

STANDARD BAR SPLICER ASSEMBLY

Minimum Lap Lengths				
Bar size to be spliced	Table 1	Table 2	Table 3	Table 4
3, 4	1'-5''	1'-11''	2'-1''	2'-4''
5	1'-9''	2'-5''	2'-7''	2'-11''
6	2'-1''	2'-11''	3'-1''	3'-6''
7	2'-9''	3′-10′′	4'-2''	4'-8''
8	3′-8′′	5′-1′′	5′-5′′	6'-2''
9	4'-7''	6'-5''	6′-10′′	7'-9''

Table 1: Black bar, 0.8 Class C

Table 2: Black bar, Top bar lap, 0.8 Class C

Table 3: Epoxy bar, 0.8 Class C

Table 4: Epoxy bar, Top bar lap, 0.8 Class C

Threaded splicer bar length = min. lap length + $1_2^{\prime\prime}$ + thread length

* Epoxy not required on Bar Splicer Assembly components used in conjunction with black bars.

Location	Bar size	No. assemblies required	Table for minimum lap length

INSTALLATION AND SETTING METHODS

"A" : Set bar splicer assembly by means of a template bolt.
 "B" : Set bar splicer assembly by nailing to wood forms or cementing to steel forms.
 (E) : Indicates epoxy coating.

Bridge Deck Approach Slab

 Reinforcement
 Threaded

 Bars
 Threaded splicer

 bar (E)
 bar (E)

 Threaded splicer
 bar (E)

 Threaded splicer
 bar (E)

 4'-0''
 6'-0''

BAR SPLICER ASSEMBLY FOR #5 BAR ON INTEGRAL OR SEMI-INTEGRAL ABUTMENTS

No. required = 76

DESIGNED	Nicholas R. Barnett	September 17, 2010
CHECKED	Michael D. Rolape	EXAMINED Thomas Romanalski
DRAWN	h.t. duong	PASSED Ralph E. anderson
CHECKED	NRB/MDR	ENGINÉER OF BRIDGES AND STRUCTURES
BSD-1		11-1-09

Splicer bars yield strength. All reinforce Bar splicer for reinforcem See special See approve alternatives.

STANDARD MECHANICAL SPLICER

Location	Bar size	No. assemblies required

<u>NOTES</u>

Splicer bars shall be deformed with threaded ends and have a minimum 60 ksi eld strength.

All reinforcement shall be lapped and tied to the splicer bars. Bar splicer assemblies shall be epoxy coated according to the requirements for reinforcement bars. See Section 508 of the Standard Specifications.

See special provision for Mechanical Splicers. See approved list of bar splicer assemblies and mechanical splicers for

<u>BAR SPLICER ASSEMBLY AND</u> <u>MECHANICAL SPLICER DETAILS</u> <u>STRUCTURE NO. 084-0517</u>

NO.23	F.A.U. RTE.	SECTION		COUNTY	TOTAL SHEETS	SHEET NO.
	8159	110X-3VB-4		SANGAMON	78	48
HEETS				CONTRACT	NO. 72	692
		ILLINOIS	FED. AI	ID PROJECT		