STRUCTURE GEOTECHNICAL REPORT Illinois Route 47 over Blackberry Creek Bridge EX SN 045-2000, PR SN 045-2050 Kane County, Illinois

For Milhouse Engineering & Construction, Inc. 60 E. Van Buren Street, Suite 1501 Chicago, IL 60605

> Submitted by Wang Engineering, Inc. 1145 North Main Street Lombard, IL 60148

> > Original Report: March 7, 2017 Revised Report: October 13, 2017

	, Illinois Route 47 over Blackberry Creek	2. Original Date: March 7, 2017 Revised Date: October 13, 2017					
Bridge		3. Report Type ⊠ SGR □ RGR □ Draft ⊠ Final ⊠ Revised					
4. Route / Section / County/ Distri FAP 326 / 107N-4 / Kane/ 1/ 1		5. IDOT Job/ Contract No. D-91-309-12/ 60T21					
6. PSB / Item No. 171/004	8						
9. Prepared by Wang Engineering, Inc. 1145 N Main Street Lombard, IL 60148	Contributor(s) Author: Andri A. Kurnia, PE QA/QC: Jerry W.H. Wang, PhD, PE PM: Corina T. Farez, PE, PG	Contact (630) 953-9928 ext. 1025 akurnia@wangeng.com					
10. Prepared for Milhouse Engineering & Construction, Inc. 60 E. Van Buren Street Suite 1501 Chicago, IL 60605	Design Engineer Deborah Zroka, PE, SE Lori Sommer, PE, SE	Contact (312) 987-0061					
Creek. The proposed integr to-back abutment length of feet at the bridge location geotechnical recommenda embankments.	vill replace the existing four cell culvert of ral abutment bridge will be wider than e f 84.2 feet. The profile grade elevation n and the approach embankments wil tions for the design of proposed s tiff silty clay, the soil is made up of m	existing culvert and will have a back- along IL Route 47 will be raised 5.5 1 be widened. This report provides tructure foundations and approach					
loose to loose silty loam for	llowed by medium dense to very dense s silty clay to clay loam. The site classifies	sand to sandy gravel interbedded with					
for each pile size. For 12-i provide 80 to 195 kips fac	ments could be supported on metal shell inch diameter metal shell pile with 0.25 stored capacity. We provide geotechnic hould be carried out when selecting pile	5-inch walls, 19 to 28-foot long piles al parameters for pile analysis under					
residual settlement at the	settlement resulting from grade raise is end of the construction will be about equired for new bridge piles. Global	at 0.4 inch or less. Downdrag load					

Technical Report Documentation Page

Temporary steel sheet piling is not feasible according to IDOT Design Guide 3.13.1 to accommodate stage construction due to the fill. Therefore, the pay item *Temporary Soil Retention System* will be necessary.

12. Path to archived file

S:\Netprojects\1920301\Reports\Bridge_IL-47\V5_RevisedFinal_Integral_Abutment\RPT_Wang_AAK_NSB_01920301IL47Bridgev03_20171013.pdf

embankment show FOS of 2 to 3 and meet the minimum required FOS of 1.5.

Geotechnical · Construction · Environmental Quality Engineering Services Since 1982

TABLE OF CONTENTS

1.0	INTRODUCTION	1
1.1	Proposed Structure	1
1.2	Existing Structure and Land Use	1
2.0	GEOLOGICAL SETTING	2
2.1	Physiography	2
2.2	SUFICIAL COVER	2
2.3	Bedrock	3
3.0	METHODS OF INVESTIGATION	
3.1	Field Investigation	
3.2	LABORATORY TESTING	4
4.0	INVESTIGATION RESULTS	4
4.1	Lithological Profile	5
4.2	GROUNDWATER CONDITIONS	
5.0	FOUNDATION ANALYSIS AND RECOMMENDATIONS	6
5.1	SEISMIC DESIGN CONSIDERATIONS	6
5.2	Scour Considerations	6
5.3	Approach Embankments	7
5.	.3.1 Settlement	
5.	.3.2 Global Stability	
5.4	STRUCTURE FOUNDATIONS	
5.	.4.1 Driven Piles	
5.	.4.2 Lateral Loading	
5.5	STAGE CONSTRUCTION	
6.0	CONSTRUCTION CONSIDERATIONS	
6.1	SITE PREPARATION	
6.2	EXCAVATION, DEWATERING AND UTILITIES	
6.3	FILLING AND BACKFILLING	
6.4	EARTHWORK OPERATIONS	
6.5	PILE INSTALLATION	

7.0	QUALIFICATIONS	
RE	EFERENCES	
ЕХ	XHIBITS	
	1. SITE LOCATION MAP	
	2. Site and Regional Geology	
	3. BORING LOCATION PLAN	
	4. Soil Profile	
AF	PPENDIX A	
	Boring Logs	
AF	PPENDIX B	
	LABORATORY TEST RESULTS	
AF	PPENDIX C	
	GLOBAL STABILITY ANALYSIS	
AF	PPENDIX D	
	TSL PLAN	
	LIST OF TABLES	

Table 1: Seismic Design Parameters	6
Table 2: Project Design Scour Elevations	7
Table 3: Preliminary Foundation Loads	8
Table 4 : Estimated Pile Lengths and Tip Elevations for MSP 12" \$\phi w/ .25" walls	9
Table 5 : Estimated Pile Lengths and Tip Elevations for MSP 14" \$\phi w/ .312" walls	9
Table 6 : Estimated Pile Lengths and Tip Elevations for MSP 16" \$\phi w/ .375" walls	10
Table 7: Estimated Pile Lengths and Tip Elevations for HP12x53 Steel H-Piles	11
Table 8 : Estimated Pile Lengths and Tip Elevations for HP12x63 Steel H-Piles	12
Table 9 : Estimated Pile Lengths and Tip Elevations for HP14x73 Steel H-Piles	13
Table 10 : Estimated Pile Lengths and Tip Elevations for HP14x89 Steel H-Piles	14
Table 11 : Recommended Soil Parameters for Lateral Load Pile Analysis at South Abutment	15
Table 12 : Recommended Soil Parameters for Lateral Load Pile Analysis at North Abutment	16

STRUCTURE GEOTECHNICAL REPORT Illinois Route 47 over Blackberry Creek Bridge EX SN 045-2000, PR SN 045-2050 Kane County, Illinois For Milhouse Engineering & Construction, Inc.

1.0 INTRODUCTION

This report presents the results of subsurface investigation, laboratory testing, and geotechnical evaluations and recommendations for the proposed replacement of the existing four cell box culvert carrying IL Route 47 (IL 47) over the Blackberry Creek in Kane County, Illinois. A *Site Location Map* is presented as Exhibit 1.

1.1 Proposed Structure

Wang Engineering, Inc. (Wang) understands Milhouse Engineering & Construction, Inc. (Milhouse) envisions a new single span bridge over the Blackberry Creek replacing the existing culvert. A type, size, and location (TSL) plan provided by Milhouse and dated September 14, 2017 indicates the bridge will be supported by integral abutments and will have a back-to-back abutment length of 84.2 feet between Stations 502+07.88 and 502+90.06. The proposed bridge will have an out-to-out width of 61.2 feet to accommodate 38-foot wide roadway and two 10-foot wide shoulders. The profile grade along IL 47 will be raised by approximately 5.5 feet. This report addresses the proposed single span bridge over the Blackberry Creek.

A three-sided arch structure was initially proposed and Wang submitted an SGR in March 2016. This report covers the updated structure type and supersedes the March 2016 SGR.

1.2 Existing Structure and Land Use

Based on the TSL Plan and a Bridge Condition Report (BCR), the existing structure was constructed in 1968 as a four barrel, cast-in-place reinforced concrete box culvert. The total length of the structure is 41.3 feet from the back of the north cell wall to the back of the south cell wall. The total structure width

is 32.0 feet. The existing structure will be removed and replaced using stage construction to maintain traffic along IL 47.

The purpose of our investigation was to characterize the site soil and groundwater conditions, perform geotechnical analyses, and provide recommendations for the design and construction of the new structure foundations.

2.0 GEOLOGICAL SETTING

The project area is located in Blackberry Township in southern Kane County. On the USGS *Sugar Grove Quadrangle 7.5 Minute Series* map, the project is located in the SW ¹/₄ of Section 20, Tier 39 N, Range 7 East of the Third Principal Meridian.

The following review of published geologic data, with emphasis on factors that might influence the design and construction of the proposed engineering works, is meant to place the project area within a geological framework and, thus, to confirm the dependability and consistency of the present subsurface investigation results. For the study of the regional geologic framework, Wang considered northeastern Illinois area in general and Kane County in particular. Exhibit 2 illustrates the *Site and Regional Geology*.

2.1 Physiography

Southern Kane County is situated within the Bloomington Ridge Plain Subsection of the Till Plains Physiographic Section of Illinois (Leighton et al. 1948). Continental glaciers and their associated lakes and meltwater streams deposited most of the surficial deposits within the project area. Wisconsin-age deposits of the Elburn Complex form an array of landforms that are typically associated with stagnating ice, including kames, kettles, and eskers (Curry et al. 2001). Blackberry Creek flows from the northeast to the southwest forming a valley through the center of the project area. Surface elevations range from 720 feet at Blackberry Creek and rise to the east and west up to 750 feet.

2.2 Surficial Cover

The surficial cover within the project area is mainly the result of Wisconsin-age glacial activity. The glacigenic deposits were emplaced during pulsating advances and retreats of an ice sheet lobe responsible for the formation of end moraines and associated low-relief till and lake plains (Hansel and Johnson 1996). Along the Blackberry Creek drainageway, organic deposits of peat, muck, and organic

silt and clay, known as the Grayslake Peat, have accumulated since the last glaciation. Underlying the Grayslake Peat, large volumes of glacial meltwater deposited thick sand and gravel outwash deposits of Henry Formation. Major glacial events, during the Wisconsin Episode and the preceding Illinois Episode, created a complex stratigraphy that includes diamictons of the Batestown Member of the Lemont Formation, the Tiskilwa Formation, and the Glasford Formation. The Lemont and Tiskilwa Formations (Wisconsin Episode) are characterized by sandy loam to clay loam diamictons with lenses of sand and gravel. The Glasford Formation (Illinois Episode) is characterized by a compact sandy and bouldery diamicton with abundant lenses of coarse sand and gravel (Curry et al. 2001). Glacial drift thickness along the project alignments ranges from 100 to 120 feet thick (Curry 2002).

2.3 Bedrock

In the project area, the glacigenic deposits unconformably rest over Silurian and Ordivician dolostone and shaly dolostone between 100 to 120 feet below ground surface (bgs), at elevations of 600 to 625 feet (Curry 2002). The project is located approximately 15 miles northeast of the inactive Sandwich Fault Zone. No underground mines have been mapped in the area (ISGS 2014).

Our subsurface investigation results fit into the local geologic context. The borings drilled in the project area revealed the native sediments consist of organic silt and clay of the Grayslake Peat, sand and gravel outwash deposits of the Henry Formation, silty clay loam diamicton of the the Tiskilwa Formation, and diamicton, sand, and gravel of the Glasford Formation. Diamicton of the Batestown Member of the Lemont Formation was likely eroded during the recession of Wisconsin Episode glaciers. The bedrock was not encountered during this investigation.

3.0 METHODS OF INVESTIGATION

The following sections outline the subsurface and laboratory investigations performed by Wang. Elevations are referenced to the North American Vertical Datum (NAVD) 1988.

3.1 Field Investigation

The subsurface investigation was performed by Wang between April and June 2015 and consisted of three structure borings. The borings, designated as Boring BB-03, BB-03A, and BB-04, were drilled from elevation of 730.0 to 732.0 feet to depths of 45.0 to 70.0 feet bgs. Boring BB-03 A was drilled as a continuation of Boring BB-03. The coordinates were surveyed by Wang using a mapping-grade GPS unit; stations and offsets were obtained from a plan drawing provided by Milhouse. The as-drilled

boring locations are shown in the *Boring Logs* (Appendix A) and in the *Boring Location Plan* (Exhibit 3).

A truck mounted drilling rig, equipped with hollow stem augers and mud rotary drilling equipment, was used to advance and maintain open boreholes. Soil sampling was performed according to AASHTO T 206, "*Penetration Test and Split Barrel Sampling of Soils*." The soil was sampled at 2.5-foot intervals to 30.0 feet bgs and at 5.0-foot intervals thereafter. Soil samples collected from each interval were placed in sealed jars for further examination and laboratory testing.

Field boring logs, prepared and maintained by a Wang geologist, included lithological descriptions, visual-manual soil classifications (IDH textural classification), results of pocket penetrometer or Rimac unconfined compressive strength (Q_u) testing on cohesive soils, and results of Standard Penetration Test (SPT) recorded as blows per 6 inches of penetration.

Groundwater observations were made during and at completion of drilling operations. The borings were backfilled with soil cuttings and bentonite chips, and the surface was restored as close as possible to the original condition.

3.2 Laboratory Testing

Soil samples were tested in the laboratory for moisture content (AASHTO T 265). Particle size (AASHTO T 88) analysis was also performed on selected sample. Field visual descriptions of the soil samples were verified in the laboratory and classified according to the IDH Soil Classification System. Laboratory test results are shown on the *Boring Logs* (Appendix A) and in the *Laboratory Test Results* (Appendix B).

4.0 INVESTIGATION RESULTS

Detailed descriptions of the soil conditions encountered during the subsurface investigation are presented on the attached Boring Logs (Appendix A) and in the *Soil Profile* (Exhibit 4). Please note that strata contact lines represent approximate boundaries between soil types. The actual transition between soil types in the field may be gradual in horizontal and vertical directions.

4.1 Lithological Profile

The borings were drilled along the existing roadway shoulder from elevations of 730.0 to 732.0 feet. The shoulder pavement consists of 14.0 inches of asphalt or 12.0 inches of aggregate. In descending order, the general lithologic succession encountered beneath the surface includes: 1) man-made ground (fill); 2) very loose to loose silty loam; and 3) medium dense to very dense sandy gravel.

1) Man-made ground(fill)

Below the asphalt or aggregate shoulder, the borings revealed 5.0 to 7.0 feet of stiff to very stiff, brown silty clay to silty clay loam fill. The fill is characterized by unconfined compressive strength (Q_u) values of 1.3 to 2.0 tsf with an average of 1.5 tsf and moisture contents values of 15 to 27% with an average of 21%.

2) Very loose to loose silty loam

At elevations of 721.2 to 722.8 feet or about 9.0 feet bgs, the borings advanced through 2.0 to 4.0 feet of very loose to loose, brown and black silty loam with SPT N-values of 2 to 4 blows per foot with an average of 3 blows per foot and moisture content values of 31 to 64% with an average of 43%. Some organic matter was encountered in Boring BB-04.

3) Medium dense to very dense sandy gravel

From elevations of 719.0 to 719.5 feet and extending to the termination depths of 45.0 to 70.0 feet bgs, borings advanced through medium dense to dense, brown to gray loam to sandy gravel with interbeds of cohesive soil. The sandy gravel has N-values of 10 to 65 blows per foot with an average of 33 blows per foot and moisture content values of 6 to 22% with an average of 14%. The interbeds of cohesive material consist of very stiff to hard, pinkish gray to gray silty clay and clay loam. The clayey soil is characterized by Q_u values of 2.3 to 6.7 tsf with an average of 4.0 tsf and moisture content of 10 to 20% with an average of 14%. Hard drilling conditions and heaving sand were encountered during drilling from 36.5 to 52.5 feet bgs (elevations of 695.5 to 677.9 feet), indicating cobbles and groundwater under excess pressure.

4.2 Groundwater Conditions

While drilling, the groundwater was first observed at elevations of 719.5 to 721.0 feet (10.5 to 11.0 feet bgs) with a second groundwater bearing layer at elevations of 680.4 and 668.6 feet (50.0 and 61.8 feet bgs) in Boring BB-03A. The deeper layer is confined and the groundwater was observed to be under artesian condition. At the completion of drilling, the water level was recorded at elevations of 724.0 to

732.0 feet (0.0 and 6.0 feet bgs). The Design High Water Elevation (DHWE) of 727.91 feet is shown the TSL plan which is about 2 to 4 feet below the ground surface elevation at the boring locations.

5.0 FOUNDATION ANALYSIS AND RECOMMENDATIONS

The geotechnical evaluations and recommendations for the approach embankments, wingwalls and abutment foundations are included in the following sections. Wang has evaluated possible foundation types that can be considered for support of the proposed bridge structure.

5.1 Seismic Design Considerations

The soils within the top 100 feet have a weighted average N-value of 29 blows per foot (AASHTO 2012; Method C controlling), and the results classify the site in the Seismic Site Class D in accordance with the IDOT method. The project location belongs to the Seismic Performance Zone 1. The seismic spectral acceleration parameters recommended for design in accordance with AASHTO (AASHTO 2012) are summarized in Table 1. According to Bridge Manual (IDOT 2012), liquefaction analysis is not required for structure located in Seismic Performance Zone 1.

	Table 1: Seismic Design Parameters								
Spectral Acceleration Period	Spectral Acceleration Coefficient ¹⁾	Site Factors	Design Spectrum for Site Class D ²⁾						
(sec)	(% g)		(% g)						
0.0	PGA= 4.8	$F_{pga} = 1.6$	A _s =7.7						
0.2	S _s = 10.1	$F_{a} = 1.6$	S _{DS} = 16.1						
1.0	S ₁ = 3.7	$F_v = 2.4$	S _{D1} = 8.9						

1) Spectral acceleration coefficients based on Site Class D

2) Site Class D Spectrum to be included on plans; $A_s = PGA*F_{pga}$; $S_{DS} = S_s*F_a$; $S_{D1} = S_1*F_v$

5.2 Scour Considerations

The TSL plan shows a proposed streambed elevation of 718.7 feet. Both abutments will be armored with stone riprap for scour protection. For open abutments protected with stone riprap, the design and check scour elevations are set at the bottom of the abutments in accordance with IDOT ABD 14.2 and IDOT (2012). The design scour elevations for the proposed structure are presented in Table 2.

Event/Limit State	Design Scour	Design Scour Elevation (ft)				
	South Abutment	South Abutment North Abutment				
Q100	726.32	726.73				
Q500	726.32	726.73	-			
Design	726.32	726.73	8			
Check	726.32	726.73				

5.3 **Approach Embankments**

Based on the draft Roadway Plan & Profile Drawing, we understand the roadway profile grade will be raised by approximately 5.5 feet at the abutment locations. In addition, the existing embankment will be widened to accommodate the new shoulders and will include up to 7.0 feet of new fill.

5.3.1 Settlement

Based on soil conditions encountered, we estimate the cohesive foundation soils under the new approach embankment fill loads will undergo 0.5 inch or less long-term consolidation settlement. About 2 to 4 feet of very loose to loose, silty loam soil is expected to be encountered in south and north approaches, respectively. We estimate the settlement of these soils will occur during the placement of embankment fill and will be completed by the end of construction. The estimated residual settlement at the completion of approach embankment construction will be 0.4 inch or less. These settlement estimates are appropriate for the construction of approach slabs and we do not anticipate downdrag load allowances will be required for the piles.

5.3.2 Global Stability

The global stability of approach embankment side slope was analyzed based on the soil profile described in Section 4.1. The analyses for the 6-foot tall embankment widening were performed with the Simplified Bishop Method incorporated in Slide 6.0, and the results of the evaluations are shown in Appendix C. The side slope for the proposed approach embankment is designed at 1:2 (V:H). Wang estimates a minimum FOS of 3.0 and 2.0 for undrained and drained conditions (Appendices C-1 and C-2), respectively. The FOS is satisfactory and meets the IDOT required FOS of 1.5.

5.4 Structure Foundations

The plan shows pile cap base elevations of 726.32 and 726.73 feet at the south and north abutments, respectively. Preliminary total service and factored loads for the foundations provided by Milhouse are shown in Table 3.

Table 3: Preliminary Foundation Loads							
Substructure ID	Substructure ID Estimated Total Service Load Estimated Total Factored Loa						
	(kips)	(kips)					
Bridge Abutments	1025	1465					

We have evaluated various foundation types that can be considered for the support of the proposed bridge and we recommend driven piles to support the integral abutments. Due to the granular soil conditions, high groundwater table, and presence of groundwater pressure, we do not recommend considering drilled shafts foundations. Geotechnical parameters for the design of the deep foundations are presented in the following sections.

5.4.1 Driven Piles

IDOT specifies the maximum nominal required bearing (R_{NMAX}) for each pile and states the factored resistance available (R_F) for a steel H-pile should be based on a geotechnical resistance factor (Φ_G) of 0.55 (IDOT 2012). Nominal tip and side resistance were estimated using the methods and empirical equations presented in *AGMU Memorandum 10.2 – Geotechnical Pile Design*. We have performed evaluations for a range of MSP and H-pile sizes and nominal and factored loads. The R_F , R_N , estimated pile tip elevations, and pile lengths for 12-inch diameter MSP with 0.25-inch walls, 14-inch diameter MSP with 0.312-inch walls, 16-inch diameter MSP with 0.375-inch walls, HP12x53, HP12x63, HP14x73, and HP14x89 are presented in Tables 4 through 10. The pile lengths shown in Tables 4 through 10 include 2 feet pile embedment into the abutment pile caps.

The R_F estimates are governed by the relationship $R_F = \phi_G R_N - \phi_G (DD_R + S_C + L_{iq})I_G - (\gamma_p)(\lambda_{IS})DD_L$ (IDOT 2012). We estimate residual settlement at the completion of construction will be 0.4-inch or less and there will be a riprap protection for the abutment piles. Therefore, we do not anticipate downdrag and scour load reductions on the piles.

		Nominal	Factored	Factored	Factored	Total	Estimated
Structure	Pile	Required	Geotechnical	Geotechnical	Resistance	Estimated	Pile Tip
Unit	Cap Base	Bearing,	Loss	Loss Load	Available,	Pile Length	Elevation
	Elevations	$R_{\rm N}$			$R_{\rm F}$		
	(feet)	(kips)	(kips)	(kips)	(kips)	(feet)	(feet)
		145	0	0	80	20	708.3
South	726.32	218	0	0	120	21	708.3
Abutment (BB-04)		291	0	0	160	26	702.3
		392	0	0	216	26	702.3
N. d		145	0	0	80	20	708.7
North Abutment	70(70	218	0	0	120	28	700.7
(BB-03,	726.73	291	0	0	160	28	700.7
BB-03A)		392	0	0	216	28	700.7

Table 4 : Estimated Pile Lengths and Tip Elevations for MSP 12" ϕ w/ .25" walls

Table 5 : Estimated Pile Lengths and Tip Elevations for MSP 14" \(\phi w/ .312"\) walls

		Nominal	Factored	Factored	Factored	Total	Estimated
Structure	Pile	Required	Geotechnical	Geotechnical	Resistance	Estimated	Pile Tip
Unit	Cap Base	Bearing,	Loss	Loss Load	Available,	Pile Length	Elevation
	Elevations	$R_{\rm N}$			\mathbf{R}_{F}		
	(feet)	(kips)	(kips)	(kips)	(kips)	(feet)	(feet)
		145	0	0	80	15	713.2
South		218	0	0	120	20	708.3
Abutment	726.32	291	0	0	160	21	707.3
(BB-04)		364	0	0	200	26	702.3
		436	0	0	240	26	702.3

		Nominal	Factored	Factored	Factored	Total	Estimated
Structure	Pile	Required	Geotechnical	Geotechnical	Resistance	Estimated	Pile Tip
Unit	Cap Base	Bearing,	Loss	Loss Load	Available,	Pile Length	Elevation
	Elevations	$R_{\rm N}$			\mathbf{R}_{F}		
	(feet)	(kips)	(kips)	(kips)	(kips)	(feet)	(feet)
		509	0	0	280	26	702.3
		570	0	0	314	26	702.3
		145	0	0	80	12	716.7
		218	0	0	120	27	701.7
North		291	0	0	160	28	700.7
Abutment (BB-03,	726.73	364	0	0	200	28	700.7
(== 33, BB-03A)		436	0	0	240	28	700.7
		509	0	0	280	28	700.7
		570	0	0	314	38	690.7

Table 6 : Estimated Pile Lengths and Tip Elevations for MSP 16" \$\phi w/ .375" walls

		Nominal	Factored	Factored	Factored	Total	Estimated
Structure	Pile	Required	Geotechnical	Geotechnical	Resistance	Estimated	Pile Tip
Unit	Cap Base	Bearing,	Loss	Loss Load	Available,	Pile Length	Elevation
	Elevations	$R_{\rm N}$			\mathbf{R}_{F}		
	(feet)	(kips)	(kips)	(kips)	(kips)	(feet)	(feet)
		291	0	0	160	20	708.3
South		364	0	0	200	21	707.3
Abutment	726.32	436	0	0	240	24	704.3
(BB-04)		509	0	0	280	26	702.3
		582	0	0	320	26	702.3

Structure	Pile	Nominal Required	Factored Geotechnical	Factored Geotechnical	Factored Resistance	Total Estimated	Estimated Pile Tip
Unit	Cap Base	Bearing,	Loss	Loss Load	Available,	Pile Length	Elevation
	Elevations	$R_{\rm N}$			$R_{\rm F}$		
	(feet)	(kips)	(kips)	(kips)	(kips)	(feet)	(feet)
		622	0	0	360	26	702.3
		727	0	0	400	26	702.3
		782	0	0	430	33	695.3
		291	0	0	160	28	700.7
		364	0	0	200	28	700.7
North		436	0	0	240	28	700.7
Abutment		509	0	0	280	28	700.7
(BB-03,	726.73	582	0	0	320	28	700.7
BB-03A)		622	0	0	360	36	692.7
		727	0	0	400	38	690.7
		782	0	0	430	38	690.7

Table 7: Estimated Pile Lengths and Tip Elevations for HP12x53 Steel H-Piles

		Nominal	Factored	Factored	Factored	Total	Estimated
Structure	Pile	Required	Geotechnical	Geotechnical	Resistance	Estimated	Pile Tip
Unit	Cap Base	Bearing,	Loss	Loss Load	Available,	Pile Length	Elevation
	Elevations	$R_{\rm N}$			$R_{\rm F}$		
	(feet)	(kips)	(kips)	(kips)	(kips)	(feet)	(feet)
South		145	0	0	80	30	698.3
Abutment (BB-03,	726.32	218	0	0	120	45	683.3
(BB-03A) BB-03A		291	0	0	160	53	675.3

Structure Unit	Pile Cap Base Elevations (feet)	Nominal Required Bearing, R _N (kips)	Factored Geotechnical Loss (kips)	Factored Geotechnical Loss Load (kips)	Factored Resistance Available, R _F (kips)	Total Estimated Pile Length (feet)	Estimated Pile Tip Elevation (feet)
and BB-04)	<u> </u>	364	0	0	200	61	667.3 662.3
North		145 218	0	0	80 120	30 35	698.7 693.7
Abutment (BB-03, BB-03A)	726.73	291 364	0	0	160 200	48 52	680.7 676.7
		418	0	0	230	60	668.7

Table 8 : Estimated Pile Lengths and Tip Elevations for HP12x63 Steel H-Piles

		Nominal	Factored	Factored	Factored	Total	Estimated
Structure	Pile	Required	Geotechnical	Geotechnical	Resistance	Estimated	Pile Tip
Unit	Cap Base	Bearing,	Loss	Loss Load	Available,	Pile Length	Elevation
	Elevations	$R_{\rm N}$			$R_{\rm F}$		
	(feet)	(kips)	(kips)	(kips)	(kips)	(feet)	(feet)
South	South Abutment	145	0	0	80	30	698.3
Abutment		218	0	0	120	45	683.3
(BB-03, BB-03A	726.32	291	0	0	160	53	675.3
and		364	0	0	200	61	667.3
BB-04)		447	0	0	246	68	660.3
North	704 70	145	0	0	80	30	698.7
Abutment	726.73	218	0	0	120	35	693.7

Structure Unit (BB-03, BB-03A)	Pile Cap Base Elevations (feet)	Nominal Required Bearing, R _N (kips) 291 364 436 497	Factored Geotechnical Loss (kips) 0 0 0 0 0	Factored Geotechnical Loss Load (kips) 0 0 0 0 0	Factored Resistance Available, R _F (kips) 160 200 240 273	Total Estimated Pile Length (feet) 47 59 60 67	Estimated Pile Tip Elevation (feet) 681.7 669.7 668.7 661.7
	Table 9 : Es	timated Pile	Lengths and Tij	p Elevations for	· HP14x73 St	eel H-Piles	
		Nominal	Factored	Factored	Factored	Total	Estimated
Structure	Pile	Required	Geotechnical	Geotechnical	Resistance	Estimated	Pile Tip
Unit	Cap Base	Bearing,	Loss	Loss Load	Available,	Pile Length	Elevation
	Elevations	$R_{\rm N}$			$R_{\rm F}$		
	(feet)	(kips)	(kips)	(kips)	(kips)	(feet)	(feet)
		145	0	0	80	28	700.3
South		218	0	0	120	34	694.3
Abutment		291	0	0	160	48	680.3
(BB-03, BB-03A	726.32	364	0	0	200	59	669.3
and		436	0	0	240	61	667.3
BB-04)		509	0	0	280	65	663.3
		550	0	0	302	68	660.3
North	706 70	145	0	0	80	28	700.7
Abutment (BB-03,	726.73	218	0	0	120	32	696.7

		Nominal	Factored	Factored	Factored	Total	Estimated
Structure	Pile	Required	Geotechnical	Geotechnical	Resistance	Estimated	Pile Tip
Unit	Cap Base	Bearing,	Loss	Loss Load	Available,	Pile Length	Elevation
	Elevations	$R_{\rm N}$			$R_{\rm F}$		
	(feet)	(kips)	(kips)	(kips)	(kips)	(feet)	(feet)
BB-03A)		291	0	0	160	41	687.7
		364	0	0	200	49	679.7
		436	0	0	240	59	669.7
		509	0	0	280	60	668.7
		578	0	0	318	62	666.7

Table 10 : Estimated Pile Lengths and Tip Elevations for HP14x89 Steel H-Piles

		Nominal	Factored	Factored	Factored	Total	Estimated
Structure	Pile	Required	Geotechnical	Geotechnical	Resistance	Estimated	Pile Tip
Unit	Cap Base	Bearing,	Loss	Loss Load	Available,	Pile Length	Elevation
	Elevations	R_N			$R_{\rm F}$		
	(feet)	(kips)	(kips)	(kips)	(kips)	(feet)	(feet)
		145	0	0	80	28	700.3
South		218	0	0	120	34	694.3
Abutment		291	0	0	160	48	680.3
(BB-03, BB-03A	726.32	364	0	0	200	59	669.3
and		437	0	0	240	60	668.3
BB-04)		509	0	0	280	63	665.3
		557	0	0	306	68	660.3

Startan	D:1-	Nominal	Factored	Factored	Factored	Total	Estimated
Structure	Pile	Required	Geotechnical	Geotechnical	Resistance	Estimated	Pile Tip
Unit	Cap Base	Bearing,	Loss	Loss Load	Available,	Pile Length	Elevation
	Elevations	R_N			$R_{\rm F}$		
	(feet)	(kips)	(kips)	(kips)	(kips)	(feet)	(feet)
		145	0	0	80	28	700.7
		218	0	0	120	32	696.7
		291	0	0	160	39 6	689.7
North Abutment	726.73	364	0	0	200	47	681.7
(BB-03, BB-03A)	/20./3	436	0	0	240	59	669.7
<u>DD</u> (511)		509	0	0	280	60	668.7
		582	0	0	320	61	667.7
		628	0	0	347	68	660.7

5.4.2 Lateral Loading

Lateral loads on all piles should be analyzed for maximum moments and lateral deflections. The geotechnical resistance factor of 1.0 should be used. Recommended lateral soil modulus parameters and soil strain parameters required for analysis via the p-y curve method are included in Tables 11 and 12.

Table 11 : Recommended Soil Parameters for Lateral Load Pile Analysis at South Abutment (Reference Borings: BB-03, BB-03A and BB-04)

				Soil Lateral	Soil Strain
Soil	Moist Unit	Undrained	Friction	Modulus	Parameter,
Description	Weight, γ _e (lbs/ft ³)	Shear Strength, c _u (lbs/ft ²)	angle, φ (°)	Parameter, k (lb/in ³)**	ε ₅₀ (%)
726.3* to 722 Silty Clay Fill	120	1200	0	500	0.7

Soil Description	Moist Unit Weight, γ _e (lbs/ft ³)	Undrained Shear Strength, c _u (lbs/ft ²)	Friction angle, φ (°)	Soil Lateral Modulus Parameter, k (lb/in ³)**	Soil Strain Parameter, ɛ ₅₀ (%)
722 to 721 Silty Clay	115	500	0	100	1.0
721 to 719** Silty Loam	110	0	28	20	
719 to 712 Sand to Sandy Gravel	115	0	30	60	
712 to 709 Sand and Gravel	130	0	36	125	
709 to 693 Sand to sandy gravel	120	0	32	60	
693 to 670 Loam to Sandy Gravel	130	0	35	125	
670 to 668 Silty Clay Loam	125	4500	0	2000	0.4
668 to 660 Sandy Gravel	135	0	37	125	

*Pile Cap Base Elevation.

** Submerged condition for granular soil

Table 12 : Recommended Soil Parameters for Lateral Load Pile Analysis at North Abutment
(Reference Borings: BB-03 and BB-03A)

	(iterererere)	eringe: BB es t			
	Moist	Undrained		Soil Lateral	Soil Strain
Layer Elevation/ Soil	Unit	Shear	Friction	Modulus	Parameter,
Description	Weight, γ_e	Strength, c _u	angle, ϕ	Parameter, k	ϵ_{50}
	(lbs/ft ³)	(lbs/ft^2)	(°)	(lb/in ³)**	(%)
726.8* to 724	120	1200	0	500	0.7
Silty Clay Loam Fill	120	1200	0	500	0.7
724 to 723	120	1000	0	500	0.7
Silty Clay	120	1000	0	500	0.7

	Moist	Undrained		Soil Lateral	Soil Strair		
Layer Elevation/ Soil	Unit	Shear	Friction	Modulus	Parameter		
Description	Weight, γ_e	Strength, c_u	angle, ϕ	Parameter, k	ϵ_{50}		
	(lbs/ft ³)	(lbs/ft^2)	(°)	(lb/in ³)**	(%)		
723 to 719**	110	0	25	•			
Silty Loam	110	0	27	20			
719 to 709	120	0	25	(0)			
Sand with Gravel	130	0	35	60			
709 to 708	105	3000	0	1000	0.5		
Silty Clay	125		1000	0.5			
708 to 704	105	0	24	60			
Sandy Gravel	125	0	34	60			
704 to 700	105	2300	0	1000	0.5		
Silty Clay Loam	125	2300	0	1000	0.5		
700 to 695	130	0	27	105			
Sandy Gravel	130	0	37	125			
695 to 690	125	4500	0	2000	0.4		
Clay Loam	125	4300	0	2000	0.4		
690 to 670	120	0	25	(0			
Sand to Sandy Gravel	130	0	35	60			
670 to 668	105	4500	0	2000	0.4		
Silty Clay Loam	125	4300	0	2000	0.4		
668 to 660	135	0	37	125			
Sandy Gravel	155	U	51	123			

*Pile Cap Base Elevation.

** Submerged Condition for Granular Soil from elevation 721.0 feet.

5.5 Stage Construction

The TSL plan shows the bridge construction occurring in two stages. Temporary sheet piling designed according to IDOT Design Guide 3.13.1 (2012) is not feasible to accommodate the stage construction due to the potential fill section. Therefore, the pay item *Temporary Soil Retention System* should be included and designed by the Contractor to be approved by IDOT prior to construction.

6.0 CONSTRUCTION CONSIDERATIONS

6.1 Site Preparation

All vegetation, surface topsoil, existing pavement, and debris should be cleared and stripped where foundations and fill will be placed. The site shall be prepared as required per IDOT Standard Specification Any unstable or unsuitable materials should be removed and replaced with compacted fill as described in Section 6.3.

6.2 Excavation, Dewatering, and Utilities

Foundation excavations should be performed in accordance with local, State, and federal regulations. The potential effect of ground movements upon nearby utilities should be considered during construction. For the pile cap construction, temporary open cut excavations to a depth of 5 feet should have a slope of 1:1.5 (V:H) or flatter. For the excavations that extend below 5 feet, a soil retention system will be required

During the subsurface investigation, the shallow groundwater was encountered at elevations ranging from 719.5 to 721.0 feet. Therefore, groundwater will be encountered about 5 to 7 feet below pile cap base elevations of 726.3 to 726.8 feet and we do not anticipate the need for special dewatering efforts. Depending upon prevailing climate conditions and the time of the year when structure construction takes place, control runoff and maintenance of existing flows may require temporary water diversion and control. Water that does accumulate into open excavations by seepage or runoff should be immediately removed by the sump/pump method.

6.3 Filling and Backfilling

Fill material used to attain the final design elevations should be as per IDOT Standard Specifications. The fill material should be free of organic matter and debris and should be placed in lifts and compacted according to IDOT Section 205, *Embankment* (IDOT, 2016). All backfill materials must be as per IDOT Standard Specifications.

6.4 Earthwork Operations

The required earthwork can be accomplished with conventional construction equipment. Moisture and traffic will cause deterioration of exposed subgrade soils. Precautions should be taken by the contractor to prevent water erosion of the exposed subgrade. A compacted subgrade will minimize water runoff erosion.

Earth moving operations should be scheduled to not coincide with excessive cold or wet weather (early spring, late fall or winter). Any soil allowed to freeze or soften due to the standing water should be removed. Wet weather can cause problems with subgrade compaction.

It is recommended that an experienced geotechnical engineer be retained to inspect the exposed subgrade, monitor earthwork operations, and provide material inspection services during the construction phase of this project.

6.5 Pile Installation

The driven piles shall be furnished and installed according to the requirements of IDOT Section 512, *Piling* (IDOT, 2016). Wang recommends that at a minimum of one test pile be performed at each abutment location. The test piles shall be driven to 110 percent of the nominal required bearing indicated in Section 5.2.1. Since hard driving is expected, the piles should be installed with metal shoes.

7.0 QUALIFICATIONS

The analysis and recommendations submitted in this report are based upon the data obtained from the borings drilled at the locations shown on the boring logs and in Exhibit 3. This report does not reflect any variations that may occur between the borings or elsewhere on the site, variations whose nature and extent may not become evident until the course of construction. In the event that any changes in the design and/or location of the structure are planned, we should be timely informed so that our recommendations can be adjusted accordingly.

It has been a pleasure to assist Milhouse Engineering & Construction, Inc. on this project. Please call if there are any questions, or if we can be of further service.

Respectfully Submitted,

WANG ENGINEERING, INC.

Andri Kurnia, P.E. Senior Geotechnical Engineer Corina T. Farez, P.E., P.G. QA/QC Reviewer

Nesam S. Balakumaran, P.Eng. Project Geotechnical Engineer

REFERENCES

- AASHTO (2012) *LRFD Bridge Design Specifications*. American Association of State Highway and Transportation Officials, Washington, D.C.
- Curry, B.B., D.A. Grimley, and T.H. Larson, 2001, Surficial Geology Map, Sugar Grove 7.5-minute Quadrangle, Kane County, Illinois: Illinois State Geological Survey, Illinois Geologic Quadrangle Map, IGQ Sugar Grove-SG, 1:24,000.
- Curry, B.B., 2002, Topographic Map of the Bedrock Surface, Sugar Grove 7.5-minute Quadrangle, Kane County, Illinois: Illinois State Geological Survey, Illinois Geologic Quadrangle Map, IGQ Sugar Grove-BT, 1:24,000.
- Hansel, A.K., and Johnson, W.H., 1996, Wedron and Mason Groups: Lithostratigraphic Reclassification of the Wisconsin Episode, Lake Michigan Lobe Area. ISGS Bulletin 104. Champaign, Illinois State Geological Survey.
- IDOT (2009) *All Geotechnical Manual Users Memorandum 09.1* Seismic Site Class Definition. Illinois Department of Transportation.
- IDOT (2011) *All Geotechnical Manual Users Memorandum 10.2* Static Method of Estimating Pile Length. Illinois Department of Transportation.
- IDOT (2012) Bridge Manual. Illinois Department of Transportation.
- IDOT (2016) *Standard Specifications for Road and Bridge Construction*. Illinois Department of Transportation, 1098 pp.
- ISGS (2010) *Circluar* 576 Groundwater flow modelling as a tool to understand watershed geology: Blackberry Creek Watershed, Kane and Kendall Counties in Illinois. Illinois State Geological Survey.
- J Leighton, M.M., Ekblaw, G.E., and Horberg, L., 1948, Physiographic Divisions of Illinois. The Journal of Geology, v. 56, p. 16-33.

EXHIBITS

 $\triangleleft s$

1145 North Main Street Lombard, Illinois 60148 Phone (630) 953-9928 www.wangeng.com

APPENDIX A

Geotechnical · Construction · Environmental Quality Engineering Services Since 1982

wangeng@wangeng.com

1145 N Main Street

Lombard, IL 60148

BORING LOG BB-03

WEI Job No.: 192-03-01

Page 2 of 2

Client Milhouse Engineering & Construction, Inc. Project IL 47 at Main Street Intersection Improvements Datum: NAVD 88 Elevation: 731.98 ft North: 1885090.79 ft East: 947499.90 ft Station: 502+79.14 Offset: 21.72' LT

	one: 630 953-9928 30 953-9938	Location				Elbı	ırn, Þ	Kane	Cour	ity, IL	Offset: 21					
Elevation (ft)	SOIL AND ROCK DESCRIPTION	Depth (ft)	Sample Type	Sample No.	SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)	Profile	Elevation (ft)	SOIL AND ROC DESCRIPTION		Sample Type	Sample No.	SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)
	² Medium dense to dense, bro coarse SAND to SANDY GRAVEL, little gravel satura	-		15	5 12 13	NP	12									
5 0 0 5 0 0 0 0 0 682.0	b Boring terminated at 50.00 ft			16	30 27 22	NP	10									
		- - - 55_ -														
	GENE										<u>R LEVE</u>					
Begin D		Com a Sorvia			-)4-21			While Drilling	<u>₹</u>			00 ft A		
Drilling (Driller	Contractor Wang Testin R & J Logger	g Servic D. Kol					D-50			At Completion of Drilling Time After Drilling	Ţ NA		IN	A		••••
										Depth to Water						
Drilling Method2.25" IDA SSA to 10', Mud rotary from 10', autohammer, boring backfilled upon completion									The stratification lines repr between soil types; the act		roxim	ate b	oundar	/		

BORING LOG BB-03A

WEI Job No.: 192-03-01

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

ClientMilhouse Engineering & Construction, Inc.ProjectIL 47 at Main Street Intersection ImprovementsLocationElburn, Kane County, IL

Datum: NAVD 88 Elevation: 730.35 ft North: 1885082.89 ft East: 947499.61 ft Station: 502+71.45 Offset: 23.20' RT

Profile		Sample Type recovery Sample No. SPT Values	(blw/6 In) Qu (tsf)	Moisture Content (%)	Profile Elevation	(ft)	SOIL AND ROCK DESCRIPTION	Depth (ft)	Sample Type recovery Sample No.	SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)
	blind drilling to 48.5 feet							-				
	-							-				
	-							_				
	-							-				
	-							-				
	-							-				
	5_							25_				
	-							-				
	-							-				
	-							-				
	-							-				
	-							-				
	-							-				
	10							30				
	-							-				
	-							-				
	-							-				
	-							-				
	_							_				
	_ 15_							35				
	-							-				
	-							-				
	-							-				
10/17	-							-				
GDT 2	-					ŀ	nard drilling at 38 feet, pos cobb					
MANGENGINC 1920301.GPJ WANGENG.GDT 2/10/17	-							-				
MAN	20							40				
01.GP,	GENERAL N		^	<u> </u>	2045		WATER					
B 19203		plete Drilling		6-09-/ D-50			While Drilling At Completion of Drilling	<u>₹</u>		NA 00 ft		
							At Completion of Drilling Time After Drilling	⊻ NA	U.			
	DrillerK & KLoggerA. HappelChecked byB. WilsonDrilling Method3.25" IDA HSA, auto hammer, boring backfilled upon						Depth to Water	NA				
WANC	completion					The stratification lines represe between soil types: the actual t	nt the app ransition	roximate may be q	boundar radual.	у		

BORING LOG BB-03A

WEI Job No.: 192-03-01

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

ClientMilhouse Engineering & Construction, Inc.ProjectIL 47 at Main Street Intersection ImprovementsLocationElburn, Kane County, IL

Datum: NAVD 88 Elevation: 730.35 ft North: 1885082.89 ft East: 947499.61 ft Station: 502+71.45 Offset: 23.20' RT

wangeng@wangeng.com

Telephone: 630 953-9928

1145 N Main Street

Lombard, IL 60148

BORING LOG BB-04

WEI Job No.: 192-03-01

Page 2 of 2

ClientMilhouse Engineering & Construction, Inc.ProjectIL 47 at Main Street Intersection ImprovementsLocationElburn, Kane County, IL

Datum: NAVD 88 Elevation: 729.99 ft North: 1885038.80 ft East: 947546.38 ft Station: 502+20.31 Offset: 15.59' RT

Fax: 630 953-9938 Location Elburn, Kane County, IL Offset: 15.59' RT														
	OIL AND ROCK DESCRIPTION	Depth (ft) Sample Type	Sample No.	SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)	Profile	Elevation (ft)	SOIL AND ROO DESCRIPTIO		Sample Type	Sample No. SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)
	m dense, brown, medium , trace gravel saturated-			10										
685.0 Boring	terminated at 45.00 ft	45	15	9 17	NP	16								
		- - 50_ - - -												
		- - - 55_ - -												
Begin Drilling Drilling Contrac Driller Drilling Method Comple		- - - - - 60												
ר <u>ה</u>	GENERA									ER LEVE				
Begin Drilling	05-20-2015	Complete		-		5-20			While Drilling	<u> </u>		0.50 ft		
				-		D-50			At Completion of Drillin			6.00 ft		
Driller	R&J Logger D	-							Time After Drilling	NA ⊈ NA				
	3.25" IDA HSA, aut				-			-	The stratification lines re	present the app	roxima	te boundai	у	
completion						between soil types; the actual transition may be gradual.								

1145 North Main Street Lombard, Illinois 60148 Phone (630) 953-9928 www.wangeng.com

APPENDIX B

Geotechnical · Construction · Environmental Quality Engineering Services Since 1982

1145 North Main Street Lombard, Illinois 60148 Phone (630) 953-9928 www.wangeng.com

APPENDIX C

Geotechnical · Construction · Environmental Quality Engineering Services Since 1982

Loose to M Dense SAND/SANDY GRAVEL Dense SAND and GRAVEL

M Stiff SI CL

V Loose SI LOAM

ID	Description	(pcf)	(psf)	(degrees)
1	IDOT FILL	125	1000	0
2	Stiff SI CL FILL	120	1200	0
3	M Stiff SI CL	115	500	0
4	V Loose SI LOAM	110	0	27
5	Loose to M Dense SAND/SANDY GRAVEL	115	0	30
6	Dense SAND and GRAVEL	130	0	36

1145 North Main Street Lombard, Illinois 60148 Phone (630) 953-9928 www.wangeng.com

APPENDIX D

Geotechnical · Construction · Environmental Quality Engineering Services Since 1982

STATE OF ILLINOIS	GENERAL PLAN
DEPARTMENT OF TRANSPORTATION	SN 045-2050
	SHEET NO. 1 OF 2 S

7		
t.	Headwa	iter El.
rop.	Exist.	Prop.
.13	726.45	726.46
.17	728.39	728.08
.32	728.95	728.76
.23	729.92	7 <i>30.11</i>

Event/Limit	Design S	ions (ft.)	
State	S. Abut.	N. Abut.	Item 113
Q100	726.32	726.73	
Q500	726.32	726.73	8
Design	726.32	726.73	
Check	726.32	726.73	

STATE OF ILLINOIS	SECTION
DEPARTMENT OF TRANSPORTATION	SN 045–20
	SHEET NO. 2 OF 2