ROADWAY GEOTECHNICAL REPORT

55th Street at LaGrange Road Cook County, Illinois Job No. D-91-126-12 PTB # 164-008

Prepared For:

Burns & McDonnell Engineering Company, Inc. 200 W. Adams Street, Suite 2700 Chicago, IL 60606

Prepared By:

Himalayan Consultants, LLC 8770 W. Bryn Mawr Ave, Suite 1300 Chicago, IL 60631 Phone: 773-867-2956

> May 29, 2020 Revised: December 17, 2021

TABLE OF CONTENTS

1.0	EXE	XECUTIVE SUMMARRY							
2.0	INTI	RODUCTION	. 2						
3.0	PRO	JECT DESCRIPTION	. 2						
4.0	GEOLOGICAL SETTING								
	4.1	Physiography	. 2						
	4.2	Pedological Features	. 3						
	4.3	Surficial Cover	. 3						
	4.4	Bedrock	. 3						
	4.5	Climate Data	. 4						
5.0	МЕТ	THODS OF INVESTIGATION	. 5						
	5.1	Subsurface Investigation	. 5						
	5.2	Laboratory Testing	. 6						
6.0	INV	ESTIGATION RESULTS	. 6						
	6.1	Surface Conditions	. 6						
	6.2	Soil Conditions	. 6						
	6.3	Groundwater Conditions	. 9						
7.0	ENG	INEERING ANALYSIS AND RECOMMENDATIONS	.9						
	7.1	Site Preparation	. 9						
	7.2	Proposed Pavement Structure	10						
	7.3	Subgrade Soil Treatment and Recommendations	10						
	7.4	Subgrade Support Rating							
	7.5	Roadway Drainage	12						
	7.6	Embankment and Cut Sections	13						
		7.6.1 Settlement	13						
		7.6.2 Slope Stability Analysis	13						
	7.7	Traffic Signal Structures	13						

9.0	REFE	CRENCES	. 17
8.0	LIMI	TATIONS	. 16
	7.11	Earthwork Operations	. 15
	7.10	Reuse of Excavated Material	. 15
	7.9	Filling and Backfilling	. 15
	7.8	Excavation, Dewatering, and Utilities	. 13

EXHIBITS

Exhibit 1: Site Location Map
Exhibit 2-1 to 2-2. Site Pedological Map and Table
Exhibit 3: Site and Regional Geology
Exhibit 4-1 to 4-5: Boring Location Plan
Exhibit 5: Soil Profiles
Exhibit 6. Subgrade Support Rating Chart

APPENDICES

Appendix A Boring LogsAppendix B Laboratory Test Results

ACRONYMS, ABBREVIATIONS, AND SYMBOLS

AASHTO	American Association of State Highway Transportation Officials
ASTM	American Society of Testing Materials
bgs	Below ground surface
bpf	Blows per foot
Cu	Undrained Cohesion
IDOT	Illinois Department of Transportation
IDH	Illinois Division of Highways
ksi	Kips per square inch
N ₆₀	Blow counts corrected for hammer efficiency
N1 ₆₀	Blow counts corrected for hammer efficiency and overburden effects
NCDC	National Climatic Data Center
PVC	Polyvinyl Chloride
psi	Pounds per square inch
pci	Pounds per cubic inch
psf	Pounds per square foot
tsf	Tons per square foot
Q_u	Unconfined compressive strength
SPT	Standard Penetration Test
SSRBC	Standard Specifications for Road and Bridge Construction
TERS	Temporary Earth Retention System
φ	Angle of internal friction
γ	Moist soil unit weight
μ	Coefficient of friction
E ₅₀	Strain at one half the maximum principal stress difference
ks	Soil modulus of elastic loading
kc	Soil modulus of cyclic loading
Ka	Active earth pressure coefficient
K _p	Passive earth pressure coefficient
Ko	At-rest earth pressure coefficient

1.0 EXECUTIVE SUMMARRY

This report presents the findings and recommendations of a geotechnical investigation conducted in connection with the proposed improvements of 55th Street at LaGrange Road, located in the City of Countryside, west central portion of Cook County, Illinois (hereafter referred to as Project Site). The purpose of this project is to address safety and operational concerns of 55th Street and LaGrange Road.

The project includes roadway resurfacing and widening, intersection improvements to 55th Street and LaGrange Road with increased left turn lengths, right turn lanes added to the south, east, and west legs, a raised median along 55th Street from west of Madison Avenue to 7th Street and along LaGrange Road from south of 56th Street to south of Bob O'Link Road, traffic signal modernization, sidewalk and multi-use path improvements and installation of a 30-inch and a 60-inch storm sewer. The following is a summary of findings, conclusions and recommendations based on our investigation.

Surface Conditions: The surface conditions show the existing pavement typically consisting of 4 to 6 of Hot-Mix Asphalt (HMA) over a concrete base of up to 18 inches. 10 inches of aggregate base was encountered in Borings B-07 and B-09.

Subgrade Conditions: The subgrade soils along the proposed improvement consist of up to approximately 6 feet of fill materials comprising medium stiff to hard, brown to gray and black silty clay loam and medium dense poorly graded gravel. Below the fill and/or pavement, the subgrade soils include about 4 to 21 feet of mostly native medium stiff to hard silty clay to silty clay loam. Groundwater was encountered at depths ranging from 1 to 8 feet below existing grades (approximate elevations of 656 to 642 feet).

Subgrade Support Rating: Laboratory testing performed on selected subgrade samples shows a Subgrade Support Rating (SSR) of FAIR to POOR. Considering the worst subgrade conditions, we recommend that an SSR of POOR be used in pavement design. The pavement could also be designed using an Illinois Bearing Ratio (IBR) value of 2 based on correlations provided in the IDOT Geotechnical Manual.

Subgrade Improvements: Approximately 12 to 24 inches of subgrade improvement by removal and replacement with Aggregate Subgrade Improvement (ASI) material is proposed at three areas within the project limits. Subgrade improvement recommendations are provided for areas where unsuitable/unstable soils were encountered. Considering the relatively flatter slopes and small cut depths and fill heights of up to 2 feet, the proposed cut and fill sections should be stable, and no global stability analysis are considered necessary for embankments and cut sections. The fill areas will undergo less than 0.15 inches of long-term settlement.

Roadway Drainage: In general, the subgrade will exhibit poor to fair drainage characteristics. A storm sewer drainage system consisting of a 30-inch and a 60-inch storm sewer is proposed within the project limits to collect storm water and also for detention. We recommend installing longitudinal pipe underdrains below the pavement for the roadways to provide drainage for the pavement in the widening areas. Transverse drains are not needed in areas that will only be widened. Drains should also be installed in low areas and at the base of any undercuts. The underdrains should tie into storm sewer drainage system and should be installed per Article 601 of the IDOT Standard Specifications and consist of Type 2 underdrains (Adopted January 1, 2016).

2.0 INTRODUCTION

This report provides the results of a subsurface investigation, field and laboratory testing, geotechnical analyses and recommendations conducted in connection with the proposed improvements of 55th Street at LaGrange Road, in Cook County, Illinois (hereafter referred to as Project Site). The intersection is approximately 2 miles east of I-294 and 55th Street and approximately 2 miles north of I-55 and LaGrange Road.

See Exhibit 1 for general location of the Project Site.

The purpose of this investigation was to characterize the site soil and groundwater conditions, perform geotechnical analyses, and provide recommendations to support the design and construction of the proposed improvements.

3.0 PROJECT DESCRIPTION

Based on the information obtained from Burns & McDonnell Engineering Company (B&M), the purpose of this project is to address safety and operational concerns of 55th Street and LaGrange Road. The project includes roadway resurfacing and widening, intersection improvements to 55th Street and LaGrange Road with increased left turn lengths, right turn lanes added to the south, east, and west legs, a raised median along 55th Street from west of Madison Avenue to 7th Street and along LaGrange Road from south of 56th Street to south of Bob O'Link Road, traffic signal modernization, sidewalk and multi-use path improvements and installation of a 60-inch storm sewer.

4.0 GEOLOGICAL SETTING

The Project Site is located in the City of Countryside, west central portion of Cook County, Illinois. On the USGS West Chicago Quadrangle 7.5 Minute Series map, the Project Site extends through the S 1/2 of Section 9 and 16, in Township 38 North, Range 12 East of the Third Principal Meridian, Cook County, Illinois.

Himalayan reviewed the following published geologic data with emphasis on factors that might influence the design and construction of the proposed engineering works and, thus, to confirm the dependability and consistency of the present subsurface investigation results. For the study of the regional geologic framework, Himalayan considered northeastern Illinois area in general and Cook County in particular.

4.1 Physiography

Cook County is dominated by the Wheaton Morainal Country to the west with broad parallel ridges that encircle the Chicago Lake Plain and Lake Michigan to the east [Ref. 1]. The project area is situated between the Tinley Moraine and Glenwood Shoreline, which is the oldest stage of Lake Chicago

(~12,000 BCE). The relief within the Project Site is generally flat. In general, the existing surface elevation at the intersection is 650 feet and fluctuates generally between 645 and 655 feet along LaGrange Road and 55th Street. The Site and Regional Geology is illustrated in Exhibit 3, Appendix A [Ref. 2, 3].

4.2 Pedological Features

After the Wisconsin glaciation, several types of soils developed through weathering of glaciogenic sediments. In Cook County, the soil types were surveyed by the United States Department of Agriculture in 1979 and updated in 2011 [Ref. 4]. A summary of the USDA soil types present within the Project Site including their relevant geotechnical index properties and suitability as subgrade and road fill are shown in the Site Pedological Map and Table showing engineering and physical properties of soil (Exhibit 2). The soil information provided by USDA is meant to be used as a general reference in the absence of a site-specific investigation. In this instance, our findings regarding soil features affecting suitability for highway and street construction may not necessarily in agreement with the information presented in the exhibit.

4.3 Surficial Cover

The surficial cover in Cook County ranges from 0 to 275 feet thick and is the result of Wisconsin-age glacial activity [Ref. 5]. The glaciogenic deposits were emplaced during pulsating advances and retreats of an ice sheet lobe responsible for the formation of end moraines and associated low-relief till and lake plains [Ref. 6]. Glacial deposits at the Project Site are estimated to be 25 to 50 feet thick [Ref. 5]. End moraine deposits of the Wadsworth Formation may be encountered along the project alignment. These debris flow deposits are identified as relatively homogeneous, gray till with clay to silty clay loam matrix, with a high content of dolomite and shale clasts and occasional lenses of sorted and stratified silt, gravel, and sand. Underlying the Wadsworth Formation may also be the dense, silty loam diamicton of the Lemont Formation [Ref. 7].

From a geotechnical viewpoint, the Wadsworth Formation diamicton is characterized by moderate to low plasticity, medium to low moisture content, medium to hard consistency, poor permeability, and low compressibility. The Lemont Formation diamicton is characterized by high silt content, low moisture content and higher strength [Ref. 8].

4.4 Bedrock

More than half of the bedrock in Cook County is covered by glacial till from the Wadsworth Formation. This surficial cover rests unconformably on top of Silurian-age bedrock that dips eastward toward Lake Michigan. Bedrock at the Project Site consists mainly of pure to silty dolomite, and the bedrock surface lies approximately 85 feet below the ground surface (bgs). The Silurian dolomite is estimated to be 250 feet thick along the project alignment. Structurally, the Project Site is located on

the eastern flank of the Wisconsin Arch and the inactive Des Plaines Disturbance [Ref. 9]. No active faults or underground mines are known in the area.

Our subsurface investigation results fit into the local geologic context. The borings drilled at the Project Site encountered native sediments consisting predominantly of silty clay and silty clay loam diamicton interbedded with sporadic sand and gravel layers. None of the structure borings drilled at the Project Site encountered bedrock.

4.5 Climate Data

The subsurface investigation along the roadways was performed between February 24, 2020 to February 27, 2020. To assess the possible effects of temperature and precipitation on water table and soil moisture data, the climatic conditions for the roadway investigation period and three months prior to the start of investigation are summarized in a tabular format represented in Table 1. The precipitation and temperature data for the investigation period are compared against thirty-year monthly data (1981 to 2010) with calculated departure shown to illustrate deviations from "normal" climate conditions during the investigation. Local climatologic data were obtained from the O'Hare Station (NCDC 2019) [Ref. 10].

										Current l	[nvestat	ion + 3 M	Ionth Prior
		MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB
	1981 to 2010	2.49	3.38	3.68	3.47	3.71	4.90	3.21	3.15	3.14	2.25	1.73	1.78
Duccinitation													
Precipitation	2019 to 2020	2.09	6.02	8.25	3.05	3.94	3.63	7.61	6.76	1.87	1.55	2.80	0.77
(in)													
	Departure	-0.40	2.64	4.57	-0.42	0.23	-1.27	4.40	3.61	-1.27	-0.70	1.07	-1.01
Mean	1981 to 2010	37.7	48.9	59.0	68.9	73.9	72.3	64.5	52.5	40.3	27.7	23.7	27.7
Average	2019 to 2020	34.3	49.7	58.0	67.8	77.1	72.9	69.4	50.9	34.8	34.0	30.1	30.2
Temperature													
(°F)	Departure	-3.4	0.8	-1.0	-1.1	3.2	0.6	4.9	-1.6	-5.5	6.3	6.4	2.5

Table 1– Monthly Precipitation and Temperature Data 2019 to 2020

Precipitation for the months prior to the start of our soil investigation period shows low to high average precipitation. The month of December and January shows a relatively high monthly mean temperature, and the month of November shows a relatively low monthly mean temperature.

No historic data was available to determine the climate condition influence on soil moisture content and water table levels. However, the low to high average precipitation before our investigation might have impacted the moisture content of the upper soil layers and the groundwater levels.

5.0 METHODS OF INVESTIGATION

5.1 Subsurface Investigation

On February 24, 26 and 27, 2020, Wang Testing Services (Wang) under contract with Himalayan advanced 20 borings designated as B-01 to B-20 at the Project Site. Himalayan staked out the boring locations at the Project Site in accordance with the boring location plan approved by B&M. Borings were advanced from existing ground to boring termination depths which ranged from 10 to 25 feet below existing grades. The borings were advanced from elevations of approximately 649 to 659 feet.

In Table 2, we provide a summary of the investigation areas with approximate stations and reference borings/depths from the subsurface investigation program.

Boring No.	Roadway	Station, Offset ¹	Depth (feet) ²	Boring for							
55 th Street											
B-01	55 th Street	90+19, 24' RT	10	Roadway							
B-02	55 th Street	93+01, 30' LT	10	Roadway							
B-03	55 th Street	96+00, 24, RT	10	Roadway							
B-04	55 th Street	99+06, 35' LT	20	Bedrock Profile							
B-05	55 th Street	101+00, 37' RT	10	Roadway							
B-06	55 th Street	104+99, 29' LT	20	Traffic Signal							
B-07	55 th Street	107+99, 25' RT	10	Roadway							
B-08	55 th Street	110+99, 16' LT	10	Roadway							
B-09	55 th Street	114+02, 35' RT	10	Roadway							
B-10	55 th Street	117+00, 26' LT	20	Bedrock Profile							
B-11	55 th Street	120+00, 20' RT	10	Roadway							
		LaGrange Road									
B-12	LaGrange Road	191+02, 24' LT	10	Roadway							
B-13	LaGrange Road	188+10, 23' RT	10	Roadway							
B-14	LaGrange Road	196+98, 24' LT	10	Roadway							
B-15	LaGrange Road	194+02, 24' RT	10	Roadway							
B-16	LaGrange Road	199+44, 88' RT	25	Traffic Signal							
B-17	LaGrange Road	200+61, 21' RT	25	Traffic Signal							
B-18	LaGrange Road	203+00, 25' LT	10	Roadway							
B-19	LaGrange Road	206+01, 25' RT	10	Roadway							
B-20	LaGrange Road	208+56, 24' LT	10	Roadway							
<u>Notes:</u> 1. LT = Left. RT = Rigl 2. Depth measured belo											

Table 2 – Investigation Program Summary

Himalayan supervised the drilling and sampling activities, conducted field tests on soil samples and prepared field logs describing the soils. The split-spoon samples obtained from the drilling operations were visually classified in the field per IDH Textural Classification. Cohesive samples were tested for unconfined compressive strength (Q_u) using an IDOT modified RIMAC test device and/or calibrated

hand penetrometer in the field. Soil samples collected from each sampling interval were placed in sealed jars and transported to the Wang laboratory for further examination and laboratory testing.

Himalayan obtained the as-drilled northing and easting coordinates and boring elevations including the boring stationing and offsets using a survey grade GPS unit. The as-drilled boring locations are shown in the Boring Location Plan (Exhibit 4) and boring location data are presented on the Boring Logs (Appendix A).

Groundwater levels were measured while drilling and at completion of each boring. Upon completion of sampling and water level observations, all boreholes were properly backfilled with soil cuttings and/or bentonite chips for safety considerations. The ground surface was restored to its original condition and patched with asphalt.

5.2 Laboratory Testing

Soil samples were tested in accordance with IDOT procedures outlined in the IDOT Geotechnical Manual [Ref. 11]. Soil samples were tested in Wang laboratory for natural water content (AASHTO T265). Atterberg Limits (AASHTO T89 and T90), Particle Size Analyses (AASHTO T88), and Loss on Ignition (AASHTO T267) were performed on selected soil samples. The tested soils were classified according to the IDH and AASHTO classification systems. Field visual-manual classifications were verified in Wang's Laboratory. The results of the laboratory testing program are shown in the attached Boring Logs (Appendix A) and in Laboratory Test Results (Appendix B).

6.0 INVESTIGATION RESULTS

Detailed description of soil and groundwater conditions encountered at each boring location is shown on the Boring Logs (Appendix B). It should be noted that the soil stratification lines shown in the boring logs represent approximate boundaries between soil types. The actual transition between soil types in the field may be gradual in horizontal and vertical directions. Soil profiles are presented as Exhibit 5.

6.1 Surface Conditions

The proposed alignments will be constructed through areas with various surficial covers, including pavement, topsoil, and sidewalk.

6.2 Soil Conditions

Below the surface, the general lithological soil profile at the Project Site consists of 1) fill materials (man-made ground); and 2) silty clay to silty clay loam

55th Street

Borings B-01 to B-11were drilled along the 55th Street alignment conducted on road through the pavement. In Table 3, we provide a summary of the topsoil and pavement thicknesses.

	Pavement Thickness									
	(inches)									
			Aggregate							
Boring	HMA 1	Concrete	Base							
B-01	4	10								
B-02	14									
B-03	4	10								
B-04	5	9								
B-05	4	10								
B-06	5	9								
B-07	4		10							
B-08	5	9								
B-09	4		10							
B-10	5	10								
B-11	4	10								
Notes: 1. Hot-Mixed Asphalt										

 Table 3 – Pavement Thickness Summary

1) <u>Fill Materials</u>

Beneath the surface up to 4 feet, fill was observed. The fill consisted of medium stiff to hard, brown to gray and black silty clay loam and medium dense poorly graded gravel. The unconfined compressive strength (Q_u) for the cohesive soils ranged from 0.87 to 4.5 tsf and the SPT N-value for the poorly graded gravel was 14. The natural moisture contents ranged from 9 to 24%.

2) <u>Silty Clay to Silty Clay Loam</u>

Beneath the fill, native stiff to hard silty clay to silty clay loam was encountered from a depth of 2 feet to the boring termination depths in most of the borings. Stiff to very stiff, gray to black, clay was encountered from 2 feet to 6 feet below ground surface in Boring B-09. The Q_u values for the soil samples ranged from 1.25 to 6.8 tsf. The natural moisture contents for the samples ranged from 20 to 27%. Laboratory testing on samples from this strata shows LL of 38 to 60%, PL of 17 to 20%, and with a PI value of 21 to 40%. The AASTHO classification for these soils ranged from A-6 to A-7-6.

LaGrange Road

Pavement borings B-12 through B-20 were drilled along the LaGrange roadway alignment. In Table 4, we provide a summary of the pavement thicknesses.

	Pavement Thickness						
	(inches)						
Boring	HMA 1	Concrete					
B-12	12	12					
B-13	12	12					
B-14	5	12					
B-15	6	18					
B-16	6	12					
B-17	6	6					
B-18	4	15					
B-19	6	12					
B-20	6	12					
Notes: 1. Hot-Mixed Asphalt							

 Table 4 – Pavement Thickness Summary

1) <u>Fill Materials</u>:

Beneath the surface up to 5.5 feet, fill was observed. The fill consisted of stiff to hard, gray to brown and black, silty clay loam with little to some gravel. The Q_u values for these soils ranged from 1.0 to 6.7 tsf and the natural moisture contents ranged from 11 to 29 %.

2) <u>Silty Clay to Silty Clay Loam</u>

Beneath the fill, native medium stiff to hard silty clay to silty clay loam was encountered from a depth of 4 feet to the boring terminating depths in most of the borings. Stiff, gray, gravelly clay was encountered from 4 to 6 feet below ground surface in Boring B-20.

The Q_u values for these soils ranged from 0.75 to 7.81 tsf. The moisture contents ranged from 11 to 37%. Laboratory testing on samples from this strata shows LL of 36 to 53%, PL of 17 to 18%, and PI of 19 to 36%. The AASTHO classification for these soils ranged from A-6 to A-7-6.

6.3 Groundwater Conditions

Groundwater was encountered along 55th Street in only three borings B-01. B-05 and B-07 at depths ranging from 1 to 8 feet bgs (approximate elevations 656 to 643 feet). Groundwater was encountered along LaGrange Road in only two borings B-17 and B-20 at depths ranging from 4 to 8 feet bgs (approximate elevations 647 to 642 feet).

Note that fluctuation in the groundwater levels should be anticipated due to the seasonal variation in precipitation, surface runoff and water levels in the drainage ditches.

7.0 ENGINEERING ANALYSIS AND RECOMMENDATIONS

Based on the project plan and profile provided by B&M (dated 4/13/2020), the new roadway alignments closely follow the existing ground elevations. No significant change in grade elevations and current embankment widths is anticipated along 55th Street and LaGrange Road to accommodate the proposed geometric improvements.

The new design includes embankment fills of up to 2 feet and cuts as deep as about 2 feet for adding lanes and matching of existing embankment slopes.

The results of our geotechnical analysis and recommendations are provided in the following sections.

7.1 Site Preparation

It is recommended that the existing topsoil, vegetation, pavements, and debris be stripped within the limits of the proposed improvements. For estimating purposes, the average thickness of topsoil to be stripped for roadway widening can be considered to be 6 inches. The actual thickness of topsoil needing removal should be determined in the field. It is recommended that the stripped topsoil be stockpiled, sorted, and reused for landscaping purposes.

As per IDOT District one guidelines, a shrinkage factor of 15% is recommended to estimate the borrow and furnished excavation quantities. For temporary drainage during construction, we recommend the Contractor create sufficient drainage to facilitate runoff and to prevent excess pooling of precipitation in the event of extended construction delays.

After the surface removal as described, the stability of the exposed subgrade should be immediately observed for the presence of any unsuitable/unstable soil to determine if remedial treatment is needed. The subgrade in the new pavement areas should be proof rolled to observe the amount of deflection and rutting under the wheels of heavy construction equipment such as a fully-loaded dump truck. Subgrade areas should be tested and evaluated according to the IDOT Subgrade Stability Manual [Ref. 12].

7.2 Proposed Pavement Structure

Based on the typical proposed cross section drawings provided by B&M, the proposed pavement structure to be used for widening of the roadways proposed for 55th Street and LaGrange Road will consist of Polymerized HMA surface course over PPC Pavement over Aggregate Subgrade.

The existing pavement consists of HMA Surface Course over concrete (Tables 3 and 4). Any additional subgrade improvements identified in this report will be beyond the base of the existing pavement.

7.3 Subgrade Soil Treatment and Recommendations

The new roadway pavement for the widening will be supported on the existing cohesive, cohesionless, or on new compacted fill material.

With the exception of limited areas within the project, the subgrade soils encountered at the anticipated subgrade elevations within the existing embankment have Qu values greater than 1.0 tsf for cohesive soils and N-values greater than 10 for cohesionless soils. The moisture contents for cohesive soils generally are less than 25% and liquid limit values below 50% with the exception of a few samples. In general, these subgrade soils will provide a stable working platform,

Soils encountered at the anticipated subgrade elevations in a few borings (B-09, B-11 and B-12) have moisture contents equal to or greater than 25% and/or Qu values of less than 1.0 tsf. Some of these soils are considered unsuitable and/or unstable and will require removal and replacement if new pavement will be built over the existing grades in these locations. We recommend providing geotechnical fabric for ground stabilization prior to backfilling by the replacement material. As per IDOT District One policy, we recommend that a provisional quantity of Aggregate Subgrade Improvement (ASI) material (CU YD) be included to be used to replace any unsuitable soils below the bottom of the improved subgrade layer that are encountered in the field during construction. The provisional quantity should be 25% of the planned full depth pavement areas assuming a thickness of 12 inches. This material should be added to the Schedule of Quantities (SOQ) for estimating purposes.

The actual need for removal and replacement with Aggregate Subgrade Improvement (ASI) should be determined in the field at the time of construction by the Geotechnical Engineer or soils inspector. All potentially unstable soils should be tested with a cone penetrometer and treated with Article 301.04 of the Standard Specifications for Road and Bridge Construction (SSRBC) and the undercut guidelines in the Subgrade Stability Manual [Ref 12,13]. Any material not needed for undercut replacement at the time of construction should be deleted from the contract with no extra compensation to the contractor.

The limits of the areas with unstable soils requiring subgrade treatment are summarized in Table 5.

			Reme	dial Treatme								
Boring/ Approx Station	Approx Station Limits (feet) ¹	Subgrade Description	Туре	Width	Depth / Elevation (feet)	Subgrade Concerns						
55 th Street												
B-09 / 114+02	112+50 to 115+51	Stiff to very Stiff Clay	ASI/ Geofabric	Roadway Widening Width	1.0/648.6	Unsuitable Soils / High Shrink/Swell Potential Soils LL = 60% , w = 27%						
B-11/ 120+00	118+50 to 120+41	Medium Stiff Silty Clay Loam (Fill)	ASI/ Geofabric	Roadway Widening Width	2.0/647.7	Low Bearing, Unstable / Unsuitable Soils Qu = 0.87 tsf, w = 24%						
	LaGrange Road											
B-12/ 191+02	189+56 to 192+52	Stiff Silty Clay Loam	ASI/ Geofabric	Roadway Widening Width	2.0/650.6	Unstable/Unsuitable Soils Organic Content = 15.5%, Qu = 1.5 tsf, w = 29%						
Notes		ed approvimately halfway be				Qu = 1.5 tsf, w = 29%						

Table 5 – Summary of Subgrade Treatment Recommendations

1. Based on distance measured approximately halfway between the adjacent borings.

2. Undercuts, depths and elevations are at boring locations and are based on the thickness estimated from the bottom of the 12-inch aggregate subgrade improvement layer.

3. The base of the undercuts should extend away from the pavement at a minimum slope of 1:1 (V:H).

As per the above recommendations, two separate ASI line items in the SOQ should be included in the design plans:

- Aggregate Subgrade Improvement 12" (SQ YD): This will be used for the 12-inch aggregate subgrade improvement below new pavement sections and widening pavement section.
- Aggregate Subgrade Improvement (SQ YD): This will be used in locations where there are undercuts (below the 12-inch improved subgrade layer) where poor soils were removed.

The ASI material associated with both of the above line items should be according to the District One Aggregate Subgrade Improvement Special Provision.

We also recommend including a plan quantity of Geotechnical Fabric Stabilization (SQ YD) equal to at least 25% of the planned pavement area in addition to the areas listed in the undercut table (Table 5). We recommend placing geotextile fabric at the base of the undercut areas where low strength subgrade soils are encountered. The 12 inches of improved subgrade is not considered an undercut and we do not recommend placing the fabric at the base of the proposed 12-inch improved subgrade layer unless it is determined to be necessary to achieve stability by the Geotechnical Engineer or soils inspector at the time of construction. Fabric should meet the requirements of Article 210, Fabric for

Ground Stabilization of the SSRBC. Any material not needed at the time of construction should be deleted from the contract with no extra compensation to the contractor.

The widened sections along 55th Street (Station 89+91 to 120+41) and LaGrange Road (Station 188+00 to 209+07) will be constructed on embankments with fill heights up to 2 feet. The embankments will be graded at slope of 1V:3H or gentler.

The frost depth for pavement design in northern Illinois is estimated to range from 45 to 60 inches [Ref. 11]. Based on the laboratory tests of the subgrade samples within the frost depths, the soils have silt and fine sand contents of more than 65% and had PI ranging from 19 to 40%. Additionally, groundwater was encountered within the top 6 feet in at least six borings although many of the borings were dry, potentially due to low permeable clayey soils encountered. Therefore, the subgrade soil will exhibit high frost susceptibility. Adequate drainage should be provided to alleviate any frost heave. Any highly moist soils, if not otherwise unsuitable or unstable, encountered within the exposed roadways subgrade should be disked or tilled, dried, and compacted before placing the new pavement structure.

7.4 Subgrade Support Rating

The proposed pavement will be supported on stiff to hard clayey soils, medium dense gravel or compacted borrow material. Laboratory testing performed on selected subgrade samples shows a Subgrade Support Rating of FAIR to POOR (Exhibit 6). Considering the worst subgrade conditions, we recommend that an SSR of POOR be used in pavement design. The pavement could also be designed using an Illinois Bearing Ratio (IBR) value of 2 based on correlations provided in the IDOT Geotechnical Manual [Ref. 11].

7.5 Roadway Drainage

The proposed subgrade and pavement should have proper surface grading to avoid stagnant water. The soils encountered beneath the proposed subgrade will exhibit poor to fair drainage characteristics. Most of the fill materials to be placed in support of roadway widening will likely be cohesive exhibiting poor drainage characteristics.

The proposed drainage system consists of a curb and gutter and storm sewer drainage system. A storm sewer drainage system consisting of a 30-inch and a 60-inch storm sewer is proposed within the project limits to collect storm water and also detention.

We recommend installing longitudinal pipe underdrains below the pavement for the roadways to provide drainage for the pavement in the widening areas. Transverse drains are not needed in areas that will only be widened. Drains should also be installed in low areas and at the base of any undercuts. The underdrains should tie into the storm sewer drainage system and should be installed per Article 601 of the IDOT Standard Specifications and consist of Type 2 underdrains (Adopted January 1, 2016).

7.6 Embankment and Cut Sections

The proposed construction of the roadway will have both fill and cut sections. The new design includes embankment fills of up to 2 feet and cuts as deep as about 2 feet for adding lanes and matching the existing grades. The embankments and cut sections will have side slopes of no steeper than 1:3 (V:H). We have evaluated long-term settlement and global slope stability of the cut and fill sections along the proposed 55th Street and LaGrange Road roadway alignments.

7.6.1 Settlement

We performed settlement analyses for four critical sections between Stations 114+02 to 120+00 along 55th Street (Boring B-09 and B-11) and between Stations 191+02 to 208+91 along LaGrange Road (Borings B-12 to B-20).

Our evaluations show estimated long-term settlements on the order of less than 0.15 inches.

Settlement analyses were performed using Rocscience Settle 3D computer program. Because consolidation tests were not performed, the consolidation soil parameters were estimated based on other index properties of soils.

7.6.2 Slope Stability Analysis

Considering the relatively flatter slopes and small cut and fill depths (maximum 2 feet), the proposed cut and fill sections should be stable, and no global stability analysis are considered necessary for embankments and cut sections. Per IDOT Geotechnical Manual, areas with a fill height or cut depth less than 15 feet will not require slope stability analysis.

7.7 Traffic Signal Structures

New traffic signals will be installed to accommodate the proposed lane configuration. These structures have high lateral (overturning) loadings primarily due to wind and usually are supported on shaft foundations. The IDOT standard foundation details (Highway Standard 878001-10) requires an average Qu of cohesive soils to be greater than 1.0 tsf for these structures.

The traffic signal structure Borings B-06, B-16 and B-17 encountered cohesive soils with average Qu of greater than 1.0 tsf. These soils meet the requirements of the standard details and the foundations for the proposed traffic signal structures can be designed using the standard details.

7.8 Excavation, Dewatering, and Utilities

The roadway excavations should be performed in accordance with local, state, and federal regulations. If excavations are equal or greater than 4 feet, the slopes should be graded, benched, or supported in accordance with the latest Occupational Safety and Health Administration (OSHA) safety standards

and requirements for temporary side slopes. Allowances should be made for any surcharge loads adjacent to the excavation areas. Movement of adjacent soils near the edge of and into excavation areas should be prevented and the potential effects of ground movements upon nearby utilities should be considered during construction. Temporary excavations should be sloped at no greater than 1:1.5 (V:H).

According to B&M, the maximum vertical excavations up to 12 feet bgs will be needed for utility construction that includes a 30-inch storm sewer drain (Station 193+00 to Station 199+20 along the median of LaGrange Road) and a 60-inch storm sewer drain (Station 98+00 to Station 120+45 mostly along the median of 55^{th} Street). Therefore, a Temporary Earth Retention System (TERS) will be needed to maintain the existing roadways during construction. The cohesive soils encountered in the borings have Q_u values greater than 4.5 tsf. These soil strengths encountered exceed the limits for using the temporary sheet pile tables. The short term soil parameters provided in Table 6 can be used in design of the TERS.

		Shear Strength Parameters							
Material	Unit Weight. γ	Short (Undra		Long Term (Drained)					
	(pcf)	c (psf)	ф (deg.)	c' (psf)	φ' (deg.)				
Existing Embankment Fill- Cohesive	125	1,500	0	0	32				
New Fill	125	1,000	0	0	28				
Medium Stiff - Cohesive Q _u = 0.5 to 0.99 tsf	115	1,000	0	0	26				
Stiff- Cohesive Q _u = 1 to 1.99 tsf	120	1,500	0	0	28				
Very Stiff-Cohesive $Q_u = 2$ to 3.99 tsf	125	3,000	0	0	32				
Hard-Cohesive $Q_u \ge 4 \text{ tsf}$	130	4,000	0	0	34				

Table 6 – Soil Design Parameters for Temporary Earth Retention System

The design of the TERS is the responsibility of the contractor.

Excavations required for cuts and undercutting will require dewatering due to shallow groundwater encountered within the top 4 feet in some borings and also due to the perched water table sometimes located above the excavation depths. The contractor should ensure proper surface grading to prevent the pooling of run off into open excavations. Any water entering the excavations should immediately be removed.

In general, we expect that groundwater seepage into the excavations within mostly cohesive soils could be controlled with sump pump and pit procedures. However, where excavations penetrate to water bearing granular soils and adjacent to low lying area(s), more extensive dewatering should be anticipated.

Drilled shaft excavations should be as per IDOT Special Provision GBSP-86 Drilled Shafts.

Boring B-17 encountered cohesive soils in saturated conditions with relatively high Q_u values (3.3 to 6.3 tsf) below a depth of 4.5 feet. The contractor should review the attached boring logs, evaluate the soil conditions and depths, and determine the means and methods necessary for construction.

7.9 Filling and Backfilling

The fill material should be free of organic matter and debris and should be compacted in accordance with the requirements of Section 205 of the SSRBC [Ref. 13]. The structural fill utilized to attain the final design elevations should satisfy the requirements of the SSRBC. The backfill materials must be as per the SSRBC.

7.10 Reuse of Excavated Material

Excavated soils and granular subbase materials from within the project limits may be reused in embankments if it meets requirements of Section 204 of the SSRBC and District 1 Special Provision Embankment I.

7.11 Earthwork Operations

The required earthwork can be accomplished with conventional equipment. Moisture and traffic will cause deterioration of exposed subgrade soils. The construction contractor should take measures to prevent erosion of the exposed subgrade due to water or surface runoff. A compacted subgrade will minimize water runoff erosion.

Earth moving operations should be scheduled to not coincide with excessive cold or wet weather (early spring, late fall, or winter). Any soil allowed to freeze or soften due to standing water should be removed. Wet weather can cause problems with subgrade compaction.

It is recommended that an experienced geotechnical engineer or representative be retained to inspect the exposed subgrade, verify soils in the field, monitor earthwork operations, and provide material inspection services during construction phase of the project.

8.0 LIMITATIONS

Our analysis and recommendations are based upon the data obtained from the borings drilled at locations shown on the boring logs and boring location plan included in this report. Because the evaluation is based upon subsurface physical data obtained from soil borings only at specific locations and time and only to the depths sampled, the report does not reflect potential variations in the subsurface conditions that may occur between the borings or elsewhere on the Project Site, variations whose nature and extent may not become evident until the course of construction. The conclusions or recommendations contained represent our professional opinions. No warranty or guarantee is expressed or implied. If variations are encountered and/or the project scope is altered, we should be timely informed so that our recommendations can be adjusted accordingly.

It has been a pleasure to assist Burns & McDonnell Engineering Company on this project. Please contact us if there are any questions, or if we can be of further service.

Respectfully Submitted,

Himalayan Consultants, LLC

Shardul Sharma Geotechnical Engineer

Gopal K. Adhikary Senior Geotechnical Engineer

Mohamed Elgendy, P.E. Senior Geotechnical Engineer

9.0 **REFERENCES**

- 1. United States Geological Survey (1999). Environmental Setting of the Upper Illinois River Basin and Implications for Water Quality-National. Water-Quality Assessment Program Water-Resources Investigations Report 98-4268.
- 2. USGS (1983). Quaternary Geologic Map of the Chicago 4° x 6° Quadrangle, US. Quaternary Geologic Atlas of the United States. MAP 1-1420 (NK-16)
- 3. Leetaru, H.E., Sargent, M.L., and Kolata, D.R. (2004) "Geologic Atlas of Cook County for Planning Purposes." Open File Series 2004-12. Illinois State Geological Survey, 30 p.
- 4. United States Department of Agriculture (2011). Soil Survey of Cook County, Illinois.
- 5. Leetaru, H.E., Sargent, M.L., and Kolata, D.R. (2004). Geologic Atlas of Cook County for Planning Purposes. Open File Series 2004-12. Illinois State Geological Survey, 30 p.
- Johnson, W.H., and Hansel, A.K. (1999). Wisconsin Episode glacial landscape of central Illinois: A product of subglacial deformation process. Geological Society of America Special Paper 337, p. 121-135.
- Hansel, A.K., and Johnson, W.H. (1996). Wedron and Mason Groups: Lithostratigraphic Reclassification of the Wisconsin Episode, Lake Michigan Lobe Area. ISGS Bulletin 104. Illinois State Geological Survey, Champaign 116 p.
- Bauer, R. A.; Curry, B.B.; Graese, A.M.; Vaiden, R.C.; Su, W.J. and Hasek M.J. (1991). Geotechnical properties of selected Pleistocene, Silurian, and Ordovician deposits of northeastern Illinois. Illinois State Geological Survey. Series 139. 69 p.
- 9. Willman, H.B. (1971). Summary of the Geology of the Chicago Area. ISGS Circular C460. Illinois State Geological Survey, p. 77.
- 10. NCDC, 2019, National Climatic Data Center: Global Historical Climatological Network Data, http://www.ncdc.noaa.gov/ghcn/ghcn.SELECT.html
- 11. Illinois Department of Transportation (2015). Geotechnical Manual.
- 12. Illinois Department of Transportation (2015). Subgrade Stability Manual.
- 13. Illinois Department of Transportation (2022). Standard Specifications for Road and Bridge Construction.

EXHIBITS

EXHIBIT 2-2: Engineering and Physical Properties of Soil															
Map unit symbol and soil name	Depth	USDA texture	AASHTO	Fragi >10 inches	ments 3-10 inches	Sand	Silt	Clay	Moist Bulk Density	Saturated Hydraulic Conductivity	Organic matter	Ero Kw	osion Factor Kf T	Liquid limit	Plasticity Index
	In			Pct	Pct	Pct	Pct	Pct	g/cc	micro m/sec	Pct	(0.02 to 0.55)	(0.20 to 0.43) (1 to 5) Pct	
<u>533:</u>															
Urban land															
Orthents, loamy, nearly level	0-8	Loam	A-6, A-7-6	0	0-4	23-50	28-50	22-27	1.70-1.75	1.41-4.23	0.5-2.0	.37	.37 5	32-41	15-19
	8-60	Clay loam, loam, silt loam	A-6, A-7-6	0-1	0-4	20-50	25-58	22-30	1.70-1.80	1.41-4.23	0.2-1.0	.32	.32	33-43	15-21
Orthents, clayey, nearly level	0-8	Silty clay	A-7-6	0	0-3	2-20	40-58	40-55	1.50-1.65	0.14-0.42	0.5-2.0	.32	.32 2	50-68	29-40
	8-60	Clay, silty clay, silty clay loam	A-7-6	0	0-2	2-30	10-60	35-60	1.60-1.90	0.14-0.42	0.2-1.0	.32	.32	46-70	25-44
Orthents, loamy-skeletal, nearly level	0-9	Very artifactual loam	A-2-6, A-2-7, A-6, A-7-6	9-18	16-26	23-50	28-50	22-27	1.70-1.75	1.41-4.23	0.5-2.5	.10	.37	32-42	15-18
	9-60	Very artifactual silt loam, extremely artifactual clay loam, extremely artifactual loam	A-2-6, A-2-7, A-6, A-7-6	12-28	20-52	20-50	25-58	22-30	1.70-1.80	1.41-4.23	0.2-1.0	.05	.32 5	33-43	15-21
		-				2	<u>322A:</u>		-	-		-			-
	0-5	Silty clay loam, silt loam	A-6, A-7-6	0	0-3	2-20	45-73	25-35	1.40-1.55	0.42-1.41	0.5-4.0	.43	.43	35-53	17-24
	5-28	Silty clay loam	A-6, A-7-6	0	0-3	2-20	45-71	27-35	1.45-1.70	0.42-1.41	0.2-1.0	.43	.43	37-46	19-25
Anthroportic Udorthents, moderately deep water table	28-39	Silty clay loam	A-6, A-7-6	0	0-3	1-20	45-72	27-35	1.40-1.60	0.42-4.23	0.5-1.5	.43	.43 5	37-47	19-25
	39-49	Silty clay, silty clay loam	A-6, A-7-6	0	0-3	5-20	40-65	30-42	1.50-1.65	0.42-4.23	0.1-0.5	.37	.37	39-52	21-30
	49-60	Clay, silty clay, silty clay loam	A-6, A-7-6	0	0-3	5-20	30-65	30-50	1.60-1.75	0.42-4.23	0.0-0.5	.43	.43	39-60	21-36
Urban land			 A-6, A-7-5, A-7-6												
	0-6 6-11	Silt loam Silty clay loam	А-б, А-7-б А-7-б	0	0	2-15 2-15	58-76 50-71	22-27 27-35	1.30-1.45 1.25-1.45	4.23-14.11 4.23-14.11	3.0-5.0 2.5-4.0	.32	.32 .28	38-48 42-53	15-18 18-25
Elliott	11-16	Silty clay, silty clay loam	A-7-6	0	0	2-15	40-61	37-49	1.35-1.55	1.41-4.23	0.5-1.6	.32	.32 4	46-61	26-35
	16-41	Silty clay, silty clay loam	A-6, A-7-6	0	0-1	2-20	40-65	27-45	1.45-1.75	0.42-4.23	0.1-0.8	.37	.37	34-55	16-32
	41-60	Silty clay loam	A-6, A-7-6	0	0-2	3-20	42-70	27-38	1.65-1.85	0.42-1.41	0.0-0.5	.49	.49	34-47	16-26
	0-12	Silty clay loam	A-7-5, A-7-6	0	0	1-15	45-64	35-40	1.20-1.45	1.41-4.23	3.0-8.0	.20	.20	51-66	25-28
	12-29	Silty clay, silty clay loam	A-7-6	0	0	2-15	43-63	35-42	1.30-1.50	1.41-4.23	0.5-2.5	.32	.32	46-57	25-30
Ashkum, drained	29-54	Silty clay, silty clay loam	A-6, A-7-6	0	0-1	5-20	40-65	30-42	1.50-1.70	1.41-4.23	0.1-1.0	.43	.43 5	39-53	21-30
	54-60	Silty clay loam	A-6, A-7-6	0	0-1	5-20	45-68	27-35	1.55-1.75	1.41-4.23	0.0-1.0	.43	.43	36-47	19-25
			A-7-0				40 00 B22B:	21 00	1.00 1.10	1.41 4.20	0.0 1.0	.+0	.+0		
	0-6	Silty clay loam, silt loam	A-6,	0	0-3									35-53	17-24
			A-7-6 A-6,	0		2-20	45-73	25-35	1.40-1.55	0.42-1.41	0.5-4.0	.43	.43	37-46	
	6-28	Silty clay loam	A-7-6 A-6,	-	0-3	2-20	45-71	27-35	1.45-1.70	0.42-1.41	0.2-1.0	.43	.43		19-25
Anthroportic Udorthents, moderately deep water table	28-38	Silty clay loam	A-7-6	0	0-3	1-20	45-72	27-35	1.40-1.60	0.42-4.23	0.5-1.5	.43	.43 5	37-47	19-25
	38-43	Silty clay, silty clay loam	A-6, A-7-6	0	0-3	5-20	40-65	30-42	1.50-1.65	0.42-4.23	0.1-0.5	.37	.37	39-52	21-30
	43-60	Clay, silty clay, silty clay loam	A-6, A-7-6	0	0-3	5-20	30-65	30-50	1.60-1.75	0.42-4.23	0.0-0.5	.43	.43	39-60	21-36
Urban land								-							
	0-9	Silt loam	A-6, A-7-5,	0	0									38-48	15-18
			A-7-6	-		2-15	58-76	22-27	1.30-1.45	4.23-14.11	3.0-5.0	.32	.32		
Elliott	9-13 13-17	Silty clay loam Silty clay, silty clay loam	A-7-6 A-7-6	0	0	2-15 2-15	50-71	27-35 37-49	1.25-1.45	4.23-14.11	2.5-4.0	.28 .32	.28 .32 3	42-53 46-61	18-25 26-35
	17-35	Silty clay, silty clay loam	A-6,	0	0-1		40-61		1.35-1.55	1.41-4.23	0.5-1.6		.02	34-55	16-32
	-		A-7-6 A-6,			2-20	40-65	27-45	1.45-1.75	0.42-4.23	0.1-0.8	.43	.43		
	35-60	Silty clay loam	A-7-6 A-7-5,	0	0-2	3-20	42-70	27-38	1.65-1.85	0.42-1.41	0.0-0.5	.49	.49	34-47	16-26
	0-12	Silty clay loam	A-7-6	0	0	1-15	45-64	35-40	1.20-1.45	1.41-4.23	3.0-8.0	.20	.20	51-66	25-28
Ashkum, drained	12-29	Silty clay, silty clay loam	A-7-6 A-6,	0	0	2-15	43-63	35-42	1.30-1.50	1.41-4.23	0.5-2.5	.32	.32 5	46-57	25-30
· · · · · · · · · · · · · · · · · · ·	29-54	Silty clay, silty clay loam	A-7-6	0	0-1	5-20	40-65	30-42	1.50-1.70	1.41-4.23	0.1-1.0	.43	.43	39-53	21-30
	54-60	Silty clay loam	A-6, A-7-6	0	0-1	5-20	45-68	27-35	1.55-1.75	1.41-4.23	0.0-1.0	.43	.43	36-47	19-25

454

276.

Garmin

RANGE

P126204-Planning_ii.dgn 6/12/2018 6:52:44 AM User=colsontb

P126204-Planning_ii.dgn 6/12/2018 6:53:22 AM User=colsontb

10

+20.2

0.00

EXIST. R.O.W.

EXIST. R.O.W. .2×.15 '3'1 'dObd PROP. B-6.24 C&G PROP. PCC SIDEPATH. 8 & PARKWAY, 3'

GRAPHIC SCALE 6/12/2018 Storm work/pwidot/colsonitb/dms93929/PI26204-Planning_lidgr

EXIST. R.O.

1. 10 0 0 1.

100

LIMIT OF IMPROVEMENT STA. 188+00

B-13

15'R (TYP.)

C. Avia La

-

51

100

1

C.C.

5.5' R B-12

611 1

РROP. Т.Е. 33'×3' ||

LAGRANGE ROAD

MESS (

BONE

VEROP. MOUNTABLE MEDIAN WITH M-6.12 C&G

38:1 TAPER

6

33,×2,

12%

POT Sta 0+00.00

POL

Lot-L

REET

1000

1.2.45

1000

30' R

STREET

17

57

<u>и и и и и и и и и и и и и</u> 125.×3[°]

(1)

TAPER

EXIST. R.O.W.

CON I

PROP. PCC SIDE

real

→B-15

-

real lit

55

LAGRANGE ROAD

ETTTTTTTTTTTTTTTTT

-

COM A

B-14

30,×14

.3.T .9089 5

PROP. PCC SIDEWALK, 4' 13

è

20:1 APE

T

LOID .

					CONTRA	3
TS	STA.	TO STA.		ID PROJECT		
						Î

Exhibit

5

Ν Legend B-01 Borehole Number 90+19 - Station 0000000 Borehole Lithology N--N-value, (blw/12in) Qu--UC Strength, (tsf) MC--Moisture Content (%) ST -- Shelby Tube Sample $\underline{\nabla}$ Water Level Reading at the time of drilling Water Level Reading 24—hr after drilling or at Ţ end of drilling Potential Bottom of Footing Vertical Scale 1in = 15 ft

Himalayan Consultants, LLC Engineers and Hydrogeologists 8770 W. Bryn Mawr Avenue, Suite 1300 Chicago, Illinois 60631 Phone: (773) 867-2956 Fax: (773) 867-2910

Himalayan Consultants, LLC Engineers and Hydrogeologists 8770 W. Bryn Mawr Avenue, Suite 1300 Chicago, Illinois 60631 Phone: (773) 867-2956 Fax: (773) 867-2910

APPENDIX A

BORING LOGS

Phone: (773) 867-2956 Fax: (773) 867-2910

SOIL BORING LOG

Page <u>1</u> of <u>1</u>

Date 2/24/2020

	DESCRIPTION 551				55th Street at LaGrange	Road L	LOGGED BY WL			
	_ L		TION _	55th S	treet					
RILLING				3.25" HSA: 2.5' to EOB		HAMMER TYPE	B-57 (100%)			
	D E P T H	B L O W S (/6")	U C S Qu (tsf)	M O I S T (%)	Stream Bed Elev Groundwater Elev.: First Encounter _ Upon Completion _	ft 3_ft ⊻	D E P T H	B L O W S (/6")	U C S Qu (tsf)	M O I S T (%)
	 	8 6 4	NR							
655.11		1	4.76B	23						
			4.80B	21						
648.61	-10	5	3.20B	21						
	RILLING	I RILLING ME D E P T H (ft) ,658.28- 657.44 655.11 655.11 655.11 655.11 657.44 6.48.61 6	LOCA RILLING METHOD D B E L P O T W H S 658.28 657.44 	LOCATION	LOCATION 55th S RILLING METHOD $3.25"$ D B U M D B U C O P O S I ft (ft) (/6") (tsf) (%) 658.28 NR NR A 655.28 NR A A A 655.11 4 A.76B 23 655.11 4 A.80B 21 66 A.80B 21 655.11 8 3.20B 21 66 A.80B 21 65 1 $3.20B$ 21 68 $3.20B$ 21 648.61 -10 8 $3.20B$ 21	Image: constraint of the street Surface Water Elev. B U M C O F L C T W H S Qu T W Qu T Groundwater Elev.: First Encounter Image: constraint of the street S A A.76B 23 655.11 4 4.76B 23 655.11 4 4.80B 21 655.11 4 4.80B 21 66 8 3.20B 21 648.61 -10 8 3.20B 21	LOCATION 55th Street RILLING METHOD 3.25" HSA: 2.5' to EOB HAMMER TYPE B U K Surface Water Elev. ft P O S I Groundwater Elev. ft H S Qu T Groundwater Elev. ft H S Qu T Groundwater Elev. ft (ft) (f6") (tsf) (%) Surface Water Elev. ft Groundwater Elev. ft Groundwater Elev. ft Groundwater Elev.: ft (ft) (f6") (tsf) (%) A A A 657.44 8 NR A A A 66 4.80B 21 A A A 68 3.20B 21 A A A A A A A A A A A A A A A A A B	LOCATION 55th Street RILLING METHOD 3.25" HSA: 2.5' to EOB HAMMER TYPE - D B U M Surface Water Elev.	LOCATION 55th Street RULING METHOD 3.25" HSA: 2.5' to EOB HAMMER TYPE B-57 (1) P B U N Surface Water Elev.: First Encounter 3.15 T B D T B D T W Stream Bed Elev.: First Encounter 3.15 T H S N N Stream Bed Elev.: First Encounter 3.15 T H S N N Stream Bed Elev.: First Encounter 3.15 T H S N	RILLING METHOD 325' HSA: 2.5' to EOB HAMMER TYPE B-57 (100% D B U M Surface Water Elev. ft T D B U C P O S I Groundwater Elev. ft T V V Qu ft (ft) (/6") (tsf) (%) Surface Water Elev. 3 ft Y V Qu T Qu Qu T Qu Qu T Qu Qu Qu

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

Date 2/26/2020

Page $\underline{1}$ of $\underline{1}$

rno	ne: (773) 867-295
Fax:	(773) 867-2910

ROUTE FAU 1504/55th Street DESCRIPTION

55th Street at LaGrange Road

LOGGED BY WL

SECTION		LOC	ATION _	<u>55th S</u>	Street			
COUNTY COOK DRI	ILLING I	ИЕТНО	D		Continuous	HAMMER TYPE	B-57	(100%)
STRUCT. NO.		D B E L P O T W H S ft) (/6'	C S	M O I S T (%)	Surface Water Elev Stream Bed Elev Groundwater Elev.: First Encounter _ Upon Completion _ After Hrs	ft ft ft	D B E L P O T W H S (ft) (/6")	U M C O S I S Qu T (tsf) (%)
14" Asphalt, black	<u>553.29</u> — —	3	1.65B					
Hard, gray to brown, SILTY CLAY LOAM, little gravel, moist	650.46 	4 4 3 4		22				
		6 6 8 9 10	4.56B	22				
Hard, brown, SILTY CLAY, trace gravel, moist		7 7 12	4.90B	20			 	
End of Boring	_							
	_							
	_	-15					<u>-35</u> 	
	_							
		-20					-40	

Date 2/24/2020

Page $\underline{1}$ of $\underline{1}$

ROUTE FAU 1504/55th Street	DE	SCR	PTION	۱	5	55th Street at LaGrange	Road	LOGG	ED BY	V	√L
SECTION		_ L	OCA1	ION _	55th S	treet					
COUNTY COOK D	RILLING	6 ME	THOD		3.25"	HSA: 2.5' to EOB		:	B-57	<u>(100%</u>)
STRUCT. NO. Station BORING NO. Boris Station 96+00 Offset 24' RT Created Surface Flag.		D E P T H	B L O W S (/6")	U C S Qu (tsf)	M O I S T (%)	Surface Water Elev Stream Bed Elev Groundwater Elev.: First Encounter _ Upon Completion _ After Hrs	ft N.E ft	D E P T H	B L O W S (/6")	U C S Qu (tsf)	M O I S T (%)
Ground Surface Elev. 651.38 4" Asphalt, black	π ,651.05		(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	((31)	(70)	After Hrs	π	(14)	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		(70)
10" Concrete Medium dense, black, POORLY-GRADED GRAVEL, trace clay, trace loam, trace sand, dry, FILL	<u>650.21</u>		25 5 9	N/A	14						
Stiff, brown, SILTY CLAY LOAM, trace sand, little gravel, moist	647.88		3 3 3	1.5P	28						
Stiff to hard, brown, SILTY CLAY, trace gravel, moist	645.38		2 3 6	1.25P	23						
End of Boring	641.38		6	4.25P	27						

Date 2/26/2020

Page $\underline{1}$ of $\underline{1}$

Phone: (773) 867-2956 Fax: (773) 867-2910

ROUTE FAU 1504/55th Street DE	SCR	IPTIO	N	5	55th Street at LaGrange	Road I	OGG	ED BY	V	√L
SECTION	_ I			55th S	treet					
COUNTY COOK DRILLING	G ME	THOD			Continuous	HAMMER TYPE		B-57	(100%)
STRUCT. NO.	D E P T H	B L O W S	U C S Qu	M O I S T	Surface Water Elev Stream Bed Elev Groundwater Elev.: First Encounter _ Upon Completion _	<u>N.E.</u> ft <u>N.E.</u> ft	D E P T H	B L O W S	U C S Qu	M O I S T
Ground Surface Elev. 651.41 ft 5" Asphalt, black 650.99		(/6") 11	(tsf) 3.75P		After Hrs	π	(ft)	(/6")	(tsf)	(%)
9" Concrete 650.24 Very stiff, black SILTY CLAY LOAM, some gravel, dry, FILL Stiff to Hard, brown, SILTY CLAY, trace to some gravel, dry to moist		4 6 4 3 4	1.75P							
			2.25P	22			-25			
		4 7 8 12	4.25	21						
643.41 Very stiff to hard, brown, SILTY CLAY, trace gravel, moist		9 8 10	4.5P	21						
		5 6 8	3.25P	22						
		4 6 9	4.0P	21						
		4 5 9	3.5P	21						
631.41	 -20	4 5 7	3.0P	22			-40			

End of Boring The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

Date 2/24/2020

Page $\underline{1}$ of $\underline{1}$

Phone: (773) 867-2956 Fax: (773) 867-2910								Da	ate <u>2/2</u>	4/2020
ROUTE FAU 1504/55th Street	t DE	SCRI	PTION	۱	5	55th Street at LaGrange	Road L	.OGGED	BY	WL
SECTION		_ L			55th S	treet				
COUNTY COOK D	RILLING	6 ME	THOD		3.25"	HSA: 2.5' to EOB	_ HAMMER TYPE	<u> </u>	57 (1009	%)
STRUCT. NO.	 7 ft		B L O W S (/6")	U C S Qu (tsf)	M O I S T (%)	Surface Water Elev. Stream Bed Elev. Groundwater Elev.: First Encounter Upon Completion After Hrs.	ft 2_ft ⊻ 8_ft 又	E I P (T V H S	B U L C D S W S Qu 6") (tsf)	
4" Asphalt, black 10" Concrete Very stiff, gray, SILTY CLAY LOAM, little gravel, little sand, wet, FILL	_,650.34 649.50	 		2.79B	22					
Very stiff to hard, brown, SILTY CLAY LOAM, trace gravel, trace sand, wet	644.67		8 9	3.28S				 25 		
Hard, brown, SILTY CLAY, trace gravel, moist	-	 	8 11 4	6.81B 5.17B						
End of Boring	640.67		8 10					 		

Phone: (773) 867-2956 Fax: (773) 867-2910

SOIL BORING LOG

Page $\underline{1}$ of $\underline{1}$

Date 2/26/2020

ROUTE FAU 1504/55th Street	DES	SCRI	PTION	۱	5	5th Street at LaGrange	Road	LC	OGGE	ED BY	V	/L
SECTION		_ L			55th S	treet						
COUNTY COOK DRIL	LING	ME	THOD	Co	ntinuo	us to 10', 2.5' to EOB	HAMMER T	YPE		B-57	(100%))
STRUCT. NO.	-	D E P T H	B L O W S (/6'')	U C S Qu (tsf)	M O I S T (%)	Surface Water Elev Stream Bed Elev Groundwater Elev.: First Encounter _ Upon Completion _ After Hrs	<u>N.E.</u> N.E.	ft ft	D E P T H	B L O W S (/6")	U C S Qu (tsf)	M O I S T (%)
5" Asphalt, black _6	 50.46			2.75P								
9" Concrete 64 Very stiff, black, SILTY CLAY LOAM, some gravel, dry, FILL 64 Stiff to hard, brown, SILTY CLAY, trace gravel, dry to moist	<u>49.71</u> 48.88		3 5 3 3 4	1.94B	23							
Sample at 2.0' to 4.0' L _L (%)=41 P _L (%)=17		-5	6	3.10B	23				-25			
			8 5 7 10	4.36B	22							
6- Very stiff to Hard, brown, SILTY CLAY, trace gravel, moist	42.88		9 6 7 10	4.61B	23							
		<u>-10</u>		2.04B	22				30 			
		-15	2 3 6	4.36B	24							
				2.52B	23							
6	30.88	-20	3 5 8	2.52B	22				-40			

Date 2/24/2020

Page $\underline{1}$ of $\underline{1}$

ROUTE FAU 1504/55th Street	DE	SCR	PTION	۱	5	5th Street at LaGrange	Road	LOGGI	V	√L	
SECTION		_ L			55th S	treet					
COUNTY COOK D	RILLING	6 ME	THOD		3.25"	HSA: 2.5' to EOB	_ HAMMER TYI	PE	B-57	(100%))
STRUCT. NO. Station BORING NO. B-07 Station 107+99 Offset 25' LT Ground Surface Elev. 650.93		D E P T H	B L O W S (/6")	U C S Qu (tsf)	M O I S T (%)	Surface Water Elev Stream Bed Elev Groundwater Elev.: First Encounter _ Upon Completion _ After Hrs.	ft 1' ft 	E P T H	в L O ¥ s (/6")	U C S Qu (tsf)	M O I S T (%)
4" Asphalt, black 10" Aggregate Base Course Hard, brown, SILTY CLAY LOAM, some gravel, wet, FILL	650.60 ر 649.76		6 5 4	4.0P	20						
Hard, brown, SILTY CLAY LOAM, trace gravel, wet	647.43		5 6 10	6.15B	22						
Very stiff to hard, brown, SILTY CLAY, trace gravel, moist	644.93		6 8 4	4.85B 3.20B							
End of Boring	640.93		7 10					 			

Page <u>1</u> of <u>1</u>

Phone: (773) 867-2956 Fax: (773) 867-2910

Date 2/26/2020 ROUTE FAU 1504/55th Street DESCRIPTION 55th Street at LaGrange Road LOGGED BY WL LOCATION 55th Street SECTION _____ COUNTY _____COOK DRILLING METHOD __ Continuous HAMMER TYPE B-57 (100%) D В U Μ D В U Μ Surface Water Elev. STRUCT. NO. ___ft E L С E L С 0 0 _____ Stream Bed Elev. _____ ft Station _____ Ρ 0 S Ρ S L 0 Т BORING NO. B-08 т W т S W S Groundwater Elev.: First Encounter _____6 ft ▼ H Qu Qu H | S Т S т Station 110+99

Station 110			••	•	Sec.	•	First Encounter	0	πΨ	••	-	QU	-
Offset 16'			(60)	((0)))	11.0	(0/)	Upon Completion	6	ft	100	(/OII)		(0/)
Ground Surface Elev.	651.28	ft	(ft)	(/6'')	(tsf)	(%)	After Hrs.		ft	(ft)	(/6")	(tsf)	(%)
5" Asphalt, black		650.86		11	>4.5P	8							
9" Concrete				9									
Vary stiff to hard block to	brown	650.11		4									
Very stiff to hard, black to SILTY CLAY LOAM, little	prown,			3									
dry, FILL	gravei,				2.57B	22							
dry, r iee				3	2.570	22							
				4									
			_										
		647.28		4		<u> </u>							
Very stiff, brown, SILTY C	LAY		_		3.64B	25							
LOAM, trace gravel, moist	[-5	4						-25			
				3									
		645.28	v	6									
Very stiff, brown, SILTY C	LAY,		<u> </u>	4	3.15B	16							
trace gravel, wet				6									
				7									
			_	7									
					3.35B	20							
				6	0.000	20							
				8									
											-		
		641.28	-10	12						-30			
End of Boring													
										-35			
			-15							-35			
			_										
			_										
		·											
			_	1									
			-20							-40			
			-20	I			U			-40	l		

Date 2/26/2020

Page $\underline{1}$ of $\underline{1}$

Phone: (773) 867-2956 Fax: (773) 867-2910

ROUTE FAU 1504/55th Street DESCRIPTION

55th Street at LaGrange Road

LOGGED BY WL

SECTION				55th S	treet					
COUNTY COOK D		THOD			Continuous	HAMMER	YPE	B-57	(100%)
STRUCT. NO. Station BORING NO. B-09 Station 114+02 Offset	— P T	B L O W S	U C S Qu	M O I S T	Surface Water Elev Stream Bed Elev Groundwater Elev.: First Encounter _ Upon Completion _	 	ft ⊏ P T ft H	L O W S	し C Q U	M O I S T
Ground Surface Elev. 651.60) ft (ft)		(tsf)	(%)	After Hrs		ft (ft) (/6")	(tsf)	(%)
4" Asphalt, black 10" Aggregate Base Course Medium dense, black and gray, POORLY-GRADED GRAVEL, trace loam, dry, FILL Stiff to very stiff, brown, CLAY, trace gravel, moist		9 6 5 4 7 5	NP 1.41B	7 27						
Sample at 2.0' to 4.0' L _L (%)=60 P _L (%)=20		8 4 5 7	3.20B	27				5		
Very Stiff to hard, brown, SILTY CLAY, trace gravel, moist	645.60	8 5 5 6	3.93B	22				_		
		8 12	5.72B	20						
End of Boring	<u>641.60 -10</u> 	15						0		
							- - - - - - - - - - - - -	5		
	-20						 	0		

Phone: (773) 867-2956 Fax: (773) 867-2910

SOIL BORING LOG

Page $\underline{1}$ of $\underline{1}$

Date 2/26/2020

ROUTE FAU 1504/55th Street	DE	SCR	PTION	۱	5	5th Street at LaGrange	Road	LC	OGGE	ED BY	V	/L
SECTION		L			55th S	treet						
COUNTY COOK DRII	LLING	6 ME	THOD	Co	ntinuo	ous to 10', 2.5' to EOB	_ HAMMER T	YPE		B-57 (100%)
STRUCT. NO.		D E P T H	B L O W S (/6'')	U C S Qu (tsf)	M O I S T (%)	Surface Water Elev Stream Bed Elev Groundwater Elev.: First Encounter _ Upon Completion _ After Hrs	<u>N.E.</u> N.E.	ft ft	D E P T H	B L O W S (/6")	U C S Qu (tsf)	M O I S T (%)
5" Asphalt, black 6	51.64		18	4.25P	9							
10" Concrete 6 Very stiff to hard, black to brown and gray, SILTY CLAY LOAM, little to some gravel, dry, FILL	<u>50.81</u>		9 14 12 5 5 6 7	3.5P	23							
6 Very stiff, brown, SILTY CLAY LOAM, little gravel, moist	<u>48.06</u>	5	5 7	3.35B	21				-25			
6 Very stiff to hard, brown, SILTY CLAY, trace gravel, moist to damp	<u>46.06</u>		5 6	5.77S	20							
			5 5	2.13B	20				-30			
			5 7 3	7.27B	21							
		-15	6	3.15B	20				-35			
			4 6 9	3.35B	22							
6	32.06		6	2.24B	19							

Page <u>1</u> of <u>1</u>

Date 2/26/2020

Phone: (773) 867-2956 Fax: (773) 867-2910 ROUTE FAU 1504/55th Street DESCRIPTION 55th Street at LaGrange Road LOGGED BY WL LOCATION 55th Street SECTION COUNTY COOK DRILLING METHOD Continuous HAMMER TYPE B-57 (100%) В U D В U Μ D Μ STRUCT. NO. Surface Water Elev. ft Е L С 0 Е L С 0 ft Station Stream Bed Elev. Ρ S ο Ρ S L 0 L BORING NO. B-11 Т W S т W S Groundwater Elev.: н S Qu т н S Qu т **Station** 120+00 <u>N.E.</u> ft First Encounter 20' RT Upon Completion Offset <u>N.E.</u> ft (/6") (%) (ft) (/6") (%) (ft) (tsf) (tsf) Ground Surface Elev. 651.70 ft After Hrs. ft 4" Asphalt, black 6 NR 0 ,651.37 10" Concrete 5 650.53 -5 NO RECOVERY 5 649.70 Medium stiff, brown, SILTY CLAY 4 0.87S 24 LOAM, trace gravel, dry, FILL 4 6 5 647.70 Very stiff, brown, SILTY CLAY 4 3.30B 20 LOAM, trace to some gravel, dry 8 9 12 645.70 Hard, brown, SILTY CLAY, some 6 5.87B 20 gravel, trace loam, moist 9 9 1 6 6.79B 20 10 14 10 641.70 -10 -30 End of Boring

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

-20

Date 2/27/2020

Page $\underline{1}$ of $\underline{1}$

Phone: (773) 867-2956 Fax: (773) 867-2910

ROUTE FAU 1504/55th Street	DE	SCR	IPTIO	N	5	55th Street at LaGrange	Road L	OGGE	D BY	N	/L
SECTION		_ เ			LaGra	nge Road					
COUNTY COOK D	RILLING	6 ME	THOD			Continuous	HAMMER TYPE	F	B-57 (<u>100%</u>)
STRUCT. NO. Station BORING NO. B-12 Station 191+02 Offset 24' LT Ground Surface Elev. 654.57		D E P T H	B L O W S (/6")	U C S Qu (tsf)	M O I S T (%)	Surface Water Elev Stream Bed Elev Groundwater Elev.: First Encounter _ Upon Completion _ After Hrs	ft	D E P T H	B L O W S (/6")	U C S Qu (tsf)	M O I S T (%)
12" Asphalt, black	652 57		-					_			
12" Concrete Stiff to very stiff, black and gray, SILTY CLAY LOAM, little gravel, trace organics, dry, FILL	<u>653.57</u> <u>652.57</u>		5435	1.5P	29			 			
			5 4	3.54B	25						
	648.57		10 9					<u>-25</u>			
Very stiff, brown, SILTY CLAY LOAM, little gravel, moist			3 9	3.73B	25			_			
Hard, brown, SILTY CLAY, trace gravel, moist	646.57		6 7 2 6 6	6.01B	22						
End of Boring	644.57	<u>-10</u>	7								
			-								
		 						35 			
		-20	-					-40			1

Phone: (773) 867-2956

SOIL BORING LOG

Date 2/27/2020

Page $\underline{1}$ of $\underline{1}$

Fax. (173) 867-2910											
ROUTE FAU 1504/55th Street	DE	SCRI	PTIO	I	5	55th Street at LaGrange	Road L	.OGGI	ED BY	V	VL
SECTION		_ L	OCA		LaGra	nge Road					
COUNTY COOK D	RILLING	B ME	THOD			Continuous	HAMMER TYPE		B-57	<u>(100%</u>)
STRUCT. NO Station		D E P	B L O	U C S	M O I	Surface Water Elev Stream Bed Elev	ft ft	D E P	B L O	U C S	M O I
BORING NO. B-13 Station 188+10 Offset 23' RT		T H	W S	Qu	S T	Groundwater Elev.: First Encounter _ Upon Completion _	<u>N.E.</u> ft <u>N.E.</u> ft	H H	W S	Qu	S T
Ground Surface Elev. 652.39) ft	(π)	(/0)	(tsf)	(%)	After Hrs	ft	(ft)	(/6")	(tsf)	(%)
12" Asphalt, black											
12" Concrete	651.39										
	650.39										
NO RECOVERY			12	NR	0						
			4 6								
Very stiff, gray to brown, SILTY	648.39		4	3.01B	22						
CLAY LOAM, some gravel, dry, FILL		-5	4 6	3.016	22			-25			
Hard, brown, SILTY CLAY LOAM,	646.39		8 4	7.76B	24						
some gravel, dry		_	4 5	1.100	21						
5 , ,			11								
	644.39		11								
Hard, brown, SILTY CLAY, little	011.00		6	6.01B	22						
gravel, moist			6								
			11								
End of Boring	642.39	-10	11					-30			
		_									
		_						_			
		15						-35			
		-15	х.					35			
		_									
		_									
		-20						-40			

Page <u>1</u> of <u>1</u>

Phop	e: (773) 867-2956
	a. (110) 001 2000
Fax	(773) 867-2910

Date 2/27/2020 ROUTE FAU 1504/55th Street DESCRIPTION 55th Street at LaGrange Road LOGGED BY WL LOCATION LaGrange Road SECTION COUNTY COOK DRILLING METHOD Continuous HAMMER TYPE B-57 (100%) В U Μ D В U Μ D STRUCT. NO. Surface Water Elev. ft Е L С 0 Е L С 0 Stream Bed Elev. _____ ft Station Ρ S S ο Ρ L 0 L BORING NO. _____B-14 т W S т W S Groundwater Elev.: н S Qu т н S Qu т Station 196+98 First Encounter <u>N.E.</u> ft 24' LT Offset Upon Completion _____ N.E._ ft (ft) (/6") (%) (ft) (/6") (%) (tsf) (tsf) Ground Surface Elev. 653.90 ft After Hrs. ft 5" Asphalt, black 653.48 4 6.06S 21 12" Concrete 5 6 652.48 Hard, gray to brown, SILTY CLAY, 7 little gravel, dry, FILL 7 6.79B 20 6 Sample at 2.0' to 4.0' 8 L_L(%)=36 10 P_(%)=17 5 5.29B 17 6 6 8 647.90 Hard, brown, SILTY CLAY LOAM, 6 4.32B 22 trace gravel, dry 7 7 11 645.90 Hard, brown, SILTY CLAY, trace 5 5.33B 25 gravel, moist 7 9 11 643.90 -30 -10 End of Boring

-20

Date 2/27/2020

Page <u>1</u> of <u>1</u>

Phone: (773) 867-2956 Fax: (773) 867-2910

1.4/1

ROUTE FAU 1504/55th Street	DE	DESCRIPTION 55th Street at LaGrange Road							LOGGED BYW			
SECTION		_ L			LaGra	nge Road						
COUNTY COOK D	RILLING	6 ME	THOD			Continuous		PE	Έ <u>B-57 (100%</u>			
STRUCT. NO. Station BORING NO. B-15 Station 194+02 Offset 24' RT		D E P T H	B L O W S	U C S Qu (tsf)	M O I S T (%)	Upon Completion	ft 		B L O ₩ S (/6")	U C S Qu	M O I S T (%)	
Ground Surface Elev655.73 6" Asphalt, black	ft 655.23		(10)	((3))	(/0)	After Hrs	ft		(,0)	(tsf)	(/0)	
18" Concrete Very stiff to hard, gray and black, SILTY CLAY LOAM, some gravel, dry, FILL	653.73		3 2 5	3.25P								
Hard, brown, SILTY CLAY LOAM, little gravel, moist	<u>649.73</u>		7 8 12	4.27S 7.81B				25 				
Hard, brown, SILTY CLAY, little gravel, moist	<u>647.73</u> 645.73		13 7 9 15	7.27B	19							
End of Boring	043.73											

Date 2/27/2020

Page $\underline{1}$ of $\underline{1}$

	Phone: (773) 867 Fax: (773) 867-2	7-2956 910										Date	2/27/	2020
ROUTE	FAU 1504/55	oth Street	_ DE	SCR	IPTIO	N	5	55th Street at LaGrange	Road	L0	DGGE	ED BY	W	/L
SECTION				_ เ			LaGra	nge Road						
COUNTY	C00	<u>k</u> dr		6 ME	THOD	Cc	ontinuc	ous to 10', 2.5' to EOB	HAMMER	TYPE		B-57	(100%))
Station _ BORING N Station	IOB OB 	- <u>16</u> 8+78		D E P T H	B L O W S	U C S Qu	M O I S T	Surface Water Elev. Stream Bed Elev. Groundwater Elev.: First Encounter Upon Completion	N.E.	_ ft _ ft	D E P T H	B L O W S	U C S Qu	M O I S T
	urface Elev		ft	(ft)	(/6")	(tsf)	(%)	After Hrs.	IN.∟.	ft	(ft)	(/6'')	(tsf)	(%)
gas utility Stiff to very to brown, S	te oved due to ur	nmarked d brown	648.94 647.94		14 5 5	3.75P	23	Very stiff to hard, brov SILTY CLAY, trace gr <i>(continued)</i>	vn to gray, avel, moist			4 4 8	4.07B	21
some grave	ei, ary, FILL			-5	7 10 2	1.55B	32	End of Boring		624.44	-25	6	3.67B	23
	d, brown, SILT ne gravel, dry	TY CLAY	643.44		6 2 3 7 9	1.36B	24							
					6 9	6.16B	20							
					4 5 7	4.85B	21							
Very stiff to SILTY CLA) hard, brown t Y, trace grave	to gray,	<u>635.94</u>		3 5 6	2.81B	21							
					4 4 7	2.81B	23							
					4 4 7	3.49B	21				 _40			

Date 2/27/2020

Page $\underline{1}$ of $\underline{1}$

	Phone: (773) 867-2956 Fax: (773) 867-2910									I	Date	2/27/	2020
ROUTE _	FAU 1504/55th Stre	eet DE	SCR	IPTIO	۱	5	5th Street at LaGrange Ro	bad	_ LO(GGEI	D BY	N	/L
SECTION			I			LaGra	nge Road						
COUNTY	СООК	DRILLIN	G ME	THOD	Co	ontinuo	ous to 10', 2.5' to EOB	HAMMER TY	(PE _	E	3-57 (100%))
Station _ BORING N Station _ Offset _	DB-17 200+61 21' RT urface Elev650		D E P T H	B L O W S (/6")	U C S Qu (tsf)	M O I S T (%)	Surface Water Elev Stream Bed Elev Groundwater Elev.: First Encounter Upon Completion After Hrs	f f f	ft ft ft ⊻ ft	D E P T H	B L O W S	U C S Qu (tsf)	M O I S T (%)
6" Asphalt 6" Concrete Stiff, black, some grave	e SILTY CLAY LOAM el, dry, FILL	649.91 649.41		4 2 2	1.5P	19	Very stiff to Hard, brown SILTY CLAY, trace grave (continued)	to gray,	-			3.64B	
Sample at L _L (%)=46 P _L (%)=18	1.0 [°] to 2.0 [°]	645.41	 	5 6 5 6 5	1.0P	23		6	- - 25.41		3 5 6	3.78B	21
	n, SILTY CLAY LOA , dry to moist	<u></u>		4 5 9 10 3	6.30B 5.20B		End of Boring	02	-				
				6 10 11 5	6.30B				_	_			
Very stiff to SILTY CLA	Hard, brown to gray Y, trace gravel, mois	<u>639.41</u> /, st	<u>-10</u>	11 13	6.30S	21				<u>-30</u>			
			 	4 4 6	4.56B	22			_				
			<u>-13</u>	3 5 7	3.30B	22			-	<u>-35</u> 			
			 -20	3 5 7	4.36B	20			_	-40			

Date 2/27/2020

Page $\underline{1}$ of $\underline{1}$

Phone: (773) 867-2956 Fax: (773) 867-2910

ROUTE FAU 1504/55th Street DI	/55th Street DESCRIPTION				55th Street at LaGrange	Road	LOGGED BY WL			
SECTION	I	LOCA		LaGra	inge Road					
COUNTY COOK DRILLIN	G ME	THOD			Continuous	_ HAMMER TYPEB-57 (100%)	
STRUCT. NO. Station BORING NO.	P T	L O W	U C S	M O I S	Surface Water Elev Stream Bed Elev Groundwater Elev.:	ft	D E P T	B L O W	U C S	M 0 1 5
Station 203+00 Offset 25' LT			Qu	Т	First Encounter _ Upon Completion _	<u>N.E.</u> ft	H	S	Qu	Т
Ground Surface Elev. 649.97 ft	(ft)	(/6'')	(tsf)	(%)	After Hrs	ft	(ft)	(/6")	(tsf)	(%)
4" Asphalt649.64 15" Concrete	⊾ _	-						-		
648.39 Very stiff, black, SILTY CLAY LOAM, some gravel, dry FILL	<u>) </u>	9 8 4	2.75P	29				-		
645.9 Hard, gray, SILTY CLAY LOAM, Ittle gravel, moist	7 	4 4	4.46B	23			-25			
		6 11	4.17B	21						
641.9 Very stiff, gray and brown, SILTY CLAY, little gravel, moist	7 	13 3 8 14	2.86B	18				-		
639.9 End of Boring	7 -10	14					-30			
		-						-		
		-						-		
		-						-		
	-15	5					-35			
		-								
		-						-		
	-20									

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

Date 2/27/2020

Page $\underline{1}$ of $\underline{1}$

ROUTE FAU 1504/55th Street DESCRIPTION 55th Street at LaGrange Road										ED BY	V	VL
SECTION _			_ L			LaGra	nge Road					
	COOK	ORILLING	6 ME	THOD			Continuous	HAMMER TYPE		B-57	7 (100%)	
STRUCT. No Station	0		D E P	B L O	U C S	M O I	Surface Water Elev Stream Bed Elev	ft ft	D E P	B L O	U C S	M O I
Station Offset	D. <u>B-19</u> 206+01 25' RT		T H	W S	Qu	S T	Groundwater Elev.: First Encounter _ Upon Completion _	<u>N.E.</u> ft <u>N.E.</u> ft	Н	W S	Qu	S T
Ground Su 6" Asphalt,	urface Elev. 650.5	<u>6</u> ft		(/6")	(tsf)	(%)	After Hrs	ft	(ft)	(/6")	(tsf)	(%)
12" Concret Very stiff, bl		650.06 649.06		7	3.0P	11						
NO RECOV	/ERY	646.56		8 3 4 3 5	NR	0						
Hard, browr brown, little	n, SILTY CLAY LOAN gravel, dry	<u>644.56</u> I,		5 6 3 5 5	4.65B	23						
Very stiff, br trace gravel	rown, SILTY CLAY, , moist	642.56		6 3 3 3	3.30B	21						
End of Borir	ng	640.56	<u>-10</u>	11					<u>-30</u> 			
			-15						35			
			-20						-40			

Page $\underline{1}$ of $\underline{1}$ Date 2/27/2020

Phone: (773) 867-2956 Fax: (773) 867-2910

ROUTEFAU 1504/55th Stree	t DE	DESCRIPTION 55th Street at LaGrange Road							_ LOGGED BY		
SECTION		_ I			LaGra	nge Road					
COUNTY COOK C	RILLING	6 ME	THOD			Continuous	_ HAMMER TYPE		B-57	(100%)
STRUCT. NO. Station BORING NO. B-20 Station 208+56 Offset 24' LT		D E P T H		U C S Qu	M O I S T	Upon Completion	ft ft ⊻		B L O W S (/6")	U C S Qu	M O I S T
Ground Surface Elev. 650.86			(/0)	(tsf)	(%)	After Hrs.	ft	(ft)	(/0)	(tsf)	(%)
12" Concrete NO RECOVERY	649.36		50 8	NR	0						
Stiff, gray GRAVELLEY CLAY, some gravel, wet Sample at 4.0' to 6.0'	646.86		1 2	1.25P	32						
$L_{L}(\%)$ =53 $P_{L}(\%)$ =17 Medium stiff to hard, gray, SILTY CLAY, trace to litte gravel, wet	644.86		1 1 2	0.75P	37						
End of Boring	640.86	 	5 7	4.55N	22			 			
		-20						-40			

APPENDIX B

LABORATORY TEST RESULTS

WATER CONTENT of SOILS and ROCK by MASS

		AASHTC	D T 275 / ASTM D	2216		
Client: Himalayan			Oven in:	2/27/2020	1:00	
Project: 55th Street			Analyst:	MS	20	
WEI Job No: 433-04-01				Date	Hour	
			Oven out:	2/28/2020	8:00	
Sample Type:	SS		Analyst:	MS		
Sample Date:	2/27/2020					
Sample Date:	2/2//2020				45 (V	
Boring No.	B-1					
Sample No.	1	2	3	4		
Sampling interval			THE BOULD	Contraction and the second second		
1 0	1-2.5 ft.	3.5-5 ft.	6-7.5 ft.	8.5-10 ft.	的时代任何实现	
Mass of tare and wet soil						
Ww(g) =		33.50	36.48	40.30		
Mass of tare and dry soil						
Wd (g) =	No Recovery	29.39	32.07	35.29	The set of	
Mass of tare			to a supplication	- Anter Strand Standing		
Wt(g) =		11.15	11.38	11.54		all an add
Water content w =		23%	21%	21%		
	B-2					
Sample No.	1	2	3	4	5	
Sampling interval	HARRY CHARGE THE P			THE REPORT OF THE REPORT OF T		
	0-2 ft.	2-4 ft.	4-6 ft.	6-8 ft.	8-10 ft.	
Mass of tare and wet soil		C. S. A. Starley				
Ww(g) =	35.56	33.11	35.33	32.08	38.57	
Mass of tare and dry soil	20 55	20.01	21.00	20.27	24.01	
Wd (g) = Mass of tare	30.75	28.81	31.00	28.27	34.01	
Wt(g) =	11.14	11.15	11.22	11.16	11.09	
Water content w =	25%	24%	22%	22%	20%	
[B-3					
Sample No.		-				
· · ·	1 AMMERICAN AND BEEN	2	3	4	NUMBER OF THE OWNER OF	
Sampling interval	1-2.5 ft.	3.5-5 ft.	6-7.5 ft.	8.5-10 ft.		
Mass of tare and wet soil	ongette sie untersidenten en					
Ww(g) =	39.58	30.42	32.12	31.73		
Mass of tare and dry soil	an canangan karangan Karangan Karangan Karangan Kar	num registrice and the second state	and a the set of section with the section of the se	The second s		
Wd (g) =	36.04	26.25	28.25	27.34		
Mass of tare						
Wt (g) =	11.09	11.11	11.15	11.36		
Water content w =	14%	28%	23% Date: 3/9/20	27%		Tables, Spr.
Prepared By:	1.1		21 /	20	1	
Approved By:	AT	Date	3/4/200		L C	$ \land \land$

WATER CONTENT of SOILS and ROCK by MASS

		AASHTO	T 275 / ASTM D	2216		
Client: Himalayan			Oven in:	2/27/2020	1:00	
Project: 55th Street			Analyst:	MS		
WEI Job No: 433-04-01		-12		Date	Hour	
		_	Oven out:	2/28/2020	8:00	
Sample Type:	SS		Analyst:	MS		
Sample Date:	2/27/2020					
Sample Date.		in 				
Boring No.	B-4					
Sample No.		2	3	4	5	6
Compling interval	1	2	3	a characteristication of		
Sampling interval	0-2 ft.	2-4 ft.	4-6 ft.	6-8 ft.	8-10 ft.	11-12.5 ft.
Mass of tare and wet soil		761213175		28242045124		
Ww(g) =	38.25	35.33	35.52	34.68	38.55	39.50
Mass of tare and dry soil						
Wd (g) =	33.24	31.07	31.19	30.58	33.74	34.52
Mass of tare						
Wt (g) =	11.67	11.18	11.39	11.45	11.27	11.80
Water content w =	23%	21%	22%	21%	21%	22%
Γ						
Sample No.	7	8	9			
Sampling interval		WEIGHTER AND			的复数形形的时代	
	13.5-15 ft.	16-17.5 ft.	18.5-20 ft.			
Mass of tare and wet soil			- In the location of the			
Ww(g) =	36.83	33.84	33.40			
Mass of tare and dry soil		22.21				
Wd (g) = Mass of tare	32.35	29.84	29.49		STREET STREET AND	
	11.35	11.19	11.38	State State States		
Wt (g) = Water content w =	21%	21%	22%	TENERAL CONTRACTOR		
Water content w		2170	2270			
	B-5	·		1		
Sample No.	1	2	3	4		
Sampling interval				AND DESCRIPTION OF T		
	1-2.5 ft.	3.5-5 ft.	6-7.5 ft.	8.5-10 ft.		
Mass of tare and wet soil	in their a print					
Ww (g) =	32.91	37.43	36.04	40.00		
Mass of tare and dry soil						
Wd (g) =	29.01	33.09	31.94	35.00		
Mass of tare		Sale States	11.00	11.05	and the second second second	
Wt (g) =	11.26	11.13	11.29	11.06		
Water content w =	22%	20%	20%	21%		
Prepared By:	Jay		Date: 3/9/202	0		\square
Approved By:	66	Date:	3/11/2020		_	

s;\netprojects\4330401\lab data\lws_wang_cai_4330401moisturesb4_b5_20200309.xls

www.wangeng.com

WATER CONTENT of SOILS and ROCK by MASS

		AASHTO	T 275 / ASTM D 2	2216		
Client: Himalayan			Oven in:	2/27/2020	1:00	
Project: 55th Street		-	Analyst:	MS		
WEI Job No: 433-04-01				Date	Hour	
		-	Oven out:	2/28/2020	12:00	
Sample Type:	SS		Analyst:	МС		
	2/27/2020	2-cs		me		
Sample Date:	2/2//2020	-				
Doring No		1	÷			
Boring No.	B-6					
Sample No.	4		2	4	5	6
	1	2	3	4	3	U
Sampling interval	0-2 ft.	2-4 ft.	4-6 ft.	6-8 ft.	8-10 ft.	11-12.5 ft.
						The second second
Mass of tare and wet soil		27.00	27.56	21.44	21.52	22.00
Ww (g) =	32.77	37.88	37.56	31.44	31.52	33.88
Mass of tare and dry soil			2012 - 201201	100000000000	100/00 - 00/01	
Wd (g) =	28.65	32.87	32.62	27.81	27.72	29.85
Mass of tare		Universite and the	and the second	and the second second	manual and second in	
Wt (g) =	11.16	11.17	11.39	11.02	11.39	11.16
Water content w =	24%	23%	23%	22%	23%	22%
Г						
			1	1		
Sample No.	7	8	9			
Sampling interval		WELSON BURN		ZALAN PORTAN	121-281-18-18-18-18-18-18-18-18-18-18-18-18-1	
Sumpring interval	13.5-15 ft.	16-17.5 ft.	18.5-20 ft.		Res Calendary	
Mass of tare and wet soil		defende states de la	1 South States		When show the state of the	and services to
Ww(g) =	39.94	36.89	39.20			
Mass of tare and dry soil	57.71	50.07		ALATHIC SCHEWER IN PART, CA	ALLING AN TARDED TO A SPORE A	
Wd (g) =	34.44	32.16	34.23			
Mass of tare		A S. SHITS	Service and			
Wt (g) =	11.08	11.17	11.49	2.111		
Water content w =	24%	23%	22%			
Г	B-7					
Sample No.					1	
Sumple 110.	1	2	3	4		
Sampling interval	1-2.5 ft.	3.5-5 ft.	6-7.5 ft.	8.5-10 ft.	and the second second	
3	1-2.5 It.	3.5-5 ft.	0-7.5 IL.	0.5-10 11.		
Mass of tare and wet soil				0.7.70		
Ww(g) =	37.62	42.86	32.86	35.50		
Mass of tare and dry soil	22.20	27.15	20.71	21.21		
Wd(g) =	33.28	37.15	28.61	31.21	and the second second	
Mass of tare	11.25	10.00	11.20	11.16		
Wt(g) =	11.35	10.99	11.20			a deu series a sulla
Water content w =	20%	22%	24%	21%		
Prepared By:	Say		Date: 3/9/202	20	1	\frown
Approved By:	hh	Date	3/11/2000		4	

WATER CONTENT of SOILS and ROCK by MASS

		AASHTO	AASHTO T 275 / ASTM D 2216								
Client: Himalayan			Oven in:	2/27/2020	1:00						
Project: 55th Street			Analyst:	MS							
WEI Job No: 433-04-01				Date	Hour						
			Oven out:	2/28/2020	12:00						
Sample Type:	SS		Analyst:	MC							
Sample Date:	2/27/2020										
oumpre Duter											
Boring No.	B-8										
Sample No.	1	2	3	4	5						
Sampling interval	0-2 ft.	2-4 ft.	4-6 ft.	6-8 ft.	8-10 ft.						
Mass of tare and wet soil	1										
Ww (g) =	47.75	47.13	43.30	36.38	32.42						
11.17	45.12	40.66	36.83	32.84	28.96						
Mass of tare											
Wt (g) =	11.17	11.19	11.07	10.93	11.25						
Water content w =	8%	22%	25%	16%	20%						
L	B-9		1								
Sample No.	1	2	3	4	5						
Sampling interval	0-2 ft.	2-4 ft.	4-6 ft.	6-8 ft.	8-10 ft.						
Mass of tare and wet soil		dia mandra di			esade dani to	Sec.					
Ww(g) =	54.76	33.00	32.00	34.08	31.71						
Mass of tare and dry soil Wd (g) =	52.08	28.51	27.54	29.88	28.24						
Mass of tare	11.47	11.75	11.12	11.04	11.07						
Wt (g) = Water content w =	11.47 7%	<u>11.75</u> 27%	<u>11.12</u> 27%	11.06 22%	<u>11.27</u> 20%						
Γ											
Sample No.											
Sampling interval				State Barrier	a a far a						
			a el provincio del California dal 1940								
Mass of tare and wet soil		des el al an			S. Addition						
Ww (g) = Mass of tare and dry soil					I FRAME AND A DE LE TE						
Wd (g) =											
Mass of tare											
Wt (g) =	en hannen samerahunan.		· 1997年1月1日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日			REPUT AND					
Water content w = Prepared By:	Lay		Date: 3/6/20	20							
Approved By:	ht	Date:	Date: 3/9/20 3/11/2000		_	\wedge					
* I 15/10 1	/		- mp								

s:\netprojects\4330401\lab data\lws_wang_cai_4330401moisturesb8_b9_20200309.xls

WATER CONTENT of SOILS and ROCK by MASS

Client: Ilinalayan Oven in: 2272020 Date: 100 Maissi MS Oven in: 2287020 Sample No: 327272020 Maissi: MC			AASHTO	T 275 / ASTM D	2216		
Date Hour Oven out: $2228/2020$ 12.00 Sample Type: S5 Sample Date: $227/2020$ Boring No. Baring Sample No. Mass of tare and wet soil Wt (g) = 11.07 11.08 11.19 11.16 11.11 Mass of tare and wet soil Wt (g) = Sample No. 7 8 9 Sample No. 7 8 9 Sample No. 7 8 9 Mass of	Client: Himalayan			Oven in:	2/27/2020	1:00	
Date Hour Oven out: $2/2/2/2/2/2 Boring No Sample Date: 2/2/2/2/2/2 Boring No Sample No. Sample No. $	Project: 55th Street			Analyst:	MS		
Oven out: $2/28/2020$ Sample Type: SS Sample Type: $2/27/2020$ Boring No. Boring No. B-10 Sample No. 1 2 3 4 5 6 Mass of tare and wet soil Ww (g) = 39,68 35.24 40.13 31.13 35.20 33.54 11.17 37.33 30.70 35.05 27.75 31.15 29.76 Mass of tare and wet soil Ww (g) = 9% 21% 20% 20% 21% Sample No. 7 8 9 21% 20% 20% 21% Mass of tare and wet soil Ww (g) = 30.84 30.52 38.88 9 34.72 34.72 34.72 34.72 34.72 38.88 9 34.72 38.88 <th< th=""><th></th><th></th><th>-8</th><th></th><th>Date</th><th>Hour</th><th></th></th<>			-8		Date	Hour	
Sample Type: SS Sample Date: $2/27/2020$ Boring No. B-10 Sample No. Sample No. Sample No. Sample No. Sample No. B-10 Sample No. B-10 Sample No. Sample No. Sample No. 1 2 3 4 5 6 Mass of tare and wet soil 39,68 35.24 40,13 31.13 35.20 33.54 Mass of tare and wet soil 39,68 35.24 40,13 31.13 35.20 33.54 Mass of tare and wet soil 39,68 35.24 40,13 31.13 35.20 33.54 Mass of tare 11.07 11.08 11.19 11.16 11.11 11.60 Water content w = 9% 23% 21% 20% 20% 21% Sampling interval 34.72 34.72 34.88 9 13.5-15 ft. 16-17.5 ft. 18.5-20 ft. 10 10 Mass of tare and wet soil 30.84 30.52 38.88 30.84 30.4 30.52 38.88 <th></th> <th></th> <th>-0</th> <th>Oven out:</th> <th></th> <th></th> <th></th>			-0	Oven out:			
Sample Date: 2/27/2020 Boring No Sample No. 1 2 3 4 5 6 Sampling interval 0-2 ft. 2-4 ft. 4-6 ft. 6-8 ft. 8-10 ft. 11-12.5 ft. Mass of tare and wet soil 39,68 35,24 40,13 31.13 35,20 33,54 11.17 37,33 30,70 35,05 27,75 31,15 29,76 Mass of tare 11.07 11.08 11.19 11.16 11.11 11.60 W1 (g) = 13.5-15 ft. 16-17.5 ft. 18.5-20 ft. 20% 20% 20% 21% Mass of tare and wet soil 34,72 34,72 34,72 38.88 30.52 38.88 30.52 38.88 30.52 38.88 30.52 38.88 30.52 38.88 30.52 38.88 30.52 38.88 30.52 38.88 30.52 38.88 30.52 38.88 30.52 38.88 30.52 38.88 30.52 38.88 30.52 38.88 30.52 38.88 30.52 38.88 <t< th=""><th>Sample Type:</th><th>SS</th><th></th><th></th><th></th><th></th><th></th></t<>	Sample Type:	SS					
Boring No. Sample No. Sample No. Sampling interval B-10 Mass of tare and wet soil Ww (g) = 39.68 35.24 4.6 ft. 6-8 ft. 8-10 ft. 11-12.5 ft. Mass of tare and wet soil Ww (g) = 39.68 35.24 40.13 31.13 35.20 33.54 Mass of tare and wet soil Wt (g) = 37.33 30.70 35.05 27.75 31.15 29.76 Mass of tare Sampling interval 7 8 9 20% 20% 20% 21% Sample No. Sample No			- 1 · · · · · · · · · · · · · · · · · ·		(A)A 7-1		
Sample No. 1 2 3 4 5 6 Sampling interval 0-2 ft. 2-4 ft. 4-6 ft. 6-8 ft. 8-10 ft. 11-12.5 ft. Mass of tare and wet soil 39.68 35.24 40.13 31.13 35.20 33.54 11.17 37.33 30.70 35.05 27.75 31.15 29.76 Mass of tare and wet soil 37.33 30.70 35.05 27.75 31.15 29.76 Mass of tare 11.07 11.08 11.19 11.16 11.11 11.60 Water content w = 9% 23% 21% 20% 20% 21% Sampling interval 7 8 9 21% 20% 21% Mass of tare and wet soil 30.84 30.52 38.88 21% 21% 21% Mass of tare and wet soil 30.84 30.52 38.88 21% 21% 21% Mass of tare and wet soil 22% 11.17 11.22 11.14 21% 21% Mass of tare and wet soil 22% 19% 21% <t< th=""><th>Sample Date:</th><th>2/2/1/2020</th><th>5 =35</th><th></th><th></th><th></th><th></th></t<>	Sample Date:	2/2/1/2020	5 =35				
Sampling interval 1 2 3 4 5 6 Sampling interval 0.2 ft . 2.4 ft . 4.6 ft . 6.8 ft . 8.10 ft . $11-12.5 \text{ ft}$. Mass of tare and wet soil 39.68 35.24 40.13 31.13 35.20 33.54 11.17 37.33 30.70 35.05 27.75 31.15 29.76 Mass of tare 11.07 11.08 11.19 11.16 11.11 11.60 Water content w = 9% 23% 21% 20% 20% 21% Sampling interval 7 8 9 20% 21% 20% 21% Mass of tare and wet soil 34.72 34.72 44.24		B-10					
Sampling interval 0-2 ft. 2-4 ft. 4-6 ft. 6-8 ft. 8-10 ft. 11-12.5 ft. Mass of tare and wet soil Ww (g) = 39.68 35.24 40.13 31.13 35.20 33.54 11.17 37.33 30.70 35.05 27.75 31.15 29.76 Mass of tare Wt (g) = 11.07 11.08 11.19 11.16 11.11 11.60 Water content w = 9% 23% 21% 20% 20% 20% 21% Sample No. Sampling interval 7 8 9 - - - - Mass of tare and wet soil Ww (g) = 34.72 34.72 44.24 -	Sample No.	1	2	3	4	5	6
Mass of tare and wet soil 0.2 ft. 2.4 ft. 4.6 ft. 6.3 ft. $8-10$ ft. $11-12.5$ ft. Mass of tare and wet soil $39,68$ 35.24 40.13 31.13 35.20 33.54 11.17 37.33 30.70 35.05 27.75 31.15 29.76 Mass of tare $Wt (g) =$ 11.07 11.08 11.19 11.16 11.11 11.60 Water content w = 9% 23% 21% 20% 20% 21% Sample No. 7 8 9 20% 20% 21% 20% 21% Mass of tare and wet soil 34.72 34.72 34.72 44.24 40.13 40.14 <td>Sampling interval</td> <td></td> <td>and the second second</td> <td></td> <td>1.000</td> <td>9-70 B A A R B A</td> <td></td>	Sampling interval		and the second second		1.000	9-70 B A A R B A	
Ww (g) = 39.68 35.24 40.13 31.13 35.20 33.54 11.17 37.33 30.70 35.05 27.75 31.15 29.76 Mass of tare Wt (g) = 11.07 11.08 11.19 11.16 11.11 11.60 Water content w = 9% 23% 21% 20% 20% 21% Sample No. Sampling interval 7 8 9 13.5-15 ft. 16-17.5 ft. 18.5-20 ft. 14.24 14.24 Mass of tare and wet soil Wu (g) = 34.72 34.72 44.24 14.24 14.24 14.24 Mass of tare and ry soil Wu (g) = 11.17 11.22 11.14 14.24	Sampning mervar	0-2 ft.	2-4 ft.	4-6 ft.	6-8 ft.	8-10 ft.	11-12.5 ft.
37.33 30.70 35.05 27.75 31.15 29.76 Mass of tare 11.07 11.08 11.19 11.16 11.11 11.60 Wt (g) = 11.07 11.08 11.19 11.16 11.11 11.60 Water content w = $9%$ $23%$ $21%$ $20%$ $20%$ $21%$ Sample No. 7 8 9 13.5-15 ft. 16-17.5 ft. 18.5-20 ft. 14.24 Mass of tare and wet soil 30.84 30.52 38.88 14.24 14.24 Mass of tare 30.84 30.52 38.88 14.24 14.24 Mass of tare 11.17 11.22 11.14 14.14 14.14 Wt (g) = 11.17 11.22 11.14 14.14 14.14 Mass of tare 20% 22% 19% 14.14 14.14 14.14 Mass of tare and wet soil 30.84 30.52 38.88 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14	Mass of tare and wet soil					1.1.1.1.1.1.1.1	
Mass of tare Wt (g) = 11.07 11.08 11.19 11.16 11.11 11.60 Water content w = 9% 23% 21% 20% 20% 21% Sample No. Sampling interval 7 8 9 20% 21% 20% 21% Mass of tare and wet soil Ww (g) = 34.72 34.72 44.24 <	Ww (g) =	39.68	35.24	40.13	31.13	35.20	33.54
Mass of tare Wt (g) = 11.07 11.08 11.19 11.16 11.11 11.60 Water content w = 9% 23% 21% 20% 20% 21% Sample No. Sampling interval 7 8 9 20% 21% 20% 21% Mass of tare and wet soil Ww (g) = 34.72 34.72 44.24 <	11.17	37.33	30.70	35.05	27.75	31.15	29.76
Wt (g) = 11.07 11.08 11.19 11.16 11.11 11.60 Water content w 9% 23% 21% 20% 20% 21% Sample No. 7 8 9 13.5-15 ft. 16-17.5 ft. 18.5-20 ft. 1 Mass of tare and wet soil Ww (g) = 34.72 34.72 44.24 4 4 4 Water content w = 20% 22% 11.14 1			in the				
Water content w = 9% 23% 21% 20% 20% 21% Sample No. 7 8 9 <td></td> <td>11.07</td> <td>11.08</td> <td>11.19</td> <td>11.16</td> <td>11.11</td> <td>11.60</td>		11.07	11.08	11.19	11.16	11.11	11.60
Sampling interval 7 8 9 Mass of tare and wet soil 13.5-15 ft. 16-17.5 ft. 18.5-20 ft. Mass of tare and wet soil 34.72 34.72 44.24 Mass of tare and dry soil 30.84 30.52 38.88 Wate content w = 20% 22% 19% Mass of tare and wet soil Sampling interval 11.17 11.22 11.14 Water content w = 20% 22% 19% Mass of tare and wet soil Ww (g) = 11.17 11.22 11.14 11.14 Mass of tare and wet soil Ww (g) = 11.17 11.22 11.14 Mass of tare and wet soil Ww (g) = 11.17 11.22 11.14 Mass of tare and wet soil 11.17 11.22 11.14 11.14 Mass of tare and wet soil 11.14 11.14 11.14 11.14 Water content we 11.17 11.22 11.14 11.14 11.14 Water content we 11.14 11.14 11.14 11.14		9%	the second se		20%	20%	21%
Sampling interval 7 8 9 Mass of tare and wet soil 13.5-15 ft. 16-17.5 ft. 18.5-20 ft. Mass of tare and wet soil 34.72 34.72 44.24 Mass of tare and dry soil 30.84 30.52 38.88 Wate content w = 20% 22% 19% Mass of tare and wet soil Sampling interval 11.17 11.22 11.14 Water content w = 20% 22% 19% Mass of tare and wet soil Ww (g) = 11.17 11.22 11.14 11.14 Mass of tare and wet soil Ww (g) = 11.17 11.22 11.14 Mass of tare and wet soil Ww (g) = 11.17 11.22 11.14 Mass of tare and wet soil 11.17 11.22 11.14 11.14 Mass of tare and wet soil 11.14 11.14 11.14 11.14 Water content we 11.17 11.22 11.14 11.14 11.14 Water content we 11.14 11.14 11.14 11.14	Γ						
Sampling interval 13.5-15 ft. 16-17.5 ft. 18.5-20 ft. Mass of tare and wet soil 34.72 34.72 44.24 Mass of tare and dry soil 30.84 30.52 38.88 Mass of tare 11.17 11.22 11.14 Water content w = 20% 22% 19% Sampling interval 10 10 10 Mass of tare and wet soil 11.17 11.22 11.14 Water content w = 20% 22% 19% Mass of tare and wet soil 10 10 10 Mass of tare and wet soil 10 10 10 10 Wy (g) = 10 10 10 10 10 Mass of tare and wet soil 10 10 10 10 10 Wy (g) = 10 10 10 10 10 10 10 Mass of tare and dry soil 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 <t< td=""><td>Sample No.</td><td>7</td><td>8</td><td>0</td><td></td><td></td><td></td></t<>	Sample No.	7	8	0			
Mass of tare and wet soil 34.72 34.72 44.24 Mass of tare and dry soil 30.84 30.52 38.88 Mass of tare 11.17 11.22 11.14 Water content w = 20% 22% 19% Mass of tare and wet soil $W_{0}(g) =$ 10% 10% Mass of tare and wet soil $W(g) =$ 11.17 11.22 11.14 Mass of tare and wet soil $W(g) =$ 10% 10% Mass of tare and wet soil $W(g) =$ 10% 10% Mass of tare and dry soil $W(g) =$ 10% 10% Water content w = 0% 10% 10% Wt (g) = 10% 10% 10% Water content w = 0% 10% 10% Water content w = 0% 10% 10%	Sampling interval	N. S. DESTRUCTION OF MANY	Indiana ana amin'ny sarahasin'ny sarahasin'ny sarahasin'ny sarahasin'ny sarahasin'ny sarahasin'ny sarahasin'ny	a average average	E DESCRIPTION OF	U DIVERSION STATES	
Ww (g) = 34.72 34.72 44.24 Mass of tare and dry soil 30.84 30.52 38.88 Mass of tare 11.17 11.22 11.14 Water content w = 20% 22% 19% Sample No. Sample No. Sample No. Sample No. Sample No. Sample network Sample No. Sample No. Ww (g) = Mass of tare and wet soil Ww (g) = Sample No. Mass of tare and wet soil Sample No. Sample No. Sample No. Ww (g) = Sample No. Sample No. Sample No. Mass of tare and wet soil Sample No. Sample No. Sample No. Mass of tare and wet soil Sample No. Sample No. Sample No. Ww (g) = Sample No. Sample No. Sample No. Sample No. Water content w = Sample No. Sample No. Sample No. Sample No. Mass of tare and dry soil Sample No. Sample No. Sample No. Sample No. Water content w = Sample No. Sample No. Sample No. Sample No. Sample No. <td< td=""><td>Sumpring mervar</td><td>13.5-15 ft.</td><td>16-17.5 ft.</td><td>18.5-20 ft.</td><td></td><td></td><td></td></td<>	Sumpring mervar	13.5-15 ft.	16-17.5 ft.	18.5-20 ft.			
Mass of tare and dry soil 30.84 30.52 38.88 Mass of tare 11.17 11.22 11.14 Water content w = 20% 22% 19% Sample No. Sampling interval 10% Mass of tare and wet soil 11.17 11.22 11.14 Water content w = 20% 22% 19% Mass of tare and wet soil 10% 10% 10% Ww (g) = 10% 10% 10% 10% Water content w = 10% 10% 10% 10% Water content w = 10% 10% 10% 10% Wu (g) = 10% 10% 10% 10% 10% Water content w = 10% <	Mass of tare and wet soil						
Wd (g) = 30.84 30.52 38.88 Mass of tare 11.17 11.22 11.14 Water content w = 20% 22% 19% Sample No. Sampling interval 10% Mass of tare and wet soil 10% 10% Ww (g) = 11.17 11.22 11.14 Mass of tare and wet soil 10% 10% Wu (g) = 10% 10% Mass of tare and dry soil 10% 10% Wt (g) = 10% 10% Water content w = 10% 10%	Ww (g) =	34.72	34.72	44.24			
Mass of tare 11.17 11.22 11.14 Water content w = 20% 22% 19% Sample No. Sampling interval Image: Sample No. Image: Sample No. Mass of tare and wet soil Mass of tare and wet soil Image: Sample No. Image: Sample No. Mass of tare and wet soil Image: Sample No. Image: Sample No. Image: Sample No. Image: Sample No. Mass of tare and wet soil Image: Sample No. Image: Sample No. Image: Sample No. Image: Sample No. Mass of tare and wet soil Image: Sample No. Image: Sample No. Image: Sample No. Image: Sample No. Mass of tare and wet soil Image: Sample No. Image: Sample No. Image: Sample No. Image: Sample No. Mass of tare and dry soil Image: Sample No. Image: Sample N							
Wt (g) = 11.17 11.22 11.14 Water content w = 20% 22% 19% Sample No. Sampling interval Image: Content w = Image: Content w = Mass of tare and wet soil Image: Content w = Image: Content w = Image: Content w = Water content w = Image: Content w = Image: Content w = Image: Content w = Image: Content w =		30.84	30.52	38.88		and the state of the state of the state	
Water content w = 20% 22% 19% Sample No. Sampling interval Image: Sample No. Image: Sample No. Mass of tare and wet soil Image: Sample No. Image: Sample No. Image: Sample No. Mass of tare and wet soil Image: Sample No. Image: Sample No. Image: Sample No. Image: Sample No. Mass of tare and wet soil Image: Sample No. Image: Sample No. Image: Sample No. Image: Sample No. Mass of tare and wet soil Image: Sample No. Image: Sample No. Image: Sample No. Image: Sample No. Mass of tare and wet soil Image: Sample No. Image: Sample No. Image: Sample No. Image: Sample No. Water content w = Image: Sample No. Image: Sample No. Image: Sample No. Image: Sample No. Water content w = Image: Sample No. Image: Sample No. Image: Sample No. Image: Sample No.		11.17	11.00	1114	1. 在1866年5月1日。 1		
Sample No. Sampling interval Mass of tare and wet soil Ww (g) = Mass of tare and dry soil Wd (g) = Mass of tare Wt (g) = Water content w =		and the second se		Contraction of the second s	Sector and the sector of the sector of the		
Sampling interval Mass of tare and wet soil Ww (g) = Mass of tare and dry soil Wd (g) = Mass of tare Wt (g) = Water content w =	Water content w =	2070	2270	1770			
Mass of tare and wet soil Ww (g) = Mass of tare and dry soil Wd (g) = Mass of tare Wt (g) = Water content w =	Sample No.						
Mass of tare and wet soil Ww (g) = Mass of tare and dry soil Wd (g) = Mass of tare Wt (g) = Water content w =	Sampling internal	STORE INCOME.		n nitritti annati att			
Ww (g) = Mass of tare and dry soil $Wd (g) =$ Mass of tare $Wt (g) =$ Water content w =	Sampling interval						
Ww (g) = Mass of tare and dry soil $Wd (g) =$ Mass of tare $Wt (g) =$ Water content w =	Mass of tare and wet soil						
Mass of tare and dry soil Wd (g) = Mass of tare Wt (g) = Water content w =	A REPORT OF A R	Use Print and					
$ \begin{array}{c c} Mass of tare \\ Wt (g) = \\ Water content w = \\ \end{array} $	Mass of tare and dry soil	Chever and the second second		and a present of the second second second			
Mass of tare $Wt (g) =$ Water content w =							
Water content w =	Mass of tare	and the second states			ALL	and the state of the	
	Wt (g) =	AN SUM PARAMURAN	-California ann amaraige		The second second second second second	And an and a starting of the	
Prepared By: Date: 3/9/2020 Approved By: Date: 3/11/2020	Water content w =	N P		~			
Approved By: Date: 3/11/2000	Prepared By:	Jan	7	Date: 3/9/20	070		
	Approved By:	Ask 1	Date	3/11/2020		_	$\langle \Lambda \rangle$

WATER CONTENT of SOILS and ROCK by MASS

Analysi: I.V Date Hour Date Hour Sample Type: SS Sample Date: 2/28/2020 Boring No. Baring No. Sample Date: 2/28/2020 Boring No. Sample No. Sample No. Sample No. Sample No. Sample No. Mass of tare and wet soil Ww (g) = M44.15 33.54 33.94 43.44 Mass of tare and wet soil Wt (g) = Mass of tare and wet soil Mass of tare and wet soil Sample No.			AASHTO	O T 275 / ASTM D	104700.04740		
Date Hour Sample Type: SS Sample Type: SS Sample No. Date Hour Sample No. Sample No. <th>Client: Himalayan</th> <th></th> <th></th> <th>Oven in:</th> <th></th> <th>3:00</th> <th></th>	Client: Himalayan			Oven in:		3:00	
Oven out: $2/29/2020$ 14:00 Sample Type: SS Sample Date: $2/28/2020$ Boring Na. Sample Date: $2/28/2020$ Boring Na. Sample Date: $2/28/2020$ Sample No. Sample No. Sample No. Sample No. Mass of tare and wet soil Ww (g) = No Recovery 37.74 29.88 30.20 38.01 Mass of tare and wet soil Wt (g) = Sample No.	and an an an an an and a state of the state			Analyst:	LV		
Sample Type: S8 Sample Date: 2/28/2020 Boring No. B-11 Sample No. Sample No. Sampling interval 0-2 ft. 2-4 ft. 4-6 ft. 6-8 ft. 8-10 ft. Mass of tare and wet soil Ww (g) = 44.15 33.54 33.94 43.44 11.17 No Recovery 37.74 29.88 30.20 38.01 Mass of tare and wet soil No Recovery 37.74 29.88 30.20 38.01 Wt (g) = 11.22 11.32 11.19 11.16 Water content w = 24% 20% 20% 20% Sampling interval 2.4 ft. 4-6 ft. 6-8 ft. 8-10 ft. Mass of tare and wet soil 32.55 31.68 30.52 30.82 Mass of tare and wet soil 22% 25% 22% 22% 22% Wt (g) = 11.17 11.14 11.12 11.14 11.12 Mass of tare and wet soil 32.55 31.68 30.52 30.82 30.81 Mass of tare and wet soil No Recovery <th>WEI Job No: 433-04-01</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	WEI Job No: 433-04-01						
Sample Date: 2/28/2020 Boring No. Sample No. Sampling interval 8-11 Mass of tare and wet soil Ww (g) = W. 1 2 3 4 5 Mass of tare and wet soil Wt (g) = 0-2 ft. 2-4 ft. 4-6 ft. 6-8 ft. 8-10 ft. Mass of tare and wet soil Wt (g) = No Recovery 37.74 29.88 30.20 38.01 Mass of tare Wt (g) = 11.22 11.32 11.19 11.16 Wass of tare content w = 24% 20% 20% 20% Sampling interval Ww (g) = 38.84 36.67 35.40 35.11 Mass of tare and wet soil Ww (g) = 32.55 31.68 30.52 30.82 Mass of tare and dry soil Wu (g) = 1 2 3 4 Mass of tare and wet soil Wu (g) = 1 2 3 4 Mass of tare and wet soil Wu (g) = 1 2 3 4 Mass of tare and wet soil Wu (g) = 35.53 35.70 36.68 4 Mass of tare and wet soil Wu (g) = No Recovery 3				Oven out:		14:00	
Boring No. Baring No. B-11 Sample No. 1 2 3 4 5 Sampling interval 0-2 ft. 2-4 ft. 4-6 ft. 6-8 ft. 8-10 ft. Mass of tare and wet soil Ww (g) = 44.15 33.54 33.94 43.44 11.17 No Recovery 37.74 29.88 30.20 38.01 Mass of tare Ww (g) = 11.22 11.32 11.19 11.16 Water content w = 24% 20% 20% 20% Sampling interval 1 2 3 4 4 Mass of tare and wet soil Ww (g) = 38.84 36.67 35.40 35.11 30.82 Mass of tare and wet soil 32.55 31.68 30.52 30.82 30.82 Mass of tare and dry soil Wd (g) = 11.170 11.14 11.10 11.14 11.12 11.14 Wt (g) = 11.22 3 4 4 4.6 6.8 ft. 8-10 ft. 4.6 Mass of tare and wet soil Wx (g) = 35.53 35.7	Sample Type:			Analyst:	MC	1-	
Sample No. Sampling interval 1 2 3 4 5 Mass of tare and wet soil 0.2 ft. 2.4 ft. 4.6 ft. 6.8 ft. 8-10 ft. Mass of tare and wet soil Ww (g) = 44.15 33.54 33.94 43.44 Mass of tare No Recovery 37.74 29.88 30.20 38.01 Mass of tare No Recovery 37.74 29.88 30.20 38.01 Water content w = 24% 20% 20% 20% 20% Sample No. 1 2 3 4 4 Mass of tare and wet soil Ww (g) = 38.84 36.67 35.40 35.11 Mass of tare and try soil 38.84 36.67 35.40 35.11 4 Water content w = 29% 25% 25% 22% 22% Sample No. 1 2 3 4 4.6 ft. 6-8 ft. 8-10 ft. 4 Water content w = 29% 25% 25% 22% 22% 4 Mass of tare and wet soil	Sample Date:	2/28/2020					
Sample No. I Z 3 4 5 Sampling interval 0-2 ft. 2-4 ft. 4-6 ft. 6-8 ft. 8-10 ft. Mass of tare and wet soil Ww (g) = 44.15 33.54 33.94 43.44 11.17 No Recovery 37.74 29.88 30.20 38.01 Mass of tare Ww (g) = 11.22 11.32 11.19 11.16 Water content w = 24% 20% 20% 20% Sample No. 1 2 3 4 4 Mass of tare and wet soil Ww (g) = 38.84 36.67 35.40 35.11 4 Mass of tare and wet soil 32.55 31.68 30.52 30.82 4 Wu (g) = 11.14 11.70 11.14 11.12 4 4 Water content w = 29% 25% 25% 22% 26% 26% Sample No. 1 2 3 4 4 4 6 6 6 6 6 6 6 6 6 6 6				3			
Sampling interval 1 2 3 4 5 Mass of tare and wet soil 0-2 ft. 2-4 ft. 4-6 ft. 6-8 ft. 8-10 ft. Mass of tare and wet soil No Recovery 37.74 29.88 30.20 38.01 Mass of tare 11.22 11.32 11.19 11.16 Wu (g) = 11.22 11.32 11.19 11.16 Water content w = 24% 20% 20% 20% Sample No. 1 2 3 4 4 Mass of tare and wet soil 38.84 36.67 35.40 35.11 Mass of tare and wet soil 38.84 36.67 35.40 35.11 4 Mass of tare and dry soil 32.55 31.68 30.52 30.82 4 Wt (g) = 11.14 11.70 11.14 11.12 11.12 11.14 Wt (g) = 11.22 3 4 4 4 11.14 11.12 11.14 Mass of tare and dry soil 32.55 31.68 30.52 30.82 30.82 30.82 30.82	Boring No.	B-11					
Mass of tare and wet soil No Recovery 37.74 29.88 30.20 38.01 Mass of tare No Recovery 37.74 29.88 30.20 38.01 Mass of tare 11.17 No Recovery 37.74 29.88 30.20 38.01 Mass of tare 11.22 11.32 11.19 11.16 11.16 Water content w = 24% 20% 20% 20% 20% Sample No. 1 2 3 4 4 4.6 ft. 6.8 ft. 8-10 ft. 4.6 ft. 4.6 ft. 6.8 ft. 8-10 ft. 4.6 ft. 4.6 ft. 6.8 ft. 8.10 ft. 4.6 ft. 4.6 ft. 4.	Sample No.	1	2	3	4	5	
Mass of tare and wet soil 0-2 ft. 2-4 ft. 4-6 ft. 6-3 ft. 8-10 ft. Mass of tare and wet soil No Recovery 37.74 29.88 30.20 38.01 Mass of tare 11.17 No Recovery 37.74 29.88 30.20 38.01 Mass of tare 11.22 11.32 11.19 11.16 11.16 Water content w = 24% 20% 20% 20% 20% Sample No. 1 2 3 4 4 Mass of tare and wet soil 38.84 36.67 35.40 35.11 36.82 Mass of tare and dry soil 32.55 31.68 30.52 30.82 4 Wet (g) = 11.14 11.70 11.14 11.12 11.12 Water content w = 29% 25% 25% 22% 22% Mass of tare 1 2 3 4 4 Wt (g) = 11.14 11.70 11.14 11.12 11.14 Water content w = 29% 25% 25% 25% 25% 25%	Sampling interval	Envire Charles					
Ww (g) = 44.15 33.54 33.94 43.44 11.17 No Recovery 37.74 29.88 30.20 38.01 Mass of tare 11.22 11.32 11.19 11.16 Water content w = 24% 20% 20% 20% Sample No. 1 2 3 4 4 Mass of tare and wet soil 1 2 3 4 4 Water content w = 24% 20% 20% 20% Sampling interval 1 2 3 4 4 Mass of tare and wet soil 38.84 36.67 35.40 35.11 4 Mass of tare 32.55 31.68 30.52 30.82 4 Water content w = 29% 25% 25% 22% 4 Water content w = 29% 25% 25% 22% 4 Mass of tare 1 2 3 4 4 Mass of tare and wet soil 2.4 ft. 4.6 ft. 6.8 ft. 8-10 ft. 4 Mass of tare and dry soil		0-2 ft.	2-4 ft.	4-6 ft.	6-8 ft.	8-10 ft.	
Ww (g) = 44.15 33.54 33.94 43.44 11.17 No Recovery 37.74 29.88 30.20 38.01 Mass of tare Wt (g) = 11.22 11.32 11.19 11.16 Water content w = 24% 20% 20% 20% Sample No. Sampling interval 1 2 3 4 4 Mass of tare and wet soil Ww (g) = 38.84 36.67 35.40 35.11 4 Mass of tare and wet soil Ww (g) = 32.55 31.68 30.52 30.82 4 Mass of tare on the w = 20% 25% 22% 22% 20% Water content w = 20% 25% 22% 22% 22% Mass of tare and wet soil Wu (g) = 1 2 3 4 4 Mass of tare and wet soil Ww (g) = 1 2 3 4 4 Mass of tare and wet soil Ww (g) = 35.53 35.70 36.68 4 4 Mass of tare and wet soil Ww (g) = No Recovery 31.24 31.44 32.15 4 Mass of tare and wet soil Ww (Mass of tare and wet soil	- 4244 (1910 A) AD	and the second		A REPORT OF	The set of the ball	- Martines
Mass of tare Wt(g) = 11.22 11.32 11.19 11.16 Water content w = 24% 20% 20% 20% B-12 Sample No. Sampling interval B-12 Sample No. 1 2 3 4 Mass of tare and wet soil Ww (g) = 38.84 36.67 35.40 35.11 35.40 35.11 Mass of tare and dry soil Wt (g) = 38.84 36.67 35.40 35.11 30.82 Mass of tare and dry soil Wt (g) = 32.55 31.68 30.52 30.82 30.82 Mass of tare Wt (g) = 11.14 11.70 11.14 11.12 11.12 Water content w = 29% 25% 25% 22% Sampling interval Sample No. Sampling interval 1 2 3 4 Mass of tare and wet soil Ww (g) = No Recovery 31.24 31.44 32.15 Mass of tare and dry soil Wd (g) = No Recovery 31.24 31.44 32.15 Mass of tare Wt (g) = 11.31 11.10 11.43 11.43 11.43	Ww (g) =	and the shirt	44.15	33.54	33.94	43.44	
Mass of tare Wt(g) = 11.22 11.32 11.19 11.16 Water content w = 24% 20% 20% 20% B-12 Sample No. Sampling interval B-12 Sample No. 1 2 3 4 Mass of tare and wet soil Ww (g) = 38.84 36.67 35.40 35.11 35.40 35.11 Mass of tare and dry soil Wt (g) = 38.84 36.67 35.40 35.11 30.82 Mass of tare and dry soil Wt (g) = 32.55 31.68 30.52 30.82 30.82 Mass of tare Wt (g) = 11.14 11.70 11.14 11.12 11.12 Water content w = 29% 25% 25% 22% Sampling interval Sample No. Sampling interval 1 2 3 4 Mass of tare and wet soil Ww (g) = No Recovery 31.24 31.44 32.15 Mass of tare and dry soil Wd (g) = No Recovery 31.24 31.44 32.15 Mass of tare Wt (g) = 11.31 11.10 11.43 11.43 11.43	11.17	No Recovery	37.74	29.88	30.20	38.01	
Water content w = 24% 20% 20% B-12 Sample No. Sampling interval 1 2 3 4 Mass of tare and wet soil 2-4 ft. 4-6 ft. 6-8 ft. 8-10 ft. Mass of tare and dry soil 38.84 36.67 35.40 35.11 Mass of tare and dry soil 32.55 31.68 30.52 30.82 Mass of tare 11.14 11.70 11.14 11.12 Water content w = 29% 25% 22% B-13 Sample No. Mass of tare and wet soil Ww (g) = 35.53 35.70 36.68 Mass of tare and wet soil No Recovery 31.24 31.44 32.15 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
Water content w = 24% 20% 20% B-12 Sample No. Sampling interval 1 2 3 4 (1) (2) (3) (4) (2) Mass of tare and wet soil (2) (3)	Wt (g) =		11.22	11.32	11.19	11.16	
Sample No. Sampling interval 1 2 3 4 Mass of tare and wet soil $Ww (g) =$ 2-4 ft. 4-6 ft. 6-8 ft. 8-10 ft. Mass of tare and wet soil $Wd (g) =$ 38.84 36.67 35.40 35.11 Mass of tare and dry soil $Wd (g) =$ 32.55 31.68 30.52 30.82 Mass of tare $Wt (g) =$ 11.14 11.70 11.14 11.12 Water content w = 29% 25% 25% 22% B-13 8-10 ft. Sampling interval 1 2 3 4 Mass of tare and wet soil $Ww (g) =$ 35.53 35.70 36.68 Mass of tare and wet soil $Ww (g) =$ No Recovery 31.24 31.44 32.15 Mass of tare and dry soil $Wd (g) =$ No Recovery 31.24 31.44 32.15 Mass of tare and dry soil $Wt (g) =$ No Recovery 31.24 31.44 32.15			24%	20%	20%	20%	
Sampling interval 1 2 3 4 Sampling interval 2-4 ft. 4-6 ft. 6-8 ft. 8-10 ft. Mass of tare and wet soil 38.84 36.67 35.40 35.11 Mass of tare and dry soil 32.55 31.68 30.52 30.82 Mass of tare and dry soil 32.55 31.68 30.52 30.82 Water content w = 29% 25% 22% 22% B-13 5 35.70 36.68 36.61 Sampling interval 2-4 ft. 4-6 ft. 6-8 ft. 8-10 ft. Mass of tare and wet soil No Recovery 31.24 31.44 32.15 Mass of tare and dry soil No Recovery 31.24 31.44 32.15 Mass of tare 11.31 11.10 11.43 11.43		B-12					
Sampling interval 2-4 ft. 4-6 ft. 6-8 ft. 8-10 ft. Mass of tare and wet soil 38.84 36.67 35.40 35.11 Mass of tare and dry soil 32.55 31.68 30.52 30.82 Wt (g) = 11.14 11.70 11.14 11.12 Water content w = 29% 25% 25% 22% B-13 Sample No. 1 2 3 4 Sampling interval 1 2 3 4 4 Mass of tare and wet soil 35.53 35.70 36.68 4 Mass of tare and wet soil No Recovery 31.24 31.44 32.15 4 Mass of tare and dry soil No Recovery 31.24 31.44 32.15 4 Wt (g) = 11.31 11.10 11.43 4 4 4	Sample No.	1	2	3	4		
Mass of tare and wet soil 38.84 36.67 35.40 35.11 Mass of tare and dry soil 32.55 31.68 30.52 30.82 Wa (g) = 11.14 11.70 11.14 11.12 Water content w = 29% 25% 25% 22% B-13 B-13 A-6 ft. 6-8 ft. 8-10 ft. Mass of tare and wet soil 1 2 3 4 Sample No. 1 2 3 4 Sample No. 1 2 3 4 Water content w = 29% 35.53 35.70 36.68 Mass of tare and wet soil No Recovery 31.24 31.44 32.15 Mass of tare No Recovery 31.24 31.44 32.15 Mass of tare 11.31 11.10 11.43 11.43	Sampling interval	TO DE LA		THE DEPARTMENT	E CONTRACTOR IN THE R	PRESERVATION STAT	
Ww (g) = 38.84 36.67 35.40 35.11 Mass of tare and dry soil 32.55 31.68 30.52 30.82 Mass of tare 11.14 11.70 11.14 11.12 Water content w = 29% 25% 25% 22% B-13 Sample No. 1 2 3 4 Sample No. 1 2 3 4 Mass of tare and wet soil 2-4 ft. 4-6 ft. 6-8 ft. 8-10 ft. Mass of tare and wet soil 35.53 35.70 36.68 4 Mass of tare and dry soil No Recovery 31.24 31.44 32.15 Mass of tare wet soil No Recovery 31.24 31.44 32.15 Mass of tare No Recovery 31.24 31.44 32.15 Mass of tare 11.31 11.10 11.43 4.46	Samping mer m	2-4 ft.	4-6 ft.	6-8 ft.	8-10 ft.		
Ww (g) = 38.84 36.67 35.40 35.11 Mass of tare and dry soil 32.55 31.68 30.52 30.82 Mass of tare 11.14 11.70 11.14 11.12 Water content w = 29% 25% 25% 22% B-13 B-13 B-13 B-13 B-13 Sample No. 1 2 3 4 Mass of tare and wet soil 2-4 ft. 4-6 ft. 6-8 ft. 8-10 ft. Mass of tare and wet soil 35.53 35.70 36.68 4 Mass of tare and dry soil No Recovery 31.24 31.44 32.15 Mass of tare wet soil No Recovery 31.24 31.44 32.15 Mass of tare wet wet wet wet wet wet wet wet wet we	Mass of tare and wet soil	HERITAR STR	No fee let dat de	C. GOLANDAR MAR	C CONTRACTOR		and solver allow
Wd (g) = 32.55 31.68 30.52 30.82 Mass of tare 11.14 11.70 11.14 11.12 Water content w = 29% 25% 25% 22% B-13 B-13 2 3 4 Sample No. 1 2 3 4 Sampling interval 2-4 ft. 4-6 ft. 6-8 ft. 8-10 ft. Mass of tare and wet soil No Recovery 31.24 31.44 32.15 Mass of tare and dry soil No Recovery 31.24 31.44 32.15 Mass of tare with tare and try soil No Recovery 31.24 31.44 32.15 Mass of tare with tare 20% 21% 20% 21%	Ww(g) =	38.84	36.67	35.40	35.11		
Mass of tare Wt (g) = 11.14 11.70 11.14 11.12 Water content w = 29% 25% 25% 22% B-13 B-13 End End End End Sample No. 1 2 3 4 End End Mass of tare and wet soil 2-4 ft. 4-6 ft. 6-8 ft. 8-10 ft. End End Mass of tare and wet soil Ww (g) = 35.53 35.70 36.68 End End Mass of tare and dry soil No Recovery 31.24 31.44 32.15 End End Wt (g) = 11.31 11.10 11.43 230/ 240/ 240/	Mass of tare and dry soil						
Wt (g) = 11.14 11.70 11.14 11.12 Water content w = 29% 25% 25% 22% B-13 B-13 Control of the second sec	Wd(g) =	32.55	31.68	30.52	30.82	server west stormer based inter	
Water content w = 29% 25% 25% 22% B-13 B-13 B-13 Contract of the second seco		11.14	11.70	11.14	11.12	·非有关。···································	
B-13Sample No.1234Sampling interval2-4 ft.4-6 ft.6-8 ft.8-10 ft.Mass of tare and wet soil $Ww (g) =$ 35.5335.7036.68Mass of tare and dry soilNo Recovery31.2431.4432.15Wt (g) =11.3111.1011.43							
Sample No. Sampling interval1234 $2 - 4$ ft. $2 - 4$ ft. $4 - 6$ ft. $6 - 8$ ft. $8 - 10$ ft.Mass of tare and wet soil $Ww (g) =$ Mass of tare and dry soil $Wd (g) =$ 35.53 35.70 36.68 Mass of tare and dry soil $Wd (g) =$ $Mass of tareWt (g) =No Recovery31.2431.4432.15$	[
Sampling interval1234Sampling interval2-4 ft.4-6 ft.6-8 ft.8-10 ft.Mass of tare and wet soil35.5335.7036.68Ww (g) =No Recovery31.2431.4432.15Mass of tare11.3111.1011.43	Sample No.	D -15		-			
Z-4 ft. 4-6 ft. 6-8 ft. 8-10 ft. Mass of tare and wet soil $Ww (g) =$ 35.53 35.70 36.68 Mass of tare and dry soil $Wd (g) =$ No Recovery 31.24 31.44 32.15 Mass of tare 11.31 11.10 11.43 221%	20	1	2	3	4	the property of the covery related to the ball	
Ww (g) = 35.53 35.70 36.68 Mass of tare and dry soil $Wd (g) =$ No Recovery 31.24 31.44 32.15 Mass of tare 11.31 11.10 11.43	Sampling interval	2-4 ft.	4-6 ft.	6-8 ft.	8-10 ft.		
Ww (g) = 35.53 35.70 36.68 Mass of tare and dry soil $Wd (g) =$ No Recovery 31.24 31.44 32.15 Mass of tare 11.31 11.10 11.43							
Mass of tare and dry soil Wd (g) =No Recovery 31.24 31.44 32.15 Mass of tare Wt (g) =11.3111.1011.43		Public Transformer		2000	25.62	FRANK	
Wd (g) = No Recovery 31.24 31.44 32.15 Mass of tare 11.31 11.10 11.43 Wt (g) = 220% 210% 220%	WW(g) = Mass of tare and dry soil	的和影響的影響也是是	35.53	35.70	36.68		
Mass of tare 11.31 11.10 11.43 Wt (g) = 220% 210% 220%		No Recovery	31.24	31.44	32.15		
Wt (g) = 11.31 11.10 11.43							
11/ Jan 200/ 210/ 220/	The second se	And the second	11.31	11.10	11.43	· · · · · · · · · · · · · · · · · · ·	N. F. V. PHOTO NAMES
			22%	21%	22%		
Prepared By: Date: _	Prepared By: _	they tay		Date:3/9/20	020	6	
Approved By: Date: 3/ 11/2020		12	Date				\land

WATER CONTENT of SOILS and ROCK by MASS

			O T 275 / ASTM D 2			
Client: Himalayan			Oven in:	2/28/2020	3:00	
Project: 55th Street			Analyst:	LV		
WEI Job No: 433-04-01			0	Date 2/29/2020	<i>Hour</i> 14:00	
0 J T	SS		Oven out:	MC	14:00	
Sample Type:	2/27/2020		Analyst:	MC		
Sample Date:	2/2//2020					
Boring No.	B-14		5. <u></u>			
Sample No.	1	2	3	4	5	
Sampling interval	0-2 ft.	2-4 ft.	4-6 ft.	6-8 ft.	8-10 ft.	
Mass of tare and wet soil Ww (g) =	36.05	35.20	37.10	42.94	42.00	
11.17	31.80	31.29	33.37	37.13	35.83	
Mass of tare Wt (g) =	11.16	11.44	11.21	11.11	10.96	
Water content w =	21%	20%	17%	22%	25%	
	B-15					
Sample No.	1	2	3	4		
Sampling interval	2-4 ft.	4-6 ft.	6-8 ft.	8-10 ft.		
Mass of tare and wet soil Ww (g) =	36.18	35.51	36.50	35.62		
Mass of tare and dry soil Wd (g) =	31.96	31.30	32.15	31.70		
Mass of tare Wt (g) =	11.31	11.11	10.96	11.17		
Water content w =	20%	21%	21%	19%		
Sample No. Sampling interval						1.
Mass of tare and wet soil						0
Ww (g) = Mass of tare and dry soil Wd (g) = Mass of tare						
Wt (g) =		時期に同時			46.244.644.4	
Water content w = Prepared By:	Hay MA		Date: <u>3/3/20</u> e: <u>3/11/2000</u>	3.20		
Approved By:	LA 1	Date	: 3/11/2020		~ ~	\wedge

s:\netprojects\4330401\lab data\lws_wang_cai_4330401moisturesb14_b15_20200309.xls

www.wangeng.com

WATER CONTENT of SOILS and ROCK by MASS

		AASHTO	T 275 / ASTM D	100 100 2011 A.O.		
Client: Himalayan			Oven in:	2/28/2020	3:00	
Project: 55th Street			Analyst:	LV		
WEI Job No: 433-04-01		-		Date	Hour	
			Oven out:	2/29/2020	14:00	
Sample Type:	SS		Analyst:	MC		
Sample Date:	2/27/2020					
Boring No.	B-16				<i>9</i> 2	
Sample No.	1	2	3	4	5	6
Sampling interval	2-4 ft.	4-6 ft.	6-8 ft.	8-10 ft.	11-12.5 ft.	13.5-15 ft.
Mass of tare and wet soil Ww (g) =	38.54	36.64	38.93	35.97	36.62	36.37
11.17	33.33	30.43	33.67	31.83	32.32	31.94
Mass of tare Wt (g) =	11.14	11.32	11.31	11.09	11.36	11.10
Water content w =	23%	32%	24%	20%	21%	21%
Sample No. Sampling interval	7 16-17.5 ft.	8 18.5-20 ft.	9 21-22.5 ft.	10 23.5-25 ft.		
Mass of tare and wet soil Ww (g) =	37.95	36.81	37.25	36.65		
Mass of tare and dry soil Wd (g) =	33.05	32.37	32.70	31.93	THE REPORT OF THE OWNER AND THE PROPERTY OF THE OWNER AND THE OWNER AND THE OWNER AND THE OWNER AND THE OWNER A	
Mass of tare Wt (g) =	11.36	11.18	11.38	11.18	and the second	
Water content w =	23%	21%	21%	23%		
Sample No. Sampling interval						
Mass of tare and wet soil Ww (g) = Mass of tare and dry soil Wd (g) = Mass of tare Wt (g) =						an a
Water content w = Prepared By: Approved By:	Say Lip	Date:	Date: 3/9/201 3/4/2020	20	~	\land

WATER CONTENT of SOILS and ROCK by MASS

		AASHTO	T 275 / ASTM D	2216		
Client: Himalayan			Oven in:	2/27/2020	3:00	
Project: 55th Street		1 37	Analyst:	MS		
WEI Job No: 433-04-01		• ^{(*}		Date Hour		
-0		4	Oven out:	2/29/2020	14:00	
Sample Type:	SS		Analyst:	MC		
Sample Date:	2/27/2020					
Sample Date.						
Boring No.	B-17					
Sample No.	1	2	3	4	5	6
Sampling interval	1-3 ft.	3-5 ft.	5-7 ft.	7-9 ft.	9-11 ft.	11-12.5 ft.
Mass of tare and wet soil Ww (g) =	40.75	30.27	33.64	30.30	33.16	41.13
11.17	36.12	26.70	29.75	27.05	29.59	35.87
Mass of tare				and a second log one		
Wt (g) =	11.15	11.23	11.23	11.21	11.16	11.30
Water content w =	19%	23%	21%	21%	19%	21%
Sample No.	7	8	9	10	11	
Sampling interval	13.5-15 ft.	16-17.5 ft.	18.5-20 ft.	21-22.5 ft.	23.5-25 ft.	
Mass of tare and wet soil						Store Astro
$W_W(g) =$	34.72	38.44	31.55	45.69	51.02	
Mass of tare and dry soil Wd (g) =	30.40	33.49	28.08	40.33	44.00	
Mass of tare Wt (g) =	11.12	11.08	11.10	11.23	11.20	
Water content w =	22%	22%	20%	18%	21%	
Sample No.						
Sampling interval				0.617148	394.59	
Mass of tare and wet soil			and also allow allow			
Ww (g) = Mass of tare and dry soil Wd (g) =					in Brandi	
Wt (g) = Wt (g) = 0						
Water content w = Prepared By:	Sen	1	Date: 3/6/20	20		-
Approved By:	1.1.	Date	Date: 3/5/20			
Approved by.	100	Date.			7	\sim

WATER CONTENT of SOILS and ROCK by MASS

		AASHTO	T 275 / ASTM D	2216		
Client: Himalayan			Oven in:	2/28/2020	3:00	
Project: 55th Street			Analyst:	LV		
WEI Job No: 433-04-01				Date	Hour	
		-	Oven out:	2/29/2020	14:00	
Sample Type:	SS	ŝ	Analyst:	MC		
Sample Date:	2/28/2020	-			()	
Sample Date.	2/20/2020					
Boring No.	B-18	1				
Sample No.	D-10				T	
Sample No.	1	2	3	4		
Sampling interval					的。这些花门湖。"刘	
	2-4 ft.	4-6 ft.	6-8 ft.	8-10 ft.	and the second second	
Mass of tare and wet soil		- All Market W. 197		R MARKET SALA 19		
Ww (g) =	36.49	35.94	35.72	36.67		
			A CONTRACTOR OF A CONTRACTOR OF A DECIMAL	112 - Herber Andrewski, and a starter	e a pecar a construction de la const	
11.17	30.82	31.30	31.38	32.73		
Mass of tare						
Wt (g) =	11.05	11.38	11.15	11.25		
Water content w =	29%	23%	21%	18%		
		1	21/0	10.10		
	B-19					
Sample No.		1				
	1	2	3	4		
Sampling interval	2-4 ft.	4-6 ft.	6-8 ft.	8-10 ft.		
	2-4 It.	4-0 It.	0-0 11.	0-10 IL	and a sector that was shown in the	
N						
Mass of tare and wet soil		(朱书) (新闻)		25.25	·新闻的新闻。	
Ww(g) =	37.44	and an an an and the	36.41	36.26	E STUDIE OVER THE ST	
Mass of tare and dry soil	24.04	Ne Decement	21.67	21.00		
$\frac{Wd (g)}{Mass of tare}$	34.94	No Recovery	31.67	31.99	the contract that so that he down	
Wt (g) =	11.15	· 华州市和国际学校组织	11.08	11.51	因而可以受任我	
Water content w =	11%		23%	21%		
i ater content i	1170	1	10 / 0	21/0		
	B-20					
Sample No.			2			
	1	2	3	4		
Sampling interval	2-4 ft.	4-6 ft.	6-8 ft.	8-10 ft.	ACT SHE HAN IN	
		Charlen of Said Philipping States		Dan Municipal Angle Constitution and a constitution		
N. C						
Mass of tare and wet soil		25.17	25.45	25.75	学业为学生的	
Ww(g) = Mass of tare and dry soil		35.17	36.45	35.75	的 的复数形式加强的 的复数	
Wd (g) =	No Recovery	29.36	29.56	31.33		
Mass of tare	NO RECOVERY	29.30	29.50	51.55	NO. THE STATE OF	
Wt (g) =		11.18	11.17	11.19		
Water content w =		32%	37%	22%		
	Sa	0			Geo.	
Prepared By:	Jun	/	Date: 3/9/7		/	7
Approved By:	hit 1	Date:	3/11/202	0	2	$\langle \rangle$

s:\netprojects\4330401\lab data\lws_wang_cai_4330401moisturesb18_b19_b20_20200309.xls

1145 North Main Street Lombard, Illinois 60148 Phone (630) 953-9928 www.wangeng.com

ORGANIC CONTENT in SOILS by LOSS on IGNITION

ASTM D 2974, Method C

Client: Himalayan	Analyst Name: M. Ciapas
Project: 55th. Street at Lagrange Rd.	Date Received: 2/27/2020
WEI Job: 433-04-01	Date Tested: 4/13/2020
Type/Condition: SS	Soil Sample ID: B-04, SS#1 (0-2 ft.)
Testing Furnace Temp °C.: 440	Sample Description: Brown&Gray Silty Clay

Moisture Content	Wet soil + tare (g)	Dry Soil + tare (g)	Tare mass (g)	w (%)	
oven-dry method	80.98	73.64	41.81		23

Ash Content	Dry Soil + tare (g)	Ash + tare (g)	Tare mass (g)	Ash Content (%)
Loss On Ignition	73.64	72.57	41.81	3

Organic Content (%)=

3.5

any 4/21/2020 Prepeared By:

Reviwed By:

1145 North Main Street Lombard, Illinois 60148 Phone (630) 953-9928 www.wangeng.com

ORGANIC CONTENT in SOILS by LOSS on IGNITION

ASTM D 2974, Method C

Client: Himalayan	Analyst Name: M. Ciapas
Project: 55th. Street at Lagrange Rd.	Date Received: 2/27/2020
WEI Job: 433-04-01	Date Tested: 4/13/2020
Type/Condition: SS	Soil Sample ID: B-12, SS#1 (2-4 ft.)
Testing Furnace Temp °C.: 440	Sample Description: Black Silty Clay Loam

Moisture Content	Wet soil + tare (g)	Dry Soil + tare (g)	Tare mass (g)	w (%)	
oven-dry method	91.79	77.92	43.27	4	40

Ash Content	Dry Soil + tare (g)	Ash + tare (g)	Tare mass (g)	Ash Content (%)
Loss On Ignition	77.92	73.27	43.27	16

Organic Content (%)=

15.5

4/21/2020 Prepeared By:

Reviwed By:

County: COOK