STRUCTURE GEOTECHNICAL REPORT

PHASE 1 B GEOTECHNICAL REPORT NEW I-74 BRIDGE OVER MISSISSIPPI RIVER MOLINE, ILLINOIS TO BETTENDORF, IOWA ILLINOIS VIADUCT STRUCTURES SECTION 81 - 1HVB ROCK ISLAND COUNTY, ILLINOIS

PROPOSED STRUCTURE NO'S. 081-0177 (WB) AND 081-0178 (EB) EXISTING SN'S. 081-0111, 081-0112, 081-0113, 081-0114, 081-0143, AND 081-0142

PREPARED FOR

IOWA DEPARTMENT OF TRANSPORTATION AND ILLINOIS DEPARTMENT OF TRANSPORTATION

PREPARED BY

JOHN E. REINFURT, P.E. JACOBS CIVIL INC. 501 NORTH BROADWAY SAINT LOUIS, MO 63102 TELEPHONE (314)-335-4000 FAX (314)-335-5120

JACOBS PROJECT NO. C1X13500

JUNE 2008

Attachments: Figures 1 – 4 Boring Logs Laboratory Test Results Rock Core Photographs Elastic Moduli and RMR Table Existing Viaduct Ramp Plan and Elevation SGR Responsibility Checklist

1.0 PROJECT INFORMATION

Introduction

A study for a new Moline Viaduct, a section of the proposed I-74 crossing of the Mississippi River at the Quad Cities, was conducted by CH2M HILL/JACOBS. The study results are presented in a Technical Memorandum titled "I-74 Iowa-Illinois Corridor Study-Moline Viaduct & Ramps, Proposed Span Arrangement, dated June 21, 2007. Figure 1 shows the structure location. Figure 2, Location Map, shows the overall Quad Cities area and Figure 3, Boring Location Plan, shows the alignment of both the existing and proposed I-74 Illinois Viaduct. The structure is located in Sections 32 and 33, Township 18N, Range 1 West.

Purpose

This Structural Geotechnical Report (SGR) presents the results of the Phase 1B geotechnical investigation performed for the Moline Viaduct structures 081-0177 (WB) and 081-0178 (EB) in Moline, Illinois. This report deals only with the land based substructure units that will be designed and constructed in Moline, Illinois. Five other reports will deal with the recommendations for the piers in the Mississippi River, the land based piers on the Bettendorf, Iowa side of the river, the 19th Street Bridge, Ramp 6th-C, and Ramp 6th-D in Moline, Illinois. The purpose of this investigation was to determine the nature and condition of the subsurface materials, to describe the general site characteristics, and to formulate conclusions and recommendations for the preliminary design and construction of the viaduct pier foundations and other subsurface related components of the proposed bridge structures.

<u>Scope</u>

The scope of this investigation includes reviewing available subsurface information for the project area, obtaining the required field and laboratory test data, performing the necessary engineering analyses, and formulating the conclusions and recommendations presented in this report. These conclusions and recommendations have been prepared considering the nature of the proposed project as presently planned and described in this report.

2.0 PROJECT DESCRIPTION

Site Description

The new Moline Viaduct is located in Moline, Illinois, extending from River Drive (Third Avenue) southward to a proposed abutment location just south of 7th Avenue. The alignment continues southward and will encompass a new I-74 overpass of 19th Street. Ground surface in the floodplain adjacent to the river and extending southwards towards River Drive is at approximate EI. 565 to EI. 569 ft and gently rises to the south. The floodplain continues to gently rise to the south, with ground at about EI. 573 ft at 4th Avenue, at about EI. 575 ft at 5th Avenue, at about EI. 580 ft near 6th Avenue, and at

about El. 585 ft near the existing intersection of I-74 and 7th Avenue. From 7th Avenue southward, the floodplain continues to gently rise to the intersection with the soil-covered bluff line along the Mississippi River Valley which then steeply rises to the south. 19th Street extends south/southeastward from 7th Avenue and crosses at-grade beneath the I-74 overpass approximately ¼ mile south of the intersection of 7th Avenue and 19th Street. The ground elevation rises southward from about El. 605 to El. 614 ft along the roadway beneath the I-74 overpass.

The proposed alignment is located just east (upstream) of the existing I-74 alignment through downtown Moline. The alignment begins on the north side of River Drive and continues southward across a grassy park area, over the existing on and off ramps of I-74 to River Drive, and then crosses the BNSF Railroad and adjacent 4th Avenue. From there, the alignment starts to curve southwestward towards the existing I-74 alignment, cutting across the John Deere parking lot between 4th and 5th Avenue, across private properties between 5th and 6th Avenue before tying back into the existing alignment at 7th Avenue. There are a number of properties along or adjacent to the northern half of the alignment which have been identified as potentially contaminated sites because of existing or prior use which includes the old Frank Foundries Corp. properties located north of River Drive, the Riverside Products property, the Deere and Co. parking lot between 4th and 5th Avenue.

Potentially Contaminated Sites

A Preliminary Environmental Site Assessment (PESA) was completed on the Illinois side of the new I-74 project corridor in August, 2002 by the Illinois State Geological Survey (ISGS).

The North Abutment to the proposed Moline Viaduct Structure is located very near the south boundary of the former Frank Foundries Corporation site, 2020 River Drive, Moline, IL. In the final Environmental Impact Statement (FEIS), it was identified that the PESA stated that this site was found to be contaminated by VOC's from LUST's, UST's, and machine and tool shops, oil houses, metals from the former foundry sites and machine shops, and PCBs in the former transformer and drum-storage areas. Any excavation or grading at the former Frank Foundries Corp. site will require the management of special waste.

According to the FEIS, the Former Frank Foundries Corp. in Moline, Illinois was enrolled in the Illinois EPA Site Remediation Program; a No Further Remediation letter was issued in 1992. The property subsequently experienced a leaking underground storage tank event in 1996 and after over-excavation of the site, a second No Further Remediation letter was issued in 1998 indicating the land was authorized for residential or industrial/commercial uses. The No Further Remediation Letter appears to be in conflict with the PESA. This issue needs to be resolved during final design.

In addition, some of the proposed piers for the Moline Viaduct Structure will be located at other potentially contaminated sites identified in the FEIS. In particular, Pier Nos. 4 and 5 will be located within the Deere & Co. parking lot (former industrial site) located between 4th and 5th Avenues and 21st Street and the existing I-74 viaduct, and the Riverside Products (industrial site) site at 400 21st Street.

Pier 7EB is located within the property referred to as Brannen's Auto Works at 2100 5th Avenue. PESA stated this site was found to be contaminated and any excavation or grading below a depth of 6 feet will require management of special waste.

The Ramp 6th-D footprint will cross over the property identified as Riverside Products, 400 21st Street, Moline, IL and be located just east of the Deere & Co. parking lot located between 4th and 5th Avenues and 21st Street to the existing I-74 viaduct. In the FEIS, the Riverside Products property was identified as a site contaminated by VOC's and metals from the machine shop and that any excavation or grading below 6 feet within 50 feet of soil boring 1314-15 would require the management of special waste. The Deere & Co. parking lot was found to be contaminated by VOC's and metals from machine shops and metals from the blacksmith and grinding facilities of a former industrial site and that any excavation or grading will require the management of special waste.

To our knowledge, a final Environmental Site Assessment has not been conducted for these sites.

Proposed Moline Viaduct Structures (Eastbound and Westbound)

The proposed Moline Viaduct is approximately 1,951 feet long extending from the south end of the plug fill near River Drive to a touchdown just south of 7th Avenue. Figure 3 is a general plan view of the viaduct area. The viaduct crosses numerous existing and proposed infrastructure features. Starting at the north and moving southward, these include 3rd Avenue (River Drive), existing Ramps 3-N and N-3, the BNSF railroad line, 4th Avenue, proposed Ramp 6th-C, 6th Avenue and 7th Avenue. Existing Ramps 3-N and N-3 will be removed after construction of the new I-74 Mainline structure.

The abutments and bents of the Moline Viaduct will all have the same orientation which is approximately parallel to the city streets that run from the northeast to the southwest. This results in the abutments and piers having a 15 degree-30 minute right ahead skew.

The proposed I-74 Moline Viaduct is comprised of 11 eastbound and westbound spans. The proposed pier/span arrangement for the mainline of the Moline Viaduct is shown on Figure 3. The approach span piers are spaced at approximately 185 to 230-ft centers. A three column frame pier is proposed for all substructure units. The columns are planned to be oblong roughly 4.5 ft by 9.5 ft in plan dimension. A steel girder superstructure having a constant structure depth of approximately 8 ft is planned.

It should be noted that 5th Avenue will be abandoned so that Pier 6W can be constructed in the middle of the roadway.

The abutment fill heights at the North Abutment and South Abutment are approximately 25 and 31 feet, respectively. The south abutment at 7th Avenue will be set behind

3

typical IDOT MSE wrap-around wall sections. The South Abutment global stability/design information is being reported under a separate SGR (Reference 14) for the corresponding wall. The north abutment at River Drive will be a typical stub abutment with a spill slope.

Preliminary AASHTO LRFD Load Combination Limit States foundation loadings for two typical Illinois Viaduct foundations (WB South Abutment and Pier 10 WB exterior column) were calculated and are presented in Tables 1 and 2. The loads shown are service loads. The loads shown are potentially governing load cases and represent only a small percentage of all the load cases investigated. All of the loads are at the bottom of the footing and include an allowance for the dead load of the footing and 2-ft soil overburden on top of the footing. Additional load cases, as well as all piers, will be analyzed during final design. Final design analyses will also be performed according to the 2007 AASHTO LRFD Specifications with the 2008 Interim Specifications.

South Abutment Sta. 48+91	P (kips)	M _X (ft-kips)	M _z (ft-kips)	V _X (ft)
Service I	-1,892	-1,366	-283	24
Service I	-1,829	-1,304	-5,021	24
Service II	-1,987	-1,461	58	0
Service II	-1,905	-1,380	-6,101	0

Table 1 – Preliminary End Bent Loading	Case – WB South Abutment
--	--------------------------

Table 2 – Preliminary Approach Bent Loading Case – Pier 10 WB

Pier 10 WB	P (kips)	M _X (ft-kips)	M _z (ft-kips)	V _X (ft-kips)	V _z (ft-kips)
Service I	-1,943	-12,240	-2,883	304	-507
Service I	-1,942	-10,225	3,526	-325	-322
Service I	-1,901	-9,689	5,785	-262	-348
Service II	-2,001	-12,205	-3,402	339	-510
Service II	-1,947	-9,716	5,991	-242	-359

Existing Bridges

The Moline approaches to the existing river crossing structures are continuous steel girders supported on 26 bents/abutment spaced 87 feet to 237 feet from the Moline anchorage to 7th Avenue. The bents are generally supported on driven pile or spread footing foundations beneath each pier column. Existing drawings indicate the spread footings were sized based upon an allowable bearing pressure of 3.2 to 3.6 tsf. Six bents are supported on driven steel 8BP36, 10BP42 and 10BP57 piles. The piles were designed for an allowable load of 9 ksi on the steel section (56 tons). The piles vary in length from 12 to 25 feet. Battered piles were used to resist lateral loads. Table 3

shows the foundation types and bottom of footing elevations by bent numbers. Spread footing sizes varied from 12 ft by 15 ft to 12 ft by 51 ft. Pile caps were typically on the order of 9.5 ft by 24 ft.

Existing Bent No.	Foundation Type	Bearing Pressure, (TSF)	Bottom of Footing El. (ft)	Pile Length (ft)
Pier L	Spread Footing		557.0	
Pier 1	Piles – 8BP36		557.5	13
Pier 2	Spread Footing	3.5	554.0	
Pier 3	Spread Footing	3.4	554.0	
Pier 4	Spread Footing	3.4	552.0	
Pier 5	Spread Footing	3.3	553.0	
Pier 6	Spread Footing	3.5-3.6	551.5	
Pier 7	Spread Footing	3.2-3.5	557.0	
Pier 8	Spread Footing	3.5	557.0	
Pier 9	Spread Footing	3.3-3.5	559.0	
Pier 10	Spread Footing	3.5	560.0	
Pier 11	Spread Footing	3.5	560.0	
Pier 12	Piles - 10BP57/8BP36			11
Pier 13	Piles –10BP42/8BP36			11
Pier 14	Piles – 10BP42			12
Pier 15	Spread Footing	2.4-3.4		
Pier 16	Piles - 8BP36/10BP42			10
Pier 17	Piles – 8BP36			13-14
Pier 18	Piles – 8BP36			16
Pier 19	Piles – 10BP42			20
Pier 20	Piles – 8BP36			19
Pier 21	Piles – 8BP36/10BP42			13-15
Pier 22	Piles – 8BP36			13-16
Pier 23	Piles - 8BP36			17-25
Pier 24	Piles – 10BP57			19
Pier 25	Piles – 10BP57			20
Abut C	Spread Footing	3.75	585.5	

Table 3 - Existing Bridge Foundation Types

The existing viaduct was designed by DeLeuw Cather & Company, Chicago, Illinois around the period 1972 and a plan and elevations of those drawings are attached.

3.0 SUBSURFACE INVESTIGATION

<u>Phase 1A</u>

A subsurface investigation was conducted during Phase 1A of this project from October 2005 through December 2005 to assist in the conceptual study/selection of feasible

5

foundation types. Nineteen borings were drilled along the proposed Illinois Approach structural alignment between the River Road and 7th Avenue: Borings VIAIL-01, VIAIL-02, and MR-021P along the proposed main viaduct structure; borings RW-1401, -1403, -1001, -1501, -1503, -1504, -1506, and -403 for various retaining walls; borings RB-1030, RB-1031, RB-1032, and SB-1030 for roadways, and borings PRMPD-01 through PRMPD-03 and PRMPC-01 for Ramps C and D, respectively. The VIAIL and MR series boring logs are included in the Appendix as a part of this viaduct report.

Phase 1B

To determine the nature and condition of the subsurface materials along the proposed structure alignment, a total of 22 borings were drilled at pier locations selected by Jacobs personnel. The number of borings selected for this preliminary phase was based upon input and approvals from Iowa DOT and CH2M Hill. Originally, the number of borings planned for this segment of the work totaled 24 borings; however, two borings (VIAIL-116 and -117) were not drilled because of inability to gain access to private property during the drilling program. The locations of the borings are shown on the Boring Location Plan, Figure 3 (Sheets 1 & 2). The borings were located in the field by using a hand held GPS unit or, where necessary, taped measurements off of existing structures. The GPS unit was sometimes ineffective adjacent to the existing viaduct and other surrounding structures. In those cases, coordinates were estimated by scaling from known reference points. Elevations were interpolated from project .tin files. Datum for the boring locations was the Iowa South State Plane Coordinate System 1402 and NAVD 88.

The borings were drilled between August 27, 2007 and September 14, 2007 by Terracon Consultants Inc. of Naperville, Illinois. The borings were drilled using either a CME 55 truck rig or a CME 550 ATV rig owned and operated by Terracon. A Jacobs engineer provided on-site supervision throughout the boring operations, and prepared the boring logs found in the Appendix to this report.

A summary of the Phase 1A/1B boring program is presented in Table 4. The total depth of each boring was contingent upon location along the proposed structure, encountered conditions and anticipated foundation depths. The approach spans were typically extended a minimum of 25 feet into bedrock. The total depth of borings ranged from 37 to 56 feet below ground surface. The column "Weathered/Soft Rock Thickness" is generally the thickness of shale or weathered sandstone that was able to be augered prior to auger refusal.

In all of the borings, the drilling method included advancing the borehole through the overburden soils to top of bedrock using 3-3/4 inch inner diameter hollow stem augers and then advancing the hole to a minimum depth of 25 feet into bedrock using NQ-wireline rock coring methods.

Where applicable, Standard Penetration Resistance Tests (ASTM D1586) were conducted in the overburden materials of each boring using standard split-spoon samplers and a CME automatic drive hammer. In general, SPT's were conducted at

6

2.5-foot intervals in the upper 30 feet of boring (or to refusal, whichever occurred first) and at 5-foot intervals thereafter to bedrock or bottom of boring. The samples obtained were placed in plastic bags and delivered to Terracon's laboratory. In addition, relatively undisturbed samples (Shelby tube samples) were obtained of some of the cohesive soil layers where applicable. Core samples (NQ size) of the underlying bedrock were obtained and placed in wooden boxes for later laboratory testing. The core boxes were removed each day from the site and delivered to Terracon's office in Bettendorf, IA. All recovered rock core samples were photographed each day in order to provide a permanent record. Photographs of the rock cores collected are found in the Appendix.

Samples of cohesive soils encountered in the borings were typically tested for strength using both a pocket penetrometer and a Rimac Spring Tester. Test results are included in the boring logs.

Logs of the borings, showing visual descriptions of the various subsurface strata encountered, as well as all field sampling and test data, are attached to this report. Boring Legends are also presented to assist in the interpretation of the boring logs.

As part of the Phase 1B test drilling program, Jacobs provided field personnel to operate a photoionization detector (PID) to detect the presence of any volatile organic compounds (VOC's) in soil obtained from the geotechnical borings at levels requiring segregation and drummed storage of auger cuttings pending sampling and analysis or other method to determine appropriate disposition. To that end, a PID was used for headspace analysis of soil during drilling operations; scanning split spoon samples to identify any anomalous zones; sampling the borehole opening between split spoon sampling and coring runs as a general indication of the presence of VOC's; and measuring of VOC concentrations in the breathing zone during drilling/coring operations. In addition, a triple gas meter was used to scan for combustible gases at the top of the auger space during drilling operations.

Table 4 - SUMMARY – PHASE 1A/1B ILLINOIS LAND BASED BORING PROGRAM

Boring No.	Pier No.	Date Drilled	Ground Elev.	Soil Thickness (ft)	Weathered/Soft Rock Thickness (ft)	Top of Rock Core Depth (ft)	Top of Rock Core Elev (ft)	Bottom of Hole Depth (ft)	Bottom of Hole Elev (ft)
Phase 1A									
MR021P	Pier 8	11/10/2005	580.1	16.0	13.0	29.0	551.1	21.5	529.6
VIAIL01	Pier 2	10/3/2005	569.6	14.1	-	14.1	555.5	19.4	536.1
VIAIL02	Pier 5	11/2/2005	576.1	15.0	4.0	19.0	557.1	20.0	537.7
PRMPD-01	Pier 2 WB	10/31/2005	569.9	11.0	5.0	16.0	553.9	18.0	535.9
Phase 1B									
VIAIL-103	North Abutment WB	8/28/2007	568.5	14.2	5.3	19.5	549.0	46.0	522.5
VIAIL-104	North Abutment EB	8/28/2007	568.2	11.3	2.7	14.0	554.2	40.5	527.7
VIAIL-105	Pier 1 WB	8/28/2007	569.3	11.0	2.8	13.8	555.5	43.8	525.5
VIAIL-106	Pier 1 EB	8/27/2007	569.3	9.4	2.1	11.5	557.8	37.9	531.4
VIAIL-107	Pier 1 EB	8/28/2007	569.0	11.3	2.8	14.1	554.9	40.8	528.2
VIAIL-108	Pier 2 EB	8/30/2007	570.7	12.0	2.1	14.1	556.6	39.1	531.6
VIAIL-109	Pier 3 WB	8/31/2007	579.4	21.0	3.2	24.2	555.2	49.0	530.4
VIAIL-110	Pier 3 EB	8/30/2007	583.2	24.5	1.9	26.4	556.8	52.8	530.4
VIAIL-111	Pier 4 WB	9/5/2007	573.1	14.3	1.6	15.9	557.2	43.7	529.4
VIAIL-112	Pier 4 EB	9/4/2007	576.0	17.5	1.5	19.0	557.0	45.8	530.2
VIAIL-113	Pier 5 WB	9/7/2007	575.4	13.8	1.1	14.9	560.5	40.0	535.4
VIAIL-114	Pier 5 EB	9/6/2007	575.8	15.2	1.3	16.5	559.3	41.0	534.8
VIAIL-115	Pier 6 W	9/6/2007	575.3	16.3	2.6	18.9	556.4	45.6	529.7
VIAIL-118	Pier 7 E	9/7/2006	578.5	13.5	2.6	16.1	562.4	42.9	535.6
VIAIL-119	Pier 8 WB	9/10/2007	579.2	13.5	2.7	16.2	563.0	41.1	538.1
VIAIL-120	Pier 8 EB	9/6/2007	580.0	18.5	2.6	21.1	558.9	45.7	534.3
VIAIL-121	Pier 9 WB	9/10/2007	581.0	18.3	2.7	21.0	560.0	51.0	530.0
VIAIL-122	Pier 9 EB	9/14/2007	590.0	26.0	2.8	28.8	561.2	55.9	534.1
VIAIL-123	Pier 10 WB	9/12/2007	584.5	21.5	4.4	25.9	558.6	51.0	533.5
VIAIL-124	Pier 10 EB	9/13/2007	586.5	24.1	1.5	25.6	560.9	50.6	535.9
VIAIL-125	South Abutment WB	9/13/2007	585.8	21.3	6.2	27.5	558.3	55.9	529.9
VIAIL-126	South Abutment EB	9/12/2007	586.4	23.5	2.5	26.0	560.4	51.0	535.4

Laboratory Testing

The laboratory testing program was directed toward establishing the classification and evaluating the general engineering properties of the subsurface materials. The testing was conducted by Terracon Consultants of Bettendorf, IA, and their subsidiary H.C. Nutting Company of Cincinnati, Ohio, in accordance with ASTM specifications. Laboratory tests were performed to determine the physical and engineering characteristics of selected split-spoon and NQ size rock core samples obtained during

8

the subsurface investigation program. The testing program included moisture content determinations, Atterberg limits, grain size analyses on soil samples, and unconfined compression tests, dry density determinations, Moh's Hardness, and Atterberg Limits on selected rock core samples.

The results of all laboratory tests have been summarized and are included in the Appendix to this report.

4.0 SUBSURFACE CONDITIONS

Subsurface Materials

The results of the subsurface investigations conducted at the proposed bridge site are summarized herewith and presented in detail in the Boring Logs presented in the Appendix. Jacobs legends for boring logs and soil and rock classification systems are also included to assist in interpreting the logs. All elevations referenced in the text and in the boring logs are given in feet relative to NAVD 1988 datum. Two subsurface profiles along the Illinois Approach structural alignment are presented in the report as Figure 4 (Sheets 1 through 5).

In general, areas of similar subsurface conditions along the Illinois approach can be identified in two geographic sections: the lower floodplain area extending from River Road southward to about midway between 4th and 5th Avenues, and the upper floodplain area extending from approximately 5th Avenue to 7th Avenue.

River Road to Alley Between 4th and 5th Avenues

A total of 13 borings were drilled in this section of the proposed Illinois approach during the subsurface investigation for this phase of the project as follows: Borings VIAIL-103 through VIAIL-112, and Boring PRMPC-01.

Subsurface conditions encountered along this section of the proposed alignment are characterized by a relatively thin (typically 10 to 18 feet thick) layer of overburden soils underlain by Pennsylvanian-aged shales and sandstone.

Overburden soils consisted of fill materials, silt, clayey silt, silty clay, and silty sand. A section of the large undeveloped area of land along the alignment between the river and River Drive contains widespread piles of clean and miscellaneous fill material. During the course of the drilling program, it was observed that active dumping was occurring in the area approximately 300 feet north of the proposed north bridge abutment area. At several boring locations, the soil column included a layer of loose saturated black fine to coarse silty or clayey sand located either directly above the sandstone bedrock or, at boring locations near the river, overlying a 3 to 5-foot thick layer of very soft dark gray silty clay containing trace wood and organics which was in turn underlain by either shale or sandstone.

Soil thickness along the alignment ranged from approximately 11.5 feet to 21.5 feet thick. Borings VIAIL-109 and -110 encountered soil columns ranging up to 26.5 feet thick but these were drilled through a highway ramp embankment.

The primary rock type encountered in this section of the alignment consisted of Pennsylvanian-aged sandstone. The sandstone units were typically light brownish grav to gray with varying amounts of thin black banding, fine-grained, or nearly uniform grain size (well-sorted), porous, and generally moderately- to well-cemented and only occasionally friable. The sandstone was soft to very soft, with unconfined compressive strengths ranging from approximately 1.600 to 4.250 psi and most test samples in the range of 2,000 to 3,300 psi. Drill times in the sandstone typically measured about one linear foot per minute. Fracturing within the sandstone was typically along non-descript horizontal beds at thin to medium and occasionally thick-bedded spacing, although the actual bedding thickness may be thick to massive and the observed horizontal fractures caused by the drilling operations. The fracture surfaces were typically planar and sandy rough. Only where the fractures occurred along the black banding/parting layers were they readily identifiable as bedding. High angle joint fractures in the sandstone were generally minimal. It should be noted that the sandstone was readily penetrated with a hollow stem auger to a depth of about 2 feet deep before switching over to rock coring operations.

As shown on the subsurface profile along the length of the Illinois approach structure in Figure 4, elevations of the top of sandstone within this section of the alignment were fairly uniform, ranging from approximate EI. 545 to EI. 558 ft. The sandstone surface appeared to dip to the east and to rise gently to the south. A 3- to 7-foot thick layer of medium to dark gray sandy shale ranging from hard clay-like to very soft rock-like in consistency was found to overlie the sandstone unit in Borings VIAIL-103, -105, and in PRMPD-01 (Phase 1A boring).

It should be noted that there was a strong petroleum odor and free product in the soil sample collected from a saturated zone in Boring PRMPC-03 (located in the John Deere parking lot near proposed abutment for Ramp 6th-C) at a depth of 13.5 to 15 feet below ground surface. For more details refer to the SGR for Ramp 6th-C.

Alley Between 4th and 5th Avenues to 7th Avenue

A total of 13 borings were drilled in this section of the alignment, which extends from proposed Pier No. 6 (Station 38+56) to Abutment 12 (Station 48+91). Test borings drilled in this area included Borings VIAIL-113 through VIAIL-126 and Boring PRMPD-05.

This area is characterized by approximately 14 to 24 feet of soil cover overlying Devonian-aged limestone. At two boring locations (Borings VIAIL-115 and -120), a 10-to 12-foot thick layer of sandstone overlies the limestone. Review of the subsurface profiles along the alignment (Figure 4) suggests that these two locations occupy erosion channels in the underlying limestone bedrock that have been in-filled with Pennsylvanian sandstone deposits.

Soils encountered in these borings consisted of black to dark brown to orange-brown clayey silts to silty clays and occasional layers of silty or clayey sand, along with some fill materials. In general, the soils were typically medium stiff to stiff, of slight to medium plasticity, and moist. Pocket penetrometer readings and Rimac test results typically indicated unconfined compressive strengths on the order of 0.5 to 2 tsf. Sands or sandy clay were frequently encountered immediately above the underlying limestone bedrock.

The primary bedrock unit(s) encountered in the test borings consisted of Devonian-aged limestone which typically extended for full depth of boring. The limestone could be further divided into identifiable beds based on rock color and/or texture. In general, the bedrock consisted of an upper 20 to 25-foot thick layer of light gray to brownish gray fine-grained limestone underlain by an intermediate layer of medium gray limestone containing numerous small pits and the "birdseye" texture described in the local literature, and a second fine grained limestone layer.

The upper limestone unit was typically fine grained, hard to moderately hard, locally stylolitic, and contained occasional to some green shale partings and thin seams. The limestone was thin to medium bedded, with the dominant fracture pattern occurring along the horizontal to near-horizontal bedding planes and the secondary fractures occurring along mid to high angle fracture planes. Some of the fractures exhibited slight weathering near the top of the rock column, but overall was considered to be slightly weathered to fresh. The rock was generally slightly weathered in the upper Rock core recovery and rock quality designations (RQD's) in the upper limestone layer were generally high, with core recoveries typically in the 95 to 100 percent range and RQD's ranging from 35 to 40 percent for the first core run but rapidly transitioning to 70 to 95 percent with increasing depth. Laboratory test results indicate unconfined compressive strengths of the limestone ranged from 3,500 to 12,965 psi and averaged about 7,880 psi.

The medium gray limestone layer which formed an identifiable bed in nearly all of the borings was typically fine to medium grained, medium bedded, moderately hard, and contained minor pitting and occasional local vugs. Core recoveries were typically on the order of 95 to 100 percent, and RQD's predominantly ranged from 80 to 95 percent, indicative of good to excellent quality rock.

Since Borings VIAIL-116 and -117 were not drilled during this phase of the work, it is not known whether bedrock conditions encountered at Pier No. 8 (Station 41+60, WB and Station 42+31, EB) will consist completely of limestone or if there is a sandstone layer overlying the limestone. The location of the pier(s) are in a transitional area where Borings VIAIL-115 and VIAIL-120 were located in erosional troughs within the limestone surface which had been in-filled with Pennsylvanian-aged sandstone, whereas adjacent Borings VIAIL-118, and -119 encountered only limestone.

Borings VIAIL-121, -123, -125 and -126, all drilled within one block of the intersection of I-74 and 7th Avenue, encountered a 2.5- to 9-foot thick layer of medium to dark gray, very soft, clay-like to soft rock-like shale above the limestone, typically extending

between approximate EI. 563 ft downward to the top of limestone. At all locations, hollow stem augers and standard penetration tests were used to advance the boring through the shale unit.

Areas Requiring Additional Investigation

For final design, it is recommended that borings be drilled for Pier 4 WB, Pier 6 EB and for Pier 7 WB once permission to gain access to the properties are obtained and the building is demolished. Pier 7 WB is located within Brannen's Auto Works at 2100 5th Avenue and according to the PESA this site is contaminated. Pier 4 WB is within the Riverside Products property and according to the PESA the site is contaminated by VOC's.

In addition, an Environmental Investigation needs to be performed to determine the extent of contamination at the Deere & Co. parking lot, Riverside Products and Brannen's Auto Works as well as other areas identified in the FEIS report. The issues between the PESA and No Further Remediation Letter for the Frank Foundries Corp. site needs to be resolved. The FEIS states "If excavation or additional right-of-way is required at any of these sites, further soil testing is recommended to determine the extent and nature of contamination." This investigation should address the quantity of contaminated material to be excavated; disposal methods and available landfills; special hauling requirements, certifications and permits; water treatment method from water collected from excavations; site monitoring requirements during construction; and requirements for personnel protection and monitoring.

Groundwater Levels

Groundwater levels were noted from water on drill rods during the course of the Phase 1B drilling operations. In general, water levels noted during drilling in the borings located between River Road and 5th Avenue ranged from approximate EI. 560 to EI. 564 ft and average about EI. 562 ft. In contrast, the borings drilled between 5th Avenue and 7th Avenue ranged from approximate EI. 570 ft.

During the course of the drilling program, the Mississippi River level ranged from approximate El. 560.9 ft to El. 561.1 ft. The river levels are controlled by the downstream Mississippi River Lock and Dam No.15 at Rock Island, Illinois. The important water elevations for this project are:

Table 5- Ir	mportant	Mississippi	River	Water Elevations
-------------	----------	-------------	--------------	------------------

Case	Elevation (NGVD 1912)
Normal Pool	561.0
Cessation of Navigation	562.5
2% Flowline	563.5
100-Year Flood	569.6
500-Year Flood	572.2
High Water of Record	569.7

Note: The following conversions apply to the project location: NGVD 1929 = NGVD 1912 - 0.510 ft NAVD 88 = NGVD 1912 - 0.727 ft

Groundwater rises when the adjacent Mississippi River rises. Construction of Piers 1 through 3 can be influenced by river levels if spread footings are used to support the proposed viaduct structure.

Seismicity

Seismic loads will not be considered in preliminary design due to the low seismicity of the project area. For final design, seismic forces will be computed and applied in accordance with AASHTO LRFD for Seismic Performance Zone 1 (per IDOT Seismic Design Guide p. 3.15-82).

The Illinois Viaduct profile is considered Site Class C per AASHTO (2008 Interim Revisions), Section 3.10.3.1, because of the shallow depth to bedrock. At Piers 1-3, 5, and 7, Site Class B could be considered since the piers will be founded directly on bedrock. The acceleration coefficient, A, to be used in the application of AASHTO LRFD criteria is 3.5 percent for a 1,000 year return period according to Figure 3.10.2.1-3 in the AASHTO LRFD (2008 Interim Revisions).

<u>Scour</u>

Scour is not applicable at these structures.

Mining Activity

A review of the Illinois State Geologic Survey (ISGS) maps indicate no past mining activities in the area of the proposed I-74 Illinois Viaduct Structures 081-0177 (WB) and 081-0178 (EB).

5.0 BRIDGE FOUNDATIONS

Limitations

These recommendations have been developed to aid in the preliminary design and construction of the viaduct foundations affected by the subsurface materials. These recommendations are limited to the scope of work and understanding of the proposed structures as detailed in this report. Significant changes in the anticipated project scope may invalidate these conclusions and recommendations. If, during construction, subsurface conditions different from those encountered in the borings are observed, or appear to be present beneath excavations, Jacobs should be advised at once so that Jacobs can review these conditions and reconsider these recommendations, when necessary. It should be noted that preliminary design was performed using ASD while final design will be LRFD.

Rock Mass Strength

The rock cores obtained from the exploration program were classified using the rock mass rating system (RMR) and a summary of the RMR's are presented in the Appendix. The RMR classification system is a widely used procedure for determining rock mass quality. This system considers the properties and conditions of the rock/rock mass. The RMR is calculated as the sum of the individual ratings for each of the five parameters minus an adjustment made for joint orientation. In general, the rock classified as Class III, Fair Rock to Class II, Good Rock per Table 10.4.6.4-3 of 2006 AASHTO LRFD.

The shear strength of the fractured rock masses was evaluated using the Hoek and Brown criteria as suggested by 2006 AASHTO LRFD. The estimated range of shear strength parameters are presented in Table 6.

Material	Friction Angle (degs)	Cohesion (ksf)
Shale	38	1.5
Sandstone	40-53	1.3-7
Limestone	47-53	2-22

Table 6 - Shear Strength Parameters

Rock Mass Deformation

Elastic moduli were determined or estimated from intact modulus of rock core samples, and from the RMR rating per 2006 AASHTO LRFD. Engineering judgment was used to determine which moduli to use in settlement computations. Elastic moduli estimated from the RMR system and unconfined compression tests for all test borings are included in the Appendix. For Final Design of all pier foundations, the designer must carefully consider the range of moduli estimated for the softer rocks.

Spread Footings

After a review of the boring logs, a target footing elevation for Piers 1 through 3 and Piers 5 and 7 was selected where bedrock was at a reasonable depth. Generally the footing elevation is approximately 13 to 15 feet below grade. Where competent rock is more than 15 feet below existing grade a deep foundation system is recommended. These elevations can be used to perform preliminary analysis. The elevations selected are presented in Table 7.

Pier No.	Station	Target Elevation (ft)		Depth of Excavation, (ft)	Foundation Material
		WB	EB		
1	30+90	555.5	556.0	13 to 13.5	Sandstone
2	33+20	555.5	555.5	14.5	Sandstone
3	34+77.50	555.4	557.0	13 to 14.6	Sandstone
5	38+56	560.5	559.3	15 to 16.5	Limestone
7	41+60/42+31	562.4	562.4	16	Limestone

The competency of the rock mass below the two approach piers (Piers 19 and 29) that were investigated during preliminary design were based upon the procedures using the RMR rating system and applying the estimated shear strength parameters to the general bearing capacity formula. The nominal bearing resistance or ultimate bearing capacity for various footing widths was calculated by the methodology presented in the 2006 AASHTO LRFD (10.6.3.1.2a-1 to 10.6.3.1.2a-9).

The nominal bearing resistance of rock foundations is extremely high as would be expected for footings founded on bedrock. Depending on footing dimensions (ranged from 10 ft by 10 ft to 20 ft by 25 ft), the calculated bearing resistance ranged from 445 to 1,600 ksf. It should be noted that the effect of eccentricity was taken into account by using a reduced effective footing area. AASHTO requires that when factored loads are used that the eccentricity be less than 3/8 of the footing dimension in any direction for footings founded on cohesionless materials or rock.

The elastic settlement of spread footings founded on the underlying jointed/fractured bedrock formations was estimated with 2006 AASHTO LRFD Equation 10.6.2.4.4-1 using appropriate values of rock mass modulus, E_m . The elastic settlements are minimal and are in the range of 0.01 to 0.03 inches. It is estimated the elastic settlement of the rock mass beneath Piers 1, 2, 3, 5 and 7 will be less than 0.25 inches for the range of bearing pressures that will be applied to the underlying rock mass.

To evaluate the ultimate sliding resistance of the footings cast on the underlying limestone and sandstone bedrock, a friction factor, tan δ , of 0.70 should be used

because limestone typically breaks along bedding planes when excavated and can be quite smooth. Unless the footing is cast neat against the rock excavation sidewalls, it is recommended that passive resistance not be considered.

For preliminary design, it is recommended that an allowable net bearing pressure of 25 ksf be used to size the foundations. However, the structural designers indicate bearing pressures may not exceed 10 ksf due to a stability standpoint (stay within Kern area) according to their preliminary analysis. It is anticipated the individual column footing sizes will be on the order of 20 ft by 20 ft. For final design, resistance factors from AASHTO LRFD Table 10.5.5.2.2-1 should be used.

Driven Piles

Several bents and abutments are recommended to be founded on driven H-piles bearing on the underlying bedrock. Driven steel piling (8BP36, 10BP42 and 10BP57) was used on several bents of the existing viaduct where the depth to bedrock was greater than 15 feet.

For preliminary design, the initial pile layout should be based upon using the IDOT Pile Data Guidelines for 2007 Standard Specifications dated November 17, 2006. Steel HP piles (AASHTO M270 Grade 50) driven to their maximum nominal required bearing should be used. Metal Shell Piles, Precast Concrete Piles and Timber Piles would not be considered viable options due to the damage potential during driving as bedrock approaches. Pile shoes should be used to protect the piles when driving into the weathered rock zone. Typical pile capacities for ASD and LRFD design are:

Pile Section	Pile Area (sq. in.)	Maximum Nominal Required Bearing, NRB (Kips)	Allowable Resistance Available (Kips)	Maximum Factored Resistance Available (Kips)
HP10X42	12.4	335	112	167
HP10X57	16.8	454	151	227
HP 12X53	15.5	419	139	209
HP12X63	18.4	497	165	248
HP 12X74	21.8	589	196	294
HP12X84	24.6	664	221	332
HP 14X73	21.5	578	192	289
HP 14X89	26.1	705	235	352

Table 8 - Pile Capacities

For pile foundations which specify a Nominal Required Bearing above 600 kips, in lieu of hammer selection criteria and use of the FHWA Modified Gates formula specified in Section 512 of the Standard Specifications, the contractor shall conduct a wave equation analysis to establish driving criteria. However, since the piles are so short

and the driving time is minimal, the use of HP14X89 piles or larger is not cost effective to warrant a wave equation analysis.

The maximum nominal required bearing (NRB) and factored resistance available (FRA) are determined as per IDOT LRFD Pile Design Guides.

 $NRB = 0.54xF_YA_S$

FRA = NRB (
$$\phi_G$$
) – (DD+Scour+Liq.)x(ϕ_G)x(λ_G) – DDx(γ_p)

Maximum Factored Resistance Available (FRA) for the south abutment piles should be reduced for downdrag force. See discussion later in this report regarding South Abutment Stability and Settlement. The downdrag force is determined by multiplying the values given in the tables below by the perimeter of the corresponding pile. The Load factor γ_p applied to the downdrag force shall be as recommended by IDOT or as per AASHTO (Table 3.4.1-2).

North Abutment (Borir	ng VIAIL-103)	South Abutme	nt (Boring VIAIL-125)
Depth El., ft	Downdrag Force, kips/ft	Depth El., ft	Downdrag Force, kips/ft
*582.1 to 568.5	12.4	**603.6 to 585.8	12.3
		585.5 to 567.0	12.8

Table 9 – Downdrag Force for I-74 West Bound

Table 10 – Downdrag Force for I-74 East Bound

North Abutment (Boring VIAIL-104) South Abutment (Boring VIAIL-126)									
Depth El., ft	Downdrag Force, kips/ft	Depth El., ft	Downdrag Force, kips/ft						
*582.3 to 568.5	12.6	**603.7 to 586.4	12.5						
568.5 to 561.0	22.9	586.4 to 567.0	15.4						

* Embankment fill material assumed to be cohesive with undrained shear strength of 1,000 psf.

** MSE selected fill material with ϕ = 34°, and unit weight of 125 pcf.

The downdrag force is significant and will reduce the maximum FRA. As discussed under the SGR for the MSE wall at the south abutment, staged construction, ground improvement, removal/replacement of compressible soils and/or lightweight fill of the embankment will be required to minimize settlements along the south abutment MSE wrap around wall. During final design, it should be determined if there is sufficient FRA and the number of piles at the abutment are reasonable prior to determining if improvements in coordination with the design of the MSE wall needs to be made to the underlying soils to limit the settlement to less than 0.4 inches.

For the north abutment, it should be assumed that staged construction will be used along with soil improvement to improve the stability and reduce the settlement of the plug fill section and abutment. Thus downdrag on the north abutment piles does not need to be considered. If the stage construction/ground improvement assumptions change during final design then the need to account for downdrag forces needs to be reconsidered.

Anticipated tip elevations are:

Pier No.	Station	Tip Ele	v .(ft)	
		WB	EB	
North Abutment	29+40	549.0	554.0	
4	36+67	557.0	556.6	
6	40+00/40+41	556.5	556.5	
8	43+48	563.0	558.9	
9	44+81	558.5	561.2	
10	46+66	558.6	560.9	
South Abutment	48+91	558.3	560.4	

Table 11 - Pile Tip Elevations

Lateral load analysis should be performed on these bents using GROUP 6.0/7.0 or FB MultiPier. The short piles at Piers 4, 6, 8, 9, and 10 may not have adequate embedment to develop fixity. These piles may need to be set in rock as specified in Bridge Manual 3.10.1.10 or driven on a batter. Piles for the existing viaduct were driven on a batter.

Drilled Shafts

As an alternate to driven piles and spread footings, drilled shafts can be considered at Piers 1 through 10. AASHTO specifies that drilled shafts be designed to have adequate axial and structural resistances, tolerable settlements, and tolerable lateral displacements.

A single, two and four shaft layout under each column should be evaluated during final design. Where fixed piers are used resulting in high moments due to thermal movements, two to four shafts may be needed to resist the applied loadings. If a single shaft is used beneath the planned oblong pier column, a shaft diameter on the order of 9 to 10 feet may be required. For a two shaft supported column, drilled shafts on the order of 4 to 6 foot diameter are expected. A four shaft supported column would have shafts on the order of 3 to 4 foot diameter. Rock socket lengths would typically be on the order of 2 to 3 times the shaft diameter.

A mono column/drilled shaft substructure presents some benefits, namely:

a. Minimal contaminated soil and water disposal as compared to spread footings and driven pile groups.

- b. No sheeting or shoring is required.
- c. No pile caps or large footing is required.
- d. Minimizes or eliminates conflicts with existing foundations.

e. Required limited space and provides maximum flexibility for construction staging.

- f. No intensive handwork as required by spread footings.
- g. Reduced uncertainty final depth to quality rock determined during construction, quantity of manual preparation of rock surface, quantity of contaminated soil, groundwater level, dewatering, time for construction, etc.

Axial resistances of drilled shafts socketed into bedrock were evaluated using the methodology presented in 2006 AASHTO LRFD for determining side and tip resistance (Equations 10.8.3.5.4b-1, 10.8.3.5.4c-a, and 10.8.3.5.4c-2). The following ultimate side and tip resistances were calculated and are presented below for several pier locations.

		• •	
Pier	Material Type	qs (psi)	qp (psi)
1	Sandstone	150	350
6/7	Limestone	250	830

Table 12 - Drilled Shaft Unit Side and Unit Tip Resistance

Note: qs – ultimate skin resistance qp – ultimate tip resistance

The resistances vary significantly due to the variation in the RMR of the rock core run and whether sandstone or limestone was encountered. If drilled shafts are considered further during final design the design parameters will need to be evaluated at every pier column where shafts are considered. Also, if drilled shafts are preferred, a cost analysis should be conducted for comparison with spread footings and driven piles.

Horizontal movements and stresses induced by lateral loads and applied moments should be evaluated using the methods in GROUP 6.0/7.0 or FB MultiPier software packages. Determination of whether a rock socket is necessary should be evaluated in final design. The effects of group interaction should be accounted for when analyzing the drilled shaft group horizontal response. Hyperbolic p-y curves can be developed for the rock formations using criterion proposed by Ke Yang (Reference 4) that uses theoretical derivations and numerical analysis results.

Abutment Earth Pressures

The proposed North and South Abutments (Eastbound and Westbound) are partially restrained at the top with MSE wall straps. However, the stub abutments will probably

develop active pressure. The following parameters should be used to determine the static earth pressure on the abutment wall:

Parameter	Recommended Value
Unit Weight	125 pcf
Angle of Internal Friction, φ	34
Angle of Wall Friction, δ	17

Table 13 - Abutment Earth Pressure Parameters

Backfill behind the walls should be granular fill according to the latest Illinois DOT standard details.

Abutment Fill Slopes

Preliminary plans indicate the spill slopes at the North Abutment will be constructed at an inclination of 2.5 H : 1 V. The stability of the abutment slopes was evaluated using SLIDE 5.0. We assumed the compacted embankment material would have an undrained shear strength of 1,000 psf, a value commonly used on IDOT projects. Per the results of SPT and Rimac Spring Tester data of the soil column, a weak cohesive layer underlies the upper fill/debris layer westbound abutment area. Our analysis indicates the global factor of safety is on the order of 1.28. In order to raise the safety factor to around 1.5, the underlying very soft sandy silt should be improved to around 750 psf.

The shear strength can be improved by using staged construction and/or by using an appropriate ground improvement technique such as stone columns, rammed aggregate piers or low modulus concrete columns. The method chosen should be further evaluated during final design such that the technique chosen is compatible with methods that may be used on adjoining contracts for the "Plug Fill" embankment section of the project.

For preliminary design it should be assumed that a staged construction technique will be used to safely construct the "Plug Fill" and abutment fill. A minimum of two stages should be planned with an additional surcharge of 2 to 4 feet of fill. Embankment slopes should be temporarily flattened to around 3.5 H : 1 V. The ramp fills should be constructed first to act as stabilizing berms for the plug fill embankment. A surcharge period of 4 to 6 months should be anticipated.

South Abutment Stability and Settlement

In CH2M Hill's report titled "Structure Geotechnical Report I-74 Mainline Retaining Wall Structure Number 081-6014" dated April, 2008 (Reference 14), the results of global stability and settlement analyses are discussed for the area which encompasses the South Abutment.

Retaining Wall 081-6014 is planned to retain soil supporting the I-74 mainline immediately south of the Illinois viaduct. For analyses purposes, the wall alignment was divided into three segments: Wall 1 - Station 48+65 to 59+17.32 on the I-74 mainline, supporting westbound I-74 lanes; this portion of the wall separates Ramp 7A and westbound I-74 between the Illinois viaduct and the 19th Street Overpass; Wall 2 - Station 49+77.94 to 50+00 on the I-74 mainline; this is a portion of the "U" Wall supporting soil under the south abutment of the Illinois Viaduct; and "Wrap-Around" Wall – 130 feet of wall under the south abutment of the Illinois Viaduct, connecting Walls 1 and 2. The "wrap-around" wall will retain on the order of 31 feet of fill.

The bridge abutment will be independently supported on a deep foundation system and will not impose vertical or lateral pressure on retaining wall 081-6014.

The results of the analyses for the "Wrap-Around" Wall are presented below in the sections titled "Global and External Stability of the MSE Wall – South Abutment" and "Settlement – South Abutment".

Global and External Stability of the MSE Wall - South Abutment.

Stability analyses were performed on models developed using available subsurface data and geometry from proposed cross sections of the retaining walls. The analyses involved evaluation of the wall resistance against sliding (safety factor of 1.25), overturning (safety factor of 2.0), global failure (safety factor of 1.3) and bearing failure (safety factor of 2.5), and were performed in general accordance with FHWA manual on MSE walls (Reference 15). The models for the northern section (stations 7012+30, 49+00) indicate reinforced lengths considerably longer than 0.7 times the height of the wall are necessary, and in the case of station 49+00 (east wall), the required reinforced length is greater than the distance between the two opposing "U-Walls". Results of global stability analyses and external stability analyses (sliding, overturning, bearing) are presented in Tables 14 and 15, respectively, for the east face of the U-Wall (49+00) and Abutment, U-Wall, north face (7012+30).

TABLE 14 - GLOBAL STABILITY ANALYSES RESULTS FOR MSE WALL SECTIONS

Location of Slope Analyzed	Loading Case	Failure Mode	FS with Recommended Shear Strength & Full MSE Section	B _{MSE} (ft)	B _{MSE} /H _{MSE} (%)				
40+00	Undrained	Circular Block	See Footnote C						
49+00 (U-Wall	Drained	Circular							
(east face), Northern		Block Block	1.7	12	70				
Section)	Drainad	Circular	2.1	12	70				
	Drained	Block	1.7	12	70				
7012+30 ^A	Undrained	Circular	1.7	35	152				
(Abutment, U-Wall	Unuiaineu	Block	1.5 🔺	35	152				
(north face),		Circular	1.7	35	152				
Northern Section)	Drained	Block	1.5	35	152				

^A B_{MSE} = Width of Reinforced Zone

^B H_{MSF} = Height of MSE Wall Section (Including Embedment)

TABLE 15 - EXTERNAL STABILITY ANALYSES RESULTS FOR MSE WALL SECTIONS

Wall Station Analyzed	Height (ft)	Embed- ment (ft)	H _{MSE} (ft)	B _{MSE} (ft)	B _{MSE} / H _{MSE} (%)	Bearing F.S.	Slidin g F.S.	Overturning F.S.	
49+00 (U-Wall (east face), Northern Section)	32	4	36	See Footnote C					
7012+30 ⁴ (Abutment, U-Wall (north face), Northern Section)	19	4	23	35 ⁸	152	4.6	1.9	7.2	

^A Stationing is with respect to 7th Avenue alignment ^B Length controlled by global analysis

Adequate global stability not attainable (required reinforcement length greater than С distance between opposing "U-Walls")

In addition to the above-described calculations, walls bearing on cohesive soils were also examined for local shear (lateral squeeze) failure. Results of our analyses indicate that the soils in the northern section of the alignment do not, in their current state, have adequate strength against local shear failure. This necessitates that the poor soils will either need to be removed or improved, as discussed in Reference 14.

Settlement – South Abutment

Soils in the northern section of the alignment are moderately compressible. However, when subjected with the proposed 30 to 32 feet of fill, the estimated settlement ranged from 12 to 20 inches. This settlement is excessive for a conventional CIP wall or precast-faced MSE wall. Therefore, as presented in Reference 14, it is recommended that either the soils be improved, removed, or the wall constructed with lightweight fill or staged construction.

When settlement is greater than 0.4 inches, it must be accounted for as downdrag or negative skin friction for pile foundations. The downdrag geotechnical loss will account for the loss of maximum factored resistance available as well as the additional soil load.

Conclusions and Recommendations

Based on the analyses and subsurface conditions, conclusions and recommendations are summarized as follows:

- Parameters and capacities are provided for the analyses and design of spread footings, drilled shafts and driven piles.
- The South Abutment piling will experience downdrag forces due to settlement and will have an impact on the maximum FRA.
- Additional geotechnical investigations are recommended for Final Design as discussed in this report.

6.0 CONSTRUCTION CONSIDERATIONS

Foundation Construction

The foundation types and bearing elevations closely match the foundations employed when constructing the existing viaduct. In general, the foundation construction and excavation and backfill should follow the plans and Illinois DOT Standard Specifications/Supplemental Specifications.

Construction of the south abutment at 7th Avenue will require staging techniques using cantilever sheeting as well as soil retention of the MSE wall select fill.

Spread Footing Construction

The foundations shall be excavated to the lines and approximate depths indicated on the Plans or to such depths determined in the field by the Engineer. It appears that the recommended embedded depths of the foundations are on the order of 13 to 16 feet. Excavated material should be removed from the site and legally disposed of by the Contractor. Excavation should be performed according to the Section 502 of the Illinois DOT Standard Specifications for Road and Bridge Construction.

Special provisions will be required to specify that the final rock bearing surface shall be prepared by barring, picking or wedging, or similar hand methods to remove loose wedges and unsound rock so as to leave the foundation in an entirely sound and unshattered condition with a clean bonding surface. Seepage water is expected to be present at foundation level in Piers 1, 2 and 3, and it must be directed to a sump in one corner of the excavation and removed by pumping or air lift. Borings at Piers 1, 2 and 3 encountered sand layers generally below groundwater level.

The following note should be added to the plans:

The bottom of footing elevation shall be adjusted to ensure a minimum embedment of 6 inches in non-weathered rock. The rock excavation shall be made with near-vertical sides at the plan dimensions to allow the sides and base of the embedded portion of the footing to be cast against undisturbed rock surfaces.

It is anticipated that the soils at the site can be excavated using conventional excavation equipment. For all temporary excavations, space permitting, slopes in soil should be excavated to an inclination no steeper than 2 Horizontal : 1 Vertical. Temporary slopes may experience some sloughing and the Contractor should take caution and follow the appropriate OSHA regulations. Where space is limited, shoring will need to be installed. At Pier 1, River Drive could be impacted while at Pier 3 the existing Ramps may need to remain in service during construction. Access to the alley between 5th and 6th Avenue could be impacted if an open cut excavation with side slopes is made.

Groundwater is expected to enter the excavations and should be able to be handled with sumps and pumps. Water infiltration may be more prevalent at Piers 1 EB, 2 EB, 3 EB and 10 EB where porous granular material was encountered in the borings. Sheeting may need to be considered at these piers to minimize infiltration into the excavation.

Further environmental investigations should be conducted to determine whether the materials excavated in the areas identified in the FEIS will need to be disposed in special landfills.

Driven Pile Construction

As stated in 2006 AASHTO LRFD, care should be taken in driving piles to hard rock to avoid tip damage. The piles on this project will be relatively short. Piles should have a minimum yield strength of 50 ksi. Pile tips should be protected using a cast steel pile shoe. A relatively small hammer should be used to minimize the risk of pile damage. A hammer with a rated energy of around 15,000 ft-lb per blow would be appropriate.

Since the piles are so short, dynamic testing is not recommended. Piles should be driven in accordance with Illinois Department of Transportation Standard Specifications. The specifications utilize the FHWA Modified Gates formula.

Test piles should be driven at each abutment and bent where piles are specified.

Drilled Shaft Construction

The performance of drilled shafts is sensitive to the installation methods. Drilled shaft construction should follow the applicable sections of the Illinois DOT Standard Specifications for Concrete Drilled Shafts (SS-01032). The following are issues to be considered during final design in preparing the specifications and contract documents should drilled shafts be selected:

- Editing the Standard Specification for drilled shaft construction may be required.
- CSL tubes should be installed properly in each drilled shaft so the Resident Engineer can select shafts to be integrity tested using Crosshole Sonic Logging (CSL) methodology. The number of tubes and locations should be incorporated into the contract drawings.
- All CSL tubes should be filled with water within two hours of concrete placement, in
 order to prevent debonding between the CSL tubes and the surrounding concrete.
 CSL tubes should be covered after being filled with water to keep debris from
 blocking the tubes.
- Either the State or Contractor should hire a qualified CSL testing company to perform and interpret the results of the CSL testing.
- It is anticipated that the shafts will be installed using soil augers and rock core barrels/rock augers. Temporary casing will need to be installed within the soil overburden. Water infiltration into the shaft excavation should be anticipated.
- Further environmental investigations should be conducted to determine whether the materials excavated from the shafts in areas identified in the FEIS should be disposed in special landfills.

Drilled Shaft Testing

CSL testing is the preferred testing method during construction to ensure the shaft concrete is free of defects and the bottom of the shaft is sound.

Temporary Construction Support

The construction of the new I-74 at the south abutment will include removal of the existing structures and replacing with new structures. In order to maintain the traffic flow during construction, stage construction is proposed. To achieve this, a temporary

support system will be required at the north and south abutments. Based on the subsurface conditions as shown in borings VIAIL-125 and VIAIL-126 the bedrock is relatively shallow and use of simple cantilevered temporary sheetpile as a temporary earth support system is not feasible since adequate embedment will not be attained. The contractor shall design the temporary earth support system as per IDOT Bridge Manual Section 3.13.

7.0 FINAL DESIGN CONSIDERATIONS

Final design will be performed using 2007 AASHTO LRFD specifications. The information presented in this report can easily be incorporated into LRFD for strength and service limits. Resistance factors for design of shallow and drilled shaft foundations should be selected from AASHTO LRFD Tables 10.5.5.2.2-1 and 10.5.5.2.4-1. For driven piles, References 10 and 11 provide guidance.

As recommended elsewhere in this report, additional subsurface explorations should be conducted during final design at Pier 6 Eastbound and Pier 7 Westbound once access is available.

Environmental investigations will be required at the contaminated areas (Deere & Co. parking lot, Riverside Products, and Brannen's Auto Works sites) identified in this report and in other areas identified in the FEIS. Contaminated areas may have a major impact on project construction, cost and schedule. Disposal methods, material quantities, permitting, treatment and disposal of water from excavations, site monitoring activities and personnel protection will need to be evaluated during final design.

A detailed constructability comparison of the three foundation system alternatives should be conducted during final design to ensure the selected foundation system is compatible with the proposed staging phases. This comparison should include but not be limited to construction time, traffic impacts, safety, and risk/uncertainty.

8.0 REFERENCES

1. Technical Memorandum, I-74 Iowa-Illinois Corridor Study – Moline Viaduct & Ramps Span Arrangements for I-74 Mainline, dated June 21, 2007.

2. AASHTO LRFD Bridge Design Specifications, 2006 Interim Revisions, Third Edition.

3. AASHTO LRFD Bridge Design Specifications, 2008 Interim Revisions, 4th Edition, 2007.

4. AASHTO Standard Specifications for Highway Bridges, 17th Edition, 2002

5. Analysis of Laterally Loaded Drilled Shafts in Rock, A Dissertation Presented to The Graduate Faculty of The University of Akron, In Partial Fulfillment for the Degree Doctor of Philosophy, by Ke Yang, May 2006.

6. JACOBS Technical Memorandum, I-74 Iowa-Illinois Corridor Study, Bridge Design Criteria, dated November 14, 2005.

7. GROUP 6.0/7.0 for Windows, Analysis of a Group of Piles Subjected to Axial and Lateral Loading, Ensoft, Inc., February 2003/February 2006.

8. LPILE 5.0 for Windows, a Program for the Analysis of Piles and Drilled Shafts Under Lateral Loads, July 2004.

9. FB-MultiPier, Bridge Software Institute.

10. 2007 Illinois DOT Standard Specifications for Roadway and Bridge Construction.

11. IDOT Pile Data Guidelines for 2007 Standard Specifications, Bridge Memorandum 06.2, November 17, 2006.

12. IDOT Bridge Manual, May 2008.

13. Interstate 74 Quad Cities Corridor Study, Scott County, Iowa and Rock Island County, Illinois, Final Environmental Impact Statement and Section 4(f) Statement, Review Draft Copy.

14. CH2M Hill, Structure Geotechnical Report, I-74 Mainline Retaining Wall, Structure Number 081-6014, I-74 Iowa to Illinois Corridor Study, FAI Route 74, Section 81-1-2, Station 49+77.94 (EB) to 59+17.32 (WB), Rock Island County, Illinois, P-92-032-01, April 2008. Prepared for Illinois Department of Transportation.

15. "Mechanically Stabilized Earth Walls and Reinforced Soil Slopes – Design and Construction Guidelines", FHWA-NH-00-043, March 2001.

FIGU	IF

			•	-	:	:			•			·····
		•			-	Boring ID	-	•		•		
		-			Ground Surfs		МГ-1	10	-			
	• • • • • • • • • • • • • • • •					· \GS	E =5	83) Compressiv	ve Strength, tsf			
						Blow Counts/ft.		Mois	ture Content, %			
								Concrete				
	••••		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · · ·			×	Topsoli Fill			······	÷
				· ·			XX	F 111				
								Silt				
							77	Silty Clay				
				• • •			<u> </u>					
								Medium Plastic Clay				
								High Plastic Clay	•••••••			-
								riight iaalic olay				• • •
							<u>.</u>].]	Silty Sand				
				****	*****		$\langle \rangle$	Clayey Sand		••••••		
							<u>//</u>	Citycy Cana				•
					·	7		Well Graded Sand	• (
								Poorly Graded Sand			• • • • • • • • • • • • • • • • • • • •	
:							77		X			-
								Sandy Till				
				Sampler Refus	al (50 blows for 3" Penetrat	ion)	K	Gravelly Till			•••••••••••••••••••••••••••••••••••••••	
							4					
·								Well Graded Gravel				-
						•						••••••
						đ	Ś					
							9	Poorly Graded Gravel				
						þ	Ö		•••••••••••••••••••••••••••••••••••••••		*****	••••••
							4					
	;							SANDSTONE				
-												
										-		
								SHALE, CLAYSTONE & SILTSTONE	I			•
										•••••••••••••••••••••••••••••••••••••••		
-												
					Compressive Strength,	.tsfQu = 650		Rec = 100 LIMESTONE				
								RQD = 90				••••••••••••••••••••••••••••••
							- hansel -					
						BORING ST	ICK	LEGEND				
											•••••••••••••••••••••••••••••••••••••••	•••••••
L		*	•	•	:		•					

SUBSURFACE PROFILE: BORING STICK LEGEND

IRE 4: Sheet 1 of 5

SUBSURFACE PROFILE: 1-74 EAST BOUND PROFILE 1 OF 2 FIGURE 4: Sheet 2 of 5

1,:	200 SOUTH	-
		595
•••••••••		590
<u>u W</u>		
(В)	Dark Gray Silt	585
(B) 19.3		
(B) [°] 19.9	Gray to Brown Silty Clay	580
(B) 20.0		
(P) 22.3		575
(B) 26.0		570
(B) 24.6		570
(B)	Gray Fine Sand	565
	Weathered Shale	560
= 100		
<u>= 76</u>	Gray Limestone	555
= 98		
= 92		550
= 100		
<u>= 91</u>	·····	545
= 100		
<u>= 92</u>	"Birdseye" Textured Limestone	540
= 100 D =		
<u>10</u>	۰۰۰۰۰۰ ۴	535
		i30
1,20	0	

SUBSURFACE PROFILE: I-74 EAST BOUND PROFILE 2 OF 2 FIGURE 4: Sheet 3 of 5

1,	100 SOUTH	-
		580
	Concrete + Base Course	· 575
	n Silt w/ Brick (Fill) Brown Silt	· 570
ark Brow		1370
rown and Silty Cla	i Gray Clayey Silt ay	565
Veatherer	d Limestone	560
Bray Lime	estone	
		555
		550
		545
irdseye"	Textured Limestone	
		540
ay Limes		535
	· · · · ·	530
		530
		525
		520
1,10		

SUBSURFACE PROFILE: I-74 WEST BOUND PROFILE 1 OF 2 FIGURE 4: Sheet 4 of 5

SUBSURFACE PROFILE: I-74 WEST BOUND PROFILE 2 OF 2

FIGURE 4: Sheet 5 of 5

· []	G	RAIN SIZE IDENTIFICA	TION
	Name	Size Limits	U.S. Sieve Size
	BOULDERS COBBLES	12" or greater 3" to 12"	
	GRAVEL COARSE FINE SAND	3⁄4" to 3" 3⁄16" to 3⁄4"	3⁄4" to 3" No.4 to 3⁄4"
	COARSE MEDIUM FINE	2.00 mm to 4.75 mm 0.42 mm to 2.00 mm 0.07 mm to 0.42 mm	No. 10 to No. 4 No. 40 to No. 10 No. 200 to No. 40
	SILT CLAY	0.002 mm to 0.07 mm less than 0.002 mm	
	RELATIVE PF		PLASTICITY Term PI
	Little 10 Some 20	0% to 20% Sli 0% to 35% Me	ph-plastic 0–3 ghtly plastic 4–15 edium plastic 16–30 ghly plastic > 30
		RELATIVE DENSITY GRANULAR SOILS	OF
	S	PT N-value Rela (blows/ft) Den	tive
		0–4 Very loo 5–10 Loose 11–30 Medium	se
	9	31–50Dense>50Very der	
	ST	RENGTH AND CONSIS	
		OF COHESIVE SOIL	S
	SPT N-value (blows/ft)	Unconfined Compressive Strength	S Consistency
	(blows/ft) 0-2 3-4	Unconfined Compressive Strength (tons/ft ²) 0.00–0.25 0.25–0.50	Consistency Very soft Soft
	(blows/ft) 0-2 3-4 5-8 9-15	Unconfined Compressive Strength (tons/ft ²) 0.00–0.25 0.25–0.50 0.50–1.00 1.00–2.00	Consistency Very soft Soft Medium stiff Stiff
	(blows/ft) 0-2 3-4 5-8	Unconfined Compressive Strength (tons/ft ²) 0.00–0.25 0.25–0.50 0.50–1.00	Consistency Very soft Soft Medium stiff
	(blows/ft) 0-2 3-4 5-8 9-15 16-30 > 30 Soil classifications is	Unconfined Compressive Strength (tons/ft ²) 0.00–0.25 0.25–0.50 0.50–1.00 1.00–2.00 2.00–4.00	Consistency Very soft Soft Medium stiff Stiff Very stiff Hard ermined by visual inspection
	(blows/ft) 0-2 3-4 5-8 9-15 16-30 > 30 Soil classifications s of samples and from Split spoon samples 140-pound hammen	Unconfined Compressive Strength (tons/f ²) 0.00-0.25 0.25-0.50 0.50-1.00 1.00-2.00 2.00-4.00 >4.00 hown on boring logs are det n laboratory tests where ava	Consistency Very soft Soft Medium stiff Stiff Very stiff Hard ermined by visual inspection lable.
	(blows/ft) 0-2 3-4 5-8 9-15 16-30 > 30 Soil classifications s of samples and from Split spoon samples 140-pound hammen (Standard penetration)	Unconfined Compressive Strength (tons/f ²) 0.00-0.25 0.25-0.50 0.50-1.00 1.00-2.00 2.00-4.00 > 4.00 hown on boring logs are det n laboratory tests where ava	Consistency Very soft Soft Medium stiff Stiff Very stiff Hard ermined by visual inspection lable. " O.D. sampler 18" with a
	(blows/ft) 0-2 3-4 5-8 9-15 16-30 > 30 Soil classifications s of samples and from Split spoon samples 140-pound hammen (Standard penetration)	Unconfined Compressive Strength (tons/f ²) 0.00-0.25 0.25-0.50 0.50-1.00 1.00-2.00 2.00-4.00 > 4.00 hown on boring logs are det n laboratory tests where ava s are obtained by driving a 2 free-falling 30". on test or "SPT", ASTM 1586) xt to split spoon symbol represe	Consistency Very soft Soft Medium stiff Stiff Very stiff Hard ermined by visual inspection lable. " O.D. sampler 18" with a
	(blows/ft) 0-2 3-4 5-8 9-15 16-30 > 30 Soil classifications s of samples and from Split spoon samples 140-pound hammen (Standard penetration)	Unconfined Compressive Strength (tons/f ²) 0.00-0.25 0.25-0.50 0.50-1.00 1.00-2.00 2.00-4.00 > 4.00 hown on boring logs are det n laboratory tests where ava s are obtained by driving a 2 free-falling 30". on test or "SPT", ASTM 1586) xt to split spoon symbol represe	Consistency Very soft Soft Medium stiff Stiff Very stiff Hard ermined by visual inspection lable. " O.D. sampler 18" with a
	(blows/ft) 0-2 3-4 5-8 9-15 16-30 > 30 Soil classifications s of samples and from Split spoon samples 140-pound hammen (Standard penetration)	Unconfined Compressive Strength (tons/f ²) 0.00-0.25 0.25-0.50 0.50-1.00 1.00-2.00 2.00-4.00 >4.00 hown on boring logs are det n laboratory tests where ava s are obtained by driving a 2 free-falling 30". on test or "SPT", ASTM 1586) xt to split spoon symbol represe ponding penetration (blows/in-	Consistency Very soft Soft Medium stiff Stiff Very stiff Hard ermined by visual inspection lable. " O.D. sampler 18" with a

1	PHYSICAL	PROPERTIES OF ROCK
	· dense · fine	
Texture	• medium • coarse • crystalline	
	orystannie	Spacing
Bedding	 very thin thin medium 	less than 2 in. 2 in. to 1 ft. 1 ft. to 3 ft.
Characteristics	thick massive	3 ft. to 10 ft. greater than 10 ft.
	very soft	ompressive Strength (tsf) 10 - 250
Hardness	∙hard ∙very hard	250 - 500 500 - 1,000 1,000 - 2,000
	• extremely hard	> 2,000 Description
	 fresh very slight 	unweathered rock fresh, joints stained
Degree of Weathering	moderate moderately sev	
	• severe • very severe • complete	rock fabric clear but reduced to soil strength rock fabric discernible but mass reduced to soil rock reduced to soil, fabric not discernible
	·clayey	\sim
Lithologic Charactheristics	calcareous siliceous	
	• sandy • silty	
	• gently dipping	bedding
	 steeply dipping Fractures 	g bedding
	 closely spaced cemented fraction 	fractures
Structure	open fractures brecciated (fra	gmented)
	·very close ·close	Spacing less than 2 in. 2 in. to 1 ft.
\mathbf{O}	·wide ·very wide	se 1 ft. to 3 ft. 3 ft. to 10 ft. greater than 10 ft.
	Miscellaneous • slickensided	greater than to it.
Colution and	 vuggy (pitted) vesicular (igneoi 	(au
Void Conditions	porous cavities	
Miscellaneous	• swelling	
	•	CORE PROPERTIES
		th of rock core recovered divided by the length of the
Rock Quality Designat	or (RQD) is define	ed as the total length of rock core pieces greater than
	-	core run (in percent).
90 – 100 Excellent		
50 – 75 Fair 25 – 50 Poor		LEGEND FOR BORING LOGS AND
u – 25 Very Poo	r	ROCK CLASSIFICATION SYSTEM
		JACOBS
	Bedding Characteristics Hardness Degree of Weathering Lithologic Charactheristics Structure Structure Structure Structure Structure Recovery (REC) is def core run (in percent). Rock Quality Designat 4 in. long divided by <u>RQD (%)</u> Diagnost 90 – 100 Excellent 75 – 90 Good 50 – 75 Fair 25 – 50 Poor	Texture - dense fine Texture - ineclium - coarse - orystalline Bedding Characteristics - very thin - thick - massive Hardness - very soft - soft - hard - very slight - soft - hard - very slight - slight Degree of Weathering - fresh - very slight - slight - moderately sev - severe - complete Lithologic Charactheristics - fresh - very slight - slight - moderately sev - severe - complete Lithologic Charactheristics - clayey - shaly - calcareous - sandy - silly Structure - clayey - stephy dipping - Fractures - scattered fract - closely spaced - close - sickensided Structure - vuggy (pitted) - vesicular (igneou - very wide Miscellaneous - slickensided Miscellaneous - swelling - slaking Miscellaneous - swelling - slaking Poock A in. long divided by the length of the Recovery (REC) is defined as the length core run (in percent). Rock Quality Designator (RQD) is defined 4 in. long Good 50 – 75 Fair 25 – 50 Poor

L.,

Illinois Depa of Transport	rtme tatio	ent n	S	50	IL BORIN	G LOG	D (10 0/20/07
Division of Highways			Now	1-74 B	ridge Over Mississippi	River - Illinois	Date <u>8/28/07</u>
OUTE1-74	DESCR				Approach		LOGGED BYSL
		LOCAT	ION (1	1=5648	<u>892.331, E=2459310.4</u>	15), SEC. 32, T	<u>NP. 18N, RNG. 1W, 4</u>
COUNTY Rock Island DRIL	LING M	ETHOD		<u> HS</u>	A, CME 550X	_ HAMMER TY	PECME AUTOMATIC
STRUCT. NO Station 29+40		BL	U C S	M O I	Surface Water Elev. Stream Bed Elev.	ft	
SORING NO. VIAIL-103 Station	- H	W S) (/6")	Qu (tsf)	S T (%)	Groundwater Elev.: First Encounter Upon Completion After Hrs.		
Ground Surface Elev. 568.50	_ ft ("	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(.0.)				
medium grained, some silt, loose, moist.		6 13 7				\bigcirc	
- angular limestone gravel fill at 1.8'-3'	- 	5 3 -5 4			2		
- saturated at 6' - 6" layer of dark brown to black clayey silt at 6.0'-6.5'	¥	$-\frac{4}{4}$	2.0 P				
- (Note: driller added water to augers to control sand blow-in starting at 11' depth) - fine to medium grained, trace to some silt at 11'-13.5'		3 2 -10 2 - 4 6 12					
- conglomerate with gravel to 1/2 inch at 14' SHALE - dark gray, clayey, medium plastic, decreasing plastic	<u>554.30</u> - 	6 8 -15 25	3.0 P	21.5	5		
and increasingly friable with depth, severely weathered.	- 	11 50/		14.	5		
	549.00	50/	5"				

L

coring. The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206) BBS, from 137 (Rev. 8-99)

R	Illinois I of Trans	Department sportation	ROCK		L	DG	Ì	F	Page <u>2</u>	of
ROUTE	Division of Highways JCI		New I-74 Bridge Ov	ver Mississippi Ri Approach	ver - I	llinois	10		Date{	
					//		RE	R	CORE	S T
BORING NO Station Offset	29+40 VIAIL-103 ace Elev. 566	Core Diamo 3 Top of Roc Begin Core		in ft	– D E P T H (ft)		C O V E R Y (%)	Q D	T I M E (min/ft)	R E N G T H (tsf
	gray, very soft, i	medium plastic, severely	weathered.	549.0		Run 1	33	0	4.7	
shale parting a	nd seams, occa res, smooth on s	ay to light gray, soft to ver sional black banding, hor shale partings to sandy ro	izontal planar to slig	htlv	<u></u>	Run 2	97	90		170.0
- conglomerati	c at 22.8'-23.6'		20		 25 					
		40				Run 3	92	66		
- occasional sh	hale partings from	m 31.0'-36.0'				Run 4	100	61	1.2	
\langle					-35					
· dark gray sha	le partings and	seams at 38.4'-39.5'				Run 5	99	78	0.8	
						1				

Color pictures of the cores <u>Yes</u> Cores will be stored for examination until

L.

L

The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

Illinois Department				F	Page <u>3</u>	of <u>3</u>
NOCK CORE	L(C	Ì			
Division of Highways JCI New I-74 Bridge Over Mississippi Riv	ver - I	linois		C	Date 8	/28/07
ROUTEI-74 DESCRIPTION Approach			_ LC	GGE) BY	SL
SECTION LOCATION [N=564892.331, E=2459310.415]	, SE(3 .32,	TWP.	<u>18N, F</u>	RNG. 1W	, 4 th PM
COUNTY Rock Island CORING METHOD NQ Core	· .		R E	R	CORE	S T
STRUCT. NO CORING BARREL TYPE & SIZE NQ Wireline Station 29+40	- D	с	C O	Q	T	R E
Core Diameter <u>1.8</u> In	E	0 R	V E	·	M	N G
BORING NO. VIAIL-103 Top of Rock Elev. 554.30 ft Station	Т Н	E	R			т Н
Offset Ground Surface Elev. 568.50 ft	(ft)	(#)	(%)	(%)	(min/ft)	
SANDSTONE - medium gray and brown gray, fine grained, some black banding, occasional shale partings, horizontal planar to slightly irregular sandy rough fractures	-40					
at thin to medium bedded spacing, fresh to slightly weathered.						
- greenish gray shale seam at 41.0'-41.5'		Run 6	100	89	2	
	_					
				·		
	<u>-45</u>					
End of Boring 522.50						
	_					
\mathbf{GO}	_					
	-50					
	-					
						·
	-55					

Color pictures of the cores <u>Yes</u> Cores will be stored for examination until_____ The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

Ł

	Illinois De of Transpe Division of Highways	partı ortat	nent ion		S		G LOG	Page <u>1</u> of
	JCI	DE:	SCRIPTIC	N∈ N€	ew I-74	Bridge Over Mississippi Approach	River - Illinois	Date <u>8/28/(</u> DGGED BY <u>SL</u>
			LOCA		(N=56	64827.741, E=2459192.0	7), SEC.32, TWP.1	8N, RNG. 1W, 4 th P
4						SA, CME 550X		
	29+40 VIAIL-104	1	D B E L P O T W		M O I S	Surface Water Elev Stream Bed Elev Groundwater Elev.:	ft	14
Station Offset Ground Surfa		ft	H S (ft) (/6"	Qu) (tsf)	т (%)	First Encounter	ft	
3" to 6" thick) SILT - black, sa moist (FILL)	andy, and gravel,		3 11 12					
CLAY - reddish brown, silty, me medium stiff to	brown to greenish edium plastic, soft, moist.	<u>565.20</u> -	3	1.0 P	17.0	× O		
SHALE - mediu	m gray, with sand	- <u>561.10 -</u>	3 3 4	0.3 B	18.9			
partings, friable SAND - mediun medium, some saturated.	n brown, fine to silt, loose,	559.70	<u>7</u> <u>3</u> <u>2</u> -10 2					
- moderately w 2" seam at 10' SANDSTONE - severely weathe		557.20	50/4"					
- augered throu								
Borehole contin coring.		-	<u>15</u> 					× •
*		_	 					
		_	-20					

Ł

Illinois Department of Transportation ROCK CORE		٦C	<u>.</u>	F	Page <u>2</u>	_ of _
Optimision of Highways ROCK CORE JCI New I-74 Bridge Over Mississippi River				C	Date	3/28/07
ROUTEI-74 DESCRIPTION Approach	a - n		_ LC	GGEI	О ВҮ	SL
SECTION LOCATION _(N=564827.741, E=2459192.07), S	BEC.	32, T	WP. 1	8N, R	NG. 1W,	4 th PM
COUNTY Rock Island CORING METHOD NQ Core			R	R	CORE	S T
STRUCT. NO.	D E T H (ft)	CORE (#)	E C V E R Y (%)	Q D	T M E (min/ft)	R E N G T H
SANDSTONE - light to medium gray, with numerous shale partings with fracture at partings, soft to very soft, moderately well cemented, non-distinct bedding at thin to occasionally medium bedded spacing, fractures at partings are horizontal to 10° planar and smooth, fractures in sandstone are planar to slightly irregular and sandy rough, localized high angle to vertical fractures, fresh to slightly weathered.		•••	100	51	2.7	
-		2				305.0
- near-vertical fracture in sandstone at 19.7', sandy rough	-20					
- thin beds of medium to dark gray shale with numerous sand partings at 20.3'-21.5'		Run 3	73	40	1.6	
	-25					
		Run 4	98	38	1.2	
- medium to dark gray shale with numerous sand partings at 30.5'-32.5'	<u>-30</u>	Run 5	98	87	1	
- occasional shale partings from 32.5' to 35.5'	_					

Color pictures of the cores <u>Yes</u> Cores will be stored for examination until

The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

(77)	Illinois D	epartment portation ROCK CORE		~~		I	Page <u>3</u>	_ of _:
	Division of Highways JCI	New I-74 Bridge Over Mississioni Ri	ver - I	Illinois	1		Date8	
		DESCRIPTION Approach						
		LOCATION (N=564827.741, E=2459192.07),			ſ	<u>8N, R</u> 	T	1
COUNTY	Rock Island	CORING METHOD NQ Core			R E	R	CORE	Т
STRUCT. NO. Station	29+40	Core Diameter 1.8 In	- D E	0	C O V E	Q D	T I M E	R E N
Offset			P T H		R Y			G T H
	ace Elev. 568.	20 ft gray, with numerous shale partings with fracture at	(ft)	(#)	(%)	(%)	(min/ft)	(tsf)
partings, soft to occasionally m	o very soft, moder edium bedded sp	ately well cemented, non-distinct bedding at thin to acing, fractures at partings are horizontal to 10° candstone are planar to slightly irregular and sandy	<u>-35</u>					
rough, localized (continued)	d high angle to ve	rtical fractures, fresh to slightly weathered.		Run 6	98	62	0.6	
brownish gro	w with occasional	shale clasts, increasing to pumprous clast at 40.0						
40.3', rough ho	rizontal fractures	shale clasts, increasing to numerous clast at 40.0' - with localized 70° rough fracture at 39.9'						
		527.90						
SHALE - mediu End of Boring	um to dark gray.		·					
		ξO'						
			-45					
	O [*]							
X			-50					
					[.	I	(

Color pictures of the cores <u>Yes</u> Cores will be stored for examination until_____ The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

Illinois Depart of Transportat	me ior	nt า		SC	DIL BORING LOG
ROUTE I-74 DE	SCR	IPTIO	Ne	w I-74	Bridge Over Mississippi River - Illinois Approach LOGGED BY KJB
SECTION	_ L	.OCA [.]		(N=56	4749.647, E=2459344.727), SEC. 32, T WP. 18N, RNG. 1W, 4 th PM
COUNTY Rock Island DRILLING	G ME	THOE)		HSA, CME 55 HAMMER TYPE CME AUTOMATIC
STRUCT. NO.		B L O W S (/6")	S Qu	M O I S T (%)	Surface Water Elev. ft Stream Bed Elev. ft Groundwater Elev.: ft First Encounter 560.8 ft Upon Completion ft After Hrs. ft
TOPSOIL - 2-inch thick, roots. /569.10 SILT - brown, trace sand, trace to little clay, slightly plastic, stiff, moist.		4 6 4	1.3 P	8.9	
565.80 SILT - brown, trace to little fine sand, grading downwards to some fine sand, trace clay, crumbly, moist. 563.80 SILT - brown, sandy, little to some sand, trace clay, very soft to loose, wet. [Sample at 6'-7.5' had free water in soil but outside of spoon was not wet until sample at 8.5'-10.0'] 561.30 SAND - reddish brown, clayey, fine to medium sand with gravel, loose, saturated. 558.30 WEATHERED SHALE - augered through 5555.50 Borehole continued with rock coring.		3 3 5 2 1 1 1 2 2 5 5 5 0/3",-	0.3 P	21.5	
-	-20				

	Division of Highways	partment ortation	ROCK CO	JRE L	00	Ĵ		_	
ROUTE	JCI	DESCRIPTION	New I-74 Bridge Over Mis Approa	sissippi River ·	- Illinoi:	s 1 C		Date{	
			N_(N=564749.647, E=245						
	Rock Island CO			<u>10044.727), O</u>		R		CORE	1
						E C	R	T	T
STRUCT. No Station	O.	CORING BAR	REL TYPE & SIZE NQ			0	Q		E
		Core Diamet	ter <u>1.8</u> in Elev. <u>558.30</u> ft	E	2 R	V E	D.	ME	
Station	D. VIAIL-105	Begin Core	Elev. <u>555.50</u> ft	1		R Y	·		
Offset Ground Sι	urface Elev. 569.30	ft		(f	t) (#)	(%)	(%)	(min/ft)	(t
HALE - me ery soft roc		nated chips, rock-like	to clay-shale, hard clay to	555.50	Rur	48	0	1.5	
	duced alternating light g	ray (sandstone) and	dark gray (shale or coal) d	rill <u>554.20</u>					
ANDSTON	E - light brownish gray t	o gray, fine grained,	uniform, well sorted, well nented, generally not friabl		Run	83	18		
hen wet, w	ith black banding, non-d	distinct horizontal plai	nar sandy rough fractures		- 2				
cally mode	rately weathered.	nigh angle fractures	encountered, slightly to						
				·	-				30
8" thick lay	ver of friable, iron-stained	d sandstone at 17 1'	to 17.8'						
o thick ay	er of mable, non-stanlet			 	20				
				-	-				
				-	- Run - 3	93	69	0.6	
		$\mathcal{C}(\mathbf{)}$	<i>v</i>		_				
				-2	25				
	thin (1/8" to 1/2" thick) in	nterporous black or t	prown staining within the	<u> </u>	_				
a series of	22 5' 23 6' 24 4'-24 7'	2 and 27.0.			Dun	88	26	0.8	
a series of Indstone at	: 22.5`, 23.6', 24.4'-24.7',				Run				
ndstone at nexplicable	t 22.5', 23.6', 24.4'-24.7', e core loss (typically 4" to	6") in Run 3 to Run nge in drill water retu	6. Drilled steadily Irn color: must have been	-	- 4				
Indstone at nexplicable roughout. N	t 22.5', 23.6', 24.4'-24.7', e core loss (typically 4" to	inge in drill water retu	6. Drilled steadily Irn color; must have been	-					
Indstone at nexplicable roughout. N	t 22.5', 23.6', 24.4'-24.7', e core loss (typically 4" to No seams noted, no cha	inge in drill water retu	6. Drilled steadily Irn color; must have been	 					
Indstone at nexplicable roughout. N	t 22.5', 23.6', 24.4'-24.7', e core loss (typically 4" to No seams noted, no cha	inge in drill water retu	6. Drilled steadily irn color; must have been						
ndstone at nexplicable roughout. N	t 22.5', 23.6', 24.4'-24.7', e core loss (typically 4" to No seams noted, no cha	inge in drill water retu	6. Drilled steadily irn color; must have been		4				
ANDSTONE	22.5', 23.6', 24.4'-24.7', core loss (typically 4" to lo seams noted, no cha nted and washed away c	nge in drill water retu or ground up] dium grained, trace o	rn color; must have been	538.50	4	90	35	1.2	179
ANDSTONE	22.5', 23.6', 24.4'-24.7', e core loss (typically 4" to No seams noted, no chain nted and washed away o E - light gray, fine to med vell cemented, few thin b	nge in drill water retu or ground up] dium grained, trace o	ırn color; must have been	538.50	4 	90	35	1.2	179
Andstone at nexplicable roughout. No borly cemer	22.5', 23.6', 24.4'-24.7', e core loss (typically 4" to No seams noted, no chain nted and washed away o E - light gray, fine to med vell cemented, few thin b	nge in drill water retu or ground up] dium grained, trace o	rn color; must have been	538.50	- 4 	90	35	1.2	179

ſ

The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938) BBS, form 138 (Rev. 8-99)

R	Illinois I of Trans	Department portation ROCK CORE	10	C		I	Page <u>3</u>	of _.
ROUTE	Division of Highways JCI	New I-74 Bridge Over Mississippi Riv DESCRIPTION Approach	er - I	llinois			Date <u>8</u>	
		LOCATION _(N=564749.647, E=2459344.727),						
		CORING METHODNQ Core		9. 02,	RE	R	CORE	, <u>-</u>
BORING NO. Station Offset	30+90 VIAIL-105	Core Diameter 1.0 11 Top of Rock Elev. 558.30 ft Begin Core Elev. 555.50 ft	D E P T H	C O R E (#)	COVERY (%)	Q D	T I M E (min/ft)	R E N G T H
SANDSTONE moderately we spacing, fresh.	Il cemented, few	to medium grained, trace coarse grained, soft, thin black bands, non-distinct bedding at thin bedded 533.80						
porous, soft, sl	ightly friable, mo	grained, trace black banding, trace gray shale pods, derately cemented, horizontal non-distinct planar medium bedded spacing, fresh.		Run 6	93	59	0.8	
			40	Run 7	99	84	0.7	
		525.50		7				
End of Boring			 45					
\langle	6							
		-						

Color pictures of the cores <u>Yes</u> Cores will be stored for examination until Color pictures of the cores _ The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

Illinois Depart of Transporta	tment	SC		LOG	Page <u>1</u> of <u>3</u>
ROUTE I-74 DI	Ν	Jew I-74	Bridge Over Mississippi Riv	er - Illinois	Date <u>8/27/07</u>
SECTION		I_(N=56	4699.203, E=2459256.422),	SEC. 32, TWP.	18N, RNG. 1W, 4 th PM
COUNTY Rock Island DRILLIN	G METHOD		HSA, CME 55 H	AMMER TYPE	CME AUTOMATIC
STRUCT. NO. 30+90 Station 30+90 BORING NO. VIAIL-106 Station 0 Offset 6 Ground Surface Elev. 569.30 TOPSOIL - roots (2" thick) 569.10 SILT - brown, little fine sand, trace 568.30 clay, moist 5AND - reddish brown, fine, silty, non-plastic, loose, moist		O I S I T	Surface Water Elev Stream Bed Elev Groundwater Elev.: First Encounter Upon Completion After Hrs	ft ft ⊻	
563.30 SAND - reddish brown, fine, trace silt, well sorted, well rounded, loose, saturated [Sand blow-in after SPT	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	S			-
performed at 8.5'-9.4'] 559.90 WEATHERED/SOFT SANDSTONE - augered through 557.80 Borehole continued with rock coring.	-10				

l

L

 $\int \int$

Illinois Depai of Transporta	rtment ation ROCK COR		20	<u> </u>	F	Page <u>2</u>	_ of _
Division of Highways JCI					ε	Date	3/27/07
ROUTE I-74 I	New I-74 Bridge Over Mississippi DESCRIPTION Approach	River - I	llinois	LC	GGE	D ВҮ	KJB
SECTION	LOCATION (N=564699.203, E=2459256.4	22), SE (C. 32,	TWP.	<u>18N, I</u>	RNG. 1W	/, 4 th PN
COUNTY Rock Island CORIN	IG METHOD NQ Core			R	R	CORE	S T
STRUCT. NO	CORING BARREL TYPE & SIZE NQ Wireling	<u>⇒</u> D	с	с 0	Q	T	R
BORING NO. VIAIL-106	Core Diameter <u>1.8</u> in	E P T	O R E	V E R	D	ME	N G T
Station Offset Ground Surface Elev. 569.30 f		H (ft)	(#)	Y (%)	(%)	(min/ft)	H (tsf)
SANDSTONE - brownish gray, fine grain porous, soft, moderately well to well cen	ned, uniform, well-sorted, well-rounded, 55 nented, with thin black banding, horizontal ct bedding with horizontal fractures at thin to	7.80	Run 1		47	0.7	
[Core loss in Run 1 likely due to washin noted by driller]	g away poorly cemented material. No seams	<u>-15</u>					
		_	Run 2	99	87	1.2	
							226.2
			Run 3	99	87	1.2	
		25 					
			Run 4	100	90	0.8	
	538	 					
SANDS I ONE - brownish gray, medium t soft, moderately well cemented, slightly v	o fine grained, trace to little coarse sand, weathered to fresh						

Color pictures of the cores <u>Yes</u> Cores will be stored for examination until_____

ſ

The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

(P)	llinois [of Trans	Department sportation	ROCK	CORE	10	C	ŗ	F	Page <u>3</u>	of
	ivision of Highways Cl		New I-74 Bridae Ov	er Mississippi Riv	/er -	llinois			Date <u>8</u> D BY	
							R E	R	CORE	
STRUCT. NO Station BORING NO Station Offset Ground Surface	VIAIL-10	6 Core Diamete Top of Rock Begin Core E	REL TYPE & SIZE_ er1.8 Elev559.90 Elev557.80	in ft	D E P T H	C O R E (#)	C O V E R Y (%)	Q D	T I M E (min/ft)	R E N G T H (tsf)
SANDSTONE - soft, moderately	brownish gray well cemented	, medium to fine grained, tra d, slightly weathered to fres	h (continued)	535.20						
cemented, soft, at medium to thin	contains black n bedded spac	gray, very fine grained, unit shale and coal partings wit cing, fresh to slightly weathe	th depth, horizontal ered	rell fractures	<u>-35</u> 	Run 5	98	72	1.5	
- several very th		and coal partings in sands	tone at 36.8-37.3							

L

L

L

Color pictures of the cores <u>Yes</u> Cores will be stored for examination until<u></u> The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

Illinois De of Transp	epartme ortatio	ent 1	S	DIL BORING LOG	Page <u>1</u> of <u>3</u> Date <u>8/28/07</u>
ROUTE I-74	DESCR	NO	ew I-74	Bridge Over Mississippi River - Illinois Approach	
SECTION	[<u>(N=56</u>	4672.846, E=2459200.272), SEC. 32, TWP	. 18N, RNG. 1W, 4 th PM
COUNTY Rock Island	RILLING ME			HSA, CME 55 HAMMER TYPE	CME AUTOMATIC
STRUCT. NO	T H T H	B U L C O S W S Qu (/6") (tsf)		Surface Water Elev. ft Stream Bed Elev. ft Groundwater Elev.: ft First Encounter 563.0 ft ▼ Upon Completion ft ft After Hrs. ft ft	
CONCRETE - 9" thick pavement + base course SILT - brown, little to some fine sand, trace clay, medium stiff, crumbles readily, moist		5 4 0.5 3 P	11.7		
SAND - reddish brown to brown, fine to medium sand, trace coarse sand, trace silt, loose, moist to saturated below 6' depth		2 3 4			
	¥ 	3 5 4 2 3 0			·
- [sand blow-in occurred at 10'-11 depth]) WEATHERED SANDSTONE - augered through	557.70	6 3 17 50/2"/			
Borehole continued with rock coring.					
	 -20				

Illinois Department of Transportation ROCK CORE	L	C) J	F	Page <u>2</u>	of
Division of Highways JCI New I-74 Bridge Over Mississippi Riv	/er - l	llinois			Date	
ROUTE 1-74 DESCRIPTION Approach						
SECTION LOCATION _(N=564672.846, E=2459200.272)	, SEC	5. <u>32,</u>		<u>18N, F</u>]	Ì	1
COUNTY Rock Island CORING METHOD NQ Core			R E	R	CORE	S T
STRUCT. NO CORING BARREL TYPE & SIZE NQ Wireline Station 30+90	DE	C O	C O V	Q	T I M	R E N
BORING NO. VIAIL-107 Top of Rock Elev. 557.70 ft Station Begin Core Elev. 554.90 ft	P T	R E	E R Y	D	E	G T H
Offset Ground Surface Elev. 569.00 ft	(ft)	(#)	(%)	(%)	(min/ft)	
SANDSTONE - brownish gray to gray, fine grained, with minor thin black banding, porous, moderately to well cemented, soft, non-distinct horizontal planar fractures at thin to medium bedding spacing, occasional shale seams, slightly weathered to fresh) 	Run 1	100	24		
		Run 2	84	38		
- possible 9" core loss at 15.8' to 16.6'. Driller reported black water return (shale?) at top of run						
[Driller reported no voids/seams in Run 2. Loss could be due to wash out of poorly cemented material]	 	Run	97	55	0.6	
- shale partings at 18.3' (1/3"), 22.9' (1/4"), 24.0' (1/3")		3				174 6
						174.6
- iron-stained layer at 25.8'-25.9'	 	Run	96	65	1.4	
	 	4				
- iron-stained gray fine sandstone with black seams and limestone clasts at						
- non-stanled gray line sandstone with black seams and limestone clasts at 29.0'-29.3' - numerous black shale partings at 29.3'-30.1'	-30					
		Run 5	100	53	1.6	
535.50						
HALE - dark gray to black shale with light gray sandstone partings (transtional zone)						

Color pictures of the cores <u>Yes</u> Cores will be stored for examination until<u></u> The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938) BBS, form 138 (Rev. 8-99)

\frown	,					
(Reference) Illinois Department of Transportation ROCK CORE	10	ാറ		F	Page <u>3</u>	of <u>3</u>
Division of Highways	~ `		•	C	Date 8	/28/07
New I-74 Bridge Over Mississippi Riv	/er - I	llinois	_ LC	GGEI) ВҮ	KJB
SECTION LOCATION _(N=564672.846, E=2459200.272)), SE(C. 32,	TWP.	<u>18N, F</u>	RNG. 1W	, 4 th PM
COUNTY Rock Island CORING METHOD NQ Core			R	R	CORE	S T
STRUCT. NO CORING BARREL TYPE & SIZE NQ Wireline Station 30+90 Core Diameter1.8 in	D E P	C O R	C O V E	Q D	T I M E	R E N G
BORING NO. VIAIL-107 Top of Rock Elev. 557.70 ft Station	T H (ft)	E	R Y (%)		(min/ft)	T H (tsf)
534.40	<u>)</u> _				(,	()
SANDSTONE - light brownish gray, fine grained with black "needle" inclusions and occasional gray shale pods, soft, well cemented with some healed vertical joints, fresh	<u>-35</u> —	2				
	_	Run 6	100	54	1	
			i			
528.20	40					
End of Boring						
	-45					
	-50					
Color pictures of the cores Vac			1			

Color pictures of the cores <u>Yes</u> Cores will be stored for examination until

{

L

The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

Illinois De of Transpo	partme	nt	SC	Page <u>1</u> of <u>1</u>
JCI		Ne	w I-74	Date <u>8/30/07</u> Bridge Over Mississippi River - Illinois Approach LOGGED BY KJB
SECTION	L		<u>(N=56</u>	4459.202, E=2459256.895, SEC. 32, TWP. 18N, RNG. 1W, 4 th PM
COUNTY Rock Island	RILLING ME	THOD	H	SA, CME 550X HAMMER TYPECME AUTOMATIC
STRUCT. NO	— Р Т Н	BULCOSSW SQu	M O I S T	Surface Water Elev. ft Stream Bed Elev. ft Groundwater Elev.: ft First Encounter 563.7 ft Upon Completion ft
Ground Surface Elev. 570.70 TOPSOIL - (grass roots, silt) 2" thick SILT - brown to dark brown, little to some clay, moist CLAY - reddish brown, little grading to and silt, trace fine sand grading to sandy clay, medium to high plastic, very stiff to soft, moist		3 B 2 3 0.4		After Hrs. ft
[Upon completion, offset 7' and drilled to 4' depth for Shelby tube sample.] CLAY - reddish brown, sandy, saturated, grading downward to clayey sand with gravel [shelby tube recovery		3 B 2 2 2 0.4 4 B	18.8	
[driller reported sand blow-in after pulling out the shelby tube] WEATHERED SANDSTONE - augered through Borehole continued with rock coring.	558.70	25		
	-20			

L

L

T	Illinois E	epartment portation			00		F	Page <u>2</u>	of
	Division of Highways JCI		-74 Bridge Over Mis	ssissippi River -	Illinois			Date8	
SECTION			=564459.202, E=24	<u>59256.895, SE</u>	5. 32, ⁻	TWP. 1	18N, R	NG. 1W,	4 th PN
COUNTY	Rock Island	CORING METHOD <u>NQ Co</u>				R E C	R	CORE	1
STRUCT. NO. Station	33+20	COLE DIGILIELEL	1.8 in	D	0	o v	ġ	I M	E N
Station Offset	VIAIL-108	Begin Core Elev.	558.70 ft 556.60 ft	н	E	E R Y	D	E	G T H
SANDSTONE uniform, well so	orted, soft, mode	.70 ft o mostly red brown, fine graine rately well cemented, non-disti tal fractures, slightly to modera	nct bedding at very t	(ft 556.60	Run	(%) 91	29	(min/ft) 1	(tsf)
			.•.(Run 2	77	0	1.2	
bandings, unifo non-distinct beo	orm, well sorted, dding with prima	ed, with occasional light gray sh porous, moderately well to well ily horizontal sandy planar to s to thin bedded spacing, fresh	cemented, soft,		- - - 2				
				 	Run 3	96	15	0.8	
					5				139.6
	5				Run 4	98	42	1.2	
X						100	05	10	
					Run 5	100	25	1.2	

Color pictures of the cores <u>Yes</u> Cores will be stored for examination until<u>The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)</u>

l.

(T)	Illinois [Department sportation	POCK					F	Page <u>3</u>	of _
	Division of Highways JCI		New I-74 Bridge Ov	er Mississippi Ri	ver - I	llinois			Date <u>8</u> D BY	
		LOCATI								
							R E	R	CORE	S T
BORING NO	33+20 VIAIL-108	Core Diam	RREL TYPE & SIZE_ leter 1.8 ck Elev. 558.70 e Elev. 556.60	in ft	D E P T	C O R E	C O V E R Y	Q D	T I M E	R E N G T H
Ground Surfa	ace Elev. 570	0.70 ft ned, with occasional light	t gray shale pods and	localized	(ft)	(#)	(%)	(%)	(min/ft)	
non-distinct be	dding with prime	porous, moderately wel arily horizontal sandy pla n to thin bedded spacing	nar to slightly undulat	ing	<u>-35</u>		100	07		
				0,		Run 6	100	27	1	
End of Boring			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	531.60)40					
		\$0 }								
	5									
X					50 					

Color pictures of the cores <u>Yes</u> Cores will be stored for examination until<u></u> The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

Illinois Depa of Transport	rtme atio	ent n		SC	DIL BORING LOG	Page	ə <u>1</u>	of <u>3</u>
Division of Highways JCI	DESC	סודחום	Ne	w I-74	Bridge Over Mississippi River - Illinois Approach LOG			31/07
					4386.963, E=2459373.735), SEC. 32, TWP. 18			
COUNTY Rock Island DRILL)	<u> </u>	SA, CME 550X HAMMER TYPE			
STRUCT. NO.		B L O W S	U C S Qu	M O I S T	Stream Bed Elev ft F Groundwater Elev.: First Encounter560.9 ft ⊻	· w	U C S Qu	M O I S T
Offset Ground Surface Elev. 579.40 1	t (ft)	(/6")	(tsf)	(%)	II Upon Completion ft	t) (/6")	(tsf)	(%)
TOPSOIL - (roots) 2" thick /579. EMBANKMENT FILL - mixture of brown, yellowish brown, and gray clay with little to some silt, and Silt with little clay, slightly to medium		4	1.4		WEATHERED SANDSTONE - augered through			
plastic, stiff to medium stiff, moist (FILL)		5	В			<u>(50/2"</u> / 		
	5	4	1.3 B	12.6	Borehole continued with rock	25		
- medium stiff to very stiff		3 3 6	0.6 B					
570. SILT - yellowish brown and black, little clay, with black cinders or slag, granular, trace brick, medium plastic, medium stiff, moist (FILL)	<u>90</u>	6 12 6	1.0 P	10.1				
566.4		3 2 3	0.7 B	18.2				
CLAY - gray and brown, sandy, little to some fine to medium sand, medium stiff to stiff, moist	 	2 2 2	1.0 B	15.5				
563.4 CLAY - greenish gray and gray and black, mottled, little to some silt, medium plastic, stiff, moist	40	1 1 3	1.0 B	32.5				
560.7 SAND - brown, fine to medium, trace silt, trace clay grading to clayey sand and gravel, saturated	<u>20</u> -20	7 20 25			-4	-		

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206) BBS, from 137 (Rev. 8-99)

Illinois Dep of Transpor	artment tation ROCK CO		C	Ì	I	Page <u>2</u>	_ of _;
Division of Highways JCI	New I-74 Bridge Over Missis	sippi River - I	llinois	;		Date	
	DESCRIPTION Approach					D BY _ k	
SECTION	LOCATION (N=564386.963, E=24593	373.735), SE	C. 32,	TWP.	<u>18N, I</u>	RNG. 1W	′, 4 th PN
COUNTY Rock Island COF	RING METHOD NQ Core			R	R	CORE	S T
STRUCT. NO.	Core Diameter <u>1.8</u> in Top of Rock Elev. <u>558.40</u> ft Begin Core Elev. <u>555.20</u> ft	reline D E P T H (ft)	C O R E	C O V E R Y	Q D	T I M E	R E N G T H
SANDSTONE - gray to pinkish gray,	fine grained, uniform grain size, well sorted,			(%) 100	(%)	(min/ft) 1.7	(tsf)
porous, moderately to well cemented pods, minor black banding, non-distir thin to medium bedded spacing, prim	, soft, with occasional shale seams, partings or ict massive bedding with core pieces broken at arily horizontal sandy rough planar to slightly al low (10°) to mid (30°-45°) angled fractures, no				65	1.2	
- 12" thick layer of gray and brown s	olotched sandstone at 26'-27'						114.6
- concentrated shale pods in sandsto	ne between 32.3' and 33.8' (1/4"), 25.5' (1/2"), 34.4' (1/2"), 37.2' (1"), 40.5'		Run 3	100	89	0.8	
(1/2")	(1/4), 23.3 (1/2), 34.4 (1/2), 37.2 (1), 40.3		Run 4	100	91	0.8	
			Run 5	98	98	0.8	

lì

L

L

Color pictures of the cores <u>Yes</u> Cores will be stored for examination until<u></u> The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

Illinois Department of Transportation	ROCK CORE	10	C		I	Page <u>3</u>	of <u>(</u>
Division of Highways JCI					E	Date8	8/31/07
ROUTE I-74 DESCRIPTION	New I-74 Bridge Over Mississippi Rive Approach	91 - 11		_ LC	GGE	D BYK	JB/SL
SECTION LOCATI	DN _(N=564386.963, E=2459373.735),	SEC	. 32,	TWP.	<u>18N, I</u>	RNG. 1W	, 4 th PN
COUNTY Rock Island CORING METHOD	NQ Core			R	R	CORE	S T
Station 34+77.5 BORING NO. VIAIL-109 Station Begin Core Offset Station	ter 1.8 in c Elev. 558.40 ft Elev. 555.20 ft	D E P T H	CORE	C O V E R Y	Q · D ·	T I M E	R E N G T H
Ground Surface Elev. 579.40 ft LIMESTONE - gray, fine to coarse, clastic, dense, hard mid angle (40° to 45°) fractures, fresh	533.10 thin to medium bedded, with	-45	(#) Run 6	(%) 100	83	(min/ft) 2.3	(tsf)
- 40° planar fracture without tight fit with overlying sand	stone at 46.3' 530.40						

Color pictures of the cores <u>Yes</u> Cores will be stored for examination until<u></u> The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

L

1

Illinois Dep of Transpo	part	me	ent n		S	DIL BORING LOG	Page	e <u>1</u> c	of
Division of Highways JCI				Ne	w I-74	Bridge Over Mississippi River - Illinois Approach LOG		9 <u>8/30</u> Y KJB	
SECTION		1		TION	(N=56	4338.777, E=2459305.083), SEC. 32, TWP. 18	3N. RNG	. 1W. 4	th Pi
						SA, CME 550X HAMMER TYPE			
STRUCT. NO		D E P T H	B L O W S	U C S Qu	M O I S T	Stream Bed Elev ft		U C S Qu	M O I S T
Offset Ground Surface Elev. 583.20		(ft)	(/6'')	(tsf)	(%)	Upon Completion ft After Hrs ft (f	t) (/6")	(tsf)	(%
EMBANKMENT FILL - layers of brown and yellowish brown Silt, little to some clay, with occasional roots, to yellowish brown Clay, some silt with trace coarse sand and pea-size gravel (till), to dark gray Clay and Silt, trace coarse sand and pebbles (till), medium			2 3 2	1.0 P		562.20 ▼ SILT - reddish brown, little clay, crumbly, with wet sand layers	2 16 11	0.5 P	
plastic, medium stiff to stiff, moist (FILL)		-5	2 2 3	0.8 B	17.9		13 25 42	3.5	
			3	0.8	14.5	Borehole continued with rock			
	C		6 3 6	В 0.8	13.5	coring			
	Ĉ	-10	7 3 4	B 0.9	17.2	 			
			5	B					
black silt at 13.5'-14.0' SILT - yellowish brown, little clay, race fine sand, medium stiff to	<u>569.20</u>	-15	3 6 10	0.6 B	10.9	 	5		
very stiff, moist SILT - gray and black mottled, ittle clay, trace fine sand layers, crumbly, medium stiff, slight to	<u>567.20</u>		3	0.8	24.1				
medium plastic, moist	- 564.70		3	В					
silt, trace fine sand, medium plastic, medium stiff, moist	-	-20	2 2 2	0.9 B	27.4	-4			

Illinois	Department						F	°age <u>2</u>	of
Division of Highway JCI	s	ROCK	Mississippi Riv	er - II	linois			Date{	
ROUTE -74									
SECTION	LOCATI	ON <u>(N=564338.777, E</u>	=2459305.083),	SEC	:. 32,		<u>18N, F</u>	1	1
COUNTY Rock Island	_ CORING METHOD _	NQ Core				R	R	CORE	S T
STRUCT. NO Station34+77.	5 CORING BA	RREL TYPE & SIZE		D E	c o	C O V	Q	T I M	R E N
BORING NOVIAIL-11 Station Offset		eter <u>1.8</u> sk Elev. <u>558.70</u> ∋ Elev. <u>556.80</u>	ft ft	P T H	R E	E R Y	D	E	G T H
Ground Surface Elev. 58				(ft)		(%)		(min/ft)	(tsf
SANDSTONE - light gray, fine cemented, soft, non-distinct b primarily horizontal sandy rou angle fractures, slightly weath	edding with fractures at the gh planar fractures throug	nin to medium bedded s	pacing.		Run 1	80	20	1.1	
- 1.3' thick layer of light gray,	fine grained sandstone w	ith numerous medium to	ndark	-30					
gray shale pods at 26.9' to 28	.2'				Run	100	84	0.6	
		00		-35	2				239.
[Low RQD in Run 1 is due to o highly fractured rock]	thin to very thin spaced b	edding fractures and no	t due	-			i		
					Run 3	100	84	0.6	
20			-	 -40 	Run	100	78	0.8	
			-		4			0.0	
			-	-45					

Color pictures of the cores _____Yes ____ Cores will be stored for examination until_____ The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

ſ

L

Illinois Dep	artment	Page <u>3</u> of <u>3</u>
Illinois Depa of Transpor	tation ROCK CORE LOG	
301	New I-74 Bridge Over Mississippi River - Illinois	Date <u>8/30/07</u>
ROUTE	DESCRIPTION Approach LO	GGED BY KJB/SL
SECTION	LOCATION (N=564338.777, E=2459305.083), SEC. 32, TWP.	<u>18N, RNG. 1W, 4th PM</u>
COUNTY Rock Island COF	RING METHOD NQ Core R	CORE S
STRUCT. NO Station 34+77.5		. T R Q I E
Station 34+77.5	Core Diameter 1.8 In - - - -	. M N
BORING NO. VIAIL-110 Station	$\begin{array}{c c} \hline & & \\ \hline \hline & & \\ \hline & & \\ \hline \hline & & \\ \hline & & \\ \hline & & \\ \hline \hline & & \\ \hline \hline \\ \hline \hline \\ \hline \\$	DEG . T
Offset Ground Surface Elev. 583.20		(%) (min/ft) (tsf)
End of Boring	with fractures at thin to medium bedded spacing, ar fractures throughout, very few mid to high fresh (continued) 530.40 530.40 530.40 68 68 60 60 60 60 60 60 60 60 60 60 60 60 60	

Color pictures of the cores <u>Yes</u> Cores will be stored for examination until<u></u> The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

t

Illinois Depart	me	ent		S	DIL BORIN	GIOG	Page <u>1</u> of <u>3</u>
ROUTEI-74 DE			Ne	ew I-74	Bridge Over Mississippi	River - Illinois	Date <u>9/5/07</u>
SECTION		LOCA		(N=56	64219.363, E=2459424.9	<u>45), SEC.32, TV</u>	VP. 18N, RNG. 1W, 4 th PM
COUNTY Rock Island DRILLING	g me	ETHO			HSA, CME 55	HAMMER TYP	ECME AUTOMATIC
STRUCT. NO.	D E P T H	B L O W S (/6")	U C S Qu (tsf)	M O I S T (%)	Surface Water Elev Stream Bed Elev Groundwater Elev.: First Encounter Upon Completion After Hrs	ft	
PAVEMENT - asphalt concrete 572.50 SILT - dark brown, some to little clay, medium plastic, medium stiff, moist		4 3 2	0.5 B				
	-5	2 2 2 WOH	0.5 B	21.8	2		
and orange mottling, some to and clay, medium to high plastic, medium stiff to soft, moist - highly plastic		2 2	0.7 B	26.4			
- [Dry unit weight = 89.9 pcf]	-10	WOH	0.7 B 0.4	28.8			
SILT - dark brown, little clay, slightly to medium plastic, soft, moist		1	B	44.0			
558.60 WEATHERED SANDY SHALE AND SANDSTONE - augered through 557.20 Borehole continued with rock coring.	<u>-15</u> 	50/5"	2.5 P				
	-20						

	of Transp Division of Highways	epartment portation	KUCK			JG	J			9/5/0
	JCI	DESCRIPTION	New I-74 Bridge O	/er Mississippi	River - I	llinois			Date D BYS	
		LOCATIO				3 . 32,		<u>18N, I</u>		1
COUNTY	Rock Island	CORING METHOD	NQ Core				R E	R	CORE	•
		Core Diame	RREL TYPE & SIZE eter	in	D E P	C O R	C O V E	Q D	T I M E	
Station Offset	VIAIL-111	Begin Core	e Elev557.20	ft	T H (ft)	E (#)	R Y (%)	(%)	(min/ft)	(t
ANDSTONE emented, so	- gray, fine graine ft, horizontal sandy	d, uniform grain size, w rough fractures, slight	vell sorted, moderate ly weathered	y well 557	7.20	Run 1	89	65	0.8	
						-				
ANDSTONE oderately ce	- gray, fine to med mented, moderate	lium grained, porous, v ly weathered	very soft, very weak,		1 <u>.40</u> — 					
			2			Run 2	74	15	0.8	
MESTONE - filling, hard,	· gray, fine grained thin to medium bed	to clastic, with some g lded, slightly weathered	reen gray shale sear d		.20			-		
		fine to medium to optim			0.10					
porly cement	ed, moderately we hed away during dri	fine to medium to some athered to weathered. Iling).	Possible 15" core lo	y son, oss - 547		<u> </u>	05	- 50	1.0	
ard, strong to	gray, fine, stylolition moderately strong n to slightly weathe	c, several small clastic , horizontal fractures w red	collapse zones, mod vith some mid to high	erately		Run 3	95	53	1.2	25
	~						ľ			
	0				<u>-30</u>	Run	100	72	1	
e limestone	-	with 1/2 "birdseye" tex grained, "birdseye" tex		540	 .90	4	100	12	J	
	ed, horizontal to 45	° fractures, planar to irr								
					35					

ł

1

Ĩ

1

Г

L

Illinois Department of Transportation ROCK CORE		G	I	F	Page <u>3</u>	of
Division of Highways JCI New I-74 Bridge Over Mississippi Riv	er - 111i	nois)ate	
ROUTE I-74 DESCRIPTION Approach) BY	
SECTION LOCATION (N=564219.363, E=2459424.945),	SEC.	. 32,	TWP.	18N, F	1	T
COUNTY Rock Island CORING METHOD NQ Core			R E	R	CORE	S T
STRUCT. NO.		C O R E (#)	C O V E R Y (%)		T I E (min/ft)	R E N G T H (tsf)
LIMESTONE - medium gray, fine grained, "birdseye" texture, moderately hard, thin to medium bedded, horizontal to 45° fractures, planar to irregular, slightly rough to rough, fresh to slightly weathered <i>(continued)</i> 535.60 LIMESTONE - gray to pinkish gray, fine to coarse, dense to clastic, with some shale bands, hard, thin bedded, primarily horizontal to 30° planar to irregular fractures, closely fractured with several healed fractures, moderately strong rock, slightly weathered to fresh		Run 5	100	93	1	
End of Boring	-45 45 					

L

Color pictures of the cores <u>Yes</u> Cores will be stored for examination until<u></u> The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

LOCATION (N=664128.095, E=2459352.373), SEC, 32, TWP, 16N, RNG, IW, 4* PR COUNTY Rock Island DRILLING METHOD H3A, CME 55 HAMMER TYPE CME AUTOMATIC Stration 38-67 P L C S I Station 38-67 P L C S I Offset 38-67 P L C S I Station 38-67 P L C S I Offset Station 38-67 P L S Station T T Offset Offset Station 38-67 F N Station T T PAVEMENT - asphalt concrete 375.30 9 I	Illinois De of Transpo Division of Highways	partm ortatio	ent n	:			Date 9/4/07
COUNTY Rock Island DRILLING METHOD HSA. CME 55 HAMMER TYPE CME AutOMATIC STRUCT. NO. 36+67 P B U N Surface Water Elev. ft BORING NO. VIAL-112 T F V Qu T Station Offset Stream Bed Elev. ft Offset T H Sufface Water Elev. ft Ground Surface Elev. 576.00 ft First Encounter 58600 ft Atter Hrs. ft Groundwater Elev.: ft First Encounter 58600 ft Collar dark forwan and light brown, trace to little clay, with bricks, and trace to little clay, with bricks, and trace, stiff, dry 8 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - <t< th=""><th>ROUTE I-74</th><th> DESCI</th><th>RIPTIO</th><th>Ne N</th><th>w I-74</th><th>Bridge Over Mississippi River - Illino Approach</th><th>is LOGGED BYKJB</th></t<>	ROUTE I-74	DESCI	RIPTIO	Ne N	w I-74	Bridge Over Mississippi River - Illino Approach	is LOGGED BYKJB
STRUCT. NO. B U M Surface Water Elev. ft BORING NO. VIAIL-112 H S S S T W Ou S S Station	SECTION		LOCA		<u>(N=56</u>	4128.095, E=2459352.373), SEC. 32	2, TWP. 18N, RNG. 1W, 4 th PM
Station 38+67 F E L C O Station it it is	COUNTY Rock Island D	RILLING M	ETHOD)	_	HSA, CME 55 HAMMER	TYPECME_AUTOMATIC
PAVEMENT - asphalt concrete and base course (2 thick) SIT - dark brown and light brown, trace to little clay, with bricks, gravel, glass, metal, crumbly, slight to medium plastic, stiff, dry to moist (FILL) - brown silt with brick and 	BORING NO. VIAIL-112 Station Offset	E P T H	L O W S	C S Qu	O I S T	Stream Bed Elev Groundwater Elev.: First Encounter565.0 Upon Completion	_ ft _ ft ⊻
Trace to tritle clay, with bricks, gravel, glass, metal, crumbly, slight to medium plastic, stift, dry to moist (FILL)	PAVEMENT - asphalt concrete and base course (8" thick) SILT - dark brown and light brown,			()	(70)		
- brown silt with brick and - 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	gravel, glass, metal, crumbly, slight to medium plastic, stiff, dry		10				
- brown silt with brick and yellowish brown silty sand -to -to -to -to -to -to -to -to			3				
- brown silt with brick and yellowish brown silty sand SAND - reddish brown, silty, clayey fine sand, very loose, saturated 562.10 1 1 CLAY - dark gray, little silt, trace coarse sand, medium to highly plastic, soft to medium stiff, wet 560.00 7 SAND - greenish gray, fine gravel, saturated 558.50 8 SHALE - light greenish gray, sandy, no laminations, dry to slightly moist 557.00 26 >4.5 50/1" P			1		20.1	0	
vellowish brown silty sand 0000 v 1 SAND - reddish brown, silty, clayey fine sand, very loose, saturated 1 1 562.10 1 1 CLAY - dark gray, little silt, trace coarse sand, medium to highly plastic, soft to medium stiff, wet 1 0.9 560.00 1 0.9 SAND - greenish gray, fine gravel, saturated 7 SHALE - light greenish gray, sandy, no laminations, dry to slightly moist 557.00 Borehole continued with rock 50/1"		-10	0				
CLAY - dark gray, little silt, trace coarse sand, medium to highly plastic, soft to medium stiff, wet 1 0.9	yellowish brown silty sand SAND - reddish brown, silty, clayey fine sand, very loose,	<u>565.00 ¥</u>	1				
SAND - greenish gray, fine 7 grained, clayey, some limestone 10 gravel, saturated 558.50 SHALE - light greenish gray, 8 SHALE - light greenish gray, 23 sandy, no laminations, dry to 23 slightly moist 26 557.00 50/1"	CLAY - dark gray, little silt, trace coarse sand, medium to highly		1				
SHALE - light greenish gray, sandy, no laminations, dry to slightly moist 23 26 >4.5 Borehole continued with rock 50/1", P	SAND - greenish gray, fine grained, clayey, some limestone gravel, saturated		10				
	SHALE - light greenish gray, sandy, no laminations, dry to slightly moist		26				

i

L

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206) BBS, from 137 (Rev. 8-99)

Illinois Depa of Transpor	artment tation ROCK COR	ELC	C	Ĭ	F	Page <u>2</u>	of
Division of Highways JCI	New I-74 Bridge Over Mississippi	River - I	llinois	;	[Date	9/4/0
ROUTE I-74	DESCRIPTION Approach			LC	GGEI	D BY	KJB
SECTION	LOCATION (N=564128.095, E=2459352.3	73), SE C	2. 32,	TWP.	<u>18N, I</u>	RNG. 1W	/, 4 th I
COUNTY Rock Island COR	ING METHOD NQ Core			RE	R	CORE	S
STRUCT. NO	_ CORING BARREL TYPE & SIZENQ Wireline	<u>→</u> D	С	- c o	a i	Ţ	R
Station 36+67	Core Diameter <u>1.8</u> in	E	0	V	•	M	N
SORING NO. VIAIL-112 Station	Top of Rock Elev. <u>558.50</u> ft Begin Core Elev. <u>557.00</u> ft	T	R E	E R	D	E	
Offset Ground Surface Elev. 576.00		H (ft)	(#)	Y (%)	(%)	(min/ft)	 (ts
SANDSTONE - brownish gray, fine gr	ained, uniform grain size, well sorted, with minor 55		Run	76	21	1.1	
emented, soft, primarily horizontal fra	shale pods and shale seams, moderately well actures, non-distinct massive bedding at thin	<u>-20</u>	1				
edded fracture spacing, localized mid	d angle (45°-50°) fractures between 23' and 25'		Run	100	58	1	
	• •		2				25
		25					
			Run 3	97	43	1.6	
	E4S	3.50	5				
ANDSTONE - grayish brown, fine gra oft, weak rock, slightly to moderately	ained with shale and clastic seams, soft to very	<u></u>					
		-30					
MESTONE - gray, fine grained, style	litic, hard, thin to thick bedded, sub-horizontal	<u>5.70</u>					
ugh to slightly rough fractures, occas ngle (45°-60°) fractures, fresh except	sional vugs and minor pitting, occasional mid at vugs		Run 4	100	99	1.8	
		-35					
		_					
ninor "birdseye" texture limestone at	36.0' to 40.8'		Run 5	100	97	1.9	
	· · · · · · · · · · · · · · · · · · ·						

L

 \Box

The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)
Illinois Department of Transportation ROCK CORE		G	F	2age <u>3</u>	of <u>3</u>
Of Transportation ROCK CORE Division of Highways Jcl ROUTE I-74 DESCRIPTION Approach	er - Illir	nois		Date	
SECTION LOCATION E=2459352.373),	SEC.	32, TWP.	18N, F	RNG. 1W	, 4 th PM
COUNTY Rock Island CORING METHOD NQ Core		R		CORE	S
STRUCT. NO	E P T H	E C O V E F Y (%)	R Q D	T M E (min/ft)	T R E N G T H (tsf)
LIMESTONE - gray, fine grained, stylolitic, hard, thin to thick bedded, sub-horizontal rough to slightly rough fractures, occasional vugs and minor pitting, occasional mid angle (45°-60°) fractures, fresh except at vugs <i>(continued)</i>	40 				
End of Boring					

(

Color pictures of the cores ______Co_____ Cores will be stored for examination until______ The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938) BBS, form 138 (Rev. 8-99)

Illinois Dep of Transpo Division of Highways	oartr	me ior	nt า		S	DIL BORING LOG	
JCI	_ DES	SCRI	IPTIO	Ne N	w I-74	Bridge Over Mississippi River - Illinois Approach	Date <u>9/7/07</u>
SECTION		_ L	.OCA		(N=56	4002.901, E=2459488.588), SEC. 32, T	WP. 18N, RNG. 1W, 4 th PN
COUNTY Rock Island DR		6 ME	THO	>		HSA, CME 55 HAMMER TY	
STRUCT. NO. Station 38+56 BORING NO.	_	D E P T H	B L O W S	U C S Qu	M O I S T	Surface Water Elev ft Stream Bed Elev ft Groundwater Elev.:	27
Station Offset Ground Surface Elev. 575.40	_		(/6")			First Encounterft Upon Completionft After Hrsft	
PAVEMENT - asphaltic concrete (4" thick) and base course SILT - dark brown, with brick,	1 574.60		4	(101)	(70)		
trace to little clay, slightly plastic, soft, crumbly, dry to moist (FILL)	-		5 4	2.0 P			
SILT - yellowish brown and dark brown mottled, little to some clay,	- 571.90 -	_	2	1.2	28.8	× O	
slightly to medium plastic, stiff, crumbly, moist	- 569.40	-5	1	В		2	
SILT - dark brown, little clay, organic odor, medium plastic, medium stiff, moist	-		<u>//ОН</u> 1 1	0.9 B	33.8		
5 SILT - dark brown and green-gray, some to and clay to silty Clay, medium plastic, medium stiff,	566.90		NOH NOH	0.6	27.4		
rubbery texture, moist			VOH	D			
	_		VOH VOH	0.5 B	41.8		
WEATHERED LIMESTONE - augered through 5	61.60 	-15	40 50/3",-				
Borehole continued with rock coring.		-					
	_	-20					

 $\left[\right]$

11

~ Ĺ

Illinois Depai of Transport	ation				G		Page <u>2</u>	
JCI	N	ew I-74 Bridge Over M	ississippi Rive	r – Illino	ois		Date	
OUTE I-74 I ECTION								
			439466.366), 4	<u>3EC. 3</u>	2, <u>IVP</u>		CORE	T
OUNTY Rock Island CORIN			r		E C	R		
TRUCT. NO	CORING BARR	EL TYPE & SIZE NO		D C E C	; O	Q	I M	
ORING NO. VIAIL-113	Core Diamete Top of Rock E	lev. <u>561.60</u> ff	:	P F T E	2 E	D	Ē	
Station	Begin Core El	ev. <u>560.50</u> ff		н	Y			
Ground Surface Elev575.40f MESTONE - light gray, fine grained, h		c thin to medium hedd	1	(ft) (#	f) (%) in 100		(min/ft) 3.6	(
imarily horizontal to subhorizontal slig own staining on fractures, occasional	htly rough to very r	ough fractures, occasio	onal	- 1				
esh		ille, oliginiy weathered				51	3	
ocalized vugs at 16', 20.2', 27.2'-27.5'								
		X	-					5
		\sim	-	-20				
noderately pitted "birdseye" texture la	ver with green shal	e infillings at 21 2'-21 6	. –	 Ru	n 99	83	2.8	
noderately pilled birdseye texture ia	yer with green sha		-	3			2.0	
			_					
		•						
			-					
			_	-25				
				Ru		98	2.6	
			-	4				
			_					
			_					
				-30				
			=	_				
AESTONE - medium gray, fine to med oderately hard, thick bedded, slightly v	tium grained, "birds	seye" texture, minor pit	<u>544.40</u> ling,	Ru	n 100	98	2	
2'		anzou vugo at 04.1 dilu	_					
			_					
				-	1			

ł

Cores will be stored for examination until______ The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938) BBS, form 138 (Rev. 8-99)

	artmont			F	Page <u>3</u>	of
Illinois Dep of Transpo	rtation ROCK CO	RE LO	G		<u> </u>	
Division of Highways JCI				[Date	9/7/07
ROUTE I-74	New I-74 Bridge Over Mississ	sippi River - IIIno	L(DGGEI	D ВҮ	KJB
SECTION	LOCATION (N=564002.901, E=24594	88.588), SEC. 3	2, TWP.	18N, I	RNG. 1W	′, 4 th F
COUNTY Rock Island CO	RING METHOD NQ Core		R		CORE	
STRUCT, NO.	_ CORING BARREL TYPE & SIZE NQ Wir	eline	E - C	R ·	Т	R
TRUCT. NO	Core Diameter <u>1.8</u> in	E 0	C O D V	Q	M	E N
ORING NO. VIAIL-113 Station			R E E R Y	D	E	(1
Offset Ground Surface Elev. 575.40	ft	(ft) (#	#) (%)	(%)	(min/ft)	(ts
oderately hard, thick bedded, sligh	medium grained, "birdseye" texture, minor pitting, tly weathered with localized vugs at 34.1' and	_				
5.2' <i>(continued)</i> soft, crumbly, partially solutioned w	eak limestone at 35.8'-36.1'	538.40				
MESTONE - gray, fine grained, ha	rd, dense, thin to medium bedded, fresh to vuggy					
			F			
pitted and vuggy limestone layer at	39.4'-39.8					
		535.40 -40				
nd of Boring	~ 0	_				
	C() [*]					
		-45				
		-50				
		_				
				ĺ		
		4				

ł

1

 $\left[\right]$

 \Box

 \Box

Į

L

Ĺ

Color pictures of the cores <u>Yes</u> Cores will be stored for examination until_____ The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

Illinois Depa of Transport	rtme atior	ent 1		SC	DIL BORING LOG Date _ <u>9/6/07</u>
ROUTE I-74	DESCR	IPTIO	Ne N	w -74	Bridge Over Mississippi River - Illinois Approach LOGGED BY KJB
SECTION	L	-OCA1		<u>(N=56</u>	3942.061, E=2459385.563), SEC. 32, TWP. 18N, RNG. 1W, 4 th PI
COUNTY Rock Island DRILL	ING ME	THOD)	l	HSA, CME 55 HAMMER TYPECME AUTOMATIC
PAVEMENT - asphaltic concrete (4" thick) and base course 575. SILT - brown and dark brown, little	t (ft)	B L O W S (/6")	U C S Qu (tsf)	M O I S T (%)	Surface Water Elev. ft Stream Bed Elev. ft Groundwater Elev.: ft First Encounter 562.3 ft Upon Completion ft After Hrs. ft
to some clay, with brick, soft, moist (FILL) <u>572.</u> SILT - brown, dark brown, gray and orange, mottled, and clay to silty Clay, medium plastic, medium stiff to stiff, moist		2 1 1 2 WOH WOH 2	0.9 B 0.7 B	22.6	
567. SILT - light gray with orange mottles and iron-staining, and clay, medium plastic, rubbery texture, medium stiff, moist (MODIFIED LOESS)	30	1 2 2 1 1 1 1		27.0	
562.3 SAND - brown, fine to medium grained, clayey, to sandy Clay, loose, saturated SHALE - light gray, sandy, hard (clay), dry 559.3 Borehole continued with rock coring.		2 3 50/4"			

L

Millinois Department of Transportation ROCK CORE	L	C		F	Page <u>2</u>	of
Division of Highways JCI				E	Date	<u>9/6/0</u>
New I-74 Bridge Over Mississippi Ri OUTE I-74 DESCRIPTION Approach	ver - I	llinois	LC	GGEI) ВҮ	KJB
ECTION LOCATION _(N=563942.061, E=2459385.563), SE	C. 32,	TWP.	18N, F	RNG. 1W	/, 4 th
OUNTY Rock Island CORING METHOD NQ Core			R	R	CORE	S T
CORING BARREL TYPE & SIZE NQ Wireline Station 38+56 Core Diameter 1.8 In Top of Rock Elev. 560.60 ft	- D E P T	C O R E	C O V E	Q D	T I M E	F E N C
Station Begin Core Elev. 559.30 ft Offset Fround Surface Elev. 575.80 ft	H (ft)		Y (%)		(min/ft)	ŀ
MESTONE - light gray, fine grained, stylolitic, hard, dense, with minor black 559.3 Inding, primarily rough subhorizontal fractures, thin to medium bedded, some closely medium spaced mid angle (30° to 60°) to high angle (60° to 90°) fractures, casional thin green shale partings and thin seams, slightly weathered to fresh		Run 1		39	2.4	
		Run 2	100	63	2.4	
ock-marked pitted limestone layer with green shale infilling at 23.3' to 23.9' rown staining on fractures at 25.5', 31.3', 31.4', 32.5', 32.6', 32.7'						712
		Run 3	100	83	2.2	
541.70 MESTONE - medium gray, fine to medium grained, "birdseye" texture, minor pitting, dium bedded, horizontal fractures, fresh to slightly weathered to locally vuggy at 0' to 38.2'		Run 4	100	88	1.8	
		Run	100	93	2	

10

L

Ĺ

C

 \Box

 $\left[\right]$

 $\left[\right]$

l

(

The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

Illinois Department				I	2age <u>3</u>	of <u>3</u>
of Transportation	ROCK CORE		_	I	Date	9/6/07
ROUTE I-74 DESCRIPTI	New I-74 Bridge Over Mississippi Riv ON Approach	ver - Illii	nois L	OGGE	D BY	KJB
SECTION LOC	ATION (N=563942.061, E=2459385.563), SEC.	32, TWP	. <u>18N,</u> I	RNG. 1W	, 4 th PM
COUNTY Rock Island CORING METHOD	NQ Core		R E	R	CORE	S T
Station 38+56 Core Di BORING NO VIAIL -114 Top of I	BARREL TYPE & SIZE NQ Wireline ameter <u>1.8</u> in Rock Elev. <u>560.60</u> ft Core Elev. <u>559.30</u> ft	- D E P T H	C O V E R Y	Q Q D	T I M E	- R E N G T H
Ground Surface Elev. 575.80 ft LIMESTONE - medium gray, fine to medium graine medium bedded, horizontal fractures, fresh to slight 38.0' to 38.2' (continued)	ly weathered to locally vuggy at		(#) (%) 5	(%)	(min/ft)	(tsf)
LIMESTONE - gray, fine, hard, dense, medium bed	ded, fresh 534.80	<u>-40</u>				
End of Boring						

l

L

 $\left[\right]$

 $\left[\right]$

 $\left[\right]$

 \int

 $\left[\right]$

L

L

Color pictures of the cores ______Yes Cores will be stored for examination until_____ The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

Illinois Depar of Transporta	tme atior	nt 1		SC	DIL BORING LOG Date
ROUTE I-74 I	DESCRI	PTIO	Ne N	w I-74	Bridge Over Mississippi River - Illinois Approach LOGGED BY SL
SECTION	L	.OCA ⁻		<u>(N=56</u>	3831.028, E=2459496.962), SEC. 32, TWP. 18N, RNG. 1W, 4 th PM
COUNTY Rock Island DRILLI	NG ME	THOE		Н	SA, CME 550X HAMMER TYPE CME AUTOMATIC
STRUCT. NO. 40+00 Station 40+00 BORING NO. VIAIL-115 Station 0ffset Offset 575.30	P T H	B L O W S (/6")	U C S Qu (tsf)	M O I S T (%)	Surface Water Elev. ft Stream Bed Elev. ft Groundwater Elev.: ft First Encounter 563.3 ft Upon Completion ft After Hrs. ft
PAVEMENT - asphalt, concrete		. ,			
and base course 574. CLAY - black, some silt, medium to highly plastic, medium stiff, moist	<u>30</u>	2 1 2	0.6 B		
-dark green gray to black, little silt		0 2 2	0.9 B	22.8	
- slightly plastic - [Dry unit weight = 101.6 pcf]			1.4 B	21.8	
-orange to greenish gray, soft		0 1 2	0.5 B	47.6	
- soft 563.8 SAND - orange, medium to coarse grained, conglomeratic with fine grained gravel, loose, damp to wet	0 ¥	2 9 9	0.4 B		
-conglomeratic with gravel (1-inch		6 7 2		8.3	
minus), mixed rock types (subrounded to subangular limestone and gravel pieces) WEATHERED SANDSTONE - augered through		50/4"			
556.4 Borehole continued with rock coring.	0				

l

(

	Division of Highways JCI	portation		COR				C	Date	9/6/07
ROUTE	I <u>-</u> 74		New I-74 Bridge O	ver Mississipp Approach	i River - I	llinois	_ LC	GGEI) ВҮ	SL
SECTION		LO(CATION (N=563831.028	<u>, E=2459496.</u>	962), SEC	3 . 32,	TWP.	<u>18N, F</u>	RNG. 1W	/, 4 th P
	Rock Island		D NQ Core				R E	R	CORE	s T
BORING NO. Station		5 Top of	BARREL TYPE & SIZE Diameter 1.8 Rock Elev. 559.30 Core Elev. 556.40	in ft	e D E P T H	C O R E	L C O V E R Y	R Q D	T I M E	R E N G T H
Offset Ground Sur	face Elev. 578	5.30 ft			(ft)	(#)	(%)	(%)	(min/ft)	(tsf
well cementec medium bedde (Transition).	l, soft, occasiona ed, horizontal to	I shale parting with very low angle fraction	black banding, silty, mod fractures along partings; t ures, smooth to sandy rou	hin to	56.40			22	1.8	
desiccation	cracks in shale la	ayers at 20.6' and 2 [·]	1' upon drying)			Run 2	75	26	1.2	
swirled to mc 22.0'-25.6'	ottled, 45° shale l	aminates with bedd	ing offsets; deformed bed		9.70					
orizontal to lo nd slightly rou	w angle fracture	s, fractures at stylol ctures in limestone a	nard, very thin to thin bedd ites are planar to slightly i are horizontal to very low	ded, rregular		Run 3	100	76	1.2	
					 30					813.
fine to mediu	m grained, occas					Run 4	92	70	1	
minor pitting,	very occasional	"birdseye" texture, c	occasional clay-like shale	partings	 	Durs	00	92	1	
						Run 5	98	83	1	

Cores will be stored for examination until_

 $\left[\right]$

 \square

 $\left[\right]$

 $\hat{\left[\right]}$

Ĩ

C

 $\left[\right]$

 $\left[\right]$

ĺ

l

The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

						_		
Illinois Depa of Transport	tation R	оск со	RE LO	C	ì		'age <u>3</u>	
JCI	New I-74	Bridge Over Mississ	sippi River - I	llinois		C)ate	0/6/07
ROUTE I-74	DESCRIPTION	Approach			_ LO	GGE) ВҮ	SL
SECTION	LOCATION _(N=56	<u>3831.028, E=24594</u>	96.962), SE(C. 32,	TWP.	18N, F	RNG. 1W,	4 th PM
COUNTY Rock Island CORI	NG METHOD NQ Core				RE	R	CORE	S T
STRUCT. NO Station40+00	CORING BARREL TYP	E & SIZE <u>NQ Wir</u> 1.8 in	eline D E	C O	C O V	Q	T I M	R E N
BORING NO. VIAIL-115 Station	Top of Rock Elev.	559.30 ft	P T H	RE	E R Y	D	Е	G T H
Offset Ground Surface Elev. 575.30	ft		(ft)	(#)	(%)	(%)	(min/ft)	(tsf)
LIMESTONE - gray, fine grained, local horizontal to low angle fractures, fractu and slightly rough to rough, fractures in smooth, and planar to slightly irregular	ly stylolitic, hard, very thin to ires at stylolites are planar to n limestone are horizontal to	o slightly irregular						
- 4" thick dark gray calcarenite bed at 4				Run 6	100	75	1.2	
- light brownish gray limestone with se stringers, and occasional shale clasts	veral soft green clay-like sha	ale parting s ,						
- 6" thick layer of green soft rock-like s	hale at 42.5'-43'							
		0	530.40 _45					
SHALE - dark gray, rock-like, soft, thin planar fractures, fresh with some mode	bedded, horizontal to very learning.	ow angle smooth	<u>529.70</u>					
End of Boring								
	\sim							
	\sim							
	*							
•								

Color pictures of the cores <u>Yes</u> Cores will be stored for examination until<u></u> The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

(E

Į.

l

, 'L'

Illinois Depart of Transportat	ment ion	SC	Page <u>1</u> of <u>3</u>
Division of Highways JCI		New I-74	Date <u>9/7/07</u> Bridge Over Mississippi River - Illinois
ROUTE I-74 DE	SCRIPTION_		Approach LOGGED BY SL
SECTION		N <u>(N=56</u>	3600.167, E=2459483.23), SEC. 32, TWP. 18N, RNG. 1W, 4 th PM
COUNTY Rock Island DRILLING	G METHOD	H	SA, CME 550X HAMMER TYPE CME AUTOMATIC
STRUCT. NO.	EL PO TW HSC	U M C O S I S Qu T sf) (%)	Surface Water Elev. ft Stream Bed Elev. ft Groundwater Elev.: ft First Encounter 567.5 ft Upon Completion ft After Hrs. ft
CLAY - dark greenish gray, with some orange brown clay, some silt, slightly to medium plastic, stiff to medium stiff, moist		.6 3	
-brown orange		.9 16.7 3	
-brown orange to green gray	3 4 1. 4 E	2 17.2	
-little silt	- 2 2 0. -10 2 E	8 31.6	
-some sand, slightly plastic, soft, saturated 566.10 CONGLOMERATE - red brown,	1 2 0. 6 E		
poorly sorted with sand, silty clay and gravel (0.5 inch minus) WEATHERED LIMESTONE - augered through	50/4"		
562.40 - Borehole continued with rock coring.			
	-20		

Ĩ

ſ

6

١...

	OT I FAIS	epartment portation	NUCK	CORE		50	9	Ε	Date	<u>9/7/07</u>
ROUTE	-74		New I-74 Bridge Ov	er Mississippi Riv Approach	ver - li	llinois	_ LC			
		LOCATI	ON <u>(N=563600.167,</u>	E=2459483.23),	SEC.	.32, T	WP. 1	8N, R	NG. 1W,	4 th P
COUNTY	Rock Island		NQ Core				R		CORE	
BORING NO. Station Offset	42+31 VIAIL-118 ace Elev. 578.	Core Diamo Top of Roc Begin Core	RREL TYPE & SIZE_ eter1.8 :k Elev565.00 e Elev562.40		D E P T H	CORE	ECOVERY (%)	R Q D	T I M E (min/ft)	T R E N G T H (ts
shale partings horizontal plan moderately we oss in Run #1 containing abu - 6-inch clay se	and clasts, hard t ar fractures, occa athered in upper assumed to be bo ndant shale clasts aam at 16.1'-16.7'	he to medium grained, w o moderately hard, thin isional stylolites, smoot 6' grading to fresh to sli etween 16.1' and 19.5' s). , moderately weathered green gray shale and p	to medium bedded, p h to slightly rough, slig ghtly weathered. (No in fractured limestone	orimarily ghtly to te: core		Run 1	53	9	2.1	647
	e grained, with se occasional styloli	veral clay-like green sh	ale partings at 20.9'-2	1.6'		Run 2	96	67	1.2	
very minor pil	ting, fractures prir	narily along smooth hor	rizontal planar surface	95	25	Run 3	100	93	1	
abundant pitti	ng, with several g	reen clay-like shale cla	sts ranging up to 2" ir	length	 					
light to mediu	m gray, fine grain	ed, occasional stylolites	5			Run 4	100	80	1	

 $\left[\right]$

 \square

 \Box

Color pictures of the cores <u>Yes</u> Cores will be stored for examination until_____ The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

T	Illinois [Department	BOCK		1.0		X	F	Page <u>3</u>	of <u>3</u>
	OT Irans Division of Highways JCI	sportation						D	Date	9/7/07
ROUTE	I-74		New I-74 Bridge Ov	Approach			_ LC	GGE) BY	SL
SECTION			ION (N=563600.167	<u>, E=2459483.23),</u>	SEC.	<u>32, T</u>	WP.1	<u>8N, RI</u>	NG.1W,	4 th PM
COUNTY	Rock Island		NQ Core				R	R	CORE	S T
STRUCT. NO. Station	42+31	CORING BA	RREL TYPE & SIZE		D E	C O	C O V	à	T I M	R E N
BORING NO.	VIAIL-118		neter <u>1.8</u> ck Elev. <u>565.00</u> e Elev. <u>562.40</u>	ft ft ft	P T H	RE	E R Y	D	E	G T H
Offset Ground Surf	face Elev. 578	8.50 ft			(ft)	•••	(%)		(min/ft)	(tsf)
shale partings horizontal plan moderately we loss in Run #1 containing abu	and clasts, hard ar fractures, occ athered in uppe assumed to be	fine to medium grained, I to moderately hard, thir casional stylolites, smoot r 6' grading to fresh to sl between 16.1' and 19.5' sts). (continued) v bedded	n to medium bedded, th to slightly rough, sli lightly weathered. (No	primarily ightly to ote: core		Run 5	100	79	1.4	
LIMESTONE - pitting, "birdsey	light to medium	gray, fine to medium gra asional stylolites, modera ed fractures, fresh to slig	ately hard, medium to	lant	 40					
			2							
End of Boring				535.60	2					
					45					
		XU								
					<u>-50</u>					
					\neg					
					-55					
					<u>-55</u> 					
									l	

Illinois Depart of Transportat	me ioi	ent n			DIL BORING		Page <u>1</u> of <u>3</u> Date <u>9/10/07</u>
ROUTE I-74 DE	SCR	IPTIO	Ne N	w I-74	Bridge Over Mississippi Ri Approach	iver - Illinois	DGGED BY SL
	I	-OCA		(N=56	3527.191, E=2459618.972), SEC. 32, TWP	. 18N, RNG. 1W, 4 th PN
COUNTY Rock Island DRILLIN	g me	THO	D	Н	SA, CME 550X	HAMMER TYPE	CME AUTOMATIC
STRUCT. NO.	D E P T H	B L O W S (/6")	Qu		Surface Water Elev Stream Bed Elev Groundwater Elev.: First Encounter Upon Completion	ft ft ⊻ft	12
CLAY - black, some silt, medium to highly plastic, medium stiff, moist.		2			AfterHrs		
		2 3	1.1 B	24.2			
-[Dry unit weight = 100.6 pcf]			2.1	22.4			
- orange brown	-5	1 2 3	B 0.9 B	27.1	0		
- reddish brown to green-gray	-	1					
SAND - brown orange, very fine to fine, some silt, trace clay, loose, moist. 567.20	-10	2 4	0.7 B 0.5	25.9			
CLAY - red brown, some silt, slightly to medium plastic, soft, moist.			P				
-[Dry unit weight = 99.5 pcf] 565.70 WEATHERED LIMESTONE	-15	43 50/5"					
Borehole continued with rock coring.							
	-20						

L

ſ,

ł

Illinois Department of Transportation ROCK (CORE LO	G	F	°age <u>2</u>	of
Division of Highways JCI New I-74 Bridge Over I	Mississippi River - Illin	ois)ate 🧕 🤤	
ROUTE I-74 DESCRIPTION App					
SECTION LOCATION (N=563527.191, E=	2459618.972), SEC.3		. 18N, F	1	1
COUNTY Rock Island CORING METHOD NQ Core		R E	R	CORE	S T
BORING NO. VIAIL-119 Top of Rock Elev. 565.70 Station	in E ft P ft T ft H	C C C C C C V R E R Y	Q D	T I M E	R E N G T H
Ground Surface Elev. 579.20 ft LIMESTONE - light to medium brownish gray, fine to medium grained, very thin		#) (%) un 78	(%)	(min/ft)	(tsf)
 bedded, occasional stylolites, several vertical fractures at 16.2'-17.5', otherwise fractures are horizontal, planar and slightly rough, occasional shale clasts and partings, moderately weathered to fresh. highly fractured (partially mechanical) at 16.2'-17.7' and at 17.9'-18.2' moderately weathered at 16.2'-17.0'; fresh below 17.0' [Note: lost drill water circulation at 18'; core barrel jammed at 19.5'] 		ın 78	30	5.5	
- occasional stylolites, minor pitting, fractures primarily along stylolites	R		54	0.8	
 very thin bedded, no pitting or stylolites fractures are horizontal to 20°, planar to slightly irregular, smooth to slightly rot clay-like shale seam at 25.4' 					
			88	1.2	478.9
- locally minor pitting, occasional stylolite, fractures locally to 45°, clay-like shale clasts at 29.6'					
	Ru 4 	n 100	91	1.4	

Color pictures of the cores <u>Yes</u> Cores will be stored for examination until

ł

Π

Ĺ.

The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

Illinois Depa of Transport	artment tation ROCK CO	RE LOG		Page <u>3</u>	of <u>3</u>
Division of Highways JCI				Date <u>9</u> ,	/10/07
ROUTE	New I-74 Bridge Over Mississ DESCRIPTION Approach		_ LOGGE	D BY	SL
SECTION	LOCATION (N=563527.191, E=24596	18.972), SEC. 32, 1	TWP. 18N,	RNG. 1W,	4 th PM
COUNTY Rock Island COR	ING METHOD NQ Core		R E R	CORE	S T
STRUCT. NO. Station 43+48 BORING NO. VIAIL-119 Station Offset	Core Diameter <u>1.8</u> Top of Rock Elev. <u>565.70</u> ft Begin Core Elev. <u>563.00</u> ft	E O P R T E H	C . O Q V . E D R . Y	T I M E	R E N G T H
bedded, occasional stylolites, several fractures are horizontal, planar and slip partings, moderately weathered to free	sh gray, fine to medium grained, very thin to thin vertical fractures at 16.2'-17.5', otherwise most ghtly rough, occasional shale clasts and sh. <i>(continued)</i>	(ft) (#) Run 	(%) (%) 100 93	(min/ft) 1.4	(tsf)
- fine to coarse grained, minor pitting,	"birdseye" texture at 40.2'-41.1'	538.10			
End of Boring					

[

Color pictures of the cores <u>Yes</u> Cores will be stored for examination until______ The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

Illinois De of Transp	partmei ortation	nt	SC	DIL BORING LOO	Page	e <u>1</u> of <u>3</u>
Division of Highways JCI		Ne	w I-74	Bridge Over Mississippi River - Illinois Approach	Date	9/6/07 YSL
				3488.913, E=2459524.119), SEC. 32,		
				SA, CME 550X HAMMER T		
STRUCT. NO	T H	B U L C O S W S Qu (/6") (tsf)		Surface Water Elev Stream Bed Elev Groundwater Elev.: First Encounter566.5 Upon Completion After Hrs	ft E L P O T W ft V H S	U M C O S I S Qu T (tsf) (%)
CLAY - black, some silt, medium to high plastic, stiff, moist	<u> </u>	3 5 2.0 5 B		WEATHERED SANDSTONE -	<u>558.90</u>	
-medium gray, medium plastic		2 3 1.6 3 B	17.5		 	
-medium brown to black, silty, slightly to medium plastic SAND - medium brown, fine to coarse, with clayey sand layers, loose, moist		3 4 0.9 4 B 0.5				
- sandy clay at 9.5'	-10	P			 	
-fine to medium grained, some clay CLAY - greenish brown to red brown, some silt, trace sand with thin sand seams, highly to	√ <u> </u>	/OH /OH 0.5 /OH B	27.4			
medium plastic, very soft to medium stiff, moist to wet	<u> </u>	1 2 0.5 2 P	20.2			
SAND - brown, fine to coarse grained, conglomeratic with gravel, saturated		6 16 24				
WEATHERED SANDSTONE - augered through	<u>561.50</u> 5(0/5"				

						E	Date	<u>9/6/</u> 0
ROUTE I-74	Ne DESCRIPTION	ew I-74 Bridge Over Miss Approac	issippi River h	- Illino	is L(OGGE	D BY	SL
SECTION		(N=563488.913, E=2459	9524.119), \$	EC. 32	, TWP	. 18N, I	RNG. 1W	/, 4 th
COUNTY Rock Island CORI	NG METHOD NQ	Core			R	R	CORE	S T
STRUCT. NO	Core Diameter Top of Rock E Begin Core Ele ft ith some brown colo tures, planar to sligh	lev. <u>561.50</u> ft ev. <u>558.90</u> ft ration, fine grained, soft, tly irregular, sandy rough	558.90	D C E O P R T E H (# 1	C O V E R Y	Q Q D	T M E (min/ft)	F E N C T F
ANDSTONE - medium gray to brown, rayish green clay-like shale clasts and emented, thin to medium bedded, sligi	l some limestone cla	plomeratic with abundant lists, soft, moderately well	554.30			53	1	
	<u>x0</u>			 - <u>30</u> 	100	86	1	264
MESTONE - light to medium brownisi redium bedded, horizontal planar to sli ccasional stylolites, mostly fresh with l	ightly irregular, smoo	oth to rough fractures,		3				
medium grayish brown, locally minor p	bitting			- Rur - 4	95	52	2	
				-				

\frown						
(Reference) Illinois Department of Transportation ROCK CORE	10	C	ì	F	`age <u>3</u>	of <u>3</u>
Division of Highways JCI				Ľ	Date	9/6/07
New I-74 Bridge Over Mississippi Riv ROUTE I-74 DESCRIPTION Approach	er - II	linois	_ LC	GGEI) ВҮ	SL
SECTION LOCATION _(N=563488.913, E=2459524.119),	SEC	. 32,	TWP.	<u>18N, F</u>	RNG. 1W	, 4 th PM
COUNTY Rock Island CORING METHOD NQ Core			R E	R	CORE	S T
STRUCT. NO CORING BARREL TYPE & SIZE NQ Wireline Station43+48 Core Diameter1.8 in	DE	c o	C O V	à	Т І М	R E N
BORING NO. VIAIL-120 Top of Rock Elev. 561.50 ft Station Begin Core Elev. 558.90 ft	P T H	R E	E R Y	D	E	G T H
Ground Surface Elev. 580.00 ft	(ft)	(#)	(%)	(%)	(min/ft)	(tsf)
LIMESTONE - medium gray to brownish gray, fine to medium grained, pitted with "birdseye" texture, moderately hard, medium to thick bedded, occasional stylolite with fractures along stylolite, rough and jagged, occasional vugs <i>(continued)</i>		5				
	45					
End of Boring						
	-50				;	
	-55					
-	-60					
Color pictures of the cores Ves				L.,		

Color pictures of the cores <u>Yes</u> Cores will be stored for examination until

The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

Illinois Depart	tme	ent		S	DIL BORING LOG	Page	e <u>1</u>	of <u>3</u>
Division of Highways JCI			Ne	w I-74	Bridge Over Mississippi River - Illinois		9/1 V	
					Approach			
SECTION		LOCA	TION	(N=56	3387.138, E=2459641.783), SEC. 32, TV	VP. 18N, RNG	3. 1W, 4	4 th PM
COUNTY Rock Island DRILLI		ЕТНОІ	D	H	SA, CME 550X HAMMER TYP	PECME AL		
STRUCT. NO.	D E P T H	B L O W S	U C S Qu	M O I S T	Surface Water Elev. ft Stream Bed Elev. ft Groundwater Elev.: ft First Encounter 569.5 Upon Completion ft	E P T W H S	U C S Qu	M O I S T
Ground Surface Elev. 581.00 ft CLAY - black to greenish gray, little to some silt, slightly to medium plastic, stiff, moist.	(π) 	3	(tsf)	(%)	WEATHERED SHALE - medium gray, severely weathered. (continued) Borehole continued with rock	(ft) (/6") .00	(tsf)	(%)
		3	B	18.9	coring.			
		2	2.1 B	17.1		 25		
		2 2 3	1.6 B	21.3				
- greenish gray, silty, slightly plastic clay, with a 2" thick sand seam at 8.9'-9.1'	-10	2 2 2	0.5 P	24.5				
- medium stiff clay at 11'-11.4'; brown, fine to medium grained sand seam, loose, saturated at	¥	1 2 2	0.5 P	26.7				
 11.4'-12.1' - red brown conglomerate seam at 13.4'-13.6' - red brown, medium plastic, soft clay 		0 2 8	0.0 P	25.3				
565.00 SAND - red brown, fine grained, some silt, trace black organic matter, loose to medium dense,		2 4 8						
saturated. - brown, fine to medium grained, clean, loose WEATHERED SHALE - medium gray, severely weathered.		8 40 50/3",				 		

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206) BBS, from 137 (Rev. 8-99)

L

Illinois Department		\mathbf{r}		F	Page <u>2</u>	of
of Transportation ROCK CORE Division of Highways New I-74 Bridge Over Mississippi Rive ROUTE I-74 DESCRIPTION	ər - III	linois			Date D BY	
SECTION LOCATION _(N=563387.138, E=2459641.783),	SEC	. 32,	TWP.	18N, I	RNG. 1W	/, 4 th PN
COUNTY Rock Island CORING METHOD NQ Core			R	R	CORE	1
STRUCT. NO.	D E P T H (ft)	C O R E (#)	COVERY (%)	Q D	T I M E (min/ft)	R E N G T H
SHALE - medium gray to greenish gray, alternating hard clay-like to soft rock-like, occasional clasts, locally black organic material, thin to medium bedded, horizontal to 45° fractures, fractures are planar to slightly irregular, smooth to slightly rough, severely to moderately weathered. Shale is typically clay-like from 18.3'-22.5', rock-like from 22.5'-25', and clay-like to soft rock-like with several clasts at 25'-27'.		Run 1		11	2.2	
LIMESTONE - medium brownish gray, fine to medium grained, hard, localized pitting, locally stylolitic, thin to medium bedded, fractures range from predominantly horizontal to occasionally 80°, fracture surfaces are slightly irregular to planar and smooth to moderately rough, fresh to very slightly weathered.		Run 2	95	53	1.2	
- 80° jagged fracture with pyrite at 28.1'-28.9'	 	Run 3	100	97	1	593.7
- 45° planar, smooth to rough fracture at 36.3'		Run	100	94	1	
65° fracture along shale parting at 39.3'-39.6'	-40	4				
moderately pitted with "birdseye" texture at 40'-41'						

Color pictures of the cores <u>Yes</u> Cores will be stored for examination until_____

L

The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

Illinois Department of Transportation ROCK CORE	E L(C	Ì	F	Page <u>3</u>	of <u>3</u>
Division of Highways JCI ROUTE I-74 DESCRIPTION Approach	River - I	llinois	LC		Date <u>9</u> D BY	
SECTION LOCATION (N=563387.138, E=2459641.78						
COUNTY Rock Island CORING METHOD NQ Core			R	R	CORE	
STRUCT. NO.	D E P T H (ft)	C O R E (#)	COVERY	Q D	T I M E (min/ft)	R E N G T H
LIMESTONE - medium brownish gray, fine to medium grained, hard, localized pitting, locally stylolitic, thin to medium bedded, fractures range from predominantly horizontal to occasionally 80°, fracture surfaces are slightly irregular to planar and smooth to moderately rough, fresh to very slightly weathered. <i>(continued)</i>		Run 5		81	1.1	
- medium to coarse grained, moderately pitted limestone with occasional shale partings and low (20°) to medium (50°) angled fractures at 41.0'-47.2'	 45 					
- medium grayish brown vuggy limestone with slightly irregular to planar horizontal to 20° fractures at 48.1'-49.8'						
- clastic limestone with shale partings and seams at 49.8'-50.3' 530.	<u>-50</u>					
End of Boring						
	-60					

L.

IJ

Color pictures of the cores <u>Yes</u> Cores will be stored for examination until_____ The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

Illinois De	epartm ortatio	ent on		SC	DIL BORING LOG	Page	e <u>1</u>	of <u>3</u>
Division of Highways JCI			Ne	w I-74	Bridge Over Mississippi River - Illinois Approach		<u> </u>	
					3292.754, E=2459483.427, SEC. 32, TWP			
					SA, CME 550X HAMMER TYPE			
STRUCT. NO	Р Н Н	L O W	U C S Qu (tsf)		Surface Water Elev. ft Stream Bed Elev. ft Groundwater Elev.: ft First Encounter 573.4 ft Upon Completion ft After Hrs. ft	DB EL PO TW HS (ft) (/6")	U C S Qu (tsf)	M O I S T (%)
CLAY - black to orange-brown an greenish gray, little to some silt, variable amounts of gravel, slightly to medium plastic, stiff to very stiff, moist (Embankment Fill	d	4	2.3 B	15.2	CLAY - medium gray, some to and silt, slightly plastic, medium stiff, moist. (continued) - medium plastic		1.1 B	(70)
	- 	3 5 5 5	1.4 B	16.4	- maroon, medium to highly plastic clay with conglomeratic sand at 24.3'	- 1 - 1 - 5 -25 10	0.6 B	
	 	3 3 6 12	1.2 B	14.2	564.00 WEATHERED LIMESTONE -			
- limestone chips and gravel at 7.3'-10.5'		<u>50/4"</u>		2.4	561.20 Borehole continued with rock coring.	 		
- medium plastic		10 10 3	1.1 B	27.3				
- orange brown to greenish gray clay, little to some silt, medium plastic	 	1 2 5 3	1.4 B	24.2		 		
SAND - orange brown, fine to coarse grained, varies from conglomeratic with fine gravel to fine gravel with a silt and clay matrix.	573.40 Y	1 1 1	0.8 B	28.3				
		1 1 2 2	0.9 B	27.3		-40		

Į.

L

	nois De Transp	partment ortation	RO	ск со	RE		പറ		F	Page <u>2</u>	_ of _ <u>;</u>
JUI			New I-74 Brid	ge Over Missis	sinni Rive	er – II	linois			Date	
							. 32, 1	R	<u>181N, R</u>		1
COUNTY Rock	Island C	ORING METHOD	NQ Core					E	R		Т
STRUCT. NO Station	44+81		RREL TYPE &	SIZE <u>NQ Wi</u>	reline	D	с	с 0	à		R
		Core Diame	eter	1.8 in		E P	O R	V E	·D	ME	N G
BORING NO Station		Begin Core	k Elev. <u>56</u> Elev. <u>56</u>	<u>4.00 </u>		T H	E	R Y			T H
Offset Ground Surface E						n (ft)	(#)	(%)	(%)	(min/ft)	
LIMESTONE - gravis	sh brown, fine	to medium arained.	tylolitic, locally	minor	561.20 -		Run		0	2.4	
partings along fractu thin bedded, predom	res, moderate inantly horizo	seye" texture, occasionally hard to hard, thin to hard, thin to nail to very low angle to rough, fresh to slig	o medium bedo fractures with	led, locally very some to 30°,		-30	4				
- highly fractured zor	-	vertical fractures (pos	•				Run 2	100	35	1	
28.8'-30.9') -		2				
				X	-						
						_					
					-						
					-	-35					
			\bigcirc		-		Run 3	100	89	1.2	296.6
- prominently pitted I	limestone with	"birdseye" texture at	37.4'-38.1'		-		Ŭ				
minor nitting	ional etulalitas	s, primarily medium be	Adad at 38 1		-						
- minor pitting, occas	ional stylolites	s, prinariy nedidir be			-						
		\sim				-40					
					-						
- abundant stylolites, 40.9'-43.3'	locally closely	spaced, with fracture	es across stylol	ites at	-		Run 4	100	60	1.6	
40.0-40.0					-	_	7		ľ		
					_	_					
						\neg	Í				
X					_	_					
					-	-45					
					_		Run	100	84	1.3	
					_		5				
					542.40	\neg					
					_						
							I	1			

Color pictures of the cores _ Yes

L

11

Cores will be stored for examination until______ The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

Illinois Dep	artment			Page <u>3</u>	of <u>3</u>
Illinois Depa of Transpor	rtation ROCK CORE L	.0G		Date 9	2/14/07
ROUTE I-74	New I-74 Bridge Over Mississippi River	- Illinois			
SECTION	LOCATION (N=563292.754, E=2459483.427, SE	E C. 32, T	WP. 18N, F	RNG. 1W,	4 th PM
COUNTY Rock Island COF	RING METHOD NQ Core		R E R	CORE	S T
STRUCT. NO.	Top of Rock Elev. <u>564.00</u> ft Begin Core Elev. <u>561.20</u> ft ft	D C E O P R T E H ft) (#)	C . O Q . E D R . Y	T I M E (min/ft)	R E N G T H
green clay-like shale partings, modera	coarse, pitted, "birdseye" texture, occasional rately hard, medium bedded, fractures oriented regular, smooth to slightly rough, fresh to very	-50			
fine to medium grained, highly vuggy - 55.9'	with some voids spanning core diameter at 54.5'	-55			
End of Boring					

Color pictures of the cores <u>Yes</u> Cores will be stored for examination until<u></u> The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

Illinois Dep	artmo	ent	ı	50	DIL BORING LOG	Page	e <u>1</u>	of <u>3</u>
Division of Highways JCI			Ne	w I-74	Bridge Over Mississippi River - Illinois Approach		9/·	
					3211.417, E=2459665.249), SEC. 32, TWP. 18			
COUNTY <u>Rock Island</u> DRI		THOI)	<u> </u>	SA, CME 550X HAMMER TYPE			
STRUCT. NO Station 46+66	- E - P		U C S	M O I	Surface Water Elev ft E Stream Bed Elev ft P	L	U C S	M O I
BORING NO. VIAIL-123 Station Offset Ground Surface Elev. 584.50		S	Qu (tsf)	S T (%)	Groundwater Elev.: First Encounter <u>572.4</u> ft Y Upon Completion ft	W	Qu (tsf)	S T (%)
CLAY - black, some to and silt, occasional sand seams, non to								
medium plastic, medium stiff, slightly moist.		3			563.00	15		
		2	0.5 P		SHALE - medium to dark gray,	26 38		
					- medium gray, very soft rock-like,			
- green gray to brown, medium		1				13		
plastic, moist	-5	2 3	0.4 B	18.6		<u>50/5"</u>		
					558.60	-		
- medium to highly plastic		2	0.0	22.9	Borehole continued with rock			
		2	0.8 B	22.9				
	6 -		0.8	21.1		-		
- [Dry unit weight = 107.2 pcf]	-10		0.0 В	21.1		2		
					_	-		
		0	0.7	23.9				
- sand seams at 11.6' and 13.5'; medium gray to brown orange,	<u> </u>	2	B					
fine grained, wet						-		
		0	0.5	26.4				
		2	В					
					-			
- greenish gray to reddish brown/maroon, high plasticity	_	0	0.5	28.4				
		2	В		-			
		1 3	0.4	29.5				
	-20	8	В		-40			

L

1

L

of Transportation ROCK CORE	L	C			2 age	_ 01
Division of Highways JCI New I-74 Bridge Over Mississippi R	iver - I	llinois			Date	
DUTE I-74 DESCRIPTION Approach						
CTION LOCATION _(N=563211.417, E=2459665.249), SE(5. 32,		<u>18N, I</u>	· · · · · · · · · · · · · · · · · · ·	1
DUNTY Rock Island CORING METHOD NQ Core			R E	R	CORE	.
RUCT. NO CORING BARREL TYPE & SIZE NQ Wireline tation46+66	— D	С		Q	T	
Core Diameter <u>1.8</u> In	E P	O R	V E	D	ME	
DRING NO. VIAIL-123 Top of Rock Elev. 563.00 ft tation Begin Core Elev. 558.60 ft	T H	E	R Y			
ffset round Surface Elev. 584.50 ft	(ft)	(#)	(%)	(%)	(min/ft)	
AESTONE - medium brownish gray, fine to medium grained, hard, thin to medium 558.		Run		82	1.2	<u> </u>
dded, occasional stylolites, occasional to abundant pitting, isolated "birdseye" ture, occasionally vuggy, several green clay-like shale partings, fractures including	_	1				
se along shale partings are horizontal, planar and slightly rough, slightly weathered resh.	_	-				
	-					
		-				
	<u>-30</u>					
		Run	100	97	1	65
	•	2				
	_					
	_					
	<u> </u>					
	35					
		Run	98	94	1	
		3	00	04		
544.9	0					
ESTONE - medium gray, fine to medium grained, hard, thin to medium bedding, asional stylolites, numerous "birdseye" texture, occasionally vuggy, several green						
/-like shale partings, fractures are horizontal, irregular and rough to jagged, fresh lightly weathered.		Dur			- 4 4	
		Run 4	93	56	1.4	
ray-green clay-like to very soft rock-like shale interbed with limestone inclusions at						
1'-43.2'						
	45					
	_					

L.

Į

Ĺ

L

L

E

The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938) BBS, form 138 (Rev. 8-99)

•

								_		
	Ilinois D of Trans	epartment portation	ROCK	CORE	LC	C	Ì	ł	Page <u>3</u>	of <u>3</u>
	vision of Highways X		New I-74 Bridge Ov	er Mississippi Ri	ver - I	linois			Date	
		DESCRIPTION								
		LOCATIO), SEC	:. <u>32,</u>		<u>18N, I</u>	7	1
COUNTY R	ock Island	CORING METHOD	NQ Core				RE	R	CORE	S T
STRUCT. NO Station	46+66	CORING BAI	RREL TYPE & SIZE		- D E	c o	C O V	Q	T I M	R E N
BORING NO Station Offset		Core Diam	eter <u>1.8</u> sk Elev. <u>563.00</u> e Elev. <u>558.60</u>	ft	P T	R E	E R V	D	M E	G T H
Offset Ground Surfac	e Elev. 584	.50 ft			(ft)	(#)	(%)	(%)	(min/ft)	
LIMESTONE - m occasional stylol clay-like shale pa to slightly weathe	nedium gray, fin ites, numerous artings, fracture ered. <i>(continue</i> d	ne to medium grained, h "birdseye" texture, occa es are horizontal, irregula	asionally vuggy, sever ar and rough to jagge	al green		Run 5	92	69	1	
	asional groom			(0)						
				533.50						
End of Boring	5									

Color pictures of the cores <u>Yes</u> Cores will be stored for examination until_____ The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

L

È.

Illinois Depa of Transpor	artm tatio	ent		S		G	Page	<u> </u>	of 🤮
Division of Highways JCI			Ne	w i-74	Bridge Over Mississippi River - Illingi	s		9/1	
ROUTE	DESC	RIPTIO	N		Approach	LOGO	ED B	<u>ر ا</u>	<u>SL</u>
SECTION		LOCA		(N=56	3122.181, E=2459544.529), SEC. 32	, T WP. 18N	I, RNG	i. 1W, 4	4 th PN
COUNTY Rock Island DRIL	LING M	ETHO	<u></u>	<u> </u>	SA, CME 550X HAMMER	TYPE	ME AU	TOMA	TIC
STRUCT. NO Station 46+66	D E P	L	U C S	M O	Surface Water Elev Stream Bed Elev	ft D ft E P	L	U C S	M O I
BORING NO. VIAIL-124 Station	T H	W S	Qu		Groundwater Elev.: First Encounter572.0	ft ⊻ H	W	Qu	S T
Offset Ground Surface Elev. 586.50	ft (ft) (/6")	(tsf)	(%)	Upon Completion After Hrs	ft (ft)	(/6")	(tsf)	(%)
CONCRETE - 2.5" concrete plus base course (sand & gravel).	5.20	- 1			sand, very soft	565.30 —			
CLAY - black to dark brown, some	<u></u> –	5	3.2		SAND - brown, fine to coarse grain, conglomeratic with gravel		4	0.9	
silt, medium plastic, soft to medium stiff, slightly moist to moist.		6	S		(1/2-inch minus, subrounded to subangular), loose, wet.		5	В	
- very stiff to hard at 1'-2.5'		2				 562.40	4		
		2 5 3	0.9 B	18.1	WEATHERED LIMESTONE	-25	50/5"		<u> </u>
		-			Borehole continued with rock	<u>560.90</u>			
		2	1.0 P	19.4	coring.				
	_		F						
- greenish gray to orange brown		1 1 2	0.7 B	19.9					
- slightly plastic									
- [Dry unit weight = 100.6 pcf]		-	0.8 B	25.8					
- slightly to medium plastic		1	0.6	24.2					
- medium gray, wet			В			35			
- greenish gray to orange brown - medium gray, little silt		0 1 2	0.5 B	25.0					
- soft		0	0.5	27.4					
	-20	1 ~ 1	B	T		-40			

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206) BBS, from 137 (Rev. 8-99)

1

L

Illinois Department of Transportation ROCK CORE	LO	G	F	Page <u>2</u>	_ of <u>3</u>
Division of Highways JCI		-	E	Date 🧕	9/13/07
New I-74 Bridge Over Mississippi Rive ROUTE I-74 DESCRIPTION Approach	er - IIIno	L	OGGEI) BY	SL
SECTION LOCATION _(N=563122.181, E=2459544.529),	SEC. 3	2, TWP	<u>. 18N, I</u>	RNG. 1W	, 4 th PM
COUNTY Rock Island CORING METHOD NQ Core		R E	R	CORE	S T
STRUCT. NO.	D E P F H (ft) (#	C O V E R Y	Q D	T I M E (min/ft)	R E N G T H
LIMESTONE - medium brownish gray, fine to medium grained, hard, occasional 560.90 pitting, occasional stylolites with some fractures along stylolites, locally vuggy with green clay-like shale infilling, occasional clay-like shale seams with fractures along seams, thin to medium bedded, fractures are horizontal to low angle planar to slightly irregular, smooth to slightly rough, occasional mid to high angle fractures, fresh.		n 100	55	1.2	
- medium gray, fine grained, stylolites locally closely spaced, interbedded with "clean" limestone with only very occasional stylolites.	Ru 2 		91	1	293.3
	Ru 3 	100 I	89	0.8	
LIMESTONE - medium grayish brown, fine to medium grain, moderately hard, abundant pitting and "birdseye" texture, medium bedded, fractures are horizontal to very low angle, planar, smooth moderately irregular, rough to jagged, fresh to very slightly weathered.	Rui 4 	100	89	1.6	

į.

L.

L

Color pictures of the cores <u>Yes</u> Cores will be stored for examination until<u></u> The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

	ROCK CORE	LO	G	F	^p age <u>3</u>	of <u>3</u>
Division of Highways JCI New I-	74 Bridge Over Mississippi Riv	ver - Illir	iois		Date <u>9</u>	
ROUTEI-74DESCRIPTION					D BY	
SECTION LOCATION		<u>, SEC.</u>			CORE	
COUNTY Rock Island CORING METHOD NQ Cor	e		R E	R		Т
STRUCT. NO CORING BARREL T Station 46+66	YPE & SIZE NQ Wireline		- C C 0	ġ	T	R E
Core Diameter	<u> </u>	P	O V R E E R	Ď	M E	N G
Station Begin Core Elev.	560.90 ft	T H	E R Y	•		T H
Offset Ground Surface Elev. 586.50 ft		(ft)	(#) (%)	(%)	(min/ft)	(tsf)
LIMESTONE - medium grayish brown, fine to medium grain, m abundant pitting and "birdseye" texture, medium bedded, fractu very low angle, planar, smooth moderately irregular, rough to ja slightly weathered. <i>(continued)</i>	res are horizontal to		tun 98 5	94	1	
End of Boring	535.90	 				

Color pictures of the cores _ Yes Color pictures of the cores ______Control of the core sample (ASTM D-2938) Cores will be stored for examination until______ The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938) BBS, form 138 (Rev. 8-99)

į

ļ

(

L

Illinois Depart	me	ent n		S	DIL BORING LOG		Page	9 <u>1</u>	of _
JCI			Ne	w I-74	Bridge Over Mississippi River - Illinois			9/^	
ROUTE I-74 DE	SCR	IPTIO	N		Approach	LOGG	ED B	(SL
SECTION	I	LOCA		(N=56	2983.081, E=2459718.225), SEC. 32, TV	/P. 18N	I, RNG	i. 1W, 4	4 th PN
COUNTY Rock Island DRILLIN	g me	ETHO)	<u>н</u>	SA, CME 550X HAMMER TYP	E _ <u>C</u>	ME AU	TOMA	
STRUCT. NO.		L O W	U C S Qu	M O I S T	Surface Water Elevft Stream Bed Elevft Groundwater Elev.: First Encounter573.8_ft	E P T	o w	U C S Qu	M O I S T
Offset Ground Surface Elev585.80 ft	(ft)	(/6'')	(tsf)	(%)	Upon Completion ft		(/6")	(tsf)	(%)
CONCRETE + Base Course 584.80	·				SAND - maroon to bright greenish yellow, fine to medium grained, conglomeratic with fine gravel. 564.			()	
CLAY - black to dark brown, some silt, slightly to medium plastic,	_	4	0.9		<i>(continued)</i> - olive, fine grained sand, moist at	<u> </u>	13 25		
medium stiff to very stiff, moist		2	В		21'		13		
		2			WEATHERED SHALE - medium gray, clay-like to soft rock-like, severely weathered.		13		
		2	0.7				11		
	-5	2	В			-25	13		
- brownish orange to greenish gray, with a black clay seam at 8.5'		2 2 3	0.7 B	Ç	558.3		15 18 50/5"		
C		2 2	0.7		Borehole continued with rock coring.	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>			
	-10	1	B			<u>-30</u> —			
- orange brown fine grained sand interbed in a silt and clay matrix, saturated at 12.3'	¥	2 2	0.7 B						
- slightly plastic	-15		0.8 P	35.1					
		0 2 1	0.4 B						
- maroon, little silt, medium plastic _{566.60} -	-20	1 5 7	0.5 B			-40			

Division of Highways JCI	New	I-74 Bridge Over M	lississippi Rive	r – Illi	nois			Date _ 9	
ROUTE -74	DESCRIPTION	Appr	oach			_ LC	GGE) BY	SL
		=562983.081, E=2	459718.225), \$	SEC.	32,	TWP.	<u>18N, F</u>	RNG. 1W	<u>', 4th F</u>
COUNTY Rock Island COR		ore				R E	R	CORE	S T
STRUCT. NO Station	_ CORING BARREL			D E	C O	C O V	à	T I M	R E N
BORING NO. VIAIL-125	Core Diameter Top of Rock Elev	<u>1.8</u> i <u>564.50</u> f 558.30f	t	P T	R E	E R	D	E	G
Station Offset Ground Surface Elev. 585.80				H (ft)	(#)	Y (%)	(%)	(min/ft)	H (tsf
IMESTONE - medium to light brown with partings, seams, and clasts of gr o medium bedded, primarily horizont angle fractures, fracture surfaces are resh to slightly weathered.	een clay-like shale, hard al to very low angle fracti	to moderately hard ures with localized	Í, thin – high –	-30	Run 1	100	41	1.5	
clay-like shale interbed at 30.9'-31.7	,		Y -	F	Run 2	98	40	1.2	933.
mixed shale and limestone layer with	n high angle to vertical fra	actures at 31.9' - 3:	3.4' –						
light to medium gray, locally pitted a hale partings and inclusions in irregu	nd vuggy at 33.3', clay-lik lar patterns at 45° to ver	te to soft rock-like (tical at 36.4' -36.9'	green –	-35					
	<u> </u>				≀un 3	100	98	1.2	
ight gray, stylolitic			-	-40					
very light gray, fine grained, fresh, ve	ery minor pitting and occa	asional stylolites			tun 4	100	75	1.2	
very thin bedded, occasional shale p 4.3'-45.9'	artings, moderate pitting	and vuggy at	-	-45					
					un 5	100	88	0.8	

The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938) BBS, form 138 (Rev. 8-99)

R	Illinois D	epartment portation	ROCK	CORE	10	പറ		F	Page <u>3</u>	of
	Division of Highways JCI		New I-74 Bridge Ove	er Mississippi Riv	/er - II	llinois			Date	
					, SEL	<u>e. 32,</u>	R	<u>181N, 1</u>	CORE	1
STRUCT. NO. Station BORING NO Station Offset	48+91 VIAIL-125	Core Diame Top of Roc Begin Core	NQ Core RREL TYPE & SIZE eter1.8 ck Elev564.50 e Elev558.30	NQ Wireline _ in ft	- D E P T H (ft)	C O R E (#)	RECOVERY (%)	R Q D	т	T R E N G T H
LIMESTONE -	medium gray, fine	e to medium, pitted, "bir fractures range from m ed. Pitting and "birdsey	redium (45°) to hiah (8	0°)						
						Run 6	100	100	0.8	
End of Boring		\$0 }		529.90	 60					
	0									

i.

L

Color pictures of the cores <u>Yes</u> Cores will be stored for examination until_____ The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

Illinois De	parti	me	ent		S	DIL BORING LOG	Pag	e <u>1</u>	of _
Division of Highways JCI				Ne	w I-74	Bridge Over Mississippi River - Illinois		e <u>9/</u>	
ROUTE		SCR	ΙΡΤΙΟ	N		Approach	LOGGED E	Υ	<u>SL</u>
SECTION		_ เ	LOCA		(N=56	2900.26, E=2459617.358, SEC. 32, TWF	P. 18N, RNG	.1W,4	th PM
COUNTY Rock Island D	RILLING	6 ME	THO	o	H	SA, CME 550X HAMMER TYP	E CME A	JTOMA	<u>\TIC</u>
STRUCT. NO.		Т Н	B L O W S (/6")	U C S Qu (tsf)	M O I S T (%)	Surface Water Elev. ft Stream Bed Elev. ft Groundwater Elev.: ft First Encounter 572.4 ft Upon Completion ft After Hrs. ft	D B E L P O T W H S (ft) (/6")	C S Qu	M O I S T (%)
SILT - dark gray, some clay, non to slightly plastic, stiff, slightly moist.			5 6 6	1.5 B		SAND - medium gray, fine grained, trace to little silt, trace fine to medium coarse gravel (1/2 inch minus), loose, saturated. (continued)			
- slightly to medium plastic CLAY - greenish gray to orange brown, some silt, sand seams, slightly to medium plastic, stiff to medium stiff, moist.	_ <u>582.60</u>		3 3 3	1.3 B	19.3	562.9 WEATHERED SHALE - light gray, clay-like to soft rock-like, severely weathered.	<u>00 </u>		
- slightly plastic	-		2 3 3	0.5 B	19.9	560.4 Borehole continued with rock coring.	0		
	ç	-10	2 2 2 2	0.7 B	20.0				
[Upon completion of boring, offset 10' south, augered to 11' depth, and took Shebly tube sample at 11'-13'] - medium gray, medium to highly plastic, with brown fine grained			1 1 2	0.8 P	22.3				
sand seams at 9.2', 11.3' and 13.7 - some silt, saturated	. <u>.</u> 	-15	1 1 1	0.8 B	26.0		 		
[Note: attempted Shelby tube sample at 16'-18'; no recovery; followed-up with SPT sample]	-		0 1 1	0.5 B	24.6				
- vertical fracture at 47.3'-47.9' - red brown to maroon, medium to highly plastic		-20	1 2 4	0.6 B					

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206) BBS, from 137 (Rev. 8-99)

Illinois Department of Transportation ROCK CORE	LC)G	Ì	F	Page <u>2</u>	_ of <u>_</u>
Division of Highways JCI New I-74 Bridge Over Mississippi Riv	ver - II	linois			Date	
ROUTE I-74 DESCRIPTION Approach			_ LC	GGEI) ВҮ	SL
SECTION LOCATION (N=562900.26, E=2459617.358,	SEC.	<u>32, T</u>	WP.1	<u>8N, RI</u>	NG. 1W,	4 th PM
COUNTY Rock Island CORING METHOD NQ Core			RE	R	CORE	S T
STRUCT. NO.	- D E P T H (ft)	C O R E (#) Run 1	C O V E R Y (%) 100	Q D (%) 76	T I M E (min/ft) 1.4	R E N G T H (tsf)
 - occasional pitting at 26'-27.5'; vuggy at 27.6'-28.3' with pits to 2" length -from 31' to 45': occasionally vuggy with clay-like shale fillings in voids, occasional stylolites, pitting, very thin to thin bedded 		Run 2	98	92	1	350.2
	 	Run 3	100	91	1	
	40 F F F	Run 4	100	92	0.8	
540.40						

Color pictures of the cores _ Yes

1

ل_ا

Cores will be stored for examination until______ The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)
R	Illinois D	Department portation	ROCK	CODE	1.0	<u>م</u> د	<u>.</u>	F	Page <u>3</u>	of _
	Division of Highways JCI		New I-74 Bridge Ove	er Mississippi Ri	ver - I	llinois			Date 🧕 🤤	
ROUTE	I-74	DESCRIPTION	A	pproach			LC	GGE) BY	SL
SECTION		LOCATIO	DN <u>(N=562900.26, E</u>	=2459617.358,	SEC.	<u>32, T</u>	<u>WP.1</u>	<u>8N, RI</u>	NG. 1W,	4 th PM
COUNTY	Rock Island		NQ Core				RE	R	CORE	S T
STRUCT. NO. Station	48+91	Core Diame	RREL TYPE & SIZE	_ in	- D E	C O	C 0 V	à	T I M	R E N
Offset		Top of Roc Begin Core	k Elev. 562.90 Elev. 560.40	ft ft	P T H	R E	E R Y	D	E	G T H
LIMESTONE -	ace Elev. 586 medium brownis ately hard, horiz	6.40 ft sh gray, fine to medium g ontal and slightly irregula	grained, pitted, "birdse ar, rough fracture.	ye"	(ft)		(%) 100	1	(min/ft) 1	(tsf)
- vertical fractu	ıre at 47.3'-47.9'	with 1/2 "birdseye" textu	ire and 1/2 gray fine li	mestone						
			×	\mathbf{O}						
End of Boring				535.40)					
		<u> </u>								
	X				-60					
	O									
				·····	<u>-65</u>					

Color pictures of the cores _ Yes

L

5....

Į.....

1

 \bigcup

1

Ĺ

Ĺ

L

1

r

ί

 $\bigcap_{i=1}^{n}$ Ľ

Cores will be stored for examination until______ The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

of Transpor	rtat	io	n		5(DIL BORING LOG	Date	∍ <u>11/</u>	<u>'10/05</u>
ROUTE i-74	DE	SCR		N			LOGGED B	Y_ <u>L.</u>	Hunt
		I			VIADU	JCT, MAINLINE, SEC., TWP., RNG.			
COUNTY Rock Island DRII	LLING	g me	THO	D <u>CME</u>	-550 -	OLLOW STEM AUGER HAMMER TYPE			
STRUCT. NO Station	_	D E P	B L O	U C S	M O	Surface Water Elev ft Stream Bed Elev ft	D B E L P O	C	M O I
SORING NO		Т Н	W S	Qu	S T	Groundwater Elev.: First Encounter <u>568.1</u> ft ▼ Upon Completion ft	T W H S	Qu	S T
Ground Surface Elev. 580.07 Clay (CL) Clay, few gravel, trace	ft		(/6'') 5	(tsf)	(%)	Upon Completion ft After Hrs ft Shale Shale, gray, moist,	(ft) (/6")	(tsf)	(%)
sand, dark brown, mottled orange brown, dry to moist, stiff to very stiff, homogeneous.			6 8 9	3.3 P		stratified.	- 13 - 17 - 17		
Clay, trace sand and gravel, dark prown, mottled orange brown, dry o moist, stiff to very stiff, nomogeneous.			6 7 8 7	>4.5 P					
Clay, trace sand and gravel, dark prown, mottled orange brown, dry p moist, stiff to very stiff, pomogeneous.	-	-5	3 4 6	>4.5 P	15.0	No Sample.	 		
At about 5.5' dark red brown wick lense. Clay, trace sand, dark brown, nottled orange brown and gray	-		4 3 5 5	1.8 P	9				
rown, dry to moist, medium stiff o stiff, homogeneous. Silty Clay(CL) Silty Clay, gray rown, mottled dark brown and	2.07		4	2.5					
range brown, dry to moist, nedium stiff, homogeneous.	5	-10	6 5	P.		551.07 Borehole continued with rock coring.			
Silty Clay, gray brown to light rown, mottled orange brown, noist, soft to medium stiff, lensed nd homogeneous.			4 3 3	0.7 P					
At about 11.5' 3" of fine to nedium grained sand. Water at 12' while drilling	-		3 Push	0.6	26.0				
56	6.07	_		Р			_		
Iay (CL) Clay, gray brown, nottled orange brown to dark rown, moist, very soft to soft, omogeneous.	-	-15	2 1 5 8	0.6 P			-35		
15.67' fine grained sand for 4". 56	4.07	-							
	_								
	_								

1

L.

L

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206) BBS, from 137 (Rev. 8-99)

	DECODIDITION							
ROUTE					LC	GGEI	D BY <u>[</u>	<u> Hu</u>
SECTION		ADUCT, MAINLINE, S I	<u>EC., TWP., I</u>	RNG.			1	1
COUNTY <u>Rock Island</u>	CORING METHOD NQ DC	UBLE BARREL DIAM			R	R	CORE	S
STRUCT. NO	CORING BARREL T	YPE & SIZE	D	с	- C O	Q	Т	F
Station	Core Diameter		E	0	V		м	N N
BORING NO. MR021P		551.07 ft	P T	R E	E R	D	E	С Т
ORING NO	Begin Core Elev.	<u>536.07</u> ft	Ĥ		Y			ł
Ground Surface Elev. 580.07	7 ft		(ft)	(#)	(%)	(%)	(min/ft)	(ts
imestone Limestone, light gray,			551.07					
eathered, strong rock, thin to me pring at 29' at 12:34 Horizontal fr	actures, extremely fractured	to sound, extremely	< <u>-3(</u>					
ose to moderate discontinuity, ro ealed (<1/4" thick) to soft clay mi	ough undulating to smooth planeral coatings with >1/4" this	anar joints, tightly						
Drilling water loss significant; 45	minutes of coring for R-1.	R TOOK Wan Separation.]				
R-1: Vugs present (<1/2" diame	ter).	• () —	-				
			-	{				
				1				
imestone, light gray, fine to me	tium arained unweathered to	slightly weathered		-				
rong rock, laminated to medium	beds, 1 vug per foot. Lost all	circulation at 36.5',	35					
ater loss of about 400 gallons; st actures, extremely fractured to se	opped for half an hour to get ound. extremely close to moc	water. Horizontal lerate discontinuity.		1				
ugh undulating to smooth planar	ioints, tightly healed (<3/4" t	hick) to slightly altered	<u></u>					
th >1/4" thick rock wall separatic ack soft clay mineral in joint, mos	stly space most likely path of	water loss.						
								
imestone, gray, fine to medium edium strength, laminated to me	grained, slightly to moderatel	y weathered, weak to						
ring coring. Horizontal fractures	and 45 degree angle fracture	es, extremely fractured	40					
sound, extremely close to mode anar joints, tightly healed (<1/4"								
ck rock wall separation; at 39.75	' dark mineral coatings in joir	nts.						
						ĺ		
imestone, gray, fine to medium	grained, moderately to highly	weathered, strong		R4	100	68		548
ck, medium to thin beds, vugs pr llons during coring. Horizontal fr	esent (<1" diameter). R-4: Dr	illing water loss of 400	45					
se to moderate discontinuity, ro	ugh to smooth (undulating - p	lanar) joints, tightly						
	ieral coatings with >1/4" thick	rock wall separation;						
aled (<1/4" thick) to soft clay mir about 48' (last 10" of core) highly	v fractured and many vuos							
aled (<1/4" thick) to soft clay mir about 48' (last 10" of core) highly	y fractured and many vugs.							
aled (<1/4" thick) to soft clay mir about 48' (last 10" of core) highl	y fractured and many vugs.							

Color pictures of the cores _____ Cores will be stored for examination until_____ The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

Į.

(

L

L

 \bigcup

 \square

 $\left[\right]$

Illinois Depa of Transport	rtment ation ROCK COR	E LOO	3		^o age <u>2</u>	
JCI	DESCRIPTION		1.0		Date <u>1</u>	
	LOCATION _VIADUCT, MAINLINE, SEC.,					<u></u>
	NG METHOD _ NQ DOUBLE BARREL DIAMOND		R		CORE	s
	CORING BARREL TYPE & SIZE in Core Diameter in Top of Rock Elev. 551.07 ft Begin Core Elev. 536.07 ft	D C E O P R T E H (ft) (#)	E C O V E R Y	R Q D (%)	T M E (min/ft)	T R E N G T H
Limestone, gray, fine to medium grain strong, thin to medium beds. R-5: Drillir ran out. Horizontal fractures, extremely	ed, slightly to moderately weathered, medium ng water loss significant; stopped when water fractured to sound, extremely close to	9.57 50 9.57 		89		

İ.,

L

Color pictures of the cores _____ Cores will be stored for examination until_____ The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

Division of Highways JCI ROUTE	_ DE	SCR	IPTIO	N			Date <u>10/31/08</u>
SECTION		_ !			VIADI	JCT, MAINLINE, SEC., TWP., RNG.	
COUNTY Rock Island DR	ILLING	S ME	THO	D <u>CME</u>	<u>-550 F</u>	OLLOW STEM AUGER HAMMER TYP	PE
STRUCT. NO Station BORING NO Station Offset		D E P T H	B L O W S	U C S Qu		Surface Water Elev. ft Stream Bed Elev. ft Groundwater Elev.: ft First Encounter 561.6 ft Upon Completion ft	× N
Ground Surface Elev. 569.57	ft	(ft)		(tsf)	(%)	After Hrs. ft	
Clay (CL) Clay, little sand, red brown, mottled dark brown and brown, dry to moist, homogeneous.	- 567.57		4 7 6 6				
Silty Clay(CL-ML) Silty Clay, red prown, dry to moist, nomogeneous.	- 565.57		6 4 5 4	1.6 P			
Clayey Silt(MH) Clayey Silt, race sand and gravel, red brown, dry to moist, homogeneous.		-5	10 5 4				
Clayey Silt to Sand(MH - SW) Clayey Silt to Sand, trace gravel, ed brown to brown, moist to wet, stratified.	- - - - - -		5 5 6 5 6	4.5 P	2		
Clay to Silty Sand(CL - SM) Clay o Silty Sand, few gravel, brown, vet, stratified.	559.57	-10	5 5 15 9				
Silty Sand to Clay(SM - CL) Silty Sand to Clay, some gravel, brown, vet, stratified.	557.57	-	6 15 25 50/4				
No Sample.	-	_	50/4				
Auger refusal at 14'; begin rock coring at 14' at 08:21 Horizontal ractures, extremely fractured to cound, extremely close to noderate discontinuity, smooth to ough (planar) joints, tightly realed to very stiff clay mineral coatings with >1/4" thick rock wall		 	50/0 /				

l –

L.

Ĺ

Ĺ

(

L

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206) BBS, from 137 (Rev. 8-99)

of Transportation ROCK COP			-	Ε	Date <u>1</u>	0/31
ROUTE I-74 DESCRIPTION			LC	DGGEI	D BY <u> </u>	Hu
SECTION LOCATION _VIADUCT, MAINLINE, SEC	<u>., twp.,</u>	RNG.				
COUNTY Rock Island CORING METHOD NQ DOUBLE BARREL DIAMON			R	R	CORE	
STRUCT. NO. CORING BARREL TYPE & SIZE Station BORING NO. VIAIL01 Core Diameter in Top of Rock Elev. 555.47 ft	C E P	O R	C O V E	Q D	T I M E	F
Station Begin Core Elev. <u>555.47</u> ft Offset Ground Surface Elev. <u>569.57</u> ft	Т Н (fi	:) (#)	Y (%)	1	(min/ft)	T F (ts
Sandstone Sandstone, gray, fine to medium grained, slightly to moderately weathered, weak to very weak rock, laminated to medium beds. Each core run takes about 20 minutes. Coring rate was smooth and fast; no rod drops.	555.47	R1	87	70		
Sandstone, gray, fine to medium grained, slightly weathered, very weak rock, nedium bedding. Horizontal fractures, extremely fractured to sound, extremely close o wide discontinuity, smooth to rough (planar) joints, tightly healed to very stiff clay nineral coatings with <1/4" thick rock wall separation.		R2	100	85		
Sandstone, gray, fine to medium grained, unweathered, very weak rock, massive edding, sample completely intact and unfractured prior to placement in rock core ox. R-3: Busted 2 times from placement in rock core box. Horizontal breaks at ends f core sample, sound, very wide discontiuity, no joints or fractures throughout ample.	 2 	R3	93	93		
Sandstone, gray, fine to medium grained, unweathered, very weak rock, massive edding. R-4: Busted 1 time from placement in rock core box. 1 fracture in sample, orizontal, smooth-planar, unaltered.		R4	100	100		
End of core run at 33.5'.	536.07					

L

ĺ.

U

The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938) BBS, form 138 (Rev. 8-99)

Illinois De of Transp Division of Highways						DIL BORING LOG	Date <u>11/2/05</u>
SECTION	<u></u>		LOCA	TION _	VIAD	UCT, MAINLINE, SEC., TWP., RNG.	
COUNTY Rock Island	DRILLIN	G MI	ETHO	D <u>CME</u>	-550	HOLLOW STEM AUGER HAMMER TYP	E
STRUCT. NO Station BORING NO VIAIL02		D E P T H	o W	U C S Qu	M O I S T	Surface Water Elev ft Stream Bed Elev ft Groundwater Elev.:	23
Station Offset						First Encounterftft	
Ground Surface Elev. 576.0	6 ft	(ft)	(/6")	(tsf)	(%)	AfterHrsft	
Clayey Sand(SC) Clayey Sand, ew gravel, dark brown, dry to noist, somewhat loose, nomogeneous. 1' of concrete,			9				
pavement, and gravel on top of sediment.	E73.00		4 3 5				
Clayey Sand to Silty Clay	573.06		4				
SC-CL) Clayey Sand to Silty Clay, trace gravel and sand, dark prown, dry to moist, loose to soft, tratified.	571.06		3 3 4				
Clay (CL) Clay, trace sand and iravel, dark brown, dry to moist, oft, homogeneous.			1 2 2	0.1 P		0	
			3				
Clay, trace sand, gray brown, nottled orange brown and dark rown, dry to moist, soft, omogeneous.			1 2 3	0.5 P			
Clay, gray brown, mottled orange rown and dark brown, moist, soft ensed. Clayey Sand lense at 10'.		-10	3 WOH 2	1.9			
sised. Olayey Sand lense at 10.	565.06		24	P			
ilty Clay to Clayey Sand to layey Silt(CL-SC-ML)Silty Clay			WOH 2				
Clayey Sand to Clayey Silt, ace gravel, gray brown, mottled			2 1				
range brown and dark brown, noist, soft to medium dense, tratified.	563.06		8 12				
ilty to Sandy Clay(CL) Silty to andy Clay, few gravel, gray rown and brown, moist, soft,		-15	7 6				
tratified. Goes to Shale at bottom f sample (gray, dry to moist, ard).							
· · · · ·	-						
	557.06						
orehole continued with rock pring.		-20					

Į

 $\left[\right]$

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206) BBS, from 137 (Rev. 8-99)

ROUTE I-74	DESCRIPTION				LC	OGGEI	DBY L	. Hun
	LOCATION _VIADUCT, MAINLINE, SE							
	CORING METHOD NQ DOUBLE BARREL DIAMO				R		CORE	s
					E	R	Т	T R
STRUCT. NO Station			D	С	0	à		E
	Core Diameter in		E P	O R	V E	· D	ME	N G
BORING NO. VIAIL02	Top of Rock Elev. <u>557.06</u> ft Begin Core Elev. <u>557.06</u> ft		т	E	R			Т
Station			н		Y			Н
Ground Surface Elev. 576.	<u>06</u> ft		(ft)	(#)	(%)	(%)	(min/ft)	(ts
weathered, medium to strong ro refusal at 19'; begin rock coring fractured to slightly fractured, ex	y, fine to medium grained, slightly to moderately ck, laminated to thin beds, vugs present. Auger at 19' at 08:24 Horizontal fractures, extremely stremely close to close discontinuity, rough to smooth healed to rock wall separation of >1/4" thick with firm and gravel, stylolites present.	557.06	 	R1	83	53		
nedium strength, no apparent b Horizontal fractures, extremely f discontinuity, rough undulating t	edium grained, unweathered to slightly weathered, edding (thick to massive), not many vugs present. ractured to sound, extremely close to moderate o smooth planar joints, tighlty healed to very stiff clay all separation, stylolites present, hard mineral growth	-		R2	100	87		
	<u>k</u> O	-						
nedium strength, thick bedding, lorizontal fractures, extremely f liscontinuity, rough to smooth (p	edium grained, unweathered to slightly weathered, not many vugs present. Lost water from 29 - 31.5'. ractured to sound, extremely close to moderate planar and undulating) joints, tighlty healed to firm clay rock wall separation, stylolites present, stains in ew seconds.	-	-30	R3	100	83		
		-	_			:		
nedium strength, no apparent be liameter). Horizontal fractures,	edium grained, slightly to moderately weathered, edding (medium to massive), vugs present (<1/8" slightly fractured to sound, close to wide discontinuity, ealed to sandy particles in joints, (some slanted joints		-35	R4	100	97		
		-						
		537.06					1	

L.

L

Illinois Depa	artment tation ROCK CC			Page <u>3</u> of _
Of Iransport			7	Date <u>11/2/05</u>
ROUTE -74	DESCRIPTION		LOGG	ED BY L. Hunt
SECTION	LOCATION VIADUCT, MAINLINE, S	EC., TWP., RNG.		
COUNTY Rock Island COR	ING METHOD NQ DOUBLE BARREL DIAM		R	CORE S
STRUCT. NO Station	Core Diameter in	E O	V .	T R I E M N
BORING NO. VIAIL02 Station Offset Ground Surface Elev. 576.06		P R T E H (ft) (#)	R.Y.	E G T H b) (min/ft) (tsf)
End of rock coring at 39'. End of Boring				
		45 		
1.0				

Color pictures of the cores _____ Cores will be stored for examination until_____ The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

 $\left[\right]$

 $\left[\right]$

Laboratory Test Results

 $\left[\right]$

 $\left[\right]$

 $\left[\right]$

SUMMARY OF LABORATORY TEST RESULTS FOR SOIL

 PROJECT NO:
 C1X13500

 PROJECT:
 I-74 River Crossing, Bettendorf-Moline

 Illinois Land Based Borings

L

 \Box

1

L

Boring	Sample	De	pth		Moisture	Dry Unit	Atte		imits		iraln Siz	e Pass	ing	Compressive
	No.	From	То		Content		LL	PL	PI	4	10	40	200	Strength
					%	pcf	%	%	%	%	%	%	%	tsf
VIAIL-103	SS-4	8.5	10.0							100	100	87	28	
	SS-6	13.5	15.0		21.5									
	SS-7	16.0	16.9		14.5									
VIAIL-104	SS-2	8.5	10.0		17.0									
	SS-3	13.5	15.0		18.9		31	12	19					
	SS-4	16.0	16.9							100	100	73	34	
VIAIL-105	SS-1	1.0	2.5		8.9									
	SS-2	3.5	5.0		12.1									
	SS-3	6.0	7.5		21.5									
VIAIL-106	SS-1	1.0	2.5		8.1									
	SS-3	6.0	7.5							100	100	69	8	
VIAIL-107	SS-1	1.0	2.5		11.7					Ĭ				
VIAIL-108	SS-1	1.0	2.5		17.5									
	SS-2	3.5	5.0		22.0		24	16	8					
	SS-3	6.0	7.5		18.8									
VIAIL-109	SS-1	1.0	2.5		12.4									
	SS-2	3.5	5.0		12.6									
	SS-4	8.5	10.0		10.1									
	SS-5	11.0	12.5		18.2			10						
	SS-6	13.5	15.0		15.5		22	13	9					
	SS-7	16.0	17.5		32.5					100	- 00	40	10	
	SS-8	18.5	20.0		17.0					100	86	43	18	
VIAIL-110	SS-2	3.5	5.0		17.9 14.5									
	SS-3 SS-4	6.0 8.5	7.5 10.0		14.5							· · · · ·		
	SS-4 SS-5	8.5 11.0	10.0		17.2									
	SS-5 SS-6	13.5	15.0		10.9			·						
	SS-6 SS-7	16.0	17.5		24.1									
	SS-7 SS-8	18.5	20.0		24.1									
VIAIL-111	SS-2	3.5	5.0		21.8									
	SS-3	6.0	7.5		26.4									
	ST-1	8.5	10.5		28.8	90	57	22	35					0.75
	SS-4	11.0	12.5		44.8		<u> </u>							0.70
	00-4		12.0		U.TT.U									
	7													

SUMMARY OF LABORATORY TEST RESULTS FOR SOIL

-

.

IJ

Ì.

L

Boring	Sample	De	pth	Moisture	Dry Unit	Atte	rberg l	imits	Ģ	irain Siz	e Pass	ing	Compressi
	No.	From	То	Content %	Weight pcf	LL %	PL %	PI %	4 %	10	40 %	200 %	Strength tsf
VIAIL-112	SS-3	6.0	7.5	 20.1				1					
	SS-4	11.0	12.5						100	99	97	18	
VIAIL-113	SS-2	3.5	5.0	 28.8									
	SS-3	6.0	7.5	33.8									
	SS-4	8.5	10.0	27.4									
	SS-5	11.0	12.5	41.8									
VIAIL-114	SS-2	3.5	5.0	 22.6									
	SS-3	6.0	7.5	 82.5	Note: Mo	isture	Conte	nt is c	uestio	nable			
	SS-4	8.5	10.0	27.0		27	21	6					
	SS-5	11.0	12.5	20.4									
VIAIL-115	SS-2	3.5	5.0	22.8									
	ST-1	6.0	8.0	21.8	102	32	19	13					1.38
	SS-3	8.5	10.0	47.6						-			
	SS-5	13.5	15.0	8.3					81	63	15	10	
VIAIL-118	SS-2	3.5	5.0	16.7									
	SS-3	6.0	7.5	17.2			_						
	SS-4	8.5	10.0	31.6									
	SS-5	11.0	12.5	24.8									
VIAIL-119	SS-1	1.0	2.5	24.2									
	ST-1	3.5	5.5	22.4	101								2.07
	SS-2	6.0	7.5	27.1									
	SS-3	8.5	10.0	25.9							_		
	ST-2	11.0	13.0	26.4	100								
VIAIL-120	SS-2	3.5	5.0	17.5									
	ST-1	8.5	10.5	5.0					64	33	6	2	
	SS-4	8.5	10.0	27.4									
	SS-5	13.5	15.0	20.2									
VIAIL-121	SS-1	1.0	2.5	18.9	•								
	SS-2	3.5	5.0	17.1									
	SS-3	6.0	7.5	21.3									
	SS-4	8.5	10.0	24.5		29	19	10					
	SS-5	11.0	12.5	26.7									
	SS-6	13.5	15.0	25.3									
VIAIL-122	SS-1	1.0	2.5	 15.2									
	SS-2	3.5	5.0	16.4									
	SS-3	6.0	7.5	14.2									·
	SS-4	8.5	10.0	2.4									
	SS-5	11.0	12.5	27.3		45	18	27					

SUMMARY OF LABORATORY TEST RESULTS FOR SOIL

	Sample		əpth		Moisture	Dry Unit			Limits		arain Siz	e Pass	ing	Compressiv
	No.	From	To		Content %	Weight pcf	LL %	PL %	PI %	4 %	10 %	40 %	200 %	Strength
	SS-6	13.5	15.0		24.2									
	SS-9	21.0	22.5		28.3							-		· · · · · · · · · · · · · · · · · · ·
	SS-10	23.5	25.0		27.3				1		1			
VIAIL-123	SS-2	3.5	5.0		18.6									
	SS-3	6.0	8.0		22.9						1	·		
	ST-1	8.5	10.5		21.1	107	26	17	9					0.80
	SS-4	11.0	12.5		23.9									
	SS-5	13.5	15.0		26.4									
	SS-6	16.0	17.5		28.4									•
	SS-7	18.5	20.0		29.5									
VIAIL-124	SS-2	3.5	5.0		18.1									
	SS-3	6.0	7.5	\square	19.4									
	SS-4	8.5	10.0		19.9									
	ST-1	11.0	13.0		25.8	101	29	22	7					0.84
	SS-5	13.5	15.0		24.2									
	SS-6	16.0	17.5		25.0									
	SS-7	18.5	20.0		27.4									
VIAIL-125	SS-2	3.5	5.0		20.4									
	SS-3	6.0	7.5		18.9									
	SS-4	8.5	10.0		23.1									
	SS-5	11.0	12.5		23.3									
	ST-1	13.5	15.5		35.1		29	23	6					
	SS-6	16.0	17.5		29.9									
	SS-8	21.0	22.5		14.2									
	SS-9	23.5	25.0		18.2									
VIAIL-126	SS-2	3.5	5.0		19.3									
	SS-3	6.0	7.5		19.9		25	21	4					
	SS-4	8.5	10.0		20.0									
	SS-5	11.0	12.5		22.3									
	SS-6	13.5	15.0		26.0									
	SS-7	16.0	17.5		24.6									
	SS-9	21.0	22.5							96	92	35	10	

Ĺ ĺ

ĺ

Sheet 3 of 3

H.C. Nutting Company 611 Lunken Park Dr. Cincinnati, Ohio 45226

Terracon I-74 Crossing-Bettendorf-Moline (Job #07045052) Baettendorf, Iowa HCN W 0. #19836 1410

L

[].

TABLE: TABULATION OF UNDISTURBED DATA

<u>;</u>

Water Content (%)	8:4 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
<u>₹</u> °	
D _{ry} Density (pcf)	152.5 152.5 152.5 152.5 114.9 117.6 122.5 122.5 128.7 128.7 128.7 128.7 128.7
Failure Strain (%)	2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1
Moh's Hardness	10 ⁰ 0 ⁰ τ τ τ τ τ 0 ⁰ 0 ⁰ 0
Material Description	Shaly Sandstone Shaly Sandstone Sandstone Sandstone Sandstone Sandstone Sandstone Sandstone Sandstone Sandstone
Unconfined Strength (tsf)	170.6 170.6 305.0 306.4 179.6 179.6 139.6 139.6 139.9 130.8
Depth (ft.)	22.2-22.7 22.2-22.7 16.7-17.2 18.4 30.2-30.8 17.7-18.8 23.4-23.8 23.4-23.8 23.4-23.8 23.4-23.8 23.4-23.8 23.4-23.8 23.4-23.8 23.4-23.8 23.4-23.8 23.4-23.8 23.4-23.8 23.4-23.8 23.4-23.8 23.4-23.8
Sample No.	RUN 2 RUN 2 RUN 2 RUN 2 RUN 2 RUN 3 RUN 3 RUN 3 RUN 3 RUN 3
Boring No.	VPALE - (-04 VIAIL-103 VIAIL-104 VIAIL-105 VIAIL-105 VIAIL-105 VIAIL-107 VIAIL-108 VIAIL-109 VIAIL-109 VIAIL-109 VIAIL-109
Lab No.	9977 9977 9977 9978 9978 9978 9980 9982 9982 9982 9982 9982 9982 9982 9982 9982

المحمد المحمدين

Un table 9-13-07

UNCONF	INED COMPRESSION TEST
200	
	╈╼╪╾╪╼╄╾╬╴╪╶┿┥┥┥╴┥╴┥
· · · · · · · · · · · · · · · · · · ·	
150	
	╪╶╬╌╬╼╬╍╬╍╬╍╬╍╬╍╬╍╬╍╬╍╌
	╈╱╪┈╪╌╪╌┼╌┝┈┿┈╠┅┿┅╪╍┿╍┿╍╧┙
\$\$	┟╍┾╌┼╶┼╌┼╍┾╍┾╍┾╍┾╍┾╍┼╍┥
Compressive Stress, tsf	
	╆╍╧╍╆╍╆╍╆╍╆╺┽╸╫╍╆╍╆╍┾╍┾╍
₽ <u></u>	
8	
	╋╍╍ <u>╊╍╍╊╍╍╊╍╍╊╍╍</u> ╋╍╍╋╍╍╋╍╍╋╍╍╋╍┅╋╍┅┩
50	
	[
	╞┈┉┝╼╍┝╼╍╖╼╸┟╼╌┟╍╍╁╍╍┨╸╍┟╍╌┟╶╌┼╍╌┼╌╌┆╼╼┨
0 2.5	5 7.5 10
	Axial Strain, %
Sample No.	1
Unconfined strength, tsf	170.6253
Undrained shear strength, tsf	85.3126
Failure strain,	6.9
Strain rate, in./min.	0.500
Water content, %	0.8
Wet density, pcf	153.6
Dry density, pcf	152.5
Saturation, %	N/A .
Void ratio	N/A
Specimen diameter, in.	1.870
Specimen height, in.	1.960
Height/diameter ratio	1.05
Description: SHALY SANDSTONE (MOH'S	
LL= PL= PI=	GS= Type: Sandstone
Project No.: 19636.040	Client: TERRACON (#07045052)
Date: 9-14-07 Remarks:	Project: I-74 CROSSING-BETTENDORF-MOLINE
Lab No. 9977	
	Source of Sample: VIAIL-103 Depth: 22.2-22.7'
-	Sample Number: RUN-2
	UNCONFINED COMPRESSION TEST
Figure	H. C. NUTTING COMPANY

.

{

.[

		UNC	ONFI	NED C	OMPRE	SSION	I TEST	4	
	400							X	
s, tsf	300								4
Compressive Stress, tsf	200							5	
Ö	100								
	0	0	05	Axial	Strain,.%	1.5	2	1	
Sample No.					1				1ª
Unconfined strength	n, tsf				305.0098				
Jndrained shear str	engt	ı, tsf			152-5049				
Failure strain,					1.3				
Strain rate, in./min.					0.500				
Water content, %					0.8				
Wet density, pcf					153.9				
Dry density, pcf					152.7				
Saturation, %	<u> </u>				N/A				
Void ratio				· · · · · · · · · · · · · · · · · · ·	N/A				
Specimen diameter,	~~~~				1.860				
					3.780				
Specimen height, in					2.03]
Specimen height, in Height/diameter rati	Ø			5)					·····
Specimen height, in Height/diameter rati Description: SHAL	Ø Y SA	NDSTONE	E (MOH'S	- 5}				Sandstone	
Specimen height, in Height/diameter rati Description: SHAL LL ≈ F	D Y SA PL =	NDSTONE	E (MOH'S PI =		GS=				
Specimen height, in Height/diameter rati Description: SHAL LL = F Project No.: 19636.	D Y SA PL =	NDSTONE	E (MOH'S PI =		GS= TERRACON (#07045052			<u></u>
Specimen height, in Height/diameter rati Description: SHAL LL = F Project No.: 19636. Date: 9-14-07 Remarks:	D Y SA PL =	NDSTONE	E (MOH'S PI =	Client: Project	TERRACON (:: 1-74 CROSSI	NG-BETT) ENDORF-N		<u></u>
Specimen height, in Height/diameter rati Description: SHAL	D Y SA PL =	NDSTONI	E (MOH'S PI =	Client: Project Source	TERRACON (:: I-74 CROSSI • of Sample: ` • Number: RU	ING-BETTI VIAIL-104 JN-2	ENDORF-N	AOLINE Depth: 16.7-	
Specimen height, in Height/diameter rati Description: SHAL LL = F Project No.: 19636. Date: 9-14-07 Remarks:	D Y SA PL =	NDSTONE	E (MOH'S PI =	Client: Project Source Sample	TERRACON (:: I-74 CROSSI • of Sample: ` • Number: RU	NG-BETTI VIAIL-104 JN-2 NFINED C) ENDORF-N E OMPRES	AOLINE Depth: 16.7- SION TEST	

 $\left[\right]$.

150					
s, tst	+ + + +/+				
Compressive Stress, tsf					•
	┼┼┟┼┼				
	┥╎┼┼				
50					
	4 + + + +				
0	05		1.5	1	
· · · ·	Axial	Strain, % ····		••• • • • • • • • • • • • • • • • • • •	
Sample No.		1		1	
Unconfined strength, tsf		179.4712	· · · · · · · · · · · · · · · · · · ·	1	
Undrained shear strength, tsf		89.7356			
Failure strain,		1.0			
Strain rate, in./min.		0.500			
Water content, %		3.3			
Wet density, pcf		121.5			
Dry density, pcf		117.6			
Saturation, %		N/A			
Void ratio		<u>N/A</u>			
Specimen diameter, in.		1.850			
Specimen height, in.		3.100			
Height/diameter ratio		1.68	}	<u> </u>	
Description: SANDSTONE (MOH'S - 1)		08-			
Project No.: 19636.040	·	GS=	Тур	8:	
Date: 9-14-07	Glient: 'J	ERRACON (#07	/045052)		
Remarks:	Project:	I-74 CROSSINC	3-BETTENDORI	-MOLINE	
Lab No. 9980	Source	of Samples 377 A	11 105	Donth. 200	20.01
-		of Sample: VIA Number: RUN-		Depth: 30.2-	30.8,

.

Tested By: JB

|____

L

L

1

 \Box

 $\left[\right]$

 $\left[\right]$

_____ Checked By: GS

	400		1				1	1		i	, ,		;							- ,	7				
	400						<u> </u>	ļ	<u>i</u>						÷			_	-	<u> </u>	-				
			<u> </u>				-	<u>!</u>	: 		i					-	: 	<u> </u>			-				
			[<u> </u>	_		: 	: T	<u> </u>		•••••								; 					
			ļ				ļ	·- • - • -					·						: +						4
	300				1		! 		:	.		;	·:		÷		<u> </u>		<u> </u>	i	-				
<i>ل</i> ېس.							<u>i</u>		; ;	:	ļ		<u>-</u>							!					
ts.						+	<u>.</u>		<u> </u>	<u> </u>	<u> </u>				: [ļ	- <u></u>					
SSO						-] 		<u></u>	; ;				<u> </u>	-	ŀ	-		·					
Str	i							<u> </u>		·	——		†	/	[; 					· ·
ive	200				_		<u> </u>			ļ			-/:			<u> </u>	1		i	-					
S S			1			-		•					<i>[</i>				+	. <u>!</u>			ļ				
udu			نہ ا									<u>/_</u> _	·:-				+	·	È	÷					
Compressive Stress, tsf							Ļ			<u> </u>	А						<u> </u>	<u> </u>	<u>+</u>	1					
0								i		<u>/</u>	i		· •	• •			1		!	: 					
	100						[Z	;	1	1					<u>i</u> 1								
	.										!		·····						<u>-</u>	<u> </u>					
					\square						<u>-</u>	4	!-		-			-	 	 .					
			-		\uparrow				•			1			1 mai 10				+	1 					
	0		\rightarrow	7	-	1						Ì							1						
		0			1	.5				3					4.	.5	<u> </u>	<u></u>		6	7				
· ·								A	xia	l St	rain	, %	}			• • • •			·						
Sample No.										T		1			Т										
Unconfined strength,	tsf										22	б.1	919)											
Undrained shear stre	ength	, tsi	F							_	11	3.0	959)											
Failure strain,		.									A	4.2										····			
Strain rate, in./min.					(L				().5(_										
Water content, %												0.6										• .	~ .		
Wet density, pcf					-							23											· .		
Dry density, pcf												22													
Saturation, %									•••=			N//													
Void ratio		<u> </u>							••••			N//													
Specimen diameter,	<u>in.</u>			<u></u> .			• • • • • •		~~			.88	*****	- •••	• •	*** ***					·				
Specimen height, in. Height/diameter ratio	·····				·			····· ···				.50													
Description: SANDS	_	17.0	40		4							2.3	9							1					
		<u>с (</u> 1	VIU.	<u> </u>	4) PI:					17	38=								There			dsto			
Project No.: 19636.0			·			-		<u></u>					~~~	111	170	1.5.6			1 y P	16,	5410		lie		<u></u>
Date: 9-14-07	40							∍‼e	ent:	12	RR	4C)	ON	(#()70	431	JS2,	}							
Remarks:							F	Proj	jec	t: I-	.74 (CRO	oss	IN	G-E	BE:	ΓTE	ENE	OR	(F-)	ЛОГ	LINE	Ξ		
Lab No. 9981			-					2			Sa	~~~	der	<i>\ 7</i> 1	۲ T J	1.	<u>م</u> د			r)	· .	17.7-	10 01	
				-							uml					J-11	00			L	,ehi		././~	10"0,	
								- 411	101	<u>5 11</u>						FF	0.0	оM	PR	ES	SIO	NT	EST		
							11													-					

Tested By: <u>JB</u>

Ĺ

L

 \Box

.

 $\left[\right]$

<u>____</u>

L

UNCONFI	NED COMPRESSION TEST
200	
150	
Compressive Stress, tsf	
50 50	
	Axial Strain, %
Sample No.	1
Unconfined strength, tsf	114.6349
Undrained shear strength, tsf	57.3174
Failure strain,	3.4
Strain rate, in./min.	0.500
_Water content, %	4.5
Wet density, pcf	
Dry density, pcf	122.3
Saturation, %	N/A
Void ratio	
Specimen diameter, in.	1.840
Specimen height, in. Height/diameter ratio	4.110
Description: SANDSTONE (MOH'S - 2)	
LL = PL = PI =	GS= Type: Sandstone
Project No.: 19636.040	Client: TERRACON (#07045052)
Date: 9-14-07	
Remarks: Lab No.9984	Project: I-74 CROSSING-BETTENDORF-MOLINE
	Source of Sample: VIAIL- 109 Depth: 29.8-30.2' Sample Number: RUN-2 UNCONFINED COMPRESSION TEST
Figure	H. C. NUTTING COMPANY

L

 $\left[\right]$

 $\left[\right]$

[].

_____ Checked By: GS

•

UNCONFINED COMPRESSION TEST 400 400 300	
300 3	
3 3 3 4 5 0 100	
3 3 3 4 5 0 100	
3 3 3 4 4 3 3 4 5 6 7 100 1 1 1 1 1 1 100 1.5 3 45 6 7 100 1.5 3 45 6 7 Axial Strain, % 3 45 6 7 Sample No. 1 1 1 1 1 Unconfined strength, tsf 239.8807 1 1 1 Unconfined strength, tsf 119.9403 7 1 1 Strain rate, in./min. 0.500 0 1 1 1 Strain rate, in./min. 0.500 1 0.6 3 1	
Image: Sample No. 1 Unconfined strength, tsf 119.9403 Failure strain, 4.4 Strain rate, in./min. 0.500 Water content, % 0.2 Wet density, pcf 116.8 Dry density, pcf 116.8 Dry density, pcf 116.6 Saturation, % N/A Void ratio N/A Specimen diameter, in. 1.850 Specimen diameter, in. 2.26 Description: SAINDSTONE (MOH'S - 1) 1.4.180 L1 = PL = PL = PI = Source of Sample: VIAIL-110 Depth: 3 Source of Sample: VIAIL-110 Depth: 3	
100 100 <td></td>	
100 100 <td></td>	
100 100 <td></td>	
100 100 <td>\frown</td>	\frown
100 100 <td></td>	
100 100 <td></td>	
100 100 <td></td>	
100 100 <td></td>	
Sample No. 1	
0 1.5 3 45 6 Axial Strain, % Axial Strain, % Axial Strain, % Sample No. 1 1 1 Unconfined strength, tsf 239.8807 1 Undrained shear strength, tsf 119.9403 1 Failure strain, 4.4 5 Strain rate, in./min. 0.500 Water content, % 0.2 Wet density, pcf 116.6 5 5 Dry density, pcf 116.6 5 5 Specimen diameter, in. 1.850 5 5 Specimen diameter, in. 1.850 5 5 Description: SANDSTONE (MOH'S - 1) 1 1 1 LL = PL = PI = GS= Type: Sandston Project No.: 19636.040 Client: TERRACON (#07045052) 1 Project: 1-74 CROSSING-BETTENDORF-MOLINE Sample Number: RUN-3 Sample Number: RUN-3 5 5	
0 1.5 3 45 6 Axial Strain, % Axial Strain, % Axial Strain, % Sample No. 1 1 1 Unconfined strength, tsf 239.8807 1 Undrained shear strength, tsf 119.9403 1 Failure strain, 4.4 5 Strain rate, in./min. 0.500 Water content, % 0.2 Wet density, pcf 116.6 5 5 Dry density, pcf 116.6 5 5 Specimen diameter, in. 1.850 5 5 Specimen diameter, in. 1.850 5 5 Description: SANDSTONE (MOH'S - 1) 1 1 1 LL = PL = PI = GS= Type: Sandston Project No.: 19636.040 Client: TERRACON (#07045052) 1 Project: 1-74 CROSSING-BETTENDORF-MOLINE Sample Number: RUN-3 Sample Number: RUN-3 5 5	
0 1.5 3 45 6 Axial Strain, % Axial Strain, % Axial Strain, % Sample No. 1 1 1 Unconfined strength, tsf 239.8807 1 Undrained shear strength, tsf 119.9403 1 Failure strain, 4.4 4 Strain rate, in./min. 0.500 Water content, % 0.2 Wet density, pcf 116.6 5 5 Dry density, pcf 116.6 5 5 Specimen diameter, in. 1.850 5 5 Specimen diameter, in. 1.850 5 5 Description: SANDSTONE (MOH'S - 1) 1 1 1 L1 = PL = PI = GS= Type: Sandston Project No.: 19636.040 Client: TERRACON (#07045052) Project: 1-74 CROSSING-BETTENDORF-MOLINE Date: 9-14-07 Forject: 1-74 CROSSING-BETTENDORF-MOLINE Sample Number: RUN-3	
0 1.5 3 45 6 Axial Strain, % Axial Strain, % Axial Strain, % Sample No. 1 1 1 Unconfined strength, tsf 239.8807 1 Undrained shear strength, tsf 119.9403 1 Failure strain, 4.4 4 Strain rate, in./min. 0.500 Water content, % 0.2 Wet density, pcf 116.6 5 5 Dry density, pcf 116.6 5 5 Specimen diameter, in. 1.850 5 5 Specimen diameter, in. 1.850 5 5 Description: SANDSTONE (MOH'S - 1) 1 1 1 L1 = PL = PI = GS= Type: Sandston Project No.: 19636.040 Client: TERRACON (#07045052) Project: 1-74 CROSSING-BETTENDORF-MOLINE Date: 9-14-07 Forject: 1-74 CROSSING-BETTENDORF-MOLINE Sample Number: RUN-3	
Axial Strain, % Sample No. 1 Unconfined strength, tsf 239.8807 Undrained shear strength, tsf 119.9403 Failure strain, 4.4 Strain rate, in./min. 0.500 Water content, % 0.2 Wet density, pcf 116.8 Dry density, pcf 116.6 Saturation, % N/A Void ratio N/A Specimen diameter, in. 1.850 Specimen height, in. 4.180 Height/diameter ratio 2.26 Description: SANDSTONE (MOH'S - 1) IL = LL = PL = PL = PI = GS= Type: Sandston Project No.: 19636.040 Client: TERRACON (#07045052) Date: 9-14-07 Project: 1-74 CROSSING-BETTENDORF-MOLINE Source of Sample: VIAIL- 110 Depth: 3 Source of Sample: VIAIL- 110 Depth: 3	
Sample No. 1 Unconfined strength, tsf 239.8807 Undrained shear strength, tsf 119.9403 Failure strain, 4.4 Strain rate, in./min. 0.500 Water content, % 0.2 Wet density, pcf 116.6 Dry density, pcf 116.6 Saturation, % N/A Void ratio N/A Specimen diameter, in. 1.850 Specimen height, in. 4.180 Height/diameter ratio 2.26 Description: SANDSTONE (MOH'S - 1) 111 LL = PL = PI = Project No.: 19636.040 Client: TERRACON (#07045052) Date: 9-14-07 Project: 1-74 CROSSING-BETTENDORF-MOLINE Source of Sample: VIAIL- 110 Depth: 3 Sample Number: RUN-3 Sample Number: RUN-3	
Unconfined strength, tsf 239.8807 Undrained shear strength, tsf 119.9403 Failure strain, 4.4 Strain rate, in./min. 0.500 Water content, % 0.2 Wet density, pcf 116.8 Dry density, pcf 116.6 Saturation, % N/A Void ratio N/A Specimen diameter, in. 1.850 Specimen height, in. 4.180 Height/diameter ratio 2.26 Description: SANDSTONE (MOH'S - 1) 11 LL = PL = PI = Streamarks: Client: TERRACON (#07045052) Date: 9-14-07 Project: 1-74 CROSSING-BETTENDORF-MOLINE Source of Sample: VIAIL- 110 Depth: 3 Sample Number: RUN-3 Depth: 3	
Undrained shear strength, tsf 119.9403 Failure strain, 4.4 Strain rate, in./min. 0.500 Water content, % 0.2 Wet density, pcf 116.8 Dry density, pcf 116.6 Saturation, % N/A Void ratio N/A Specimen diameter, in. 1.850 Specimen height, in. 4.180 Height/diameter ratio 2.26 Description: SANDSTONE (MOH'S - 1) 114.80 L1 = PL = PL = P1 = GS = Type: Sandston Project No.: 19636.040 Client: TERRACON (#07045052) Date: 9-14-07 Project: 1-74 CROSSING-BETTENDORF-MOLINE Source of Sample: VIAIL- 110 Depth: 3 Source of Sample: VIAIL- 110 Depth: 3	
Failure strain, 4.4 Strain rate, in./min. 0.500 Water content, % 0.2 Wet density, pcf 116.8 Dry density, pcf 116.6 Saturation, % N/A Void ratio N/A Specimen diameter, in. 1.850 Specimen height, in. 4.180 Height/diameter ratio 2.26 Description: SANDSTONE (MOH'S - 1) 1 LL = PL = PI = GS= Project No.: 19636.040 Client: TERRACON (#07045052) Date: 9-14-07 Project: 1-74 CROSSING-BETTENDORF-MOLINE Source of Sample: VIAIL- 110 Depth: 3 Source of Sample: VIAIL- 110 Depth: 3 Sample Number: RUN-3 10	
Strain rate, in./min. 0.500 Water content, % 0.2 Wet density, pcf 116.8 Dry density, pcf 116.6 Saturation, % N/A Void ratio N/A Specimen diameter, in. 1.850 Specimen height, in. 4.180 Height/diameter ratio 2.26 Description: SANDSTONE (MOH'S - 1) 1 L1 = PL = PI = GS= Project No.: 19636.040 Client: TERRACON (#07045052) Date: 9-14-07 Project: 1-74 CROSSING-BETTENDORF-MOLINE Source of Sample: VIAIL- 110 Depth: 3 Source of Sample: VIAIL- 110 Depth: 3	
Water content, % 0.2 Wet density, pcf 116.8 Dry density, pcf 116.6 Saturation, % N/A Void ratio N/A Specimen diameter, in. 1.850 Specimen height, in. 4.180 Height/diameter ratio 2.26 Description: SANDSTONE (MOH'S - 1) 1 L1 = PL = PI = Project No.: 19636.040 Client: TERRACON (#07045052) Date: 9-14-07 Project: I-74 CROSSING-BETTENDORF-MOLINE Lab No. 9985 Source of Sample: VIAIL- 110 Depth: 3 Sample Number: RUN-3	
Wet density, pcf 116.8 Dry density, pcf 116.6 Saturation, % N/A Void ratio N/A Void ratio N/A Specimen diameter, in. 1.850 Specimen height, in. 4.180 Height/diameter ratio 2.26 Description: SANDSTONE (MOH'S - 1) 10 LL = PL = PI = Project No.: 19636.040 Client: TERRACON (#07045052) Date: 9-14-07 Project: I-74 CROSSING-BETTENDORF-MOLINE Lab No. 9985 Source of Sample: VIAIL- 110 Depth: 3 Sample Number: RUN-3	
Dry density, pcf 116.6 Saturation, % N/A Void ratio N/A Specimen diameter, in. 1.850 Specimen height, in. 4.180 Height/diameter ratio 2.26 Description: SANDSTONE (MOH'S - 1) 1 LL = PL = PI = Project No.: 19636.040 Client: TERRACON (#07045052) Date: 9-14-07 Project: I-74 CROSSING-BETTENDORF-MOLINE Lab No. 9985 Source of Sample: VIAIL- 110 Depth: 3 Sample Number: RUN-3	
Saturation, % N/A Void ratio N/A Specimen diameter, in. 1.850 Specimen height, in. 4.180 Height/diameter ratio 2.26 Description: SANDSTONE (MOH'S - 1) 1 LL = PL = PI = Project No.: 19636.040 Client: TERRACON (#07045052) Date: 9-14-07 Project: I-74 CROSSING-BETTENDORF-MOLINE Lab No. 9985 Source of Sample: VIAIL- 110 Depth: 3 Sample Number: RUN-3 Project: RUN-3 Project: 3	
Specimen diameter, in. 1.850 Specimen height, in. 4.180 Height/diameter ratio 2.26 Description: SANDSTONE (MOH'S - 1) 2.26 LL = PL = PI = Project No.: 19636.040 GS= Type: Sandston Date: 9-14-07 Client: TERRACON (#07045052) Remarks: Project: I-74 CROSSING-BETTENDORF-MOLINE Lab No. 9985 Source of Sample: VIAIL- 110 Depth: 3 Sample Number: RUN-3	
Specimen height, in. 4.180 Height/diameter ratio 2.26 Description: SANDSTONE (MOH'S - 1) LL = PL = Project No.: 19636.040 Date: 9-14-07 Remarks: Lab No. 9985 Project: I-74 CROSSING-BETTENDORF-MOLINE Source of Sample: VIAIL- 110 Depth: 3 Sample Number: RUN-3	
Height/diameter ratio 2.26 Description: SANDSTONE (MOH'S - 1) Image: Constraint of the state	
Description: SANDSTONE (MOH'S - 1) LL = PL = PI = GS= Type: Sandston Project No.: 19636.040 Client: TERRACON (#07045052) Date: 9-14-07 Project: I-74 CROSSING-BETTENDORF-MOLINE Lab No. 9985 Source of Sample: VIAIL- 110 Depth: 3 Sample Number: RUN-3	
LL =PL =PI =GS=Type: SandstonProject No.: 19636.040Date: 9-14-07Client: TERRACON (#07045052)Date: 9-14-07Project: I-74 CROSSING-BETTENDORF-MOLINELab No. 9985Source of Sample: VIAIL- 110Depth: 3Sample Number: RUN-3	l
Project No.: 19636.040 Client: TERRACON (#07045052) Date: 9-14-07 Project: I-74 CROSSING-BETTENDORF-MOLINE Lab No. 9985 Source of Sample: VIAIL- 110 Depth: 3 Sample Number: RUN-3	
Date: 9-14-07 Project: I-74 CROSSING-BETTENDORF-MOLINE Lab No. 9985 Source of Sample: VIAIL- 110 Depth: 3 Sample Number: RUN-3	
Remarks: Project: I-74 CROSSING-BETTENDORF-MOLINE Lab No. 9985 Source of Sample: VIAIL- 110 Depth: 3 Sample Number: RUN-3 Sample Number: RUN-3	
Lab No. 9985 Source of Sample: VIAIL- 110 Depth: 3 Sample Number: RUN-3	E
- Sample Number: RUN-3	
	32-32.8'
	FST
Figure H. C. NUTTING COM	

Tested By: <u>JB</u>

ſ

L

L

Ĵ

 $\left[\right]$

ſ

Ĺ

[].

 _____ Checked By: GS

H.C. Nutting Company 611 Lunken Park Dr. Cincinnati, Ohio 45226

••

Terracon

• • •

:

.

Ĺ

.[

 $\left[\right]$

 $\left[\right]$

 $\left[\right]$

I-74 Crossing-Bettendorf-Moline (Job #07045052) Baettendorf, Iowa HCN W.O. #19636.040

TABLE II: TABULATION OF UNDISTURBED DATA

	1		Т	Τ	T	T				T	<u> </u>	Т	Ţ	Τ	-	Í	Т	Т	1
Remarks	S	S	5	5	52			onc Unc	Cnc	Unc					OUC		lnc		
Water Content (%)	34.1	18.7	23.8	25.6	18.0	20.7	1.0.7	0.1	7.1	0.0	0.1			+ u	6.1	0.1	0.0		
Dry Density (pcf)	87.0	107.0	104.6	106.5		400 L	100.0	108.1	119.3	161.4	161.6	164.9	164 7		-+0	10.4	166.2	1634	
Faiture Strain (%)							Ţ		1.2	1.3	1.5	1.8	12	i c	7		1.2	1.3	
Moh's Hardness							2	-	4	9	7	7	7	Ŧ	+ 0	2	8	7	
Material Description	Sandy lean clay (bott)	Silty clay	Bity elay-with sand	Silty clay	Sandy lean clay tr/gravel	and the second sec	l imestone	Condition	Sandstone	Limestone	Limestone	Limestone	Limestone	Sandstone	Condition of the second se	ocitavione	Limestono	Limestone	
Unconfined Strength (tsf)	~~~					CONTRACTOR OF THE OWNER OWN	251.7	756.0	200.0	516.8	712.5	813.1	. 647.8	264.2	0 100		1084:2	792.6	
Depth (ft.)	17-19	48	11-13	11-13	5-7	0~24	26-27	91.99	77.02	NZ-AL	24-25	27-28	18-20	29-30	10.00		26-27	22-23	
Sample No.	T3	12	E I	12	and the second se	<u> </u>	Run 3	RIN 2		עווו א	Kun Z	Run 3	Run 1	Run 2	D110 0		Kun 3	- Ran 3	
Boring No.	PNA165_02	KW165-04	SC1002A	SC1009	SC1001	SG1008	VIAIL-111	VIAII -112	VAN1 440		VIAIL-174	VIAIL-115	VIAIL-118	VIAIL-120	10,000 DDMDD 04		CU-CI-IMX1	PRMPD-06-	
Lab No.	10167	10168	10163	10164	10165	e de la	10292	10293	10204	10001	CRZNI	10296	10298	10297	10200		00501	10301	

2tb 9-21-07

- - .- .

. :

.

...

400	1 1			iT			-	
			i					
300								
\$								
\$								
								L I
								•
Compressive Stress, tsf		/						
ŏ <u>. </u>		$A \rightarrow A$						·
100	-						-	
	- / -						-	
	\nearrow						-	
		·					1	
0	0.5		1		1.5		2	
		Axial	Strain, %					
Sample No.			1					
Unconfined strength, tsf			251.7	116			· · · · · · · · · · · · · · · · · · ·	
Undrained shear strength, tsf			125.8			·····		
Failure strain,			1.1					
Strain rate, in./min.			0,50	0				
Water content, %		·····	1.6					
Wet density, pcf			162.					
Dry density, pcf			159.					
Saturation, % Void ratio			<u>N/A</u>					
Specimen diameter, in.			1.85				<u> </u>	
Specimen height, in.			3.92				,	
Height/diameter ratio			2.12				· · · · · · · · · · · · · · · · · · ·	
Description: LIMESTONE (MOH'S - 7)			·		•			<u></u>
	<u>' =</u>		GS=			Туре	: Limeston	e
Project No.: 19636.040		Client:	TERRAC(ON (#07	045052)			
Date: 9-21-07								
Remarks:		Project	1-74 CR0	DSSING	-BETTE	NDORF	-MOLINE	
Lab No. 10292		Source	of Samp	io: VIA	11		Depth: 2	5 4-26 8'
			Number				Deptill 2	3.4-20.6
			UN	ICONFI	NED CO	MPRE	SSION TE	ST
•				K I F I				PANY

.....

.

Arres .

.

÷

ĺ

[]

5 L

		L	INC	00	N	=11	NE	D	CC	DM	P	RE	S	SIC	ЛC	l T	Έ	51	-				
	400			-			: 				; 												
tsf	300																						
Compressive Stress, tsf	200										<u>/</u>									5			
C	100																						
	o	,	<u> </u>	<u>[</u>	0.5	<u> </u>	1	Axia	1		<u> </u> %	1	1	.5	1			2	1				
																						•	
Sample No.											1												
Unconfined strength											6.01			~				.					
Undrained shear stre	ength	, tsf				<u>.</u>		<u> </u>		_12	8.00	59	-					-					
Failure strain,								-	_		1.2					_							
Strain rate, in./min.									_).500)			•							·····	·····
Nater content, %			<u>.</u>						_		7.1	 >											
Net density, pcf			<u> </u>	<u> </u>							27.8												
Saturation, %											N/A							┢┈			·····		·····
Void ratio			`								N/A												
Specimen diameter,	in.		-								.860							1					
Specimen height, in.											.860												
Height/diameter ratio)										2.08												
Description: SANDS		E (M	OH'																				
	L =			F	?! =				(3S=						٦	ур	e: S	lands	tone			
Project No.: 19636.0	40			•			C	ient	: TE	RR	ACC	N (i	#070)45(052)								
Date: 9-21-07 Remarks: Lab No. 10293								ojec ourc									ORI		íOLI epth	NE 21.1	3-21	.8' .	
								amp		umì	ber:	RU	IN-2						-				
							Γ) Ç(DMI	PRE	ESS	SION	TES	ST		
Figure						·		ļ		C	; 1		J٦	ΓΤ	" P	10		C			ÞΔ	NΥ	/
••••••••••••••••••••••••••••••••••••••							L			\sim					2.2	* *	-	_		* # #			

•

ŗ

.

С. . .

í

600						
					a (* 1	
450					-	
ts I					_	
Compressive Stress, tsf						
Ste			_/			
\$ 300			A + + + +			
iss		++/				
		+/	-			
		+/+				
-		1/-	╶┟──┟━─┼╍╌╢┅┅┼╼			
150						
					7	
					_	
				1.5		
U	0.5			1.5	2	
		Axial 8	Strain, %			
Demonte Nie			1		1	
Sample No. Unconfined strength, tsf			516.7786			
Indrained shear strength, tsf			258.3893			
ailure strain,			1.3			
Strain rate, in./min.			0.500			
Vater content, %			0.0			
Vet density, pcf			161.5			
Dry density, pcf			161.4			
Saturation, %			N/A	···		
/oid ratio	· ·		<u>N/A</u> 1.870			
Specimen diameter, in.			3.880		·	
Specimen height, in. leight/diameter ratio			2.07	. <u></u>		
Description: LIMESTONE (MOI				·····	<u>t</u>	
L = PL =	PI =	. [GS=	Тур	e: Limestone	
Project No.: 19636.040		lient: 1	FERRACON (#0			
Date: 9-21-07						
Remarks:	Pi	roject:	I-74 CROSSING	3-BETTENDOR	F-MOLINE	
Lab No. 10294			of Oguanian 127	117	Depth: 18.4-19	y.
			of Sample: VIA Number: RUN		nehrur 10'4-12	
		ampie	UNCONF	NED COMPR	ESSION TEST	
		L			COMPA	
Figure			1. C. NO	IIING	COIVIL F	

.

.

Project No.: 19636 Date: 9-21-07 Remarks: Lab No. 10295	.040							Pro So		t: I e o	-74 F Sa	CR amp	OS: ble: r: F	SIN VI	G-B AIL I-2	3ET ,-11	TEI 4	ND		De	DLIN pth: ON	23.8		.6'		
	PL=	₩E (MO	H'S ·	- 7) P	=		CII	 ent:		3S:		<u></u>	(#r	704	150	52)		уре	: Li	nest	one				
Specimen height, ir Height/diameter rat	lo									-		1.4														
Specimen diameter												1.87 2.63														
Saturation, %		-								+		N/# N/#														
Dry density, pcf												161			_									· · · · · · · · · · · · ·		
Water content, %												161														
Strain rate, in./min.	.	_	-{							+	(0.50 0.1				·····							-+			
Failure strain,								-		-		1.5														
Undrained shear st		ı, ts	f								35	6.2		r 				.							,,	
Unconfined strength	n, tsf											2.5														
Sample No.												1														
								А	xial	তা	ิลเก	, 70														
		0				0.5		٨	ا _ امر	ן 1		07			1.5					-						
	0										ĺ	1	J	1	1.5		1		i	2						
					1				÷							1				1						-
									\mathcal{H}		-+		+													
	230									4		·				╉			-	-						
-	250		1								4		_				4		-	-						
Con .												/[·							-						·
Compressive Stress, tsf							<u> </u>					\neg	+													
ssiv			-									_	A			┝╌┝─				-						
<u>କ</u> ଓ	500				_	_				_	_	-	_/	4												
. tres														1		_	-	_	_	-						
ss, t						-					······ ·-			<u>.</u> /	7-11-											
Ist															A											·
	750		_	-					<u> </u>	-+							+	 [•	
														_ -						-						
						-											_									
																										· [

۰.

L

Ĺ

1000			<u> </u>						
·									
750							_		
Compressive Stress, tsf					$\downarrow \downarrow \downarrow$		_		
SS	<u></u>			/			-		
l−−+−−−− St				<u> </u>					
\$ 500		_		-/					
				/			-		
Ĕ 							-		
5									
			+			+	-		
250							-		
- ····							-1		
·							-1		
					- T				
0	71								
0	0.5		1	1	.5		2		
		Axial	Strain, %						
Sample No.			1						
Unconfined strength, tsf			813.1						
Undrained shear strength, tsf			406.5		· · · ·				
Failure strain,			1.8						
Strain rate, in./min. Water content, %			0.50		•				
Wet density, pcf		····	0.0						
Dry density, pcf			165						
Saturation, %			N//						
Void ratio			N/A	<u> </u>					
Specimen diameter, in.			1.85						
Specimen height, in.	· · · · · · · · · · · · · · · · · · ·		2.65						
Height/diameter ratio			1.4	3					
Description: LIMESTONE (MOH'S -	-7)								
LL = PL = ·	PI =		GS=			Type:	Limestone	;	
Project No.: 19636.040		Client:	TERRAC	ON (#070	45052)				
Date: 9-21-07			•				•		
Remarks:		Project:	I-74 CR0	DSSING-	BETTEN	DORF-	MOLINE		
Lab No. 10296		8	-f O	Int X 17 4 7	1 1 1 0		Donth or	05 00 41	
			of Samp Number			ĺ	Depth: 27	.23-28.4	
		Jample				MPRES	SION TE	ST	
Figure		1						ϿΑΝϡ	/
				INUE	- 1 HN	171	JUJIV#	- MIN Y	í

.

.

....

.

 $\mathcal{M}(\mathcal{D}_{\mathbf{x}}) = \mathcal{M}(\mathcal{D}_{\mathbf{x}}) + \mathcal{M}$

and the second and a second
.

and the street with the second

......

Ja Ja <td< th=""><th>1000</th><th></th></td<>	1000	
250	<u> </u>	
250		
Axial Strain, % Sample No. 1 Unconfined strength, tsf 647.8549 Undrained shear strength, tsf 323.9274 Failure strain, 1.2 Strain rate, in./min. 0.500 Water content, % 0.4 Wet density, pcf 165.3 Dry density, pcf 164.7 Strain ration, % N/A Void ratio N/A Specimen diameter, in. 1.840 Specimen neight, in. 3.790 Height/diameter ratio 2.06 Description: LIMESTONE (MOH'S - 7) LL = PL = PL = PI = GS= Type: Limestone Project No.: 19636.040 Client: TERRACON (#07045052) Date: 9-21-07 Project: 1-74 CROSSING-BETTENDORF-MOLINE Source of Sample: VIAIL-118 Depth: 19.5-19.9' Sample Number: RUN-1 Septh: 19.5-19.9'	250	
Sample NO. 647.8549 Unconfined strength, tsf 323.9274 Salure strain, 1.2 Strain rate, in./min. 0.500 Water content, % 0.4 Wet density, pcf 165.3 Dry density, pcf 164.7 Saturation, % N/A Void ratio N/A Specimen diameter, in. 1.840 Specimen height, in. 3.790 Height/diameter ratio 2.06 Description: LIMESTONE (MOH'S - 7) Item: TERRACON (#07045052) Date: 9-21-07 Remarks: Lab No. 10298 Client: TERRACON (#07045052) Project: I-74 CROSSING-BETTENDORF-MOLINE Source of Sample: VIAIL-118 Depth: 19.5-19.9' Sample Number: RUN-1 Sample Number: RUN-1	0 0.5	
Sample NO. 647.8549 Unconfined strength, tsf 323.9274 Salure strain, 1.2 Strain rate, in./min. 0.500 Water content, % 0.4 Wet density, pcf 165.3 Dry density, pcf 164.7 Saturation, % N/A Void ratio N/A Specimen diameter, in. 1.840 Specimen height, in. 3.790 Height/diameter ratio 2.06 Description: LIMESTONE (MOH'S - 7) Item: TERRACON (#07045052) Date: 9-21-07 Remarks: Lab No. 10298 Client: TERRACON (#07045052) Project: I-74 CROSSING-BETTENDORF-MOLINE Source of Sample: VIAIL-118 Depth: 19.5-19.9' Sample Number: RUN-1 Sample Number: RUN-1	0	
Undrained shear strength, tsf 323.9274		
Failure strain, 1.2 Strain rate, in./min. 0.500 Water content, % 0.4 Wet density, pcf 165.3 Dry density, pcf 164.7 Saturation, % N/A Void ratio N/A Specimen diameter, in. 1.840 Specimen height, in. 3.790 Height/diameter ratio 2.06 Description: LIMESTONE (MOH'S - 7) L1 = PL = PL = PI = GS = Type: Limestone Project No.: 19636.040 Client: TERRACON (#07045052) Date: 9-21-07 Project: I-74 CROSSING-BETTENDORF-MOLINE Remarks: Source of Sample: VIAIL-118 Lab No. 10298 Depth: 19.5-19.9'		
Strain rate, in./min. 0.500 Water content, % 0.4 Wet density, pcf 165.3 Dry density, pcf 164.7 Saturation, % N/A Void ratio N/A Specimen diameter, in. 1.840 Specimen height, in. 3.790 Height/diameter ratio 2.06 Description: LIMESTONE (MOH'S - 7) 1 IL = PL = PI = GS= Type: Limestone Project No.: 19636.040 Client: TERRACON (#07045052) Date: 9-21-07 Project: I-74 CROSSING-BETTENDORF-MOLINE Source of Sample: VIAIL-118 Depth: 19.5-19.9' Sample Number: RUN-1 Sample Number: RUN-1		
Water content, % 0.4		
Wet density, pcf 165.3 Dry density, pcf 164.7 Saturation, % N/A Void ratio N/A Specimen diameter, in. 1.840 Specimen height, in. 3.790 Height/diameter ratio 2.06 Description: LIMESTONE (MOH'S - 7) 1 LL = PL = PI = GS= Type: Limestone Project No.: 19636.040 Client: TERRACON (#07045052) Date: 9-21-07 Remarks: Lab No. 10298 Client: TARACON (#07045052) Project: 1-74 CROSSING-BETTENDORF-MOLINE Source of Sample: VIAIL-118 Depth: 19.5-19.9' Sample Number: RUN-1 Sample Number: RUN-1		0.4
Dry density, pcf 164.7 Saturation, % N/A Void ratio N/A Specimen diameter, in. 1.840 Specimen height, in. 3.790 Height/diameter ratio 2.06 Description: LIMESTONE (MOH'S - 7) 1 LL = PL = PI = GS = Type: Limestone Project No.: 19636.040 Client: TERRACON (#07045052) Date: 9-21-07 Project: I-74 CROSSING-BETTENDORF-MOLINE Source of Sample: VIAIL-118 Depth: 19.5-19.9' Sample Number: RUN-1 Sample Number: RUN-1		165.3
Saturation, % N/A Void ratio N/A Specimen diameter, in. 1.840 Specimen height, in. 3.790 Height/diameter ratio 2.06 Description: LIMESTONE (MOH'S - 7) LL = PL = PL = PI = GS= Type: Limestone Project No.: 19636.040 Client: TERRACON (#07045052) Date: 9-21-07 Project: 1-74 CROSSING-BETTENDORF-MOLINE Source of Sample: VIAIL-118 Depth: 19.5-19.9' Sample Number: RUN-1 Depth: 19.5-19.9'		164.7
Specimen diameter, in. 1.840	Saturation, %	
Specimen height, in. 3.790 Height/diameter ratio 2.06 Description: LIMESTONE (MOH'S - 7) LL = PL = PI = Project No.: 19636.040 Date: 9-21-07 Remarks: Lab No. 10298 Client: TERRACON (#07045052) Project: I-74 CROSSING-BETTENDORF-MOLINE Source of Sample: VIAIL-118 Depth: 19.5-19.9' Sample Number: RUN-1		
Height/diameter ratio 2.06 Description: LIMESTONE (MOH'S - 7) L = PL = PI = Project No.: 19636.040 Client: TERRACON (#07045052) Date: 9-21-07 Project: I-74 CROSSING-BETTENDORF-MOLINE Remarks: Source of Sample: VIAIL-118 Depth: 19.5-19.9' Sample Number: RUN-1 Project: RUN-1 Project: 19.5-19.9'		
Description: LIMESTONE (MOH'S - 7) LL = PL = PI = GS= Type: Limestone Project No.: 19636.040 Client: TERRACON (#07045052) Date: 9-21-07 Remarks: Lab No. 10298 Project: I-74 CROSSING-BETTENDORF-MOLINE Source of Sample: VIAIL-118 Depth: 19.5-19.9' Sample Number: RUN-i Source of Sample: VIAIL-118 Depth: 19.5-19.9'		
LL =PL =PI =GS=Type: LimestoneProject No.: 19636.040Client: TERRACON (#07045052)Date: 9-21-07Project: I-74 CROSSING-BETTENDORF-MOLINERemarks: Lab No. 10298Source of Sample: VIAIL-118Depth: 19.5-19.9' Sample Number: RUN-1		2.00
Project No.: 19636.040 Client: TERRACON (#07045052) Date: 9-21-07 Project: I-74 CROSSING-BETTENDORF-MOLINE Remarks: Lab No. 10298 Source of Sample: VIAIL-118 Depth: 19.5-19.9' Sample Number: RUN-1 Sample Number: RUN-1		CS- Type: Limestone
Date: 9-21-07 Project: I-74 CROSSING-BETTENDORF-MOLINE Remarks: Lab No. 10298 Source of Sample: VIAIL-118 Depth: 19.5-19.9' Sample Number: RUN-1 Sample Number: RUN-1		
Remarks: Lab No. 10298 Source of Sample: VIAIL-118 Depth: 19.5-19.9' Sample Number: RUN-1 Sample Number: RUN-1		
Lab No. 10298 Source of Sample: VIAIL-118 Depth: 19.5-19.9' Sample Number: RUN-1		Project: I-74 CROSSING-BETTENDORF-MOLINE
		Source of Sample: VIAIL-118 Depth: 19.5-19.9' Sample Number: RUN-1
Figure H. C. NUTTING COMPANY	Figure	

..

and a state of the second s

[].

l

 $\left[\right]$

._

.

• .

.

		UNC		1-11	¥ I I.			IVIE	IVL				E K)					
	400		Į						! [Ì				
			1									·						
														_				
												_	ļļ					
	300				:			1										
				-									ļ					
tst I									<u>↓</u>			<u> </u>	-		_			
<i>U</i> , 0	[<u> </u>	┞╧┯╇									
Stre	5						_/		┝╍┼									
e la	200				 		-4-	<u></u>		1	+	-						
Comprassive Stress tst	§					-/	<u></u>	·			-		<u> </u>				•	
and the second se	- ·			<u> </u>	<u>i</u>	i_/							<u>+</u>					
uoc	;	┼╌┼╶┤		┼┈┼╴	_	∦-+			$\uparrow \uparrow$									
					/-	 +	[<u></u>					-			
	100				Z													
					·										_			
	_			4											_			
			\neq	1		 -												
	_اه	1-1-1).5							1.5							
	U		U				1				,,,,				- .			
					F	vxial	Stra	ain, '	%a									
Sample No.		<u>,,,, ,-,,,</u>							1									
Unconfined streng	th. tsf						+		<u>.</u> 2512									
Undrained shear s		tsf					T		1256									
Failure strain,	<u> </u>	•							.2									
Strain rate, in./min	•								500									
Water content, %									.5		•							
Wet density, pcf							ļ		0.9						·			<u>.</u>
Dry density, pcf							-		8.7									
Saturation, %						·			/A	·						·····		
Void ratio				.	**				/A									
Specimen diamete									540 770			·						
Specimen height, Height/diameter ra									05								·	
Description: SAN		MOHS	3 - 4)															,
	PL =		PI	=			G	S=					T	ype	: San	dston	e	
Project No.: 1963					Cli	ent:	TEI	RRA	CON	(#07	7045	5052	- learn					
Date: 9-21-07					ļ													
Remarks:		•			Pro	ojeci	t: I-7	74 C)	ROSS	SING	}-BF	ETTI	END	ORF	-MO]	LINE		
Lab No. 10297								n -		1 7 7 1	17	100			Der	th. 01		,1
									i <mark>ple:</mark> er: R			120			neb	th: 29	7.0-50	r -
	·					mpi	<u>- 14(</u>	una I	INCC			DC	OM		SSIC	ON TE	ST	
						I	I											NV
Figure					[]	F	1.	U,	. IN	U	1		N	יכ		<u>11/1</u>	<u> </u>	<u>NY</u>

i.

L

C1X13500: Illinois Land Based Borings Summary of Strength Lab Test Results

E

Comments Limestone Limestone Limestone Limestone Limestone Limestone Limestone 11/28/2007 By: KKC Content Water 0.5 0.6 (%) 0.2 0.4 0.2 0.1 0.1 159.0 166.4 (pcf) 162.8 162.9 164.9 Density 166.4 166.2 ΣΩ Hardness Moh's 7 - 8 7 - 8 7-8 7-8 7 - 8 7-8 4 8,245 4,119 4,074 12,964 6,652 090'6 4,863 (isd) Compressive Strength, qu 296.6 293.3 478.9 652.4 933.4 593.7 350.2 (tsf) 32.0'-33.0' 32.2'-32.9' 31.0'-31.7' 38.0'-38.6' 35.0'-35.9' 28.8'-30.7' 32.5'-33.1 Depth Ð Sample Number RC-3 RC-2 RC-3 RC-2 RC-2 RC-2 RC-2 Bore Hole **VIAIL-119 VIAIL-124** VIAIL-125 VIAIL-122 VIAIL-123 **VIAIL-126 VIAIL-121**

P:\C1X13500 I-74\600 Discipline Files\610 Geotechnical\Laboratory Test Results\Illinois Land Based\Summary Rock Test VIAIL119-126.xls

÷

·											•		·		•						ن		
		U	ŅC	:0	NF	INE	ED	C	ΛC	lΡ	R	ES	SS.	10	N	T	E\$	ST					
· 60	۰ ۲		<u> </u>								·	, T	(·		1					
	\vdash					++		_			_			-			· · · ·						
		1				1			+	1				-	-								
							·					 									•		
45								1	1								7						
450	1								1							7	\square						
tsf											•••••					/				4			
ທີ່								1							7								
itre														7									
UN (\$ 300	L												X	T									
Compressive Stress, tsf	1																						
bre	_	<u> </u>							ļ			Δ											
Шо	_				_				<u> </u>		4												
Õ						$ \parallel $		_		ГÅ		_											
150	1								-/	K	_						_						
	-				_			\vdash	Ł		_			_	4								
							\neq	1					_				1						
				_		H								_			_						
	⊢		=	+	\leftarrow					-					4		_	Ц	-1				
0	0	[]			0.25		_	- <u>-</u>			4		0.75	 ;				-					
							Axia			2 0/2								ŕ					
									u an	1, 70)												
Sample No.										1				•••									
Unconfined strength, tsf									4	78,9:	376												• • • • • •
Undrained shear strength	1, ts	f							23	39.40	588												
Failure strain,										0.9													
Strain rate, in./min.										0.50			<u> </u>					_					
Water content, %		(0.2											\square		
Wet density, pcf			<u>_</u>							163.													.
Dry density, pcf Saturation, %										162.	-												
Void ratio	_						•	+		N/A						· · · · ·							
Specimen diameter, in.		_			·			-		N/A										,			
Specimen height, in.		•				•		+		1.85 4.00							-						
Height/diameter ratio			•							$\frac{4.00}{2.16}$							-						
Description: LIMESTON	EW	VInh	5-7	- <u>-</u> 8)		······	·			2.10	, 	l						•		••			
LL = PL =	<u>~ (r</u>		<u> </u>	PI	=			10	3S=	:					-	Tv	ne	• T i•	nest	one			
Project No.: 19636.040			,l			C	ient			~~~)N ((#∩^	704 4	505	<u></u> 2)	• 9	20						
Date: 11-16-07											41((iru)	- U-T-2	, U.J.	4).								
Remarks: Lab No. 12744						Pr	ojec	: t: I-	7.4 (CRO	SSI	ING	-BE	ETT	EN	DO	RF	-MC	LIN	E			
						So	ourc Impl	e of	Sa	mpl	e: 1	VIA	IL-	119)			Dej	oth:	28.8-	-30.7	7'	
						108	mp	¢ (N							201		2120	201	ארי י	TEST	<u>г</u>		
Cigura							ł															N IN 2	
Figure							1	٦.	U	<u>, </u>	V	<u>U</u>			IN	G	(1	<u> </u>	<u>/IP</u>	A	NY	
· · · ·										•											****		
fested By: <u>DB</u>					_ CI	heck	ed E	3y: <u>(</u>	<u>38</u>				•			•		_				•	

·.....

÷

.....

... . .

 $\left[\right]$

 $\left[\right]$

 $\left[\right]$

..... : . [1] J. S. M. Walton, "A Reality of the Solution of Source and Society and S a haran manan Mananan Mananan Mananan ing karangan na hanga na karangan na harangan karangan karangan karangan

2 49 °C -

•

1000						1				T	<u> </u>	1		
										1.	1			
					•									
750														
											 			
ts			-			_				_				
SS.			 					+	_		-			
Compressive Stress, tst					4	$\left - \right $								
<u>\$</u> 500				\mathcal{I}		+	_							•
	+					+							•	
									+-					
<u>s</u> <u>-</u>	-++	1		┼╌╏				\top	1					
												•		
250														
	$A \perp$											•		
										1				
									4					
	0,5						1.5				Ļ	1		
6	0,0						1.4				~			
		A	xial S	strain	, %									
ample No.					1									
Inconfined strength, tsf				59	3.675	55	+		*****					
Indrained shear strength, tsf					6.837						1			
ailure strain,					1.2							· · · · · · · · · · · · · · · · · · ·		
train rate, in./min.				(0.500							·····		
Vater content, %					0.5									
Vet density, pcf					167.0									
Pry density, pcf					166.2						_			
aturation, %					N/A									
oid ratio					N/A						+-			
pecimen diameter, in. pecimen height, in.					1.850 3.890									
leight/diameter ratio					2.10						1			
escription: LIMESTONE (Moh's - 7-8)).				~,V		-L			-	<u></u>	· · · · · · · · ·		
	<u>''</u> ' =		1	GS=	;				1	Typ	e:]	imestone	=	
roject No.: 19636.040		Clie	nt: T			v (#C	704	5052		y L		-	<u></u>	
ate: 11-16-07			-											
emarks:		Рго	ject:	I-74 (CROS	SIN	G-BI	ETT	ENI	OOR	F-N	10LINE		
ab No. 12745						·					-		~	
· .			irce d nple				AIL-	121			D	epth: 31-31.	T	
		Joan	inhie		UNC	e ONF	FINE	DC	COM	IPR	ES	SION TEST		$-\parallel$
		.	LJ											
igure				<u>. </u>	<u>, 1</u>	<u>U v</u>	<u> </u>		<u>IN</u>	3		<u>OMP</u>		
												•	•	

ŝ

····

and the sum analytic to see a

e er artabetar og skalar er er

•

 $\left[\right]$ $\left[\right]$ $\left[\right]$ \Box $\left[\right]$

 \square

	•	UN	CC)NF	IN	IE	D _.	co	MF	PR	E	SS	10	N	T	E	ST	•				
4	00			1	Ţ	· ·									T							
	F				-			\square									_					
	ŀ	+								+	+	$\left \right $	\neg				-1					
	-				╉	+	+					$\left - \right $						• *				
	-	┼╌┼		┝─┝╴			-	$\left \right $	+-		+	+	-				-					
3		╉┯╋		+	+-		+		- 4	+	-			-	_		_					
Ĭf.						_			4			$\left - \right $				+	_					
, tt	\vdash	++	_				+	И	-+	.+					-+							
šš		┼╌┼╴					$\not\vdash$			+					-+		_					
お	-	+				+ f			+	+						-+						
<u>9</u> 20	»⊢	$\left\{ \right\}$		\vdash	_	+			-+			-			_							
SSS		┢╌┝		┝{	+7	4						<u> </u> -				-	4					
bre	\vdash		_								<u> </u>	┣━┼		-		-	+					
Compressive Stress, tsf		$\left - \right $			A	_						┝┼		_			4					
0	-	$\left\{ \cdot \right\}$	+	++/	<u>'</u>					₩—		$\left - \right $	\rightarrow		\rightarrow	_	[
10	0	┼┞						-+	_					4		+	4					
		┼┈╌┟╌		-/	_	_		-	+								-					
		╎╌		/-					_		-											
	-		/													-						
			4		_								4	4				л				
	<u>م</u> اہ			0.5		1						1.5	<u> </u>	ļ			٦	-1				
				0.5								1.5	,				٤					
						F	\xia	Stra	ain, '	%												
							_					<u>1</u>					-			r		
Sample No.										1		_				• • • • • •						
Unconfined strength, ts									296.			_					<u> </u>				· · · · · · · · · · · · · · · · · · ·	
Undrained shear streng	th, ts	st							148.	• · · · · ·	5			,			-					
Failure strain,										.1		-							•			
Strain rate, in./min.		·····								500						:					<u>.</u>	
Water content, %		\rightarrow								.4												
Wet density, pcf										3.5		·									•	
Dry density, pcf										2.9		_								[
Saturation, %									-	/A		-										
Void ratio			•							<u>/A</u>												
Specimen diameter, in.										50												
Specimen height, in.								ļ		50		1										
leight/diameter ratio									1.	43												
Description: LIMESTO		Moh's								,						•						
L= PL=			F	기 =				G	S=						T	/pe	:: L	imes	tone			
Project No.: 19636.040					$\ $	Clie	ent:	TER	RAG	CON	J (#C	0704	505	2)								
Date: 11-16-07																						
Remarks:						Pro	ject	: I-7	4 CF	los	SIN	G-B	ETI	FEN	ΫDC)RF	'-M	OLN	ŇЕ			
Lab No. 12746						~				.,	.						-					
								of				AIL	-122	2			De	epth	38-3	88.6'		
					╟	oar	inhie	Nu	9Q111 1 1	<u>ም: ጋ</u>		TINE	-0	<u>~</u> ~	MD	DE	60		TES	т		
			•				,														N 13. 4	,
igure							<u> </u>	1.	<u>.</u>	N	10				<u>[</u> C	j (ار		٧H	'A	NY	
······································																						

__

.

 $\left[\right]$

 $\left[\right]$

 $\left[\right]$

[] ·

.

0

 \square

 $\left[\right]$

 \square

..

...

• :

· · ·
	JNCONF		COMPR	ESSIC		ST	
1000							
					+++		
					╎─┼─┤─┦		
ĺŀ						_	
. 750						·	
ч <u>н</u> — — — — — — — — — — — — — — — — — — —						-	
	<u> </u>			┼╌┼╌┼─		_	
Š		+		┝╍┟┈┝┈╸	╎╱╎┤	-	
to		+		<u> </u>			
<u>.9</u> 500				\vdash			
ess		╺┟━╍╎╴╎╴╎				4	
ē 🕂						+	
Compressive Stress, tsf		+					
• F+		╏╴╎╴╎╴╎	·	┟╾╌┠╌╌┝		-	
250		┼┉┼┉┤╴┤				-	
						~-	
	0.25		0.5	0.75	<u>III</u>	<i>11</i>	•
		Axial	Strain, %				
Sample No.	·····		1				1
Unconfined strength, tsf			652.353	2			
Undrained shear strength, tsf			326.176	6		· · · · · · · · · · · · · · · · · · ·	
Failure strain,			0.9				
Strain rate, in./min.			0.500				
Water content, %			0.2				
Wet density, pcf			166.8				
Dry density, pcf			166.4				
Saturation, %			N/A			· · · · ·	
Void ratio		· · · · · · · · · · · · · · · · · · ·	N/A				
Specimen diameter, in.			1.840				
Specimen height, in.		· .	3.960				
leight/diameter ratio			2.15				
Description: LIMESTONE (M							
_L = PL =	PI =	10	GS=			: Limestone	
Project No.: 19636.040 Date: 11-16-07		Client:	TERRACON	l (#070450.	52)		
Remarks: Lab No. 12747		Project	I-74 CROS	SING-BET	TENDORF	MOLINE	
14			of Sample: Number: 2		3	Depth: 32-33'	
			UNCO	ONFINED	COMPRE	SSION TEST	
		H				COMPA	

¥.... . .

. ".r.,87"X..."

÷.

1.21.21 1.1.2 1.1.2 1.1.2 1.

・ ・ 、 うちまた、 やるいにとしていたい。 かったのようになったから、おいていた後、「おいた」はないない。 いたいないないないが、 とうされたので、 かたないないないないないないないないない。 ないないないない。 ない

Tested By: <u>DB</u>

.

.

•

 $\left[\right]$

 $\left[\right]$

 $\left[\right]$

 $\left[\right]$

 \Box

 \Box

 $\left[\right]$

[].

[]

Checked By: GS

۰.

• •

•

.

. ·

.

UNCONFIN		· · · · · · · · · · · · · · · · · · ·]	
400					
		╶┧┈╎╌╎╴┤╴┦╴		_	
			┝╍┥╸┤╺┥╴┥].	
		- 			
300					
ч ₂₀		╶╢┼╌┼╌┼╾┼╾			
\$2	┿┼┾	╢┼┼┼┼╌		-	
Compressive Stress, tst					
8 /					
100		╉╏┼╴╎╌╎╼┤╼			
- - - - - - - - - -					
<u> +}/++</u> +	╺┼╼┼┈┟╴			1	
	┥┼┼┼				
		1	.5	2	
	Axial	Strain, %			
Sample No.		1			
Unconfined strength, tsf		293.3185			
Undrained shear strength, tsf		146.6593			
Failure strain,		1.0 0.500	· · · · · · · · · · · · · · · · · · ·		
Strain rate, in./min.		0.300			
Nater content, % Net density, pcf		165.2			_
Dry density, pcf		164.9			
Saturation, %		N/A			
Void ratio		N/A -			
Specimen diameter, in.		1.850			
Specimen height, in.		4.100			
leight/diameter ratio		2.22		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Description: LIMESTONE (Moh's - 7-8)				ar T important	
L= PL= P!=	1	GS=		e: Limestone	
Project No.: 19636.040	Client:	TERRACON (#07	045052)		
Date: 11-16-07	Dratas	: I-74 CROSSING	_BETTENINOE	F.MOLINE	
Remarks: Lab No. 12748	FIOJECI				
Lau 110, 12/70		of Sample: VIA	IL-124	Depth: 32.2-	32.9'
	Sample	Number: 2			
				ESSION TEST	
Figure	 	I.C.NU	TTING	COMP	ANY
•	<u> </u>				

 $\left[\right]$

 \Box

 \Box

 $\left[\right]$

Ĺ

 \Box

Ċ

 \int

 $\left[\right]$

UNCO	IFINED (COMPRES	SION TE	ST	
. 1000					
750					
Compressive Stress, tsf					
si					
Street st					
9 500					
	<u> </u>				
5					
°			$\mathcal{A} + \mathbb{H}$		
250	-				
		+			
					·
	.25	0.5	0.75	1-1-1	
	Avial	Strain, %			
	Axiai	Strain, 70			
Sample No.		1		· · · · · · · · · · · · · · · · · · ·	
Unconfined strength, tsf		933.3995			
Undrained shear strength, tsf		466.6998			
Failure strain,		0.8	·····		
Strain rate, in./min.		0.500			
Water content, %		0.6			
Wet density, pcf		160.0			
Dry density, pcf		159.0	· · · · · · · · · · · · · · · · · · ·		
Saturation, %		N/A			
Void ratio		N/A	•		
Specimen diameter, in.		1.840			
Specimen height, in.	· · · · · · · · · · · · · · · · · · ·	3.660			
Height/diameter ratio		1.99			
Description: LIMESTONE (Moh's - 4)			·····		
L= PL= PI:		GS=		e: Limestone	
Project No.: 19636.040	Client:	TERRAÇON (#07	7045052)		
Date: 11-16-07		. X // / / · · · · · · · · ·	-		
Remarks: Lab No. 12749	Project	: I-74 CROSSING	-BETTENDOR	F-MOLINE	
JAU 110. 12/47	Source	of Sample: VIA	II125	Depth: 35-35.9	5 ¹
		Number: 2		мећиг 22-222	, II
		UNCONFI	NED COMPR	ESSION TEST	
-igure	· · L	I.C. NU			
					:
sted By: DB	Checked By	1. CS			

ſ

 \square

 $\left[\right]$

 $\left(\right)$

 \Box

 $\left[\right]$

 $\left[\right]$

 $\left[\right]$

 $\left[\right]$

•

,

.

	UNCO	1.41 1	I 1 I.m. I.				EJ	-uc-	UN		<u> </u>	6		
400												7		
										1				
					1/1							-		
300					$\overline{/}$							1		
					$\overline{1}$									
tst													•	
'ss				LA-										
- Str					<u> </u>		<u> </u>				_			
200				/	. ∥	_		_						
ssi			_/_											
Compressive Stress, tsf	+		-A			_								
l lo	┼┈┼╌┼				┼──╟									
	+ + + + + + + + + + + + + + + + + + + +	+			┥╌╟				$\left - \right $					
100		/ +			╈							-		
F								\pm				ł		
							+		\square			ł		
										_		4		
0											+			
0		0.5			1			1.5		يبوليغين	2			
			A	xial S	train,	%								
Sample No.							·ı	·						
Unconfined strength, tsf					7.55	-1							<u> </u>	
Undrained shear strength, t	 2f			-		0.1548 5.0774								
Failure strain,						1.1		. <u>.</u>						+
Strain rate, in./min.			<u> </u>			.500			·					
Water content, %						0.1								
Wet density, pcf						66.6						· · · ·		
Dry density, pcf						66.4				····-				
Saturation, %					•	V/A							<u>,</u>	
/oid ratio						J/A								
Specimen diameter, in.					1.	850								
Specimen height, in.	•				4.	090	T							
Height/diameter ratio					2	.21								
Description: LIMESTONE (
_L = PL =	P	=	(<u> 3S=</u>					Ту	pe: l	imesto	ne	
Project No.: 19636,040		•	Cliei	nt: TE	RRA	CON	(#07	0450	52)					
Date: 11-16-07				, .										
Remarks: Lab No. 12750			Proj	ect: I-	-74 C	ROSS	ING	-BEI	TEN	1DOI	RF-M	IOLINE		
Jao INU, 127,30			Som	'ce of	Sam	nple:	VIA	11 _11	РĠ		л	epth: 3	7 E 17	11
			Sam	ple N	umb	ër: 2		***** 1 2			U	օրտեն	2.3-33	•1
						INCO	NFI	NED	co	MPF	ESS	SION T	EST	
igure			•••	Щ										NY
				E. I	<u> </u>	I N			<u>11 N</u>	0				

.

 $\widehat{}$

 $\left[\right]$

 $\left[\right]$

Ć

 \int

 $\left[\right]$

 $\left[\right]$

.[]

:

:

: . .

:: .*

.....

.÷

T WELDER WERSChurch Street Stree

· . •

ROCK CORE PHOTOGRAPHS

 $\left[\right]$

 $\left[\right]$

 $\left[\right]$

 \int

 $\left[\right]$

 $\left[\right]$

 $\left[\right]$

 $\left[\right]$

 $\left[\right]$

į.

į.,

 $\bigcap_{i=1}^{n}$

Į.,

L

L

Ĺ

L

ĺ

	Boring	VIAIL-103	
<u>Run</u>	Depth (ft)	<u>REC (%)</u>	<u>RQD (%)</u>
5	36.0 - 41.0	99	78
6	41.0 - 46.0	100	89

for this fails, and shake 6m 1. 1 Arre St. spinners - 1968 S. S. 1020 Boring VIAIL-104 Run Depth (ft) REC (%) RQD (%) 1 14.0 - 15.5 100 51 21 85 73 2 15.5 - 20.53 20.5 - 25.540 25.5 - 30.538 4 98 Boring VIAIL-104 Run Depth (ft) REC (%) RQD (%) 5 30.5 - 35.598 87 6 35.5 - 40.598 62

ţ

CIXI3500 NEW ETY BRIDGE AP Mis BORING VIAIL-10 Box 1 of 2 DEPTH.* 115 to 5		ال ال ا 159 ل 1904 - 2	FH Rel 159' 58% Dog' 99% Dog' 99% - 359' 100%	87%
	Boring VIAIL-106 Run Depth (ft) REC (%)	RQD (%)		
ини и станка ини и станка ини и так води откулкали и станка ини и станка води откулкали и ини и станка води от станка води от станка и br>и станканка и и станканка и станка и и станка и и станка	1 11.5 - 15.9 58 2 15.9 - 20.9 99 3 20.9 - 25.9 99 4 25.9 - 35.9 100	47 87 90 87 90	ерин Квс. 1-35.9: 100% 437.9? 988	
DERTH 283' 4, 3	1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 -			
	Boring VIAIL-106 <u>Run</u> <u>Depth (ft)</u> <u>REC (%)</u> 5 35.9 – 37.6 98	<u>RQD (%)</u> 72		

•

 $\left[\right]$

 $\left[\right]$

 $\left[\right]$

 \Box

 $\left[\right]$

si F Mari C1X13500 NEW I.74 BRIDLE OVER MISSISSIPPI Rice - ILUMBE Approval BORING VIAIL- 107 Box Lof 2 Дерти: <u>14,1' 72 29,7; 4</u> Boring VIAIL-107 Depth (ft) REC (%) RQD (%) Run 14.1 – 15.8 100 24 1 38 15.8 - 20.8 84 2 20.8 - 25.8 97 55 3 25.8 - 30.8 96 65 4 C1X13500_____ 1.111 1.00 1.10 1.10 $\mathcal{O}_{\mathcal{O}}$ NEW LITH BEIOK WER MISSISSIPPI River. Tunnis Approach 2223 2 S **01** Sec BIRING VIAIL-107 Bo Deputs 2 1 12 1 18 18 1 014 简指 unt Boring VIAIL-107 <u>Run</u> Depth (ft) REC (%) RQD (%) 30.8 - 35.8 5 100 53 6 35.8 - 40.8100 54

	OVOL Missisuppi Pour- Ideades Aurora AIL-108	in Purn in Ra Rad 1415-1611 1115 292 1615-213 772 075 3 D145-267 757 157 4 267-3111 187 429
		Job' *
	Boring VIAIL-108 Run Depth (ft) REC (%) RQD (%) 1 14.1 – 16.1 91 29 2 16.1 – 21.1 77 0 3 21.1 – 26.1 96 15 4 26.1 – 31.1 98 42	
Bierry VIAIL- Box <u>2</u> <u>A</u> <u>2</u> <u>DEPTH <u>30.6</u></u>		- Drms A- Poo 5 31-1-341' 11A 253 5 X-1-341' 05 275
A A		
	Boring VIAIL-108 <u>Run Depth (ft)</u> <u>REC (%)</u> <u>RQD (%</u> 5 31.1 – 36.1 100 25 6 36.1 – 39.1 100 27	<u>6)</u>

 $\left[\right]$

A. K. A. M. 1. 19 $0_{\rm F}$ th RAD (1813500 5. 12 gr Rec Vew Bridge over Mississippi River Inlinois Approach .)6°, 🕈 19*, . . a, 1 . . . 46% 58 m 년 - 1⁴ Boring VIAIL-109 Depth 24210 385 **** 100% 1 4 71% 100 -11 g t e Box Lot 14. St. ** Boring VIAIL-109 Run Depth (ft) REC (%) RQD (%) 19 100 1 24.2 - 26.0 96 65 26.0 - 31.0 2 100 89 31.0 - 36.0 3 100 91 36.0 - 41.0 4 61813500 -PEPTH kn €€C. FeD BRIDIE - Orde OTMASSISPE Porp 4 360-41.0' 100 914 BOINS WIAIL . 109 41.0'-46.0'_ 5 98 98% Box 2 of 2 6 46.0-490 180% 57% DEPTH 39.8 + 490. F ŝ 0 SVAL AN VOMME Boring VIAIL-109 Depth (ft) REC (%) RQD (%) <u>Run</u> 41.0 - 46.0 98 5 98 100 83 6 46.0 - 49.0

800 200 cant 264-308 801 203 STATISTICS 114 2 14 30.8-35.8' 1001 841. Prim 35.8.40.8' 10% 911 R. 40.8- 45.2' 100% 78% **Pers** hall when we had 14. Boring VIAIL-110 Run Depth (ft) REC (%) RQD (%) 26.4 - 30.880 20 1 2 30.8 - 35.8 100 84 3 35.8 - 40.8 100 84 100 40.8 - 45.8 78 4 21X1350 O Danie Re. Roa auffen Bridge ewe matering (Lat. 18 ares Main De los VIALENO in the last of 4. 0. 0 Det Bur 12.16 and the second second a summer Boring VIAIL-110
 Run
 Depth (ft)
 REC (%)
 RQD (%)

 5
 45.8 - 52.8
 100
 86

 \square

1.

Ì.

L

 \bigcap

L

C1X13500 Depen - Rog NEW I'TH BRIDLE OVER MISSISSIPPI Rome- In 10-208 NiY . BORNS YIAIL-TIS 200 Bartola DEPTH: 190' , 34.5 • Boring VIAIL-112 Depth (ft) REC (%) RQD (%) <u>Run</u> 1 19.0 - 20.8 76 21 2 20.8 - 25.8100 58 3 25.8 - 30.897 43 100 4 30.8 - 35.8 99 CIX|3500 Run * New Bridge over Mississippi Rimer Illinois & Approach Boning: VIAIL-112 Deptile <u>28451</u>70 <u>468</u> Boring VIAIL-112 <u>Depth (ft)</u> <u>REC (%)</u> <u>RQD (%)</u> 35.8 – 45.8 100 97 Run 5

l

L

11

 $\left[\right]$

L

L

L

 $\left[\right]$

 $\left[\right]$

1

Li

DEPTH CIX1350.0 PN REC Roa. 165-21.0' 92% 39% NEW THE BRIDGE WER MISSIPPL RIVE - BLUMIS Approved 21.0626.0' 100% 63% Bells VIAIL-114 100% 83% Bottal of <u>D</u> Deput 1054 310 Boring VIAIL-114 Depth (ft) REC (%) RQD (%) <u>Run</u> 92 100 1 16.5 - 21.0 39 63 2 21.0 - 26.0 26.0 - 31.0 100 83 3 2: ZIX13500 REC ROD Runz DEPTH ... NEW IT TU BRIDGE OVER Mikissippe Puzz - Tilinois Approach 4 31.0'-36.0" 100% 88% Baring VIAIL = 114 5 360-41.0 100% 93% B. J. M. J. DEPTH-3(104)-441.0 Boring VIAIL-114 <u>Depth (ft)</u> <u>REC (%)</u> <u>RQD (%)</u> Run 4 31.0 - 36.0 100 88 36.0 - 41.0 5 93 100

 \square

(i

 $\bigcap_{i=1}^{n}$

 \Box

 $\left(\right)$

. . .

L

 \bigcap

l

Runt Depth 2 20.9-25.9 962 677 25.9-30.9 600 951 CIXAB5@O Noor1741Bridgeovernessisteppi River - Lilinois Boring VIAIL=118 Aprimeli Appende Bine 30.91-35.7 1001 801 Plennin Wall in Sel } BAR ALLER CAND WARE COM . 1 Boring VIAIL-118 <u>Run</u> Depth (ft) REC (%) RQD (%) 16.1 - 20.9 53 1 9 67 2 20.9 - 25.996 25.9 - 30.9100 3 93 30.9 - 35.9 80 4 100 WINKS IN STR. AND STRAINED IN . - de alter Contraction of the second second a de la de di Boring VIAIL-118 Run Depth (ft) REC (%) RQD (%) 35.9 - 42.9 5 100 79

and a star

A. S. S. S. S.

LICE NOT BUILD STORE

heate.

 $\left[\right]$

 \square

 $\left[\right]$

 $\left[\right]$

 $\left[\right]$

1

U

 \Box

 $\left[\right]$

Ì-

l

NAME AND	and and a state of the state of		
	nfiperfattar - Research Agenerat		
	א היה אות אינט האלילי אינט אינט אינט אינט אינט אינט אינט אינ		
- Line and the second second second second second			
	a da da <u>a</u> n an	I	
	Boring V <u>Run</u> <u>Depth (ft)</u> <u>F</u> 1 21.0 – 26.0 2 26.0 – 31.0 3 31.0 – 36.0	1	
	THE REAL PROPERTY AND A DECKNOLOGICAL PROPERTY OF	NUT DECISION IN TAXA STRATES	
	a an an annual an annual annual an ann an		
		edensara mutanaka ununununaka	
	engri – 11 Marana, Aggertatila		
	enger – 11 th mains, Augerranita		
		//AIL-121	

 $\left[\right]$

 $\left[\right]$

 $\left[\right]$

 $\left[\right]$

 $\left[\right]$

 $\left(\begin{array}{c} \\ \end{array} \right)$

 $\left[\right]$

 $\left[\right]$

 \int

 \Box

[]

 $\left[\right]$

 $\left[\right]$

 \square

 $\left(\right)$

VENN II. M. BANKS: DAVA WARSHER MICHAELER IT. ir manan MHANIL - 1927. $\|\mathcal{C}_{max}+\mathcal{D}_{n}\|_{\mathcal{L}_{\infty}}$ NT Stall Be with the start of the $= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} \int$ Marin Marin Marin Marin Marin Marina Boring VIAIL-122 Depth (ft) REC (%) RQD (%) Run 28.8 - 30.91 63 0 35 2 30.9 - 35.9 100 3 35.9 - 40.9100 89 40.9 - 45.9 100 60 4 KIB500 Bidge ONE MUSISMI River BODAY VIAIL-122 6 m 2 + 2 - 2 Constant of a confetter Boring VIAIL-122 <u>Depth (ft)</u> <u>REC (%)</u> <u>RQD (%)</u> 45.9 – 55.9 100 84 Run 5

 $\left[\right]$

Į

(____

U

Ĵ

C1X13500 NEW 174 Bridge over Mississippi Fiver-Illineis Approach REL ROD Doth BORING VIAIL-123 25.9:31.0' 98% 82% 91.0- 36.0 100% 97% esex __ of _2_ 360'- 410 98% 942 Depth: 259' to 40' S. 11 20 * {**A**#7 1.01 1 V Boring VIAIL-123 Depth (ft) REC (%) RQD (%) Run 82 97 25.9 - 31.0 1 98 2 31.0 - 36.0 100 3 36.0 - 41.0 98 94 C XI3500 RUN PATH REC ROD New Bridge over Mississiffi River-Illinois Agranch BORNE VIAIL-123 41.0-46.0' 93% 56% 46.0'-51.0' 92% Box 2 of 2 69% Dept han though short Courses and the manual Boring VIAIL-123 Depth (ft) REC (%) RQD (%) Run 41.0 - 46.0 93 56 4 46.0 - 51.0 5 92 69

 $\left[\right]$

 $\left[\right]$

 $\left(\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right)$

 $\left\{ \right\}$

Ù

 $\left[\right]$

Į

<u>Run</u> Depth (ft) <u>REC (%)</u> <u>RQD (%)</u> 4 40.6 - 45.6 - 100 - 89		Boring	VIAIL-124	
	Run	Depth (ft)	<u>REC (%)</u>	<u>RQD (%)</u>
4 40.0 - 40.0 100 00	4	40.6 - 45.6		89
5 45.6 – 50.6 98 94	5	45.6 - 50.6	98	94

(1×13500 New I.74 Bridge ok Mississippi River-Illinois Approach RUN# DAPTH REC ROD 27.54-30.9' 7006 412 Boring VIAIL-125 30.91.35.9 981 402 Box Lof Z 35.9-40.9 1001. 78 DEPTA: 27.5' +0.42.5 40.9-459' 100% 75% 4 Boring VIAIL-125 Depth (ft) REC (%) RQD (%) Run 27.5 - 30.91 100 41 40 2 30.9 - 35.9 98 100 3 35.9 - 40.998 40.9 - 45.9 100 75 4 X13500 + NEW 574 Bridge Over Mississippi River- Illinois Approach VIAIL-125 RUNS DEPTH REC RON 409-45.9 100% Box 2 of 2-50.9 100%-88 DEPTH 42.5 100 55.9 55.9 100% 100% 1995 B 1997 Boring VIAIL-125 Run Depth (ft) REC (%) RQD (%) 5 45.9 - 50.9 100 88 50.9 - 55.9 100 100 6

 $\left[\right]$

L

Ĩ

 $\left[\right]$

Ê

L

 $\left[\right]$

 $\left\{\right\}$

 $\left\{ \right\}$

L

 $\left[\right]$

 $\begin{bmatrix} \\ \end{bmatrix}$

 $\left[\right]$

Summary of RMR and Elastic Moduli

Ô

()

 \Box

 $\left[\right]$

 $\left[\right]$

 $\left[\right]$

Û

Ĵ

 $\left[\right]$

Ó

ĺ]

Ć

Ì

 $\left(\right)$

 $\left[\right]$

 $\left(\right)$

SUMMARY OF ROCK MASS RATING (RMR) AND ELASTIC MODULI

Pier	Boring No.	Run No.	REC (%)	RQD (%)	RMR (Lower)	RMR (Upper)	RMR (Ave.)	Em (ksi)	Ei (ksi)
		1	33	0	38	41	40	792.3	
		2	97	90	55	61	58	2298.1	37
	VIAIL-103	3	92	66	49	55	52	1626.9	
	VIALE-100	4	100	61	49	52	51	1492.3	
00.40		5	99	78	51	58	55	1878.7	
29+40		6	100	89	47	50	49	1330.1	
North Abut		1	100	51	41	43	42	914.9	ļ
	1	2	85	21	46	52	49	1368.9	496
	VIAIL-104	3	73	40	39	46	43	941.6	
		<u>4</u> 5	98	38	42	49	<u>46</u> 50	1119.1	
	1	6	<u>98</u> 98	87 62	48	<u>54</u> 55	52	1450.0 1580.8	
		1		02	37	42	40	792.3	
		2	83	18	39	42	40	914.9	400
		3	93	69	50	53	52	1580.8	+00
	VIAIL-105	4	88	26	42	48	45	1087.3	370
		5	90	35	45	49	47	1220.0	
	1	6	93	59	50	57	54	1773.7	
		7	99	84	55	60	58	2232.9	
		1	58	47	46	51	49	1330.1	
30+90	1 1	2	99	87	55	64	60	2505.3	84
Pier 1	VIAIL-106	3	99	87	54	63	59	2365.2	
	1 [4	100	90	57	63	60	2578.5	
	ſ	5	98	72	51	56	54	1773.7	
		1	100	24	42		45	1056.5	
	1 1	2	84	38	40	49	45	1056.5	
	VIAIL-107	3	97	55	47	52	50	1408.9	417
		4	96	65	47	54	51	1492.3	
	1 -	5	100	53	48	54	51	1535.9	
		6	100	54	48	55	52	1580.8	
		1	91	29	43	45	44	1026.5	
33+20	1 -	2	77 96	0 15	35	42 44	<u> </u>	747.9	260
Pier 2	VIAIL-108 -	3 4	98	42	41 45	<u>44</u> 51	43	941.6	269
Pier 2		5	100	25	45	48	40	1119.1	
		6	100	27	43	40	40	1087.3	
		1	100	19	41	45	43	969.1	
	I F	2	96	65	50	58	54	1825.4	61
		3	100	89	57	62	60	2505.3	<u>v</u> .
	VIAIL-109	4	100	91	57	63	60	2578.5	
		5	98	98	60	64	62	2893.1	
		6	100	83	57	58	58	2232.9	
			80	20	40	47	44	997.4	
34+77.50	[[2	100	84	56	64	60	2578.5	
Pier 3	VIAIL-110	3	100	87	55	60	58	2232.9	78
		4	100	78	53	60	57	2108.0	
		5	100	86	54	63	59	2365.2	
		1	99	73	51	57	54	1825.4	
	DRMDDA	2	94	49	46	53	50	1408.9	612
	PRMPD-04	3	85	78	50	58	54	1825.4	
		4	100	100	60	66	63	3064.6	
		5	100	96	60	64	62	2893.1	
	l l	1 2	_ <u>89</u> 74	<u>65</u> 15	<u>46</u> 37	57 46	52 42	1580.8 888.9	
	VIAIL-111	3		53		54			974
	~~~		<u>95</u> 100	72	<u>48</u> 53	<u> </u>	51 57	1535.9 2169.5	374
	F	5	100	93	53	66	63	2169.5	
		1	76	21	41	43	42	914.9	
	-	2	100	58	47	54	51	1492.3	446
36+67	VIAIL-112	3	97	43	44	51	48	1255.6	0777
Pier 4	· · · · · · -  -	4	100	99	66	69	68	3970.7	
	F	5	100	97	65	75	70	4585.3	
ł		1	87	33			0	81.5	
	F	2	91	51	48	56	52	1626.9	
	BBMBB och	3	100	72	53	59	56	2048.2	1357
	PRMPD-06	4	100	83	58	62	60	2578.5	
	F	5	90	79	55	63	59	2434.3	
		6	99	83	56	62	59	2434.3	

Em: Elastic Modulus of Rock Mass Ei: Elastic Modulus of Intact Rock from Test

 $\left[ \right]$ 

Į

Į.

 $\int$ 

L

L

ί

 $\left[ \right]$ 

### SUMMARY OF ROCK MASS RATING (RMR) AND ELASTIC MODULI

Pier	Boring No.	Run No.	REC (%)	RQD (%)	RMR (Lower)	RMR (Upper)	RMR (Ave.)	Em (ksi)	Ei (ksi)
• • • • •		1	100	37	48	52	50	1450.0	
		2	98	51	49	57	53	1723.3	842
	VIAIL-113	3	99	83	58	67	63	2977.6	
		4	100	98	63	68	66	3538.9	
		5	100	98	64	75	70	4455.2	
		1	92	39	47	53	50	1450.0	
38+56		2	100	63	50	59	55	1878.7	1149
Pier 5	VIAIL-114	3	100	83	57	64	61	2653.8	
Fiel 5		4	100	88	57	65	61	2731.3	
		5	100	93	60	68	64	3246.1	
		1	82	23	38	48	43	969.1	
		2	100	95	58	68	63	3064.6	
	PRMPD-05	<u> </u>	97	87	58	66	62	2893.1	1917
		4	100	100	74	74	74	5772.6	
		5	100	84	56	65	61	2653.8	
		1	86	22	38	43	41	839.2	
10.00		2	75	26	38	46	42	914.9	
40+00	VIAIL-115	3	100	76	56	62	59	2434.3	1025
Pier 6		4	92	70	54	64	59	2434.3	
	1	5	98	83	57	65	61	2731.3	
	<u>                                     </u>	6	100	75	55	65	60	2578.5	1100
		1	53	9	. 37	47	42	914.9	1123
42+31	VIAIL-118	2	96	67	51	60	56	1990.1	ļ
Pier 7		3	100	93	54	60	57	2169.5	
		4	100	80 79	55	60	58	2232.9	
		5	100		58	64	61	2731.3	
		1 2	78	<u>30</u> 54	41	49 57	45 54	1087.3	
	VIAIL-119	3	<u>96</u> 100	<u>54</u> 88	51		<u> </u>	1825.4	1100
		4		91	59	63		2731.3 3246.1	1123
43+48		5	<u>100</u> 100	93	60 61	68 66	<u>64</u> 64	3154.0	
Pier 8		1	85	42	43	50	47	1185.4	
Fiel 0	I F	2	92	53	45	52	49	1330.1	508
	VIAIL-120	3	100	86	56	63	60	2505.3	
		4	95	52	48	55	52	1580.8	
	-	5	100	94	64	68	66	3642.2	
		Ĩ	80	11	27	37	32	514.5	
	I F	2	95.	53	50	59	55	1878.7	1123
	VIAIL-121	3	100	97	60	67	64	3154.0	
		4	100	94	60	67	64	3154.0	
44+81		5	93	81	59	68	64	3154.0	
Pier 9		1	63	0	36	42	39	769.8	
	I F	2	100	35	46	54	50	1450.0	
	VIAIL-122	3	100	89	58	64	61	2731.3	1123
	1 [	4	100	60	53	59	56	2048.2	
	I	5	100	84	57	67	62	2893.1	
		1	98	82	55	63	59	2434.3	
		2	100	97	60	70	65	3438.5	1123
	VIAIL-123 [	3	98	94	62	66	64	3246.1	
10 0-		4	93	56	41	49	45	1087.3	
46+66		5	92	69	49	59	54	1825.4	
Pier 10		1	100	55	47	56	52	1580.8	
	L	2	100	91	59	64	62	2811.0	1123
	VIAIL-124	3	100	89	60	65	63	2977.6	
		4	100	89	60	66	63	3064.6	
		5	98	94	60	67	64	3154.0	
		1	100	41	46	52	49	1368.9	
		2	98	40	38	49	44	997.4	1123
	VIAIL-125	3	100	98	60	69	65	3340.9	
		4	100	75	57	62	60	2505.3	
48+91		5	100	88	61	66	64	3154.0	
outh Abut		6	100	100	62	70	66	3642.2	
aui Abul		1	100	76	55	_64	60	2505.3	
	C	2	98	92	58	65	62	2811.0	1123
	VIAIL-126	3	100	91	60	65	63	2977.6	
		4	100	92	59	68	64	3154.0	
		5	100	100	68	71	70	4455.2	

Em: Elastic Modulus of Rock Mass Ei: Elastic Modulus of Intact Rock from Test

l

)

D

 $\lfloor \rfloor$ 

L

 $\left[\right]$ 

L

 $\left[\right]$ 

# Existing Viaduct Plan and Elevations

 $\left\{ \right\}$ 

 $\left[ \right]$ 

 $\left( \right)$ 

 $\left[ \right]$ 

 $\left[ \right]$ 

 $\left[\right]$ 

 $\square$ 

 $\left[ \right]$ 

 $\left[\right]$ 

 $\left[\right]$ 

 $\left[\right]$ 

Ũ

h

 $\hat{}$ 

Ù

 $\left[ \right]$ 

 $\left[ \right]$ 

·	··· ·	· · · · · · · · · · · · · · · · · · ·				· · · · · · · ·	
			<u></u>				
· · ·	2	The come			ITEM         CURVE 3A.         CU           A         143°-23'-09.880''         36°-           D         14°-36         00''         14°-           R         1273.2395''         132           T         506.5044'         143           L         964.1351''         83           L.C.         941.2649''         81           P.C.STA.         351+87.7235         2524           P.1.STA.         356+94.2279         256+	DR 120NTAL         CURVE         DATA           IRVE         N2         CURVE         S1         CURVE         34           051-52.136"         35°-501-15.213"         24°-301-00"         3°-301-00"         220-00"         3°-301-00"         3°-301-00"         22.1031         1527.8875*         1637.0223*           0.8603'         495.0293*         355.4324*         3.0265*         957.4460*         700.0000*         9.3774*         941.8571*         694.6792*           04.8789         250+83.1701         150+84.5737         35.7392         255+78.1994         154+40.0061         37.9054         260+40.6161         157+84.5737	DENOTES FLOOR DRAIN DENOTES LIGHT STANDARD FOR DRAIN DETAILS (TYPE 'A' DRAIN) SEE DWG. D-1.
:.	EXISTING IOWA-ILLINOI MEMORIAL BRIDGE		LHVB SEX-C FIXED	IER INB GIADER BRG'S	EPIER 2ND SEX-GIRDER EXP. BRC'S,	とりIER もNB を主X-GIRDER FIXED BRGIS. TRACK	EPIER 4ND HEEX-GIRDER HEXP. BRG'S.
:	PIER SPACING GLONG R. N.B. F. A.I. 74 ± EXIGT. PIER STA 250+90.01 R.N.S.F.A.I.74-2400'LT	4 STRINGER EXP. BRG'S (LINE A)	4	98-1058" SLIDING & EXP. VICE & CTG	UNIT (A) N.B. 98'-101/2"	227 ¹ - 6" 9B ¹ -10 ¹ 2"	
•	DN EXIST. RODOGED SI ILL PROPOGED SI ILL CTRUCT ET ILL CTRUCT	2.57.54.43.34 1004	ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT) ENT)	392 LT. EXP. BRGG. 4 RAMP3-N RC. GTA. 352 + 50.90 RRAMP3-N-6.001 LT.	2(ALONG N.B. 九) (ALONG N.B. 九) (CUAVE 3A)	-2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2-II -2	ANDIA) 14-102 HGICEMIN 91-1-1 HOICEMIN 91-1 HOICEMIN 91-1 HOIC
• .	PROPOSED BASE OF CURB OF EXIST. STRUCT STASSOF BASE RGEL 012.75	CTAANES25; CINCIDE FACE CURVE, ISN OF PARAPET SEE DET: X STA. 251+ 45.4 STA. 250+ 96.61 N.B. FA.1 STA. 250+ 96.61 N.B. FA.1	2 CURE 252100 9 B CURE 252100 9 P CURE 25210 9 P CUR	C. STA. 252+09.37 TA 252+78.74 G. EL. GII. 22 252+04.88-GOORT 2+04.88-GOORT 7 00.T GIDE BO		CEAST EDGE OF THRU PAVEMENT -90°-00'-00" -1254+00 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3	92.11
	TRUSSES TRUSSES	HOO THE PARAL	PET (ON TANGENT) SE URB 11 252+00 URB 11 152+00 URB 152+00		STA. 252+75.75     P.G.EL. 610.59       P.G.EL. 610.59     (TYP.)       (TYP.)3-42*       253+00     \$5.F.A.1.74       90*00'-00"     (CHAVE SI)       A.252 + Ga.80	GTA.253+73.83       P.G.EL.60         P.G.EL.60.08       P.G.EL.60         Q.P.G.EL.60.08       Q.E.60         Q.P.G.EL.60.08       Q.E.60         Q.P.G.EL.60.08       Q.E.60         Q.P.G.EL.60.08       Q.E.60         Q.P.G.EL.60.08       Q.E.60         Q.P.G.EL.60.09       Q.E.60         Q.P.G.EL.60.00       Q.E.60         TO BE REMOVED       P.G.EL.000.00         AG REQUENT       P.G.EL.000.00         AG REQUENT       P.G.EL.000.00         L.G.E.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C	Bit     255+00     GTA 255+55-55       Si)     255+00     GTA 255+57-60       Si)     255+00     GTA 255+71.00       Si     GTA 255+71.00     GTA 255       Si     F.G.EU.600(18)     F.G.EU.600(18)       Si     F.G.EU.600(18)
	EXIGT CTALLES C + B4	57 A RAMPN-3 G A SB-24.00 RT SG (LINE B) 95'-434"	(E) ( <u>P.C.G.G.A.IS</u> & RAMP N- & E 98-	STRINGER XP. DRG'S	LOUTSIDE FACE OF PARAPET IDING & P. DEVICE NG S. D. E.) 90-1"	SIGN SUPPORT SEE DWG. 5-12: 98-1"	s A A A A A A A A A A A A A
• •	S.B. F.A. 1. 74	<u>1</u>	291-332" EPIER   9.8. EL X-GIRDER EXED BRGIG.		2 ріер 2966 2X-вірдея (р. вра'я	294-9 & PIER 35.0. & & X-GIRDER FIXED BRG'S.	ÉPIER 45.8. SEX-GIRDER EXP. BRG'S.
· · . ·	DE LEUW, CATHER & COMPANY DESIGNED BY_E.S.M. DRAWN BY_G.P.A. CHECKED_T.C.D. IN CHARGE_E.S. MARTINS APPROVED_W.G.HORN	ENGINEERS			JNIT A S.B	GENERAL NOTES: All dimensions shown are points on a horizon tal pl temperature of 50° f.	$\begin{array}{rcl} & & & & \\ & & & \\ \hline DEGION NOTEG: \\ LOADING-HG 20-4 \\ fc = 1200 PG.I SL \\ fc = 1000 PG.I SL \\ fs = 20,000 PG.I. SL \\ fs = 10, SL \\ SL $

.

Ľ

and in such of the

.

· · ·

۰.



1.1.14



TOTAL SHEETS SHEET NO. COUNTY DWG. NO. 5-2 ROCK ISLAND 298 F.A.I. 74 81- LHVB 64 UNITO RAMP S.N FED. ROAD DIST. NO. 7 ILUHOIS FED. AND P EXPERIONE EXPERIONE EXPERIONE EXP. BRG'S HER WATCH <u>80'-8</u> 1-21. 109-104 ALONG AD STALLE PV WT. ALONG ST. STALLE HI 182-54"TO NOR ENT DECK JT. CALONG A 10-04 RAMP 3-N) BI-10 TO PIER 12NB 831.04 -EDGE/PMT. HESTRINGEN EXP. BRIGG (194" TERST) ROS. (194" TERST) ROS. (194" TERST) CEH: 5-10 EXP DEVICE 105-68 -XR DEX 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 3623 362 260+59.24 F.G.EL.604.991 E STRINGER Cart 361+ 69.11 B.G.EL- 604.214.01 4-0507 GTA 301 TEA MERANGMILAR GTA.361+61.19 TOTYPE CASTRAISA PI-62+00 तम ह # DIERINE II 01+00 97 L______ GTA-260+63.32 P.G.EL.606.17 76-18-40 P.G.EL. 60676 , GTA. 261+01.30 PG.E.L.006.30 1 GTA 760+79.80 GTA FG.EL 600.09 FG.E FG.EL 600.09 STA 16.78 J 262+00 STA. 201+05.00 P.G. EL. 600.28 261+00 1 5 0 01 EXPIERIIGE EXP. BRG'G. . -0 -6-5 5-EXP. DEVICE L STRINGER-EXP. BRAIS. TEXP DEVIC THE TROOP OF THE CLEAR AND THE PROPERTY OF THE CURVE SHUT 94 ALONG S.B. P.G.L. Viel 15TA 161+86.99 831-5" TO PIERIZSE 105-35B 185-74" TO DECK JOINT 90-0 TP & BRUS 270'-1178' E DECK JT. TO END OF DECK SLAB AT ABUT. "E" 105-578" EPIERII-N-3 UNIT OSB E PIER 10-N-3 E E X-GIRDER FIXED ERC'S. GENERAL PLAN UNITS "B" & "C" F.A. 1.74 - SECTION 81-1HVB MOLINE VIADUCT ROCK ISLAND COUNTY STATION 265+20 SCALE: 1"= 20'-0" DATE:















. COUNTY TOTAL SHEET DUTE NO. SECTION DWG. NO. S-5 FAL 74 81- 1HV8 ROCK ISLAND 389 151 FED. ROAD DIST. NO. 7 HILLINOIS FED. AND F - L PIER 25NB. ELX-GIADER EXA BROS. E EX P. BRG 9. ABUT. O 159-92 OFF - RAMP FROM FAIL 74 FOR CONTINUATION OF WALL, SEE DWG. W-4. <u>]</u> METHOD I APPROACH SEE NOTE AF STA. 279+ 56.44 P.C.EL. 618.17 BACK/ABUT. 5TA: 279+59.50 279+00 20-01 STA. 279+56.44 P.G. EL. GIB. 17 SPACES 5] SLAB. <u>.</u> B.H. # 9-27-Le're soor EXP, DEVICE. WALL, SEE DWG.W-9 ON-RAMP TO FAL. S.B. FAL. 74) GENERAL PLAN - UNIT "H" F.A.I.74 - SECTION 81-IHVB-I MOLINE VIADUCT ROCK ISLAND COUNTY STATION 265+20 SCALE: 1" # 20'- 0" DATE:



•		· .	· · ·						
							·		······································
· ·							a a takan ito tari i a ang pana a tari ang pana		
			· . ·						
									•
		. ·	· · ·						
· · ·								<b>O</b>	
		IER 23 S.B. "SEE' BRG. "SEF" BRG.	• & PIER 23 N.B. W. COL"SEF" BRG. E. COL"SEE" BRG.		€ PIER 24 S.B. E. COLSFF BRG € PIER 24 S.B W.COLSFE BRG.	W.COLSFF BRG		E.COLSEF BRG WC	2 PIER 25 N.B. DL"5EF" BRG 2 PIER 25 N.B.
		•	ЕХ Р. Б.Қ. (, S				+ 1.78	W. COL"SEE" BRG.	COL-"SEE" BRG.
	600		FINISHE	ED GRADE LINE FOR	14.7'MIN.CL.	RAMP.	TH AVE. TH AVE. WEST BOUND EAST BOUND		
	590				WG.S-5	RAMP	WEST BOUND BAST BOUND	RAMP	
•	590 580 570 560		EL. 580.0 (S.BW. EL. 575.0 (S.E. (N.I	GOL. & N.BE.COL.)	EL. 577.5		TH AVE. 7H AVE. WEST BOUND FAST BOUND		EL.578.5
•	580		[] []EL. 580.0 (S.BW.	GOL. & N.BE.COL.)		ELEVATION	APPROXIMATE ROCK LINE		Cel. 578.5
	580		[] []EL. 580.0 (S.BW.	GOL. & N.BE.COL.)		ELEVATION	APPROXIMATE ROCK LINE —	<u> </u>	EL. 578.5
· · · · · · · · · · · · · · · · · · ·	580		[] []EL. 580.0 (S.BW.	GOL. & N.BE.COL.)		ELEVATION	APPROXIMATE ROCK LINE MAINLINE CALE: I"= 201 & PIERS & PIERS J8N.B. \$ S.B	<u> </u>	
	580		[] []EL. 580.0 (S.BW.	GOL. & N.BE.COL.)		ELEVATION	APPROXIMATE ROCK LINE MAINLINE CALE: I"= 201 & PIERS & PIERS J8N.B. \$ S.B	<u> </u>	
	580		[] []EL. 580.0 (S.BW.	GOL. & N.BE.COL.)		ELEVATION	APPROXIMATE ROCK LINE MAINLINE CALE: I"= 201 & PIERS & PIERS J8N.B. \$ S.B	<u> <u> <u> </u> /u></u>	YERS 23N.B.¢S.B. 7
	580 570 560	CATHER & CON	[] []EL. 580.0 (S.BW.	GOL. & N.BE.COL.)		ELEVATION	APPROXIMATE ROCK LINE MAINLINE CALE: I"= 201 & PIERS & PIERS J8N.B. & S.B & PIERS J8N.B. & S.B & EXAB POURING SE AREAS SHADED XXX MUST BE POUF AREAS SHADED XXX MUST BE POUF	<u> <u> <u> </u> /u></u>	TERS 23N.B.¢SB. TBOUND WENUE

• •

N 111# (27)





L

#### Structure Geotechnical Report Responsibility Checklist

Ì	Structure Number:	081-0177	_ (prop.)	081-0111	_ (exist.)	Contract Number	er:	Da	te:	6/26/	2008
	Route: I-74		Section:	Illinois Via	duct		County:	Rock Isla	nd		
	TSL plans by:	acobs									
	Structure Geotechni	ical Report a	nd Checklis	st by:Jaco	obs						
	IDOT Structure Geo	technical Re	port Appro	val Responsi	bility : □ □	Qualified Distric BBS Central Ge			nel		
	Geotechnical Dat	a, Subsuri	face Explo	oration and	Testing				Yes	No	N/A
	All pertinent existing	boring data	, pile drivin	g data, site in	spection ir	nformation include	ed in the rep	oort?	$\boxtimes$		
	Are the preliminary s	substructure	locations, f	oundation ne	eds, and p	project scope disc	ussions be	tween			_
	Geotechnical Engine All ground and surfa									님	
	Has all existing and										
	Is the exploration an									$\square$	
	Are the number, loca										
	Geotechnical Eva			,,							
	Have structure or en		settlement a	mounts and	times heer	n discussed in ren	ort2		$\boxtimes$		
	Does the report prov									H	
	Has the critical facto								$\boxtimes$		
	Does the report prov								$\boxtimes$		
	Is the seismic design								$\overline{\boxtimes}$		
	Have the vertical and										
	Has seismic stability									$\boxtimes$	
	Has the report discus								$\boxtimes$		
	Has scour been disc										$\boxtimes$
	Do the Factors of Sa					ents?	•••••	•••••	$\boxtimes$		
	Geotechnical Ana When spread footing	s are recom	mended, ha	as a bearing	capacity a	nd footing elevatio	on been pro	vided	_	_	_
	for each substructure									Ц	
	Has footing sliding ca When piles are recor	apacity been mmended d	oes the ren	ort include a	table indic	 ating estimated ni	le lenathe v		$\boxtimes$		
	range of feasible req	uired bearing	gs and desi	gn capacities	for each p	pile type recomme	ended?		$\boxtimes$		
	Have any downdrag,	scour, and	liquefaction	reductions in	n pile capa	city been address	ed?		$\boxtimes$		$\Box$
	Will piles have suffici								$\boxtimes$		
	Have the diameters &										$\boxtimes$
	Has the need for test								$\boxtimes$		
	Has the need for met	-		-	•	•			$\boxtimes$		
	When drilled shafts a Has the feasibility of	ire recomme	ended, have	side friction	and/or end	l-bearing values b	een provid	ed?	$\bowtie$		
	estimated top of rock	elevations b	been provid	ed when exte	endina into	rock?				$\boxtimes$	
	Have shaft fixity, late										
	When retaining walls								*X		t
	discussed?			- 			, 				$\boxtimes$
	Have lateral earth pre								$\boxtimes$		
	Has ground modificat feasibility concerns?	tion been als	scussed as	a way to use	a less exp	ensive foundation	or address	5	$\boxtimes$		<b>F</b> -1
	Have any deviations									$\square$	
	Construction Con				-						8
	Has the need for coff	erdams, sea	l coat, or u	nderwater str	ucture exc	avation protection	been discu	ussed?			$\boxtimes$
	Has stability of tempo	orary constru	ction slope	s vs. the nee	d for temp	orary walls been c	liscussed?.		$\boxtimes$		
	Has the feasibility of								$\boxtimes$		
	Has the feasibility of			•	-	•					$\boxtimes$
	"In order to aid in dete	ermining the	level of dep	artmental rev	iew, please	attach additional	documenta	tion or refe	rence	specif	ïc
	portions of the SGR to	o clarify any (	cnecklist re	sponses that .	refiect devi	ation from IDOT p	olicy/practic	ce."			

# I-74 Illinois Viaduct Structure Geotechnical Report Responsibility Checklist Notes:

- 1. Soil classification based upon Jacobs Soil and Rock classification System per previous agreement with Iowa DOT and CH2M Hill.
- 2. For Illinois Viaduct, additional borings are recommended for final design where access was not available.
- 3. Lateral capacities using GROUP 7.0 or Florida Multi Pier should be performed during final design once the pile/drilled shaft layouts are made and group reduction factors can be applied. There are short piles that may not provide the required fixity necessitating the need to batter piles or to be set in rock.