APPENDIX D

LPC-663 CCDD DOCUMENTS

Page 1of 2 **Illinois Environmental Protection Agency**

Bureau of Land • 1021 North Grand Avenue East • P.O. Box 19276 • Springfield • Illinois • 62794-9276

Uncontaminated Soil Certification by Licensed Professional Engineer or Licensed Professional Geologist for Use of Uncontaminated Soil as Fill in a CCDD or Uncontaminated Soil Fill Operation LPC-663 Revised in accordance with 35 III. Adm. Code 1100, as amended by PCB R2012-009 (eff. Aug. 27, 2012)

This certification form is to be used by professional engineers and professional geologists to certify, pursuant to 35 III. Adm. Code 1100.205(a)(1)(B), that soil (i) is uncontaminated soil and (ii) is within a pH range of 6.26 to 9.0. If you have questions about this form, please telephone the Bureau of Land Permit Section at 217/524-3300,

This form may be completed online, saved locally, printed and signed, and submitted to prospective clean construction or demolition debris (CCDD) fill operations or uncontaminated soil fill operations.

I. Source Location Information

I. Jource	Location Informatio	n		
(Describe th	e location of the source o	f the uncontaminated so	il)	
Project Nam	e: FAU 2937/Torrence A	venue	Office P	hone Number, if available:
Physical Site 3484-2 (Not	e Location (address, incld rth Creek)	uding number and street		
City: Lynwo	bod	State: IL	Zip Code: 604	11
County: Co	ok		Township: Bloc	om
Lat/Long of	approximate center of site	in decimal degrees (DD	.ddddd) to five de	ecimal places (e.g., 40.67890, -90.12345):
Latitude:	41.537275 Long	itude: -87.558597		
	(Decimal Degrees)	(-Decimal Degre	90S)	
Identify ho	w the lat/long data were	determined:		
GPS	Map Interpolation	Photo Interpolation	n 🔲 Survey	I Other
ISGS Put	blic Land Survey System -	Approximate Center of	multiple addresse	95
IEPA Site Nu	umber(s), if assigned:	BOL:	BOW:	BOA:
II. Owner	Operator Informatio	on for Source Site		
	Site Owner			Site Operator
Name:	Illinois Dept. of Trans	portation, District 1	Name:	Illinois Dept. of Transportation, District
-	201 W/ Contra Court			

i i cantrio,				ivame:	miners Dept. of	rianapora	ation, Diat	içt i
Street Address:	201 W Center (Court		Street Address:	201 W Center (Court		
PO Box:				PO Box:				
City:	Schaumburg		State: IL	City:	Schaumburg		State:	IL
Zip Code:	60196	Phone:	847-705-4122	Zip Code:	60196	Phone:	847-705	-4122
Contact:	Paul Nickles			Contact.	Paul Nickles			
Email, if availabl	le: paul.nickles	@illinois.g	lov	Email, if availabl	le: paul.nickles	@illinois.g	jov	

This Agency is authorized to require this information under Section 4 and Title X of the Environmental Protection Act (415 ILCS 5/4, 5/39). Fallure to disclose this information may result in: a civil penalty of not to exceed \$50,000 for the violation and an additional civil penalty of IL 532-2922 not to exceed \$10,000 for each day during which the violation continues (415 ILCS 5/42). This form has been approved by the Forms LPC 663 Rev. 8/2012 Management Center.

Project Name: FAU 2937/Torrence Avenue

Latitude: 41.537275 Longitude: -87.558597

Uncontaminated Site Certification

III. Basis for Certification and Attachments

For each item listed below, reference the attachments to this form that provide the required information.

а. A Description of the soil sample points and how they were determined to be sufficient in number and appropriately located 35 Ill. Adm. Code 1100.610(a)]:

Refer to Figure 4-1.3, 4-1.4, and 4-1.5 in the Final PSI Report and borings 3484-2-06 (Torrence Avenue Sta 430+00, 15 Right), 3484-2-07 (Torrence Avenue Sta 432+00, 15 Right), 3484-2-08 (Torrence Avenue Sta 434+00, 15 Right), 3484-2-13 (Torrence Avenue Sta 444+00, 15 Right), 3484-2-14 (Torrence Avenue Sta 446+00, 15 Right), 3484-2-17 (Torrence Avenue Sta 452+00, 15 Right), 3484-2-18 (Torrence Avenue Sta 454+00, 15 Right), 3484-2-20 (Torrence Avenue Sta 458+00, 15 Right), 3484-2-21 (Torrence Avenue Sta 460+00, 15 Right), and 3484-2-22 (Torrence Avenue Sta 462+00, 15 Right)

b. Analytical soil testing results to show that soil chemical constituents comply with the maximum allowable concentrations established pursuant to 35 III. Adm. Code Part 1100, Subpart F and that the soil pH is within the range of 6.25 to 9.0, including the documentation of chain of custody control, a copy of the lab analysis; the accreditation status of the laboratory performing the analysis; and certification by an authorized agent of the laboratory that the analysis has been performed in accordance with the Agency's rules for the accreditation of environmental and the scope of the accreditation [35 III. Adm. Code 1100.201(g), 1100.205(a), 1100.610]:

Refer to Tables 4-2 and 4-3 in the Final PSI Report for results summary and First Environmental Laboratories, Inc. report #18-2892. Site specific table of results is attached to this form,

IV. Certification Statement, Signature and Seal of Licensed Professional Engineer or Licensed **Professional Geologist**

١, Jeremy J. Reynolds, P.G.

(name of licensed professional engineer or geologist) certify under penalty of law that the information submitted, including but not limited to, all attachments and other information, is to the best of my knowledge and belief, true, accurate and complete. In accordance with the Environmental Protection Act [415 ILCS 5/22.51 or 22.51a) and 35 III. Adm. Code 1100.205(a), I certify that the soil from this site is uncontaminated soil. I also certify that the soil pH is within the range of 6.25 to 9.0. In addition, I certify that the soil has not been removed from the site as part of a cleanup or removal of contaminants. All necessary documentation is attached.

Any person who knowingly makes a false, fictitious, or fraudulent material statement, orally or in writing, to the Illinois EPA commits a Class 4 felony. A second or subsequent offense after conviction is a Class 3 felony. (415 ILCS 5/44(h))

Company Name:	Huff & Huff, Inc. / GZA GeoEr	nvironment	tal, Inc.				
Street Address:	915 Harger Road, Suite 330						
City:	Oak Brook	State:	<u> </u>	Zip Code:	60523		
Phone:	630-684-9100						
Jeremy J. Reynolds, P.G. Printed Name: Licensed Professional E Licensed Professional C	ingineer or	8	8 [14] 1	Date:		JEREMY J. REYNOLDS PID6002 MG9Sen	0100187 49

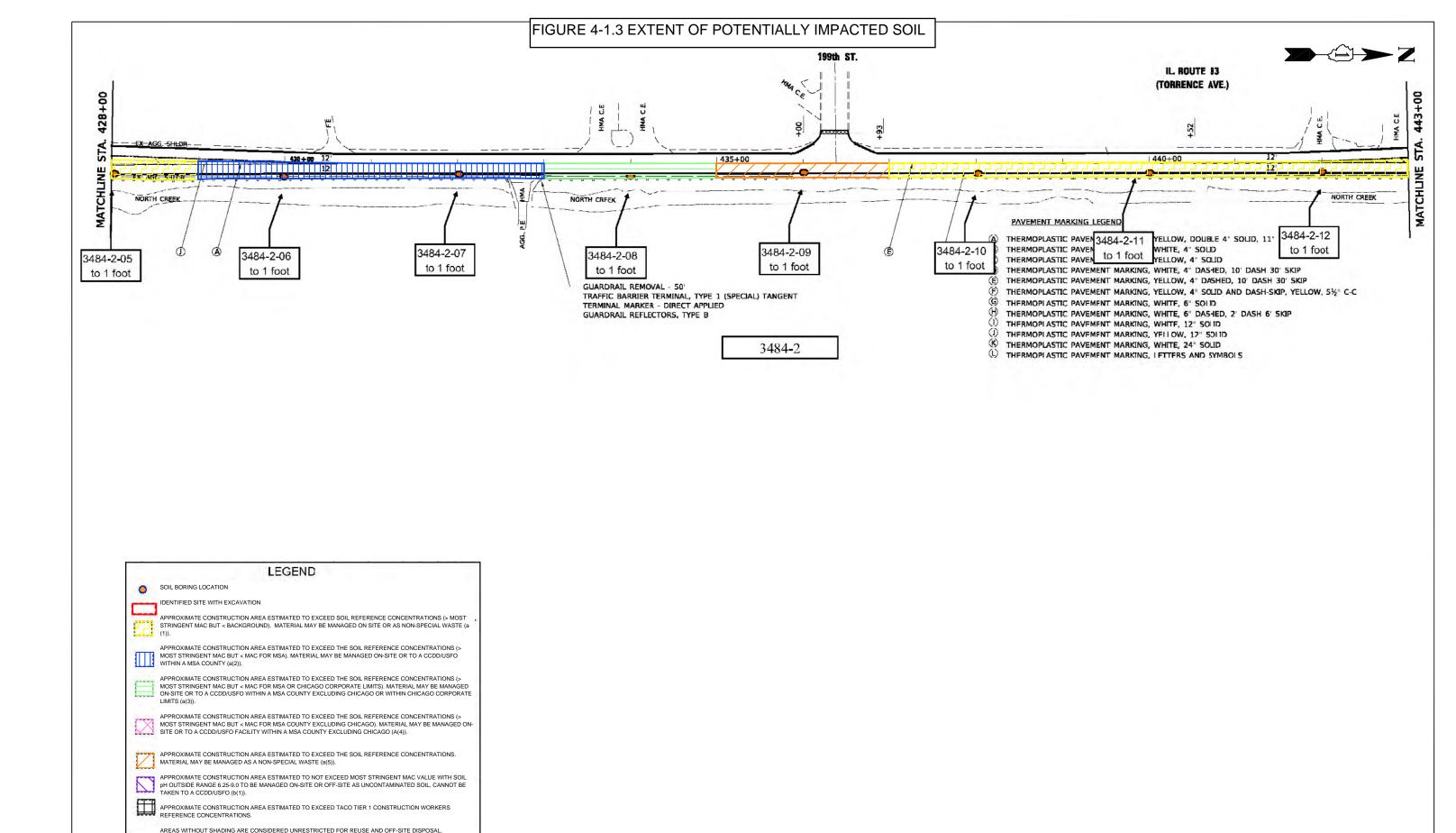
Page 2of 2

LPC-663 Results Table for Site 3484-2-06, 2-07, 2-08, 2-13, 2-14, 2-17, 2-18, 2-20, 2-21, 2-22 Soils for Unrestricted Reuse or Disposal Including CCDD/USFO Facilities

		DUP-02										DUP-04			
Boring ID	3484-2-06	(3484-2-06)	3484-2-07	3484-2-08	3484-2-13	3484-2-14	3484-2-17	3484-2-18	3484-2-20	3484-2-21	3484-2-22	(3484-2-22)			
Sample Depth, ft	0-1	0-1	0-1	0-1	0-1	0-5	0-5	0-5	0-5	0-5	0-5	0-5	Soil Reference	Soil Remediation	Soil Remediation
Sample Date	5/24/18	5/24/18	5/24/18	5/24/18	5/24/18	5/24/18	5/24/18	5/24/18	5/24/18	5/24/18	5/24/18	5/24/18	Concentrations ^{a/}	Objective for	Objective for
Excavation Area(s)														Construction	Residential
[ISGS Site No.(s)]														Workers ^{b/}	Exposure ^{c/}
Parameter															
Laboratory soil pH (s.u.)	8.76	8.52	8.86	8.71	8.57	8.75	8.95	8.51	8.38	8.47	8.6	8.58	6.25 - 9.0		
VOCs (mg/kg)															
SVOCs, mg/kg															
Benzo(a)anthracene	<0.33	<0.33	<0.33	0.361	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	0.9 / 1.1 / 1.8	170	0.9
Benzo(a)pyrene	<0.09	<0.09	<0.09	0.331	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	0.09 / 1.3 / 2.1	17	0.09
Benzo(b)fluoranthene	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	0.9 / 1.5 / 2.1	170	0.9
Dibenz(a,h)anthracene	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	0.09 / 0.2 / 0.42	17	0.09
		1										1			
Total Metals, mg/kg															
Beryllium	0.5	0.7	<0.5	0.6	0.7	0.7	0.6	0.9	0.8	0.8	0.8	1	22	410	160
Chromium	14.3	16.3	13.1	16.2	19.8	21.3	16.5	23.1	24.2	19.6	21.3	22.3	21	690	230
Iron	12100	16200	17100	15500	18100	30800	20100	21500	18900	16200	16100	28000	15,000 / 15,900		
Lead	54.4	14.5	15.3	15.6	16.2	17.6	12.8	15.1	13.4	12.2	12.2	14.7	107	700	400
Manganese	217	258	262	201	157	141	252	153	126	107	111	172	630 / 636	4,100	1600
Mercury	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.89	0.1	10
TCLP Metals, mg/L													C	lass I Groundwater	d/
Beryllium	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	0.0	04	
Chromium	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0	.1	
Iron	0.3	0.4	0.8	0.5	0.2	0.7	1.6	0.4	0.1	<0.1	1.7	2		5	
Lead	<0.005	<0.005	0.993	0.014	0.011	0.01	0.024	0.013	<0.005	<0.005	<0.005	<0.005	0.0	075	
Manganese	1	2.6	3.1	4.9	2.8	<0.1	2	1.6	0.3	2.2	0.2	<0.1	0.		
Mercury	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	0.0	002	
SPLP Metals, mg/L															
Beryllium	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	0.006	<0.004	<0.004	<0.004	0.009	0.006	0.0	004	
Chromium	0.072	0.099	0.023	0.073	0.057	0.121	0.187	0.081	0.094	0.076	0.254	0.184	0	.1	
Iron	49.6	79.4	20.2	59.6	46	117	123	65.5	85.8	53.4	198	144		5	
Lead	0.034	0.066	0.188	0.048	0.122	0.065	0.082	0.132	0.045	0.024	0.115	0.076	0.0	075	
Manganese	0.2	0.8	0.3	0.5	0.4	0.4	0.7	0.5	0.4	0.4	0.9	0.6	0.	15	
Mercury	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	0.0)02	

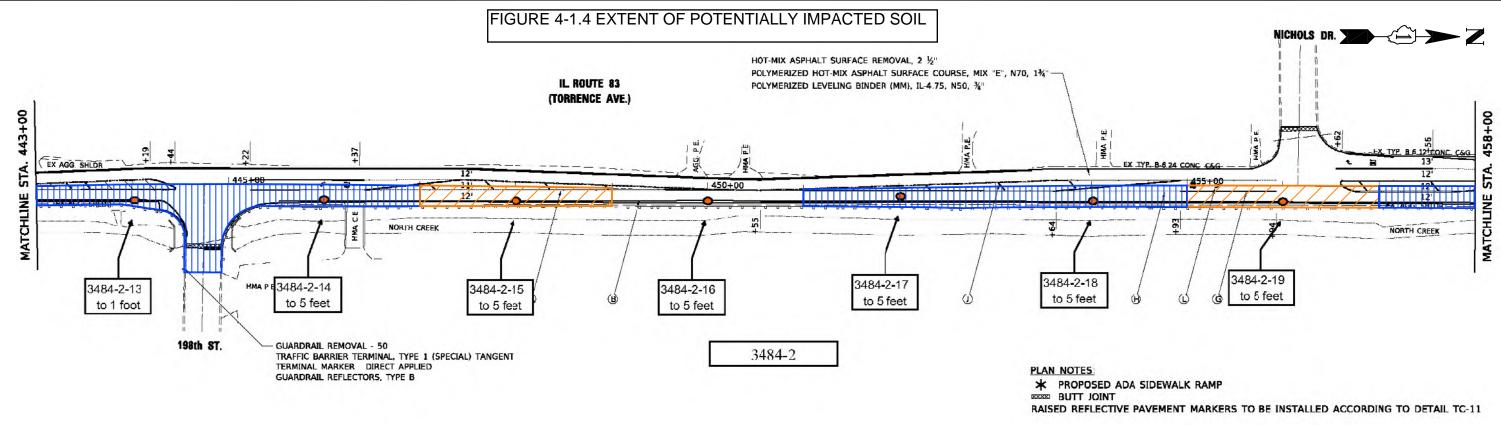
--- - Refers to not applicable or value not available

^{a/} Soil reference concentrations from MAC table. Background values for MSA counties are included as applicable.

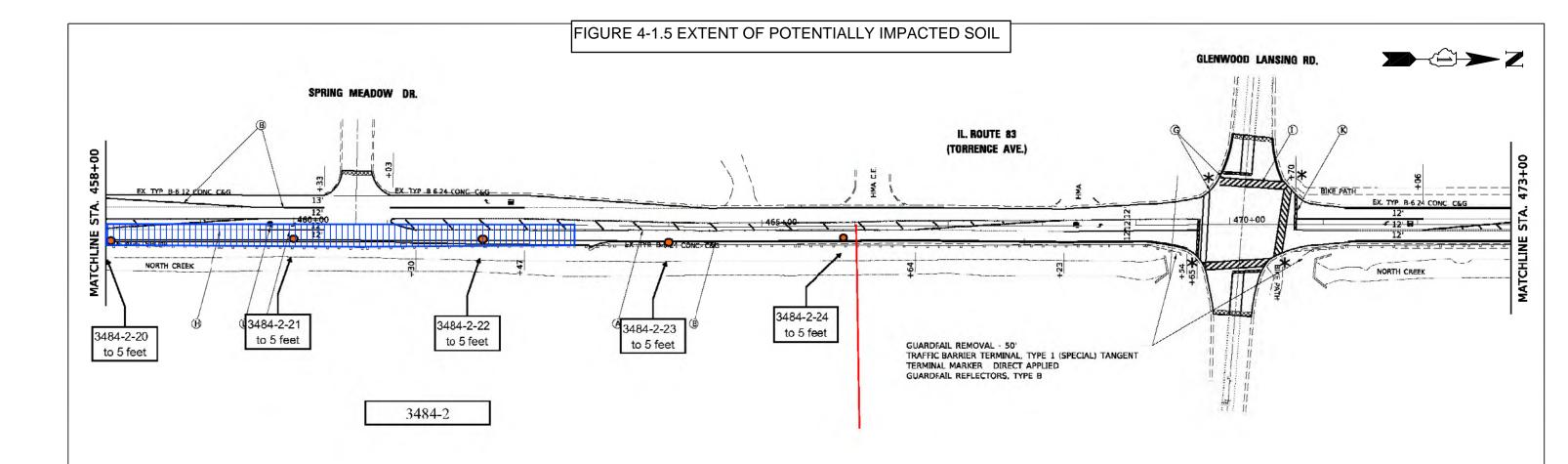

Inorganic Soil Reference Concentrations (xx.xx / xx.xx) Include the Most Stringent values from the MAC Table / and the MSA County Value From the MAC Table as Applicable

^{b/} Soil Remediation Objective for Construction Workers, most stringent of the Ingestion or Inhalation exposure route.

^{c/} Soil Remediation Objective for Residential expsoure, most stringent of the Ingestion or Inhalation exposure route.


^{d/} Soil Remediation Objective for the Groundwater Component of the Groundwater Ingestion Route, Class I Groundwater

Shaded values indicate concentration exceeds reference concentration


FILE NAME =	USER NAME =	DESIGNED -	REVISED -				VAY PLA
		DRAWN -	REVISED -	STATE OF ILLINOIS		IL 83 (I-80 TO GLEN	
	PLOT SCALE =	CHECKED -	REVISED -	DEPARTMENT OF TRANSPORTATION			INCOD L
	PLOT DATE =	DATE -	REVISED -		SCALE: 1" = 100'	SHEET NO. 1 OF 6	SHEETS

۶Ľ	AN		F.A.U. RTE	SECTION		COUNTY	TOTAL SHEETS	SHEET NO.
)[DYER ROAD)		2937	(3076-1 & 3077) RS-	1	соок	6	3
_						CONTRACT NO	. NO 6	2C51
s	STA. 458+00	TO STA. 488+00		ILLINOIS				

	LEGEND
0	SOIL BORING LOCATION
-	IDENTIFIED SITE WITH EXCAVATION
63	APPROXIMATE CONSTRUCTION AREA ESTIMATED TO EXCEED SOIL REFERENCE CONCENTRATIONS (> MOST STRINGENT MAC BUT < BACKGROUND). MATERIAL MAY BE MANAGED ON SITE OR AS NON-SPECIAL WASTE (a (1)).
	APPROXIMATE CONSTRUCTION AREA ESTIMATED TO EXCEED THE SOIL REFERENCE CONCENTRATIONS (> MOST STRINGENT MAC BUT < MAC FOR MSA). MATERIAL MAY BE MANAGED ON-SITE OR TO A CCDD/USFO WITHIN A MSA COUNTY (a(2)).
	APPROXIMATE CONSTRUCTION AREA ESTIMATED TO EXCEED THE SOIL REFERENCE CONCENTRATIONS (> MOST STRINGENT MAC BUT < MAC FOR MSA OR CHICAGO CORPORATE LIMITS). MATERIAL MAY BE MANAGED ON-SITE OR TO A CCDD/USFO WITHIN A MSA COUNTY EXCLUDING CHICAGO OR WITHIN CHICAGO CORPORATE LIMITS (a(3)).
	APPROXIMATE CONSTRUCTION AREA ESTIMATED TO EXCEED THE SOIL REFERENCE CONCENTRATIONS (> MOST STRINGENT MAC BUT < MAC FOR MSA COUNTY EXCLUDING CHICAGO). MATERIAL MAY BE MANAGED ON- SITE OR TO A CCDD/USFO FACILITY WITHIN A MSA COUNTY EXCLUDING CHICAGO (A(4)).
\square	APPROXIMATE CONSTRUCTION AREA ESTIMATED TO EXCEED THE SOIL REFERENCE CONCENTRATIONS. MATERIAL MAY BE MANAGED AS A NON-SPECIAL WASTE (a(5)).
	APPROXIMATE CONSTRUCTION AREA ESTIMATED TO NOT EXCEED MOST STRINGENT MAC VALUE WITH SOIL pH OUTSIDE RANGE 6.25-9.0 TO BE MANAGED ON-SITE OR OFF-SITE AS UNCONTAMINATED SOIL, CANNOT BE TAKEN TO A CCDD/USFO (b(1)).
	APPROXIMATE CONSTRUCTION AREA ESTIMATED TO EXCEED TACO TIER 1 CONSTRUCTION WORKERS REFERENCE CONCENTRATIONS.
	AREAS WITHOUT SHADING ARE CONSIDERED UNRESTRICTED FOR REUSE AND OFF-SITE DISPOSAL.

FILE NAME =	USER NAME =	DESIGNED -	REVISED -		ROADWAY PLAN	F.A.U. RTE	SECTION	COUNTY	TOTAL SHEET
		DRAWN -	REVISED -	STATE OF ILLINOIS	IL 83 (I-80 TO GLENWOOD DYER ROAD)	2937	(3076-1 & 3077) RS-1	соок	6 4
	PLOT SCALE =	CHECKED -	REVISED -	DEPARTMENT OF TRANSPORTATION			(CONTRACT N	O. NO 62C51
	PLOT DATE =	DATE -	REVISED -		SCALE: 1" = 100' SHEET NO. 1 OF 6 SHEETS STA. 458+00 TO STA. 488+00		ILLINOIS		

	LEGEND
0	SOIL BORING LOCATION
_	IDENTIFIED SITE WITH EXCAVATION
63	APPROXIMATE CONSTRUCTION AREA ESTIMATED TO EXCEED SOIL REFERENCE CONCENTRATIONS (> MOST STRINGENT MAC BUT < BACKGROUND). MATERIAL MAY BE MANAGED ON SITE OR AS NON-SPECIAL WASTE (a (1)).
	APPROXIMATE CONSTRUCTION AREA ESTIMATED TO EXCEED THE SOIL REFERENCE CONCENTRATIONS (> MOST STRINGENT MAC BUT < MAC FOR MSA). MATERIAL MAY BE MANAGED ON-SITE OR TO A CCDD/USFO WITHIN A MSA COUNTY (a(2)).
	APPROXIMATE CONSTRUCTION AREA ESTIMATED TO EXCEED THE SOIL REFERENCE CONCENTRATIONS (> MOST STRINGENT MAC BUT < MAC FOR MSA OR CHICAGO CORPORATE LIMITS). MATERIAL MAY BE MANAGED ON-SITE OR TO A CCDD/USFO WITHIN A MSA COUNTY EXCLUDING CHICAGO OR WITHIN CHICAGO CORPORATE LIMITS (a(3)).
	APPROXIMATE CONSTRUCTION AREA ESTIMATED TO EXCEED THE SOIL REFERENCE CONCENTRATIONS (> MOST STRINGENT MAC BUT < MAC FOR MSA COUNTY EXCLUDING CHICAGO), MATERIAL MAY BE MANAGED ON- SITE OR TO A CCDD/USFO FACILITY WITHIN A MSA COUNTY EXCLUDING CHICAGO (A(4)).
Z	APPROXIMATE CONSTRUCTION AREA ESTIMATED TO EXCEED THE SOIL REFERENCE CONCENTRATIONS. MATERIAL MAY BE MANAGED AS A NON-SPECIAL WASTE (a(5)).
	APPROXIMATE CONSTRUCTION AREA ESTIMATED TO NOT EXCEED MOST STRINGENT MAC VALUE WITH SOIL pH OUTSIDE RANGE 6.25-9.0 TO BE MANAGED ON-SITE OR OFF-SITE AS UNCONTAMINATED SOIL, CANNOT BE TAKEN TO A CCDD/USFO (b(1)).
	APPROXIMATE CONSTRUCTION AREA ESTIMATED TO EXCEED TACO TIER 1 CONSTRUCTION WORKERS REFERENCE CONCENTRATIONS.
	AREAS WITHOUT SHADING ARE CONSIDERED UNRESTRICTED FOR REUSE AND OFF-SITE DISPOSAL.

FILE NAME =	USER NAME =	DESIGNED -	REVISED -			ROADWAY PLAN	F.A.U. RTE	SECTION	COUNTY	TOTAL SHEE
		DRAWN -	REVISED -] STATE OF ILLINOIS		IL 83 (I-80 TO GLENWOOD DYER ROAD)	2937	(3076-1 & 3077) RS-1	соок	6 5
	PLOT SCALE =	CHECKED -	REVISED -	DEPARTMENT OF TRANSPORTATION				, ,	CONTRACT NO	0. NO 62C51
	PLOT DATE =	DATE -	REVISED -		SCALE: 1" = 100'	SHEET NO. 1 OF 6 SHEETS STA. 458+00 TO STA. 488+00		ILLINOIS		

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

		Analytical I	Ceport .			
Client:	HUFF & HUFF INC.			Date C	ollected:	05/24/18
Project ID:	Torrence Ave			Time (Collected:	10:10
Sample ID:	2-06 (0-1)			Date R	eceived:	05/24/18
Sample No:	18-2892-006			Date R	eported:	06/06/18
-	rted on a dry weight b	oasis.			-	
Analyte			Result	R.L.	Units	Flags
Solids, Total	05/25/18 14:00	Method: 2540B				
Total Solids	05/25/10 14.00		81.71		%	
					70	
Volatile Organ Analysis Date:		Method: 5035A/82				
Acetone			< 200	200	ug/kg	
Benzene			< 5.0	5.0	ug/kg	
Bromodichloron	nethane		< 5.0	5.0	ug/kg	
Bromoform			< 5.0	5.0	ug/kg	
Bromomethane			< 10.0	10.0	ug/kg	
2-Butanone (MI			< 100	100	ug/kg	
Carbon disulfid	e		7.5	5.0	ug/kg	
Carbon tetrachle	oride		< 5.0	5.0	ug/kg	
Chlorobenzene			< 5.0	5.0	ug/kg	
Chlorodibromo	methane		< 5.0	5.0	ug/kg	
Chloroethane			< 10.0	10.0	ug/kg	
Chloroform			< 5.0	5.0	ug/kg	
Chloromethane			< 10.0	10.0	ug/kg	
1,1-Dichloroeth	ane		< 5.0	5.0	ug/kg	
1,2-Dichloroeth	ane		< 5.0	5.0	ug/kg	
1,1-Dichloroeth	ene		< 5.0	5.0	ug/kg	
cis-1,2-Dichloro			< 5.0	5.0	ug/kg	
trans-1,2-Dichle	oroethene		< 5.0	5.0	ug/kg	
1,2-Dichloropro	opane		< 5.0	5.0	ug/kg	
cis-1,3-Dichloro	opropene		< 4.0	4.0	ug/kg	
trans-1,3-Dichle	oropropene		< 4.0	4.0	ug/kg	
Ethylbenzene			< 5.0	5.0	ug/kg	
2-Hexanone			< 10.0	10.0	ug/kg	
Methyl-tert-but	ylether (MTBE)		< 5.0	5.0	ug/kg	
4-Methyl-2-pen	tanone (MIBK)		< 10.0	10.0	ug/kg	
Methylene chlo	ride		< 20.0	20.0	ug/kg	
Styrene			< 5.0	5.0	ug/kg	
1,1,2,2-Tetrach	loroethane		< 5.0	5.0	ug/kg	
Tetrachloroethe	ene		< 5.0	5.0	ug/kg	
Toluene			< 5.0	5.0	ug/kg	
1,1,1-Trichloro	ethane		< 5.0	5.0	ug/kg	
1,1,2-Trichloro	ethane		< 5.0	5.0	ug/kg	
Trichloroethene			< 5.0	5.0	ug/kg	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.	v	•	Date C	ollected:	05/24/18
Project ID:	Torrence Ave			Time C	Collected:	10:10
Sample ID:	2-06 (0-1)			Date R	eceived:	05/24/18
Sample No:	18-2892-006			Date R	eported:	06/06/18
•	orted on a dry weight b	asis				
Analyte	forted on a dry worght e	4515.	Result	R.L.	Units	Flags
	nic Compounds	Method: 5035A/8	260B			
Analysis Date		Memou: 3033A/d.				
Vinyl acetate			< 10.0	10.0	ug/kg	
Vinyl chloride	•		< 10.0	10.0	ug/kg	
Xylene, Total			< 5.0	5.0	ug/kg	
Semi-Volatile Analysis Date		Method: 8270C		Preparation Preparation D		
Acenaphthene			< 330	330	ug/kg	
Acenaphthyle			< 330	330	ug/kg	
Anthracene			< 330	330	ug/kg	
Benzidine			< 330	330	ug/kg	
Benzo(a)anthr	acene		< 330	330	ug/kg	
Benzo(a)pyrei			< 90	90	ug/kg	
Benzo(b)fluor			< 330	330	ug/kg	
Benzo(k)fluor			< 330	330	ug/kg	
Benzo(ghi)per			< 330	330	ug/kg	
Benzoic acid	•		< 330	330	ug/kg	
Benzyl alcoho	bl		< 330	330	ug/kg	
bis(2-Chloroe	thoxy)methane		< 330	330	ug/kg	
bis(2-Chloroe			< 330	330	ug/kg	
bis(2-Chlorois	sopropyl)ether		< 330	330	ug/kg	
bis(2-Ethylhe	xyl)phthalate		< 330	330	ug/kg	
4-Bromophen	yl phenyl ether		< 330	330	ug/kg	
Butyl benzyl j	ohthalate		< 330	330	ug/kg	
Carbazole			< 330	330	ug/kg	
4-Chloroanili	ne		< 330	330	ug/kg	
4-Chloro-3-m	ethylphenol		< 330	330	ug/kg	
2-Chloronaph			< 330	330	ug/kg	
2-Chlorophen			< 330	330	ug/kg	
	yl phenyl ether		< 330	330	ug/kg	
Chrysene			< 330	330	ug/kg	
Dibenzo(a,h)a			< 90	90	ug/kg	
Dibenzofuran			< 330	330	ug/kg	
1,2-Dichlorob			< 330	330	ug/kg	
1,3-Dichlorob			< 330	330	ug/kg	
1,4-Dichlorob			< 330	330	ug/kg	
3,3'-Dichlorol			< 660 < 330	660 330	ug/kg	
2,4-Dichlorop	onenoi		> 000	220	ug/kg	

First Environmental Laboratories, Inc.

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.	Date Collected:	05/24/18
Project ID:	Torrence Ave	Time Collected:	10:10
Sample ID:	2-06 (0-1)	Date Received:	05/24/18
Sample No:	18-2892-006	Date Reported:	06/06/18
Results are rep	orted on a dry weight basis.		

Analyte		Result	R.L.	Units	Flags
Semi-Volatile Compounds Analysis Date: 05/30/18	Method: 8270C		Preparation Preparation D		
Diethyl phthalate		< 330	330	ug/kg	
2,4-Dimethylphenol		< 330	330	ug/kg	
Dimethyl phthalate		< 330	330	ug/kg	
Di-n-butyl phthalate		< 330	330	ug/kg	
4,6-Dinitro-2-methylphenol		< 1,600	1600	ug/kg	
2,4-Dinitrophenol		< 1,600	1600	ug/kg	
2,4-Dinitrotoluene		< 250	250	ug/kg	
2,6-Dinitrotoluene		< 260	260	ug/kg	
Di-n-octylphthalate		< 330	330	ug/kg	
Fluoranthene		< 330	330	ug/kg	
Fluorene		< 330	330	ug/kg	
Hexachlorobenzene		< 330	330	ug/kg	
Hexachlorobutadiene		< 330	330	ug/kg	
Hexachlorocyclopentadiene		< 330	330	ug/kg	
Hexachloroethane		< 330	330	ug/kg	
Indeno(1,2,3-cd)pyrene		< 330	330	ug/kg	
Isophorone		< 330	330	ug/kg	
2-Methylnaplıthalene		< 330	330	ug/kg	
2-Methylphenol		< 330	330	ug/kg	
3 & 4-Methylphenol		< 330	330	ug/kg	
Naphthalene		< 330	330	ug/kg	
2-Nitroaniline		< 1,600	1600	ug/kg	
3-Nitroaniline		< 1,600	1600	ug/kg	
4-Nitroaniline		< 1,600	1600	ug/kg	
Nitrobenzene		< 260	260	ug/kg	
2-Nitrophenol		< 1,600	1600	ug/kg	
4-Nitrophenol		< 1,600	1600	ug/kg	
n-Nitrosodi-n-propylamine		< 90	90	ug/kg	
n-Nitrosodimethylamine		< 330	330	ug/kg	
n-Nitrosodiphenylamine		< 330	330	ug/kg	
Pentachlorophenol		< 330	330	ug/kg	
Phenanthrene		< 330	330	ug/kg	
Phenol		< 330	330	ug/kg	
Pyrene		< 330	330	ug/kg	
Pyridine		< 330	330	ug/kg	
1,2,4-Trichlorobenzene		< 330	330	ug/kg	

First Environmental

Laboratories, Inc.

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Cll	HUFF & HUFF INC.	v	•	Date (collected:	05/24/18
Client:					Collected:	10:10
Project ID:	Torrence Ave				leceived:	05/24/18
Sample ID:	2-06 (0-1)					06/06/18
Sample No:	18-2892-006	. –		Date R	leported:	00/00/18
	ported on a dry weight ba	IS1S.	D - 14	DI	Units	Floor
Analyte			Result	R.L.		Flags
Semi-Volatile Analysis Date		Method: 8270C		Preparation Preparation I		
2,4,5-Trichlor	ophenol		< 330	330	ug/kg	
2,4,6-Trichlor	ophenol		< 330	330	ug/kg	
pH @ 25°C, 1 Analysis Date	1:2 :: 05/29/18 11:25	Method: 9045D	2004			
pH @ 25°C, 1	:2		8.76		Units	
Total Metals Analysis Date	: 05/31/18	Method: 6010C	1	Preparation Preparation I		
Antimony			< 1.0	1.0	mg/kg	
Arsenic			1.5	1.0	mg/kg	
Barium			49.7	0.5	mg/kg	
Beryllium			0.5	0.5	mg/kg	
Cadmium			< 0.5	0.5	mg/kg	
Calcium			72,100	50	mg/kg	
Chromium			14.3	0.5	mg/kg	
Cobalt			4.5	0.5	mg/kg	
Copper			12.2	0.5	mg/kg	
Iron			12,100	5.0	mg/kg	
Lead			54.4	0.5	mg/kg	
Magnesium			44,100	50	mg/kg	
Manganese			217	0.5	mg/kg	
Nickel			14.1	0.5	mg/kg	
Potassium			970	50	mg/kg	
Selenium			< 1.0	1.0	mg/kg	
Silver			0.4	0.2	mg/kg	
Sodium			2,680	50	mg/kg	
Thallium			< 1.0	1.0	mg/kg	
Vanadium			17.0	1.0	mg/kg	
Zinc			68.1	1.0	mg/kg	
Total Mercu Analysis Date		Method: 74711				
Mercury			< 0.05	0.05	mg/kg	
TCLP Metal Analysis Date	ls Method 1311 e: 06/01/18	Method: 60100	2	Preparation Preparation		
Arsenic			< 0.010	0.010	mg/L	
Barium			< 1.0	1.0	mg/L	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.	Date Collected:	05/24/18
Project ID:	Torrence Ave	Time Collected:	10:10
Sample ID:	2-06 (0-1)	Date Received:	05/24/18
Sample No:	18-2892-006	Date Reported:	06/06/18
Results are rep	oorted on a dry weight basis.		

Analyte		Result	R.L.	Units	Flags
TCLP Metals Method 1311 Analysis Date: 06/01/18	Method: 6010C	Preparation Method 3010A Preparation Date: 05/30/18			
Beryllium		< 1.00	1.0	mg/L	
Cadmium		< 0.005	0.005	mg/L	
Chromium		< 0.005	0.005	mg/L	
Cobalt		< 0.1	0.1	mg/L	
Copper		< 0.1	0.1	mg/L	
lron		0.3	0.1	ıng/L	
Lead		< 0.005	0.005	mg/L	
Manganese		1.0	0.1	mg/L	
Nickel		< 0.1	0.1	mg/L	
Selenium		< 0.010	0.010	mg/L	
Silver		< 0.005	0.005	mg/L	
Zinc		< 0.1	0.1	mg/L	
TCLP Mercury Method 1311 Analysis Date: 05/31/18	Method: 7470A				
Mercury		< 0.0005	0.0005	mg/L	
TCL/P Extraction Analysis Date: 05/30/18	Method: 1311				
TCLP Extraction		Complete	e		
SPLP Metals Method 1312 Analysis Date: 05/31/18	Method: 6010C		Preparation Preparation D		
Arsenic		< 0.010	0.010	nıg/L	
Barium		< 1.0	1.0	mg/L	
Beryllium		< 0.004	0.004	mg/L	
Cadmium		< 0.005	0.005	mg/L	
Chromium		0.072	0.005	mg/L	
Cobalt		< 0.1	0.1	mg/L	
Copper		0.054	0.005	mg/L	
lron		49.6	0.1	mg/L	
Lead		0.034	0.005	mg/L	
Manganese		0.2	0.1	mg/L	
Nickel		< 0.1	0.1	mg/L	
Selenium		< 0.010	0.010	mg/L	
Silver		< 0.005	0.005	mg/L	
Zinc		0.1	0.1	mg/L	

Environmental Laboratories, Inc.

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client: H	IUFF & HUFF INC.			Date C	ollected: 0	5/24/18
Project ID: T	orrence Ave			Time C	Collected: 1	0:10
Sample ID: 2	-06 (0-1)			Date R	eceived: 0	5/24/18
Sample No: 1	8-2892-006			Date R	eported: 0	6/06/18
Results are report	ed on a dry weight basis.					
Analyte		Result	:	R.L.	Units	Flags
SPLP Mercury M Analysis Date: 0						
Mercury		< 0.000	5	0.0005	mg/L	
SPLP Extractio Analysis Date: 0						
SPLP Metals Ext	raction	Comp	olete			
Sample QC Sum	mary: Surrogate Recovery	%R Limits		ts		
Method	Analyte	QC	QC Result Low High		gh	
5035A/8260B	4-Bromofluorobenzene (Surr)	%R:	98.2		86 - 11	7
5035A/8260B	d8-Toluene (Surr)	%R:	<i>99.9</i>		90 - 11	0
5035A/8260B	Dibromofluoromethane (Surr) %R:	100.7		77 - 12	0
8270C	2,4,6-Tribromophenol (Surr)	%R:	103.4		59 - 13	1
8270C	2-Fluorobiphenyl (Surr)	%R:	86.6	45 - 112		2
8270C	2-Fluorophenol (Surr)	%R:	75.4		41 - 84	
8270C	d14-Terphenyl (Surr)	%R:	<i>89</i>		56 - 12	0
8270C	d5-Nitrobenzene (Surr)	%R:	87.6	35 - 105		5
8270C	Phenol-d5 (surr)	%R:	77.3		50 - 10	0

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC			Date C	collected:	05/24/18
Project ID:	Torrence Ave			Time (Collected:	10:13
Sample ID:	2-07 (0-1)			Date R	eceived:	05/24/18
Sample No:	18-2892-007			Date R	eported:	06/06/18
-	orted on a dry weight	basis.			•	
Analyte		14	Result	R.L.	Units	Flags
Solids, Total		Method: 2540B				
	: 05/25/18 14:00					
Total Solids			84.29		%	
Volatile Orga Analysis Date	nic Compounds	Method: 5035A/82	260B			
Acetone	. 05/51/18		< 200	200	ug/kg	
Benzene			< 5.0	5.0	ug/kg	
Bromodichlor	omethane		< 5.0	5.0	ug/kg	
Bromoform	omethane		< 5.0	5.0	ug/kg	
Bromomethan	۵		< 10.0	10.0	ug/kg	
2-Butanone (N			< 100	100	ug/kg	
Carbon disulfi	,		< 5.0	5.0	ug/kg	
Carbon tetrach			< 5.0	5.0	ug/kg	
Chlorobenzen			< 5.0	5.0	ug/kg	
Chlorodibrom			< 5.0	5.0	ug/kg	
Chloroethane			< 10.0	10.0	ug/kg	
Chloroform			< 5.0	5.0	ug/kg	
Chloromethan	e		< 10.0	10.0	ug/kg	
1,1-Dichloroe			< 5.0	5.0	ug/kg	
1,2-Dichloroe			< 5.0	5.0	ug/kg	
1,1-Dichloroe			< 5.0	5.0	ug/kg	
cis-1,2-Dichlo	oroethene		< 5.0	5.0	ug/kg	
trans-1,2-Dich	loroethene		< 5.0	5.0	ug/kg	
1,2-Dichlorop	ropane		< 5.0	5.0	ug/kg	
cis-1,3-Dichlo	oropropene		< 4.0	4.0	ug/kg	
trans-1,3-Dich	loropropene		< 4.0	4.0	ug/kg	
Ethylbenzene			< 5.0	5.0	ug/kg	
2-Hexanone			< 10.0	10.0	ug/kg	
Methyl-tert-bu	utylether (MTBE)		< 5.0	5.0	ug/kg	
	entanone (MIBK)		< 10.0	10.0	ug/kg	
Methylene ch	loride		< 20.0	20.0	ug/kg	
Styrene			< 5.0	5.0	ug/kg	
1,1,2,2-Tetrac			< 5.0	5.0	ug/kg	
Tetrachloroet	hene		< 5.0	5.0	ug/kg	
Toluene	_		< 5.0	5.0	ug/kg	
1,1,1-Trichlor			< 5.0	5.0	ug/kg	
1,1,2-Trichlor			< 5.0	5.0	ug/kg	
Trichloroethe	ne		< 5.0	5.0	ug/kg	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.	·	-	Date C	ollected:	05/24/18
Project ID:	Torrence Ave			Time C	Collected:	10:13
Sample ID:	2-07 (0-1)			Date R	eceived:	05/24/18
Sample No:	18-2892-007			Date R	eported:	06/06/18
-	orted on a dry weight b	asis.				
Analyte			Result	R.L.	Units	Flags
	nic Compounds	Method: 5035A/82	260B			
Analysis Date:						
Vinyl acetate			< 10.0	10.0	ug/kg	
Vinyl chloride			< 10.0	10.0	ug/kg	
Xylene, Total			< 5.0	5.0	ug/kg	
Semi-Volatile		Method: 8270C		Preparation		
Analysis Date:			< 220	Preparation D		10
Acenaphthene			< 330	330	ug/kg	
Acenaphthyler	ne		< 330	330	ug/kg	
Anthracene			< 330	330	ug/kg	
Benzidine			< 330	330	ug/kg	
Benzo(a)anthr			< 330	330	ug/kg	
Benzo(a)pyrer			< 90	90	ug/kg	
Benzo(b)fluor			< 330	330	ug/kg	
Benzo(k)fluor			< 330	330	ug/kg	
Benzo(ghi)per	ylene		< 330	330	ug/kg	
Benzoic acid			< 330	330	ug/kg	
Benzyl alcoho			< 330	330	ug/kg	
•	thoxy)methane		< 330	330	ug/kg	
bis(2-Chloroet	• •		< 330	330	ug/kg	
bis(2-Chlorois			< 330	330	ug/kg	
bis(2-Ethylhe	• / •		< 330	330	ug/kg	
	yl phenyl ether		< 330	330	ug/kg	
Butyl benzyl p	ohthalate		< 330	330	ug/kg	
Carbazole			< 330	330	ug/kg	
4-Chloroanilir			< 330	330	ug/kg	
4-Chloro-3-m			< 330	330	ug/kg	
2-Chloronaph			< 330	330	ug/kg	
2-Chlorophen			< 330	330	ug/kg	
	yl phenyl ether		< 330	330	ug/kg	
Chrysene			< 330	330	ug/kg	
Dibenzo(a,h)a			< 90	90	ug/kg	
Dibenzofuran			< 330	330	ug/kg	
1,2-Dichlorob			< 330	330	ug/kg	
1,3-Dichlorob			< 330	330	ug/kg	
1,4-Dichlorob			< 330	330 660	ug/kg	
3,3'-Dichlorol			< 660 < 330	330	ug/kg	
2,4-Dichlorop	onenol		< 330	220	ug/kg	

First Environmental Laboratories, Inc.

.

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.	Date Collected:	05/24/18
Project ID:	Torrence Ave	Time Collected:	10:13
Sample ID:	2-07 (0-1)	Date Received:	05/24/18
Sample No:	18-2892-007	Date Reported:	06/06/18
Results are rep	orted on a dry weight basis.		

Analyte		Result	R.L.	Units	Flags
Semi-Volatile Compounds Analysis Date: 05/25/18	Method: 8270C		Preparation Preparation D		
Diethyl phthalate		< 330	330	ug/kg	
2,4-Dimethylphenol		< 330	330	ug/kg	
Dimethyl phthalate		< 330	330	ug/kg	
Di-n-butyl plithalate		< 330	330	ug/kg	
4,6-Dinitro-2-methylphenol		< 1,600	1600	ug/kg	
2,4-Dinitrophenol		< 1,600	1600	ug/kg	
2,4-Dinitrotoluene		< 250	250	ug/kg	
2,6-Dinitrotoluene		< 260	260	ug/kg	
Di-n-octylphthalate		< 330	330	ug/kg	
Fluoranthene		< 330	330	ug/kg	
Fluorene		< 330	330	ug/kg	
Hexachlorobenzene		< 330	330	ug/kg	
Hexachlorobutadiene		< 330	330	ug/kg	
Hexachlorocyclopentadiene		< 330	330	ug/kg	
Hexachloroethane		< 330	330	ug/kg	
Indeno(1,2,3-cd)pyrene		< 330	330	ug/kg	
Isophorone		< 330	330	ug/kg	
2-Methylnaphthalene		< 330	330	ug/kg	
2-Methylphenol		< 330	330	ug/kg	
3 & 4-Methylphenol		< 330	330	ug/kg	
Naphthalene		< 330	330	ug/kg	
2-Nitroaniline		< 1,600	1600	ug/kg	
3-Nitroaniline		< 1,600	1600	ug/kg	
4-Nitroaniline		< 1,600	1600	ug/kg	
Nitrobenzene		< 260	260	ug/kg	
2-Nitrophenol		< 1,600	1600	ug/kg	
4-Nitrophenol		< 1,600	1600	ug/kg	
n-Nitrosodi-n-propylamine		< 90	90	ug/kg	
n-Nitrosodimethylamine		< 330	330	ug/kg	
n-Nitrosodiphenylamine		< 330	330	ug/kg	
Pentachlorophenol		< 330	330	ug/kg	
Phenanthrene		< 330	330	ug/kg	
Phenol		< 330	330	ug/kg	
Pyrene		< 330	330	ug/kg	
Pyridine		< 330	330	ug/kg	
1,2,4-Trichlorobenzene		< 330	330	ug/kg	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

HUFF & HUFF INC.		-	_	Date	Collected:	05/24/18	
				Time	Collected:	10:13	
				Date 1	Received:	05/24/18	
				Date 1	Reported:	06/06/18	
	isis.						
onted on a dry worght of			Resul	t R.L.	Units	Flags	
	Method:	8270C					
phenol			< 330	330	ug/kg		
•			< 330	330	ug/kg		
	Method:	9045D 20					
2			8.86		Units		
05/31/18	Method:	6010C			Preparation Method 3050B Preparation Date: 05/25/18		
			< 1.0	1.0	mg/kg		
			5.7	1.0	mg/kg		
			39.1	0.5	mg/kg		
			< 0.5	0.5	mg/kg		
			< 0.5				
			-				
					0 0		
			•				
			43.0	1.0	iiig/kg		
	Method:	7471B		0.05	//		
			< 0.05	0.05	mg/kg		
	Method:	6010C					
			0.012	2 0.010	mg/L		
			< 1.0	1.0	mg/L		
	HUFF & HUFF INC. Torrence Ave 2-07 (0-1) 18-2892-007 orted on a dry weight ba Os/25/18 ophenol ophenol 205/29/18 11:25 2 05/31/18	Torrence Ave 2-07 (0-1) 18-2892-007 orted on a dry weight basis. Compounds Method: 05/25/18 Method: 05/29/18 11:25 2 Method: 05/31/18 Method: y 05/25/18 Method: Method: 05/21/18 Method:	Torrence Ave 2-07 (0-1) 18-2892-007 orted on a dry weight basis. Compounds Method: 8270C 05/25/18 Method: 9045D 2C 05/29/18 11:25 2 Method: 6010C 05/31/18 Method: 6010C v 05/25/18 Method: 7471B Method 1311 Method: 6010C	Torrence Ave 2-07 (0-1) 18-2892-007 orted on a dry weight basis. Compounds ophenol < 330 phenol < 330 2 05/29/18 11:25 2 8.86 Method: 9045D 2004 05/29/18 11:25 2 8.86 Method: 6010C 05/31/18 < 1.0 5.7 39.1 < 0.5 < 0.5 31,60 13.1 7.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 2 8.86 1.0 5.7 39.1 < 0.5 31,60 262 18.6 1,190 < 1.0 0.5 2,34(< 0.5 2,34(< 0.5 2,34(< 0.5 2,34(< 1.0 1.0 1.1 1.1 1.1 1.1 1.1 1.1	Method: Method: 60/10 Preparation 2-07 (0-1) 18-2892-007 Date 1 0arted on a dry weight basis. Method: 8270C Preparation 05/25/18 330 330 ophenol < 330	Torrence Ave Time Collected: 2-07 (0-1) Date Received: 18-2892-007 Date Reported: orted on a dry weight basis. Result KL. Units Compounds 05/25/18 Method: 8270C Preparation Method 3 Preparation Date: 05/24/4 05/25/18 330 ug/kg 05/25/18 11:25 8.86 Units 05/31/18 Method: 6010C Preparation Method 3 Preparation Date: 05/24/18 10 1.0 mg/kg 31,600 50 mg/kg 13.1 0.5 mg/kg 14.1 1.0	

First Environmental Laboratories, Inc.

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.	Date Collected:	05/24/18
Project ID:	Torrence Ave	Time Collected:	10:13
Sample ID:	2-07 (0-1)	Date Received:	05/24/18
Sample No:	18-2892-007	Date Reported:	06/06/18
Results are rep	orted on a dry weight basis.		

Analyte		Result	R.L.	Units	Flags
TCLP Metals Method 1311 Analysis Date: 06/01/18	Method: 6010C		Preparation Preparation D		
Beryllium		< 1.00	1.0	mg/L	
Cadmium		0.005	0.005	mg/L	
Chromium		< 0.005	0.005	mg/L	
Cobalt		< 0.1	0.1	mg/L	
Copper		< 0.1	0.1	mg/L	
Iron		0.8	0.1	mg/L	
Lead		0.993	0.005	mg/L	
Manganese		3.1	0.1	mg/L	
Nickel		< 0.1	0.1	mg/L	
Selenium		< 0.010	0.010	mg/L	
Silver		< 0.005	0.005	mg/L	
Zinc		0.8	0.1	mg/L	
TCLP Mercury Method 1311 Analysis Date: 05/31/18	Method: 7470A				
Mercury		< 0.0005	0.0005	mg/L	
TCLP Extraction Analysis Date: 05/30/18	Method: 1311				
TCLP Extraction		Complete			
SPLP Metals Method 1312 Analysis Date: 05/31/18	Method: 6010C		Preparation Preparation I		
Arsenic		0.013	0.010	mg/L	
Barium		< 1.0	1.0	mg/L	
Beryllium		< 0.004	0.004	mg/L	
Cadmium		< 0.005	0.005	mg/L	
Chromium		0.023	0.005	mg/L	
Cobalt		< 0.1	0.1	mg/L	
Copper		0.045	0.005	mg/L	
lron		20.2	0.1	mg/L	
Lead		0.188	0.005	mg/L	
Manganese		0.3	0.1	mg/L	
Nickel		< 0.1	0.1	mg/L	
Selenium		< 0.010	0.010	mg/L	
Silver		< 0.005	0.005	mg/L	
Zinc		0.2	0.1	mg/L	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & H	IUFF INC.			Date C	ollected:	05/24/18
Project ID:	Torrence A	Ave			Time C	Collected:	10:13
Sample ID:	2-07 (0-1)				Date R	eceived:	05/24/18
Sample No:	18-2892-0	07			Date R	eported:	06/06/18
Results are rep	orted on a d	ry weight basis.					
Analyte			Resu	lt	R.L.	Units	Flags
SPLP Mercur Analysis Date:		312 Method: 7470A					
Mercury			< 0.00	05	0.0005	mg/L	
SPLP Extract Analysis Date:		Method: 1312					
SPLP Metals E	extraction		Com	plete			
Sample QC Su	mmary:	Surrogate Recovery				%R Lin	nits
Method		Analyte	QC	C Result		Low H	Iigh
5035A/8260B		4-Bromofluorobenzene (Surr)	%R:	99.3		86	117
5035A/8260B		d8-Toluene (Surr)	%R:	100.5		90 - .	110
5035A/8260B		Dibromofluoromethane (Surr)	%R:	104		77	120
8270C		2,4,6-Tribromophenol (Surr)	%R:	91.4		59 - .	131
8270C		2-Fluorobiphenyl (Surr)	%R:	<i>77.3</i>		45	112
8270C		2-Fluorophenol (Surr)	%R:	64.6		41 - 8	84
8270C		d14-Terphenyl (Surr)	%R:	81.8		56 - .	120
8270C		d5-Nitrobenzene (Surr)	%R:	72		35 -	105
8270C		Phenol-d5 (surr)	%R:	66.6		50 -	100

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.		_	Date C	Collected:	05/24/18
Project ID:	Torrence Ave			Time Collected:		10:17
Sample ID:	2-08 (0-1)			Date R	Date Received:	
Sample No:	18-2892-008			Date R	Reported:	06/06/18
-	orted on a dry weight	basis.			-	
Analyte			Result	R.L.	Units	Flags
Solids, Total		Method: 2540B				
	05/25/18 14:00		00.00		0.4	
Total Solids			80.99		%	
Volatile Organ Analysis Date:	nic Compounds 05/31/18	Method: 5035A/82	260B			
Acetone			< 200	200	ug/kg	
Benzene			< 5.0	5.0	ug/kg	
Bromodichloro	methane		< 5.0	5.0	ug/kg	
Bromoform			< 5.0	5.0	ug/kg	
Bromomethane)		< 10.0	10.0	ug/kg	
2-Butanone (M	EK)		< 100	100	ug/kg	
Carbon disulfic	-		13.1	5.0	ug/kg	
Carbon tetrach	loride		< 5.0	5.0	ug/kg	
Chlorobenzene	1		< 5.0	5.0	ug/kg	
Chlorodibromo	omethane		< 5.0	5.0	ug/kg	
Chloroethane			< 10.0	10.0	ug/kg	
Chloroform			< 5.0	5.0	ug/kg	
Chloromethane	2		< 10.0	10.0	ug/kg	
1,1-Dichloroetl	hane		< 5.0	5.0	ug/kg	
1,2-Dichloroetl	hane		< 5.0	5.0	ug/kg	
1,1-Dichloroeth	hene		< 5.0	5.0	ug/kg	
cis-1,2-Dichlor	roethene		< 5.0	5.0	ug/kg	
trans-1,2-Dichl	loroethene		< 5.0	5.0	ug/kg	
1,2-Dichloropr	opane		< 5.0	5.0	ug/kg	
cis-1,3-Dichlor	ropropene		< 4.0	4.0	ug/kg	
trans-1,3-Dichl	loropropene		< 4.0	4.0	ug/kg	
Ethylbenzene			< 5.0	5.0	ug/kg	
2-Hexanone			< 10.0	10.0	ug/kg	
Methyl-tert-but	tylether (MTBE)		< 5.0	5.0	ug/kg	
	ntanone (MIBK)		< 10.0	10.0	ug/kg	
Methylene chlo	oride		< 20.0	20.0	ug/kg	
Styrene			< 5.0	5.0	ug/kg	
1,1,2,2-Tetrach			< 5.0	5.0	ug/kg	
Tetrachloroeth	ene		< 5.0	5.0	ug/kg	
Toluene			< 5.0	5.0	ug/kg	
1,1,1-Trichloro			< 5.0	5.0	ug/kg	
1,1,2-Trichloro			< 5.0	5.0	ug/kg	
Trichloroethen			< 5.0	5.0	ug/kg	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.		-	Date C	Collected:	05/24/18
Project ID:	Torrence Ave			Time (Time Collected:	
Sample ID:	2-08 (0-1)			Date R	leceived:	05/24/18
Sample No:	18-2892-008			Date R	Reported:	06/06/18
•	orted on a dry weight l	pasis.				
Analyte	ond any weight	545151	Result	R.L.	Units	Flags
	nic Compounds	Method: 5035A/82	260B			
Analysis Date:						
Vinyl acetate			< 10.0	10.0	ug/kg	
Vinyl chloride			< 10.0	10.0	ug/kg	
Xylene, Total			< 5.0	5.0	ug/kg	
Semi-Volatile Analysis Date:		Method: 8270C		Preparation Preparation D		
Acenaphthene			< 330	330	ug/kg	
Acenaphthyler	ne		< 330	330	ug/kg	
Anthracene			< 330	330	ug/kg	
Benzidine			< 330	330	ug/kg	
Benzo(a)anthra	acene		361	330	ug/kg	
Benzo(a)pyren			331	90	ug/kg	
Benzo(b)fluor			< 330	330	ug/kg	
Benzo(k)fluora			< 330	330	ug/kg	
Benzo(ghi)per			< 330	330	ug/kg	
Benzoic acid	-		< 330	330	ug/kg	
Benzyl alcoho	1		< 330	330	ug/kg	
bis(2-Chloroet			< 330	330	ug/kg	
bis(2-Chloroet	hyl)ether		< 330	330	ug/kg	
bis(2-Chlorois	opropyl)ether		< 330	330	ug/kg	
bis(2-Ethylhex	yl)phthalate		< 330	330	ug/kg	
4-Bromopheny	l phenyl ether		< 330	330	ug/kg	
Butyl benzyl p	ohthalate		< 330	330	ug/kg	
Carbazole			< 330	330	ug/kg	
4-Chloroanilin	e		< 330	330	ug/kg	
4-Chloro-3-me	ethylphenol		< 330	330	ug/kg	
2-Chloronapht	thalene		< 330	330	ug/kg	
2-Chlorophene			< 330	330	ug/kg	
4-Chloropheny	yl phenyl ether		< 330	330	ug/kg	
Chrysene			399	330	ug/kg	
Dibenzo(a,h)a	nthracene		< 90	90	ug/kg	
Dibenzofuran			< 330	330	ug/kg	
1,2-Dichlorob			< 330	330	ug/kg	
1,3-Dichlorob			< 330	330	ug/kg	
1,4-Dichlorob			< 330	330	ug/kg	
3,3'-Dichlorob			< 660	660	ug/kg	
2,4-Dichlorop	henol		< 330	330	ug/kg	

First Environmental Laboratories, Inc.

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.	Date Collected:	05/24/18
Project ID:	Torrence Ave	Time Collected:	10:17
Sample ID:	2-08 (0-1)	Date Received:	05/24/18
Sample No:	18-2892-008	Date Reported:	06/06/18
Results are rep	oorted on a dry weight basis.		

Analyte		Result	R.L.	Units	Flags
Semi-Volatile Compounds Analysis Date: 05/25/18	Method: 8270C		Preparation Method 3540C Preparation Date: 05/24/18		
Diethyl phthalate		< 330	330	ug/kg	
2,4-Dimethylphenol		< 330	330	ug/kg	
Dimethyl phthalate		< 330	330	ug/kg	
Di-n-butyl phthalate		< 330	330	ug/kg	
4,6-Dinitro-2-methylphenol		< 1,600	1600	ug/kg	
2,4-Dinitrophenol		< 1,600	1600	ug/kg	
2,4-Dinitrotoluene		< 250	250	ug/kg	
2,6-Dinitrotoluene		< 260	260	ug/kg	
Di-n-octylphthalate		< 330	330	ug/kg	
Fluoranthene		824	330	ug/kg	
Fluorene		< 330	330	ug/kg	
Hexachlorobenzene		< 330	330	ug/kg	
Hexachlorobutadiene		< 330	330	ug/kg	
Hexachlorocyclopentadiene		< 330	330	ug/kg	
Hexachloroethane		< 330	330	ug/kg	
Indeno(1,2,3-cd)pyrene		< 330	330	ug/kg	
Isophorone		< 330	330	ug/kg	
2-Methylnaphthalene		< 330	330	ug/kg	
2-Methylphenol		< 330	330	ug/kg	
3 & 4-Methylphenol		< 330	330	ug/kg	
Naphthalene		< 330	330	ug/kg	
2-Nitroaniline		< 1,600	1600	ug/kg	
3-Nitroaniline		< 1,600	1600	ug/kg	
4-Nitroaniline		< 1,600	1600	ug/kg	
Nitrobenzene		< 260	260	ug/kg	
2-Nitrophenol		< 1,600	1600	ug/kg	
4-Nitrophenol		< 1,600	1600	ug/kg	
n-Nitrosodi-n-propylamine		< 90	90	ug/kg	
n-Nitrosodimethylamine		< 330	330	ug/kg	
n-Nitrosodiphenylamine		< 330	330	ug/kg	
Pentachlorophenol		< 330	330	ug/kg	
Phenanthrene		629	330	ug/kg	
Phenol		< 330	330	ug/kg	
Pyrene		792	330	ug/kg	
Pyridine		< 330	330	ug/kg	
1,2,4-Trichlorobenzene		< 330	330	ug/kg	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.		-			Date C	Collected:	05/24/18
Project ID:	Torrence Ave					Time (Collected:	10:17
Sample ID:	2-08 (0-1)					Date F	Received:	05/24/18
Sample No:	18-2892-008					Date F	Reported:	06/06/18
-	orted on a dry weight ba	isis.						
Analyte]	Result	R.L.	Units	Flags
Semi-Volatile Analysis Date:		Method:	8270C			Preparation Preparation I		
2,4,5-Trichlor	ophenol			<	330	330	ug/kg	
2,4,6-Trichlor	ophenol			<	330	330	ug/kg	
•	: 05/29/18 11:25	Method:	9045D 2	004	8. 71		Units	
pH @ 25°C, 1	.2				0.71			
Total Metals Analysis Date	: 05/31/18	Method:	6010C			Preparation Preparation I		
Antimony				<	1.0	1.0	mg/kg	
Arsenic					2.9	1.0	mg/kg	
Barium					57.8	0.5	mg/kg	
Beryllium					0.6	0.5	mg/kg	
Cadmium				<	0.5	0.5	mg/kg	
Calcium					12,300	50	mg/kg	
Chromium					16.2	0.5	mg/kg	
Cobalt					8.3	0.5	mg/kg	
Copper					15.7	0.5	mg/kg	
lron					15,500	5.0	mg/kg	
Lead					15.6	0.5	mg/kg	
Magnesium					7,660	50	mg/kg	
Manganese					201	0.5	mg/kg	
Nickel					21.9	0.5	mg/kg	
Potassium					1,200	50	mg/kg	
Selenium				<	1.0	1.0	mg/kg	
Silver					0.4	0.2	mg/kg	
Sodium					2,580	50	mg/kg	
Thallium				<	1.0	1.0	mg/kg	
Vanadium					19.7	1.0	mg/kg	
Zinc					46.6	1.0	mg/kg	
Total Mercu Analysis Date		Method:	7471B					
Mercury				<	0.05	0.05	mg/kg	
TCLP Metals Analysis Date	Method 1311 : 06/01/18	Method:	6010C			Preparation Preparation		
Arsenic				<	0.010	0.010	mg/L	
Barium				<	1.0	1.0	mg/L	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.	Date Collected:	05/24/18
Project ID:	Torrence Ave	Time Collected:	10:17
Sample ID:	2-08 (0-1)	Date Received:	05/24/18
Sample No:	18-2892-008	Date Reported:	06/06/18
Results are rep	orted on a dry weight basis.		

Analyte		Result	R.L.	Units	Flags
TCLP Metals Method 1311 Analysis Date: 06/01/18	Method: 6010C		Preparation Preparation D		
Beryllium		< 1.00	1.0	mg/L	
Cadmium		< 0.005	0.005	mg/L	
Chromium		< 0.005	0.005	mg/L	
Cobalt		< 0.1	0.1	mg/L	
Copper		< 0.1	0.1	mg/L	
Iron		0.5	0.1	mg/L	
Lead		0.014	0.005	mg/L	
Manganese		4.9	0.1	mg/L	
Nickel		< 0.1	0.1	mg/L	
Selenium		< 0.010	0.010	mg/L	
Silver		< 0.005	0.005	mg/L	
Zinc		< 0.1	0.1	mg/L	
TCLP Mercury Method 1311 Analysis Date: 05/31/18	Method: 7470A				
Mercury		< 0.0005	0.0005	mg/L	
TCLP Extraction Analysis Date: 05/30/18	Method: 1311				
TCLP Extraction		Complete			
SPLP Metals Method 1312 Analysis Date: 05/31/18	Method: 6010C		Preparation Preparation D		
Arsenic		0.016	0.010	mg/L	
Barium		< 1.0	1.0	mg/L	
Beryllium		< 0.004	0.004	mg/L	
Cadmium		< 0.005	0.005	mg/L	
Chromium		0.073	0.005	mg/L	
Cobalt		< 0.1	0.1	mg/L	
Copper		0.082	0.005	mg/L	
Iron		59.6	0.1	mg/L	
Lead		0.048	0.005	mg/L	
Manganese		0.5	0.1	mg/L	
Nickel		< 0.1	0.1	mg/L	
Selenium		< 0.010	0.010	mg/L	
Silver		< 0.005	0.005	mg/L	
Zinc		0.2	0.1	mg/L	

_

0.0 10 1 10 0

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUI	FF INC.			Date C	ollected: 0	5/24/18
Project ID:	Torrence Ave	ce Ave Time Collected: 10:17					0:17
Sample ID:	2-08 (0-1)				Date R	eceived: 0	5/24/18
Sample No:	18-2892-008				Date R	eported: 0	6/06/18
Results are repo	rted on a dry	weight basis.					
Analyte			Resul	t	R.L.	Units	Flags
SPLP Mercury Analysis Date:		2 Method: 7470A					
Mercury			< 0.000)5	0.0005	mg/L	
SPLP Extracti Analysis Date:		Method: 1312					
SPLP Metals Ex			Com	plete			
Sample QC Sur	nmary: S	urrogate Recovery				%R Limi	ts
Method	A	Inalyte	QC	Result		Low Hi	gh
5035A/8260B	4	-Bromofluorobenzene (Surr)	%R:	98.3		86 - 11	7
5035A/8260B	a	l8-Toluene (Surr)	%R:	100.8		90 - 11	0
5035A/8260B	I	Dibromofluoromethane (Surr)	%R:	100.5		77 - 12	0
8270C	2	2,4,6-Tribromophenol (Surr)	%R:	100.6		59 - 13	1
8270C	2	?-Fluorobiphenyl (Surr)	%R:	83.9		45 - 11	2
8270C	2	P-Fluorophenol (Surr)	%R:	72.2		<i>41 -</i> 84	1
8270C	a	114-Terphenyl (Surr)	%R:	92.5		56 - 12	20
8270C	a	15-Nitrobenzene (Surr)	%R:	72.8		35 - 10)5
8270C	1	Phenol-d5 (surr)	%R:	74.4		50 - 10	00

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.		•	Date C	Collected:	05/24/18
Project ID:	Torrence Ave			Time Collected:		10:37
Sample ID:	2-13 (0-1)			Date R	leceived:	05/24/18
Sample No:	18-2892-013			Date R	Reported:	06/06/18
	orted on a dry weight l	basis.				
Analyte			Result	R.L.	Units	Flags
Solids, Total		Method: 2540B				
	: 05/25/18 14:00					
Total Solids			82.58		%	
Volatile Orga	nic Compounds	Method: 5035A/82	260B			
Analysis Date						
Acetone			< 200	200	ug/kg	
Benzene			< 5.0	5.0	ug/kg	
Bromodichlor	omethane		< 5.0	5.0	ug/kg	
Bromoform			< 5.0	5.0	ug/kg	
Bromomethan	e		< 10.0	10.0	ug/kg	
2-Butanone (N	AEK)		< 100	100	ug/kg	
Carbon disulfi	ide		9.7	5.0	ug/kg	
Carbon tetracl	nloride		< 5.0	5.0	ug/kg	
Chlorobenzen	e		< 5.0	5.0	ug/kg	
Chlorodibrom	omethane		< 5.0	5.0	ug/kg	
Chloroethane			< 10.0	10.0	ug/kg	
Chloroform			< 5.0	5.0	ug/kg	
Chloromethan	e		< 10.0	10.0	ug/kg	
1,1-Dichloroe	thane		< 5.0	5.0	ug/kg	
1,2-Dichloroe	thane	5	< 5.0	5.0	ug/kg	
1,1-Dichloroe	thene		< 5.0	5.0	ug/kg	
cis-1,2-Dichlo	oroethene		< 5.0	5.0	ug/kg	
trans-1,2-Dich	loroethene		< 5.0	5.0	ug/kg	
1,2-Dichlorop	ropane		< 5.0	5.0	ug/kg	
cis-1,3-Dichlo	propropene		< 4.0	4.0	ug/kg	
trans-1,3-Dich	loropropene		< 4.0	4.0	ug/kg	
Ethylbenzene			< 5.0	5.0	ug/kg	
2-Hexanone			< 10.0	10.0	ug/kg	
Methyl-tert-bu	utylether (MTBE)		< 5.0	5.0	ug/kg	
4-Methyl-2-pe	entanone (MIBK)		< 10.0	10.0	ug/kg	
Methylene ch	loride		< 20.0	20.0	ug/kg	
Styrene			< 5.0	5.0	ug/kg	
1,1,2,2-Tetrac	hloroethane		< 5.0	5.0	ug/kg	
Tetrachloroet	hene		< 5.0	5.0	ug/kg	
Toluene			< 5.0	5.0	ug/kg	
1,1,1-Trichlor	oethane		< 5.0	5.0	ug/kg	
1,1,2-Trichlor	oethane		< 5.0	5.0	ug/kg	
Trichloroethe	ne		< 5.0	5.0	ug/kg	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.	·	•	Date C	collected:	05/24/18
Project ID:	Torrence Ave			Time (Collected:	10:37
Sample ID:	2-13 (0-1)			Date R	leceived:	05/24/18
Sample No:	18-2892-013			Date R	leported:	06/06/18
-	orted on a dry weight b	asis.			•	
Analyte			Result	R.L.	Units	Flags
Volatile Orga Analysis Date:	nic Compounds : 05/31/18	Method: 5035A/82	260B			
Vinyl acetate			< 10.0	10.0	ug/kg	
Vinyl chloride)		< 10.0	10.0	ug/kg	
Xylene, Total			< 5.0	5.0	ug/kg	
Semi-Volatile Analysis Date		Method: 8270C		Preparation Preparation D		
Acenaphthene			< 330	330	ug/kg	
Acenaphthyle			< 330	330	ug/kg	
Anthracene			< 330	330	ug/kg	
Benzidine			< 330	330	ug/kg	
Benzo(a)anthr	acene		< 330	330	ug/kg	
Benzo(a)pyrer			< 90	90	ug/kg	
Benzo(b)fluor			< 330	330	ug/kg	
Benzo(k)fluor			< 330	330	ug/kg	
Benzo(ghi)per	rylene		< 330	330	ug/kg	
Benzoic acid			< 330	330	ug/kg	
Benzyl alcoho	51		< 330	330	ug/kg	
bis(2-Chloroet	thoxy)methane		< 330	330	ug/kg	
bis(2-Chloroet	thyl)ether		< 330	330	ug/kg	
bis(2-Chlorois	sopropyl)ether		< 330	330	ug/kg	
bis(2-Ethylhe	kyl)phthalate		< 330	330	ug/kg	
	yl phenyl ether		< 330	330	ug/kg	
Butyl benzyl p	ohthalate		< 330	330	ug/kg	
Carbazole			< 330	330	ug/kg	
4-Chloroanilir			< 330	330	ug/kg	
4-Chloro-3-me			< 330	330	ug/kg	
2-Chloronaph			< 330	330	ug/kg	
2-Chlorophen			< 330	330	ug/kg	
	yl phenyl ether		< 330	330	ug/kg	
Chrysene			< 330	330	ug/kg	
Dibenzo(a,h)a			< 90	90	ug/kg	
Dibenzofuran			< 330	330	ug/kg	
1,2-Dichlorob			< 330	330	ug/kg	
1,3-Dichlorob			< 330	330	ug/kg	
1,4-Dichlorob			< 330	330 660	ug/kg	
3,3'-Dichlorob			< 660 < 330	330	ug/kg	
2,4-Dichlorop	nenoi		- 70CC -	220	ug/kg	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.	Date Collected:	05/24/18
Project ID:	Torrence Ave	Time Collected:	10:37
Sample ID:	2-13 (0-1)	Date Received:	05/24/18
Sample No:	18-2892-013	Date Reported:	06/06/18
Results are rep	orted on a dry weight basis.		

Analyte		Result	R.L.	Units	Flags
Semi-Volatile Compounds Analysis Date: 05/29/18	Method: 8270C		Preparation Preparation D		
Diethyl phthalate		< 330	330	ug/kg	
2,4-Dimethylphenol		< 330	330	ug/kg	
Dimethyl phthalate		< 330	330	ug/kg	
Di-n-butyl phthalate		< 330	330	ug/kg	
4,6-Dinitro-2-methylphenol		< 1,600	1600	ug/kg	
2,4-Dinitrophenol		< 1,600	1600	ug/kg	
2,4-Dinitrotoluene		< 250	250	ug/kg	
2,6-Dinitrotoluene		< 260	260	ug/kg	
Di-n-octylphthalate		< 330	330	ug/kg	
Fluoranthene		< 330	330	ug/kg	
Fluorene		< 330	330	ug/kg	
Hexachlorobenzene		< 330	330	ug/kg	
Hexachlorobutadiene		< 330	330	ug/kg	
Hexachlorocyclopentadiene		< 330	330	ug/kg	
Hexachloroethane		< 330	330	ug/kg	
Indeno(1,2,3-cd)pyrene		< 330	330	ug/kg	
Isophorone		< 330	330	ug/kg	
2-Methylnaphthalene		< 330	330	ug/kg	
2-Methylphenol		< 330	330	ug/kg	
3 & 4-Methylphenol		< 330	330	ug/kg	
Naphthalene		< 330	330	ug/kg	
2-Nitroaniline		< 1,600	1600	ug/kg	
3-Nitroaniline		< 1,600	1600	ug/kg	
4-Nitroaniline		< 1,600	1600	ug/kg	
Nitrobenzene		< 260	260	ug/kg	
2-Nitrophenol		< 1,600	1600	ug/kg	
4-Nitrophenol		< 1,600	1600	ug/kg	
n-Nitrosodi-n-propylamine		< 90	90	ug/kg	
n-Nitrosodimethylamine		< 330	330	ug/kg	
n-Nitrosodiphenylamine		< 330	330	ug/kg	
Pentachlorophenol		< 330	330	ug/kg	
Phenanthrene		< 330	330	ug/kg	
Phenol		< 330	330	ug/kg	
Pyrene		< 330	330	ug/kg	
Pyridine		< 330	330	ug/kg	
1,2,4-Trichlorobenzene		< 330	330	ug/kg	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.	•	,	•		Date C	Collected:	05/24/18
Project ID:	Torrence Ave					Time	Collected:	10:37
Sample ID:	2-13 (0-1)					Date F	Received:	05/24/18
Sample No:	18-2892-013					Date F	Reported:	06/06/18
-	orted on a dry weight ba	isis.					-	
Analyte				I	Result	R.L.	Units	Flags
Semi-Volatile Analysis Date:		Method: 8	8270C			Preparation Preparation I		
2,4,5-Trichloro	phenol			<	330	330	ug/kg	
2,4,6-Trichloro	phenol			<	330	330	ug/kg	
pH @ 25°C, 1 Analysis Date:	:2 05/29/18 11:25	Method: 9	9045D 20	004				
pH @ 25°C, 1:	2				8.57		Units	
Total Metals Analysis Date:	05/31/18	Method:	6010C			Preparation Preparation I		
Antimony				<	1.0	1.0	mg/kg	
Arsenic					3.0	1.0	mg/kg	
Barium					60.6	0.5	mg/kg	
Beryllium					0.7	0.5	mg/kg	
Cadmium				<	0.5	0.5	mg/kg	
Calcium					18,500	50	mg/kg	
Chromium					19.8	0.5	mg/kg	
Cobalt					8.7	0.5	mg/kg	
Copper					17.7	0.5	mg/kg	
Iron					18,100	5.0	mg/kg	
Lead					16.2	0.5	mg/kg	
Magnesium					12,700	50	mg/kg	
Manganese					157	0.5	mg/kg	
Nickel					23.9	0.5	mg/kg	
Potassium					1,470	50	mg/kg	
Selenium				<	1.0	1.0	mg/kg	
Silver					0.5	0.2	mg/kg	
Sodium					2,580	50	mg/kg	
Thallium				<	1.0	1.0	mg/kg	
Vanadium					23.4	1.0	mg/kg	
Zinc					55.6	1.0	mg/kg	
Total Mercur Analysis Date:		Method:	7471B					
Mercury				<	0.05	0.05	mg/kg	
TCLP Metals Analysis Date:		Method:	6010C			Preparation Preparation		
Arsenic				<	0.010	0.010	mg/L	
Barium				/	1.0	1.0	mg/Ľ	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.	Date Collected:	05/24/18
Project ID:	Torrence Ave	Time Collected:	10:37
Sample ID:	2-13 (0-1)	Date Received:	05/24/18
Sample No:	18-2892-013	Date Reported:	06/06/18
Results are rep	orted on a dry weight basis.		

Analyte		Result	R.L.	Units	Flags
TCLP Metals Method 1311 Analysis Date: 06/01/18	Method: 6010C		Preparation Preparation D		
Beryllium		< 1.00	1.0	mg/L	
Cadmium		< 0.005	0.005	mg/L	
Chromium		< 0.005	0.005	mg/L	
Cobalt		< 0.1	0.1	mg/L	
Copper		< 0.1	0.1	mg/L	
lron		0.2	0.1	mg/L	
Lead		0.011	0.005	mg/L	
Manganese		2.8	0.1	mg/L	
Nickel		< 0.1	0.1	mg/L	
Selenium		< 0.010	0.010	mg/L	
Silver		< 0.005	0.005	mg/L	
Zinc		< 0.1	0.1	mg/L	
TCLP Mercury Method 1311 Analysis Date: 05/31/18	Method: 7470A				
Mercury		< 0.0005	0.0005	mg/L	
TCLP Extraction Analysis Date: 05/30/18	Method: 1311				
TCLP Extraction		Complet	e		
SPLP Metais Method 1312 Analysis Date: 05/31/18	Method: 6010C		Preparation Preparation D		
Arsenic		< 0.010	0.010	mg/L	
Barium		< 1.0	1.0	mg/L	
Beryllium		< 0.004	0.004	mg/L	
Cadmium		< 0.005	0.005	mg/L	
Chromium		0.057	0.005	mg/L	
Cobalt		< 0.1	0.1	mg/L	
Copper		0.070	0.005	mg/L	
Iron	2.0	46.0	0.1	mg/L	
Lead		0.122	0.005	mg/L	
Manganese		0.4	0.1	mg/L	
Nickel		< 0.1	0.1	mg/L	
Selenium		< 0.010	0.010	mg/L	
Silver		< 0.005	0.005	mg/L	
Zinc		0.2	0.1	mg/L	

- - - - - - - -

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client: H	UFF & HUFF INC.			Date C	ollected: 0	5/24/18
Project ID: To	orrence Ave			Time C	Collected: 1	0:37
Sample ID: 2-	-13 (0-1)			Date R	eceived: 0	5/24/18
Sample No: 18	8-2892-013			Date R	eported: 0	6/06/18
Results are report	ed on a dry weight basis.					
Analyte		Resu	lt	R.L.	Units	Flags
SPLP Mercury N Analysis Date: 03						
Mercury		< 0.00	05	0.0005	mg/L	
SPLP Extraction Analysis Date: 03						
SPLP Metals Extr	raction	Com	plete			
Sample QC Summary: Surrogate Recovery					%R Limi	ts
Method	Analyte	QC	C Result	lt Low High		gh
5035A/8260B	4-Bromofluorobenzene (Surr)	%R:	99.1		86 - 11	7
5035A/8260B	d8-Toluene (Surr)	%R:	101.7		90 - 11	0
5035A/8260B	Dibromofluoromethane (Surr) %R:	103.6		77 - 12	20
8270C	2,4,6-Tribromophenol (Surr)	%R:	<i>91.3</i>		59 - 1 3	31
8270C	2-Fluorobiphenyl (Surr)	%R:	76.8		45 - 11	2
8270C	2-Fluorophenol (Surr)	%R:	66.6		41 - 8 4	¢
8270C	d14-Terphenyl (Surr)	%R:	7 9 .4		56 - 12	20
8270C	d5-Nitrobenzene (Surr)	%R:	59.9		35 - 10)5
8270C	Phenol-d5 (surr)	%R:	68.3		50 - 10	00

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC		-			05/24/18
Project ID:	Torrence Ave					10:35
Sample ID:	2-14 (0-5)			Date R	Received:	05/24/18
Sample No:	18-2892-014			Date R	Reported:	06/06/18
-	orted on a dry weight	basis.			•	
Analyte			Result	R.L.	Units	Flags
Solids, Total		Method: 2540B				
	05/25/18 14:00					
Total Solids			79.59		%	
Volatile Orga	nic Compounds	Method: 5035A/82	260B			
Analysis Date:						
Acetone			< 200	200	ug/kg	
Benzene			< 5.0	5.0	ug/kg	
Bromodichlor	omethane		< 5.0	5.0	ug/kg	
Bromoform			< 5.0	5.0	ug/kg	
Bromomethan	e		< 10.0	10.0	ug/kg	
2-Butancne (N	AEK)		< 100	100	ug/kg	
Carbon disulfi	de		< 5.0	5.0	ug/kg	
Carbon tetrach	nloride		< 5.0	5.0	ug/kg	
Chlorobenzen	e		< 5.0	5.0	ug/kg	
Chlorodibrom	omethane		< 5.0	5.0	ug/kg	
Chloroethane			< 10.0	10.0	ug/kg	
Chloroform			< 5.0	5.0	ug/kg	
Chloromethan	e		< 10.0	10.0	ug/kg	
1,1-Dichloroet	thane		< 5.0	5.0	ug/kg	
1,2-Dichloroe	thane		< 5.0	5.0	ug/kg	
1,1-Dichloroe	thene		< 5.0	5.0	ug/kg	
cis-1,2-Dichlo	roethene		< 5.0	5.0	ug/kg	
trans-1,2-Dich	loroethene		< 5.0	5.0	ug/kg	
1,2-Dichlorop	ropane		< 5.0	5.0	ug/kg	
cis-1,3-Dichlo	ropropene		< 4.0	4.0	ug/kg	
trans-1,3-Dich	loropropene		< 4.0	4.0	ug/kg	
Ethylbenzene			< 5.0	5.0	ug/kg	
2-Hexanone			< 10.0	10.0	ug/kg	
Methyl-tert-bi	itylether (MTBE)		< 5.0	5.0	ug/kg	
4-Methyl-2-pe	entanone (MIBK)		< 10.0	10.0	ug/kg	
Methylene ch	loride		< 20.0	20.0	ug/kg	
Styrene			< 5.0	5.0	ug/kg	
1,1,2,2-Tetrac			< 5.0	5.0	ug/kg	
Tetrachloroetl	hene		< 5.0	5.0	ug/kg	
Toluene			< 5.0	5.0	ug/kg	
1,1,1-Trichlor			< 5.0	5.0	ug/kg	
1,1,2-Trichlor			< 5.0	5.0	ug/kg	
Trichloroethe	ne		< 5.0	5.0	ug/kg	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.	v	•	Date C	ollected:	05/24/18
Project ID:	Torrence Ave			Time C	Collected:	10:35
Sample ID:	2-14 (0-5)			Date R	eceived:	05/24/18
Sample No:	18-2892-014				eported:	06/06/18
-	ported on a dry weight b	acic		20001		
Analyte	Softed on a dry weight o	u515.	Result	R.L.	Units	Flags
		N. (1.). 5025 A /0/		1021		
Volatile Orga Analysis Date	nic Compounds : 05/31/18	Method: 5035A/82				
Vinyl acetate			< 10.0	10.0	ug/kg	
Vinyl chloride	;		< 10.0	10.0	ug/kg	
Xylene, Total			< 5.0	5.0	ug/kg	
Semi-Volatile Analysis Date		Method: 8270C		Preparation Preparation D		
Acenaphthene			< 330	330	ug/kg	
Acenaphthyle			< 330	330	ug/kg	
Anthracene			< 330	330	ug/kg	
Benzidine			< 330	330	ug/kg	
Benzo(a)anthr	acene		< 330	330	ug/kg	
Benzo(a)pyrei			< 90	90	ug/kg	
Benzo(b)fluor			< 330	330	ug/kg	
Benzo(k)fluor			< 330	330	ug/kg	
Benzo(ghi)per	rylene		< 330	330	ug/kg	
Benzoic acid	•		< 330	330	ug/kg	
Benzyl alcoho	ol		< 330	330	ug/kg	
bis(2-Chloroe	thoxy)methane		< 330	330	ug/kg	
bis(2-Chloroe	thyl)ether		< 330	330	ug/kg	
bis(2-Chlorois	sopropyl)ether		< 330	330	ug/kg	
bis(2-Ethylhe	xyl)phthalate		< 330	330	ug/kg	
4-Bromophen	yl phenyl ether		< 330	330	ug/kg	
Butyl benzyl p	ohthalate		< 330	330	ug/kg	
Carbazole			< 330	330	ug/kg	
4-Chloroanili	ne		< 330	330	ug/kg	
4-Chloro-3-m			< 330	330	ug/kg	
2-Chloronaph			< 330	330	ug/kg	
2-Chlorophen			< 330	330	ug/kg	
4-Chlorophen	yl phenyl ether		< 330	330	ug/kg	
Chrysene			< 330	330	ug/kg	
Dibenzo(a,h)a			< 90	90	ug/kg	
Dibenzofuran			< 330	330	ug/kg	
1,2-Dichlorob			< 330	330	ug/kg	
1,3-Dichlorob			< 330	330	ug/kg	
1,4-Dichlorob			< 330	330	ug/kg	
3,3'-Dichlorol			< 660	660	ug/kg	
2,4-Dichlorop	henol		< 330	330	ug/kg	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.	Date Collected:	05/24/18
Project ID:	Torrence Ave	Time Collected:	10:35
Sample ID:	2-14 (0-5)	Date Received:	05/24/18
Sample No:	18-2892-014	Date Reported:	06/06/18
Results are rep	orted on a dry weight basis.		

Analyte		Result	R.L.	Units	Flags
Semi-Volatile Compounds Analysis Date: 05/29/18	Method: 8270C	Preparation Method 3540C Preparation Date: 05/24/18			
Diethyl phthalate		< 330	330	ug/kg	
2,4-Dimethylphenol		< 330	330	ug/kg	
Dimethyl phthalate		< 330	330	ug/kg	
Di-n-butyl phthalate		< 330	330	ug/kg	
4,6-Dinitro-2-methylphenol		< 1,600	1600	ug/kg	
2,4-Dinitrophenol		< 1,600	1600	ug/kg	
2,4-Dinitrotoluene		< 250	250	ug/kg	
2,6-Dinitrotoluene		< 260	260	ug/kg	
Di-n-octylphthalate		< 330	330	ug/kg	
Fluoranthene		< 330	330	ug/kg	
Fluorene		< 330	330	ug/kg	
Hexachlorobenzene		< 330	330	ug/kg	
Hexachlorobutadiene		< 330	330	ug/kg	
Hexachlorocyclopentadiene		< 330	330	ug/kg	
Hexachloroethane		< 330	330	ug/kg	
Indeno(1,2,3-cd)pyrene		< 330	330	ug/kg	
Isophorone		< 330	330	ug/kg	
2-Methylnaphthalene		< 330	330	ug/kg	
2-Methylphenol		< 330	330	ug/kg	
3 & 4-Methylphenol		< 330	330	ug/kg	
Naphthalene		< 330	330	ug/kg	
2-Nitroaniline		< 1,600	1600	ug/kg	
3-Nitroaniline		< 1,600	1600	ug/kg	
4-Nitroaniline		< 1,600	1600	ug/kg	
Nitrobenzene		< 260	260	ug/kg	
2-Nitrophenol		< 1,600	1600	ug/kg	
4-Nitrophenol		< 1,600	1600	ug/kg	
n-Nitrosodi-n-propylamine		< 90	90	ug/kg	
n-Nitrosodimethylamine		< 330	330	ug/kg	
n-Nitrosodiphenylamine		< 330	330	ug/kg	
Pentachlorophenol		< 330	330	ug/kg	
Phenanthrene		< 330	330	ug/kg	
Phenol		< 330	330	ug/kg	
Pyrene		< 330	330	ug/kg	
Pyridine		< 330	330	ug/kg	
1,2,4-Trichlorobenzene		< 330	330	ug/kg	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.				Date C	collected:	05/24/18
Project ID:	Torrence Ave				Time (Collected:	10:35
Sample ID:	2-14 (0-5)				Date R	Received:	05/24/18
Sample No:	18-2892-014				Date R	Reported:	06/06/18
-	orted on a dry weight ba	asis.					
Analyte	/ ,			Result	R.L.	Units	Flags
Semi-Volatile Analysis Date:		Method: 8270	С		Preparation Preparation I		
2,4,5-Trichlor	ophenol		<	330	330	ug/kg	
2,4,6-Trichlor	ophenol		<	330	330	ug/kg	
pH @ 25°C, 1 Analysis Date:	:2 : 05/29/18 11:25	Method: 9045	D 2004				
рН @ 25°С, 1	:2			8.75		Units	
Total Metals Analysis Date	: 05/31/18	Method: 6010	С		Preparation Method 3050B Preparation Date: 05/25/18		
Antimony			<	1.0	1.0	mg/kg	
Arsenic				10.0	1.0	mg/kg	
Barium				50.7	0.5	mg/kg	
Beryllium				0.7	0.5	mg/kg	
Cadmium			<	0.5	0.5	mg/kg	
Calcium				2,210	50	mg/kg	
Chromium				21.3	0.5	mg/kg	
Cobalt				12.5	0.5	mg/kg	
Copper				18.4	0.5	mg/kg	
Iron				30,800	5.0	mg/kg	
Lead				17.6	0.5	mg/kg	
Magnesium				4,310	50	mg/kg	
Manganese				141	0.5	mg/kg	
Nickel				29.2	0.5	mg/kg	
Potassium				1,280	50	mg/kg	
Selenium			<	1.0	1.0	mg/kg	
Silver				0.8	0.2	mg/kg	
Sodium				3,330	50	mg/kg	
Thallium			<	1.0	1.0	mg/kg	
Vanadium				38.1	1.0	mg/kg	
Zinc				54.1	1.0	mg/kg	
Total Mercur Analysis Date		Method: 7471	B				
Mercury			<	0.05	0.05	mg/kg	
TCLP Metals Analysis Date	Method 1311 : 06/01/18	Method: 6010	С		Preparation Preparation I		
Arsenic			<	0.010	0.010	mg/L	
Barium				1.0	1.0	mg/L	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.	Date Collected:	05/24/18
Project ID:	Torrence Ave	Time Collected:	10:35
Sample ID:	2-14 (0-5)	Date Received:	05/24/18
Sample No:	18-2892-014	Date Reported:	06/06/18
Results are rep	orted on a dry weight basis.		

Analyte		Result	R.L.	Units	Flags
TCLP Metals Method 1311 Analysis Date: 06/01/18	Method: 6010C	Preparation Method 3010A Preparation Date: 05/30/18			
Beryllium		< 1.00	1.0	mg/L	
Cadmium		< 0.005	0.005	mg/L	
Chromium		< 0.005	0.005	mg/L	
Cobalt		< 0.1	0.1	mg/L	
Copper		< 0.1	0.1	ıng/L	
lron		0.7	0.1	mg/L	
Lead		0.010	0.005	mg/L	
Manganese		< 0.1	0.1	mg/L	
Nickel		< 0.1	0.1	mg/L	
Selenium		< 0.010	0.010	mg/L	
Silver		< 0.005	0.005	mg/L	
Zinc		< 0.1	0.1	mg/L	
TCLP Mercury Method 1311 Analysis Date: 05/31/18	Method: 7470A				
Mercury		< 0.0005	0.0005	mg/L	
TCLP Extraction Analysis Date: 05/30/18	Method: 1311				
TCLP Extraction		Complete			
SPLP Metals Method 1312 Analysis Date: 05/31/18	Method: 6010C	Preparation Method 3010A Preparation Date: 05/31/18			
Arsenic		0.028	0.010	mg/L	
Barium		< 1.0	1.0	mg/L	
Beryllium		< 0.004	0.004	mg/L	
Cadmium		< 0.005	0.005	mg/L	
Chromium		0.121	0.005	ing/L	
Cobalt		< 0.1	0.1	mg/L	
Copper		0.090	0.005	mg/L	
lron		117	0.1	mg/L	
Lead		0.065	0.005	mg/L	
Manganese		0.4	0.1	mg/L	
Nickel		0.1	0.1	mg/L	
Selenium		< 0.010	0.010	mg/L	
Silver		< 0.005	0.005	mg/L	
Zinc		0.3	0.1	mg/L	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client: H	IUFF & HUFF INC.			Date C	ollected: 05	/24/18
Project ID: 7	Corrence Ave	ence Ave Time Collected: 10:35				
Sample ID: 2	-14 (0-5)			Date R	eceived: 05	/24/18
Sample No: 1	8-2892-014			Date R	eported: 06	/06/18
Results are report	ted on a dry weight basis.					
Analyte		Resu	lt	R.L.	Units	Flags
SPLP Mercury Analysis Date: 0		l: 7470A				
Mercury		< 0.00	05	0.0005	mg/L	
SPLP Extraction Analysis Date: 0		l: 1312				
SPLP Metals Ext	raction	Com	plete			
Sample QC Sum	mary: Surrogate Recovery	ary: Surrogate Recovery %R Li		%R Limits	7	
Method	Analyte	QC	Result	T TT: - 1-		
5035A/8260B	4-Bromofluorobenz	ene (Surr) %R:	98.5		86 - 117	,
5035A/8260B	d8-Toluene (Surr)	%R:	100.4		90 - 110)
5035A/8260B	Dibromofluorometh	ane (Surr) %R:	100.2		77 - 120)
8270C	2,4,6-Tribromopher	iol (Surr) %R:	87.5		59 - 131	
8270C	2-Fluorobiphenyl (S	Surr) %R:	64.4		45 - 112	
8270C	2-Fluorophenol (Su	rr) %R:	59.9		41 - 84	
8270C	d14-Terphenyl (Sur	r) %R:	78.1		56 - 120)
8270C	d5-Nitrobenzene (S	urr) %R:	68.9		35 - 105	
8270C	Phenol-d5 (surr)	%R:	62.5		50 - 100	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Result	Time Co Date Ree Date Rep	ceived:	10:45 05/24/18 06/06/18
Result			
Result	Date Re	ported:	06/06/18
Result			
Result			
	R.L.	Units	Flags
79.66		%	
B			
< 200	200	ug/kg	
< 5.0	5.0	ug/kg	
< 5.0	5.0	ug/kg	
< 5.0	5.0	ug/kg	
< 10.0	10.0	ug/kg	
< 100	100	ug/kg	
< 5.0	5.0	ug/kg	
< 5.0	5.0	ug/kg	
< 5.0	5.0	ug/kg	
< 5.0	5.0	ug/kg	
< 10.0	10.0	ug/kg	
< 5.0	5.0	ug/kg	
< 10.0	10.0	ug/kg	
< 5.0	5.0	ug/kg	
< 5.0	5.0	ug/kg	
< 5.0	5.0	ug/kg	
< 5.0	5.0	ug/kg	
< 5.0	5.0	ug/kg	
< 5.0	5.0	ug/kg	
< 4.0	4.0	ug/kg	
< 4.0	4.0	ug/kg	
< 5.0	5.0	ug/kg	
< 10.0	10.0	ug/kg	
< 5.0	5.0	ug/kg	
	10.0	ug/kg	
	20.0	ug/kg	
< 5.0	5.0	ug/kg	
< 5.0	5.0	ug/kg	
		ug/kg	
		ug/Kg	
< 5.0	5.0 5.0	ug/kg	
< 5.0 < 5.0			
< 5.0	5.0	ug/kg	
	< 5.0 < 10.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 4.0 < 4.0 < 5.0 < 10.0 < 5.0 < 10.0 < 5.0 < 5.0	< 5.0	5.0 5.0 5.0 ug/kg 10.0 10.0 ug/kg 5.0 5.0 ug/kg 4.0 4.0 ug/kg 5.0 5.0 ug/kg

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

		2				05/04/10
Client:	HUFF & HUFF INC.				collected:	05/24/18
Project ID:	Torrence Ave				Collected:	10:45
Sample ID:	2-17 (0-5)				Received:	05/24/18
Sample No:	18-2892-017			Date R	Reported:	06/06/18
Results are rep	orted on a dry weight b	basis.				
Analyte			Result	R.L.	Units	Flags
Volatile Orga Analysis Date:	nic Compounds 05/31/18	Method: 5035A/8	260B			
Vinyl acetate			< 10.0	10.0	ug/kg	
Vinyl chloride			< 10.0	10.0	ug/kg	
Xylene, Total			< 5.0	5.0	ug/kg	
Semi-Volatile Analysis Date:		Method: 8270C		Preparation Preparation I		
Acenaphthene			< 330	330	ug/kg	
Acenaphthyler			< 330	330	ug/kg	
Anthracene			< 330	330	ug/kg	
Benzidine			< 330	330	ug/kg	
Benzo(a)anthr	acene		< 330	330	ug/kg	
Benzo(a)pyren			< 90	90	ug/kg	
Benzo(b)fluor			< 330	330	ug/kg	
Benzo(k)fluor			< 330	330	ug/kg	
Benzo(ghi)per	ylene		< 330	330	ug/kg	
Benzoic acid	-		< 330	330	ug/kg	
Benzyl alcoho	1		< 330	330	ug/kg	
bis(2-Chloroet	thoxy)methane		< 330	330	ug/kg	
bis(2-Chloroet	thyl)ether		< 330	330	ug/kg	
bis(2-Chlorois	opropyl)ether		< 330	330	ug/kg	
bis(2-Ethylhex	(yl)phthalate		< 330	330	ug/kg	
4-Bromopheny	yl phenyl ether		< 330	330	ug/kg	
Butyl benzyl p	ohthalate		< 330	330	ug/kg	
Carbazole			< 330	330	ug/kg	
4-Chloroanilir	ne		< 330	330	ug/kg	
4-Chloro-3-me	ethylphenol		< 330	330	ug/kg	
2-Chloronapht			< 330	330	ug/kg	
2-Chlorophene			< 330	330	ug/kg	
4-Chloropheny	yl phenyl ether		< 330	330	ug/kg	
Chrysene			< 330	330	ug/kg	
Dibenzo(a,h)a			< 90	90	ug/kg	
Dibenzofuran			< 330	330	ug/kg	
1,2-Dichlorob			< 330	330	ug/kg	
1,3-Dichlorob			< 330	330	ug/kg	
1,4-Dichlorob			< 330	330	ug/kg	
3,3'-Dichlorob			< 660	660	ug/kg	
2,4-Dichlorop	henol		< 330	330	ug/kg	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.	Date Collected:	05/24/18
Project ID:	Torrence Ave	Time Collected:	10:45
Sample ID:	2-17 (0-5)	Date Received:	05/24/18
Sample No:	18-2892-017	Date Reported:	06/06/18
Results are rep	orted on a dry weight basis.		

Analyte		Result	R.L.	Units	Flags	
Semi-Volatile Compounds Analysis Date: 05/29/18	Method: 8270C		Preparation Method 3540C Preparation Date: 05/24/18			
Diethyl phthalate		< 330	330	ug/kg		
2,4-Dimethylphenol		< 330	330	ug/kg		
Dimethyl phthalate		< 330	330	ug/kg		
Di-n-butyl phthalate		< 330	330	ug/kg		
4,6-Dinitro-2-methylphenol		< 1,600	1600	ug/kg		
2,4-Dinitrophenol		< 1,600	1600	ug/kg		
2,4-Dinitrotoluene		< 250	250	ug/kg		
2,6-Dinitrotoluene		< 260	260	ug/kg		
Di-n-octylphthalate		< 330	330	ug/kg		
Fluoranthene		< 330	330	ug/kg		
Fluorene		< 330	330	ug/kg		
Hexachlorobenzene		< 330	330	ug/kg		
Hexachlorobutadiene		< 330	330	ug/kg		
Hexachlorocyclopentadiene		< 330	330	ug/kg		
Hexachloroethane		< 330	330	ug/kg		
Indeno(1,2,3-cd)pyrene		< 330	330	ug/kg		
Isophorone		< 330	330	ug/kg		
2-Methylnaphthalene		< 330	330	ug/kg		
2-Methylphenol		< 330	330	ug/kg		
3 & 4-Methylphenol		< 330	330	ug/kg		
Naphthalene		< 330	330	ug/kg		
2-Nitroaniline		< 1,600	1600	ug/kg		
3-Nitroaniline		< 1,600	1600	ug/kg		
4-Nitroaniline		< 1,600	1600	ug/kg		
Nitrobenzene		< 260	260	ug/kg		
2-Nitrophenol		< 1,600	1600	ug/kg		
4-Nitrophenol		< 1,600	1600	ug/kg		
n-Nitrosodi-n-propylamine		< 90	90	ug/kg		
n-Nitrosodimethylamine		< 330	330	ug/kg		
n-Nitrosodiphenylamine		< 330	330	ug/kg		
Pentachlorophenol		< 330	330	ug/kg		
Phenanthrene		< 330	330	ug/kg		
Phenol		< 330	330	ug/kg		
Pyrene		< 330	330	ug/kg		
Pyridine		< 330	330	ug/kg		
1,2,4-Trichlorobenzene		< 330	330	ug/kg		

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.			•			Collected:	05/24/18
Project ID:	Torrence Ave						Collected:	10:45
Sample ID:	2-17 (0-5)					Date F	leceived:	05/24/18
Sample No:	18-2892-017					Date F	Reported:	06/06/18
Results are rep	orted on a dry weight ba	asis.						
Analyte]	Result	R.L.	Units	Flags
Semi-Volatile Analysis Date:		Method:	8270C			Preparation Preparation I		
2,4,5-Trichloro	ophenol			<	330	330	ug/kg	
2,4,6-Trichloro	ophenol			<	330	330	ug/kg	
pH @ 25°C, 1 Analysis Date:	:2 05/29/18 11:25	Method:	9045D 20	004				
pH @ 25°C, 1	:2				8.95		Units	
Total Metals Analysis Date:	: 05/31/18	Method:	6010C			Preparation Preparation I		
Antimony				<	1.0	1.0	mg/kg	
Arsenic					7.2	1.0	mg/kg	
Barium					46.5	0.5	mg/kg	
Beryllium					0.6	0.5	mg/kg	
Cadmium				<	0.5	0.5	mg/kg	
Calcium					46,800	50	mg/kg	
Chromium					16.5	0.5	mg/kg	
Cobalt					8.5	0.5	mg/kg	
Copper					17.4	0.5	mg/kg	
Iron					20,100	5.0	mg/kg	
Lead					12.8	0.5	mg/kg	
Magnesium					17,400	50	mg/kg	
Manganese					252	0.5	mg/kg	
Nickel					22.2	0.5	mg/kg	
Potassium					1,550	50	mg/kg	
Selenium				<	1.0	1.0	mg/kg	
Silver					0.5	0.2	mg/kg	
Sodium					2,050	50	mg/kg	
Thallium				<	1.0	1.0	mg/kg	
Vanadium					22.3	1.0	mg/kg	
Zinc					44.7	1.0	mg/kg	
Total Mercur Analysis Date		Method:	7471B					
Mercury				<	0.05	0.05	mg/kg	
TCLP Metals Analysis Date	Method 1311 : 06/01/18	Method:	6010C			Preparation Preparation		
Arsenic				<	0.010	0.010	mg/L	
					1.0	1.0	mg/L	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.	Date Collected:	05/24/18
Project ID:	Torrence Ave	Time Collected:	10:45
Sample ID:	2-17 (0-5)	Date Received:	05/24/18
Sample No:	18-2892-017	Date Reported:	06/06/18
Results are rep	orted on a dry weight basis.		

Analyte		Result	R.L.	Units	Flags
TCLP Metals Method 1311 Analysis Date: 06/01/18	Method: 6010C		Preparation Preparation D		
Beryllium		< 1.00	1.0	mg/L	
Cadmium		< 0.005	0.005	mg/L	
Chromium		< 0.005	0.005	mg/L	
Cobalt		< 0.1	0.1	mg/L	
Copper		< 0.1	0.1	mg/L	
Iron		1.6	0.1	mg/L	
Lead		0.024	0.005	mg/L	
Manganese		2.0	0.1	mg/L	
Nickel		< 0.1	0.1	mg/L	
Selenium		0.011	0.010	mg/L	
Silver		< 0.005	0.005	mg/L	
Zinc		< 0.1	0.1	mg/L	
TCLP Mercury Method 1311 Analysis Date: 05/31/18	Method: 7470A				
Mercury		< 0.0005	0.0005	mg/L	
TCLP Extraction Analysis Date: 05/30/18	Method: 1311				
TCLP Extraction		Comple	te		
SPLP Metals Method 1312 Analysis Date: 06/01/18	Method: 6010C		Preparation Preparation D		
Arsenic		0.020	0.010	mg/L	
Barium		< 1.0	1.0	mg/L	
Beryllium		0.006	0.004	mg/L	
Cadmium		< 0.005	0.005	mg/L	
Chromium		0.187	0.005	mg/L	
Cobalt		< 0.1	0.1	mg/L	
Copper		0.127	0.005	mg/L	
Iron		123	0.1	mg/L	
Lead		0.082	0.005	mg/L	
Manganese		0.7	0.1	mg/L	
Nickel		0.2	0.1	mg/L	
Selenium		< 0.010	0.010	mg/L	
Silver		< 0.005	0.005	mg/L	
Zinc		0.5	0.1	mg/L	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

			i inary trout i	Port				
Client: H	IUFF & H	IUFF INC.				Date C	ollected:	05/24/18
Project ID: 7	Forrence A	Ave				Time C	Collected:	10:45
Sample ID: 2	2-17 (0-5)	1				Date R	eceived:	05/24/18
Sample No: 1	8-2892-0	17				Date R	eported:	06/06/18
Results are report	ted on a d	ry weight ba	asis.					
Analyte				Resu	lt	R.L .	Units	Flags
SPLP Mercury Analysis Date: 0		312	Method: 7470A					
Mercury				< 0.00	05	0.0005	mg/L	
SPLP Extraction Analysis Date: (Method: 1312					
SPLP Metals Ext	raction			Com	plete			
Sample QC Sum	mary:	Surrogate	Recovery				%R Li	mits
Method		Analyte		QC	Result		Low	High
5035A/8260B		4-Bromof	luorobenzene (Surr)	%R:	101.2		86 -	117
5035A/8260B		d8-Toluer	ne (Surr)	%R:	102.4		90 -	110
5035A/8260B		Dibromof	luoromethane (Surr)	%R:	104.2		77 -	120
8270C		2,4,6-Trib	romophenol (Surr)	%R:	<i>89</i>		59 -	131
8270C		2-Fluorol	oiphenyl (Surr)	%R:	67.2		45 -	112
8270C		2-Fluorop	ohenol (Surr)	%R:	60.5		41 -	84
8270C		d14-Terp	henyl (Surr)	%R:	77.7		56 -	120
8270C		d5-Nitrob	enzene (Surr)	%R:	72.6		35 -	105
8270C		Phenol-d.	5 (surr)	%R:	64.6		50 -	100

First Environmental

Laboratories, Inc.

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:HUFF & HUFF INCProject ID:Torrence AveSample ID:2-18 (0-5)Sample No:18-2892-018Results are reported on a dry weight		_	Date Collected: Time Collected: Date Received: Date Reported:		Time Collected: Date Received:		05/24/18 10:48 05/24/18 06/06/18	
Analyte		Result	R.L.	Units	Flags			
Solids, Total Analysis Date: 05/25/18 14:00	Method: 2540B							
Total Solids		72.01		%				
Volatile Organic Compounds Analysis Date: 05/31/18	Method: 5035A/820	50 B						
Acetone		< 200	200	ug/kg				
Benzene		< 5.0	5.0	ug/kg				
Bromodichloromethane		< 5.0	5.0	ug/kg				
Bromoform		< 5.0	5.0	ug/kg				
Bromomethane		< 10.0	10.0	ug/kg				
2-Butanone (MEK)		< 100	100	ug/kg				
Carbon disulfide		< 5.0	5.0	ug/kg				
Carbon tetrachloride		< 5.0	5.0	ug/kg				
Chlorobenzene		< 5.0	5.0	ug/kg				
Chlorodibromomethane		< 5.0	5.0	ug/kg				
Chloroethane		< 10.0	10.0	ug/kg				
Chloroform		< 5.0	5.0	ug/kg				
Chloromethane		< 10.0	10.0	ug/kg				
1,1-Dichloroethane		< 5.0	5.0	ug/kg				
1,2-Dichloroethane		< 5.0	5.0	ug/kg				
1,1-Dichloroethene		< 5.0	5.0	ug/kg				
cis-1,2-Dichloroethene		< 5.0	5.0	ug/kg				
trans-1,2-Dichloroethene		< 5.0	5.0	ug/kg				
1,2-Dichloropropane		< 5.0	5.0	ug/kg				
cis-1,3-Dichloropropene		< 4.0	4.0	ug/kg				
trans-1,3-Dichloropropene		< 4.0	4.0	ug/kg				
Ethylbenzene		< 5.0	5.0	ug/kg				
2-Hexanone		< 10.0	10.0	ug/kg				
Methyl-tert-butylether (MTBE)		< 5.0	5.0	ug/kg				
4-Methyl-2-pentanone (MIBK)		< 10.0	10.0	ug/kg				
Methylene chloride		< 20.0	20.0	ug/kg				
Styrene		< 5.0	5.0	ug/kg				
1,1,2,2-Tetrachloroethane		< 5.0	5.0	ug/kg				
Tetrachloroethene		< 5.0	5.0	ug/kg				
Toluene		< 5.0	5.0	ug/kg				
1,1,1-Trichloroethane		< 5.0	5.0	ug/kg				
1,1,2-Trichloroethane		< 5.0	5.0	ug/kg				
Trichloroethene		< 5.0	5.0	ug/kg				

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC		•	Date C	ollected:	05/24/18
Project ID:	Torrence Ave			Time C	Collected:	10:48
Sample ID:	2-18 (0-5)			Date R	eceived:	05/24/18
Sample No:	18-2892-018			Date R	eported:	06/06/18
-	orted on a dry weight	basis.				
Analyte			Result	R.L.	Units	Flags
Volatile Orga Analysis Date:	nic Compounds 05/31/18	Method: 5035A/82	260B			
Vinyl acetate			< 10.0	10.0	ug/kg	
Vinyl chloride	:		< 10.0	10.0	ug/kg	
Xylene, Total			< 5.0	5.0	ug/kg	
Semi-Volatile Analysis Date		Method: 8270C		Preparation Preparation D		
Acenaphthene			< 330	330	ug/kg	
Acenaphthyle			< 330	330	ug/kg	
Anthracene			< 330	330	ug/kg	
Benzidine			< 330	330	ug/kg	
Benzo(a)anthr	acene		< 330	330	ug/kg	
Benzo(a)pyrer	ne		< 90	90	ug/kg	
Benzo(b)fluor	anthene		< 330	330	ug/kg	
Benzo(k)fluor	anthene		< 330	330	ug/kg	
Benzo(ghi)per	ylene		< 330	330	ug/kg	
Benzoic acid			< 330	330	ug/kg	
Benzyl alcoho	1		< 330	330	ug/kg	
bis(2-Chloroet	thoxy)methane		< 330	330	ug/kg	
bis(2-Chloroet	thyl)ether		< 330	330	ug/kg	
bis(2-Chlorois	opropyl)ether		< 330	330	ug/kg	
bis(2-Ethylhe	(yl)phthalate		< 330	· 330	ug/kg	
	yl phenyl ether		< 330	330	ug/kg	
Butyl benzyl p	ohthalate		< 330	330	ug/kg	
Carbazole			< 330	330	ug/kg	
4-Chloroanilir			< 330	330	ug/kg	
4-Chloro-3-mo			< 330	330	ug/kg	
2-Chloronaph			< 330	330	ug/kg	
2-Chlorophen			< 330 < 330	330 330	ug/kg	
	yl phenyl ether		< 330	330	ug/kg	
Chrysene			< 90	90	ug/kg	
Dibenzo(a,h)a	murracene		< 330	330	ug/kg ug/kg	
Dibenzofuran	077070		< 330	330	ug/kg ug/kg	
1,2-Dichlorob			< 330	330	ug/kg	
1,3-Dichlorob 1,4-Dichlorob			< 330	330	ug/kg ug/kg	
3,3'-Dichlorot			< 660	660	ug/kg	
2,4-Dichlorop			< 330	330	ug/kg	
2,7-1710110100			- 550	550		

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.	Date Collected:	05/24/18
Project ID:	Torrence Ave	Time Collected:	10:48
Sample ID:	2-18 (0-5)	Date Received:	05/24/18
Sample No:	18-2892-018	Date Reported:	06/06/18
Results are rep	orted on a dry weight basis.		

Analyte		Result	R.L.	Units	Flags
Semi-Volatile Compounds Analysis Date: 05/29/18	Method: 8270C		Preparation Preparation D		
Diethyl phthalate		< 330	330	ug/kg	
2,4-Dimethylphenol		< 330	330	ug/kg	
Dimethyl phthalate		< 330	330	ug/kg	
Di-n-butyl phthalate		< 330	330	ug/kg	
4,6-Dinitro-2-methylphenol		< 1,600	1600	ug/kg	
2,4-Dinitrophenol		< 1,600	1600	ug/kg	
2,4-Dinitrotoluene		< 250	250	ug/kg	
2,6-Dinitrotoluene		< 260	260	ug/kg	
Di-n-octylphthalate		< 330	330	ug/kg	
Fluoranthene		< 330	330	ug/kg	
Fluorene		< 330	330	ug/kg	
Hexachlorobenzene		< 330	330	ug/kg	
Hexachlorobutadiene		< 330	330	ug/kg	
Hexachlorocyclopentadiene		< 330	330	ug/kg	
Hexachloroethane		< 330	330	ug/kg	
Indeno(1,2,3-cd)pyrene		< 330	330	ug/kg	
Isophorone		< 330	330	ug/kg	
2-Methylnaphthalene		< 330	330	ug/kg	
2-Methylphenol		< 330	330	ug/kg	
3 & 4-Methylphenol		< 330	330	ug/kg	
Naphthalene		< 330	330	ug/kg	
2-Nitroaniline		< 1,600	1600	ug/kg	
3-Nitroaniline		< 1,600	1600	ug/kg	
4-Nitroaniline		< 1,600	1600	ug/kg	
Nitrobenzene		< 260	260	ug/kg	
2-Nitrophenol		< 1,600	1600	ug/kg	
4-Nitrophenol		< 1,600	1600	ug/kg	
n-Nitrosodi-n-propylamine		< 90	90	ug/kg	
n-Nitrosodimethylamine		< 330	330	ug/kg	
n-Nitrosodiphenylamine		< 330	330	ug/kg	
Pentachlorophenol		< 330	330	ug/kg	
Phenanthrene		< 330	330	ug/kg	
Phenol		< 330	330	ug/kg	
Pyrene		< 330	330	ug/kg	
Pyridine		< 330	330	ug/kg	
1,2,4-Trichlorobenzene		< 330	330	ug/kg	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.	Ū	-	Date C	Collected:	05/24/18
Project ID:	Torrence Ave			Time (Collected:	10:48
Sample ID:	2-18 (0-5)			Date F	Received:	05/24/18
Sample No:	18-2892-018			Date R	Reported:	06/06/18
-	ported on a dry weight b	asis.				
Analyte			Result	R.L.	Units	Flags
Semi-Volatile Analysis Date		Method: 8270C		Preparation Preparation I		
2,4,5-Trichlor	ophenol		< 330	330	ug/kg	
2,4,6-Trichlor	ophenol		< 330	330	ug/kg	
	: 05/29/18 11:25	Method: 9045D			TT 1.	
pH @ 25°C, 1	:2		8.51		Units	
Total Metals Analysis Date	: 05/31/18	Method: 6010C		Preparation Preparation I		
Antimony			< 1.0	1.0	mg/kg	
Arsenic			4.4	1.0	mg/kg	
Barium			83.7	0.5	mg/kg	
Beryllium			0.9	0.5	mg/kg	
Cadmium			< 0.5	0.5	mg/kg	
Calcium			7,750	50	mg/kg	
Chromium			23.1	0.5	mg/kg	
Cobalt			9.9	0.5	mg/kg	
Copper			31.4	0.5	mg/kg	
Iron			21,500	5.0	mg/kg	
Lead			15.1	0.5	mg/kg	
Magnesium			6,260	50	mg/kg	
Manganese			153	0.5	mg/kg	
Nickel			32.4	0.5	mg/kg	
Potassium			1,550	50	mg/kg	
Selenium			< 1.0	1.0	mg/kg	
Silver			0.6	0.2	mg/kg	
Sodium			3,580	50	mg/kg	
Thallium			< 1.0	1.0	mg/kg	
Vanadium			28.2	1.0	mg/kg	
Zinc			53.2	1.0	mg/kg	
Total Mercu Analysis Date		Method: 7471B			-	
Mercury			< 0.05	0.05	mg/kg	
TCLP Metals Analysis Date	s Method 1311 e: 06/01/18	Method: 6010C		Preparation Preparation		
Arsenic			< 0.010	0.010	mg/L	
Barium			< 1.0	1.0	mg/L	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.	Date Collected:	05/24/18
Project ID:	Torrence Ave	Time Collected:	10:48
Sample 1D:	2-18 (0-5)	Date Received:	05/24/18
Sample No:	18-2892-018	Date Reported:	06/06/18
Results are rep	orted on a dry weight basis.		

Analyte		Result	R.L.	Units	Flags
TCLP Metals Method 1311 Analysis Date: 06/01/18	Method: 6010C		Preparation Preparation D		
Beryllium		< 1.00	1.0	mg/L	
Cadmium		< 0.005	0.005	mg/L	
Chromium		< 0.005	0.005	mg/L	
Cobalt		< 0.1	0.1	mg/L	
Copper		< 0.1	0.1	mg/L	
Iron		0.4	0.1	mg/L	
Lead		0.013	0.005	mg/L	
Manganese		1.6	0.1	mg/L	
Nickel		< 0.1	0.1	mg/L	
Selenium		< 0.010	0.010	mg/L	
Silver		< 0.005	0.005	mg/L	
Zine		< 0.1	0.1	mg/L	
TCLP Mercury Method 1311 Analysis Date: 05/31/18	Method: 7470A				
Mercury		< 0.0005	0.0005	mg/L	
TCLP Extraction Analysis Date: 05/30/18	Method: 1311				
TCLP Extraction		Complete			
SPLP Metals Method 1312 Analysis Date: 06/01/18	Method: 6010C		Preparation Preparation D		
Arsenic		0.017	0.010	mg/L	
Barium		< 1.0	1.0	mg/L	
Beryllium		< 0.004	0.004	mg/L	
Cadmium		< 0.005	0.005	mg/L	
Chromium		0.081	0.005	mg/L	
Cobalt		< 0.1	0.1	mg/L	
Copper		0.104	0.005	mg/L	
Iron		65.5	0.1	mg/L	
Lead		0.132	0.005	mg/L	
Manganese		0.5	0.1	mg/L	
Niekel		< 0.1	0.1	mg/L	
Selenium		< 0.010	0.010	mg/L	
Silver		< 0.005	0.005	mg/L	
Zinc		0.3	0.1	ıng/L	

.....

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & H	UFF INC.			Date C	ollected: 0	5/24/18
Project ID:	Torrence A	ve			Time C	Collected: 1	0:48
Sample ID:	2-18 (0-5)				Date R	eceived: 0	5/24/18
Sample No:	18-2892-01	8			Date R	eported: 0	6/06/18
Results are repo	orted on a dr	y weight basis.					
Analyte			Resul	t	R.L.	Units	Flags
SPLP Mercury Analysis Date:		Method: 7470A					
Mercury			< 0.000)5	0.0005	mg/L	
SPLP Extract Analysis Date:		Method: 1312					
SPLP Metals E	xtraction		Com	plete			
Sample QC Sui	mmary:	Surrogate Recovery	Recovery %R Li		%R Limi	ts	
Method		Analyte	QC	Result		Low Hi	gh
5035A/8260B		4-Bromofluorobenzene (Surr)	%R:	97.4		86 - 11	7
5035A/8260B		d8-Toluene (Surr)	%R:	99 .8		90 - 11	0
5035A/8260B		Dibromofluoromethane (Surr)	%R:	99 .7		77 - 12	20
8270C		2,4,6-Tribromophenol (Surr)	%R: 89.7			59 - 13	1
8270C		2-Fluorobiphenyl (Surr)	%R: 69.2 45 - 112		2		
8270C		2-Fluorophenol (Surr)	%R: 60.2 41 - 84		1		
8270C		d14-Terphenyl (Surr)	%R:	79.4		56 - 12	0
8270C		d5-Nitrobenzene (Surr)	%R:	53.3		35 - 10	15
8270C		Phenol-d5 (surr)	%R:	65		50 - 10	00

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client: HUFF & HUFF INC.	v A	Date (Collected:	05/24/18
Project ID: Torrence Ave		Time	Collected:	10:55
Sample ID: 2-20 (0-5)		Date I	Received:	05/24/18
Sample No: 18-2892-020		Date I	Reported:	06/06/18
Results are reported on a dry weight bas	is.			
Analyte	Resul	t R.L.	Units	Flags
Solids, Total	Method: 2540B			
Analysis Date: 05/25/18 14:00				
Total Solids	77.97	7	%	
Volatile Organic Compounds Analysis Date: 05/31/18	Method: 5035A/8260B			
Acetone	< 200	200	ug/kg	
Benzene	< 5.0	5.0	ug/kg	
Bromodichloromethane	< 5.0	5.0	ug/kg	
Bromoform	< 5.0	5.0	ug/kg	
Bromomethane	< 10.0	10.0	ug/kg	
2-Butanone (MEK)	< 100	100	ug/kg	
Carbon disulfide	< 5.0	5.0	ug/kg	
Carbon tetrachloride	< 5.0	5.0	ug/kg	
Chlorobenzene	< 5.0	5.0	ug/kg	
Chlorodibromomethane	< 5.0	5.0	ug/kg	
Chloroethane	< 10.0	10.0	ug/kg	
Chloroform	< 5.0	5.0	ug/kg	
Chloromethane	< 10.0	10.0	ug/kg	
1,1-Dichloroethane	< 5.0	5.0	ug/kg	
1,2-Dichloroethane	< 5.0	5.0	ug/kg	
1,1-Dichloroethene	< 5.0	5.0	ug/kg	
cis-1,2-Dichloroethene	< 5.0	5.0	ug/kg	
trans-1,2-Dichloroethene	< 5.0	5.0	ug/kg	
1,2-Dichloropropane	< 5.0	5.0	ug/kg	
cis-1,3-Dichloropropene	< 4.0	4.0	ug/kg	
trans-1,3-Dichloropropene	< 4.0	4.0	ug/kg	
Ethylbenzene	< 5.0	5.0	ug/kg	
2-Hexanone	< 10.0	10.0	ug/kg	
Methyl-tert-butylether (MTBE)	< 5.0	5.0	ug/kg	
4-Methyl-2-pentanone (MIBK)	< 10.0		ug/kg	
Methylene chloride	< 20.0		ug/kg	
Styrene	< 5.0	5.0	ug/kg	
1,1,2,2-Tetrachloroethane	< 5.0	5.0	ug/kg	
Tetrachloroethene	< 5.0	5.0	ug/kg	
Toluene	< 5.0	5.0	ug/kg	
1,1,1-Trichloroethane	< 5.0	5.0	ug/kg	
1,1,2-Trichloroethane	< 5.0	5.0	ug/kg	
Trichloroethene	< 5.0	5.0	ug/kg	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.	-	-	Date C	ollected:	05/24/18
Project ID:	Torrence Ave			Time (Collected:	10:55
Sample ID:	2-20 (0-5)			Date R	eceived:	05/24/18
Sample No:	18-2892-020			Date R	eported:	06/06/18
-	orted on a dry weight b	asis.				
Analyte	2		Result	R.L.	Units	Flags
Volatile Orga Analysis Date:	nic Compounds : 05/31/18	Method: 5035A/82	260B		-	
Vinyl acetate			< 10.0	10.0	ug/kg	
Vinyl chloride	;		< 10.0	10.0	ug/kg	
Xylene, Total			< 5.0	5.0	ug/kg	
Semi-Volatile Analysis Date		Method: 8270C		Preparation Preparation D	Method 3 Date: 05/24/	5 40C /18
Acenaphthene			< 330	330	ug/kg	
Acenaphthyle			< 330	330	ug/kg	
Anthracene			< 330	330	ug/kg	
Benzidine			< 330	330	ug/kg	
Benzo(a)anthr	acene		< 330	330	ug/kg	
Benzo(a)pyrer	ne		< 90	90	ug/kg	
Benzo(b)fluor	anthene		< 330	330	ug/kg	
Benzo(k)fluor	anthene		< 330	330	ug/kg	
Benzo(ghi)per	ylene		< 330	330	ug/kg	
Benzoic acid			< 330	330	ug/kg	
Benzyl alcoho	1		< 330	330	ug/kg	
bis(2-Chloroet	thoxy)methane		< 330	330	ug/kg	
bis(2-Chloroet	thyl)ether		< 330	330	ug/kg	
bis(2-Chlorois			< 330	330	ug/kg	
bis(2-Ethylhe	• /1		< 330	330	ug/kg	
	yl phenyl ether		< 330	330	ug/kg	
Butyl benzyl p	ohthalate		< 330	330	ug/kg	
Carbazole			< 330	330	ug/kg	
4-Chloroanilir			< 330	330	ug/kg	
4-Chloro-3-me			< 330	330	ug/kg	
2-Chloronaph			< 330	330	ug/kg	
2-Chlorophen			< 330	330	ug/kg	
	yl phenyl ether		< 330 < 330	330	ug/kg	
Chrysene			< 330 < 90	330 90	ug/kg	
Dibenzo(a,lı)a	inthracene		< 330	330	ug/kg	
Dibenzofuran	007000		< 330	330	ug/kg ug/kg	
1,2-Dichlorob			< 330	330	ug/kg ug/kg	
1,3-Dichlorob			< 330	330	ug/kg ug/kg	
1,4-Dichlorob 3,3'-Dichlorob			< 530 < 660	660	ug/kg ug/kg	
2,4-Dichlorop			< 330	330	ug/kg	
2,4-Diemotop			- 550	550	46/ NB	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.	Date Collected:	05/24/18
Project ID:	Torrence Ave	Time Collected:	10:55
Sample ID:	2-20 (0-5)	Date Received:	05/24/18
Sample No:	18-2892-020	Date Reported:	06/06/18
Results are rep	orted on a dry weight basis.		

Analyte		Result	R.L.	Units	Flags
Semi-Volatile Compounds Analysis Date: 05/29/18	Method: 8270C		Preparation Preparation E		
Diethyl phthalate		< 330	330	ug/kg	
2,4-Dimethylphenol		< 330	330	ug/kg	
Dimethyl phthalate		< 330	330	ug/kg	
Di-n-butyl phthalate		< 330	330	ug/kg	
4,6-Dinitro-2-methylphenol		< 1,600	1600	ug/kg	
2,4-Dinitrophenol		< 1,600	1600	ug/kg	
2,4-Dinitrotoluene		< 250	250	ug/kg	
2,6-Dinitrotoluene		< 260	260	ug/kg	
Di-n-octylphthalate		< 330	330	ug/kg	
Fluoranthene		< 330	330	ug/kg	
Fluorene		< 330	330	ug/kg	
Hexachlorobenzene		< 330	330	ug/kg	
Hexachlorobutadiene		< 330	330	ug/kg	
Hexachlorocyclopentadiene		< 330	330	ug/kg	4
Hexachloroethane	1	< 330	330	ug/kg	
Indeno(1,2,3-cd)pyrene		< 330	330	ug/kg	
Isophorone		< 330	330	ug/kg	
2-Methylnaphthalene		< 330	330	ug/kg	
2-Methylphenol		< 330	330	ug/kg	
3 & 4-Methylphenol		< 330	330	ug/kg	
Naphthalene		< 330	330	ug/kg	
2-Nitroaniline		< 1,600	1600	ug/kg	
3-Nitroaniline		< 1,600	1600	ug/kg	
4-Nitroani!ine		< 1,600	1600	ug/kg	
Nitrobenzene		< 260	260	ug/kg	
2-Nitrophenol		< 1,600	1600	ug/kg	
4-Nitrophenol		< 1,600	1600	ug/kg	
n-Nitrosodi-n-propylamine		< 90	90	ug/kg	
n-Nitrosodimethylamine		< 330	330	ug/kg	
n-Nitrosodiphenylamine		< 330	330	ug/kg	
Pentachlorophenol		< 330	330	ug/kg	
Phenanthrene		< 330	330	ug/kg	
Phenol		< 330	330	ug/kg	
Pyrene		< 330	330	ug/kg	
Pyridine		< 330	330	ug/kg	
1,2,4-Trichlorobenzene		< 330	330	ug/kg	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.			-		Date C	ollected:	05/24/18
Project ID:	Torrence Ave					Time (Collected:	10:55
Sample ID:	2-20 (0-5)					Date R	leceived:	05/24/18
Sample No:	18-2892-020					Date R	eported:	06/06/18
-	orted on a dry weight ba	asis						
Analyte	Sitea en a al y neight se			R	esult	R.L.	Units	Flags
Semi-Volatile Analysis Date:		Method:	8270C			Preparation Preparation I		
2,4,5-Trichloro	phenol			< 3	30	330	ug/kg	
2,4,6-Trichloro	•			< 3	30	330	ug/kg	
pH @ 25°C, 1: Analysis Date:	2 05/29/18 11:25	Method:	9045D 20)04				
pH @ 25°C, 1:	2			8	.38		Units	
Total Metals Analysis Date:	05/31/18	Method:	6010C			Preparation Preparation I		
Antimony				< 1	.0	1.0	mg/kg	
Arsenic				2	.2	1.0	mg/kg	
Barium				5	6.8	0.5	mg/kg	
Beryllium				0	.8	0.5	mg/kg	
Cadmium				< (.5	0.5	mg/kg	
Calcium				2	,770	50	mg/kg	
Chromium				2	.4.2	0.5	mg/kg	
Cobalt				1	0.1	0.5	mg/kg	
Copper				1	7.3	0.5	mg/kg	
Iron					8,900	5.0	mg/kg	
Lead					3.4	0.5	mg/kg	
Magnesium					,570	50	mg/kg	
Manganese					26	0.5	mg/kg	
Nickel					.9.3	0.5	mg/kg	
Potassium					,540	50	mg/kg	
Selenium				< 1		1.0	mg/kg	
Silver).6	0.2	mg/kg	
Sodium					2,990	50	mg/kg	
Thallium				< 1		1.0	mg/kg	
Vanadium					25.2	1.0	ıng/kg	
Zinc				2	57.5	1.0	mg/kg	
Total Mercur Analysis Date:		Method:	7471B				/-	
Mercury				< ().05	0.05	mg/kg	
TCLP Metals Analysis Date:		Method:	6010C			Preparation Preparation I		
Arsenic).010	0.010	mg/L	
Barium				<]	0.1	1.0	mg/L	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.	Date Collected:	05/24/18
Project ID:	Torrence Ave	Time Collected:	10:55
Sample ID:	2-20 (0-5)	Date Received:	05/24/18
Sample No:	18-2892-020	Date Reported:	06/06/18
Results are rep	orted on a dry weight basis.		

Analyte		Result	R.L.	Units	Flags
TCLP Metals Method 1311 Analysis Date: 06/01/18	Method: 6010C		Preparation Preparation D		
Beryllium		< 1.00	1.0	mg/L	
Cadmium		< 0.005	0.005	mg/L	
Chromium		< 0.005	0.005	mg/L	
Cobalt		< 0.1	0.1	mg/L	
Copper		< 0.1	0.1	mg/L	
Iron		0.1	0.1	mg/L	
Lead		< 0.005	0.005	mg/L	
Manganese		0.3	0.1	mg/L	
Nickel		< 0.1	0.1	mg/L	
Selenium		< 0.010	0.010	mg/L	
Silver		< 0.005	0.005	mg/L	
Zinc		< 0.1	0.1	mg/L	
TCLP Mercury Method 1311 Analysis Date: 05/31/18	Method: 7470A				
Mercury		< 0.0005	0.0005	mg/L	
TCLP Extraction Analysis Date: 05/30/18	Method: 1311				
TCLP Extraction		Complete	•		
SPLP Metals Method 1312 Analysis Date: 05/31/18	Method: 6010C		Preparation Preparation D		
Arsenic		0.014	0.010	mg/L	
Barium		< 1.0	1.0	mg/L	
Beryllium		< 0.004	0.004	mg/L	
Cadmium		< 0.005	0.005	mg/L	
Chromium		0.094	0.005	mg/L	
Cobalt		< 0.1	0.1	mg/L	
Copper		0.055	0.005	mg/L	
Iron		85.8	0.1	mg/L	
Lead		0.045	0.005	mg/L	
Manganese		0.4	0.1	mg/L	
Nickel		0.1	0.1	mg/L	
Selenium		< 0.010	0.010	mg/L	
Silver		< 0.005	0.005	mg/L	
Zinc		0.2	0.1	mg/L	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client: H	UFF & HUFF INC.			Date C	ollected: 0	5/24/18
Project ID: Te	orrence Ave		Time Collected: 10:55			0:55
Sample ID: 2-	20 (0-5)			Date R	eceived: 0	5/24/18
Sample No: 18	8-2892-020			Date R	eported: 0	6/06/18
Results are report	ed on a dry weight basis.					
Analyte		Resu	lt	R.L.	Units	Flags
SPLP Mercury M Analysis Date: 02						
Mercury		< 0.00	05	0.0005	mg/L	
SPLP Extraction Analysis Date: 02						
SPLP Metals Extr	raction	Com	plete			
Sample QC Sum	mary: Surrogate Recovery				%R Limi	ts
Method	Analyte	QC	C Result		Low Hig	gh
5035A/8260B	4-Bromofluorobenzene (Surr)	%R:	97.8		86 - 11	7
5035A/8260B	d8-Toluene (Surr)	%R:	101.6		90 - 11	0
5035A/8260B	Dibromofluoromethane (Surr)	%R:	99.6		77 - 12	0
8270C	2,4,6-Tribromophenol (Surr)	%R:	88.5		<i>59 - 13</i>	1
8270C	2-Fluorobiphenyl (Surr)	%R:	65.6		45 - 11	2
8270C	2-Fluorophenol (Surr)	%R:	63.8		41 - 84	!
8270C	d14-Terphenyl (Surr)	%R:	76.7		56 - 12	0
8270C	d5-Nitrobenzene (Surr)	%R:	7 2 .8		35 - 10	5
8270C	Phenol-d5 (surr)	%R:	68.6		50 - 10	0

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

		Analytical f	cepuit				
Client:	HUFF & HUFF INC.			Date C	ollected:	05/24/18	
Project ID:	Torrence Ave			Time Collected:		10:58	
Sample ID:	2-21 (0-5)			Date R	eceived:	05/24/18	
•	18-2892-021			Date R	eported:	06/06/18	
-	rted on a dry weight b	asis.			-		
Analyte		38	Result	R.L.	Units	Flags	
Solids, Total	05/25/18 14:00	Method: 2540B					
Total Solids	05/25/10 11.00		76.81		%		
		M. 41 . J. 5075 A 107					
Volatile Organ Analysis Date:		Method: 5035A/82					
Acetone			< 200	200	ug/kg		
Benzene			< 5.0	5.0	ug/kg		
Bromodichloror	nethane		< 5.0	5.0	ug/kg		
Bromoform			< 5.0	5.0	ug/kg		
Bromomethane			< 10.0	10.0	ug/kg		
2-Butanone (MI	EK)		< 100	100	ug/kg		
Carbon disulfid			< 5.0	5.0	ug/kg		
Carbon tetrachle	oride		< 5.0	5.0	ug/kg		
Chlorobenzene			< 5.0	5.0	ug/kg		
Chlorodibromo	methane		< 5.0	5.0	ug/kg		
Chloroethane			< 10.0	10.0	ug/kg		
Chloroform			< 5.0	5.0	ug/kg		
Chloromethane			< 10.0	10.0	ug/kg		
1,1-Dichloroeth	ane		< 5.0	5.0	ug/kg		
1,2-Dichlorceth			< 5.0	5.0	ug/kg		
1,1-Dichloroeth			< 5.0	5.0	ug/kg		
cis-1,2-Dichloro			< 5.0	5.0	ug/kg		
trans-1,2-Dichle			< 5.0	5.0	ug/kg		
1,2-Dichloropro			< 5.0	5.0	ug/kg		
cis-1,3-Dichloro			< 4.0	4.0	ug/kg		
trans-1,3-Dichlo			< 4.0	4.0	ug/kg		
Ethylbenzene	nopropene		< 5.0	5.0	ug/kg		
2-Hexanone			< 10.0	10.0	ug/kg		
	ulathar (MTRE)		< 5.0	5.0	ug/kg		
	ylether (MTBE)		< 10.0	10.0	ug/kg		
	tanone (MIBK)		< 20.0	20.0	ug/kg		
Methylene chlo			< 5.0	5.0	ug/kg		
Styrene	laraathana		< 5.0	5.0	ug/kg		
1,1,2,2-Tetrach			< 5.0	5.0	ug/kg		
Tetrachloroethe	sne		< 5.0 < 5.0	5.0			
Toluene	- 4		< 5.0 < 5.0	5.0	ug/kg		
1,1,1-Trichloro			< 5.0 < 5.0	5.0	ug/kg		
1,1,2-Trichloro					ug/kg		
Trichloroethene	2		< 5.0	5.0	ug/kg		

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.	v		Date C	ollected:	05/24/18
Project ID:	Torrence Ave			Time C	Time Collected:	
Sample ID:	2-21 (0-5)			Date R	eceived:	05/24/18
Sample No:	18-2892-021			Date R	eported:	06/06/18
-	orted on a dry weight l	oasis.				
Analyte	.,,		Result	R.L.	Units	Flags
Volatile Orga Analysis Date:	nic Compounds : 05/31/18	Method: 5035A/8	260B			
Vinyl acetate			< 10.0	10.0	ug/kg	
Vinyl chloride	,		< 10.0	10.0	ug/kg	
Xylene, Total			< 5.0	5.0	ug/kg	
Semi-Volatile Analysis Date		Method: 8270C		Preparation Preparation D		
Acenaphthene			< 330	330	ug/kg	
Acenaphthyle			< 330	330	ug/kg	
Anthracene			< 330	330	ug/kg	
Benzidine			< 330	330	ug/kg	
Benzo(a)anthr	acene		< 330	330	ug/kg	
Benzo(a)pyrer	ne		< 90	90	ug/kg	
Benzo(b)fluor	anthene		< 330	330	ug/kg	
Benzo(k)fluor	anthene		< 330	330	ug/kg	
Benzo(ghi)per	rylene		< 330	330	ug/kg	
Benzoic acid			< 330	330	ug/kg	
Benzyl alcoho			< 330	330	ug/kg	
•	thoxy)methane		< 330	330	ug/kg	
bis(2-Chloroe			< 330	330	ug/kg	
bis(2-Chlorois			< 330	330	ug/kg	
bis(2-Ethylher			< 330	330	ug/kg	
	yl phenyl ether		< 330	330	ug/kg	
Butyl benzyl p	ohthalate		< 330	330	ug/kg	
Carbazole			< 330	330 330	ug/kg	
4-Chloroanilir			< 330 < 330	330	ug/kg ug/kg	
4-Chloro-3-me			< 330	330	ug/kg ug/kg	
2-Chloronaph			< 330	330	ug/kg	
2-Chlorophen	yl phenyl ether		< 330	330	ug/kg	
4-Chrosene	yi phenyi ether		< 330	330	ug/kg	
Dibenzo(a,h)a	nthracene		< 90	90	ug/kg	
Dibenzo(a,n)a Dibenzofuran			< 330	330	ug/kg	
1,2-Dichlorob			< 330	330	ug/kg	
1,2-Dichlorob			< 330	330	ug/kg	
1,3-Dichlorob			< 330	330	ug/kg	
3,3'-Dichlorot			< 660	660	ug/kg	
2,4-Dichlorop			< 330	330	ug/kg	
_, · _ · • · · · · · · · · · · · · · · · ·					20	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.	Date Collected:	05/24/18
Project ID :	Torrence Ave	Time Collected:	10:58
Sample ID:	2-21 (0-5)	Date Received:	05/24/18
Sample No:	18-2892-021	Date Reported:	06/06/18
Results are rep	orted on a dry weight basis.		

Analyte		Result	R.L.	Units	Flags
Semi-Volatile Compounds Analysis Date: 05/30/18	Method: 8270C	Preparation Method 3540C Preparation Date: 05/29/18			
Diethyl phthalate		< 330	330	ug/kg	
2,4-Dimethylphenol		< 330	330	ug/kg	
Dimethyl phthalate		< 330	330	ug/kg	
Di-n-butyl phthalate		< 330	330	ug/kg	
4,6-Dinitro-2-methylphenol		< 1,600	1600	ug/kg	
2,4-Dinitrophenol		< 1,600	1600	ug/kg	
2,4-Dinitrotoluene		< 250	250	ug/kg	
2,6-Dinitrotoluene		< 260	260	ug/kg	
Di-n-octylphthalate		< 330	330	ug/kg	
Fluoranthene		< 330	330	ug/kg	
Fluorene		< 330	330	ug/kg	
Hexachlorobenzene		< 330	330	ug/kg	
Hexachlorobutadiene		< 330	330	ug/kg	
Hexachlorocyclopentadiene		< 330	330	ug/kg	
Hexachloroethane		< 330	330	ug/kg	
Indeno(1,2,3-cd)pyrene		< 330	330	ug/kg	
Isophorone		< 330	330	ug/kg	
2-Methylnaphthalene		< 330	330	ug/kg	
2-Methylphenol		< 330	330	ug/kg	
3 & 4-Methylphenol		< 330	330	ug/kg	
Naphthalene		< 330	330	ug/kg	
2-Nitroaniline		< 1,600	1600	ug/kg	
3-Nitroaniline		< 1,600	1600	ug/kg	
4-Nitroaniline		< 1,600	1600	ug/kg	
Nitrobenzene		< 260	260	ug/kg	
2-Nitrophenol		< 1,600	1600	ug/kg	
4-Nitrophenol		< 1,600	1600	ug/kg	
n-Nitrosodi-n-propylamine		< 90	90	ug/kg	
n-Nitrosodimethylamine		< 330	330	ug/kg	
n-Nitrosodiphenylamine		< 330	330	ug/kg	
Pentachlorophenol		< 330	330	ug/kg	
Phenanthrene		< 330	330	ug/kg	
Phenol		< 330	330	ug/kg	
Pyrene		< 330	330	ug/kg	
Pyridine		< 330	330	ug/kg	
1,2,4-Trichlorobenzene		< 330	330	ug/kg	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

	HUFF & HUFF INC.						Collected:	05/24/18
3	Torrence Ave						Collected:	10:58
-	2-21 (0-5)						Received:	05/24/18
Sample No:	18-2892-021					Date F	Reported:	06/06/18
Results are repo	rted on a dry weight ba	sis.						
Analyte	-]	Result	R.L.	Units	Flags
Semi-Volatile (Analysis Date:		Method:	8270C			Preparation Preparation I		
2,4,5-Trichlorop	ohenol			<	330	330	ug/kg	
2,4,6-Trichlorop	ohenol			<	330	330	ug/kg	
pH @ 25°C, 1:2 Analysis Date:	2 05/29/18 11:25	Method:	9045D 2					
pH @ 25°C, 1:2					8.47		Units	
Total Metals Analysis Date:	05/30/18	Method:	6010C			Preparation Preparation I		
Antimony				<	1.0	1.0	mg/kg	
Arsenic					2.1	1.0	mg/kg	
Barium					56.3	0.5	mg/kg	
Beryllium					0.8	0.5	mg/kg	
Cadmium				<	0.5	0.5	mg/kg	
Calcium					2,550	50	mg/kg	
Chromium					19.6	0.5	mg/kg	
Cobalt					8.8	0.5	nıg/kg	
Copper					17.0	0.5	mg/kg	
Iron					16,200	5.0	mg/kg	
Lead					12.2	0.5	mg/kg	
Magnesium					3,950	50	mg/kg	
Manganese					107	0.5	mg/kg	
Nickel					26.1	0.5	mg/kg	
Potassium					2,790	50	mg/kg	
Selenium					1.0	1.0	mg/kg	
Silver				<	0.2	0.2	mg/kg	
Sodium					2,770	50	mg/kg	
Thallium				<	1.0	1.0	mg/kg	
Vanadium					23.3	1.0	mg/kg	
Zinc					44.7	1.0	mg/kg	
Total Mercury Analysis Date:		Method:	7 471B					
Mercury				<	0.05	0.05	mg/kg	
TCLP Metals I Analysis Date:		Method:	6010C			Preparation Preparation I		
Arsenic				<	0.010	0.010	mg/L	
Barium				<	1.0	1.0	mg/L	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.	Date Collected:	05/24/18
Project ID:	Torrence Ave	Time Collected:	10:58
Sample ID:	2-21 (0-5)	Date Received:	05/24/18
Sample No:	18-2892-021	Date Reported:	06/06/18
Results are rep	orted on a dry weight basis.		

Analyte		Result	R.L.	Units	Flags
TCLP Metals Method 1311 Analysis Date: 06/01/18	Method: 6010C		Preparation Preparation D		
Beryllium		< 1.00	1.0	mg/L	
Cadmium		< 0.005	0.005	mg/L	
Chromium		< 0.005	0.005	mg/L	
Cobalt		< 0.1	0.1	mg/L	
Copper		< 0.1	0.1	mg/L	
lron		< 0.1	0.1	mg/L	
Lead		< 0.005	0.005	mg/L	
Manganese		2.2	0.1	mg/L	
Nickel		< 0.1	0.1	mg/L	
Selenium		< 0.010	0.010	mg/L	
Silver		< 0.005	0.005	mg/L	
Zinc		< 0.1	0.1	mg/L	
TCLP Mercury Method 1311 Analysis Date: 06/01/18	Method: 7470A				
Mercury		< 0.0005	0.0005	mg/L	
TCLP Extraction Analysis Date: 05/30/18	Method: 1311				
TCLP Extraction		Complete			
SPLP Metals Method 1312 Analysis Date: 06/01/18	Method: 6010C		Preparation Preparation D		
Arsenic		< 0.010	0.010	mg/L	
Barium		< 1.0	1.0	mg/L	
Beryllium		< 0.004	0.004	mg/L	
Cadmium		< 0.005	0.005	mg/L	
Chromium		0.076	0.005	mg/L	
Cobalt		< 0.1	0.1	mg/L	
Copper		0.041	0.005	mg/L	
lron		53.4	0.1	mg/L	
Lead		0.024	0.005	mg/L	
Manganese		0.4	0.1	mg/L	
Nickel		< 0.1	0.1	mg/L	
Selenium		< 0.010	0.010	mg/L	
Silver		< 0.005	0.005	mg/L	
Zinc		0.2	0.1	mg/L	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.				Date C	ollected:	05/24/18
Project ID:	Torrence Ave				Time C	Collected:	10:58
Sample ID:	2-21 (0-5)				Date R	eceived:	05/24/18
Sample No:	18-2892-021				Date R	eported:	06/06/18
Results are repo	rted on a dry weight b	oasis.					
Analyte			Resu	lt	R.L.	Units	Flags
SPLP Mercury Analysis Date:		Method: 7470A					
Mercury			< 0.00	05	0.0005	mg/L	
SPLP Extracti Analysis Date:		Method: 1312					
SPLP Metals Ex	straction		Com	plete			
Sample QC Sur	nmary: Surrogai	e Recovery				%R L	imits
Method	Analyte		QC	Result		Low	
5035A/8260B	4-Bromo	fluorobenzene (Surr)	%R:	98.8		86 -	- 117
5035A/8260B	d8-Tolue	ene (Surr)	%R:	<i>99.9</i>		90 -	- 110
5035A/8260B	Dibromo	fluoromethane (Surr)	%R:	102.7		77 -	120

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

		Analytical I	xeport				
Client:	HUFF & HUFF INC	۲ ۰		Date C	Collected:	05/24/18	
Project ID:	Torrence Ave			Time Collected: Date Received:		11:00	
Sample ID:	2-22 (0-5)					05/24/18	
Sample No:	18-2892-022			Date R	Reported:	06/06/18	
Results are rep	ported on a dry weight	basis.					
Analyte			Result	R.L.	Units	Flags	
Solids, Total Analysis Date	: 05/25/18 14:00	Method: 2540B					
Total Solids			75.17		%		
Volatile Orga Analysis Date	nic Compounds : 05/31/18	Method: 5035A/82	260B				
Acetone			< 200	200	ug/kg		
Benzene			< 5.0	5.0	ug/kg		
Bromodichlor	omethane		< 5.0	5.0	ug/kg		
Bromoform			< 5.0	5.0	ug/kg		
Bromomethan	e		< 10.0	10.0	ug/kg		
2-Butanone (N	MEK)		< 100	100	ug/kg		
Carbon disulf			< 5.0	5.0	ug/kg		
Carbon tetracl	hloride		< 5.0	5.0	ug/kg		
Chlorobenzen	e		< 5.0	5.0	ug/kg		
Chloredibrom	omethane		< 5.0	5.0	ug/kg		
Chloroethane ⁻			< 10.0	10.0	ug/kg		
Chloroform			< 5.0	5.0	ug/kg		
Chloromethan	e		< 10.0	10.0	ug/kg		
1,1-Dichloroe	thane		< 5.0	5.0	ug/kg		
1,2-Dichloroe			< 5.0	5.0	ug/kg		
1,1-Dichloroe	thene		< 5.0	5.0	ug/kg		
cis-1,2-Dichlo	oroethene		< 5.0	5.0	ug/kg		
trans-1,2-Dich			< 5.0	5.0	ug/kg		
1,2-Dichlorop			< 5.0	5.0	ug/kg		
cis-1,3-Dichlo	•		< 4.0	4.0	ug/kg		
trans-1,3-Dich	• •		< 4.0	4.0	ug/kg		
Ethylbenzene			< 5.0	5.0	ug/kg		
2-Hexanone	1		< 10.0	10.0	ug/kg		
	utylether (MTBE)		< 5.0	5.0	ug/kg		
	entanone (MIBK)		< 10.0	10.0	ug/kg		
Methylene ch	•		< 20.0	20.0	ug/kg		
Styrene			< 5.0	5.0	ug/kg		
1,1,2,2-Tetrac	hloroethane		< 5.0	5.0	ug/kg		
Tetrachloroetl			< 5.0	5.0	ug/kg		
Toluene			< 5.0	5.0	ug/kg		
1,1,1-Trichlor	oethane		< 5.0	5.0	ug/kg		
1,1,2-Trichlor			< 5.0	5.0	ug/kg		
Trichloroethe			< 5.0	5.0	ug/kg		

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

		Analytical F	Report			
Client:	HUFF & HUFF INC.	e e		Date Co	ollected:	05/24/18
Project ID:	Torrence Ave			Time C	ollected:	11:00
Sample ID:	2-22 (0-5)			Date Ro	eceived:	05/24/18
Sample No:	18-2892-022			Date Re	eported:	06/06/18
-	orted on a dry weight ba	sis.				
Analyte			Result	R.L.	Units	Flags
Volatile Orga Analysis Date:	nic Compounds 05/31/18	Method: 5035A/82	60B			
Vinyl acetate			< 10.0	10.0	ug/kg	
Vinyl chloride			< 10.0	10.0	ug/kg	
Xylene, Total			< 5.0	5.0	ug/kg	
Semi-Volatile Analysis Date:		Method: 8270C		Preparation D Preparation D		
Acenaphthene			< 330	330	ug/kg	
Acenaphthyler	ne		< 330	330	ug/kg	
Anthracene			< 330	330	ug/kg	
Benzidine			< 330	330	ug/kg	
Benzo(a)anthr			< 330	330	ug/kg	
Benzo(a)pyrer			< 90	90	ug/kg	
Benzo(b)fluor			< 330 < 330	330 330	ug/kg ug/kg	
Benzo(k)fluor			< 330	330	ug/kg	
Benzo(ghi)per Benzoic acid	ylene		< 330	330	ug/kg	
Benzyl alcoho	1		< 330	330	ug/kg	
-	thoxy)methane		< 330	330	ug/kg	
bis(2-Chloroet			< 330	330	ug/kg	
bis(2-Chlorois			< 330	330	ug/kg	
bis(2-Ethylhe)			< 330	330	ug/kg	
4-Bromophen	yl phenyl ether		< 330	330	ug/kg	
Butyl benzyl p	ohthalate		< 330	330	ug/kg	
Carbazole			< 330	330	ug/kg	
4-Chloroanilir			< 330	330	ug/kg	
4-Chloro-3-me			< 330	330	ug/kg	
2-Chloronaph			< 330	330	ug/kg	
2-Chlorophen			< 330 < 330	330 330	ug/kg ug/kg	
	yl phenyl ether		< 330	330	ug/kg	
Chrysene Dibenzo(a,h)a	nthracana		< 90	90	ug/kg	
Dibenzo(a,n)a Dibenzofuran			< 330	330	ug/kg	
1,2-Dichlorob	enzene		< 330	330	ug/kg	
1,3-Dichlorob			< 330	330	ug/kg	
1,4-Dichlorob			< 330	330	ug/kg	
3,3'-Dichlorob			< 660	660	ug/kg	
2,4-Dichlorop	henol		< 330	330	ug/kg	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.	Date Collected:	05/24/18
Project ID:	Torrence Ave	Time Collected:	11:00
Sample ID:	2-22 (0-5)	Date Received:	05/24/18
Sample No:	18-2892-022	Date Reported:	06/06/18
Results are rep	orted on a dry weight basis.		

Analyte		Result	R.L.	Units	Flags		
Semi-Volatile Compounds Analysis Date: 05/30/18	Method: 8270C	Preparation Method 3540C Preparation Date: 05/29/18					
Diethyl phthalate		< 330	330	ug/kg			
2,4-Dimethylphenol		< 330	330	ug/kg			
Dimethyl plithalate		< 330	330	ug/kg			
Di-n-butyl phthalate		< 330	330	ug/kg			
4,6-Dinitro-2-methylphenol		< 1,600	1600	ug/kg			
2,4-Dinitrophenol		< 1,600	1600	ug/kg			
2,4-Dinitrotoluene		< 250	250	ug/kg			
2,6-Dinitrotoluene		< 260	260	ug/kg			
Di-n-octylphthalate		< 330	330	ug/kg			
Fluoranthene		< 330	330	ug/kg			
Fluorene		< 330	330	ug/kg			
Hexachlorobenzene		< 330	330	ug/kg			
Hexachlorobutadiene		< 330	330	ug/kg			
Hexachlorocyclopentadiene		< 330	330	ug/kg			
Hexachloroethane		< 330	330	ug/kg			
Indeno(1,2,3-cd)pyrene		< 330	330	ug/kg			
Isophorone		< 330	330	ug/kg			
2-Methylnaphthalene		< 330	330	ug/kg			
2-Methylphenol		< 330	330	ug/kg			
3 & 4-Methylphenol		< 330	330	ug/kg			
Naphthalene		< 330	330	ug/kg			
2-Nitroaniline		< 1,600	1600	ug/kg			
3-Nitroaniline		< 1,600	1600	ug/kg			
4-Nitroaniline		< 1,600	1600	ug/kg			
Nitrobenzene		< 260	260	ug/kg			
2-Nitrophenol		< 1,600	1600	ug/kg			
4-Nitrophenol		< 1,600	1600	ug/kg			
n-Nitrosodi-n-propylamine		< 90	90	ug/kg			
n-Nitrosodimethylamine		< 330	330	ug/kg			
n-Nitrosodiphenylamine		< 330	330	ug/kg			
Pentachlorophenol		< 330	330	ug/kg			
Phenanthrene		< 330	330	ug/kg			
Phenol		< 330	330	ug/kg			
Pyrene		< 330	330	ug/kg			
Pyridine		< 330	330	ug/kg			
1,2,4-Trichlorobenzene		< 330	330	ug/kg			

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

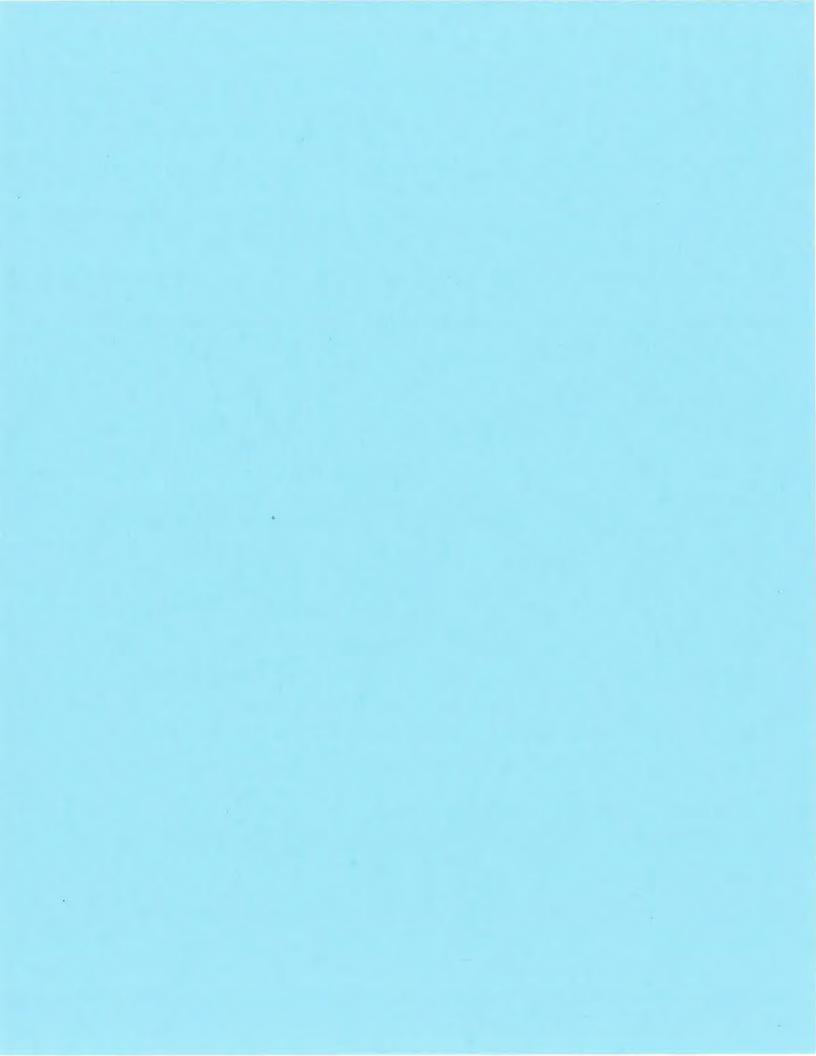
Client: HUF	FF & HUFF INC.		•	•		Date C	Collected:	05/24/	18
	ence Ave						Collected:	11:00	
	(0-5)						Received:	05/24/	18
-	892-022						Reported:	06/06/	
Results are reported		eie				Date	teporteu.	00/00/	10
Analyte	on a dry weight ba	.515.		F	Result	R.L.	Units	I	lags
Semi-Volatile Comp Analysis Date: 05/3		Method:	8270C			Preparation Preparation I		540C	
2,4,5-Trichloropheno	bl			< 2	330	330	ug/kg		
2,4,6-Trichloropheno				< 1	330	330	ug/kg		
pH @ 25°C, 1:2 Analysis Date: 05/2	9/18 11:25	Method:	9045D 20						
pH @ 25°C, 1:2					8.60		Units		
Total Metals Analysis Date: 05/3	0/18	Method:	6010C			Preparation Preparation D			
Antimony				<	1.0	1.0	mg/kg		
Arsenic					1.9	1.0	mg/kg		
Barium					62.2	0.5	mg/kg		
Beryllium				(0.8	0.5	mg/kg		
Cadmium				< (0.5	0.5	mg/kg		
Calcium					2,490	50	mg/kg		
Chromium					21.3	0.5	mg/kg		
Cobalt				1	8.9	0.5	mg/kg		
Copper					15.4	0.5	mg/kg		
Iron					16,100	5.0	mg/kg		
Lead					12.2	0.5	mg/kg		
Magnesium				4	4,200	50	mg/kg		
Manganese					111	0.5	mg/kg		
Nickel					27.8	0.5	mg/kg		
Potassium					3,030	50	mg/kg		
Selenium				<	1.0	1.0	mg/kg		
Silver				< (0.2	0.2	mg/kg		
Sodium					2,610	50	mg/kg		
Thallium				< 1		1.0	mg/kg		
Vanadium					22.8	1.0	mg/kg		
Zinc				4	47.7	1.0	mg/kg		
Total Mercury Analysis Date: 05/29	9/18	Method:	7471B						
Mercury				< (0.05	0.05	mg/kg		
TCLP Metals Meth Analysis Date: 06/0		Method:	6010C			Preparation Preparation D			
Arsenic				< (0.010	0.010	mg/L		

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.	Date Collected:	05/24/18
Project ID:	Torrence Ave	Time Collected:	11:00
Sample ID:	2-22 (0-5)	Date Received:	05/24/18
Sample No:	18-2892-022	Date Reported:	06/06/18
Results are rep	orted on a dry weight basis.		

Analyte		Result	R.L.	Units	Flags
TCLP Metals Method 1311 Analysis Date: 06/01/18	Method: 6010C			Method 301 ate: 05/30/18	
Beryllium		< 1.00	1.0	mg/L	
Cadmium		< 0.005	0.005	mg/L	
Chromium		< 0.005	0.005	mg/L	
Cobalt		< 0.1	0.1	mg/L	
Copper		< 0.1	0.1	mg/L	
lron		1.7	0.1	mg/L	
Lead		< 0.005	0.005	mg/L	
Manganese		0.2	0.1	mg/L	
Nickel		< 0.1	0.1	mg/L	
Selenium		< 0.010	0.010	mg/L	
Silver		< 0.005	0.005	mg/l_	
Zinc		< 0.1	0.1	mg/L	
TCLP Mercury Method 1311 Analysis Date: 06/01/18	Method: 7470A				
Mercury		< 0.0005	0.0005	mg/L	
TCLP Extraction Analysis Date: 05/30/18	Method: 1311				
TCLP Extraction		Complete			
SPLP Metals Method 1312 Analysis Date: 06/01/18	Method: 6010C			Method 301 Date: 05/31/18	
Arsenic		0.032	0.010	mg/L	
Barium		< 1.0	1.0	mg/L	
Beryilium		0.009	0.004	mg/L	
Cadmium		< 0.005	0.005	mg/L	
Chromium		0.254	0.005	mg/L	
Cobalt		< 0.1	0.1	mg/L	
Copper		0.195	0.005	mg/L	
iron		198	0.1	mg/L	
Lead		0.115	0.005	mg/L	
Manganese		0.9	0.1	mg/L	
Nickel		0.3	0.1	mg/L	
Selenium		< 0.010	0.010	mg/L	
Silver		0.007	0.005	mg/L	
Zinc		0.5	0.1	mg/L	

First Environmental Laboratories, Inc.


IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Analytical Report

.

Client:	HUFF & H	UFF INC.				Date C	ollected:	05/24/18
Project ID:	Torrence A	ve				Time C	Collected :	11:00
Sample ID:	2-22 (0-5)					Date R	eceived:	05/24/18
Sample No:	18-2892-02	22				Date R	eported:	06/06/18
Results are rep	orted on a di	ry weight ba	isis.					
Analyte				Resu	lt	R.L.	Units	Flags
SPLP Mercur Analysis Date:		312	Method: 7470A					
Mercury				< 0.00	05	0.0005	mg/L	
SPLP Extract Analysis Date:			Method: 1312					
SPLP Metals E	xtraction			Com	plete			
Sample QC Su	mmary:	Surrogate	Recovery				%R L	imits
Method		Analyte		QC	C Result			High
5035A/8260B		4-Bromofl	uorobenzene (Surr)	%R:	98.4		86	- 117
5035A/8260B		d8-Toluen	e (Surr)	%R:	100.1		<i>90</i>	- 110
5035A/8260B		Dibromofi	uoromethane (Surr)	%R:	<i>99</i> .8		77	- 120

Page 1of 2 Illinois Environmental Protection Agency

Bureau of Land • 1021 North Grand Avenue East • P.O. Box 19276 • Springfield • Illinois • 62794-9276

Uncontaminated Soil Certification by Licensed Professional Engineer or Licensed Professional Geologist for Use of Uncontaminated Soil as Fill in a CCDD or Uncontaminated Soil Fill Operation LPC-663 Revised in accordance with 35 Ill. Adm. Code 1100, as

amended by PCB R2012-009 (eff. Aug. 27, 2012)

This certification form is to be used by professional engineers and professional geologists to certify, pursuant to 35 III. Adm. Code 1100.205(a)(1)(B), that soil (i) is uncontaminated soil and (ii) is within a pH range of 6.26 to 9.0. If you have questions about this form, please telephone the Bureau of Land Permit Section at 217/524-3300.

This form may be completed online, saved locally, printed and signed, and submitted to prospective clean construction or demolition debris (CCDD) fill operations or uncontaminated soil fill operations.

I. Source Location Information

11 532-2922

(Describe the location of the source of the uncontaminated soil)

Project Name: FAU 2937/Torrence Avenue	Office Phone Number, if available:					
Physical Site Location (address, inclduding number and str	reet):					
3484-34 (Agricultural Land), 3484-35 (Residence and Vacant Lan	1d) - Torrence Avenue					
City: Lynwood State: IL	Zip Code: 60411					
County: Cook	Township; Bloom					
Lat/Long of approximate center of site in decimal degrees ((DD.ddddd) to five decimal places (e.g., 40.67890, -90.12345):					
Latitude: 41.526922 Longitude: -87.558449						
(Decimal Degrees) (-Decimal De	egrees)					
Identify how the lat/long data were determined:						
🔲 GPS 📋 Map Interpolation 📋 Photo Interpola	tion 🔲 Survey 🔽 Other					
ISGS Public Land Survey System - Approximate Center	of multiple addresses					
IEPA Site Number(s), if assigned: BOL:	50					
II. Owner/Operator Information for Source Site						
Site Owner	Site Operator					
Name: Illinois Dept. of Transportation, District 1	Name: Illinois Dept. of Transportation, District 1					
Street Address: 201 W Center Court	Street Address: 201 W Center Court					
PO Box:	PO Box:					
City: Schaumburg State: IL	_ City: Schaumburg State: IL					
Zip Code: 60196 Phone: 847-705-4122						
Contact: Paul Nickles	Contact: Paul Nickles					
Email, if available: paul.nickles@illinois.gov	Email, if available: : :paul.nickles@illinois.gov					

This Agency is authorized to require this information under Section 4 and Title X of the Environmental Protection Act (415 ILCS 5/4, 5/39). Failure to disclose this information may result in: a civil penalty of not to exceed \$50,000 for the violation and an additional civil penalty of not to exceed \$10,000 for each day during which the violation continues (415 ILCS 5/42). This form has been approved by the Forms LPC 663 Rev. 8/2012 Management Center.

Project Name:	FAU	2937/Torrence	Avenue
i iojooritaino.		20077101101100	11101100

Latitude: <u>41.526922</u> Longitude: -87.558449

Uncontaminated Site Certification

III. Basis for Certification and Attachments

For each item listed below, reference the attachments to this form that provide the required information.

A Description of the soil sample points and how they were determined to be sufficient in number and appropriately located 35 Ill. Adm. Code 1100.610(a)]:

Refer to Figure 4-1.1 and 4-1.2 in the Final PSI Report and borings 3484-34-04 (Torrence Avenue Sta 412+25, 15 Right), 3484-34-05 (Torrence Avenue Sta 414+25, 15 Right), 3484-34-06 (Torrence Avenue Sta 416+20, 15 Right), 3484-34-07 (Torrence Avenue Sta 417+25, 15 Right), 3484-35-01 (Torrence Avenue Sta 402+35, 25 Right), 3484-35-03 (Torrence Avenue Sta 404+25, 25 Right), and 3484-35-04 (Torrence Avenue Sta 405+25, 20 Right)

b. Analytical soil testing results to show that soil chemical constituents comply with the maximum allowable concentrations established pursuant to 35 III. Adm. Code Part 1100, Subpart F and that the soil pH is within the range of 6.25 to 9.0,including the documentation of chain of custody control, a copy of the lab analysis; the accreditation status of the laboratory performing the analysis; and certification by an authorized agent of the laboratory that the analysis has been performed in accordance with the Agency's rules for the accreditation of environmental and the scope of the accreditation [35 III. Adm. Code 1100.201(g), 1100.205(a), 1100.610]:

Refer to Tables 4-2 and 4-3 in the Final PSI Report for results summary and First Environmental Laboratories, Inc. report #18-2892. Site specific table of results is attached to this form.

IV. Certification Statement, Signature and Seal of Licensed Professional Engineer or Licensed Professional Geologist

I. Jeremy J. Reynolds, P.G. (name of licensed professional engineer or geologist) certify under penalty of law that the information submitted, including but not limited to, all attachments and other information, is to the best of my knowledge and belief, true, accurate and complete. In accordance with the Environmental Protection Act [415 ILCS 5/22.51 or 22.51a] and 35 III. Adm. Code 1100.205(a), I certify that the soil from this site is uncontaminated soil. I also certify that the soil pH is within the range of 6.25 to 9.0. In addition, I certify that the soil has not been removed from the site as part of a cleanup or removal of contaminants. All necessary documentation is attached.

Any person who knowingly makes a false, fictitious, or fraudulent material statement, orally or in writing, to the Illinois EPA commits a Class 4 felony. A second or subsequent offense after conviction is a Class 3 felony. (415 ILCS 5/44(h))

Company Name:	Huff & Huff, Inc. / GZA GeoEr	nvironmental, Inc.	
Street Address:	915 Harger Road, Suite 330		
City:	Oak Brook	State: IL Zip Code:	60523
Phone:	630-684-9100		
Jeremy J. Reynolds, P.G. Printed Name: Licensed Professional E Licensed Professional C	Te Gull	<u> </u>	JEREMY J. REYNOLDS 196-001170

Í.

LINOIS

LPC-663 Results Table for Site 3484-34-04, 34-05, 34-06, 34-07, 35-01, 35-03, 35-04 Soils for Unrestricted Reuse or Disposal Including CCDD/USFO Facilities

				DUP-01							
Boring ID	3484-34-04	3484-34-05	3484-34-06	(3484-34-06)	3484-34-07	3484-35-01	3484-35-03	3484-35-04			
Sample Depth, ft	0-1	0-1	0-1	0-1	0-1	0-1	0-1	0-1	Soil Reference	Soil Remediation	Soil Remediation
Sample Date	5/24/18	5/24/18	5/24/18	5/24/18	5/24/18	5/24/18	5/24/18	5/24/18	Concentrations ^{a/}	Objective for	Objective for
Excavation Area(s)							3484-35			Construction	Residential
[ISGS Site No.(s)]							5464-55			Workers ^{b/}	Exposure ^{c/}
Parameter											
Laboratory soil pH (s.u.)	7.36	8.98	8.97	8.92	8.13	7.49	8.83	7.76	6.25 - 9.0		
VOCs (mg/kg)											
SVOCs, mg/kg											
Benzo(a)anthracene	0.706	0.984	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	0.9 / 1.1 / 1.8	170	0.9
Benzo(a)pyrene	0.755	0.944	0.1	0.191	0.192	0.157	0.175	<0.09	0.09 / 1.3 / 2.1	17	0.09
Benzo(b)fluoranthene	0.79	0.842	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	0.9 / 1.5 / 2.1	170	0.9
Dibenz(a,h)anthracene	<0.09	0.097	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	0.09 / 0.2 / 0.42	17	0.09
Total Metals, mg/kg											
Beryllium	0.6	<0.5	<0.5	0.8	<0.5	<0.5	<0.5	<0.5	22	410	160
Chromium	14.9	6.2	5.8	18.2	15.1	5.2	11.9	11.2	21	690	230
Iron	15300	9520	7640	19100	19500	7420	15400	11100	15,000 / 15,900		
Lead	8.2	40.8	9.4	20.8	15.9	15.9	16.1	13.1	107	700	400
Manganese	243	216	284	189	251	258	291	198	630 / 636	4,100	1600
Mercury	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.89	0.1	10
TCLP Metals, mg/L									Cl	ass I Groundwater	d/
Beryllium	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	0.0	04	
Chromium	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.	1	
Iron	0.6	<0.1	<0.1	0.4	0.7	<0.1	<0.1	<0.1	5	5	
Lead	<0.005	<0.005	<0.005	0.007	0.029	<0.005	0.018	0.006	0.00	075	
Manganese	2.3	0.5	2.1	1.3	4.2	0.6	0.2	4	0.2	15	
Mercury	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	0.0	02	
SPLP Metals, mg/L											
Beryllium	<0.004	<0.004	<0.004	0.005	<0.004	<0.004	<0.004	<0.004	0.0	04	
Chromium	0.025	0.033	0.052	0.131	0.027	0.013	0.054	0.027	0.		
Iron	22.4	30.1	50	108	31.6	11.2	50.1	25.2	5	5	
Lead	0.024	0.037	0.059	0.101	0.027	0.016	0.046	0.038	0.00	075	
Manganese	0.3	0.3	0.5	0.6	0.1	<0.1	0.4	0.3	0.2	15	
Mercury	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	0.0	02	

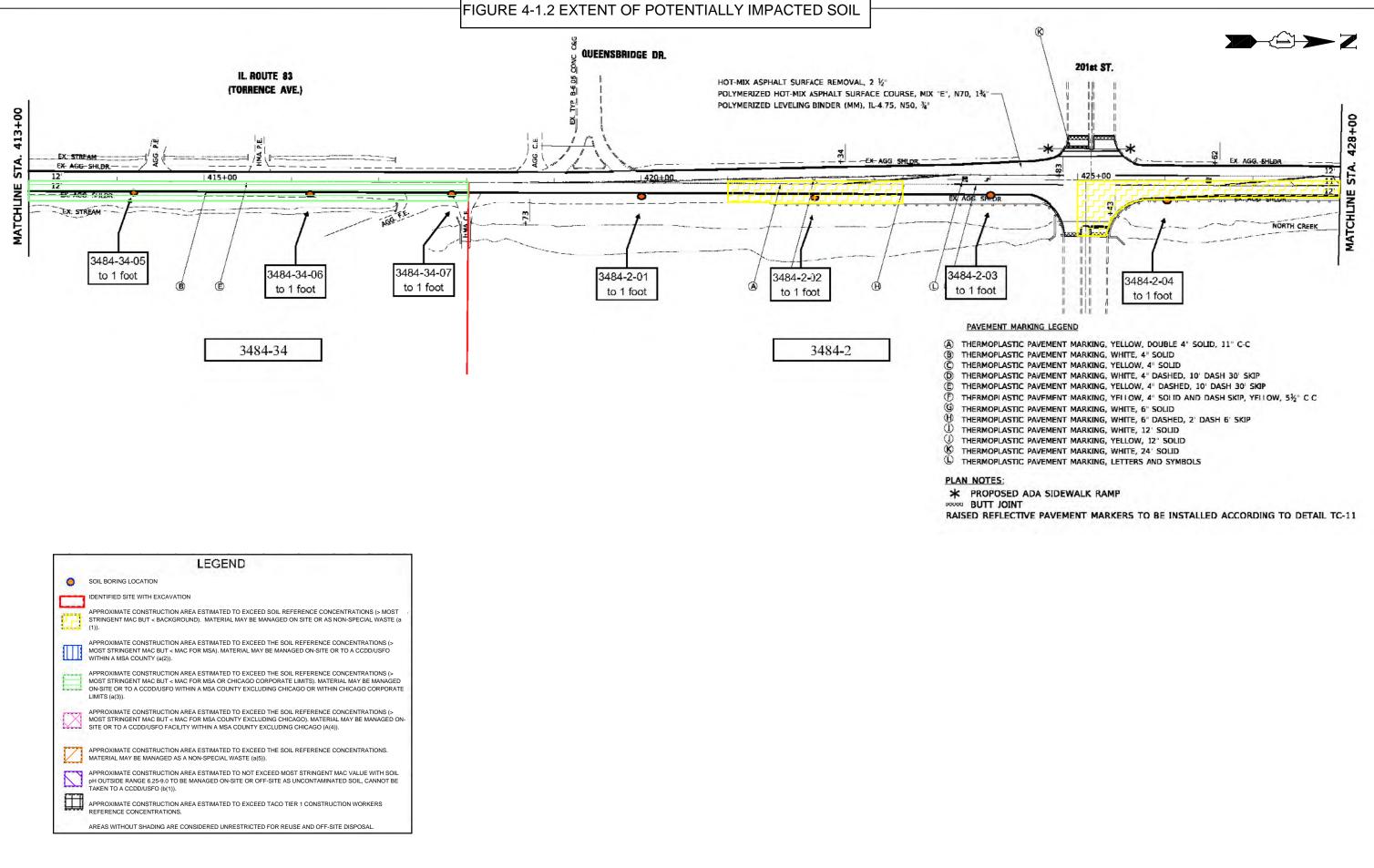
--- - Refers to not applicable or value not available

^{a/} Soil reference concentrations from MAC table. Background values for MSA counties are included as applicable.

Inorganic Soil Reference Concentrations (xx.xx / xx.xx) Include the Most Stringent values from the MAC Table / and the MSA County Value From the MAC Table as Applicable

^{b/} Soil Remediation Objective for Construction Workers, most stringent of the Ingestion or Inhalation exposure route.

^{c/} Soil Remediation Objective for Residential expsoure, most stringent of the Ingestion or Inhalation exposure route.


^{d/} Soil Remediation Objective for the Groundwater Component of the Groundwater Ingestion Route, Class I Grou

Shaded values indicate concentration exceeds reference concentration

	LEGEND
0	SOIL BORING LOCATION
	IDENTIFIED SITE WITH EXCAVATION
62	APPROXIMATE CONSTRUCTION AREA ESTIMATED TO EXCEED SOIL REFERENCE CONCENTRATIONS (> MOST STRINGENT MAC BUT < BACKGROUND). MATERIAL MAY BE MANAGED ON SITE OR AS NON-SPECIAL WASTE (a (1)).
	APPROXIMATE CONSTRUCTION AREA ESTIMATED TO EXCEED THE SOIL REFERENCE CONCENTRATIONS (> MOST STRINGENT MAC BUT < MAC FOR MSA). MATERIAL MAY BE MANAGED ON-SITE OR TO A CCDD/USFO WITHIN A MSA COUNTY (a(2)).
	APPROXIMATE CONSTRUCTION AREA ESTIMATED TO EXCEED THE SOIL REFERENCE CONCENTRATIONS (> MOST STRINGENT MAC BUT < MAC FOR MSA OR CHICAGO CORPORATE LIMITS). MATERIAL MAY BE MANAGED ON-SITE OR TO A CCDD/USFO WITHIN A MSA COUNTY EXCLUDING CHICAGO OR WITHIN CHICAGO CORPORATE LIMITS (a(3)).
	APPROXIMATE CONSTRUCTION AREA ESTIMATED TO EXCEED THE SOIL REFERENCE CONCENTRATIONS (> MOST STRINGENT MAC BUT < MAC FOR MSA COUNTY EXCLUDING CHICAGO), MATERIAL MAY BE MANAGED ON SITE OR TO A CCDD/USFO FACILITY WITHIN A MSA COUNTY EXCLUDING CHICAGO (A(4)).
\square	APPROXIMATE CONSTRUCTION AREA ESTIMATED TO EXCEED THE SOIL REFERENCE CONCENTRATIONS. MATERIAL MAY BE MANAGED AS A NON-SPECIAL WASTE (a(5)).
	APPROXIMATE CONSTRUCTION AREA ESTIMATED TO NOT EXCEED MOST STRINGENT MAC VALUE WITH SOIL pH OUTSIDE RANGE 6.25-9.0 TO BE MANAGED ON-SITE OR OFF-SITE AS UNCONTAMINATED SOIL, CANNOT BE TAKEN TO A CCDD/USFO (b(1)).
	APPROXIMATE CONSTRUCTION AREA ESTIMATED TO EXCEED TACO TIER 1 CONSTRUCTION WORKERS REFERENCE CONCENTRATIONS.
	AREAS WITHOUT SHADING ARE CONSIDERED UNRESTRICTED FOR REUSE AND OFF-SITE DISPOSAL.

FILE NAME =	USER NAME =	DESIGNED -	REVISED -			SECTION	COUNTY TOTAL SHEET SHEETS NO.	
		DRAWN -	REVISED -] STATE OF ILLINOIS	IL 83 (I-80 TO GLENWOOD DYER ROAD) SCALE: 1" = 100' SHEET NO. 1 OF 6 SHEETS STA. 458+00 TO STA. 488+00		(3076-1 & 3077) RS-1	СООК 6 1
	PLOT SCALE =	CHECKED -	REVISED -	DEPARTMENT OF TRANSPORTATION			(CONTRACT NO. NO 62C51
	PLOT DATE =	DATE -	REVISED -				ILLINOIS	

FILE NAME =	USER NAME =	DESIGNED -	REVISED -		ROADWAY PLAN		SECTION	COUNTY	TOTAL	SHEET
		DRAWN -	REVISED -	STATE OF ILLINOIS	IL 83 (I-80 TO GLENWOOD DYER ROAD)	2937 (3	3076-1 & 3077) RS-1	соок	6	2
	PLOT SCALE =	CHECKED -	REVISED -	DEPARTMENT OF TRANSPORTATION		(-	,	CONTRACT NO	0. NO 62	C51
	PLOT DATE =	DATE -	REVISED -		SCALE: 1" = 100' SHEET NO. 1 OF 6 SHEETS STA. 458+00 TO STA. 488+00		ILLINOIS			

IL ELAP / NELAC Accreditation # 100292

1

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Project ID:Torrence AveTime CollectSample ID:34-04 (0-1)Date ReceiveSample No:18-2892-028Date ReportResults are reported on a dry weight basis.Total ResultResultAnalyteResultResultUnitSolids, TotalMethod: 2540BAnalysis Date: 05/25/18 14:00Yolatile Organic Compounds Analysis Date: 06/01/18Method: 5035A/8260B	d: 05/24/18 ed: 06/06/18 its Flags
Sample ID:34-04 (0-1)Date ReceiveSample No:18-2892-028Date ReportResults are reported on a dry weight basis.Image: Compound state of the second state	ed: 06/06/18 its Flags
Sample No:18-2892-028Date ReportResults are reported on a dry weight basis.AnalyteResultAnalyteResultR.L.UnitSolids, Total Analysis Date:Method:2540BAnalysis Date:05/25/1814:00Total Solids70.02%Volatile Organic CompoundsMethod:5035A/8260B	ts Flags
Results are reported on a dry weight basis.AnalyteResultR.L.UnitSolids, TotalMethod: 2540BAnalysis Date:05/25/1814:00Total Solids70.02%Volatile Organic CompoundsMethod: 5035A/8260B	its Flags
AnalyteResultR.L.UnitSolids, Total Analysis Date: 05/25/18 14:00Method: 2540B400Total Solids70.02%Volatile Organic CompoundsMethod: 5035A/8260B	
Analysis Date:05/25/1814:00Total Solids70.02%Volatile Organic CompoundsMethod:5035A/8260B	
Total Solids70.02%Volatile Organic CompoundsMethod: 5035A/8260B	
Volatile Organic Compounds Method: 5035A/8260B	
)
Acetone < 200 200 ug/	kg
Benzene < 5.0 5.0 ug/	kg
Bromodichloromethane < 5.0 5.0 ug/	kg
Bromoform < 5.0 ug/	kg
Bromomethane < 10.0 10.0 ug/	kg
2-Butanone (MEK) < 100 100 ug/	kg
Carbon disulfide 31.8 5.0 ug/	kg
Carbon tetrachloride < 5.0 5.0 ug/	kg
Chlorobenzene < 5.0 5.0 ug/	kg
Chlorodibromomethane < 5.0 5.0 ug/	kg
Chloroethane < 10.0 10.0 ug/	kg
Chloroform < 5.0 ug/	kg
Chloromethane < 10.0 10.0 ug/	kg
1,1-Dichloroethane < 5.0 5.0 ug/	kg
1,2-Dichloroethane < 5.0 5.0 ug/	kg
1,1-Dichloroethene < 5.0 5.0 ug/	kg
cis-1,2-Dichloroethene < 5.0 5.0 ug/	kg
trans-1,2-Dichloroethene < 5.0 5.0 ug/	kg
1,2-Dichloropropane < 5.0 5.0 ug/	kg
cis-1,3-Dichloropropene < 4.0 4.0 ug/	kg
trans-1,3-Dichloropropene < 4.0 4.0 ug	kg
Ethylbenzene < 5.0 5.0 ug/	kg
2-Hexanone < 10.0 10.0 ug	kg
Methyl-tert-butylether (MTBE) < 5.0 ug/	kg
4-Methyl-2-pentanone (MIBK) < 10.0 10.0 ug	kg
Methylene chloride < 20.0 20.0 ug	kg
Styrene < 5.0 5.0 ug	kg
1,1,2,2-Tetrachloroethane < 5.0 5.0 ug	kg
Tetrachloroethene < 5.0 5.0 ug	kg
Toluene < 5.0 5.0 ug	
1,1,1-Trichloroethane < 5.0 5.0 ug	
1,1,2-Trichloroethane < 5.0 5.0 ug	
Trichloroethene < 5.0 5.0 ug	kg

First Environmental

Laboratories, Inc.

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client: Project ID: Sample ID: Sample No:	HUFF & HUFF INC Torrence Ave 34-04 (0-1) 18-2892-028		L	Time (Date R	ollected: Collected: Received: Reported:	05/24/18 9:36 05/24/18 06/06/18
	orted on a dry weight	basis.			-	
Analyte		NA H	Result	R.L.	Units	Flags
Volatile Orga Analysis Date	nic Compounds : 06/01/18	Method: 5035A/82	260B			
Vinyl acetate			< 10.0	10.0	ug/kg	
Vinyl chloride	•		< 10.0	10.0	ug/kg	
Xylene, Total			< 5.0	5.0	ug/kg	
Semi-Volatile Analysis Date		Method: 8270C		Preparation Preparation I		
Acenaphthene			< 330	330	ug/kg	
Acenaphthyle			< 330	330	ug/kg	
Anthracene			< 330	330	ug/kg	
Benzidine			< 330	330	ug/kg	
Benzo(a)anthr	racene		706	330	ug/kg	
Benzo(a)pyrei			755	90	ug/kg	
Benzo(b)fluor			790	330	ug/kg	
Benzo(k)fluor	anthene		910	330	ug/kg	
Benzo(ghi)per	rylene		377	330	ug/kg	
Benzoic acid			< 330	330	ug/kg	
Benzyl alcoho	bl		< 330	330	ug/kg	
bis(2-Chloroe	thoxy)methane		< 330	330	ug/kg	
bis(2-Chloroe	thyl)ether		< 330	330	ug/kg	
•	sopropyl)ether		< 330	330	ug/kg	
bis(2-Ethylhe	• /1		< 330	330	ug/kg	
•	yl phenyl ether		< 330	330	ug/kg	
Butyl benzyl	phthalate		< 330	330	ug/kg	
Carbazole			< 330	330	ug/kg	
4-Chloroanili			< 330	330	ug/kg	
4-Chloro-3-m	• •		< 330	330	ug/kg	
2-Chloronaph			< 330	330 330	ug/kg	
2-Chlorophen			< 330 < 330	330	ug/kg	
•	yl phenyl ether		< 330 943	330	ug/kg ug/kg	
Chrysene	41		< 90	90	ug/kg	
Dibenzo(a,h)a			< 330	330	ug/kg	
Dibenzofuran			< 330	330	ug/kg	
1,2-Dichlorot			< 330	330	ug/kg	
1,3-Dichlorot			< 330	330	ug/kg	
1,4-Dichlorot			< 660	660	ug/kg	
3,3'-Dichloro 2,4-Dichloro			< 330	330	ug/kg	
2,4-Dichloro	menor			550		

First Environmental

Laboratories, Inc.

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.	Date Collected:	05/24/18
Project ID:	Torrence Ave	Time Collected:	9:36
Sample ID:	34-04 (0-1)	Date Received:	05/24/18
Sample No:	18-2892-028	Date Reported:	06/06/18
Results are rep	orted on a dry weight basis.		

Analyte		Result	R.L.	Units	Flags
Semi-Volatile Compounds Analysis Date: 05/30/18	Method: 8270C		Preparation Preparation D		
Diethyl phthalate		< 330	330	ug/kg	
2,4-Dimethylphenol		< 330	330	ug/kg	
Dimethyl phthalate		< 330	330	ug/kg	
Di-n-butyl phthalate		< 330	330	ug/kg	
4,6-Dinitro-2-methylphenol		< 1,600	1600	ug/kg	
2,4-Dinitrophenol		< 1,600	1600	ug/kg	
2,4-Dinitrotoluene		< 250	250	ug/kg	
2,6-Dinitrotoluene		< 260	260	ug/kg	
Di-n-octylphthalate		< 330	330	ug/kg	
Fluoranthene		1,960	330	ug/kg	
Fluorene		< 330	330	ug/kg	
Hexachlorobenzene		< 330	330	ug/kg	
Hexachlorobutadiene		< 330	330	ug/kg	
Hexachlorocyclopentadiene		< 330	330	ug/kg	
Hexachloroethane		< 330	330	ug/kg	
Indeno(1,2,3-cd)pyrene		418	330	ug/kg	
Isophorone		< 330	330	ug/kg	
2-Methylnaphthalene		< 330	330	ug/kg	
2-Methylphenol		< 330	330	ug/kg	
3 & 4-Methylphenol		< 330	330	ug/kg	
Naphthalene		< 330	330	ug/kg	
2-Nitroaniline		< 1,600	1600	ug/kg	
3-Nitroaniline		< 1,600	1600	ug/kg	
4-Nitroaniline		< 1,600	1600	ug/kg	
Nitrobenzene		< 260	260	ug/kg	
2-Nitrophenol		< 1,600	1600	ug/kg	
4-Nitrophenol		< 1,600	1600	ug/kg	
n-Nitrosodi-n-propylamine		< 90	90	ug/kg	
n-Nitrosodimethylamine		< 330	330	ug/kg	
n-Nitrosodiphenylamine		< 330	330	ug/kg	
Pentachlorophenol		< 330	330	ug/kg	
Phenanthrene		1,400	330	ug/kg	
Phenol		< 330	330	ug/kg	
Pyrene		1,750	330	ug/kg	
Pyridine		< 330	330	ug/kg	
1,2,4-Trichlorobenzene		< 330	330	ug/kg	

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client: Project ID: Sample ID: Sample No:	HUFF & HUFF INC. Torrence Ave 34-04 (0-1) 18-2892-028				Time (Date F	Collected: Collected: Received: Reported:	05/24/18 9:36 05/24/18 06/06/18
Results are rep Analyte	ported on a dry weight ba	asis.		Result	R.L.	Units	Flags
Semi-Volatile Analysis Date		Method: 82700			Preparation Preparation I	Method 3	540C
2,4,5-Trichlor			<	330	330	ug/kg	
2,4,6-Trichlor				330	330	ug/kg	
pH @ 25°C, 1	1:2 :: 05/29/18 11:25	Method: 90451	2004	7.36		Units	
Total Metals Analysis Date		Method: 60100	2		Preparation Preparation I		
Antimony			<	1.0	1.0	mg/kg	
Arsenic				2.7	1.0	mg/kg	
Barium				78.6	0.5	mg/kg	
Beryllium				0.6	0.5	mg/kg	
Cadmium			<	0.5	0.5	mg/kg	
Calcium				4,900	50	mg/kg	
Chromium				14.9	0.5	mg/kg	
Cobalt				5.0	0.5	mg/kg	
Copper				15.1	0.5	mg/kg	
Iron				15,300	5.0	nıg/kg	
Lead				8.2	0.5	mg/kg	
Magnesium				3,090	50	mg/kg	
Manganese				243	0.5	mg/kg	
Nickel				14.6	0.5	mg/kg	
Potassium				1,340	50	mg/kg	
Selenium				1.0	1.0	mg/kg	
Silver			<	0.2	0.2	mg/kg	
Sodium				3,340	50	mg/kg	
Thallium			<	1.0	1.0	mg/kg	
Vanadium				19.8	1.0	mg/kg	
Zinc				37.8	1.0	mg/kg	
Total Mercu Analysis Date		Method: 7471					
Mercury			<	0.05	0.05	mg/kg	
TCLP Metal Analysis Date	s Method 1311 e: 06/01/18	Method: 6010	С		Preparation Preparation		
Arsenic			<	0.010	0.010	mg/L	
Barium				1.0	1.0	mg/L	

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.	Date Collected:	05/24/18
Project ID:	Torrence Ave	Time Collected:	9:36
Sample ID:	34-04 (0-1)	Date Received:	05/24/18
Sample No:	18-2892-028	Date Reported:	06/06/18
Results are rep	orted on a dry weight basis.		

Analyte		Result	R.L.	Units	Flags
TCLP Metals Method 1311 Analysis Date: 06/01/18	Method: 6010C	I F	Preparation Preparation D	Method 301 ate: 05/30/18	0A
Beryllium		< 1.00	1.0	mg/L	
Cadmium		< 0.005	0.005	mg/L	
Chromium		< 0.005	0.005	mg/L	
Cobalt		< 0.1	0.1	mg/L	
Copper		< 0.1	0.1	mg/L	
Iron		0.6	0.1	mg/L	
Lead		< 0.005	0.005	mg/L	
Manganese		2.3	9.1	mg/L	
Nickel		< 0.1	0.1	mg/L	
Selenium		< 0.010	0.010	mg/L	
Silver		< 0.005	0.005	mg/L	
Zinc		< 0.1	0.1	mg/L	
TCLP Mercury Method 1311 Analysis Date: 06/01/18	Method: 7470A				
Mercury		< 0.0005	0.0005	mg/L	
TCLP Extraction Analysis Date: 05/30/18	Method: 1311				
TCLP Extraction		Complete			
SPLP Metals Method 1312 Analysis Date: 06/01/18	Method: 6010C		Preparation Preparation D		
Arsenic		< 0.010	0.010	mg/L	
Barium		< 1.0	1.0	mg/L	
Beryllium		< 0.004	0.004	mg/L	
Cadmium		< 0.005	0.005	mg/L	
Chromium		0.025	0.005	mg/L	
Cobalt		< 0.1	0.1	mg/L	
Copper		0.029	0.005	mg/L	
Iron		22.4	0.1	mg/L	
Lead		0.024	0.005	mg/L	
Manganese		0.3	0.1	mg/L	
Nickel		< 0.1	0.1	mg/L	
Selenium		< 0.010	0.010	mg/L	
Silver		< 0.005	0.005	mg/L	
Zinc		< 0.1	0.1	mg/L	

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & H	UFF INC.				Date C	ollected:	05/24/18
Project ID:	Torrence A	ve				Time C	Collected:	9:36
Sample ID:	34-04 (0-1)				Date R	eceived:	05/24/18
Sample No:	18-2892-02	28				Date R	eported:	06/06/18
Results are rep	orted on a dr	y weight ba	sis.					
Analyte	·			Resu	lt	R.L.	Units	Flags
SPLP Mercur Analysis Date:		312	Method: 7470A					
Mercury				< 0.00	05	0.0005	mg/L	
SPLP Extract Analysis Date:			Method: 1312					
SPLP Metals E	Extraction			Com	plete			
Sample QC Su	mmary:	Surrogate	Recovery				%R Li	mits
Method		Analyte				Low		
5035A/8260B		4-Bromofl	uorobenzene (Surr)	%R:	97.9		86 -	117
5035A/8260B		d8-Toluen	e (Surr)	%R:	100.5		90 -	110
5035A/8260B			uoromethane (Surr)	%R:	100.4		77 -	120

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC		-	Date C	collected:	05/24/18
Project ID:	Torrence Ave			Time Collected:		9:38
Sample ID:	34-05 (0-1)			Date R	eceived:	05/24/18
Sample No:	18-2892-029			Date R	eported:	06/06/18
-	orted on a dry weight	hasis			-1	
Analyte	forted on a dry weight		Result	R.L.	Units	Flags
Solids, Total		Method: 2540B				
	05/25/18 14:00					
Total Solids			84.5		%	
Velatile Orga	nic Compounds	Method: 5035A/82	260B			
Analysis Date:		Method: 5055402				
Acetone			< 200	200	ug/kg	
Benzene			< 5.0	5.0	ug/kg	
Bromodichloro	omethane		< 5.0	5.0	ug/kg	
Bromoform			< 5.0	5.0	ug/kg	
Bromomethan	e		< 10.0	10.0	ug/kg	
2-Butanone (M	1EK)		< 100	100	ug/kg	
Carbon disulfi	de		6.1	5.0	ug/kg	
Carbon tetrach	loride		< 5.0	5.0	ug/kg	
Chlorobenzene	e		< 5.0	5.0	ug/kg	
Chlorodibrom	omethane		< 5.0	5.0	ug/kg	
Chloroethane			< 10.0	10.0	ug/kg	
Chloroform			< 5.0	5.0	ug/kg	
Chloromethan	e		< 10.0	10.0	ug/kg	
1,1-Dichloroet	thane		< 5.0	5.0	ug/kg	
1,2-Dichloroet	thane		< 5.0	5.0	ug/kg	
1,1-Dichloroet	thene		< 5.0	5.0	ug/kg	
cis-1,2-Dichlo	roethene		< 5.0	5.0	ug/kg	
trans-1,2-Dich	loroethene		< 5.0	5.0	ug/kg	
1,2-Dichlorop	ropane		< 5.0	5.0	ug/kg	
cis-1,3-Dichlo	ropropene		< 4.0	4.0	ug/kg	
trans-1,3-Dich	loropropene	3.0	< 4.0	4.0	ug/kg	
Ethylbenzene			< 5.0	5.0	ug/kg	
2-Hexanone			< 10.0	10.0	ug/kg	
Methyl-tert-bu	tylether (MTBE)		< 5.0	5.0	ug/kg	
4-Methyl-2-pe	entanone (MIBK)		< 10.0	10.0	ug/kg	
Methylene chl	loride		< 20.0	20.0	ug/kg	
Styrene			< 5.0	5.0	ug/kg	
1,1,2,2-Tetrac			< 5.0	5.0	ug/kg	
Tetrachloroeth	hene		< 5.0	5.0	ug/kg	
Toluene			< 5.0	5.0	ug/kg	
1,1,1-Trichlor			< 5.0	5.0	ug/kg	
1,1,2-Trichlor			< 5.0	5.0	ug/kg	
Trichloroether	ne		< 5.0	5.0	ug/kg	

.....

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:HUFF & HUFF INC.Date Collected:05/24Project ID:Torrence AveTime Collected:9:38Sample ID:34-05 (0-1)Date Received:05/24Sample No:18-2892-029Date Reported:06/06Results are reported on a dry weight basis.ResultR.L.UnitsVolatile Organic Compounds Analysis Date:Method:5035A/8260B	
Sample ID:34-05 (0-1)Date Received:05/24Sample No:18-2892-029Date Reported:06/06Results are reported on a dry weight basis.ResultR.L.UnitsVolatile Organic CompoundsMethod:5035A/8260B5035A/8260B	5/18
Sample No:18-2892-029Date Reported:06/06Results are reported on a dry weight basis.AnalyteResultR.L.UnitsVolatile Organic CompoundsMethod:5035A/8260BSuperscript of the second	
Results are reported on a dry weight basis. Result R.L. Units Volatile Organic Compounds Method: 5035A/8260B Volatile Organic Compounds Volatile Organic Compounds	Flags
AnalyteResultR.L.UnitsVolatile Organic CompoundsMethod: 5035A/8260B	Flags
Volatile Organic Compounds Method: 5035A/8260B	
Vinyl acetate < 10.0 10.0 ug/kg	
Vinyl chloride < 10.0 10.0 ug/kg	
Xylene, Total < 5.0 5.0 ug/kg	
Semi-Volatile Compounds Method: 8270C Preparation Method 3540C	
Analysis Date: 05/30/18 Preparation Date: 05/29/18	
Acenaphthene < 330 330 ug/kg	
Acenaphthylene < 330 330 ug/kg	
Anthracene < 330 330 ug/kg	
Benzidine < 330 330 ug/kg	
Benzo(a)anthracene 984 330 ug/kg	
Benzo(a)pyrene 944 90 ug/kg	
Benzo(b)fluoranthene 842 330 ug/kg	
Benzo(k)fluoranthene 887 330 ug/kg	
Benzo(ghi)perylene 390 330 ug/kg	
Benzoic acid < 330 330 ug/kg	
Benzyl alcohol < 330 ug/kg	
bis(2-Chloroethoxy)methane < 330 330 ug/kg	
bis(2-Chloroethyl)ether < 330 330 ug/kg	
bis(2-Chloroisopropyl)ether < 330 330 ug/kg	
bis(2-Ethylhexyl)phthalate < 330 330 ug/kg	
4-Bromophenyl phenyl ether < 330 330 ug/kg	
Butyl benzyl phthalate < 330 330 ug/kg	
Carbazole < 330 330 ug/kg	
4-Chloroaniline < 330 330 ug/kg	
4-Chloro-3-methylphenol < 330 ug/kg	
2-Chloronaphthalene < 330 330 ug/kg	
2-Chlorophenol < 330 ug/kg	
4-Chlorophenyl phenyl ether < 330 330 ug/kg	
Chrysene 942 330 ug/kg	
Dibenzo(a,h)authracene 97 90 ug/kg	
Dibenzofuran < 330 ug/kg	
1,2-Dichlorobenzene < 330 330 ug/kg	
1,3-Dichlorobenzene < 330 330 ug/kg	
1,4-Dichlorobenzene < 330 330 ug/kg	
3,3'-Dichlorobenzidine < 660 ug/kg	
2,4-Dichlorophenol < 330 ug/kg	

٠

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.	Date Collected:	05/24/18
Project ID:	Torrence Ave	Time Collected:	9:38
Sample ID:	34-05 (0-1)	Date Received:	05/24/18
Sample No:	18-2892-029	Date Reported:	06/06/18
Results are rep	orted on a dry weight basis.		

Analyte		Result	R.L.	Units	Flags
Semi-Volatile Compounds Analysis Date: 05/30/18	Method: 8270C		Preparation Preparation E	Method 354 Date: 05/29/18	10C 3
Diethyl phthalate		< 330	330	ug/kg	
2,4-Dimethylphenol		< 330	330	ug/kg	
Dimethyl phthalate		< 330	330	ug/kg	
Di-n-butyl phthalate		< 330	330	ug/kg	
4,6-Dinitro-2-methylphenol		< 1,600	1600	ug/kg	
2,4-Dinitrophenol		< 1,600	1600	ug/kg	
2,4-Dinitrotoluene		< 250	250	ug/kg	
2,6-Dinitrotoluene		< 260	260	ug/kg	
Di-n-octylphthalate		< 330	330	ug/kg	
Fluoranthene		1,760	330	ug/kg	
Fluorene		< 330	330	ug/kg	
Hexachlorobenzene		< 330	330	ug/kg	
Hexachlorobutadiene		< 330	330	ug/kg	
Hexachlorocyclopentadiene		< 330	330	ug/kg	
Hexachloroethane		< 330	330	ug/kg	
Indeno(1,2,3-cd)pyrene		424	330	ug/kg	
Isophorone		< 330	330	ug/kg	
2-Methylnaphthalene		< 330	330	ug/kg	
2-Methylphenol		< 330	330	ug/kg	
3 & 4-Methylphenol		< 330	330	ug/kg	
Naphthalene		< 330	330	ug/kg	
2-Nitroaniline		< 1,600	1600	ug/kg	
3-Nitroaniline		< 1,600	1600	ug/kg	
4-Nitroaniline		< 1,600	1600	ug/kg	
Nitrobenzene		< 260	260	ug/kg	
2-Nitrophenol		< 1,600	1600	ug/kg	
4-Nitrophenol		< 1,600	1600	ug/kg	
n-Nitrosodi-n-propylamine		< 90	90	ug/kg	
n-Nitrosodimethylamine		< 330	330	ug/kg	
n-Nitrosodiphenylamine		< 330	330	ug/kg	
Pentachlorophenol		< 330	330	ug/kg	
Phenanthrene		1,120	330	ug/kg	
Phenol		< 330	330	ug/kg	
Pyrene		1,810	330	ug/kg	
Pyridine		< 330	330	ug/kg	
1,2,4-Trichlorobenzene		< 330	330	ug/kg	

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

	HUFF & HUFF INC.	•/	L	Data (Collected:	05/24/18
Client:					Collected:	9:38
Project ID:	Torrence Ave				Leceived:	9.38 05/24/18
Sample ID:	34-05 (0-1)					06/06/18
Sample No:	18-2892-029			Date R	Reported:	00/00/18
	orted on a dry weight ba	1515.	Derald	R.L.	Units	Flags
Analyte		10 - K-	Result			
Semi-Volatile Analysis Date:		Method: 8270C		Preparation Preparation I		
2,4,5-Trichlord	ophenol		< 330	330	ug/kg	
2,4,6-Trichloro	ophenol		< 330	330	ug/kg	
pH @ 25°C, 1 Analysis Date:	:2 05/29/18 11:25	Method: 9045D	2004			
pH @ 25°C, 1:	2		8.98		Units	
Total Metals Analysis Date:	05/30/18	Method: 6010C		Preparation Preparation I		
Antimony			< 1.0	1.0	mg/kg	
Arsenic			5.4	1.0	mg/kg	
Barium			32.7	0.5	mg/kg	
Beryllium			< 0.5	0.5	mg/kg	
Cadmium			< 0.5	0.5	mg/kg	
Calcium			28,400	50	mg/kg	
Chromium			6.2	0.5	mg/kg	
Cobalt			4.3	0.5	mg/kg	
Copper			15.0	0.5	mg/kg	
Iron			9,520	5.0	mg/kg	
Lead			40.8	0.5	mg/kg	
Magnesium			14,200	50	mg/kg	
Manganese			216	0.5	mg/kg	
Nickel			9.2	0.5	mg/kg	
Potassium			572	50	mg/kg	
Selenium			< 1.0	1.0	mg/kg	
Silver			< 0.2	0.2	mg/kg	
Sodium			1,370	50	mg/kg	
Thallium			< 1.0	1.0	mg/kg	
Vanadium			11.6	1.0	mg/kg	
Zinc			55.9	1.0	mg/kg	
Total Mercur Analysis Date		Method: 7471B				
Mercury			< 0.05	0.05	mg/kg	
TCLP Metals Analysis Date	Method 1311 : 06/01/18	Method: 6010C		Preparation Method 3010A Preparation Date: 05/30/18		
Arsenic			< 0.010	0.010	mg/L	
Barium			< 1.0	1.0	mg/L	

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.	Date Collected:	05/24/18
Project ID:	Torrence Ave	Time Collected:	9:38
Sample ID:	34-05 (0-1)	Date Received:	05/24/18
Sample No:	18-2892-029	Date Reported:	06/06/18
Results are rep	orted on a dry weight basis.		

Analyte		Result	R.L.	Units	Flags
TCLP Metals Method 1311 Analysis Date: 06/01/18	Method: 6010C			Method 301 Date: 05/30/18	
Beryllium		< 1.00	1.0	mg/L	
Cadmium		< 0.005	0.005	mg/L	
Chromium		< 0.005	0.005	mg/L	
Cobalt		< 0.1	0.1	mg/L	
Copper		< 0.1	0.1	mg/L	
Iron		< 0.1	0.1	mg/L	
Lead		< 0.005	0.005	mg/L	
Manganese		0.5	0.1	mg/L	
Nickel		< 0.1	0.1	mg/L	
Selenium		< 0.010	0.010	mg/L	
Silver		< 0.005	0.005	mg/L	
Zinc		< 0.1	0.1	mg/L	
TCLP Mercury Method 1311 Analysis Date: 06/01/18	Method: 7470A				
Mercury		< 0.0005	0.0005	mg/[_	
TCLP Extraction Analysis Date: 05/30/18	Method: 1311				
TCLP Extraction		Complete			
SPLP Metals Method 1312 Analysis Date: 06/01/18	Method: 6010C			Method 30 Date: 05/31/18	
Arsenic		< 0.010	0.010	mg/L	
Barium		< 1.0	1.0	mg/L	
Beryllium		< 0.004	0.004	mg/L	
Cadmium		< 0.005	0.005	mg/L	
Chromium		0.033	0.005	mg/L	
Cobalt		< 0.1	0.1	mg/L	
Copper		0.036	0.005	mg/L	
Iron		30.1	0.1	mg/L	
Lead		0.037	0.005	mg/L	
Manganese		0.3	0.1	mg/L	
Nickel		< 0.1	0.1	mg/L	
Selenium		< 0.010	0.010	mg/L	
Silver		< 0.005	0.005	mg/L	
Zinc		0.2	0.1	mg/L	

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HU	JFF INC.				Date C	ollected:	05/24/18
Project ID:	Torrence Av	/e				Time C	collected:	9:38
Sample ID:	34-05 (0-1)					Date R	eceived:	05/24/18
-	18-2892-029)				Date R	eported:	06/06/18
Results are repo	rted on a dry	weight ba	isis.					
Analyte				Resul	t	R.L.	Units	Flags
SPLP Mercury Analysis Date:		12	Method: 7470A					
Mercury				< 0.000)5	0.0005	mg/L	
SPLP Extracti Analysis Date:			Method: 1312					
SPLP Metals Ex	straction			Com	plete			
Sample QC Sun	nmary:	Surrogate	Recovery				%R L	imits
Method		Analyte		QC	Result		Low	
5035A/8260B		4-Bromofi	luorobenzene (Surr)	%R:	<i>99.2</i>		86 -	117
5035A/8260B		d8-Toluen		%R:	102.1		90 -	110
5035A/8260B			luoromethane (Surr)	%R:	105.6		77 -	120

...

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

		Analytical R	Report			
Client:	HUFF & HUFF INC.			Date C	ollected:	05/24/18
Project ID:	Torrence Ave			Time C	Collected:	9:40
Sample ID:	34-06 (0-1)			Date R	eceived:	05/24/18
Sample No:	18-2892-030			Date R	eported:	06/06/18
-	orted on a dry weight ba	isis.				
Analyte			Result	R.L.	Units	Flags
Solids, Total Analysis Date:	05/25/18 14:00	Method: 2540B				
Total Solids			87.55		%	
Volatile Orga	nic Compounds	Method: 5035A/82	60 B			
Analysis Date:						
Acetone			< 200	200	ug/kg	
Benzene			< 5.0	5.0	ug/kg	
Bromodichloro	omethane		< 5.0	5.0	ug/kg	
Bromoform			< 5.0	5.0	ug/kg	
Bromomethane	e		< 10.0	10.0	ug/kg	
2-Butanone (M			< 100	100	ug/kg	
Carbon disulfi	de		< 5.0	5.0	ug/kg	
Carbon tetrach	loride		< 5.0	5.0	ug/kg	
Chlorobenzene	•		< 5.0	5.0	ug/kg	
Chlorodibrom	omethane		< 5.0	5.0	ug/kg	
Chloroethane			< 10.0	10.0	ug/kg	
Chloroform			< 5.0	5.0	ug/kg	
Chloromethan	e		< 10.0	10.0	ug/kg	
1,1-Dichloroet	hane		< 5.0	5.0	ug/kg	
1,2-Dichloroet	hane		< 5.0	5.0	ug/kg	
1,1-Dichloroet	hene		< 5.0	5.0	ug/kg	
cis-1,2-Dichlo	roethene		< 5.0	5.0	ug/kg	
trans-1,2-Dich	loroethene		< 5.0	5.0	ug/kg	
1,2-Dichlorop	ropane		< 5.0	5.0	ug/kg	
cis-1,3-Dichlo	ropropene		< 4.0	4.0	ug/kg	
trans-1,3-Dich	loropropene		< 4.0	4.0	ug/kg	
Ethylbenzene			< 5.0	5.0	ug/kg	
2-Hexanone			< 10.0	10.0	ug/kg	
Methyl-tert-bu	tylether (MTBE)		< 5.0	5.0	ug/kg	
4-Methyl-2-pe	ntanone (MIBK)		< 10.0	10.0	ug/kg	
Methylene chl	oride		< 20.0	20.0	ug/kg	
Styrene			< 5.0	5.0	ug/kg	
1,1,2,2-Tetrac	hloroethane		< 5.0	5.0	ug/kg	
Tetrachloroeth	nene		< 5.0	5.0	ug/kg	
Toluene			< 5.0	5.0	ug/kg	
1,1,1-Trichlor	oethane		< 5.0	5.0	ug/kg	
1,1,2-Trichlor	oethane		< 5.0	5.0	ug/kg	
Trichloroether	ne		< 5.0	5.0	ug/kg	

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client: Project ID:	HUFF & HUFF INC. Torrence Ave		I		ollected: Collected:	05/24/18 9:40
Sample ID:	34-06 (0-1)			Date R	eceived:	05/24/18
Sample No:	18-2892-030			Date R	eported:	06/06/18
-	orted on a dry weight l	oasis.			-	
Analyte	5 ()		Result	R.L.	Units	Flags
	nic Compounds : 06/01/18	Method: 5035A/82	260B			
Vinyl acetate			< 10.0	10.0	ug/kg	
Vinyl chloride	•		< 10.0	10.0	ug/kg	
Xylene, Total			< 5.0	5.0	ug/kg	
Semi-Volatile Analysis Date		Method: 8270C		Preparation Preparation I	Method 3 Date: 05/29/	540C /18
Acenaphthene			< 330	330	ug/kg	
Acenaphthyle			< 330	330	ug/kg	
Anthracene			< 330	330	ug/kg	
Benzidine			< 330	330	ug/kg	
Benzo(a)anthr	acene		< 330	330	ug/kg	
Benzo(a)pyrei	ne		100	90	ug/kg	
Benzo(b)fluor	anthene		< 330	330	ug/kg	
Benzo(k)fluor	anthene		< 330	330	ug/kg	
Benzo(ghi)per	rylene		< 330	330	ug/kg	
Benzoic acid			< 330	330	ug/kg	
Benzyl alcoho			< 330	330	ug/kg	
bis(2-Chloroe	thoxy)methane		< 330	330	ug/kg	
bis(2-Chloroe	thyl)ether		< 330	330	ug/kg	
bis(2-Chlorois	sopropyl)ether		< 330	330	ug/kg	
bis(2-Ethylhe	xyl)phthalate		< 330	330	ug/kg	
4-Bromophen	yl phenyl ether		< 330	330	ug/kg	
Butyl benzyl p	ohthalate		< 330	330	ug/kg	
Carbazole			< 330	330	ug/kg	
4-Chloroanili	ne		< 330	330	ug/kg	
4-Chloro-3-m	ethylphenol		< 330	330	ug/kg	
2-Chloronaph	thalene		< 330	330	ug/kg	
2-Chlorophen	ol		< 330	330	ug/kg	
4-Chlorophen	yl phenyl ether		< 330	330	ug/kg	
Chrysene			< 330	330	ug/kg	
Dibenzo(a,h)a			< 90	90	ug/kg	
Dibenzofuran			< 330	330	ug/kg	
1,2-Dichlorob			< 330	330	ug/kg	
1,3-Dichlorob			< 330	330	ug/kg	
1,4-Dichlorob			< 330	330	ug/kg	
3,3'-Dichlorol			< 660	660	ug/kg	
2,4-Dichlorop	henol		< 330	330	ug/kg	

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.	Date Collected:	05/24/18
Project ID:	Torrence Ave	Time Collected:	9:40
Sample ID:	34-06 (0-1)	Date Received:	05/24/18
Sample No:	18-2892-030	Date Reported:	06/06/18
Results are rep	orted on a dry weight basis.		

Analyte		Result	R.L.	Units	Flags
Semi-Volatile Compounds Analysis Date: 05/30/18	Method: 8270C		Preparation Preparation D		
Diethyl phthalate		< 330	330	ug/kg	
2,4-Dimethylphenol		< 330	330	ug/kg	
Dimethyl phthalate		< 330	330	ug/kg	
Di-n-butyl phthalate		< 330	330	ug/kg	
4,6-Dinitro-2-methylphenol		< 1,600	1600	ug/kg	
2,4-Dinitrophenol		< 1,600	1600	ug/kg	
2,4-Dinitrotoluene		< 250	250	ug/kg	
2,6-Dinitrotoluene		< 260	260	ug/kg	
Di-n-octylphthalate		< 330	330	ug/kg	
Fluoranthene		< 330	330	ug/kg	
Fluorene		< 330	330	ug/kg	
Hexachlorobenzene		< 330	330	ug/kg	
Hexachlorobutadiene		< 330	330	ug/kg	
Hexachlorocyclopentadiene		< 330	330	ug/kg	
Hexachloroethane		< 330	330	ug/kg	
Indeno(1,2,3-cd)pyrene		< 330	330	ug/kg	
lsophorone		< 330	330	ug/kg	
2-Methylnaphthalene		< 330	330	ug/kg	
2-Methylphenol		< 330	330	ug/kg	
3 & 4-Methylphenol		< 330	330	ug/kg	
Naphthalene		< 330	330	ug/kg	
2-Nitroaniline		< 1,600	1600	ug/kg	
3-Nitroaniline		< 1,600	1600	ug/kg	
4-Nitroaniline		< 1,600	1600	ug/kg	
Nitrobenzene		< 260	260	ug/kg	
2-Nitrophenol		< 1,600	1600	ug/kg	
4-Nitrophenol		< 1,600	1600	ug/kg	
n-Nitrosodi-n-propylamine		< 90	90	ug/kg	
n-Nitiosodimethylamine		< 330	330	ug/kg	
n-Nitrosodiphenylamine		< 330	330	ug/kg	
Pentachlorophenol		< 330	330	ug/kg	
Phenanthrene		< 330	330	ug/kg	
Phenol		< 330	330	ug/kg	
Pyrene		< 330	330	ug/kg	
Pyridine		< 330	330	ug/kg	
1,2,4-Trichlorobenzene		< 330	330	ug/kg	

.

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client: HUFF & HUFF INC Project ID: Torrence Ave	/ ·			Collected:	05/24/18 9:40
3				Received:	05/24/18
Sample ID: 34-06 (0-1)				Reported:	06/06/18
Sample No: 18-2892-030	1 ! .		Date F	reporteu:	00/00/18
Results are reported on a dry weight	Dasis.	Result	R.L.	Units	Flags
Analyte		Kesuit			
Semi-Volatile Compounds Analysis Date: 05/30/18	Method: 8270C		Preparation Preparation I		
2,4,5-Trichlorophenol		< 330	330	ug/kg	
2,4,6-Trichlorophenol		< 330	330	ug/kg	
pH @ 25°C, 1:2 Analysis Date: 05/29/18 11:25	Method: 9045D 2	004			
pH @ 25°C, 1:2		8.97		Units	
Total Metals Analysis Date: 05/30/18	Method: 6010C		Preparation Preparation I		
Antimony		< 1.0	1.0	mg/kg	
Arsenic		3.9	1.0	mg/kg	
Barium		21.4	0.5	mg/kg	
Beryllium		< 0.5	0.5	mg/kg	
Cadmium		< 0.5	0.5	mg/kg	
Calcium		65,400	50	mg/kg	
Chromium		5.8	0.5	mg/kg	
Cobalt		4.8	0.5	mg/kg	
Copper		8.8	0.5	mg/kg	
Iron		7,640	5.0	mg/kg	
Lead		9.4	0.5	mg/kg	
Magnesium		38,700	50	mg/kg	
Manganese		284	0.5	mg/kg	
Nickel		9.6	0.5	mg/kg	
Potassium		714	50	mg/kg	
Selenium		< 1.0	1.0	nig/kg	
Silver		< 0.2	0.2	mg/kg	
Sodium		1,350	50	mg/kg	
Thallium		< 1.0	1.0	mg/kg	
Vanadium		10.4	1.0	mġ/kg	
Zinc		19.6	1.0	mg/kg	
Total Mercury Analysis Date: 05/29/18	Method: 7471B				
Mercury		< 0.05	0.05	mg/kg	
TCLP Metals Method 1311 Analysis Date: 06/01/18	Method: 6010C		Preparation Preparation 1		
Arsenic		< 0.010	0.010	mg/L	
Barium		< 1.0	1.0	mg/L	

.

.

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.	Date Collected:	05/24/18
Project ID:	Torrence Ave	Time Collected:	9:40
Sample ID:	34-06 (0-1)	Date Received:	05/24/18
Sample No:	18-2892-030	Date Reported:	06/06/18
Results are rep	orted on a dry weight basis.		

Analyte		Result	R.L.	Units	Flags
TCLP Metals Method 1311 Analysis Date: 06/01/18	Method: 6010C		Preparation Preparation D		DA
Beryllium		< 1.00	1.0	mg/L	
Cadmium		< 0.005	0.005	mg/L	
Chromium		< 0.005	0.005	mg/L	
Cobalt		< 0.1	0.1	mg/L	
Copper		< 0.1	0.1	mg/L	
Iron		< 0.1	0.1	mg/L	
Lead		< 0.005	0.005	mg/L	
Manganese		2.1	0.1	mg/L	
Nickel		< 0.1	0.1	mg/L	
Selenium		< 0.010	0.010	mg/L	
Silver		< 0.005	0.005	mg/L	
Zinc		< 0.1	0.1	mg/L	
TCLP Mercury Method 1311	Method: 7470A				
Analysis Date: 06/01/18	2.4	< 0.0005	0.0005	mg/L	
Mercury		< 0.0005	0.0005	ing/ D	
TCLP Extraction Analysis Date: 05/30/18	Method: 1311				
TCLP Extraction		Complet	e		
SPLP Metals Method 1312 Analysis Date: 06/01/18	Method: 6010C		Preparation Preparation I		
Arsenic		0.014	0.010	mg/L	
Barium		< 1.0	1.0	mg/L	
Beryllium		< 0.004	0.004	mg/L	
Cadmium		< 0.005	0.005	mg/L	
Chromium		0.052	0.005	mg/L	
Cobalt		< 0.1	0.1	mg/L	
Copper		0.055	0.005	mg/L	
Iron		50.0	0.1	mg/L	
Lead		0.059	0.005	mg/L	
Manganese		0.5	0.1	mg/L	
Nickel		< 0.1	0.1	mg/L	
Selenium		< 0.010	0.010	mg/L	
Silver		< 0.005	0.005	mg/L	
Zinc		0.2	0.1	mg/L	

٠

.

Environmental Laboratories, Inc.

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & H	UFF INC.				Date C	ollected:	05/24/18
Project ID:	Torrence A	ve				Time C	Collected:	9:40
Sample ID:	34-06 (0-1)				Date R	eceived:	05/24/18
Sample No:	18-2892-03	30				Date R	eported:	06/06/18
Results are rep	orted on a di	ry weight ba	isis.					
Analyte				Resu	lt	R.L.	Units	Flags
SPLP Mercur Analysis Date:		312	Method: 7470A					
Mercury				< 0.00	05	0.0005	mg/L	
SPLP Extrac Analysis Date:			Method: 1312					
SPLP Metals H	Extraction			Com	plete			
Sample QC Si	ımmary:	Surrogate	Recovery				%R Li	mits
Method		Analyte		QC	C Result		Low	
5035A/8260B		4-Bromof	luorobenzene (Surr,) %R:	98.6		86 -	117
5035A/8260B		d8-Toluer		%R:	100.6		90 -	110
5035A/8260B		Dibromot	luoromethane (Surr	r) %R:	101		77 -	120

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:HUFF & HUFFProject ID:Torrence AveSample ID:34-07 (0-1)Sample No:18-2892-031Results are reported on a dry we			Time (Date R	ollected: Collected: Leceived: Leported:	05/24/18 9:45 05/24/18 06/06/18
Analyte		Result	R.L.	Units	Flags
Solids, Total Analysis Date: 05/25/18 14:00	Method: 2540B				
Total Solids		81.45		%	
Volatile Organic Compounds Analysis Date: 06/01/18	Method: 5035A/82	60B			
Acetone		< 200	200	ug/kg	
Benzene		< 5.0	5.0	ug/kg	
Bromodichloromethane		< 5.0	5.0	ug/kg	
Bromoform		< 5.0	5.0	ug/kg	
Bromomethane		< 10.0	10.0	ug/kg	
2-Butanone (MEK)		< 100	100	ug/kg	
Carbon disulfide		< 5.0	5.0	ug/kg	
Carbon tetrachloride		< 5.0	5.0	ug/kg	
Chlorobenzene		< 5.0	5.0	ug/kg	
Chlorodibromomethane		< 5.0	5.0	ug/kg	
Chloroethane		< 10.0	10.0	ug/kg	
Chloroform		< 5.0	5.0	ug/kg	
Chloromethane		< 10.0	10.0	ug/kg	
1,1-Dichloroethane		< 5.0	5.0	ug/kg	
1,2-Dichloroethane		< 5.0	5.0	ug/kg	
1,1-Dichloroethene		< 5.0	5.0	ug/kg	
cis-1,2-Dichloroethene		< 5.0	5.0	ug/kg	
trans-1,2-Diehloroethene		< 5.0	5.0	ug/kg	
1,2-Dichloropropane		< 5.0	5.0	ug/kg	
cis-1,3-Dichloropropene		< 4.0	4.0	ug/kg	
trans-1,3-Dichloropropene		< 4.0	4.0	ug/kg	
Ethylbenzene		< 5.0	5.0	ug/kg	
2-Нехаполе		< 10.0	10.0	ug/kg	
Methyl-tert-butylether (MTBE)		< 5.0	5.0	ug/kg	
4-Methyl-2-pentanone (MIBK)		< 10.0	10.0	ug/kg	
Methylene chloride		< 20.0	20.0	ug/kg	
Styrene		< 5.0	5.0	ug/kg	
1,1,2,2-Tetrachloroethane		< 5.0	5.0	ug/kg	
Tetrachloroethene		< 5.0	5.0	ug/kg	
Toluene		< 5.0	5.0	ug/kg	
1,1,1-Trichloroethane		< 5.0	5.0	ug/kg	
1,1,2-Trichloroethane		< 5.0	5.0	ug/kg	
Trichloroethene		< 5.0	5.0	ug/kg	

IL ELAP / NELAC Accreditation # 100292

First Envir Labo 1600 Sh

.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.	·	-	Date Collected: 05/24/18		05/24/18	
Project ID:	Torrence Ave			Time C	Time Collected: 9:4		
Sample ID:	34-07 (0-1)			Date R	eceived:	05/24/18	
Sample No:	18-2892-031			Date R	eported:	06/06/18	
-	oorted on a dry weight b	asis.			*		
Analyte			Result	R.L.	Units	Flags	
Volatile Orga Analysis Date:	nic Compounds 06/01/18	Method: 5035A/82	260B				
Vinyl acetate			< 10.0	10.0	ug/kg		
Vinyl chloride			< 10.0	10.0	ug/kg		
Xylene, Total			< 5.0	5.0	ug/kg		
Semi-Volatile Analysis Date:		Method: 8270C		Preparation Preparation D			
Acenaphthene			< 330	330	ug/kg		
Acenaphthyle			< 330	330	ug/kg		
Anthracene			< 330	330	ug/kg		
Benzidine			< 330	330	ug/kg		
Benzo(a)anthr	acene		< 330	330	ug/kg		
Benzo(a)pyrer	ne		192	90	ug/kg		
Benzo(b)fluor	anthene		< 330	330	ug/kg		
Benzo(k)fluor	anthene		< 330	330	ug/kg		
Benzo(ghi)per	ylene		< 330	330	ug/kg		
Benzoic acid			< 330	330	ug/kg		
Benzyl alcoho	A		< 330	330	ug/kg		
•	thoxy)methane		< 330	330	ug/kg		
bis(2-Chloroet	• •		< 330	330	ug/kg		
bis(2-Chlorois			< 330	330	ug/kg		
bis(2-Ethylhe)	• • •		< 330	330	ug/kg		
	yl phenyl ether		< 330	330	ug/kg		
Butyl benzyl p	ohthalate		< 330	330 330	ug/kg		
Carbazole			< 330		ug/kg		
4-Chloroanilir			< 330 < 330	330 330	ug/kg ug/kg		
4-Chloro-3-me			< 330	330	ug/kg ug/kg		
2-Chloronaph			< 330	330	ug/kg		
2-Chlorophen			< 330	330	ug/kg		
4-Chrysene	yl phenyl ether		< 330	330	ug/kg		
Dibenzo(a,h)a	nthracene		< 90	90	ug/kg		
Dibenzofuran			< 330	330	ug/kg		
1,2-Dichlorob			< 330	330	ug/kg		
1,3-Dichlorob			< 330	330	ug/kg		
1,4-Dichlorob			< 330	330	ug/kg		
3,3'-Dichlorob			< 660	660	ug/kg		
2,4-Dichlorop			< 330	330	ug/kg		

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.	Date Collected:	05/24/18
Project ID:	Torrence Ave	Time Collected:	9:45
Sample ID:	34-07 (0-1)	Date Received:	05/24/18
Sample No:	18-2892-031	Date Reported:	06/06/18
Results are rep	orted on a dry weight basis.		

Analyte		Result	R.L.	Units	Flags
Semi-Volatile Compounds Analysis Date: 05/31/18	Method: 8270C		Preparation Preparation D		
Diethyl phthalate		< 330	330	ug/kg	
2,4-Dimethylphenol		< 330	330	ug/kg	
Dimethyl phthalate		< 330	330	ug/kg	
Di-n-butyl phthalate		< 330	330	ug/kg	
4,6-Dinitro-2-methylphenol		< 1,600	1600	ug/kg	
2,4-Dinitrophenol		< 1,600	1600	ug/kg	
2,4-Dinitrotoluene		< 250	250	ug/kg	
2,6-Dinitrotoluene		< 260	260	ug/kg	
Di-n-octylphthalate		< 330	330	ug/kg	
Fluoranthene		375	330	ug/kg	
Fluorene		< 330	330	ug/kg	
Hexachlorobenzene		< 330	330	ug/kg	
Hexachlorobutadiene	1	< 330	330	ug/kg	
Hexachlorocyclopentadiene		< 330	330	ug/kg	
Hexachloroethane		< 330	330	ug/kg	
Indeno(1,2,3-cd)pyrene		< 330	330	ug/kg	
Isophorone		< 330	330	ug/kg	
2-Methylnaphthalene		< 330	330	ug/kg	
2-Methylphenol		< 330	330	ug/kg	
3 & 4-Methylphenol		< 330	330	ug/kg	
Naphthalene		< 330	330	ug/kg	
2-Nitroaniline		< 1,600	1600	ug/kg	
3-Nitroaniline		< 1,600	1600	ug/kg	
4-Nitroaniline		< 1,600	1600	ug/kg	
Nitrobenzene		< 260	260	ug/kg	
2-Nitrophenol		< 1,600	1600	ug/kg	
4-Nitrophenol		< 1,600	1600	ug/kg	
n-Nitrosodi-n-propylamine		< 90	90	ug/kg	
n-Nitrosodimethylamine		< 330	330	ug/kg	
n-Nitrosodiphenylamine		< 330	330	ug/kg	
Pentachlorophenol		< 330	330	ug/kg	
Phenanthrene		< 330	330	ug/kg	
Phenol		< 330	330	ug/kg	
Pyrene		372	330	ug/kg	
Pyridine		< 330	330	ug/kg	
1,2,4-Trichlorobenzene		< 330	330	ug/kg	

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.	v	•	Date C	ollected:	05/24/18
Project ID:	Torrence Ave			Time C	Collected:	9:45
Sample ID:	34-07 (0-1)			Date R	eceived:	05/24/18
Sample No:	18-2892-031			Date R	eported:	06/06/18
-	ported on a dry weight ba	asis.				
Analyte			Result	R.L.	Units	Flags
Semi-Volatile Analysis Date		Method: 8270C		Preparation Preparation D		
2,4,5-Trichlor	ophenol		< 330	330	ug/kg	
2,4,6-Trichlor	ophenol		< 330	330	ug/kg	
pH @ 25°C, 1 Analysis Date	1:2 : 05/29/18 11:25	Method: 9045D 2				
pH @ 25°C, 1	:2		8.13		Units	
Total Metals Analysis Date	: 05/30/18	Method: 6010C		Preparation Preparation I	Method 3 Date: 05/25/)50B [8
Antimony			< 1.0	1.0	mg/kg	
Arsenic			8.6	1.0	mg/kg	
Barium			39.3	0.5	mg/kg	
Beryllium			< 0.5	0.5	mg/kg	
Cadmium			< 0.5	0.5	mg/kg	
Calcium			36,400	50	mg/kg	
Chromium			15.1	0.5	mg/kg	
Cobalt			7.8	0.5	mg/kg	
Copper			16.3	0.5	mg/kg	
lron			19,500	5.0	mg/kg	
Lead			15.9	0.5	mg/kg	
Magnesium			17,100	50	mg/kg	
Manganese			251	0.5	mg/kg	
Nickel			21.0	0.5	mg/kg	
Potassium			2,530	50	mg/kg	
Selenium			< 1.0	1.0	mg/kg	
Silver			< 0.2	0.2	mg/kg	
Sodium			316	50	mg/kg	
Thallium			< 1.0	1.0	mg/kg	
Vanadium			21.1	1.0	mg/kg	
Zinc			39.7	1.0	mg/kg	
Total Mercu Analysis Date		Method: 7471B			19	
Mercury			< 0.05	0.05	mg/kg	
TCLP Metal Analysis Date	s Method 1311 e: 06/01/18	Method: 6010C	1	Preparation Preparation 1		
Arsenic			< 0.010	0.010	mg/l_	
Barium			< 1.0	1.0	mg/L	

First Environmental

 Laboratories, Inc.
 IL ELAP / NELAC Accreditation # 100292

 1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.	Date Collected:	05/24/18
Project ID:	Torrence Ave	Time Collected:	9:45
Sample ID:	34-07- (0-1)	Date Received:	05/24/18
Sample No:	18-2892-031	Date Reported:	06/06/18
Results are rep	orted on a dry weight basis.		

Analyte		Result	R.L.	Units	Flags	
TCLP Metals Method 1311 Analysis Date: 06/01/18	Method: 6010C		Preparation Method 3010A Preparation Date: 05/30/18			
Beryllium		< 1.00	1.0	mg/L		
Cadmium		< 0.005	0.005	mg/L		
Chromium		< 0.005	0.005	mg/L		
Cobalt		< 0.1	0.1	mg/L		
Copper		< 0.1	0.1	mg/L		
Iron		0.7	0.1	mg/L		
Lead		0.029	0.005	mg/L		
Manganese		4.2	0.1	mg/L		
Nickel		< 0.1	0.1	mg/L		
Selenium		< 0.010	0.010	mg/L		
Silver		< 0.005	0.005	mg/L		
Zinc		< 0.1	0.1	mg/L		
TCLP Mercury Method 1311 Analysis Date: 06/01/18	Method: 7470A					
Mercury		< 0.0005	0.0005	mg/L		
TCLP Extraction Analysis Date: 05/30/18	Method: 1311					
TCLP Extraction		Comple	te			
SPLP Metals Method 1312 Analysis Date: 06/01/18	Method: 6010C		Preparation Preparation D			
Arsenic		0.015	0.010	mg/L		
Barium		< 1.0	1.0	mg/L		
Beryllium		< 0.004	0.004	mg/L		
Cadmium		< 0.005	0.005	mg/L		
Chromium		0.027	0.005	mg/L		
Cobalt		< 0.1	0.1	mg/L		
Copper		0.032	0.005	mg/L		
Iron		31.6	0.1	mg/L		
Lead		0.027	0.005	mg/L		
Manganese		0.1	0.1	mg/L		
Nickel		< 0.1	0.1	mg/L		
Selenium		< 0.010	0.010	mg/L		
Silver		< 0.005	0.005	mg/L		
Zinc		< 0.1	0.1	mg/L		

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & H	UFF INC.				Date C	ollected:	05/24/18
Project ID:	Torrence A	ve				Time C	Collected:	9:45
Sample ID:	34-07 (0-1)				Date R	eceived:	05/24/18
Sample No:	18-2892-03	31				Date R	eported:	06/06/18
Results are rep	orted on a di	y weight ba	asis.					
Analyte				Resul	t	R.L.	Units	Flags
SPLP Mercur Analysis Date:		312	Method: 7470A					
Mercury				< 0.000)5	0.0005	mg/L	
SPLP Extrac Analysis Date:			Method: 1312					
SPLP Metals E				Com	plete			
Sample QC Su	mmary:	Surrogate	Recovery				%R Li	imits
Method		Analyte		QC	Result		Low	
5035A/8260B		4-Bromof	luorobenzene (Surr)	%R:	99.6		86 -	117
5035A/8260B		d8-Toluer		%R:	<i>99.8</i>		90 -	110
5035A/8260B			luoromethane (Surr)	%R:	103.2		77 -	120

.

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.		-	Date C	ollected:	05/24/18	
Project ID:	Torrence Ave			Time Collected:		9:10	
Sample ID:	35-01 (0-1)			Date R	eceived:	05/24/18	
Sample No:	18-2892-032				eported:	06/06/18	
-	ported on a dry weight b	acis			- pointer		
Analyte	Jorted on a dry weight o	u315.	Result	R.L.	Units	Flags	
Solids, 'Total		Method: 2540B					
	: 05/25/18 14:00						
Total Solids			95.35		%		
Volatile Orga	nic Compounds	Method: 5035A/82	260B				
Analysis Date							
Acetone			< 200	200	ug/kg		
Benzene			< 5.0	5.0	ug/kg		
Bromodichlor	omethane		< 5.0	5.0	ug/kg		
Bromoform			< 5.0	5.0	ug/kg		
Bromomethan	Ie		< 10.0	10.0	ug/kg		
2-Butanone (N			< 100	100	ug/kg		
Carbon disulf	-		< 5.0	5.0	ug/kg		
Carbon tetrac	hloride		< 5.0	5.0	ug/kg		
Chlorobenzer			< 5.0	5.0	ug/kg		
Chlorodibrom			< 5.0	5.0	ug/kg		
Chloroethane			< 10.0	10.0	ug/kg		
Chloroform			< 5.0	5.0	ug/kg		
Chloromethar	ne		< 10.0	10.0	ug/kg		
1,1-Dichloroe	thane		< 5.0	5.0	ug/kg		
1,2-Dichloroe		- S.	< 5.0	5.0	ug/kg		
1,1-Dichloroe			< 5.0	5.0	ug/kg		
cis-1,2-Dichle			< 5.0	5.0	ug/kg		
trans-1,2-Dicl	hloroethene		< 5.0	5.0	ug/kg		
1,2-Dichlorop			< 5.0	5.0	ug/kg		
cis-1,3-Dichle			< 4.0	4.0	ug/kg		
trans-1,3-Dicl			< 4.0	4.0	ug/kg		
Ethylbenzene			< 5.0	5.0	ug/kg		
2-Hexanone			< 10.0	10.0 .	ug/kg		
	utylether (MTBE)		< 5.0	5.0	ug/kg		
	entanone (MIBK)		< 10.0	10.0	ug/kg		
Methylene ch			< 20.0	20.0	ug/kg		
Styrene			< 5.0	5.0	ug/kg		
1,1,2,2-Tetrad	chloroethane		< 5.0	5.0	ug/kg		
Tetrachloroet			< 5.0	5.0	ug/kg		
Toluene			< 5.0	5.0	ug/kg		
1,1,1-Trichlo	roethane		< 5.0	5.0	ug/kg		
1,1,2-Trichlo	roethane		< 5.0	5.0	ug/kg		
Trichloroethe	ene		< 5.0	5.0	ug/kg		

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.	U U		Date C	ollected:	05/24/18
Project ID:	Torrence Ave			Time Collected: 9:		9:10
Sample ID:	35-01 (0-1)			Date R	eceived:	05/24/18
Sample No:	18-2892-032			Date R	eported:	06/06/18
-	orted on a dry weight b	asis.			-	
Analyte			Result	R.L.	Units	Flags
Volatile Orga Analysis Date	nic Compounds : 06/01/18	Method: 5035A/82	260B			
Vinyl acetate			< 10.0	10.0	ug/kg	
Vinyl chloride	•		< 10.0	10.0	ug/kg	
Xylene, Total			< 5.0	5.0	ug/kg	
Semi-Volatile Analysis Date		Method: 8270C		Preparation Preparation E		
Acenaphthene			< 330	330	ug/kg	
Acenaphthyle			< 330	330	ug/kg	
Anthracene			< 330	330	ug/kg	
Benzidine			< 330	330	ug/kg	
Benzo(a)anthr	acene		< 330	330	ug/kg	
Benzo(a)pyrci			157	90	ug/kg	
Benzo(b)fluor			< 330	330	ug/kg	
Benzo(k)fluor			< 330	330	ug/kg	
Benzo(ghi)per	rylene		< 330	330	ug/kg	
Benzoic acid			< 330	330	ug/kg	
Benzyl alcoho	bl		< 330	330	ug/kg	
bis(2-Chloroe	thoxy)methane		< 330	330	ug/kg	
bis(2-Chloroe			< 330	330	ug/kg	
	sopropyl)ether		< 330	330	ug/kg	
bis(2-Ethylhe	• • •		< 330	330	ug/kg	
	yl phenyl ether		< 330	330	ug/kg	
Butyl benzyl	phthalate		< 330	330	ug/kg	
Carbazole			< 330	330	ug/kg	
4-Chloroanili			< 330	330	ug/kg	
4-Chloro-3-m	• •		< 330	330 330	ug/kg	
2-Chloronaph			< 330 < 330	330	ug/kg ug/kg	
2-Chlorophen			< 330	330	ug/kg	
	yl phenyl ether		< 330	330	ug/kg ug/kg	
Chrysene			< 90	90	ug/kg	
Dibenzo(a,h)			< 330	330	ug/kg	
Dibenzofuran 1,2-Dichlorob			< 330	330	ug/kg	
1,2-Dichlorot			< 330	330	ug/kg	
1,4-Dichlorot			< 330	330	ug/kg	
3,3'-Dichlorol			< 660	660	ug/kg	
2,4-Dichlorop			< 330	330	ug/kg	
2,1 21011010	/					

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.	Date Collected:	05/24/18
Project ID:	Torrence Ave	Time Collected:	9:10
Sample ID:	35-01 (0-1)	Date Received:	05/24/18
Sample No:	18-2892-032	Date Reported:	06/06/18
Results are rep	orted on a dry weight basis.		

Analyte		Result	R.L.	Units	Flags
Semi-Volatile Compounds Analysis Date: 05/31/18	Method: 8270C		Preparation Preparation D	Method 354 Date: 05/29/18	0C
Diethyl phthalate		< 330	330	ug/kg	
2,4-Dimethylphenol		< 330	330	ug/kg	
Dimethyl phthalate		< 330	330	ug/kg	
Di-n-butyl phthalate		< 330	330	ug/kg	
4,6-Dinitro-2-methylphenol		< 1,600	1600	ug/kg	
2,4-Dinitrophenol		< 1,600	1600	ug/kg	
2,4-Dinitrotoluene		< 250	250	ug/kg	
2,6-Dinitrotoluene		< 260	260	ug/kg	
Di-n-octylphthalate		< 330	330	ug/kg	
Fluoranthene		< 330	330	ug/kg	
Fluorene .		< 330	330	ug/kg	
Hexachlorobenzene		< 330	330	ug/kg	
Hexachlorobutadiene		< 330	330	ug/kg	
Hexachlorocyclopentadiene		< 330	330	ug/kg	
1-lexachloroethane		< 330	330	ug/kg –	
Indeno(1,2,3-cd)pyrene		< 330	330	ug/kg	
Isophorone		< 330	330	ug/kg	
2-Methylnaphthalene		< 330	330	ug/kg	
2-Methylphenol		< 330	330	ug/kg	
3 & 4-Methylphenol		< 330	330	ug/kg	
Naphthalene		< 330	330	ug/kg	
2-Nitroaniline		< 1,600	1600	ug/kg	
3-Nitroaniline		< 1,600	1600	ug/kg	
4-Nitroaniline		< 1,600	1600	ug/kg	
Nitrobenzene		< 260	260	ug/kg	
2-Nitrophenol		< 1,600	1600	ug/kg	
4-Nitrophenol		< 1,600	1600	ug/kg	
n-Nitrosodi-n-propylamine		< 90	90	ug/kg	
n-Nitrosodimethylamine		< 330	330	ug/kg	
n-Nitrosodiphenylamine		< 330	330	ug/kg	
Pentachlorophenol		< 330	330	ug/kg	
Phenanthrene		< 330	330	ug/kg	
Phenol		< 330	330	ug/kg	
Pyrene		< 330	330	ug/kg	
Pyridine		< 330	330	ug/kg	
1,2,4-Trichlorobenzene		< 330	330	ug/kg	

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.	-	-	Date C	ollected:	05/24/18
Project ID:	Torrence Ave			Time (Collected:	9:10
Sample ID:	35-01 (0-1)			Date R	eceived:	05/24/18
Sample No:	18-2892-032			Date R	eported:	06/06/18
-	orted on a dry weight b	oasis.			-	
Analyte			Result	R.L.	Units	Flags
Semi-Volatile Analysis Date		Method: 8270C		Preparation Preparation E	Method 35 Date: 05/29/1	40C 8
2,4,5-Trichlor	ophenol		< 330	330	ug/kg	
2,4,6-Trichlor	-		< 330	330	ug/kg	
-	: 05/30/18 13:30	Method: 9045D 2			Units	
рН @ 25°С, 1	:2		7.49			
Total Metals Analysis Date	: 05/30/18	Method: 6010C		Preparation Preparation I		
Antimony			< 1.0	1.0	mg/kg	
Arsenic			4.2	1.0	_ mg/kg	
Barium			23.8	0.5	mg/kg	
Beryl?ium			< 0.5	0.5	mg/kg	
Cadmium			< 0.5	0.5	mg/kg	
Calcium			94,300	50	mg/kg	
Chromium			5.2	0.5	nıg/kg	
Cobalt			4.0	0.5	mg/kg	
Copper			8.5	0.5	mg/kg	
Iron			7,420	5.0	mg/kg	
Lead			15.9	0.5	mg/kg	
Magnesium			54,900	50	mg/kg	
Manganese			258	0.5	mg/kg	
Nickel			9.5	0.5	mg/kg	
Potassium			783	50	mg/kg	
Selenium			< 1.0	1.0	mg/kg	
Silver			< 0.2	0.2	mg/kg	
Sodium			325	50	mg/kg	
Thallium			< 1.0	1.0	mg/kg	
Vanadium			7.5	1.0	mg/kg	
Zinc		- to	25.5	1.0	mg/kg	
Total Mercu Analysis Date		Method: 7471B		-	-	
Mercury			< 0.05	0.05	mg/kg	
TCLP Metal Analysis Date	s Method 1311 e: 06/01/18	Method: 6010C		Preparation Preparation I		
Arsenic			< 0.010	0.010	mg/L	
Barium			< 1.0	1.0	mg/L	

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.	Date Collected:	05/24/18
Project ID:	Torrence Ave	Time Collected:	9:10
Sample ID:	35-01 (0-1)	Date Received:	05/24/18
Sample No:	18-2892-032	Date Reported:	06/06/18
Results are rep	orted on a dry weight basis.		

Analyte		Result	R.L.	Units	Flags
TCLP Metals Method 1311 Analysis Date: 06/01/18	Method: 6010C		Preparation Preparation D		Α
Beryllium		< 1.00	1.0	mg/L	
Cadmium		< 0.005	0.005	mg/L	
Chromium		< 0.005	0.005	mg/L	
Cobait		< 0.1	0.1	mg/L	
Copper		< 0.1	0.1	mg/L.	
Iron		< 0.1	0.1	mg/L	
Lead		< 0.005	0.005	mg/L	
Manganese		0.6	0.1	mg/L	
Nickel		< 0.1	0.1	mg/L	
Selenium		< 0.010	0.010	mg/L	
Silver		< 0.005	0.005	mg/L	
Zinc		< 0.1	0.1	mg/L	
TCLP Mercury Method 1311 Analysis Date: 06/01/18	Method: 7470A				
Mercury		< 0.0005	0.0005	mg/L	
TCLP Extraction Analysis Date: 05/30/18	Method: 1311				
TCLP Extraction		Comple	te		
SPLP Metals Method 1312 Analysis Date: 06/01/18	Method: 6010C		Preparation Preparation E	Method 3010 Date: 05/31/18	A
Arsenic		< 0.010	0.010	mg/L	
Barium		< 1.0	1.0	mg/L	
Beryllium		< 0.004	0.004	mg/L	
Cadmium		< 0.005	0.005	mg/L	
Chromium		0.013	0.005	mg/L	
Cobalt		< 0.1	0.1	mg/L	
Copper		0.011	0.005	mg/L	
Iron		11.2	0.1	mg/L	
Lead		0.016	0.005	mg/L	
Manganese		< 0.1	0.1	mg/L	
Nickel		< 0.1	0.1	mg/L	
Selenium		< 0.010	0.010	mg/L	
Silver		< 0.005	0.005	mg/L	
L 2 1 1 V C 1			0.1	mg/L	

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & H	UFF INC.				Date C	ollected:	05/24/18
Project ID:	Torrence A	ve				Time C	Collected:	9:10
Sample ID:	35-01 (0-1)				Date R	eceived:	05/24/18
Sample No:	18-2892-03	2				Date R	eported:	06/06/18
Results are rep	orted on a dr	y weight b	asis.					
Analyte				Resu	lt	R.L.	Units	Flags
SPLP Mercu Analysis Date:	•	312	Method: 7470A					
Mercury				< 0.00	05	0.0005	mg/L	
SPLP Extrac Analysis Date			Method: 1312					
SPLP Metals				Com	plete			
Sample QC Si	ummary:	Surrogate	e Recovery				%R Li	mits
- — Method		Analyte		QC	C Result			High
5035A/8260B		4-Bromo	luorobenzene (Surr)	%R:	<i>96</i> .7		86 -	117
5035A/8260B		d8-Toluer		%R:	99.9		90 -	110
5035A/8260B			fluoromethane (Surr)	%R:	100.9		77 -	120

.

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC		-	Date C	Collected:	05/24/18
Project ID:	Torrence Ave			Time (Collected:	9:19
Sample ID:	35-03 (0-1)			Date R	Received:	05/24/18
Sample No:	18-2892-034			Date R	Reported:	06/06/18
-	ported on a dry weight	basis.			L.	
Analyte			Result	R.L.	Units	Flags
Solids, Total Analysis Date	: 05/25/18 14:00	Method: 2540B				
Total Solids			73.6		%	
Volatile Orga Analysis Date	anic Compounds : 06/01/18	Method: 5035A/82	260B			
Acetone			< 200	200	ug/kg	
Benzene			< 5.0	5.0	ug/kg	
Bromodichler	oniethane		< 5.0	5.0	ug/kg	
Bromoform			< 5.0	5.0	ug/kg	
Bromomethan	ie		< 10.0	10.0	ug/kg	
2-Butanone (N			< 100	100	ug/kg	
Carbon disulf			12.4	5.0	ug/kg	
Carbon tetracl	hloride		< 5.0	5.0	ug/kg	
Chlorobenzen	e		< 5.0	5.0	ug/kg	
Chlorodibrom	omethane		< 5.0	5.0	ug/kg	
Chloroethane			< 10.0	10.0	ug/kg	
Chloroform			< 5.0	5.0	ug/kg	
Chloromethan	ne		< 10.0	10.0	ug/kg	
1,1-Dichloroe	thane		< 5.0	5.0	ug/kg	
1,2-Dichloroe	thane		< 5.0	5.0	ug/kg	
1,1-Dichloroe	thene		< 5.0	5.0	ug/kg	
cis-1,2-Dichlo	proethene		< 5.0	5.0	ug/kg	
trans-1,2-Dich	nloroethene		< 5.0	5.0	ug/kg	
1,2-Dichlorop	propane		< 5.0	5.0	ug/kg	
cis-1,3-Dichlo	propropene		< 4.0	4.0	ug/kg	
trans-1,3-Dich	nloropropene		< 4.0	4.0	ug/kg	
Ethylbenzene			< 5.0	5.0	ug/kg	
2-Hexanone			< 10.0	10.0	ug/kg	
Methyl-tert-bi	utylether (MTBE)		< 5.0	5.0	ug/kg	
4-Mcthyl-2-pc	entanone (MIBK)		< 10.0	10.0	ug/kg	
Methylene ch	loride		< 20.0	20.0	ug/kg	
Styrene			< 5.0	5.0	ug/kg	
1,1,2,2-Tetrac	hloroetliane		< 5.0	5.0	ug/kg	
Tetrachloroet	hene		< 5.0	5.0	ug/kg	
Toluene			< 5.0	5.0	ug/kg	
1,1,1-Trichlor	roethane		< 5.0	5.0	ug/kg	
1,1,2-Trichlor	roethane		< 5.0	5.0	ug/kg	
Trichloroethe	ne		< 5.0	5.0	ug/kg	

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.	-	-	Date C	ollected:	05/24/18
Project ID:	Torrence Ave			Time C	Collected:	9:19
Sample ID:	35-03 (0-1)			Date R	eceived:	05/24/18
Sample No:	18-2892-034			Date R	eported:	06/06/18
-	orted on a dry weight b	asis				
Analyte	forted on a dry weight b	4515.	Result	R.L.	Units	Flags
		Mathada 50754 /01			1	
Analysis Date:	nic Compounds 06/01/18	Method: 5035A/82				
Vinyl acetate			< 10.0	10.0	ug/kg	
Vinyl chloride	3		< 10.0	10.0	ug/kg	
Xylene, Total			< 5.0	5.0	ug/kg	
Semi-Volatile Analysis Date		Method: 8270C		Preparation Preparation I	Method 3 Date: 05/29	5 40C /18
Acenaphthene			< 330	330	ug/kg	
Acenaphthyle			< 330	330	ug/kg	
Anthracene			< 330	330	ug/kg	
Benzidine			< 330	330	ug/kg	
Benzo(a)anthr	acene		< 330	330	ug/kg	
Benzo(a)pyrer			175	90	ug/kg	
Benzo(b)fluor			< 330	330	ug/kg	
Benzo(k)fluor			< 330	330	ug/kg	
Benzo(ghi)per			< 330	330	ug/kg	
Benzoic acid		•	< 330	330	ug/kg	
Benzyl alcoho	51		< 330	330	ug/kg	
•	thoxy)methane		< 330	330	ug/kg	
bis(2-Chloroe			< 330	330	ug/kg	
bis(2-Chlorois	sopropyl)ether		< 330	330	ug/kg	
bis(2-Ethylhe	xyl)plithalate		< 330	330	ug/kg	
4-Bromophen	yl phenyl ether		< 330	330	ug/kg	
Butyl benzyl j	phthalate		< 330	330	ug/kg	
Carbazole			< 330	330	ug/kg	
4-Chloroanili	ne		< 330	330	ug/kg	
4-Chloro-3-m	ethylphenol		< 330	330	ug/kg	
2-Chloronaph			< 330	330	ug/kg	
2-Chlorophen			< 330	330	ug/kg	
4-Chlorophen	yl phenyl ether		< 330	330	ug/kg	
Chrysene	_		< 330	330	ug/kg	
Dibenzo(a,h)a			< 90	90	ug/kg	
Dibenzoturan			< 330	330	ug/kg	
1,2-Dichlorob			< 330	330 330	ug/kg	
1,3-Dichlorol			< 330 < 330	330	ug/kg ug/kg	
1,4-Dichlorol			< 330 < 660	660	ug/kg	
3,3'-Dichloro			< 330	330	ug/kg	
2,4-Dichlorop	onenol		< 220	0.00	ug/ng	

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.	Date Collected:	05/24/18
Project ID:	Torrence Ave	Time Collected:	9:19
Sample ID:	35-03 (0-1)	Date Received:	05/24/18
Sample No:	18-2892-034	Date Reported:	06/06/18
Results are rep	orted on a dry weight basis.		

Analyte		Result	R.L.	Units	Flags
Semi-Volatile Compounds Analysis Date: 05/31/18	Method: 8270C		Preparation Preparation D		
Diethyl phthalate		< 330	330	ug/kg	
2,4-Dimethylphenol		< 330	330	ug/kg	
Dimethyl plithalate		< 330	330	ug/kg	
Di-n-butyl phthalate		< 330	330	ug/kg	
4,6-Dinitro-2-methylphenol		< 1,600	1600	ug/kg	
2,4-Dinitrophenol		< 1,600	1600	ug/kg	
2,4-Dinitrotoluene		< 250	250	ug/kg	
2,6-Dinitrotoluene		< 260	260	ug/kg	
Di-n-octylphthalate		< 330	330	ug/kg	
Fluoranthene		370	330	ug/kg	
Fluorene		< 330	330	ug/kg	
Hexachlorobenzene		< 330	330	ug/kg	
Hexachlorobutadiene		< 330	330	ug/kg	
Hexachlorocyclopentadiene		< 330	330	ug/kg	
Hexachloroethane	0.0	< 330	330	ug/kg	
Indeno(1,2,3-cd)pyrene		< 330	330	ug/kg	
Isophorone		< 330	330	ug/kg	
2-Methylnaphthalene		< 330	330	ug/kg	
2-Methylphenol		< 330	330	ug/kg	
3 & 4-Methylphenol		< 330	330	ug/kg	
Naphthalene		< 330	330	ug/kg	
2-Nitroaniline		< 1,600	1600	ug/kg	
3-Nitroaniline		< 1,600	1600	ug/kg	
4-Nitroaniline		< 1,600	1600	ug/kg	
Nitrobenzene		< 260	260	ug/kg	
2-Nitrophenol		< 1,600	1600	ug/kg	
4-Nitrophenol		< 1,600	1600	ug/kg	
n-Nitrosodi-n-propylamine		< 90	90	ug/kg	
n-Nitrosodimethylamine		< 330	330	ug/kg	
n-Nitrosodiphenylamine		< 330	330	ug/kg	
Pentachlorophenol		< 330	330	ug/kg	
Phenanthrene		352	330	ug/kg	
Phenol		< 330	330	ug/kg	
Pyrene		370	330	ug/kg	
Pyridine		< 330	330	ng/kg	
1,2,4-Trichlorobenzene		< 330	330	ug/kg	

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.			Date C	ollected:	05/24/18
Project ID:	Torrence Ave			Time C	Collected:	9:19
Sample ID:	35-03 (0-1)			Date R	eceived:	05/24/18
Sample ID: Sample No:	18-2892-034			Date R	eported:	06/06/18
-	ported on a dry weight ba	acis			• •	
Analyte	ported on a dry weight of	4313.	Result	R.L.	Units	Flags
	e Compounds : 05/31/18	Method: 8270C		Preparation Preparation D		
2,4,5-Trichlor			< 330	330	ug/kg	
2,4,6-Trichlor	•		< 330	330	ug/kg	
pH @ 25°C,	1:2 e: 05/30/18 13:30	Method: 9045D 2	004			
pH @ 25°C, 1			8.83		Units	
Total Metals Analysis Date		Method: 6010C		Preparation Preparation I		
Antimony			< 1.0	1.0	mg/kg	
Arsenic			5.0	1.0	mg/kg	
Barium			67.9	0.5	mg/kg	
Beryllium			< 0.5	0.5	mg/kg	
Cadmium			< 0.5	0.5	mg/kg	
Calcium			4,420	50	mg/kg	
Chromium			11.9	0.5	mg/kg	
Cobalt			5.3	0.5	mg/kg	
Copper			14.7	0.5	mg/kg	
lron			15,400	5.0	mg/kg	
Lead			16.1	0.5	mg/kg	
Magnesium			2,680	50	mg/kg	
Manganese			291	0.5	mg/kg	
Nickel			13.9	0.5	mg/kg	
Potassium		1.3	881	50	mg/kg	
Selenium			< 1.0	1.0	mg/kg	
Silver			< 0.2	0.2	mg/kg	
Sodium			3,160	50	mg/kg	
Thallium			< 1.0	1.0	mg/kg	
Vanadium			18.1	1.0	mg/kg	
Zinc			44.0	1.0	mg/kg	
Total Mercu Analysis Dat		Method: 7471B				
Mercury			< 0.05	0.05	mg/kg	
TCLP Meta Analysis Dat	Is Method 1311 te: 06/01/18	Method: 6010C		Preparation Preparation	Method 3 Date: 05/30	3010A /18
Arsenic			< 0.010	0.010	mg/L	
Barium			< 1.0	1.0	mg/L	

First Environmental

.

.

Laboratories, Inc.IL ELAP / NELAC Accreditation # 1002921600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.	Date Collected:	05/24/18
Project ID:	Torrence Ave	Time Collected:	9:19
Sample ID:	35-03 (0-1)	Date Received:	05/24/18
Sample No:	18-2892-034	Date Reported:	06/06/18
Results are rep	orted on a dry weight basis.		

Analyte		Result	R.L.	Units	Flags
TCLP Metals Method 1311 Analysis Date: 06/01/18	Method: 6010C		Preparation Preparation D	Method 301 ate: 05/30/18	0A
Beryllium		< 1.00	1.0	mg/L	
Cadmium		< 0.005	0.005	mg/L	
Chromium		< 0.005	0.005	mg/L	
Cobalt		< 0.1	0.1	mg/L	
Copper		< 0.1	0.1	mg/L	
Iron		< 0.1	0.1	mg/L	
Lead		0.018	0.005	mg/L	
Manganese		0.2	0.1	mg/L	
Nicke!		< 0.1	0.1	mg/L	
Selenium		< 0.010	0.010	mg/L	
Silver		< 0.005	0.005	mg/L	
Zinc		< 0.1	0.1	mg/L	
TCLP Mercury Method 1311 Analysis Date: 06/01/18	Method: 7470A				
Mercury		< 0.0005	0.0005	mg/L	
TCLP Extraction Analysis Date: 05/30/18	Method: 1311				
TCLP Extraction		Complet	e		
SPLP Metals Method 1312 Analysis Date: 06/01/18	Method: 6010C		Preparation Preparation D		
Arsenic		0.011	0.010	mg/L	
Barium		< 1.0	1.0	mg/L	
Beryllium		< 0.004	0.004	mg/L	
Cadmium		< 0.005	0.005	mg/L	
Chromium		0.054	0.005	mg/Ľ	
Cobalt		< 0.1	0.1	mg/L	
Copper		0.045	0.005	mg/L	
Iron		50.1	0.1	mg/L	
Lead		0.046	0.005	mg/L	
Manganese		0.4	0.1	mg/L	
Nickel		< 0.1	0.1	mg/I_	
Selenium		< 0.010	0.010	mg/L	
Silver		< 0.005	0.005	mg/L	
Zinc		0.2	0.1	mg/L	

- -

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HU	JFF INC.				Date Co	ollected:	05/24/18
Project ID:	Torrence Av	/e				Time C	collected:	9:19
Sample ID:	35-03 (0-1)					Date R	eceived:	05/24/18
Sample No:	18-2892-034	1				Date R	eported:	06/06/18
Results are repo	orted on a dry	weight ba	isis.					
Analyte				Resul	t	R.L.	Units	Flags
SPLP Mercury Analysis Date:		12	Method: 7470A					
Mercury				< 0.000	05	0.0005	mg/L	
SPLP Extract Analysis Date:			Method: 1312					
SPLP Metals E				Com	plete			
Sample QC Su	mmary:	Surrogate	Recovery				%R Li	mits
Method		Analyte		QC	Result			High
5035A/8260B		4-Bromof	luorobenzene (Surr)	%R:	96.2		86 -	117
5035A/8260B		d8-Toluen	ne (Surr)	%R:	101		90 -	110
5035A/8260B			luoromethane (Surr)	%R:	101.6		77 -	120

....

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Analytical Report

. 4

Project ID: Torrence Ave Time Collected: 9.25 Sample ID: 35-04 (0-1) Date Received: 05/24/18 Sample No: 18-2892-035 Date Reported: 06/06/18 Results are reported on a dry weight basis. Result R.L. Units Flags Solids, Total Method: 2540B Analysis Date: 05/24/18 Gold 9/2 Analysis Date: 05/25/18 14:00 Method: 2540B Analysis Date: 06/06/18 Acetone < 200 200 ng/kg genomotic	Client:	HUFF & HUFF INC	1		Date C	ollected:	05/24/18	
Sample ID: 35-04 (0-1) Date Received: 05/24/18 Sample No: 18-2892-035 Date Reported: 06/06/18 Results are reported on a dry weight basis. Analytic Result R.L. Units Flags Solids, Total Method: 2540B Analysis Date: 05/24/18 Solids, Total Method: 5035A/8260B Analysis Date: 06/01/18 Method: 5035A/8260B Solids, Total Method: 50 5.0 ug/kg Bromodichloromethane < 5.0 5.0 ug/kg Ug/kg Egreson Solids, Total Method: Solids, Total Solids, Total Solids, Total Method: Solids, Total Solids, Total <td< th=""><th></th><th>Torrence Ave</th><th></th><th></th><th colspan="2">Time Collected:</th><th colspan="2">9:25</th></td<>		Torrence Ave			Time Collected:		9:25	
Sample No: 18-2892-035 Date Reported: 06/06/18 Results are reported on a dry weight basis. Analyte Result R.L. Units Flags Solida, Total Analysis Date: 05/25/18 Method: 2540B	•				Date R	Date Received:		
Barley for for a dry weight basis. Result R.L. Units Flags Solids, Total Analysis Date: 05/25/18 Method: 2540B	-	, ,			Date R	eported:	06/06/18	
AnalyteResultR.L.UnitsFlagsSolids, Total Analysis Date: $05/25/18$ 14:00Method: 2540B7Total Solids86.1%Volatile Organic Compounds Analysis Date: $06/01/18$ Method: $5035A/8200B$ Acetone< 200200ug/kgBenzene< 5.05.0ug/kgBromodichioromethane< 5.05.0ug/kgBromodichioromethane< 10.010.0ug/kgCarbon disulfide13.35.0ug/kgCarbon disulfide13.35.0ug/kgChlorodibromomethane< 5.05.0ug/kgCorbon tetrachloride< 5.05.0ug/kgChlorodibromomethane< 5.05.0ug/kgChlorodibromomethane< 5.05.0ug/kgChlorodibromomethane< 5.05.0ug/kgChlorodibromomethane< 5.05.0ug/kgChlorodibromomethane< 5.05.0ug/kgChlorodibromomethane< 5.05.0ug/kg1,1-Dichloroethane< 5.05.0ug/kg1,1-Dichloroethane< 5.05.0ug/kg1,1-Dichloroethane< 5.05.0ug/kg1,2-Dichloroethene< 5.05.0ug/kg1,2-Dichloroethene< 5.05.0ug/kg1,2-Dichloroethene< 5.05.0ug/kg1,2-Dichloroethene< 5.05.0ug/kg1,2-Dichloroethene< 5.05.0ug/kg1,2-Dichloroethene <td< th=""><th>-</th><th></th><th>hasis</th><th></th><th></th><th>•</th><th></th></td<>	-		hasis			•		
Analysis Date: 05/25/18 14:00 Total Solids 86.1 % Volatile Organic Compounds Analysis Date: 06/01/18 Acetone < 200 200 ug/kg Benzane < 5.0 5.0 ug/kg Bromodichioromethane < 5.0 5.0 ug/kg Bromoform < 5.0 5.0 ug/kg Bromonethane < 10.0 10.0 ug/kg Carbon disulfide 13.3 5.0 ug/kg Carbon disulfide < 5.0 5.0 ug/kg Chlorobenzene < 5.0 5.0 ug/kg Chlorodibromethane < 10.0 10.0 ug/kg Chlorodibromethane < 10.0 10.0 ug/kg Chloroform < 5.0 5.0 ug/kg Chlorothane < 5.0 5.0 ug/kg Chlorothane < 5.0 5.0 ug/kg 1,1-Dichloroethane < 5.0 5.0 ug/kg 1,2-Dichloroethene < 5.0 5.0 ug/kg 1,2-Dichloroethene < 5.0 5.0 <t< th=""><th></th><th>oned on a dry weight</th><th></th><th>Result</th><th>R.L.</th><th>Units</th><th>Flags</th></t<>		oned on a dry weight		Result	R.L.	Units	Flags	
Analysis Date: 05/25/18 14:00 Total Solids 86.1 % Volacile Organic Compounds Analysis Date: 06/01/18 Acetone < 200	Solids, Total	al de la companya de	Method: 2540B		4			
Volatile Organic Compounds Analysis Date: 06/01/18 Method: 5035A/8260B Acetone < 200		: 05/25/18 14:00						
Analysis Date: $06/01/18$ Acetone < 200	Total Solids			86.1		%		
Analysis Date: $06/01/18$ Acetone < 200	Volatile Orea	nic Compounds	Method: 5035A/8	260B				
Interval< 5.05.0 ug/kg Bromodichloromethane< 5.0			1,200,000,000,000,000					
Bromodichloromethane< 5.05.0 ug/kg Bromodichloromethane< 10.0	Acetone			< 200	200	ug/kg		
biotechnick < 5.0 5.0 ug/kg Bromonethane < 10.0 10.0 ug/kg 2-Butanone (MEK) < 100 100 ug/kg Carbon disulfide 13.3 5.0 ug/kg Carbon tetrachloride < 5.0 5.0 ug/kg Chlorobenzeue < 5.0 5.0 ug/kg Chlorodibromomethane < 5.0 5.0 ug/kg Chloroform < 5.0 5.0 ug/kg Chloroform < 5.0 5.0 ug/kg Chloroform < 5.0 5.0 ug/kg Chloromethane < 10.0 10.0 ug/kg 1,1-Dichloroethane < 5.0 5.0 ug/kg 1,1-Dichloroethene < 5.0 5.0 ug/kg $(si-1,2-Dichloroethene< 5.05.0ug/kg(si-1,2-Dichloropthene< 5.05.0ug/kg(si-1,3-Dichloropthene< 5.05.0ug/kg(si-1,3-Dichloroptopene< 4.04.0ug/kgtrans-1,3-Dichloroptopene< 4.04.0ug/kgtrans-1,3-Dichloroptopene< 5.05.0ug/kg2-Hexanone< 10.010.0ug/kgMethyl-tert-butylether (MTBE)< 5.05.0ug/kg1, 1, 2, 2-Tetrachloroethane< 5.05.0ug/kg1, 1, 1, 2, 2-Tetrachloroethane< 5.05.0ug/kg1, 1, 1, 2, 2-Tetrachloroethane< 5.05.0ug/kg1, 1, 1, 2, 2-Tet$	Benzene			< 5.0	5.0	ug/kg		
Bronnoform < 5.0	Bromodichior	omethane		< 5.0	5.0	ug/kg		
Definition < 100 100 ug/kg 2-Butanone (MEK) < 100 100 ug/kg Carbon disulfide 13.3 5.0 ug/kg Carbon tetrachloride < 5.0 5.0 ug/kg Chlorobenzene < 5.0 5.0 ug/kg Chlorodibromomethane < 5.0 5.0 ug/kg Chloroethane < 10.0 10.0 ug/kg Chloroethane < 10.0 10.0 ug/kg Chloroethane < 5.0 5.0 ug/kg 1,1-Dichloroethane < 5.0 5.0 ug/kg 1,2-Dichloroethane < 5.0 5.0 ug/kg $1,1$ -Dichloroethene < 5.0 5.0 ug/kg $i_1,2$ -Dichloroethene < 5.0 5.0 ug/kg $i_2,2$ -Dichloroethene < 5.0 5.0 ug/kg $i_1,2$ -Dichloroethene < 5.0 5.0 ug/kg $i_1,2$ -Dichloroptopene < 4.0 4.0 ug/kg $i_1,2$ -Dichloroptopene < 4.0 4.0 ug/kg $i_1,1$ -Dichloroptopene < 5.0 5.0 ug/kg $i_2,1,2$ -Dichloropropene < 4.0 4.0 ug/kg $i_2,1,2$ -Dichloropropene < 4.0 4.0 ug/kg $i_2,1,2$ -Dichloropropene < 5.0 5.0 ug/kg $i_1,1,2,2$ -Tetrachloroethane < 5.0 5.0 ug/kg $i_1,1,1,2,2$ -Tetrachloroethane < 5.0 5.0 ug/kg $i_1,1,1,2,2$ -Tetrachloroethane < 5.0 5.0 ug/kg i	Bromoform			< 5.0	5.0	ug/kg		
2-Butanone (MEK)< 100100 ug/kg Carbon disulfide13.35.0 ug/kg Carbon tetrachloride< 5.0		e		< 10.0	10.0	ug/kg		
Carbon disulfide13.35.0ug/kgCarbon tetrachloride< 5.0				< 100	100	ug/kg		
Carbon tetrachloride< 5.05.0 ug/kg Chlorobenzene< 5.0	`	,		13.3	5.0	ug/kg		
Chlorobenzene< 5.05.0 ug/kg Chlorodibromomethane< 5.0				< 5.0	5.0	ug/kg		
Chlorodibromomethane< 5.0 5.0 ug/kg Chloroethane< 10.0				< 5.0	5.0	ug/kg		
Chloroethane< 10.010.0 ug/kg Chloroform< 5.0				< 5.0	5.0	ug/kg		
Chloroform< 5.05.0 ug/kg Chloromethane< 10.0				< 10.0	10.0	ug/kg		
Chloromethane< 10.0 10.0 ug/kg 1,1-Dichloroethane< 5.0				< 5.0	5.0	ug/kg		
1,1-Dichloroethane< 5.05.0ug/kg1,2-Dichloroethane< 5.0		e		< 10.0	10.0	ug/kg		
1,2-Dichloroethane< 5.0 5.0 ug/kg 1,1-Dichloroethene< 5.0 5.0 ug/kg cis-1,2-Dichloroethene< 5.0 5.0 ug/kg trans-1,2-Dichloroethene< 5.0 5.0 ug/kg 1,2-Dichloroptopane< 5.0 5.0 ug/kg cis-1,3-Dichloroptopene< 4.0 4.0 ug/kg trans-1,3-Dichloroptopene< 4.0 4.0 ug/kg trans-1,3-Dichloroptopene< 4.0 4.0 ug/kg Ethylbenzene< 5.0 5.0 ug/kg 2-Hexanone< 10.0 10.0 ug/kg Methyl-tert-butylether (MTBE)< 5.0 5.0 ug/kg 4-Methyl-2-pentanone (MIBK)< 10.0 10.0 ug/kg Methylene chloride< 20.0 20.0 ug/kg Styrene< 5.0 5.0 ug/kg 1,1,2,2-Tetrachloroethane< 5.0 5.0 ug/kg Toluene< 5.0 5.0 ug/kg 1,1,1-Trichloroethane< 5.0 5.0 ug/kg 1,1,2-Trichloroethane< 5.0 5.0 ug/kg				< 5.0	5.0	ug/kg		
1,1-Dichloroethene< 5.05.0ug/kgcis-1,2-Dichloroethene< 5.0				< 5.0	5.0	ug/kg		
cis-1,2-Dichloroethene< 5.05.0 ug/kg trans-1,2-Dichloroptopene< 5.0	,			< 5.0	5.0	ug/kg		
trans-1,2-Dichloroethene< 5.0 5.0 ug/kg 1,2-Dichloropropane< 5.0 5.0 ug/kg cis-1,3-Dichloropropene< 4.0 4.0 ug/kg trans-1,3-Dichloropropene< 4.0 4.0 ug/kg Ethylbenzene< 5.0 5.0 ug/kg 2-Hexanone< 10.0 10.0 ug/kg Methyl-tert-butylether (MTBE)< 5.0 5.0 ug/kg 4-Methyl-2-pentanone (MIBK)< 10.0 10.0 ug/kg Methylene chloride< 20.0 20.0 ug/kg Styrene< 5.0 5.0 ug/kg 1,1,2,2-Tetrachloroethane< 5.0 5.0 ug/kg Toluene< 5.0 5.0 ug/kg 1,1,1-Trichloroethane< 5.0 5.0 ug/kg 1,1,2-Trichloroethane< 5.0 5.0 ug/kg				< 5.0	5.0	ug/kg		
1,2-Dichloropropane< 5.0 5.0 ug/kg cis-1,3-Dichloropropene< 4.0 4.0 ug/kg trans-1,3-Dichloropropene< 4.0 4.0 ug/kg Ethylbenzene< 5.0 5.0 ug/kg 2-Hexanone< 10.0 10.0 ug/kg Methyl-tert-butylether (MTBE)< 5.0 5.0 ug/kg 4-Methyl-2-pentanone (MIBK)< 10.0 10.0 ug/kg Methylene chloride< 20.0 20.0 ug/kg Styrene< 5.0 5.0 ug/kg 1,1,2,2-Tetrachloroethane< 5.0 5.0 ug/kg Toluene< 5.0 5.0 ug/kg 1,1,1-Trichloroethane< 5.0 5.0 ug/kg 1,1,2-Trichloroethane< 5.0 5.0 ug/kg				< 5.0	5.0	ug/kg		
cis-1,3-Dichloropropene< 4.0 4.0 ug/kg trans-1,3-Dichloropropene< 4.0	,			< 5.0	5.0	ug/kg		
trans-1,3-Dichloropropene< 4.0 4.0 ug/kg Ethylbenzene< 5.0		•		< 4.0	4.0	ug/kg		
Ethylbenzene< 5.0 5.0 ug/kg 2-Hexanone< 10.0 10.0 ug/kg Methyl-tert-butylether (MTBE)< 5.0 5.0 ug/kg 4-Methyl-2-pentanone (MIBK)< 10.0 10.0 ug/kg Methylene chloride< 20.0 20.0 ug/kg Styrene< 5.0 5.0 ug/kg 1,1,2,2-Tetrachloroethane< 5.0 5.0 ug/kg Tetrachloroethane< 5.0 5.0 ug/kg Toluene< 5.0 5.0 ug/kg 1,1,1-Trichloroethane< 5.0 5.0 ug/kg 1,1,2-Trichloroethane< 5.0 5.0 ug/kg	•			< 4.0	4.0	ug/kg		
2-Hexanone< 10.0 10.0 ug/kg Methyl-tert-butylether (MTBE)< 5.0				< 5.0	5.0	ug/kg		
4-Methyl-2-pentanone (MIBK)< 10.0 10.0 ug/kg Methylene chloride< 20.0	•			< 10.0	10.0	ug/kg		
4-Methyl-2-pentanone (MIBK)< 10.0 ug/kg Methylene chloride< 20.0		utylether (MTBE)		< 5.0	5.0	ug/kg		
Methylene chloride< 20.0 20.0 ug/kg Styrene< 5.0 5.0 ug/kg $1,1,2,2$ -Tetrachloroethane< 5.0 5.0 ug/kg Tetrachloroethane< 5.0 5.0 ug/kg Toluene< 5.0 5.0 ug/kg $1.1,1$ -Trichloroethane< 5.0 5.0 ug/kg $1,1,2$ -Trichloroethane< 5.0 5.0 ug/kg		•		< 10.0	10.0	ug/kg		
Styrene< 5.0 5.0 ug/kg $1,1,2,2$ -Tetrachloroethane< 5.0 5.0 ug/kg Tetrachloroethane< 5.0 5.0 ug/kg Toluene< 5.0 5.0 ug/kg $1.1,1$ -Trichloroethane< 5.0 5.0 ug/kg $1,1,2$ -Trichloroethane< 5.0 5.0 ug/kg	• •			< 20.0	20.0	ug/kg		
1,1,2,2-Tetrachloroethane< 5.05.0ug/kgTetrachloroethane< 5.0				< 5.0	5.0	ug/kg		
Tetrachloroethene< 5.0 5.0 ug/kg Toluene< 5.0 5.0 ug/kg $1.1,1$ -Trichloroethane< 5.0 5.0 ug/kg $1,1,2$ -Trichloroethane< 5.0 5.0 ug/kg		chloroethane		< 5.0	5.0	ug/kg		
1.1,1-Trichloroethane< 5.05.0ug/kg1,1,2-Trichloroethane< 5.0				< 5.0	5.0	ug/kg		
1.1,1-Trichloroethane < 5.0	Toluene			< 5.0	5.0	ug/kg		
1,1,2-Trichloroethane < 5.0 5.0 ug/kg		oethane		< 5.0	5.0	ug/kg		
				< 5.0	5.0	ug/kg		
				< 5.0	5.0	ug/kg		

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

		Analytical I	xeport			
Client:	HUFF & HUFF INC.			Date Collected: 05/2		05/24/18
Project ID:	Torrence Ave			Time C	Collected:	9:25
Sample ID:	35-04 (0-1)			Date R	leceived:	05/24/18
Sample No:	18-2892-035			Date R	leported:	06/06/18
-	ported on a dry weight b	asis.				
Analyte			Result	R.L.	Units	Flags
Volatile Orga Analysis Date	anic Compounds e: 06/01/18	Method: 5035A/82	260B			
Vinyl acetate			< 10.0	10.0	ug/kg	
Vinyl chlorid	e		< 10.0	10.0	ug/kg	
Xylene, Total			< 5.0	5.0	ug/kg	
	e Compounds	Method: 8270C		Preparation Preparation D		
Acenaphtlien			< 330	330	ug/kg	
Acenaphthyle			< 330	330	ug/kg	
Anthracene			< 330	330	ug/kg	
Benzidine			< 330	330	ug/kg	
Benzo(a)anth	racene		< 330	330	ug/kg	
Benzo(a)pyre			< 90	90	ug/kg	
Benzo(b)fluo			< 330	330	ug/kg	
Benzo(k)fluo			< 330	330	ug/kg	
Benzo(ghi)pe			< 330	330	ug/kg	
Benzoic acid	-		< 330	330	ug/kg	
Benzyl alcoh			< 330	330	ug/kg	
•	ethoxy)methane		< 330	330	ug/kg	
bis(2-Chloro			< 330	330	ug/kg	
•	isopropyl)ether		< 330	330	ug/kg	
•	exyl)phthalate		< 330	330	ug/kg	
· ·	nyl phenyl ether		< 330	330	ug/kg	
Butyl benzyl	• • •		< 330	330	ug/kg	
Carbazole			< 330	330	ug/kg	
4-Chloroanil	ine		< 330	330	ug/kg	
4-Chloro-3-n	nethylphenol		< 330	330	ug/kg	
2-Chloronap			< 330	330	ug/kg	
2-Chlorophe	nol		< 330	330	ug/kg	
	nyl phenyl ether		< 330	330	ug/kg	
Chrysene	• • •		< 330	330	ug/kg	
Dibenzo(a,h)	anthracene		< 90	90	ug/kg	
Dibenzofura			< 330	330	ug/kg	
1,2-Dichloro	benzene		< 330	330	ug/kg	
1,3-Dichloro			< 330	330	ug/kg	
1,4-Dichloro			< 330	330	ug/kg	
3,3'-Dichloro			< 660	660	ug/kg	
2,4-Dichloro			< 330	330	ug/kg	

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Analytical Report

.

Client:	HUFF & HUFF INC.	Date Collected:	05/24/18
Project ID:	Torrence Ave	Time Collected:	9:25
Sample ID:	35-04 (0-1)	Date Received:	05/24/18
Sample No:	18-2892-035	Date Reported:	06/06/18
Results are rep	orted on a dry weight basis.		

Analyte		Result	R.L.	Units	Flags
Semi-Volatile Compounds Analysis Date: 05/31/18	Method: 8270C		Preparation Preparation D	Date: 05/29/18	
Diethyl phthalate		< 330	330	ug/kg	
2,4-Dimethylphenol		< 330	330	ug/kg	
Dimethyl phthalate		< 330	330	ug/kg	
Di-n-butyl phthalate		< 330	330	ug/kg	
4,6-Dinitro-2-methylphenol		< 1,600	1600	ug/kg	
2,4-Dinitrophenol		< 1,600	1600	ug/kg	
2,4-Dinitrotoluene		< 250	250	ug/kg	
2,6-Dinitrotoluene		< 260	260	ug/kg	
Di-n-octylphthalate		< 330	330	ug/kg	
Fluoranthene		< 330	330	ug/kg	
Fluorene		< 330	330	ug/kg	
Hexachlorobenzene		< 330	330	ug/kg	
Hexachlorobutadiene		< 330	330	ug/kg	
Hexachlorocyclopentadiene		< 330	330	ug/kg	
Hexach!oroethane		< 330	330	ug/kg	
Indeno(1,2,3-cd)pyrene		< 330	330	ug/kg	
Isophorone		< 330	330	ug/kg	
2-Methylnaphthalene		< 330	330	ug/kg	
2-Methylphenol		< 330	330	ug/kg	
3 & 4-Methylphenol		< 330	330	ug/kg	
Naphthalene		< 330	330	ug/kg	
2-Nitroaniline		< 1,600	1600	ug/kg	
3-Nitroaniline		< 1,600	1600	ug/kg	
4-Nitroaniline		< 1,600	1600	ug/kg	
Nitrobenzene		< 260	260	ug/kg	
2-Nitrophenol		< 1,600	1600	ug/kg	
4-Nitrophenol		< 1,600	1600	ug/kg	
n-Nitrosodi-n-propylamine		< 90	90	ug/kg	
n-Nitrosodimethylamine		< 330	330	ug/kg	
n-Nitrosodiphenylamine		< 330	330	ug/kg	
Pentachlorophenol		< 330	330	ug/kg	
Phenanthrene		< 330	330	ug/kg	
Phenol		< 330	330	ug/kg	
Pyrene		< 330	330	ug/kg	
Pyridine		< 330	330	ug/kg	
1,2,4-Trichlorobenzene		< 330	330	ug/kg	

.

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

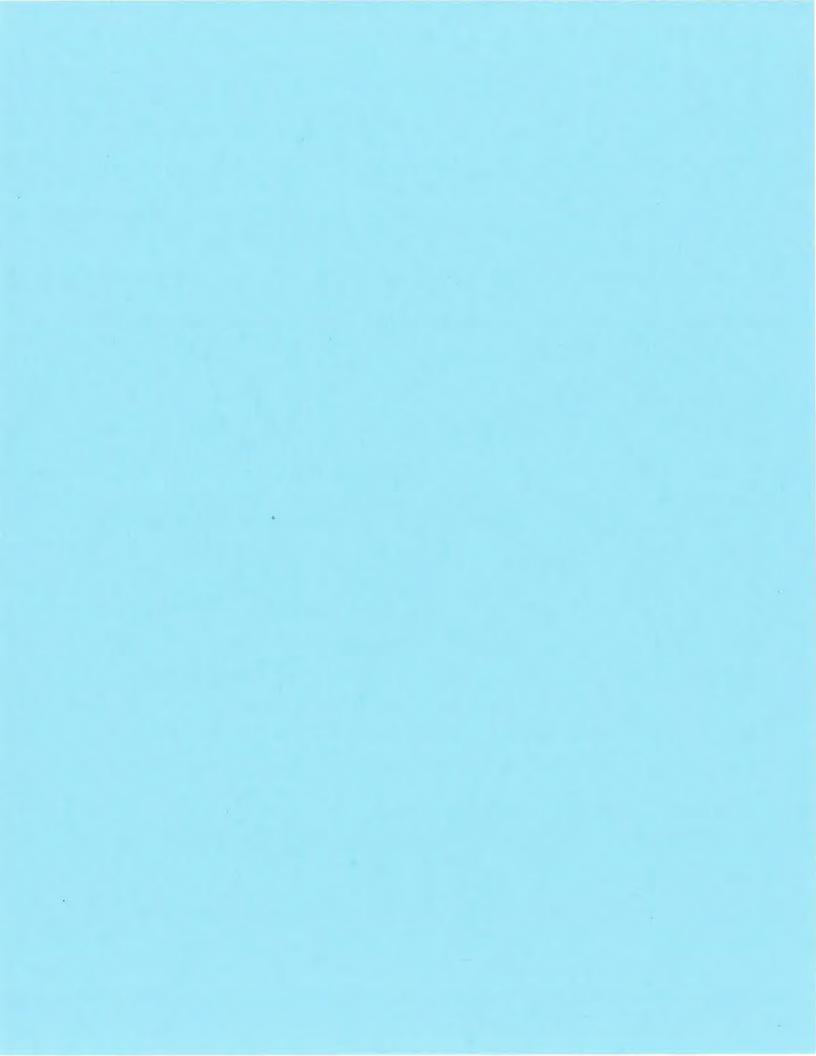
Client: HUFF & HUFF INC		*	Date (Collected:	05/24/18
	*•			Collected:	9:25
Project ID: Torrence Ave				leceived:	05/24/18
Sample ID: 35-04 (0-1)				Reported:	06/06/18
Sample No: 18-2892-035			Date P	reporteu:	00/00/18
Results are reported on a dry weight	basis.	Result	R.L.	Units	Flags
Analyte		Kesuit			
Semi-Volatile Compounds Analysis Date: 05/31/18	Method: 8270C		Preparation Preparation I	Date: 05/29/	
2,4,5-Trichlorophenol		< 330	330	ug/kg	
2,4,6-Trichlorophenol		< 330	330	ug/kg	
pH @ 25°C, 1:2 Analysis Date: 05/30/18 13:30	Method: 9045D 2	004			
pH @ 25°C, 1:2		7.76		Units	
Total Metals Analysis Date: 05/30/18	Method: 6010C		Preparation Preparation I		
Antimony		< 1.0	1.0	mg/kg	
Arsenic		3.5	1.0	mg/kg	
Barium		57.2	0.5	mg/kg	
Beryllium		< 0.5	0.5	mg/kg	
Cadmium		< 0.5	0.5	mg/kg	
Calcium		8,810	50	mg/kg	
Chromium		11.2	0.5	mg/kg	
Cobalt		4.8	0.5	mg/kg	
Copper		12.7	0.5	mg/kg	
Iron		11,100	5.0	mg/kg	
Lead		13.1	0.5	mg/kg	
Magnesium		3,520	50	mg/kg	
Manganese		198	0.5	mg/kg	
Nickel		11.9	0.5	mg/kg	
Potassium		1,110	50	mg/kg	
Selenium		< 1.0	1.0	mg/kg	
Silver		< 0.2	0.2	mg/kg	
Sodium		2,610	50	mg/kg	
Thallium		< 1.0	1.0	mg/kg	
Vanadium		15.7	1.0	mg/kg	
Zinc		41.8	1.0	mg/kg	
Total Mercury Analysis Date: 05/29/18	Method: 7471B				
Mercury		< 0.05	0.05	mg/kg	
TCLP Metals Method 1311 Analysis Date: 06/01/18	Method: 6010C		Preparation Preparation		
Arsenic		< 0.010	0.010	mg/L	
Barium		< 1.0	1.0	mg/L	

IL ELAP / NELAC Accreditation # 100292

The

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

	2	▲	
Client:	HUFF & HUFF INC.	Date Collected:	05/24/18
Project ID:	Torrence Ave	Time Collected:	9:25
Sample ID:	35-04 (0-1)	Date Received:	05/24/18
-	18-2892-035	Date Reported:	06/06/18
Results are rep	orted on a dry weight basis.		


Analyte		Result	R.L.	Units	Flags
TCLP Metals Method 1311 Analysis Date: 06/01/18	Method: 6010C		Preparation Preparation D		
Beryllium		< 1.00	1.0	mg/L	
Cadmium		< 0.005	0.005	mg/L	
Chromium		< 0.005	0.005	mg/L	
Cobalt		< 0.1	0.1	mg/L	
Copper		< 0.1	0.1	mg/L	
Iron		< 0.1	0.1	mg/L	
Lead		0.006	0.005	mg/L	
Manganese		4.0	0.1	mg/L	
Nickel		< 0.1	0.1	mg/L	
Selenium		< 0.010	0.010	mg/L	
Silver		< 0.005	0.005	mg/L	
Zinc		< 0.1	0.1	mg/L	
TCLP Mercury Method 1311 Analysis Date: 06/01/18	Method: 7470A				
Mercury		< 0.0005	0.0005	mg/L	
TCLP Extraction Analysis Date: 05/30/18	Method: 1311				
TCLP Extraction		Comple	te		
SPLP Metals Method 1312 Analysis Date: 06/01/18	Method: 6010C	C.	Preparation Preparation I		
Arsenic		< 0.010	0.010	mg/L	
Barium		< 1.0	1.0	mg/L	
Beryllium		< 0.004	0.004	mg/L	
Cadmium		< 0.005	0.005	mg/L	
Chromium		0.027	0.005	mg/L	
Cobalt		< 0.1	0.1	mg/L	
Copper		0.051	0.005	mg/L	
Iron		25.2	0.1	mg/L	
Lead		0.038	0.005	mg/L	
Manganese		0.3	0.1	mg/L	
Nickel		< 0.1	0.1	mg/L	
Selenium		< 0.010	0.010	mg/L	
Silver		< 0.005	0.005	mg/L	

1.475

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & H	IUFF INC.				Date C	ollected:	05/24/18
Project ID:	Torrence A	lve				Time C	Collected:	9:25
Sample ID:	35-04 (0-1)				Date R	eceived:	05/24/18
Sample No:	18-2892-03	35				Date R	eported:	06/06/18
Results are repo	orted on a di	ry weight ba	isis.		_			
Analyte				Resul	t	R.L.	Units	Flags
SPLP Mercury Analysis Date:		312	Method: 7470A					
Mercury				< 0.000)5	0.0005	mg/L	
SPLP Extract Analysis Date:			Method: 1312					
SPLP Metals E				Com	plete			
Sample QC Su	mmary:	Surrogate	Recovery				%R Li	mits
Method		Analyte		QC	Result		Low	High
5035A/8260B		4-Bromofi	luorobenzene (Surr)	%R:	99		86 -	117
5035A/8260B		d8-Toluen	ne (Surr)	%R:	<i>99.2</i>		90 -	110
5035A/8260B			luoromethane (Surr)	%R:	104.9		77 -	120

Illinois Environmental Protection Agency

Bureau of Land •	1021 North Grand Avenue East	• P.O. Box 19276 •	Springfield •	Illinois •	62794-9276
------------------	------------------------------	--------------------	---------------	------------	------------

Uncontaminated Soil Certification by Licensed Professional Engineer or Licensed Professional Geologist for Use of Uncontaminated Soil as Fill in a CCDD or Uncontaminated Soil Fill Operation LPC-663 Revised in accordance with 35 III. Adm. Code 1100, as amended by PCB R2012-009 (eff. Aug. 27, 2012)

This certification form is to be used by professional engineers and professional geologists to certify, pursuant to 35 III. Adm. Code 1100.205(a)(1)(B), that soil (i) is uncontaminated soil and (ii) is within a pH range of 6.26 to 9.0. If you have questions about this form, please telephone the Bureau of Land Permit Section at 217/524-3300.

This form may be completed online, saved locally, printed and signed, and submitted to prospective clean construction or demolition debris (CCDD) fill operations or uncontaminated soil fill operations.

I. Source Location Information

IL 532-2922

(Describe the location of the source of the uncontaminated soil)

Project Name:	FAU 2937/Torrence Avenue		Office Phone Number, if available:				
Physical Site Lo 3484-2 (North C	cation (address, inclduding n Creek)	umber and street):					
City: Lynwood	State:	<u>IL</u>	Zip Code: <u>60411</u>				
County: Cook		١	Township: Bloom	1			
Lat/Long of app	roximate center of site in dec	imal degrees (DD.o	dddd) to five dec	imal places (e.g., 40.67890, -90.12345):			
	536559 Longitude: ecimal Degrees)	-87.558561 (-Decimal Degree	es)				
Identify how t	he lat/long data were determi	ined:					
🗌 GPS [Map Interpolation	Photo Interpolation	🗌 Survey (🔀 Other			
ISGS Public I	_and Survey System - Appro	ximate Center of m	ultiple addresses				
IEPA Site Numb	per(s), if assigned: BO	L:	BOW:	BOA:			
ll. Owner/Op	Derator Information for Site Owner	Source Site		Site Operator			
Name:	Illinois Dept. of Transportatio	on, District 1	Name:	Illinois Dept. of Transportation, District 1			
Street Address:	201 W Center Court		Street Address:	201 W Center Court			
PO Box:			PO Box:				
City:	Schaumburg	State: IL	City:	Schaumburg State: IL			
Zip Code:	60196 Phone: 84	47-705-4122	Zip Code:	60196 Phone: 847-705-4122			
Contact:	Paul Nickles		Contact:	Paul Nickles			
Email, if availab	le: paul.nickles@illinois.gov		Email, if availab	le: paul.nickles@illinois.gov			

This Agency is authorized to require this information under Section 4 and Title X of the Environmental Protection Act (415 ILCS 5/4, 5/39). Failure to disclose this information may result in: a civil penalty of not to exceed \$50,000 for the violation and an additional civil penalty of not to exceed \$10,000 for each day during which the violation continues (415 ILCS 5/42). This form has been approved by the Forms LPC 663 Rev. 8/2012 Management Center.

Project Name: FAU 2937/Torrence Avenue

Latitude: <u>41.536559</u> Longitude: -87.558561

Uncontaminated Site Certification

III. Basis for Certification and Attachments

For each item listed below, reference the attachments to this form that provide the required information.

a. A Description of the soil sample points and how they were determined to be sufficient in number and appropriately located 35 III. Adm. Code 1100.610(a)]:

Refer to Figure 4-1.2, 4-1.4, and 4-1.5 in the Final PSI Report and borings 3484-2-01 (Torrence Avenue Sta 420+00, 15 Right), 3484-2-03 (Torrence Avenue Sta 424+00, 15 Right), 3484-2-16 (Torrence Avenue Sta 450+00, 15 Right), 3484-2-23 (Torrence Avenue Sta 464+00, 15 Right), 3484-2-24 (Torrence Avenue Sta 466+00, 15 Right)

b. Analytical soil testing results to show that soil chemical constituents comply with the maximum allowable concentrations established pursuant to 35 III. Adm. Code Part 1100, Subpart F and that the soil pH is within the range of 6.25 to 9.0, including the documentation of chain of custody control, a copy of the lab analysis; the accreditation status of the laboratory performing the analysis; and certification by an authorized agent of the laboratory that the analysis has been performed in accordance with the Agency's rules for the accreditation of environmental and the scope of the accreditation [35 III. Adm. Code 1100.201(g), 1100.205(a), 1100.610]:

Refer to Tables 4-2 and 4-3 in the Final PSI Report for results summary and First Environmental Laboratories, Inc. report #18-2892. Site specific table of results is attached to this form.

IV. Certification Statement, Signature and Seal of Licensed Professional Engineer or Licensed Professional Geologist

I. Jeremy J. Reynolds, P.G. (name of licensed professional engineer or geologist) certify under penalty of law that the information submitted, including but not limited to, all attachments and other information, is to the best of my knowledge and belief, true, accurate and complete. In accordance with the Environmental Protection Act [415 ILCS 5/22.51 or 22.51a] and 35 III. Adm. Code 1100.205(a), I certify that the soil from this site is uncontaminated soil. I also certify that the soil pH is within the range of 6.25 to 9.0. In addition, I certify that the soil has not been removed from the site as part of a cleanup or removal of contaminants. All necessary documentation is attached.

Any person who knowingly makes a false, fictitious, or fraudulent material statement, orally or in writing, to the Illinois EPA commits a Class 4 felony. A second or subsequent offense after conviction is a Class 3 felony. (415 ILCS 5/44(h))

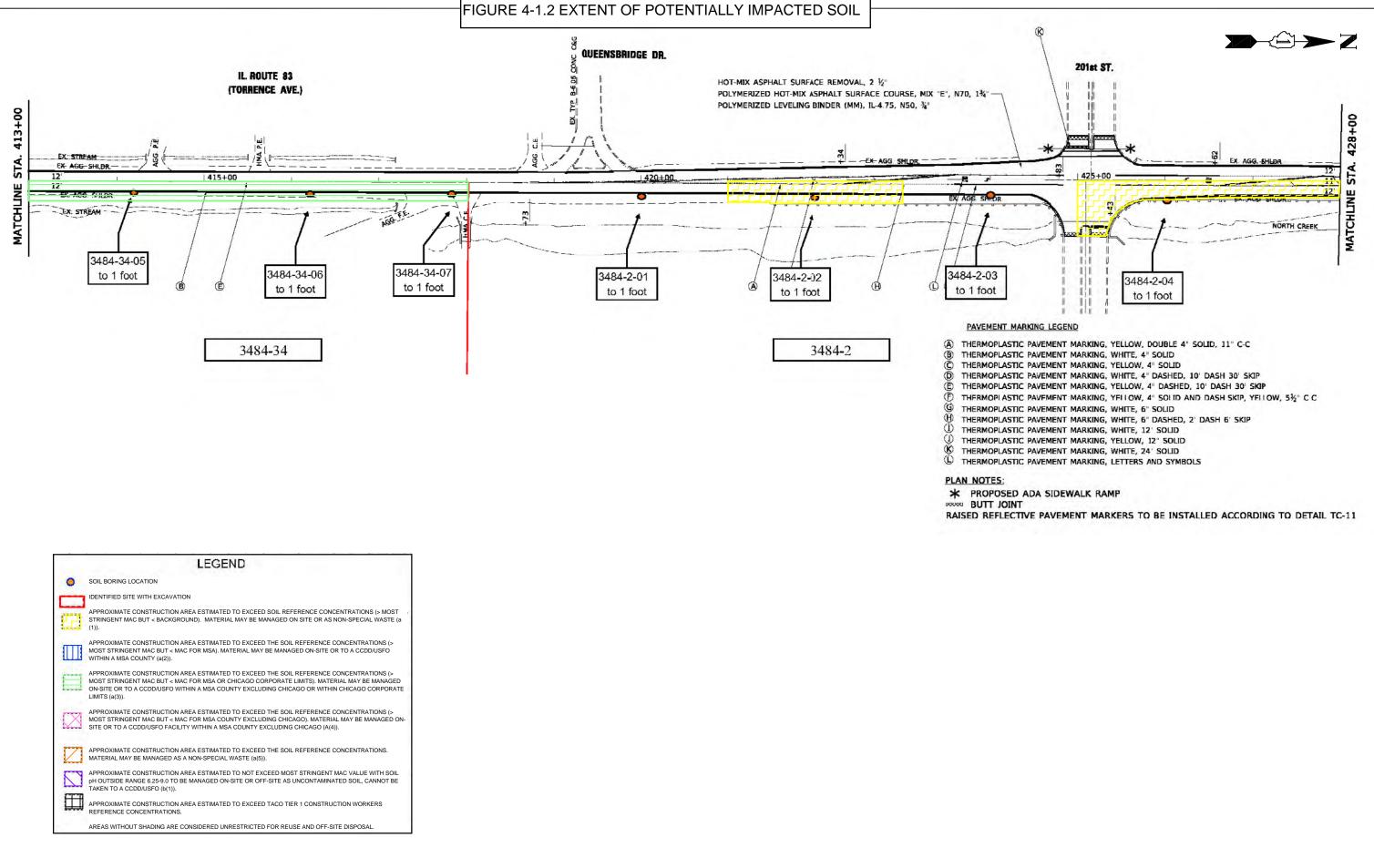
Company Name:	Huff & Huff, Inc. / GZA GeoEn	vironme	ntal, Inc.				
Street Address:	915 Harger Road, Suite 330						
City:	Oak Brook	State:	IL	Zip Code:	60523		
Phone:	630-684-9100					FESSIONAL	
Jeremy J. Reynolds, P.G. Printed Name: Licensed Professional E Licensed Professional G			8/10	Date:		JEREMY J. REYNOLDS 196-001170	G. Seal:

Soils for Unrestricted Reuse or Disposal Including CCDD/USFO Facilities

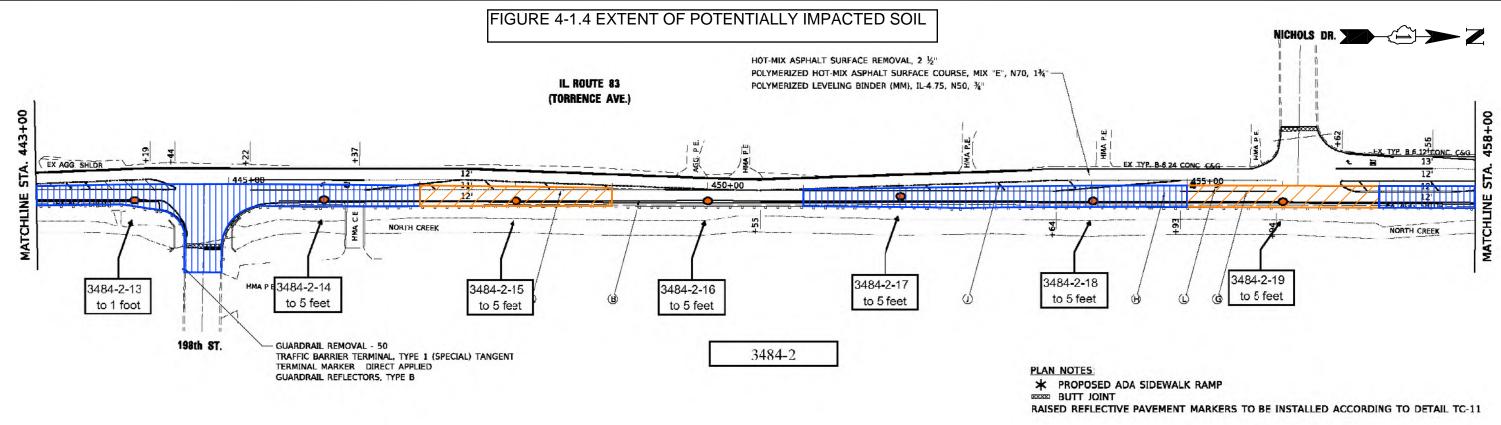
Boring ID	3484-2-01	3484-2-03	3484-2-16	3484-2-23	3484-2-24			
Sample Depth, ft	0-1	0-1	0-5	0-5	0-5	Soil Reference	Soil Remediation	Soil Remediation
Sample Date	5/24/18	5/24/18	5/24/18	5/24/18	5/24/18	Concentrations ^{a/}	Objective for	Objective for
Excavation Area(s)		2404.2		2.4			Construction	Residential
[ISGS Site No.(s)]		3484-2		348	84-34		Workers ^{b/}	Exposure ^{c/}
Parameter								
Laboratory soil pH (s.u.)	8.73	8.29	8.35	8.52	8.41	6.25 - 9.0		
VOCs (mg/kg)			NO EXCEEDANCES					
SVOCs, mg/kg								
Benzo(a)anthracene	<0.33	<0.33	<0.33	<0.33	<0.33	0.9 / 1.1 / 1.8	170	0.9
Benzo(a)pyrene	<0.09	<0.09	<0.09	<0.09	<0.09	0.09 / 1.3 / 2.1	17	0.09
Benzo(b)fluoranthene	<0.33	<0.33	<0.33	<0.33	<0.33	0.9 / 1.5 / 2.1	170	0.9
Dibenz(a,h)anthracene	<0.09	<0.09	<0.09	<0.09	<0.09	0.09 / 0.2 / 0.42	17	0.09
Total Metals, mg/kg								
Beryllium	<0.5	1	<0.5	0.6	0.8	22	410	160
Chromium	12.1	25.5	18.7	17.5	20.2	21	690	230
Iron	17800	25900	13400	20300	17300	15,000 / 15,900		
Lead	19.5	15.7	8.4	9	11.5	107	700	400
Manganese	259	304	261	155	131	630 / 636	4,100	1600
Mercury	<0.05	<0.05	<0.05	<0.05	<0.05	0.89	0.1	10
TCLP Metals, mg/L						Cla	ss I Groundwater ^{d/}	
Beryllium	<1.00	<1.00	<1.00	<1.00	<1.00		0.004	
Chromium	0.006	<0.005	<0.005	<0.005	<0.005		0.1	
Iron	0.2	0.2	<0.1	<0.1	<0.1		5	
Lead	0.029	<0.005	<0.005	<0.005	<0.005		0.0075	
Manganese	7.9	0.2	1.3	1.4	0.4		0.15	
Mercury	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005		0.002	
SPLP Metals, mg/L								
Beryllium	<0.004	<0.004	<0.004	<0.004	<0.004		0.004	
Chromium	<0.005	0.056	0.019	0.023	0.012		0.1	
Iron	3.2	38.9	14.2	21.9	8.8		5	
Lead	<0.005	0.012	<0.005	0.008	<0.005		0.0075	
Manganese	<0.1	0.1	0.1	0.1	<0.1		0.15	
Mercury	<0.0005	0.0101	< 0.0005	<0.0005	<0.0005		0.002	

---- - Refers to not applicable or value not available

^{a/} Soil reference concentrations from MAC table. Background values for MSA counties are included as applicable.

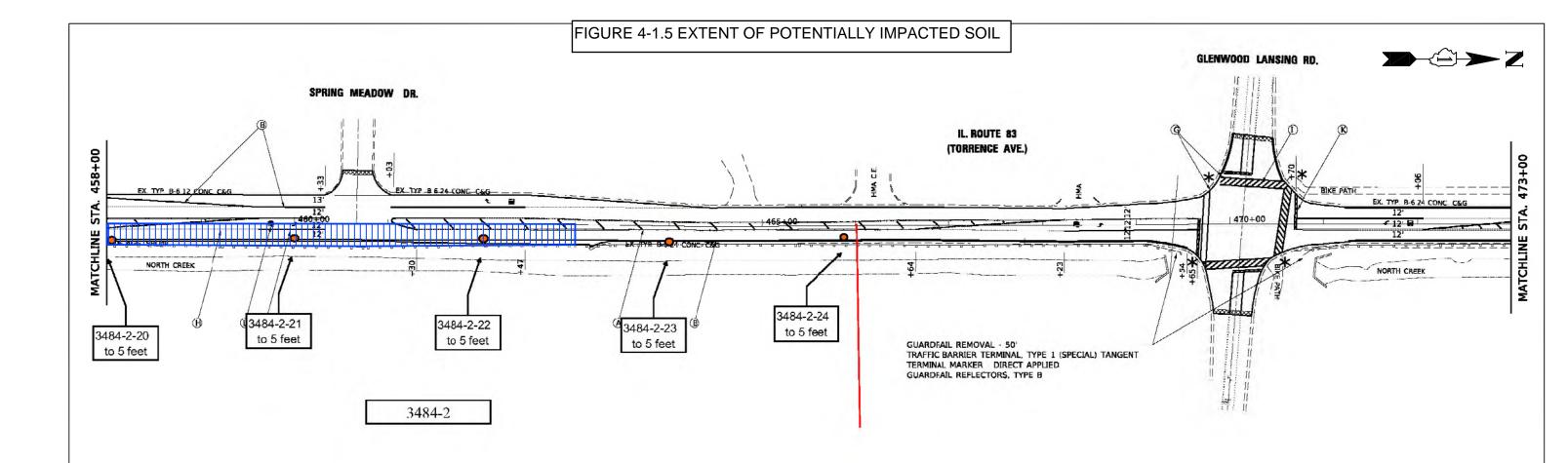

Inorganic Soil Reference Concentrations (xx.xx / xx.xx) Include the Most Stringent values from the MAC Table / and the MSA County Value From the MAC Table as Applicable

^{b/} Soil Remediation Objective for Construction Workers, most stringent of the Ingestion or Inhalation exposure route.


^{c/} Soil Remediation Objective for Residential expsoure, most stringent of the Ingestion or Inhalation exposure route.

^{d/} Soil Remediation Objective for the Groundwater Component of the Groundwater Ingestion Route, Class I Groundwater

Shaded values indicate concentration exceeds reference concentration



FILE NAME =	USER NAME =	DESIGNED -	REVISED -		ROADWAY PLAN	F.A.U. RTE	SECTION	COUNTY	TOTAL	SHEET
		DRAWN -	REVISED -	STATE OF ILLINOIS DEPARTMENT OF TRANSPORTATION	IL 83 (I-80 TO GLENWOOD DYER ROAD)	2937 (3	3076-1 & 3077) RS-1	соок	6	2
	PLOT SCALE =	CHECKED -	REVISED -			(-	,	CONTRACT NO. NO 62C5		C51
	PLOT DATE =	DATE -	REVISED -		SCALE: 1" = 100' SHEET NO. 1 OF 6 SHEETS STA. 458+00 TO STA. 488+00		ILLINOIS			

	LEGEND
0	SOIL BORING LOCATION
-	IDENTIFIED SITE WITH EXCAVATION
63	APPROXIMATE CONSTRUCTION AREA ESTIMATED TO EXCEED SOIL REFERENCE CONCENTRATIONS (> MOST STRINGENT MAC BUT < BACKGROUND). MATERIAL MAY BE MANAGED ON SITE OR AS NON-SPECIAL WASTE (a (1)).
	APPROXIMATE CONSTRUCTION AREA ESTIMATED TO EXCEED THE SOIL REFERENCE CONCENTRATIONS (> MOST STRINGENT MAC BUT < MAC FOR MSA). MATERIAL MAY BE MANAGED ON-SITE OR TO A CCDD/USFO WITHIN A MSA COUNTY (a(2)).
	APPROXIMATE CONSTRUCTION AREA ESTIMATED TO EXCEED THE SOIL REFERENCE CONCENTRATIONS (> MOST STRINGENT MAC BUT < MAC FOR MSA OR CHICAGO CORPORATE LIMITS). MATERIAL MAY BE MANAGED ON-SITE OR TO A CCDD/USFO WITHIN A MSA COUNTY EXCLUDING CHICAGO OR WITHIN CHICAGO CORPORATE LIMITS (a(3)).
	APPROXIMATE CONSTRUCTION AREA ESTIMATED TO EXCEED THE SOIL REFERENCE CONCENTRATIONS (> MOST STRINGENT MAC BUT < MAC FOR MSA COUNTY EXCLUDING CHICAGO). MATERIAL MAY BE MANAGED ON- SITE OR TO A CCDD/USFO FACILITY WITHIN A MSA COUNTY EXCLUDING CHICAGO (A(4)).
\square	APPROXIMATE CONSTRUCTION AREA ESTIMATED TO EXCEED THE SOIL REFERENCE CONCENTRATIONS. MATERIAL MAY BE MANAGED AS A NON-SPECIAL WASTE (a(5)).
	APPROXIMATE CONSTRUCTION AREA ESTIMATED TO NOT EXCEED MOST STRINGENT MAC VALUE WITH SOIL pH OUTSIDE RANGE 6.25-9.0 TO BE MANAGED ON-SITE OR OFF-SITE AS UNCONTAMINATED SOIL, CANNOT BE TAKEN TO A CCDD/USFO (b(1)).
	APPROXIMATE CONSTRUCTION AREA ESTIMATED TO EXCEED TACO TIER 1 CONSTRUCTION WORKERS REFERENCE CONCENTRATIONS.
	AREAS WITHOUT SHADING ARE CONSIDERED UNRESTRICTED FOR REUSE AND OFF-SITE DISPOSAL.

FILE NAME =	USER NAME =	DESIGNED -	REVISED -		ROADWAY PLAN	F.A.U. SECTION		COUNTY	TOTAL SHEET
		DRAWN -	REVISED -	STATE OF ILLINOIS	IL 83 (I-80 TO GLENWOOD DYER ROAD)	2937	(3076-1 & 3077) RS-1	соок	6 4
	PLOT SCALE =	CHECKED -	REVISED -	DEPARTMENT OF TRANSPORTATION			(CONTRACT N	O. NO 62C51
	PLOT DATE =	DATE -	REVISED -		SCALE: 1" = 100' SHEET NO. 1 OF 6 SHEETS STA. 458+00 TO STA. 488+00		ILLINOIS		

	LEGEND
0	SOIL BORING LOCATION
_	IDENTIFIED SITE WITH EXCAVATION
63	APPROXIMATE CONSTRUCTION AREA ESTIMATED TO EXCEED SOIL REFERENCE CONCENTRATIONS (> MOST STRINGENT MAC BUT < BACKGROUND). MATERIAL MAY BE MANAGED ON SITE OR AS NON-SPECIAL WASTE (a (1)).
	APPROXIMATE CONSTRUCTION AREA ESTIMATED TO EXCEED THE SOIL REFERENCE CONCENTRATIONS (> MOST STRINGENT MAC BUT < MAC FOR MSA). MATERIAL MAY BE MANAGED ON-SITE OR TO A CCDD/USFO WITHIN A MSA COUNTY (a(2)).
	APPROXIMATE CONSTRUCTION AREA ESTIMATED TO EXCEED THE SOIL REFERENCE CONCENTRATIONS (> MOST STRINGENT MAC BUT < MAC FOR MSA OR CHICAGO CORPORATE LIMITS). MATERIAL MAY BE MANAGED ON-SITE OR TO A CCDD/USFO WITHIN A MSA COUNTY EXCLUDING CHICAGO OR WITHIN CHICAGO CORPORATE LIMITS (a(3)).
	APPROXIMATE CONSTRUCTION AREA ESTIMATED TO EXCEED THE SOIL REFERENCE CONCENTRATIONS (> MOST STRINGENT MAC BUT < MAC FOR MSA COUNTY EXCLUDING CHICAGO), MATERIAL MAY BE MANAGED ON- SITE OR TO A CCDD/USFO FACILITY WITHIN A MSA COUNTY EXCLUDING CHICAGO (A(4)).
Z	APPROXIMATE CONSTRUCTION AREA ESTIMATED TO EXCEED THE SOIL REFERENCE CONCENTRATIONS. MATERIAL MAY BE MANAGED AS A NON-SPECIAL WASTE (a(5)).
	APPROXIMATE CONSTRUCTION AREA ESTIMATED TO NOT EXCEED MOST STRINGENT MAC VALUE WITH SOIL pH OUTSIDE RANGE 6.25-9.0 TO BE MANAGED ON-SITE OR OFF-SITE AS UNCONTAMINATED SOIL, CANNOT BE TAKEN TO A CCDD/USFO (b(1)).
	APPROXIMATE CONSTRUCTION AREA ESTIMATED TO EXCEED TACO TIER 1 CONSTRUCTION WORKERS REFERENCE CONCENTRATIONS.
	AREAS WITHOUT SHADING ARE CONSIDERED UNRESTRICTED FOR REUSE AND OFF-SITE DISPOSAL.

FILE NAME =	USER NAME =	DESIGNED -	REVISED		ROADWAY PLAN	F.A.U.	SECTION	COUNTY	TOTAL S	HEET
		DRAWN -	REVISED -	STATE OF ILLINOIS	IL 83 (I-80 TO GLENWOOD DYER ROAD)	2937	(3076-1 & 3077) RS-1	соок	6	5
	PLOT SCALE =	CHECKED -	REVISED -	DEPARTMENT OF TRANSPORTATION			(CONTRACT NO	0. NO 620	:51
	PLOT DATE =	DATE -	REVISED -		SCALE: 1" = 100' SHEET NO. 1 OF 6 SHEETS STA. 458+00 TO STA. 488+00		ILLINOIS			

.

.

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Analytical Report

۰.

		Analytical N	report			
Client: H	UFF & HUFF INC.				ollected:	05/24/18
Project ID: To	orrence Ave			Time (Collected:	9:47
•	01 (0-1)			Date R	eceived:	05/24/18
•	3-2892-001			Date R	eported:	06/06/18
-	ed on a dry weight ba	sis.				
Analyte			Result	R.L.	Units	Flags
Solids, Total		Method: 2540B				
Analysis Date: 05	5/25/18 14:00					
Total Solids			83.88		%	
Volatile Organic Analysis Date: 05		Method: 5035A/82	260B			
Acetone			< 200	200	ug/kg	
Benzene			< 5.0	5.0	ug/kg	
Bromodichlorome	thane		< 5.0	5.0	ug/kg	
Bromoform			< 5.0	5.0	ug/kg	
Bromomethane			< 10.0	10.0	ug/kg	
2-Butanone (MEk	()		< 100	100	ug/kg	
Carbon disulfide			< 5.0	5.0	ug/kg	
Carbon tetrachlor	ide		< 5.0	5.0	ug/kg	
Chlorobenzene			< 5.0	5.0	ug/kg	
Chlorodibromome	ethane		< 5.0	5.0	ug/kg	
Chloroethane			< 10.0	10.0	ug/kg	
Chloroform			< 5.0	5.0	ug/kg	
Chloromethane			< 10.0	10.0	ug/kg	
1,1-Dichloroethar	ne		< 5.0	5.0	ug/kg	
1,2-Dichloroethar	ne		< 5.0	5.0	ug/kg	
1,1-Dichloroether	ne		< 5.0	5.0	ug/kg	
cis-1,2-Dichloroe	thene		< 5.0	5.0	ug/kg	
trans-1,2-Dichlor	oethene		< 5.0	5.0	ug/kg	
1,2-Dichloroprop	ane		< 5.0	5.0	ug/kg	
cis-1,3-Dichlorop	ropene		< 4.0	4.0	ug/kg	
trans-1,3-Dichlor	opropene		< 4.0	4.0	ug/kg	
Ethylbenzene			< 5.0	5.0	ug/kg	
2-Hexanone			< 10.0	10.0	ug/kg	
Methyl-tert-butyl	ether (MTBE)		< 5.0	5.0	ug/kg	
4-Methyl-2-penta	none (MIBK)		< 10.0	10.0	ug/kg	
Methylene chlori	de		< 20.0	20.0	ug/kg	
Styrene			< 5.0	5.0	ug/kg	
1,1,2,2-Tetrachlo	roethane		< 5.0	5.0	ug/kg	
Tetrachloroethen	e		< 5.0	5.0	ug/kg	
Toluene			< 5.0	5.0	ug/kg	
1,1,1-Trichloroet	hane		< 5.0	5.0	ug/kg	
1,1,2-Trichloroet	hane		< 5.0	5.0	ug/kg	
1,1,2-111011000	liane		< 5.0	5.0	ug/kg	

.*

First Environmental Laboratories, Inc.

.

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client: Project ID:	HUFF & HUFF INC. Torrence Ave	Ŭ	•	Time C	Date Collected: Time Collected:		
Sample ID:	2-01 (0-1)		Date Recei			05/24/18	
Sample No:	18-2892-001			Date R	eported:	06/06/18	
Results are rep	orted on a dry weight b	asis.					
Analyte			Result	R.L.	Units	Flags	
Volatile Orga Analysis Date:	nic Compounds 05/31/18	Method: 5035A/82	260B				
Vinyl acetate			< 10.0	10.0	ug/kg		
Vinyl chloride	}		< 10.0	10.0	ug/kg		
Xylene, Total			< 5.0	5.0	ug/kg		
Semi-Volatile Analysis Date		Method: 8270C		Preparation Preparation D			
Acenaphthene			< 330	330	ug/kg		
Acenaphthyle			< 330	330	ug/kg		
Anthracene			< 330	330	ug/kg		
Benzidine			< 330	330	ug/kg		
Benzo(a)anthr	acene		< 330	330	ug/kg		
Benzo(a)pyrei			< 90	90	ug/kg		
Benzo(b)fluor			< 330	330	ug/kg		
Benzo(k)fluor			< 330	330	ug/kg		
Benzo(ghi)per	rylene		< 330	330	ug/kg		
Benzoic acid			< 330	330	ug/kg		
Benzyl alcoho	ol		< 330	330	ug/kg		
bis(2-Chloroe	thoxy)methane		< 330	330	ug/kg		
bis(2-Chloroe	thyl)ether		< 330	330	ug/kg		
bis(2-Chlorois	sopropyl)ether		< 330	330	ug/kg		
bis(2-Ethylhe:	xyl)phthalate		< 330	330	ug/kg		
4-Bromophen	yl phenyl ether		< 330	330	ug/kg		
Butyl benzyl	phthalate		< 330	330	ug/kg		
Carbazole			< 330	330	ug/kg		
4-Chloroanili			< 330	330	ug/kg		
4-Chloro-3-m	• •		< 330	330	ug/kg		
2-Chloronaph			< 330	330	ug/kg		
2-Chlorophen			< 330	330	ug/kg		
	yl phenyl ether		< 330	330	ug/kg		
Chrysene			< 330	330	ug/kg		
Dibenzo(a,h)a			< 90	90	ug/kg		
Dibenzofuran			< 330	330	ug/kg		
1,2-Dichlorob			< 330	330	ug/kg		
1,3-Dichlorob			< 330	330	ug/kg		
1,4-Dichlorob			< 330	330 660	ug/kg		
3,3'-Dichlorol			< 660 < 330	330	ug/kg ug/kg		
2,4-Dichlorop	onenol		< 33U	220	ug/ ng		

.

First Environmental Laboratories, Inc.

-

IL ELAP / NELAC Accreditation # 100292

DI

TT ... !4

Flags

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.	Date Collected:	05/24/18
Project ID:	Torrence Ave	Time Collected:	9:47
Sample ID:	2-01 (0-1)	Date Received:	05/24/18
Sample No:		Date Reported:	06/06/18
Results are rep	orted on a dry weight basis.		

Analyte		Result	R.L.	Units	Flags
Semi-Volatile Compounds Analysis Date: 05/25/18	Method: 8270C		Preparation Preparation D		
Diethyl phthalate		< 330	330	ug/kg	
2,4-Dimethylphenol		< 330	330	ug/kg	
Dimethyl phthalate		< 330	330	ug/kg	
Di-n-butyl phthalate		< 330	330	ug/kg	
4,6-Dinitro-2-methylphenol		< 1,600	1600	ug/kg	
2,4-Dinitrophenol		< 1,600	1600	ug/kg	
2,4-Dinitrotoluene		< 250	250	ug/kg	
2,6-Dinitrotoluene		< 260	260	ug/kg	
Di-n-octylphthalate		< 330	330	ug/kg	
Fluoranthene		< 330	330	ug/kg	
Fluorene		< 330	330	ug/kg	
Hexachlorobenzene		< 330	330	ug/kg	
Hexachlorobutadiene		< 330	330	ug/kg	
Hexachlorocyclopentadiene		< 330	330	ug/kg	
Hexachloroethane		< 330	330	ug/kg	
Indeno(1,2,3-cd)pyrene		< 330	330	ug/kg	
Isophorone		< 330	330	ug/kg	
2-Methylnaphthalene		< 330	330	ug/kg	
2-Methylphenol		< 330	330	ug/kg	
3 & 4-Methylphenol		< 330	330	ug/kg	
Naphthalene		< 330	330	ug/kg	
2-Nitroaniline		< 1,600	1600	ug/kg	
3-Nitroaniline		< 1,600	1600	ug/kg	
4-Nitroaniline		< 1,600	1600	ug/kg	
Nitrobenzene		< 260	260	ug/kg	
2-Nitrophenol		< 1,600	1600	ug/kg	
4-Nitrophenol		< 1,600	1600	ug/kg	
n-Nitrosodi-n-propylamine		< 90	90	ug/kg	
n-Nitrosodimethylamine		< 330	330	ug/kg	
n-Nitrosodiphenylamine		< 330	330	ug/kg	
Pentachlorophenol		< 330	330	ug/kg	
Phenanthrene		< 330	330	ug/kg	
Phenol		< 330	330	ug/kg	
Pyrene		< 330	330	ug/kg	
Pyridine		< 330	330	ug/kg	
1,2,4-Trichlorobenzene		< 330	330	ug/kg	

.

First Environmental Laboratories, Inc.

-.

IL ELAP / NELAC Accreditation # 100292

Laboratories, Inc.IL ELAP / NELAC Accreditation # 1002921600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Project ID: T Sample ID: 2- Sample No: 1	UFF & HUFF INC. orrence Ave -01 (0-1) 8-2892-001		,	-F	Time (Date F	Collected: Collected: Received: Reported:	05/24/18 9:47 05/24/18 06/06/18
Results are report Analyte	ed on a dry weight ba	IS1S.		Result	R.L.	Units	Flags
Semi-Volatile Co Analysis Date: 0		Method: 8	8270C		Preparation Preparation I		
2,4,5-Trichlorophenol				< 330	330	ug/kg	
2,4,6-Trichloroph				< 330	330	ug/kg	
pH @ 25°C, 1:2 Analysis Date: 0	5/29/18 11:25	Method:	9045D 20	04			
pH @ 25°C, 1:2				8.73		Units	
Total Metals Analysis Date: 0	5/31/18	Method:	6010C		Preparation Preparation		
Antimony				< 1.0	1.0	mg/kg	
Arsenic				7.7	1.0	mg/kg	
Barium				25.6	0.5	mg/kg	
Beryllium				< 0.5	0.5	mg/kg	
Cadmium				< 0.5	0.5	mg/kg	
Calcium				56,400	50	mg/kg	
Chromium				12.1	0.5	mg/kg	
Cobalt				5.8	0.5	mg/kg	
Copper				19.4	0.5	mg/kg	
Iron				17,800	5.0	mg/kg	
Lead				19.5	0.5	mg/kg	
Magnesium				22,500	50	mg/kg	
Manganese				259	0.5	mg/kg	
Nickel				17.7	0.5	mg/kg	
Potassium				1,140	50	mg/kg	
Selenium				< 1.0	1.0	mg/kg	
Silver				0.4	0.2	mg/kg	
Sodium				473	50	mg/kg	
Thallium				< 1.0	1.0	mg/kg	
Vanadium				17.6	1.0	mg/kg	
Zinc				47.4	1.0	mg/kg	
Total Mercury Analysis Date: (05/25/18	Method:	7471B				
Mercury				< 0.05	0.05	mg/kg	
TCLP Metals M Analysis Date: (Method:	6010C		Preparation Preparation		
Arsenic				< 0.010	0.010	mg/L	
Barium				< 1.0	1.0	mg/L	

First Environmental

Laboratories, Inc.IL ELAP / NELAC Accreditation # 1002921600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

		 1			
Client:	HUFF & HUFF INC.		Date Collected:	05/24/18	
Project ID:	Torrence Ave		Time Collected:	9:47	
	2-01 (0-1)		Date Received:	05/24/18	
Sample No:	18-2892-001		Date Reported:	06/06/18	
	orted on a dry weight basis.				

Analyte		Result	R.L.	Units	Flags
TCLP Metals Method 1311 Analysis Date: 06/01/18	Method: 6010C		Preparation Preparation D	Method 301 ate: 05/30/18	0A
Beryllium		< 1.00	1.0	mg/L	
Cadmium		< 0.005	0.005	mg/L	
Chromium		0.006	0.005	mg/L	
Cobalt		< 0.1	0.1	mg/L	
Copper		< 0.1	0.1	mg/L	
Iron		0.2	0.1	mg/L	
Lead		0.029	0.005	mg/L	
Manganese		7.9	0.1	mg/L	
Nickel		< 0.1	0.1	mg/L	
Selenium		0.010	0.010	mg/L	
Silver		< 0.005	0.005	mg/L	
Zinc		< 0.1	0.1	mg/L	
TCLP Mercury Method 1311 Analysis Date: 05/31/18	Method: 7470A				
Mercury		< 0.0005	0.0005	mg/L	
TCLP Extraction Analysis Date: 05/30/18	Method: 1311				
TCLP Extraction		Complete	e		
SPLP Metals Method 1312 Analysis Date: 05/31/18	Method: 6010C		Preparation Preparation I		
Arsenic		< 0.010	0.010	mg/L	
Barium		< 1.0	1.0	mg/L	
Beryllium		< 0.004	0.004	mg/L	
Cadmium		< 0.005	0.005	mg/L	
Chromium		< 0.005	0.005	mg/L	
Cobalt		< 0.1	0.1	mg/L	
Copper		0.005	0.005	mg/L	
Iron		3.2	0.1	mg/L	
Lead		< 0.005	0.005	mg/L	
Manganese		< 0.1	0.1	mg/L	
Nickel		< 0.1	0.1	mg/L	
Selenium		< 0.010	0.010	mg/L	
Silver		< 0.005	0.005	mg/L	
Zinc		< 0.1	0.1	mg/L	

- •

.

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

. 1

		1 mary treat	toport -				
Client:	HUFF & H	IUFF INC.			Date C	ollected:	05/24/18
Project ID:	Torrence A	Ave			Time C	Collected:	9:47
Sample ID:	2-01 (0-1))			Date R	eceived:	05/24/18
Sample No:	18-2892-0	01			Date R	eported:	06/06/18
-	ported on a d	ry weight basis.					
Analyte	ηj.		Resu	İt	R.L.	Units	Flag
SPLP Mercun Analysis Date		312 Method: 7470A					
Mercury			< 0.00	05	0.0005	mg/L	
SPLP Extrac Analysis Date		Method: 1312					
SPLP Metals	Extraction		Com	plete			
Sample QC Si	ummary:	Surrogate Recovery				%R Li	imits
Method		Analyte	QC	C Result		Low	High
5035A/8260B		4-Bromofluorobenzene (Surr)	%R:	101.3		86 -	117
5035A/8260B		d8-Toluene (Surr)	%R:	101.2		90 -	110
5035A/8260B		Dibromofluoromethane (Surr)	%R:	106.3		77 -	120
8270C		2,4,6-Tribromophenol (Surr)	%R:	96.9		59 -	131
8270C		2-Fluorobiphenyl (Surr)	%R:	82.4		45 -	112
8270C		2-Fluorophenol (Surr)	%R:	63.5		41 -	84
8270C		d14-Terphenyl (Surr)	%R:	88.7		56 -	120
8270C		d5-Nitrobenzene (Surr)	%R:	80.4		35 -	105
8270C		Phenol-d5 (surr)	%R:	70.8		50 -	100

.

- *

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.	v	-	Date C	Collected:	05/24/18	
Project ID:	Torrence Ave			Time Collected: Date Received: Date Reported:		9:52	
Sample ID:	2-03 (0-1)					05/24/18	
Sample No:	18-2892-003					06/06/18	
-	orted on a dry weight b	basis.			-		
Analyte			Result	R.L.	Units	Flags	
Solids, Total		Method: 2540B					
	05/25/18 14:00						
Total Solids			74.85		%		
Volatile Orga Analysis Date:	nic Compounds	Method: 5035A/82	260B				
Acetone	05/51/10		< 200	200	ug/kg		
Benzene			< 5.0	5.0	ug/kg		
Bromodichloro	methane		< 5.0	5.0	ug/kg		
Bromoform	Jiletiane		< 5.0	5.0	ug/kg		
Bromomethane	2		< 10.0	10.0	ug/kg		
2-Butanone (N			< 100	100	ug/kg		
Carbon disulfi	•		39.2	5.0	ug/kg		
Carbon tetrach			< 5.0	5.0	ug/kg		
Chlorobenzene			< 5.0	5.0	ug/kg		
Chlorodibromo			< 5.0	5.0	ug/kg		
Chloroethane			< 10.0	10.0	ug/kg		
Chloroform			< 5.0	5.0	ug/kg		
Chloromethan	e		< 10.0	10.0	ug/kg		
1,1-Dichloroet	hane		< 5.0	5.0	ug/kg		
1,2-Dichloroet			< 5.0	5.0	ug/kg		
1,1-Dichloroet			< 5.0	5.0	ug/kg		
cis-1,2-Dichlo	roethene		< 5.0	5.0	ug/kg		
trans-1,2-Dich	loroethene		< 5.0	5.0	ug/kg		
1,2-Dichlorop	ropane		< 5.0	5.0	ug/kg		
cis-1,3-Dichlo	ropropene		< 4.0	4.0	ug/kg		
trans-1,3-Dich	loropropene		< 4.0	4.0	ug/kg		
Ethylbenzene			< 5.0	5.0	ug/kg		
2-Hexanone			< 10.0	10.0	ug/kg		
Methyl-tert-bu	tylether (MTBE)		< 5.0	5.0	ug/kg		
4-Methyl-2-pe	ntanone (MIBK)		< 10.0	10.0	ug/kg		
Methylene chl	oride		< 20.0	20.0	ug/kg		
Styrene			< 5.0	5.0	ug/kg		
1,1,2,2-Tetrac			< 5.0	5.0	ug/kg		
Tetrachloroeth	nene		< 5.0	5.0	ug/kg		
Toluene			< 5.0	5.0	ug/kg		
1,1,1-Trichlor			< 5.0	5.0	ug/kg		
1,1,2-Trichlor			< 5.0	5.0	ug/kg		
Trichloroether	ne		< 5.0	5.0	ug/kg		

.

n (

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Analytical Report

. .

Client:	HUFF & HUFF INC.	U	•	Date C	ollected:	05/24/18
Project ID:	Torrence Ave			Time C	Time Collected:	
Sample ID:	2-03 (0-1)			Date R	eceived:	05/24/18
Sample No:	18-2892-003			Date R	eported:	06/06/18
-	ported on a dry weight ba	isis.				
Analyte	oned on a dry worght of		Result	R.L.	Units	Flags
	nic Compounds	Method: 5035A/82	260B			
Analysis Date:		memour bobbino.				
Vinyl acetate			< 10.0	10.0	ug/kg	
Vinyl chloride)		< 10.0	10.0	ug/kg	
Xylene, Total			< 5.0	5.0	ug/kg	
Semi-Volatile Analysis Date		Method: 8270C		Preparation Preparation D	Method 3 Date: 05/24/	540C /18
Acenaphthene			< 330	330	ug/kg	
Acenaphthyle			< 330	330	ug/kg	
Anthracene			< 330	330	ug/kg	
Benzidine			< 330	330	ug/kg	
Benzo(a)anthr	acene		< 330	330	ug/kg	
Benzo(a)pyrer			< 90	90	ug/kg	
Benzo(b)fluor			< 330	330	ug/kg	
Benzo(k)fluor			< 330	330	ug/kg	
Benzo(ghi)per			< 330	330	ug/kg	
Benzoic acid	•		< 330	330	ug/kg	
Benzyl alcoho	ol		< 330	330	ug/kg	
	thoxy)methane		< 330	330	ug/kg	
bis(2-Chloroe	thyl)ether		< 330	330	ug/kg	
bis(2-Chlorois	sopropyl)ether		< 330	330	ug/kg	
bis(2-Ethylhes	xyl)phthalate		< 330	330	ug/kg	
4-Bromophen	yl phenyl ether		< 330	330	ug/kg	
Butyl benzyl j	phthalate		< 330	330	ug/kg	
Carbazole			< 330	330	ug/kg	
4-Chloroanili			< 330	330	ug/kg	
4-Chloro-3-m	•		< 330	330	ug/kg	
2-Chloronaph			< 330	330	ug/kg	
2-Chlorophen			< 330	330	ug/kg	
	yl phenyl ether		< 330	330	ug/kg	
Chrysene			< 330	330	ug/kg	
Dibenzo(a,h)a			< 90	90 220	ug/kg	
Dibenzofuran			< 330	330	ug/kg	
1,2-Dichlorob			< 330	330	ug/kg	
1,3-Dichlorob			< 330	330	ug/kg	
1,4-Dichlorob			< 330	330	ug/kg	
3,3'-Dichlorol			< 660 < 330	660 330	ug/kg ug/kg	
2,4-Dichlorop	onenol		~ 330	330	ug/ng	

.

٠

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.	Date Collected:	05/24/18
Project ID:	Torrence Ave	Time Collected:	9:52
	2-03 (0-1)	Date Received:	05/24/18
Sample No:	18-2892-003	Date Reported:	06/06/18
Results are rep	orted on a dry weight basis.		

Analyte	Result	R.L.	Units	Flags	
Semi-Volatile Compounds Analysis Date: 05/25/18	Method: 8270C		Preparation Preparation D	Method 354 Date: 05/24/18	0C
Diethyl phthalate		< 330	330	ug/kg	
2,4-Dimethylphenol		< 330	330	ug/kg	
Dimethyl phthalate		< 330	330	ug/kg	
Di-n-butyl phthalate		< 330	330	ug/kg	
4,6-Dinitro-2-methylphenol		< 1,600	1600	ug/kg	
2,4-Dinitrophenol		< 1,600	1600	ug/kg	
2,4-Dinitrotoluene		< 250	250	ug/kg	
2,6-Dinitrotoluene		< 260	260	ug/kg	
Di-n-octylphthalate		< 330	330	ug/kg	
Fluoranthene		< 330	330	ug/kg	
Fluorene		< 330	330	ug/kg	
Hexachlorobenzene		< 330	330	ug/kg	
Hexachlorobutadiene		< 330	330	ug/kg	
Hexachlorocyclopentadiene		< 330	330	ug/kg	
Hexachloroethane		< 330	330	ug/kg	
Indeno(1,2,3-cd)pyrene		< 330	330	ug/kg	
Isophorone		< 330	330	ug/kg	
2-Methylnaphthalene		< 330	330	ug/kg	
2-Methylphenol		< 330	330	ug/kg	
3 & 4-Methylphenol		< 330	330	ug/kg	
Naphthalene		< 330	330	ug/kg	
2-Nitroaniline		< 1,600	1600	ug/kg	
3-Nitroaniline		< 1,600	1600	ug/kg	
4-Nitroaniline		< 1,600	1600	ug/kg	
Nitrobenzene		< 260	260	ug/kg	
2-Nitrophenol		< 1,600	1600	ug/kg	
4-Nitrophenol		< 1,600	1600	ug/kg	
n-Nitrosodi-n-propylamine		< 90	90	ug/kg	
n-Nitrosodimethylamine		< 330	330	ug/kg	
n-Nitrosodiphenylamine		< 330	330	ug/kg	
Pentachlorophenol		< 330	330	ug/kg	
Phenanthrene		< 330	330	ug/kg	
Phenol		< 330	330	ug/kg	
Pyrene		< 330	330	ug/kg	
Pyridine		< 330	330	ug/kg	
1,2,4-Trichlorobenzene		< 330	330	ug/kg	

.

.

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Analytical Report

.

Client:	HUFF & HUFF INC.	v	L	Date C	ollected:	05/24/18
Project ID:	Torrence Ave			Time Collected: 9:52		9:52
Sample ID:	2-03 (0-1)			Date R	eceived:	05/24/18
Sample No:	18-2892-003			Date R	eported:	06/06/18
-	ported on a dry weight ba	isis.				
Analyte			Result	R.L.	Units	Flags
Semi-Volatile Analysis Date	-	Method: 8270C		Preparation Preparation D		
2,4,5-Trichlor	ophenol		< 330	330	ug/kg	
2,4,6-Trichlor	ophenol		< 330	330	ug/kg	
pH @ 25°C, I Analysis Date	1:2 :: 05/29/18 11:25	Method: 9045D	2004			
pH @ 25°C, 1	:2		8.29		Units	
Total Metals Analysis Date		Method: 6010C		Preparation Preparation I		
Antimony			< 1.0	1.0	mg/kg	
Arsenic			3.1	1.0	mg/kg	
Barium			95.3	0.5	mg/kg	
Beryllium			1.0	0.5	mg/kg	
Cadmium		- 0	< 0.5	0.5	mg/kg	
Calcium			3,560	50	mg/kg	
Chromium			25.5	0.5	mg/kg	
Cobalt			17.6	0.5	mg/kg	
Copper			19.5	0.5	mg/kg	
lron			25,900	5.0	mg/kg	
Lead			15.7	0.5	mg/kg	
Magnesium			4,770	50	mg/kg	
Manganese			304	0.5	mg/kg	
Nickel			30.5	0.5	mg/kg	
Potassium			1,360	50	mg/kg	
Selenium			< 1.0	1.0	mg/kg	
Silver			0.7	0.2	mg/kg	
Sodium			3,870	50	mg/kg	
Thallium			< 1.0	1.0	mg/kg	
Vanadium			34.7	1.0	mg/kg	
Zinc			52.2	1.0	mg/kg	
Total Mercu Analysis Date		Method: 74711	3			
Mercury			< 0.05	0.05	mg/kg	
TCLP Metal Analysis Date	ls Method 1311 e: 06/01/18	Method: 60100	C	Preparation Preparation		
Arsenic			< 0.010	0.010	mg/L	
Barium			< 1.0	1.0	mg/L	

.

First Environmental Laboratories, Inc.

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.	Date Collected:	05/24/18
Project ID:	Torrence Ave	Time Collected:	9:52
Sample ID:	2-03 (0-1)	Date Received:	05/24/18
Sample No:	18-2892-003	Date Reported:	06/06/18
Results are rep	orted on a dry weight basis.		

Analyte		Result	R.L.	Units	Flags
TCLP Metals Method 1311 Analysis Date: 06/01/18	Method: 6010C	Preparation Method 3010A Preparation Date: 05/30/18			
Beryllium		< 1.00	1.0	mg/L	
Cadmium		< 0.005	0.005	mg/L	
Chromium		< 0.005	0.005	mg/L	
Cobalt		< 0.1	0.1	mg/L	
Copper		< 0.1	0.1	mg/L	
Iron		0.2	0.1	mg/L	
Lead		< 0.005	0.005	mg/L	
Manganese		0.2	0.1	mg/L	
Nickel		< 0.1	0.1	mg/L	
Selenium		< 0.010	0.010	mg/L	
Silver		< 0.005	0.005	mg/L	
Zinc		< 0.1	0.1	mg/L	
TCLP Mercury Method 1311 Analysis Date: 05/31/18	Method: 7470A				
Mercury		< 0.0005	0.0005	mg/L	
TCLP Extraction Analysis Date: 05/30/18	Method: 1311				
TCLP Extraction		Complete	e		
SPLP Metals Method 1312 Analysis Date: 05/31/18	Method: 6010C		Preparation Preparation I		
Arsenic		< 0.010	0.010	mg/L	
Barium		< 1.0	1.0	mg/L	
Beryllium		< 0.004	0.004	mg/L	
Cadmium		< 0.005	0.005	mg/L	
Chromium		0.056	0.005	mg/L	
Cobalt		< 0.1	0.1	mg/L	
Copper		0.037	0.005	mg/L	
Iron		38.9	0.1	mg/L	
Lead		0.012	0.005	mg/L	
Manganese		0.1	0.1	mg/L	
Nickel		< 0.1	0.1	mg/L	
Selenium		< 0.010	0.010	mg/L	
Silver		< 0.005	0.005	mg/L	
Zinc		0.1	0.1	mg/L	

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & H	IUFF INC.			Date C	ollected: 0	5/24/18
Project ID:	Torrence A	Ave			Time Collected: 9:52		
Sample ID:	2-03 (0-1)				Date R	eceived: 0	5/24/18
Sample No:	18-2892-00	03			Date R	eported: 0	6/06/18
Results are rep	orted on a di	ry weight basis.					
Analyte			Resul	lt	R.L .	Units	Flags
SPLP Mercur Analysis Date:		312 Method: 7470A	0.01	0.1	0.0005		
Mercury			0.01	01	0.0005	mg/L	
SPLP Extrac Analysis Date:		Method: 1312					
SPLP Metals I	Extraction		Com	plete			
Sample QC Si	ummary:	Surrogate Recovery				%R Limi	ts
Method		Analyte	QC	C Result		Low Hi	gh
5035A/8260B		4-Bromofluorobenzene (Surr)	%R:	101.3		86 - 11	7
5035A/8260B		d8-Toluene (Surr)	%R:	101.2		90 - 11	0
5035A/8260B		Dibromofluoromethane (Surr)	%R:	104.3		77 - 12	20
8270C		2,4,6-Tribromophenol (Surr)	%R:	81.1		59 - 1 3	31
8270C		2-Fluorobiphenyl (Surr)	%R:	60.9		45 - 11	2
8270C		2-Fluorophenol (Surr)	%R:	49.4		41 - 84	t
8270C		d14-Terphenyl (Surr)	%R:	77.4		56 - 12	20
8270C		d5-Nitrobenzene (Surr)	%R:	62.9		35 - 10)5
8270C		Phenol-d5 (surr)	%R:	55.5		50 - 10	00

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC	× ·	-	Date Collected: Time Collected:		05/24/18	
Project ID:	Torrence Ave					10:42	
Sample ID:	2-16 (0-5)			Date R	leceived:	05/24/18	
Sample No:	18-2892-016			Date Reported:		06/06/18	
-	ported on a dry weight	basis.					
Analyte			Result	R.L.	Units	Flags	
Solids, Total	. 05/25/18 14:00	Method: 2540B					
Total Solids	: 05/25/18 14:00		78.46		%		
Volatile Orga	nic Compounds	Method: 5035A/82	260B				
Analysis Date							
Acetone			< 200	200	ug/kg		
Benzene			< 5.0	5.0	ug/kg		
Bromodichlor	omethane		< 5.0	5.0	ug/kg		
Bromoform			< 5.0	5.0	ug/kg		
Bromomethan	e		< 10.0	10.0	ug/kg		
2-Butanone (N	MEK)		< 100	100	ug/kg		
Carbon disulfi	ide		< 5.0	5.0	ug/kg		
Carbon tetracl	hloride		< 5.0	5.0	ug/kg		
Chlorobenzen	e		< 5.0	5.0	ug/kg		
Chlorodibrom	omethane		< 5.0	5.0	ug/kg		
Chloroethane			< 10.0	10.0	ug/kg		
Chloroform			< 5.0	5.0	ug/kg		
Chloromethan	e		< 10.0	10.0	ug/kg		
1,1-Dichloroe	thane		< 5.0	5.0	ug/kg		
1,2-Dichloroe	thane		< 5.0	5.0	ug/kg		
1,1-Dichloroe	thene		< 5.0	5.0	ug/kg		
cis-1,2-Dichlo	oroethene		< 5.0	5.0	ug/kg		
trans-1,2-Dich	nloroethene		< 5.0	5.0	ug/kg		
1,2-Dichlorop	ropane		< 5.0	5.0	ug/kg		
cis-1,3-Dichlo	propropene		< 4.0	4.0	ug/kg		
trans-1,3-Dich	nloropropene		< 4.0	4.0	ug/kg		
Ethylbenzene			< 5.0	5.0	ug/kg		
2-Hexanone			< 10.0	10.0	ug/kg		
Methyl-tert-b	utylether (MTBE)		< 5.0	5.0	ug/kg		
4-Methyl-2-pe	entanone (MIBK)		< 10.0	10.0	ug/kg		
Methylene ch			< 20.0	20.0	ug/kg		
Styrene			< 5.0	5.0	ug/kg		
1,1,2,2-Tetrac	chloroethane		< 5.0	5.0	ug/kg		
Tetrachloroet			< 5.0	5.0	ug/kg		
Toluene			< 5.0	5.0	ug/kg		
1,1,1-Trichlor	roethane		< 5.0	5.0	ug/kg		
1,1,2-Trichlor			< 5.0	5.0	ug/kg		
Trichloroethe			< 5.0	5.0	ug/kg		
					*C		

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.				collected:	05/24/18 10:42
Project ID:	Torrence Ave				Time Collected:	
Sample ID:	2-16 (0-5)			Date R	leceived:	05/24/18
Sample No:	18-2892-016			Date R	leported:	06/06/18
Results are rep	orted on a dry weight l	oasis.				
Analyte			Result	R.L.	Units	Flags
Volatile Orga Analysis Date:	nic Compounds : 05/31/18	Method: 5035A/82	260B			
Vinyl acetate			< 10.0	10.0	ug/kg	
Vinyl chloride	•		< 10.0	10.0	ug/kg	
Xylene, Total			< 5.0	5.0	ug/kg	
Semi-Volatile Analysis Date		Method: 8270C		Preparation Preparation I	Method 3 Date: 05/24/	540C /18
Acenaphthene			< 330	330	ug/kg	
Acenaphthyle			< 330	330	ug/kg	
Anthracene			< 330	330	ug/kg	
Benzidine			< 330	330	ug/kg	
Benzo(a)anthr	racene		< 330	330	ug/kg	
Benzo(a)pyrer	ne		< 90	90	ug/kg	
Benzo(b)fluor	anthene		< 330	330	ug/kg	
Benzo(k)fluor	anthene		< 330	330	ug/kg	
Benzo(ghi)per	ylene		< 330	330	ug/kg	
Benzoic acid			< 330	330	ug/kg	
Benzyl alcoho			< 330	330	ug/kg	
bis(2-Chloroe	thoxy)methane		< 330	330	ug/kg	
bis(2-Chloroe	thyl)ether		< 330	330	ug/kg	
bis(2-Chlorois			< 330	330	ug/kg	
bis(2-Ethylhez	xyl)phthalate		< 330	330	ug/kg	
	yl phenyl ether		< 330	330	ug/kg	
Butyl benzyl p	ohthalate		< 330	330	ug/kg	
Carbazole			< 330	330	ug/kg	
4-Chloroanilin			< 330	330	ug/kg	
4-Chloro-3-m			< 330	330	ug/kg	
2-Chloronaph			< 330	330	ug/kg	
2-Chlorophen			< 330	330	ug/kg	
•	yl phenyl ether		< 330	330 330	ug/kg	
Chrysene	4		< 330 < 90	90	ug/kg	
Dibenzo(a,h)a			< 90 < 330	330	ug/kg ug/kg	
Dibenzofuran			< 330	330	ug/kg ug/kg	
1,2-Dichlorob			< 330 < 330	330	ug/kg ug/kg	
1,3-Dichlorob			< 330	330	ug/kg ug/kg	
1,4-Dichlorob			< 660	660	ug/kg	
3,3'-Dichlorob 2,4-Dichlorop			< 330	330	ug/kg	
2,4-Diemotop			- 550	220		

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.	Date Collected:	05/24/18
Project ID:	Torrence Ave	Time Collected:	10:42
Sample ID:	2-16 (0-5)	Date Received:	05/24/18
Sample No:	18-2892-016	Date Reported:	06/06/18
Results are rep	orted on a dry weight basis.		

Analyte		Result	R.L.	Units	Flags	
Semi-Volatile Compounds Analysis Date: 05/29/18	Method: 8270C	Preparation Method 3540C Preparation Date: 05/24/18				
Diethyl phthalate		< 330	330	ug/kg		
2,4-Dimethylphenol		< 330	330	ug/kg		
Dimethyl phthalate		< 330	330	ug/kg		
Di-n-butyl phthalate		< 330	330	ug/kg		
4,6-Dinitro-2-methylphenol		< 1,600	1600	ug/kg		
2,4-Dinitrophenol		< 1,600	1600	ug/kg		
2,4-Dinitrotoluene		< 250	250	ug/kg		
2,6-Dinitrotoluene		< 260	260	ug/kg		
Di-n-octylphthalate		< 330	330	ug/kg		
Fluoranthene		< 330	330	ug/kg		
Fluorene		< 330	330	ug/kg		
Hexachlorobenzene		< 330	330	ug/kg		
Hexachlorobutadiene		< 330	330	ug/kg		
Hexachlorocyclopentadiene		< 330	330	ug/kg		
Hexachloroethane		< 330	330	ug/kg		
Indeno(1,2,3-cd)pyrene		< 330	330	ug/kg		
lsophorone		< 330	330	ug/kg		
2-Methylnaplıthalene		< 330	330	ug/kg		
2-Methylphenol		< 330	330	ug/kg		
3 & 4-Methylphenol		< 330	330	ug/kg		
Naphthalene		< 330	330	ug/kg		
2-Nitroaniline		< 1,600	1600	ug/kg		
3-Nitroaniline		< 1,600	1600	ug/kg		
4-Nitroaniline		< 1,600	1600	ug/kg		
Nitrobenzene		< 260	260	ug/kg		
2-Nitrophenol		< 1,600	1600	ug/kg		
4-Nitrophenol		< 1,600	1600	ug/kg		
n-Nitrosodi-n-propylamine		< 90	90	ug/kg		
n-Nitrosodimethylamine		< 330	330	ug/kg		
n-Nitrosodiphenylamine		< 330	330	ug/kg		
Pentachlorophenol		< 330	330	ug/kg		
Phenanthrene		< 330	330	ug/kg		
Phenol		< 330	330	ug/kg		
Pyrene		< 330	330	ug/kg		
Pyridine		< 330	330	ug/kg		
1,2,4-Trichlorobenzene		< 330	330	ug/kg		

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

		1 11141 9 11					
Client:	HUFF & HUFF INC.				Date C	Collected:	05/24/18
Project ID:	Torrence Ave				Time	Collected:	10:42
Sample ID:	2-16 (0-5)				Date F	Received:	05/24/18
Sample No:	18-2892-016				Date F	Reported:	06/06/18
Results are rep	ported on a dry weight ba	asis.					
Analyte				Result	R.L.	Units	Flags
Semi-Volatile Analysis Date		Method: 827	0C		Preparation Preparation I		
2,4,5-Trichlor	ophenol			< 330	330	ug/kg	
2,4,6-Trichlor	ophenol		-	< 330	330	ug/kg	
pH @ 25°C, 1 Analysis Date	l :2 : 05/29/18 11:25	Method: 904	5D 2004	ļ			
pH @ 25°C, 1	:2			8.35		Units	
Total Metals Analysis Date	: 05/31/18	Method: 601	0C		Preparation Preparation I		
Antimony			•	< 1.0	1.0	mg/kg	
Arsenic			•	< 1.0	1.0	mg/kg	
Barium				29.6	0.5	mg/kg	
Beryllium				< 0.5	0.5	mg/kg	
Cadmium			-	< 0.5	0.5	mg/kg	
Calcium				53,300	50	mg/kg	
Chromium				18.7	0.5	mg/kg	
Cobalt				6.9	0.5	mg/kg	
Copper				11.4	0.5	mg/kg	
Iron				13,400	5.0	mg/kg	
Lead				8.4	0.5	mg/kg	
Magnesium				26,200	50	mg/kg	
Manganese				261	0.5	mg/kg	
Nickel				23.7	0.5	mg/kg	
Potassium				2,330	50	mg/kg	
Selenium				< 1.0	1.0	mg/kg	
Silver				0.4	0.2	mg/kg	
Sodium				769	50	mg/kg	
Thallium				< 1.0	1.0	mg/kg	
Vanadium				16.4	1.0	mg/kg	
Zinc				46.4	1.0	mg/kg	
Total Mercur Analysis Date		Method: 747				1	
Mercury				< 0.05	0.05	mg/kg	
TCLP Metals Analysis Date	s Method 1311 :: 06/01/18	Method: 601	0C		Preparation Preparation I		
Arsenic				< 0.010	0.010	mg/L	
Barium				< 1.0	1.0	mg/L	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.	Date Collected:	05/24/18
Project ID:	Torrence Ave	Time Collected:	10:42
Sample ID:	2-16 (0-5)	Date Received:	05/24/18
Sample No:	18-2892-016	Date Reported:	06/06/18
Results are rep	orted on a dry weight basis.		

Analyte		Result	R.L.	Units	Flags
TCLP Metals Method 1311 Analysis Date: 06/01/18	Method: 6010C		Preparation Preparation D		
Beryllium		< 1.00	1.0	mg/L	
Cadmium		< 0.005	0.005	mg/L	
Chromium		< 0.005	0.005	mg/L	
Cobalt		< 0.1	0.1	mg/L	
Copper		< 0.1	0.1	mg/L	
lron		< 0.1	0.1	mg/L	
Lead		< 0.005	0.005	mg/L	
Manganese		1.3	0.1	mg/L	
Nickel		< 0.1	0.1	mg/L	
Selenium		< 0.010	0.010	mg/L	
Silver		< 0.005	0.005	mg/L	
Zinc		< 0.1	0.1	mg/L	
TCLP Mercury Method 1311 Analysis Date: 05/31/18	Method: 7470A				
Mercury		< 0.0005	0.0005	mg/L	
TCLP Extraction Analysis Date: 05/30/18	Method: 1311				
TCLP Extraction		Complete			
SPLP Metals Method 1312 Analysis Date: 06/01/18	Method: 6010C		Preparation Preparation D		
Arsenic		< 0.010	0.010	mg/L	
Barium		< 1.0	1.0	mg/L	
Beryllium		< 0.004	0.004	mg/L	
Cadmium		< 0.005	0.005	mg/L	
Chromium		0.019	0.005	mg/L	
Cobalt		< 0.1	0.1	mg/L	
Copper		0.013	0.005	mg/L	
lron		14.2	0.1	mg/L	
Lead		< 0.005	0.005	mg/L	
Manganese		0.1	0.1	mg/L	
Nickel		< 0.1	0.1	mg/L	
Selenium		< 0.010	0.010	mg/L	
Silver		< 0.005	0.005	mg/L	
Zinc		< 0.1	0.1	mg/L	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client: I	HUFF & HUFF INC.			Date C	ollected: 0	5/24/18		
Project ID:	Torrence Ave				Time Collected: 10:42			
Sample ID: 2	2-16 (0-5)			Date R	eceived: 0	5/24/18		
Sample No:	18-2892-016	Date Reported: 06/06/			6/06/18			
Results are repor	ted on a dry weight basis.							
Analyte		Resul	t	R.L.	Units	Flags		
SPLP Mercury Analysis Date: (A						
Mercury		< 0.000	5	0.0005	mg/L			
SPLP Extraction Analysis Date: (
SPLP Metals Ex	traction	Com	plete					
Sample QC Sum	Sample QC Summary: Surrogate Recovery				%R Limi	ts		
Method	Analyte	QC	Result	t Low High		gh		
5035A/8260B	4-Bromofluorobenzene (Sur	r) %R:	98.7		86 - 11	7		
5035A/8260B	d8-Toluene (Surr)	%R:	<i>99</i> .8		90 - 11	0		
5035A/8260B	Dibromofluoromethane (Sur	rr) %R:	101.4	4 77 - 120		0		
8270C	2,4,6-Tribromophenol (Surr) %R:	94.4		59 - 13	1		
8270C	2-Fluorobiphenyl (Surr)	%R:	80		45 - 11	2		
8270C	2-Fluorophenol (Surr)	%R:	66.6		41 - 84	1		
8270C	d14-Terphenyl (Surr)	%R:	<i>83.2</i>		56 - 12	0		
8270C	d5-Nitrobenzene (Surr)	%R:	80.3	35 - 105		5		
8270C	Phenol-d5 (surr)	%R:	70.2		50 - 10	0		

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client: H	IUFF & HUFF INC		-	Date C	Collected:	05/24/18	
Project ID: 7	Corrence Ave			Time Collected:		11:03	
-	2-23 (0-5)			Date F	Received:	05/24/18	
-	8-2892-023			Date F	Reported:	06/06/18	
	ted on a dry weight	basis.					
Analyte			Result	R.L.	Units	Flags	
Solids, Total		Method: 254	0B				
Analysis Date: 0	05/25/18 14:00						
Total Solids			83.16		%		
Volatile Organic Analysis Date: (Method: 503	5A/8260B				
Acetone			< 200	200	ug/kg		
Benzene			< 5.0	5.0	ug/kg		
Bromodichlorom	ethane		< 5.0	5.0	ug/kg		
Bromoform			< 5.0	5.0	ug/kg		
Bromomethane			< 10.0	10.0	ug/kg		
2-Butanone (ME	K)		< 100	100	ug/kg		
Carbon disulfide			< 5.0	5.0	ug/kg		
Carbon tetrachlor	ride		< 5.0	5.0	ug/kg		
Chlorobenzene			< 5.0	5.0	ug/kg		
Chlorodibromom	ethane		< 5.0	5.0	ug/kg		
Chloroethane			< 10.0	10.0	ug/kg		
Chloroform			< 5.0	5.0	ug/kg		
Chloromethane			< 10.0	10.0	ug/kg		
1,1-Dichloroetha	ne		< 5.0	5.0	ug/kg		
1,2-Diclıloroetha	ne		< 5.0	5.0	ug/kg		
1,1-Dichloroethe	ne		< 5.0	5.0	ug/kg		
cis-1,2-Dichloroe	ethene	<i>i</i> .	< 5.0	5.0	ug/kg		
trans-1,2-Dichloi	oethene		< 5.0	5.0	ug/kg		
1,2-Dichloroprop	ane		< 5.0	5.0	ug/kg		
cis-1,3-Dichlorop	propene		< 4.0	4.0	ug/kg		
trans-1,3-Dichlor	opropene		< 4.0	4.0	ug/kg		
Ethylbenzene			< 5.0	5.0	ug/kg		
2-Hexanone			< 10.0	10.0	ug/kg		
Methyl-tert-buty	ether (MTBE)		< 5.0	5.0	ug/kg		
4-Methyl-2-penta	anone (MIBK)		< 10.0	10.0	ug/kg		
Methylene chlori	de		< 20.0	20.0	ug/kg		
Styrene		· *	< 5.0	5.0	ug/kg		
1,1,2,2-Tetrachlo			< 5.0	5.0	ug/kg		
Tetrachloroethen	e		< 5.0	5.0	ug/kg		
Toluene			< 5.0	5.0	ug/kg		
1,1,1-Trichloroet			< 5.0	5.0	ug/kg		
1,1,2-Trichloroet	hane		< 5.0	5.0	ug/kg		
Trichloroethene			< 5.0	5.0	ug/kg		

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.	Ŭ	-	Date C	ollected:	05/24/18
Project ID:	Torrence Ave			Time C	Collected:	11:03
Sample ID:	2-23 (0-5)			Date R	eceived:	05/24/18
Sample No:	18-2892-023			Date R	eported:	06/06/18
-	orted on a dry weight l	pasis.			•	
Analyte			Result	R.L.	Units	Flags
Volatile Orga	uic Compounds	Method: 5035A/82	260B			
Analysis Date	: 06/01/18					
Vinyl acetate			< 10.0	10.0	ug/kg	
Vinyl chloride	;		< 10.0	10.0	ug/kg	
Xylene, Total			< 5.0	5.0	ug/kg	
Semi-Volatile Analysis Date		Method: 8270C		Preparation Preparation D		
Acenaphthene			< 330	330	ug/kg	
Acenaphthyle			< 330	330	ug/kg	
Anthracene			< 330	330	ug/kg	
Benzidine			< 330	330	ug/kg	
Benzo(a)anthr	acene		< 330	330	ug/kg	
Benzo(a)pyrei			< 90	90	ug/kg	
Benzo(b)fluor			< 330	330	ug/kg	
Benzo(k)fluor			< 330	330	ug/kg	
Benzo(ghi)per			< 330	330	ug/kg	
Benzoic acid			< 330	330	ug/kg	
Benzyl alcoho	bl		< 330	330	ug/kg	
-	thoxy)methane		< 330	330	ug/kg	
bis(2-Chloroe	thyl)ether		< 330	330	ug/kg	
bis(2-Chlorois	sopropyl)ether		< 330	330	ug/kg	
bis(2-Ethylhe:	xyl)phthalate		< 330	330	ug/kg	
4-Bromophen	yl phenyl ether		< 330	330	ug/kg	
Butyl benzyl	plithalate		< 330	330	ug/kg	
Carbazole			< 330	330	ug/kg	
4-Chloroanili	ne		< 330	330	ug/kg	
4-Chloro-3-m	• •		< 330	330	ug/kg	
2-Chloronaph			< 330	330	ug/kg	
2-Chlorophen			< 330	330	ug/kg	
	yl phenyl ether		< 330	330	ug/kg	
Chrysene			< 330	330	ug/kg	
Dibenzo(a,h)a			< 90 < 330	90 330	ug/kg	
Dibenzofuran			< 330 < 330	330	ug/kg	
1,2-Dichlorob				330	ug/kg	
1,3-Dichlorob			< 330	330	ug/kg	
1,4-Dichlorob			< 330 < 660	530 660	ug/kg ug/kg	
3,3'-Dichloro			< 330	330	ug/kg	
2,4-Dichlorop	DUGIOI		< 110	550	ug/ng	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.	Date Collected:	05/24/18
Project ID:	Torrence Ave	Time Collected:	11:03
Sample ID:	2-23 (0-5)	Date Received:	05/24/18
Sample No:	18-2892-023	Date Reported:	06/06/18
Results are rep	orted on a dry weight basis.		

Analyte	4	Result	R.L.	Units	Flags	
Semi-Volatile Compounds Analysis Date: 05/30/18	Method: 8270C	Preparation Method 3540C Preparation Date: 05/29/18				
Diethyl phthalate		< 330	330	ug/kg		
2,4-Dimethylphenol		< 330	330	ug/kg		
Dimethyl phthalate		< 330	330	ug/kg		
Di-n-butyl phthalate		< 330	330	ug/kg		
4,6-Dinitro-2-methylphenol		< 1,600	1600	ug/kg		
2,4-Dinitrophenol		< 1,600	1600	ug/kg		
2,4-Dinitrotoluene		< 250	250	ug/kg		
2,6-Dinitrotoluene		< 260	260	ug/kg		
Di-n-octylphthalate		< 330	330	ug/kg		
Fluoranthene		< 330	330	ug/kg		
Fluorene		< 330	330	ug/kg		
Hexachlorobenzene		< 330	330	ug/kg		
Hexachlorobutadiene		< 330	330	ug/kg		
Hexachlorocyclopentadiene		< 330	330	ug/kg		
Hexachloroethane		< 330	330	ug/kg		
Indeno(1,2,3-cd)pyrene		< 330	330	ug/kg		
Isophorone		< 330	330	ug/kg		
2-Methylnaphthalene		< 330	330	ug/kg		
2-Methylphenol		< 330	330	ug/kg		
3 & 4-Methylphenol		< 330	330	ug/kg		
Naphthalene		< 330	330	ug/kg		
2-Nitroaniline		< 1,600	1600	ug/kg		
3-Nitroaniline		< 1,600	1600	ug/kg		
4-Nitroaniline		< 1,600	1600	ug/kg		
Nitrobenzene		< 260	260	ug/kg		
2-Nitrophenol		< 1,600	1600	ug/kg		
4-Nitrophenol		< 1,600	1600	ug/kg		
n-Nitrosodi-n-propylamine		< 90	90	ug/kg		
n-Nitrosodimethylamine		< 330	330	ug/kg		
n-Nitrosodiphenylamine		< 330	330	ug/kg		
Pentachlorophenol		< 330	330	ug/kg		
Phenanthrene		< 330	330	ug/kg		
Phenol		< 330	330	ug/kg		
Pyrene		< 330	330	ug/kg		
Pyridine		< 330	330	ug/kg		
1,2,4-Trichlorobenzene		< 330	330	ug/kg		

ľ

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client: H	UFF & HUFF INC.	J			Date (Collected:	05/24/18
						Collected:	11:03
0	orrence Ave					Received:	05/24/18
*	23 (0-5)					Reported:	06/06/18
	3-2892-023	•			Date r	ceporteu:	00/00/10
	ed on a dry weight ba	asis.		Result	R.L.	Units	Flags
Analyte				Result			
Semi-Volatile Co Analysis Date: 05		Method: 8			Preparation Preparation I		
2,4,5-Trichloroph	enol			< 330	330	ug/kg	
2,4,6-Trichloroph	enol		•	< 330	330	ug/kg	
pH @ 25°C, 1:2 Analysis Date: 03	5/29/18 11:25	Method: 9	045D 2004				
pH @ 25°C, 1:2				8.52		Units	
Total Metals Analysis Date: 03	5/30/18	Method: 6	010C		Preparation Preparation I		
Antimony				< 1.0	1.0	mg/kg	
Arsenic				3.8	1.0	mg/kg	
Barium				50.4	0.5	mg/kg	
Beryllium				0.6	0.5	mg/kg	
Cadmium				< 0.5	0.5	mg/kg	
Calcium				21,700	50	mg/kg	
Chromium				17.5	0.5	mg/kg	
Cobalt				7.8	0.5	mg/kg	
Copper				14.8	0.5	mg/kg	
Iron				20,300	5.0	mg/kg	
Lead				9.0	0.5	mg/kg	
Magnesium				10,800	50	mg/kg	
Manganese				155	0.5	mg/kg	
Nickel				23.7	0.5	mg/kg	
Potassium				2,790	50	mg/kg	
Selenium				< 1.0	1.0	mg/kg	
Silver				< 0.2	0.2	mg/kg	
Sodium				965	50	mg/kg	
Thallium				< 1.0	1.0	mg/kg	
Vanadium				23.1	1.0	mg/kg	
Zinc				35.4	1.0	mg/kg	
Total Mercury Analysis Date: 0	5/29/18	Method: 7					
Mercury				< 0.05	0.05	mg/kg	
TCLP Metals Method 1311 Analysis Date: 06/01/18		Method: 6	6010C		Preparation Preparation		
Arsenic				< 0.010	0.010	mg/L	
Barium				< 1.0	1.0	mg/L	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.	Date Collected:	05/24/18
Project ID:	Torrence Ave	Time Collected:	11:03
Sample ID:	2-23 (0-5)	Date Received:	05/24/18
Sample No:	18-2892-023	Date Reported:	06/06/18
Results are rep	orted on a dry weight basis.		

Analyte		Result	R.L.	Units	Flags
TCLP Metals Method 1311 Analysis Date: 06/01/18	Method: 6010C		Preparation Preparation D		
Beryllium		< 1.00	1.0	mg/L	
Cadmium		< 0.005	0.005	mg/L	
Chromium		< 0.005	0.005	mg/L	
Cobalt		< 0.1	0.1	mg/L	
Copper		< 0.1	0.1	mg/L	
Iron		< 0.1	0.1	mg/L	
Lead		< 0.005	0.005	mg/L	
Manganese		1.4	0.1	mg/L	
Nickel		< 0.1	0.1	mg/L	
Selenium		< 0.010	0.010	mg/L	
Silver		< 0.005	0.005	mg/L	
Zinc		< 0.1	0.1	mg/L	
TCLP Mercury Method 1311 Analysis Date: 06/01/18	Method: 7470A				
Mercury		< 0.0005	0.0005	mg/L	
TCLP Extraction Analysis Date: 05/30/18	Method: 1311				
TCLP Extraction		Complete			
SPLP Metals Method 1312 Analysis Date: 06/01/18	Method: 6010C		Preparation Preparation D	Method 301 Date: 05/31/18	0A
Arsenic		< 0.010	0.010	mg/L	
Barium		< 1.0	1.0	mg/L	
Beryllium		< 0.004	0.004	mg/L	
Cadmium		< 0.005	0.005	mg/L	
Chromium		0.023	0.005	mg/L	
Cobalt		< 0.1	0.1	mg/L	
Copper		0.015	0.005	mg/L	
Iron	¥	21.9	0.1	mg/L	
Lead		0.008	0.005	mg/L	
Manganese		0.1	0.1	mg/L	
Nickel		< 0.1	0.1	mg/L	
Selenium		< 0.010	0.010	mg/L	
Silver		< 0.005	0.005	mg/L	
Zinc		< 0.1	0.1	mg/L	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF	INC.			Date C	ollected:	05/24/18
Project ID:	Torrence Ave				Time C	collected:	11:03
Sample ID:	2-23 (0-5)				Date R	eceived:	05/24/18
Sample No:	18-2892-023				Date R	eported:	06/06/18
Results are rep	orted on a dry we	eight basis.					
Analyte			Resu	lt	R.L.	Units	Flags
SPLP Mercui Analysis Date:	ry Method 1312 05/31/18	Method: 7470A					
Mercury			< 0.00	05	0.0005	mg/L	
SPLP Extrac Analysis Date:		Method: 1312					
SPLP Metals I	Extraction		Com	plete			
Sample QC Si	ummary: Su	rogate Recovery				%R Li	mits
Method	And	alyte	QC Result		Low		
5035A/8260B	4-1	Bromofluorobenzene (Surr)	%R:	99.5		86 -	117
5035A/8260B	d8-	Toluene (Surr)	%R:	100.8		90 -	110
			%R:	102.1		77 -	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC	•		Date C	Collected:	05/24/18
Project ID:	Torrence Ave			Time (Collected:	11:25
Sample ID:	2-24 (0-5)			Date R	leceived:	05/24/18
Sample No:	18-2892-024			Date R	Reported:	06/06/18
-	ported on a dry weight	basis.			-	
Analyte			Result	R.L.	Units	Flags
Solids, Total		Method: 2540B				
Analysis Date	: 05/25/18 14:00					
Total Solids			77.6		%	
Volatile Orga Analysis Date	anic Compounds : 06/01/18	Method: 5035A/82	260B			
Acetone			< 200	200	ug/kg	
Benzene			< 5.0	5.0	ug/kg	
Bromodichlor	omethane		< 5.0	5.0	ug/kg	
Bromoform			< 5.0	5.0	ug/kg	
Bromomethan	ie		< 10.0	10.0	ug/kg	
2-Butanone (N	MEK)		< 100	100	ug/kg	
Carbon disulf	ide		< 5.0	5.0	ug/kg	
Carbon tetracl	hloride		< 5.0	5.0	ug/kg	
Chlorobenzen	e		< 5.0	5.0	ug/kg	
Chlorodibrom	omethane		< 5.0	5.0	ug/kg	
Chloroethane			< 10.0	10.0	ug/kg	
Chloroform			< 5.0	5.0	ug/kg	
Chloromethar	ne		< 10.0	10.0	ug/kg	
1,1-Dichloroe	thane		< 5.0	5.0	ug/kg	
1,2-Dichloroe	thane		< 5.0	5.0	ug/kg	
1,1-Dichloroe	othene		< 5.0	5.0	ug/kg	
cis-1,2-Dichle	proethene		< 5.0	5.0	ug/kg	
trans-1,2-Dicl	nloroethene		< 5.0	5.0	ug/kg	
1,2-Dichlorop	propane		< 5.0	5.0	ug/kg	
cis-1,3-Dichle	propropene		< 4.0	4.0	ug/kg	
trans-1,3-Dicl	nloropropene		< 4.0	4.0	ug/kg	
Ethylbenzene			< 5.0	5.0	ug/kg	
2-Hexanone			< 10.0	10.0	ug/kg	
	utylether (MTBE)		< 5.0	5.0	ug/kg	
	entanone (MIBK)		< 10.0	10.0	ug/kg	
Methylene ch	loride		< 20.0	20.0	ug/kg	
Styrene			< 5.0	5.0	ug/kg	
1,1,2,2-Tetrac			< 5.0	5.0	ug/kg	
Tetrachloroet	hene		< 5.0	5.0	ug/kg	
Toluene			< 5.0	5.0	ug/kg	
1,1,1-Trichlor			< 5.0	5.0	ug/kg	
1,1,2-Trichlor			< 5.0	5.0	ug/kg	
Trichloroethe	ne		< 5.0	5.0	ug/kg	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Project ID: Sample ID: 2:24 (0-5)Time Collected: Date Received: 05/24/18 Date Reported: 06/06/18Results are reported on a dry weight basis.Date Reported: O6/06/18AnalyteResult of ResultResultAnalyte:ResultR.L.UnitsFlagsVolatile Organic Compounds Analysis Date: 06/01/18Method: 5035A/8260BVinyl acetate< 10.0	Client:	HUFF & HUFF INC	۳ ۲.	•	Date C	Collected:	05/24/18
Sample ID: 2-24 (0-5) Date Received: 05/24/18 Sample No: 18-2892-024 Date Reported: 06/06/13 Results are reported on a dry weight basis. Result RL. Units Flags Analyte Result RL. Units Flags Vinyl acetate 10.0 0.0.0 ug/kg Vinyl chloride 10.0 10.0 ug/kg Xylene, Total 5.0 5.0 ug/kg Semi-Volatile Compounds Method: 8270C Preparation Method 3540C Preparation Date: 05/29/18 Accenaphthene 330 330 ug/kg Benzidine 330 330 ug/kg Benzo(a)pryrene 90 90 ug/kg Benzo(b)fluoranthene 330 330 ug/kg Benzo(ch)fluoranthene 330 330 ug/kg Benzo(ch)fluoranthene 330 330 ug/kg Benzo(ch)fluoranthene	Project ID:	Torrence Ave			Time (Collected:	11:25
Date Reported: 06/06/18 Results are reported on a dry weight basis. Analyte Result Result Result Units Flags Volatile Organic Compounds Analysis Date: 06/01/18 Method: 5035A/8260B 10.0 10.0 ug/kg Vinyl acetate < 10.0		2-24 (0-5)			Date R	leceived:	05/24/18
Results are reported on a dry weight basis. Result R.L. Units Flags Analysic Result R.L. Units Flags Volatile Organic Compounds Analysis Date: 06/01/18 Method: 5035A/8260B Vinyl acetate < 10.0 10.0 ug/kg Vinyl acetate < 10.0 10.0 ug/kg Semi-Volatile Compounds Acenaphthere < 330 330 ug/kg Acenaphthylene < 330 330 ug/kg Acenaphthylene < 330 330 ug/kg Anthracene < 330 330 ug/kg Benzo(a)anthracene < 330 330 ug/kg Benzo(b)fluoranthene < 330 330 ug/kg Benzo(b)fluoranthene < 330 330 ug/kg Benzo(c)fluoranthene < 330 330 ug/kg Benzo(b)fluoranthene	-				Date R	Reported:	06/06/18
Analyte Result R.L. Units Flags Volatile Organic Compounds Analysis Date: 06/01/18 Method: 5035A/8260B Vinyl actuate < 10.0 10.0 ug/kg Vinyl actuate < 10.0 10.0 ug/kg Semi-Volatile Compounds Analysis Date: 05/30/18 Method: 8270C Preparation Method 3540C Preparation Date: 05/29/18 Acenaphthylene < 330 330 ug/kg Acenaphthylene < 330 330 ug/kg Benzidine < 330 330 ug/kg Benzidine < 330 330 ug/kg Benzo(a)anthracene < 330 330 ug/kg Benzo(a)(h)uoranthene < 330 330 ug/kg Benzo(b)fluoranthene < 330 330 ug/kg Benzo(b)fluoranthene < 330 330 ug/kg B	-		basis.				
Analysis Date: 06/01/18 Vinyl acetate < 10.0 10.0 ug/kg Vinyl chloride < 5.0 5.0 ug/kg Semi-Volatile Compounds Method: 8270C Preparation Date: 05/29/18 Acenaphthene < 330 330 ug/kg Acenaphthylene < 330 330 ug/kg Acenaphthylene < 330 330 ug/kg Benzolapyrene < 90 90 ug/kg Benzolapyrene < 90 90 ug/kg Benzol(b)fluoranthene < 330 330 ug/kg		Solled on a dry weight		Result	R.L.	Units	Flags
Ninyl chloride Xylene, Total < 10.0 10.0 ug/kg Semi-Volatile Compounds Analysis Date: 05/30/18 Method: 8270C Preparation Method 3540C Preparation Method 3540C Acenaphthene < 330			Method: 5035A/82	260B			
Vinyl chloride Xylene, Total< 10.0 ug/kg ds/kg Semi-Volatile Compounds Analysis Date: 05/30/18Method: 8270CPreparation Method 3540C Preparation Date: 05/29/18Acenaphthene< 330	Vinyl acetate			< 10.0	10.0	ug/kg	
Xylene, Total < 5.0 5.0 ug/kg Semi-Volatile Compounds Analysis Date: 05/30/18 Method: 8270C Preparation Date: 05/20/18 Acenaphthene < 330	•	•		< 10.0	10.0	ug/kg	
Analysis Date: $05/30/18$ Preparation Date: $05/29/18$ Acenaphthene 330 ug/kg Acenaphthylene 330 ug/kg Anthracene 330 ug/kg Benzidine 330 ug/kg Benzo(a)anthracene 330 ug/kg Benzo(a)pyrene 90 90 ug/kg Benzo(b)fluoranthene 330 330 ug/kg Benzo(ghi)perylene 330 330 ug/kg Benzo(ghi)perylene 330 330 ug/kg Benzo(ghi)perylene 330 330 ug/kg Benzo(ghi)perylene 330 330 ug/kg Benzo(cholo 330 330 ug/kg bis(2-Chloroethy)ymethane 330 330 ug/kg bis(2-Chloroethy)pether 330 330 ug/kg bis(2-Chloroethyl)phthalate 330 330 ug/kg <t< td=""><td>•</td><td></td><td></td><td>< 5.0</td><td>5.0</td><td>ug/kg</td><td></td></t<>	•			< 5.0	5.0	ug/kg	
Acenaphthylene< 330 330 ug/kg Anthracene< 330			Method: 8270C				
Acenaphthylene< 330 330 ug/kg Anthracene< 330 330 ug/kg Benzidine< 330 330 ug/kg Benzo(a)anthracene< 90 90 ug/kg Benzo(a)pyrene< 90 90 ug/kg Benzo(b)fluoranthene< 330 330 ug/kg Benzo(k)fluoranthene< 330 330 ug/kg Benzo(ghi)perylene< 330 330 ug/kg Benzo(ghi)perylene< 330 330 ug/kg Benzo(aid< 330 330 ug/kg Benzo(chorethoxy)methane< 330 330 ug/kg bis(2-Chloroethoxy)methane< 330 330 ug/kg bis(2-Chloroethoxy)methane< 330 ug/kg bis(2-Chloroethoxy)methane< 330 330 ug/kg bis(2-Chloroethoxy)methane< 330 330 ug/kg bis(2-Chloroethyl)ether< 330 330 ug/kg bis(2-Chloroethyl)ether< 330 330 ug/kg bis(2-Chlorostopropyl)ether< 330 330 ug/kg Carbazole< 330 330 ug/kg Chloroaniline< 330 330 ug/kg 2-Chloroanpthalene< 330 330 ug/kg 2-Chlorophenol< 330 330 ug/kg 2-Chlorophenol< 330 330 ug/kg 2-Chlorophenol< 330 330 ug/kg 2-Chlorophenol< 330 330 ug/kg	Acenaphthene	;		< 330	330	ug/kg	
Anthracene< 330330 ug/kg Benzidine< 330				< 330	330	ug/kg	
Benzo(a)anthracene< 330 330 ug/kg Benzo(a)pyrene< 90				< 330	330	ug/kg	
Denset < 90 90 ug/kg Benzo(a)pyrene < 330 330 ug/kg Benzo(k)fluoranthene < 330 330 ug/kg Benzo(ghi)perylene < 330 330 ug/kg Benzoic acid < 330 330 ug/kg bis(2-Chloroethoxy)methane < 330 330 ug/kg bis(2-Chloroethyl)ether < 330 330 ug/kg bis(2-Chloroisopropyl)ether < 330 330 ug/kg bis(2-Chloroisopropyl)ether < 330 330 ug/kg 4-Bromophenyl phenyl ether < 330 330 ug/kg 4-Bromophenyl phenyl ether < 330 330 ug/kg 4-Chloro-3-methylphenol < 330 330 ug/kg 2-Chloronaphthalene < 330 330 ug/kg 2-Chlorophenol < 330 330 ug/kg 1-Chlorophenyl phenyl ether < 330 330 ug/kg <td>Benzidine</td> <td></td> <td></td> <td>< 330</td> <td>330</td> <td>ug/kg</td> <td></td>	Benzidine			< 330	330	ug/kg	
Benzo(a)pyrene < 90	Benzo(a)anthr	racene		< 330	330	ug/kg	
Benzo(b)fluoranthene< 330 330 ug/kg Benzo(k)fluoranthene< 330	•			< 90	90	ug/kg	
Benzo(k)fluoranthene< 330330ug/kgBenzo(ghi)perylene< 330				< 330	330	ug/kg	
Benzo(ghi)perylene< 330 330 ug/kg Benzoic acid< 330 330 ug/kg Benzoic acid< 330 330 ug/kg Benzyl alcohol< 330 330 ug/kg bis(2-Chloroethoxy)methane< 330 330 ug/kg bis(2-Chloroethoxy)methane< 330 330 ug/kg bis(2-Chloroethyl)ether< 330 330 ug/kg bis(2-Chloroethyl)ether< 330 330 ug/kg bis(2-Ethylhexyl)phthalate< 330 330 ug/kg 4-Bromophenyl phenyl ether< 330 330 ug/kg Butyl benzyl phthalate< 330 330 ug/kg Carbazole< 330 330 ug/kg 4-Chloroaniline< 330 330 ug/kg 4-Chloroanithe< 330 330 ug/kg 2-Chlorophenol< 330 330 ug/kg 1,2-Dichlorobenzene< 330 330 ug/kg 1,3-Dichlorobenzene< 330 330 ug/kg 1,3-Dichlorobenzene< 330 330 ug/kg 1,4-Dichlorobenzene< 330 330 ug/kg </td <td>• •</td> <td></td> <td></td> <td>< 330</td> <td>330</td> <td>ug/kg</td> <td></td>	• •			< 330	330	ug/kg	
Benzyl alcohol< 330 ug/kg Benzyl alcohol< 330				< 330	330	ug/kg	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Benzoic acid	-		< 330	330	ug/kg	
bis(2-Chloroethyl)ether < 330 330 ug/kg bis(2-Chloroisopropyl)ether < 330 330 ug/kg bis(2-Ethylhexyl)phthalate < 330 330 ug/kg Butyl benzyl phthalate < 330 330 ug/kg Butyl benzyl phthalate < 330 330 ug/kg Carbazole < 330 330 ug/kg 4 -Chloroaniline 	Benzyl alcoho	ol		< 330	330	ug/kg	
bis(2-Chloroisopropyl)ether < 330 330 ug/kg bis(2-Chloroisopropyl)ether < 330 330 ug/kg bis(2-Ethylhexyl)phthalate < 330 330 ug/kg 4-Bromophenyl phenyl ether < 330 330 ug/kg Butyl benzyl phthalate < 330 330 ug/kg Carbazole < 330 330 ug/kg 4-Chloroaniline < 330 330 ug/kg 4-Chloro-3-methylphenol < 330 330 ug/kg 2-Chloronaphthalene < 330 330 ug/kg 2-Chlorophenol < 330 330 ug/kg Dibenzo(a,h)anthracene < 90 90 ug/kg Dibenzofuran < 330 330 ug/kg 1,2-Dichlorobenzene < 330 330 ug/kg 1,3-Dichlorobenzene < 330 330 ug/kg 3,3'-Dichlorobenzene < 330 330 ug/kg 3,3'-Dichlorobenzidine < 660 660 ug/kg	bis(2-Chloroe	thoxy)methane		< 330	330	ug/kg	
bis(2-Ethylhexyl)phthalate < 330 330 ug/kg 4-Bromophenyl phenyl ether < 330 330 ug/kg Butyl benzyl phthalate < 330 330 ug/kg Carbazole < 330 330 ug/kg 4-Chloroaniline < 330 330 ug/kg 4-Chloro-3-methylphenol < 330 330 ug/kg 2-Chloronaphthalene < 330 330 ug/kg 2-Chlorophenol < 330 330 ug/kg 4-Chlorophenol < 330 330 ug/kg 2-Chlorophenol < 330 330 ug/kg 1,2-Dichlorobenzene < 330 330 ug/kg 1,4-Dichlorobenzene < 330 330 ug/kg 1,4-Dichlorobenzene < 330 330 ug/kg 3,3'-Dichlorobenzene < 660 660 ug/kg	bis(2-Chloroe	thyl)ether		< 330	330	ug/kg	
4-Bromophenyl phenyl ether < 330	bis(2-Chlorois	sopropyl)ether		< 330	330	ug/kg	
Butyl benzyl phthalate< 330 330 ug/kg Garbazole< 330	bis(2-Ethylhe	xyl)phthalate					
Carbazole< 330330ug/kg4-Chloroaniline< 330	4-Bromophen	yl phenyl ether					
4-Chloroaniline< 330 330 ug/kg 4-Chloro-3-methylphenol< 330 330 ug/kg 2-Chloronaphthalene< 330 330 ug/kg 2-Chlorophenol< 330 330 ug/kg 4-Chlorophenyl phenyl ether< 330 330 ug/kg Chrysene< 330 330 ug/kg Dibenzo(a,h)anthracene< 90 90 ug/kg Dibenzofuran< 330 330 ug/kg 1,2-Dichlorobenzene< 330 330 ug/kg 1,3-Dichlorobenzene< 330 330 ug/kg 1,4-Dichlorobenzene< 330 330 ug/kg 3,3'-Dichlorobenzidine< 660 660 ug/kg	Butyl benzyl p	phthalate					
4-Chloro-3-methylphenol< 330 330 ug/kg 2-Chloronaphthalene< 330 330 ug/kg 2-Chlorophenol< 330 330 ug/kg 4-Chlorophenyl phenyl ether< 330 330 ug/kg Chrysene< 330 330 ug/kg Dibenzo(a,h)anthracene< 90 90 ug/kg Dibenzofuran< 330 330 ug/kg 1,2-Dichlorobenzene< 330 330 ug/kg 1,3-Dichlorobenzene< 330 330 ug/kg 1,4-Dichlorobenzene< 330 330 ug/kg 3,3'-Dichlorobenzidine< 660 660 ug/kg	Carbazole						
2-Chloronaphthalene< 330							
2-Chlorophenol< 330 330 ug/kg 4-Chlorophenyl phenyl ether< 330 330 ug/kg Chrysene< 330 330 ug/kg Dibenzo(a,h)anthracene< 90 90 ug/kg Dibenzofuran< 330 330 ug/kg 1,2-Dichlorobenzene< 330 330 ug/kg 1,3-Dichlorobenzene< 330 330 ug/kg 1,4-Dichlorobenzene< 330 330 ug/kg 3,3'-Dichlorobenzidine< 660 660 ug/kg	4-Chloro-3-m	ethylphenol					
4-Chlorophenyl phenyl ether< 330 330 ug/kg Chrysene< 330 330 ug/kg Dibenzo(a,h)anthracene< 90 90 ug/kg Dibenzofuran< 330 330 ug/kg 1,2-Dichlorobenzene< 330 330 ug/kg 1,3-Dichlorobenzene< 330 330 ug/kg 1,4-Dichlorobenzene< 330 330 ug/kg 3,3'-Dichlorobenzidine< 660 660 ug/kg							
Chrysene< 330330ug/kgDibenzo(a,h)anthracene< 90							
Dibenzo(a,h)anthracene< 9090ug/kgDibenzofuran< 330	-	yl phenyl ether					
Dibenzofuran< 330330ug/kg1,2-Dichlorobenzene< 330							
1,2-Dichlorobenzene< 330330ug/kg1,3-Dichlorobenzene< 330							
1,3-Dichlorobenzene< 330330ug/kg1,4-Dichlorobenzene< 330							
1,4-Dichlorobenzene< 330330ug/kg3,3'-Dichlorobenzidine< 660						-	
3,3'-Dichlorobenzidine < 660 460 ug/kg							
	,						
2,4-Dichlorophenol < 330 330 ug/kg	•					-	
	2,4-Dichlorop	bhenol		< 330	330	ug/kg	

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.	Date Collected:	05/24/18
Project ID:	Torrence Ave	Time Collected:	11:25
Sample ID:	2-24 (0-5)	Date Received:	05/24/18
Sample No:	18-2892-024	Date Reported:	06/06/18
Results are rep	orted on a dry weight basis.		

Analyte		Result	R.L.	Units	Flags	
Semi-Volatile Compounds Analysis Date: 05/30/18	Method: 8270C	Preparation Method 3540C Preparation Date: 05/29/18				
Diethyl phthalate		< 330	330	ug/kg		
2,4-Dimethylphenol		< 330	330	ug/kg		
Dimethyl phthalate		< 330	330	ug/kg		
Di-n-butyl phthalate		< 330	330	ug/kg		
4,6-Dinitro-2-methylphenol		< 1,600	1600	ug/kg		
2,4-Dinitrophenol		< 1,600	1600	ug/kg		
2,4-Dinitrotoluene		< 250	250	ug/kg		
2,6-Dinitrotoluene		< 260	260	ug/kg		
Di-n-octylphthalate		< 330	330	ug/kg		
Fluoranthene		< 330	330	ug/kg		
Fluorene		< 330	330	ug/kg		
Hexachlorobenzene		< 330	330	ug/kg		
Hexachlorobutadiene		< 330	330	ug/kg		
Hexachlorocyclopentadiene		< 330	330	ug/kg		
Hexachloroethane		< 330	330	ug/kg		
Indeno(1,2,3-cd)pyrene		< 330	330	ug/kg		
Isophorone		< 330	330	ug/kg		
2-Methylnaphthalene		< 330	330	ug/kg		
2-Methylphenol		< 330	330	ug/kg		
3 & 4-Methylphenol		< 330	330	ug/kg		
Naphthalene		< 330	330	ug/kg		
2-Nitroaniline		< 1,600	1600	ug/kg		
3-Nitroaniline		< 1,600	1600	ug/kg		
4-Nitroaniline		< 1,600	1600	ug/kg		
Nitrobenzene		< 260	260	ug/kg		
2-Nitrophenol		< 1,600	1600	ug/kg		
4-Nitrophenol		< 1,600	1600	ug/kg		
n-Nitrosodi-n-propylamine		< 90	90	ug/kg		
n-Nitrosodimethylamine		< 330	330	ug/kg		
n-Nitrosodiphenylamine		< 330	330	ug/kg		
Pentachlorophenol		< 330	330	ug/kg		
Phenauthrene		< 330	330	ug/kg		
Phenol		< 330	330	ug/kg		
Pyrene		< 330	330	ug/kg		
Pyridine		< 330	330	ug/kg		
1,2,4-Trichlorobenzene		< 330	330	ug/kg		

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.	·	-	Date C	ollected:	05/24/18
Project ID:	Torrence Ave			Time (Collected:	11:25
Sample ID:	2-24 (0-5)			Date R	eceived:	05/24/18
Sample No:	18-2892-024			Date R	eported:	06/06/18
-	orted on a dry weight b	asis.				
Analyte			Result	R.L.	Units	Flags
Semi-Volatile Analysis Date:		Method: 8270C		Preparation Preparation D		
2,4,5-Trichloro	ophenol		< 330	330	ug/kg	
2,4,6-Trichloro	ophenol		< 330	330	ug/kg	
pH @ 25°C, 1 Analysis Date	:2 : 05/29/18 11:25	Method: 9045D 2				
pH @ 25°C, I	:2		8.41		Units	
Total Metals Analysis Date	: 05/30/18	Method: 6010C		Preparation Preparation I		
Antimony			< 1.0	1.0	mg/kg	
Arsenic			2.5	1.0	mg/kg	
Barium			34.7	0.5	mg/kg	
Beryllium			0.8	0.5	mg/kg	
Cadmium			< 0.5	0.5	mg/kg	
Calcium			2,770	50	mg/kg	
Chromium			20.2	0.5	mg/kg	
Cobalt			9.3	0.5	mg/kg	
Copper			14.4	0.5	mg/kg	
Iron			17,300	5.0	mg/kg	
Lead			11.5	0.5	mg/kg	
Magnesium			4,480	50	mg/kg	
Manganese			131	0.5	mg/kg	
Nickel			26.2	0.5	mg/kg	
Potassium			3,010	50	mg/kg	
Selenium			< 1.0	1.0	mg/kg	
Silver			< 0.2	0.2	mg/kg	
Sodium			1,590	50	mg/kg	
Thallium			< 1.0	1.0	mg/kg	
Vanadium			22.0	1.0	nıg/kg	
Zinc			41.8	1.0	mg/kg	
Total Mercur Analysis Date		Method: 7471B				
Mercury			< 0.05	0.05	mg/kg	
TCLP Metal Analysis Date	s Method 1311 :: 06/01/18	Method: 6010C		Preparation Preparation I		
Arsenic			< 0.010	0.010	mg/L	
Barium			< 1.0	1.0	mg/L	

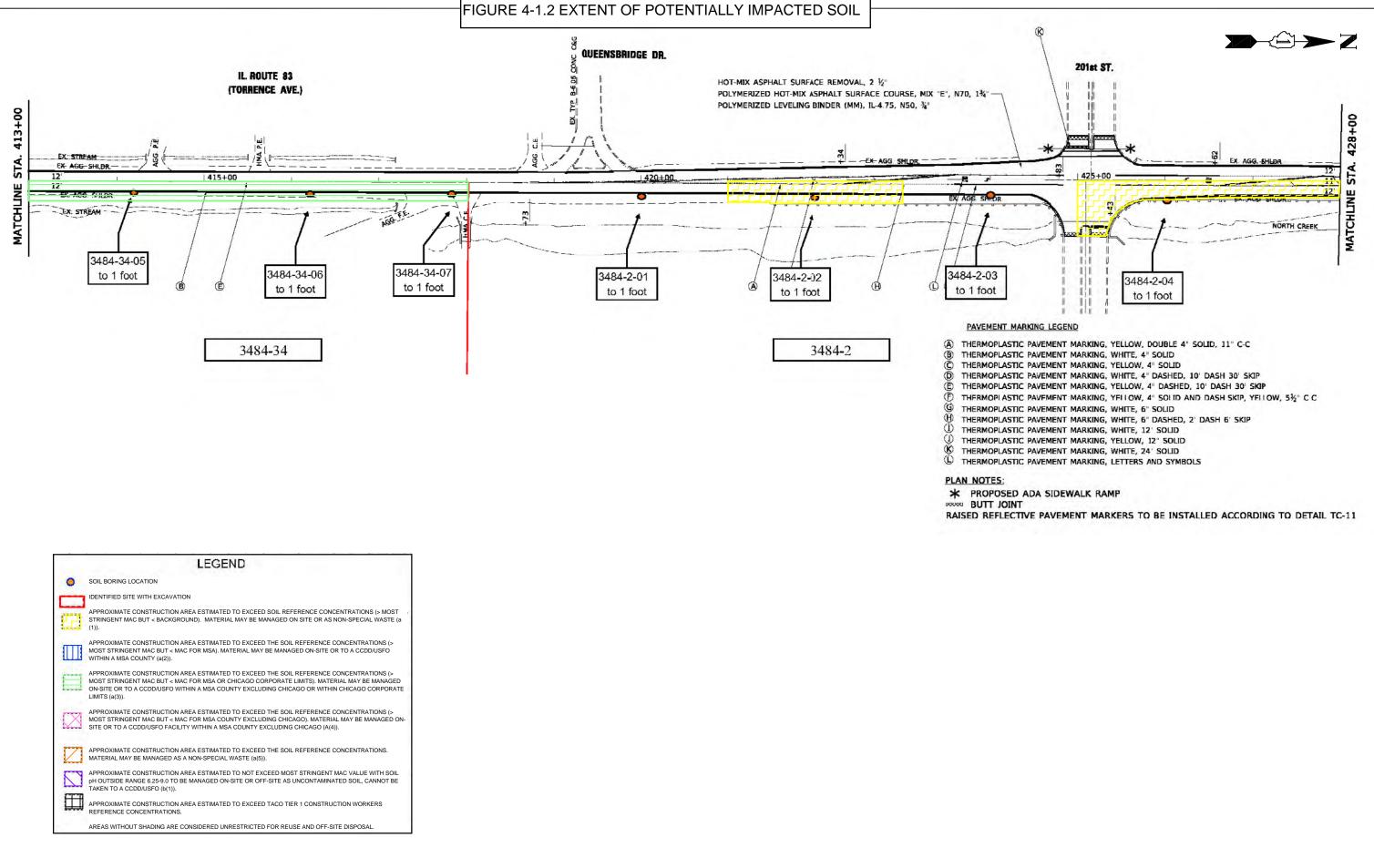
IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

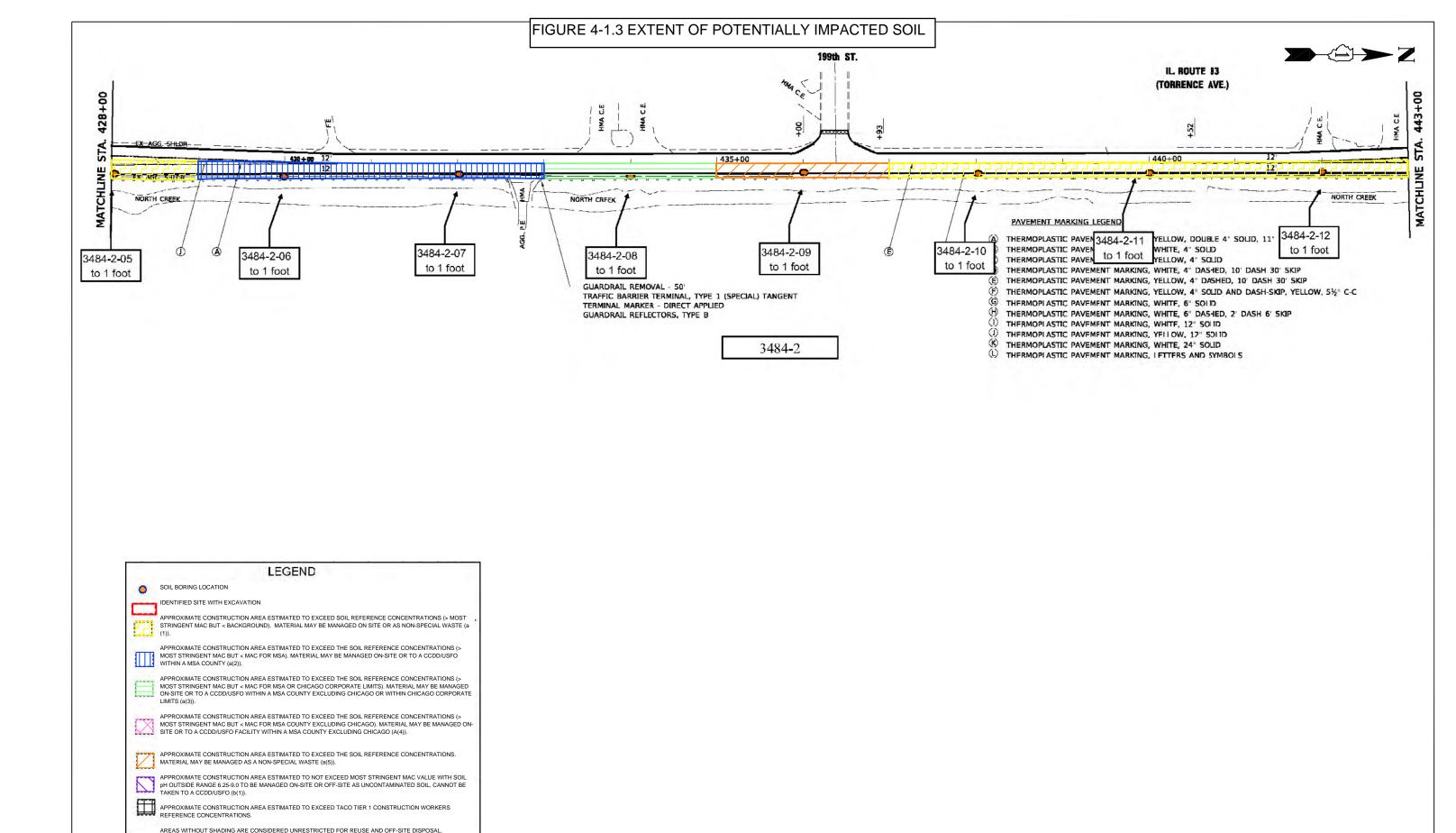
Client:	HUFF & HUFF INC.	Date Collected:	05/24/18
Project ID:	Torrence Ave	Time Collected:	11:25
Sample ID:	2-24 (0-5)	Date Received:	05/24/18
Sample No:	18-2892-024	Date Reported:	06/06/18
Results are rep	orted on a dry weight basis.		

Analyte		Result	R.Ľ.	Units	Flags
TCLP Metals Method 1311 Analysis Date: 06/01/18	Method: 6010C		Preparation D		
Beryllium		< 1.00	1.0	mg/L	
Cadmium		< 0.005	0.005	mg/L	
Chromium		< 0.005	0.005	mg/L	
Cobalt		< 0.1	0.1	mg/L	
Copper		< 0.1	0.1	mg/L	
Iron		< 0.1	0.1	mg/L	
Lead		< 0.005	0.005	mg/L	
Manganese		0.4	0.1	mg/L	
Nickel		< 0.1	0.1	mg/L	
Selenium		< 0.010	0.010	mg/L	
Silver		< 0.005	0.005	mg/L	
Zinc		< 0.1	0.1	mg/L	
TCLP Mercury Method 1311	Method: 7470A				
Analysis Date: 06/01/18	2.171	< 0.0005	0.0005	ma/I	
Mercury	1.1	< 0.0005	0.0003	mg/L	
TCLP Extraction Analysis Date: 05/30/18	Method: 1311			1. Pril	
TCLP Extraction		Complete			
SPLP Metals Method 1312 Analysis Date: 06/01/18	Method: 6010C]	Preparation Preparation D	Method 302 Date: 05/31/12	10A 8
Arsenic		< 0.010	0.010	mg/L	
Barium		< 1.0	1.0	mg/L	
Beryllium		< 0.004	0.004	mg/L	
Cadmium		< 0.005	0.005	mg/L	
Chromium		0.012	0.005	mg/L	
Cobalt		< 0.1	0.1	mg/L	
Copper		0.007	0.005	mg/L	
Iron		8.8	0.1	mg/L	
Lead		< 0.005	0.005	mg/L	
Manganese		< 0.1	0.1	mg/L	
Nickel		< 0.1	0.1	mg/L	
Selenium	- C	< 0.010	0.010	mg/L	
Silver		< 0.005	0.005	mg/L	
Zinc		< 0.1	0.1	mg/L	

 Laboratories, Inc.
 IL ELAP / NELAC Accreditation # 100292

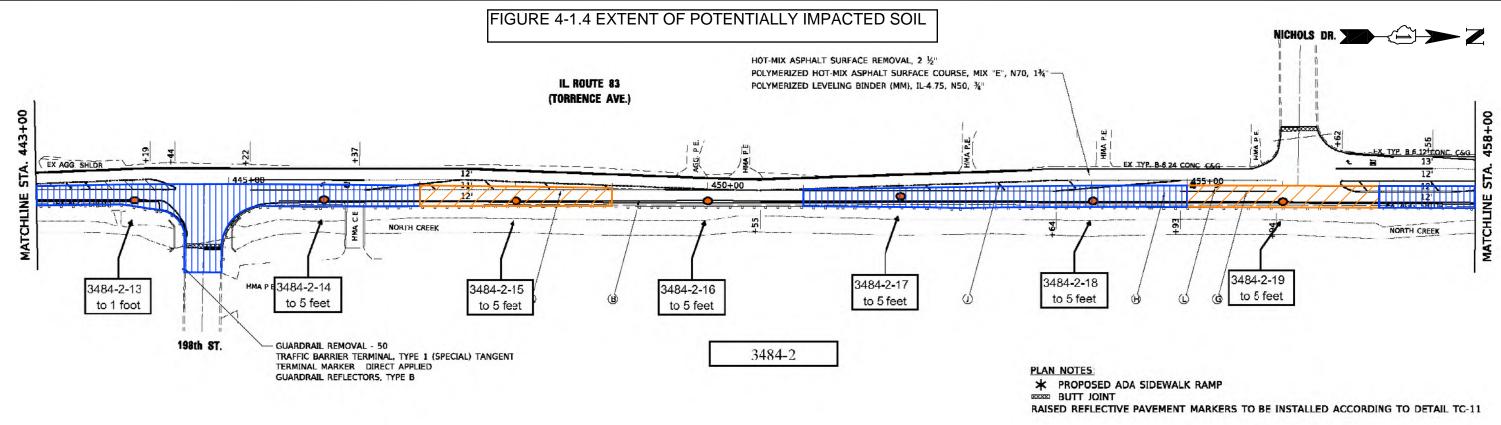

 1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.				Date C	ollected:	05/24/18
Project ID:	Torrence Ave				Time C	Collected:	11:25
Sample ID:	2-24 (0-5)				Date R	eceived:	05/24/18
Sample No:	18-2892-024				Date R	eported:	06/06/18
Results are repo	rted on a dry weight basis.						
Analyte			Resu	lt	R.L.	Units	Flags
SPLP Mercury Analysis Date:		lethod: 7470A					
Mercury			< 0.00	05	0.0005	mg/L	
SPLP Extracti Analysis Date:		lethod: 1312					
SPLP Metals Ex	ktraction		Com	plete			
Sample QC Sur	nmary: Surrogate Rec	covery				%R Li	imits
Method	Analyte		QC	Result		Low	
5035A/8260B	4-Bromofluor	obenzene (Surr)	%R:	96.6		86 -	117
5035A/8260B	d8-Toluene (S	'urr)	%R:	100.7		90 -	110
5035A/8260B	Dibromofluor	omethane (Surr)	%R:	101.6		77 -	120

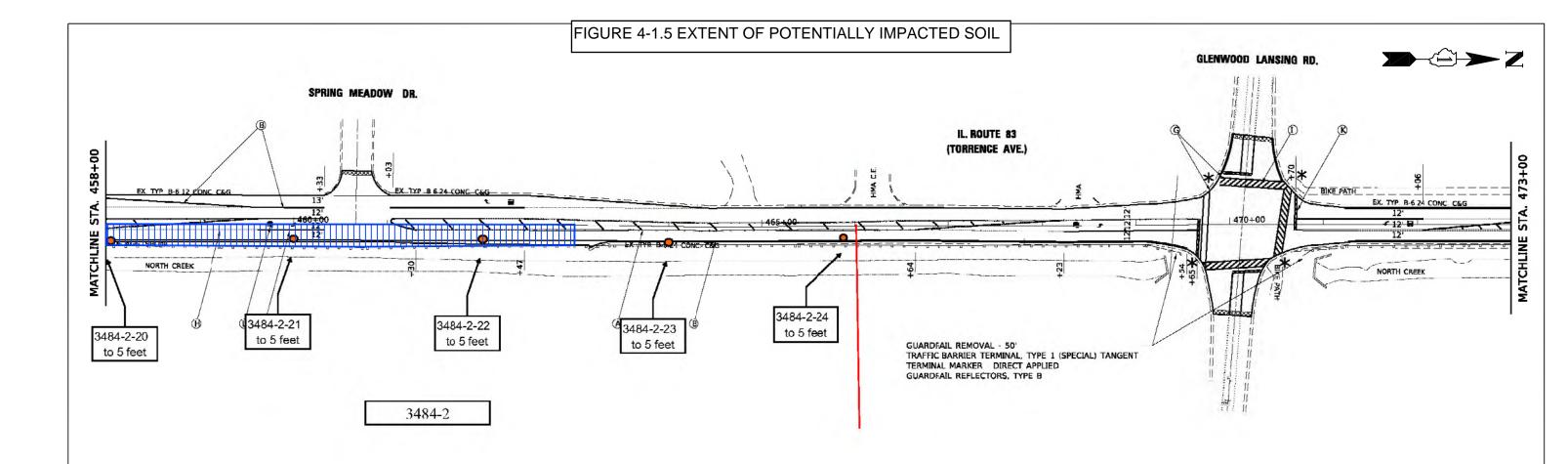


	LEGEND
0	SOIL BORING LOCATION
	IDENTIFIED SITE WITH EXCAVATION
62	APPROXIMATE CONSTRUCTION AREA ESTIMATED TO EXCEED SOIL REFERENCE CONCENTRATIONS (> MOST STRINGENT MAC BUT < BACKGROUND). MATERIAL MAY BE MANAGED ON SITE OR AS NON-SPECIAL WASTE (a (1)).
	APPROXIMATE CONSTRUCTION AREA ESTIMATED TO EXCEED THE SOIL REFERENCE CONCENTRATIONS (> MOST STRINGENT MAC BUT < MAC FOR MSA). MATERIAL MAY BE MANAGED ON-SITE OR TO A CCDD/USFO WITHIN A MSA COUNTY (a(2)).
	APPROXIMATE CONSTRUCTION AREA ESTIMATED TO EXCEED THE SOIL REFERENCE CONCENTRATIONS (> MOST STRINGENT MAC BUT < MAC FOR MSA OR CHICAGO CORPORATE LIMITS). MATERIAL MAY BE MANAGED ON-SITE OR TO A CCDD/USFO WITHIN A MSA COUNTY EXCLUDING CHICAGO OR WITHIN CHICAGO CORPORATE LIMITS (a(3)).
	APPROXIMATE CONSTRUCTION AREA ESTIMATED TO EXCEED THE SOIL REFERENCE CONCENTRATIONS (> MOST STRINGENT MAC BUT < MAC FOR MSA COUNTY EXCLUDING CHICAGO), MATERIAL MAY BE MANAGED ON SITE OR TO A CCDD/USFO FACILITY WITHIN A MSA COUNTY EXCLUDING CHICAGO (A(4)).
\square	APPROXIMATE CONSTRUCTION AREA ESTIMATED TO EXCEED THE SOIL REFERENCE CONCENTRATIONS. MATERIAL MAY BE MANAGED AS A NON-SPECIAL WASTE (a(5)).
	APPROXIMATE CONSTRUCTION AREA ESTIMATED TO NOT EXCEED MOST STRINGENT MAC VALUE WITH SOIL pH OUTSIDE RANGE 6.25-9.0 TO BE MANAGED ON-SITE OR OFF-SITE AS UNCONTAMINATED SOIL, CANNOT BE TAKEN TO A CCDD/USFO (b(1)).
	APPROXIMATE CONSTRUCTION AREA ESTIMATED TO EXCEED TACO TIER 1 CONSTRUCTION WORKERS REFERENCE CONCENTRATIONS.
	AREAS WITHOUT SHADING ARE CONSIDERED UNRESTRICTED FOR REUSE AND OFF-SITE DISPOSAL.

FILE NAME =	USER NAME =	DESIGNED -	REVISED -			ROADWAY PLAN	F.A.U. RTE	SECTION	COUNTY	TOTAL SHEET SHEETS NO.
		DRAWN -	REVISED -	STATE OF ILLINOIS		IL 83 (I-80 TO GLENWOOD DYER ROAD)	2937	(3076-1 & 3077) RS-1	соок	6 1
	PLOT SCALE =	CHECKED -	REVISED -	DEPARTMENT OF TRANSPORTATION				(,,,,	CONTRACT NO	D. NO 62C51
	PLOT DATE =	DATE -	REVISED -		SCALE: 1" = 100'	SHEET NO. 1 OF 6 SHEETS STA. 458+00 TO STA. 488	3+00	ILLINOIS		



FILE NAME =	USER NAME =	DESIGNED -	REVISED -		ROADWAY PLAN	F.A.U. RTE	SECTION	COUNTY	TOTAL	SHEET
		DRAWN -	REVISED -	STATE OF ILLINOIS	IL 83 (I-80 TO GLENWOOD DYER ROAD)	2937 (3	3076-1 & 3077) RS-1	соок	6	2
	PLOT SCALE =	CHECKED -	REVISED -	DEPARTMENT OF TRANSPORTATION		(-	,	CONTRACT NO	0. NO 62	C51
	PLOT DATE =	DATE -	REVISED -		SCALE: 1" = 100' SHEET NO. 1 OF 6 SHEETS STA. 458+00 TO STA. 488+00		ILLINOIS			


FILE NAME =	USER NAME =	DESIGNED -	REVISED -				VAY PLA
		DRAWN -	REVISED -	STATE OF ILLINOIS		IL 83 (I-80 TO GLEN	
	PLOT SCALE =	CHECKED -	REVISED -	DEPARTMENT OF TRANSPORTATION			INCOD L
	PLOT DATE =	DATE -	REVISED -		SCALE: 1" = 100'	SHEET NO. 1 OF 6	SHEETS

۶Ľ	AN		F.A.U. RTE	SECTION		COUNTY	TOTAL SHEETS	SHEET NO.
)[DYER ROAD)		2937	(3076-1 & 3077) RS-	1	соок	6	3
_						CONTRACT NO	. NO 6	2C51
s	STA. 458+00	TO STA. 488+00		ILLINOIS				

	LEGEND
0	SOIL BORING LOCATION
-	IDENTIFIED SITE WITH EXCAVATION
63	APPROXIMATE CONSTRUCTION AREA ESTIMATED TO EXCEED SOIL REFERENCE CONCENTRATIONS (> MOST STRINGENT MAC BUT < BACKGROUND). MATERIAL MAY BE MANAGED ON SITE OR AS NON-SPECIAL WASTE (a (1)).
	APPROXIMATE CONSTRUCTION AREA ESTIMATED TO EXCEED THE SOIL REFERENCE CONCENTRATIONS (> MOST STRINGENT MAC BUT < MAC FOR MSA). MATERIAL MAY BE MANAGED ON-SITE OR TO A CCDD/USFO WITHIN A MSA COUNTY (a(2)).
	APPROXIMATE CONSTRUCTION AREA ESTIMATED TO EXCEED THE SOIL REFERENCE CONCENTRATIONS (> MOST STRINGENT MAC BUT < MAC FOR MSA OR CHICAGO CORPORATE LIMITS). MATERIAL MAY BE MANAGED ON-SITE OR TO A CCDD/USFO WITHIN A MSA COUNTY EXCLUDING CHICAGO OR WITHIN CHICAGO CORPORATE LIMITS (a(3)).
	APPROXIMATE CONSTRUCTION AREA ESTIMATED TO EXCEED THE SOIL REFERENCE CONCENTRATIONS (> MOST STRINGENT MAC BUT < MAC FOR MSA COUNTY EXCLUDING CHICAGO). MATERIAL MAY BE MANAGED ON- SITE OR TO A CCDD/USFO FACILITY WITHIN A MSA COUNTY EXCLUDING CHICAGO (A(4)).
\square	APPROXIMATE CONSTRUCTION AREA ESTIMATED TO EXCEED THE SOIL REFERENCE CONCENTRATIONS. MATERIAL MAY BE MANAGED AS A NON-SPECIAL WASTE (a(5)).
	APPROXIMATE CONSTRUCTION AREA ESTIMATED TO NOT EXCEED MOST STRINGENT MAC VALUE WITH SOIL pH OUTSIDE RANGE 6.25-9.0 TO BE MANAGED ON-SITE OR OFF-SITE AS UNCONTAMINATED SOIL, CANNOT BE TAKEN TO A CCDD/USFO (b(1)).
	APPROXIMATE CONSTRUCTION AREA ESTIMATED TO EXCEED TACO TIER 1 CONSTRUCTION WORKERS REFERENCE CONCENTRATIONS.
	AREAS WITHOUT SHADING ARE CONSIDERED UNRESTRICTED FOR REUSE AND OFF-SITE DISPOSAL.

FILE NAME =	USER NAME =	DESIGNED -	REVISED -		ROADWAY PLAN	F.A.U. RTE	SECTION	COUNTY	TOTAL SHEET
		DRAWN -	REVISED -	STATE OF ILLINOIS	IL 83 (I-80 TO GLENWOOD DYER ROAD)	2937	(3076-1 & 3077) RS-1	соок	6 4
	PLOT SCALE =	CHECKED -	REVISED -	DEPARTMENT OF TRANSPORTATION			(CONTRACT N	O. NO 62C51
	PLOT DATE =	DATE -	REVISED -		SCALE: 1" = 100' SHEET NO. 1 OF 6 SHEETS STA. 458+00 TO STA. 488+00		ILLINOIS		

	LEGEND
0	SOIL BORING LOCATION
_	IDENTIFIED SITE WITH EXCAVATION
63	APPROXIMATE CONSTRUCTION AREA ESTIMATED TO EXCEED SOIL REFERENCE CONCENTRATIONS (> MOST STRINGENT MAC BUT < BACKGROUND). MATERIAL MAY BE MANAGED ON SITE OR AS NON-SPECIAL WASTE (a (1)).
	APPROXIMATE CONSTRUCTION AREA ESTIMATED TO EXCEED THE SOIL REFERENCE CONCENTRATIONS (> MOST STRINGENT MAC BUT < MAC FOR MSA). MATERIAL MAY BE MANAGED ON-SITE OR TO A CCDD/USFO WITHIN A MSA COUNTY (a(2)).
	APPROXIMATE CONSTRUCTION AREA ESTIMATED TO EXCEED THE SOIL REFERENCE CONCENTRATIONS (> MOST STRINGENT MAC BUT < MAC FOR MSA OR CHICAGO CORPORATE LIMITS). MATERIAL MAY BE MANAGED ON-SITE OR TO A CCDD/USFO WITHIN A MSA COUNTY EXCLUDING CHICAGO OR WITHIN CHICAGO CORPORATE LIMITS (a(3)).
	APPROXIMATE CONSTRUCTION AREA ESTIMATED TO EXCEED THE SOIL REFERENCE CONCENTRATIONS (> MOST STRINGENT MAC BUT < MAC FOR MSA COUNTY EXCLUDING CHICAGO), MATERIAL MAY BE MANAGED ON- SITE OR TO A CCDD/USFO FACILITY WITHIN A MSA COUNTY EXCLUDING CHICAGO (A(4)).
Z	APPROXIMATE CONSTRUCTION AREA ESTIMATED TO EXCEED THE SOIL REFERENCE CONCENTRATIONS. MATERIAL MAY BE MANAGED AS A NON-SPECIAL WASTE (a(5)).
	APPROXIMATE CONSTRUCTION AREA ESTIMATED TO NOT EXCEED MOST STRINGENT MAC VALUE WITH SOIL pH OUTSIDE RANGE 6.25-9.0 TO BE MANAGED ON-SITE OR OFF-SITE AS UNCONTAMINATED SOIL, CANNOT BE TAKEN TO A CCDD/USFO (b(1)).
	APPROXIMATE CONSTRUCTION AREA ESTIMATED TO EXCEED TACO TIER 1 CONSTRUCTION WORKERS REFERENCE CONCENTRATIONS.
	AREAS WITHOUT SHADING ARE CONSIDERED UNRESTRICTED FOR REUSE AND OFF-SITE DISPOSAL.

FILE NAME =	USER NAME =	DESIGNED -	REVISED -			ROADWAY PLAN	F.A.U. RTE	SECTION	COUNTY	TOTAL SHEE
		DRAWN -	REVISED -] STATE OF ILLINOIS		IL 83 (I-80 TO GLENWOOD DYER ROAD)	2937	(3076-1 & 3077) RS-1	соок	6 5
	PLOT SCALE =	CHECKED -	REVISED -	DEPARTMENT OF TRANSPORTATION				, ,	CONTRACT NO	O. NO 62C51
	PLOT DATE =	DATE -	REVISED -		SCALE: 1" = 100'	SHEET NO. 1 OF 6 SHEETS STA. 458+00 TO STA. 488+00		ILLINOIS		

.

.

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Analytical Report

۰.

		Analytical N	report			
Client: H	UFF & HUFF INC.				ollected:	05/24/18
Project ID: To	orrence Ave			Time (Collected:	9:47
•	01 (0-1)			Date R	eceived:	05/24/18
•	3-2892-001			Date R	eported:	06/06/18
-	ed on a dry weight ba	sis.				
Analyte			Result	R.L.	Units	Flags
Solids, Total		Method: 2540B				
Analysis Date: 05	5/25/18 14:00					
Total Solids			83.88		%	
Volatile Organic Analysis Date: 05		Method: 5035A/82	260B			
Acetone			< 200	200	ug/kg	
Benzene			< 5.0	5.0	ug/kg	
Bromodichlorome	thane		< 5.0	5.0	ug/kg	
Bromoform			< 5.0	5.0	ug/kg	
Bromomethane			< 10.0	10.0	ug/kg	
2-Butanone (MEk	()		< 100	100	ug/kg	
Carbon disulfide			< 5.0	5.0	ug/kg	
Carbon tetrachlor	ide		< 5.0	5.0	ug/kg	
Chlorobenzene			< 5.0	5.0	ug/kg	
Chlorodibromome	ethane		< 5.0	5.0	ug/kg	
Chloroethane			< 10.0	10.0	ug/kg	
Chloroform			< 5.0	5.0	ug/kg	
Chloromethane			< 10.0	10.0	ug/kg	
1,1-Dichloroethar	ne		< 5.0	5.0	ug/kg	
1,2-Dichloroethar	ne		< 5.0	5.0	ug/kg	
1,1-Dichloroether	ne		< 5.0	5.0	ug/kg	
cis-1,2-Dichloroe	thene		< 5.0	5.0	ug/kg	
trans-1,2-Dichlor	oethene		< 5.0	5.0	ug/kg	
1,2-Dichloroprop	ane		< 5.0	5.0	ug/kg	
cis-1,3-Dichlorop	ropene		< 4.0	4.0	ug/kg	
trans-1,3-Dichlor	opropene		< 4.0	4.0	ug/kg	
Ethylbenzene			< 5.0	5.0	ug/kg	
2-Hexanone			< 10.0	10.0	ug/kg	
Methyl-tert-butyl	ether (MTBE)		< 5.0	5.0	ug/kg	
4-Methyl-2-penta	none (MIBK)		< 10.0	10.0	ug/kg	
Methylene chlori	de		< 20.0	20.0	ug/kg	
Styrene			< 5.0	5.0	ug/kg	
1,1,2,2-Tetrachlo	roethane		< 5.0	5.0	ug/kg	
Tetrachloroethen	e		< 5.0	5.0	ug/kg	
Toluene			< 5.0	5.0	ug/kg	
1,1,1-Trichloroet	hane		< 5.0	5.0	ug/kg	
1,1,2-Trichloroet	hane		< 5.0	5.0	ug/kg	
1,1,2-111011000	liane		< 5.0	5.0	ug/kg	

.*

First Environmental Laboratories, Inc.

.

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client: Project ID:	HUFF & HUFF INC. Torrence Ave	ŭ	•	Time C	ollected: Collected:	05/24/18 9:47
Sample ID:	2-01 (0-1)				eceived:	05/24/18
Sample No:	18-2892-001			Date R	eported:	06/06/18
Results are rep	orted on a dry weight b	asis.				
Analyte			Result	R.L.	Units	Flags
Volatile Orga Analysis Date:	nic Compounds 05/31/18	Method: 5035A/82	260B			
Vinyl acetate			< 10.0	10.0	ug/kg	
Vinyl chloride	}		< 10.0	10.0	ug/kg	
Xylene, Total			< 5.0	5.0	ug/kg	
Semi-Volatile Analysis Date		Method: 8270C		Preparation Preparation D		
Acenaphthene			< 330	330	ug/kg	
Acenaphthyle			< 330	330	ug/kg	
Anthracene			< 330	330	ug/kg	
Benzidine			< 330	330	ug/kg	
Benzo(a)anthr	acene		< 330	330	ug/kg	
Benzo(a)pyrei			< 90	90	ug/kg	
Benzo(b)fluor			< 330	330	ug/kg	
Benzo(k)fluor			< 330	330	ug/kg	
Benzo(ghi)per	rylene		< 330	330	ug/kg	
Benzoic acid			< 330	330	ug/kg	
Benzyl alcoho	ol		< 330	330	ug/kg	
bis(2-Chloroe	thoxy)methane		< 330	330	ug/kg	
bis(2-Chloroe	thyl)ether		< 330	330	ug/kg	
bis(2-Chlorois	sopropyl)ether		< 330	330	ug/kg	
bis(2-Ethylhe:	xyl)phthalate		< 330	330	ug/kg	
4-Bromophen	yl phenyl ether		< 330	330	ug/kg	
Butyl benzyl	phthalate		< 330	330	ug/kg	
Carbazole			< 330	330	ug/kg	
4-Chloroanili			< 330	330	ug/kg	
4-Chloro-3-m	• •		< 330	330	ug/kg	
2-Chloronaph			< 330	330	ug/kg	
2-Chlorophen			< 330	330	ug/kg	
	yl phenyl ether		< 330	330	ug/kg	
Chrysene			< 330	330	ug/kg	
Dibenzo(a,h)a			< 90	90	ug/kg	
Dibenzofuran			< 330	330	ug/kg	
1,2-Dichlorob			< 330	330	ug/kg	
1,3-Dichlorob			< 330	330	ug/kg	
1,4-Dichlorob			< 330	330 660	ug/kg	
3,3'-Dichlorol			< 660 < 330	330	ug/kg ug/kg	
2,4-Dichlorop	onenol		< 33U	220	ug/ ng	

.

First Environmental Laboratories, Inc.

-

IL ELAP / NELAC Accreditation # 100292

DI

TT ... !4

Flags

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.	Date Collected:	05/24/18
Project ID:	Torrence Ave	Time Collected:	9:47
Sample ID:	2-01 (0-1)	Date Received:	05/24/18
Sample No:		Date Reported:	06/06/18
Results are rep	orted on a dry weight basis.		

Analyte		Result	R.L.	Units	Flags
Semi-Volatile Compounds Analysis Date: 05/25/18	Method: 8270C		Preparation Preparation D		
Diethyl phthalate		< 330	330	ug/kg	
2,4-Dimethylphenol		< 330	330	ug/kg	
Dimethyl phthalate		< 330	330	ug/kg	
Di-n-butyl phthalate		< 330	330	ug/kg	
4,6-Dinitro-2-methylphenol		< 1,600	1600	ug/kg	
2,4-Dinitrophenol		< 1,600	1600	ug/kg	
2,4-Dinitrotoluene		< 250	250	ug/kg	
2,6-Dinitrotoluene		< 260	260	ug/kg	
Di-n-octylphthalate		< 330	330	ug/kg	
Fluoranthene		< 330	330	ug/kg	
Fluorene		< 330	330	ug/kg	
Hexachlorobenzene		< 330	330	ug/kg	
Hexachlorobutadiene		< 330	330	ug/kg	
Hexachlorocyclopentadiene		< 330	330	ug/kg	
Hexachloroethane		< 330	330	ug/kg	
Indeno(1,2,3-cd)pyrene		< 330	330	ug/kg	
Isophorone		< 330	330	ug/kg	
2-Methylnaphthalene		< 330	330	ug/kg	
2-Methylphenol		< 330	330	ug/kg	
3 & 4-Methylphenol		< 330	330	ug/kg	
Naphthalene		< 330	330	ug/kg	
2-Nitroaniline		< 1,600	1600	ug/kg	
3-Nitroaniline		< 1,600	1600	ug/kg	
4-Nitroaniline		< 1,600	1600	ug/kg	
Nitrobenzene		< 260	260	ug/kg	
2-Nitrophenol		< 1,600	1600	ug/kg	
4-Nitrophenol		< 1,600	1600	ug/kg	
n-Nitrosodi-n-propylamine		< 90	90	ug/kg	
n-Nitrosodimethylamine		< 330	330	ug/kg	
n-Nitrosodiphenylamine		< 330	330	ug/kg	
Pentachlorophenol		< 330	330	ug/kg	
Phenanthrene		< 330	330	ug/kg	
Phenol		< 330	330	ug/kg	
Pyrene		< 330	330	ug/kg	
Pyridine		< 330	330	ug/kg	
1,2,4-Trichlorobenzene		< 330	330	ug/kg	

.

First Environmental Laboratories, Inc.

-.

IL ELAP / NELAC Accreditation # 100292

Laboratories, Inc.IL ELAP / NELAC Accreditation # 1002921600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Project ID: T Sample ID: 2- Sample No: 1	UFF & HUFF INC. orrence Ave -01 (0-1) 8-2892-001		,	-F	Time (Date F	Collected: Collected: Received: Reported:	05/24/18 9:47 05/24/18 06/06/18
Results are report Analyte	ed on a dry weight ba	IS1S.		Result	R.L.	Units	Flags
Semi-Volatile Co Analysis Date: 0		Method: 8	8270C		Preparation Preparation I		
2,4,5-Trichloroph				< 330	330	ug/kg	
2,4,6-Trichloroph				< 330	330	ug/kg	
pH @ 25°C, 1:2 Analysis Date: 0	5/29/18 11:25	Method:	9045D 20	04			
pH @ 25°C, 1:2				8.73		Units	
Total Metals Analysis Date: 0	5/31/18	Method:	6010C		Preparation Preparation		
Antimony				< 1.0	1.0	mg/kg	
Arsenic				7.7	1.0	mg/kg	
Barium				25.6	0.5	mg/kg	
Beryllium				< 0.5	0.5	mg/kg	
Cadmium				< 0.5	0.5	mg/kg	
Calcium				56,400	50	mg/kg	
Chromium				12.1	0.5	mg/kg	
Cobalt				5.8	0.5	mg/kg	
Copper				19.4	0.5	mg/kg	
Iron				17,800	5.0	mg/kg	
Lead				19.5	0.5	mg/kg	
Magnesium				22,500	50	mg/kg	
Manganese				259	0.5	mg/kg	
Nickel				17.7	0.5	mg/kg	
Potassium				1,140	50	mg/kg	
Selenium				< 1.0	1.0	mg/kg	
Silver				0.4	0.2	mg/kg	
Sodium				473	50	mg/kg	
Thallium				< 1.0	1.0	mg/kg	
Vanadium				17.6	1.0	mg/kg	
Zinc				47.4	1.0	mg/kg	
Total Mercury Analysis Date: (05/25/18	Method:	7471B				
Mercury				< 0.05	0.05	mg/kg	
TCLP Metals M Analysis Date: (Method:	6010C		Preparation Preparation		
Arsenic				< 0.010	0.010	mg/L	
Barium				< 1.0	1.0	mg/L	

First Environmental

Laboratories, Inc.IL ELAP / NELAC Accreditation # 1002921600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

		 1			
Client:	HUFF & HUFF INC.		Date Collected:	05/24/18	
Project ID:	Torrence Ave		Time Collected:	9:47	
	2-01 (0-1)		Date Received:	05/24/18	
Sample No:	18-2892-001		Date Reported:	06/06/18	
	orted on a dry weight basis.				

Analyte		Result	R.L.	Units	Flags
TCLP Metals Method 1311 Analysis Date: 06/01/18	Method: 6010C		Preparation Preparation D	Method 301 ate: 05/30/18	0A
Beryllium		< 1.00	1.0	mg/L	
Cadmium		< 0.005	0.005	mg/L	
Chromium		0.006	0.005	mg/L	
Cobalt		< 0.1	0.1	mg/L	
Copper		< 0.1	0.1	mg/L	
Iron		0.2	0.1	mg/L	
Lead		0.029	0.005	mg/L	
Manganese		7.9	0.1	mg/L	
Nickel		< 0.1	0.1	mg/L	
Selenium		0.010	0.010	mg/L	
Silver		< 0.005	0.005	mg/L	
Zinc		< 0.1	0.1	mg/L	
TCLP Mercury Method 1311 Analysis Date: 05/31/18	Method: 7470A				
Mercury		< 0.0005	0.0005	mg/L	
TCLP Extraction Analysis Date: 05/30/18	Method: 1311				
TCLP Extraction		Complete	e		
SPLP Metals Method 1312 Analysis Date: 05/31/18	Method: 6010C		Preparation Preparation I		
Arsenic		< 0.010	0.010	mg/L	
Barium		< 1.0	1.0	mg/L	
Beryllium		< 0.004	0.004	mg/L	
Cadmium		< 0.005	0.005	mg/L	
Chromium		< 0.005	0.005	mg/L	
Cobalt		< 0.1	0.1	mg/L	
Copper		0.005	0.005	mg/L	
Iron		3.2	0.1	mg/L	
Lead		< 0.005	0.005	mg/L	
Manganese		< 0.1	0.1	mg/L	
Nickel		< 0.1	0.1	mg/L	
Selenium		< 0.010	0.010	mg/L	
Silver		< 0.005	0.005	mg/L	
Zinc		< 0.1	0.1	mg/L	

- •

.

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

. 1

		1 mary treat	toport -				
Client:	HUFF & H	IUFF INC.			Date C	ollected:	05/24/18
Project ID:	Torrence A	Ave			Time C	Collected:	9:47
Sample ID:	2-01 (0-1))			Date R	eceived:	05/24/18
Sample No:	18-2892-0	01			Date R	eported:	06/06/18
-	ported on a d	ry weight basis.					
Analyte	ηj.		Resu	İt	R.L.	Units	Flag
SPLP Mercun Analysis Date		312 Method: 7470A					
Mercury			< 0.00	05	0.0005	mg/L	
SPLP Extrac Analysis Date		Method: 1312					
SPLP Metals	Extraction		Com	plete			
Sample QC Si	ummary:	Surrogate Recovery				%R Li	imits
Method		Analyte	QC	C Result		Low	High
5035A/8260B		4-Bromofluorobenzene (Surr)	%R:	101.3		86 -	117
5035A/8260B		d8-Toluene (Surr)	%R:	101.2		90 -	110
5035A/8260B		Dibromofluoromethane (Surr)	%R:	106.3		77 -	120
8270C		2,4,6-Tribromophenol (Surr)	%R:	96.9		59 -	131
8270C		2-Fluorobiphenyl (Surr)	%R:	82.4		45 -	112
8270C		2-Fluorophenol (Surr)	%R:	63.5		41 -	84
8270C		d14-Terphenyl (Surr)	%R:	88.7		56 -	120
8270C		d5-Nitrobenzene (Surr)	%R:	80.4		35 -	105
8270C		Phenol-d5 (surr)	%R:	70.8		50 -	100

.

- *

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.	v	-	Date C	Collected:	05/24/18
Project ID:	Torrence Ave			Time (Collected:	9:52
Sample ID:	2-03 (0-1)			Date R	leceived:	05/24/18
Sample No:	18-2892-003			Date R	Reported:	06/06/18
-	orted on a dry weight b	basis.			-	
Analyte			Result	R.L.	Units	Flags
Solids, Total		Method: 2540B				
	05/25/18 14:00					
Total Solids			74.85		%	
Volatile Orga Analysis Date:	nic Compounds	Method: 5035A/82	260B			
Acetone	05/51/10		< 200	200	ug/kg	
Benzene			< 5.0	5.0	ug/kg	
Bromodichloro	methane		< 5.0	5.0	ug/kg	
Bromoform	Jiletiane		< 5.0	5.0	ug/kg	
Bromomethane	2		< 10.0	10.0	ug/kg	
2-Butanone (N			< 100	100	ug/kg	
Carbon disulfi	•		39.2	5.0	ug/kg	
Carbon tetrach			< 5.0	5.0	ug/kg	
Chlorobenzene			< 5.0	5.0	ug/kg	
Chlorodibromo			< 5.0	5.0	ug/kg	
Chloroethane			< 10.0	10.0	ug/kg	
Chloroform			< 5.0	5.0	ug/kg	
Chloromethan	e		< 10.0	10.0	ug/kg	
1,1-Dichloroet	hane		< 5.0	5.0	ug/kg	
1,2-Dichloroet			< 5.0	5.0	ug/kg	
1,1-Dichloroet			< 5.0	5.0	ug/kg	
cis-1,2-Dichlo	roethene		< 5.0	5.0	ug/kg	
trans-1,2-Dich	loroethene		< 5.0	5.0	ug/kg	
1,2-Dichlorop	ropane		< 5.0	5.0	ug/kg	
cis-1,3-Dichlo	ropropene		< 4.0	4.0	ug/kg	
trans-1,3-Dich	loropropene		< 4.0	4.0	ug/kg	
Ethylbenzene			< 5.0	5.0	ug/kg	
2-Hexanone			< 10.0	10.0	ug/kg	
Methyl-tert-bu	tylether (MTBE)		< 5.0	5.0	ug/kg	
4-Methyl-2-pe	ntanone (MIBK)		< 10.0	10.0	ug/kg	
Methylene chl	oride		< 20.0	20.0	ug/kg	
Styrene			< 5.0	5.0	ug/kg	
1,1,2,2-Tetrac			< 5.0	5.0	ug/kg	
Tetrachloroeth	nene		< 5.0	5.0	ug/kg	
Toluene			< 5.0	5.0	ug/kg	
1,1,1-Trichlor			< 5.0	5.0	ug/kg	
1,1,2-Trichlor			< 5.0	5.0	ug/kg	
Trichloroether	ne		< 5.0	5.0	ug/kg	

.

. .

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Analytical Report

. .

Client:	HUFF & HUFF INC.	U	•	Date C	ollected:	05/24/18
Project ID:	Torrence Ave			Time C	Collected:	9:52
Sample ID:	2-03 (0-1)			Date R	eceived:	05/24/18
Sample No:	18-2892-003			Date R	eported:	06/06/18
-	ported on a dry weight ba	isis.				
Analyte	oned on a dry worght of		Result	R.L.	Units	Flags
	nic Compounds	Method: 5035A/82	260B			
Analysis Date:		memour bobbino.				
Vinyl acetate			< 10.0	10.0	ug/kg	
Vinyl chloride)		< 10.0	10.0	ug/kg	
Xylene, Total			< 5.0	5.0	ug/kg	
Semi-Volatile Analysis Date		Method: 8270C		Preparation Preparation D	Method 3 Date: 05/24/	540C /18
Acenaphthene			< 330	330	ug/kg	
Acenaphthyle			< 330	330	ug/kg	
Anthracene			< 330	330	ug/kg	
Benzidine			< 330	330	ug/kg	
Benzo(a)anthr	acene		< 330	330	ug/kg	
Benzo(a)pyrer			< 90	90	ug/kg	
Benzo(b)fluor			< 330	330	ug/kg	
Benzo(k)fluor			< 330	330	ug/kg	
Benzo(ghi)per			< 330	330	ug/kg	
Benzoic acid	•		< 330	330	ug/kg	
Benzyl alcoho	ol		< 330	330	ug/kg	
	thoxy)methane		< 330	330	ug/kg	
bis(2-Chloroe	thyl)ether		< 330	330	ug/kg	
bis(2-Chlorois	sopropyl)ether		< 330	330	ug/kg	
bis(2-Ethylhes	xyl)phthalate		< 330	330	ug/kg	
4-Bromophen	yl phenyl ether		< 330	330	ug/kg	
Butyl benzyl j	phthalate		< 330	330	ug/kg	
Carbazole			< 330	330	ug/kg	
4-Chloroanili			< 330	330	ug/kg	
4-Chloro-3-m	•		< 330	330	ug/kg	
2-Chloronaph			< 330	330	ug/kg	
2-Chlorophen			< 330	330	ug/kg	
	yl phenyl ether		< 330	330	ug/kg	
Chrysene			< 330	330	ug/kg	
Dibenzo(a,h)a			< 90	90 220	ug/kg	
Dibenzofuran			< 330	330	ug/kg	
1,2-Dichlorob			< 330	330	ug/kg	
1,3-Dichlorob			< 330	330	ug/kg	
1,4-Dichlorob			< 330	330	ug/kg	
3,3'-Dichlorol			< 660 < 330	660 330	ug/kg ug/kg	
2,4-Dichlorop	onenol		~ 330	330	ug/ng	

.

٠

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.	Date Collected:	05/24/18
Project ID:	Torrence Ave	Time Collected:	9:52
	2-03 (0-1)	Date Received:	05/24/18
Sample No:	18-2892-003	Date Reported:	06/06/18
Results are rep	orted on a dry weight basis.		

Analyte		Result	R.L.	Units	Flags
Semi-Volatile Compounds Analysis Date: 05/25/18	Method: 8270C		Preparation Preparation D	Method 354 Date: 05/24/18	0C
Diethyl phthalate		< 330	330	ug/kg	
2,4-Dimethylphenol		< 330	330	ug/kg	
Dimethyl phthalate		< 330	330	ug/kg	
Di-n-butyl phthalate		< 330	330	ug/kg	
4,6-Dinitro-2-methylphenol		< 1,600	1600	ug/kg	
2,4-Dinitrophenol		< 1,600	1600	ug/kg	
2,4-Dinitrotoluene		< 250	250	ug/kg	
2,6-Dinitrotoluene		< 260	260	ug/kg	
Di-n-octylphthalate		< 330	330	ug/kg	
Fluoranthene		< 330	330	ug/kg	
Fluorene		< 330	330	ug/kg	
Hexachlorobenzene		< 330	330	ug/kg	
Hexachlorobutadiene		< 330	330	ug/kg	
Hexachlorocyclopentadiene		< 330	330	ug/kg	
Hexachloroethane		< 330	330	ug/kg	
Indeno(1,2,3-cd)pyrene		< 330	330	ug/kg	
Isophorone		< 330	330	ug/kg	
2-Methylnaphthalene		< 330	330	ug/kg	
2-Methylphenol		< 330	330	ug/kg	
3 & 4-Methylphenol		< 330	330	ug/kg	
Naphthalene		< 330	330	ug/kg	
2-Nitroaniline		< 1,600	1600	ug/kg	
3-Nitroaniline		< 1,600	1600	ug/kg	
4-Nitroaniline		< 1,600	1600	ug/kg	
Nitrobenzene		< 260	260	ug/kg	
2-Nitrophenol		< 1,600	1600	ug/kg	
4-Nitrophenol		< 1,600	1600	ug/kg	
n-Nitrosodi-n-propylamine		< 90	90	ug/kg	
n-Nitrosodimethylamine		< 330	330	ug/kg	
n-Nitrosodiphenylamine		< 330	330	ug/kg	
Pentachlorophenol		< 330	330	ug/kg	
Phenanthrene		< 330	330	ug/kg	
Phenol		< 330	330	ug/kg	
Pyrene		< 330	330	ug/kg	
Pyridine		< 330	330	ug/kg	
1,2,4-Trichlorobenzene		< 330	330	ug/kg	

.

.

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Analytical Report

.

Client:	HUFF & HUFF INC.	v	L	Date C	ollected:	05/24/18
Project ID:	Torrence Ave			Time (Collected:	9:52
Sample ID:	2-03 (0-1)			Date R	eceived:	05/24/18
Sample No:	18-2892-003			Date R	eported:	06/06/18
-	ported on a dry weight ba	isis.				
Analyte			Result	R.L.	Units	Flags
Semi-Volatile Analysis Date	-	Method: 8270C		Preparation Preparation D		
2,4,5-Trichlor	ophenol		< 330	330	ug/kg	
2,4,6-Trichlor	ophenol		< 330	330	ug/kg	
pH @ 25°C, I Analysis Date	1:2 :: 05/29/18 11:25	Method: 9045D	2004			
pH @ 25°C, 1	:2		8.29		Units	
Total Metals Analysis Date		Method: 6010C		Preparation Preparation I		
Antimony			< 1.0	1.0	mg/kg	
Arsenic			3.1	1.0	mg/kg	
Barium			95.3	0.5	mg/kg	
Beryllium			1.0	0.5	mg/kg	
Cadmium		- 0	< 0.5	0.5	mg/kg	
Calcium			3,560	50	mg/kg	
Chromium			25.5	0.5	mg/kg	
Cobalt			17.6	0.5	mg/kg	
Copper			19.5	0.5	mg/kg	
lron			25,900	5.0	mg/kg	
Lead			15.7	0.5	mg/kg	
Magnesium			4,770	50	mg/kg	
Manganese			304	0.5	mg/kg	
Nickel			30.5	0.5	mg/kg	
Potassium			1,360	50	mg/kg	
Selenium			< 1.0	1.0	mg/kg	
Silver			0.7	0.2	mg/kg	
Sodium			3,870	50	mg/kg	
Thallium			< 1.0	1.0	mg/kg	
Vanadium			34.7	1.0	mg/kg	
Zinc			52.2	1.0	mg/kg	
Total Mercu Analysis Date		Method: 74711	3			
Mercury			< 0.05	0.05	mg/kg	
TCLP Metal Analysis Date	ls Method 1311 e: 06/01/18	Method: 60100	C	Preparation Preparation		
Arsenic			< 0.010	0.010	mg/L	
Barium			< 1.0	1.0	mg/L	

.

First Environmental Laboratories, Inc.

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.	Date Collected:	05/24/18
Project ID:	Torrence Ave	Time Collected:	9:52
Sample ID:	2-03 (0-1)	Date Received:	05/24/18
Sample No:	18-2892-003	Date Reported:	06/06/18
Results are rep	orted on a dry weight basis.		

Analyte		Result	R.L.	Units	Flags
TCLP Metals Method 1311 Analysis Date: 06/01/18	Method: 6010C	Preparation Method 3010A Preparation Date: 05/30/18			
Beryllium		< 1.00	1.0	mg/L	
Cadmium		< 0.005	0.005	mg/L	
Chromium		< 0.005	0.005	mg/L	
Cobalt		< 0.1	0.1	mg/L	
Copper		< 0.1	0.1	mg/L	
Iron		0.2	0.1	mg/L	
Lead		< 0.005	0.005	mg/L	
Manganese		0.2	0.1	mg/L	
Nickel		< 0.1	0.1	mg/L	
Selenium		< 0.010	0.010	mg/L	
Silver		< 0.005	0.005	mg/L	
Zinc		< 0.1	0.1	mg/L	
TCLP Mercury Method 1311 Analysis Date: 05/31/18	Method: 7470A				
Mercury		< 0.0005	0.0005	mg/L	
TCLP Extraction Analysis Date: 05/30/18	Method: 1311				
TCLP Extraction		Complete	e		
SPLP Metals Method 1312 Analysis Date: 05/31/18	Method: 6010C		Preparation Preparation I		
Arsenic		< 0.010	0.010	mg/L	
Barium		< 1.0	1.0	mg/L	
Beryllium		< 0.004	0.004	mg/L	
Cadmium		< 0.005	0.005	mg/L	
Chromium		0.056	0.005	mg/L	
Cobalt		< 0.1	0.1	mg/L	
Copper		0.037	0.005	mg/L	
Iron		38.9	0.1	mg/L	
Lead		0.012	0.005	mg/L	
Manganese		0.1	0.1	mg/L	
Nickel		< 0.1	0.1	mg/L	
Selenium		< 0.010	0.010	mg/L	
Silver		< 0.005	0.005	mg/L	
Zinc		0.1	0.1	mg/L	

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & H	IUFF INC.			Date C	ollected: 0	5/24/18
Project ID:	Torrence A	Ave			Time C	Collected: 9	:52
Sample ID:	2-03 (0-1)				Date R	eceived: 0	5/24/18
Sample No:	18-2892-00	03			Date R	eported: 0	6/06/18
Results are rep	orted on a di	ry weight basis.					
Analyte			Resul	lt	R.L .	Units	Flags
SPLP Mercur Analysis Date:		312 Method: 7470A	0.01	0.1	0.0005		
Mercury			0.01	01	0.0005	mg/L	
SPLP Extrac Analysis Date:		Method: 1312					
SPLP Metals I	Extraction		Com	plete			
Sample QC Si	ummary:	Surrogate Recovery				%R Limi	ts
Method		Analyte	QC	C Result		Low Hi	gh
5035A/8260B		4-Bromofluorobenzene (Surr)	%R:	101.3		86 - 11	7
5035A/8260B		d8-Toluene (Surr)	%R:	101.2		90 - 11	0
5035A/8260B		Dibromofluoromethane (Surr)	%R:	104.3		77 - 12	20
8270C		2,4,6-Tribromophenol (Surr)	%R:	81.1		59 - 1 3	31
8270C		2-Fluorobiphenyl (Surr)	%R:	60.9		45 - 11	2
8270C		2-Fluorophenol (Surr)	%R:	49.4		41 - 84	t -
8270C		d14-Terphenyl (Surr)	%R:	77.4		56 - 12	20
8270C		d5-Nitrobenzene (Surr)	%R:	62.9		35 - 10)5
8270C		Phenol-d5 (surr)	%R:	55.5		50 - 10	00

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC	× ·	-	Date C	Collected:	05/24/18
Project ID:	Torrence Ave			Time (Collected:	10:42
Sample ID:	2-16 (0-5)			Date R	leceived:	05/24/18
Sample No:	18-2892-016			Date R	Reported:	06/06/18
-	ported on a dry weight	basis.				
Analyte			Result	R.L.	Units	Flags
Solids, Total	. 05/25/18 14:00	Method: 2540B				
Total Solids	: 05/25/18 14:00		78.46		%	
Volatile Orga	nic Compounds	Method: 5035A/82	260B			
Analysis Date						
Acetone			< 200	200	ug/kg	
Benzene			< 5.0	5.0	ug/kg	
Bromodichlor	omethane		< 5.0	5.0	ug/kg	
Bromoform			< 5.0	5.0	ug/kg	
Bromomethan	e		< 10.0	10.0	ug/kg	
2-Butanone (N	MEK)		< 100	100	ug/kg	
Carbon disulfi	ide		< 5.0	5.0	ug/kg	
Carbon tetracl	hloride		< 5.0	5.0	ug/kg	
Chlorobenzen	e		< 5.0	5.0	ug/kg	
Chlorodibrom	omethane		< 5.0	5.0	ug/kg	
Chloroethane			< 10.0	10.0	ug/kg	
Chloroform			< 5.0	5.0	ug/kg	
Chloromethan	e		< 10.0	10.0	ug/kg	
1,1-Dichloroe	thane		< 5.0	5.0	ug/kg	
1,2-Dichloroe	thane		< 5.0	5.0	ug/kg	
1,1-Dichloroe	thene		< 5.0	5.0	ug/kg	
cis-1,2-Dichlo	oroethene		< 5.0	5.0	ug/kg	
trans-1,2-Dich	nloroethene		< 5.0	5.0	ug/kg	
1,2-Dichlorop	ropane		< 5.0	5.0	ug/kg	
cis-1,3-Dichlo	propropene		< 4.0	4.0	ug/kg	
trans-1,3-Dich	nloropropene		< 4.0	4.0	ug/kg	
Ethylbenzene			< 5.0	5.0	ug/kg	
2-Hexanone			< 10.0	10.0	ug/kg	
Methyl-tert-b	utylether (MTBE)		< 5.0	5.0	ug/kg	
4-Methyl-2-pe	entanone (MIBK)		< 10.0	10.0	ug/kg	
Methylene ch			< 20.0	20.0	ug/kg	
Styrene			< 5.0	5.0	ug/kg	
1,1,2,2-Tetrac	chloroethane		< 5.0	5.0	ug/kg	
Tetrachloroet			< 5.0	5.0	ug/kg	
Toluene			< 5.0	5.0	ug/kg	
1,1,1-Trichlor	roethane		< 5.0	5.0	ug/kg	
1,1,2-Trichlor			< 5.0	5.0	ug/kg	
Trichloroethe			< 5.0	5.0	ug/kg	
					*C	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.				collected:	05/24/18
Project ID:	Torrence Ave				Collected:	10:42
Sample ID:	2-16 (0-5)			Date R	leceived:	05/24/18
Sample No:	18-2892-016			Date R	leported:	06/06/18
Results are rep	orted on a dry weight l	oasis.				
Analyte			Result	R.L.	Units	Flags
Volatile Orga Analysis Date:	nic Compounds : 05/31/18	Method: 5035A/82	260B			
Vinyl acetate			< 10.0	10.0	ug/kg	
Vinyl chloride	•		< 10.0	10.0	ug/kg	
Xylene, Total			< 5.0	5.0	ug/kg	
Semi-Volatile Analysis Date		Method: 8270C		Preparation Preparation I	Method 3 Date: 05/24/	540C /18
Acenaphthene			< 330	330	ug/kg	
Acenaphthyle			< 330	330	ug/kg	
Anthracene			< 330	330	ug/kg	
Benzidine			< 330	330	ug/kg	
Benzo(a)anthr	racene		< 330	330	ug/kg	
Benzo(a)pyrer	ne		< 90	90	ug/kg	
Benzo(b)fluor	anthene		< 330	330	ug/kg	
Benzo(k)fluor	anthene		< 330	330	ug/kg	
Benzo(ghi)per	ylene		< 330	330	ug/kg	
Benzoic acid			< 330	330	ug/kg	
Benzyl alcoho			< 330	330	ug/kg	
bis(2-Chloroe	thoxy)methane		< 330	330	ug/kg	
bis(2-Chloroe	thyl)ether		< 330	330	ug/kg	
bis(2-Chlorois			< 330	330	ug/kg	
bis(2-Ethylhez	xyl)phthalate		< 330	330	ug/kg	
	yl phenyl ether		< 330	330	ug/kg	
Butyl benzyl p	ohthalate		< 330	330	ug/kg	
Carbazole			< 330	330	ug/kg	
4-Chloroanilin			< 330	330	ug/kg	
4-Chloro-3-m			< 330	330	ug/kg	
2-Chloronaph			< 330	330	ug/kg	
2-Chlorophen			< 330	330	ug/kg	
•	yl phenyl ether		< 330	330 330	ug/kg	
Chrysene	4		< 330 < 90	90	ug/kg	
Dibenzo(a,h)a			< 90 < 330	330	ug/kg ug/kg	
Dibenzofuran			< 330	330	ug/kg ug/kg	
1,2-Dichlorob			< 330 < 330	330	ug/kg ug/kg	
1,3-Dichlorob			< 330	330	ug/kg ug/kg	
1,4-Dichlorob			< 660	660	ug/kg	
3,3'-Dichlorob 2,4-Dichlorop			< 330	330	ug/kg	
2,4-Diemotop			- 550	220		

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.	Date Collected:	05/24/18
Project ID:	Torrence Ave	Time Collected:	10:42
Sample ID:	2-16 (0-5)	Date Received:	05/24/18
Sample No:	18-2892-016	Date Reported:	06/06/18
Results are rep	orted on a dry weight basis.		

Analyte		Result	R.L.	Units	Flags
Semi-Volatile Compounds Analysis Date: 05/29/18	Method: 8270C		Preparation Preparation D		
Diethyl phthalate		< 330	330	ug/kg	
2,4-Dimethylphenol		< 330	330	ug/kg	
Dimethyl phthalate		< 330	330	ug/kg	
Di-n-butyl phthalate		< 330	330	ug/kg	
4,6-Dinitro-2-methylphenol		< 1,600	1600	ug/kg	
2,4-Dinitrophenol		< 1,600	1600	ug/kg	
2,4-Dinitrotoluene		< 250	250	ug/kg	
2,6-Dinitrotoluene		< 260	260	ug/kg	
Di-n-octylphthalate		< 330	330	ug/kg	
Fluoranthene		< 330	330	ug/kg	
Fluorene		< 330	330	ug/kg	
Hexachlorobenzene		< 330	330	ug/kg	
Hexachlorobutadiene		< 330	330	ug/kg	
Hexachlorocyclopentadiene		< 330	330	ug/kg	
Hexachloroethane		< 330	330	ug/kg	
Indeno(1,2,3-cd)pyrene		< 330	330	ug/kg	
lsophorone		< 330	330	ug/kg	
2-Methylnaplıthalene		< 330	330	ug/kg	
2-Methylphenol		< 330	330	ug/kg	
3 & 4-Methylphenol		< 330	330	ug/kg	
Naphthalene		< 330	330	ug/kg	
2-Nitroaniline		< 1,600	1600	ug/kg	
3-Nitroaniline		< 1,600	1600	ug/kg	
4-Nitroaniline		< 1,600	1600	ug/kg	
Nitrobenzene		< 260	260	ug/kg	
2-Nitrophenol		< 1,600	1600	ug/kg	
4-Nitrophenol		< 1,600	1600	ug/kg	
n-Nitrosodi-n-propylamine		< 90	90	ug/kg	
n-Nitrosodimethylamine		< 330	330	ug/kg	
n-Nitrosodiphenylamine		< 330	330	ug/kg	
Pentachlorophenol		< 330	330	ug/kg	
Phenanthrene		< 330	330	ug/kg	
Phenol		< 330	330	ug/kg	
Pyrene		< 330	330	ug/kg	
Pyridine		< 330	330	ug/kg	
1,2,4-Trichlorobenzene		< 330	330	ug/kg	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

		1 kiidi y tiet	at rep				
Client:	HUFF & HUFF INC.				Date C	Collected:	05/24/18
Project ID:	Torrence Ave				Time (Collected:	10:42
Sample ID:	2-16 (0-5)				Date R	Received:	05/24/18
Sample No:	18-2892-016				Date F	Reported:	06/06/18
Results are rep	orted on a dry weight ba	asis.					
Analyte				Result	R.L.	Units	Flags
Semi-Volatile Analysis Date:		Method: 8270	С		Preparation Preparation I		
2,4,5-Trichlor	ophenol		<	330	330	ug/kg	
2,4,6-Trichlor	ophenol		<	330	330	ug/kg	
pH @ 25°C, 1 Analysis Date:	:2 : 05/29/18 11:25	Method: 9045	D 2004				
рН @ 25°С, 1	:2			8.35		Units	
Total Metals Analysis Date:	: 05/31/18	Method: 6010	С		Preparation Preparation I		
Antimony			<	1.0	1.0	mg/kg	
Arsenic			<	1.0	1.0	mg/kg	
Barium				29.6	0.5	mg/kg	
Beryllium			<	0.5	0.5	mg/kg	
Cadmium			<	0.5	0.5	mg/kg	
Calcium				53,300	50	mg/kg	
Chromium				18.7	0.5	mg/kg	
Cobalt				6.9	0.5	mg/kg	
Copper				11.4	0.5	mg/kg	
Iron				13,400	5.0	mg/kg	
Lead				8.4	0.5	mg/kg	
Magnesium				26,200	50	mg/kg	
Manganese				261	0.5	mg/kg	
Nickel				23.7	0.5	mg/kg	
Potassium				2,330	50	mg/kg	
Selenium			<	1.0	1.0	mg/kg	
Silver				0.4	0.2	mg/kg	
Sodium				769	50	mg/kg	
Thallium			<	1.0	1.0	mg/kg	
Vanadium				16.4	1.0	mg/kg	
Zinc				46.4	1.0	mg/kg	
Total Mercur Analysis Date		Method: 7471		0.07		74	
Mercury			<	0.05	0.05	mg/kg	
TCLP Metals Analysis Date	Method 1311 : 06/01/18	Method: 6010	С		Preparation Preparation I		
Arsenic				0.010	0.010	mg/L	
Barium			<	1.0	1.0	mg/L	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.	Date Collected:	05/24/18
Project ID:	Torrence Ave	Time Collected:	10:42
Sample ID:	2-16 (0-5)	Date Received:	05/24/18
Sample No:	18-2892-016	Date Reported:	06/06/18
Results are rep	orted on a dry weight basis.		

Analyte		Result	R.L.	Units	Flags
TCLP Metals Method 1311 Analysis Date: 06/01/18	Method: 6010C			Method 301 ate: 05/30/18	
Beryllium		< 1.00	1.0	mg/L	
Cadmium		< 0.005	0.005	mg/L	
Chromium		< 0.005	0.005	mg/L	
Cobalt		< 0.1	0.1	mg/L	
Copper		< 0.1	0.1	mg/L	
lron		< 0.1	0.1	mg/L	
Lead		< 0.005	0.005	mg/L	
Manganese		1.3	0.1	mg/L	
Nickel		< 0.1	0.1	mg/L	
Selenium		< 0.010	0.010	mg/L	
Silver		< 0.005	0.005	mg/L	
Zinc		< 0.1	0.1	mg/L	
TCLP Mercury Method 1311 Analysis Date: 05/31/18	Method: 7470A				
Mercury		< 0.0005	0.0005	mg/L	
TCLP Extraction Analysis Date: 05/30/18	Method: 1311				
TCLP Extraction		Complete			
SPLP Metals Method 1312 Analysis Date: 06/01/18	Method: 6010C			Method 301 Date: 05/31/18	
Arsenic		< 0.010	0.010	mg/L	
Barium		< 1.0	1.0	mg/L	
Beryllium		< 0.004	0.004	mg/L	
Cadmium		< 0.005	0.005	mg/L	
Chromium		0.019	0.005	mg/L	
Cobalt		< 0.1	0.1	mg/L	
Copper		0.013	0.005	mg/L	
lron		14.2	0.1	mg/L	
Lead		< 0.005	0.005	mg/L	
Manganese		0.1	0.1	mg/L	
Nickel		< 0.1	0.1	mg/L	
Selenium		< 0.010	0.010	mg/L	
Silver		< 0.005	0.005	mg/L	
Zinc		< 0.1	0.1	mg/L	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.			Date C	ollected: 0	5/24/18
Project ID:	Forrence Ave			Time C	Collected: 1	0:42
Sample ID: 2	2-16 (0-5)			Date R	eceived: 0	5/24/18
Sample No:	18-2892-016			Date R	eported: 0	6/06/18
Results are repor	ted on a dry weight basis.					
Analyte		Resul	t	R.L.	Units	Flags
SPLP Mercury Analysis Date: (
Mercury		< 0.000)5	0.0005	mg/L	
SPLP Extraction Analysis Date: (
SPLP Metals Ex	traction	Com	plete			
Sample QC Sum	amary: Surrogate Recovery				%R Limi	ts
Method	Analyte	QC	Result		Low Hi	gh
5035A/8260B	4-Bromofluorobenzene (Surr) %R:	98.7		86 - 11	7
5035A/8260B	d8-Toluene (Surr)	%R:	<i>99</i> .8		90 - 11	0
5035A/8260B	Dibromofluoromethane (Sur	r) %R:	101.4		77 - 12	0
8270C	2,4,6-Tribromophenol (Surr)	% R :	94.4		59 - 13	1
8270C	2-Fluorobiphenyl (Surr)	%R:	80		45 - 11	2
8270C	2-Fluorophenol (Surr)	%R:	66.6		41 - 84	!
8270C	d14-Terphenyl (Surr)	%R:	<i>83.2</i>		56 - 12	0
8270C	d5-Nitrobenzene (Surr)	%R:	80.3		35 - 10	95
8270C	Phenol-d5 (surr)	%R:	70.2		50 - 10	0

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client: HUFF & HUFF INC	2.		Date C	Collected:	05/24/18
Project ID: Torrence Ave			Time Collected:		11:03
Sample ID: 2-23 (0-5)				Received:	05/24/18
Sample No: 18-2892-023				Reported:	06/06/18
Results are reported on a dry weight	hogia		Date	cepoi ieu.	00/00/10
Analyte	04515.	Result	R.L.	Units	Flags
Solids, Total	Method: 2540B				0
Analysis Date: 05/25/18 14:00	Method: 254015				
Total Solids		83.16		%	
Volatile Organic Compounds	Method: 5035A/82	260B			
Analysis Date: 06/01/18					
Acetone		< 200	200	ug/kg	
Benzene		< 5.0	5.0	ug/kg	
Bromodichloromethane		< 5.0	5.0	ug/kg	
Bromoform		< 5.0	5.0	ug/kg	
Bromomethane		< 10.0	10.0	ug/kg	
2-Butanone (MEK)		< 100	100	ug/kg	
Carbon disulfide		< 5.0	5.0	ug/kg	
Carbon tetrachloride		< 5.0	5.0	ug/kg	
Chlorobenzene		< 5.0	5.0	ug/kg	
Chlorodibromomethane		< 5.0	5.0	ug/kg	
Chloroethane		< 10.0	10.0	ug/kg	
Chloroform		< 5.0	5.0	ug/kg	
Chloromethane		< 10.0	10.0	ug/kg	
1,1-Dichloroethane		< 5.0	5.0	ug/kg	
1,2-Dichloroethane		< 5.0	5.0	ug/kg	
1,1-Dichloroethene		< 5.0	5.0	ug/kg	
cis-1,2-Dichloroethene	<i>i</i> .	< 5.0	5.0	ug/kg	
trans-1,2-Dichloroethene		< 5.0	5.0	ug/kg	
1,2-Dichloropropane		< 5.0	5.0	ug/kg	
cis-1,3-Dichloropropene		< 4.0	4.0	ug/kg	
trans-1,3-Dichloropropene		< 4.0	4.0	ug/kg	
Ethylbenzene		< 5.0	5.0	ug/kg	
2-Hexanone		< 10.0	10.0	ug/kg	
Methyl-tert-butylether (MTBE)		< 5.0	5.0	ug/kg	
4-Methyl-2-pentanone (MlBK)		< 10.0	10.0	ug/kg	
Methylene chloride		< 20.0	20.0	ug/kg	
Styrene	Ý.	< 5.0	5.0	ug/kg	
1,1,2,2-Tetrachloroethane		< 5.0	5.0	ug/kg	
Tetrachloroethene		< 5.0	5.0	ug/kg	
Toluene		< 5.0	5.0	ug/kg	
1,1,1-Trichloroethane		< 5.0	5.0	ug/kg	
1,1,2-Trichloroethane		< 5.0	5.0	ug/kg	
Trichloroethene		< 5.0	5.0	ug/kg	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.	·	-	Date C	ollected:	05/24/18
Project ID:	Torrence Ave			Time C	Collected:	11:03
Sample ID:	2-23 (0-5)			Date R	eceived:	05/24/18
Sample No:	18-2892-023			Date R	eported:	06/06/18
-	orted on a dry weight l	basis.				
Analyte			Result	R.L.	Units	Flags
Volatile Orga Analysis Date	nic Compounds : 06/01/18	Method: 5035A/82	260B			
Vinyl acetate			< 10.0	10.0	ug/kg	
Vinyl chloride	•		< 10.0	10.0	ug/kg	
Xylene, Total			< 5.0	5.0	ug/kg	
Semi-Volatile Analysis Date		Method: 8270C		Preparation Preparation D		
Acenaphthene			< 330	330	ug/kg	
Acenaphthyle			< 330	330	ug/kg	
Anthracene			< 330	330	ug/kg	
Benzidine			< 330	330	ug/kg	
Benzo(a)anthr	acene		< 330	330	ug/kg	
Benzo(a)pyrei			< 90	90	ug/kg	
Benzo(b)fluor	anthene		< 330	330	ug/kg	
Benzo(k)fluor	anthene		< 330	330	ug/kg	
Benzo(ghi)per	rylene		< 330	330	ug/kg	
Benzoic acid			< 330	330	ug/kg	
Benzyl alcoho	ol		< 330	330	ug/kg	
•	thoxy)methane		< 330	330	ug/kg	
bis(2-Chloroe	• · ·		< 330	330	ug/kg	
•	sopropyl)ether		< 330	330	ug/kg	
bis(2-Ethylhe	• • •		< 330	330	ug/kg	
•	yl phenyl ether		< 330	330	ug/kg	
Butyl benzyl	plithalate		< 330	330 330	ug/kg	
Carbazole			< 330	330	ug/kg	
4-Chloroanili			< 330 < 330	330	ug/kg ug/kg	
4-Chloro-3-m	• •		< 330	330	ug/kg	
2-Chloronaph			< 330	330	ug/kg	
2-Chlorophen	yl phenyl ether		< 330	330	ug/kg	
Chrysene	lyi phenyi ether		< 330	330	ug/kg	
Dibenzo(a,h)	anthracene		< 90	90	ug/kg	
Dibenzo(a,n)a			< 330	330	ug/kg	
1,2-Dichlorot			< 330	330	ug/kg	
1,3-Dichlorot			< 330	330	ug/kg	
1,4-Dichlorot			< 330	330	ug/kg	
3,3'-Dichloro			< 660	660	ug/kg	
2,4-Dichlorop			< 330	330	ug/kg	
· ·						

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.	Date Collected:	05/24/18
Project ID:	Torrence Ave	Time Collected:	11:03
Sample ID:	2-23 (0-5)	Date Received:	05/24/18
Sample No:	18-2892-023	Date Reported:	06/06/18
Results are rep	orted on a dry weight basis.		

Analyte	0 (N)	Result	R.L.	Units	Flags
Semi-Volatile Compounds Analysis Date: 05/30/18	Method: 8270C	Preparation Method 3540C Preparation Date: 05/29/18			
Diethyl phthalate		< 330	330	ug/kg	
2,4-Dimethylphenol		< 330	330	ug/kg	
Dimethyl phthalate		< 330	330	ug/kg	
Di-n-butyl phthalate		< 330	330	ug/kg	
4,6-Dinitro-2-methylphenol		< 1,600	1600	ug/kg	
2,4-Dinitrophenol		< 1,600	1600	ug/kg	
2,4-Dinitrotoluene		< 250	250	ug/kg	
2,6-Dinitrotoluene		< 260	260	ug/kg	
Di-n-octylphthalate		< 330	330	ug/kg	
Fluoranthene		< 330	330	ug/kg	
Fluorene		< 330	330	ug/kg	
Hexachlorobenzene		< 330	330	ug/kg	
Hexachlorobutadiene		< 330	330	ug/kg	
Hexachlorocyclopentadiene		< 330	330	ug/kg	
Hexachloroethane		< 330	330	ug/kg	
Indeno(1,2,3-cd)pyrene		< 330	330	ug/kg	
Isophorone		< 330	330	ug/kg	
2-Methylnaphthalene		< 330	330	ug/kg	
2-Methylphenol		< 330	330	ug/kg	
3 & 4-Methylphenol		< 330	330	ug/kg	
Naphthalene		< 330	330	ug/kg	
2-Nitroaniline		< 1,600	1600	ug/kg	
3-Nitroaniline		< 1,600	1600	ug/kg	
4-Nitroaniline		< 1,600	1600	ug/kg	
Nitrobenzene		< 260	260	ug/kg	
2-Nitrophenol		< 1,600	1600	ug/kg	
4-Nitrophenol		< 1,600	1600	ug/kg	
n-Nitrosodi-n-propylamine		< 90	90	ug/kg	
n-Nitrosodimethylamine		< 330	330	ug/kg	
n-Nitrosodiphenylamine		< 330	330	ug/kg	
Pentachlorophenol		< 330	330	ug/kg	
Phenanthrene		< 330	330	ug/kg	
Phenol		< 330	330	ug/kg	
Pyrene		< 330	330	ug/kg	
Pyridine		< 330	330	ug/kg	
1,2,4-Trichlorobenzene		< 330	330	ug/kg	

ľ

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client: H	UFF & HUFF INC.	J			Date (Collected:	05/24/18
						Collected:	11:03
0	orrence Ave					Received:	05/24/18
*	23 (0-5)					Reported:	06/06/18
	3-2892-023	•			Date r	ceporteu:	00/00/10
	ed on a dry weight ba	asis.		Result	R.L.	Units	Flags
Analyte				Kesult			
Semi-Volatile Co Analysis Date: 05		Method: 8			Preparation Preparation I		
2,4,5-Trichloroph	enol			< 330	330	ug/kg	
2,4,6-Trichloroph	enol		•	< 330	330	ug/kg	
pH @ 25°C, 1:2 Analysis Date: 03	5/29/18 11:25	Method: 9	045D 2004				
pH @ 25°C, 1:2				8.52		Units	
Total Metals Analysis Date: 03	5/30/18	Method: 6	010C		Preparation Preparation I		
Antimony				< 1.0	1.0	mg/kg	
Arsenic				3.8	1.0	mg/kg	
Barium				50.4	0.5	mg/kg	
Beryllium				0.6	0.5	mg/kg	
Cadmium	5 Å			< 0.5	0.5	mg/kg	
Calcium				21,700	50	mg/kg	
Chromium				17.5	0.5	mg/kg	
Cobalt				7.8	0.5	mg/kg	
Copper				14.8	0.5	mg/kg	
Iron				20,300	5.0	mg/kg	
Lead				9.0	0.5	mg/kg	
Magnesium				10,800	50	mg/kg	
Manganese				155	0.5	mg/kg	
Nickel				23.7	0.5	mg/kg	
Potassium				2,790	50	mg/kg	
Selenium				< 1.0	1.0	mg/kg	
Silver				< 0.2	0.2	mg/kg	
Sodium				965	50	mg/kg	
Thallium				< 1.0	1.0	mg/kg	
Vanadium				23.1	1.0	mg/kg	
Zinc				35.4	1.0	mg/kg	
Total Mercury Analysis Date: 0	5/29/18	Method: 7					
Mercury				< 0.05	0.05	mg/kg	
TCLP Metals M Analysis Date: 0		Method: 6	010C		Preparation Preparation		
Arsenic				< 0.010	0.010	mg/L	
Barium				< 1.0	1.0	mg/L	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.	Date Collected:	05/24/18
Project ID:	Torrence Ave	Time Collected:	11:03
Sample ID:	2-23 (0-5)	Date Received:	05/24/18
Sample No:	18-2892-023	Date Reported:	06/06/18
Results are rep	orted on a dry weight basis.		

Analyte		Result	R.L.	Units	Flags
TCLP Metals Method 1311 Analysis Date: 06/01/18	Method: 6010C		Preparation Preparation D		
Beryllium		< 1.00	1.0	mg/L	
Cadmium		< 0.005	0.005	mg/L	
Chromium		< 0.005	0.005	mg/L	
Cobalt		< 0.1	0.1	mg/L	
Copper		< 0.1	0.1	mg/L	
Iron		< 0.1	0.1	mg/L	
Lead		< 0.005	0.005	mg/L	
Manganese		1.4	0.1	mg/L	
Nickel		< 0.1	0.1	mg/L	
Selenium		< 0.010	0.010	mg/L	
Silver		< 0.005	0.005	mg/L	
Zinc		< 0.1	0.1	mg/L	
TCLP Mercury Method 1311 Analysis Date: 06/01/18	Method: 7470A				
Mercury		< 0.0005	0.0005	mg/L	
TCLP Extraction Analysis Date: 05/30/18	Method: 1311				
TCLP Extraction		Complete			
SPLP Metals Method 1312 Analysis Date: 06/01/18	Method: 6010C		Preparation Preparation D	Method 301 Date: 05/31/18	0A
Arsenic		< 0.010	0.010	mg/L	
Barium		< 1.0	1.0	mg/L	
Beryllium		< 0.004	0.004	mg/L	
Cadmium		< 0.005	0.005	mg/L	
Chromium		0.023	0.005	mg/L	
Cobalt		< 0.1	0.1	mg/L	
Copper		0.015	0.005	mg/L	
Iron	¥	21.9	0.1	mg/L	
Lead		0.008	0.005	mg/L	
Manganese		0.1	0.1	mg/L	
Nickel		< 0.1	0.1	mg/L	
Selenium		< 0.010	0.010	mg/L	
Silver		< 0.005	0.005	mg/L	
Zinc		< 0.1	0.1	mg/L	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF	INC.			Date C	ollected:	05/24/18
Project ID:	Torrence Ave				Time C	collected:	11:03
Sample ID:	2-23 (0-5)				Date R	eceived:	05/24/18
Sample No:	18-2892-023				Date R	eported:	06/06/18
Results are rep	orted on a dry we	eight basis.					
Analyte			Resu	lt	R.L.	Units	Flags
SPLP Mercui Analysis Date:	ry Method 1312 05/31/18	Method: 7470A					
Mercury			< 0.00	05	0.0005	mg/L	
SPLP Extrac Analysis Date:		Method: 1312					
SPLP Metals I	Extraction		Com	plete			
Sample QC Si	ummary: Su	rogate Recovery				%R Li	mits
Method	And	alyte	QC	C Result		Low	
5035A/8260B	4-1	Bromofluorobenzene (Surr)	%R:	99.5		86 -	117
5035A/8260B	d8-	Toluene (Surr)	%R:	100.8		90 -	110
			%R:	102.1		77 -	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC	•		Date C	Collected:	05/24/18	
Project ID:	Torrence Ave			Time Collected:		11:25	
Sample ID:	2-24 (0-5)			Date R	leceived:	05/24/18	
Sample No:	18-2892-024			Date R	Reported:	06/06/18	
-	ported on a dry weight	basis.			-		
Analyte			Result	R.L.	Units	Flags	
Solids, Total		Method: 2540B					
Analysis Date	: 05/25/18 14:00						
Total Solids			77.6		%		
Volatile Orga Analysis Date	anic Compounds : 06/01/18	Method: 5035A/82	260B				
Acetone			< 200	200	ug/kg		
Benzene			< 5.0	5.0	ug/kg		
Bromodichlor	omethane		< 5.0	5.0	ug/kg		
Bromoform			< 5.0	5.0	ug/kg		
Bromomethan	ie		< 10.0	10.0	ug/kg		
2-Butanone (N	MEK)		< 100	100	ug/kg		
Carbon disulf	ide		< 5.0	5.0	ug/kg		
Carbon tetracl	hloride		< 5.0	5.0	ug/kg		
Chlorobenzen	e		< 5.0	5.0	ug/kg		
Chlorodibrom	omethane		< 5.0	5.0	ug/kg		
Chloroethane			< 10.0	10.0	ug/kg		
Chloroform			< 5.0	5.0	ug/kg		
Chloromethar	ne		< 10.0	10.0	ug/kg		
1,1-Dichloroe	thane		< 5.0	5.0	ug/kg		
1,2-Dichloroe	thane		< 5.0	5.0	ug/kg		
1,1-Dichloroe	othene		< 5.0	5.0	ug/kg		
cis-1,2-Dichle	proethene		< 5.0	5.0	ug/kg		
trans-1,2-Dicl	nloroethene		< 5.0	5.0	ug/kg		
1,2-Dichlorop	propane		< 5.0	5.0	ug/kg		
cis-1,3-Dichle	propropene		< 4.0	4.0	ug/kg		
trans-1,3-Dicl	nloropropene		< 4.0	4.0	ug/kg		
Ethylbenzene			< 5.0	5.0	ug/kg		
2-Hexanone			< 10.0	10.0	ug/kg		
	utylether (MTBE)		< 5.0	5.0	ug/kg		
	entanone (MIBK)		< 10.0	10.0	ug/kg		
Methylene ch	loride		< 20.0	20.0	ug/kg		
Styrene			< 5.0	5.0	ug/kg		
1,1,2,2-Tetrac			< 5.0	5.0	ug/kg		
Tetrachloroet	hene		< 5.0	5.0	ug/kg		
Toluene			< 5.0	5.0	ug/kg		
1,1,1-Trichlor			< 5.0	5.0	ug/kg		
1,1,2-Trichlor			< 5.0	5.0	ug/kg		
Trichloroethe	ne		< 5.0	5.0	ug/kg		

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Project ID: Sample ID: 2:24 (0-5)Time Collected: Date Received: 05/24/18 Date Reported: 06/06/18Results are reported on a dry weight basis.Date Reported: O6/06/18AnalyteResult of ResultResultAnalyte:ResultR.L.UnitsFlagsVolatile Organic Compounds Analysis Date: 06/01/18Method: 5035A/8260BVinyl acetate< 10.0	Client:	HUFF & HUFF INC	۳ ۲.	•	Date C	Collected:	05/24/18
Sample ID: 2-24 (0-5) Date Received: 05/24/18 Sample No: 18-2892-024 Date Reported: 06/06/13 Results are reported on a dry weight basis. Result RL. Units Flags Analyte Result RL. Units Flags Vinyl acetate 10.0 0.0.0 ug/kg Vinyl chloride 10.0 10.0 ug/kg Xylene, Total 5.0 5.0 ug/kg Semi-Volatile Compounds Method: 8270C Preparation Method 3540C Preparation Date: 05/29/18 Accenaphthene 330 330 ug/kg Benzidine 330 330 ug/kg Benzo(a)pryrene 90 90 ug/kg Benzo(b)fluoranthene 330 330 ug/kg Benzo(ch)fluoranthene 330 330 ug/kg Benzo(ch)fluoranthene 330 330 ug/kg Benzo(ch)fluoranthene	Project ID:	Torrence Ave			Time (Collected:	11:25
Date Reported: 06/06/18 Results are reported on a dry weight basis. Analyte Result Result Result Units Flags Volatile Organic Compounds Analysis Date: 06/01/18 Method: 5035A/8260B 10.0 10.0 ug/kg Vinyl acetate < 10.0		2-24 (0-5)			Date R	leceived:	05/24/18
Results are reported on a dry weight basis. Result R.L. Units Flags Analysic Result R.L. Units Flags Volatile Organic Compounds Analysis Date: 06/01/18 Method: 5035A/8260B Vinyl acetate < 10.0 10.0 ug/kg Vinyl acetate < 10.0 10.0 ug/kg Semi-Volatile Compounds Acenaphthere < 330 330 ug/kg Acenaphthylene < 330 330 ug/kg Acenaphthylene < 330 330 ug/kg Anthracene < 330 330 ug/kg Benzo(a)anthracene < 330 330 ug/kg Benzo(b)fluoranthene < 330 330 ug/kg Benzo(b)fluoranthene < 330 330 ug/kg Benzo(c)fluoranthene < 330 330 ug/kg Benzo(b)fluoranthene	-				Date R	Reported:	06/06/18
Analyte Result R.L. Units Flags Volatile Organic Compounds Analysis Date: 06/01/18 Method: 5035A/8260B Vinyl actuate < 10.0 10.0 ug/kg Vinyl actuate < 10.0 10.0 ug/kg Semi-Volatile Compounds Analysis Date: 05/30/18 Method: 8270C Preparation Method 3540C Preparation Date: 05/29/18 Acenaphthylene < 330 330 ug/kg Acenaphthylene < 330 330 ug/kg Benzidine < 330 330 ug/kg Benzidine < 330 330 ug/kg Benzo(a)anthracene < 330 330 ug/kg Benzo(a)(h)uoranthene < 330 330 ug/kg Benzo(b)fluoranthene < 330 330 ug/kg Benzo(b)fluoranthene < 330 330 ug/kg B	-		basis.				
Analysis Date: 06/01/18 Vinyl acetate < 10.0 10.0 ug/kg Vinyl chloride < 5.0 5.0 ug/kg Semi-Volatile Compounds Method: 8270C Preparation Date: 05/29/18 Acenaphthene < 330 330 ug/kg Acenaphthylene < 330 330 ug/kg Acenaphthylene < 330 330 ug/kg Benzolapyrene < 90 90 ug/kg Benzolapyrene < 90 90 ug/kg Benzol(b)fluoranthene < 330 330 ug/kg		Solled on a dry weight		Result	R.L.	Units	Flags
Ninyl chloride Xylene, Total < 10.0 10.0 ug/kg Semi-Volatile Compounds Analysis Date: 05/30/18 Method: 8270C Preparation Method 3540C Preparation Method 3540C Acenaphthene < 330			Method: 5035A/82	260B			
Vinyl chloride Xylene, Total< 10.0 ug/kg ds/kg Semi-Volatile Compounds Analysis Date: 05/30/18Method: 8270CPreparation Method 3540C Preparation Date: 05/29/18Acenaphthene< 330	Vinyl acetate			< 10.0	10.0	ug/kg	
Xylene, Total < 5.0 5.0 ug/kg Semi-Volatile Compounds Analysis Date: 05/30/18 Method: 8270C Preparation Date: 05/20/18 Acenaphthene < 330	•	•		< 10.0	10.0	ug/kg	
Analysis Date: $05/30/18$ Preparation Date: $05/29/18$ Acenaphthene 330 ug/kg Acenaphthylene 330 ug/kg Anthracene 330 ug/kg Benzidine 330 ug/kg Benzo(a)anthracene 330 ug/kg Benzo(a)pyrene 90 ug/kg Benzo(b)fluoranthene 330 ug/kg Benzo(ghi)perylene 330 ug/kg Benzo(ghi)perylene 330 ug/kg Benzo(ghi)perylene 330 ug/kg Benzo(ghi)perylene 330 ug/kg Benzo(cholo 330 ug/kg bis(2-Chloroethoxy)methane 330 ug/kg bis(2-Chloroethyl)pether bis(2-Chloroethyl)phthalate d-Bromophenyl phenyl ether d-Bromophenyl phenyl ether	•			< 5.0	5.0	ug/kg	
Acenaphthylene< 330 330 ug/kg Anthracene< 330			Method: 8270C				
Acenaphthylene< 330 330 ug/kg Anthracene< 330 330 ug/kg Benzidine< 330 330 ug/kg Benzo(a)anthracene< 90 90 ug/kg Benzo(a)pyrene< 90 90 ug/kg Benzo(b)fluoranthene< 330 330 ug/kg Benzo(k)fluoranthene< 330 330 ug/kg Benzo(ghi)perylene< 330 330 ug/kg Benzo(ghi)perylene< 330 330 ug/kg Benzo(aid< 330 330 ug/kg Benzo(chorethoxy)methane< 330 330 ug/kg bis(2-Chloroethoxy)methane< 330 330 ug/kg bis(2-Chloroethoxy)methane< 330 ug/kg bis(2-Chloroethoxy)methane< 330 330 ug/kg bis(2-Chloroethoxy)methane< 330 330 ug/kg bis(2-Chloroethyl)ether< 330 330 ug/kg bis(2-Chloroethyl)ether< 330 330 ug/kg bis(2-Chlorostopropyl)ether< 330 330 ug/kg Carbazole< 330 330 ug/kg Chloroaniline< 330 330 ug/kg 2-Chloroanpthalene< 330 330 ug/kg 2-Chlorophenol< 330 330 ug/kg 2-Chlorophenol< 330 330 ug/kg 2-Chlorophenol< 330 330 ug/kg 2-Chlorophenol< 330 330 ug/kg	Acenaphthene	;		< 330	330	ug/kg	
Anthracene< 330330 ug/kg Benzidine< 330				< 330	330	ug/kg	
Benzo(a)anthracene< 330 330 ug/kg Benzo(a)pyrene< 90				< 330	330	ug/kg	
Denset < 90 90 ug/kg Benzo(a)pyrene < 330 330 ug/kg Benzo(k)fluoranthene < 330 330 ug/kg Benzo(ghi)perylene < 330 330 ug/kg Benzoic acid < 330 330 ug/kg Benzoic acid < 330 330 ug/kg Benzoic acid < 330 330 ug/kg Benzoic acid < 330 330 ug/kg Benzoic acid < 330 330 ug/kg bis(2-Chloroethoxy)methane < 330 330 ug/kg bis(2-Chloroethyl)ether < 330 330 ug/kg bis(2-Chloroisopropyl)ether < 330 330 ug/kg bis(2-Chloroisopropyl)ether < 330 330 ug/kg 4-Bromophenyl phenyl ether < 330 330 ug/kg 4-Bromophenyl phenyl ether < 330 330 ug/kg 4-Chloro-3-methylphenol < 330 330 ug/kg 2-Chloronaphthalene < 330 330 ug/kg 2-Chlorophenol < 330 330 ug/kg 2-Chlorophenol < 330 330 ug/kg 2-Chlorophenol < 330 330 ug/kg 2-Chlorophenol < 330 330 ug/kg 2-Chlorophenol < 330 330 ug/kg 2-Chlorophenol < 330 330 ug/kg 2-Chlorophenol < 330 330 ug/kg 1-Chlorophenyl phenyl ether < 330 330 ug/kg <td>Benzidine</td> <td></td> <td></td> <td>< 330</td> <td>330</td> <td>ug/kg</td> <td></td>	Benzidine			< 330	330	ug/kg	
Benzo(a)pyrene < 90	Benzo(a)anthr	racene		< 330	330	ug/kg	
Benzo(b)fluoranthene< 330 330 ug/kg Benzo(k)fluoranthene< 330	•			< 90	90	ug/kg	
Benzo(k)fluoranthene< 330330ug/kgBenzo(ghi)perylene< 330				< 330	330	ug/kg	
Benzo(ghi)perylene< 330 330 ug/kg Benzoic acid< 330 330 ug/kg Benzoic acid< 330 330 ug/kg Benzyl alcohol< 330 330 ug/kg bis(2-Chloroethoxy)methane< 330 330 ug/kg bis(2-Chloroethoxy)methane< 330 330 ug/kg bis(2-Chloroethyl)ether< 330 330 ug/kg bis(2-Chloroethyl)ether< 330 330 ug/kg bis(2-Ethylhexyl)phthalate< 330 330 ug/kg 4-Bromophenyl phenyl ether< 330 330 ug/kg Butyl benzyl phthalate< 330 330 ug/kg Carbazole< 330 330 ug/kg 4-Chloroaniline< 330 330 ug/kg 4-Chloroanithe< 330 330 ug/kg 2-Chlorophenol< 330 330 ug/kg 1,2-Dichlorobenzene< 330 330 ug/kg 1,3-Dichlorobenzene< 330 330 ug/kg 1,3-Dichlorobenzene< 330 330 ug/kg 1,4-Dichlorobenzene< 330 330 ug/kg </td <td>• •</td> <td></td> <td></td> <td>< 330</td> <td>330</td> <td>ug/kg</td> <td></td>	• •			< 330	330	ug/kg	
Benzyl alcohol< 330 ug/kg Benzyl alcohol< 330				< 330	330	ug/kg	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Benzoic acid	-		< 330	330	ug/kg	
bis(2-Chloroethyl)ether < 330 330 ug/kg bis(2-Chloroisopropyl)ether < 330 330 ug/kg bis(2-Ethylhexyl)phthalate < 330 330 ug/kg Butyl benzyl phthalate < 330 330 ug/kg Butyl benzyl phthalate < 330 330 ug/kg Carbazole < 330 330 ug/kg 4 -Chloroaniline 	Benzyl alcoho	ol		< 330	330	ug/kg	
bis(2-Chloroisopropyl)ether < 330 330 ug/kg bis(2-Chloroisopropyl)ether < 330 330 ug/kg bis(2-Ethylhexyl)phthalate < 330 330 ug/kg 4-Bromophenyl phenyl ether < 330 330 ug/kg Butyl benzyl phthalate < 330 330 ug/kg Carbazole < 330 330 ug/kg 4-Chloroaniline < 330 330 ug/kg 4-Chloro-3-methylphenol < 330 330 ug/kg 2-Chloronaphthalene < 330 330 ug/kg 2-Chlorophenol < 330 330 ug/kg 2-Chlorophenol < 330 330 ug/kg 2-Chlorophenol < 330 330 ug/kg 2-Chlorophenol < 330 330 ug/kg Dibenzo(a,h)anthracene < 90 90 ug/kg Dibenzofuran < 330 330 ug/kg 1,2-Dichlorobenzene < 330 330 ug/kg 1,3-Dichlorobenzene < 330 330 ug/kg 3,3'-Dichlorobenzene < 330 330 ug/kg 3,3'-Dichlorobenzidine < 660 660 ug/kg	bis(2-Chloroe	thoxy)methane		< 330	330	ug/kg	
bis(2-Ethylhexyl)phthalate < 330 330 ug/kg 4-Bromophenyl phenyl ether < 330 330 ug/kg Butyl benzyl phthalate < 330 330 ug/kg Carbazole < 330 330 ug/kg 4-Chloroaniline < 330 330 ug/kg 4-Chloro-3-methylphenol < 330 330 ug/kg 2-Chloronaphthalene < 330 330 ug/kg 2-Chlorophenol < 330 330 ug/kg 4-Chlorophenol < 330 330 ug/kg 2-Chlorophenol < 330 330 ug/kg 1,2-Dichlorobenzene < 330 330 ug/kg 1,4-Dichlorobenzene < 330 330 ug/kg 1,4-Dichlorobenzene < 330 330 ug/kg 3,3'-Dichlorobenzene < 660 660 ug/kg	bis(2-Chloroe	thyl)ether		< 330	330	ug/kg	
4-Bromophenyl phenyl ether < 330	bis(2-Chlorois	sopropyl)ether		< 330	330	ug/kg	
Butyl benzyl phthalate< 330 330 ug/kg Garbazole< 330	bis(2-Ethylhe	xyl)phthalate					
Carbazole< 330330ug/kg4-Chloroaniline< 330	4-Bromophen	yl phenyl ether					
4-Chloroaniline< 330 330 ug/kg 4-Chloro-3-methylphenol< 330 330 ug/kg 2-Chloronaphthalene< 330 330 ug/kg 2-Chlorophenol< 330 330 ug/kg 4-Chlorophenyl phenyl ether< 330 330 ug/kg Chrysene< 330 330 ug/kg Dibenzo(a,h)anthracene< 90 90 ug/kg Dibenzofuran< 330 330 ug/kg 1,2-Dichlorobenzene< 330 330 ug/kg 1,3-Dichlorobenzene< 330 330 ug/kg 1,4-Dichlorobenzene< 330 330 ug/kg 3,3'-Dichlorobenzidine< 660 660 ug/kg	Butyl benzyl p	phthalate					
4-Chloro-3-methylphenol< 330 330 ug/kg 2-Chloronaphthalene< 330 330 ug/kg 2-Chlorophenol< 330 330 ug/kg 4-Chlorophenyl phenyl ether< 330 330 ug/kg Chrysene< 330 330 ug/kg Dibenzo(a,h)anthracene< 90 90 ug/kg Dibenzofuran< 330 330 ug/kg 1,2-Dichlorobenzene< 330 330 ug/kg 1,3-Dichlorobenzene< 330 330 ug/kg 1,4-Dichlorobenzene< 330 330 ug/kg 3,3'-Dichlorobenzidine< 660 660 ug/kg	Carbazole						
2-Chloronaphthalene< 330							
2-Chlorophenol< 330 330 ug/kg 4-Chlorophenyl phenyl ether< 330 330 ug/kg Chrysene< 330 330 ug/kg Dibenzo(a,h)anthracene< 90 90 ug/kg Dibenzofuran< 330 330 ug/kg 1,2-Dichlorobenzene< 330 330 ug/kg 1,3-Dichlorobenzene< 330 330 ug/kg 1,4-Dichlorobenzene< 330 330 ug/kg 3,3'-Dichlorobenzidine< 660 660 ug/kg	4-Chloro-3-m	ethylphenol					
4-Chlorophenyl phenyl ether< 330 330 ug/kg Chrysene< 330 330 ug/kg Dibenzo(a,h)anthracene< 90 90 ug/kg Dibenzofuran< 330 330 ug/kg 1,2-Dichlorobenzene< 330 330 ug/kg 1,3-Dichlorobenzene< 330 330 ug/kg 1,4-Dichlorobenzene< 330 330 ug/kg 3,3'-Dichlorobenzidine< 660 660 ug/kg							
Chrysene< 330330ug/kgDibenzo(a,h)anthracene< 90							
Dibenzo(a,h)anthracene< 9090ug/kgDibenzofuran< 330	-	yl phenyl ether					
Dibenzofuran< 330330ug/kg1,2-Dichlorobenzene< 330							
1,2-Dichlorobenzene< 330330ug/kg1,3-Dichlorobenzene< 330							
1,3-Dichlorobenzene< 330330ug/kg1,4-Dichlorobenzene< 330							
1,4-Dichlorobenzene< 330330ug/kg3,3'-Dichlorobenzidine< 660						-	
3,3'-Dichlorobenzidine < 660 460 ug/kg							
	,						
2,4-Dichlorophenol < 330 330 ug/kg	•					-	
	2,4-Dichlorop	bhenol		< 330	330	ug/kg	

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.	Date Collected:	05/24/18
Project ID:	Torrence Ave	Time Collected:	11:25
Sample ID:	2-24 (0-5)	Date Received:	05/24/18
Sample No:	18-2892-024	Date Reported:	06/06/18
Results are rep	orted on a dry weight basis.		

Analyte		Result	R.L.	Units	Flags		
Semi-Volatile Compounds Analysis Date: 05/30/18	Method: 8270C	Preparation Method 3540C Preparation Date: 05/29/18					
Diethyl phthalate		< 330	330	ug/kg			
2,4-Dimethylphenol		< 330	330	ug/kg			
Dimethyl phthalate		< 330	330	ug/kg			
Di-n-butyl phthalate		< 330	330	ug/kg			
4,6-Dinitro-2-methylphenol		< 1,600	1600	ug/kg			
2,4-Dinitrophenol		< 1,600	1600	ug/kg			
2,4-Dinitrotoluene		< 250	250	ug/kg			
2,6-Dinitrotoluene		< 260	260	ug/kg			
Di-n-octylphthalate		< 330	330	ug/kg			
Fluoranthene		< 330	330	ug/kg			
Fluorene		< 330	330	ug/kg			
Hexachlorobenzene		< 330	330	ug/kg			
Hexachlorobutadiene		< 330	330	ug/kg			
Hexachlorocyclopentadiene		< 330	330	ug/kg			
Hexachloroethane		< 330	330	ug/kg			
Indeno(1,2,3-cd)pyrene		< 330	330	ug/kg			
Isophorone		< 330	330	ug/kg			
2-Methylnaphthalene		< 330	330	ug/kg			
2-Methylphenol		< 330	330	ug/kg			
3 & 4-Methylphenol		< 330	330	ug/kg			
Naphthalene		< 330	330	ug/kg			
2-Nitroaniline		< 1,600	1600	ug/kg			
3-Nitroaniline		< 1,600	1600	ug/kg			
4-Nitroaniline		< 1,600	1600	ug/kg			
Nitrobenzene		< 260	260	ug/kg			
2-Nitrophenol		< 1,600	1600	ug/kg			
4-Nitrophenol		< 1,600	1600	ug/kg			
n-Nitrosodi-n-propylamine		< 90	90	ug/kg			
n-Nitrosodimethylamine		< 330	330	ug/kg			
n-Nitrosodiphenylamine		< 330	330	ug/kg			
Pentachlorophenol		< 330	330	ug/kg			
Phenauthrene		< 330	330	ug/kg			
Phenol		< 330	330	ug/kg			
Pyrene		< 330	330	ug/kg			
Pyridine		< 330	330	ug/kg			
1,2,4-Trichlorobenzene		< 330	330	ug/kg			

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.	·	-	Date C	ollected:	05/24/18
Project ID:	Torrence Ave			Time (Time Collected:	
Sample ID:	2-24 (0-5)			Date R	eceived:	05/24/18
Sample No:	18-2892-024			Date R	eported:	06/06/18
-	orted on a dry weight b	asis.				
Analyte			Result	R.L.	Units	Flags
Semi-Volatile Analysis Date:		Method: 8270C		Preparation Preparation D		
2,4,5-Trichloro	ophenol		< 330	330	ug/kg	
2,4,6-Trichloro	ophenol		< 330	330	ug/kg	
pH @ 25°C, 1 Analysis Date	:2 : 05/29/18 11:25	Method: 9045D 2				
pH @ 25°C, I	:2		8.41		Units	
Total Metals Analysis Date	: 05/30/18	Method: 6010C		Preparation Preparation I		
Antimony			< 1.0	1.0	mg/kg	
Arsenic			2.5	1.0	mg/kg	
Barium			34.7	0.5	mg/kg	
Beryllium			0.8	0.5	mg/kg	
Cadmium			< 0.5	0.5	mg/kg	
Calcium			2,770	50	mg/kg	
Chromium			20.2	0.5	mg/kg	
Cobalt			9.3	0.5	mg/kg	
Copper			14.4	0.5	mg/kg	
Iron			17,300	5.0	mg/kg	
Lead			11.5	0.5	mg/kg	
Magnesium			4,480	50	mg/kg	
Manganese			131	0.5	mg/kg	
Nickel			26.2	0.5	mg/kg	
Potassium			3,010	50	mg/kg	
Selenium			< 1.0	1.0	mg/kg	
Silver			< 0.2	0.2	mg/kg	
Sodium			1,590	50	mg/kg	
Thallium			< 1.0	1.0	mg/kg	
Vanadium			22.0	1.0	nıg/kg	
Zinc			41.8	1.0	mg/kg	
Total Mercur Analysis Date		Method: 7471B				
Mercury			< 0.05	0.05	mg/kg	
TCLP Metal Analysis Date	s Method 1311 :: 06/01/18	Method: 6010C		Preparation Preparation I		
Arsenic			< 0.010	0.010	mg/L	
Barium			< 1.0	1.0	mg/L	

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.	Date Collected:	05/24/18
Project ID:	Torrence Ave	Time Collected:	11:25
Sample ID:	2-24 (0-5)	Date Received:	05/24/18
Sample No:	18-2892-024	Date Reported:	06/06/18
Results are rep	orted on a dry weight basis.		

Analyte		Result	R.Ľ.	Units	Flags
TCLP Metals Method 1311 Analysis Date: 06/01/18	Method: 6010C		Preparation D		
Beryllium		< 1.00	1.0	mg/L	
Cadmium		< 0.005	0.005	mg/L	
Chromium		< 0.005	0.005	mg/L	
Cobalt		< 0.1	0.1	mg/L	
Copper		< 0.1	0.1	mg/L	
Iron		< 0.1	0.1	mg/L	
Lead		< 0.005	0.005	mg/L	
Manganese		0.4	0.1	mg/L	
Nickel		< 0.1	0.1	mg/L	
Selenium		< 0.010	0.010	mg/L	
Silver		< 0.005	0.005	mg/L	
Zinc		< 0.1	0.1	mg/L	
TCLP Mercury Method 1311	Method: 7470A				
Analysis Date: 06/01/18	2.171	< 0.0005	0.0005	ma/I	
Mercury	111	< 0.0005	0.0003	mg/L	
TCLP Extraction Analysis Date: 05/30/18	Method: 1311			1. Pril	
TCLP Extraction		Complete			
SPLP Metals Method 1312 Analysis Date: 06/01/18	Method: 6010C]	Preparation Preparation D	Method 302 Date: 05/31/12	10A 8
Arsenic		< 0.010	0.010	mg/L	
Barium		< 1.0	1.0	mg/L	
Beryllium		< 0.004	0.004	mg/L	
Cadmium		< 0.005	0.005	mg/L	
Chromium		0.012	0.005	mg/L	
Cobalt		< 0.1	0.1	mg/L	
Copper		0.007	0.005	mg/L	
Iron		8.8	0.1	mg/L	
Lead		< 0.005	0.005	mg/L	
Manganese		< 0.1	0.1	mg/L	
Nickel		< 0.1	0.1	mg/L	
Selenium	- C	< 0.010	0.010	mg/L	
Silver		< 0.005	0.005	mg/L	
Zinc		< 0.1	0.1	mg/L	

 Laboratories, Inc.
 IL ELAP / NELAC Accreditation # 100292

 1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	HUFF & HUFF INC.				Date C	ollected:	05/24/18
Project ID:	Torrence Ave				Time C	Collected:	11:25
Sample ID:	2-24 (0-5)				Date R	eceived:	05/24/18
Sample No:	18-2892-024				Date R	eported:	06/06/18
Results are repo	rted on a dry weight basis.						
Analyte			Resu	lt	R.L.	Units	Flags
SPLP Mercury Analysis Date:		lethod: 7470A					
Mercury			< 0.00	05	0.0005	mg/L	
SPLP Extracti Analysis Date:		lethod: 1312					
SPLP Metals Ex	ktraction		Com	plete			
Sample QC Sur	nmary: Surrogate Rec	covery				%R Li	imits
Method	Analyte		QC	Result		Low	
5035A/8260B	4-Bromofluor	obenzene (Surr)	%R:	96.6		86 -	117
5035A/8260B	d8-Toluene (S	'urr)	%R:	100.7		90 -	110
5035A/8260B	Dibromofluor	omethane (Surr)	%R:	101.6		77 -	120