		Speed Letter
Bureau of Bridges & Structures • 2300 S. I	IT OT Iranspo	
Bureau of Bhuges & Structures • 2300 3. I	oliksen raikway • opingheid,	, minois 02704
To: Holcomb Foundation Engineering Co. 393 Wood Road	Deter Moroh 25, 2010	Job No.: P-97-010-07
Po Box 88	Date: March 25, 2010 SN: 096-0075	Contract No.: 74222
Carbondale, IL	Route: FAP 821 (IL 15)	
62903-	Section: (18BY1)B-1	
	County: Wayne	
Attention:	Other:	
Subject: Structure Geotechnical Report (SGR	<u>() Review</u>	
We are Sending: Structure Geotechnical Report Foundation Approval Comments Special Provise These Are: Approved As Submitted Approved Subjection Returned for Revisions and Re-submittal Remarks: Following our review of your SGR dated March 24, 2010 completing the final design plans and specifications. If you have any questions or need further assistance, placetic Rivad M. Wahab at (217)-522-2704	tions	eview and Comments submitted for use in

Structure Geotechnical Report

FAP Route 821(Illinois Route #15) Section (18BY1)B-1 Wayne County Structure (Existing) 096-0007 Structure (Proposed) 096-0075 Contract: 74222 Job Number: P-97-010-07 PTB 148-25

Prepared By: Timothy J. Holcomb, P.E. Holcomb Foundation Engineering Company PO Box 88 Carbondale, Illinois 62903 618-529-5262 HFE File H-09038

Date: March 24, 2010

Prepared For: ESI Consultants, LTD 753 Windsor Road Charleston, Illinois 61920

Attachments: TSL Drawings Subsurface Profile Boring Logs Site Classification Slope Stability Analyses

1.0 Project Description and Proposed Structure Information

This structure is to consist of replacement of existing structure 096-0007 carrying US Route #15 over Dry Fork Creek in Wayne County, Illinois. This structure lies approximately two miles east of Sims on Route #15, between Sections 2 and 11 in Township 2 South, Range 6 East of the Third Principal Meridian in Wayne County.

The project includes construction of a three span structure with a length of 137' 0" back to back of abutments, and a width of 36' 0". The new structure will consist of a concrete deck at an approximate elevation of 405.5 resting on pile supported abutments and piers. The new structure will have 2:1 end slopes with a 20 foot berm on the east side of the streambed. The proposed streambed elevation is 385.1. Intermediate supports are 42' 9" east and west of the new abutments. This structure will be constructed using stage construction with one lane open to traffic.

2.0 Existing Information

The existing structure was constructed in 1922 and reconstructed in 1957. The original structure consisted of a two span reinforced concrete thru girder superstructure founded upon pile supported closed abutments and a solid wall pier on pile supported footings. In 1957, the structure was widened from 20 to 28 feet. The existing superstructure consists of continuous two span, 6 steel beams with a reinforced concrete slab and two pile bent supported approach slabs with no skew. The existing structure will be completely replaced.

3.0 Site Investigation, Subsurface Exploration, and Conditions

This structure lies in the Mt. Vernon Hill Country physiographic division, which generally consists of a thin mantle of loess overlying Illinoisan glacial drift and alluvium. The area in the vicinity of this structure has been influenced by Skillet Fork Creek alluvial deposits overlying shale and sandstone bedrock. Pennsylvanian deposits of shale, sandstone, coal, and limestone generally lie at relatively shallow depths in this area. The immediate site subsurface conditions consist of about one foot of asphalt and concrete pavement overlying about eight to fifteen feet of gray to brown silty clay to silty loam. Below these soils lies two to four feet of soft silty loam, that overlies brown mottled gray clay loam. The clay loam extends to depths ranging from about 34 to 39 feet, where a very stiff gray clay loam to sandy loam was encountered. Gray shale was encountered at about 69 feet in all of the soil borings.

A rock core cut in Boring #3 indicates the shale extends to about 73 feet in depth, where a gray sandstone was encountered. The sandstone extends down to at least the bottom of this soil boring.

Three soil borings were drilled at this structure, located as follows:

Boring #1	1245+62 (6.5' Left)
Boring #2	1246+30 (7.0' Right)
Boring #3	1247+28 (7.0' Right)

The upper silty clay to clay loam is firm to stiff, with unconfined compressive strengths ranging from 0.4 to 2.0 tons per square foot, averaging 1.2 tsf. Standard penetration test values range from 4 to 10 blows per foot. Moisture contents vary from 2 to 26 percent, averaging 19 percent. These upper soils appear to be in fair to good condition in relation to the stability of the bridge abutments.

The sandy loam encountered at 8.5 feet in Boring #1, and at 15 feet in Boring #2 is very soft, with unconfined compressive strengths ranging from 0.1 to 0.4 tons per square foot, averaging 0.3 tsf. Standard penetration test values range from 2 to 4 blows per foot. Moisture contents of 26 to 30 percent were encountered in the soft loam, averaging about 26 percent. These soils have a high settlement potential.

The clay loam encountered below about 10 to 20 feet at this site ranges from soft to stiff, with unconfined compressive strengths ranging from 0.1 to 1.7 tons per square foot, averaging 0.9 tsf. Standard penetration test values range from 2 to 13 blows per foot, averaging about 7 bpf. Moisture contents vary from 17 to 26 percent, averaging 22 percent. These soils have a moderate settlement potential.

The glacial till encountered at about 34 to 39 feet in depth is very dense, with standard penetration test values ranging from 21 to in excess of 100 blows per foot, averaging 41 bpf. Unconfined compressive strengths range from 0.8 to 7.9 tons per square foot, averaging 4.2 tsf. Moisture contents vary from 12 to 18 percent. The glacial till has a very low settlement potential.

The shale encountered at about 69 feet in depth is very dense, with standard penetration test values in excess of 100 blows per foot. The shale is estimated to have a very low settlement potential.

Ground water was encountered at the following elevations:

<u>Boring No.</u>	<u>Upon Completion</u>	After 72 Hours
1	387.8	389.4
2	N/M	N/M
3	392.9	391.9

N/M - Not Measured due to borehole drilled through bridge deck.

4.0 Geotechnical Evaluation

4.1 Settlement

Very little additional fill is anticipated at the approach abutments, due to the elevation of the new structure being about the same as the existing structure. On the east side of the new structure, the 20 foot berm will actually be constructed at a lower elevation than the existing soil currently in this area. Due to the subsoils supporting no more load than the current overburden loadings, we anticipate less than 0.25 inch of settlement at the end slopes. No remedial methods are recommended to limit the settlements at this location.

4.2 Slope Stability

Due to the elevation of the existing structure being roughly the same as the proposed structure, we do not anticipate problems with the embankment stability. The seismic analysis has been determined using a peak horizontal ground acceleration of 0.093g. Stability analyses have been performed on both end slopes and determined the following factors of safety based upon the unconfined compressive strength tests:

<u>Location</u>	<u>Analysis</u>	Factor of Safety
East End Slope	Steady State	1.5
East End Slope	Seismic	1.2
West End Slope	Steady State	1.6
West End Slope	Seismic	1.1

These factors of safety appear acceptable for the proposed structure.

4.3 Seismic Considerations

Seismic Performance Zone (SPZ) = 2 Design Spectral Acceleration at 1.0 sec. $(S_{D1}) = 0.286$ Design Spectral Acceleration at 0.2 sec. $(S_{Ds}) = 0.687$ Soil Site Class = D

4.4 Scour

Scour elevations have been determined for the piers as 13' for the 100 year flood, which results in estimated scour elevations as follows:

Design Scour	E. Abut.	Pier 1	Pier 2	W. Abut.
Elevation (ft.)	397.9	372.1	372.1	398.1

4.5 Mining Activity

The mine maps available from the State of Illinois Geological Survey indicate the site has not been undermined. No coal mining has been performed in Wayne County. Therefore, subsidence is not a concern at this location.

5.0 Foundation Evaluations and Design Recommendations

5.1 Bearing Capacity of Bridge Approaches

The approach footings require 2.0 ksf as maximum applied service bearing pressures per IDOT ABD 08.3. Data provided in the boring logs indicates the subsoils at each approach in the upper five feet of both of the approaches have bearing pressures in excess of 2.0 ksf. Due to the new approaches having about the same elevation as the existing abutments, we do not foresee problems with settlements at either approach. Therefore, ground improvement at both abutments does not appear necessary.

5.2 Foundation Recommendations

Both drilled piers and spread footings are not practical or economical alternatives for this structure. The subsoils do not have adequate strength for economical design of spread footings, and settlements would be extremely high. Drilled piers are not a cost effective alternative for the structure due to their depth and the difficulty of installing the piers at the intermediate bridge supports.

It is recommended the structure is supported upon steel H piling or metal shell concrete filled piles. Factored loadings for the abutments and piers have been tabulated using the following assumptions:

Abutments:	1500 kips	
Piers:	2000 kips	
Pile Cutoff Elev:	West Abutment –	400.12
	East Abutment –	399.88
`	West Pier -	402.63
	East Pier -	402.54
Ground Surface At Pile:	398.1 (Abutments)	
	384.1 (Piers #1 and	#2)

Based upon the soil borings, the following soils at the corresponding elevations appear to be susceptible to liquefaction due to low unconfined compressive strengths or standard penetration test values, and were taken into account during the seismic design of the piles:

<u>Boring No.</u>	Liquefiable Subsoils (Elevation)
1	377.5-380.4
2	365.6-380.6
3	377.5-380.4

The subsoils at these locations consist of either loose sands or soft loamy soils that have the potential for liquefaction.

Due to the size of this structure and the estimated loadings, metal shell or Hpiles appear feasible at this location for support of the axial bridge loadings. The piles should be sized and spaced according to current IDOT LRFD design policy in coordination with the pile tables enclosed. Once the necessary factored resistance available (Rf) is determined from the structural loadings, the nominal required bearing (Rn) and estimated pile lengths can be determined using these tables.

Pile Design Table

West Abutment – Boring No. 1

	Rn (kips)	Rf (kips)	Seismic Rf (kips)	Estimated Length (ft.)
Metal Shell 14" x	x 0.312" Walls*			
	167	92	21	31
	223	123	78	41
HP 12 x 63	270	149	67	41
	458	252	216	46
HP 14 x 73	321	177	83	41
	543	299	257	46
East Abutment -	- Boring No. 3			
			Seismic	Estimated
	Rn (kips)	Rf (kips)	Rf (kips)	Length (ft.)
Metal Shell 14" x	0.312" Walls*			
	247	136	104	44
	498	274	354	54
HP 12 x 63	408	224	208	54
HP 14 x 73	493	271	257	54

The following are estimated pile lengths and capacities for piles driven for piers in the stream bed for the intermediate piers:

Pile Lengths for Intermediate Pier #1 - Boring No. 2

	Rn (kips)	Rf (kips)	Seismic Rf (kips)	Estimated Length (ft.)
Metal Shell 14"	x 0.312" Walls*			
	352	181	278	47
	394	204	320	57
HP 12 x 63	267	122	147	67
	446	228	353	70
HP 14 x 73	317	144	174	67
	549	282	440	70

I he hengen			Seismic	Estimated
	Rn (kips)	Rf (kips)	Rf (kips)	Length (ft.)
Metal Shell	14" x 0.312" Walls*			
	352	181	278	47
	394	204	320	57
HP 12 x 63	267	122	147	67
	446	228	353	70
HP 14 x 73	317	144	174	67
	549	282	440	70

Pile Lengths for Intermediate Pier #2 - Boring No. 2

* - Pile shoes are recommended for the 14 inch metal shell piles due to dense subsoils encountered near the bearing elevations.

Our experience in this area has been pile tip elevations have been seated at about three to four feet into the dense bedrock. However, the bearing capacity of the piles should be determined for each pile based upon the WSDOT driving formula.

A test pile is recommended at Pier #2 due to lack of a soil boring at this location.

5.3 Lateral Stability

The lateral stability of the proposed piles may be calculated using the following soil strength parameters:

						Saturated	Static Soil
		Equivalent	Phi	Undrained Shear	Strain @ 50% of Peak	Soil Unit Weight	Modulus Parameter
Material <u>Type</u>	Depth** <u>(Ft.)</u>	Skin <u>Friction</u> (PSF)	Angle <u>Degrees</u>	Strength <u>(PSF)</u>	Strength <u>(E50)</u>	<u>(PCF)</u>	<u>k (pci)</u>
2* 1* 2* 9*	0-25 25-35 35-70 Below 70	350 200 870 980	N/A N/A N/A N/A	1200 600 4200 10000	0.010 0.020 0.005 0.0005	125.0 125.0 125.0 130.0	500 PCI 100 PCI 1000 PCI 2000 PCI

* 1 - Soft Clay, 2- Stiff Clay with free water, 3 - Stiff Clay without free water, 4 - Sand, 5 - Linear Interpolation (p-y curves), 6 - Hard Rock, 7 - Silt, 8 - API Sand, 9 - Weak Rock

** - Below abutment ground line elevations.

6.1 Underwater Structure Excavation Protection

Based upon the streambed flow elevation at the time of the soil borings (388.39), the high surface water elevation is estimated at approximately elevation 392.14, which is only about seven feet above the proposed streambed elevation of 385.1. Therefore, since this is less than ten feet in depth, underwater structure excavation protection may be used during construction of the intermediate piers. This includes diversion of water by sheet piles, timbers, concrete, or approved embankment material which are adequate to support the excavation are possible alternatives for this type of protection. The underwater structure excavation protection system is usually designed by an engineer retained by the contractor.

6.2 Temporary Soil Retention System

During construction it will be necessary to provide sheet piling at each existing abutment for stage construction. There is not adequate room at this site for temporary slopes, and mechanically stabilized slopes do not appear to be economically feasible for such a small project, since these usually require a specialty contractor. Geotextile walls are usually used in Stage 2 for retention of the fill adjacent to the driving lane, however there is little grade differential between the old and new construction. The area adjacent to the temporary stage construction lane is very limited. Therefore, ground improvement techniques and temporary construction slopes will not aid in stabilization of the side slopes due to the close proximity of the lane to the new culvert location. Preliminary plans require temporary sheet piling at both abutments. The sheet piles may be designed using the following soil parameters:

	Cohesion	Phi Angle	Sat Unit	Moisture
Soil Type	<u>(ksf)</u>	(deg)	Wt. (PCF)	<u>(%)</u>
Silty Clay (0-12	') 1.0	0	125.0	19
Clay Loam (12-	35') 0.9	0	125.0	22

6.3 Existing Structure

The existing structure lies between the new bridge abutments, with a support near the middle of the streambed. Therefore, the existing supports do not interfere with construction of the new bridge, so they should not require removal prior to construction.

6.4 Backfill

Porous granular embankment (special) will be placed behind both abutments to facilitate drainage. Four inch perforated drains should allow any seepage water to drain out of these abutment backfill areas.

Timothy J. Holcomb, P.E.

ROUTE FAP 82 DESCRIPTION Dry Fork LOGGED BY E_Sandschafer SECTION (188Y1)B-1 LOCATION _Sec 2 - SE 1/4, Sec 11 - NE 1/4, SEC, TWP 2 S, RNG, 6 E, 3 PM COUNTY Wayne DRILLING METHOD Hollow stem auger & split socon HAMMER TYPE Auto 140# STRUCT. NO. 086-0007 B U M Stream Bed Elev. 385.16 Ft P O S S BORIN NO. 11246+42 P O S S Stream Bed Elev. 385.16 Ft P O S S S BORIN NO. 11246+42 H S Guandatare Elev. 386.36 Ft W M S Ground Surface Elev. 404.55 Ft (0) (6°) (150 (%) Medium to stiff, damp, gray, CLAY. 2 0.9 25 Stiff, damp, gray, SILTY - - - - - - - - - - - - - - - - - -	Illinois De of Transp Division of Highwaya Illinois Department of Tra	epart ortal	me tio	ent n		SC	DIL BORING LO	G		-	e <u>1</u>	
COUNTY Wayne DRILLING METHOD Hollow stem auger & solit spoon HAMMER TYPE Auto 140# STRUCT. NO. 006-0007 B U M Surface Water Elev. 383.39 ft D B U M Station 1246+42 P K O S I C O S I C O S I C O S I T W S Groundwater Elev. 380.36 ft H S Qu T T W S Groundwater Elev. 380.4 T H S Qu T T W S Qu T H S Qu T H S Qu T H S Qu T Medium to stiff, damp, gray, SILTY 3 0.9 2 0.9 2 0.1 2 0.9 2 0.1 2 0.1 2 0.1 2 0.1 2 0.1	ROUTE FAP 821 DES	CRIPTIO	N				Dry Fork	LOGGE	ED E	BY <u>E.</u>	<u>Sands</u>	<u>chafer</u>
COUNTY Wayne DRILLING METHOD Hollow stem auger & solit spoon HAMMER TYPE Auto 140# STRUCT. NO. 006-0007 B U M Surface Water Elev. 383.39 ft D B U M Station 1246+42 P K O S I C O S I C O S I C O S I T W S Groundwater Elev. 380.36 ft H S Qu T T W S Groundwater Elev. 380.4 T H S Qu T T W S Qu T H S Qu T H S Qu T H S Qu T Medium to stiff, damp, gray, SILTY 3 0.9 2 0.9 2 0.1 2 0.9 2 0.1 2 0.1 2 0.1 2 0.1 2 0.1	SECTION (18BY1)B-1	LO	САТ	ION	Sec 2	- SE 1	//4. Sec 11 - NE 1/4. SEC. , TWP. 2 S	. RNG.	6 E.	3 PM		
STRUCT. NO. 096-0007 1246+42 D B U M Surface Water Elev. 388.39 ft 38tram Bed Elev. D B U M BORING NO. 1245+62 Ft L C O S I Ground Surface Elev. 385.16 ft Ft F L C O Ground Surface Elev. 400.03 Ft K Qu T Ftest Encounter 389.8 ft H S Qu T ya saphation of 14° concrete 403.58 -												
Station 1246+42 F L C O Stream Bed Elev. 303.516 ft F L C O S I BORING NO. 1245+62 0 Stream Bed Elev. 303.61 ft Ft W S I Ground Surface Elev. 6.50fLL 6.50fLL ft (ft) (DRIELIN			<u>רוט (</u>						<u> </u>	
BORING NO. 1 W Abut T W Qu S Station 1245-62 First Encounter 389.6 ft ft W 0 S T W 0 S T W 0 S T W 0 S T W 0 S T W 0 S T W 0 S T W 0 S T W 0 S T W 0 S T W 0 S T Up on Completion Completion Completion Sinf. T T W 0 S T V 0 2 0.9 25 0.9 25 0.9 25 0 2 0.9 25 16 16 16 16 16 13 1.5 24 16	STRUCT. NO. 096-0007 Station 1246+42		E	L	C	0			Е	L	C	0
Ground Surface Elev. 404.58 ft (ft) (ft)<	BORING NO. 1 W Abut Station 1245+62		T	w	-	S	First Encounter 369.6	ft	Т	w		S
3° asphal on 9 1/4° concrete pavement. 403.58 Stiff, damp, gray, CLAY	Offset 6.50ft Lt Ground Surface Elev. 404.5	8 ft	(ft)	(/6")	(tsf)	(%)	Upon Completion <u>387.8</u> After 72 Hrs. 389.4	_ft ft	(ft)	(/6")	(tsf)	(%)
Stiff, damp, gray, CLAY. -4 -5 -6 -4 -5 -6 -7	3" asphalt on 9 1/4" concrete						Medium to stiff, damp, brown/gray/red, SILTY CLAY.			2	0.9	25
4 2.0 16 3 1.5 24 4 2.0 16 8 3 1.5 24 400.08 - - - 3 0.9 22 -3 3 0.9 22 - 3 0.9 22 -3 3 0.9 22 - 3 0.9 22 0.8 26 1 - - 2 0.8 26 1 -	Stiff, damp, gray, CLAY.						(continued)	-				
400.08 5 8 400.08 -5 2 -5 2								-		1		
Medium, damp, gray, SILTY -5 2 2 2 2 2 1 1 <th1< th=""> 1 1 <th1< <="" td=""><td></td><td></td><td></td><td></td><td></td><td>16</td><td></td><td>-</td><td></td><td></td><td></td><td>24</td></th1<></th1<>						16		-				24
Medium, damp, gray, SILTY -5 2 2 2 2 2 1 1 <th1< th=""> 1 1 <th1< <="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td></th1<></th1<>									1			
3 S - - 2 0.1 2 B 2 0.8 26 2 0.8 26 - <td< td=""><td></td><td>400.08</td><td>-5</td><td></td><td></td><td></td><td>Very soft, very damp, gray mottled</td><td>380.08</td><td>-25</td><td>1</td><td></td><td></td></td<>		400.08	-5				Very soft, very damp, gray mottled	380.08	-25	1		
396.28 2 0.8 26 Very soft, very damp, gray, SILT. 2 8	JLAY.		_	-		22	red, SILTY LOAM.		_			26
396.28 2 0.8 26 Very soft, very damp, gray, SILT. 2 8			_					-				
396.28 2 0.8 28 red/gray/blue, SANDY LOAM. 4 1.2 17 Very soft, very damp, gray, SILT. -10 -11 -10		-					Stiff to medium, damp	377.38 -		1		
Very soft, very damp, gray, SILT. -10 0 -10 0 -1		396.28	_	_		26	red/gray/blue, SANDY LOAM.	-	_			17
393.98 -0 0.1 28 Medium to stiff, damp, prown/gray/red, SILTY CLAY. - - - - 2 - - - - - 3 1.5 25 - - - - - - - - - - - - - -	/ery soft, very damp, gray, SILT.	-	_		_			_				
393.98 - 0 0.1 28 Medium to stiff, damp, prown/gray/red, SILTY CLAY. -			-10	0					-30	3		
	Andium to stiff down	393.98				28		_	-			19
3 1.5 25 5 S - -		-						-			0	
3 1.5 25 5 S - -		-	_	2				-				
-15 2		-	╡	3		25						
-15 2		_	_		3		· · ·					
4 1.0 25 4 B - - - - 1 - 2 0.6 2 B - -			_15	2			Stiff, damp, grav. CLAY LOAM		25	3		
		-		4		25		-	-35	5		16
2 0.6 24 2 B		-		4	B					16	в	
2 0.6 24 2 B		-	\neg	1				_				
		_		2		24						
			+	2	В							
		-			ĺ							

,

ROUTE FAP 821 DESCRIPTION Dry Fork LOGGED BY E. Sandschar SECTION (18BY1)B-1 LOCATION Sec 2 - SE 1/4, Sec 11 - NE 1/4, SEC. TWP. 2 S, RNG. 6 E, 3 PM COUNTY Wayne DRILLING METHOD Hollow stem auger & split spoon HAMMER TYPE Auto 140# STRUCT. NO. 096-0007 D B U M Surface Water Elev. 388.39 ft E L C O Station 1246+42 P O S I T W S I T W S BORING NO. 1 W Abut T W S I Groundwater Elev.: 369.6 ft H S Qu T Offset 6.50ft Lt (m) (m) (m) m) 000000000000000000000000000000000000		Illinois D of Transp Division of Highways Minois Department of Tr	porta	tio	ent n		S	OIL BORING LOG		e <u>2</u> 9/2	
SECTION								Dry Fork LOGGED			
COUNTY											
Station 1246+42 F C C O Station 385.16 T E L C O Station BORING NO. 1 MAbut F N Station 385.16 T P O S C											
Station 1245+62 H S Qu T First Encounter 380.6 H H S Qu T Ground Surface Elav. 404.58 ft (ft) (if) (if) <td>Station</td> <td>1246+42</td> <td></td> <td>E P</td> <td>L O</td> <td>C</td> <td>0</td> <td>P</td> <td>L O</td> <td>C</td> <td>N 0 1 S</td>	Station	1246+42		E P	L O	C	0	P	L O	C	N 0 1 S
TILL. (continued) 19 B mathied brown, SANDY CLAY 50/0* Medium, damp, gray, SANDY 45 5 TILL w/ many Sendstore 5 Dark blue/black/brown, SANDY 45 5	Station Offset Ground Surfac	1245+62 6.50ft Lt ce Elev. 404.5			_			First Encounter <u>369.6</u> ft H Upon Completion <u>387.8</u> ft	S		т (%
Medium, damp, gray, SANDY _46 5 LOAM. 359.08 11 0.8 14 Dark blue/black/brown, SANDY 23 S - CLAY TILL. - - - - Stiff, damp, gray, SANDY LOAM. - - - - Stiff, damp, gray, SANDY LOAM. - - - - 10 1.9 - CLAY SHALE. 335.08 - 12 B Extent of exploration. - 50/3" 7 501 - - - - - 50/1" 12 B - - - - 50/1" - - - - - - 50/1" - - - - - - 50/1" - - - - - - 50/1" - - - - - - 50/1" - - - - - - 50/1" - -	Stiff, damp, gray TILL. <i>(continued</i>	, CLAY LOAM)					13	marbled brown, SANDY CLAY			
Medium, damp, gray, SANDY											
CLAY TILL.	LOAM.			-45	11		14				
Stiff, damp, gray, SANDY LOAM. -50 5 Very dense, moist, gray, SANDY -70 50/3" 7 10 1.9 12 B 50/1" 50/1" 50/1" 12 B Benchmark: BM 469 Cut square on bridge curb in SW corner of existing structure, Sta 1245+70, 15' Rt = 405.27' elevation. 50/1"	CLAY TILL.	JOWN, SANDT	-		23	5					
Benchmark: BM 469 Cut square on bridge curb in SW corner of existing structure, Sta 1245+70, 15' Rt = 405.27' elevation. Provided by Program Development.	Stiff, damp, gray,	SANDY LOAM.	355.08	-50	10			Very dense, moist, gray, SANDY CLAY SHALE. 334.68/70	50/3" 50/1"		7
on bridge curb in SW corner of existing structure, Sta 1245+70, 15' Rt = 405.27' elevation. Provided by Program Development.			-		12	B			50/1"		
	·		-	-55				on bridge curb in SW corner of existing structure, Sta 1245+70, 15' Rt = 405.27' elevation. Provided by Program			
345.08											
3#0.U0 I I I I											

	of Transpo ivision of Highways inois Department of Trans	partme ortatior	nt 1		SC	DIL BORING LO	G		-	<u>1</u> 9/2	
ROUTEFA						Dry Fork	LOGG				
SECTION	(18BY1)B-1	LOCATI	ON_	Sec 2	- SE 1	/4, Sec 11 - NE 1/4, SEC., TWP.2	2 S, RNG	.6 E, 3	PM		
COUNTY	Wayne D	RILLING ME	THO) <u>Hol</u>	llow st	em auger & split spoon HAMME	R TYPE		Auto	<u>140#</u>	
Station BORING NO Station Offset	096-0007 1246+42 2 Pier 1246+30 7.00ft Rt ce Elev. 405.10	— ^н	B L O W S (/6")	U C S Qu (tsf)	M O I S T (%)	Surface Water Elev. 388.3 Stream Bed Elev. 385.1 Groundwater Elev.: First Encounter 370. Upon Completion <u>N//</u> After Hrs. <u>N//</u>	<u>6</u> ft <u>6</u> ft Aft	D E P T H	B L O W S /6'')	U C S Qu (tsf)	M O I S T (%
3" asphalt on 6 7 bridge deck. Air.	/8" concrete	<u>404.30</u> — 				Stiff, damp, gray, SILTY CLAY. (continued) Very soft to medium, very damp, gray, SILTY LOAM.	380.60	-25	2 0 0 2 1	1.2 B 0.1 B 0.4 B 0.8 B	22 23 21 19
						Loose, wet, gray, fined grained, SAND. <i>4% passing #200 sieve.</i>	<u>370.60</u>		0 0 8		20

Illinois Dep of Transpo Division of Highways Illinois Department of Transp	rtation	SC	DIL BORING LOG	Page <u>2</u> of Date <u>9/25/0</u>
			Dry Fork LOGGED	BY E. Sandschat
SECTION(18BY1)B-1		Sec 2 - SE ⁻	1/4, Sec 11 - NE 1/4, SEC., TWP. 2 S, RNG. 6	E, 3 PM
COUNTY Wayne DR	ILLING METHOD	Hollow st	em auger & split spoon HAMMER TYPE	Auto 140#
STRUCT. NO. 096-0007 Station 1246+42 BORING NO. 2 Pier Station 1246+30 Offset 7.00ft Rt Ground Surface Elev. 405.10	- ^H S	U M C O S I S Qu T (tsf) (%)	Surface Water Elev. 388.39 ft D Stream Bed Elev. 385.16 ft F Groundwater Elev.: T T First Encounter 370.6 ft H Upon Completion N/A ft (ft	L C C O S I W S
Stiff, damp, gray, SANDY LOAM. (continued)		1.2 18 S	Hard, damp, gray, CLAY LOAM TILL. <i>(continued)</i>	16 4.6 13 23 B
	60.60			
Hard, damp, gray, CLAY LOAM TiLL.	<u>-45</u> 8 15 28 	7.9 12 S	- <u>-6</u> 	5
	6 6 16 26	4.6 B	Very dense, moist, gray, SILTY CLAY SHALE.	0 50/4" 6
		D	Benchmark: BM 469 Cut square on bridge curb in SW corner of existing structure, Sta 1245+70, 15' Rt = 405.27' elevation. Provided by Program Development.	

Illinois D of Transp	oortatio	ent n		SC	DIL BORING LO	G	Pag	e <u>1</u>	of <u>3</u>
Division of Highways lillinois Department of Tr	•							e <u>9/2</u>	
					Dry Fork				<u>chater</u>
SECTION (18BY1)B-1			Sec 2	- SE 1	/4, Sec 11 - NE 1/4, SEC., TWP. 2	s, RNG.	6 E, 3 PN	I	
COUNTY Wayne		ETHO	Э <u>Но</u>	llow st	em auger & split spoon HAMMER	TYPE	Aut	<u>o 140#</u>	
STRUCT. NO. 096-0007 Station 1246+42 BORING NO. 3 E Abut Station 1247+28 Offset 7.00ft Rt Ground Surface Elev. 404.9			U C S Qu (tsf)	M O I S T (%)	Surface Water Elev.388.39Stream Bed Elev.385.16Groundwater Elev.:First EncounterFirst Encounter377.4Upon Completion392.9After _ 96 _ Hrs.391.9	_ft _ft	D B E L P O T W H S (ft) (/6")	U C S Qu (tsf)	M O I S T (%)
4" asphalt on 10 1/4" concrete pavement.	403.70	-			Stiff, damp, red mottled gray, SILTY CLAY. <i>(continued)</i>		- 3 5	1.1 S	26
Stiff, damp, red, CLAY.		2	1.6	2	Medium to stiff, damp, red marblec gray, CLAY LOAM.	<u>382.90</u> I		1.0 B	22
Stiff, damp, gray marbled brown, SILTY CLAY.	 400.40 5	6 3 4 4	B 1.6 B	21	Very soft, very damp, red marbled gray, SILTY LOAM.		- <u>25</u> <u>1</u> - <u>25</u> <u>2</u> - <u>4</u>	0.1 B	23
Stiff to soft, very damp, red marbled gray, SILTY LOAM.		1 2 3	1.5 S	21	Stiff to medium, damp, gray, CLAY.	_ <u>377.50</u> _ _	0 2 4	1.7 B	20
	 10 	1 4 4	1.0 B	24		-	- <u>30</u> 1 - <u>30</u> 2 - <u>4</u>	1.0 B	20
		3 5 5	0.4 S	20		-			:
	<u>-15</u>	1 2 2	0.4 S	26	Hard, damp, gray, CLAY LOAM TILL.		- <u>35</u> 9 - <u>14</u> 15	4.4 B	12
		1 1 1	0.3 B	30		-			
	385.40	2					-40 8		

Latitude W 88 deg 29.851 min, Longitude N 38 deg 22.268 min, Map Datum WGS 84

Illinois Dep of Transpo Division of Highways Illinois Department of Trans	ortation	SC	DIL BORING LOG	Page <u>2</u> of <u>3</u> Date 9/22/08
			Dry Fork LOGGED	
SECTION (18BY1)B-1		Sec 2 - SE 1	/4, Sec 11 - NE 1/4, SEC. , TWP. 2 S, RNG. 6 E	E, 3 PM
COUNTY Wayne DF	RILLING METHOD	Hollow st	em auger & split spoon HAMMER TYPE	Auto 140#
STRUCT. NO. 096-0007 Station 1246+42 BORING NO. 3 E Abut Station 1247+28 Offset 7.00ft Rt Ground Surface Elev. 404.90	D B E L P O T W H S ft (fft) (/6")	U M C O S I S Qu T (tsf) (%)	Surface Water Elev.388.39ftDStream Bed Elev.385.16ftFGroundwater Elev.:TFirst Encounter377.4ftUpon Completion392.9ftAfter 96Hrs.391.9ft	L C O O S I W S S Qu T
Hard, damp, gray, CLAY LOAM TILL. (continued)	- 16 25 - 25 	7.3 12 BS 12 7.2 13 B 13 4.4 B 13 4.4 B 13 13 13 13 13 13 13 13 13 13 14 13 14 14 14 14 14 14 14 14 14 14 14 14 14	Very stiff, damp, gray marbled blue, SANDY CLAY TILL. (continued) Gray, moist, fine grained, SAND. Very stiff, damp, gray marbled blue, SANDY CLAY TILL. 	26
3				

Latitude W 88 deg 29.851 min, Longitude N 38 deg 22.268 min, Map Datum WGS 84

Illinois Department of Transportation ROCK CO	RE I)G		F	Page <u>3</u>	_ of <u>_3</u>
Division of Highways illinois Department of Transportation			_			Date	
ROUTEFAP 821DESCRIPTIONDry Fork							Ischater
SECTION (18BY1)B-1 LOCATIONSec 2 - SE 1/4, Sec 11 - NE 1/4, COUNTY Wayne CORING METHODRotary, surf set diamond bit STRUCT. NO. 096-0007 NW, conv Station 1246+42 Core Diameter2.06 in BORING NO. 3 E Abut Top of Rock Elev. 335.40 ft Station 1247+28 Begin Core Elev. 334.60 ft	dbi bbi, ,	D E P T	2 S, C O R E	RNG. R E C V E R	8 E, 3 R Q D	CORE T I M E	S T R E N G T
Offset7.00ft Rt		H (ft)	(#)	Y (%)		(min/ft)	н
Ground Surface Elev. 404.90 ft Gray, slight to moderate weathering, SILTY CLAY SHALE.	334.60	• •	(#) B3C1		73	1.2	(131)
Gray, slightly weathered, SANDSTONE.	332.20						~
Rock core B3C1 from 73.8' to 74.3' depth Qu = 234 tsf.		-75	20.00				
Rock core B3C2 from 76.3' to 76.8' depth Qu = 464 tsf.	-		33C2	84	69	1.1	
Extend of a mileration	324.60	-80					
Extent of exploration. Drilled additional 1' depth into Shale, no change in material.				-			
Benchmark: BM 469 Cut square on bridge curb in SW corner of existing structure, Sta 1245+70, 15' Rt = 405.27' elevation. Provided by Program Development.							

Color pictures of the cores <u>Available on request</u> Cores will be stored for examination until<u>09/22/09</u> The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

Conterminous 48 States 2007 AASHTO Bridge Design Guidelines AASHTO Spectrum for 7% PE in 75 years Latitude = 38.371140 Longitude = -088.497930 Site Class B Data are based on a 0.05 deg grid spacing. Period Sa (sec) (g) PGA - Site Class B 0.0 0.254 Ss - Site Class B 0.2 0.487 S1 - Site Class B 1.0 0.125 **Conterminous 48 States** 2007 AASHTO Bridge Design Guidelines Spectral Response Accelerations SDs and SD1 Latitude = 38.371140 Longitude = -088.497930 As = FpgaPGA, SDs = FaSs, and SD1 = FvS1 Site Class D - Fpga = 1.29, Fa = 1.41, Fv = 2.30 Data are based on a 0.05 deg grid spacing. Period Sa (sec) (g) 0.0 0.359 As - Site Class D SDs - Site Class D 0.687 0.2 0.286 SD1 - Site Class D 1.0

IDOT Global Site Classification

. •

		ġ	52.5	67.6	42.5		162.6		
		ds/(di/Nch)	100	54	45		137.4	67	ပ
		ġ	47.5	32.4	57.5		137.4		
		ds/(di/Su)	859	2805	847		4511	1313	D
		di	100	100	100		300		
2000-960 NS	9/8/2009	ds/(di/N)	21	43	19		83	28	۵
Structure No. SI	Date:	Boring No.	~	2	ი		Sum:	Average:	Site Classification

IDOT Site Classification

		di/Nch					0.1	0.425
		di/Su	0.011364	0.027	0.006952	0.01		
		di/N	2.0833	0.6750	0.6636	0.9259	0.1000	0.4250
	of Fixity 393	Nch (avg)					100	100
Boring No.	Elev. @ Pt. of Fixity	Su (avg)	1100	100	1050	2500		
-0007		N (avg)	9	4	11	27	100	100
Wayne Co SN 096-0007	9/8/2009	Thickness(di)	12.5	2.7	7.3	25	10	42.5
Structure No.	Date:	Layer Elevation	392.58 380.08	377.38	370.08	345.08	335.08	292.58

Site Class D ш ပ 858.7 100 21 ds/(di/N) = ds/(di/Nch) ds/(di/Su)

100

.

di/N 4.873 di/Su Sum-

0.525

0.055 di/Nch

IDOT Site Classification

		di/Nch		0.625			0.626	
		di/Su	0.003		0 004167	0.004386		
		di/N	0.4000	0.6250	0.0633	0.6098	0.6260	
	373							
2	of Fixity	Nch (avg)		ω			100	
Boring No.	Elev. @ Pt. of Fixity	Su (avg) Nch (avg)	800		1200	5700		
	_	N (avg)	Q	0	62	41	100	
Vayne Co SN 096	9/8/2009	Thickness(di)	2.4	2	, ц.	25	62.6	
Structure No. Wayne Co SN 096-0007	Date:	Layer Elevation	373	370.6	365.6	360.6	335.6	273

Sum- di/N 2.324 di/Su 0.012 di/Nch

1.251

ds/(di/N) = 43 Site Class ds/(di/Su) 2804.6 C ds/(di/Nch) 54 C

100

		<u> </u>	OU Site (IDUI Site Classification	uo			
Structure No.	Wayne Co SN 096-0007	2000-5	Boring No.	Ċ				
Date:	9/8/2009		Elev. @ Pt. of Fixity		393)
Layer Elevation	Thickness(di)	N (avg)	Su (avg)	Nch (avg)		di/N	di/Su	di/Nch
392.9 205 A	7.5	S	366			1.5000	0.020492	
2000 280 4	5	8	1050			0.6250		0.625
377 5	2.9	9	100			0.4833	0.029	
370.4	7.1	9	1350			1.1833	0.005259	
1.010 2.75.4	25	32	5825			0.7813	0.004292	
1.010 1.020	10	42	3400			0.2381	0.002941	
292.9	42.5	100		100		0.4250		0.425
	100			Sum- d	di/N	5.236 di/Su	0.062 di/Nch	1.050
			ds/(di/N) =	19	Site	Site Class D		
			ds/(di/Su)	847.0		ш		
			ds/(di/Nch)	45		U		

IDOT Site Classification

9038W01 XSTABL File: 9038W01 9-08-09 14:39

	XSTABL	*
	X 8 1 X 8 2	*
	slope stability Analysis	*
	using the	*
	Slope Stability Analysis using the Method of Slices	*
		*
	Copyright (C) 1992 - 2005	*
	Copyright (C) 1992 - 2005 Interactive Software Designs, Inc.	*
	Moscow, ID 83843, U.S.A.	*
		*
	All Rights Reserved	*
	/	*
2	Ver. 5.207 96 - 1992	*

Problem Description : Wayne Co. SN 096-0075 West Abut. SS

_____ SEGMENT BOUNDARY COORDINATES -------

11 SURFACE boundary segments

Segment	x-left	y-left	x-right	y-right	Soil Unit
No.	(ft)	(ft)	(ft)	(ft)	Below Segment
1 2 3 4 5 6 7 8 9 10 11	$ \begin{array}{r} .0\\ 45.0\\ 59.0\\ 79.0\\ 81.2\\ 98.0\\ 166.0\\ 180.8\\ 184.8\\ 192.1\\ 199.6 \end{array} $	105.4 105.4 94.6 93.5 85.1 85.1 92.5 94.5 98.1 105.6	45.0 59.0 79.0 81.2 98.0 166.0 180.8 184.8 192.1 199.6 250.0	105.4 94.6 93.5 85.1 85.1 92.5 94.5 98.1 105.6 105.6	1 2 2 3 3 2 1 1 1

7 SUBSURFACE boundary segments

Segment	x-left	y-left	x-right	y-right	Soil Unit
No.	(ft)	(ft)	(ft)	(ft)	Below Segment
1	$184.8 \\ 180.8 \\ .0 \\ .0 \\ 150.0 \\ 150.0 \\ .0 \\ .0 \\ .0 \\ .0 \\ .0 \\ .0 \\ .0 $	94.5	250.0	94.5	2
2		92.5	250.0	92.5	3
3		80.0	150.0	80.0	4
4		80.0	250.0	65.6	6
5		65.6	250.0	70.0	5
6		65.6	250.0	60.1	6
7		73.0	250.0	55.1	7

ISOTROPIC Soil Parameters

.

Soil	Unit	Weight	Cohesion	Friction	Pore Pr	essure	Water
Unit	Moist	Sat.	Intercept	Angle	Parameter	Constant	Surface
No.	(pcf)	(pcf)	(psf)	(deg)	Ru	(psf)	No.
1	125.0	125.0	800.0	.00	.000	.0	1
2	125.0	125.0	100.0	.00	.000	.0	1
3	125.0	125.0	600.0	.00	.000	.0	1
4 5 7	125.0 125.0 125.0 125.0	125.0 125.0 125.0 125.0	700.0 1700.0 800.0 1900.0	.00 .00 .00 .00	.000 .000 .000 .000	.0 .0 .0 .0	1 1 1 1

1 Water surface(s) have been specified Unit weight of water = 62.40 (pcf)

7 Soil unit(s) specified

Water Surface No. 1 specified by 2 coordinate points

*****	******	*****	
F ******	PHREATIC SU	RFACE, *****	
Point	x-water	y-water	
FUIL	A-Water	y-water	

NO.	(ft)	(ft)	
1	.00	85.00	
2	250.00	85.00	

BOUNDARIES THAT LIMIT SURFACE GENERATION HAVE BEEN SPECIFIED

LOWER	limiting	bound	ary of 1	. segments:	
Segment No.	x-le (fi	eft :)	y-left (ft)	x-right (ft)	y-right (ft)
1		.0	35.0	250.0	35.0

A critical failure surface searching method, using a random technique for generating CIRCULAR surfaces has been specified.

1500 trial surfaces will be generated and analyzed.

30 Surfaces initiate from each of 50 points equally spaced along the ground surface between x = 90.0 ft and x = 175.0 ft Each surface terminates between x = 185.0 ft and x = 250.0 ft

Unless further limitations were imposed, the minimum elevation at which a surface extends is y = .0 ft

15.0 ft line segments define each trial failure surface.

ANGULAR RESTRICTIONS

-

The first segment of each failure surface will be inclined within the angular range defined by :

Lower angular limit := -45.0 degrees Upper angular limit := (slope angle - 5.0) degrees

Factors of safety have been calculated by the :

* * * * * SIMPLIFIED BISHOP METHOD * * * * *

The most critical circular failure surface is specified by 9 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1 2 3 4 5 6 7 8 9	$145.51 \\ 157.44 \\ 171.41 \\ 186.35 \\ 201.09 \\ 214.52 \\ 225.59 \\ 233.45 \\ 234.61$	85.10 76.01 70.55 69.14 71.88 78.57 88.70 101.47 105.60

**** Simplified BISHOP FOS = 1.583 ****

The following is a summary of the TEN most critical surfaces Page 3

	FOS (BISHOP)	Circle x-coord (ft)		Radius (ft)	Initial x-coord (ft)	Terminal x-coord (ft)	Resisting Moment (ft-lb)
1. 2. 3. 4. 5. 6. 7. 8. 9. 10.	1.583 1.584 1.584 1.589 1.592 1.592 1.594 1.598 1.599 1.599	183.92 185.99 181.55 184.29 188.71 186.52 185.37 190.29 185.42 181.87	123.15 127.26 127.05 120.80 118.16 123.99 133.34 126.95 127.81 132.14	54.06 58.45 58.83 51.45 50.36 54.05 64.84 58.80 57.28 62.77	145.51145.51140.31147.24150.71148.98142.04148.98147.24140.31	234.61 239.76 235.90 233.26 237.04 237.07 243.94 244.66 237.83 238.38	3.988E+06 4.486E+06 3.693E+06 3.712E+06 3.908E+06 5.276E+06 4.595E+06 4.185E+06 4.909E+06

Problem Description : Wayne Co. SN 096-0075 West Abut. SS

* * * END OF FILE * * *

				9038w03
XSTABL	File:	9038w03	9-08-09	14:44

.

*	*
* XSTABL *	~ *
	*
* Slope Stability Analysis	
* using the	×
* Method of Slices	*
*	*
* Convright (C) 1992 - 200!	5 *
* Copyright (C) 1992 - 200! * Interactive Software Designs,	Thc. *
* Moscow, ID 83843, U.S.A.	*
*	*
* All Rights Reserved	*
* ATT RIGHLS Reserved	*
* Ver. 5.207 96 -	- 1997

Problem Description : Wayne Co. SN 096-0075 West Abut. EQ

SEGMENT BOUNDARY COORDINATES

11 SUR	FACE bound	ary segmen	ts		
Segment No.	x-left (ft)	y-left (ft)	x-right (ft)	y-right (ft)	Soil Unit Below Segment
1 2 3 4 5 6 7 8 9 10 11	$ \begin{array}{r} .0 \\ 45.0 \\ 59.0 \\ 79.0 \\ 81.2 \\ 98.0 \\ 166.0 \\ 180.8 \\ 184.8 \\ 192.1 \\ 199.6 \\ \end{array} $	105.4 105.4 94.6 93.5 85.1 85.1 92.5 94.5 98.1 105.6	45.0 59.0 79.0 81.2 98.0 166.0 180.8 184.8 192.1 199.6 250.0	105.4 94.6 93.5 85.1 85.1 92.5 94.5 98.1 105.6 105.6	1 2 2 3 3 2 1 1 1
7 SUB	SURFACE bo	undary seg	ments		

y-right (ft) Soil Unit Below Segment x-left y-left x-right Segment (ft) (ft) (fť) NO. 94.5 92.5 80.0 94.5 92.5 80.0 250.0 250.0 184.8 2346567 1234567 180.8 250.0 .0 150.0 .0 80.0 65.6 250.0 250.0 250.0 70.0 150.0 150.0 65.6 60.1 55.1 65.6 73.0 .0

ISOTROPIC Soil Parameters

7 So	il unit	:(s) spec	ified					
Soil Unit No.	Moist	Sat.	Cohesion Intercept (psf)	Friction Angle (deg)	Pore Pr Parameter Ru	essure Constant (psf)	Water Surface No.	
1 2 3 4 5 6 7	125.0 125.0 125.0 125.0 125.0 125.0 125.0	125.0 125.0 125.0 125.0 125.0 125.0 125.0	800.0 100.0 600.0 700.0 1700.0 800.0 1900.0	.00 .00 .00 .00 .00 .00	.000	.0 .0 .0 .0 .0	1 1 1 1 1 1	
1 Wa	ter sur	face(s)	have been s	specified	•			
Unit	weight	of water	= 62.40) (pcf)				
Water	Surfac	e No. 1	specified	by 2 coo	ordinate po	ints		
****			******	****				
****	******	EATIC SU	<pre></pre>	***				
Poi NO		x-water (ft)		er)				
1 2		.00 250.00						
A hor of	izontal .093 ha	earthqua Is been a	ake loading ssigned	g coeffic	ient			
A ver of	tical e .000 ha	arthquak Is been a	e loading o ssigned	coefficie	nt			
BOUND	ARIES T	HAT LIMI	T SURFACE (GENERATIO	N HAVE BEEN	SPECIFIED	-	
				·			-	
		-	ndary of :			b +		
Segme No		x-left (ft)	y-left (ft)	x-rigl (ft)				
1		.0	35.0	250	.0 35	.0		
A cri techn	A critical failure surface searching method, using a random technique for generating CIRCULAR surfaces has been specified.							

1500 trial surfaces will be generated and analyzed.

9038w0330 Surfaces initiate from each of 50 points equally spaced along the ground surface between x = 90.0 ft and x = 175.0 ft

Each surface terminates between x = 185.0 ft and x = 250.0 ft

Unless further limitations were imposed, the minimum elevation at which a surface extends is y = .0 ft

15.0 ft line segments define each trial failure surface.

ANGULAR RESTRICTIONS

The first segment of each failure surface will be inclined within the angular range defined by :

Lower angular limit := -45.0 degrees Upper angular limit := (slope angle - 5.0) degrees

Factors of safety have been calculated by the :

* * * * * SIMPLIFIED BISHOP METHOD * * * * *

The most critical circular failure surface is specified by 10 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1 2 3 4 5 6 7 8 9 10	$138.57 \\ 150.84 \\ 164.64 \\ 179.36 \\ 194.36 \\ 208.97 \\ 222.56 \\ 234.53 \\ 244.34 \\ 248.48 \\ \end{array}$	85.10 76.47 70.59 67.72 67.98 71.36 77.71 86.75 98.10 105.60

**** Simplified BISHOP FOS = 1.180 ****

The following is a summary of the TEN most critical surfaces

Problem Description : Wayne Co. SN 096-0075 West Abut. EQ								
	Circle Center x-coord y-coord	Radius		x-coord	Resisting Moment (ft-lb)			

		(ft)	(ft)	(ft)	(ft)	(ft)	(ft-1b)
1. 2. 3. 4. 5. 6. 7. 8. 9. 10.	$1.180 \\ 1.187 \\ 1.187 \\ 1.191 \\ 1.196 \\ 1.197 \\ 1.199 \\ 1.201 \\ 1.202 \\ 1.207$	185.64 184.84 186.66 186.82 190.29 185.37 188.06 190.53 190.29 185.99	138.99 138.44 140.48 137.06 131.64 133.34 123.38 129.07 126.95 127.26	71.55 70.61 72.22 68.60 63.40 64.84 64.36 60.49 58.80 58.45	138.57 138.57 140.31 142.04 147.24 142.04 145.51 148.98 148.98 145.51	248.48 246.91 249.45 247.44 248.06 243.94 245.90 244.66 239.76	6.223E+06 6.056E+06 5.726E+06 5.132E+06 5.132E+06 5.137E+06 4.741E+06 4.595E+06 4.486E+06

END OF FILE * * * ** * *

				A020ETT
XSTABL	File:	9038E11	9-08-09	15:59

.

XSTABL	*
	*
Slope Stability Analysis	*
using the	*
using the Method of Slices	*
	*
Convright (C) 1992 - 2005	*
Copyright (C) 1992 - 2005 Interactive Software Designs, Inc.	*
Moscow, ID 83843, U.S.A.	*
1105CON J 15 050 18 , 010 111	*
All Rights Reserved	*
ATT REGILD REDUCTED	*
Ver. 5.207 96 - 1992	

0020-11

Problem Description : Wayne Co. SN 096-0075 East Abut. SS

SEGMENT BOUNDARY COORDINATES

7 SUR	FACE bound	ary segmen	ts		
Segment No.	x-left (ft)	y-left (ft)	x-right (ft)	y-right (ft)	Soil Unit Below Segment
1 2 3 4 5 6 7	.0 68.0 84.8 87.0 107.0 113.4 121.0	85.1 93.5 94.6 94.6 97.8 105.4	68.0 84.8 87.0 107.0 113.4 121.0 150.0	85.1 93.5 94.6 94.6 97.8 105.4 105.4	4 3 2 2 2 1 1

6 SUBSURFACE boundary segments

Segment	x-left	y-left	x-right	y-right	Soil Unit
No.	(ft)	(ft)	(ft)	(ft)	Below Segment
1	113.4	97.8	150.0	97.8	2
2	84.8	93.5	150.0	93.5	3
3	68.0	85.1	150.0	85.1	4
4	.0	80.6	150.0	80.6	5
5	.0	65.6	150.0	80.0	6
6	.0	60.6	150.0	73.0	7

ISOTROPIC Soil Parameters

7 Soil unit(s) specified

Soil Unit Weight Cohesion Friction Pore Pressure Water Unit Moist Sat. Intercept Angle Parameter Constant Surface Page 1

			903	38E11			
No.	(pcf)	(pcf)	(psf)	(deg)	Ru	(psf)	NO.
1 2 3 4 5 6 7	125.0 125.0 125.0 125.0 125.0 125.0 125.0	125.0 125.0 125.0 125.0 125.0 125.0 125.0	$1600.0 \\ 1000.0 \\ 300.0 \\ 1000.0 \\ 100.0 \\ 1000.0 \\ 340$.00 .00 .00 .00 .00 .00 .00	.000 .000 .000 .000 .000 .000	.0 .0 .0 .0 .0	1 1 1 1 1
1	127.0		5.0010				

1 Water surface(s) have been specified 62.40 (pcf) Unit weight of water =

Water Surface No. 1 specified by 2 coordinate points ***** PHREATIC SURFACE, x-water v-water Doint

NO.	(ft)	(ft)
1	.00	85.00
2	150.00	85.00

_____ BOUNDARIES THAT LIMIT SURFACE GENERATION HAVE BEEN SPECIFIED

LOWER	limiting	bound	ary of 1	segments:	
Segment No.	x-le (ft	eft :)	y-left (ft)	x-right (ft)	y-right (ft)
1		.0	35.0	150.0	35.0

A critical failure surface searching method, using a random technique for generating CIRCULAR surfaces has been specified.

1500 trial surfaces will be generated and analyzed.

30 Surfaces initiate from each of 50 points equally spaced long the ground surface between x = 10.0 ft and x = 80.0 ft along the ground surface between x = and x = Each surface terminates between x =

90.0 ft 150.0 ft x = and

Unless further limitations were imposed, the minimum elevation at which a surface extends is y = .0 ft

9038E11

15.0 ft line segments define each trial failure surface.

_____ ANGULAR RESTRICTIONS The first segment of each failure surface will be inclined within the angular range defined by : Lower angular limit := -45.0 degrees Upper angular limit := (slope angle - 5.0) degrees Factors of safety have been calculated by the : * * * * * * * * * * SIMPLIFIED BISHOP METHOD The most critical circular failure surface is specified by 8 coordinate points Point x-surf y-surf (ft) (ft) NO. 85.10 1 62.86 76.25 78.35 234567 75.18 90.91 75.80 105.90 80.16 87.99 120.25 133.05 98.79 143.46 8 147,19 105.40 Simplified BISHOP FOS = **** **** 1.458 ************************ ** ** Out of the 1500 surfaces generated and analyzed by XSTABL, 7 surfaces were found to have MISLEADING FOS values. * * ** ** ** ** ** ********** The following is a summary of the TEN most critical surfaces Problem Description : Wayne Co. SN 096-0075 East Abut. SS Circle Center Radius Initial Terminal Resisting FOS

	(BISHOP)	x-coord (ft)	y-coord (ft)	(ft)	x-coord (ft)	x-coord (ft)	Moment (ft-lb)
1.	1.458	95.99		59.20 ge 3	62.86	147.19	2.840E+06

9038E11	
---------	--

3030511								
2.	1.490	86.52	153.75	79.14	47.14	148.73	4.290E+06	
3.	1.507	92.93	140.65	65.32	58.57	147.53	3.318E+06	
4.	1.511	84.12	140.96	66.99	47.14	140.71	3.393E+06	
5.	1.517	88.02	128.22	53.88	55.71	136.30	2.458E+06	
6.	1.527	94.07	128.45	53.42	62.86	141.89	2.498E+06	
7.	1.546	89.65	143.61	68.37	54.29	146.19	3.575E+06	
8.	1.561	87.94	149.85	75.78	48.57	148.85	4.390E+06	
9.	1.601	83.44	162.94	87.79	42.86	149.47	5.036E+06	
10.	1.606	77.42	169.75	95.66	32.86	147.82	5.600E+06	

* * * END OF FILE * * *

•

9038E13 XSTABL File: 9038E13 9-08-09 16:01

.

.

.

•

*	XSTABL	×
*		4
*	Slope Stability Analysis	*
*	using the	*
*	using the Method of Slices	*
*		4
*	Convright (C) 1992 - 2005	4
кТ *	Copyright (C) 1992 - 2005 Iteractive Software Designs, Inc.	4
*	Moscow, ID 83843, U.S.A.	4
*		7
*	All Rights Reserved	7
*	ATT REGILES RESERVED	4
* \/o	5.207 96 - 1992	*

Problem Description : Wayne Co. SN 096-0075 East Abut. EQ

SEGMENT BOUNDARY COORDINATES

7 SURFACE boundary segments x-right (ft) Soil Unit y-left y-right x-left Segment Below Segment (ft) (fť) (ft) NO. 68.0 84.8 87.0 107.0 113.4 121.0 85.1 93.5 4 .0 68.0 85.1 1 322211 85.1 93.5 2 3 4 94.6 84.8 87.0 94.6 97.8 105.4 94.6 94.6 97.8 5 6 7 107.0 113.4 121.0 105.4 150.0 105.4

6 SUBSURFACE boundary segments

Segment	x-left	y-left	x-right	y-right	Soil Unit
No.	(ft)	(ft)	(ft)	(ft)	Below Segment
1	113.4	97.8	150.0	97.8	2
2	84.8	93.5	150.0	93.5	3
3	68.0	85.1	150.0	85.1	4
4	.0	80.6	150.0	80.6	5
5	.0	65.6	150.0	80.0	6
6	.0	60.6	150.0	73.0	7

ISOTROPIC Soil Parameters

7 Soil unit(s) specified

Soil Unit Weight Cohesion Friction Pore Pressure Water Unit Moist Sat. Intercept Angle Parameter Constant Surface Page 1

9038E13									
No.	(pcf)	(pcf)	(psf)	(deg)	Ru	(psf)	NO.		
1	125.0	125.0	1600.0	.00	.000	.0	1		
2	125.0	125.0	1000.0	.00	.000	.0	1		
3	125.0	125.0	300.0	.00	.000	.0	1		
4	125.0	125.0	1000.0	.00	.000	.0	1		
5	125.0	125.0	100.0	.00	.000	.0	1		
6	125.0	125.0	1000.0	.00	.000	.0	1		
- Ž	125.0	125.0	3400.0	.00	.000	.0	1		

1 Water surface(s) have been specified Unit weight of water = 62.40 (pcf)

Water Surface No. 1 specified by 8 coordinate points

Point No.	x-water (ft)	y-water (ft)				
1 2 3 4 5 6 7 8	$\begin{array}{r} .00\\ 68.00\\ 84.80\\ 87.00\\ 107.00\\ 113.40\\ 115.00\\ 150.00\end{array}$	85.00 85.00 93.50 94.60 94.60 97.20 100.00 100.00				

A horizontal earthquake loading coefficient of .093 has been assigned

A vertical earthquake loading coefficient of .000 has been assigned

BOUNDARIES THAT LIMIT SURFACE GENERATION HAVE BEEN SPECIFIED

LOWER limiting boundary of 1 segments:

Segment	x-left	y-left	x-right	y-right
No.	(ft)	(ft)	(ft)	(ft)
1	.0	35.0	150.0	35.0

A critical failure surface searching method, using a random technique for generating CIRCULAR surfaces has been specified.

1500 trial surfaces will be generated and analyzed.

9038E13

30 Surfaces initiate from each of 50 points equally spaced along the ground surface between x = 10.0 ft and x = 80.0 ft

Each surface terminates between x = 90.0 ft and x = 150.0 ft

Unless further limitations were imposed, the minimum elevation at which a surface extends is y = .0 ft

15.0 ft line segments define each trial failure surface.

ANGULAR RESTRICTIONS

The first segment of each failure surface will be inclined within the angular range defined by :

Lower angular limit := -45.0 degrees Upper angular limit := (slope angle - 5.0) degrees

Factors of safety have been calculated by the :

* * * * * SIMPLIFIED BISHOP METHOD * * * * *

The most critical circular failure surface is specified by 8 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	62.86	85.10
2	76.25	78.35
3	90.91	75.18
4	105.90	75.80
5	120.25	80.16
6	133.05	87.99
7	143.46	98.79
8	147.19	105.40

**** Simplified BISHOP FOS = 1.083 ****

The following is a summary of the TEN most critical surfaces Problem Description : Wayne Co. SN 096-0075 East Abut. EQ Page 3

9038E13

	FOS (BISHOP)	Circle x-coord (ft)		Radius (ft)	Initial x-coord (ft)	Terminal x-coord (ft)	Resisting Moment (ft-lb)
1. 2. 3. 5. 6. 7. 8. 9.	1.083 1.093 1.120 1.125 1.142 1.147 1.149 1.150 1.150	95.99 86.52 92.93 84.12 71.40 87.94 88.02 89.65 94.07	134.17 153.75 140.65 140.96 184.24 149.85 128.22 143.61 128.45	59.20 79.14 65.32 66.99 111.03 75.78 53.88 68.37 53.42	62.86 47.14 58.57 47.14 21.43 48.57 55.71 55.71 54.29 62.86 32.86	147.19148.73147.53140.71149.32148.85136.30146.19141.89147.82	2.840E+06 4.290E+06 3.318E+06 3.393E+06 6.786E+06 4.390E+06 2.458E+06 3.575E+06 2.498E+06 5.600E+06

* * * END OF FILE * * *

9-08-09 16:01 9038E13