

April 17, 2015

SUBJECT: Station Boulevard Section 13-00300-00-PK (Aurora) DuPage County Contract No. 61B33 Item 174 April 24, 2015 Letting Addendum (B)

NOTICE TO PROSPECTIVE BIDDERS:

Due to clarify information necessary to revise the following:

1. Revised pages 38 – 44 to the Special Provisions.

Prime contractors must utilize the enclosed material when preparing their bid and must include any Schedule of Prices changes in their bidding proposal.

Bidders using computer-generated bids are cautioned to reflect any and all Schedule of Prices changes, if involved, into their computer programs.

Very truly yours,

John Baranzelli, P.E. Acting Engineer of Design and Environment

Jedge abechlyon AE.

By: Ted B. Walschleger, P.E. Engineer of Project Management

1031.09 RAP in Aggregate Surface Course and Aggregate Shoulders. The use of RAP or FRAP in aggregate surface course and aggregate shoulders shall be as follows.

- (a) Stockpiles and Testing. RAP stockpiles may be any of those listed in Article 1031.02, except "Non-Quality" and "FRAP". The testing requirements of Article 1031.03 shall not apply. RAP used to construct aggregate surface course and aggregate shoulders shall be according to the current Bureau of Materials and Physical Research's Policy Memorandum, "Reclaimed Asphalt Pavement (RAP) for Aggregate Applications"
- (b) Gradation. One hundred percent of the RAP material shall pass the 1 1/2 in. (37.5mm) sieve. The RAP material shall be reasonably well graded from coarse to fine. RAP material that is gap-graded, FRAP, or single sized will not be accepted for use as Aggregate Surface Course and Aggregate Shoulders."

HEAT OF HYDRATION CONTROL FOR CONCRETE STRUCTURES (D-1)

Effective: November 1, 2013

Article 1020.15 shall not apply.

DRILLED SOLDIER PILE RETAINING WALL

<u>Description:</u> This work shall consist of providing all labor, materials, and equipment necessary to fabricate and furnish the soldier piles, create and maintain the shaft excavations, set and brace the soldier piles into position and encase the soldier piles in concrete to the specified elevation. Also included in this work is the backfilling of the remainder of the shaft excavation with Controlled Low-Strength Material (CLSM), and the furnishing and installation of lagging. All work shall be according to the details shown on the plans and as directed by the Engineer.

The remainder of the retaining wall components as shown on the plans, such as concrete facing, shear studs, reinforcement bars, tie backs, hand rails, and various drainage items etc., are not included in this Special Provision but are paid for as specified elsewhere in this Contract.

<u>Materials:</u> The materials used for the soldier piles and lagging shall satisfy the following requirements:

- (a) The structural steel components for the soldier piles shall conform to the requirements of AASHTO M270, Grade 36 (M270M Grade 250), unless otherwise designated on the plans.
- (b) The soldier pile encasement concrete shall be Class DS according to Article 516.02.
- (c) The Controlled Low-Strength Material (CLSM), used for backfilling shaft excavations above the soldier pile encasement concrete and for backfilling secant lagging excavations, to the existing ground surface, shall be according to Section 1019.

- (d) Temporary casing shall be produced by electric seam, butt, or spiral welding to produce a smooth wall surface, fabricated from steel satisfying ASTM A252 Grade 2. The minimum wall thickness shall be as required to resist the anticipated installation and dewatering stresses, as determined by the Contractor, but in no case less than 1/4 in. (6 mm).
- (e) Drilling slurry shall consist of a polymer or mineral base material. Mineral slurry shall have both a mineral grain size that will remain in suspension with sufficient viscosity and gel characteristics to transport excavated material to a suitable screening system. The percentage and specific gravity of the material used to make the suspension shall be sufficient to maintain the stability of the excavation and to allow proper concrete placement. For polymer slurry, the calcium hardness of the mixing water shall not exceed 100 mg/L.
- (f) Timber Lagging. The minimum tabulated unit stress in bending (Fb), used for the design of the timber lagging, shall be 1000 psi (6.9 MPa) unless otherwise specified on the plans. When treated timber lagging is specified on the plans, the method of treatment shall be according to Article 1007.12. All timber shall meet the inspection requirements of Article 1007.01.
- (g) Precast Concrete Lagging. Precast concrete lagging shall be according to Section 504 of the Standard Specifications, except as modified herein. Unless specified otherwise, precast concrete lagging surfaces exposed to view in the completed wall shall be finished according to Article 503.15. When specified on the plans, the exposed surface shall be finished with a concrete form liner approved by the Engineer. The back face of the panel shall be roughly screeded to eliminate open pockets of aggregate and surface distortions in excess of 1/4 in. Reinforcement for precast concrete lagging shall be epoxy coated. Lifting inserts shall have a total minimum design capacity based on yield strength of 4 times the dead load calculated for the width of lagging used. Fabric bearing pads, when specified on the plans, shall meet the requirements of Section 1082. Threaded inserts, or other accessories, cast into the precast concrete lagging shall be galvanized according to AASHTO M111 or M232 as applicable.

<u>Equipment:</u> The drilling equipment shall have adequate capacity, including power, torque and down thrust, to create a shaft excavation of the maximum diameter specified to a depth of 20 percent beyond the depths shown on the plans. Concrete equipment shall be according to Article 1020.03.

<u>Construction Requirements:</u> The shaft excavation for each soldier pile shall extend to the tip elevation indicated on the plans for soldier piles terminating in soil or to the required embedment in rock when rock is indicated on the contract plans. The Contractor shall satisfy the following requirements:

(a) Drilling Methods. The soldier pile installation shall be according to Articles 516.06(a),(b), or(c).

No shaft excavation shall be made adjacent to a soldier pile with encasement concrete that has a compressive strength less than 1500 psi (10.35 MPa), nor adjacent to secant

lagging until the CLSM has reach sufficient strength to maintain its position and shape unless otherwise approved by the Engineer. Materials removed or generated from the shaft excavations shall be disposed of by the Contractor according to Article 202.03. Excavation by blasting will not be permitted.

- (b) Drilling Slurry. During construction, the level of the slurry shall be maintained at a height sufficient to prevent caving of the hole. In the event of a sudden or significant loss of slurry to the hole, the construction of that shaft shall be stopped and the shaft excavation backfilled or supported by temporary casing until a method to stop slurry loss, or an alternate construction procedure, has been developed and approved by the Engineer.
- (c) Obstructions. Obstructions shall be defined as any object (such as but not limited to, boulders, logs, old foundations, etc.) that cannot be removed with normal earth drilling procedures, but requires special augers, tooling, core barrels or rock augers to remove the obstruction. When obstructions are encountered, the Contractor shall notify the Engineer and upon concurrence of the Engineer, the Contractor shall begin working to core, break up, push aside, or remove the obstruction. Lost tools or equipment in the excavation, as a result of the Contractor's operation, shall not be defined as obstructions and shall be removed at the Contractor's expense.
- (d) Top of Rock. The top of rock will be considered as the point where rock, defined as bedded deposits and conglomerate deposits exhibiting the physical characteristics and difficulty of rock removal as determined by the Engineer, is encountered which cannot be drilled with earth augers and/or underreaming tools configured to be effective in the soils indicated in the contract documents, and requires the use of special rock augers, core barrels, air tools, blasting, or other methods of hand excavation.
- (e) Design Modifications. If the top of rock elevation encountered is below that estimated on the plans, such that the soldier pile length above rock is increased by more than 10 percent, the Engineer shall be contacted to determine if any soldier pile design changes are required. In addition, if the type of soil or rock encountered is not similar to that shown in the subsurface exploration data, the Engineer shall be contacted to determine if revisions are necessary.
- (f) Soldier Pile Fabrication and Placement. The soldier pile is defined as the structural steel section(s) shown on the plans as well as any connecting plates used to join multiple sections. The types of soldier piles shall be defined as HP, W Sections, or Built-Up Sections. Cleaning and painting of all steel components, when specified, shall be as shown on the plans and accomplished according to Section 506. This work will not be paid for separately, but shall be considered included in the cost of Furnishing Soldier Piles of the type specified.

The soldier pile shall be shop fabricated such that no field welding is required. The Contractor shall attach suitable bracing or support to maintain the position of the soldier pile within the shaft excavation such that the final location will satisfy the Construction Tolerances portion of this Special Provision. The bracing or supports shall remain in place until the concrete for encasement has reached a minimum compressive strength of 1500 psi (10.35 MPa).

When embedment in rock is indicated on the plans, modification to the length of a soldier pile may be required to satisfy the required embedment. The modification shall be made to the top of the soldier pile unless otherwise approved by the Engineer. When the top of rock encountered is above the estimated elevation indicated on the plans, the soldier piles shall be cut to the required length. If the top of rock encountered is below that estimated on the plans, the Contractor shall either furnish longer soldier piles or splice on additional length of soldier pile per Article 512.05(a) to satisfy the required embedment in rock. In order to avoid delays, the Contractor may have additional soldier pile sections fabricated as necessary to make the required adjustments. Additional soldier pile quantities, above those shown on the plans, shall not be furnished without prior written approval by the Engineer.

(g) Concrete Placement. Concrete work shall be performed according to Article 516.12 and as specified herein.

The soldier pile encasement concrete pour shall be made in a continuous manner from the bottom of the shaft excavation to the elevation indicated on the plans. Concrete shall be placed as soon as possible after the excavation is completed and the soldier pile is secured in the proper position. Uneven levels of concrete placed in front, behind, and on the sides of the soldier pile shall be minimized to avoid soldier pile movement, and to ensure complete encasement.

Following the soldier pile encasement concrete pour, the remaining portion of the shaft excavation shall be backfilled with CLSM according to Section 593. CLSM Secant lagging placement shall be placed as soon as practical after the shaft excavation is cleared.

- (h) Construction Tolerances. The soldier piles shall be installed within the excavation to satisfy the following tolerances:
 - (1) The center of the soldier pile shall be within 2 in. (50 mm) of plan location in any direction at the top of the pile.
 - (2) The out of vertical plumbness of the soldier pile shall not exceed 1/8 in./ft. (10 mm/m)
 - (3) The top of the soldier pile shall be within ± 2 in. (± 50 mm) of the plan elevation.
- (i) Timber Lagging. Timber lagging, when required by the plans, installed below the original ground surface, shall be placed from the top down as the excavation proceeds. Lagging shown above grade shall be installed and backfilled against prior to installing any permanent facing to minimize post construction deflections. Over-excavation required to place the timber lagging behind the flanges of the soldier piles shall be the minimum necessary to install the lagging. Any voids produced behind the lagging shall be filled with porous granular embankment at the Contractors expense. When the plans require the Contractor to design the timber lagging, the design shall be based on established practices published in FHWA or AASHTO documents considering lateral earth pressure, construction loading, traffic surcharges and the lagging span length(s). The nominal thickness of the lagging selected shall not be less than 3 in. (75 mm) and shall satisfy the minimum tabulated unit stress in bending (Fb) stated elsewhere in this Special

Provision. The Contractor shall be responsible for the successful performance of the lagging system until the concrete facing is installed. When the nominal timber lagging thickness(s) and allowable stress are specified on the plans, the timber shall be according to Article 1007.03.

(j) Precast Concrete Lagging. Precast concrete lagging, when required by the plans, installed below the original ground surface, shall be placed from the top down as the excavation proceeds. Lagging shown above grade shall be installed and backfilled against prior to installing any permanent facing to minimize post construction deflections. Over-excavation required to place the precast lagging behind the flanges of the soldier piles shall be the minimum necessary to install the lagging. Any voids produced behind the lagging shall be filled with porous granular embankment at the Contractor's expense. When the plans require the Contractor to design the precast concrete lagging, the design shall be based on established practices published in FHWA or AASHTO documents considering lateral earth pressure, construction loading, traffic surcharges and the lagging span length(s). The Contractor shall be responsible for the successful performance of the lagging system until the permanent concrete facing, when specified on the plans, is installed.

The precast concrete lagging shall be reinforced with a minimum of 0.31 square inches/foot (655 Sq. mm/meter) of horizontal and vertical reinforcement per unit width of lagging with a minimum thickness of 3 in. (75 mm).

When precast concrete lagging is exposed to view in the completed wall, shop drawings for the lagging shall be submitted according to Article 1042.03(b) and Article 105.04 of the Standard Specifications. The supplier selected by the Contractor shall submit complete design calculations and shop drawings, prepared and sealed by an Illinois Licensed Structural Engineer, for approval by the Engineer.

- (k) Structure Excavation. When structure excavation is necessary to place a concrete facing, it shall be made and paid for according to Section 502 except that the horizontal limits for structure excavation shall be from the face of the soldier pile to a vertical plane 2 ft. (600 mm) from the finished face of the wall. The depth shall be from the top of the original ground surface to the bottom of the concrete facing. The additional excavation necessary to place the lagging whether through soil or CLSM shall be included in this work.
- (I) Geocomposite Wall Drain. When required by the plans, the geocomposite wall drain shall be installed and paid for according to Section 591 except that, in the case where a concrete facing is specified on the plans, the wall drain shall be installed on the concrete facing side of the lagging with the pervious (fabric) side of the drain installed to face the lagging. When a concrete facing is not specified on the plans, the pervious (fabric) side of the drain shall be installed to face the soil. In this case, the drain shall be installed in stages as the lagging is installed. The wall drain shall be placed in sections and spliced, or kept on a continuous roll, so that as each piece of lagging is placed, the drain can be properly located as the excavation proceeds.

<u>Basis of Payment:</u> This work will not be measured for payment, but will be included in the cost per EACH of BOX CULVERT END SECTIONS, CULVERT NO. 1, where one end section is defined as both wingwalls and associated collars at one end of the structure.

IDOT DISTRICT 1 TRAFFIC SIGNAL SPECIFICATIONS

Effective: May 22, 2002 Revised: January 1, 2012

These Traffic Signal Special Provisions and the "District One Standard Traffic Signal Design Details" supplement the requirements of the State of Illinois "Standard Specifications for Road and Bridge Construction." The intent of these Special Provisions is to prescribe the materials and construction methods commonly used for traffic signal installations. All material furnished shall be new. The locations and the details of all installations shall be as indicated on the Plans or as directed by the Engineer. Traffic signal construction and maintenance work shall be performed by personnel holding IMSA Traffic Signal Technician Level II certification. The work to be done under this contract consists of furnishing and installing all traffic signal work as specified in the Plans and as specified herein in a manner acceptable and approved by the Engineer.

SECTION 720 SIGNING

MAST ARM SIGN PANELS

Add the following to Article 720.02 of the Standard Specifications:

Signs attached to poles or posts (such as mast arm signs) shall have mounting brackets and sign channels which are equal to and completely interchangeable with those used by the District Sign Shops. Signfix Aluminum Channel Framing System is currently recommended, but other brands of mounting hardware are acceptable based upon the Department's approval.

DIVISION 800 ELECTRICAL

SUBMITTALS

Revise Article 801.05 of the Standard Specifications to read:

All material approval requests shall be submitted in accordance with the District's current Electrical Product Data and Documentation Submittal Guidelines. General requirements include:

1. Material approval requests shall be made at the preconstruction meeting, including major traffic signal items listed in the table in Article 801.05. Material or equipment which is similar or identical shall be the product of the same manufacturer, unless necessary for system continuity. Traffic signal materials and equipment shall bear the U.L. label whenever such labeling is available.