Abbreviated Structural Geotechnical Report

Proposed 6' x 3' Culvert Under I-80

IDOT Job Number P-91-185-09

Proposed SN: NA

Existing SN: NA

Contract No.: 62R29

New Lenox, Will County, IL

Prepared for:

EXP US Services Inc. 205 North Michigan Avenue, Suite 3600 Chicago, IL 60601-5924

Prepared by:

Geo Services, Inc. 805 Amherst Court Suite 204 Naperville, Illinois 60565 (630) 305-9186

JOB NO. 20012

April 04, 2023

Abbreviated Structure Geotechnical Report

Original Report Date: 10/17/2022	Proposed SN:	NA	Route:	IL-80
Revised Date: 04/04/2023	Existing SN:	NA	Section:	
Geotechnical Engineer: Geo Services	Inc,		County:	Will
Structural Engineer: EXP US Service	s Inc		Contract:	62R29
· · · · · · · · · · · · · · · · · · ·				

Indicate the proposed structure type, substructure types, and foundation locations (attach plan and elevation drawing): The proposed structure is a 6' x 3' box culvert that goes under I-80, replacing the existing 36" pipe culvert. The preliminary plan and profile are showing the proposed culvert is about 146 feet and skewed 2°. A 20'-5" culvert drop box is attached at the west end of the proposed culvert to transfer the water from the proposed drainage ditch to the proposed culvert. The preliminary design drawings are attached.

Discuss the existing boring data, existing plans foundation information, new subsurface exploration and need for any additional exploration to be provided with SGR Technical Memo (attach all data and subsurface profile plot): Three borings were drilled in December 2021, February and March 2022 for subsurface exploration. All borings had 12" of top soil and asphalt at the top of the borings. Boring CB-004 was drilled near the north end of the proposed culvert. Boring CB-004 is consists of stiff to hard clay loam from 1 feet to a termination of boring at 20 feet below the surface. Boring CB-005 was drilled close to the middle of the proposed culvert. CB-006 is consists of stiff to very stiff clay loam from 1 feet to a termination of boring at 20 feet below the surface. Boring CB-006 was drilled close to the south end of the proposed culvert. CB-006 indicates about 1 to 10.5 feet of very stiff to hard clay loam, followed by very stiff clay to a termination of boring at 20 feet below the surface.

Provide the location and maximum height of any new soil fill or magnitude of footing bearing pressure. Estimate the amount and time of the expected settlement. Indicate if further testing, analysis, and/or ground improvement/treatment is necessary: The proposed plan and profile are showing 1' of fill across the length of the culvert is expected. No settlement issues are anticipated.

Identify any new cuts or fill slope angles and heights. Estimate the factor of safety against slope failure. Indicate if further testing, analysis or ground improvement/treatment is necessary: The proposed plan and profile are showing 1' of fill across the length of the culvert is expected. No settlement concerns are anticipated.

Indicate at each substructure, the 100-year and 200-year total scour depths in the Hydraulics report, the nongranular scour depth reduction, the proposed ground surface, and the recommended foundation design scour elevations: No longer required for culverts as per ABD memo 14.2.

Determining the seismic soil site class, the seismic performance zone, the 0.2 and 1.0 second design spectral accelerations and indicate if that the soils are liquefiable: Not required for buried structures as per the Bridge Manual 2.3.10

Confirm feasibility of the proposed foundation or wall type and provide design parameters. Attach a pile design table indicating feasible pile types, various nominal required bearings, factored resistances available and corresponding estimated lengths at locations where piles will be used. Provide factored bearing resistance and unit sliding resistance at various elevations and confirm no ground improvement/treatment is necessary where spread footings are proposed. Estimated top of rock elevations as well as preliminary factored unit side and tip resistance values shall be indicated when drilled shafts are proposed: The proposed culvert and wingwalls should be designed based on factored bearing resistance of 5,500.0 psf, the boring logs show stiff to hard clay below the length of the structure.

The design drawings are showing that the 6'x 3' culvert will have horizontal cantilever wingwall at north side of the culvert. It will serve as a drainage path to transfer water from the proposed drainage ditch (soth of the proposed culvert) to the (north of the proposed culvert) that is going under I-80.

Design parameters for lateral soil properties are provided in appendix F.

Calculate the estimated water surface elevation and determine the need for cofferdams (type 1 or 2), and seal coat: The construction site will be dewatered. Cofferdam will not be needed.

Assess the need for sheeting or soil retention or temporary construction slope and provide recommendation for other construction concerns: Per the structural engineering (GKE), temporary soil retention system (TSRS) will be required for staging of construction. Boring encountered on confined compressive strength exceeding 4.5 tons per square foot (tsf) which exceeds the requirements of the IDOT temporary sheet pile design guide. The design of the TSRS is the responsibility of the contractor.

APPENDIX A General Notes

GENERAL NOTES

CLASSIFICATION

American Association of State Highway & Transportation Officials (AASHTO) System used for soil classification.

Co	hesion	ess	Soils

Relative	No. of Blows	TERMINOLOGY
<u>Density</u>	per foot N	
		Streaks are considered to be paper thick.
Very Loose	0 to 4	Lenses are considered to be less than 2
Loose	4 to 10	inches thick. Layers are considered to
Medium Dense	10 to 30	be less than 6 inches thick. Stratum are
Dense	30 to 50	considered to be greater than 6 inches thick.
Very Dense	Over 50	and the contract of the contra

Cohesive Soils

Unconfined	Compressive
------------	-------------

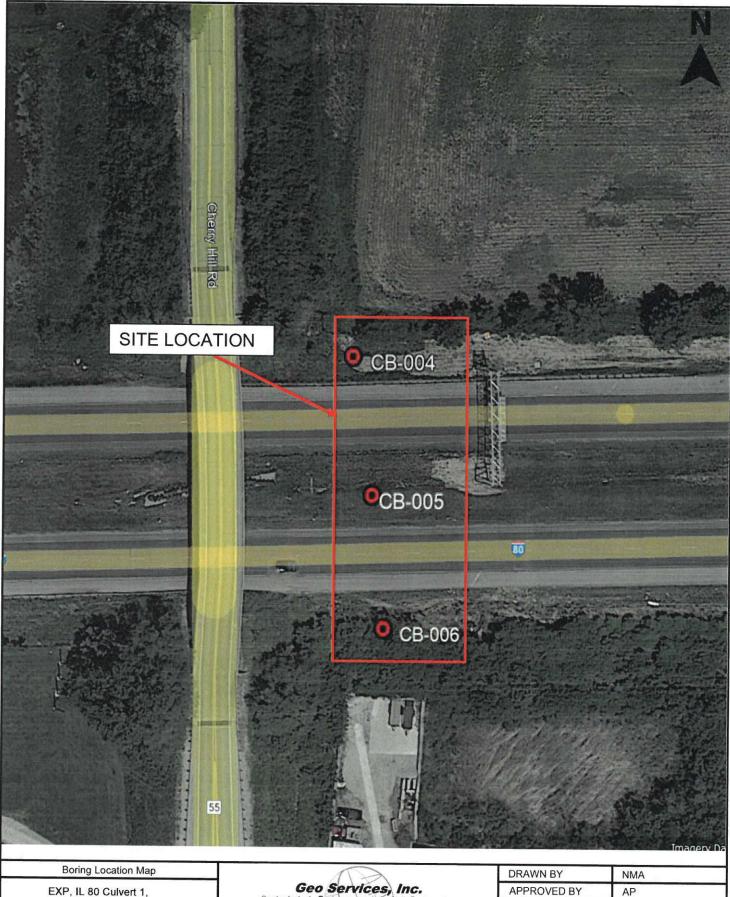
Consistency	Strength - qu (tsf)	
Very Soft Soft	Less than 0.25 0.25 - 0.5	
Medium Stiff	0.5 - 1.0	
Stiff	1.0 - 2.0	
Very Stiff	2.0 - 4.0	
Hard	Over 4.0	

DRILLING AND SAMPLING SYMBOLS

SS:	Split Spoon 1-3/8" I.D., 2" O.D.	HS:	Housel Sampler
ST:	Shelby Tube 2" O.D., except where noted	WS:	Wash Sample
AS:	Auger Sample	FT:	Fish Tail
DB:	Diamond Bit - NX: BX: AX	RB:	Rock Bit
CB:	Carboloy Bit - NX: BX: AX	WO:	Wash Out
OS:	Osterberg Sampler		

Standard "N" Penetration: Blows per foot of a 140 lb. hammer falling 30" on a 2" O.D. Split Spoon

WATER LEVEL MEASUREMENT SYMBOLS


WL:	Water	WD:	While Drilling
WCI:	Wet Cave In	BCR:	Before Casing Removal
DCI:	Dry Cave In	ACR:	After Casing Removal
WS:	While sampling	AB:	After Boring

Water levels indicated on the boring logs are the levels measured in the boring at the times indicated. In pervious soils, the indicated elevations are considered reliable ground water levels. In impervious soils, the accurate determination of ground water elevations is not possible in even several days observation, and additional evidence on ground water elevations must be sought.

APPENDIX B SITE LOCATION MAP

APPENDIX C BORING LOCATION MAP

New Lenox, IL

Geo Services, Inc.

Geotechnical, Environmental & Civil Engineering

805 Amherst Caurt, Suite 204

Naperville, Illinois 60565

(630) 355-2838

DRAWN BY	NMA
APPROVED BY	AP
DATE	October 17, 2022
GSI JOB No.	20012
SCALE	NTS

APPENDIX D BORING LOGS

SOIL BORING 20012_LOG.GPJ IL_DOT.GDT 10/17/22

Geo Services, Inc.

Geotechnical, Environmental & Civil Engineering 805 Amherst Court, Suite 204 Naperville, Illinois 60565 (630) 355-2838

SOIL BORING LOG

Page <u>1</u> of <u>1</u>

Date 2/11/22

ROUTEFAU-363 (Briggs St)	DESCR	RIPTIO	N		I-80 Phase II	L	.ogg	ED BY	1	ΟJ
SECTION18				SW 1/	4, SEC. 18, TWP. T35N, RNG. R11	E. 3 rd PI				
				North	ing 1765544.141, Easting 106914	2.566			77	
COUNTY Will DRIL	LING ME	THOE		Ho	llow Stem Auger HAMMER	TYPE	(CME A	utoma	tic
STRUCT, NO.	D	В	U	М	Surface Mater Flor		D	В	U	2.0
STRUCT. NO	_ E	L	C	0	Surface Water Elev. n/a Stream Bed Elev. n/a	_ ft	E	L	C	M O
	P	0	S	1		_ "	P	0	S	ĭ
BORING NO. CB-004	- T	W S	Qu	S	Groundwater Elev.:		T	W		S
Station 866+72 Offset 62.6 ft Left	- 10	3	Qu	T	First Encounter 638.304	_ ft▼	Н	S	Qu	Т
Ground Surface Elev. 644.30	ft (ft)	(/6")	(tsf)	(%)	Upon Completion After Hrs	_ π ff	(ft)	(/6")	(tsf)	(%)
12.0" TOPSOIL-black	7.0				End Of Boring @ -20.0'. Boring					(70)
64	43.30			110	backfilled with cuttings.		10			
CLAY LOAM-brown & gray-stiff to		4			100		***************************************			
hard	-	8	5.50	19						
	22	11	В							
	<u></u>	1					_			
	-	6					-			
		8	3.80	21			-			
	-5	10	В				-25			
		-								
	Ā	4								
	<u> </u>	6	3.00	24			-			
	3	8	Р				-	1	-	
becoming gray @ -8.0'	_									
	1	5	2.00	20						
	-10	7	P	20			-30			
							-50			
		6	1.50	20						
	-	8	1.50 P	23						
	-						-			
							\dashv			
		3					-			
	-	3	1.50	25						
	15	4	Р				-35			
	=						-			
		3	· V				-			
	8	4	2.00	22			-			
		6	Р							
	1	4								
	-	5	2.50	22						
624	4.30 -20	6	P				-40			

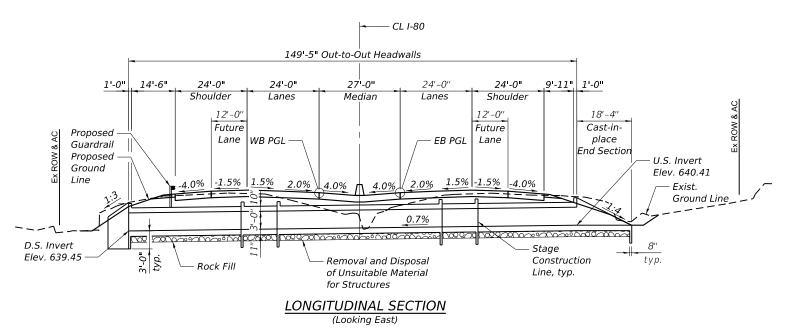
SOIL BORING LOG

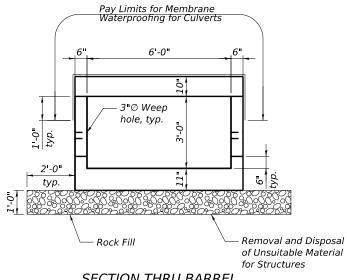
Page <u>1</u> of <u>1</u>

Date 3/16/22

ROUTE _	FAU-363 (Briggs St)	DES	SCR	IPTIO	N		I-80 Phase II		L	ogg	ED BY	'N	1M
						SW 1/	/4, SEC. 18, TWP. T35N, ling , Easting						
COUNTY	Will	DRILLING	ME	THOD		Hol	llow Stem Auger	HAMMER 1	YPE	(CME A	utoma	tic
	NO		D E P T	B L O W	U C S	M 0 1	Surface Water Elev Stream Bed Elev	n/a n/a	ft ft	D E P	B L O	U C S	M O I
Station _ Offset _	O. CB-005 866+80 5 ft Left		H	1.5.5	Qu	S	Groundwater Elev.: First Encounter Upon Completion	Dry	ft	H	W S	Qu	S
Ground S	Surface Elev. 644.6	0 ft	(ft)	(/6")	(tsf)	(%)	After Hrs.		ft	(ft)	(/6'')	(tsf)	(%)
12.0" ASP	HALT	643.60	_				End Of Boring @ -20.0 backfilled with cuttings.	'. Boring					
CLAY LOA	M-brown-stiff to very	043.00	-	3 4 4	1.60	20	backinied with cuttings.						
2		-		4	В								
		9 <u>~</u>	-	3	2.40					_			
		:-	-5	5	3.10 B	20				-25			
		-		3						-			
			-	7	3.70	20				-			
		-		9	В				ia.				
		-		2					5	_			
		-		8	2.70	22							
		-	-10	9	В					-30			
		B-7		4					ş				
		-		6 9	2.70 B	23				-			
becoming g	gray @ -13.0'	_							-				
		-		3	2.00	22							
		, .	-15	6	Р					-35			
		18-52		2					, -				
		_		4 4	1.50	23			_	_			
		1	=	4	Р								
		-	-	4						_			
		624.60	-20	3 6	1.25 P	23			-	40			

SOIL BORING 20012_LOG.GPJ IL_DOT.GDT 10/17/22


SOIL BORING LOG


Page <u>1</u> of <u>1</u>

Date 12/9/21

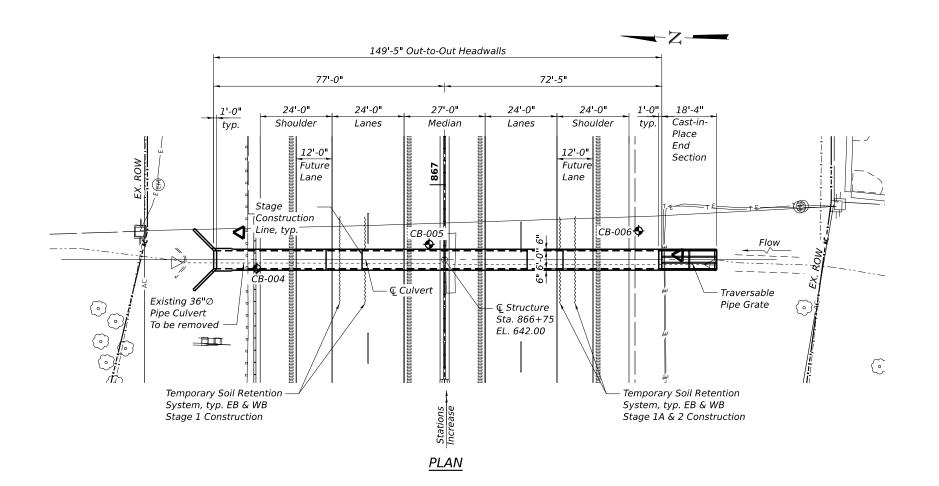
ROUTE _	FAU-363 (Briggs St)	DE	SCR	IPTIO	N		I-80 Phase II		L0	OGG	ED BY	′1	_P
SECTION	18		_	LOCA	TION	SW 1/	4, SEC. 18, TWP. T35N, R ling 1765417.3, Easting 1	NG. R11E,	3 rd PN	1,			
COUNTY	Will	PRILLING	ME	THOD			llow Stem Auger		YPE	(CME A	lutoma	itic
BORING No Station _	O. CB-006 866+85 64.7 ft Right urface Elev. 644.90		D E P T H	B L O W S	U C S Qu (tsf)	M O I S T	Upon Completion	Dry_ Dry	ft ft	D E P T H	B L O W S	U C s Qu	M O I S T
8.0" ASPH				(10)	(131)	(70)	After Hrs. End Of Boring @ -20.0'. I		ft	(11)	(/6")	(tsf)	(%)
The second second second	M-brown-very stiff to	644.23		6 3 5	3.00 P	19	backfilled with cuttings.	Boring					
				4	0.00	0.1			- 5				
			-5	7	6.60 B	21				-25			
		9	-	5 8 10	6.60 B	21							
		er.							-				
			-10	10 13	3.10 B	21			8				
01.437		634.40	-10		Ь				-	-30			
CLAY-gray-	very stiff	-		4					-				
				7	3.00 P	20			-	-			
		9		3					-				
		-	-15	5 7	2.00 P	21			-	-35			
		-		3 5 4	2.00 P	22			-				
		624.90	-20	3 5 5	2.00 P	22			-	-40			

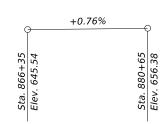
APPENDIX E CULVERT CROSS-SECTION

LOADING HL-93

Allow 50#/sq.ft. for future wearing surface.

DESIGN SPECIFICATIONS


2020 AASHTO LRDF Bridge Design Specifications, 9th Edition


DESIGN STRESSES

FIELD UNITS

 $f^{t}c = 3500 \ psi$ fy = 60000 psi (Reinforcement)

SECTION THRU BARREL

PROPOSED PROFILE GRADE

(Along © I-80 & PGL)

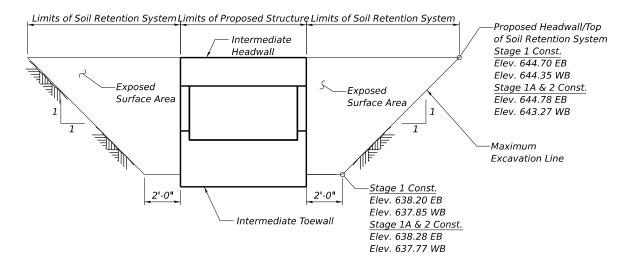
GENERAL PLAN AND ELEVATION

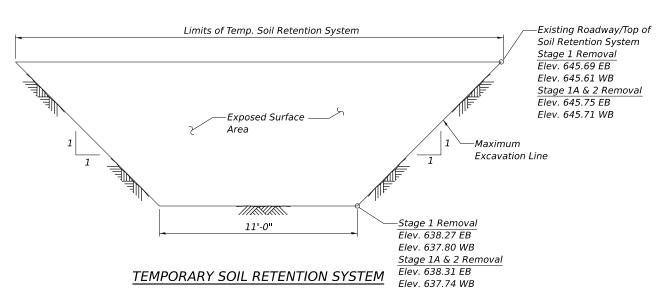
F.A.I ROUTE 80 WILL COUNTY STA. 866+75

₩.	1_
ILE NAM	GARZA KARHOFF ENGINEERING, LLC

F	USER NAME =	DESIGNED - UT	REVISED -
		CHECKED - LM	REVISED -
	PLOT SCALE =	DRAWN - UT	REVISED -
	PLOT DATE =	CHECKED - LM	REVISED -

GENERAL NOTES

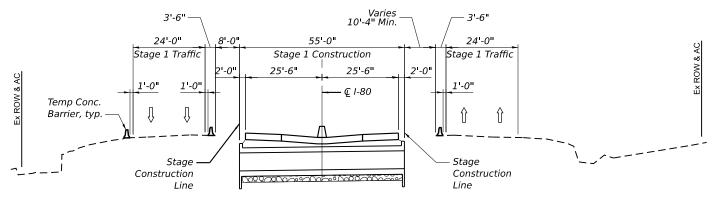

- 1. Reinforcement bars designated (E) shall be epoxy coated.
- Slopewall shall be reinforced with welded wire fabric, 6" x 6" W4.0 x W4.0, weighing 58 lbs. per 100 sq. ft.
- Protective coat shall not be applied to surfaces to which Waterproofing Membrane System is applied.
- Precast alternate is not allowed.
- See Civil Plans for additional information.
- Geocomposite Wall Drain shall be according to Section 591 of Standard Specification, except that concrete nails shall not be used in areas where it overlaps Membrane Waterproofing System for Buried Structures.


INDEX OF SHEETS

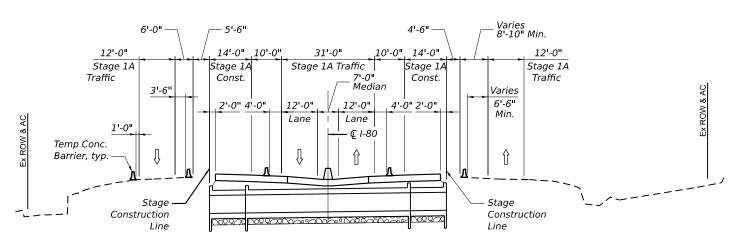
- 1. General Plan
- 2. General Notes, Index of Sheets and Total Bill of Materials
- Stage Construction Details
- 4-5. Culvert Plan and Details
- 6. Transversable Pipe Grate Details for End Section
- Bar Splicer Assembly and Mechanical Splicer Details
- Soil Boring Logs

TOTAL BILL OF MATERIAL

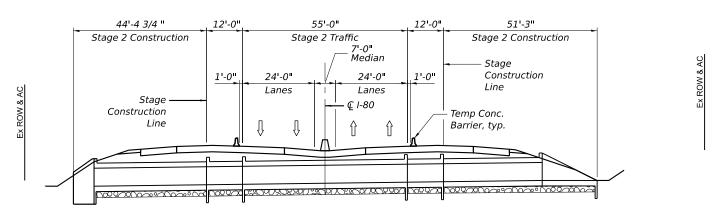
ITEM	UNIT	TOTAL
Porous Granular Embankment	Cu. Yd.	230
Removal and Disposal of Unsuitable Material for Structures	Cu. Yd.	61
Reinforced Bars, Epoxy Coated	Pound	19,930
Bar Splocers	Each	96
Temporary Soil Retention System	Sq. Ft.	845
Concrete Box Culverts	Cu. Yd.	84.2
Traversable Pipe Grate for Concrete End Section	Foot	33
Membrane Waterproofing for Culverts	Sq. Yd.	116
Rock Fill	Cu. Yd.	61


NOTE:

A cantilevered sheet piling design does not appear feasible and additional members or other retention systems may be necessary. The Contractor shall submit a temporary soil retention system design including plan details and calculations for review and acceptance by the Engineer.

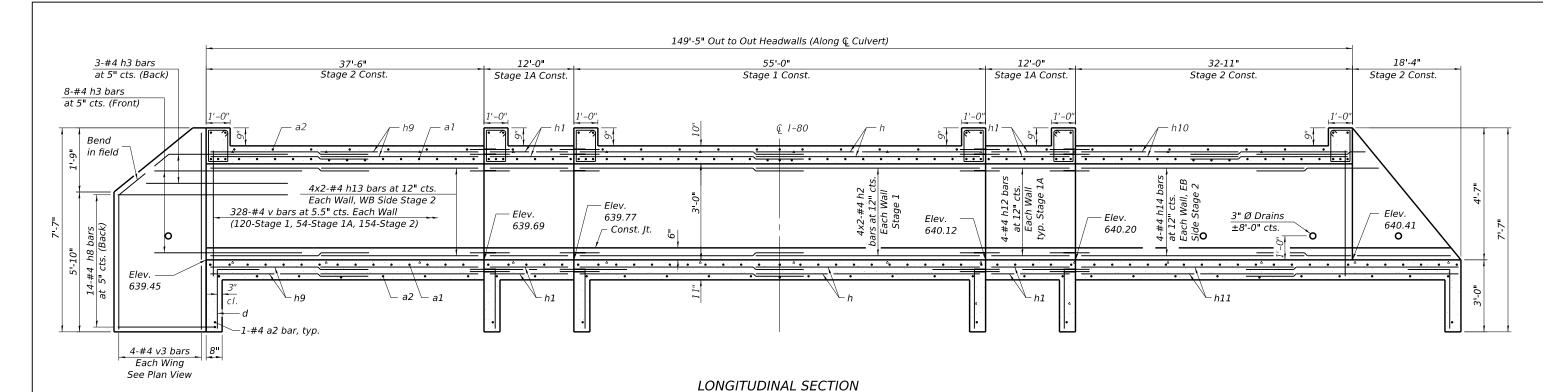

USER NAME =	DESIGNED - UT	REVISED -
	CHECKED - LM	REVISED -
PLOT SCALE =	DRAWN - UT	REVISED -
PLOT DATE =	CHECKED - LM	REVISED -

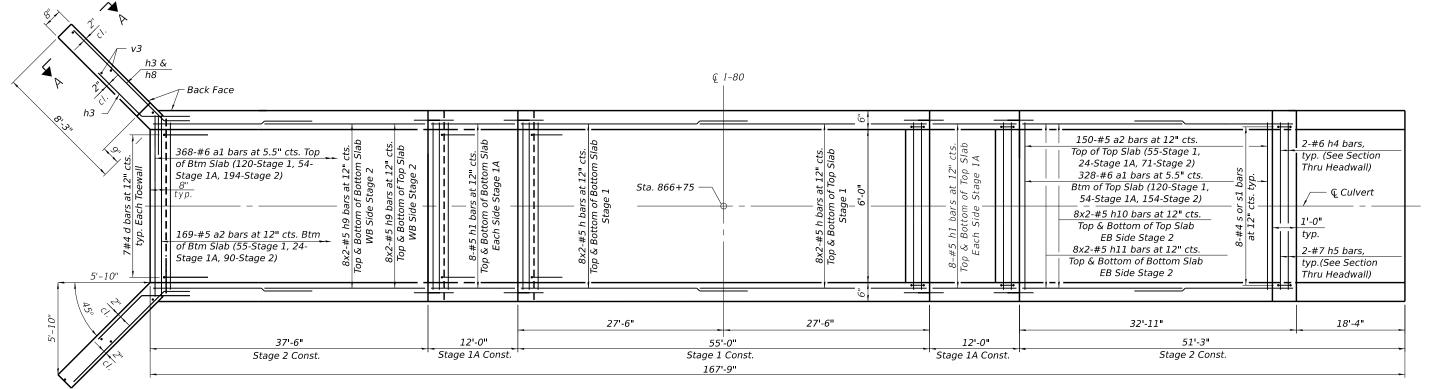
STATE OF ILLINOIS DEPARTMENT OF TRANSPORTATION


GENERAL NOTES, INDEX OF SHEETS, & TOTAL BILL OF MATERIALS BOX CULVERT AT 866+75		SECTION	COUNTY	TOTAL SHEETS	SHEET NO.
		FAI 80 21 STRUCTURE 8	WILL	766	300
			CONTRA	CT NO. 6	2R29
		TILINOIS FED A	D DDOLECT		

STAGE 1 CONSTRUCTION

STAGE 1A CONSTRUCTION


STAGE 2 CONSTRUCTION


\$\$!	
ILE NAME:	GARZA KARHOFF ENGINEERING, LLC
ᇤ	

USER NAME =	DESIGNED - UT	REVISED -
	CHECKED - LM	REVISED -
PLOT SCALE =	DRAWN - UT	REVISED -
PLOT DATE =	CHECKED - LM	REVISED -

STATE OF ILLINOIS
DEPARTMENT OF TRANSPORTATION

STAGE CONSTRUCTION DETAILS BOX CULVERT AT 863+75		SECTION C		COUNTY	TOTAL SHEETS	SHEET NO.
		FAI 80 21 STRUCTURE	E 8	WILL	766	301
				CONTRA	CT NO. 6	52R29
SHEET S-3 OF S-8 SHEETS		ILLINOIS	FED. A	D PROJECT		

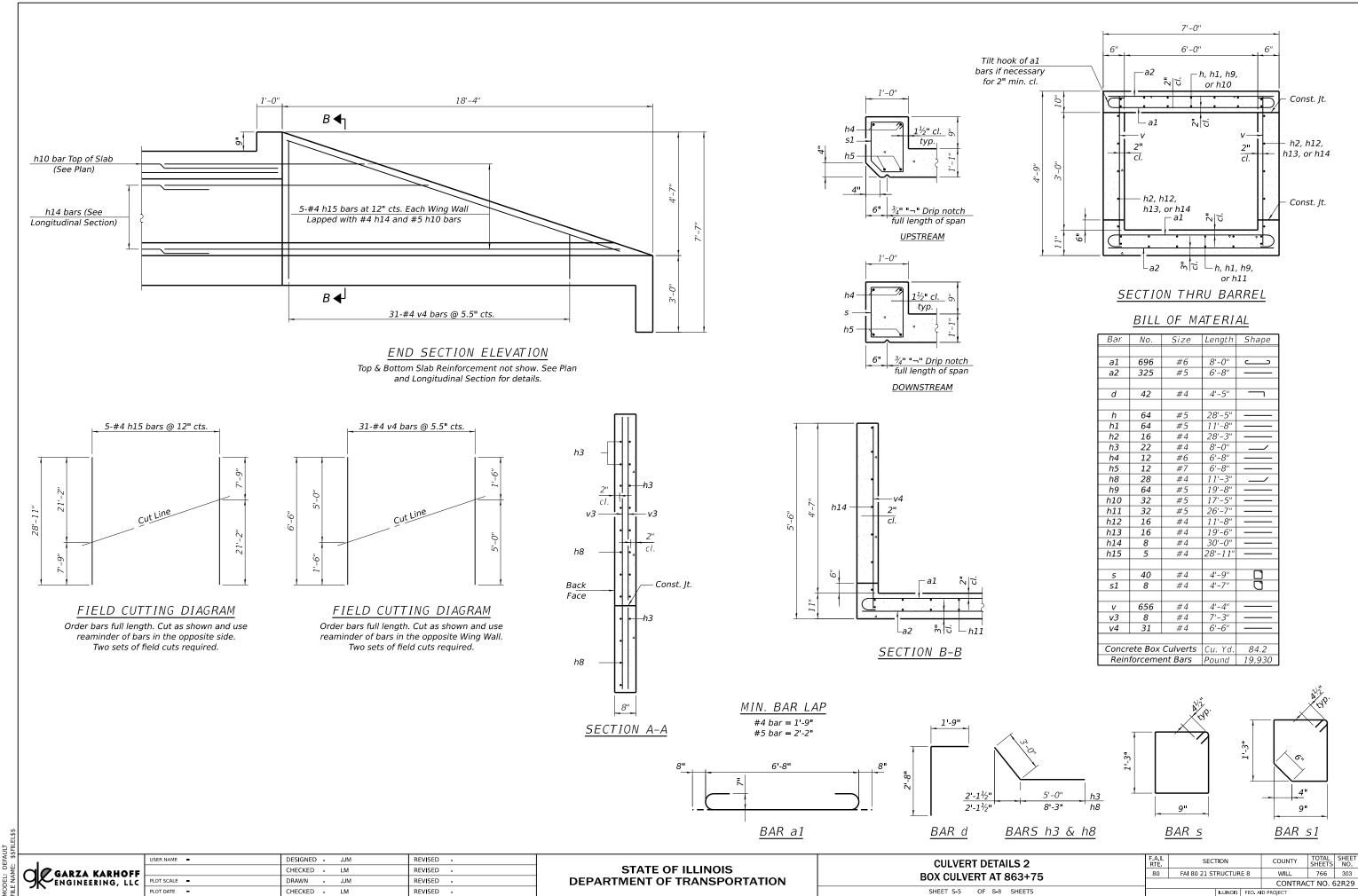
PLAN

SHOWING HEADWALLS

A distance of half the length of the wingwall but not less than six feet of the barrel shall be poured monolithically with the wingwalls.

SHOWING TOEWALL

Bars indicated thus 12 x 4-#5 etc. indicates 12 lines of bars with 4 lengths per line.

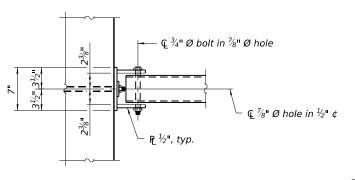

See Culvert Details (2 of 2) for End Section Reinforcement, Details, and Bill of Materials.

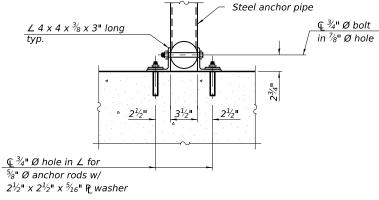
\$\$	1	Γ
NAME	GARZA KARHOFF ENGINEERING, LLC	ŀ
FE	JA ENGINEERING, LLC	

	USER NAME =	DESIGNED - JJM	REVISED -
FF		CHECKED - LM	REVISED -
LC	PLOT SCALE =	DRAWN - JJM	REVISED -
	PLOT DATE =	CHECKED - LM	REVISED -
	PLOT DATE =	CHECKED - LM	REVISED -

STATE OF ILLINOIS
DEPARTMENT OF TRANSPORTATION

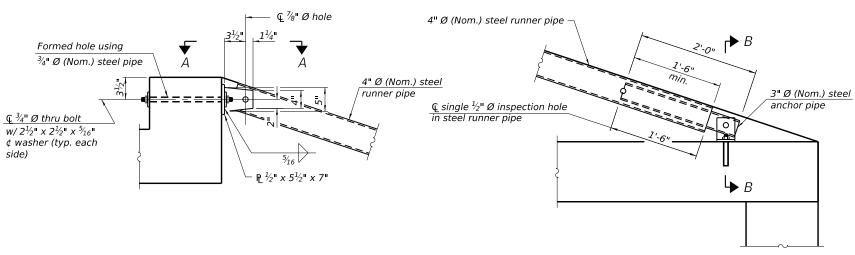
CULVERT DETAILS 1 BOX CULVERT AT 863+75		SECTION	COUNTY	TOTAL SHEETS	SHE NO
		FAI 80 21 STRUCTURE 8	WILL	766	302
			CONTRA	CT NO. 6	2R2
SHEET S-4 OF S-8 SHEETS		ILLINOIS FED. AI	D PROIECT		




See Detail A See Detail B LONGITUDINAL SECTION PLAN VIEW Number and Length of Main Pipe is 2 @ 16-6" - $\mathfrak{L}^{\,\%}$ " Ø hole 4" Ø (Nom.) steel runner pipe Formed hole using 3/4" Ø (Nom.) steel pipe 4" Ø (Nom.) steel

GENERAL NOTES

The minimum edge distance from the center of a hole to the free edge of a structural shape or plate shall be $1\frac{1}{2}$ " unless noted otherwise.


The Contractor may install the thru bolts using drilling and grouting in lieu of providing a formed hole using steel pipe. Installation shall be in accordance with Article 509.06 using a method that results in the annulus surrounding the bolt being completed filled with adhesive. The method of drilling shall not result in spalled concrete at the exit face. Epoxy grouted thru bolts shall be snug tightened followed by an additional $\frac{1}{3}$ turn on the interior nut at final installation. Cost included with Traversable Pipe Grate.

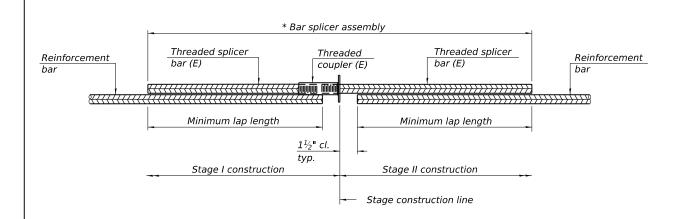
VIEW A-A

SECTION B-B

BILL OF MATERIAL

ITEM	UNIT	TOTAL
Traversable Pipe Grate for Concrete End Section	Foot	33

DETAIL A

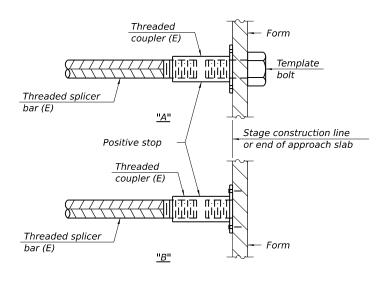

	USER NAME =	DESIGNED - UT	REVISED -
FF		CHECKED - LM	REVISED -
.Lc	PLOT SCALE =	DRAWN - UT	REVISED -
	PLOT DATE =	CHECKED - LM	REVISED -

STATE OF ILLINOIS
DEPARTMENT OF TRANSPORTATION

DETAIL B

TRAVERSABLE PIPE GRATE DETAILS FOR END SECTION
BOX CULVERT AT 863+75

SHEET S-6 OF S-8 SHEETS

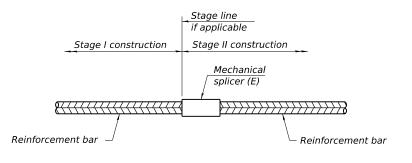

STANDARD BAR SPLICER ASSEMBLY PLAN

(All components shall be provided from one supplier)

Threaded splicer bar length = min. lap length + $1\frac{1}{2}$ " + thread length

* Epoxy not required on Bar Splicer Assembly components used in conjunction with black bars.

Location	Bar size	No. assemblies required	Minimum lap length
Barrel Stage 1	#5	32	2'-2"
Barrel Stage 1	#4	16	1'-9"
Barrel Stage 1A	#5	32	2'-2"
Barrel Stage 1A	#4	16	1'-9"



INSTALLATION AND SETTING METHODS

"A": Set bar splicer assembly by means of a template bolt.

"B": Set bar splicer assembly by nailing to wood forms or cementing to steel forms.

(E) : Indicates epoxy coating.

STANDARD MECHANICAL SPLICER

Location	Bar size	No. assemblies required

Notes:

Splicer bars shall be deformed with threaded ends and have a minimum 60 ksi yield strength.

All reinforcement shall be lapped and tied to the splicer bars. Bar splicer assemblies shall be epoxy coated according to the requirements for reinforcement bars. See Section 508 of the Standard Specifications. See approved list of bar splicer assemblies and mechanical splicers for alternatives.

BSD-1

1-1-2020

Ā		
ŕ	•	ι
NAME	GARZA KARHOFF	
Ž	ENGINEERING, LLC	Р
5	71	

	USER NAME =	DESIGNED - UT	REVISED -
		CHECKED - LM	REVISED -
ċ	PLOT SCALE =	DRAWN - UT	REVISED -
	PLOT DATE =	CHECKED - LM	REVISED -

APPENDIX F Long-term Geotechnical Parameters for Design Sheet Pile/Soldier Pile Walls

Table 1- Long-term Geotechnical Parameters for Design Sheet Pile/Soldier Pile Walls

Material Description	Depth Below Ground Surface (ft)	Soil Unit Weight γ (pcf)	Active Earth Pressure Coeff (K _{a)}	Passive Earth Pressur e Coeff (K _P)	Cohesion "c" (pcf)	Lateral Modulus of Subgrade Reaction (pci)	Strain	Long term (drained) Cohesion "c" (pcf)	Long term (drained) Fraction Angle (°)
Stiff to Hard Clay Loam	1 to 10.5	120	0.36	2.7	3285	1092.26	0.0049	0	28
Very stiff Clay	10.5 to 20	120	0.37	2.6	2250	711.8	0.0065	0	27