RUN 2: (-13.5m to -15.0m):
Dork groy, thinly bedded (12mm to 31mm) with clay portings, gray clay from -14.85m to -15.0m

RECOVERY=100% ROD=0%

Type Fature Co-Shear Failure Gu-Encanteed Compressive Strength (
8-Buige Fature S-Shear Failure Me Male Content, percent div reget
F-Estimated John Posts Thom-Plast Type

(IL. ABUT.)

OBA

D'BRIEN & ASSOCIATES, INC.

STRUCTURE FOUNDATION

Sh 1 of 2

STRUCTURE FOUNDATION METRIC BORING LOG	ILLINOIS DEPARTMENT O	DEPARTMENT OF TRANSPORTATION		
	BRIDGE SHEE	S90 OF S114		94450
	F.H.W.A. REGION	ILLINOIS	PROJECT	
	STA.	TO STA.		
	F.A.P. 827 12Z-3, 1	2BR WABASH, IL GIBSON, IN	158	106
			SHEETS	NO.

lect Geotechnical Investigation: Wille FAP Route 827 (Illinois Roution 122-3, 128R Strumbly Wabash County, Illinois and	te stur	5 8 e N	<u>c India</u> a. <u>093</u>	-0	Route 64) 014 (exist.)	OBA JO Date 1 Bored Checke	<u>-2€</u> By	i &	4-2/ LH/H	981			ROUT
BORING NO. SB-1 Station 20+767.5 Offset 20m Rt	Egio#	R E	G _E Po	×	Surface Water Elev. N/A Groundwater Elevation N/A Groundwater Elevation N/A After Hours	\$	Counts	R	G _v kPo	w		ď	SECT
Error (Errobbeach) 20 Ji Friedrich (Errobbeach) 20 Ji Friedrich (Errobbeach) 21 Ji Friedrich (Errobbeach) 22 Ji Friedrich (Errobbeach) 23 Ji Friedrich (Errobbeach) 24 Ji Friedrich (Errobbeach) 25 Ji Friedrich (Errobbeach) 26 Ji Friedrich (Errobbeach) 27 Ji Friedrich (Errobbeach) 27 Ji Friedrich (Errobbeach) 28 Ji Friedrich	-	H	NE I							, posterior			Bori n Stati
3 (-15.0m to -16.5m): um to dark gray with layers, clay layer from .7m to -16.5m			RŲN			6 4							Offse Surfe
OVERY=100% RQD=0%			3		en e	I		160					To Ele
104.2 -16.5			-4			-24.0			ligi va 1 -	Ц			<u> </u>
4 (-16.5m to -18.0m); c gray, thinly bedded (1.3mm													
gray, thinly bedded (13mm m) from -16.5m to -17.4m cloy pertings, thinly ded (13mm to 76mm) from 4m to -18.0m cloy layer 1-17.9m to -18.0m	9.		RUN 4	circl		Ξ		A Contraction		and copyed distraction			10
OVERY=100% ROD=0%			75 5 46				-	e Andreas		4			 - 10
102.7 -18.0	1	H				~ <u>25,5</u>	┢	Š.				М	ill
5 (-18.0m to -19.3m): gray with vertical fractures, des to medium to very stiff clay 0 -18.3m, dessicated 19.05m	1	225	RUN 5				\vdash						
OVERY=100% ROD=0%		21 pa	Cugare G. Sayi			* 4				1			10
-19		-				-27.0				1			
OF BORING © -19.3m sight Flight Augers to -4.5m ory (Wash) Drilling Methods Completion		26-1		753 350		-				d, we children.		_	10
CUE 75 & ATV			ALCO THE				L	000		play rock			4
E RATE THE PROPERTY OF THE PRO	i i					=		operation of		ngara saka			
1 2: 5 min per 0.3m)		Megica er er ekk			- 28.5	I			5.5			10
3: 7 min per 0.3m 4: 6 min per 0.3m 1: 5: 6 min per 0.3m		7	- 6.0			- 3	1				,		
ER LOSS DURING CORING -		1		\vdash			+	-	ļ				.
1 100% 2 100% 3 100% 4 100%	}						\dagger	Para and and and and and and and and and an					
C 5 100%	\pm	+-		H		-30.0	十	H	-	1			h

ď										
f		ILLINOIS DEPARTMENT OF TRANSPORTATION STRUCTURE ROCK CORING LOG								
	(BRIEN & ASSOCIATES, INC. CONSULTING ENGINEERS BANS 37 /ARRECTO HTS. C. 60003 1386-1441 - FAMERY 388-2316			Date_	_1_0 4-2-98 308 NO.				
	ROUTE _	FAP 827 DESCR. New Wabash River Bridge	(Illinois 1	5/Indian	o 64)					
£	SECT.	12Z-3, 128R STRUCT, NO. 093-0014	(exist.)	DRILLE	ову н	FE				
	COUNTY	Wabash, IL. & Gibson, IN.					Loovo			
	Boring N Station Offset Surface	SB-1 Core Type NX Diamond Bit 20+767.5 Core Diameter 51 mm 20m Rt Core Length 1.3 to 1.5 m	·	R E C O V E	R . Q . O .	T I M E	COMP. S T R E N			
	Top Elev. (m)	Coring Notes and Rock Description	Core Run (#)	R Y (%)	(%)	(Min. /.3m)	G T H (kPa)			
		PENNSYLVANIAN SYSTEM SHALE								
	108.7	-12.0m to -13.5m: Dark gray, thinly bedded (12mm to 31mm) with clay partings	1	85	0	7	-			
	107.2	-13.5m to -15.0m: Dark gray, thinly bedded (12mm to 31mm) with clay partings, gray clay from -14.85m to -15.0m	2 .	100	o	5	-			
	105.7	100% Water Loss Noted During Coring -15.0m to -16.5m: Medium to dark gray	3	100	0	7	_			
		with clay layers, clay layer from -14.7m to -16.5m	J	.00	Ů	Í				
	104.2	-16.5m to -18.0m: Dark gray, thinly bedded (13mm to 25mm) from -16.5m to -17.4m with clay partings, thinly bedded (13mm to 76mm) from -17.4m to -18.0m, clay layer from -17.9m to -18.0m	4	100	0	6	-			
		100% Water Lass Noted During Coring			:					
	102.7	-18.0m to -19.3m: Dark gray with vertical fractures, changes to medium to very stiff gray clay @ -18.3m, dessicated @ -19.05m 100% Water Loss Noted During Coring	5	100	0	6	-			
		1.								

Color Pictures of the Cores Yes
Cores Picked up by IDOT District 1 No

O'BRIEN & ASSOCIATES, INC.

ROUTE No. SECTION COUNTY TOTAL SHEET

DESIGNED CDF
CHECKED ADD
DRAWN CDF
CHECKED ADD

ell Groded SAND & GRAVEL- own-medium (A-1-a)

PO'SPIEN & ASSOCIATES, 41C.

ILLINOIS DEPARTMENT OF TRANSPORTATION
IL ROUTE 15/IN ROUTE 64
OVER WABASH RIVER PUBLIC WATERS
FAP 827 SECT 12Z-3, 12BR

SOIL BORING LOGS

SN: 093-0021 (IL)/9502700 (IN) WABASH CO., IL.

STA. 1036+27 DATE: JUNE 15, 2007

benesch alfred benesch & company Engineers • Surveyors • Planners 200 North Michigan Avenue, Suite 2400 Chicago, Illinois 60601 s12-665-0460