Structural Geotechnical Report

Existing Bridge SN: 016-0827 Proposed Bridge SN: 016-8301 Oakton Street Bridge over I-94 IDOT PTB 195-019 Cook County, Illinois

Prepared for

Illinois Department of Transportation (IDOT) Contract Number: P-91-467-16

> Project Design Engineer Team Atlas Engineering Group, Ltd.

Geotechnical Consultant:

October 25, 2021

735 Remington Road Schaumburg, IL 60173 Tel: 630.994.2600 www.gsg-consultants.com

October 25, 2021

Mr. Behzad Amini, Ph.D., P.E. Director of Transportation Atlas Engineering Group, Ltd. 3100 Dundee Road, Suite 502 Northbrook, IL 60062

Structural Geotechnical Report Oakton Street Bridge over I-94 Existing Bridge SN: 016-0827 Proposed Bride SN: 016-8301 IDOT PTB 195-019

Dear Mr. Amini:

Attached is a copy of the Structural Geotechnical Report for the above referenced project. This report provides a brief description of the site investigation, site conditions, and foundation and construction recommendations for the above referenced project. The site investigation included advancing three (3) soil borings to depths between 91 and 124 feet. The foundation recommendations for the bridge include supporting the proposed abutments, approach slabs, and center pier on driven piles.

Should you have any questions or require additional information, please call us at 630-994-2600.

Sincerely,

Thomas E. Kasang

Thomas E. Kasang, P.E. Project Engineer

BluSarne

Ala E Sassila, Ph.D., P.E. Principal

TABLE OF CONTENTS

1.0	INTROE	DUCTION1
	1.1	Existing Bridge Information1
	1.2	Proposed Bridge Information2
2.0	SUBSU	RFACE EXPLORATION PROGRAM
	2.1	Subsurface Exploration Program3
	2.2	Laboratory Testing Program4
	2.3	Subsurface Soil Conditions4
	2.4	Groundwater Conditions6
3.0	GEOTEO	CHNICAL ANALYSES7
	3.1	Slope Stability7
	3.2	Seismic Parameters
	3.3	Scour
	3.4	Integral Abutment Feasibility8
4.0	GEOTEO	CHNICAL BRIDGE DESIGN RECOMMENDATIONS10
	4.1	Bridge Foundation Recommendations10
	4.2	Driven Pile Foundation Design Recommendation11
	4.3	Pile Driving Considerations15
	4.4	Lateral Load Resistance15
5.0	CONST	RUCTION CONSIDERATIONS
	5.1	Site Preparation17
	5.2	Existing Utilities
	5.3	Site Excavation18
	5.4	Borrow Material and Compaction Requirements18
	5.5	Temporary Soil Retention System18
	5.6	Groundwater Management19
6.0	LIMITA	TIONS

<u>Exhibits</u>

Exhibit 1	Project Location Map
Exhibit 2	Existing Site Conditions at Proposed Bridge Location

<u>Tables</u>

Table 1	Summary of Subsurface Exploration Borings
Table 2	Global Slope Stability Analyses Results
Table 3	Seismic Parameters
Table 4a-4e	Driven Pile Design Parameters
Tables 5	Lateral Load Resistance Soil Parameters

Appendices

Appendix A	General Plans & Elevation
Appendix B	Soil Boring Location Plan and Subsurface Profile
Appendix C	Soil Boring Logs
Appendix D	Laboratory Test Results
Appendix E	IDOT Pile Design Tables
Appendix F	Slope Stability Analyses Exhibits

Structural Geotechnical Report Oakton Street Bridge over I-94 Existing Bridge SN: 016-0827 Proposed Bridge SN: 016-8301 Cook County, Illinois IDOT PTB 195-019

1.0 INTRODUCTION

GSG Consultants, Inc. (GSG) completed a geotechnical investigation for the design of the proposed Oakton Street Bridge over I-94 near the Villages of Skokie and Morton Grove in Cook County, Illinois. The purpose of the investigation was to explore the subsurface conditions, to determine engineering properties of the subsurface soil, and to develop design and construction recommendations for the project. The general project limits are shown in **Exhibit 1**.

1.1 Existing Bridge Information

The existing Oakton Street Bridge over I-94 (SN: 016-0827) was originally constructed in 1950, and repairs were performed in 1982 and 2007. The existing structure is a four-span steel girder bridge supported on reinforced concrete piers and concrete pile supported stub abutments. The

length of the bridge from back to back of the abutments is 226'-6". The out-to-out deck width of the bridge is 64'-0", and the bridge is skewed 7° 36' (right). **Exhibit 2** shows the existing conditions of the Oakton Street Bridge.

Exhibit 2 – Oakton Street Bridge Looking North on I-94

1.2 Proposed Bridge Information

Based on the design information and drawings provided by Atlas Engineering Group, Ltd. (Atlas) (dated March and December 2019) (**Appendix A**), the existing structure will be removed and replaced with a new two-span continuous galvanized steel structure (SN: 016-8301) supported on integral abutments and a reinforced concrete center pier. It is anticipated that the new abutments, approach slabs, and center pier will be supported on driven steel pile foundations. The bridge will have a total back-to-back abutment length of 213'-4 3/8'' and out-to-out width of 84'-4''. The vertical clearance of the bridge will be raised to a height of 15'-9'', which will require approximately 3 feet of new fill at the bridge abutments and approaches. It is anticipated that the proposed improvements will also include modifying the slopes at the existing bridge abutments.

2.0 SUBSURFACE EXPLORATION PROGRAM

This section describes the subsurface exploration program and laboratory testing program completed. The proposed locations and depths of the soil borings were selected in accordance with IDOT requirements and were coordinated with Atlas based on available design information at the time of the field activities. The borings were completed in the field based on field conditions and accessibility. The subsurface exploration program was performed in accordance with the IDOT geotechnical manual and procedures.

2.1 Subsurface Exploration Program

The subsurface exploration program was conducted between August 26 and 30, 2021, and included advancing three (3) standard penetration test (SPT) borings at the proposed bridge location. The coordinates and existing ground surface elevations shown on the soil boring logs were obtained by GSG using handheld surveying equipment. The surface elevation of boring BSB-02 was estimated based on the proposed bridge drawings provided by Atlas. The as-drilled locations of the soil borings are shown on the Soil Boring Location Map and Subsurface Profile (**Appendix B**). **Table 1** presents a list of the borings completed.

Boring ID	Location	Station*	Offset (ft)/ Direction*	Depth (ft)	Surface Elevation (ft)	Top of Bedrock Elevation (ft)
BSB-01	West Abutment	23+40	20.6 LT	112.0**	634.1	534.1
BSB-02	Center Pier	24+83	34.0 RT	91.0	618.5***	529.5
BSB-03	East Abutment	26+41	19.9 RT	124.0**	634.3	527.3

Table 1 – Summary of Subsurface Exploration Borings

* Existing Oakton Street Stationing

** Boring B-01 blind drilled between 85.0 and 112.0 feet.

** Boring B-03 blind drilled between 110.0 and 124.0 feet

*** Estimated from proposed bridge drawings provided by Atlas (dated 12/04/2019)

GSG's soil borings were drilled using truck-mounted Diedrich D-50 drill rig using 3¼-inch I.D. hollow stem augers and an automatic hammer. Soil sampling was performed according to AASHTO T 206, "Penetration Test and Split Barrel Sampling of Soils." Soil samples were obtained at 2.5-foot intervals to a depth of 30 feet below existing grade, and at 5-foot intervals thereafter until reaching auger refusal. Water level measurements were made in each boring when evidence of free groundwater was detected on the drill rods or in the samples. The boreholes

were also checked for free water immediately after auger removal, and before filling the open boreholes with soil cuttings and surface patching with asphalt. Between depths of 85 and 112 feet in boring BSB-01 and 110 and 124 feet in BSB-03, blind drilling was performed due to the holes caving in, and samples were not taken.

GSG's field representative inspected, visually classified and logged the soil samples during the subsurface exploration activities, and performed unconfined compressive strength tests on cohesive soil samples using a calibrated Rimac compression tester and a calibrated hand penetrometer in accordance with IDOT procedures and requirements. Representative soil samples collected from each sample interval, were placed in jars and returned to the laboratory for further testing and evaluation.

2.2 Laboratory Testing Program

For the borings performed by GSG, all samples were inspected in the laboratory to verify the field classifications. A laboratory testing program was undertaken to characterize and determine engineering properties of the subsurface soils encountered in the area of the proposed bridge. The following laboratory tests were performed on representative soil samples:

- Moisture content ASTM D2216 / AASHTO T-265
- Atterberg Limits ASTM D4318 / AASHTO T-89 / AASHTO T-90

The laboratory tests were performed in accordance with test procedures outlined in the IDOT Geotechnical Manual (2020), and per ASTM and AASHTO requirements. Based on the laboratory test results, the soils encountered were classified according to the AASHTO and the Illinois Division of Highways (IDH) classification systems. The results of the laboratory testing program are included in the **Appendix D-Laboratory Test Results** and are also shown along with the field test results in **Appendix C-Soil Boring Logs**.

2.3 Subsurface Soil Conditions

This section provides a brief description of the soils encountered in the borings performed in the vicinity of the proposed bridge. Detailed descriptions of the subsurface soils are provided in the Soil Boring Logs (**Appendix C**). The soil boring logs provide specific conditions encountered at each boring location, including soil descriptions, stratifications, penetration resistance, elevations, location of the samples, water levels (when encountered), and laboratory test data.

Variations in the general subsurface soil profile were noted during the drilling activities. The stratifications shown on the boring logs represent the conditions only at the actual boring locations and represent the approximate boundary between subsurface materials; however, the actual transition may be gradual.

Borings BSB-01 and BSB-03 were drilled through the existing pavement on the Oakton Street bridge approaches over I-94. Boring BSB-02 was through the existing pavement on the southbound median shoulder of I-94. Borings BSB-01 and BSB-03 initially noted 3 inches of asphalt over 8 inches of concrete. Boring BSB-02 initially encountered 18 inches of asphalt. The surface elevations of the borings ranged between 624.0 and 634.3 feet.

Beneath the pavement layers, the borings noted existing fill soils extending to elevations between 615.0 and 623.3 feet for the center pier and abutments, respectively. The existing fill soils were primarily granular in nature, with layers of clay fill soils noted in borings BSB-01 and BSB-03. Beneath the existing fill soils, very loose to medium dense brown sand and sandy clay loam was encountered to elevations between 610.0 and 618.3 feet. Beneath these soils, stiff to hard gray silty clay and silty clay loam soils were noted to elevations between 527.3 and 534.1 feet, at which point highly weathered bedrock was encountered. Within the gray silty clay soils, cohesionless soil layers (sand, sand clay loam, and silt) were noted at various depths between elevations 600.0 and 615.0 feet. Gravel seams were noted in borings BSB-02 and BSB-03 within the gray silty clay soils between elevations 580.0 and 590.0 feet.

Borings BSB-01 and BSB-03 were advanced through the weathered bedrock to elevations 511.8 and 524.11 feet, respectively, where moderately weathered limestone was encountered and the borings were terminated. Boring BSB-02, was terminated within the highly weathered limestone at elevation 527.5 feet.

The brown sand and sandy clay loam had SPT blow count 'N' values between 3 and 29 blows per foot (bpf). The gray silty clay had unconfined compressive strength values ranging between 1.0 and 5.83 tsf. The granular soils (sand, sandy clay loam, and silt) encountered within the gray silty clay soils had SPT blow count (N) values ranging from 3 to 21 bpf. The silty clay loam immediately above the weathered bedrock surface had SPT values of greater than 50 blows per 2 inches.

2.4 Groundwater Conditions

Water levels were checked in each boring to determine the general groundwater conditions present at the site and were measured while drilling and after each boring was completed. Mud rotary drilling techniques were utilized in the borings beginning at depths of 10 feet below grade in borings BSB-01 and BSB-03, and at 40 feet below grade in boring BSB-02. Groundwater was not encountered prior to beginning mud rotary drilling, and was obscured below these depths. The borings were not left open for delayed readings and were backfilled upon completion. Based on the color change from brown and gray to gray, it is anticipated that the long-term groundwater level could range between elevations 610 and 618 feet. Water level readings were made in the boreholes at times and under conditions shown on the boring logs and stated in the text of this report. However, it should be noted that fluctuations in groundwater level may occur due to variations in rainfall, other climatic conditions, or other factors not evident at the time measurements were made and reported herein.

3.0 GEOTECHNICAL ANALYSES

This section provides GSG's geotechnical analysis and recommendations for the design of the proposed bridge based on the results of the field exploration, laboratory testing, and geotechnical analysis. Subsurface conditions in unexplored locations may vary from those encountered at the boring locations. If structure locations, loadings, or elevations are changed, we request that GSG be contacted so that we may re-evaluate our recommendations.

3.1 Slope Stability

The bridge will be supported on a deep foundation system that will be designed to support the substructure against lateral and slope failure. Therefore, there are no slope stability concerns anticipated for the bridge structure. It is anticipated that new fill added to construct the new bridge abutments will be minimal. The existing abutment slopes under the existing Oakton Street bridge will be modified as part of the proposed reconstruction. For this report, a 2.5H:1V slope has been assumed. The overall stability of the proposed slopes was evaluated, considering a short-term and a long-term (potential five year) construction period.

Slide2 is a comprehensive slope stability analysis software used to evaluate the proposed side slopes for the project based on the limit equilibrium method. The slopes were analyzed based on the soils encountered at the site. Circular failure analyses were evaluated using the simplified Bishops analyses methods for the proposed slope geometries. A circular failure analyses was evaluated for both a short term (undrained) and long term (drained) condition based on the proposed geometry for the proposed slopes. The results of the analyses are shown in **Table 2**.

Analysis Exhibit	Abutment Slope 2.5H:1V	Analysis Type	Factor of Safety	Minimum Factor of Safety
Exhibit 1	West	Circular – Short Term	2.2	1.5
Exhibit 2	Abutment	Circular – Long Term	1.6	1.5
Exhibit 3	East	Circular – Short Term	2.0	1.5
Exhibit 4	Abutment	Circular – Long Term	1.6	1.5

Table 2 – Global Slope Stability Analyses Results

Based on general soils profiles for both abutments, the proposed slopes can maintain a stable slope of 2.5H:1V for the proposed bridge. Copies of the slope stability analyses exhibits are included in **Appendix F**.

3.2 Seismic Parameters

The seismic hazard for the site was analyzed per the IDOT Geotechnical Manual, IDOT Bridge Design Manual, and AASHTO LRFD Bridge Design Specifications.

The Seismic Soil Site Class was determined per the requirements of "All Geotechnical Manual Users" (AGMU) Memo 9.1, Design Guide for Seismic Site Class Determination, and the "Seismic Site Class Determination" Excel spreadsheet provided by IDOT. A global Site Class Definition was determined for this project, and was found to be Soil Site Class D. The Seismic Performance Zone (SPZ) was determined using Figure 2.3.10-2 in the IDOT Bridge Manual and was found to be Seismic Performance Zone 1.

The AASHTO Seismic Design Parameters program was used to determine the peak ground acceleration coefficient (PGA), and the short (S_{DS}) and long (S_{D1}) period design spectral acceleration coefficients for each of the proposed structures. For this section of the project, the S_{DS} and the S_{D1} were determined using 2020 AASHTO Guide Specifications as shown in **Table 3**. Given the site location and materials encountered, the potential for liquefaction is minimal.

Building Code Reference	PGA	S _{DS}	S _{D1}
2020 AASHTO Guide for LRFD Seismic Bridge Design	0.041g	0.14g	0.083g

Table 3 – Seismic Parameters

3.3 Scour

The bridge structure carrying proposed Oakton Street over I-94 has no waterways in the vicinity; therefore, scour will not be a concern for this project.

3.4 Integral Abutment Feasibility

Integral abutment feasibility was checked for the bridge in accordance with ABD 12.3 and the IDOT Integral Abutment Feasibility Analysis spreadsheet. A total bridge structure back-to-back abutment length of 213.4 feet with the longest span of 106.7 feet and a 7°36'0" skew from I-94

was used for analysis. Soil boring data was used from BSB-01 and BSB-03 to calculate the weighted average Qu for the soil profiles 10 feet below the estimated abutment invert elevations. The average Qu values were greater than 1.5 tsf, therefore the controlling expansion length was adjusted using a pile stiffness modifier of 1.57 to give an effective expansion length (EEL) of 186.99 feet from the east abutment. Based on the analyses, the following piles are suitable for the proposed integral abutment design: HP10x57, HP12x63, HP12x74, HP14x73, HP12x84, HP14x89, HP14x102, and HP14x117. The following pile types are unsuitable for integral abutment design: 12" and 14" diameter shell piles, HP8x36, HP10x42, and HP12x53.

4.0 GEOTECHNICAL BRIDGE DESIGN RECOMMENDATIONS

The foundations for the proposed bridge must provide sufficient support to resist dead and live loads, as well as seismic loading. The foundation design recommendations presented within this section were completed per the AASHTO LRFD 9th Edition (2020). The anticipated factored loads were unavailable at the time of this submittal.

4.1 Bridge Foundation Recommendations

GSG evaluated shallow and deep foundation system for the proposed bridge. Based on the design information and drawings provided to GSG, it is anticipated that the new abutments, approach slabs, and center pier will be supported on drive steel pile foundations. The results of the evaluation are presented below.

4.1.1 Shallow Foundations

Based on the soils encountered, the new span length and the anticipated loads, shallow foundations are not anticipated to be a feasible option for the proposed substructure of the bridge. We anticipate that shallow foundations will undergo excessive settlement, or the size of the footings will be very large, and therefore will not be a feasible option and are not discussed further in the report.

4.1.2 Drilled Shaft Foundations

Based on the soils encountered and the anticipated depth to a suitable bearing layer, drilled shaft foundations are not anticipated to be a feasible option for the proposed substructure of the bridge. It is anticipated that drilled shafts would extend to depths in excess of 75 to 80 feet for suitable bearing on the very stiff to hard clay soils. Drilled shaft foundations are not compatible with integral abutments that are proposed for the bridge structure. Based on the design drawings, drilled shafts are not anticipated for this structure and were therefore not considered as a design option in this report. If the design changes, GSG can provide recommendations at that time.

4.1.3 Driven Pile Foundations

Piles considered for this site include metal shell piles, concrete piles, and H-piles. Concrete piles are not recommended for this site because the pile lengths cannot be readily adjusted to accommodate variability in soil conditions. Metal shell piles are not a feasible option for the construction of the integral abutments of the proposed bridge structure. As specified previously

H-piles do meet

in *Section 3.4*, select steel H-piles do not meet the requirements for use in integral abutments. Design recommendations for driven piles are provided in *Section 4.2* of this report.

4.2 Driven Pile Foundation Design Recommendation

According to AASHTO Section 3.11.8-Downdrag, the pile should be designed to resist the downdrag if the ground settlement is 0.4 inches or greater. The nominal geotechnical resistance available to resist the structure load plus the downdrag load is estimated by considering only the positive side resistance and tip resistance below the lowest layer contributing to the downdrag. Based on the proposed fill heights at the bridge abutments, it is anticipated that settlement will be less than 0.4 inches; therefore, downdrag will not be discussed further in this report.

The Modified IDOT static method-excel spreadsheet was used to estimate the pile lengths at various axial geotechnical resistances for driven piles per IDOT AGMU Memo 10.2. The factored resistance includes a reduction of 0.55 for the geotechnical resistance for the pile installation. No geotechnical losses due to down drag or liquefaction were included in the axial pile resistance calculations.

Tables 4a thru 4e summarize the estimated maximum pile lengths for representative pile sections along with the factored resistance available for the piles that are feasible for the proposed substructures. The complete IDOT Pile Design Tables, including factored resistance available (RF) and nominal required bearing (R_N), are included in **Appendix E**.

The estimated pile lengths shown in **Table 4a thru 4e** and in **Appendix E** are based on the pile cut off elevations estimated from the preliminary plans and noted below each table. The actual pile length and resistance should be evaluated based on test piles installed in accordance with the specifications provided in Section 512.15 of IDOT Standard Specifications for Road and Bridge Construction. Per section 3.10.1.11 of the IDOT Bridge Manual (2012), the minimum pile spacing should be 3 pile diameters, and the maximum pile spacing should not be more than 3.5 times the effective footing thickness plus one foot, not to exceed a total of 8 feet.

Based on design criteria and assumptions provided in the IDOT "All Bridge Designers" Memorandum (ABD) 12.3, the following H-Pile sizes are suitable for the proposed integral abutments: HP10x57, HP12x63, HP12x74, HP14x73, HP12x84, HP14x89, HP14x102, and HP14x117. **Tables 4a thru 4e** summarize estimated pile lengths for select pile selections with the

factored resistance available that are feasible for the proposed substructures. The complete IDOT Pile Design Tables for each substructure, including factored resistance available (R_F) and nominal required bearing (R_N), are included in **Appendix E**.

Pile Section	Nominal Required Bearing (Kips)	Factored Resistance Available (Kips)	Estimated Pile Length (FT)	Pile End Bearing Stratum
	429	236	74	Hard Gray Silty Clay
HP12x63 (Max. R _N = 497 Kips)	444	244	76	Hard Gray Silty Clay
(1010X, 1(N - 457) (105))	497*	273*	80*	Hard Gray Silty Clay
	517	285	74	Hard Gray Silty Clay
HP14x73 (Max. R _N = 578 Kips)	534	294	76	Hard Gray Silty Clay
(Max. NN - 576 Klps)	578*	317*	80*	Hard Gray Silty Clay
	587	323	86	Stiff to Very Stiff Gray Silty Clay
HP14x89 (Max. R _N = 705 Kips)	599	330	89	Stiff to Very Stiff Gray Silty Clay
(1010X, IN = 705 Klps)	705*	387*	92*	Hard Gray Silty Clay

Table 4a – West Approach Slab Pile Design (BSB-01)

NOTES:

Pile cut off elevation = 635.5 feet (preliminary TS&L)

Ground surface elevation against pile during driving = 634.5 feet (preliminary TS&L)

*Estimated based on maximum nominal required bearing of pile. Not included in Appendix E.

Pile Section	Nominal Required Bearing (Kips)	Factored Resistance Available (Kips)	Estimated Pile Length (FT)	Pile End Bearing Stratum
1012	422	232	67	Hard Gray Silty Clay
HP12x63 (Max. R _N = 497 Kips)	437	240	70	Hard Gray Silty Clay
(Max. NN - 497 Kips)	497*	273*	73*	Hard Gray Silty Clay
	509	280	67	Hard Gray Silty Clay
HP14x73 (Max. R _N = 578 Kips)	526	289	70	Hard Gray Silty Clay
$(Max. R_N = 576 R(ps))$	578*	317*	73*	Hard Gray Silty Clay
11014-00	579	318	80	Stiff to Very Stiff Gray Silty Clay
HP14x89 (Max. R _N = 705 Kips)	591	325	82	Stiff to Very Stiff Gray Silty Clay
	705*	387*	86*	Hard Gray Silty Clay

Table 4b – West Abutment Pile Design (BSB-01)

NOTES:

Pile cut off elevation = 629.0 feet (preliminary TS&L)

Ground surface elevation against pile during driving = 628.0 feet (preliminary TS&L)

*Estimated based on maximum nominal required bearing of pile. Not included in Appendix E.

Pile Section	Nominal Required Bearing (Kips)	Factored Resistance Available (Kips)	Estimated Pile Length (FT)	Pile End Bearing Stratum
1012	482	265	74	Hard Gray Silty Clay
HP12x63 (Max. R _N = 497 Kips)	488	268	76	Hard Gray Silty Clay
	497*	273*	80*	Hard Gray Silty Clay
HP14x73	473	260	69	Very Stiff Gray Silty Clay
(Max. $R_N = 578$ Kips)	489	269	71	Very Stiff Gray Silty Clay
$(Max. N_N = 576 R(p3))$	578*	317*	74*	Hard Gray Silty Clay
	608	334	79	Hard Gray Silty Clay
HP14x89 (Max. R _N = 705 Kips)	623	343	84	Hard Gray Silty Clay
(Wax. N _N = 705 Klp3)	705	388	88	Highly Weathered Limestone

Table 4c – Center Pier Pile Design (BSB-02)

NOTES:

Pile cut off elevation = 617.0 feet (preliminary TS&L)

Ground surface elevation against pile during driving = 616.0 feet (preliminary TS&L)

*Estimated based on maximum nominal required bearing of pile. Not included in Appendix E.

Pile Section	Nominal Required Bearing (Kips)	Factored Resistance Available (Kips)	Estimated Pile Length (FT)	Pile End Bearing Stratum
	456	251	81	Very Stiff Gray Silty Clay
HP12x63 (Max. R _N = 497 Kips)	463	255	86	Stiff Gray Silty Clay
$(101ax. N_N = 457 \text{ Kips})$	497*	273*	90*	Stiff Gray Silty Clay
	547	301	81	Very Stiff Gray Silty Clay
HP14x73 (Max. R _N = 578 Kips)	549	302	86	Stiff Gray Silty Clay
$(Nax. R_N = 576 Rips)$	578*	317*	90*	Stiff Gray Silty Clay
	567	312	89	Stiff Gray Silty Clay
HP14x89 (Max. R _N = 705 Kips)	665	366	91	Hard Gray Silty Clay
	705*	387*	97*	Very Stiff Gray Silty Clay Loam

Table 4d – East Approach Slab Pile Design (BSB-03)

NOTES:

Pile cut off elevation = 635.5 feet (preliminary TS&L)

Ground surface elevation against pile during driving = 634.5 feet (preliminary TS&L)

*Estimated based on maximum nominal required bearing of pile. Not included in Appendix E.

Pile Section	Nominal Required Bearing (Kips)	Factored Resistance Available (Kips)	Estimated Pile Length (FT)	Pile End Bearing Stratum
	446	245	75	Very Stiff Gray Silty Clay
HP12x63 (Max. R _N = 497 Kips)	453	249	80	Stiff Gray Silty Clay
(IVIAX. IN - 457 Rips)	497*	273*	83*	Stiff Gray Silty Clay
104472	535	294	75	Very Stiff Gray Silty Clay
HP14x73	537	295	80	Stiff Gray Silty Clay
(Max. R _N = 578 Kips)	578*	317*	83*	Stiff Gray Silty Clay
	660	363	87	Very Stiff Gray Silty Clay Loam
HP14x89 (Max. R _N = 705 Kips)	679	374	90	Very Stiff Gray Silty Clay Loam
(Wax. IN - 705 Kips)	705*	387*	96*	Very Stiff Gray Silty Clay Loam

Table 4e – East Abutment Pile Design (BSB-03)

NOTES:

Pile cut off elevation = 629.0 feet (preliminary TS&L)

Ground surface elevation against pile during driving = 628.0 feet (preliminary TS&L)

*Estimated based on maximum nominal required bearing of pile. Not included in Appendix E.

4.3 Pile Driving Considerations

The subsurface conditions appear to be consistent throughout the soil boring locations. The soil borings were completed within 50 feet of the proposed substructure locations. The subsurface condition between borings indicated variable soil conditions. Therefore, it is recommended to complete test piles at each substructure location.

Driving shoes for the piles, in accordance with Section 1006.05 (e) of the IDOT Standard Specifications for Road and Bridge Construction (SSRBC), are recommended if the estimated driving depth is below elevation 565 feet to guard against damage in the hard clays or if the pile are extended to the top of the weathered bedrock.

Pile setup is a consideration that can contribute to an increase to long-term pile resistance of displacement piles (i.e. driven pile). This increase in resistance is referred to as pile setup which is the gain in pile resistance over time that occurs mainly due to dissipation of pore water pressures and healing of the distorted and remolded soils immediately surrounding the pile. The magnitude of soil setup is function of pile type as well as soil type and consistency. A greater magnitude of soil setup is generally expected for soft clays, dense granular deposits, and displacement type piles than for stiff clays, loose granular deposits, and non-displacement type piles. However, pile setup consideration should not be included in the pile resistance during the design phase of the project, but this may be considered during the construction phase if a pile does not achieve the required bearing during installation. Based on the subsurface soil conditions, we do not anticipate any setup for the driven piles.

4.4 Lateral Load Resistance

Lateral loadings applied to pile foundations are typically resisted by battering selected piles, the soil/structure interaction, pile flexure, or a combination of these factors. Section 3.10.1.10 of the 2012 IDOT Bridge Manual requires performing detailed structure interaction analysis if the factored lateral loading per pile exceeds 3 kips. The analysis shall determine actual pile moment and deflection to determine the selected pile adequacy for the existing loadings. **Table 5** provides generalized soil parameters for the entire site and includes recommended lateral soil modulus and soil strain parameters that can be used for laterally loaded pile analysis via the p-y curve method based on the encountered subsurface conditions.

Table 5 –Lateral Load Resistance Soil Parameters

(BSB-01	BSB-02	&	BSB-03)	
	DJD - 0I,	DJD=0Z,	œ	030-031	

		Lat	eral Earth Pressure Coeffici	ent	L-Pile Soil Parameters						
Elevation Range (feet)	Soil Description	Active Earth Pressure Coefficient (Ka)	Passive Earth Pressure Coefficient (K _p)	At-Rest Earth Pressure Coefficient (K _o)	L-Pile Soil Type	Constant for Lateral Modulus of Subgrade Reaction k _{py} (pci)*	Soil Strain (٤₅०)				
	New Engineered Clay Fill	0.39	2.56	0.56	Stiff Clay w/o Free Water (Reese)	1,000	0.005				
	New Engineered Granular Fill	0.33	3.00	0.50	Sand (Reese)	90	N/A				
1.0 to 8.5 (618.0 to 610.0)	Very Loose to Medium Dense Brown Sand / Sandy Clay Loam	0.31	3.25	0.47	Sand (Reese)	90	N/A				
8.5 to 13.5 (610.0 to 605.0)	Very Loose to Medium Dense Gray Sandy Clay Loam / Sand / Silt	0.31	3.25	0.47	Sand (Reese)	60	N/A				
13.5 to 53.5 (605.0 to 565.0)	Stiff to Very Stiff Gray Silty Clay	0.36	2.77	0.53	Stiff Clay w/o Free Water (Reese)	1,000	0.005				
53.5 to 88.5 (565.0 to 530.0)	Very Stiff to Hard Gray Silty Clay	0.36	2.77	0.53	Stiff Clay w/o Free Water (Reese)	1,000	0.005				
	Γ	F		I	Γ	[I				
1.0 to 8.5 (633.0 to 625.5) *BSB-01 & BSB-03 only*	FILL Brown Sand	0.33	3.00	0.50	Sand (Reese)	60	N/A				
8.5 to 13.5 (625.5 to 620.5) *BSB-01 & BSB-03 only*	FILL Gray and Black Clay Loam	0.39	2.56	0.56	Stiff Clay w/o Free Water (Reese)	1,000	0.005				
16.0 to 28.5 (618.0 to 605.5) *BSB-01 & BSB-03 only*	Very Stiff to Hard Gray Silty Clay	0.36	2.77	0.53	Stiff Clay w/o Free Water (Reese)	1,000	0.005				

*The initial p-y modulus, E_{py} , varies linearly with depth. To obtain E_{py} use the equation $E_{py} = k_{py} * z$, where k_{py} is the constant given in the table and z is the distance from the surface to the center point of the layer in inches

5.0 CONSTRUCTION CONSIDERATIONS

All work performed for the proposed project should conform to the requirements in the IDOT Standard Specifications for Road and Bridge Construction (SSRBC, 2016). Any deviation from the requirements in the manuals above should be approved by the design engineer.

5.1 Site Preparation

Based on the existing site conditions, all pavement, vegetation, landscaping, and surface topsoil should be cleared and removed from the vicinity of the proposed construction. Where possible, the engineer may require proof-rolling of the subgrade with a 20 to 30-ton loaded truck or other pneumatic-tired vehicle of similar size and weight. The purpose of the proof-rolling is to locate soft, weak, or excessively wet soils present at the time of construction. Proof-rolling should be performed during a time of good weather and not while the site is wet, frozen, or severely desiccated. Any unsuitable materials observed during the evaluation and proof-rolling operations should be undercut and replaced with compacted structural fill and/or stabilized inplace. The possible need for, and extent of, undercutting and/or in-place stabilization required can best be determined by the geotechnical engineer at the time of construction. Once the site has been properly prepared, at grade construction may proceed.

Foundation aggregate fill should not be placed upon wet or frozen subgrade soils. If the subgrade or structural fill becomes frozen, desiccated, wet, disturbed, softened, or loose, the affected materials should be scarified, dried and moisture conditioned, and compacted to the full depth of the affected area or the soils should be removed. Rainfall and runoff can soften soils and affect the load bearing capacity of the soils. All water entering foundation excavation should be removed prior to placement backfill materials above the wall bottom.

5.2 Existing Utilities

Before proceeding with construction, any existing utility lines that will interfere with construction should be completely relocated from beneath the proposed construction areas. Where possible, existing utility lines that are to be abandoned in place should be removed and/or plugged with a minimum of 2 feet of cement grout. All excavations resulting from underground utility removal activities should be cleaned of loose and disturbed materials, including all previously placed backfill, and backfilled with suitable fill materials in accordance with the requirements of this section. During the clearing and stripping operations, positive surface drainage should be

maintained to prevent the accumulation of water.

5.3 Site Excavation

Site excavations are expected to encounter various types of soils as described in the Subsurface Exploration section of this report. The contractor will be responsible to provide a safe excavation during the construction activities of the project. All excavations should be conducted in accordance with applicable federal, state, and local safety regulations, including, but not limited to the Occupational Safety and Health Administration (OSHA) excavation safety standards. Excavation stability and soil pressures on temporary shoring are dependent on soil conditions, depth of excavations, installation procedures, and the magnitude of any surcharge loads on the ground surface adjacent to the excavation. Excavation near existing structures and underground utilities should be performed with extreme care to avoid undermining existing structures. Excavations should not extend below the level of adjacent existing foundations or utilities unless underpinning or other support is installed. It is the responsibility of the contractor for field determinations of applicable conditions and providing adequate shoring for all excavation activities.

5.4 Borrow Material and Compaction Requirements

If borrow material is to be used for onsite construction, it should conform to Section 204 "Borrow and Furnish Excavations" of the latest IDOT Construction Manual.

The fill material should be free of organic matter and debris and should be placed and compacted in accordance with Section 205, Embankment, of the IDOT SSRBC (2016). Fill should be placed in lifts and compacted according to Section 205, Embankment (IDOT, 2016).

5.5 Temporary Soil Retention System

If staged construction is used for the proposed improvement, a temporary soil retention system (TSRS) will be required. Based on the soil profile, a cantilevered sheet pile system could be used. The sheet pile retaining system should be designed in accordance with the IDOT Bridge Design Manual, Section 3.13.1, Temporary Sheet Piling Design, Temporary Soil Retention Systems. The design of the TSRS is the responsibility of the contractor. The contractor should submit the TSRS plans to the structural design team for review prior to commencing construction of the TSRS.

5.6 Groundwater Management

It is anticipated that the long-term water table could range between elevations 610 and 618 feet. GSG does not anticipate groundwater related issues during construction activity; however, water may be perched in the fill material encountered near the existing ground surface or the confined granular layers. If rainwater run-off or perched water is accumulated at the base of excavation, the contractor should remove accumulated water using conventional sump pit and pump procedures and maintain a dry and stable excavation. The location of the sump should be determined by the contractor based on field conditions. During earthmoving activities at the site, grading should be performed to ensure that drainage is maintained throughout the construction period. Water should not be allowed to accumulate in the foundation area either during or after construction. Undercut and excavated areas should be sloped toward one corner to facilitate removal of any collected rainwater or surface run-off. Grades should be sloped away from the excavations to minimize runoff from entering.

If water seepage occurs during excavations or where wet conditions are encountered such that the water cannot be removed with conventional sumping, we recommend placing open grade stone similar to IDOT CA-7 to stabilize the bottom of the excavation below the water table. The CA-7 stone should be placed to 12 inches above the water table, in 12-inch lifts, and should be compacted with the use of a heavy smooth drum roller or heavy vibratory plate compactor until stable.

6.0 LIMITATIONS

This report has been prepared for the exclusive use of the Illinois Department of Transportation (IDOT) and its Design Section Engineer consultant. The recommendations provided in the report are specific to the project described herein and are based on the information obtained at the soil boring locations. The analyses have been performed, and the recommendations have been provided based on subsurface conditions determined at the location of the borings. This report may not reflect all variations that may occur between boring locations or at some other time, the nature and extent of which may not become evident until during the time of construction. If variations in subsurface conditions become evident after submission of this report, it will be necessary to evaluate their nature and review the recommendations presented herein.

APPENDIX A

GENERAL PLAN & ELEVATON

PLAN

PROJECT NUMBER: 17.0262.120 DRAWN: J.L.A. DATE: 03/2019

APPENDIX B

SOIL BORING LOCATION PLAN AND SUBSURFACE PROFILE

ω ω

T: I DOT / C T 10/13/2021 22:10:29 PM 141667 0 9166 1200 0000 /

.

	<u>66(</u> 65(
	<u>640</u> 630
	620
	600
	590
	<u>57(</u> 56(
	550
	53(
	520
<u> </u>	500

APPENDIX C

SOIL BORING LOGS

Page <u>1</u> of <u>3</u>

Illinois Department of Transportation Division of Highways GSG Consultanrts, Inc.

SOIL BORING LOG

Date 8/27/21

ROUTE	Oakton Street	DE					Bridge Boring	L(DGG	E	H	
						<u>Skokie</u>	and Morton Grove, IL, SEC. , TWP	. Niles, I	RNG	• ,		
	СООК р	DRI RILLINC	LLIN 3 ME	g rig Thod		Diedri	de 42.0264864, Longitude -87.76 <u>ch D-50</u> HSA HAMMER	92392 TYPE EFF (%)		<u>JTO</u> 96	
Station			D E P T	B L O W	U C S	M 0 1 S	Surface Water Elev. N/A Stream Bed Elev. N/A	ft	D E P T	B L O W	U C S	M O I S
BORING NO. Station Offset	BSB-01 23+40 20.60ft LT		н	S	Qu	Т	Groundwater Elev.: First Encounter N/A Upon Completion N/A	ft ft	н	S	Qu	т
Ground Surfa	ace Elev634.11	ft	(ft)	(/6")	(tsf)	(%)	Upon Completion N/A After N/A Hrs. N/A	ft	(ft)	(/6")	(tsf)	(%)
3 inches of As 8 inches of Co	phalt ncrete	633.20					Stiff to Hard Gray, Moist					
Brown, Moist FILL: SAND				4			SILTY CLAY (CL/ML) (continued)			5		
TILL. SAND				5 7		10				7 10	5.0 B	15
				4		10				4	5.0	19
			-5	9					-25	0	В	
		628.11										
Gray, Wet FILL: SANDY	CLAYLOAM			4		17				4	3.8	21
				7		17				7	3.0 B	21
		625.61						605.61				
Gray and Blac Moist	k, Moist to Very			6			Medium Dense Gray, Wet			6		
FILL: CLAY LO	DAM		-10	7 6	2.5 P	14	SAND (SP)		-30	10 7		24
			_	4		25			_			
				10		20						
		620.61						600.61				
Medium Dense Brown, Wet	9			10 13		20	Stiff to Hard Gray, Moist			2	1.7	20
SAND (SP)			-15	16		20	SILTY CLAY, trace gravel (CL/ML)		-35	1	Т.7 В	20
		618.11										
Stiff to Hard Gray, Moist			_	5	1.5	22			_			
SILTY CLAY (Sand seam at				10	P							
			_	9					_	2		
				7	5.8	15				3	2.1	18
			-20	9	В				-40	3	В	

Page $\underline{2}$ of $\underline{3}$

Illinois Department of Transportation Division of Highways GSG Consultanrts, Inc.

SOIL BORING LOG

Date 8/27/21

ROUTE 0	akton Street	DE	SCRI	PTION	I		Bridge Boring	L	OGG	ED BY	E	H
						Latitu	and Morton Grove, IL, SEC., de 42.0264864, Longitude -8		RNG	.,		
COUNTY	COOK DRIL	DRI LINC	LLIN 3 ME	g rig Thod		Diedri	ch D-50 HAM	MER TYPE MER EFF (%	6)	AL	JTO 96	
STRUCT. NO	SN 016-8301 N/A	_	D E P	B L O	U C S	M O I	Surface Water Elev Stream Bed Elev	N/A ft N/A ft	D E P	B L O	U C S	M O I
BORING NO Station Offset	BSB-01 23+40 20.60ft LT	_	T H	W S	Qu	S T	Groundwater Elev.: First Encounter Upon Completion	<u>N/A</u> ft N/A ft	T H	W S	Qu	S T
Ground Surface	Elev. 634.11	ft	(ft)	(/6")	(tsf)	(%)	After <u>N/A</u> Hrs.	N/A ft	(ft)	(/6")	(tsf)	(%)
Stiff to Hard Gray, Moist SILTY CLAY, trac (CL/ML) <i>(continue</i>				3			Stiff to Hard Gray, Moist SILTY CLAY, trace gravel (CL/ML) <i>(continued)</i>			5		
			-45	5 5	2.1 B	21			-65	6 9	3.3 B	16
				3	2.9	24				6	3.8	21
			-50	E	2.9 B	24			-70	12	3.0 B	21
				12						6		
			-55	6 11	3.0 P	13			-75	8 10	4.6 B	14
				3	0.4	15				6	4.0	10
			-60	5	2.1 B	15			-80	13	4.2 B	18

Page $\underline{3}$ of $\underline{3}$

Illinois Department of Transportation Division of Highways GSG Consultanrts, Inc.

SOIL BORING LOG

Date 8/27/21

ROUTE	Oakton Street	DE	SCR	IPTION			Bridge Boring	L	OGG	ED BY	E	EH
						Lotitu	and Morton Grove, IL, SEC. , TW de _42.0264864, Longitude -87.7	ະບວວບວ		• ,		
COUNTY	COOK DF	DRI	LLIN	G RIG		Diedri	ch D-50 HAMME	R TYPE		Al	JTO	
	DF	RILLING	<u>G ME</u>	THOD		1	<u>ch D-50</u> HSA HAMME	R EFF (%	b)		96	
STRUCT. NO. Station	<u>SN 016-8301</u> N/A		D E P	B L O	U C S	M O I	Surface Water Elev. N// Stream Bed Elev. N//		D E P	B L O	U C S	M O I
BORING NO. Station	BSB-01 23+40 20.60ft LT		T H	W S	Qu	S T	Groundwater Elev.: First EncounterN/	<u>∖</u> ft	T H	W S	Qu	S T
Offset	20.60ft LT	— "	(ft)	(/6'')	(tsf)	(%)	Upon Completion N// After N/A Hrs. N//	<u>∖</u> ft	(ft)	(/6'')	(tsf)	(%)
	ace Elev. 634.11	π	(11)	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	((3))	(70)	After N/A Hrs. N/A	<u>\</u> ft	(11)	(,0)	((3))	(70)
Stiff to Hard Gray, Moist SILTY CLAY, (CL/ML) <i>(conti</i>				-			LIMESTONE, highly weathered			-		
		550.61										
Hard				5								
Gray, Moist	OAM, trace gravel			12	5.0	23			_	-		
(ML/CL)	in, ados graver		-85	18	В				-105	-		
				-						-		
				_						-		
				-					_	-		
										-		
				-						-		
				_						-		
										-		
										-		
				_					_	-		
			-90					524.11	-110	-		
	t 45 feet. Blind drill boring termination						LIMESTONE, moderately weathered			-		
depth.	boning termination						weathered			-		
				-					_	-		
				_			Auger refusal at 112 feet	522.11		-		
				-			End of Boring		_	-		
				-						-		
				-					_	-		
				_						-		
			_	_					_	-		
			-95						-115	-		
										-		
				-						+		
				-						-		
				-						-		
				-						+		
				-						+		
				-					_	-		
				-						+		
		534.11	400	-					400	+		
		JJ4.11	- 100		1	1			-120	1		1

Page <u>1</u> of <u>3</u>

Illinois Department of Transportation Division of Highways GSG Consultanrts, Inc.

SOIL BORING LOG

Date 8/30/21

ROUTE	Oakton Street	DE	SCR	IPTION	۱		Bridge Boring	L	OGG	ED BY	E	ΕH
						<u>Skokie</u>	and Morton Grove, IL, SEC. , TWP	<u>. Niles,</u>	RNG	• ,		
	СООК р	DRI	LLIN 3 ME	g rig Thod		Diedri	dia (Norton Orove, ne, OLO., 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	TYPE EFF (%))	Al	<u>JTO</u> 96	
Station	<u>SN 016-8301</u> N/A		D E P	B L O	U C S	M O I	Surface Water Elev. N/A Stream Bed Elev. N/A	_ ft	D E P	B L O	U C S	M O I
BORING NO. Station Offset	BSB-02 24+83 34.00ft RT		H H	W S	Qu	S T	Groundwater Elev.: First Encounter	_ ft	H H	W S	Qu	S T
	ace Elev. <u>618.50</u>) ft	(ft)	(/6")	(tsf)	(%)	After <u>N/A</u> Hrs. <u>N/A</u>	_ ft	(ft)	(/6")	(tsf)	(%)
16 inches of A	sphalt	617 17					Very Stiff to Hard Gray, Moist to Very Moist SILTY CLAY, trace gravel		_			
Brown, Dry FILL: SAND		617.17		8		4	(CL/ML) (continued)			3	2.9	20
				7					_	6	В	
Very Loose to		615.00		3						4		
Brown and Gra SANDY CLAY	ay, Wet LOAM (SC/SM)		-5	3 3		17			-25	4 5	2.9 B	19
				-						-		
				3		22			_	7	2.5	11
				2						7	В	
Very Loose		610.00		1						4		
Gray, Wet	LOAM (SC/SM)		-10	1		19			-30	4	4.0 P	16
		607.50		-			Gravel seams between 30 and 45 feet			-		
Loose Gray, Very Mo	vist	007.00		3 5		20				-		
SILT (ML)				4					_	-		
Very Stiff to H	ard	605.00		3					_	3		
Gray, Moist to SILTY CLAY,	Very Moist			5	2.9 B	20				3		18
(CL/ML)			-15						35	-		
				4	4.2	14				-		
				8	4.2 B	14				-		
				-								
				5	2.9	15				3	2.5	20
			-20	7	В				-40	5	В	
Page $\underline{2}$ of $\underline{3}$

Illinois Department of Transportation Division of Highways GSG Consultanrts, Inc.

SOIL BORING LOG

Date 8/30/21

ROUTE	Oakton Street	DE	SCRI	PTION	I		Bridge Boring	_ LOG	GED BY	′ <u> Е</u>	EH
SECTION _	Oakton Street at I-9	4	_ L	LOCAT		Skokie	and Morton Grove, IL, SEC. , TWP. N	liles, RN	G. ,		
		DRII	LLIN 9 ME	g rig Thod		Latitu Diedri	de 42.0263350, Longitude -87.7687 ch D-50 HAMMER T HSA HAMMER E	120 YPE FF (%)		<u>UTO</u> 96	
STRUCT. NO	D. <u>SN 016-8301</u> N/A	_	D E P	B L O	U C S	M O I	Surface Water Elev. N/A Stream Bed Elev. N/A	ft D ft E P	L	U C S	M O I
Station Offset	0. BSB-02 24+83 34.00ft RT	_	T H	W S	Qu	S T	Groundwater Elev.: First Encounter N/A Upon Completion N/A After N/A	T ft H ft (S	Qu	S T
	rface Elev. 618.50	_ ft	(ft)	(/6")	(tsf)	(%)		ft (f	:) (/6")	(tsf)	(%)
Very Stiff to Gray, Moist SILTY CLAY (CL/ML) (cor	to Very Moist ⁄, trace gravel						Very Stiff to Hard Gray, Moist to Very Moist SILTY CLAY, trace gravel (CL/ML) <i>(continued)</i>	 			
				6	0.0	45			5		10
				5 7	3.3 B	15		-	8	3.3 B	19
			-45						₆₅ 9		
								-			
			_								
									_		
								-	_		
									_		
				4					4		
				6	3.0	16			5	3.3	27
			-50	7	Р				70 7	В	
								-	_		
									_		
									_		
			_	5				-	7		
				6	2.5	17			6	2.5	13
			-55	8	В			- -	75 7	P	
								_	_		
								-	_		
									-		
								-			
			_								
				4	10	10			50/5"		10
				8 10	4.2 B	16	_				13
L			-60				5	538.50 -	30		

SOIL BORING LOG

Date 8/30/21

Page $\underline{3}$ of $\underline{3}$

Oakton Street _____ DESCRIPTION _ Bridge Boring LOGGED BY EH ROUTE SECTION Oakton Street at I-94 LOCATION Skokie and Morton Grove, IL, SEC., TWP. Niles, RNG., Latitude 42.0263350, Longitude -87.7687120 Diedrich D-50 HAMMER TYPE **DRILLING RIG** HAMMER TYPE AUTO COUNTY COOK DRILLING METHOD HSA HAMMER EFF (%) 96 D В U Μ STRUCT. NO. _____ SN 016-8301 <u>N/A</u> ft Surface Water Elev. Е L С 0 N/A Stream Bed Elev. N/A ft Station _____ Ρ S Ο L BORING NO. BSB-02 Т W S Groundwater Elev.: н S Qu т
 Station
 24+83

 Offset
 34.00ft RT
First Encounter N/A ft Upon Completion <u>N/A</u> ft (ft) (/6") (%) (tsf) N/A ft Ground Surface Elev. 618.50 ft After N/A Hrs. Hard Gray, Moist SILTY CLAY, with gravel (CL/ML) 41 50/6" 4.5 11 Р -85 50/2" 529.50 LIMESTONE, highly weathered 18 -90 527.50 Auger refusal at 91 feet End of Boring -95 -100

Illinois Department of Transportation

Division of Highways GSG Consultanrts, Inc.

Page $\underline{1}$ of $\underline{4}$

Illinois Department of Transportation Division of Highways GSG Consultanrts, Inc.

SOIL BORING LOG

Date 8/26/21

ROUTE	Oakton Street	DE	SCR	PTION	I		Bridge Boring	LC)GGI	ED BY	E	ΕH
SECTION	Oakton Street at	1_0/		00 4 1		Skokie	and Morton Grove, IL, SEC. , TWP	Nilos				
						Latitu	de 42.0263719, Longitude -87.76	81311				
COUNTY			LLIN 2 ME			Diedri	de 42.0263719, Longitude -87.76 ch D-50 HAMMER HSA HAMMER	TYPE	<u> </u>		<u>JTO</u> 96	
			_					EFF (%				
STRUCT. NO.	SN 016-8301		D E	B	U C	M O	Surface Water Elev. N/A	_ ft	D E	BL	U C	M O
Station	N/A		P	0	S		Stream Bed Elev. N/A	_ ft	P		s c	1
BORING NO	BSB-03		T	Ŵ		S	Groundwater Elev.:		T	Ŵ		S
Station	26+41		н	S	Qu	Т	First EncounterN/A	ft	н	S	Qu	Т
Offset	19.90ft RT		(54)	((0))	4-0	(0/)	Upon Completion N/A	ft	(64)	((0))	(4 - 6	(0/)
Ground Surfa		ft	(ft)	(/6")	(tsf)	(%)	After <u>N/A</u> Hrs. <u>N/A</u>	_ ft	(ft)	(/6")	(tsf)	(%)
3 inches of As 8 inches of Co									_			
	ay, Moist to Wet	633.35		8			Stiff to Hard	613.26		6		
FILL: SAND				6		16	Gray, Moist to Very Moist		_	6	4.6	16
				12			SILTY CLAY, trace gravel			8	т .0 В	10
							(CL/ML)				_	
				5						5		
				11		10			_	6	4.6	16
			5	16					-25	8	В	
				4						4		
				6		13				5	2.9	17
				6						6	В	
Ones Maint		625.76							_			
Gray, Moist FILL: CLAY LC	DAM			4	1.5	16				3	2.9	18
			-10	4	P 1.5				-30	1	2.5 B	10
			-10						-30			
		623.26										
Medium Dense	9			3								
Brown, Wet SAND (SP)				8		19						
				10					_			
				8						3		
				12		16				3	1.7	23
			-15	14					-35	4	В	
			_						_			
C+:ff		618.26		6								
Stiff Gray, Moist			_	6 5	1.0	19			_			
SILTY CLAY (CL/ML)			14	P 1.0							
		615.76										
Medium Dense	9			11						3		
Gray, Wet SAND (SP)			_	12		22			_	4	2.1	19
			-20	9					-40	5	В	

Page $\underline{2}$ of $\underline{4}$

Illinois Department of Transportation Division of Highways GSG Consultanrts, Inc.

SOIL BORING LOG

Date 8/26/21

ROUTE	Oakton Street	DE	SCR	IPTION	I		Bridge Boring		_ LC	GGI	ED BY	E	H
SECTION	Oakton Street at I-9	4		0041		Skokie	and Morton Grove, IL, SEC	TWP N	iles F	RNG			
						1 - 414	de 10.0000710 Leveltude	-87.7681	311				
COUNTY	COOK DRI		LLIN G MF	G RIG		Diedri		AMMER TY AMMER EF		\		<u>JTO</u> 96	
						1							
STRUCT. NO.	SN 016-8301		DE	B	U C	M O	Surface Water Elev.	<u>N/A</u>	ft	D E	B L	U C	M
Station	N/A	_	P		S	I	Stream Bed Elev.	<u>N/A</u>	ft	P		S	0
	BSB-03		Т.	w		s	Groundwater Elev.:			T	w		S
Station	26+41		н	S	Qu	Т	First Encounter	N/A 1	ft	н	S	Qu	Т
Offset	19.90ft RT	_					Upon Completion	N/A	ft				
	ace Elev. 634.26	_ ft	(ft)	(/6")	(tsf)	(%)	After <u>N/A</u> Hrs	<u> </u>	ft	(ft)	(/6")	(tsf)	(%)
Stiff to Hard	VomeMaint			-			Stiff to Hard						
Gray, Moist to SILTY CLAY,				-			Gray, Moist to Very Moist SILTY CLAY, trace gravel						
(CL/ML) (cont				-			(CL/ML) (continued)						
				-									
				-									
				-									
				3							4		
				3	2.5	21					6	2.5	15
			-45	6	В					-65	7	В	
			_	-									
				-									
				-									
				1									
				1									
			_										
				3	0.0	01					6 8	0.0	47
				6	2.9 B	21					12	3.8 B	17
Sand and gray	vel seam at 50 feet		-50	Ŭ						-70	12	D	
gian gia				-									
				1									
]									
				-									
				-									
				4							7		
				4	1.7	17					9	5.0	13
			-55	4	В					-75	14	В	
			_	-									
				4									
			_	-									
				ł									
			_	4							18		
				5	2.9	20				_	17	5.0	12
			-60	5	В					-80	22	S	

Page $\underline{3}$ of $\underline{4}$

Illinois Department of Transportation Division of Highways GSG Consultanrts, Inc.

SOIL BORING LOG

Date 8/26/21

ROUTE	Oakton Street	DE\$	SCR	PTION	I		Bridge Boring		L(DGG	ED BY	E	H
OFOTION		1.04		0047		01			NUL				
						1	and Morton Grove, IL, de _42.0263719, Longi		04044		• ,		
COUNTY	СООК D	DRI	LLIN	G RIG		Diedri	<u>ch D-50</u>	HAMMER	TYPE			JTO	
	D	RILLING) ME	THOD			de 42.0263719, Longi <u>ch D-50</u> <u>HSA</u>	_ HAMMER	EFF (%)	Ç	96	
STRUCT NO	. <u>SN 016-8301</u>		D	в	U	м	Surface Water Elev	NI/A	f#	D	в	U	М
Station	N/A		Ε	L	C	0	Surface Water Elev. Stream Bed Elev.	<u>Ν/Α</u> Ν/Α	_ 11. ff	E	L	Ċ	0
			Р	0	S	I		IN/73	_ n	Р	0	S	Ι
BORING NO.	BSB-03		Т	W		S	Groundwater Elev.:			Т	W		S
Station	26+41		н	S	Qu	Т		N/A	ft	H	S	Qu	Т
Offset	19.90ft RT						Upon Completion	N/A	ft				
Ground Sur	face Elev. 634.26	ft	(ft)	(/6")	(tsf)	(%)	Upon Completion	N/A	ft	(ft)	(/6")	(tsf)	(%)
Stiff to Hard							Very Stiff to Hard						
Gray, Moist te	o Very Moist						Gray, Moist						
	, trace gravel						SILTY CLAY LOAM, t	race gravel					
(CL/ML) (con	<i>itinued)</i> avel seam at 80 feet						(ML/CL) (continued)						
Sanu anu gra	avel seall at ou leet												
				8							50/1"		
				9	3.8	18							NR
			-85	12	В					-105			
			0										
									527.26				
							LIMESTONE, highly v	veathered	0220				
				1									
				4							50/2"		
				4	1.7	27							17
			-90	5	S					-110			
							Blind drill after 110 fee	et					
				1									
				1									
]									
			_										
				12									
				19	5.0	10				_			
		539.26	-95	26	S					-115			
Very Stiff to H	Hard												
Gray, Moist	LOAM, trace gravel												
(ML/CL)													
				ļ									
				ļ									
				50/5"									
					3.8	10				_			
			-100		В					-120			

Page $\underline{4}$ of $\underline{4}$

Illinois Department of Transportation Division of Highways GSG Consultanrts, Inc.

SOIL BORING LOG

Date 8/26/21

ROUTE	Oakton Street	DE\$	SCR	PTION	I		Bridge Boring		LOGGED BY	EH
	Oakton Street at	I-94	_ เ	OCAT		<u>Skokie</u>	e and Morton Grove, IL	, SEC. , TWP. Nile	<u>s, RNG. ,</u>	
COUNTY	COOK	DRII	LIN	G RIG		Diedri	ich D-50	HAMMER TYP	E AUTO	0
	<u> </u>	RILLING) ME	THOD			ide 42.0263719, Longi ich D-50 HSA	HAMMER EFF	(%) 96	
STRUCT NO	SN 016 9201		D	в	U	м				
Station	<u>SN 016-8301</u> N/A		Ε	L	C	0	Surface Water Elev. Stream Bed Elev.	<u>Ν/Α</u> Ιι Ν/Δ ft		
			Ρ	0	S	1	Official Bea Elev.	IU		
BORING NO.	BSB-03		Т	W		S	Groundwater Elev.:			
Station	26+41		н	S	Qu	T	First Encounter	N/A ft		
Offset	19.90ft RT						Upon Completion	N/A ft		
Ground Surf	ace Elev. 634.26	〕 ft	(ft)	(/6")	(tsf)	(%)	After <u>N/A</u> Hrs.	N/Aft		
LIMESTONE,	highly weathered						-			
(continued)										
		511.76								
LIMESTONE,	moderately									
weathered										
Auger refusal	at 124 feet	510.26								
End of Boring										
			-125							
			-130							
			-100							
			_							
			-135							
			-140							

APPENDIX D

LABORATORY TEST RESULTS

APPENDIX E

IDOT PILE DESIGN TABLES

Pile De	esign Tal	ole for Oakt	ton Bridge	West	Approach S	lab utilizin	g Boring	#B	SB-01			
	Nominal	Factored	Estimated		Nominal	Factored	Estimated			Nominal	Factored	Estimated
	Required	Resistance	Pile		Required	Resistance	Pile			Required	Resistance	Pile
	Bearing	Available	Length		Bearing	Available	Length			Bearing	Available	Length
	(Kips)	(Kips)	(Ft.)		(Kips)	(Kips)	(Ft.)			(Kips)	(Kips)	(Ft.)
Metal S	Shell 12"Φ	w/.25" wall	S	Stee	HP 10 X 42				Steel I	HP 12 X 84		
	147	81	20		157	87	41			149	82	25
	166	91	22		185	102	46			165	91	35
	191	105	25		211	116	51			177	97	36
	206	113	27		227	125	56			202	111	41
	233	128	35		259	142	61			238	131	46
	245	135	36		290	159	66			270	149	51
	274	151	41		328	180	71			288	158	56
	310	171	46	Stee	HP 10 X 57					331	182	61
	348	191	51		161	88	41			371	204	66
	378	208	56		189	104	46			420	231	71
Metal S	Shell 14"Ф	w/.25" wall	S		215	118	51			442	243	74
	117	64	17		232	128	56			457	251	76
	182	100	20		264	145	61			477	262	79
	202	111	22		296	163	66			503	277	86
	231	127	25		335	184	71			513	282	89
	247	136	27		352	194	74			588	323	91
	275	151	35		366	201	76			609	335	96
	289	159	36		382	210	79			664	365	101
	323	178	41		407	224	81		Steel I	HP 14 X 73		
	367	202	46		409	225	86			135	74	22
	411	226	51		418	230	89			171	94	25
	444	244	56	Stee	HP 12 X 53					193	106	35
Metal S	Shell 14"Ф	w/.312" wa	lls		159	87	35			208	114	36
	117	64	17		170	94	36			236	130	41
	182	100	20		194	107	41			280	154	46
	202	111	22		229	126	46			317	174	51
	231	127	25		260	143	51			335	184	56
	247	136	27		278	153	56			388	213	61
	275	151	35		319	175	61			434	239	66
	289	159	36		357	196	66			493	271	71
	323	178	41		404	222	71			517	285	74
	367	202	46	Stee	HP 12 X 63					534	294	76
	411	226	51		160	88	35			557	306	79
	444	244	56		172	95	36		Steel I	HP 14 X 89		
	493	271	61		196	108	41			138	76	22
	545	300	66		232	127	46			175	96	25
Metal S	Shell 16"Φ	w/.312" wa	lls		263	144	51			195	107	35
	137	75	17		280	154	56			211	116	36
	219	120	20		322	177	61			239	131	41
	240	132	22		361	198	66			284	156	46
	274	151	25		408	225	71			321	177	51
	289	159	27		429	236	74			339	187	56
	318	175	35		444	244	76			392	216	61
	334	184	36		464	255	79			440	242	66
	373	205	41	Stee	HP 12 X 74					499	275	71
	425	234	46		147	81	25			524	288	74
	476	262	51		162	89	35			540	297	76
	512	281	56		175	96	36			564	310	79
	570	313	61		199	109	41			587	323	86
	630	347	66		235	129	46			599	330	89
Metal S	Shell 16"Ф	w/.375" wa	lls		266	147	51			697	383	91
	137	75	17		284	156	56		Steel I	HP 14 X 102	2	

	219	120	20		326	180	61		140	77	22
	240	132	22	_	366	201	66		177	97	25
	274	151	25	_	414	228	71		198	109	35
	289	159	27	_	435	239	74		213	117	36
	318	175	35		450	248	76		242	133	41
	334	184	36	_	470	259	79		288	158	46
	373	205	41		496	273	86		325	179	51
	425	234	46		507	279	89		343	189	56
	476	262	51		579	319	91		397	218	61
	512	281	56						445	245	66
	570	313	61						505	278	71
	630	347	66						530	292	74
	702	386	71						547	301	76
	736	405	74						571	314	79
	764	420	76						593	326	86
Steel I	IP 8 X 36								606	333	89
	147	81	46						706	388	91
	168	92	51						732	403	96
	182	100	56						810	445	101
	207	114	61					Steel	HP 14 X 117	7	
	231	127	66						143	79	22
	261	144	71						180	99	25
	275	151	74						200	110	35
									216	119	36
									245	135	41
									291	160	46
									329	181	51
									347	191	56
									402	221	61
									451	248	66
									512	281	71
									537	295	74
									554	304	76
									577	318	79
									600	330	86
									613	337	89
									714	393	91
									741	408	96
									929	511	101
								Preca	ist 14"x 14"		
									110	61	12

Pile De	esign Tal	ole for Oakt	on Bridge	West A	butment u	tilizing Bo	ring #BSB	-01			
	Nominal	Factored	Estimated		Nominal	Factored	Estimated		Nominal	Factored	Estimated
	Required	Resistance	Pile		Required	Resistance	Pile		Required	Resistance	Pile
	Bearing	Available	Length		Bearing	Available	Length		Bearing	Available	Length
	(Kips)	(Kips)	(Ft.)		(Kips)	(Kips)	(Ft.)		(Kips)	(Kips)	(Ft.)
Metal S		w/.25" wall	. ,	Steel	HP 10 X 42		. ,	Steel I	IP 12 X 84		
	141	78	16		152	83	35		158	87	28
	167	92	18		179	99	40		170	93	30
	181	100	21		205	113	45		194	107	35
	209	115	28	-	221	122	50		231	127	40
	220	121	30		253	139	55		263	145	45
	249	121	35	-	284	156	60		281	155	50
	286	157	40	-	322	177	65		324	178	55
	323	178	45	Steel	HP 10 X 57		00		364	200	60
	353	194	50	Oleen	155	85	35		413	200	65
Motal S		w/.25" wall		-	183	101	40		434	239	67
wielai S	153	84	5 13		209	115	40 45		450	239	70
	173	95	16		226	124	50		470	258	72
	203	111	18	_	259	142	55		496	273	80
	218	120	21	_	291	160	60		506	278	82
	246	135	28	_	329	181	65		581	319	85
	260	143	30	_	347	191	67		601	331	90
	294	162	35		360	198	70		664	365	95
	338	186	40		376	207	72	Steel	HP 14 X 73		
	382	210	45		401	221	75		159	87	18
	415	228	50		403	222	80		185	102	28
Metal S		w/.312" wa		_	412	227	82		200	110	30
	153	84	13	Steel	HP 12 X 53				228	125	35
	173	95	16		152	83	28		272	150	40
	203	111	18		163	90	30		309	170	45
	218	120	21		187	103	35		327	180	50
	246	135	28		222	122	40		379	209	55
	260	143	30		253	139	45		426	234	60
	294	162	35		271	149	50		485	267	65
	338	186	40		312	171	55		509	280	67
	382	210	45		350	193	60		526	289	70
	415	228	50		398	219	65		549	302	72
	464	255	55		418	230	67	Steel I	HP 14 X 89		
	517	284	60	Steel	HP 12 X 63				162	89	18
Metal S	Shell 16"Ф	w/.312" wa	lls		153	84	28		187	103	28
	104	57	11		165	91	30		202	111	30
	186	102	13		189	104	35		231	127	35
	207	114	16		225	124	40		276	152	40
	241	133	18		256	141	45		313	172	45
	256	141	21		273	150	50		331	182	50
	285	157	28		315	173	55		384	211	55
	301	166	30		354	195	60		432	237	60
	340	187	35		401	221	65		491	270	65
	392	216	40		422	232	67		516	284	67
	443	243	45	_	437	240	70		532	293	70
	479	263	50		457	251	70		555	305	70
	537	295	55	Steel	HP 12 X 74				579	318	80
	598	329	60		155	85	28		591	325	82
Metal S		w/.375" wa			167	92	30		689	379	85
	104	57	11		192	105	35	Steel I	HP 14 X 102		
	· • •			-	228	125	40		128	70	16
	186	102	13		220	120					
	186 207	102	13		259	143	45		165	91	18

	256	141	21	Π	319	176	55		205	113	30
	285	157	28		359	197	60		234	129	35
	301	166	30		407	224	65		279	154	40
	340	187	35		428	236	67		317	174	45
	392	216	40		443	244	70		335	184	50
	443	243	45		463	255	72		389	214	55
	479	263	50		489	269	80		437	240	60
	537	295	55		500	275	82		497	273	65
	598	329	60		572	315	85		522	287	67
	669	368	65						539	296	70
	703	387	67						562	309	72
	731	402	70						585	322	80
	763	420	72						598	329	82
Steel H	IP 8 X 36								697	383	85
	142	78	40						724	398	90
	163	90	45						810	445	95
	178	98	50					Steel	HP 14 X 117		
	202	111	55						131	72	16
	227	125	60						168	92	18
	256	141	65						192	105	28
	270	149	67						208	114	30
	282	155	70						237	130	35
									283	156	40
									321	176	45
									339	186	50
									394	217	55
									442	243	60
									503	277	65
									528	291	67
									545	300	70
									569	313	72
									592	325	80
									604	332	82
									706	388	85
									733	403	90
									929	511	95
								Preca	st 14"x 14"		
									73	40	6

Pile D	esign Tal	ole for Oakt	on Bridge	Center	Pier utilizi	ng Boring	#BSB-02				
	Nominal	Factored	Estimated		Nominal	Factored	Estimated		Nominal	Factored	Estimated
	Required	Resistance	Pile		Required	Resistance	Pile		Required	Resistance	Pile
	Bearing	Available	Length		Bearing	Available	Length		Bearing	Available	Length
	(Kips)	(Kips)	(Ft.)		(Kips)	(Kips)	(Ft.)		(Kips)	(Kips)	(Ft.)
Metal S		w/.25" wall	S	Steel	HP 10 X 42			Steel	HP 12 X 84		
	136	75	25		138	76	34		154	85	29
	165	91	27		168	93	39		179	98	34
	170	94	29		192	106	44		219	120	39
	203	112	34		213	117	49		248	136	44
	244	134	39		251	138	54		272	149	49
	281	155	44		267	147	56		324	178	54
	315	173	49		275	151	59		344	189	56
	362	199	54		289	159	61		352	193	59
	386	212	56		303	166	64		369	203	61
Metal S		w/.25" wall			316	174	66		386	212	64
motar	146	80	22		322	177	69		402	212	66
	163	90	25		333	183	71		407	224	69
	200	110	23	Steel	HP 10 X 57	100	/ 1		407	232	71
	200	112	29		141	78	34		426	232	72
	203	133	34		141	95	34 39		420	235	72
	241	159	39	-	172	108	39 44		432	238	73
	333	183	44		218	120	44		503	275	74
	371	204	44		210	120	49 54		509	280	70
	430	204	49 54		273	141	54 56		509	280	84
	430	250	56	_	273	155	50		664	365	88
Motal		w/.312" wa			295	162	61	Stool	HP 14 X 73	303	00
Wieldi	146	80	22		309	170	64	Sleer	147	81	25
	140	90	25		323	178	66		178	98	27
	200	110	23		329	178	69		184	101	27
	200	110	27	_	329	187	71		211	116	29 34
	203	133	34	_	340	190	71		211	142	34 39
	241	159	34	_	345	190	72		259	142	
	333	183	44	_	393	216	73		318	175	44
							74 76				
	371 430	204 236	49 54	_	398 403	219 222			382 405	210 222	54
	430	236	54 56		403	222	79 84		405	222	56 59
	436	252	50		414	220	88		411	220	61
	500	202	59 61	Stool	HP 12 X 53	250	00		450	237	64
	523	288	64	Sleer	148	81	29		450	248	66
	523	301	66	_	140	95	29 34		409	258	69
	547	301	69		210	95 116	34 39		473	260	71
Motal		w/.312" wa		-	238	131	39 44		489	209	71
weldi	148	81	20	-	238	131	44 49		495 501	272	72
	148	95	20	_	311	144	49 54	Stool	HP 14 X 89	270	13
			-	_				Sleer		00	25
	191	105	25	_	331	182	56 50		149	82	25
	236	130	27		339	186	59		181	100	27
	238	131	29	_	355	195	61		187	103	29
	281	154	34		371	204	64		214	118	34
	338	186	39	_	388	213	66 60		262	144	39
	387	213	44	_	393	216	69		295	162	44
	429	236	49	-	406	223	71		321	177	49
	499	274	54	-	411	226	72		386	213	54
	531	292	56	0.4.2	417	229	73		410	225	56
	550	303	59	Steel	HP 12 X 63				416	229	59
	577	317	61	_	150	82	29		436	240	61
	604	332	64	_	174	96	34		456	251	64
	631	347	66	1	212	117	39		475	261	66

	646	355	69		241	132	44		478	263	69
Metal S		w/.375" wal			264	145	49		494	203	71
	148	81	20		315	173	54		501	275	72
	173	95	22		334	184	56		507	279	73
	191	105	25		342	188	59		593	326	74
	236	130	27		358	197	61		600	330	76
	238	131	29		375	206	64		608	334	79
	281	154	34		391	215	66		623	343	84
	338	186	39		396	218	69		705	388	88
	387	213	44		410	225	71	Steel	HP 14 X 102		
	429	236	49		415	228	72		151	83	25
	499	274	54		421	231	73		183	101	27
	531	292	56		482	265	74		189	104	29
	550	303	59		488	268	76		217	119	34
	577	317	61		494	272	79		266	146	39
	604	332	64	Stee	el HP 12 X 74				299	164	44
	631	347	66		152	84	29		325	179	49
	646	355	69		176	97	34		391	215	54
	668	367	71		215	119	39		415	228	56
	677	372	72		244	134	44		421	232	59
	685	377	73		268	147	49		441	243	61
Steel H	IP 8 X 36				319	176	54		461	254	64
	153	84	44		339	186	56		481	264	66
	170	94	49		347	191	59		484	266	69
	199	109	54		364	200	61		500	275	71
	212	117	56		380	209	64		507	279	72
	220	121	59		397	218	66		513	282	73
	231	127	61		402	221	69		600	330	74
	242	133	64		415	228	71		608	334	76
	253	139	66		421	231	72		616	339	79
	259	143	69		426	234	73		631	347	84
	268	148	71		489	269	74		800	440	88
	272	150	72		495	272	76		810	445	89
	276	152	73		502	276	79	Steel	HP 14 X 117		
			-		515	283	84		153	84	25
					589	324	88		186	103	27
						-			192	105	29
									220	121	34
									269	148	39
									303	166	44
									329	181	49
									396	218	54
									420	231	56
									427	235	59
									447	246	61
									467	257	64
				-					487	268	66
									490	269	69
									506	278	71
									512	282	72
									519	285	73
				-					608	334	74
									616	339	74
									623	343	70
				-					639	343	84
									814	448	88
									929	511	89
				-	1		1		57.5		09

				159	87	20
				186	102	22
				207	114	25
				254	140	27
				259	142	29

Pile D	esign Tab	ole for Oakt	on Bridge	East A	pproach S	ab utilizing	g Boring #	BSB-0	3		
	Nominal	Factored	Estimated		Nominal	Factored	Estimated		Nominal	Factored	Estimated
	Required	Resistance	Pile		Required	Resistance	Pile		Required	Resistance	Pile
	Bearing	Available	Length		Bearing	Available	Length		Bearing	Available	Length
	(Kips)	(Kips)	(Ft.)		(Kips)	(Kips)	(Ft.)		(Kips)	(Kips)	(Ft.)
Metal S		w/.25" walls	, ,	Steel	HP 10 X 42	(()	Stee	HP 12 X 84		(*)
Motar	149	82	22	Olecti	147	81	41	0.00	160	88	36
	174	96	25		174	95	46		190	105	41
	174	102	23		174	103	40 51		224	103	41
	204	102	30		215	118	56		224	123	40 51
	204	112	31		236	130	61	_	276	152	56
	233	128	36		270	149	66		301	165	61
	266	146	41		312	172	71		347	191	66
	303	167	46		329	181	74		402	221	71
	329	181	51	Steel	HP 10 X 57				423	233	74
	365	201	56		151	83	41		445	245	76
Metal S	1	w/.25" walls		_	178	98	46		466	256	79
	112	62	17		190	105	51		469	258	81
	181	100	22		220	121	56		475	261	86
	211	116	25		241	133	61		486	267	89
	221	122	27		276	152	66		560	308	91
	241	133	31		319	176	71		566	311	94
	276	152	36		337	185	74		581	320	96
	315	173	41		354	195	76		594	327	101
	358	197	46		372	204	79		607	334	106
	387	213	51		377	207	81		664	365	108
	431	237	56		386	213	86	Stee	HP 14 X 73		
Metal S		w/.312" wa			395	217	89		156	86	31
	112	62	17		447	246	91		188	103	36
	181	100	22		451	248	94		224	123	41
	211	116	25	Steel	HP 12 X 53	210			264	145	46
	221	122	20	0.001	153	84	36		275	151	51
	241	133	31		183	101	41		324	178	56
	241	152	36		215	118	41		351	193	61
		173	41		213		40 51		406	224	66
	315 358	173			220	125			408		
		-	46			146	56			260	71
	387	213	51 56	_	290	159	61		497	274	74
	431	237	56		334	183	66		522	287	76
	469	258	61 60		387	213	71		546	300	79
NA . 4 . 4 .	522	287	66	04- 1	407	224	74		547	301	81
ivietal S	r	w/.312" wa		Steel	HP 12 X 63				549	302	86
	130	72	17		155	85	36		561	309	89
	216	119	22		185	102	41	Stee	HP 14 X 89		
	250	137	25	_	218	120	46		158	87	31
	259	142	27	_	230	127	51		190	105	36
	279	153	31		268	148	56		227	125	41
	319	175	36		292	161	61		267	147	46
	364	200	41		337	185	66		278	153	51
	415	228	46		390	215	71		328	180	56
	445	245	51		411	226	74		355	195	61
	498	274	56		432	238	76		412	226	66
	541	298	61		453	249	79		479	264	71
	604	332	66		456	251	81		504	277	74
Metal S	Shell 16"Φ	w/.375" wa	lls		463	255	86		529	291	76
	130	72	17		473	260	89		553	304	79
	216	119	22	Steel	HP 12 X 74				553	304	81
	250	137	25		157	86	36		555	305	86
1	259	142	20	-	187	103	41		567	312	89
	200	174	<i>L</i> 1		107	100	1	1	001	012	00

	279	153	31	221	121	46		665	366	91
	319	175	36	233	128	51		672	369	94
	364	200	41	272	150	56		691	380	96
	415	228	46	296	163	61	Steel F	IP 14 X 102		
	445	245	51	342	188	66		160	88	31
	498	274	56	396	218	71		193	106	36
	541	298	61	417	229	74		230	127	41
	604	332	66	438	241	76		271	149	46
	683	375	71	459	253	79		282	155	51
	717	394	74	462	254	81		332	182	56
	751	413	76	469	258	86		359	198	61
Steel H	IP 8 X 36			480	264	89		417	229	66
	150	82	51	552	304	91		485	267	71
	172	94	56	558	307	94		510	281	74
	189	104	61	573	315	96		535	294	76
	215	118	66	586	322	101		560	308	81
	248	136	71					561	309	86
	262	144	74					574	315	89
	276	152	76					673	370	91
								680	374	94
								700	385	96
								715	393	101
								730	402	106
								810	445	108
							Steel F	IP 14 X 117		
								162	89	31
								195	107	36
								233	128	41
								274	151	46
								285	157	51
								336	185	56
								364 422	200 232	61 66
								422	232	71
								517	284	74
								542	298	74
								566	312	81
								567	312	86
								580	319	89
								682	375	91
								688	379	94
								709	390	96
								724	398	101
								739	407	101
								929	511	108
							Precas	st 14"x 14"		
								88	49	10

Pile D	esign Tal	ole for Oakt	ton Bridge	East	Abutment u	tilizing Bor	ring #BSB	-03				
	Nominal	Factored	Estimated		Nominal	Factored	Estimated			Nominal	Factored	Estimated
	Required	Resistance	Pile		Required	Resistance	Pile			Required	Resistance	Pile
	Bearing	Available	Length		Bearing	Available	Length			Bearing	Available	Length
	(Kips)	(Kips)	(Ft.)		(Kips)	(Kips)	(Ft.)			(Kips)	(Kips)	(Ft.)
Metal S		w/.25" wall	, ,	Stee	HP 10 X 42			S	teel I	IP 12 X 84		,
motare	148	82	21		139	77	35			150	82	30
	167	92	23		165	91	40			180	99	35
	167	92	25		178	98	45			214	118	40
	196	108	30		207	114	50			226	124	45
	229	126	35		228	125	55			266	146	50
	266	146	40		262	144	60			200	140	55
	292	161	46		304	167	65			337	185	60
	328	180	50		321	177	67			392	216	65
	361	199	55	Stor	HP 10 X 57	177	01			413	210	67
Motal 9		w/.25" wall		0.00	142	78	35			435	239	70
Wieldi	138	76	s 16		142	93	40			435	259	70
	168	92	18		182	100	45	⊢		459	252	75
	178	98	21		212	117	50	\square		465	256	80
	198	109	25		233	128	55	⊢–		476	262	82
	232	128	30		268	147	60	\square		550	303	85
	271	149	35		311	171	65	\square		556	306	87
	315	173	40		328	181	67	\square		571	314	90
	343	189	45		346	190	70			584	321	95
	388	213	50		363	200	72			597	328	100
	426	234	55		368	203	75			664	365	102
Metal S		w/.312" wa	1		378	208	80	SI	teel I	IP 14 X 73		
	138	76	16		387	213	82			144	79	25
	168	92	18		438	241	85			176	97	30
	178	98	21		443	244	87			213	117	35
	198	109	25	Stee	HP 12 X 53					252	139	40
	232	128	30		144	79	30			264	145	45
	271	149	35		173	95	35			312	172	50
	315	173	40		206	113	40			339	187	55
	343	189	45		218	120	45			395	217	60
	388	213	50		256	141	50			461	254	65
	426	234	55		280	154	55			486	267	67
	479	263	60		324	178	60			510	281	70
	545	300	65		377	207	65			535	294	72
Metal S	Shell 16"Φ	w/.312" wa	lls		397	219	67			535	294	75
	81	44	11		418	230	70			537	295	80
	166	91	16	Stee	el HP 12 X 63					549	302	82
	200	110	18		145	80	30	St	teel H	HP 14 X 89		
	209	115	21		175	96	35			146	80	25
	229	126	25		208	114	40			179	98	30
	269	148	30		220	121	45			215	118	35
	315	173	35		258	142	50			256	141	40
	366	201	40		283	155	55			267	147	45
	396	218	45		327	180	60			316	174	50
	449	247	50		381	209	65			343	189	55
	491	270	55		401	221	67			400	220	60
	555	305	60		422	232	70			467	257	65
	633	348	65		443	244	72			492	271	67
Metal S		w/.375" wa			446	245	75			517	284	70
	81	44	11		453	249	80			542	298	70
	166	91	16		464	255	82			542	298	75
	200	110	18	Stee	el HP 12 X 74	200	~~			543	299	80
	200	115	21		147	81	30	⊢┠─		556	306	82
	200	110	21		141	01	00			000	000	02

									88	48	11
								Preca	st 14"x 14"		
				⊢					929	511	102
									727	400	100
									712	392	95
									697	383	90
									676	372	87
									670	368	85
									568	312	82
									555	306	80
									555	305	75
									530	291	70
									505	278	67
									479	264	65
									410	225	60
									352	193	55
									324	178	50
									273	150	45
									262	144	40
									221	122	35
									183	101	30
									150	82	25
								Steel	HP 14 X 117		
									810	445	102
									719	395	100
	283	156	72						703	387	95
	269	148	70						688	378	90
	255	140	67						668	367	87
	241	133	65						662	364	85
	209	115	60		589	324	102		562	309	82
	183	100	55		589	324	100		549	302	80
	165	91	50		576	317	95		548	301	75
	143	79	45		563	310	90		523	288	70
Steel H	IP 8 X 36				548	301	87		498	274	67
	777	428	80		542	298	85		473	260	65
	750	413	75		470	258	82	11	405	223	60
	735	404	72		459	253	80	11	347	191	55
	701	386	70		452	249	75		320	176	50
	667	367	67		449	247	70		270	148	45
	633	348	65		428	236	70		259	142	40
	555	305	60		407	212	67		218	120	35
	491	270	55		386	212	65		181	100	30
	449	247	50		332	182	60		148	81	25
	396	218	45		287	158	55	Steel	HP 14 X 102		
	366	201	40		262	144	50		695	382	95
	315	173	35		223	123	45		679	374	90
	269	148	30		178 211	98 116	40		653 660	359 363	87

APPENDIX F

SLOPE STABILTY ANALYSES EXHIBITS

	Color	Unit Weight (lbs/ ft3)	Strength Type	Cohesion (psf)	Phi (deg)
		150	Infinite strength		
		120	Mohr- Coulomb	1000	0
		127	Mohr- Coulomb	0	30
Fill		138	Mohr- Coulomb	2000	0
		123	Mohr- Coulomb	0	32
		138	Mohr- Coulomb	3800	0
lt		120	Mohr- Coulomb	0	32
		138	Mohr- Coulomb	2700	0

G	SG Consi	ultants, Ir	nc.	
	_			

west abutment, 2.5H to 1V.slmd

Color	Unit Weight (Ibs/ft3)	Strength Type	Cohesion (psf)	Phi (deg)
	150	Infinite strength		
	127	Mohr- Coulomb	0	30
	123	Mohr- Coulomb	0	32
	120	Mohr- Coulomb	0	32
	120	Mohr- Coulomb	100	25
	138	Mohr- Coulomb	200	26
	138	Mohr- Coulomb	380	28
	138	Mohr- Coulomb	270	28

40

60

GSG Consultants, Inc.

west abutment, 2.5H to 1V.slmd

20

	Color	Unit Weight (lbs/ ft3)	Strength Type	Cohesion (psf)	Phi (deg)
		150	Infinite strength		
		120	Mohr- Coulomb	1000	0
		127	Mohr- Coulomb	0	30
ort		138	Mohr- Coulomb	2000	0
		123	Mohr- Coulomb	0	32
		138	Mohr- Coulomb	3800	0
		120	Mohr- Coulomb	0	32
		138	Mohr- Coulomb	2700	0

140

160

180

GSG Consultants, Inc.

east abutment, 2.5H to 1V.slmd

Unit Weight (lbs/ ft3)	Strength Type	Cohesion (psf)	Phi (deg)
150	Infinite strength		
127	Mohr- Coulomb	0	30
123	Mohr- Coulomb	0	32
120	Mohr- Coulomb	0	32
120	Mohr- Coulomb	100	25
138	Mohr- Coulomb	200	26
138	Mohr- Coulomb	380	28
138	Mohr- Coulomb	270	28

140	160	180	20
GSG Consu	Iltants, Inc.		
east abutment,	2.5H to 1V.slmd		