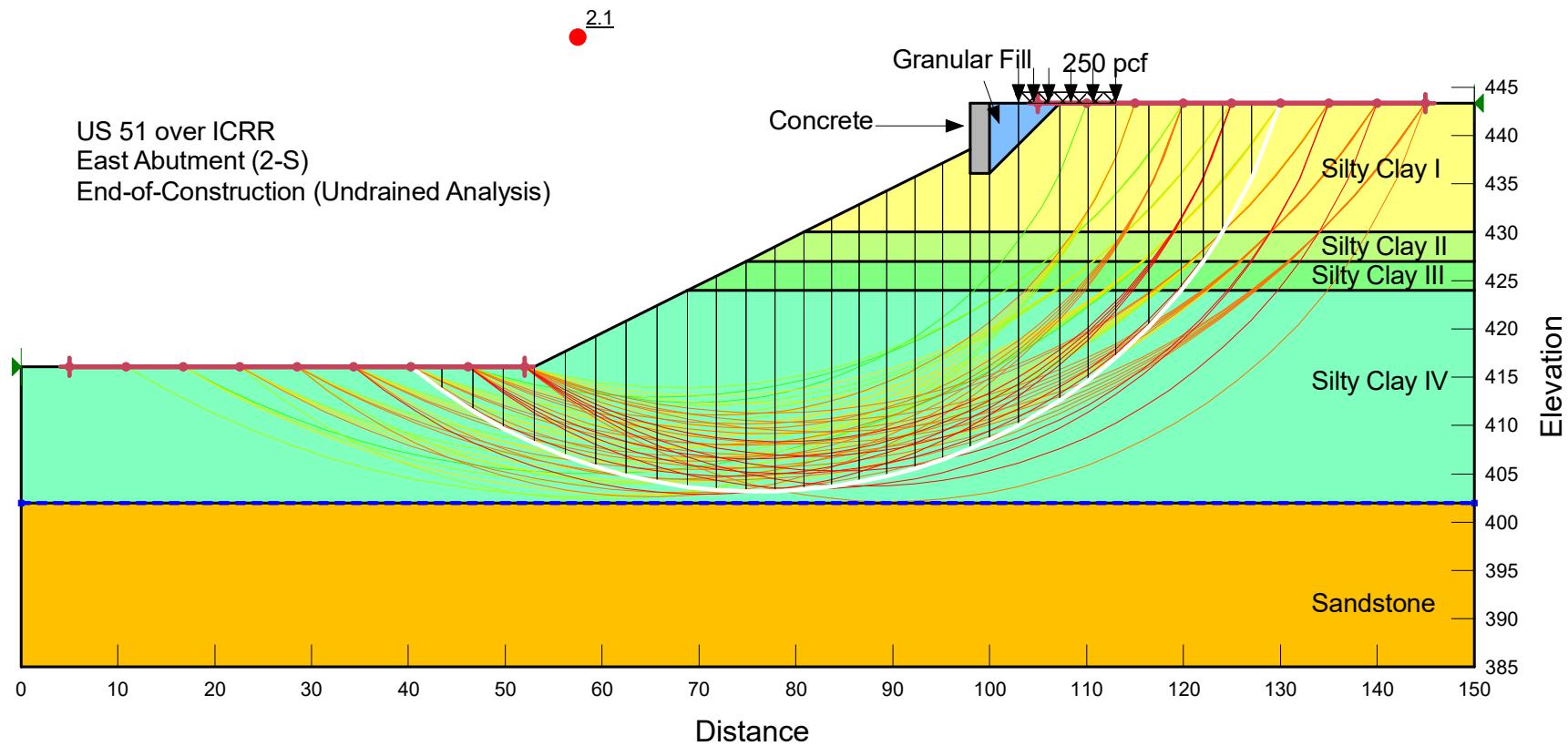
**Lab#:**  
**Date Drilled:** 1/10/2025  
**Boring:** B-5S Continued



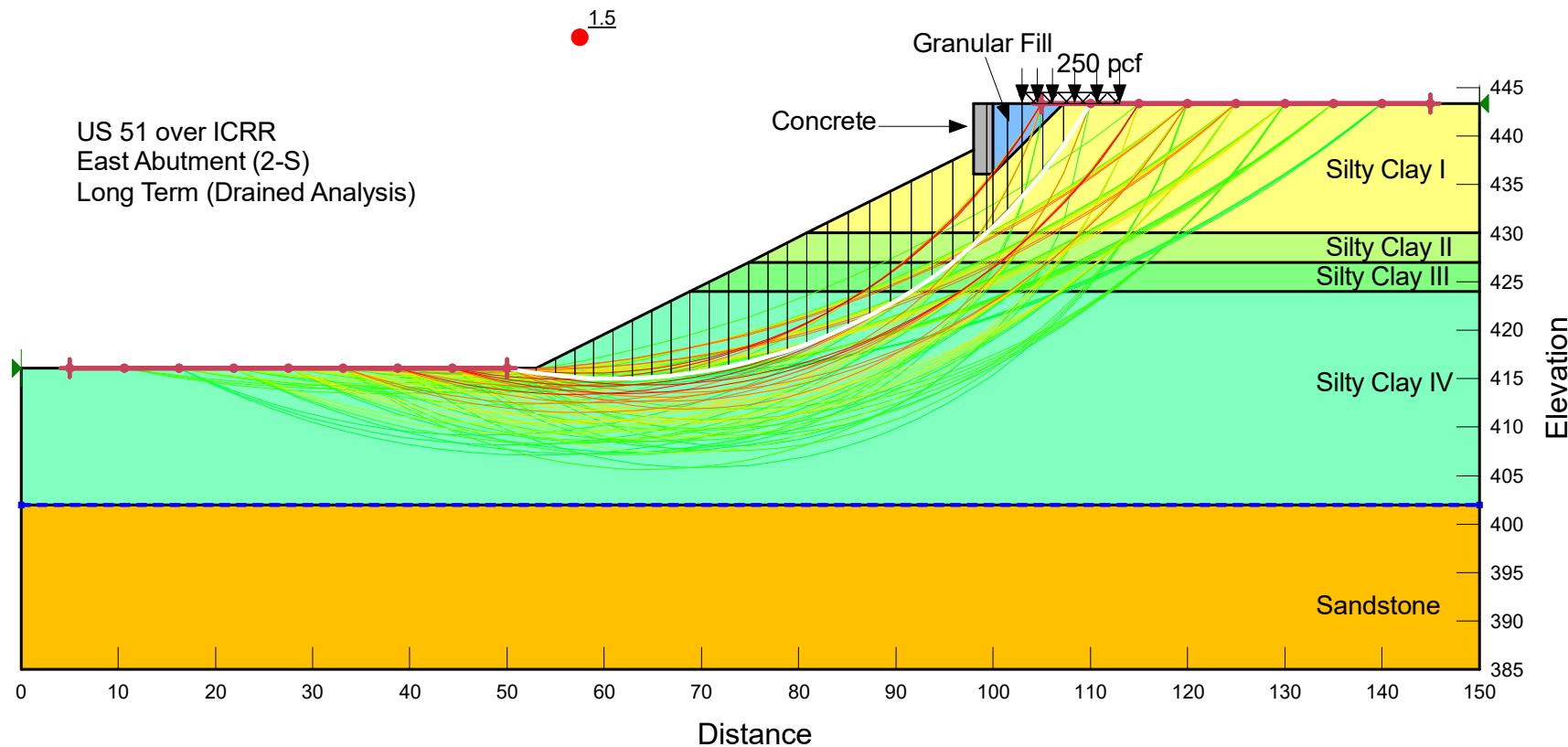
| Boring | Specimen # | Thickness (in.) | L/D Ratio | Depth | Load (lbs) | USC (psi) |
|--------|------------|-----------------|-----------|-------|------------|-----------|
| B-5S   | 2          | 4.37            | 2.2       | 50.5  | 40,390     | 12,986    |
| B-5S   | 3          | 4.17            | 2.1       | 55.5  | 31,410     | 10,099    |
|        |            |                 |           |       |            |           |

\*Desirable specimen length to diameter (L/D) ratios are between 2.0:1 and 2.5:1. The results may differ from results obtained from a test specimen that meets the requirements.

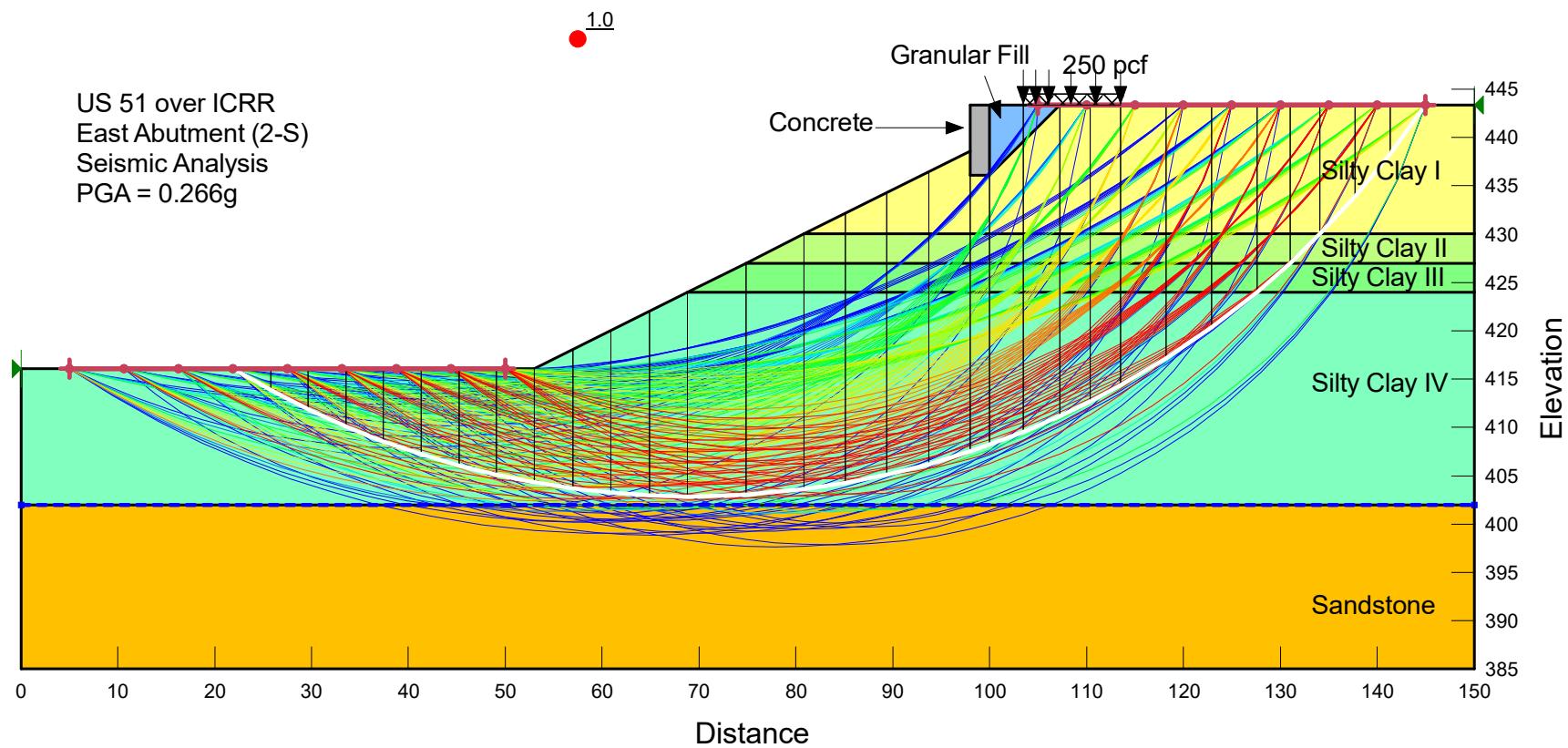



Millennia Professional Services

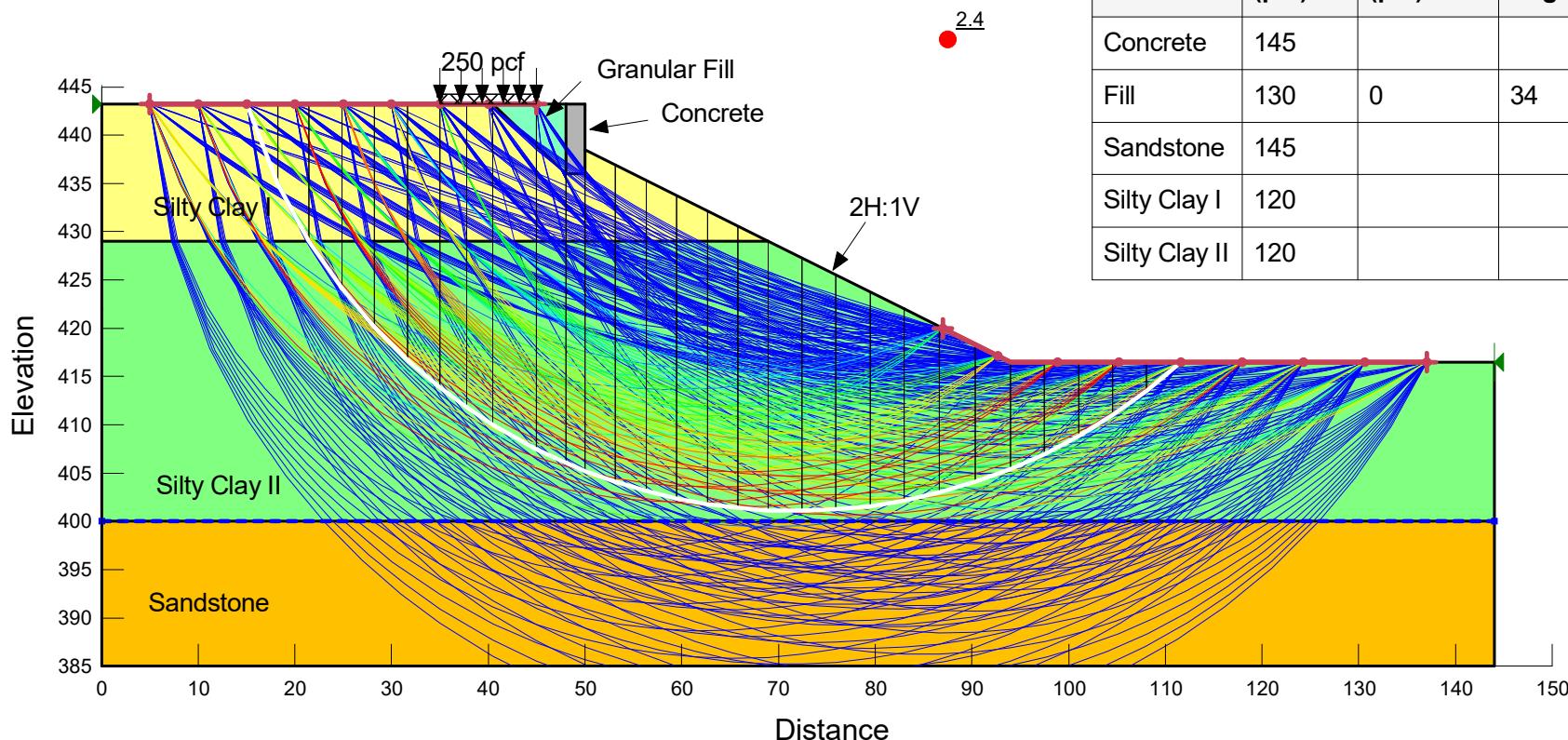
11 Executive Drive, Suite 12, Fairview Heights, Illinois, 62208 • 618-624-8610


## Appendix C

### **Slope Stability Profiles**

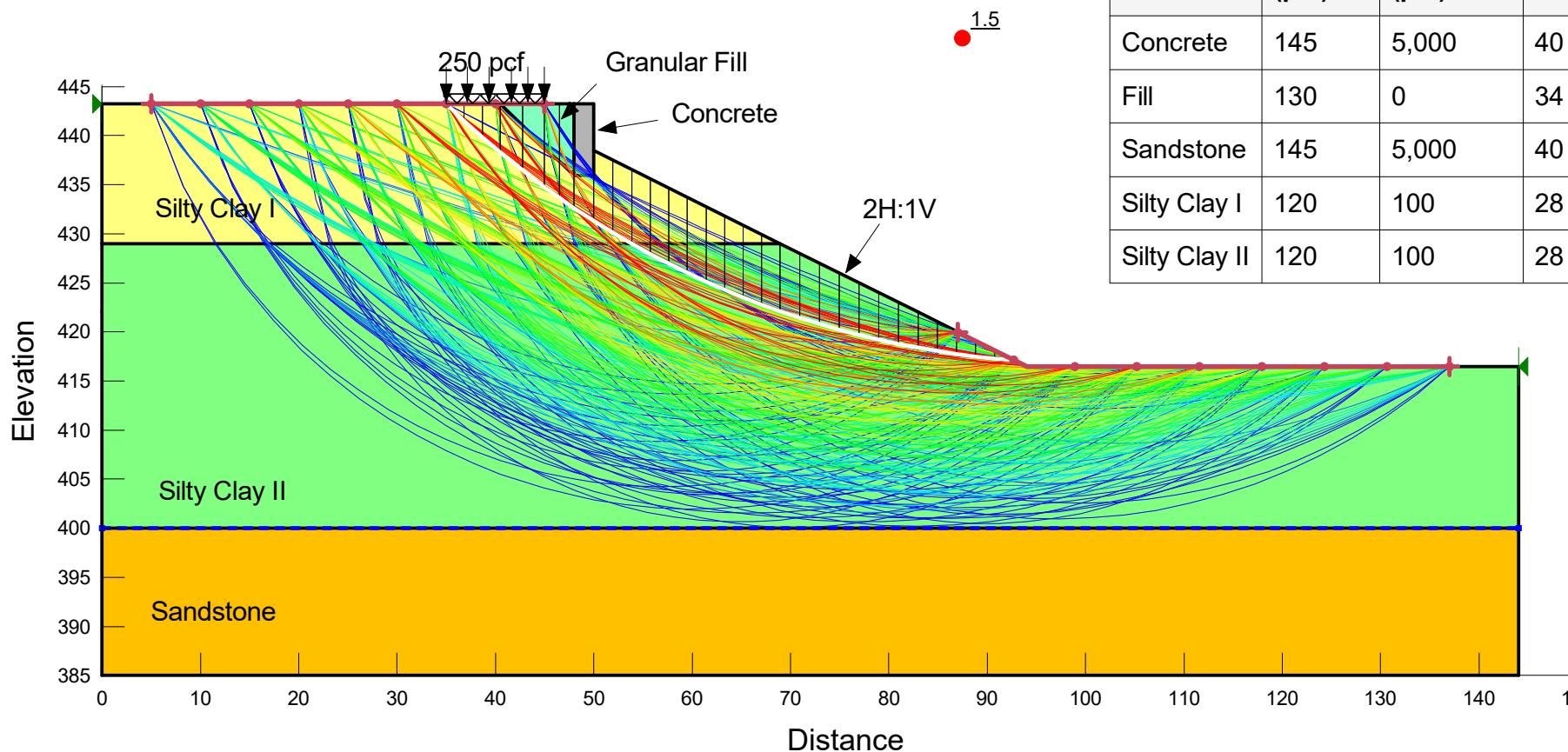

| Name           | Unit Weight (pcf) | Effective Cohesion (psf) | Effective Friction Angle (°) | Cohesion (psf) |
|----------------|-------------------|--------------------------|------------------------------|----------------|
| Concrete       | 145               |                          |                              | 5,000          |
| Fill           | 130               | 0                        | 34                           |                |
| Sandstone      | 145               |                          |                              | 5,000          |
| Silty Clay I   | 120               |                          |                              | 1,500          |
| Silty Clay II  | 120               |                          |                              | 200            |
| Silty Clay III | 120               |                          |                              | 700            |
| Silty Clay IV  | 120               |                          |                              | 1,100          |




| Name           | Unit Weight (pcf) | Effective Cohesion (psf) | Effective Friction Angle (°) |
|----------------|-------------------|--------------------------|------------------------------|
| Concrete       | 145               | 5,000                    | 40                           |
| Fill           | 130               | 0                        | 34                           |
| Sandstone      | 145               | 5,000                    | 40                           |
| Silty Clay I   | 120               | 100                      | 28                           |
| Silty Clay II  | 120               | 50                       | 28                           |
| Silty Clay III | 120               | 75                       | 28                           |
| Silty Clay IV  | 120               | 100                      | 28                           |

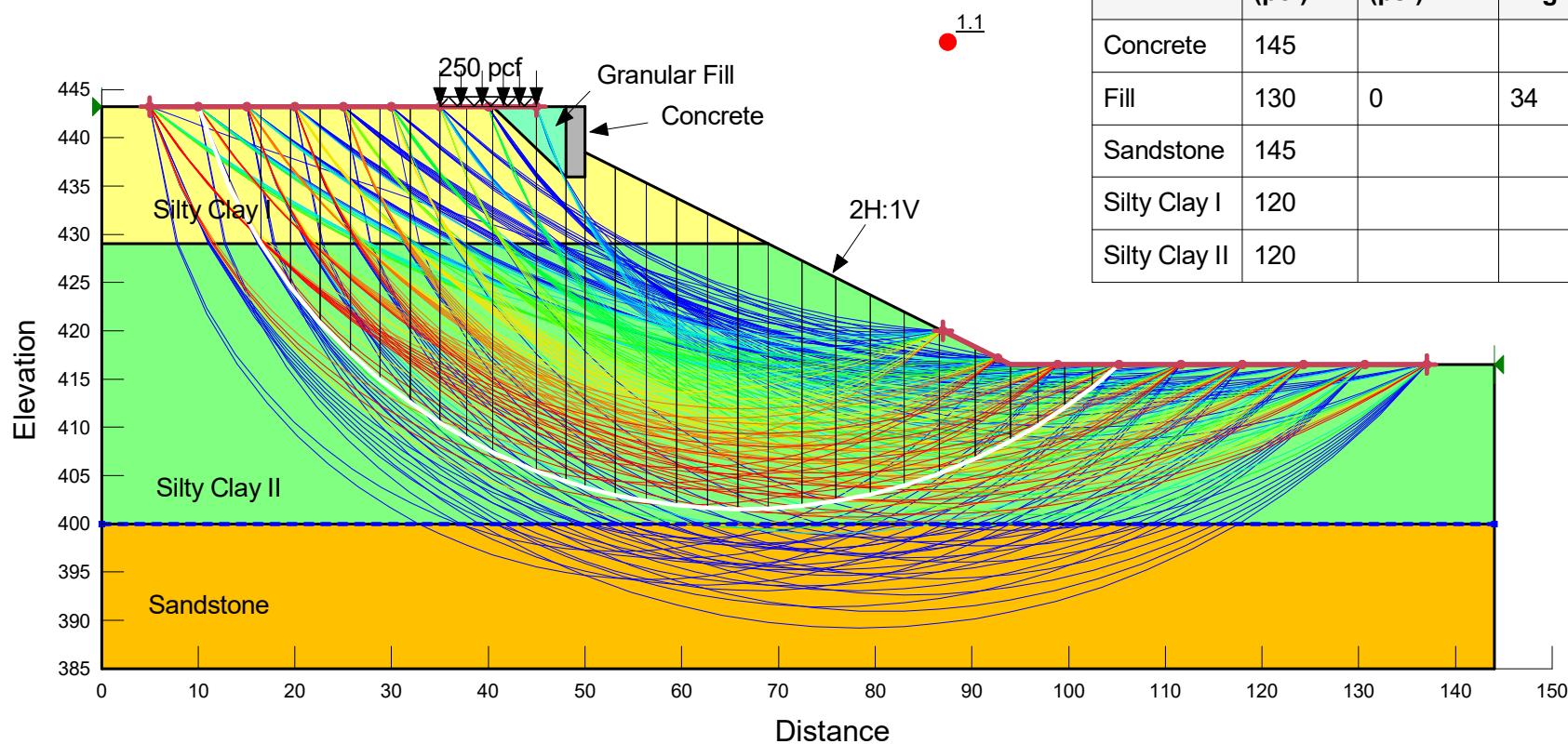


| Name           | Unit Weight (pcf) | Effective Cohesion (psf) | Effective Friction Angle (°) | Cohesion (psf) |
|----------------|-------------------|--------------------------|------------------------------|----------------|
| Concrete       | 145               |                          |                              | 5,000          |
| Fill           | 130               | 0                        | 34                           |                |
| Sandstone      | 145               |                          |                              | 5,000          |
| Silty Clay I   | 120               |                          |                              | 1,200          |
| Silty Clay II  | 120               |                          |                              | 160            |
| Silty Clay III | 120               |                          |                              | 560            |
| Silty Clay IV  | 120               |                          |                              | 880            |




US 51 over ICRR  
West Abutment (Boring 3-S)  
End-of-Construction (Undrained Analysis)




| Name          | Unit Weight (pcf) | Effective Cohesion (psf) | Effective Friction Angle (°) | Cohesion (psf) |
|---------------|-------------------|--------------------------|------------------------------|----------------|
| Concrete      | 145               |                          |                              | 5,000          |
| Fill          | 130               | 0                        | 34                           |                |
| Sandstone     | 145               |                          |                              | 5,000          |
| Silty Clay I  | 120               |                          |                              | 2,000          |
| Silty Clay II | 120               |                          |                              | 1,200          |

US 51 over ICRR  
West Abutment (Boring 3-S)  
Long Term (Drained Analysis)



| Name          | Unit Weight (pcf) | Effective Cohesion (psf) | Effective Friction Angle (°) |
|---------------|-------------------|--------------------------|------------------------------|
| Concrete      | 145               | 5,000                    | 40                           |
| Fill          | 130               | 0                        | 34                           |
| Sandstone     | 145               | 5,000                    | 40                           |
| Silty Clay I  | 120               | 100                      | 28                           |
| Silty Clay II | 120               | 100                      | 28                           |

US 51 over ICRR  
 West Abutment (Boring 3-S)  
 Seismic Analysis  
 PGA = 0.266g



| Name          | Unit Weight (pcf) | Effective Cohesion (psf) | Effective Friction Angle (°) | Cohesion (psf) |
|---------------|-------------------|--------------------------|------------------------------|----------------|
| Concrete      | 145               |                          |                              | 5,000          |
| Fill          | 130               | 0                        | 34                           |                |
| Sandstone     | 145               |                          |                              | 5,000          |
| Silty Clay I  | 120               |                          |                              | 1,600          |
| Silty Clay II | 120               |                          |                              | 960            |



Millennia Professional Services

11 Executive Drive, Suite 12, Fairview Heights, Illinois, 62208 • 618-624-8610

## Appendix D

### **Liquefaction Analysis Spreadsheets**

REFERENCE BORING NUMBER ===== 1-S  
 ELEVATION OF BORING GROUND SURFACE ===== 415.50 FT.  
 DEPTH TO GROUNDWATER - DURING DRILLING ===== 17.50 FT. (Below Boring Ground Surface)  
 DEPTH TO GROUNDWATER - DURING EARTHQUAKE ===== 13.00 FT. (Below Finished Grade Cut or Fill Surface)  
 PEAK HORIZ. GROUND SURFACE ACCELERATION COEFFICIENT (As) ===== 0.361  
 EARTHQUAKE MOMENT MAGNITUDE ===== 7.6  
 FINISHED GRADE FILL OR CUT FROM BORING SURFACE ===== -4.50 FT. (Cut Depth)  
 HAMMER EFFICIENCY ===== 87 %  
 BOREHOLE DIAMETER ===== 8 IN.  
 SAMPLING METHOD ===== Sampler w/out Liners

**EQ MAGNITUDE SCALING FACTOR**  
 (MSF) = 0.979

**AVG. SHEAR WAVE VELOCITY (top 40')**  
 $V_{s,40'} = 656$  FT./SEC.

**PGA CALCULATOR**

Earthquake Moment Magnitude = 7.59  
 Source-To-Site Distance, R (km) = 122.46  
 Ground Motion Prediction Equations = NMSZ  
 PGA = 0.133

| ELEV.<br>OF<br>SAMPLE<br>(FT.) | BORING<br>DEPTH<br>(FT.) | BORING DATA          |                   |                   |                            |                 |                 | CONDITIONS DURING DRILLING |                                    |                           |                                                    |                                                               |            | CONDITIONS DURING EARTHQUAKE                |                                    |                           |                                    |                   |  | CORR.<br>RESIST.<br>CRR<br>7.5 | SOIL MASS<br>PART.<br>FACTOR<br>( $r_d$ ) | EQ<br>INDUCED<br>CSR | FACTOR<br>OF<br>SAFETY *<br>CRR/CSR |  |
|--------------------------------|--------------------------|----------------------|-------------------|-------------------|----------------------------|-----------------|-----------------|----------------------------|------------------------------------|---------------------------|----------------------------------------------------|---------------------------------------------------------------|------------|---------------------------------------------|------------------------------------|---------------------------|------------------------------------|-------------------|--|--------------------------------|-------------------------------------------|----------------------|-------------------------------------|--|
|                                |                          | BORING<br>N<br>VALUE | SPT<br>N<br>BLOWS | UNCONF.<br>COMPR. | %<br>FINEs<br>$Q_u < #200$ | PLAST.<br>INDEX | LIQUID<br>LIMIT | MOIST.<br>CONTENT          | EFFECTIVE<br>UNIT<br>WT.<br>(KCF.) | VERT.<br>STRESS<br>(KSF.) | CORR.<br>SPT N<br>VALUE<br>( $N_1$ ) <sub>60</sub> | EQUIV. CLN.<br>SAND SPT<br>VALUE<br>( $N_1$ ) <sub>60cs</sub> | CRR<br>7.5 | OVER-<br>BURDEN<br>CORR. FACT.<br>( $K_s$ ) | EFFECTIVE<br>UNIT<br>WT.<br>(KCF.) | VERT.<br>STRESS<br>(KSF.) | TOTAL<br>VERT.<br>STRESS<br>(KSF.) | CRR<br>7.5<br>CRR |  |                                |                                           |                      |                                     |  |
| 411                            | 4.5                      | 6                    | 1.2               |                   |                            |                 |                 | 21                         | 0.124                              | 0.558                     | 12.339                                             | 12.339                                                        | 0.134      |                                             |                                    |                           |                                    |                   |  |                                |                                           |                      |                                     |  |
| 408.5                          | 7                        | 10                   | 3.1               |                   |                            |                 |                 | 23                         | 0.135                              | 0.896                     | 19.148                                             | 19.148                                                        | 0.205      |                                             |                                    |                           |                                    |                   |  |                                |                                           |                      |                                     |  |
| 406                            | 9.5                      | 7                    | 0.8               |                   |                            |                 |                 | 22                         | 0.119                              | 1.193                     | 12.814                                             | 12.814                                                        | 0.139      |                                             |                                    |                           |                                    |                   |  |                                |                                           |                      |                                     |  |
| 403.5                          | 12                       | 13                   | 1.8               |                   |                            |                 |                 | 17                         | 0.128                              | 1.513                     | 24.265                                             | 24.265                                                        | 0.278      |                                             |                                    |                           |                                    |                   |  |                                |                                           |                      |                                     |  |
| 401                            | 14.5                     | 100                  |                   |                   |                            |                 |                 | 13                         | 0.147                              | 1.881                     | #####                                              | 201.584                                                       | 1.482      |                                             |                                    |                           |                                    |                   |  |                                |                                           |                      |                                     |  |

**\* FACTOR OF SAFETY DESCRIPTIONS**

N.L. (1) = NOT LIQUEFIALE, ABOVE EQ GROUND WATER ELEVATION  
 N.L. (2) = NOT LIQUEFIALE, PI  $\geq$  12 OR  $w_c/LL \leq 0.85$

N.L. (3) = NOT LIQUEFIALE,  $(N_1)_{60} > 25$

(C) = CONTRACTIVE SOIL TYPES

(D) = DILATIVE SOIL TYPES

REFERENCE BORING NUMBER ===== 2-S  
 ELEVATION OF BORING GROUND SURFACE ===== 441.60 FT.  
 DEPTH TO GROUNDWATER - DURING DRILLING ===== 43.60 FT. (Below Boring Ground Surface)  
 DEPTH TO GROUNDWATER - DURING EARTHQUAKE ===== 43.60 FT. (Below Finished Grade Cut or Fill Surface)  
 PEAK HORIZ. GROUND SURFACE ACCELERATION COEFFICIENT (As) ===== 0.361  
 EARTHQUAKE MOMENT MAGNITUDE ===== 7.6  
 FINISHED GRADE FILL OR CUT FROM BORING SURFACE ===== 0.00 FT.  
 HAMMER EFFICIENCY ===== 87 %  
 BOREHOLE DIAMETER ===== 8 IN.  
 SAMPLING METHOD ===== Sampler w/out Liners

**EQ MAGNITUDE SCALING FACTOR**  
(MSF) = 0.979

**AVG. SHEAR WAVE VELOCITY (top 40')**  
 $V_{s,40'} = 434$  FT./SEC.

**PGA CALCULATOR**

Earthquake Moment Magnitude = 7.59  
 Source-To-Site Distance, R (km) = 122.46  
 Ground Motion Prediction Equations = NMSZ  
 PGA = 0.133

| ELEV.<br>OF<br>SAMPLE<br>(FT.) | BORING<br>DEPTH<br>(FT.) | BORING DATA      |                                |                      |                 |                 |                       | CONDITIONS DURING DRILLING |                        |                                                     |                                                              |                |                    | CONDITIONS DURING EARTHQUAKE |                           |                                              |                                 |                    |                           | CORR.<br>OF<br>SAFETY *<br>CRR/CSR |
|--------------------------------|--------------------------|------------------|--------------------------------|----------------------|-----------------|-----------------|-----------------------|----------------------------|------------------------|-----------------------------------------------------|--------------------------------------------------------------|----------------|--------------------|------------------------------|---------------------------|----------------------------------------------|---------------------------------|--------------------|---------------------------|------------------------------------|
|                                |                          | SPT<br>N         | UNCONF.<br>COMPR.              | %<br>FINEs<br>< #200 | PLAST.<br>INDEX | LIQUID<br>LIMIT | MOIST.<br>CONTENT     | EFFECTIVE<br>UNIT          | VERT.<br>WT.<br>(KCF.) | CORR.<br>SPT N<br>VALUE<br>( $N_1$ ) <sub>60s</sub> | EQUIV. CLN.<br>SAND SPT<br>VALUE<br>( $N_1$ ) <sub>60s</sub> | CRR<br>RESIST. | MAG 7.5<br>CRR 7.5 | EFFECTIVE<br>UNIT            | VERT.<br>WT.<br>(KSF.)    | TOTAL<br>OVER-<br>BURDEN<br>STRESS<br>(KSF.) | CORR. RESIST.<br>CRR 7.5<br>CRR | SOIL MASS<br>PART. | EQ<br>FACTOR<br>( $r_d$ ) | INDUCED<br>CSR                     |
|                                |                          | VALUE<br>(BLOWs) | STR., Q <sub>u</sub><br>(TSF.) | (%)                  | PI              | LL              | w <sub>c</sub><br>(%) | WT.<br>(KCF.)              | STRESS<br>(KSF.)       | N VALUE<br>( $N_1$ ) <sub>60s</sub>                 | MAG 7.5<br>CRR 7.5                                           | WT.<br>(KSF.)  | STRESS<br>(KSF.)   | CORR. FACT.<br>(Ks)          | EQ<br>FACTOR<br>( $r_d$ ) | INDUCED<br>CSR                               |                                 |                    |                           |                                    |
| 437.1                          | 4.5                      | 5                | 0.9                            |                      | 22              |                 | 0.120                 | 0.540                      | 10.343                 | 10.343                                              | 0.116                                                        | 0.120          | 0.540              | 0.540                        | 1.376                     | 0.157                                        | 0.955                           | 0.224              | N.L. (1)                  |                                    |
| 434.6                          | 7                        | 8                | 1.8                            |                      | 25              |                 | 0.128                 | 0.860                      | 15.124                 | 15.124                                              | 0.161                                                        | 0.128          | 0.860              | 0.860                        | 1.268                     | 0.200                                        | 0.925                           | 0.217              | N.L. (1)                  |                                    |
| 432.1                          | 9.5                      | 5                | 1.8                            |                      | 25              |                 | 0.128                 | 1.180                      | 9.185                  | 9.185                                               | 0.106                                                        | 0.128          | 1.180              | 1.180                        | 1.142                     | 0.119                                        | 0.890                           | 0.209              | N.L. (1)                  |                                    |
| 429.6                          | 12                       | 3                | 0.2                            |                      | 26              |                 | 0.104                 | 1.440                      | 5.457                  | 5.457                                               | 0.076                                                        | 0.104          | 1.440              | 1.440                        | 1.082                     | 0.080                                        | 0.852                           | 0.200              | N.L. (1)                  |                                    |
| 427.1                          | 14.5                     | 3                | 0.7                            |                      | 26              |                 | 0.117                 | 1.733                      | 5.294                  | 5.294                                               | 0.074                                                        | 0.117          | 1.733              | 1.733                        | 1.042                     | 0.076                                        | 0.812                           | 0.190              | N.L. (1)                  |                                    |
| 424.6                          | 17                       | 6                | 1.2                            |                      | 22              |                 | 0.124                 | 2.043                      | 10.159                 | 10.159                                              | 0.115                                                        | 0.124          | 2.043              | 2.043                        | 1.009                     | 0.113                                        | 0.770                           | 0.181              | N.L. (1)                  |                                    |
| 422.1                          | 19.5                     | 4                | 0.8                            |                      | 27              |                 | 0.119                 | 2.340                      | 6.490                  | 6.490                                               | 0.084                                                        | 0.119          | 2.340              | 2.340                        | 0.980                     | 0.080                                        | 0.728                           | 0.171              | N.L. (1)                  |                                    |
| 419.6                          | 22                       | 5                | 1.4                            |                      | 27              |                 | 0.125                 | 2.653                      | 7.733                  | 7.733                                               | 0.094                                                        | 0.125          | 2.653              | 2.653                        | 0.952                     | 0.087                                        | 0.688                           | 0.162              | N.L. (1)                  |                                    |
| 417.1                          | 24.5                     | 5                | 0.7                            |                      | 26              |                 | 0.117                 | 2.945                      | 7.395                  | 7.395                                               | 0.091                                                        | 0.117          | 2.945              | 2.945                        | 0.932                     | 0.083                                        | 0.651                           | 0.153              | N.L. (1)                  |                                    |
| 414.6                          | 27                       | 6                | 1.2                            |                      | 22              |                 | 0.124                 | 3.255                      | 8.461                  | 8.461                                               | 0.100                                                        | 0.124          | 3.255              | 3.255                        | 0.909                     | 0.089                                        | 0.617                           | 0.145              | N.L. (1)                  |                                    |
| 412.1                          | 29.5                     | 7                | 0.8                            |                      | 22              |                 | 0.119                 | 3.553                      | 9.440                  | 9.440                                               | 0.108                                                        | 0.119          | 3.553              | 3.553                        | 0.889                     | 0.094                                        | 0.587                           | 0.138              | N.L. (1)                  |                                    |
| 409.6                          | 32                       | 8                | 2                              |                      | 23              |                 | 0.130                 | 3.878                      | 10.287                 | 10.287                                              | 0.116                                                        | 0.130          | 3.878              | 3.878                        | 0.869                     | 0.098                                        | 0.562                           | 0.132              | N.L. (1)                  |                                    |
| 407.1                          | 34.5                     | 10               | 0.7                            |                      | 22              |                 | 0.117                 | 4.170                      | 12.344                 | 12.344                                              | 0.134                                                        | 0.117          | 4.170              | 4.170                        | 0.847                     | 0.111                                        | 0.540                           | 0.127              | N.L. (1)                  |                                    |
| 404.6                          | 37                       | 25               | 1                              |                      | 15              |                 | 0.122                 | 4.475                      | 31.396                 | 31.396                                              | 0.612                                                        | 0.122          | 4.475              | 4.475                        | 0.761                     | 0.456                                        | 0.522                           | 0.123              | N.L. (1)                  |                                    |
| 402.1                          | 39.5                     | 100              |                                |                      | 13              |                 | 0.147                 | 4.843                      | #####                  | 133.448                                             | 0.973                                                        | 0.147          | 4.843              | 4.843                        | 0.719                     | 0.685                                        | 0.508                           | 0.119              | N.L. (1)                  |                                    |

**\* FACTOR OF SAFETY DESCRIPTIONS**

N.L. (1) = NOT LIQUEFIALE, ABOVE EQ GROUND WATER ELEVATION  
N.L. (2) = NOT LIQUEFIALE, PI  $\geq$  12 OR  $w_c/LL \leq 0.85$

N.L. (3) = NOT LIQUEFIALE,  $(N_1)_{60} > 25$

(C) = CONTRACTIVE SOIL TYPES

(D) = DILATIVE SOIL TYPES

REFERENCE BORING NUMBER ===== 3-S  
 ELEVATION OF BORING GROUND SURFACE ===== 441.50 FT.  
 DEPTH TO GROUNDWATER - DURING DRILLING ===== 43.50 FT. (Below Boring Ground Surface)  
 DEPTH TO GROUNDWATER - DURING EARTHQUAKE ===== 43.50 FT. (Below Finished Grade Cut or Fill Surface)  
 PEAK HORIZ. GROUND SURFACE ACCELERATION COEFFICIENT (As) ===== 0.390  
 EARTHQUAKE MOMENT MAGNITUDE ===== 7.6  
 FINISHED GRADE FILL OR CUT FROM BORING SURFACE ===== 0.00 FT.  
 HAMMER EFFICIENCY ===== 87 %  
 BOREHOLE DIAMETER ===== 8 IN.  
 SAMPLING METHOD ===== Sampler w/out Liners

**EQ MAGNITUDE SCALING FACTOR**  
 (MSF) = 0.979

**AVG. SHEAR WAVE VELOCITY (top 40')**  
 $V_{s,40'} = 384$  FT./SEC.

**PGA CALCULATOR**

Earthquake Moment Magnitude = 7.59  
 Source-To-Site Distance, R (km) = 122.46  
 Ground Motion Prediction Equations = NMSZ  
 PGA = 0.133

| ELEV.<br>OF<br>SAMPLE<br>(FT.) | BORING<br>DEPTH<br>(FT.) | BORING DATA      |                                |                      |                 |                 |                       | CONDITIONS DURING DRILLING |                        |                                                      |                                                  |                |                    | CONDITIONS DURING EARTHQUAKE |                        |                           |                 |                                    |       | CORR.<br>PART.<br>CSR | SOIL MASS<br>PART.<br>CSR | EQ<br>INDUCED<br>CSR | FACTOR<br>OF<br>SAFETY *<br>CRR/CSR |
|--------------------------------|--------------------------|------------------|--------------------------------|----------------------|-----------------|-----------------|-----------------------|----------------------------|------------------------|------------------------------------------------------|--------------------------------------------------|----------------|--------------------|------------------------------|------------------------|---------------------------|-----------------|------------------------------------|-------|-----------------------|---------------------------|----------------------|-------------------------------------|
|                                |                          | SPT<br>N         | UNCONF.<br>COMPR.              | %<br>FINEs<br>< #200 | PLAST.<br>INDEX | LIQUID<br>LIMIT | MOIST.<br>CONTENT     | EFFECTIVE<br>UNIT          | VERT.<br>WT.<br>(KCF.) | CORR.<br>SPT N<br>STRESS<br>( $N_1$ ) <sub>60s</sub> | EQUIV. CLN.<br>VALUE<br>( $N_1$ ) <sub>60s</sub> | CRR<br>RESIST. | CRR 7.5<br>MAG 7.5 | EFFECTIVE<br>UNIT            | VERT.<br>WT.<br>(KSF.) | TOTAL<br>STRESS<br>(KSF.) | OVER-<br>BURDEN | CORR.<br>RESIST.<br>CRR 7.5<br>CRR | EQ    |                       |                           |                      |                                     |
|                                |                          | VALUE<br>(BLOWs) | STR., Q <sub>u</sub><br>(TSF.) | (%)                  | PI              | LL              | w <sub>c</sub><br>(%) | WT.<br>(KCF.)              | STRESS<br>(KSF.)       | VALUE<br>( $N_1$ ) <sub>60s</sub>                    | N VALUE<br>( $N_1$ ) <sub>60s</sub>              | RESIST.        | MAG 7.5<br>CRR 7.5 | WT.<br>(KSF.)                | STRESS<br>(KSF.)       | CORR. FACT.<br>(Ks)       | EQ              |                                    |       |                       |                           |                      |                                     |
| 437                            | 4.5                      | 5                | 2.9                            |                      |                 |                 | 22                    | 0.134                      | 0.603                  | 10.136                                               | 10.136                                           | 0.114          |                    | 0.134                        | 0.603                  | 0.603                     | 1.339           | 0.150                              | 0.935 | 0.237                 | N.L. (1)                  |                      |                                     |
| 434.5                          | 7                        | 4                | 1.2                            |                      |                 |                 | 23                    | 0.124                      | 0.913                  | 7.381                                                | 7.381                                            | 0.091          |                    | 0.124                        | 0.913                  | 0.913                     | 1.199           | 0.107                              | 0.893 | 0.226                 | N.L. (1)                  |                      |                                     |
| 432                            | 9.5                      | 4                | 2.4                            |                      |                 |                 | 21                    | 0.132                      | 1.243                  | 7.226                                                | 7.226                                            | 0.090          |                    | 0.132                        | 1.243                  | 1.243                     | 1.121           | 0.098                              | 0.847 | 0.215                 | N.L. (1)                  |                      |                                     |
| 429.5                          | 12                       | 4                | 1.2                            |                      |                 |                 | 25                    | 0.124                      | 1.553                  | 7.075                                                | 7.075                                            | 0.088          |                    | 0.124                        | 1.553                  | 1.553                     | 1.069           | 0.092                              | 0.800 | 0.203                 | N.L. (1)                  |                      |                                     |
| 427                            | 14.5                     | 3                | 1.1                            |                      |                 |                 | 29                    | 0.123                      | 1.861                  | 5.140                                                | 5.140                                            | 0.073          |                    | 0.123                        | 1.861                  | 1.861                     | 1.027           | 0.073                              | 0.751 | 0.191                 | N.L. (1)                  |                      |                                     |
| 424.5                          | 17                       | 5                | 1.8                            |                      |                 |                 | 25                    | 0.128                      | 2.181                  | 8.219                                                | 8.219                                            | 0.098          |                    | 0.128                        | 2.181                  | 2.181                     | 0.994           | 0.095                              | 0.704 | 0.179                 | N.L. (1)                  |                      |                                     |
| 422                            | 19.5                     | 5                | 1.1                            |                      |                 |                 | 28                    | 0.123                      | 2.488                  | 7.873                                                | 7.873                                            | 0.095          |                    | 0.123                        | 2.488                  | 2.488                     | 0.966           | 0.090                              | 0.660 | 0.167                 | N.L. (1)                  |                      |                                     |
| 419.5                          | 22                       | 5                | 0.5                            |                      |                 |                 | 27                    | 0.114                      | 2.773                  | 7.558                                                | 7.558                                            | 0.092          |                    | 0.114                        | 2.773                  | 2.773                     | 0.944           | 0.085                              | 0.619 | 0.157                 | N.L. (1)                  |                      |                                     |
| 417                            | 24.5                     | 5                | 1.4                            |                      |                 |                 | 29                    | 0.125                      | 3.086                  | 7.210                                                | 7.210                                            | 0.089          |                    | 0.125                        | 3.086                  | 3.086                     | 0.923           | 0.081                              | 0.583 | 0.148                 | N.L. (1)                  |                      |                                     |
| 414.5                          | 27                       | 5                | 1.1                            |                      |                 |                 | 27                    | 0.123                      | 3.393                  | 6.887                                                | 6.887                                            | 0.087          |                    | 0.123                        | 3.393                  | 3.393                     | 0.905           | 0.077                              | 0.551 | 0.140                 | N.L. (1)                  |                      |                                     |
| 412                            | 29.5                     | 9                | 1.2                            |                      |                 |                 | 21                    | 0.124                      | 3.703                  | 11.845                                               | 11.845                                           | 0.130          |                    | 0.124                        | 3.703                  | 3.703                     | 0.873           | 0.111                              | 0.525 | 0.133                 | N.L. (1)                  |                      |                                     |
| 409.5                          | 32                       | 5                | 1.2                            |                      |                 |                 | 20                    | 0.124                      | 4.013                  | 6.297                                                | 6.297                                            | 0.082          |                    | 0.124                        | 4.013                  | 4.013                     | 0.876           | 0.070                              | 0.502 | 0.127                 | N.L. (1)                  |                      |                                     |
| 407                            | 34.5                     | 7                | 1.2                            |                      |                 |                 | 24                    | 0.124                      | 4.323                  | 8.448                                                | 8.448                                            | 0.100          |                    | 0.124                        | 4.323                  | 4.323                     | 0.854           | 0.083                              | 0.484 | 0.123                 | N.L. (1)                  |                      |                                     |
| 404.5                          | 37                       | 8                | 1.8                            |                      |                 |                 | 22                    | 0.128                      | 4.643                  | 9.256                                                | 9.256                                            | 0.107          |                    | 0.128                        | 4.643                  | 4.643                     | 0.837           | 0.087                              | 0.469 | 0.119                 | N.L. (1)                  |                      |                                     |
| 402                            | 39.5                     | 4                | 1.3                            |                      |                 |                 | 18                    | 0.125                      | 4.956                  | 4.449                                                | 4.449                                            | 0.068          |                    | 0.125                        | 4.956                  | 4.956                     | 0.844           | 0.056                              | 0.457 | 0.116                 | N.L. (1)                  |                      |                                     |

## \* FACTOR OF SAFETY DESCRIPTIONS

N.L. (1) = NOT LIQUEFIALE, ABOVE EQ GROUND WATER ELEVATION

 N.L. (2) = NOT LIQUEFIALE, PI  $\geq$  12 OR  $w_c/LL \leq 0.85$ 

 N.L. (3) = NOT LIQUEFIALE,  $(N_1)_{60} > 25$ 

(C) = CONTRACTIVE SOIL TYPES

(D) = DILATIVE SOIL TYPES



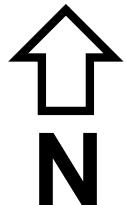
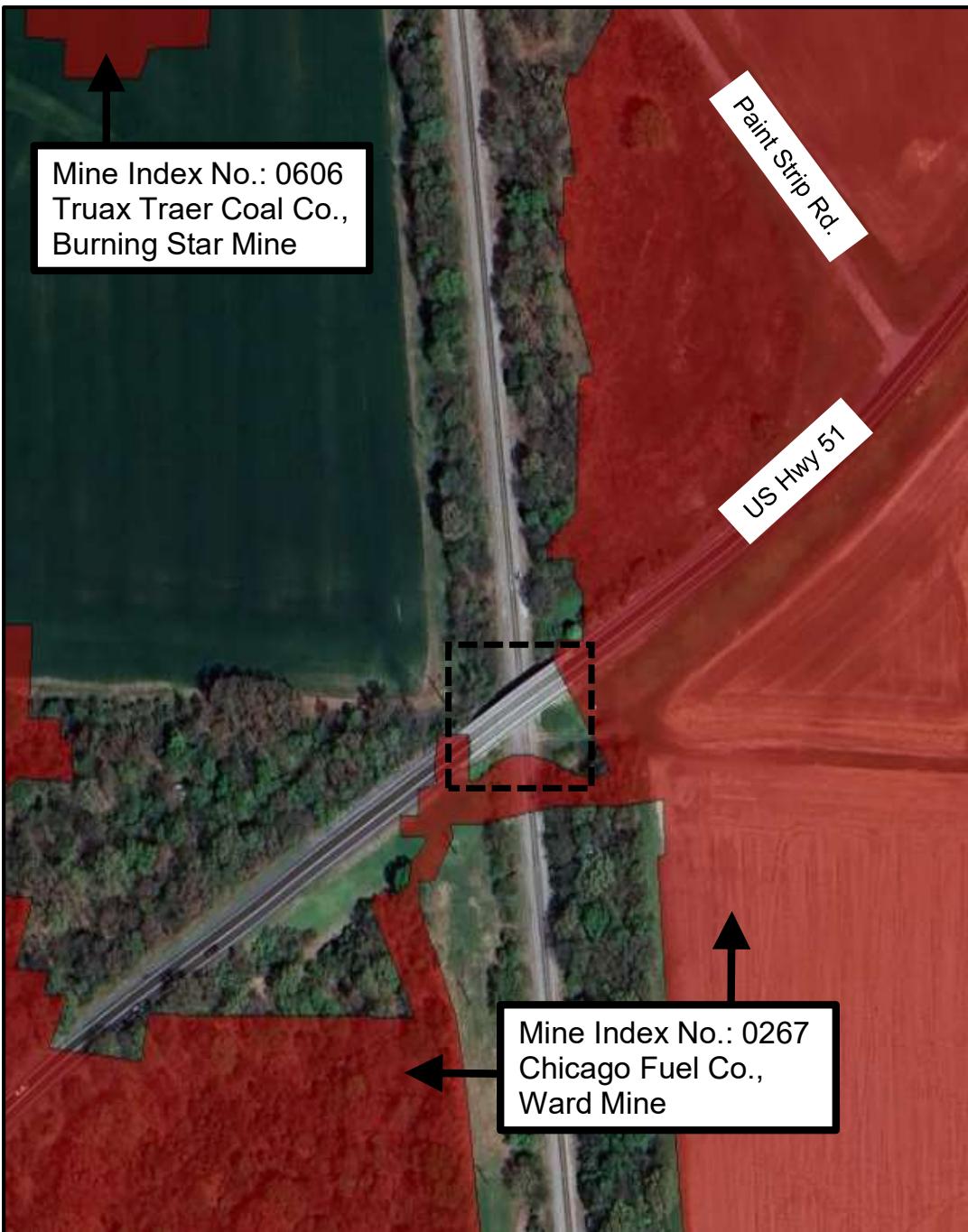
Millennia Professional Services, Ltd

11 Executive Drive, Suite 12, Fairview Heights, Illinois 62208 • 618-624-8610

## Appendix E

### **Mine Activity Map**





# Millennia Professional Services

11 Executive Drive #12, Fairview Heights, IL

Phone: (618) 624-8610

Fax: (618) 624-8611

Project No.: MG24067.02



## MINE ACTIVITY MAP

US 51 over ICRR  
Jackson County, Illinois

Approximate  
Site Location:



Drawn by:

B. Fisher

Checked by:

J. Olson

Image obtained from Google Earth

\*Not to scale

Project No.:

MG24067.02

Date:

3/20/2025



Millennia Professional Services, Ltd

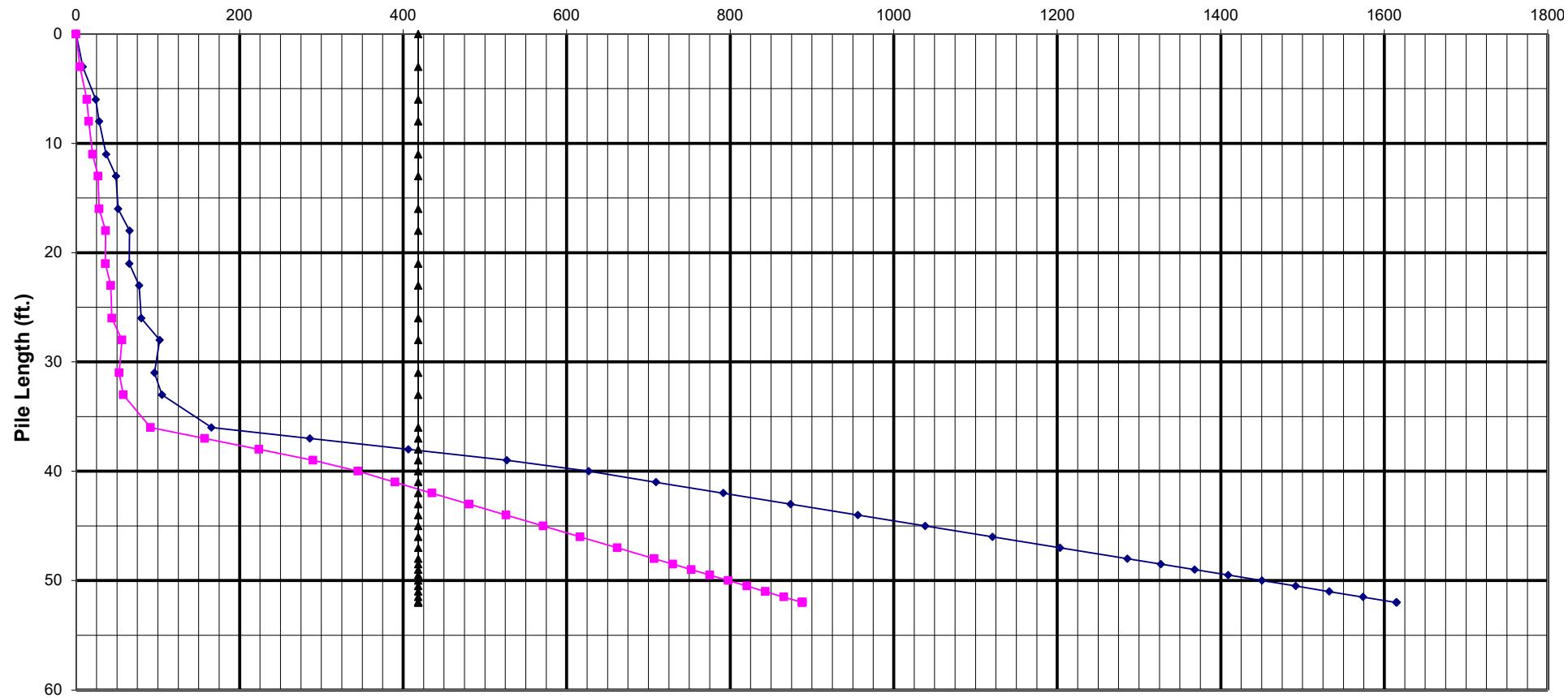
11 Executive Drive, Suite 12, Fairview Heights, Illinois 62208 • 618-624-8610

## Appendix F

### **Estimated Pile Length Spreadsheets**

SUBSTRUCTURE=====  
 REFERENCE BORING ===== 2-S  
 LRFD or ASD or SEISMIC ===== LRFD  
 PILE CUTOFF ELEV. ===== 438.09 ft  
 GROUND SURFACE ELEV. AGAINST PILE DURING DRIVING ===== 436.09 ft  
 GEOTECHNICAL LOSS TYPE (None, Scour, Liquef., DD) ===== None  
 BOTTOM ELEV. OF SCOUR, LIQUEF., or DD ===== ft  
 TOP ELEV. OF LIQUEF. (so layers above apply DD) ===== ft

**East Abutment**
**2-S**
**LRFD**
**438.09**
**ft**
**436.09**
**ft**
**None**
**ft**


# Pile Bearing vs. Estimated Length

Bearing Resistance (kips)

NOMINAL REQ'D BEARING

FACTORED RESISTANCE AVAILABLE

Maximum Bearing For Steel HP 12 X 53 Pile



## Pile Design Table for East Abutment utilizing Boring #2-S

| Nominal Required Bearing (Kips) | Factored Resistance Available (Kips) | Estimated Pile Length (Ft.) | Nominal Required Bearing (Kips) | Factored Resistance Available (Kips) | Estimated Pile Length (Ft.) | Nominal Required Bearing (Kips) | Factored Resistance Available (Kips) | Estimated Pile Length (Ft.) |
|---------------------------------|--------------------------------------|-----------------------------|---------------------------------|--------------------------------------|-----------------------------|---------------------------------|--------------------------------------|-----------------------------|
| Steel HP 8 X 36                 | 271                                  | 149                         | 38                              |                                      |                             |                                 |                                      |                             |
|                                 |                                      |                             | <b>Steel HP 10 X 42</b>         |                                      |                             | <b>Steel HP 12 X 84</b>         |                                      |                             |
|                                 |                                      |                             | 86                              | 47                                   | 33                          | 109                             | 60                                   | 33                          |
|                                 |                                      |                             | 138                             | 76                                   | 36                          | 182                             | 100                                  | 36                          |
|                                 |                                      |                             | 335                             | 184                                  | 38                          | 664                             | 365                                  | 41                          |
|                                 |                                      |                             | <b>Steel HP 10 X 57</b>         |                                      |                             | <b>Steel HP 14 X 73</b>         |                                      |                             |
|                                 |                                      |                             | 87                              | 48                                   | 33                          | 116                             | 64                                   | 31                          |
|                                 |                                      |                             | 145                             | 80                                   | 36                          | 128                             | 70                                   | 33                          |
|                                 |                                      |                             | 454                             | 250                                  | 40                          | 203                             | 112                                  | 36                          |
|                                 |                                      |                             | <b>Steel HP 12 X 53</b>         |                                      |                             | 578                             | 318                                  | 39                          |
|                                 |                                      |                             | 105                             | 58                                   | 33                          | <b>Steel HP 14 X 89</b>         |                                      |                             |
|                                 |                                      |                             | 166                             | 91                                   | 36                          | 117                             | 64                                   | 31                          |
|                                 |                                      |                             | 418                             | 230                                  | 39                          | 129                             | 71                                   | 33                          |
|                                 |                                      |                             | <b>Steel HP 12 X 63</b>         |                                      |                             | 211                             | 116                                  | 36                          |
|                                 |                                      |                             | 106                             | 58                                   | 33                          | 705                             | 388                                  | 40                          |
|                                 |                                      |                             | 172                             | 95                                   | 36                          | <b>Steel HP 14 X 102</b>        |                                      |                             |
|                                 |                                      |                             | 497                             | 273                                  | 39                          | 118                             | 65                                   | 31                          |
|                                 |                                      |                             | <b>Steel HP 12 X 74</b>         |                                      |                             | 131                             | 72                                   | 33                          |
|                                 |                                      |                             | 108                             | 59                                   | 33                          | 217                             | 120                                  | 36                          |
|                                 |                                      |                             | 177                             | 97                                   | 36                          | 810                             | 445                                  | 41                          |
|                                 |                                      |                             | 589                             | 324                                  | 40                          | <b>Steel HP 14 X 117</b>        |                                      |                             |
|                                 |                                      |                             |                                 |                                      |                             | 101                             | 55                                   | 26                          |
|                                 |                                      |                             |                                 |                                      |                             | 120                             | 66                                   | 31                          |
|                                 |                                      |                             |                                 |                                      |                             | 132                             | 73                                   | 33                          |
|                                 |                                      |                             |                                 |                                      |                             | 225                             | 124                                  | 36                          |
|                                 |                                      |                             |                                 |                                      |                             | 929                             | 511                                  | 42                          |

SUBSTRUCTURE ===== West Abutment  
 REFERENCE BORING ===== 3-S  
 LRFD or ASD or SEISMIC ===== LRFD  
 PILE CUTOFF ELEV. ===== 437.98 ft  
 GROUND SURFACE ELEV. AGAINST PILE DURING DRIVING = 435.98 ft  
 GEOTECHNICAL LOSS TYPE (None, Scour, Liquef., DD) ===== None  
 BOTTOM ELEV. OF SCOUR, LIQUEF., or DD ===== ft  
 TOP ELEV. OF LIQUEF. (so layers above apply DD) ===== ft

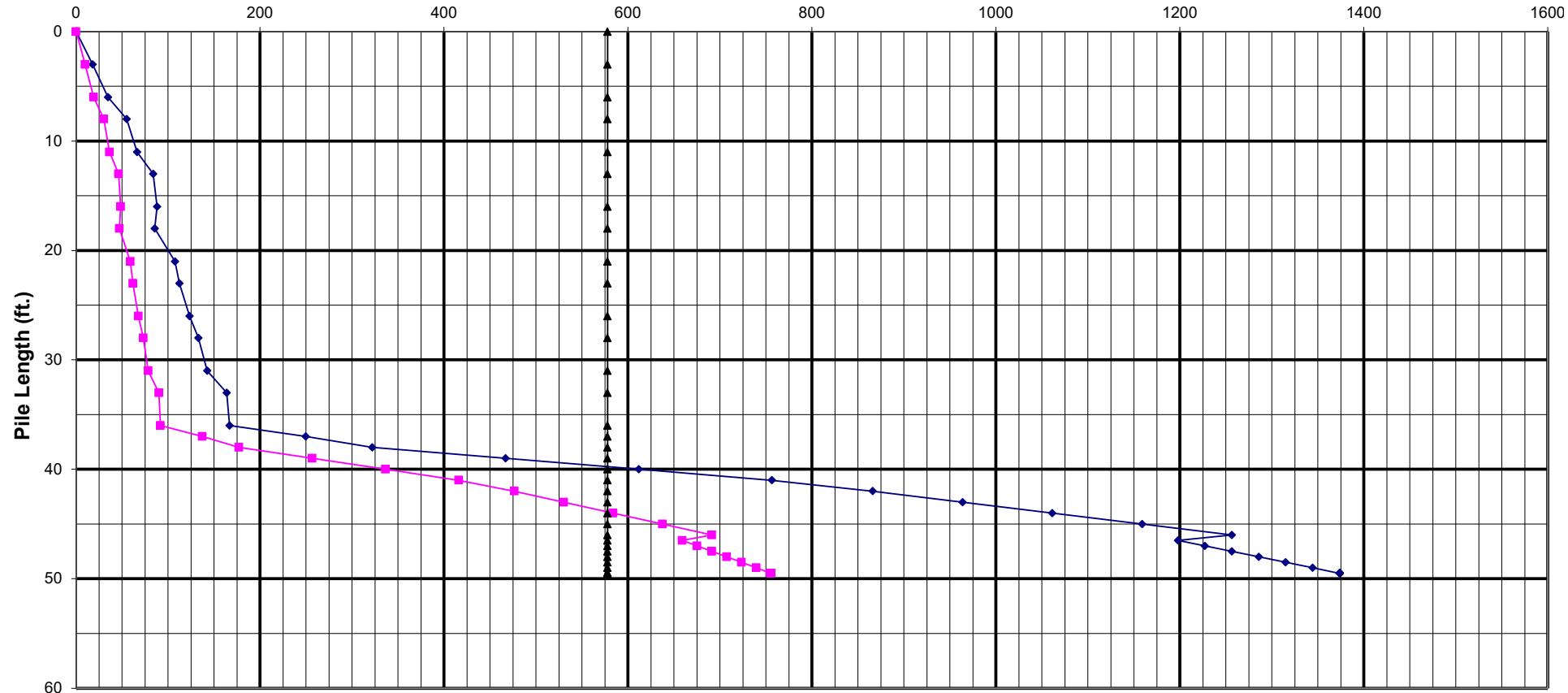
| Maximum Nominal Req'd Bearing of Pile | Maximum Nominal Req'd Bearing of Boring | Maximum Factored Resistance Available in Boring | Maximum Pile Driveable Length in Boring |
|---------------------------------------|-----------------------------------------|-------------------------------------------------|-----------------------------------------|
| <b>578 KIPS</b>                       | <b>578 KIPS</b>                         | <b>318 KIPS</b>                                 | <b>40 FT.</b>                           |

TOTAL FACTORED SUBSTRUCTURE LOAD ===== 1076 kips  
 TOTAL LENGTH OF SUBSTRUCTURE (along skew)===== 49.27 ft  
 NUMBER OF ROWS OF PILES PER SUBSTRUCTURE ===== 1  
 Approx. Factored Loading Applied per pile at 8 ft. Cts ===== 174.71 KIPS  
 Approx. Factored Loading Applied per pile at 3 ft. Cts ===== 65.52 KIPS

PILE TYPE AND SIZE ===== Steel HP 14 X 73

Plugged Pile Perimeter===== 4.700 FT. Unplugged Pile Perimeter===== 6.975 FT.  
 Plugged Pile End Bearing Area===== 1.379 SQFT. Unplugged Pile End Bearing Area===== 0.149 SQFT.

| BOT.<br>OF<br>LAYER<br>ELEV.<br>(FT.) | LAYER<br>THICK.<br>(FT.) | UNCONF.<br>COMPR.<br>STRENGTH<br>(TSF.) | S.P.T.<br>N<br>VALUE<br>(BLOWS) | GRANULAR<br>OR ROCK LAYER<br>DESCRIPTION | NOMINAL PLUGGED           |                               |                            | NOMINAL UNPLUG'D          |                               |                            | NOMINAL<br>REQ'D<br>BEARING<br>(KIPS) | FACTORED<br>GEOTECH.<br>LOSS FROM<br>SCOUR OR DD<br>(KIPS) | FACTORED<br>GEOTECH.<br>LOSS LOAD<br>FROM DD<br>(KIPS) | FACTORED<br>RESISTANCE<br>AVAILABLE<br>(KIPS) | ESTIMATED<br>PILE<br>LENGTH<br>(FT.) |
|---------------------------------------|--------------------------|-----------------------------------------|---------------------------------|------------------------------------------|---------------------------|-------------------------------|----------------------------|---------------------------|-------------------------------|----------------------------|---------------------------------------|------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------|--------------------------------------|
|                                       |                          |                                         |                                 |                                          | SIDE<br>RESIST.<br>(KIPS) | END BRG.<br>RESIST.<br>(KIPS) | TOTAL<br>RESIST.<br>(KIPS) | SIDE<br>RESIST.<br>(KIPS) | END BRG.<br>RESIST.<br>(KIPS) | TOTAL<br>RESIST.<br>(KIPS) |                                       |                                                            |                                                        |                                               |                                      |
| 434.50                                | 1.48                     | 2.90                                    |                                 |                                          | 10.4                      |                               | 33.6                       | 15.4                      |                               | 17.9                       | 18                                    | 0                                                          | 0                                                      | 10                                            | 3                                    |
| 432.00                                | 2.50                     | 1.20                                    |                                 |                                          | 9.6                       | 23.2                          | 66.4                       | 14.3                      | 2.5                           | 34.7                       | 35                                    | 0                                                          | 0                                                      | 19                                            | 6                                    |
| 429.50                                | 2.50                     | 2.40                                    |                                 |                                          | 15.4                      | 46.4                          | 58.6                       | 22.8                      | 5.0                           | 55.1                       | 55                                    | 0                                                          | 0                                                      | 30                                            | 8                                    |
| 427.00                                | 2.50                     | 1.20                                    |                                 |                                          | 9.6                       | 23.2                          | 66.3                       | 14.3                      | 2.5                           | 69.1                       | 66                                    | 0                                                          | 0                                                      | 36                                            | 11                                   |
| 424.50                                | 2.50                     | 1.10                                    |                                 |                                          | 9.0                       | 21.3                          | 88.8                       | 13.4                      | 2.3                           | 84.0                       | 84                                    | 0                                                          | 0                                                      | 46                                            | 13                                   |
| 422.00                                | 2.50                     | 1.80                                    |                                 |                                          | 12.8                      | 34.8                          | 88.1                       | 19.0                      | 3.7                           | 101.5                      | 88                                    | 0                                                          | 0                                                      | 48                                            | 16                                   |
| 419.50                                | 2.50                     | 1.10                                    |                                 |                                          | 9.0                       | 21.3                          | 85.5                       | 13.4                      | 2.3                           | 113.6                      | 85                                    | 0                                                          | 0                                                      | 47                                            | 18                                   |
| 417.00                                | 2.50                     | 0.50                                    |                                 |                                          | 4.6                       | 9.7                           | 107.5                      | 6.8                       | 1.0                           | 122.2                      | 107                                   | 0                                                          | 0                                                      | 59                                            | 21                                   |
| 414.50                                | 2.50                     | 1.40                                    |                                 |                                          | 10.8                      | 27.1                          | 112.4                      | 16.0                      | 2.9                           | 137.6                      | 112                                   | 0                                                          | 0                                                      | 62                                            | 23                                   |
| 412.00                                | 2.50                     | 1.10                                    |                                 |                                          | 9.0                       | 21.3                          | 123.4                      | 13.4                      | 2.3                           | 151.2                      | 123                                   | 0                                                          | 0                                                      | 68                                            | 26                                   |
| 409.50                                | 2.50                     | 1.20                                    |                                 |                                          | 9.6                       | 23.2                          | 133.0                      | 14.3                      | 2.5                           | 165.5                      | 133                                   | 0                                                          | 0                                                      | 73                                            | 28                                   |
| 407.00                                | 2.50                     | 1.20                                    |                                 |                                          | 9.6                       | 23.2                          | 142.6                      | 14.3                      | 2.5                           | 179.8                      | 143                                   | 0                                                          | 0                                                      | 78                                            | 31                                   |
| 404.50                                | 2.50                     | 1.20                                    |                                 |                                          | 9.6                       | 23.2                          | 163.9                      | 14.3                      | 2.5                           | 195.3                      | 164                                   | 0                                                          | 0                                                      | 90                                            | 33                                   |
| 402.00                                | 2.50                     | 1.80                                    |                                 |                                          | 12.8                      | 34.8                          | 167.0                      | 19.0                      | 3.7                           | 213.2                      | 167                                   | 0                                                          | 0                                                      | 92                                            | 36                                   |
| 400.50                                | 1.50                     | 1.30                                    |                                 |                                          | 6.1                       | 25.1                          | 427.1                      | 9.1                       | 2.7                           | 249.7                      | 250                                   | 0                                                          | 0                                                      | 137                                           | 37                                   |
| 400.00                                | 0.50                     |                                         |                                 | Sandstone                                | 48.8                      | 279.1                         | 475.9                      | 72.4                      | 30.1                          | 322.1                      | 322                                   | 0                                                          | 0                                                      | 177                                           | 38                                   |
| 399.00                                | 1.00                     |                                         |                                 | Sandstone                                | 97.6                      | 279.1                         | 573.5                      | 144.8                     | 30.1                          | 466.9                      | 467                                   | 0                                                          | 0                                                      | 257                                           | 39                                   |
| 398.00                                | 1.00                     |                                         |                                 | Sandstone                                | 97.6                      | 279.1                         | 671.1                      | 144.8                     | 30.1                          | 611.7                      | 612                                   | 0                                                          | 0                                                      | 336                                           | 40                                   |
| 397.00                                | 1.00                     |                                         |                                 | Sandstone                                | 97.6                      | 279.1                         | 768.6                      | 144.8                     | 30.1                          | 756.5                      | 757                                   | 0                                                          | 0                                                      | 416                                           | 44                                   |
| 396.00                                | 1.00                     |                                         |                                 | Sandstone                                | 97.6                      | 279.1                         | 866.2                      | 144.8                     | 30.1                          | 901.4                      | 866                                   | 0                                                          | 0                                                      | 476                                           | 42                                   |
| 395.00                                | 1.00                     |                                         |                                 | Sandstone                                | 97.6                      | 279.1                         | 963.8                      | 144.8                     | 30.1                          | 1046.2                     | 964                                   | 0                                                          | 0                                                      | 530                                           | 43                                   |
| 394.00                                | 1.00                     |                                         |                                 | Sandstone                                | 97.6                      | 279.1                         | 1061.4                     | 144.8                     | 30.1                          | 1191.0                     | 1064                                  | 0                                                          | 0                                                      | 584                                           | 44                                   |
| 393.00                                | 1.00                     |                                         |                                 | Sandstone                                | 97.6                      | 279.1                         | 1159.0                     | 144.8                     | 30.1                          | 1335.8                     | 1159                                  | 0                                                          | 0                                                      | 637                                           | 45                                   |
| 392.00                                | 1.00                     |                                         |                                 | Sandstone                                | 97.6                      | 279.1                         | 1256.6                     | 144.8                     | 30.1                          | 1480.6                     | 1257                                  | 0                                                          | 0                                                      | 694                                           | 46                                   |
| 391.50                                | 0.50                     |                                         |                                 | Sandstone                                | 48.8                      | 279.1                         | 1198.0                     | 72.4                      | 30.1                          | 1541.5                     | 1198                                  | 0                                                          | 0                                                      | 659                                           | 46.5                                 |
| 391.00                                | 0.50                     |                                         |                                 | Shale                                    | 29.3                      | 171.8                         | 1227.3                     | 43.4                      | 18.5                          | 1584.9                     | 1227                                  | 0                                                          | 0                                                      | 675                                           | 47                                   |
| 390.50                                | 0.50                     |                                         |                                 | Shale                                    | 29.3                      | 171.8                         | 1256.5                     | 43.4                      | 18.5                          | 1628.3                     | 1257                                  | 0                                                          | 0                                                      | 694                                           | 47.5                                 |
| 390.00                                | 0.50                     |                                         |                                 | Shale                                    | 29.3                      | 171.8                         | 1285.8                     | 43.4                      | 18.5                          | 1671.8                     | 1286                                  | 0                                                          | 0                                                      | 707                                           | 48                                   |
| 389.50                                | 0.50                     |                                         |                                 | Shale                                    | 29.3                      | 171.8                         | 1315.1                     | 43.4                      | 18.5                          | 1715.2                     | 1315                                  | 0                                                          | 0                                                      | 723                                           | 48.5                                 |
| 389.00                                | 0.50                     |                                         |                                 | Shale                                    | 29.3                      | 171.8                         | 1344.4                     | 43.4                      | 18.5                          | 1758.7                     | 1344                                  | 0                                                          | 0                                                      | 739                                           | 49                                   |
| 388.50                                | 0.50                     |                                         |                                 | Shale                                    | 29.3                      | 171.8                         | 1373.6                     | 43.4                      | 18.5                          | 1802.1                     | 1374                                  | 0                                                          | 0                                                      | 755                                           | 49.5                                 |
| 388.00                                | 0.50                     |                                         |                                 |                                          |                           |                               |                            |                           |                               |                            |                                       |                                                            |                                                        |                                               |                                      |


# Pile Bearing vs. Estimated Length

Bearing Resistance (kips)

NOMINAL REQ'D BEARING

FACTORED RESISTANCE AVAILABLE

Maximum Bearing For Steel HP 14 X 73 Pile



## Pile Design Table for West Abutment utilizing Boring #3-S