Structural Geotechnical Report

Bridge Construction Project Weber Road over I-55 Will County, Illinois Structure Number: 099-0428 (NB)

IDOT PTB: 169-017

Project Design Engineer Team: Knight Engineers & Architects

Geotechnical Consultant: GSG Consultants, Inc. Kalyan Chandhuri, PE kchandhuri@gsg-consultants.com

January 16, 2015 First Revision: April 21, 2015 Second Revision: May 20, 2015

855 West Adams, Sulte 200 Chicago, Illinois 60607 tel: 312.733.6262 fax: 312.733.5612

May 20, 2015

Mr. John C. Murillo, P.E. Project Manager Knight Engineers & Architects 221 North LaSalle Street, Suite 300 Chicago, Illinois 60601

Structural Geotechnical Report Bridge Construction Project Weber Road over I-55 Structure Number: 099-0428 (NB) IDOT PTB: 169-017

Dear Mr. Murillo,

Attached is a copy of the Structural Geotechnical Report for the above referenced project. The report provides a brief description of the site investigation, site conditions and foundation recommendations. The site investigation included advancing three (3) soil borings for the bridge improvements to depths ranging from 36 to 41 feet. The foundation recommendations include supporting the proposed abutments and piers on driven piles or drilled shafts.

Should you have any questions or require additional information, please call us at 312-733-6262.

Sincerely,

Kalyan S. Chandhuri, M.S., P.E. Senior Engineer

AluSaMa

Ala E Sassila, Ph.D., P.E. Principal

Structural Geotechnical Report Bridge Construction Project Structure Number: 099-0428 (NB)

> Weber Road over I-55 Will County, Illinois IDOT PTB: 169-017

Prepared by:

Kalyan S. Chandhuri, M.S., P.E. Senior Engineer

Reviewed by:

Dawn Edgell.

Dawn Edgell, P.E. Senior Project Engineer

Approved by: _____AluSaMa

Ala E. Sassila Ph.D., P.E. Principal

TABLE OF CONTENTS

1.0	INTRO	DUCTION
	1.1	Existing and Proposed Structure Information4
	1.2	Site Conditions
	1.3	Regional Geology5
2.0	SITE S	UBSURFACE EXPLORATION PROGRAM6
	2.1	Subsurface Exploration Program6
	2.2	Laboratory Testing Program7
	2.3	Subsurface Conditions8
	2.4	Groundwater Conditions9
3.0	GEOTE	CHNICAL ANALYSES 11
	3.1	Derivation of Soil Parameters for Design11
	3.2	Settlement 12
	3.3	Slope Stability 12
	3.4	Seismic Parameters 13
	3.5	Scour
4.0	GEOTE	CHNICAL DESIGN RECOMMENDATIONS 15
	4.1	Bridge Foundation Recommendations15
	4.1.1	Shallow Foundations 15
	4.1.2	Drilled Shafts 15
	4.1.3	Driven Pile Foundations 16
	4.2	Lateral Load Resistance 21
5.0	CONST	RUCTION CONSIDERATIONS 23
	5.1	Site Excavation
	5.2	Groundwater Management 23
	5.3	Temporary Sheeting and Soil Retention23
	5.4	Drilled Shafts Construction 23
6.0	LIMIT	ATIONS

<u>Exhibits</u>

Exhibit 1	Project Location Map
Exhibit 2	Weber Road over I-55 (southbound on I-55)
Exhibit 3	Weber Road over I-55 (northbound on I-55)

<u>Tables</u>

Table 1	Summary of Subsurface Exploration
Table 2	Summary of Soil Parameters
Table 3	Slope Stability Analysis – Bridge Abutments
Table 4	Drilled Shaft Foundation Parameters
Tables 5.1 - 5.3	Pile Design Tables
Table 6	Lateral Resistance Parameters
Table 7	Lateral Earth Pressure Coefficients
Table 8	Equivalent Height of Soil for Vehicular Loading on Abutments Perpendicular to Traffic
	(Table 3.11.6.4-1)

Table 9Structural Fill Soil Properties

Appendices

- Appendix A Boring Location Map & Subsurface Profile
- Appendix B Soil Boring and Rock Core Logs
- Appendix C Laboratory Test Results
- Appendix D IDOT Pile Design Tables
- Appendix E Slope Stability Analyses Exhibits

Structural Geotechnical Report Bridge Construction Project Weber Road over I-55 Will County, Illinois Structure Number: 099-0428 (NB) IDOT PTB: 169-017

1.0 INTRODUCTION

GSG Consultants, Inc. (GSG) completed a geotechnical investigation for the construction of a new Weber Road Bridge over I-55 in Will County, Illinois. The purpose of the investigation was to explore the subsurface conditions, to determine engineering properties of the subsurface soil, and develop design and construction recommendations for the project.

Exhibit 1 Project Location Map

1.1 Existing and Proposed Structure Information

The existing bridge at Weber Road, Structure number 099-0281, was first constructed in 1990 and consists of a 2 span structure with 2 approach slabs. The main spans of the existing bridge structure consist of precast prestressed concrete I-beams with a cast-in-place concrete deck. The total length of the bridge is 242.8 feet with the largest span of 85.6 feet, and an out-to-out deck width of 73.2 feet. The substructure consists of two reinforced concrete vaulted abutments supported on metal shell piles and one center pier supported on a spread footing. The existing structure has an existing vertical clearance of 16'-4" over I-55.

Based on the recommendations in the Bridge Condition Report, the existing structure will be reused to carry 4 southbound lanes and this new parallel bridge is proposed west of the existing bridge to carry 3 northbound lanes. The proposed bridge will consist of two 124 feet spans supported by a central pier and two integral abutments.

1.2 Site Conditions

Weber Road runs north-south and crosses over I-55 from a residential area to the south to a commercial area to the north. The embankment side slopes on the north and south sides of the bridge appear to be approximately 1:2 (V:H) from the abutments as shown in Exhibits 2 and 3.

Exhibit 2 Weber Road over I-55 (southbound on I-55)

Exhibit 3 Weber Road over I-55 (northbound on I-55)

1.3 Regional Geology

GSG reviewed several published documents in an effort to determine the regional geological setting in the area of the site. The subject area is located in the northwest portion of Will County, Illinois. The surficial geologic deposits in this area are typically glacial drift deposited during the Wisconsin Glacial Age. Deposits are primarily from the Yorkville Member in the Lemont Formation of the Wedron Group which consists of characteristically gray clayey till, generally with few cobbles and boulders, but with abundant small pebbles. This formation overlies the Silurian Joliet Dolomite Bedrock Formation with depths at approximately 28 feet to 75 feet below ground surface in the subject area.

2.0 SITE SUBSURFACE EXPLORATION PROGRAM

This section describes the subsurface exploration program and laboratory testing program completed as part of this project. The subsurface exploration program was performed in accordance with applicable IDOT geotechnical manuals and procedures.

2.1 Subsurface Exploration Program

The site subsurface exploration was conducted between October 17th and October 27th, 2014. The borings included advancing a total of three (3) standard penetration test (SPT) borings within the vicinity of the proposed bridge pier and abutment locations. The locations of the soil borings were provided by Knight, and were completed based on field conditions and accessibility. Table 1 presents a list of the borings completed along with their location information.

Boring ID	Location	Weber Road Station	Offset	Depth (feet)	Surface Elevation (Feet)
BR-01	South Abutment	810+16	92' LT	36	648
BR-02	Center Pier	811+56	52' LT	41	650
BR-03	North Abutment	812+59	93' LT	40	649

Table 1 – Summary of Subsurface Exploration

In accordance with the IDOT Geotechnical Manual, the bridge borings were completed to depths to provide a minimum of 65 tons bearing for a 12-inch diameter concrete filled metal shell pile.

The existing ground surface elevations shown in the soil boring logs were taken from the topographic survey provided by Knight. The approximate locations of the soil borings are shown on the Boring Location Map & Subsurface Profile **(Appendix A)**.

The soil borings were drilled using a truck mounted Dietrich D-50 drill rig. All of the borings were drilled using 3¼-inch I.D. hollow stem augers. Soil sampling was performed according to AASHTO T 206, "Penetration Test and Split Barrel Sampling of Soils." Soil samples were

obtained at 2.5 foot intervals to a minimum depth of 30 feet below existing grade, and 5 foot intervals thereafter. GSG's field representative inspected, visually classified and logged the soil samples during the subsurface exploration activities, and performed unconfined compressive strength tests on cohesive soil samples using a calibrated Rimac compression tester and a calibrated hand penetrometer in accordance with IDOT procedures and requirements. Representative soil samples were collected from each sample interval, and were placed in jars and returned to the laboratory for further testing and evaluation.

Bedrock coring was performed at each abutment boring locations using rotary method drilling procedures with a five-foot, diamond bit, NX split core barrel. The rock core was collected in a 5 foot, continuous sample beginning at the bedrock surface. The collected bedrock core was also evaluated in the field for texture, physical condition, recovery percentage, Rock Quality Designation (RQD), and field hardness. The rock cores were then returned to the laboratory for further testing and evaluation.

2.2 Laboratory Testing Program

All samples were inspected in the laboratory to verify the field classifications. A laboratory testing program was undertaken to characterize and determine engineering properties of the subsurface soils encountered in the area of the proposed bridge.

The following laboratory tests were performed on representative soil samples:

- Moisture content ASTM D2216 / AASHTO T-265
- Atterberg Limits ASTM D 4318 / AASHTO T-89 / AASHTO T-90
- Unconfined Compression ASTM D2166 / AASHTO T-208
- Dry Unit Weight ASTM D7263
- Organic Matter Content AASHTO T-194
- Unconfined Compression Test on Rock Cores ASTM D-2938

The laboratory tests were performed in accordance with test procedures outlined in the IDOT Geotechnical Manual (1999), and per ASTM and AASHTO requirements. Based on the laboratory test results, the soils encountered were classified according to the AASHTO and the Illinois Division of Highways (IDH) classification systems. The results of the laboratory testing program are included in the **Appendix C**, Laboratory Test Results, and are also shown along with the field test results in **Appendix B**, Soil Boring Logs and Rock Core Logs.

2.3 Subsurface Conditions

This section provides a brief description of the soils encountered in the borings performed in the vicinity of the proposed bridge. Variations in the general subsurface soil profile were noted during the drilling activities. Detailed descriptions of the subsurface soils are provided in the soil boring logs and are shown graphically in the Boring Location Map & Subsurface Profile. The soil boring logs provide specific conditions encountered at each boring location. The soil boring logs include soil descriptions, stratifications, penetration resistance, elevations, location of the samples, and laboratory test data. Unless otherwise noted, soil descriptions indicated on boring logs are visual identifications. The stratifications shown on the boring logs represent the conditions only at the actual boring locations, and represent the approximate boundary between subsurface materials; however, the actual transition may be gradual.

Bridge Abutments

Boring BR-01 was drilled in the vicinity of the proposed south abutment in the existing grassy area adjacent to the south shoulder of northbound I-55. This boring was performed at approximate Weber Road station 810+16 and had a surface elevation of about 648 feet.

Boring BR-03 was drilled in the vicinity of the proposed north abutment in the existing grassy area adjacent to the north shoulder of southbound I-55. This boring was performed at approximate Weber Road station 812+59 and had a surface elevation of about 649 feet.

The abutment borings noted approximately 10 to 12 inches of topsoil with vegetation at the existing surface. Below the topsoil, boring BR-01 noted brown and gray silty clay fill material to a depth of 7.5 feet below existing grade. Following this layer in BR-01 and below the topsoil layer in BR-03, the borings noted brown to gray stiff to very stiff silty clay or clay to a depth between 33.5 feet and 38.5 feet below grade. Underlying the native clay soils, a layer of extremely dense sand with gravel was noted in both borings prior to auger refusal on bedrock. The auger refusal depth at these borings varied between 36 and 40 feet below existing grade (elevations 612 and 609 feet).

Generally, the fill soils had unconfined compressive strength results ranging from 5 tsf to 6.25 tsf and the native cohesive soils had unconfined compressive strength results ranging from 1.67 tsf to 4.25 tsf. Representative native clay samples had dry unit weights of 114 and 118.9 pcf.

The top of bedrock was noted at 36 feet below grade in boring BR-01 and at 40 feet below grade in BR-03. The bedrock cores consisted of gray limestone with occasional vugs. The rock cores appeared to be damp, but this could have been due to the wet coring method used to core and extract the samples. The recovery percentage of the rock cores at BR-01 and BR-03 were 97% and 100%, respectively, and the RQD values were 92% and 93%, respectively. The Rock Mass Rating of these cores indicated the rock class as Class I, and rock description as Very Good Rock. Laboratory photographs of the rock cores and a summary of the classification data is included in Appendix B.

Bridge Pier

Boring BR-02 was drilled in the vicinity of the proposed pier in the existing median along the shoulder of northbound I-55. This boring was performed at approximate Weber Road station 811+56 and had a surface elevation of about 650 feet.

The pier boring noted 6 inches of asphalt underlain by 1.5 feet of sand and gravel fill at the existing surface. Below the pavement, the boring encountered stiff to very stiff black and gray clay to a depth of 9.5 feet below grade. Below this depth, the boring encountered stiff to hard brown to gray silty clay to a depth of 38 feet below grade. Following this layer, the boring encountered medium dense sand to auger refusal depth on bedrock at 41 feet below grade.

The native cohesive soils generally had unconfined compressive strength results ranging from 1.25 tsf to 5 tsf. A representative sample had a dry unit weight of 110.6 pcf.

2.4 Groundwater Conditions

Water levels were checked in each boring to determine the general groundwater conditions present at the site, and were measured while drilling and after each boring was completed. Groundwater was encountered in two borings (BR-01 and BR-02) while drilling at elevations of 614 and 612 feet, respectively. Groundwater was not encountered in BR-03 while drilling. No groundwater was observed in any of the borings after the completion of drilling.

Based on the color change from brown to gray, it is anticipated that the long term groundwater level will be close to elevation 638 feet. It should be noted that the water levels recorded were within granular soils close to the auger refusal depths. This water could be perched in the granular soils that were encountered prior to the bedrock. Water level readings were made in

the boreholes at times and under conditions shown on the boring logs and stated in the text of this report. However, it should be noted that fluctuations in groundwater level may occur due to variations in rainfall, other climatic conditions, or other factors not evident at the time measurements were made and reported herein.

3.0 GEOTECHNICAL ANALYSES

This section provides GSG's geotechnical analysis and recommendations for the design of the proposed bridge based on the results of the field exploration, and laboratory testing.

3.1 Derivation of Soil Parameters for Design

Unit weights, friction angles and shear strength parameters were estimated using standard penetration test (SPT) results for the fill and cohesionless soils and in-situ and laboratory test results for cohesive soils.

Table 2 presents generalized soil parameters based on the laboratory and in-situ testing data.

		In situ	Undrained		Drained	
Approximate Elevation (feet)	Soil Description	Unit Weight γ (pcf)	Cohesion c (psf)	Friction Angle Φ (Degrees)	Cohesion c (psf)	Friction Angle ¢ (Degrees)
	New Engineered Clay Fill	120	1,000	0	75	26
	New Engineered Granular Fill	120	0	30	0	30
650' - 640'	Existing Clay Fill (BR-01 only)	140	5,000	0	150	28
650' - 648'	Existing Granular Fill (BR-02 only)	120	0	28	0	28
648' – 640'	Stiff Black Silty Clay (BR-02)	130	1,250	0	0	26
648'- 638'	**Stiff to Very Stiff Brown and Gray Silty Clay	137	2,500	0	100	28

Table 2 – Summary of Soil Parameters

		In situ	Undrained		Drained	
Approximate Elevation (feet)	Soil Description	Unit Weight γ (pcf)	Cohesion c (psf)	Friction Angle Φ	Cohesion c (psf)	Friction Angle Φ
		y (per)	C (p31)	Ψ (Degrees)	C (p31)	(Degrees)
638' – 624'	Very Stiff to Hard Gray Silty	140	3,500	0	75	28
	Clay					
624' – 612'	Stiff Gray Silty Clay	133	1,750	0	50	27
Below 612'	Medium Dense to Extremely Dense Sand	135	0	34	0	34

** Thickness of this layer varied in the borings from 2 feet to 8 feet.

3.2 Settlement

The existing side slopes of Weber road are about 1:2 (V:H) towards the north and south side of I-55. It is not anticipated that any new fill materials will be placed at the existing bridge location.

Based on the preliminary TS&L provided to GSG, the proposed side slopes grades for the new bridge will be similar to the existing slopes with similar elevations. It is anticipated that approximately 15 feet of additional engineered fill will be necessary for the proposed bridge construction, immediately west of the existing bridge. GSG completed the settlement analysis of the proposed embankment load. It is anticipated that settlement of the native clays due to the new embankments could be approximately 0.5 inch.

3.3 Slope Stability

The proposed abutment side slopes below the new bridge will be about 1:2 (V:H) from the north and south abutments of Weber Road down to I-55, similar to the existing bridge. Based on the geometry for the proposed interchange improvement, which will include redesign of the existing bridge and construction of the new bridge to the west, the existing slopes will not change significantly. No slope stability analysis is required for the existing slopes.

Based on the proposed slopes for the new embankments, long term slope stability analysis was required to analyze the stability of the slopes. Slide 6.0 is a comprehensive slope stability analysis software that performs finite element analysis and was used to evaluate the proposed slopes for the project. The proposed side slopes below the new Weber Road Bridge were analyzed based on the grading and the soils encountered while drilling. Two analyses were evaluated using the Bishop and Janbu analyses methods for the proposed slope geometry – short term (undrained) and long term (drained) failure envelope. The analyses were performed using the soil parameters in Table 2 above.

The results of the analyses are shown in Table 3. Copies of the analyses exhibits are included in **Appendix E.**

Analysis Exhibit	Analysis Type	Factor of Safety	Minimum Factor of Safety					
Exhibit 1	Circular – short term	3.0	1.5					
Exhibit 2	Circular – long term	1.9	1.5					
Exhibit 3	Block – short term	3.2	1.5					
Exhibit 4	Block – Long Term	2.2	1.5					

Table 3 – Stability Analyses Results – Bridge Abutments

Based on the analyses performed, the proposed slopes meet the minimum required factor of safety of 1.5

3.4 Seismic Parameters

The seismic hazard for the site was analyzed per the IDOT Geotechnical Manual, IDOT Bridge Design Manual, and AASHTO LRFD Bridge Design Specifications.

The Seismic Soil Site Class was determined per the requirements of All Geotechnical Manual Users (AGMU) Memo 9.1, Design Guide for Seismic Site Class Determination, and the "Seismic Site Class Determination" Excel spreadsheet provided by IDOT. The proposed bridge has a total length less than 750 feet, with no single span longer than 200 feet, therefore, a global Site Class

Definition was determined for this project, and was found to be Soil Site Class C. The Seismic Performance Zone (SPZ) was determined using Figure 2.3.10-2 in the IDOT Bridge Manual, and was found to be Seismic Performance Zone 1.

The AASHTO Seismic Design Parameters program was used to determine the short (S_{DS}) and long (S_{D1}) period design spectral acceleration coefficients. The S_{DS} was determined to be 0.124g and the S_{D1} was determined to be 0.066g.

3.5 Scour

The bridge structure carrying Weber Road crosses over I-55 and no waterways are in the vicinity of the proposed project; therefore scour will not be a concern for this project.

4.0 GEOTECHNICAL DESIGN RECOMMENDATIONS

The foundations for the proposed bridge construction must provide sufficient support to resist the dead and live loads, as well as seismic loading provided in the preliminary information by Knight. The foundation design recommendations were completed per the AASHTO LRFD 7th Edition (2014).

4.1 Bridge Foundation Recommendations

GSG evaluated shallow and deep foundation system for the proposed bridge. Based on the subsurface conditions encountered and the preliminary design information provided by the structural engineer, it is recommended that the proposed bridge be supported on a deep foundation system consisting of driven piles or drilled shafts bearing on the bedrock. The results of GSG's foundation evaluation for shallow spread footings, drilled shafts, and driven piles are presented below.

4.1.1 Shallow Foundations

Based on the soils encountered, the new span lengths and the anticipated loads, shallow foundations are not a feasible option for the proposed substructure of the bridge. We anticipate that shallow foundations will undergo excessive settlement or the size of the footings will be very large, and therefore will be not be a feasible option, and are not discussed further in the report.

4.1.2 Drilled Shafts

Drilled shafts are considered a feasible option for the propose bridge. The borings encountered predominantly very stiff clays at the surface and terminated in bedrock. The drilled shafts could be supported upon the bedrock noted at depths of approximately 36 to 41 feet below existing grade. Also, the piers should be socketed at least a foot in to the bedrock.

If drilled shafts are considered, they should be designed in accordance with the parameters provided in Table 4.

	Bearing	End Bea	ring	Side Friction		
Location	Elevation (ft)	Nominal Bearing Capacity (ksf)	Resistance Factor	Nominal Friction (ksf)	Resistance Factor	
North Abutment	610		0.50	3.4	0.45	
Pier	609	2,200	0.50	3.7	0.45	
South Abutment	609		0.50	4.6	0.45	

Table 4 – Drilled Shaft Foundation Parameters

The side friction values are for the existing site conditions and also account for approximately 15 feet of new embankment fill placed as part of the proposed new bridge construction and site preparation.

We recommend that the drilled shafts be installed with a minimum center-to-center spacing of at least 3 shaft diameters. Drilling the shafts at close spacing can reduce the effective stresses against both the side and base of the adjacent piers, and will thus reduce the total capacity.

Due to the wet sand layers observed immediately above the bedrock, a temporary casing consisting of a corrugated steel liner may be required for the bottom 5 feet during the drilling of the caissons to prevent caving of the excavations or from groundwater entering the excavation. If a permanent steel liner is used, side friction should not be used as part of the calculated available resistance.

4.1.3 Driven Pile Foundations

Deep foundations consisting of driven piles are considered a feasible option for the proposed bridge. Piles considered for this site include metal shell piles, concrete piles and H-piles. Based on ABD memo 12.3, 2012 Integral Abutment Bridge Policies and Details, metal shell piles and HP 8x36 are not considered suitable for integral abutments, but may be considered elsewhere for the bridge or for non-integral abutments. Driving shoes for the piles should be considered, and a wall thickness of 0.25" or greater is recommended for any metal shell piles to minimize potential damage during driving.

The Modified IDOT static method Excel spreadsheet was used to estimating the pile lengths at various axial geotechnical resistances for driven piles per AGMU Memo 10.2. Tables 5.1 to 5.3

summarize the estimated pile lengths at various axial resistances for H-piles and metal shell piles of various common sizes for each substructure. The complete IDOT Pile Design Tables for each substructure are included in **Appendix D**.

The factored resistance includes reduction of 0.55 for the geotechnical resistance for the pile installation. Based on the results of the subsurface investigation, no geotechnical losses due to down drag or liquefaction were included in the axial pile capacity calculations.

Integral abutments will likely be used for the proposed bridge, and will be designed in accordance with IDOT All Bridge Designers (ABD) memo 12.3, 2012 Integral Abutment Bridge Policies and Details. The proposed abutments will be built within the new embankments constructed for the bridge. Based on the ABD memo, if the abutment is to be constructed on a new embankment the unconfined compressive strength of the embankment materials shall be assumed to be 1.0 tsf. However, it is our opinion that the new fill materials for the embankments constructed using the standard procedures outlined in IDOT Standard Specifications for Road and Bridge Construction (SSRBC) would have unconfined compressive strengths greater than 1.0 tsf. The estimated pile lengths shown in the tables below and in **Appendix D** are based on the pile cut off elevation provided on the preliminary TS&L plans.

The actual pile length and capacity should be evaluated based on test piles installed in accordance with the specifications provided in Section 512.15 of IDOT Standard Specifications for Road and Bridge Construction. Per section 3.10.1.11 of the IDOT Bridge Manual (2012), the minimum pile spacing should be 3 pile diameters, and the maximum pile spacing should not be more than 3.5 times the effective footing thickness plus one foot, not to exceed a total of 8 feet.

Estimated Pile Length*	Metal Shell 12" Φ w/ 0.25" Walls (Max. R _N = 355 kips)		Metal Shell 14" Φ w/ 0.25" Walls (Max. R _N = 416 kips)		Metal Shell 14" Φ w/ 0.312" Walls (Max. R _N = 516 kips)	
C	R _N (kips)	R _F (kips)	R _N (kips)	R _F (kips)	R _N (kips)	R _F (kips)
33	219	121	262	144	262	144
36	246	136	295	162	295	162
38	271	149	323	178	323	178
41	280	154	331	182	331	182
43	286	158	336	185	336	185

Table 5.1: South Abutment Pile Design (BR-01)

Estimated Pile Length	Steel HP (Max. R _N =		Steel HP 10 X 57 (Max. R _N = 454 kips		Steel HP 12 X 53 (Max. R _N = 418 kips)	
Length	R _N (kips)	R _F (kips)	R _N (kips)	R _F (kips)	R _N (kips)	R _F (kips)
48	285	157	293	161	364	200
50	301	165	308	170	382	210
52	316	174	324	178	401	220
53	335	184	454	250	418	230

Estimated Pile Length	Steel HP 12 X 63 (Max. R _N = 497 kips)		Steel HP 14 X 73 (Max. R _N = 578 kips)		Steel HP 14 X 89 (Max. R _N = 705 kips)	
	R _N (kips)	R _F (kips)	R _N (kips)	R _F (kips)	R _N (kips)	R _F (kips)
46	256	141	306	168	310	170
48	368	202	442	243	450	248
50	386	212	475	261	483	266
52	405	223	501	276	509	280
54	497	273	578	318	705	388

NOTES:

 R_N = Nominal Required Bearing; R_F = Factored Resistance Available

Pile cut off elevation = 665.2 feet (preliminary TS&L)

Ground surface elevation against pile during driving, i.e. B/footing = 663.2 feet

Fill or unsuitable material depth neglected in pile length calculation = none

*Estimated pile length for metal shell piles are presented only to a depth 10 feet above the top of the rock to avoid the risk for pile damage.

Estimated Pile Length*	Metal Shell 12" Φ w/ 0.25" Walls (Max. R _N = 355 kips)		Metal Shell 14" Φ w/ 0.25" Walls (Max. R _N = 416 kips)		Metal Shell 14" Φ w/ 0.312" Walls (Max. R _N = 516 kips)	
	R _N (kips)	R _F (kips)	R _N (kips)	R _F (kips)	R _N (kips)	R _F (kips)
23	176	97	208	114	208	114
26	197	108	234	128	234	128
28	210	115	249	137	249	137
30	223	123	264	145	264	145

Table 5.2: Center Pier Pile Design (BR-02)

Estimated Pile Length	Steel HP (Max. R _N =		Steel HP (Max. R _N =		Steel HP 12 X 53 (Max. R _N = 418 kips)		
8	R _N (kips) R _F (kips)		R _N (kips) R _F (kips)		R _N (kips)	R _F (kips)	
32	168	92	172	94	208	114	
35	195	107	199	110	243	134	
39	335	184	454 249		418	230	

Estimated Pile Length	Steel HP (Max. R _N =		Steel HP (Max. R _N =		Steel HP 14 X 89 (Max. R _N = 705 kips)		
	R _N (kips)	R _F (kips)	R _N (kips)	R _F (kips)	R _N (kips)	R _F (kips)	
28	188	103	228	126	231	127	
30	199	109	241	133	244	134	
32	210	115	254	139	257	141	
35	246	135	300	165	304	167	
39	497	273	578 318		705	388	

NOTES:

 R_N = Nominal Required Bearing; R_F = Factored Resistance Available

Pile cut off elevation = 646.4 (preliminary TS&L)

Ground surface elevation against pile during driving, i.e. B/footing = 645.4 feet

Fill or unsuitable material depth neglected in pile length calculation = None

*Estimated pile length for metal shell piles are presented only to a depth 10 feet above the top of the rock to avoid the risk for pile damage.

Estimated Pile Length*	0.25"	ll 12" Ф w/ Walls = 355 kips)	0.25'	ell 14" Φ w/ ' Walls = 416 kips)	Metal Shell 14" Φ w/ 0.312" Walls (Max. R _N = 516 kips)		
_	R _N (kips)	R _F (kips)	R _N (kips)	R _F (kips)	R _N (kips)	R _F (kips)	
35	196 108		232	128	232	128	
38	211	211 116		250 138		138	
43	248	136	293	161	293	161	
45	263	145	311	171	311	171	
48	276	152	326 179		326	179	

Table 5.3: North Abutment Pile Design (BR-03)

Estimated Pile Length	Steel HP (Max. R _N =		Steel HP (Max. R _N =		Steel HP 12 X 53 (Max. R _N = 418 kips)		
	R _N (kips)	R _F (kips)	R _N (kips)	R _F (kips)	R _N (kips)	R _F (kips)	
50	203 112		208	114	249	137	
53	215	118	219	121	263	145	
57	300	165	307	169	381	209	
58	335	184	454	250	418	230	

Estimated Pile Length		P 12 X 63 = 497 kips)	Steel HP (Max. R _N =		Steel HP 14 X 89 (Max. R _N = 705 kips)		
	R _N (kips)	R _F (kips)	R _N (kips)	R _F (kips)	R _N (kips)	R _F (kips)	
48	239	131	286	157	290	159	
50	251 138		301	301 166		168	
53	265	146	317	175	321	177	
57	385 212		473	473 260		264	
59	497	273	578	578 318		388	

NOTES:

 R_N = Nominal Required Bearing; R_F = Factored Resistance Available

Pile cut off elevation = 666.7 feet (preliminary TS&L)

Ground surface elevation against pile during driving, i.e. B/footing = 664.7 feet

Fill or unsuitable material depth neglected in pile length calculation = None

*Estimated pile length for metal shell piles are presented only to a depth 10 feet above the top of the rock to avoid the risk for pile damage.

4.2 Lateral Load Resistance

Lateral loadings applied to pile foundations are typically resisted by battering selected piles, the soil/structure interaction, pile flexure, or a combination of these factors. Section 3.10.1.10 of the 2012 IDOT Bridge Manual requires performing detailed structure interaction analysis if the factored lateral loading per pile exceeds 3 kips. The analysis shall determine actual pile moment and deflection to determine the selected pile adequacy for the existing loadings. Table 6 provides recommended lateral soil modulus and soil strain parameters that can be used for laterally loaded pile analysis via the p-y curve method based on the encountered subsurface conditions.

Approximate Elevation (feet)	Soil Description	In situ Unit Weight γ (pcf)	t Cohesion Angle ht c (psf) φ		Subgrade Modulus (pci)	Horizontal Strain Factor e ₅₀	
	New Engineered Clay Fill	120	1,000	0	500	0.007	
	New Engineered Granular Fill	120	0	30	200	NA	
650' - 640'	Existing Clay Fill (BR-01 only)	140	5,000	0	2,000	0.004	
650' - 648'	Existing Granular Fill (BR-02 only)	120	0	28	50	NA	
648' – 640'	Stiff Black Silty Clay (BR-02 only)	130	1,250	0	500	0.007	
648'- 638'	**Stiff to Very Stiff Brown and Gray Silty Clay	137	2,500	0	1,250	0.005	
638' – 624'	Very Stiff to Hard Gray Silty Clay	140	3,500	0	1,750	0.005	

Table 6 – Lateral Resistance Parameters

Structure Number: 099-0428 (NB)

Bridge Construction Project Route: Weber Road over I-55 Will County, Illinois

Approximate Elevation (feet)	Soil Description	In situ Unit Weight γ (pcf)	Cohesion c (psf)	Friction Angle ¢ (Degrees)	Subgrade Modulus (pci)	Horizontal Strain Factor e ₅₀
624' – 612'	Stiff Gray Silty Clay	133	1,750	0	875	0.007
Below 612'	Medium Dense to Extremely Dense Sand	135	0	34	125	NA

5.0 CONSTRUCTION CONSIDERATIONS

All work performed for the proposed project should conform to the requirements in the IDOT Standard Specifications for Road and Bridge Construction (2012). Any deviation from the requirements in the manuals above should be approved by the design engineer.

5.1 Site Excavation

The contractor will be responsible to provide a safe excavation during the construction activities of the project. All excavations should be conducted in accordance with applicable federal, state, and local safety regulations, including, but not limited to the Occupational Safety and Health administration (OSHA) excavation safety standards. Excavation stability and soil pressures on temporary shoring are dependent on soil conditions, depth of excavations, installation procedures, and the magnitude of any surcharge loads on the ground surface adjacent to the excavation. Excavation near existing structures and underground utilities should be performed with extreme care to avoid undermining existing structures. Excavations should not extend below the level of adjacent existing foundations or utilities unless underpinning or other support is installed. It is the responsibility of the contractor for field determinations of applicable conditions and providing adequate shoring for all excavation activities.

5.2 Groundwater Management

Based on the depth of groundwater observed in the borings, we do not anticipate significant groundwater management would be required for bridge construction. The contractor should control groundwater and surface water infiltration to the construction area. Temporary ditches, sumps, granular drainage blankets, stone ditch protection, or hand-laid riprap with geotextile underlayment could be used to divert groundwater if significant seepage is encountered during construction.

5.3 Temporary Sheeting and Soil Retention

The preliminary plans indicate that construction of the proposed new bridge will be west of the existing bridge. Based on IDOT Temporary Sheet Piling Design Guide and Charts, a cantilevered sheet pile system would not be feasible and a temporary soil retention system will be required during construction of the proposed abutments and embankments.

5.4 Drilled Shafts Construction

The drilled shaft construction should be completed in accordance according to Section 516, Drilled

Shafts, in the IDOT Standard Specification for Road and Bridge Construction. Wet construction method should be assumed where shallow ground water is present within the proposed shaft depth. Water should be removed from the base of the drilled shaft base prior to placing any concrete. The placement method of concrete for the drilled shaft foundation should be based on the amount of water present at the base of the shaft just prior to placing the concrete. Concrete may be placed using the free fall method, provided less than 2 inches of water is present at the base of the shaft at the time the concrete is being placed. If more than 2 inches of water is present, a tremie should be used in an effort to displace the water to the surface for removal.

GSG recommends that the caisson concrete be ready on site as the drilled shaft excavation is completed, so that the concrete can be placed immediately after completing the excavation. This will reduce the potential of water accumulation in the bottom of the shaft. Bottom cleanliness of the drilled shaft excavation should be observed from the ground surface with the use of flood light or down-hole camera. Workers should not enter the shaft to manually clean the base of the shaft due to safety reasons.

6.0 LIMITATIONS

This report has been prepared for the exclusive use of IDOT and its structural consultant. The recommendations provided in the report are specific to the project described herein, and are based on the information obtained from the soil borings located within the project limits. The analyses performed and the recommendations provided in this report are based on subsurface conditions determined at the location of the borings. This report does not reflect all variations that may occur between boring locations or at some other time, the nature and extent of which may not become evident until during the time of construction. If variations in subsurface conditions become evident after submission of this report, it will be necessary to evaluate their nature and review the recommendations presented herein.

APPENDIX A

BORING LOCATION DIAGRAMS

	GSG CONSULTANTS, IN 855 West Adams, Suite 200 Chicago, Illinois 60607 tel: 312.733.6622 • fax: 312.733.5612		DESIGNED - NE DRAWN - CHECKED - DE DATE - 11/200	REVISED - REVISED -	-		DF ILLINOIS F TRANSPORTATION	SCALE: 10 SHEET 1	SOIL BORIN PLAN & PRO OF 1 SHEETS
8	09+80 810+	00 810+20 USER NAME = \$USER\$	810+40 DESIGNED - NE	810+60 REVISED -		811+00 811+20	811+40 811-	60 811+80	812+00 SOU POPIN
610	Shriez will glavel, lock liag	End of Boring					Gray, Wet - 22 Gray, Wet - 22 SAND (SP) 609.00 40 End of Borin		
615	Extreme	614.50	19.				€12.00 v	2.5 B 20	
620	Stiff to G	Very Stiff	 B 21 B 20. 				Stiff te Very Stiff Gray, Moist CLAY (CL) 30	1.5 P. 21	
625		6 <u>24.00</u> 12 25.	B 20				25.	2.08 B 21 110.6	
	Very St	ff to Hard ay, Moist I (CL/ML)	 B 22 B 19 1.18.9 				20	2.08 B 23	
630			B. 18				Stiff to Hard 15 Gray, Moist	4.17'B 23	
635	Brown and Gr SILTY CLAY, trace grave		B 20. 114. P 20.			Silt T		5.00.B 20	
640	Brown and Gr FILL: SILTY CLAY, tra	ay. Moist ice gravel 5 6.25 640:50 - 14 5.0	B 17. B 16.			CLAY, trace gr	avel:and:organic material:(CL)	1.75 P 30 2.3	
645		17. 5.0	u w% D O B 17				Black and Gray, Wet 648.00 FILL: SAND, with gravel	24. .2.0 P. 36	
650)	BR-01 810+16 92.00ft LT					BR-02 811+56 52.00ft LT 650.00 D N 5.inches of Asphalt/Pavement. 649-50-10.	Qu w% D O	
	· · · · · · · · · · · · · · · · · · ·								
				\					
			•						
		\rightarrow	\rightarrow				вя 02		
	WEBER ROA	D	\backslash					$\langle \rangle \rangle$	
			\backslash						
							1:55		
		BRQ1							
				\backslash					\backslash

APPENDIX B

SOIL BORING AND ROCK CORE LOGS

SOIL BORING LOG

Illinois Department of Transportation

Division of Highways GSG CONSULTANTS INC.

Page $\underline{1}$ of $\underline{2}$

Date 10/17/14

ROUTE	Weber Road	DE	SCR	PTION	IP	ropose	d Weber Road & I-55 Impro	vements	<u> </u>	GGI	ED BY	<u> </u>	JR
	Normantown Road to		-										
SECTION	Street/Romeo Ro	bad	_ L	OCAT	ION _	Weber	Road Bridge, SEC., TWP.	, RNG. ,					
COUNTY	Will County DF			тилл					TVDE		Δ1		
STRUCT NO	- <u>NA</u> NA		D	в	U	м	Surface Water Elev.	ΝΑ	ft	D	в	υ	М
Station	NA NA		Е	L	C	0	Stream Bed Elev.	NA	ft	Е	L	C	0
			Р	0	S	I				Р	0	S	Ι
BORING NO.	BR-01		T	W	_	S	Groundwater Elev.:			Т	W		S
Station	810+16 92.00ft LT		н	S	Qu	Т	First Encounter			Н	S	Qu	т
		e	(ft)	(/6")	(tsf)	(%)	Upon Completion			(ft)	(/6'')	(tsf)	(%)
	face Elev. <u>648.00</u>	π	(14)	(,,,)	(เอเ)	(70)	After <u>NA</u> Hrs	NA	_π	(14)	(,0)	(131)	(70)
12 Inches of	lopsoil						Very Stiff to Hard Gray, Moist						
Brown and G	av Maiat	647.00		4			SILTY CLAY, trace gravel				4		
FILL SILTY (CLAY, trace gravel			4 8	5.0	17	(CL/ML) (continued)				4 8	4.2	19
				9	B						10	4.2 B	19
				-									
				4					624.00		3		
				6	6.3	17	Stiff to Very Stiff		024.00		5	2.5	20
			-5	9	В		Gray, Moist			-25	7	В	
							CLAY (CL)						
				3							2		
				6	5.0	16					4	1.3	21
		640.50		8	В						4	В	
Very Stiff Brown and G	rav Moist												
SILTY CLAY,	trace gravel			2							2		
(CL/ML)	-			3	3.8	20					3	1.7	20
			-10	5	B	20				-30	5	В.	20
			-10							-30			
				5									
				6	3.0	20							
				9	Р					_			
									614.50		-0/-"		
				2 8	2.1	18	Extremely Dense Gray, Wet			Y	50/5"		19
				8	∠.⊺ B	10	SAND, with gravel, rock						19
			-15	0			fragments (SPG)			-35			
		632.00							612.00	_			
Very Stiff to H	lard	632.00		5			Borehole continued with ro	ock	612.00				
Gray, Moist				8	3.5	19	coring.			_			
SILTY CLAY,	trace gravel			12	В								
(CL/ML)													
				3									
			_	5	4.2	22							
			-20	6	В					-40			

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

	CODE	
NUCK	CORE	LUG

Page <u>2</u> of <u>2</u>

Date	10/17/14
Date	10/11/11

ROUTE	Weber Road		ON Pro	posed Weber	Road & I-55 Impro	oveme	ents	_ LO	GGED	BY	JJR
	Normantown Road	l to 135th									
SECTION _	Street/Romeo	Road LOC	ATION W	eber Road B	ridge, SEC. , TWP.	, RN	3. ,				
COUNTY	Will County			atitude,Lon				R		CORE	S
				, Diamonu Bi				E	R		T
OTDUCT NO					NIX E anlit harral			С		Т	R
Station	D. <u>NA</u> NA		DARREL I	TPE & SIZE	NX 5 split barrel	- D	С	0	Q	I	Е
		Core D	iameter	2	in	E	0	V	·	м	Ν
BORING NO	. BR-01		Rock Elev.	611.00		P	R	E	D	E	G
Station	810+16	Begin	Core Elev.	611.00	ft	T H	Е	R Y	•		T H
Offset	92.00ft LT						40		(0/)		
	rface Elev. 648.0	<u>00</u> ft				(ft)	(#)	(%)		(min/ft)	(tsf)
Very Hard, S	Slightly Weathered						1	97	92	2.5	1070.6
Gray, Fine G	Grained, Damp E, with cavities										
						-40					
						-40					
						-45					
End of Borin	0				601.00)					
	9										
						-50					
						_					
						_					
						-55					
						-55					
						_					

Color pictures of the cores Yes Cores will be stored for examination until 1/2016

Illinois Department of Transportation

Division of Highways GSG CONSULTANTS INC.

The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

Mechanical Breaks

Run	Sample	Depth	Recovery	RQD	RQD	Description
	No.	(ft)	(%)	(%)	Classification	
1	NX-01	37'-47'	96.7	91.7	Excellent	Gray Limestone

SOIL BORING LOG

Illinois Department of Transportation

Division of Highways GSG CONSULTANTS INC. Page <u>1</u> of <u>2</u>

Date 10/27/14

ROUTE	Weber Road		SCR	PTION	IP	ropose	ed Weber Road & I-55 In	mprovements	L(DGGI	ED BY	<u> </u>	JR
	Normantown Road to												
SECTION	Street/Romeo R	oad	L	OCAT	ION _		Road Bridge, SEC., T	WP., RNG.,					
							de, Longitude						
COUNTY	Will County D	RILLING	S ME	THOD			HSA	HAMMER	TYPE		AL	JTO	
STRUCT. NO	. NA		D	в	U	M	Surface Water Elev.	NA	ft	D	В	U	м
Station	. <u>NA</u> NA		E	L	С	0	Stream Bed Elev.	NA	ft	E	L	C	0
			P	0	S	I	-		-	P	0	S	I
BORING NO.	BR-02		Т	W		S	Groundwater Elev.:			Т	W		S
Station	811+56		н	S	Qu	Т		612.0	ft 👤	н	S	Qu	Т
Offset	52.00ft LT						Upon Completion	None	ft				
Ground Sur	face Elev. 650.00) ft	(ft)	(/6")	(tsf)	(%)	After NA Hrs.	NA	ft	(ft)	(/6")	(tsf)	(%)
6 inches of A	sphalt Pavement	649.50					Stiff to Very Stiff						
Black and Gr		049.00					Gray, Moist						
FILL: SAND,	with gravel			10			CLAY (CL)				3		
_ ,	5			7		24					4	2.1	23
Stiff to Very S	24:ff	648.00		6		24					6	B	25
	ay, Very Moist			0							0	D	
	gravel and organic												
material (CL)			_	_							•		
,				7							2		
				5	2.0	36					4	2.1	21
			5	5	Р					-25	6	В	
				3							2		
				2	1.8	30					3	1.9	22
				3	Р						6	В	
				1							2		
		040 50		2	1.3	21					5	1.5	21
Stiff		640.50		4	P						7	P	
Brown and G	rav. Moist		-10	-	1					-30	•	⊢ '	
	, trace gravel												
(CL/ML)	,			0									
. ,				3									
		638.00		6	5.0	20							
Stiff to Hard				9	В								
Gray, Moist CLAY, trace	aravel (CL)												
	graver (OL)		_										
				3							6		
				7	4.6	19					5	2.5	20
			-15	8	В					-35	6	В	
				2									
				5	4.2	23							
				8	B	_0							
				-					040.00				
							Medium Dense		612.00	₹			
				3			Gray, Wet				6		
				5 5	16	21	SAND (SP)				10	┢───┥	19
				5 8	4.6	∠					10		19
		630.00	-20	0	В					-40	14		

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)
SOIL BORING LOG

Page <u>2</u> of <u>2</u> Date <u>10/27/14</u>

Division of Highways GSG CONSULTANTS INC.

Illinois Department of Transportation

ROUTE Weber Road DE		IPTION	I Р	ropose	d Weber Road & I-55 Ir	mprovements	LOGGE	DBY JJR
Normantown Road to 135th SECTION Street/Romeo Road			ION	Webei	Road Bridge, SEC. , T	WP. RNG.		
			·•·· _	Latitu	de , Longitude	,,		
COUNTY Will County DRILLING	6 ME	THOD			HSA	HAMMER 1	YPE	AUTO
	D	в	U	м				
STRUCT. NO. NA	E	L	c	0	Surface Water Elev Stream Bed Elev	NA NA	π 4	
Station NA	P	ō	S	I	Stream Deu Liev.	NA	п	
BORING NO. BR-02	Т	W		S	Groundwater Elev.:			
Station 811+56	н	S	Qu	Т		612.0	ft 👤	
Offset 52.00ft LT					Upon Completion			
Ground Surface Elev. 650.00 ft	(ft)	(/6")	(tsf)	(%)	After <u>NA</u> Hrs	NA	ft	
609.00								
End of Boring								
	_	4						
		1						
		-						
		-						
	_	_						
	-45							
	_	-						
		-						
		-						
		-						
		-						
		-						
	-50							
	_							
		_						
		4						
		-						
		-						
		-						
	_	-						
		-						
	-55	-						
	-00	1						
	_	1						
		1						
]						
]						
		1						
	_							
		1						
	_	4						
	-60							

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

SOIL BORING LOG

Illinois Department of Transportation

Division of Highways GSG CONSULTANTS INC.

Page $\underline{1}$ of $\underline{2}$

Date	10/20/14
Dale	10/20/14

ROUTE	Weber Road	DE	SCRI	PTION	I	ropose	d Weber Road & I-55 In	mprovements	<u> </u>	DGG	ED BY	J	IH
	Normantown Road to												
SECTION _	Street/Romeo R	oad	_ L	LOCAT	ION _		Road Bridge, SEC., T	<u>WP. , RNG. ,</u>					
0011151							de , Longitude					170	
COUNTY _	Will County D	RILLING	5 ME	THOD			HSA	HAMMER	IYPE		AL	JTO	
			_	_						_	_	!	
STRUCT. NO	D. <u>NA</u> NA		D E	BL	U C	M	Surface Water Elev.	NA	_ ft	DE	В	U C	M
Station	NA		P	0	S	0	Stream Bed Elev.	NA	_ ft	P	L	S	0
			T	w	3	S				T	w	3	S
BORING NO	BR-03		н.	S	Qu	T	Groundwater Elev.:	Niere		н	S	Qu	T
Station	812+59				પ્લપ	•	First Encounter	None					•
	93.00ft LT rface Elev. 649.00	£	(ft)	(/6")	(tsf)	(%)	Upon Completion _ After NA Hrs.	None		(ft)	(/6")	(tsf)	(%)
)ft	(14)	(, , ,	(101)	(/0)		NA	_ 11	(14)	(, ,	(101)	(70)
	Topsoil with	648.20					Very Stiff to Hard						
vegetation Stiff		040.20		_			Gray, Moist SILTY CLAY (CL/ML)	(continued)					
Brown, Mois	t			3				(continueu)			3		
SILTY CLAY				5		16					5	2.3	18
	(0=:=)			8							7	Р	
				3							2		
				6		17					4	3.4	20
			-5	9						-25	6	В	
		643.00											
Very Stiff to	Hard	043.00		5							3		
Gray, Moist				7		19					4	2.3	18
SILTY CLAY	′ (CL/ML)			11							7	P	
												┟─╹─┤	
				5							4		
				6	12	19					5	2.3	17
				7	4.3	19					0		17
			-10	1	Р					30	0	Р	
				4									
				6	3.5	18							
				7	Р								
				2							3		
				3	3.3	23					4	2.0	19
			-15	5	Р					-35	7	Р	
										00			
				3									
				6	2.5	14							
				16	P								
				-	-								
									040 50				
				4			Extremely Dense		610.50		12		
				4	2.3	15	Gray, Moist				50/6"		7
				4 6	2.3 P	10	SAND, trace silt and g	aravel (SPG)			50/0		'
1			-20	0		1	,	· · · · · · · · · · · · · · · · · · ·	609.00	-40		, I	

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

DOCK	CORE	
NUCN	CORE	LUG

Page <u>2</u> of <u>2</u>

Illinois Department of Transportation
Division of Highways GSG CONSULTANTS INC.

Date 10/20/14

ROUTE	Weber Road	DE	SCRIPTIO	N Prop	osed Weber	Road & I-	55 Impro	veme	ents	_ LO	GGED	BY	JH
	Normantown Roa												
SECTION _	Street/Rome	o Road	LOCA	TION We	ber Road Bi	idge, SEC	. , TWP. ,	RNG	3. ,				
					titude, Lon					_		0005	•
COUNTY _	Will County		METHOD	Rotary,	Diamond Bi	t Core Bar	rel			R	_	CORE	S
										E	R		Т
STRUCT. N	O . NA	(ARREL TY	PE & SIZE	NX 5 spli	t barrel		~	C		T	R
	NA							D	C	0	Q		E
			Core Dia	meter	2	in		E	0	v	<u>:</u>	M	N
BORING NO	D BR-03		Top of Re	ock Elev.	609.00			Р	R	E	D	E	G
	812+59		Begin Co		609.00	ft		Т	Е	R	•		Т
Offset			•					н		Y			н
	urface Elev. 649							(ft)	(#)	(%)	(%)	(min/ft)	(tsf)
	Slightly Weathered						609.00		1	100	93	2.4	933.6
	Grained, Damp						609.00	_	I	100	93	2.4	933.0
	E, with cavities												
	E, With ouvrieo												
								45					
								-45					
							599.00	-50					
End of Borir	ng												
								_					
								-55					
								_					
								-60					

Color pictures of the cores <u>Yes</u> Cores will be stored for examination until <u>1/2016</u> The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

Mechanical Breaks

Run	Sample	Depth	Recovery	RQD	RQD	Description
	No.	(ft)	(%)	(%)	Classification	
1	NX-01	40' - 50'	100%	93%	Excellent	Gray Limestone

APPENDIX C

LABORATORY TEST DATA

	Moisture Content Results									
Poring	Sampla	Sam	nple	Moisture						
Boring	Sample	Тор	Bottom	Content						
ID	Number	(ft.)	(ft.)	(%)						
BR-01	SS-1	1	2.5	17.2						
	SS-2	3.5	5	17						
	SS-3	6	7.5	15.7						
	SS-4	8.5	10	20.4						
	SS-5	11	12.5	19.8						
	SS-6	13.5	15	18.2						
	SS-7	16	17.5	19.4						
	SS-8	18.5	20	21.7						
	SS-9	21	22.5	18.6						
	SS-10	23.5	25	20						
	SS-11	26	27.5	21.3						
	SS-12	28.5	30	20.3						
	SS-13	33.5	35	18.7						
BR-02	SS-1	1	2.5	23.7						
	SS-2	3.5	5	36.2						
	SS-3	6	7.5	29.7						
	SS-4	8.5	10	20.7						
	SS-5	11	12.5	19.9						
	SS-6	13.5	15	19.3						
	SS-7	16	17.5	23.1						
	SS-8	18.5	20	21.1						
	SS-9	21	22.5	22.6						
	SS-10	23.5	25	20.6						
	SS-11	26	27.5	21.8						
	SS-12	28.5	30	20.8						
	SS-13	33.5	35	20						
	SS-14	38.5	40	19						
BR-03	SS-1	1	2.5	16						
	SS-2	3.5	5	17.1						
	SS-3	6	7.5	18.8						
	SS-4	8.5	10	18.5						
	SS-5	11	12.5	18.3						
	SS-6	13.5	15	22.6						
	SS-7	16	17.5	13.7						
	SS-8	18.5	20	15.2						
	SS-9	21	22.5	17.5						
	SS-10	23.5	25	20.1						
	SS-11	26	27.5	17.8						
	SS-12	28.5	30	17.3						
	SS-13	33.5	35	19.3						
	SS-14	38.5	40	7.2						

Dry Unit Weight Results									
Boring	Sample	San	Sample						
ID	Number	Тор	Bottom	Weight					
	Number	(ft.)	(ft.)	(pcf)					
BR-01	SS-4	8.5	10	114					
BR-01	SS-9	21	22.5	118.9					
BR-02	SS-4	8.5	10	108.4					
BR-02	SS-10	23.5	25	110.6					
BR-03	SS-12	28.5	30	123.2					

	Organ	ic Content F	Results					
Boring	Sample	San	Organic					
ID	Number	Тор	Top Bottom Conten					
	Number	(ft.)	(ft.)	(%)				
BR-02	SS-3	6	7.5	2.3				

L	Unconfine Compression Test Results									
Boring	Sample	Sam	Unconfine							
ID	Number	Тор	Bottom	Compressi						
U	Number	(ft.)	(ft.)	on Test						
BR-01	SS-11	26	27.5	1.284						
BR-02	SS-11	26	27.5	1.848						
BR-03	SS-10	23.5	25	3.386						

	Atterberg Limit Results										
Boring	Sample	San	nple	Liquid	Plastic	Plasticity					
ID	Number	Top (ft.)	Bottom (ft.)	Limit	Limit	Index					
BR-01	SS-10	23.5	25	33.2	16.2	17					
BR-02	SS-8	18.5	20	38.6	19.1	19.5					
BR-03	SS-6	13.5	15	38.9	17	21.9					

Weber Road **Specimen A Information Unconfined Test**

File Location BR-01, S-11@26-27.5.HSD **Project Information**

Project No. BR-01 Project Name: Weber Road Client: Sample Location: S-11@26-27.5 Specimen Description: Gray Silty Clay Specimen Remarks:

Molding Date: Date Tested: 10-21-14 Boring Number: BR-01 Sample Number: S-11@26-27.5 Sample Depth: S-11@26-27.5

Specimen A Sample Data

Sample Type: Undisturbed Specific Gravity: 2.650 Assumed LL:

Sample Parameters	Before Test	After Test
Diameter (in)	1.362	N/A
Height (in)	1.999	N/A
Weight (g)	100.260	N/A
Moisture (%)	21.34	N/A
Dry Density (pcf)	108.016	N/A
Saturation (%)	106.39	N/A
Void Ratio	0.53	N/A
Height-to-Diameter Ratio	1.47	N/A

Project Weber Road Specimen A Test Data

Rate of Strain (in/min): 0.025000 17.837

PL:

Corrected Compressive S	tress (psi): 17.837	at read	ling number: 13	
Read Number	Disp (in)	Load (ibs)	Strain (%)	Corr. Comp. Stress (psi)
0	0.005	0	0.000	0.000
1	0.029	8,3	1.195	5.609
2	0.055	11.6	2.475	7.751
3	0.080	14.1	3.727	9.291
4	0.105	16.5	5.007	10.785
5	0.130	19	6.259	12.240
6	0.156	20.7	7.540	13.122
7	0.181	22.3	8.820	13.976
8	0.206	24	10.043	14.810
9	0.231	25.7	11.295	15.611
10	0.256	27.3	12.547	16.383
11	0.281	29	13.799	17.128
12	0.307	30.6	15.079	17.837
13	0.307	30.6	15.079	17.837

Test Performed By: Tony

Checked By:

Weber Road Specimen A Information Unconfined Test

File Location BR-02, S-11@26-27.5.HSD **Project Information**

Project No. Project Name: Weber Road Client: Sample Location: BR-02 S-11@26-27.5 Specimen Description: Gray Silty Clay Specimen Remarks: Molding Date: Date Tested: 10-28-14 Boring Number: BR-02 Sample Number: S-11@26-27.5 Sample Depth: 26-27.5

Specimen A Sample Data

Sample Type: Undisturbed Specific Gravity: 2.650 Assumed LL: PL:

Sample Parameters	Before Test	After Test
Diameter (in)	1.348	N/A
Height (in)	2.606	N/A
Weight (g)	131.340	N/A
Moisture (%)	21.81	N/A
Dry Density (pcf)	110.446	N/A
Saturation (%)	116.09	N/A
Void Ratio	0.50	N/A
Height-to-Diameter Ratio	1,93	N/A

Project Weber Road Specimen A Test Data

Rate of Strain (in/min): 0.035000

Peak Corrected Compressive Stress (psi): 25.668

at reading number: 11

DealNeater	Disp	Load	Strain	Corr. Comp. Stress
Read Number	(in)	(lbs)	(%)	(psi)
0	0.003	1.7	0.000	0.000
1	0.039	12.4	1.353	7.435
2	0.073	17.4	2.685	10.721
3	0.110	21.5	4.082	13.347
4	0.146	24.8	5.457	15.349
5	0.181	29	6.810	17.831
6	0.215	29	8.120	17.580
7	0.250	33.9	9.451	20.475
8	0.285	37.2	10.805	22.238
9	0.320	39.7	12.158	23.428
10	0.356	42.2	13.511	24.572
11	0.391	44.7	14.865	25.668
12	0.395	44.7	15.017	25.622

Test Performed By: Tony

Checked By:

Weber Road **Specimen A Information Unconfined Test**

File Location BR-03, S-10@23.5-25.HSD **Project Information**

Project No. BR-03 Project Name: Weber Road Client: Sample Location: S-10@23.5-25 Specimen Description: Gray Silty Clay Specimen Remarks:

Molding Date: Date Tested: 10-23-14 Boring Number: BR-03 Sample Number: S-10@23.5-25 Sample Depth: S-10@23.5-25

PL:

Specimen A Sample Data

Sample Type: Undisturbed Specific Gravity: 2.650 Assumed LL:

Sample Parameters	Before Test	After Test
Diameter (in)	1.345	N/A
Height (in)	2.573	N/A
Weight (g)	130.420	N/A
Moisture (%)	20.05	N/A
Dry Density (pcf)	113.173	N/A
Saturation (%)	115.06	N/A
Void Ratio	0.46	N/A
Height-to-Diameter Ratio	1.91	N/A

Project Weber Road Specimen A Test Data

Rate of Strain (in/min): 0.035000 Peak Corrected Compressive Stress (nsi): 47 025

Corrected Compressive	Stress (psi): 47.025	at read	ing number: 11	
Read Number	Disp (in)	Load (lbs)	Strain (%)	Corr. Comp. Stress (psi)
0	-0.009	2.5	0.000	0.000
1	0.026	19	1.349	11.486
2	0.061	26.5	2.720	16.423
3	0.097	33.9	4.090	21.216
4	0.132	41.4	5.461	25.866
5	0.167	48	6.832	29.830
6	0.202	55.4	8.181	34.209
7	0.237	61.2	9.529	37.393
8	0.271	67	10.878	40.467
9	0.307	71.2	12.271	42.388
10	0.342	77	13.620	45.257
11	0.377	81.1	14.969	47.025
12	0.378	81.1	15.035	46.988

Test Performed By: Tony

Checked By:

GSG Material Testing, Inc.

2945 West Harrison Street, Chicago, Illinois 60612 Tel: (312) 666-2989, Fax: (312) 666-2952

ROCK CORE COMPRESSION TEST RESULTS

Report No:		-	Project:	:	Weber Ro	oad		-	Client:	GS	G Consu	ultants Inc.	-	Sampled by:	; <u>к</u>	alyan Chandr	ามก่
Page:		-	Address:				H	-	Contractor:				-	Project No.:			
Specimen ID. No.	Sampled Location	Date Sampled	Date Broken	Age Days	% Air	Temp	perature	Unit WL Ibs/ft3	Core Type	Height	Dia	Cross-Sectional Area (in ²)	Load LBS	CYL. Strength PSI	Break Type	Res	suits Failed
BR-03	Weber Road		12/16/2014	t	-		-		rock	4,106	2.053	3.3086	42,900	12,966	3		T BROO
BR-01	Weber Road		12/17/2014						rock	3.956	2.053	3.3086	49,200	14.870	3		
		<u> </u>			-												
			1					i	ļ							ļ	
			1													ļ]	ļ
						[!]								 		<u> </u>	
 		<u> </u>						ļ	!						<u> </u>		
Test Methods							1				т	ypical Fracture	Patterns (ASTM	C 39)			
	Standard Practice for Making ar	-					1				m	ΠΠ				r -	Ţ
ASTM C 39	Standard Test Method for Comp	pressive Stre	angth of Cylind	drical Concre	te Test Specir	mens	1	M	\square	\square	W	NNN			1		
ASTM C 109	Standard Test Method for Comp	pressive Stre	angth of Hydra	aulic Cement	Mortars		1	Туре з	لــــــا ۱] Tvoo	2] Type 4	Type 5 Side Fractures		Туре б	
	(Using 2" Cube Specimens)						ļ	Reantmanly we comes on bolh s than t in, (25) creaking through	ell-formed scrole, less 5 mm) of	Type : We8-formed co and, vertical crac through caps, defined cone on	cke canalog . do well-	Columnar vertical crecking Ihraugh both excla, no well- formed contes	Diagonal fracture with no cracking through ends; igg with hermiter to	bottom (occur o with unbonde	commonly	Similar to Type 5 of cylinder as p	i but end joinled
ASTM C 173	Standard Test Method for Air Co	ontent of Fre	eshly Mixed Cr	oncrete by th	e Volumetric !	Method	!		,				distinguish from Type 1				
ASTM C 231	Standard Test Method for Air Co	ontent of Fre	eshly Mixed Co	oncrete by th	ie Pressure M	lethod	,										
ASTM C 270	Standard Test Method for Air Co	ontent of Fre	eshly Mixed C	oncrete by th	e Volumetric	Method	,							"The test results		under this te eet the minir	
ASTM C 496	Standard Specification for Morta	ar for Unit M	asonry				1							compressive	values in a	accordance v	with the
ASTM C 780	Standard Test Method for Preco	onstruction a	ind Constructi	ion Evaluatio	n of Mortars f	or Plain ar	nd							property spe /	ASTM C 78		270. "
	Reinforced Unit Masonry						1										
ASTM C 1064	Standard Test Method for Temp	perature of F	reshly Mixed	Portland Cen	nent Concrete	e	1	 					••••••••••••••••••••••••••••••••••••••				<u></u>
						*****		Deviation fr	rom Standard	l:							
	Test specimens were cast by G		0.				ł										
۵	Test specimens were not cast b	y GSG Mate	arial Testing - /	No other info	rmation is ava	ailable	ł										

Project Manager:

APPENDIX D

IDOT PILE DESIGN TABLES

Pile Design Table for South Abutment utilizing Boring #B-1

ſ	Nominal	Factored	Estimated		Nominal	Factored	Estimated		Nominal	Factored	Estimated
	Required	Resistance	Pile		Required	Resistance	Pile		Required	Resistance	Pile
	Bearing	Available	Length		Bearing	Available	Length		Bearing	Available	Length
	(Kips)	(Kips)	(Ft.)		(Kips)	(Kips)	(Ft.)		(Kips)	(Kips)	(Ft.)
Metal S	hell 12"Φ	w/.179" wal	S	Steel I	IP 10 X 57			Steel I	IP 14 X 73	,	
	151	83	23		140	77	31		130	71	21
	166	91	26		164	90	33		163	90	23
	182	100	28		186	102	36		197	108	26
	193	106	31		201	111	43		207	114	28
	219	121	33		213	117	46		207	114	31
	246	136	36		293	161	48		249	137	33
Metal S	hell 12"Φ	w/.25" walls			308	170	50		282	155	36
	151	83	23		324	178	52		288	159	43
	166	91	26		454	250	54		306	168	46
	182	100	28	Steel H	IP 12 X 53				442	243	48
	193	106	31		135	74	23		475	261	50
	219	121	33		160	88	26		501	276	52
	246	136	36		167	92	28		578	318	54
	271	149	38		170	93	31	Steel H	IP 14 X 89		
	280	154	41		201	110	33		134	73	21
	286	158	43		228	125	36		167	92	23
	301	165	46	1	240	132	43	1	200	110	26
Metal S		w/.25" walls			254	140	46		210	115	28
	125	69	18	1	364	200	48	1	210	116	31
	170	93	21		382	210	50		252	139	33
	184	101	23		401	220	52		286	157	36
	200	110	26		418	230	53		292	160	43
	217	119	28	Steel I	IP 12 X 63				310	170	46
	228	126	31		138	76	23		450	248	48
	262	144	33		162	89	26		483	266	50
	295	162	36		169	93	28		509	280	52
	323	178	38		171	94	31		705	388	54
	331	182	41		203	112	33	Steel H	IP 14 X 102	2	
	336	185	43		230	126	36		136	75	21
	354	194	46		242	133	43		169	93	23
Metal S	hell 14"Φ	w/.312" wall	s		256	141	46		202	111	26
	125	69	18		368	202	48		212	117	28
	170	93	21		386	212	50		213	117	31
	184	101	23		405	223	52		255	140	33
	200	110	26		497	273	54		290	159	36
	217	119	28	Steel I	IP 12 X 74				295	162	43
	228	126	31		140	77	23		313	172	46
	262	144	33		164	90	26		455	250	48
	295	162	36		171	94	28		488	268	50
	323	178	38		174	96	31		516	284	52
	331	182	41		206	113	33		810	445	54
	336	185	43		234	128	36	Steel H	IP 14 X 117		
	354	194	46		245	135	43		140	77	21
Steel H	P 8 X 36				260	143	46		173	95	23
	142	78	36		374	206	48		206	113	26
	155	85	38	1	393	216	50	1	215	118	28
	158	87	41		412	226	52		215	118	31
	159	88	43		589	324	54		259	142	33
	168	92	46	Steel I	IP 12 X 84				294	162	36
	220	121	48	1	142	78	23	1	298	164	43
	233	128	50		167	92	26		317	174	46
	246	135	52		174	96	28		462	254	48
	286	157	53		176	97	31		495	273	50
Steel H	P 10 X 42				209	115	33		523	288	52
	137	75	31		237	130	36		929	511	54
	160	88	33		249	137	43	Precas	st 14"x 14"		
	181	100	36	1	263	145	46	1	77	42	14
	197	108	43		380	209	48		159	87	18
	208	114	46		399	220	50		216	119	21
	285	157	48	1	418	230	52	1	235	129	23
	301	165	50		664	365	54		255	140	26
	316	174	52					Timbe			
				1					144	79	26
	335	184	53						144	79	26

Pile Design Table for Pier utilizing Boring #B-2

F				•		7			-		1
	Nominal	Factored	Estimated		Nominal	Factored	Estimated		Nominal	Factored	Estimated
	Required	Resistance	Pile		Required	Resistance	Pile		Required	Resistance	Pile
	Bearing	Available	Length		Bearing	Available	Length		Bearing	Available	Length
	(Kips)	(Kips)	(Ft.)		(Kips)	(Kips)	(Ft.)		(Kips)	(Kips)	(Ft.)
Metal S	Shell 12"Ф	w/.179" wa	lls	Steel	HP 10 X 57			Steel I	HP 14 X 73		
	223	123	30		389	214	38		216	119	26
	236	130	32	Steel	HP 12 X 53				228	126	28
Metal S	Shell 12"Ф	w/.25" wall	s		208	114	32		241	133	30
	223	123	30		243	134	35		254	139	32
	236	130	32		418	230	38		300	165	35
	343	189	35	Steel	HP 12 X 63				578	318	39
Metal S	Shell 14"Ф	w/.25" wall	s		210	115	32	Steel I	HP 14 X 89		
	208	114	23		246	135	35		218	120	26
	234	128	26		497	273	39		231	127	28
	249	137	28	Steel	HP 12 X 74				244	134	30
	264	145	30		213	117	32		257	141	32
	280	154	32		249	137	35		304	167	35
Metal S	Shell 14"Φ	w/.312" wa	lls		589	324	39		705	388	39
	208	114	23	Steel	HP 12 X 84			Steel I	HP 14 X 10	2	
	234	128	26		216	119	32		221	122	26
	249	137	28		253	139	35		234	129	28
	264	145	30		664	365	39		247	136	30
	280	154	32						260	143	32
	422	232	35						308	169	35
Steel H	IP 8 X 36								810	445	39
	153	84	35					Steel I	HP 14 X 11		
Steel H	IP 10 X 42								192	106	23
	195	107	35						224	123	26
									237	130	28
									250	138	30
									263	145	32
									312	172	35
									929	511	39
								Precas	st 14"x 14"		
									209	115	16
									231	127	18
									250	138	21
								Timbe			
									141	77	18
										-	

Pile Design Table for North Abutment utilizing Boring #B-3

Ī	Nominal	Factored	Estimated		Nominal	Factored	Estimated]	Nominal	Factored	Estimated
	Required	Resistance	Pile		Required	Resistance	Pile		Required	Resistance	Pile
	Bearing	Available	Length		Bearing	Available	Length		Bearing	Available	Length
	(Kips)	(Kips)	(Ft.)		(Kips)	(Kips)	(Ft.)		(Kips)	(Kips)	(Ft.)
Metal S	Shell 12"Φ	w/.179" wal	ls	Steel	HP 10 X 57			Steel H	P 14 X 73		
	148	81	28		143	79	35		141	78	25
	168	92	30		154	85	38		175	96	28
	181	99	33		179	98	43		197	108	30
	196	108	35		189	104	45		201	110	33
	211	116	38		197	108	48		212	117	35
	248	136	43		208	114	50		227	125	38
Metal S	Shell 12"Ф	w/.25" walls	5		219	121	53		262	144	43
	148	81	28		307	169	57		277	152	45
	168	92	30		454	250	59		286	157	48
	181	99	33	Steel	HP 12 X 53				301	166	50
	196	108	35		143	79	28		317	175	53
	211	116	38		158	87	30		473	260	57
	248	136	43		163	90	33		578	318	58
	263	145	45		173	95	35	Steel H	P 14 X 89		
	276	152	48		186	102	38		144	79	25
	292	160	50		215	118	43		178	98	28
	309	170	53		228	125	45		199	110	30
Metal S	Shell 14"Φ	w/.25" walls	s		237	130	48		203	112	33
	159	88	25		249	137	50		215	118	35
	179	98	28		263	145	53		230	127	38
	201	111	30		381	209	57		265	146	43
	215	118	33		418	230	58		280	154	45
	232	128	35	Steel	HP 12 X 63				290	159	48
	250	138	38		145	80	28		305	168	50
	293	161	43		159	88	30		321	177	53
	311	171	45		165	91	33		481	264	57
	326	179	48		175	96	35		705	388	59
	344	189	50		188	103	38	Steel H	IP 14 X 10	2	
	364	200	53		217	120	43		147	81	25
Metal S	Shell 14"Φ	w/.312" wal	ls		230	127	45		180	99	28
	159	88	25		239	131	48		202	111	30
	179	98	28		251	138	50		206	113	33
	201	111	30		265	146	53		218	120	35
	215	118	33		385	212	57		233	128	38
	232	128	35		497	273	59		269	148	43
	250	138	38	Steel	HP 12 X 74				284	156	45
	293	161	43		147	81	28		293	161	48
	311	171	45		162	89	30		308	170	50
	326	179	48		167	92	33		325	179	53
	344	189	50		178	98	35		486	267	57
	364	200	53		191	105	38		810	445	59
Steel H	IP 8 X 36				221	121	43	Steel H	P 14 X 11	7	
	148	81	45		233	128	45		150	82	25
	155	85	48		242	133	48		183	100	28
	163	90	50		255	140	50		205	113	30
	173	95	53		269	148	53		209	115	33
	232	128	57		392	215	57		221	121	35
	286	157	58		589	324	59		236	130	38
Steel H	IP 10 X 42			Steel	HP 12 X 84				272	150	43
	171	94	40		150	82	28		287	158	45
	175	96	43		165	91	30		297	163	48
	185	102	45		170	93	33		312	172	50
	193	106	48		180	99	35		329	181	53
	203	112	50		193	106	38		493	271	57
	215	118	53		224	123	43		929	511	59
	300	165	57		237	130	45	Precas	t 14"x 14"		
	335	184	58		245	135	48		203	112	25
					258	142	50		228	125	28
					273	150	53		256	141	30
					398	219	57	Timber	Pile		
					664	365	59		149	82	30

APPENDIX E

SLOPE STABILITY ANALYSES EXHIBITS

