

05/26/21 8:57:35 AM

1	General Plan & Elevation
2	General Notes & Total Bill of Material
3	Stage Construction Details
4	Temporary Concrete Barrier for Stage Construction
5	Top of Slab Elevations – I
6	Top of Slab Elevations – II
7	Top of North Approach Slab Elevations
8	Top of South Approach Slab Elevations
9	Deck Plan & Cross Section
10	Diaphragm Details
11	North/South Approach Slab Plan
12	Approach Slab Details
13	Steel Railing, Type SM with Hot-mix
	Asphalt Wearing Surface
14	Steel Railing, Type SM
15	Structural Steel
16	Structural Steel Details
17	Bearing Details
18	North Abutment
19	South Abutment
20	HP Pile Details
21	Bar Splicer Assembly Details
22	Soil Boring Logs

INTERIOF	R BEAM	MOMENT TABLE
		0.5 Sp.
Is	(in⁴)	9200
$I_c(n)$	(in⁴)	23645
$I_c(3n)$	(in4)	17382
S	(in³)	600
S (n)	(in³)	849
S (3n)	(in³)	771
DC1	(k/')	0.966
MDC1	('k)	770.7
DC2	(k/')	0.078
MDC2	('k)	62.5
DW	(k/')	0.489
Mow	('k)	389.9
LLDF		0.612
M4 + IM	('k)	1259.9
Mu (Strength I)	('k)	3831.1
Ø _f M _n	('k)	4165.7
fs DC1	(ksi)	15.4
fs DC2	(ksi)	1.0
fs DW	(ksi)	6.1
fs (4+IM)	(ksi)	17.8
fs (Service II)	(ksi)	45.6
0.95RhFyf	(ksi)	47.5
Vf	(k)	27.5

BEAM REACTION TABLE						
		Abutments				
		Interior	Exterior			
LLDF		0.775	0.610			
0CF		-	1.017			
R _{DC1}	(k)	38.6	31.6			
R _{DC2}	(k)	3.1	3.1			
Row	(k)	19.5	19.5			
R٤	(k)	59.0	55.3			
R IM	(k)	16.3	13.0			
RTotal	(k)	136.5	122.6			

Notes:

- 1. Two hardened washers required for each set of oversized holes.
- 2. Alternate channels of equal depth and larger weight are permitted to facilitate material acquisition. Alternate channels if utilized, shall be provided at no additional cost to the Department.
- 3. See interior Diaphragm/Cross-Frame Framing Details for connection plate orientation.

		- ·
st Se I _c (n), S _c (n): Co an f _s ,	con-composite moment of inertia and section modulus of the section used for computing $f_{\rm S}({\rm Total-Strength I, and}$ ervice II) due to non-composite dead loads (in. ⁴ and in. ³). omposite moment of inertia and section modulus of the steel and deck based upon the modular ratio, "n", used for computing (Total-Strength I, and Service II) due to short-term composite ve loads (in. ⁴ and in. ³).	
Ic(3n), Sc(3n): Co de co te DC1: Ur MDC1: Ur DC2: Ur	pomposite moment of inertia and section modulus of the steel and eck based upon 3 times the modular ratio, "3n", used for omputing $f_s(Total-Strength I, and Service II) due to long-erm composite (superimposed) dead loads (in.4 and in.3).n-factored non-composite dead load (kips/ft.).n-factored moment due to non-composite dead load (kip-ft.).n-factored long-term composite (superimposed excluding future$	ע" Connection ₽ָ, typ.—
M _{DC2} : Ur ex DW: Ur su M _{DW} : Ur	earing surface) dead load (kips/ft.). n-factored moment due to long-term composite (superimposed xcluding future wearing surface) dead load (kip-ft.). n-factored long-term composite (superimposed future wearing urface only) dead load (kips/ft.). n-factored moment due to long-term composite (superimposed	
	ıture wearing surface only) dead load (kip-ft.). n-factored live load moment plus dynamic load allowance (impact)	:
(k)	ip-ft.). actored design moment (kip-ft.).	į –
1	25 ($M_{DC1} + M_{DC2}$) + 1.5 M_{DW} + 1.75 $M_{4 + 1M}$ ompact composite positive moment capacity computed according	
	Article 6.10.7.1. n-factored stress at edge of flange for controlling steel	
f la be	ange due to vertical non-composite dead loads as calculated elow (ksi). pc1/ Snc	
f₅ DC2: Ur fla be	p-factored stress at edge of flange for controlling steel ange due to vertical composite dead loads as calculated elow (ksi). σc2/ Sc(3n)	
fs DW: Ur fla los	n-factored stress at edge of flange for controlling steel ange due to vertical composite future wearing surface ads as calculated below (ksi).	
f _s (½+1M): Ur fla ca	bw / Sc(3n) n-factored stress at edge of flange for controlling steel ange due to vertical composite live plus impact loads as alculated below (ksi).	
fs (Service II): Su	ų+тм / Sc(n) um of stresses as computed below (ksi).	I
0.95RhFyf: Co	soci+ fsoc2 + fsow + 1.3 fs ½ + ™ omposite stress capacity for Service II loading according o Article 6.10.4.2 (ksi).	$\overline{1}$
fs (Total)(Strength I): Su se	um of stresses as computed below on non-compact action (ksi).	
Øf Fn:Nc	25 (fsDC1 + fsDC2) + 1.5 fsDW + 1.75 fs(⊾ + ™) on-Compact composite positive or negative stress capacity for trength I loading according to Article 6.10.7 or 6.10.8 (ksi).	
Vf:Ma	aximum factored shear range in composite portion of span mputed according to Article 6.10.10.	
0		Q C15
	Alt. clip Std. clip	

1" Rad. 11/2" typ.

WELD LIMITS AND CLIP DETAILS

Interior beam shown, exterior beam similar ** Stop welds $\frac{1}{4}$ " ($\pm \frac{1}{8}$ ") from edges as shown. Typical.

WEB WELD DETAIL $d = \frac{1}{4} + c$

DESIGNED - MLC REVISED 1 5/20/2021 JW ER NAME = mcohen STRUCTURAL STEEL DETAILS Kaskaskia STATE OF ILLINOIS CHECKED -JW REVISED **STRUCTURE NO. 060-3373** OT SCALE = 2.0000 ' / ft. DRAWN NDP REVISED **DEPARTMENT OF TRANSPORTATION** SHEET 16 OF 22 SHEETS PLOT DATE = 3/19/2021 CHECKED -REVISED JW 05/20/21 2:46:40 PM

