# STRUCTURE GEOTECHNICAL REPORT

# **Proposed SN 037-0177**

Existing SN 037-0072

IL Route 78 over Indian Creek Route: FAP 22 (IL 78) Section: (14BR-1)BR Henry County

> PTB 146 - ITEM 26 P-94-004-01 Contract 68637

Prepared By: Adam D. Bohnhoff, P.E. Lin Engineering Ltd. 210 W. Chestnut Chatham, IL 62629 (217) 483-4168

Date: November 2010 (REVISED January 2011)

Prepared For: Michael Haley, P.E., S.E. Lin Engineering Ltd. 210 W. Chestnut Chatham, IL 62629 217-483-4168 Exhibits:A) Location Map

- B) Boring Locations
- C) Subsurface Data Profile
- D) Boring Logs
- E) Pile Design Table
- F) Slope Stability Graph

## Project Description and Proposed Structure Information

The project consists of replacing an existing 113.5' long and 35.7' wide three-span bridge with a new 120.0' long and 39.2' wide three-span structure. The proposed bridge includes integral abutments and solid wall encased pile bent piers which are skewed left ahead 15 degrees.

The project site lies on the dividing line of Section 27 and 28, Range 5E, Township 14N, in the 4<sup>th</sup> Principal Meridian about 4 miles south of Kewanee. A *Location Map* is included in Exhibit A.

The new bridge abutments and piers will be located beyond the limits of the existing bridge footprint in order to avoid conflict between existing and proposed foundations. Traffic will be maintained utilizing staged construction. The proposed profile grade is slightly changed from existing conditions from -0.20% to -0.30%.

### Existing Information

SN 037-0072 was originally constructed in 1958. Substructure elements include stub abutments on concrete piles and solid wall piers with a pile cap and untreated timber piles. Primary superstructure elements include five reinforced concrete T-beams that have a haunched web over the piers and a reinforced concrete deck. In 1984, repairs were made to the bridge which included: replacing deck joints, deck patching, new bituminous overlay, and new tubular steel thrie beam railing. Existing IL Route 78 over the structure has a horizontal tangent alignment and a constant -0.20% grade looking upstation.

The 1958 original design plans show that untreated timber piles with 20 ton capacity were used at the piers and the estimated pile length was 18 feet. Also, 32 ton capacity concrete piles approximately 37 feet long were used at the abutments. According to the boring logs provided in the same design plans the piles terminated in a layer of dense gray sand with a trace of gravel at an approximate elevation of  $\pm$ 700. A similarly described and located layer exists in the new boring logs.

# Site Investigation, Subsurface Exploration and Generalized Subsurface Conditions

The site is located in a rural setting primarily surrounded by agricultural fields. The channel is a natural drainage way and has a brush/timber lining on either side. Flow in the channel is generally from west to east. There are no known utilities that would conflict with construction.

The subsurface investigation consisted of four borings (B-1 through B-4) drilled by Testing Service Corporation, in September 2010. B-1 and B-4 were taken near the proposed north and south abutment locations respectively; B-2 and B-3 were taken near the proposed pier locations. *Boring Locations* can be found in Exhibit B.

Boring B-1 was taken 29 feet right of the centerline at station 93+35, B-2 was taken 30 feet left of the centerline at the station 94+20, B-3 was drilled at station 94+65 and 35 feet right of centerline, and B-4 was taken 35 feet left of centerline at station 95+15.

Beginning at the ground surface, standard penetration tests (SPT) were conducted every 2.5 feet to a depth of 30 feet and at 5 foot intervals thereafter according to AASHTO T 206 and the IDOT Geotechnical Manual. All four borings were terminated in shale bedrock approximately 53 to 58 feet below the ground surface. The three borings from the original bridge design plans stopped about 36 to 41 feet below the surface; therefore, the shale bedrock layer was not originally encountered. The borings from the original bridge design plans and the new borings are relatively consistent.

The borings generally encountered about 8 to 16 feet of silty clay loam layers having  $Q_u$  values of less than 0.25 to 2.75 tsf, SPT (N) values ranging from 2 to 12 blows per foot, and moisture contents ranging between 13% and 33%. Then approximately 31 to 39 feet of sand and silty loam layers were met with N values ranging from 0 to 46 blows per foot. Lastly the borings encountered the shale layer with N values over 100 and moisture contents ranging between 8% and 15%.

Further descriptions of the soil conditions encountered in the borings are presented in the *Boring Logs* attached in Exhibit D and the *Subsurface Data Profile* in Exhibit C.

## **Geotechnical Evaluations**

Settlement. There are no existing settlement issues at the site. Since there is only a miniscule profile grade change and given the use of driven pile foundations it is not expected that settlement issues will be present.

Approach Slab. Based on the available boring data, the approach slab will rest on adequate material with bearing capacities above the required 2 k.s.f.

*Slope Stability.* Stability analyses using Bishop's Method were performed for both the abutments using a 22 ft high 2H:1V end slope model which rendered a factor of safety of 3.1. No slope stability problems are expected.

Seismic Considerations. Based on the method described in the IDOT AGMU Memo 09.1 (LRFD Seismic Soil Site Class Definition), Soil Site Class D controls. The Design Spectral Acceleration at 1.0 sec ( $S_{D1}$ ) is 0.098g and at 0.2 sec ( $S_{Ds}$ ) is 0.151g. These values are based on a 1000 year design return period earthquake. According to AASHTO LRFD 3.10.6 the Seismic Performance Zone is 1 based on the 1.0 second design spectral acceleration.

*Liquefaction.* A liquefaction analysis was performed using the worksheet provided by IDOT BBS Central Geotechnical Unit. A design earthquake mean magnitude of 6.26 was realized using the USGS data and deaggregation methods provided at <u>http://eqint.cr.usgs.gov/deaggint/2008/</u>. The soil profiles were analyzed using the IDOT liquefaction spreadsheet and the results indicated that the factor of safety against liquefiable soil layers was adequate. As a result, there are no capacity reductions for pile design due to liquefaction.

*Scour.* The design scour elevations are presented in the table below and are subject to refinement in the final design. Design scour elevation at the abutments is equal to the proposed bottom of abutment elevation. Pier scour was checked using the 100 year

condition considering a proposed ground elevation of 728.7 with a total pier scour of 7.26 feet, however, the controlling elevation is the bottom of encasement at 716.99. Streambed material consists of Silty Clay Loam with  $Q_u < 0.50$  TSF and Sandy soils below. Following the IDOT BM Section 2.3.6.3.2 the scour depth should be taken as 100% and no reductions are recommended. Appropriately sized riprap end slope protection should be utilized.

| Design Scour    | North Abutment | Pier 1 | Pier 2 | South Abutment |
|-----------------|----------------|--------|--------|----------------|
| Elevation (ft.) | 736.4          | 716.99 | 716.99 | 736.0          |

*Mining Activity.* A review of The Illinois State Geological Survey (ISGS) "Directory of Coal Mines in Illinois" for Henry County indicates that no mining activity has been present at the project location.

# Foundation Evaluations and Design Recommendations

At each substructure location the preliminary factored loads are estimated to be:

| Abutments                                                          | Piers                                                                |  |
|--------------------------------------------------------------------|----------------------------------------------------------------------|--|
| Vertical = 908 kips<br>Longitudinal = 78 kips<br>Lateral = 21 kips | Vertical = 1800 kips<br>Longitudinal = 113 kips<br>Lateral = 31 kips |  |

Abutments. It is planned that integral abutments will be used since they are highly desired in order to eliminate bridge joints. Driven pile foundations are required for integral abutments. Closed abutments are typically not cost effective, especially on stream crossing situations. Shallow foundations with closed or semi-integral abutments would be cost-prohibitive and undesirable due to the soil conditions. Drilled shafts would cause the integral abutment option to get replaced with stub abutments which would introduce unwanted expansion joints to the bridge.

Given the above loadings and the desire to have a jointless bridge, integral abutments with driven H-piles or Metal Shell Piles is the most appropriate foundation type for this structure. Section 2.3.6.2.1 of the IDOT Bridge Manual permits the use of 14" Metal Shell and H-piles for bridges between 90 and 200 feet long. Since it is not certain that friction piles can achieve adequate resistance prior to encountering rock it is recommended that H-Piles driven to rock be utilized. Pile types and estimated lengths are presented in Exhibit E. The estimated lengths include a 2 foot embedment into the abutment and are based on top of pile elevations of 738.4 at the north abutment, and 738.0 at the south abutment. Analyses have been performed using the Modified IDOT Static Method for estimating nominal pile resistance.

Pile response to lateral loads was examined using a fixed connection to the abutment and a range of lateral loads was applied with a maximum of 15 kips. The estimated maximum deflections are 0.38" and 0.22" at the north and south abutments respectively. See Exhibit C for the appropriate soil parameters to be applied in the soil-structure interaction model. P-multipliers were not used in the preliminary design; the designer may elect to perform a more detailed lateral load analysis as necessary. Liquefaction, and scour reductions are not considered and are not included in the pile capacities given in the Pile Design Table.

*Piers.* It is planned that solid wall pile bent piers will be used. Shallow foundations would be cost-prohibitive and undesirable due to the soil conditions. Drilled shafts were not considered because the amount of drilling and construction makes them uneconomical when compared to driven piles. Driven H-piles or Metal Shell Piles are the most appropriate foundation type for this type of pier. Since it is not certain that friction piles can achieve adequate resistance prior to encountering rock it is recommended that H-Piles driven to rock be utilized. Pile types and estimated lengths are presented in Exhibit E. The estimated lengths include a 1 foot embedment into the pier cap and are based on top of pile elevations of 738.2. Analyses have been performed using the Modified IDOT Static Method for estimating nominal pile resistance.

Pile response to lateral loads was examined using a range of lateral loads with a maximum of 15 kips. The estimated maximum deflections are 0.68" at the piers. See Exhibit C for the appropriate soil parameters to be applied in the soil-structure interaction model. P-multipliers were not used in the preliminary design; the designer may elect to perform a more detailed lateral load analysis as necessary. Liquefaction, and scour reductions are not considered and are not included in the pile capacities given in the Pile Design Table.

## **Construction Considerations**

*Stage Construction.* Traffic is expected to be maintained using stage construction. The new structure will be constructed beyond the limits of the existing bridge. Temporary sheet piling is determined to be feasible, IDOT Design Guide 3.13.1 shall be used to compute the minimum required section modulus and embedment depth. The estimated retained height is 7 feet with an approximate dredge line elevation of 736.

Cofferdams and Underwater Structure Excavation Protection. While drilling, groundwater was encountered near elevation 718 at the pier borings, and about 721 at the abutment borings. The local water surface elevation was recorded as elevation 720.8. Following Section 2.3.6.4.2 of 2009 IDOT Bridge Manual the estimated water surface elevation (EWSE) is computed to be around 723.38 for the assumed construction season. It is recommended that underwater structure excavation protection be utilized at the pier locations to divert water during high flow conditions.

*Foundation Construction.* It is anticipated that the solid wall encased bent piers will require underwater structure excavation protection systems. Each substructure 'unit should utilize pile encasements. Bottom of abutment elevations are estimated to be 736.4 for the north abutment and 736.0 for the south abutment, and bottom of pier wall elevations are around 720 for each pier. The rock line is pretty well defined in the boring logs so only one test pile at one abutment and one test pile at one pier is recommended. To prevent the risk of damage from hard driving pile shoes are recommended.

## Limitations

The recommendations provided herein are for the exclusive use of IDOT and Maurer-Stutz Inc. They are specific only to the project described, and are based on subsurface information obtained at boring locations within the bridge area, our understanding of the project as described herein, and geotechnical engineering practice consistent with the standard of care. No other warranty is expressed or implied. Lin Engineering should be contacted if conditions encountered during construction are not consistent with those described.





# IL 78 over Indian Creek SN 037-0177

Lin Engineering, Ltd.

# **EXHIBIT B – BORING LOCATIONS**



7 of 24

# IL 78 over Indian Creek SN 037-0177

**EXHIBIT C – SUBSTRUCTURE DATA PROFILE** 

| ILLINOIS DEPARTMENT OF TRANSPORTATION<br>Testing Service Corporation Page 1 of 2<br>STRUCTURE BORING LOG Date <u>9/8/10</u>                                                            |                                                                                                                                                   |                                       |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--|--|--|--|
| ROUTE IL 78 DESCRIPT                                                                                                                                                                   | ION Bridge Over Indian Creek                                                                                                                      |                                       |  |  |  |  |
| SECT. (14-BR-1)BR ST                                                                                                                                                                   | RUCT. NO. 037-0177 DRILLED BY <u>B. V</u>                                                                                                         | Villiamson                            |  |  |  |  |
| COUNTY Henry LOCATIO                                                                                                                                                                   | NS2 <u>7/2</u> 8, TWP14                                                                                                                           | N, RNG <u>5E</u>                      |  |  |  |  |
| Boring No.         B-1 N. Abutment         D           Station         93+35         E           Offset         29.00ft RT         P           Surface Elev.         742.10         ft | B     Surface Water Elev.     720.8       L     Groundwater Elev.:     E       O     when drilling     720.1       W     Qu     W       S     tsf | L<br>O<br>W Qu W                      |  |  |  |  |
| Stiff brown SILTY CLAY                                                                                                                                                                 | S     tsf     %     after     Hrs.       Medium dense gray fine to                                                                                | S tsf %                               |  |  |  |  |
| LOAM, moist                                                                                                                                                                            | medium SAND, saturated                                                                                                                            | 4                                     |  |  |  |  |
|                                                                                                                                                                                        | 2 P 21<br>2 1.25<br>2                                                                                                                             |                                       |  |  |  |  |
| · · · _                                                                                                                                                                                |                                                                                                                                                   | -                                     |  |  |  |  |
| · · _                                                                                                                                                                                  | 2 B 25<br>2 1.35                                                                                                                                  | 6<br>5                                |  |  |  |  |
|                                                                                                                                                                                        |                                                                                                                                                   |                                       |  |  |  |  |
|                                                                                                                                                                                        | -                                                                                                                                                 |                                       |  |  |  |  |
|                                                                                                                                                                                        | 2 B 21<br>2 1.56<br>3 Loose gray SILT very moist                                                                                                  |                                       |  |  |  |  |
| 734.10                                                                                                                                                                                 | 3 Loose gray SILT, very moist                                                                                                                     |                                       |  |  |  |  |
| Stiff dark brown SILTY<br>CLAY LOAM, moist to very                                                                                                                                     | 2 P 19 -                                                                                                                                          | 4 24                                  |  |  |  |  |
| moist                                                                                                                                                                                  | 3 1.0<br>3                                                                                                                                        | 2                                     |  |  |  |  |
|                                                                                                                                                                                        |                                                                                                                                                   |                                       |  |  |  |  |
|                                                                                                                                                                                        | 0 P 33<br>2 1.0<br>3 Stiff gray SILTY LOAM                                                                                                        |                                       |  |  |  |  |
|                                                                                                                                                                                        | 3 Stiff gray SILTY LOAM,                                                                                                                          |                                       |  |  |  |  |
|                                                                                                                                                                                        | 1 B 20                                                                                                                                            |                                       |  |  |  |  |
|                                                                                                                                                                                        | 2 1.37                                                                                                                                            | 3 P 20<br>4 1.25                      |  |  |  |  |
| <u>-15</u>                                                                                                                                                                             |                                                                                                                                                   | 5                                     |  |  |  |  |
| Very loose dark brown                                                                                                                                                                  | 1 24                                                                                                                                              | r                                     |  |  |  |  |
|                                                                                                                                                                                        | 1                                                                                                                                                 |                                       |  |  |  |  |
| Very loose gray SANDY                                                                                                                                                                  |                                                                                                                                                   |                                       |  |  |  |  |
| LOÁM, very moist to wet                                                                                                                                                                |                                                                                                                                                   | 3 P 20<br>6 1.75                      |  |  |  |  |
|                                                                                                                                                                                        |                                                                                                                                                   | 10                                    |  |  |  |  |
|                                                                                                                                                                                        | 1 28                                                                                                                                              |                                       |  |  |  |  |
|                                                                                                                                                                                        |                                                                                                                                                   |                                       |  |  |  |  |
|                                                                                                                                                                                        |                                                                                                                                                   |                                       |  |  |  |  |
| gray fine to medium SAND,                                                                                                                                                              | 0 2                                                                                                                                               | 4 P 11                                |  |  |  |  |
| -25                                                                                                                                                                                    | 2                                                                                                                                                 | 4 1.5<br>4                            |  |  |  |  |
| SPT. (N) = Sum of last two blow values in<br><u>Stations. Depths. Offset. and Elevations a</u>                                                                                         | sample. (Qu) B=Bulge S=Shear P=Penetration Test                                                                                                   | · · · · · · · · · · · · · · · · · · · |  |  |  |  |

# ILLINOIS DEPARTMENT OF TRANSPORTATION Testing Service Corporation STRUCTURE BORING LOG Page 2 of 2 Date <u>9/8</u>/10 STRUCTURE NO. <u>037-0177</u> ROUTE <u>IL 78</u>\_\_\_\_\_ SECTION (14-BR-1)BR COUNTY Henry B-1 N. Abutment Boring No. D В 93+35 29.00ft RT Station Ē P T L O W Offset W Qu Elevation 692.10 ft Н S tsf % Stiff gray SILTY LOAM, moisť 689.10 Medium dense gray fine to medium SAND, saturated 4 10 10 687.10 54 Very dense gray SHALE with limestone fragments 33 100/3" 684.10 End of Boring at 58.0' -Auger Refusal -60 -75 SPT. (N) = Sum of last two blow values in sample. (Qu) B=Bulge S=Shear P=Penetration Test Stations. Depths. Offset, and Elevations are in Feet

IL 78 over Indian Creek SN 037-0177

| ILLI                                                                                                                                                 |                                 | Testing \$       | Servi   | OF TRANSPORTATION<br>ce Corporation<br>BORING LOG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       | Page 1 of 2<br>Date9/7/10        |
|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------|
| ROUTE <u>IL 78</u> DESCR                                                                                                                             | IPTION                          | Bridge O         | ver Ind | dian Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |                                  |
| SECT. (14-BR-1)BR                                                                                                                                    | STRUCT                          | г. NO. <u>03</u> | 7-017   | 7 DRILLED BY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | B. Wil                | liamson                          |
| COUNTY <u>Henry</u> LOCA                                                                                                                             |                                 |                  |         | S <u>27/28,</u> TWP.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14N                   | _ , RNG. <u>5E</u>               |
| Boring No.         B-2 N. Pier           Station         94+20           Offset         30.00ft LT           Surface Elev.         730.50         ft | D E<br>E L<br>P C<br>T W<br>H S | D<br>V Qu        | W<br>%  | Surface Water Elev. <u>720.8</u><br>Groundwater Elev.:<br>when drilling <u>717.5</u><br>at Completion <u></u><br>after Hrs. <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D<br>E<br>P<br>T<br>H | B<br>L<br>O<br>W Qu W<br>S tsf % |
| Medium stiff dark brown                                                                                                                              |                                 |                  | 70      | Very stiff gray SILTY LOAM,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       | 3 ISI 70                         |
| SILTY CLAY LOAM, moist                                                                                                                               |                                 | 1.0              | 24      | moist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | 3 S 13<br>7 2.64<br>10           |
| 727.50<br>Soft dark brown SILTY<br>CLAY LOAM, very moist                                                                                             |                                 | <0.25            | 29      | 702.50<br>Medium dense to loose gray<br>fine to medium SAND,<br>saturated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       | 3<br>6<br>11                     |
| 724.50<br>Very soft brown-gray SILTY<br>CLAY LOAM, moist to very<br>moist                                                                            |                                 | 2 <0.25          | 25      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                                  |
| -                                                                                                                                                    | 1<br>1<br>2                     | <0.25            | 27      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -35                   | 3<br>6<br>9                      |
| Tree root in Sample 5.<br>717.50                                                                                                                     |                                 | >                | 24      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                                  |
| Medium dense brown fine to<br>medium SAND, saturated                                                                                                 | 2<br>7<br>6                     | •                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       | 3<br>1<br>4                      |
| 12" Blow-in sand at 16' -<br>Washed out.                                                                                                             |                                 |                  |         | 11' Blow-in sand at 43.5' -<br>Washed out.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       | ł                                |
| 12" Blow-in sand at 18.5' -<br>Washed out.<br>-                                                                                                      |                                 | 0                |         | 686.50<br>Very dense gray SHALE<br>with limestone fragments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       | 23 10<br>100/3"                  |
| 709.50<br>Very stiff gray SILTY LOAM,<br>moist                                                                                                       |                                 |                  | 11      | N. Contraction of the second sec |                       |                                  |
|                                                                                                                                                      | 3<br>3<br>3                     | 2.56             | 10      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -50                   | 100/5" 15                        |
| SPT. (N) = Sum of last two blow values in sample. (Qu) B=Bulge S=Shear P=Penetration Test<br>Stations, Depths, Offset, and Elevations are in Feet    |                                 |                  |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                                  |

| ILL.                                                                                                                                             | INOIS DEF<br>Te<br>ST           | PARTI<br>sting :<br>RUCT | MEN<br>Servi<br>TURE | OF TRANSPORTATION<br>ce Corporation<br>BORING LOG | Date | Page 2 of 2<br>9/7/10 |
|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------|----------------------|---------------------------------------------------|------|-----------------------|
| STRUCTURE NO. <u>037-0177</u><br>ROUTE <u>IL 78</u><br>SECTION <u>(14-BR-1)BR</u><br>COUNTY <u>Henry</u>                                         |                                 |                          |                      |                                                   |      |                       |
| Boring No.         B-2 N. Pier           Station         94+20           Offset         30.00ft LT           Elevation         680.50         ft | D B<br>E L<br>P O<br>T W<br>H S | Qu<br>tsf                | W<br>%               |                                                   |      |                       |
| Very dense gray SHALE<br>with limestone fragments                                                                                                |                                 | <u> </u>                 |                      |                                                   |      |                       |
| End of Boring at 53.0' -<br>Auger Refusal                                                                                                        | 40<br>                          |                          |                      |                                                   |      |                       |
|                                                                                                                                                  |                                 |                          |                      |                                                   |      |                       |
| SPT. (N) = Sum of last two blow valu                                                                                                             |                                 |                          |                      | · · · · · · · · · · · · · · · · · · ·             |      |                       |

|                                                                                                                                              | NOIS DEPARTMENT OF TRANSPORTATION<br>Testing Service Corporation<br>STRUCTURE BORING LOG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Page 1 of 2<br>Date9/9/10      |
|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| ROUTE <u>IL 78</u> DESCF                                                                                                                     | IPTION Bridge Over Indian Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |
| SECT. (14-BR-1)BR                                                                                                                            | STRUCT. NO. 037-0177 DRILLED BY _E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3. Williamson                  |
| COUNTY Henry LOCA                                                                                                                            | TION S2 <u>7/28,</u> TWP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>14N</u> , RNG. <u>5E</u>    |
| Boring No.         B-3 S. Pier           Station         94+65           Offset         35.00ft RT           Surface Elev.         729.80 ft | D     B     Surface Water Elev.     720.8       E     L     Groundwater Elev.:     717.8       P     O     when drilling     717.8       T     W     Qu     W     at Completion       H     S     tsf     %     after                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | D B E L P O T W Qu W H S tsf % |
| Soft dark brown SILTY                                                                                                                        | H         S         tsf         %         after         Hrs.         Hrs. | H S tsf %                      |
| CLAY LOAM, moist                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |
|                                                                                                                                              | 1 0.5 12" Blow-in sand at 26' -<br>Washed out.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3 P 14<br>9 2.5<br>10          |
|                                                                                                                                              | Medium dense gray fine to       3     P     23       2     0.5     36" Blow-in sand at 28.5' -       -5     3     Washed out.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5<br>6<br>-30 14               |
| 723.80<br>Very soft brown-gray SILTY<br>CLAY LOAM, moist                                                                                     | 0 P 24<br>2 <0.25697.80<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |
|                                                                                                                                              | SAND, saturated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |
| 718.80<br>Loose brown fine to medium<br>SAND, saturated                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |
| 9" Blow-in sand at 16.0' -<br>Washed out. 712.80                                                                                             | $ \begin{array}{c}                                     $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13 P 16<br>20 4.5+<br>26       |
| Medium dense to dense<br>brown fine to coarse SAND,<br>saturated<br>12" Blow-in sand at 18.5' -<br>Washed out.                               | 12686.80<br>Very dense gray SHALE<br>13<br>20 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                |
| 12" Blow-in sand at 21' -<br>Washed out.<br>706.80                                                                                           | <u>-20</u> 15<br><u>-</u> 15<br><u>-</u> 15<br><u>-</u> 17<br><u>-</u> 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                |
| Very stiff gray SILTY LOAM, moist                                                                                                            | $ \begin{array}{c} - & 5 & P & 10 \\ - & 7 & 2.0 \\ - & 7 & 7 \\ - & 7 & 7 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u></u>                        |
| SPT. (N) = Sum of last two blow valu<br>Stations, Depths, Offset, and Elevation                                                              | es in sample. (Qu) B=Bulge S=Shear P=Penetration Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |

|                                                                                                                                                  | NOIS DEI<br>Te<br>ST            | PARTN<br>esting {<br>RUCT | /EN<br>Servi<br>URE | COF TRANS<br>ce Corporati<br>BORING LO | SPORTA<br>ion<br>OG | TION    | Date | Page 2<br>9/9/ | of 2<br>10 |
|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------|---------------------|----------------------------------------|---------------------|---------|------|----------------|------------|
| STRUCTURE NO. <u>037-0177</u><br>ROUTE <u>IL 78</u><br>SECTION <u>(14-BR-1)BR</u><br>COUNTY <u>Henry</u>                                         |                                 |                           |                     |                                        |                     |         |      |                |            |
| Boring No.         B-3 S. Pier           Station         94+65           Offset         35.00ft RT           Elevation         679.80         ft | D B<br>E L<br>P O<br>T W<br>H S | Qu<br>tsf                 | W<br>%              |                                        |                     |         |      |                |            |
| Very dense gray SHALE                                                                                                                            |                                 |                           | 70                  |                                        |                     |         |      |                |            |
| Very dense gray of IALL                                                                                                                          |                                 |                           |                     |                                        |                     |         |      |                |            |
| 674.80                                                                                                                                           | 21<br>100/3"<br>55<br>          |                           | 8                   |                                        |                     |         |      | ·              |            |
| End of Boring at 55.0' -<br>Auger Refusal                                                                                                        |                                 |                           |                     |                                        |                     |         |      |                |            |
| -                                                                                                                                                | 60<br>                          |                           |                     |                                        |                     |         |      |                |            |
|                                                                                                                                                  |                                 | -                         |                     |                                        |                     |         |      |                |            |
| · · · ·                                                                                                                                          |                                 |                           |                     |                                        |                     |         |      | r              |            |
| -                                                                                                                                                | <br>                            | •                         |                     |                                        |                     |         |      |                |            |
|                                                                                                                                                  |                                 |                           |                     | ×                                      |                     |         |      |                |            |
|                                                                                                                                                  | <u>-75</u><br>es in sample      | e. (Qu)                   | B=Bu                | l<br>Ige S=Shear F                     | >=Penetrati         | on Test |      |                |            |

IL 78 over Indian Creek SN 037-0177

| IL                                                                                                                                                | LINOIS DEPARTMENT OF TRANSPORTATION<br>Testing Service Corporation<br>STRUCTURE BORING LOG                            | Page 1 of 2<br>Date <u>9/8/10</u> |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------|--|--|
| ROUTE <u>IL 78</u> DESC                                                                                                                           | RIPTION Bridge Over Indian Creek                                                                                      |                                   |  |  |
| SECT. (14-BR-1)BR                                                                                                                                 | STRUCT. NO. 037-0177 DRILLED BY B. W                                                                                  | illiamson                         |  |  |
| COUNTY <u>Henry</u> LOC                                                                                                                           | ATION                                                                                                                 | L_, RNG. <u>5E</u>                |  |  |
| Boring No.         B-4 S. Abutment           Station         95+15           Offset         35.00ft LT                                            | DBSurface Water Elev.720.8DELGroundwater Elev.:EPOwhen drilling721.7PTWQuWat CompletionT                              | B<br>L<br>O<br>W Qu W             |  |  |
| Surface Elev. 732.70 ft                                                                                                                           | H S tsf % after Hrs H                                                                                                 | S tsf %                           |  |  |
| Very stiff brown SILTY<br>CLAY LOAM, moist                                                                                                        | Very stiff gray SILTY LOAM,<br>moist                                                                                  |                                   |  |  |
| 729.7(                                                                                                                                            | 4 P 16<br>4 2.0                                                                                                       | 7 P 13<br>7 2.0<br>8              |  |  |
| Very stiff to stiff dark brown<br>SILTY CLAY LOAM, moist                                                                                          | 3         P         26         12" Blow-in sand at 28.5' -                                                            | 6 S 11<br>6 2.52<br>7             |  |  |
|                                                                                                                                                   | 2 P 25<br>3 1.75<br>4 Very loose gray fine to                                                                         |                                   |  |  |
| 724.70<br>Very loose brown-gray<br>SANDY LOAM, moist                                                                                              | medium SAND, saturated           1         17         12" Blow-in sand at 33.5' -           1         Washed out.     | 0                                 |  |  |
| Loose to very loose gray<br>fine to medium SAND,<br>saturated                                                                                     | -10     2     -35        696.70     -        1     Dense gray fine to coarse     -        3     SAND, saturated     - |                                   |  |  |
|                                                                                                                                                   |                                                                                                                       | 7 11<br>15<br>16                  |  |  |
| 716.70<br>Very soft gray SILTY CLAY<br>LOAM, very moist                                                                                           | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                 | r                                 |  |  |
| · · ·                                                                                                                                             | 2 P 30<br>2 <0.25<br>                                                                                                 | 3<br>18<br>100/5"                 |  |  |
| 711.70<br>Medium dense gray fine to<br>medium SAND, saturated                                                                                     | 6<br>10<br>12                                                                                                         |                                   |  |  |
| 709.70<br>Stiff to very stiff gray SILTY<br>LOAM, moist                                                                                           |                                                                                                                       | 100/5"                            |  |  |
| SPT. (N) = Sum of last two blow values in sample. (Qu) B=Bulge S=Shear P=Penetration Test<br>Stations. Depths. Offset, and Elevations are in Feet |                                                                                                                       |                                   |  |  |

# ILLINOIS DEPARTMENT OF TRANSPORTATION **Testing Service Corporation** Page 2 of 2 STRUČTURE BORING LOG Date \_\_\_\_\_9/8/10 STRUCTURE NO. <u>037-0177</u> ROUTE <u>IL 78</u> SECTION <u>(14-BR-1)BR</u> COUNTY <u>Henry</u> B-4 S. Abutment Boring No. DEPT В 95+15 Station \_ L Offset 35.00ft LT ō Ŵ W Qu Elevation 682.70 ft Н s tsf % Very dense gray SHALE 33 100/4" 13 679.20 End of Boring at 53.5' -Auger Refusal -75 SPT. (N) = Sum of last two blow values in sample. (Qu) B=Bulge S=Shear P=Penetration Test Stations. Depths. Offset, and Elevations are in Feet

### MODIFIED IDOT STATIC METHOD OF ESTIMATING PILE LENGTH Modified 5/3/2010

I.D.O.T. BBS FOUNDATIONS AND GEOTECHNICAL UNIT

#### MAX. REQUIRED BEARING & RESISTANCE for Selected Pile, Soil Profile, & Losses

| Maximum Nominal       | Maximum Nominal         | Maximum Factored               | Maximum Pile               |
|-----------------------|-------------------------|--------------------------------|----------------------------|
| Reo'd Bearing of Pile | Req.d Bearing of Boring | Resistance Available in Boring | Driveable Length in Boring |
| 454 KIPS              | 454 KIPS                | 250 KIPS                       | 53 Below Boring            |

| SUBSTRUCTURE====================================                                                                       |
|------------------------------------------------------------------------------------------------------------------------|
| GROUND SURFACE ELEV. AT BORING =======742.10 FT.                                                                       |
| PILE CUTOFF ELEV. ====================================                                                                 |
| GROUND SURFACE ELEV. AGAINST PILE DURING DRIV 733340 FT.<br>GROUND WATER ELEVATION==================================== |
| HAMMER EFFICIENCY====================================                                                                  |
| LRFD or ASD or SEISMIC                                                                                                 |

 10 JAL FACTORED SUBSTRUCTURE LOAD
 9008 KIPS

 TOTAL WIDTH OF SUBSTRUCTURE
 40.655 FT.

 NUMBER OF ROWS OF PILES PER SUBSTRUCTURE =
 40.655 FT.

 Approx. Factored Loading Applied per pile at 8 ft. Cts =====
 179.14 KIPS

 Approx. Factored Loading Applied per pile at 3 ft. Cts =====
 67.18 KIPS

 PILE TYPE AND SIZE
 Steel HP 10:X 57

 Plugged Pile Perimeter
 3.365
 FT.
 Unplugged Pile Perimeter
 4.883
 FT.

 Plugged Pile End Bearing Area
 0.708
 SQFT.
 Unplugged Pile End Bearing Area
 0.117
 SQFT.

| BOT.<br>OF                                                                                                                  |                                                                      | UNCONF;                         | S.P.T.                | GRANULÄR                                                                                                                             | NOMINAL PLUGGED                                                                                                |                                                                                        | NOMINAL UNPLUGID                                                                                                                                                               |                                                                                                                |                                                                           | NOMINAL                                                                                                                    | FACTORED<br>NOMINAL GEOTECH.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    | FACTORED<br>GEOTECH. FACTORED                                                                         | ESTIMATED                                                                                      |                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| LAYER<br>ELEV.<br>(FT.)                                                                                                     | LAYER<br>THICK.<br>(FT.)                                             | COMPR.<br>STRENGTH<br>(TSF.)    | N<br>VALUE<br>(BLOWS) | OR ROCK LAYER<br>DESCRIPTION                                                                                                         | SIDE<br>RESIST.<br>(KIPS)                                                                                      | END BRG.<br>RESIST.<br>(KIPS)                                                          | TOTAL<br>RESIST.<br>(KIPS)                                                                                                                                                     | SIDE<br>RESIST.<br>(KIPS)                                                                                      | END BRG.<br>RESIST.<br>(KIPS)                                             | TOTAL<br>RESIST.<br>(KIPS)                                                                                                 | REQ'D<br>BEARING<br>(KIPS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LOSS FROM<br>SCOUR or DD<br>(KIPS) | LOSS LOAD<br>FROM DD                                                                                  | RESISTANCE<br>AVAILABLE                                                                        | PILE<br>LENGTH                                                                                       |
| 730.90<br>722.40<br>722.90<br>722.90<br>717.50<br>717.50<br>640<br>701.40<br>696.40<br>688.40<br>688.40<br>688.40<br>688.40 | 2.50<br>3.50<br>2.00<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>4.00 | 125<br>125<br>125<br>175<br>150 | 1149 m 4 12 0 A       | Very The Sity Sand<br>Very The Sity Sand<br>Very The Sity Sand<br>Medium Sand<br>Medium Sand<br>Very The Sity Sand<br>Shale<br>Shale | (XIP3)<br>12:0<br>21:3<br>0.4<br>0.5<br>0.8<br>1.2<br>4.0<br>5.4<br>2:1<br>28:5<br>38:9<br>4.4<br>42:0<br>42:0 | 9.1<br>2.6<br>4.0<br>7.1<br>23.0<br>19.4<br>5.3<br>8.3<br>88.3<br>88.3<br>88.3<br>88.3 | (1273)<br>21.1<br>35.9<br>36.4<br>38.2<br>42.1<br>59.2<br>59.7<br>50.9<br>56.0<br>87.8<br>56.0<br>87.8<br>722.2<br>182.9<br>243.9<br>243.9<br>243.9<br>243.9<br>243.9<br>243.9 | (NCS)<br>17.4<br>30.9<br>0.6<br>0.8<br>1.1<br>1.8<br>5.3<br>7.8<br>3.0<br>41.3<br>52.2<br>56.4<br>60.9<br>60.9 | 1.5<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4 | 18.9<br>48.7<br>49.4<br>50.3<br>52.0<br>56.4<br>61.6<br>67.1<br>70.7<br>112.5<br>124.5<br>224.6<br>240.3<br>301.2<br>362.2 | (707-57)<br>19.<br>36.<br>36.<br>38.<br>42.<br>56.<br>60.<br>51.<br>56.<br>88.<br>122.<br>183.<br>285.<br>328.<br>328.<br>328.<br>328.<br>328.<br>328.<br>328.<br>328.<br>328.<br>328.<br>328.<br>328.<br>328.<br>328.<br>328.<br>328.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>329.<br>32.<br>32.<br>32.<br>32.<br>32.<br>32.<br>32.<br>32 |                                    | (KIPS)<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | (KUPS)<br>10<br>20<br>21<br>23<br>31<br>33<br>28<br>31<br>48<br>67<br>101<br>152<br>157<br>180 | (FT.)<br>8<br>11<br>13<br>16<br>18<br>21<br>23<br>27<br>32<br>37<br>42<br>48<br>50<br>51<br>52<br>51 |
| ·                                                                                                                           |                                                                      |                                 |                       |                                                                                                                                      |                                                                                                                |                                                                                        |                                                                                                                                                                                |                                                                                                                |                                                                           | ì                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                    | . •                                                                                                   |                                                                                                |                                                                                                      |
|                                                                                                                             | 10/22/20                                                             | 10                              |                       |                                                                                                                                      |                                                                                                                | ' Pile I                                                                               | Length vs.                                                                                                                                                                     | Capacity                                                                                                       | y Analysis                                                                |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                    | B-1_Modified                                                                                          | IDOT Pile Leng                                                                                 | th.xls                                                                                               |

#### MODIFIED IDOT STATIC METHOD OF ESTIMATING PILE LENGTH Modified 5/3/2010

I.D.O.T. BBS FOUNDATIONS AND GEOTECHNICAL UNIT SUBSTRUCTURE Pier1 REFERENCE BORING B21 GROUND SURFACE ELEV. AT BORING 730:50 FT. GROUND SURFACE ELEV. AGAINST PILE DURING DRIV GROUND SURFACE ELEV. AGAINST PILE DURING DRIV 716:99 FT. GROUND WATER ELEVATION FT. HAMMER EFFICIENCY 722:10 FT. HAMMER SEFFICIENCY 73%

| MAX. REQUIRED BEARING & | RESISTANCE for Selected Pile, Soil Profile, & Losses |
|-------------------------|------------------------------------------------------|
|                         |                                                      |

| Maximum Nominal       | Maximum Nominal         | Maximum Factored               | Maximum Pile.              |
|-----------------------|-------------------------|--------------------------------|----------------------------|
| Req'd Bearing of Pile | Req.d Bearing of Boring | Resistance Available in Boring | Driveable Length in Boring |
| 454 KIPS              | 447 KIPS                | 246 KIPS                       | 57 FT.                     |

LRFD LRFD or ASD or SEISMIC === TOTAL FACTORED SUBSTRUCTURE LOAD 1800 KIPS TOTAL WIDTH OF SUBSTRUCTURE ======40.55 FT. NUMBER OF ROWS OF PILES PER SUBSTRUCTURE ==\_\_\_\_\_\_1

Approx. Factored Loading Applied per pile at 8 ft. Cts ===== 355.13 KIPS Approx. Factored Loading Applied per pile at 3 ft. Cts ===== 133.17 KIPS

PILE TYPE AND SIZE =====

 YPE AND SIZE
 Steel HP 10 X 57

 Plugged Pile Perimeter===========
 3.385 FT,
 Unplugged Pile Perimeter=========

 Plugged Pile End Bearing Area=====
 0.708 SQFT,
 Unplugged Pile End Bearing Area====

| BOT.<br>OF<br>LAYER<br>ELEV.<br>(FT.)                                                                                                                                                               | LAYER<br>THICK.<br>(FT.) | UNCONF.<br>COMPR.<br>STRENGTH<br>(TSF.) | S.P.T.<br>N<br>VALUE<br>(BLOWS)          | GRANULAR<br>DR ROCK LAYER<br>DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MINAL PLU<br>END BRG.<br>RESIST.<br>(KIPS)                                            | GGED<br>TOTAL<br>RESIST.<br>(KIPS)                                                                                                                          | NOM<br>SIDE<br>RESIST.<br>(KIPS)                                                                                                           | MINAL UNPLU<br>END BRG.<br>RESIST.<br>(KIPS)                                         | JG'D<br>TOTAL<br>RESIST.<br>(KIPS)                                                                                                                                                                       | NOMINAL<br>REQ'D<br>BEARING<br>(KIPS)                                                         | FACTORED<br>GEOTECH.<br>LOSS FROM<br>SCOUR or DD<br>(KIPS) | FACTORED<br>GEOTECH.<br>LOSS LOAD<br>FROM DD<br>(KIPS) | FACTORED<br>RESISTANCE<br>AVAILABLE<br>(KIPS)                                                                  | ESTIMATED<br>PILE<br>LENGTH<br>(FT.)                                                                                                          |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--|
| (***)<br>714.49<br>710.80<br>705.80<br>705.80<br>693.80<br>693.80<br>693.80<br>693.80<br>684.80<br>684.80<br>684.80<br>684.80<br>684.80<br>684.80<br>684.80<br>684.80<br>684.80<br>684.80<br>684.80 |                          | (184)                                   | 19 19 19 19 19 19 19 19 19 19 19 19 19 1 | Fine Sand<br>Fine Sand<br>Fine Sand<br>Fine Sand<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale<br>Sha<br>Sha<br>Sha<br>Sha<br>Sha<br>Sha<br>Sha<br>Sha<br>Sha<br>Sha | (10/2)<br>8.9<br>11.1<br>22.1<br>18.9<br>11.0<br>9.2<br>3.5<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>4 | (KPS)<br>34.1<br>16.6<br>28.3<br>88.3<br>28.3<br>28.3<br>28.3<br>28.3<br>28.3<br>28.3 | (705)<br>44.0<br>57.7<br>87.3<br>176.2<br>121.9<br>171.7<br>194.6<br>320.6<br>320.6<br>320.6<br>320.6<br>320.6<br>320.6<br>352.6<br>404.5<br>404.5<br>404.5 | (10-5)<br>10-1<br>16-1<br>32-9<br>33.5<br>27.4<br>15.9<br>33.5<br>13.4<br>5.0<br>9<br>60.9<br>60.9<br>60.9<br>60.9<br>60.9<br>60.9<br>60.9 | (1,3-5)<br>5.6<br>2.7<br>1.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5 | (KH-S)<br>15.7<br>28.9<br>61.9<br>95.5<br>120.5<br>140.5<br>150.7<br>140.5<br>150.7<br>140.5<br>150.7<br>151.7<br>122.8<br>229.8<br>229.8<br>229.7<br>351.7<br>412.6<br>473.6<br>534.5<br>595.5<br>656.4 | (IUSS)<br>16<br>29<br>58<br>81<br>115<br>122<br>112<br>230<br>279<br>321<br>363<br>405<br>534 |                                                            |                                                        | (KP/S)<br>9<br>16<br>32<br>45<br>64<br>61<br>93<br>126<br>153<br>126<br>153<br>176<br>199<br>223<br>245<br>292 | (P17)<br>24<br>28<br>30<br>33<br>35<br>40<br>45<br>51,5<br>52,5<br>52,5<br>52,5<br>54,5<br>55,5<br>56,5<br>56,5<br>56,5<br>56,5<br>56,5<br>56 |  |
|                                                                                                                                                                                                     | 10/22/20                 | 10                                      |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 'Pile I                                                                               | Length vs.                                                                                                                                                  | Capacitj                                                                                                                                   | y Analysis                                                                           |                                                                                                                                                                                                          |                                                                                               |                                                            | B-2_Modified                                           | IDOT Pile Leng                                                                                                 | jth.xls                                                                                                                                       |  |

### **EXHIBIT E - PILE DESIGN TABLE**

|                                                                                 | JRE=======<br>BORING ===                                                                                               |                                                                     |                                                                                                                   | Pier 2<br>B-3                            |                                        |                    | MAX. F                           | EQUIRED                                      | BEARIN                             | IG & RES                                    | STANCE for                                                 | Selected Pil                                           | e, Soil Profil                                | e, & Losses                               |
|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------|--------------------|----------------------------------|----------------------------------------------|------------------------------------|---------------------------------------------|------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------|-------------------------------------------|
| OUTOFF<br>IND SUR<br>IND WAT                                                    | ELEV. ====<br>RFACE ELEV<br>TER ELEVA<br>ICIENCY===                                                                    | /. AGAIN<br>TION===                                                 | RING                                                                                                              | 722.10<br>7:                             | FT.<br>FT.<br>FT.<br>%                 |                    | Req'd Be                         | m Nominal<br>anng of <u>Pile</u><br>KIPS     | Req.d Be                           | um Nominal<br>aning of <u>Borin</u><br>KIPS | Resistance Av                                              | I Factored<br>ailable in <u>Borinc</u><br>KIPS         | Driveable Le                                  | rum Pile<br>ingth in <u>Borinc</u><br>FT. |
| L WIDTH<br>ER OF F<br>Approx<br>Approx<br>TYPE AN<br>Plugge<br>Plugge<br>ECHNIC | I OF SUBST<br>ROWS OF P<br>C Factored L<br>C Factored L<br>D SIZE ====<br>ad Pile Perím<br>ad Pile End E<br>AL LOSS TO | RUCTUR<br>ILES PEF<br>oading A<br>oading A<br>eter====<br>Bearing A | rea====== 0.708                                                                                                   | 40.55<br>1<br>2ts<br>2ts<br>FT.<br>SQFT. | FT.<br>= 355.13<br>= 133.17<br>Unplugg | KIPS<br>ed Pile Pe |                                  | Area===                                      |                                    |                                             |                                                            |                                                        |                                               |                                           |
|                                                                                 |                                                                                                                        | R, LIQUE                                                            | e, Scour, Liquef., DD)<br>EF., or DD ========<br>ibove apply DD) ====<br>GRANULAR<br>OR ROCK LAYER<br>DESCRIPTION | 0.00                                     | FT.                                    |                    | NOJ<br>SIDE<br>RES/ST.<br>(KIPS) | MINAL UNPLI<br>END BRG.<br>RESIST.<br>(KIPS) | JG'D<br>TOTAL<br>RESIST.<br>(KIPS) | NOMINAL<br>REQ'D<br>BEARING<br>(KIPS)       | FACTORED<br>GEOTECH,<br>LCSS FROM<br>SCOUR or DD<br>(KIPS) | FACTORED<br>GEOTECH,<br>LOSS LOAD<br>FROM DD<br>(KIPS) | FACTORED<br>RESISTANCE<br>AVAILABLE<br>(KIPS) | ESTIMATED<br>PILE<br>LENGTH<br>(FT.)      |

.

10/22/2010

Pile Length vs. Capacity Analysis

# B-3\_Modified IDOT Pile Length.xls

ł

#### MODIFIED IDOT STATIC METHOD OF ESTIMATING PILE LENGTH Modified 5/3/2010

I.D.O.T. BBS FOUNDATIONS AND GEOTECHNICAL UNIT

South Abutment

73 %

| MAX: REQUIRED BEARING | RESISTANCE for Selected Pile | . Soil Profile. & Losses |
|-----------------------|------------------------------|--------------------------|
|                       |                              |                          |

| Maximum Nominal       | Maximum Nominal         | Maximum Factored               | Maximum Pile               |
|-----------------------|-------------------------|--------------------------------|----------------------------|
| Req'd Bearing of Pile | Req.d Bearing of Boring | Resistance Available in Boring | Driveable Length in Boring |
| 454 KIPS              | 454 KIPS                | 250 KIPS                       | 54 FT.                     |

LRFD or ASD or SEISMIC -----================= TOTAL FACTORED SUBSTRUCTURE LOAD === 908 KIPS 

 SUBSTRUCTORE
 SOURADUM

 REFERENCE BORING
 B-4

 GROUND SURFACE ELEV. AT BORING
 732:70 FT.

 PILE CUTOFF ELEV.
 738:00 FT.

 GROUND SURFACE ELEV. AGAINST PILE DURING DRIV
 733:00 FT.

 GROUND WATER ELEVATION
 722:10 FT.

HAMMER EFFICIENCY

Approx. Factored Loading Applied per pile at 8 ft. Cts ===== 179.14 KIPS Approx. Factored Loading Applied per pile at 3 ft. Cts ===== 67.18 KIPS

SUBSTRUCTURE==

 PILE TYPE AND SIZE
 Stee(HP/10/X)57

 Plugged Pile Perimeter
 3.365

 FT.
 Unplugged Pile Perimeter

 Plugged Pile End Bearing Area
 0.708

 SQFT.
 Unplugged Pile End Bearing Area

TOP ELEV. OF LIQUEF. (so layers above apply DD) ===== 0.00 FT.

| BOT.<br>OF                                                                                                                                                                                           |                          | UNCONF.                                                                   | S.P.T.                | GRANULAR                                                                                                             | NOI                                                                                                                                                                            | WINAL PLU                                                                                                                                       | GGED                                                                                                                                                                                                                               | NOI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | WINAL UNPLU                                                                                                                        | JGD                                                                                                                                                                                         | NOMINAL                                                                                                                                        | FACTORED<br>GEOTECH.               | FACTORED<br>GEOTECH.           | FACTORED                                                                                                                            | ESTIMATED                                                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LAYER<br>ELEV.<br>(FT.)                                                                                                                                                                              | LAYER<br>THICK.<br>(FT.) | COMPR.<br>STRENGTH<br>(TSF.)                                              | N<br>VALUE<br>(BLOWS) | OR ROCK LAYER<br>DESCRIPTION                                                                                         | SIDE<br>RESIST.<br>(KIPS)                                                                                                                                                      | END BRG.<br>RESIST.<br>(KIPS)                                                                                                                   | TOTAL<br>RESIST.<br>(KIPS)                                                                                                                                                                                                         | SIDE<br>RESIST.<br>(KIPS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | END BRG.<br>RESIST.<br>(KIPS)                                                                                                      | TOTAL<br>RESIST.<br>(KIPS)                                                                                                                                                                  | REQ'D<br>BEARING<br>(KIPS)                                                                                                                     | LOSS FROM<br>SCOUR or DD<br>(KIPS) | LOSS LOAD<br>FROM DD<br>(KIPS) | RESISTANCE<br>AVAILABLE<br>(KIPS)                                                                                                   | PILE<br>LENGTH<br>(FT.)                                                                                                                                                     |
| 731.00<br>728.50<br>726.00<br>724.00<br>721.50<br>718.00<br>711.00<br>708.00<br>702.00<br>689.50<br>688.50<br>688.50<br>688.50<br>688.50<br>688.50<br>688.50<br>688.50<br>688.50<br>688.50<br>685.50 |                          | 200<br>275<br>275<br>275<br>275<br>275<br>275<br>275<br>275<br>275<br>275 | ομοφη - 0-13<br>      | Ven Frie Sky Sand<br>Frie Sand<br>Tind Sand<br>Med um Sand<br>Frie Sant<br>Shale<br>Shale<br>Shale<br>Shale<br>Shale | 15.7<br>24.2<br>18.0<br>0.8<br>2.3<br>1.6<br>3.4<br>6.7<br>19.6<br>19.6<br>19.6<br>19.6<br>26.5<br>0.0<br>33.5<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0<br>42.0 | 18.2<br>11.6<br>5.3<br>14.1<br>7.1<br>1.7<br>47.7<br>9.9<br>13.2<br>16.7<br>0.0<br>58.3<br>88.3<br>88.3<br>88.3<br>88.3<br>88.3<br>88.3<br>88.3 | 33,9<br>51,5<br>63,2<br>72,9<br>68,1<br>64,4<br>67,8<br>64,4<br>67,8<br>64,4<br>67,8<br>71,3<br>86,2<br>105,7<br>122,8<br>142,6<br>270,4<br>312,4<br>356,4<br>356,4<br>438,4<br>438,4<br>438,4<br>438,4<br>438,4<br>456,4<br>556,4 | 22.8<br>35.2<br>28.1<br>1.2<br>3.4<br>2.3<br>5.0<br>9.7<br>23.5<br>5.0<br>9.7<br>23.5<br>5.0<br>9.7<br>23.5<br>5.0<br>9.7<br>23.5<br>5.0<br>9.7<br>23.5<br>5.0<br>9.7<br>23.5<br>5.0<br>9.7<br>23.5<br>5.0<br>9.7<br>5.0<br>9.7<br>23.5<br>5.0<br>9.7<br>23.5<br>5.0<br>9.7<br>5.0<br>9.7<br>5.0<br>9.7<br>5.0<br>9.7<br>5.0<br>9.7<br>5.0<br>9.7<br>5.0<br>9.7<br>5.0<br>9.7<br>5.0<br>9.7<br>5.0<br>9.7<br>5.0<br>9.7<br>5.0<br>9.7<br>5.0<br>9.7<br>5.0<br>9.7<br>5.0<br>9.7<br>5.0<br>9.7<br>5.0<br>9.7<br>5.0<br>9.7<br>5.0<br>9.7<br>5.0<br>9.7<br>5.0<br>9.7<br>5.0<br>9.7<br>5.0<br>9.7<br>5.0<br>9.7<br>5.0<br>9.7<br>5.0<br>9.7<br>5.0<br>9.7<br>5.0<br>9.7<br>5.0<br>9.7<br>5.0<br>9.7<br>5.0<br>9.7<br>5.0<br>9.7<br>5.0<br>9.7<br>5.0<br>9.7<br>5.0<br>9.7<br>5.0<br>9.7<br>5.0<br>9.7<br>5.0<br>9.5<br>5.0<br>9.7<br>5.0<br>9.5<br>5.0<br>9.5<br>5.0<br>9.5<br>5.0<br>9.5<br>5.0<br>9.5<br>5.0<br>9.5<br>5.0<br>9.5<br>9.5<br>5.0<br>9.5<br>9.5<br>5.0<br>9.5<br>9.5<br>5.0<br>9.5<br>9.5<br>5.0<br>9.5<br>9.5<br>5.0<br>9.5<br>9.5<br>5.0<br>9.5<br>9.5<br>9.5<br>9.5<br>9.5<br>9.5<br>9.5<br>9.5<br>9.5<br>9.5 | 3.0<br>1.9<br>0.9<br>2.3<br>1.2<br>0.3<br>7.9<br>1.6<br>2.2<br>2.8<br>14.6<br>14.6<br>14.6<br>14.6<br>14.6<br>14.6<br>14.6<br>14.6 | 25.6<br>59.9<br>84.9<br>87.6<br>89.8<br>91.3<br>96.2<br>708.8<br>112.3<br>136.4<br>165.4<br>165.4<br>278.8<br>339.8<br>400.7<br>451.6<br>522.6<br>583.5<br>644.5<br>705.4<br>705.4<br>786.4 | 28<br>52<br>63<br>73<br>64<br>68<br>109<br>86<br>109<br>86<br>129<br>149<br>270<br>270<br>314<br>356<br>438<br>438<br>438<br>438<br>564<br>566 |                                    |                                | 14<br>28<br>35<br>40<br>37<br>35<br>37<br>60<br>47<br>58<br>71<br>82<br>195<br>218<br>241<br>284<br>284<br>284<br>370<br>330<br>333 | 7<br>10<br>12<br>14<br>14<br>17<br>20<br>23<br>25<br>27<br>30<br>32<br>35<br>40<br>49<br>49.5<br>50.5<br>51.5<br>52.5<br>58.5<br>55.5<br>55.5<br>55.5<br>55.5<br>55.5<br>55 |

10/22/2010

' Pile Length vs. Capacity Analysis

B-4\_Modified IDOT Pile Length.xls

### **EXHIBIT E – PILE DESIGN TABLE**

|          | F        | Pile Desig | n Table f | or North  | Abutment u | tilizing | Boring #E  | 3-1       |           |
|----------|----------|------------|-----------|-----------|------------|----------|------------|-----------|-----------|
|          | Nominal  | Factored   | Estimated | Estimated |            | Nominal  | Factored   | Estimated | Estimated |
|          | Required | Resistance | Pile      | Pile Tip  |            | •        | Resistance | Pile      | Pile Tip  |
|          | Bearing  | Available  | Length    | Elevation |            | Bearing  | Available  | Length    | Elevation |
|          | (Kips)   | (Kips)     | (Ft.)     |           |            | (Kips)   | (Kips)     | (Ft.)     |           |
| Steel HP | 10 X 42  |            |           |           | Steel HP   | 14 X 73  |            |           |           |
|          | 120      | 66         | 53        | 685.4     |            | 83       | 46         | 53        | 685.4     |
|          | 179      | 98         | 53        | 685.4     |            | 129      | 71         | 53        | 685.4     |
|          | 235      | 129        | 53        | 685.4     |            | 176      | 97         | 53        | 685.4     |
|          | 335      | 184        | 53        | 685.4     |            | 273      | 150        | 53        | 685.4     |
| Steel HP | 10 X 57  |            |           |           |            | 341      | 188        | 53        | 685.4     |
|          | 122      | 67         | 53        | 685.4     |            | 578      | 318        | 53        | 685.4     |
|          | 183      | 101        | 53        | 685.4     | Steel HP   | 14 X 89  |            |           |           |
|          | 240      | 132        | 53        | 685.4     |            | 84       | 46         | 53        | 685.4     |
|          | 454      | 250        | 53        | 685.4     |            | 131      | 72         | 53        | 685.4     |
| Steel HP | 12 X 53  |            |           |           |            | 178      | 98         | 53        | 685.4     |
|          | 106      | 58         | 53        | 685.4     |            | 277      | 152        | 53        | 685.4     |
|          | 146      | 80         | 53        | 685.4     |            | 348      | 191        | . 53      | 685.4     |
|          | 222      | 122        | 53        | 685.4     |            | 705      | 388        | 53        | 685.4     |
|          | 282      | 155        | 53        | 685.4     | Steel HP   | 14 X 102 |            |           |           |
|          | 418      | 230        | 53        | 685.4     |            | 85       | 47         | 53        | 685.4     |
| Steel HP | 12 X 63  |            |           |           |            | 132      | 73         | 53        | 685.4     |
|          | 107      | 60         | 53        | 685.4     |            | 180      | 99         | 53        | 685.4     |
|          | 147      | 82         | 53        | 685.4     |            | 280      | 154        | 53        | 685.4     |
|          | 225      | 124        | 53        | 685.4     |            | 352      | 194        | 53        | 685.4     |
|          | 288      | 158        | 53        | 685.4     |            | 810      | 445        | 53        | 685.4     |
|          | 497      | 273        | 53        | 685.4     | Steel HP   |          |            |           |           |
| Steel HP | 12 X 74  |            |           |           |            | 86       | 47         | 53        | 685.4     |
|          | 109      | 60         | 53        | 685.4     |            | 134      | 74         | 53        | 685.4     |
|          | 149      | 82         | 53        | 685.4     |            | 182      | 100        | 53        | 685.4     |
|          | 228      | 125        | 53        | 685.4     |            | 284      | 156        | 53        | 685.4     |
|          | 292      | 161        | 53        | 685.4     |            | 359      | 197        | 53        | 685.4     |
|          | 589      | 324        | 53        | 685.4     |            | 929      | 511        | 53        | 685.4     |
| Steel HP |          |            |           |           |            |          |            |           |           |
|          | 110      | 61         | 53        | 685.4     |            |          |            |           |           |
|          | 151      | 83         | 53        | 685.4     |            |          |            | . –       |           |
|          | 231      | 127        | 53        | 685.4     |            |          |            |           |           |
|          | 296      | 163        | 53        | 685.4     | ì          |          |            |           |           |
|          | 664      | 365        | 53        | 685.4     |            |          |            |           |           |

|          |                   | Pile D              | esign Ta        | able for Pi | er 1 utilizir | ig Borin          | g #B-2              |                 |           |
|----------|-------------------|---------------------|-----------------|-------------|---------------|-------------------|---------------------|-----------------|-----------|
|          | Nominal           | Factored            |                 | Estimated   |               | Nominal           | Factored            |                 | Estimated |
|          | •                 | Resistance          | Pile            | Pile Tip    |               | •                 | Resistance          |                 | Pile Tip  |
|          | Bearing<br>(Kips) | Available<br>(Kips) | Length<br>(Ft.) | Elevation   |               | Bearing<br>(Kips) | Available<br>(Kips) | Length<br>(Ft.) | Elevation |
| Steel HP | 10 X 42           |                     |                 |             | Steel HP      | 14 X 89           |                     |                 |           |
|          | 313               | 172                 | 60              | 678.2       |               | 163               | 90                  | 60              | 678.2     |
| Steel HP | 10 X 57           |                     |                 |             |               | 245               | 135                 | 60              | 678.2     |
|          | 447               | 246                 | 60              | 678.2       |               | 705               | 388                 | 60              | 678.2     |
| Steel HP | 12 X 53           |                     |                 |             | Steel HP      | 14 X 102          | 2                   |                 |           |
|          | 397               | 218                 | 60              | 678.2       |               | 165               | 91                  | 60              | 678.2     |
| Steel HP | 12 X 63           |                     |                 |             |               | 249               | 137                 | 60              | 678.2     |
|          | 451               | 248                 | 60              | 678.2       |               | 810               | 445                 | 60              | 678.2     |
| Steel HP | 12 X 74           |                     |                 |             | Steel HP      | 14 X 117          | ,                   |                 |           |
|          | 559               | 308                 | 60              | 678.2       |               | 167               | 92                  | 60              | 678.2     |
| Steel HP | 12 X 84           |                     |                 |             |               | 255               | 140                 | 60              | 678.2     |
|          | 619               | 340                 | 60              | 678.2       |               | 929               | 511                 | 60              | 678.2     |
| Steel HP | 14 X 73           |                     |                 |             |               |                   |                     |                 |           |
|          | 555               | 305                 | 60              | 678.2       |               |                   |                     |                 |           |

|          |         | Pile D     | esign T   | able for Pi | er 2 utilizir | ig Borin | g #B-3     |           |           |
|----------|---------|------------|-----------|-------------|---------------|----------|------------|-----------|-----------|
|          | Nominal |            | Estimated | Estimated   |               | Nominal  | Factored   | Estimated | Estimated |
|          | -       | Resistance | Pile      | Pile Tip    |               | •        | Resistance |           | Pile Tip  |
|          | Bearing | Available  | Length    | Elevation   |               |          | Available  | Length    | Elevation |
|          | (Kips)  | (Kips)     | (Ft.)     |             |               | (Kips)   | (Kips)     | (Ft.)     |           |
| Steel HP | 10 X 42 |            |           |             | Steel HP      | 14 X 73  |            |           |           |
|          | 308     | 169        | 60        | 678.2       |               | 224      | 123        | 60        | 678.2     |
| Steel HP | 10 X 57 |            |           |             |               | 263      | 144        | 60        | 678.2     |
|          | 441     | 243        | 60        | 678.2       |               | 315      | 173        | 60        | 678.2     |
| Steel HP | 12 X 53 |            |           |             |               | 578      | 318        | 60        | 678.2     |
|          | 217     | 119        | 60        | 678.2       | Steel HP      | 14 X 89  |            |           |           |
|          | 260     | 143        | 60        | 678.2       |               | 228      | 125        | 60        | 678.2     |
|          | 418     | 230        | 60        | 678.2       |               | 267      | 147        | 60        | 678.2     |
| Steel HP | 12 X 63 |            |           |             |               | 322      | 177        | 60        | 678.2     |
|          | 222     | 122        | 60        | 678.2       |               | 705      | 388        | 60        | 678.2     |
|          | 266     | 146        | 60        | 678.2       | Steel HP      | 14 X 102 |            |           |           |
|          | 497     | 273        | 60        | 678.2       |               | 230      | 127        | 60        | 678.2     |
| Steel HP | 12 X 74 |            |           |             |               | 271      | 149        | 60        | 678.2     |
|          | 225     | 124        | 60        | 678.2       |               | 326      | 179        | 60        | 678.2     |
|          | 270     | 149        | 60        | 678.2       |               | 810      | 445        | 60        | 678.2     |
|          | 589     | 324        | 60        | 678.2       | Steel HP      | 14 X 117 | ,          |           |           |
| Steel HP | 12 X 84 |            |           |             |               | 234      | 129        | 60        | 678.2     |
|          | 227     | 125        | 60        | 678.2       |               | 275      | 151        | 60        | 678.2     |
|          | 274     | 151        | 60        | 678.2       |               | 333      | 183        | 60        | 678.2     |
|          | 664     | 365        | 60        | 678.2       |               | 929      | 511        | 60        | 678.2     |

|             |                   |                     |                 |                | butment u |                   | -                   |                 |                |
|-------------|-------------------|---------------------|-----------------|----------------|-----------|-------------------|---------------------|-----------------|----------------|
|             |                   | Factored            |                 |                |           |                   | Factored            |                 |                |
|             |                   | Resistance          |                 | Pile Tip       |           | •                 | Resistance          |                 | Pile Tip       |
|             | learing<br>(Kips) | A∨ailable<br>(Kips) | Length<br>(Ft.) | Elevation      |           | Bearing<br>(Kips) | Available<br>(Kips) | Length<br>(Ft.) | Elevatio       |
|             | (Tupo)            | (1000)              | (1.0)           |                |           | (raps)            | (1005)              | (1.)            |                |
| Steel HP 10 | ) X 42            |                     |                 |                | Steel HP  | 12 X 84           |                     |                 |                |
|             | 103               | 57                  | 57              | 681.0          |           | 108               | 59                  | 57              | 681.0          |
|             | 126               | 69                  | 57              | 681.0          |           | 132               | 73                  | 57              | 681.0          |
|             | 146               | 80                  | 57              | 681.0          |           | 161               | 89                  | 57              | 681.0          |
|             | 202               | 111                 | 57              | 681.0          |           | 181               | 100                 | 57              | 681.0          |
|             | 263               | 145                 | 57              | 681.0          |           | 268               | 147                 | 57              | 681.0          |
|             | 335               | 184                 | 57              | 681.0          |           | 343               | 189                 | 57              | 681.0          |
| Steel HP 10 | ) X 57            |                     |                 |                |           | 664               | 365                 | 57              | 681.0          |
|             | 106               | 58                  | 57              | 681.0          | Steel HP  | 14 X 73           |                     |                 |                |
|             | 129               | 71                  | 57              | 681.0          |           | 96                | 53                  | 57              | 681.0          |
|             | 149               | 82                  | 57              | 681.0          |           | 126               | 69                  | 57              | 681.0          |
|             | 207               | 114                 | 57              | 681.0          |           | 155               | 85                  | 57              | 681.0          |
|             | 270               | 149                 | 57              | 681.0          |           | 189               | 104                 | 57              | 681.0          |
|             | 454               | 250                 | 57              | 681.0          |           | 208               | 114                 | 57              | 681.0          |
| Steel HP 12 | 2 X 53            |                     |                 |                |           | 320               | 176                 | 57              | 681.0          |
|             | 104               | 57                  | 57              | 681.0          |           | 396               | 218                 | 57              | 681.0          |
|             | 127               | 70                  | 57              | 681.0          |           | 578               | 318                 | 57              | 681.0          |
|             | 155               | 85                  | 57              | 681.0          | Steel HP  | 14 X 89           |                     |                 |                |
|             | 175               | 96                  | 57              | 681.0          |           | 97                | 53                  | 57              | 681.0          |
|             | 256               | <b>1</b> 41         | 57              | 681.0          |           | 127               | 70                  | 57              | 681.0          |
|             | 327               | 18Ò                 | 57              | 681.0          |           | 157               | 86                  | 57              | 681.0          |
|             | 418               | 230                 | 57              | 681.0          |           | 191               | 105                 | 57              | 681.0          |
| Steel HP 12 | 2 X 63            |                     |                 |                |           | 210               | 115                 | 57              | 681.0          |
|             | 105               | 58                  | 57              | 681.0          |           | 326               | 179                 | 57              | 681.0          |
|             | 129               | 71                  | 57              | 681.0          |           | 403               | 222                 | 57              | 681.0          |
|             | 157               | 86                  | 57              | 681.0          |           | 705               | 388                 | 57              | 681.0          |
|             | 177               | 97                  | 57              | 681.0          | Steel HP  | 14 X 102          |                     |                 |                |
|             | 259               | 142                 | 57              | 681.0          |           | 98                | 54                  | 57              | 681.0          |
|             | 334               | 184                 | 57              | 681.0          |           | 129               | 71                  | 57              | 681.0          |
|             | 497               | 273                 | 57              | 681.0          |           | 159               | 87                  | 57              | 681.0          |
| Steel HP 12 |                   |                     | ~.              | ~~1.4          |           | 194               | 107                 | 57              | 681.0          |
|             | 106               | 58                  | 57              | 681.0          |           | 212               | 117                 | 57              | 681.0          |
|             | 130               | 58<br>72            | 57              | 681.0          |           | 329               | 181                 | 57<br>57        | 681.0          |
|             | 159               | - 88                | 57<br>57        | 681.0          |           | 329<br>408        | 224                 | 57<br>57        | 681.0          |
|             | 179               | 98                  | 57<br>57        | 681.0<br>681.0 |           | 408<br>810        | 445                 | 57<br>57        | 681.0<br>681.0 |
|             | 263               | 90<br>145           | 57<br>57        | 681.0          | Steel HD  | 14 X 117          |                     | 51              | 001.0          |
| •           |                   | 145                 |                 | 681.0          |           | 99                | 54                  | 57              | 694 0          |
|             | 339               |                     | 57<br>57        |                |           |                   |                     | 57<br>57        | 681.0          |
|             | 589               | 324                 | 57              | 681.0          |           | 131               | 72                  | 57              | 681.0          |
|             |                   |                     |                 |                |           | 161               | 88                  | 57              | 681.0          |
|             |                   |                     |                 |                |           | 196               | 108                 | 57<br>57        | 681.0          |
|             |                   |                     |                 |                |           | 214<br>334        | 118<br>194          | 57<br>57        | 681.0          |
|             |                   |                     |                 |                |           | 334<br>415        | 184<br>228          | 57              | 681.0<br>681.0 |
|             |                   |                     |                 |                |           | 415<br>929        | 228<br>511          | 57<br>57        | 681.0<br>681.0 |



Lin Engineering, Ltd.

# **EXHIBIT F – SLOPE STABILITY GRAPH**