Top of beam elevations shall be measured prior to jacking and shall remain the same after bearings are in place.

There shall be at least one jack per bearing and the jack shall be placed close to the Remove existing bearing. The steel shall be raised a maximum of $\frac{1}{4}$ " and shall be blocked in position until after the completion of the installation of new bearings.

5. Burn the existing anchor bolts flush with the concrete surface, grind smooth, and seal with epoxy. The rockers and top and bottom plates shall be removed. The top plate shall be removed using the air-arc method. Grind smooth all weld material remaining on the bottom flange. Cost of removing anchor bolts, rockers, top plates, and bottom plates shall be included with "Jack and Remove Existing Bearings."

Anchor bolts shall be set before bolting diaphragms over supports.

The new concrete abutment seats, elastomeric bearings, and end diaphragms shall be in place and the jacks lowered before the new concrete deck is poured.

ROUTE NO.	SEC	COUNTY		TOTAL SHEETS	SHEET NO.
FAS RTE 1588	*	ADAMS		38	.16
FED. ROAD DIST, NO. 7		ILLINOIS	PROJECT		

* 05-00189-00-BR **05-00189-00-8R SHEET NO. 8 OF 12

Bearing including Bottom P., Rocker and welded Top P -Timber cribbing 9" -Exist. slope wall

> AT EAST AND WEST ABUTMENTS (Dimensions at Rt L's)

EXISTING BEARING REMOVAL DETAIL

I.	NTERIOR	R BEAM REACTION	N TABLE
		W. & E. Abuts.	Piers 1 & 2
R₽	(kips)	<i>17.1</i>	53.0
RŁ	(kips)	28.2	<i>33</i> .9
Imp.	(kips)	8.2	7.6
R (Total)	(kips)	53.5	94.5

BILL OF MATERIAL

Item	Unit	Total
Jack and Remove Existing Bearings	Each	12

	EAW				12/Ø5
REV.NO.	DRAWN	снкр.	APPD.	DESCRIPTION	DATE

F.A.S. RTE. 1588 OVER CURL CREEK SECTION 05-00189-00-BR Project RS-1588 (106) ADAMS COUNTY

MOMENT & REACTION TABLES. JACK AND REMOVE EXISTING BEARINGS STRUCTURE NUMBER 001-3027 STATION 336+56

		TITED TOD DE ALL MONE	ACT TIDLE	
		INTERIOR BEAM MOME		
		0,4 Sp. 1 & 0.6 Sp. 3	Piers 1 & 2	0.5 Sp. 2
Is	(in ⁴)	4461	4461	4461
Ic (n)	(in4)	12156		12 156
Ic (3n)	(in ⁴)	8857		8857
S <i>s</i>	(in ³)	299	299	299
Sc (n)	(in ³)	448		448
Sa (3n)	(in ³)	403	**************************************	403
2	(k/')	0.68	0.96	0.68
мD	('k)	104	230	77
s Đ	(k/')	0.28		0.28
MsP	('k)	47		43
W4	('k)	242	129	248
M (Imp)	('k)	71	37	69
75[M &+ M(Imp)]	('k)	522	277	528
Ма	('k)	874	659	843
fs⊉non-comp	(ksi)	4.2	9.2	<i>3.1</i>
fs⊉(comp)	(ksi)	1.4		1.3
fs53(4+Imp)	(ksi)	14.0	11.1	14.1
fs (Overload)	(ksi)	19,5	20.3	<i>18.5</i>
fs (Total)	(ksi)	25.4	26.4	24.1
VR	(kips)	40.0		42.6

Is and Ss are the moment of inertia and section modulus of the steel section used in computing fs (Total & Overload)

Ic(n) and Sc(n) are the moment of inertia and section modulus of the composite section used in computing stresses due to Live Load.

Ic(3n) and Sc(3n) are the moment of inertia and section modulus of the composite section used in computing stresses due to superimposed dead loads. (see AASHTO 10.38)

VR is the maximum Live Load + Impact shear range in span.

Ma (Applied Moment)=1.3[M \mathbb{Q} + Ms \mathbb{Q} +5 $\frac{1}{3}$ (M \mathbb{L} + MImp)].

fs (Overload) is the sum of the stresses due to MP + MsP + 53(M & + MIMD).

fs (Total) is the sum of the stresses due

to 1.3[MQ + MsQ + 53(M L + MIMD)].

 $M \not\!\! D$ - Moment due to dead loads on non-composite section. $\mathit{Ms} \, \overline{\mathbb{P}}$ - Moment due to dead loads on composite section.

M & - Moment due to live load on non-composite or composite section.

M(Imp) - Moment due to live load impact on non-composite or composite section.