

Illinois Department of Transportation Attention: Mr. James R. Curtis

2300 South Dirksen Pkwy Springfield, IL 62764

Re: PTB No. 174-015

FINAL Preliminary Site Investigation Report

IDOT Job No.: D-99-037-03PTB: 174-015 / Amec1District: 9Work Order No.: 028County: FranklinBDE Sequence No.: 19627Municipality: BentonRequesting Agency: DOH

Route: FAS 2882 Contract No.: 98820

Marked: IL 37 **Section No.:** (11, 11X, 12) RS-3

Street: Not Listed ISGS PESA No.: 3160

From to/Alt: S. Corporate Limit in Benton to Yellow Banks Road

Anticipated Letting Date: April 27, 2018

Target PSI Completion: February 2, 2018

Dear Mr. Curtis:

Amec Foster Wheeler Environment & Infrastructure, Inc. (Amec Foster Wheeler), is presenting this Final Preliminary Site Investigation Report (PSI) for the potential waste sites referenced above.

The attached final PSI provides detailed information for proposed construction activities, investigative approach and sampling, and an analysis plan.

Michael J. Hoffman, P.E. (IL)

If you have any questions, please do not hesitate to contact us.

Respectfully submitted,

Amec Foster Wheeler Environment & Infrastructure, Inc.

George Ryan, P.E. (IL)

Vice President Sr. Principal Environmental Engineer

Attachments

FINAL PRELIMINARY SITE INVESTIGATION REPORT FAS 2882 BENTON, FRANKLIN COUNTY, ILLINOIS

IDOT Job No.: D-99-037-03

District: 9
County: Franklin
Municipality: Benton
Route: FAS 2882
Marked: IL 37

Street: Not Listed

From to/Alt: S. Corporate Limit in Benton to

Yellow Banks Road

PTB: 174-015 / Amec1 Work Order No.: 028 BDE Sequence No.: 19627 Requesting Agency: DOH Contract No.: 98820

Section No.: (11, 11X, 12) RS-3

ISGS PESA No.: 3160

Anticipated Letting Date: April 27, 2018 Target PSI Completion: February 2, 2018

Prepared for:

Illinois Department of Transportation Bureau of Design and Environment 2300 S. Dirksen Parkway Springfield, IL 62764

Submitted by:

Amec Foster Wheeler Environment & Infrastructure, Inc. 4232 N. Brandywine Drive, Suite A Peoria, Illinois 61614

January 18, 2018

Table of Contents

1.0	Introduction	1
2.0	Site Background	2
3.0	Field Investigation Procedures	3
3.1	Soil Boring and Sampling Procedures	3
4.0	Field Investigation Results	4
4.1	Project Area Geology and Topography	5
4.2	ISGS #3160-5 (UPRR) – 1400 block of S. Main St., Benton	6
4.3	ISGS #3160-8 (J.W. Reynolds Memorial) – 1410 S. Main St., Benton	7
4.4	ISGS #3160-9 (C.N.C. Guns & Ammo) – 1401 S. Main St., Benton	8
4.5	ISGS #3160-10 (Benton Grade School District #47) – 1403 S. Main St., Benton	9
4.6	ISGS #3160-16 (Residence) – 12524 S. Park Rd., Benton Township	10
4.7	ISGS #3160-21 (UPRR) – 7000 block IL-37, Benton Township	11
4.8	ISGS #3160-23 (Vacant Land) - 7000 block of IL-37, Benton Township	12
4.9	ISGS #3160-25 (Commercial Building and Residence) – 7837 IL-37, Benton Township	13
4.1	0 ISGS #3160-26 (Residence) – 7789 IL-37, Benton Township	14
4.1	1 ISGS #3160-28 (Vacant Property) – 7745 IL-37, Benton Township	15
4.1	2 ISGS #3160-32 (Route 37 Collection Center) – 7533 IL-37, Browning Township	16
4.1	3 ISGS #3160-36 (UPRR) – 6000 - 7000 blocks of IL-37, Benton Township	17
4.1	4 ISGS #3160-45 (Residence) – 7127 IL-37, Browning Township	19
4.1	5 ISGS #3160-50 (Vacant Land) – 6000 IL-37, Browning Township	20
4.1	6 ISGS #3160-51 (UPRR) – 6000 IL-37, Benton Township	21
4.1	7 ISGS #3160-55 (Vacant Land) – 6000 block of IL-37, Browning Township	22
4.1	8 ISGS #3160-56 (Agricultural Land) – 7000 block of IL-37, Browning Township	2 3
4.1	9 ISGS #3160-62 (UPRR) – 7837 IL-37, 5000 block of IL-37, Frankfort Township and 6000 bloc IL-37, Benton Township	
4.2	0 ISGS #3160-64 (Residence) – 6229 IL-37, Benton Township	25
5.0	Conclusions and Recommendations	27
5.1	Estimated Soil Management Volumes and Costs	27
5.2	Soil Management Areas and Applicable Regulations	35
5.3	Recommendations	39

Tables Table 2-1 Summary of Recognized Environmental Conditions, Planned Construction Activities, and Contaminants of Concern Table 3-1 Summary of Sampling and Analysis Program Table 4-1 Field Observations and Sampling Rationale Table 4-2 Detected Soil and Groundwater Analytes and Comparison to Applicable Criteria Table 4-3 Summary of Soil Impacts and Contaminants of Concern Table 4-4 Summary of Groundwater Impacts and Contaminants of Concern Table 4-5 Estimated Volumes of Impacted Soil Table 5-1 Remedial Cost Associated with IDOT's Construction Project **Figures** Figure 1 **Location Map** Figure 2 Investigation Data Summary (PESA 3160:8, 9, 10) Figure 3 Investigation Data Summary (PESA 3160:5, 16) Figure 4 Investigation Data Summary (PESA 3160: 5, 16) Figure 5 Investigation Data Summary (PESA 3160:21, 23) Figure 6 Investigation Data Summary (PESA 3160: 21, 25, 26) Figure 7 Investigation Data Summary (PESA 3160: 21, 28) Figure 8 Investigation Data Summary (PESA 3160:21, 32) Figure 9 Investigation Data Summary (PESA 3160: 32, 36) Figure 10 Investigation Data Summary (PESA 3160:36) Figure 11 Investigation Data Summary (PESA 3160:36, 45) Figure 12 Investigation Data Summary (3160: 36, 45, 50) Figure 13 Investigation Data Summary (PESA 3160:50, 51) Figure 14 Investigation Data Summary (PESA 3160: 51, 55, 56) Figure 15 Investigation Data Summary (All PESA Sites Omitted) Figure 16 Investigation Data Summary (PESA 3160: 62) Figure 17 Investigation Data Summary (PESA 3160: 62) Figure 18 Investigation Data Summary (PESA 3160: 62, 64) Figure 19 Investigation Data Summary (PESA 3160: 62) Figure 20 Investigation Data Summary (PESA 3160:62) Investigation Data Summary (PESA 3160: 5, 8, 9, 10) Figure 21 Figure 22 Investigation Data Summary (PESA 3160: 10, 16, 21) Figure 23 Investigation Data Summary (PESA 3160: 21, 23, 25) Figure 24 Investigation Data Summary (PESA 3160: 26, 28, 32) Figure 25 Investigation Data Summary (PESA 3160: 32, 36) Figure 26 Investigation Data Summary (PESA 3160: 36, 45) Figure 27 Investigation Data Summary (PESA 3160: 45, 50, 51, 55)

Appendices

Figure 28

Figure 29

Appendix A - PESA

Appendix B – Soil Boring Logs

Appendix C – Laboratory Data

Appendix D – CCDD 663 Certifications

Appendix E - CCDD/USFO Locations

Investigation Data Summary (PESA 3160: 56, 62)

Investigation Data Summary (PESA 3160: 62, 64)

1.0 Introduction

Amec Foster Wheeler Environment & Infrastructure, Inc. (Amec Foster Wheeler) was tasked by the Illinois Department of Transportation (IDOT) to complete a preliminary site investigation (PSI) of potential waste sites associated with construction along FAS 2882 (IL 37, Benton) located in Franklin County, Illinois. The area investigated is depicted in Figure 1. The PSI was completed under Work Order 028 issued under IDOT Work Order Agreement for Consultant Services, PTB 174-015 (Various Statewide Assessments, Studies and Designs).

Field investigation activities were completed by Amec Foster Wheeler from October 30 through November 3 and November 21, 2017. Objectives for this investigation are defined in the IDOT-approved work plan dated October 11, 2017 as follows:

- Determine, to the degree possible pursuant to this scope of work, the nature and extent of subsurface contamination within the soil and/or groundwater of the project area. This determination specifically includes those areas in which subsurface excavation activities will be completed in support of construction activities.
- Develop an approach, including approximate volume estimates and associated cost estimates, for
 the proper handling and/or disposal of contaminated soil and groundwater that are likely to be
 encountered during the proposed construction activities within the existing and/or proposed IDOT
 right-of-way (ROW).
- Assess the potential for the further or continued contamination of existing IDOT property caused by the migration of contaminants from adjacent properties to and/or the project area.
- Assess the potential for the release of contaminants resulting from the proposed construction activities within the project area.
- Generate the data necessary to evaluate the potential for construction workers on-site to be exposed to contaminants.
- Prepare a PSI report presenting the findings of the investigation, conclusions, and recommendations addressing all the above referenced objectives.

This report presents the findings of the investigation in five sections. Section 1 (above) provides and introduction to the site and details of the proposed work. Section 2 provides site background information. Section 3 describes the procedures and sampling rationale used during the field investigation. Section 4 summarizes field investigation results including observations, field measurements, sampling rationale, analytical results and comparison of analytical results to regulatory criteria. Section 5 provides conclusions of the investigation and recommendations for further investigation and contaminant migration reduction techniques, if necessary.

P:\3160150049 IDOT Statewide\Work Order 28 District 9\Draft PSI\PSI Benton FINAL-011818.docx

2.0 Site Background

The Illinois State Geological Survey (ISGS) conducted preliminary environmental site assessments (PESAs) of the project area to identify sites with recognized environmental conditions (RECs) that may have a potential impact on the project. IDOT file information provided to Amec Foster Wheeler identified proposed construction activities that include cut and fill areas to depths of up to 6 feet below ground surface (bgs) in support of widening the shoulders and roadway resurfacing. Project construction plans provided to Amec Foster Wheeler indicate that partial property right-of-way acquisition is proposed for portions of this project, as well as temporary and permanent easements.

Table 2-1 presents the sites that were investigated by Amec Foster Wheeler as part of this PSI, along with the RECs identified by ISGS and the proposed construction activities and information at each site. Applicable background information about the sites, as provided in ISGS PESA 3160, is included as Appendix A. The site investigation areas are depicted in Figures 2 through 20.

Amec Foster Wheeler received correspondence from IDOT updating the estimated construction quantities for the project as follows:

•	UPRR	941 cubic yards
•	J.W. Reynolds Memorial	89 cubic yards
•	C.N.C. Guns & Ammo	645 cubic yards
•	Benton Grade School District #47	800 cubic yards
•	Residential Property	2465 cubic yards
•	UPRR	2594 cubic yards
•	Vacant Land	160 cubic yards
•	Commercial Building and Residence	473 cubic yards
•	Residence	138 cubic yards
•	Vacant Land	479 cubic yards
•	Route 37 Collection Center	900 cubic yards
•	UPRR	3196 cubic yards
•	Residence	869 cubic yards
•	Vacant Land	55 cubic yards
•	UPRR	1367 cubic yards
•	Vacant Land	394 cubic yards
•	Agricultural Land	184 cubic yards
•	UPRR	1443 cubic yards
•	Residence	187 cubic yards

Amec Foster Wheeler requested information from IDOT District 9 (and their consultant for the project) regarding the construction limits for the project. Amec Foster Wheeler received the construction limits for the locations detailed above. Figures 2 through 20 depict the construction limits.

3.0 Field Investigation Procedures

Amec Foster Wheeler followed the IDOT approved site-specific investigation work plan and standard operating procedures (SOPs) to achieve the objectives listed in Section 1 for the project area. The field investigation for this project included screening and sampling soil at the locations identified in Section 2. This section details the procedures used for screening, sample collection, equipment decontamination, quality assurance and sample custody.

3.1 Soil Boring and Sampling Procedures

Amec Foster Wheeler advanced a total of 80 borings in the proposed construction area. Borings were advanced using a Geoprobe[®]. Boring locations are identified on Figure 2 through 20. A summary of the sampling analysis program for the PSI is presented in Table 3-1.

Individual boring locations are identified with a unique alpha-numeric identification code that identifies the ISGS PESA report number (i.e., 3160); the second component of the sample number is related to the PESA REC site number (i.e., 5 represents PESA site 5); following the REC site number is a sequential boring number with the initial site at each REC site starting at 1. Thus, for ISGS PESA 3160 REC site 5, the initial boring is 3160-5-1.

On October 24, 2017, Amec Foster Wheeler marked the boring locations at each site and oversaw completion of a public utility clearance performed by Illinois 811 (JULIE) and private utility locate completed by the drilling contractor. Following observation of utility clearances, Amec Foster Wheeler determined whether borings had to be relocated due to the presence of utilities and/or topographical concerns. On October 30, 2017, borings were advanced to the depths proposed in the IDOT-approved work plan by the Amec Foster Wheeler approved drilling contractor. When drilling was completed, Amec Foster Wheeler oversaw the drilling contractor use of a global positioning system (GPS) receiver to record the final location for each boring.

Amec Foster Wheeler mobilized to the site on November 21, 2017, to advance soil boring 3160-32-7, which was not drilled during the October 30 mobilization. The boring was inadvertently missed during the October 30 drilling mobilization. Boring 3160-32-7 was advanced to a depth of 3.5 feet bgs with a stainless-steel hand auger. The sample was collected from the 0 to 3.5-foot sample interval and submitted to the laboratory for analysis on November 21, 2017.

Geoprobe[©] rods and/or stainless-steel hand augers were decontaminated with Alconox and potable water solution between borings. Each borehole was restored with removed soil cuttings and hydrated granular bentonite at the completion of sample collection activities.

Soil cores were screened for volatile organic compounds (VOCs) using a photoionization detector (PID). The depth interval, recovery, soil description, PID reading, and other observations were recorded for each sample. Soil boring logs for this investigation are provided in Appendix B.

Amec Foster Wheeler collected 84 soil samples from the project area for laboratory analysis. Upon completion of sampling activities, soil samples were shipped to TestAmerica Laboratories in University Park, Illinois (a NELAP [National Environmental Laboratory Accreditation Program] accredited laboratory) under chain-of-custody procedures in accordance with the IDOT-approved SOPs in accordance with the analysis depicted on Table 2-1.

Groundwater was not encountered at any PESA site sampled during the field activities.

4.0 Field Investigation Results

This section presents results of the field investigation and includes a discussion of the project area geology and topography, significant field observations, sampling rationale and laboratory analytical results relative to regulatory criteria.

Table 4-1 summarizes Amec Foster Wheeler field observations and sample selection rationale by location and depth. Soil samples collected for laboratory analysis were analyzed for VOCs, SVOCs and total metals, toxicity characteristic leaching procedure (TCLP) and synthetic precipitation leaching procedure (SPLP) analysis (Table 3-1). Certain soil samples were also analyzed for polychlorinated biphenyls (PCBs), herbicides and pesticides.

Amec Foster Wheeler reviewed laboratory results for precision, accuracy and completeness in accordance with procedures and quality control limits. Tables 4-2 and 4-3 provide a comparison of analytical results for soil with applicable regulatory criteria. Analytes detected at concentrations above applicable regulatory criteria in project area soil are considered contaminants of concern (COC). A discussion of the analytical results is presented below by site. Laboratory data packages are provided in Appendix C.

In Table 4-2, analyte concentrations identified in soil borings were compared to the Maximum Allowable Concentrations (MAC) of Chemical Constituents in Uncontaminated Soil Used as Fill Material at regulated Fill Operations presented in 35 Illinois Administrative Code (IAC) Part 1100, Subpart F. The total concentration of the analyte was completed when a MAC for an inorganic analyte was based on the 35 IAC Tiered Approach to Corrective Action Objectives (TACO) Class I soil component of the groundwater ingestion exposure route (SCGIER) (35 IAC Part 742, Appendix B, Table C). Results from the TCLP and SPLP analyses were independently compared with the TACO Class I SCGIER for analytes included in 35 IAC Part 742, Appendix B, Table A (Residential Properties). The analyte was considered to exceed a MAC if the Total, TCLP and SPLP results all exceed the applicable criteria. Additionally, if the TCLP and SPLP concentrations, for a given constituent, exceeded the TACO Soil Remediation Objective (SRO) for the Soil Component of the Groundwater Ingestion Exposure Route, the constituent was considered a contaminant of concern.

When the MAC for a constituent is location-specific, the detected constituent concentration is also compared to the location-specific MAC statistical area background concentration identified in 35 IAC Part 742, Appendix B, Table G and H. Analytes detected at concentrations that exceed the statistical area background concentration for the project area are considered COCs.

Amec Foster Wheeler also evaluated sample pH levels and the results of PID headspace screening pursuant to 35 IAC 1100.201(g) and 205(b)(1), respectively. Soil pH must be between 6.25 and 9.0 standard units (SU) in order for the soil to be accepted at a clean construction demolition debris (CCDD) facility or an uncontaminated soil fill operation (USFO). Soils with a pH measurement outside of the acceptable range but otherwise not impacted by COCs may be used on-site as fill and/or managed and disposed of off-site in accordance with Article 202.03 (Standard Specifications for Road and Bridge Construction, Adopted January 1, 2016).

In addition, PID headspace screening results were compared to PID background readings. The PID instrument is accurate to 1 parts per million (ppm) between 0 and 100 ppm. The PID was calibrated at the beginning of each field day and re-calibrated as necessary based on changing field conditions (i.e., primary wind direction, temperature, precipitation). Background was established at 0 ppm for this site. Soil exhibiting PID readings above background cannot be accepted by a CCDD/USFO.

The Amec Foster Wheeler field investigation, conducted October 30 through November 3 and November 21, 2017, was designed to provide an initial characterization of site conditions at pre-designated boring locations in accordance with objectives detailed in Section 1. The investigation was limited in terms of analytical parameters and number of samples collected, based on the site information provided in ISGS PESA #3160 (Appendix A). At the request of IDOT, boring spacing along the railroad ROWs were lengthened as a cost saving measure. Consequently, the findings and conclusions of this investigation are subject to revision should additional site information becomes available.

4.1 Project Area Geology and Topography

Amec Foster Wheeler advanced 80 soil borings for this project and collected samples from depths ranging from 0.0 feet to 6.0 feet bgs. Observations of subsurface materials in the project area are described by the soil borings included in Appendix B. The following information was provided by ISGS PESA 3160:

Bedrock geology. The uppermost bedrock (Bond Formation) in all but the south edge of the project area consists of Pennsylvanian aged rocks. In the southern portion of the project area, the Pennsylvanian aged Shelburn-Patoka Formation is observed. The Bond Formation consists of primarily limestones, sandstones and coals. The Shelburn-Patoka Formation consists of shales, limestones and coals.

Surficial geology. The total thickness of surficial deposits in the project area has been mapped between 25 to 50 feet thick on the northern and southern portions of the project area. The total thickness of surficial deposits in the central portion of the project area has been mapped to less than 20 feet. These deposits consist of loamy sand and glacial deposits of the Glassford Formation overlying the Pennsylvanian-aged bedrock.

Soils. Along the project right-of-way, the Natural Resources Conservation Service has mapped the soils as Bonnie silt loam with 0-2% slopes, frequently flooded, Cisne silt loam 0-2% slopes and Wynoose silt loam 0-2% slopes. The soils are mapped as containing 33-100% hydric components. No other soil in the project area is classified as containing more than 33% hydric components. The Hickory-Kell silt loams contain 18-35% slopes while the Plumfield silty clay loam has 5-18% slopes categorized as non-prime farmland.

The chemical soil properties for Franklin County, reported by the NRCS online database, show pH ranges from 0 to 79 bgs in the Bonnie silt loam to be on the order of 4.5-7.3 standard units (S.U.), the Cisne silt loam ranges from 4.5 to 7.3 S.U. and the Wynoose silt loam ranges from 3.5 to 7.3 S.U.

Field screening the on-site lithology shows predominantly silty clay to silt lithology with lenses of clay to a maximum depth of 10 feet bgs. The lithology at several ISGS sites contained varying amounts of fill material consisting of: cinders, gravel and brick to depths up to 3-feet bgs.

Coal Mining. Illinois Coal Mine Maps of Franklin County indicate that coal mining has taken place throughout the entire project area. Two former mines operated near the site including Benton #1 and Orient #2, which underlie the project area. Benton #1 operated from 1905 to 1924 and underlies the northern portion of the project area. This coal was extracted using the room and pillar method from depths ranging from 618 to 624 feet. Orient #2 mine underlies the central and southern portions of the project area. This mine operated from 1922-1960 and the depth to the coal ranged from 480 to 500 feet. No shafts were identified within .25 miles of the project right-of-way for these mines.

Hydrogeology. Hydrogeology information was not included in the PESA; however, it is believed that shallow unconsolidated groundwater exists below the site and locally flows northwest towards Rend Lake. Regionally, groundwater is anticipated to flow southwest towards the Big Muddy River which flows west into the Mississippi River.

The field investigation observed moist conditions at all ISGS sites and did not encounter static groundwater in the 0 to 10 feet bgs interval. The proposed temporary monitoring wells were not installed as there was insufficient water for sample collection.

Wetlands. One palustrine wetland was identified at ISGS 3160 PESA sites: 22, 26, 38, 58, 59 and 60. The wetlands were defined by aerial photographs and may be either overstated or missing entirely.

Seismic Risk. The project is located in an area with known fault zones and bedrock gravitational acceleration ranges that have a 2% probability of being exceeded in 50 years are between 20% and 80% g.

4.2 ISGS #3160-5 (UPRR) – 1400 block of S. Main St., Benton

4.2.1 Field Observations at ISGS #3160-5 UPRR

Amec Foster Wheeler completed 3 soil borings (3160-5-1 through 3160-5-3) at ISGS #3160-5 (UPRR) in accordance with Table 3-1 and Figure 3 and 4. Field evidence of VOCs was not observed during PID headspace screening of site soils. Observations during field sampling showed no evidence of discoloration and odors that might suggest potential chemical contamination. One soil sample per boring was collected to a maximum construction depth of 1.2' for analysis. Groundwater was not encountered in ISGS 3160-5.

4.2.2 Analytical Results for ISGS #3160-5 UPRR

Metals were detected in soil samples analyzed from borings 3160-5-1 through 3160-5-3. Table 4-2 includes results for the analytes detected in soil. Metals were also analyzed via TCLP and SPLP analysis. Soil pH results ranged from 6.1-8.6 SU.

4.2.3 Nature and Extent of Contamination Above Applicable Criteria at ISGS #3160-5 UPRR

Arsenic was detected at a concentration above certain total metals MAC criteria in sample 3160-5-1 (1.2') but below the most stringent TACO criteria.

Iron was detected at a concentration above total metal MAC criteria in the samples submitted from borings 3160-5-1 and 3160-5-2, all of which were sampled at the 1.2 foot bgs interval.

Lead was detected at a concentration above the total metals MAC criteria in the sample submitted from boring 3160-5-1 which was sampled at the 1.2 foot bgs interval but below the most stringent TACO criteria.

4.2.4 IDOT Construction Activities at ISGS #3160-5 UPRR

Construction activities anticipated at this site include earth work (cut and fill) in accordance with Figure 3 and 4 and Table 2-1. Excavations associated with these improvements are estimated to extend to a maximum depth of 1.2 feet bgs. Assumed areas of impact and COCs are identified in Figures 3, 4 and 21. Table 4-5 presents an estimated volume of impacted soil within proposed construction excavation areas at the site that will require proper handling and disposal if removed from the site. When provided, Amec Foster Wheeler used volumes provided by IDOT District 9 to estimate impacted soil quantities.

PID readings (0.0) were at or below background screening of site soil. The pH results from 3160-5-2 (0-1.2') soil sample was below the acceptable range to be considered CCDD eligible. All other 3160-5 borings submitted for analysis were within the acceptable range (6.25-9.0) for management of the soil at a CCDD facility or USFO.

Laboratory results were detected above MAC criteria for soil sample results collected from boring 3160-5-1 and the soil is eligible for management to a CCDD facility or USFO (Table 4-3).

P:\3160150049 IDOT Statewide\Work Order 28 District 9\Draft PSI\PSI Benton FINAL-011818.docx

Laboratory results were detected outside the acceptable pH criteria in the soil sample submitted from boring 3160-5-2 and the soil is classified as uncontaminated waste; however, it is not eligible for CCDD (Table 4-3).

Laboratory results were not detected above any criteria in soil samples submitted from boring 3160-5-3 and the soil is classified as unrestrictive and no special provision will be required (Table 4-3).

4.2.5 IDOT Property Acquisition at ISGS #3160-5 UPRR

IDOT plans include a permanent easement at ISGS #3160-5 (UPRR). If off-site management of soils is required, the estimated volume and costs of impacted soil associated with property acquisition at these locations is provided on Table 5-1.

4.3 ISGS #3160-8 (J.W. Reynolds Memorial) – 1410 S. Main St., Benton

4.3.1 Field Observations at ISGS #3160-8 J.W. Reynolds Memorial

Amec Foster Wheeler completed two borings (3160-8-1 and 3160-8-2) at ISGS #3160-8 (J.W. Reynolds Memorial) in accordance with Table 3-1 and Figure 2. Evidence of VOCs was not observed during PID headspace screening of site soils. Observations during field sampling showed no evidence of discoloration and odors that might suggest potential chemical contamination. One soil sample per boring was collected from ISGS 3160-8 from the 0 to 3-foot interval. Groundwater was not encountered in ISGS 3160-8.

4.3.2 Analytical Results for ISGS #3160-8 J.W. Reynolds Memorial

Acetone was detected at a low-level concentration in the sample submitted from 3160-8-1. No other VOC analyte was detectable. Several SVOCs were detected in the samples collected from 3160-8-1 and 3160-8-2; however, the detected concentrations were all below the MAC and TACO objectives. Manganese was detected in the sample collected from 3160-8-2 at a concentration exceeding all MACs. The Table 4-2 includes results for the analytes detected in soil. Soil pH results ranged from 8.3-8.5 SU.

4.3.3 Nature and Extent of Contamination Above Applicable Criteria at ISGS #3160-8 J.W. Reynolds Memorial

Manganese was detected at a concentration above the MAC criteria in the sample submitted from 3160-8 2 (0-3') but below the TACO criteria. No other metals are considered COCs for 3160-32.

4.3.4 IDOT Construction Activities at ISGS #3160-8 J.W. Reynolds Memorial

Construction activities anticipated at this site include earth work (cut and fill) in accordance with Figure 3 and Table 2-1. Excavations associated with these improvements are estimated to extend to a maximum depth of 3.0 feet bgs. Assumed areas of impact and COCs are identified in Figures 2 and 21. Table 4-4 presents an estimated volume of impacted soil within proposed construction excavation areas at the site that will require proper handling and disposal if removed from the site. When provided, Amec Foster Wheeler used volumes provided by IDOT District 9 to estimate impacted soil quantities.

PID readings were not detected during headspace screening of site soil. The pH was reported within the acceptable range (6.25-9.0) for management of the soil at a CCDD facility at all borings located within 3160-8.

Laboratory results were detected below all MAC and TACO criteria for soil collected from 3160-8-1 and the sample results are unrestrictive and no special provision will be required (Table 4-3).

Laboratory results were detected above MAC criteria (only) but below TACO criteria for soil collected from boring 3160-8-2 and the soil is classified as uncontaminated and is acceptable for management to a CCDD facility or USFO (Table 4-3).

4.3.5 IDOT Property Acquisition at ISGS #3160-8 J.W. Reynolds Memorial

IDOT plans include a partial ROW acquisition at ISGS #3160-8 (J.W. Reynolds Memorial). If off-site management of soils is required, the estimated volume and costs of impacted soil associated with property acquisition at these locations is provided on Table 5-1.

4.4 ISGS #3160-9 (C.N.C. Guns & Ammo) – 1401 S. Main St., Benton

4.4.1 Field Observations at ISGS #3160-9 C.N.C. Guns & Ammo

Amec Foster Wheeler completed three borings (3160-9-1 through 3160-9-3) at ISGS #3160-9 (C.N.C. Guns & Ammo) in accordance with Table 3-1 and Figure 2. Evidence of VOCs was not observed during PID headspace screening of site soils. One soil sample per boring was collected from ISGS 3160-9 from the 0 to 4-foot interval. Groundwater was not encountered at the 3160-9 site.

4.4.2 Analytical Results for ISGS #3160-9 C.N.C. Guns & Ammo

No sample analyzed from ISGS 3160-9 contained a VOC, SVOC or PCB at a concentration exceeding any MAC or TACO objective. Iron and manganese were detected in the samples collected at the site at concentrations exceeding one or more MACs and/or TACO objectives. Soil pH results ranged from 4.6-7.6 SU.

4.4.3 Nature and Extent of Contamination Above Applicable Criteria at ISGS #3160-9 C.N.C. Guns & Ammo

The total iron samples collected from 3160-9-1 (0-4') and 3160-9-2 (0-4') exceeded all MAC objectives.

The manganese sample collected from 3160-9-1 (0-4') exceeded the TCLP and SPLP TACO Groundwater Protection objectives.

4.4.4 IDOT Construction Activities at ISGS #3160-9 C.N.C. Guns & Ammo

Construction activities anticipated at this site include excavation (cut and fill) in accordance with Figure 2 and Table 2-1. Excavations are estimated to extend to a maximum depth of 4.0 feet bgs. Assumed areas of impact and COCs are identified in Figures 2 and 21. Table 4-5 presents an estimated volume of impacted soil within proposed construction excavation areas at the site that will require proper handling and disposal if removed from the site. When provided, Amec Foster Wheeler used volumes provided by IDOT District 9 to estimate impacted soil quantities.

PID readings were not detected during headspace screening of site soil above background concentrations. Soil samples analyzed for pH were detected outside the acceptable range (6.25-9.0) for management of the soil at a CCDD facility or USFO at boring 3160-9-1 and 2.

One or more laboratory results were detected above criteria for soil collected from 3160-9 borings: 1 and 2 at concentrations outside the acceptable range for management to a CCDD facility or USFO and the soil is considered uncontaminated (Table 4-3).

The laboratory results for the sample collected from boring 3160-9-3 indicate the soil is considered unrestrictive and no special provision will be required.

4.4.5 IDOT Property Acquisition at ISGS #3160-9 C.N.C. Guns & Ammo

IDOT plans include a partial ROW acquisition at 3160-9 (C.N.C. Guns & Ammo). If off-site management of soils is required, the estimated volume and costs of impacted soil associated with property acquisition at this location is provided on Table 5-1.

P:\3160150049 IDOT Statewide\Work Order 28 District 9\Draft PSI\PSI Benton FINAL-011818.docx

4.5 ISGS #3160-10 (Benton Grade School District #47) – 1403 S. Main St., Benton

4.5.1 Field Observations at ISGS #3160-10 Benton Grade School District #47

Amec Foster Wheeler completed three borings (3160-10-1 through 3) at ISGS #3160-10 Benton Grade School District #47 in accordance with Table 3-1 and Figure 2. In accordance with the approved work plan, soil samples were collected from ISGS 3160-10 borings for laboratory analysis of VOCs, SVOCs, metals, TCLP Metals and SPLP metals. In total, three samples (one per boring) were analyzed from ISGS 3160-10 borings.

Field evidence of VOCs was observed during PID headspace screening of site soils from all three borings. Observations during field sampling showed evidence of discoloration and petroleum hydrocarbon odors that might suggest potential chemical contamination. Soil samples were collected from the 0-2.5' interval for analysis. One soil sample per boring was collected from ISGS 3160-10. Groundwater was not encountered in ISGS 3160-10.

4.5.2 Analytical Results for ISGS #3160-10 Benton Grade School District #47

A single VOC (benzene), SVOC (naphthalene) and metals were detected above applicable criteria in soil samples analyzed from borings 3160-10. Several metals were detected in the samples collected at the site. Table 4-2 included results for the analytes detected in soil. Metals were also analyzed via TCLP and SPLP analysis. Soil pH results ranged from 4.8-8.2 SU.

4.5.3 Nature and Extent of Contamination Above Applicable Criteria at ISGS #3160-10 Benton Grade School District #47

Benzene was detected at a concentration above the MAC criteria and above the Residential TACO migration to groundwater criteria in sample 3160-10 1 (0-2.5°).

Naphthalene exceeded certain site-specific MAC criteria in the sample 3160-10-1 (0-2.5²).

Iron was detected at a concentration above the MAC criteria in samples collected from all 3160-10 borings. Iron also exceeded the TCLP and SPLP TACO criteria in the sample 3160-10-3 (0-2.5').

Manganese was detected at a concentration above TCLP and SPLP TACO criteria from the 3160-10 samples: 1 (0-2.5') and 3 (0-2.5'). No other metal is considered a COC for 3160-10.

4.5.4 IDOT Construction Activities at ISGS #3160-10 Benton Grade School District #47

Construction activities anticipated at this site include excavation (cut and fill) in accordance with Figure 2 and Table 2-1. Excavations are estimated to extend to a maximum depth of 2.5 feet bgs. Assumed areas of impact and COCs are identified in Figures 2, 21 and 22. Table 4-5 presents an estimated volume of impacted soil within proposed construction excavation areas at the site that will require proper handling and disposal if removed from the site. When provided, Amec Foster Wheeler used volumes provided by IDOT District 9 to estimate impacted soil quantities.

PID readings were detected during headspace screening of site soil in all three 3160-10 borings. Soil samples were analyzed for pH and results were detected outside the acceptable range (6.25-9.0) for management of the soil at a CCDD facility or USFO at 3160-10 borings: 1 and 2.

Laboratory results were detected outside acceptable MAC, TACO, PID and pH criteria in all three 3160-10 borings and the soil is classified as non-special waste (Table 4-3).

4.5.5 IDOT Property Acquisition at ISGS #3160-10 Benton Grade School District #47

IDOT plans include partial ROW acquisition at ISGS #3160-10 (Benton Grade School District #47). If offsite management of soils is required, the estimated volume and costs of impacted soil associated with property acquisition at this location is provided on Table 5-1.

4.6 ISGS #3160-16 (Residence) – 12524 S. Park Rd., Benton Township

4.6.1 Field Observations at ISGS #3160-16 Residence

Amec Foster Wheeler completed five borings (3160-16-1 through 3160-16-5) at ISGS #3160-16 (Residence) in accordance with Table 3-1 and Figures 3 and 4. Field evidence of VOCs was not observed during PID headspace screening of site soils. Observations during field sampling showed no evidence of discoloration and odors that might suggest potential chemical contamination. In general, one sample (each) was collected from the 0 to 4-foot interval. Groundwater was not encountered in ISGS 3160-16.

4.6.2 Analytical Results for ISGS #3160-16 Residence

No VOCs were detected in soil samples analyzed from borings 3160-16 at concentrations which exceeded any applicable criteria (TACO or MAC). Two SVOCs (2-methylnaphthalene and naphthalene) and several metals were detected in the samples collected at the site. Metals were also analyzed via TCLP and SPLP analysis for soils. Soil pH results ranged from 4.9-7.9 SU. Table 4-2 included results for the analytes detected in soil.

4.6.3 Nature and Extent of Contamination Above Applicable Criteria at ISGS #3160-16 Residence

2-methylnaphthalene was detected at a concentration above all MAC criteria in the 3160-16 samples: 4 (0-4') and 5 (0-4').

Naphthalene was detected at a concentration above certain site specific MAC criteria in the soil samples collected from 3160-16 borings: 4 and 5.

Total iron was detected at a concentration above all MAC metal criteria in all samples submitted from 3160-16 borings.

Manganese was detected at a concentration above total metals MAC criteria (only) in the sample 3160-16-1 (0-4').

4.6.4 IDOT Construction Activities at ISGS #3160-16 Residence

Construction activities anticipated at this site include excavation (cut and fill) in accordance with Figure 3 and 4 and Table 2-1.

Excavations associated with these improvements are estimated to extend to a maximum depth of 4.0 feet bgs. Assumed areas of impact and COCs are identified in Figures 3, 4 and 22. Table 4-5 presents an estimated volume of impacted soil within proposed construction excavation areas at the site that will require proper handling and disposal if removed from the site. When provided, Amec Foster Wheeler used volumes provided by IDOT District 9 to estimate impacted soil quantities.

PID readings were not detected during headspace screening of site soil. The samples analyzed for pH from 3160-16 borings: 2 (0-4'), 3 (0-4'), 5 (0-4') were below the acceptable range (6.25-9.0) for management of the soil at a CCDD facility or USFO. All other pH results were within range.

Laboratory results were detected above criteria for soil collected from 3160-16 borings: 2 and 3. These samples contained one or more COCs outside the acceptable range for management to a CCDD facility or USFO but the soil is considered uncontaminated (Table 4-3).

Laboratory results were detected above MAC criteria in 3160-16: 1 (0-4') and 4 (0-4') and the soil is classified as CCDD Eligible (Table 4-3)

Laboratory results were detected above MAC criteria in boring 3160-16-5 (0-4'); however, the soil is not eligible for CCDD or USFO disposal.

4.6.5 IDOT Property Acquisition at ISGS #3160-16 Residence

IDOT plans include partial ROW acquisition at ISGS #3160-16 (Residence). If off-site management of soils is required, the estimated volume and costs of impacted soil associated with property acquisition at this location is provided on Table 5-1.

4.7 ISGS #3160-21 (UPRR) - 7000 block IL-37, Benton Township

4.7.1 Field Observations at ISGS #3160-21 UPRR

Amec Foster Wheeler completed 10 soil borings (3160-21-1 through 3160-21-10) at ISGS #3160-21 (UPRR) in accordance with Table 3-1 and Figures 5, 6, 7 and 8. Field evidence of VOCs was not observed during PID headspace screening of site soils. Observations during field sampling showed no evidence of discoloration and odors that might suggest potential chemical contamination. One soil sample per boring was collected to a maximum construction depth of 2.5' for analysis. Groundwater was not encountered in ISGS 3160-21.

4.7.2 Analytical Results for ISGS #3160-21 UPRR

SVOCs (2-methylnaphthalene and naphthalene) and several metals were detected in soil samples analyzed from borings 3160-21-1 through 3160-21-10. Table 4-2 includes results for the analytes detected in soil. Metals were also analyzed via TCLP and SPLP analysis. Soil pH results ranged from 5.5-8.3 SU.

4.7.3 Nature and Extent of Contamination Above Applicable Criteria at ISGS #3160-21 UPRR 2-methylnaphthalene was detected at a concentration above all MAC criteria in the soil sample 3160-21-2 (0-2.5°).

Naphthalene was detected at a concentration above certain site-specific MAC criteria in the 3160-16 soil samples: 2 (0-2.5') and 10 (0-2.5').

Chromium was detected at a concentration above certain total metals MAC criteria in the samples 3160-21-3 (0-2.5') but below the most stringent TACO criteria.

Iron was detected at a concentration above total metal MAC criteria in the samples submitted from all 10 3160-21 borings.

Manganese was detected at a concentration above the total metals MAC criteria and Most Stringent TACO criteria in the sample submitted from boring 3160-21-2 which was sampled at the 0-2.5 foot bgs interval. Manganese also exceeded the TCLP (only) TACO criterial for sample 3160-21-4 (0-2.5°).

4.7.4 IDOT Construction Activities at ISGS #3160-21 UPRR

Construction activities anticipated at this site include earth work (cut and fill) in accordance with Figure 5 through 8 and Table 2-1. Excavations associated with these improvements are estimated to extend to a maximum depth of 2.5 feet bgs. Assumed areas of impact and COCs are identified in Figures 5 through 8, P:\3160150049 IDOT Statewide\Work Order 28 District 9\Draft PSI\PSI Benton FINAL-011818.docx

22 and 23. Table 4-5 presents an estimated volume of impacted soil within proposed construction excavation areas at the site that will require proper handling and disposal if removed from the site. When provided, Amec Foster Wheeler used volumes provided by IDOT District 9 to estimate impacted soil quantities.

PID readings (0.0) were at or below background screening of site soil. The pH result from 3160-21-6 (0-2.5') soil sample was below the acceptable range to be considered CCDD eligible. All other 3160-21 samples submitted for analysis were within the acceptable range (6.25-9.0) for management of the soil at a CCDD facility or USFO.

Laboratory results indicate the soil sampled from 3160-21 borings: 1, 3, 4, 5, 7, 8 and 9 do not exceed any applicable criteria and the soil is classified as unrestrictive (Table 4-3). No special provision will be required for 3160-21 borings: 1, 3, 4, 5, 7, 8 and 9.

Laboratory results were detected above MAC criteria for soil sample results collected from 3160-21 borings: 2 and 10 and the soil is classified as uncontaminated and is eligible for management to a CCDD facility or USFO (Table 4-3).

Laboratory results were detected outside the acceptable pH range in the soil sample submitted from boring 3160-21-6 and the soil is classified as uncontaminated; however, the soil is not eligible for management at a CCDD or USFO facility (Table 4-3).

4.7.5 IDOT Property Acquisition at ISGS #3160-21 UPRR

IDOT plans include both a temporary and permanent easement at ISGS #3160-21 (UPRR). If off-site management of soils is required, the estimated volume and costs of impacted soil associated with property acquisition at these locations is provided on Table 5-1.

4.8 ISGS #3160-23 (Vacant Land) - 7000 block of IL-37, Benton Township

4.8.1 Field Observations at ISGS #3160-23 Vacant Land

Amec Foster Wheeler completed two borings (3160-23-1 and 3160-23-2) at ISGS #3160-23 (Vacant Land) in accordance with Table 3-1 and Figure 5. Evidence of VOCs was not observed during PID headspace screening of site soils. Observations during field sampling showed no evidence of discoloration and odors that might suggest potential chemical contamination. One soil sample per boring was collected from ISGS 3160-23 from the 0 to 4.5-foot interval. Groundwater was not encountered in ISGS 3160-23.

4.8.2 Analytical Results for ISGS #3160-23 Vacant Land

No VOC, pesticide or herbicide analytes were detectable at a concentration exceeding any applicable criteria. Two SVOCs (2-methylnaphthalene and naphthalene) were detected in the samples collected from 3160-23; however, the detected concentrations were below the MAC and TACO objectives with the exception of the sample collected from 3160-23-2. All metals analytes, including TCLP and SPLP, were below any applicable criteria. The Table 4-2 includes results for the analytes detected in soil. Soil pH results ranged from 6.2-8.1 SU.

4.8.3 Nature and Extent of Contamination Above Applicable Criteria at ISGS #3160-23 Vacant Land

2-methylnaphthalene was detected at a concentration above all MAC criteria in the soil sample 3160-23-2 (0-4.5').

Naphthalene was detected at a concentration above certain site-specific MAC criteria in the soil sample 3160-23-2 (0-4.5'). No other analytes are considered COCs for 3160-32.

4.8.4 IDOT Construction Activities at ISGS #3160-23 Vacant Land

Construction activities anticipated at this site include earth work (cut and fill) in accordance with Figure 5 and Table 2-1. Excavations associated with these improvements are estimated to extend to a maximum depth of 4.5 feet bgs. Assumed areas of impact and COCs are identified in Figures 5 and 23. Table 4-4 presents an estimated volume of impacted soil within proposed construction excavation areas at the site that will require proper handling and disposal if removed from the site. When provided, Amec Foster Wheeler used volumes provided by IDOT District 9 to estimate impacted soil quantities.

PID readings were not detected during headspace screening of site soil. The pH was reported outside the acceptable range (6.25-9.0) for management of the soil at a CCDD facility at boring 3160-23-1.

Laboratory results were detected outside pH criteria (only) for soil collected from 3160-23 boring 1 and the soil is classified as uncontaminated but is not eligible for CCDD or USFO disposal (Table 4-3).

Laboratory results were detected above MAC but below TACO criteria for soil collected from 3160-23-2 and the sample results are acceptable for management to a CCDD facility or USFO (Table 4-3).

4.8.5 IDOT Property Acquisition at ISGS #3160-23 Vacant Land

IDOT plans include a partial ROW acquisition at ISGS #3160-23 (Vacant Land). If off-site management of soils is required, the estimated volume and costs of impacted soil associated with property acquisition at these locations is provided on Table 5-1.

4.9 ISGS #3160-25 (Commercial Building and Residence) – 7837 IL-37, Benton Township

4.9.1 Field Observations at ISGS #3160-25 Commercial Building and Residence

Amec Foster Wheeler completed two borings (3160-25-1 and 3160-25-2) at ISGS #3160-25 (Commercial Building and Residence) in accordance with Table 3-1 and Figure 6. Evidence of VOCs was not observed during PID headspace screening of site soils. One soil sample per boring was collected from ISGS 3160-25 from the 0 to 4-foot interval. Groundwater was not encountered at the site.

4.9.2 Analytical Results for ISGS #3160-25 Commercial Building and Residence

No sample analyzed from ISGS 3160-25 contained a VOC or SVOC at a concentration exceeding any MAC or TACO objective. Iron and manganese were detected in the samples collected at the site at concentrations exceeding one or more MACs and/or TACO objectives. Soil pH result for both borings was 4.8 SU.

4.9.3 Nature and Extent of Contamination Above Applicable Criteria at ISGS #3160-25 Commercial Building and Residence

The total iron samples 3160-25-1 (0-4') and 3160-25-2 (0-4') exceeded all MAC objectives.

The manganese sample 3160-25-1 (0-4') exceeded the TCLP and SPLP TACO Groundwater Protection objectives.

4.9.4 IDOT Construction Activities at ISGS #3160-25 Commercial Building and Residence

Construction activities anticipated at this site include excavation (cut and fill) in accordance with Figure 6 and Table 2-1. Excavations are estimated to extend to a maximum depth of 4.0 feet bgs. Assumed areas of impact and COCs are identified in Figures 6 and 23. Table 4-5 presents an estimated volume of impacted

soil within proposed construction excavation areas at the site that will require proper handling and disposal if removed from the site. When provided, Amec Foster Wheeler used volumes provided by IDOT District 9 to estimate impacted soil quantities.

PID readings were not detected during headspace screening of site soil above background concentrations. Soil samples analyzed for pH were detected outside the acceptable range (6.25-9.0) for management of the soil at a CCDD facility or USFO at 3160-25 boring 1 and 2.

One or more laboratory results were detected above criteria for soil collected from 3160-25 borings: 1 and 2 at concentrations outside the acceptable range for management to a CCDD facility or USFO and the soil is considered uncontaminated (Table 4-3).

4.9.5 IDOT Property Acquisition at ISGS #3160-25 Commercial Building and Residence

IDOT plans include a partial ROW acquisition at 3160-25 (Commercial Building and Residence). If offsite management of soils is required, the estimated volume and costs of impacted soil associated with property acquisition at this location is provided on Table 5-1.

4.10 ISGS #3160-26 (Residence) - 7789 IL-37, Benton Township

4.10.1 Field Observations at ISGS #3160-26 Residence

Amec Foster Wheeler completed two borings (3160-26-1 and 2) at ISGS #3160-26 Residence in accordance with Table 3-1 and Figure 6. In accordance with the approved work plan, soil samples were collected from ISGS 3160-26 borings for laboratory analysis of VOCs, SVOCs, metals, TCLP Metals and SPLP metals.

Field evidence of VOCs was not observed during PID headspace screening of site soils from any boring. Observations during field sampling did not show any evidence of discoloration or odors that might suggest potential chemical contamination. Soil samples were collected from the 0-4' interval for analysis. One soil sample per boring was collected from ISGS 3160-26. Groundwater was not encountered in ISGS 3160-26.

4.10.2 Analytical Results for ISGS #3160-26 Residence

No VOC or SVOC analytes were detected above applicable criteria in soil samples analyzed from borings 3160-26. Several metals were detected in the samples collected at the site. Table 4-2 included results for the analytes detected in soil. Metals were also analyzed via TCLP and SPLP analysis. Soil pH results ranged from 4.3-5.0 SU.

4.10.3 Nature and Extent of Contamination above Applicable Criteria at ISGS #3160-26 Residence

Iron was detected at a concentration above the MAC criteria in samples collected from all 3160-26 borings.

Manganese was detected at a concentration above TCLP TACO criteria from the sample 3160-26-1 (0-4'). No other metal is considered a COC for 3160-26.

4.10.4 IDOT Construction Activities at ISGS #3160-26 Residence

Construction activities anticipated at this site include excavation (cut and fill) in accordance with Figure 6 and Table 2-1. Excavations are estimated to extend to a maximum depth of 4 feet bgs. Assumed areas of impact and COCs are identified in Figures 6 and 24. Table 4-5 presents an estimated volume of impacted soil within proposed construction excavation areas at the site that will require proper handling and disposal if removed from the site. When provided, Amec Foster Wheeler used volumes provided by IDOT District 9 to estimate impacted soil quantities.

P:\3160150049 IDOT Statewide\Work Order 28 District 9\Draft PSI\PSI Benton FINAL-011818.docx

PID readings were not detected during headspace screening of site soil in the 3160-26 borings. Soil samples were analyzed for pH and results were detected outside the acceptable range (6.25-9.0) for management of the soil at a CCDD facility or USFO at borings 1 and 2.

Laboratory results were detected outside acceptable MAC, TACO, and pH criteria in both 3160-26 borings and the soil is classified as uncontaminated (Table 4-3).

4.10.5 IDOT Property Acquisition at ISGS #3160-26 Residence

IDOT plans include partial ROW acquisition at ISGS #3160-26 (Residence). If off-site management of soils is required, the estimated volume and costs of impacted soil associated with property acquisition at this location is provided on Table 5-1.

4.11 ISGS #3160-28 (Vacant Property) - 7745 IL-37, Benton Township

4.11.1 Field Observations at ISGS #3160-28 Vacant Property

Amec Foster Wheeler completed three borings (3160-28-1 through 3160-28-3) at ISGS #3160-28 (Vacant Property) in accordance with Table 3-1 and Figure 7. Field evidence of VOCs was not observed during PID headspace screening of site soils. Observations during field sampling showed no evidence of discoloration and odors that might suggest potential chemical contamination. In general, one sample (each) was collected from the 0 to 5-foot interval. Groundwater was not encountered in ISGS 3160-28.

4.11.2 Analytical Results for ISGS #3160-28 Vacant Property

No VOCs were detected in soil samples analyzed from borings 3160-28 at concentrations which exceeded any applicable criteria (TACO or MAC). One SVOC (naphthalene) and several metals were detected in the samples collected at the site at concentrations above an applicable criterion. Metals were also analyzed via TCLP and SPLP analysis for soils. Soil pH results ranged from 3.8-4.9 SU. Table 4-2 included results for the analytes detected in soil.

4.11.3 Nature and Extent of Contamination above Applicable Criteria at ISGS #3160-28 Vacant Property

Naphthalene was detected at a concentration above certain site-specific MAC criteria in the soil sample 3160-28-3 (0-5').

Total iron was detected at a concentration above all MAC metal criteria in all samples submitted from 3160-28 borings.

Selenium was detected at a concentration above total metals MAC criteria (only) in the sample submitted from boring 3160-28-3.

Manganese was detected at a concentration above TCLP TACO criteria (only) in the 3160-28 samples: 1 (0-5') and 2 (0-5'). Manganese was detected at a concentration above both the TCLP and SPLP TACO criteria in the sample 3160-28-3 (0-5').

4.11.4 IDOT Construction Activities at ISGS #3160-28 Vacant Property

Construction activities anticipated at this site include excavation (cut and fill) in accordance with Figure 7 and Table 2-1.

Excavations associated with these improvements are estimated to extend to a maximum depth of 5.0 feet bgs. Assumed areas of impact and COCs are identified in Figures 7 and 24. Table 4-5 presents an estimated volume of impacted soil within proposed construction excavation areas at the site that will require proper

handling and disposal if removed from the site. When provided, Amec Foster Wheeler used volumes provided by IDOT District 9 to estimate impacted soil quantities.

PID readings were not detected during headspace screening of site soil. The samples analyzed for pH from 3160-28 borings: 1 (0-5) and 2 (0-5') were outside the acceptable range (6.25-9.0) for management of the soil at a CCDD facility or USFO. All other pH results were within range.

Laboratory results were detected outside criteria for soil collected from 3160-28 boring: 1 and 2. The samples contained one or more COCs outside the acceptable range for management to a CCDD facility or USFO and the soil is considered uncontaminated (Table 4-3).

Laboratory results were detected above criteria for soil collected from 3160-28-3. This sample contained one or more COCs outside the acceptable range for management to a CCDD facility or USFO and the soil is considered non-special waste (Table 4-3).

4.11.5 IDOT Property Acquisition at ISGS #3160-28 Vacant Property

IDOT plans include partial ROW acquisition at ISGS #3160-28 (Vacant Property). If off-site management of soils is required, the estimated volume and costs of impacted soil associated with property acquisition at this location is provided on Table 5-1.

4.12 ISGS #3160-32 (Route 37 Collection Center) – 7533 IL-37, Browning Township

4.12.1 Field Observations at ISGS #3160-32 Route 37 Collection Center

Amec Foster Wheeler completed seven soil borings (3160-32-1 through 3160-32-7) at ISGS #3160-32 (Route 37 Collection Center) in accordance with Table 3-1 and Figure 8 and 9. Field evidence of VOCs was not observed during PID headspace screening of site soils. Observations during field sampling showed no evidence of discoloration and odors that might suggest potential chemical contamination. One soil sample per boring was collected to a maximum construction depth of 3.5' for analysis. Groundwater was not encountered in ISGS 3160-32.

4.12.2 Analytical Results for ISGS #3160-32 Route 37 Collection Center

VOC and PCB analytes did not exceed any applicable screening criteria. SVOCs (naphthalene and phenanthrene) and several metals were detected in soil samples analyzed from borings 3160-32-1 through 3160-32-7 at concentrations that exceeded the applicable MAC and/or TACO criteria. Table 4-2 includes results for the analytes detected in soil. Metals were also analyzed via TCLP and SPLP analysis. Soil pH results ranged from 4.6-6.7 SU.

4.12.3 Nature and Extent of Contamination above Applicable Criteria at ISGS #3160-32 Route 37 Collection Center

Naphthalene and phenanthrene were detected at concentrations above certain site-specific MAC criteria in the soil sample 3160-32-4 (0-3.5').

Arsenic was detected at a concentration above certain total metals MAC criteria but below the most stringent TACO criteria in the sample 3160-32-2 (0-3.5').

Chromium was detected at a concentration above certain total metals MAC criteria but below the most stringent TACO criteria in the sample 3160-32-2 (0-3.5').

Iron was detected at a concentration above total metal MAC criteria in the samples submitted from borings 3160-32-2 through 3160-32-7, all of which were sampled at the 3.5 foot bgs interval.

Manganese was detected at a concentration above the total metals MAC criteria in the samples submitted from borings 3160-32-1 and 3160-32-2. Manganese was detected at a concentration above the TCLP and SPLP TACO criteria in the sample submitted from boring 3160-32-6.

Selenium was detected at a concentration above total metal MAC criteria in the samples submitted from borings 3160-32-2 and 3160-32-4.

4.12.4 IDOT Construction Activities at ISGS #3160-32 Route 37 Collection Center

Construction activities anticipated at this site include earth work (cut and fill) in accordance with Figure 8 and 9 and Table 2-1. Excavations associated with these improvements are estimated to extend to a maximum depth of 3.5 feet bgs. Assumed areas of impact and COCs are identified in Figures 8, 9, 24 and 25. Table 4-5 presents an estimated volume of impacted soil within proposed construction excavation areas at the site that will require proper handling and disposal if removed from the site. When provided, Amec Foster Wheeler used volumes provided by IDOT District 9 to estimate impacted soil quantities.

PID readings (0.0) were at or below background screening of site soil. The pH results from 3160-32 borings: 5, 6 and 7 soil sample were outside the acceptable range to be considered CCDD eligible. All other 3160-32 borings submitted for analysis were within the acceptable range (6.25-9.0) for management of the soil at a CCDD facility or USFO.

Laboratory results were detected above MAC criteria for soil sample results collected from borings 3160-32-1, 3160-32-2 and 3160-32-3 and the soil is eligible for management to a CCDD facility or USFO (Table 4-3). Laboratory results indicate the soil is unrestricted (Table 4-3). No special provision is required.

Laboratory results were detected above MAC criteria for the soil sample result collected from boring 3160-32-4 and the soil is not eligible for management to a CCDD facility or USFO. The soil is classified as non-special waste (Table 4-3).

Laboratory results were detected outside the acceptable pH criteria in the soil sample submitted from boring 3160-32-5 through 3160-32-7 and the soil is classified as uncontaminated but is not eligible for management to a CCDD or USFO facility (Table 4-3).

4.12.5 IDOT Property Acquisition at ISGS #3160-32 Route 37 Collection Center

IDOT plans include a permanent easement at ISGS #3160-32 (Route 37 Collection Center). If off-site management of soils is required, the estimated volume and costs of impacted soil associated with property acquisition at these locations is provided on Table 5-1.

4.13 ISGS #3160-36 (UPRR) – 6000 - 7000 blocks of IL-37, Benton Township

4.13.1 Field Observations at ISGS #3160-36 UPRR

Amec Foster Wheeler completed 11 borings (3160-36-1 through 3160-36-11) at ISGS #3160-36 (UPRR) in accordance with Table 3-1 and Figure 9 through 12. Evidence of VOCs was not observed during PID headspace screening of site soils. Observations during field sampling showed no evidence of discoloration and odors that might suggest potential chemical contamination. One soil sample per boring was collected from ISGS 3160-36 from the 0 to 3-foot interval. Groundwater was not encountered in ISGS 3160-36.

4.13.2 Analytical Results for ISGS #3160-36 UPRR

No VOC analytes were detected at a concentration exceeding any applicable criteria. Three SVOCs (benzo(a)pyrene, 2-methylnaphthalene, naphthalene) were detected in the sample collected from 3160-36-P:\3160150049 IDOT Statewide\Work Order 28 District 9\Draft PSI\PSI Benton FINAL-011818.docx

9 at a concentration exceeding the MAC objectives. Several metals were detected in the samples collected from 3160-36-1 through 3160-36-11 at a concentration exceeding MACs. The Table 4-2 includes results for the analytes detected in soil. Soil pH results ranged from 4.3-8.7 SU.

4.13.3 Nature and Extent of Contamination Above Applicable Criteria at ISGS #3160-36 UPRR

Benzo(a)pyrene, 2-methylnaphthalene and naphthalene were detected at concentrations above certain site-specific MAC criteria in the soil sample 3160-36-9 (0-3').

Cobalt was detected at a concentration above certain total metals MAC criteria but below the most stringent TACO criteria in the sample 3160-36-8 (0-3').

Iron was detected at a concentration above total metal MAC criteria in the 3160-36: 2 (0-3'), 4 (0-3'), 5 (0-3'), 6 (0-3'), 7 (0-3'), 8 (0-3'), 9 (0-3'), 10 (0-3') and 11 (0-3'), all of which were sampled at the 3.0' foot bgs interval.

Lead was detected at a concentration above total metal MAC criteria and SPLP TACO criteria in the sample submitted from boring 3160-36-9.

Manganese was detected at a concentration above the total metals MAC criteria in the 3160-36 samples: 1 (0-3'), 4 (0-3') and 8 (0-3'). Manganese was detected at a concentration above the TCLP (only) TACO criteria from borings 3160-36-2, 3160-36-3, 3160-36-5, 3160-36-6 and 3160-36-9. Manganese was detected at a concentration above the TCLP and SPLP TACO criteria from boring 3160-36-7.

4.13.4 IDOT Construction Activities at ISGS #3160-36 UPRR

Construction activities anticipated at this site include earth work (cut and fill) in accordance with Figure 9 through 12 and Table 2-1. Excavations associated with these improvements are estimated to extend to a maximum depth of 3.0 feet bgs. Assumed areas of impact and COCs are identified in Figures 9 through 12, 25 and 26. Table 4-4 presents an estimated volume of impacted soil within proposed construction excavation areas at the site that will require proper handling and disposal if removed from the site. When provided, Amec Foster Wheeler used volumes provided by IDOT District 9 to estimate impacted soil quantities.

PID readings were not detected during headspace screening of site soil. The pH was reported outside the acceptable range (6.25-9.0) for management of the soil at a CCDD facility at 3160-36 borings: 2 through 7. All other samples from 3160-36 are within the acceptable range for management of the soil at a CCDD or USFO facility.

Laboratory results were detected above MAC criteria for soil collected from 3160-36-1, 8, 10 and the soil is classified as uncontaminated and no special provision will be required.

Laboratory results were detected outside the acceptable pH range for management at a CCDD facility from 3160-36 borings: 2, 3, 4, 5, 6, 7 and 11 and the soil is classified as uncontaminated (Table 4-3).

Laboratory results were detected above MAC criteria for soil collected from boring 3160-36 9 and the soil results are within the acceptable range for management of the soil at a CCDD or USFO facility (Table 4-3).

P:\3160150049 IDOT Statewide\Work Order 28 District 9\Draft PSI\PSI Benton FINAL-011818.docx

4.13.5 IDOT Property Acquisition at ISGS #3160-36 UPRR

IDOT plans include a permanent easement at ISGS #3160-36 (UPRR). If off-site management of soils is required, the estimated volume and costs of impacted soil associated with property easement at these locations is provided on Table 5-1.

4.14 ISGS #3160-45 (Residence) - 7127 IL-37, Browning Township

4.14.1 Field Observations at ISGS #3160-45 Residence

Amec Foster Wheeler completed four borings (3160-45-1 through 3160-45-4) at ISGS #3160-45 (Residence) in accordance with Table 3-1 and Figures 11 and 12. Evidence of VOCs was not observed during PID headspace screening of site soils. Two soil samples per boring were collected from ISGS 3160-45. One sample was collected from the 0 to 5-foot interval and another sample was collected from the 5 to 6-foot interval. Groundwater was not encountered at the site.

4.14.2 Analytical Results for ISGS #3160-45 Residence

No sample analyzed from ISGS 3160-45 contained a VOC, SVOC or PCB at a concentration exceeding any MAC or TACO objective. Certain metals were detected in the samples collected at the site at concentrations exceeding one or more MACs and/or TACO objectives. Soil pH results ranged from 6.3-8.1 SU.

4.14.3 Nature and Extent of Contamination above Applicable Criteria at ISGS #3160-45 Residence

Cobalt was detected at a concentration above certain total metals MAC criteria in the sample 3160-45-3 (0-5') but below the most stringent TACO criteria.

Iron was detected at a concentration above total metal MAC criteria in the 3160-36 samples: 1 (0-5'), 1 (5-6'), 2 (0-5'), 2 (5-6'), 3 (0-5'), and 3 (5-6').

Manganese was detected at a concentration above the total metals MAC criteria in the 3160-45 samples: 1 (5-6'), 3 (0-5') and 3 (5-6'). No other metals are considered COCs at this time.

4.14.4 IDOT Construction Activities at ISGS #3160-45 Residence

Construction activities anticipated at this site include excavation (cut and fill) in accordance with Figure 11 and 12 and Table 2-1. Excavations are estimated to extend to a maximum depth of 6.0 feet bgs. Assumed areas of impact and COCs are identified in Figures 11, 12, 26 and 27. Table 4-5 presents an estimated volume of impacted soil within proposed construction excavation areas at the site that will require proper handling and disposal if removed from the site. When provided, Amec Foster Wheeler used volumes provided by IDOT District 9 to estimate impacted soil quantities.

PID readings were not detected during headspace screening of site soil above background concentrations. Soil samples analyzed for pH were detected within the acceptable range (6.25-9.0) for management of the soil at a CCDD facility or USFO at all 3160-45 borings.

Laboratory results indicate 3160-45-1, 3160-45-2, 3160-45-3 and 3160-45-4 are classified as unrestrictive (Table 4-3) and no special provision will be required.

4.14.5 IDOT Property Acquisition at ISGS #3160-45 Residence

IDOT plans include a partial ROW acquisition at 3160-45 (Residence). If off-site management of soils is required, the estimated volume and costs of impacted soil associated with property acquisition at this location is provided on Table 5-1.

4.15 ISGS #3160-50 (Vacant Land) - 6000 IL-37, Browning Township

4.15.1 Field Observations at ISGS #3160-50 Vacant Land

Amec Foster Wheeler completed three borings (3160-50-1 through 3) at ISGS #3160-50 Vacant Land in accordance with Table 3-1 and Figure 12 and 13. In accordance with the approved work plan, soil samples were collected from ISGS 3160-50 borings for laboratory analysis of VOCs, SVOCs, metals, TCLP Metals and SPLP metals. In total, three samples (one per boring) were analyzed from ISGS 3160-50 borings: 1, 2 and 3.

Field evidence of VOCs was not observed during PID headspace screening of site soils from all three borings. Observations during field sampling did not show evidence of discoloration or odors that might suggest potential chemical contamination. Soil samples were collected from the 0-2' interval for analysis. One soil sample per boring was collected from ISGS 3160-50. Groundwater was not encountered in ISGS 3160-50.

4.15.2 Analytical Results for ISGS #3160-50 Vacant Land

VOC and SVOC analytes were not detected above any applicable criteria in soil samples analyzed from borings 3160-50. Several metals were detected in the samples collected at the site. Table 4-2 included results for the analytes detected in soil. Metals were analyzed via TCLP and SPLP analysis. Soil pH results ranged from 6.2-8.0 SU.

4.15.3 Nature and Extent of Contamination above Applicable Criteria at ISGS #3160-50 Vacant

Chromium was detected at a concentration above the MAC criteria but below the TACO criteria from the sample 3160-50-3 (0-2').

Iron was detected at a concentration above the MAC criteria from the samples 3160-50-2 (0-2') and 3260-50-3 (0-2').

Manganese was detected at a concentration above TCLP and SPLP TACO criteria from the sample 3160-50-1 (0-2'). No other metal is considered a COC for 3160-50.

4.15.4 IDOT Construction Activities at ISGS #3160-50 Vacant Land

Construction activities anticipated at this site include excavation (cut and fill) in accordance with Figure 12 and 13 and Table 2-1. Excavations are estimated to extend to a maximum depth of 2 feet bgs. Assumed areas of impact and COCs are identified in Figures 12, 13 and 27. Table 4-5 presents an estimated volume of impacted soil within proposed construction excavation areas at the site that will require proper handling and disposal if removed from the site. When provided, Amec Foster Wheeler used volumes provided by IDOT District 9 to estimate impacted soil quantities.

PID readings were not detected during headspace screening of site soil in all three 3160-50 borings. Soil samples were analyzed for pH and results were detected outside the acceptable range (6.25-9.0) for management of the soil at a CCDD facility or USFO at 3160-50-1.

Laboratory results were detected outside acceptable TACO and pH criteria in the sample collected from 3160-50-1 and the soil is classified as uncontaminated but is not eligible for CCDD or USFO management (Table 4-3).

Laboratory results for 3160-50-2 and 3160-50-3 indicate that the soil is within background limits for all criteria and the soil is classified as unrestrictive no special provision will be required.

4.15.5 IDOT Property Acquisition at ISGS #3160-50 Vacant Land

IDOT plans include partial ROW acquisition at ISGS #3160-50 (Vacant Land). If off-site management of soils is required, the estimated volume and costs of impacted soil associated with property acquisition at this location is provided on Table 5-1.

4.16 ISGS #3160-51 (UPRR) - 6000 IL-37, Benton Township

4.16.1 Field Observations at ISGS #3160-51 UPRR

Amec Foster Wheeler completed three borings (3160-51-1 through 3160-51-3) at ISGS #3160-51 (UPRR) in accordance with Table 3-1 and Figure 13 and 14. Field evidence of VOCs was not observed during PID headspace screening of site soils. Observations during field sampling showed no evidence of discoloration and odors that might suggest potential chemical contamination. In general, one sample (each) was collected from the 0 to 1.5-foot interval. Groundwater was not encountered in ISGS 3160-51.

4.16.2 Analytical Results for ISGS #3160-51 UPRR

No VOCs were detected in soil samples analyzed from borings 3160-51 at concentrations which exceeded any applicable criteria (TACO or MAC). Two SVOCs (benzo(a)pyrene and naphthalene) and several metals were detected in the samples collected at the site above an applicable criteria. Metals were also analyzed via TCLP and SPLP analysis for soils. Soil pH results ranged from 7.8-8.9 SU. Table 4-2 included results for the analytes detected in soil.

4.16.3 Nature and Extent of Contamination Above Applicable Criteria at ISGS #3160-51 UPRR

Benzo(a)pyrene was detected at a concentration above some MAC criteria in the soil sample 3160-51-2 (0-1.5').

Naphthalene was detected at a concentration above certain site specific MAC criteria in the 3160-51 soil samples: 1 (0-1.5') and 2 (0-1.5').

Total iron was detected at a concentration above all MAC metal criteria in all samples submitted from 3160-51 borings.

Manganese was detected at a concentration above TCLP and SPLP TACO criteria (only) in the sample 3160-51-1 (0-1.5').

4.16.4 IDOT Construction Activities at ISGS #3160-51 UPRR

Construction activities anticipated at this site include excavation (cut and fill) in accordance with Figure 13 and 14 and Table 2-1.

Excavations associated with these improvements are estimated to extend to a maximum depth of 1.5 feet bgs. Assumed areas of impact and COCs are identified in Figures 13, 14 and 27. Table 4-5 presents an estimated volume of impacted soil within proposed construction excavation areas at the site that will require proper handling and disposal if removed from the site. When provided, Amec Foster Wheeler used volumes provided by IDOT District 9 to estimate impacted soil quantities.

PID readings were not detected during headspace screening of site soil. The samples analyzed for pH from 3160-51 borings were within the acceptable range (6.25-9.0) for management of the soil at a CCDD facility or USFO.

Laboratory results were detected above criteria for soil collected from 3160-51 borings: 1 and 2. These samples contained one or more COCs above the acceptable range but remain eligible for management to certain CCDD facilities and the soil is considered uncontaminated (Table 4-3).

Laboratory results indicate the soil from 3160-51-3 is classified as unrestrictive and no special provision will be required (Table 4-3).

4.16.5 IDOT Property Acquisition at ISGS #3160-51 UPRR

IDOT plans include a permanent easement at ISGS #3160-51 (UPRR). If off-site management of soils is required, the estimated volume and costs of impacted soil associated with easement acquisition at this location is provided on Table 5-1.

4.17 ISGS #3160-55 (Vacant Land) – 6000 block of IL-37, Browning Township

4.17.1 Field Observations at ISGS #3160-55 Vacant Land

Amec Foster Wheeler completed 2 soil borings (3160-55-1 and 3160-55-2) at ISGS #3160-55 (Vacant Land) in accordance with Table 3-1 and Figure 14. Field evidence of VOCs was not observed during PID headspace screening of site soils. Observations during field sampling showed no evidence of discoloration and odors that might suggest potential chemical contamination. One soil sample per boring was collected to a maximum construction depth of 3' for analysis. Groundwater was not encountered in ISGS 3160-55.

4.17.2 Analytical Results for ISGS #3160-55 Vacant Land

No VOC, SVOC, pesticide or herbicide analytes were detected in any sample submitted to the laboratory above an applicable MAC or TACO criteria. Several metals were detected in soil samples analyzed from borings 3160-55-1 and 3160-55-2; however only iron exceeded any criteria. Table 4-2 includes results for the analytes detected in soil. Metals were also analyzed via TCLP and SPLP analysis. Soil pH results ranged from 5.2-8.0 SU.

4.17.3 Nature and Extent of Contamination Above Applicable Criteria at ISGS #3160-55 Vacant Land

Iron was detected at a concentration above total metal MAC criteria in the samples submitted from both 3160-55 borings. No other analyte exceeded any criteria.

4.17.4 IDOT Construction Activities at ISGS #3160-55 Vacant Land

Construction activities anticipated at this site include earth work (cut and fill) in accordance with Figure 14 and Table 2-1. Excavations associated with these improvements are estimated to extend to a maximum depth of 3 feet bgs. Assumed areas of impact and COCs are identified in Figures 14 and 27. Table 4-5 presents an estimated volume of impacted soil within proposed construction excavation areas at the site that will require proper handling and disposal if removed from the site. When provided, Amec Foster Wheeler used volumes provided by IDOT District 9 to estimate impacted soil quantities.

PID readings (0.0) were at or below background screening of site soil. The pH result from 3160-55-1 (0-3') soil sample was outside the acceptable range to be considered CCDD eligible. Boring 3160-55-2 contained a pH result within the acceptable range (6.25-9.0) for management of the soil at a CCDD facility or USFO.

Laboratory results were detected above MAC and outside the pH criteria for soil sample results collected from boring 3160-55-1 and the soil is classified as uncontaminated and can be managed on-site s fill or off-site to a non-special waste facility (Table 4-3).

Laboratory results indicate boring 3160-55-2 should be classified as unrestrictive soil and does not require a special provision (Table 4-3).

4.17.5 IDOT Property Acquisition at ISGS #3160-55 Vacant Land

IDOT plans include partial ROW acquisition at ISGS #3160-55 (Vacant Land). If off-site management of soils is required, the estimated volume and costs of impacted soil associated with property acquisition at these locations is provided on Table 5-1.

4.18 ISGS #3160-56 (Agricultural Land) – 7000 block of IL-37, Browning Township

4.18.1 Field Observations at ISGS #3160-56 Agricultural Land

Amec Foster Wheeler completed two borings (3160-56-1 and 3160-56-2) at ISGS #3160-56 (Agricultural Land) in accordance with Table 3-1 and Figure 14. Evidence of VOCs were not observed during PID headspace screening of site soils. Observations during field sampling showed no evidence of discoloration and odors that might suggest potential chemical contamination. One soil sample per boring was collected from ISGS 3160-56 from the 0 to 1.5-foot interval. Groundwater was not encountered in ISGS 3160-56.

4.18.2 Analytical Results for ISGS #3160-56 Agricultural Land

No VOC, pesticide or herbicide analytes were detectable at a concentration exceeding any applicable criteria. One SVOC (naphthalene) was detected in the samples collected from 3160-56 at a concentration above the MAC criteria. Several metals analytes, including TCLP analysis, were above their respective criteria. The Table 4-2 includes results for the analytes detected in soil. Soil pH results ranged from 7.3-8.3 SU.

4.18.3 Nature and Extent of Contamination Above Applicable Criteria at ISGS #3160-56 Agricultural Land

Naphthalene was detected at a concentration above certain site-specific MAC criteria in the soil sample 3160-56-2 (0-1.5').

Chromium was detected at a concentration above certain site-specific MAC criteria in the soil sample 3160-56-2 (0-1.5').

Iron was detected at a concentration above certain site-specific MAC criteria in the soil sample 3160-56-2 (0-1.5').

Lead was detected at a concentration above certain site-specific MAC criteria in the soil samples collected from both 3160-56 borings.

Manganese was detected at a concentration above certain site-specific MAC criteria in the soil sample collected from both 3160-56 borings. Manganese was detected at a concentration above the TCLP but below the SPLP TACO criteria in the sample submitted from 3160-56-1 (0-1.5').

No other analytes are considered COCs for 3160-32.

4.18.4 IDOT Construction Activities at ISGS #3160-56 Agricultural Land

Construction activities anticipated at this site include earth work (cut and fill) in accordance with Figure 14 and Table 2-1. Excavations associated with these improvements are estimated to extend to a maximum depth of 1.5 feet bgs. Assumed areas of impact and COCs are identified in Figures 14 and 28. Table 4-4 presents an estimated volume of impacted soil within proposed construction excavation areas at the site that will require proper handling and disposal if removed from the site. When provided, Amec Foster Wheeler used volumes provided by IDOT District 9 to estimate impacted soil quantities.

PID readings were not detected during headspace screening of site soil. The pH was reported within the acceptable range (6.25-9.0) for management of the soil at a CCDD facility at all 3160-56 borings.

Laboratory results for soil collected from 3160-56-1 indicate the soils is to be considered unrestricted and no special provision will be required (Table 4-3).

Laboratory results were detected above MAC but below TACO criteria for soil collected from 3160-56-2 and the sample results are acceptable for management to some CCDD facilities (Table 4-3). The soil is classified as uncontaminated (Table 4-3).

4.18.5 IDOT Property Acquisition at ISGS #3160-56 Agricultural Land

IDOT plans include a partial ROW acquisition at ISGS #3160-56 (Agricultural Land). If off-site management of soils is required, the estimated volume and costs of impacted soil associated with property acquisition at these locations is provided on Table 5-1.

4.19 ISGS #3160-62 (UPRR) – 7837 IL-37, 5000 block of IL-37, Frankfort Township and 6000 block of IL-37, Benton Township

4.19.1 Field Observations at ISGS #3160-62 UPRR

Amec Foster Wheeler completed 10 borings (3160-62-1 through 3160-62-10) at ISGS #3160-62 (UPRR) in accordance with Table 3-1 and Figures 16-20. Evidence of VOCs was not observed during PID headspace screening of site soils. One soil sample per boring was collected from ISGS 3160-62 from the 0 to 1.5-foot interval. Groundwater was not encountered at the site.

4.19.2 Analytical Results for ISGS #3160-62 UPRR

No sample analyzed from ISGS 3160-62 contained a VOC or SVOC at a concentration exceeding any MAC or TACO objective. Total metals and one TCLP metal (manganese) were detected in the samples collected at the site at concentrations exceeding one or more MACs and/or TACO objectives. Soil pH result for the samples submitted from 3160-62 borings ranged from 5.2-8.6 SU.

4.19.3 Nature and Extent of Contamination Above Applicable Criteria at ISGS #3160-62 UPRR The total iron concentration from sample 3160-62-8 (0-1.5') exceeded all MAC objectives.

The total lead concentration from sample 3160-62-2 (0-1.25') exceeded the MAC objectives.

The manganese concentration from 3160-62 samples: 5 (0-1.5'), 6 (0-1.5'), 8 (0-1.5') and 10 (0-1.5') exceeded the MAC criterial. Manganese was detected at a concentration in above the TCLP TACO Groundwater Protection objectives in the samples submitted for analysis from 3160-62 borings: 2 (0-1.5') and 8 (0-1.5').

The total selenium concentration from sample 3160-62-8 (0-1.5') exceeded the MAC objectives.

4.19.4 IDOT Construction Activities at ISGS #3160-62 UPRR

Construction activities anticipated at this site include excavation (cut and fill) in accordance with Figure 16-20 and Table 2-1. Excavations are estimated to extend to a maximum depth of 1.5 feet bgs. Assumed areas of impact and COCs are identified in Figures 16-20, 28 and 29. Table 4-5 presents an estimated volume of impacted soil within proposed construction excavation areas at the site that will require proper handling and disposal if removed from the site. When provided, Amec Foster Wheeler used volumes provided by IDOT District 9 to estimate impacted soil quantities.

PID readings were not detected during headspace screening of site soil above background concentrations. Soil samples analyzed for pH were detected outside the acceptable range (6.25-9.0) for management of the soil at a CCDD facility or USFO at 3160-62 borings: 3, 6, 7, 8, 9 and 10.

Analytical results submitted to the laboratory from soil 3160-62 borings: 2, 4 and 5 indicate that the soil is within applicable criteria and is classified as unrestrictive soil. The soil at 3160-62-2, 3160-62-4, and 3160-62-5 does not require a special provision (Table 4-3).

One or more laboratory results were detected above criteria for soil collected from boring 3160-62-1 at concentrations outside the acceptable range for unrestrictive management and the soil is classified as uncontaminated. The soil is eligible for management to a CCDD facility or USFO (Table 4-3).

One or more laboratory results were detected above criteria for soil collected from 3160-62 borings: 3, 6, 7, 8, 9 and 10 at concentrations outside the acceptable range for management to a CCDD facility or USFO and the soil is considered uncontaminated (Table 4-3).

4.19.5 IDOT Property Acquisition at ISGS #3160-62 UPRR

IDOT plans include a partial ROW acquisition at 3160-62 (UPRR). If off-site management of soils is required, the estimated volume and costs of impacted soil associated with property acquisition at this location is provided on Table 5-1.

4.20 ISGS #3160-64 (Residence) - 6229 IL-37, Benton Township

4.20.1 Field Observations at ISGS #3160-64 Residence

Amec Foster Wheeler completed three borings (3160-64-1 through 3) at ISGS #3160-64 Residence in accordance with Table 3-1 and Figure 18. In accordance with the approved work plan, soil samples were collected from ISGS 3160-64 borings for laboratory analysis of VOCs, SVOCs, metals, TCLP Metals and SPLP metals.

Field evidence of VOCs was not observed during PID headspace screening of site soils from any boring. Observations during field sampling did not show any evidence of discoloration or odors that might suggest potential chemical contamination. Soil samples were collected from the 0-1.5' interval for analysis. One soil sample per boring was collected from ISGS 3160-64. Groundwater was not encountered in ISGS 3160-64.

4.20.2 Analytical Results for ISGS #3160-64 Residence

No VOC analytes were detected above applicable criteria in soil samples analyzed from borings 3160-64. Several SVOCs and one metal were detected in the samples collected at the site at a concentration exceeding a criterion. Table 4-2 included results for the analytes detected in soil. Metals were also analyzed via TCLP and SPLP analysis. Soil pH results ranged from 7.1-8.2 SU.

4.20.3 Nature and Extent of Contamination Above Applicable Criteria at ISGS #3160-64 Residence

Benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenz(a,h)anthracene, and naphthalene were detected at concentrations above some of their respective MAC criteria in sample 3160-64-1 (0-1.5'). No other SVOC exceeded any applicable criteria.

Lead was detected at a concentration above total metals MAC and TCLP TACO criteria from the 3160-64 samples: 1 (0-1.5') and 3 (0-1.5'). No other metal is considered a COC for 3160-64.

4.20.4 IDOT Construction Activities at ISGS #3160-64 Residence

Construction activities anticipated at this site include excavation (cut and fill) in accordance with Figure 18 and Table 2-1. Excavations are estimated to extend to a maximum depth of 1.5 feet bgs. Assumed areas of impact and COCs are identified in Figures 18 and 29. Table 4-5 presents an estimated volume of impacted soil within proposed construction excavation areas at the site that will require proper handling and disposal if removed from the site. When provided, Amec Foster Wheeler used volumes provided by IDOT District 9 to estimate impacted soil quantities.

PID readings were detected during headspace screening of site soil in the 3160-64 borings. Soil samples were analyzed for pH and results were detected within the acceptable range (6.25-9.0) for management of the soil at a CCDD facility or USFO at all 3160-64 borings.

Laboratory results were detected outside acceptable MAC, and TACO criteria in the sample submitted from 3160-64-1 (0-1.5') and the soil is classified as CCDD eligible with limited availability (Table 4-3).

Laboratory results from the sample 3160-64-2 and 3160-64-3 indicate the soil is unrestrictive and no special provision will be required.

4.20.5 IDOT Property Acquisition at ISGS #3160-64 Residence

IDOT plans include partial ROW acquisition at ISGS #3160-64 (Residence). If off-site management of soils is required, the estimated volume and costs of impacted soil associated with property acquisition at this location is provided on Table 5-1.

P:\3160150049 IDOT Statewide\Work Order 28 District 9\Draft PSI\PSI Benton FINAL-011818.docx

5.0 Conclusions and Recommendations

Amec Foster Wheeler's investigation has identified the presence of COCs in project area soils. The following sections summarize investigation findings and provides recommendations for classification and management of impacted soil and groundwater based on comparison with MAC and TACO Tier 1 ROs.

Amec Foster Wheeler's field investigation was designed to provide an initial characterization of site conditions at pre-designated boring locations. The investigation, limited in terms of analytical parameters and the number of samples collected, was based on the known history of the properties. Consequently, the findings and conclusions of this investigation are subject to revision should more site data become available.

Soil removed from outside Amec Foster Wheeler's investigation area that is observed to exhibit discoloration or odors indicative of contamination should be sampled to determine the proper disposal classification.

It should be noted, total iron (a naturally occurring and ubiquitous metal in soil) was detected in nearly every PESA location at a concentration in excess of the MAC criteria. Soils containing total iron (only) in excess of MAC criteria are considered unrestricted in the absence of any other contaminant of concern. In addition, soil pH ranges have been noted by the NRCS for the Bonnie, Cisne, and Wynoose silt loams ranging from 3.5 to 7.3 S.U. The pH results for the samples analyzed during this investigation appear consistent with previous reporting of the NRCS. Although numerous samples contain a pH value outside the range for acceptance at a CCDD facility (6.25-9.0 S.U.) the pH results appear to be natural.

5.1 Estimated Soil Management Volumes and Costs

5.1.1 ISGS #3160-5 (UPRR) - Soil Management

Arsenic, iron, lead and pH were identified as COCs at ISGS #3160-5. The pH levels were between 6.1 and 8.6 SU and no VOCs were detectable during the headspace readings.

Soils associated with borings 3160-5-1 and 3160-5-3 may be utilized on-site as fill within the construction limits or may be managed by a CCDD facility based on the laboratory analytical results. Soil associated with these borings does not require a special provision.

Soil associated with boring 3160-5-2 is considered uncontaminated but is not eligible for CCDD management based on the laboratory analytical results. If it cannot be utilized on-site, then it shall be disposed of off-site. Analytical data indicates disposal off-site to a non-special waste disposal facility is required due to a laboratory detection outside acceptable limits for CCDD facilities.

5.1.1.1 ISGS #3160-5 (UPRR) - Soil Volume and Cost: Construction Area

Costs estimated for the off-site disposal of impacted soils are shown in Table 5-1. Based on the provided construction excavation quantities provided by the IDOT district and analytical results, 314 cubic yards of soil at the site may require off-site disposal to a special waste disposal facility (Table 5-1). Estimated cost for off-site disposal (non-special waste and CCDD) of impacted soils from UPRR area 3160-5 is \$66,811.

5.1.2 ISGS #3160-8 (J.W. Reynolds Memorial) - Soil Management

Manganese was identified as COCs at ISGS #3160-8 (J.W. Reynolds Memorial). The pH levels were within the acceptable range and no VOCs were detectable during the headspace readings.

Soils associated with borings 3160-8-1 and 2 may be utilized on-site as fill within the construction limits or may be managed by a CCDD facility based on the laboratory analytical results. Soil associated with these borings does not require a special provision.

5.1.2.1 ISGS #3160-8 (J.W. Reynolds Memorial) - Soil Volume and Cost: Construction Area

Costs estimated for the off-site disposal of impacted soils are shown in Table 5-1. Based on the provided construction excavation quantities provided by the IDOT district and analytical results, 0 cubic yards of soil at the site may require off-site disposal to a special waste disposal facility (Table 5-1). Estimated cost for off-site disposal (non-special waste and CCDD) of impacted soils from the J.W. Reynolds Memorial area 3160-8 is \$6,319.

5.1.3 ISGS #3160-9 (C.N.C. Guns & Ammo) - Soil Management

Iron, manganese and pH were identified as COCs at ISGS #3160-9 (C.N.C. Guns & Ammo). The pH levels exceeded acceptable limits at boring: 3160-9-1 and 3160-9-2. VOCs were not detectable during the headspace readings.

Soil in the vicinity of borings 3160-9-1 and 3160-9-2 shall be managed and disposed of offsite as uncontaminated waste at a non-special waste facility. A "non-special waste certification" can be applied to soil anticipated to be excavated adjacent to and within this property during construction activities. Analytical data indicates disposal off-site to a non-special waste disposal facility is required due to pH readings outside acceptable limits for CCDD facilities.

Soil near boring 3160-9-3 is unrestricted and requires no special provision.

5.1.3.1 ISGS #3160-9 (C.N.C. Guns & Ammo) - Soil Volume and Cost: Construction Area

Costs estimated for the off-site disposal of impacted soils are is shown in Table 5-1. Based on the provided construction excavation quantities provided by the IDOT district and analytical results, 430 cubic yards of soil at the site may require off-site disposal to a special waste disposal facility (Table 5-1). Estimated cost for off-site disposal (non-special waste and CCDD) of impacted soils from the C.N.C. Guns & Ammo area 3160-9 is \$45,795.

5.1.4 ISGS #3160-10 (Benton Grade School District #47) - Soil Management

Benzene, naphthalene, magnesium and iron were identified as COCs at ISGS #3160-10 (Benton Grade School District #47). The pH levels were below the acceptable range from samples collected from borings: 10-1 and 10-2. VOCs were detected during the headspace readings in all three 3160-10 borings.

Soils associated with borings 3160-10-1 through 3 shall be disposed of off-site as non-special waste providing that a "non-special waste certification" is submitted by the generator subject to the conditions of 415 ILCS 5/22.48 and 415 ILCS 5/3.475. The property history and available analytical data indicate a "non-special waste certification" can be applied to soil anticipated to be excavated adjacent to and within this property during construction activities. Analytical data indicates disposal off-site to a non-special waste disposal facility is required due to laboratory detections, PID field screening and pH readings outside acceptable limits for CCDD facilities.

5.1.4.1 ISGS #3160-10 (Benton Grade School District #47) – Soil Volume and Cost: Construction Area

Costs estimated for the off-site disposal of impacted soils are is shown in Table 5-1. Based on the provided construction excavation quantities provided by the IDOT district and analytical results, 800 cubic yards of soil at the site may require off-site disposal to a special waste disposal facility (Table 5-1). Estimated cost for off-site disposal (non-special waste and CCDD) of impacted soils from Benton Grade School District #47 area 3160-10 is \$56,800.

5.1.5 ISGS #3160-16 (Residential Property) – Soil Management

2-methylnaphthalene, naphthalene, iron, manganese and pH were identified as COCs at ISGS #3160-16 (Residential Property). The pH levels were outside the acceptable range but no VOCs were detectable during the headspace readings.

Boring 3160-16-1 may either be managed on-site or may be managed by a CCDD facility based on the laboratory analytical results and requires no special provision.

Soils associated with boring 3160-16-2, 3 and 5 may be utilized on-site as fill within the construction limits. If soil near borings 3160-16-2, 3160-16-3, and 3160-16-5 cannot be utilized on-site, then it shall be disposed of off-site to a non-special waste facility providing that a "non-special waste certification" is submitted by the generator subject to the conditions of 415 ILCS 5/22.48 and 415 ILCS 5/3.475. The property history and available analytical data indicate a "non-special waste certification" can be applied to soil anticipated to be excavated adjacent to and within this property during construction activities. Analytical data indicates disposal off-site to a non-special waste disposal facility is required due to laboratory detections outside acceptable limits for CCDD facilities.

Boring 3160-16-4 may either be managed on-site or may be managed by a CCDD facility based on the laboratory analytical results.

5.1.5.1 ISGS #3160-16 (Residential Property) – Soil Volume and Cost: Construction Area

Costs estimated for the off-site disposal of impacted soils are shown in Table 5-1. Based on the provided construction excavation quantities provided by the IDOT district and analytical results, 1,972 cubic yards of soil at the site may require off-site disposal to a special waste disposal facility (Table 5-1). Estimated cost for off-site disposal (non-special waste and CCDD) of impacted soils from the Residential area 3160-16 is \$175,015.

5.1.6 ISGS #3160-21 (UPRR) - Soil Management

Naphthalene, 2-methylnaphthalene, chromium, iron, and manganese were identified as COCs at ISGS #3160-21. The pH levels were between 5.5 and 8.3 SU and no VOCs were detectable during the headspace readings.

Soils associated with boring 3160-21-6 may be utilized on-site as fill within the construction limits. If it cannot be utilized on-site, then it shall be disposed of off-site to a non-special waste facility providing that a "non-special waste certification" is submitted by the generator subject to the conditions of 415 ILCS 5/22.48 and 415 ILCS 5/3.475. The property history and available analytical data indicate a "non-special waste certification" can be applied to soil anticipated to be excavated adjacent to and within this property during construction activities. Analytical data indicates disposal off-site to a non-special waste disposal facility is required due to a laboratory detection outside acceptable limits for CCDD facilities.

Borings 3160-21-2 and 3160-21-10 may either be managed on-site or may be managed by a CCDD facility based on the laboratory analytical results.

Soil in association with 3160-21 borings: 1, 3, 4, 5, 7, 8 and 9 considered unrestrictive and require no special provision.

5.1.6.1 ISGS #3160-21 (UPRR) - Soil Volume and Cost: Construction Area

Costs estimated for the off-site disposal of impacted soils are is shown in Table 5-1. Based on the provided construction excavation quantities provided by the IDOT district and analytical results, 519 cubic yards of soil at the site may require off-site disposal to a special waste disposal facility (Table 5-1). Estimated cost for off-site disposal (non-special waste and CCDD) of impacted soils from UPRR area 3160-21 is \$184,174.

5.1.7 ISGS #3160-23 (Vacant Land) - Soil Management

Naphthalene and 2-methylnaphthalene were identified as COCs at ISGS #3160-23 (Vacant Land). One pH level was below the acceptable range and no VOCs were detectable during the headspace readings.

Soil associated with boring 3160-23-1 may be utilized on-site as fill within the construction limits. If it cannot be utilized on-site, then it shall be disposed of off-site to a non-special waste facility providing that a "non-special waste certification" is submitted by the generator subject to the conditions of 415 ILCS 5/22.48 and 415 ILCS 5/3.475. The property history and available analytical data indicate a "non-special waste certification" can be applied to soil anticipated to be excavated adjacent to and within this property during construction activities. Analytical data indicates disposal off-site to a non-special waste disposal facility is required due to laboratory detections.

Soil associated with boring 3160-23-2 may either be managed on-site or may be managed by a CCDD facility based on the laboratory analytical results.

5.1.7.1 ISGS #3160-23 (Vacant Land) - Soil Volume and Cost: Construction Area

Costs estimated for the off-site disposal of impacted soils are is shown in Table 5-1. Based on the provided construction excavation quantities provided by the IDOT district and analytical results, 80 cubic yards of soil at the site may require off-site disposal to a special waste disposal facility (Table 5-1). Estimated cost for off-site disposal (non-special waste and CCDD) of impacted soils from the Vacant Land area 3160-23 is \$5.680.

5.1.8 ISGS #3160-25 (Commercial Building and Residence) - Soil Management

Iron, manganese and pH were identified as COCs at ISGS #3160-25 (Commercial Building and Residence). The pH levels were below the acceptable range at both 3160-25 borings. VOCs were not detectable during the headspace readings.

Soil associated with both 3160-25 borings may be utilized on-site as fill within the construction limits. If it cannot be utilized on-site, then it shall be disposed of off-site to a non-special waste facility providing that a "non-special waste certification" is submitted by the generator subject to the conditions of 415 ILCS 5/22.48 and 415 ILCS 5/3.475. The property history and available analytical data indicate a "non-special waste certification" can be applied to soil anticipated to be excavated adjacent to and within this property during construction activities. Analytical data indicates that although the soil is classified as uncontaminated, disposal off-site to a non-special waste disposal facility is required due to laboratory detections outside acceptable limits for CCDD facilities.

5.1.8.2 ISGS #3160-25 (Commercial Building and Residence) – Soil Volume and Cost: Construction Area

Costs estimated for the off-site disposal of impacted soils are is shown in Table 5-1. Based on the provided construction excavation quantities provided by the IDOT district and analytical results, 473 cubic yards of soil at the site may require off-site disposal to a special waste disposal facility (Table 5-1). Estimated cost for off-site disposal (non-special waste and CCDD) of impacted soils from the Commercial Building and Residence area 3160-25 is \$33,583.

5.1.9 ISGS #3160-26 (Residence) – Soil Management

Iron, manganese and pH were identified as COCs at ISGS #3160-26 (Residence). The pH levels were outside the acceptable range from samples collected from both 3160-26 borings; however, no VOCs were detectable during the headspace readings.

Soil associated with both 3160-26 borings may be utilized on-site as fill within the construction limits. If it cannot be utilized on-site, then it shall be disposed of off-site to a non-special waste facility providing

that a "non-special waste certification" is submitted by the generator subject to the conditions of 415 ILCS 5/22.48 and 415 ILCS 5/3.475. The property history and available analytical data indicate a "non-special waste certification" can be applied to soil anticipated to be excavated adjacent to and within this property during construction activities. Analytical data indicates that although the soil is classified as uncontaminated, disposal off-site to a non-special waste disposal facility is required due to laboratory detections outside acceptable limits for CCDD facilities.

5.1.9.1 ISGS #3160-26 (Residence) - Soil Volume and Cost: Construction Area

Costs estimated for the off-site disposal of impacted soils are is shown in Table 5-1. Based on the provided construction excavation quantities provided by the IDOT district and analytical results, 138 cubic yards of soil at the site may require off-site disposal to a special waste disposal facility (Table 5-1). Estimated cost for off-site disposal (non-special waste and CCDD) of impacted soils from Residence area 3160-26 is \$9,800.

5.1.10 ISGS #3160-28 (Residence) - Soil Management

Iron, manganese, naphthalene and selenium were identified as COCs at ISGS #3160-28 (Residence). The pH levels were all outside the acceptable range and no VOCs were detectable during the headspace readings.

Soils associated with all three 3160-28 borings may be utilized on-site as fill within the construction limits. If it cannot be utilized on-site, then it shall be disposed of off-site to a non-special waste facility providing that a "non-special waste certification" is submitted by the generator subject to the conditions of 415 ILCS 5/22.48 and 415 ILCS 5/3.475. The property history and available analytical data indicate although the soil is classified as uncontaminated, a "non-special waste certification" can be applied to soil anticipated to be excavated adjacent to and within this property during construction activities. Analytical data indicates disposal off-site to a non-special waste disposal facility is required due to laboratory detections (pH) outside acceptable limits for CCDD facilities.

5.1.10.1 ISGS #3160-28 (Residence) - Soil Volume and Cost: Construction Area

Costs estimated for the off-site disposal of impacted soils are shown in Table 5-1. Based on the provided construction excavation quantities provided by the IDOT district and analytical results, 479 cubic yards of soil at the site may require off-site disposal to a special waste disposal facility (Table 5-1). Estimated cost for off-site disposal (non-special waste and CCDD) of impacted soils from the Residential area 3160-28 is \$34,010.

5.1.11 ISGS #3160-32 (Route 37 Collection Center) – Soil Management

Naphthalene, 2-methylnaphthalene, benzo(a)pyrene, iron, manganese, cobalt and pH were identified as COCs at ISGS #3160-32. The pH levels were between 4.6 and 6.7 SU and no VOCs were detectable during the headspace readings.

Soils associated with all 3160-32 borings may be utilized on-site as fill within the construction limits. If borings 3160-32-5 through 3160-31-7 cannot be utilized on-site, then the soil shall be disposed of off-site to a non-special waste facility providing that a "non-special waste certification" is submitted by the generator subject to the conditions of 415 ILCS 5/22.48 and 415 ILCS 5/3.475. The property history and available analytical data indicate a "non-special waste certification" can be applied to soil anticipated to be excavated adjacent to and within this property during construction activities. Analytical data indicates disposal off-site to a non-special waste disposal facility is required due to a laboratory detection outside acceptable limits for CCDD facilities.

Boring 3160-32-4 may either be managed on-site or may be managed by a CCDD facility based on the laboratory analytical results.

Borings 3160-32-1 through 3160-32-3 may either be managed on-site or may be managed by a CCDD facility based on the laboratory analytical results. Soil is also classified as unrestrictive and requires no special provision.

5.1.11.1 ISGS #3160-32 (Route 37 Collection Center) – Soil Volume and Cost: Construction Area

Costs estimated for the off-site disposal of impacted soils are is shown in Table 5-1. Based on the provided construction excavation quantities provided by the IDOT district and analytical results, 514 cubic yards of soil at the site may require off-site disposal to a special waste disposal facility (Table 5-1). Estimated cost for off-site disposal (non-special waste and CCDD) of impacted soils from Route 37 Collection Center area 3160-32 is \$63,900.

5.1.12 ISGS #3160-36 (UPRR) - Soil Management

Benzo(a)pyrene, 2-methylnaphthalene, naphthalene, cobalt, iron, lead and manganese were identified as COCs at ISGS #3160-36 (UPRR). The seven of the 11 pH levels were outside the acceptable range for management at a CCDD facility and no VOCs were detectable during the headspace readings.

Soils associated with borings 3160-36-4 and 9 may be utilized on-site as fill within the construction limits. If it cannot be utilized on-site, then it shall be disposed of off-site as non-special waste providing that a "non-special waste certification" is submitted by the generator subject to the conditions of 415 ILCS 5/22.48 and 415 ILCS 5/3.475. The property history and available analytical data indicate a "non-special waste certification" can be applied to soil anticipated to be excavated adjacent to and within this property during construction activities. Analytical data indicates disposal off-site to a non-special waste disposal facility is required due to laboratory detections.

Soils associated with 3160-36 borings: 2, 3, 5, 6, 7, and 11 can be managed on site. If soil is not able to be managed on-site, soil shall be managed and disposed of offsite as an uncontaminated substance at a non-special waste facility due to pH exceeding the CCDD soil criteria. Analytical data indicates disposal offsite to a non-special waste disposal facility is required due to laboratory detections.

Soil in the vicinity of 3160-36 borings: 1, 8 and 10 is classified as unrestrictive and does not require any special provision.

5.1.12.1 ISGS #3160-36 (UPRR) - Soil Volume and Cost: Construction Area

Costs estimated for the off-site disposal of impacted soils are is shown in Table 5-1. Based on the provided construction excavation quantities provided by the IDOT district and analytical results, 2,324 cubic yards of soil at the site may require off-site disposal to a special waste disposal facility (Table 5-1). Estimated cost for off-site disposal (non-special waste and CCDD) of impacted soils from the UPRR area 3160-36 is \$226,880.

5.1.13 ISGS #3160-45 (Residence) - Soil Management

Cobalt, iron and manganese were identified as COCs at ISGS #3160-45 (Residence). The pH levels were within acceptable limits for all samples submitted for analysis at 3160-45. VOCs were not detectable during the headspace readings in any boring.

All borings (3160-45-1 through 3160-45-4) may either be managed on-site or may be managed by a CCDD facility based on the laboratory analytical results. No special provision will be required.

5.1.13.1 ISGS #3160-45 (Residence) - Soil Volume and Cost: Construction Area

Costs estimated for the off-site disposal of impacted soils are shown in Table 5-1. Based on the construction excavation quantities provided by the IDOT district and analytical results, 0 cubic yards of soil at the site

may require off-site disposal to a special waste disposal facility (Table 5-1). Estimated cost for off-site disposal (non-special waste and CCDD) of impacted soils from the Residence area 3160-45 is \$61,700.

5.1.14 ISGS #3160-50 (Vacant Land) - Soil Management

Chromium, manganese and iron were identified as COCs at ISGS #3160-50 (Vacant Land). The pH level for the sample from 3060-50-1 was outside the acceptable range for management at a CCDD facility. No VOCs were detectable during the headspace readings.

Based on the soil analytical data, all three borings from the 3160-50 site may be managed on-site to be utilized as fill within the construction limits. If the soil cannot be utilized on-site then soil near borings 3160-50-2 and 3160-50-3 may be managed by a CCDD facility based on the laboratory analytical results. Soil is classified as unrestrictive and requires no special provision.

Soils associated with boring 3160-50-1 may be utilized on-site as fill within the construction limits. If it cannot be utilized on-site, then it shall be classified as uncontaminated soil and be disposed of off-site to a non-special waste facility providing that a "non-special waste certification" is submitted by the generator subject to the conditions of 415 ILCS 5/22.48 and 415 ILCS 5/3.475. The property history and available analytical data indicate a "non-special waste certification" can be applied to soil anticipated to be excavated adjacent to and within this property during construction activities. Analytical data indicates disposal off-site to a non-special waste disposal facility is required due to a laboratory detections and pH readings outside acceptable limits for CCDD facilities.

5.1.14.1 ISGS #3160-50 (Vacant Land) - Soil Volume and Cost: Construction Area

Costs estimated for the off-site disposal of impacted soils are shown in Table 5-1. Based on the provided construction excavation quantities provided by the IDOT district and analytical results, 18 cubic yards of soil at the site may require off-site disposal to a special waste disposal facility (Table 5-1). Estimated cost for off-site disposal (non-special waste and CCDD) of impacted soils from Vacant Land area 3160-50 is \$3,900.

5.1.15 ISGS #3160- 51 (UPRR) - Soil Management

Benzo(a)pyrene, naphthalene, iron and lead were identified as COCs at ISGS #3160-51 (UPRR). The pH levels were acceptable and no VOCs were detectable during the headspace readings.

Soils associated with boring 3160-51-1 and 2 may be utilized on-site as fill within the construction limits. If it cannot be utilized on-site, then it shall be managed by a CCDD facility based on the laboratory analytical results.

Soil associated with the sample collected from boring 3160-51-3 did not contain any laboratory analyte above an applicable criterion and the soil is classified as unrestrictive. No special provision is required.

5.1.15.1 ISGS #3160-51 (UPRR) - Soil Volume and Cost: Construction Area

Costs estimated for the off-site disposal of impacted soils are shown in Table 5-1. Based on the provided construction excavation quantities provided by the IDOT district and analytical results, 0 cubic yards of soil at the site may require off-site disposal to a special waste disposal facility (Table 5-1). Estimated cost for off-site disposal (non-special waste and CCDD) of impacted soils from the Residential area 3160-51 is \$97,057.

P:\3160150049 IDOT Statewide\Work Order 28 District 9\Draft PSI\PSI Benton FINAL-011818.docx

5.1.16 ISGS #3160-55 (Agricultural Land) - Soil Management

Iron and pH were identified as COCs at ISGS #3160-55. The pH level of 3160-55-1 was 5.2, which is outside the acceptable range for management to a CCDD facility. The pH level of 3160-55-2 was 8.0, which is within the acceptable range. No VOCs were detectable during the headspace readings.

Soils associated with boring 3160-55-1 may be utilized on-site as fill within the construction limits. If it cannot be utilized on-site, then it shall be classified as uncontaminated soil and disposed of off-site to a non-special waste facility providing that a "non-special waste certification" is submitted by the generator subject to the conditions of 415 ILCS 5/22.48 and 415 ILCS 5/3.475. The property history and available analytical data indicate a "non-special waste certification" can be applied to soil anticipated to be excavated adjacent to and within this property during construction activities. Analytical data indicates disposal off-site to a non-special waste disposal facility is required due to a laboratory detection outside acceptable limits for CCDD facilities.

The other 3160-55 boring (3160-55-2) is classified as unrestrictive and does not require any special provision based on the laboratory analytical results.

5.1.16.1 ISGS #3160-55 (Agricultural Land) – Soil Volume and Cost: Construction Area

Costs estimated for the off-site disposal of impacted soils are is shown in Table 5-1. Based on the provided construction excavation quantities provided by the IDOT district and analytical results, 197 cubic yards of soil at the site may require off-site disposal to a special waste disposal facility (Table 5-1). Estimated cost for off-site disposal (non-special waste and CCDD) of impacted soils from Agricultural Land area 3160-55 is \$27,974.

5.1.17 ISGS #3160-56 (Agricultural Land) - Soil Management

Naphthalene, chromium, iron, lead and manganese were identified as COCs at ISGS #3160-56 (Agricultural Land). The pH levels were within the acceptable range for management to a CCDD facility and no VOCs were detectable during the headspace readings.

Boring 3160-56-1 may either be managed on-site or may be managed by a CCDD facility based on the laboratory analytical results. No special provision is required.

Boring 3160-56-2 may either be managed on-site or may be managed by a CCDD facility based on the laboratory analytical results.

5.1.17.1 ISGS #3160-56 (Agricultural Land) - Soil Volume and Cost: Construction Area

Costs estimated for the off-site disposal of impacted soils are is shown in Table 5-1. Based on the provided construction excavation quantities provided by the IDOT district and analytical results, 0 cubic yards of soil at the site may require off-site disposal to a special waste disposal facility (Table 5-1). Estimated cost for off-site disposal (non-special waste and CCDD) of impacted soils from the Agricultural Land area 3160-56 is \$13,064.

5.1.18 ISGS #3160-62 (UPRR) – Soil Management

Naphthalene, iron, lead, manganese, selenium and pH were identified as COCs at ISGS #3160-62 (UPRR). The pH levels were outside the acceptable limits for management at a CCDD facility at 3160-62 borings: 3, 6, 7, 8, 9 and 10. VOCs were not detectable during the headspace readings in any boring.

Soils associated with 3160-62 borings: 3, 6, 7, 8, 9 and 10 may be utilized on-site as fill within the construction limits. If it cannot be utilized on-site, then it shall be classified as uncontaminated soil and disposed of off-site to a non-special waste facility providing that a "non-special waste certification" is submitted by the generator subject to the conditions of 415 ILCS 5/22.48 and 415 ILCS 5/3.475. The P:\3160150049 IDOT Statewide\Work Order 28 District 9\Draft PSI\PSI Benton FINAL-011818.docx

property history and available analytical data indicate a "non-special waste certification" can be applied to soil anticipated to be excavated adjacent to and within this property during construction activities. Analytical data indicates disposal off-site to a non-special waste disposal facility is required due to a laboratory detection outside acceptable limits for CCDD facilities.

Soil associated with boring 3160-62-1 may either be managed on-site as fill material within the construction limits or may be managed by a CCDD facility based on the laboratory analytical results.

Soil associated with borings 3160-62-2, 3160-62-4 and 3160-62-5 may either be managed on-site as fill material within the construction limits or may be managed by a CCDD facility based on the laboratory analytical results. No special provision is required for these borings.

5.1.18.2 ISGS #3160-62 (UPRR) - Soil Volume and Cost: Construction Area

Costs estimated for the off-site disposal of impacted soils are is shown in Table 5-1. Based on the provided construction excavation quantities provided by the IDOT district and analytical results, 866 cubic yards of soil at the site may require off-site disposal to a special waste disposal facility (Table 5-1). Estimated cost for off-site disposal (non-special waste and CCDD) of impacted soils from the UPRR area 3160-62 is \$102,453.

5.1.19 ISGS #3160-64 (Residence) - Soil Management

Benzo(a)anthracene, benzo(a)pyrene, benzo(a)fluoranthene, dibenz(a,h)anthracene, naphthalene, lead and manganese were identified as COCs at ISGS #3160-64 (Residence). The pH levels were within the acceptable range for management to a CCDD facility from all samples collected from 3160-64. No VOCs were detectable during the headspace readings.

Boring 3160-64-1 may either be managed on-site or may be managed by a CCDD facility based on the laboratory analytical results.

Soil associated with boring 3160-64-2 and 3061-64-3 are classified as unrestrictive and requires no special provision.

5.1.19.1 ISGS #3160-64 (Residence) - Soil Volume and Cost: Construction Area

Costs estimated for the off-site disposal of impacted soils are is shown in Table 5-1. Based on the provided construction excavation quantities provided by the IDOT district and analytical results, 62 cubic yards of soil at the site may require off-site disposal to a special waste disposal facility (Table 5-1). Estimated cost for off-site disposal (non-special waste and CCDD) of impacted soils from Residence area 3160-64 is \$13,270.

5.2 Soil Management Areas and Applicable Regulations

5.2.1 ISGS #3160-5 (UPRR)

Station 12+00, 0' to 50' LT to Station 14+00, 0' to 50' LT (UPRR, PESA site 3160-5, 1400 block South Main Street, Benton; boring 3160-5-2) - The material meets the criteria of Article 669.09(b) and shall be managed in accordance with Article 669.09. COC sampling parameters include: iron and pH.

5.2.2 ISGS #3160-8 (J.W. Reynolds Memorial)

No special provisions are required for 3160-8.

5.2.3 ISGS #3160-9 (C.N.C. Guns & Ammo)

Station 0+0, 0' to 50' RT to Station 1+25, 0' to 47' RT (C.N.C. Guns & Ammo, PESA site 3160-9, 1401 S. Main Street, Benton; borings 3160-9-1 and 2) - The material meets the criteria of Article 669.09(b) and P:\3160150049 IDOT Statewide\Work Order 28 District 9\Draft PSI\PSI Benton FINAL-011818.docx

shall be managed in accordance with Article 669.09. COC sampling parameters include: iron, manganese and pH.

5.2.4 ISGS #3160-10 (Benton Grade School District #47)

Station 1+75, 0' to 50' RT to Station 3+90, 0' to 55' LT (Benton Grade School District #47, PESA site 3160-10, 1403 South Main Street, Benton; borings 3160-10-1 through 3) - The material meets the criteria of Article 669.09(a)(5) and shall be managed in accordance with Article 669.09. COC sampling parameters include: benzene, naphthalene, iron, manganese and pH.

5.2.5 ISGS #3160-16 (Residential Property)

Station 10+40, 0' to 35' RT to Station 11+70, 0' to 190' RT (Residential Property, PESA site 3160-16, 12574 South Park Road, Benton Township; borings 3160-16-2 and 3) - The material meets the criteria of Article 669.09(b) and shall be managed in accordance with Article 669.09. COC sampling parameters include: iron and pH.

Station 12+15, 0 to 65'RT to Station 14+00, 0 to 45' RT (Residential Property, PESA site 3160-16, 12574 South Park Road, Benton Township; boring 3160-16-4) - The soil at 3160-16 boring 4 meets the criteria of Article 669.09(a)(2) and shall be managed in accordance with Article 669.09. COC sampling parameters include: 2-methylnaphthalene, naphthalene, iron and pH.

Station 14+00, 0 to 45'RT to Station 15+40, 0 to 55' RT (Residential Property, PESA site 3160-16, 12574 South Park Road, Benton Township; borings 3160-16-5) - The soil at 3160-16 boring 5 meets the criteria of Article 669.09(a)(1) and shall be managed in accordance with Article 669.09. COC sampling parameters include: 2-methylnaphthalene, naphthalene, iron and pH.

5.2.6 ISGS #3160-21 (UPRR)

Station 30+00, 0' to 50' LT to Station 31+25, 0' to 50' LT (UPRR Property, PESA site 3160-21, 7000 block IL-37, Benton Township; boring 3160-21-2) - The material meets the criteria of Article 669.09(a)(2) and shall be managed in accordance with Article 669.09. COC sampling parameters include: 2-methylnaphthalene, naphthalene, manganese and iron.

Station 37+25, 0 to 50'LT to Station 39+25, 0 to 50' LT (UPRR Property, PESA site 3160-21, 7000 block IL-37, Benton Township; boring 3160-21-6) - The material meets the criteria of Article 669.09(b) and shall be managed in accordance with Article 669.09. COC sampling parameters include: iron and pH.

Station 45+45, 0' to 65' LT to Station 46+55, 0' to 40' LT (UPRR Property, PESA site 3160-21, 7000 block IL-37, Benton Township; boring 3160-21-10) - The material meets the criteria of Article 669.09(a)(4) and shall be managed in accordance with Article 669.09. COC sampling parameters include: naphthalene and iron.

5.2.7 ISGS #3160-23 (Vacant Land)

Station 22+00, 0' to 65' RT to Station 23+00, 0' to 65' RT (Vacant Land, PESA site 3160-23, 7000 block IL-37, Benton Township; 3160-23-1) - The material meets the criteria of Article 669.09(b) and shall be managed in accordance with Article 669.09. COC sampling parameters include: pH.

Station 23+00, 0' to 65' RT to Station 24+00, 0' to 65' RT (Vacant Land, PESA site 3160-23, 7000 block IL-37, Benton Township; 3160-23-2) - The material meets the criteria of Article 669.09(a)(2) and shall be managed in accordance with Article 669.09. COC sampling parameters include: 2-methylnaphthalene and naphthalene.

P:\3160150049 IDOT Statewide\Work Order 28 District 9\Draft PSI\PSI Benton FINAL-011818.docx

5.2.8 ISGS #3160-25 (Commercial Building and Residence)

Station 30+75, 0' to 50' RT to Station 32+75, 0' to 50' RT (Commercial Building and Residence, PESA site 3160-25, 7837 IL-37, Benton Township; borings 3160-25-1 and 2) - The material meets the criteria of Article 669.09(b) and shall be managed in accordance with Article 669.09. COC sampling parameters include: iron, manganese and pH.

5.2.9 ISGS #3160-26 (Residence)

Station 32+75, 0' to 50' RT to Station 34+75, 0' to 60' LT (Residence, PESA site 3160-26, (7789 IL-37, Benton Township; borings 3160-26-1 and 2) - The material meets the criteria of Article 669.09(b) and shall be managed in accordance with Article 669.09. COC sampling parameters include: iron, manganese and pH.

5.2.10 ISGS #3160-28 (Residence)

Station 35+75, 0' to 45' RT to Station 37+75, 0' to 55' RT (Residential Property, PESA site 3160-28, 7745 IL-37, Benton Township; borings 3160-28-1 and 2) - The material meets the criteria of Article 669.09(b) and shall be managed in accordance with Article 669.09. COC sampling parameters include: iron, manganese and pH.

Station 37+75, 0' to 55' RT to Station 38+75, 0' to 55' RT (Residential Property, PESA site 3160-28, 7745 IL-37, Benton Township; boring 3160-28-3) - The material meets the criteria of Article 669.09(a)(1) and shall be managed in accordance with Article 669.09. COC sampling parameters include: naphthalene, iron, manganese, selenium and pH.

5.2.11 ISGS #3160-32 (Route 37 Collection Center)

Station 45+50, 0' to 65' RT to Station 46+50, 0' to 65' RT (Route 37 Collection Center, PESA site 3160-32, 7533 IL-37, Benton Township; boring 3160-32-4) - The material meets the criteria of Article 669.09(a)(2) and shall be managed in accordance with Article 669.09. COC sampling parameters include: 2-methylnaphthalene, naphthalene, iron.

Station 46+50, 0' to 65' RT to Station 49+50, 0' to 65' RT (Route 37 Collection Center, PESA site 3160-32, 7533 IL-37, Benton Township; borings 3160-32-5 through 7) - The material meets the criteria of Article 669.09(b) and shall be managed in accordance with Article 669.09. COC sampling parameters include: iron, manganese and pH.

5.2.12 ISGS #3160-36 (UPRR)

Station 50+50, 0' to 45' LT to Station 55+50, 0' to 40' LT (UPRR, PESA site 3160-36, PESA site 3160-36, 6000-7000 blocks of IL-37, Benton Township; boring 3160-36-2 and 3) - The material meets the criteria of Article 669.09(b) and shall be managed in accordance with Article 669.09. COC sampling parameters include: iron, manganese and pH.

Station 55+50, 0' to 40' LT to Station 57+25, 0' to 45' LT (UPRR, PESA site 3160-36, PESA site 3160-36, 6000-7000 blocks of IL-37, Benton Township; boring 3160-36-4) - The material meets the criteria of Article 669.09(a)(1) and shall be managed in accordance with Article 669.09. COC sampling parameters include: iron, manganese and pH.

Station 57+25, 0' to 45' LT to Station 63+00, 0' to 50' LT (UPRR, PESA site 3160-36, PESA site 3160-36, 6000-7000 blocks of IL-37, Benton Township; borings 3160-36-5 through 7) - The material meets the criteria of Article 669.09(b) and shall be managed in accordance with Article 669.09. COC sampling parameters include: iron, manganese, pH.

Station 71+75, 0' to 40' LT to Station 72+75, 0' to 40' LT (UPRR, PESA site 3160-36, PESA site 3160-36, 6000-7000 blocks of IL-37, Benton Township; boring 3160-36-9) - The material meets the criteria of Article 669.09(a)(2) and shall be managed in accordance with Article 669.09. COC sampling parameters include: benzo(a)pyrene, 2-methylnaphthalene, naphthalene, iron, lead, manganese.

Station 75+75, 0' to 40' LT to Station 77+00, 0' to 40' LT (UPRR, PESA site 3160-36, PESA site 3160-36, 6000-7000 blocks of IL-37, Benton Township; boring 3160-36-11) - The material meets the criteria of Article 669.09(b) and shall be managed in accordance with Article 669.09. COC sampling parameters include: iron, manganese and pH.

5.2.13 ISGS #3160-45 (Residence)

No special provisions are required for 3160-45.

5.2.14 ISGS #3160-50 (Vacant Land)

Station 75+50, 0' to 60' RT to Station 76+, 0' to 75' RT (Vacant Land, PESA site 3160-50, 6000 block of IL-37, Benton Township; boring 3160-50-1) - The material meets the criteria of Article 669.09(b) and shall be managed in accordance with Article 669.09. COC sampling parameters include: manganese and pH.

5.2.15 ISGS #3160-51 (UPRR)

Station 81+00, 0' to 55' LT to Station 84+25, 0' to 35' LT (Residential Property, PESA site 3160-51, 6000 block of IL-37, Benton Township; boring 3160-51-1 and 2) - The material meets the criteria of Article 669.09(a)(4) and shall be managed in accordance with Article 669.09. COC sampling parameters include: benzo(a)pyrene, naphthalene, iron, lead.

5.2.16 ISGS #3160-55 (UPRR)

Station 87+00, 0' to 55' RT to Station 88+00, 0' to 55' RT (UPRR, PESA site 3160-55, 6000 block of IL-37, Browning Township; boring 3160-55-1) - The material meets the criteria of Article 669.09(b) and shall be managed in accordance with Article 669.09. COC sampling parameters include: iron and pH.

5.2.17 ISGS #3160-56 (Agricultural Land)

Station 90+00, 0' to 55' RT to Station 91+00, 0' to 45' RT (Agricultural Land, PESA site 3160-56, 6000 block of IL-37, Browning Township; boring 3160-56-2) - The material meets the criteria of Article 669.09(a)(4) and shall be managed in accordance with Article 669.09. COC sampling parameters include: naphthalene, chromium, iron, lead and manganese.

5.2.18 ISGS #3160-62 (UPRR)

Station 104+0, 0' to 35' LT to Station 105+50, 0' to 35' LT (UPRR, PESA site 3160-62, 5000 block of IL-37, Frankfort Township and 6000 block of IL-37, Benton Township; boring 3160-62-1) - The material meets the criteria of Article 669.09(a)(4) and shall be managed in accordance with Article 669.09. COC sampling parameters include: naphthalene and manganese.

Station 112+0, 0' to 40' LT to Station 113+50, 0' to 40' LT (UPRR, PESA site 3160-62, 5000 block of IL-37, Frankfort Township and 6000 block of IL-37, Benton Township; borings 3160-62-3) - The material meets the criteria of Article 669.09(b) and shall be managed in accordance with Article 669.09. COC sampling parameters include: pH.

Station 117+50, 0' to 40' LT to Station 128+00, 0' to 40' LT (UPRR, PESA site 3160-9, 5000 block of IL-37, Frankfort Township and 6000 block of IL-37, Benton Township; borings 3160-62-6 through 10) - The material meets the criteria of Article 669.09(b) and shall be managed in accordance with Article 669.09. COC sampling parameters include: iron, manganese, selenium and pH.

P:\3160150049 IDOT Statewide\Work Order 28 District 9\Draft PSI\PSI Benton FINAL-011818.docx

5.2.19 ISGS #3160-64 (Residence)

Station 115+50, 0' to 50' RT to Station 116+55, 0' to 50' RT (Residence, PESA site 3160-64, 6229 IL-37, Benton Township; boring 3160-64-1) - The material meets the criteria of Article 669.09(a)(2) and shall be managed in accordance with Article 669.09. COC sampling parameters include: benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenz(a,h)anthracene, naphthalene, lead.

5.3 Recommendations

5.3.1 Additional Investigations

Based on site history, field observations, and analytical results, Amec Foster Wheeler does not recommend further investigation for this project. Soil in the project area has been characterized with regard to IDOT construction activities. Additional sampling may be required should construction excavation activities extend beyond the previously investigated area and/or if soil or groundwater is encountered that exhibits odor or discoloration indicative of contamination.

5.3.2 Prevention of Accelerated Contaminant Migration

Soil containment and storm water runoff control measures are recommended to minimize the potential migration of contaminants from any impacted soils that are stockpiled at the sites. If soil must be stockpiled, it should be stored in lined and covered roll-off boxes or segregated from other soils on storage pads designed to prevent migration of contaminants to un-impacted areas.

Groundwater is not anticipated to be encountered during construction excavation, based on observations during the investigation and the maximum proposed excavation depths at the sites. If groundwater is encountered, it should be properly characterized. Due to the transmissive property of the geologic material and lack of observed groundwater, it is the professional opinion of Amec Foster Wheeler that any observed groundwater should be manageable within the excavation through natural drainage.

5.3.3 Comparison of Detected Soil Concentrations with TACO Tier 1 Remediation Objectives for Construction Worker Exposure

The COCs detected in site soil were compared with TACO Tier 1 ROs for construction worker exposure. Analytical results from all samples collected throughout the proposed excavation area are below the applicable TACO Tier 1 Remediation Objectives for Construction Worker Exposure. However, if soil unearthed during excavation activities exhibits PID readings, odors, or discoloration indicative of contamination, Amec Foster Wheeler recommends that the soil be sampled to determine appropriate worker protection measures during construction activities. The health and safety of construction workers are the sole responsibility of the construction contractor, and Occupational Safety and Health Administration (OSHA) regulations should be adhered to during all construction activities.

P:\3160150049 IDOT Statewide\Work Order 28 District 9\Draft PSI\PSI Benton FINAL-011818.docx

39

managed in accordance with Article 669.09. COC sampling parameters include: benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenz(a,h)anthracene, naphthalene, lead.

5.3 Recommendations

5.3.1 Additional Investigations

Based on site history, field observations, and analytical results, Amec Foster Wheeler does not recommend further investigation for this project. Soil in the project area has been characterized with regard to IDOT construction activities. Additional sampling may be required should construction excavation activities extend beyond the previously investigated area and/or if soil or groundwater is encountered that exhibits odor or discoloration indicative of contamination.

5.3.2 Prevention of Accelerated Contaminant Migration

Soil containment and storm water runoff control measures are recommended to minimize the potential migration of contaminants from any impacted soils that are stockpiled at the sites. If soil must be stockpiled, it should be stored in lined and covered roll-off boxes or segregated from other soils on storage pads designed to prevent migration of contaminants to un-impacted areas.

Groundwater is not anticipated to be encountered during construction excavation, based on observations during the investigation and the maximum proposed excavation depths at the sites. If groundwater is encountered, it should be properly characterized. Due to the transmissive property of the geologic material and lack of observed groundwater, it is the professional opinion of Amec Foster Wheeler that any observed groundwater should be manageable within the excavation through natural drainage.

5.3.3 Comparison of Detected Soil Concentrations with TACO Tier 1 Remediation Objectives for Construction Worker Exposure

The COCs detected in site soil were compared with TACO Tier 1 ROs for construction worker exposure. Analytical results from all samples collected throughout the proposed excavation area are below the applicable TACO Tier 1 Remediation Objectives for Construction Worker Exposure. However, if soil unearthed during excavation activities exhibits PID readings, odors, or discoloration indicative of contamination, Amec Foster Wheeler recommends that the soil be sampled to determine appropriate worker protection measures during construction activities. The health and safety of construction workers are the sole responsibility of the construction contractor, and Occupational Safety and Health Administration (OSHA) regulations should be adhered to during all construction activities.

39

Table 2-1. Summary of Recognized Environmental Conditions, Planned Construction Activities, and Contaminants of Concern FAS 2882/IL 37

PESA Site Name	Recognized Environmental Conditions (RECs)	Planned Construction Activities	Contaminants of Concern**	Investigation Objectives/Rationale	Planned Property Acquisition
3160-5	Railroad signal boxes	Cut and fill	Metals*	Investigate the soil and groundwater in the proposed construction area Maximum construction depth 1.2 feet	Permanent Easement
3160-8	Potential UST(s), potential former chemical use	Cut and fill	VOCs, SVOCs, Metals*	Investigate the soil and groundwater in the proposed construction area Maximum construction depth 3 feet	ROW Partial Take
3160-9	Potential UST(s), potential former chemical use, transformers	Cut and fill	VOCs, SVOCs, Metals*, PCBs	Investigate the soil and groundwater in the proposed construction area Maximum construction depth 4 feet	ROW Partial Take
3160-10	Potential UST(s), potential former chemical use	Cut and fill	VOCs, SVOCs, Metals*	Investigate the soil and groundwater in the proposed construction area Maximum construction depth 2.5 feet	ROW Partial Take
3160-16	ASTs, natural gas pipeline	Cut and fill	VOCs, SVOCs, Pesticides, Metals*	Investigate the soil and groundwater in the proposed construction area Maximum construction depth 4 feet	ROW Partial Take
3160-21	Fill, petroleum pipeline, railroad signal box	Cut and fill	VOCs, SVOCs, Metals*	Investigate the soil and groundwater in the proposed construction area Maximum construction depth 2.5 feet	Temporary and Permanent Easements
3160-23	Former ASTs, evidence of former chemical use, natural gas pipeline, likely past pesticide and/or herbicide use	Cut and fill	VOCs, SVOCs, Metals*, Pesticides, Herbicides	Investigate the soil and groundwater in the proposed construction area Maximum construction depth 4.5 feet	ROW Partial Take
3160-25	Potential UST(S), former ASTs, drums, evidence of former chemical use, solid waste, likely natural gas pipeline	Cut and fill	VOCs, SVOCs, Metals*	Investigate the soil and groundwater in the proposed construction area Maximum construction depth 4 feet	ROW Partial Take
3160-26	Petroleum pipeline, likely natural gas pipeline	Cut and fill	VOCs, SVOCs, Metals*	Investigate the soil and groundwater in the proposed construction area Maximum construction depth 4 feet	ROW Partial Take
3160-28	Potential UST(s), potential former chemical use, natural gas pipeline	Cut and fill	VOCs, SVOCs, Metals*	Investigate the soil and groundwater in the proposed construction area Maximum construction depth 5 feet	ROW Partial Take
3160-32	Potential UST(s), ASTs, drums; evidence of former chemical use, solid waste, natural gas pipeline	Cut and fill	VOCs, SVOCs, Metals*, PCBs	Investigate the soil and groundwater in the proposed construction area Maximum construction depth 3.5 feet	ROW Partial Take
3160-36	Fill, petroleum pipeline, railroad signal box	Cut and fill	VOCs, SVOCs, Metals*	Investigate the soil and groundwater in the proposed construction area Maximum construction depth 3 feet	ROW Partial Take
3160-45	Evidence of former chemical use, transformer, natural gas pipeline	Cut and fill	VOCs, SVOCs, Metals*, PCBs	Investigate the soil and groundwater in the proposed construction area Maximum construction depth 6 feet	ROW Partial Take
3160-50	Evidence of former chemical use, former ASTs, likely natural gas pipeline	Cut and fill	VOCs, SVOCs, Metals*	Investigate the soil and groundwater in the proposed construction area Maximum construction depth 2 feet	ROW Partial Take
3160-51	Fill, petroleum pipeline, railroad signal box	Cut and fill	VOCs, SVOCs, Metals*	Investigate the soil and groundwater in the proposed construction area Maximum construction depth 1.5 feet	Permanent Easement
3160-55	Evidence of former chemical use, natural gas pipeline, likely past pesticide and/or herbicide use	Cut and fill	VOCs, SVOCs, Metals*, Pesticides, Herbicides	Investigate the soil and groundwater in the proposed construction area Maximum construction depth 3 feet	ROW Partial Take
3160-56	Evidence of former chemical use, natural gas pipeline, likely past pesticide and/or herbicide use	Cut and fill	VOCs, SVOCs, Metals*, Pesticides, Herbicides	Investigate the soil and groundwater in the proposed construction area Maximum construction depth 1.5 feet	ROW Partial Take
3160-62	Fill, railroad signal box	Cut and fill	VOCs, SVOCs, Metals*	Investigate the soil and groundwater in the proposed construction area Maximum construction depth 1.5 feet	Temporary Easement
3160-64	AST, natural gas pipeline, transformer	Cut and fill	VOCs, SVOCs, Metals*, PCBs	Investigate the soil and groundwater in the proposed construction area Maximum construction depth 1.5 feet	ROW Partial Take

^{*}Metals: Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Cobalt, Copper, Iron, Lead, Manganese, Nickel, Selenium, Silver, Thallium, Vanadium, Zinc, and Mercury
**All soil samples will be analyzed for pH.

Table 3-1. Summary of Sampling and Analysis Program

Borings	Offset from Proposed Location	Boring Depth (feet)	Sample(s)	Matrix	Parameters
SGS #3160-5 (UPF	RR)				
3160-5-1	None	5.0	3160-5-1 (0-1.2')	Soil	Total, TCLP, and SPLP Metals
3160-5-2	None	5.0	3160-5-2 (0-1.2')	Soil	Total, TCLP, and SPLP Metals
3160-5-3	None	5.0	3160-5-3 (0-1.2')	Soil	Total, TCLP, and SPLP Metals
SGS #3160-8 (J.W	. Reynolds Memorial)				
3160-8-1	None	5.0	3160-8-1 (0-3')	Soil	VOCs/SVOCs/Total, TCLP, and SPLP Metals
3160-8-2	None	5.0	3160-8-2 (0-3')	Soil	VOCs/SVOCs/Total, TCLP, and SPLP Metals
SGS #3160-9 (C.N	.C Guns and Ammo)				
3160-9-1	None	5.0	3160-9-1 (0-4')	Soil	VOCs/SVOCs/PCBs/Total, TCLP, and SPLP Metals
3160-9-2	None	5.0	3160-9-2 (0-4')	Soil	VOCs/SVOCs/PCBs/Total, TCLP, and SPLP Metals
3160-9-3	None	5.0	3160-9-3 (0-4')	Soil	VOCs/SVOCs/PCBs/Total, TCLP, and SPLP Metals
SGS #3160-10 (Be	nton Grade School District #47)				
3160-10-1	None	5.0	3160-10-1 (0-2.5')	Soil	VOCs/SVOCs/Total, TCLP, and SPLP Metals
3160-10-2	None	5.0	3160-10-2 (0-2.5')	Soil	VOCs/SVOCs/Total, TCLP, and SPLP Metals
3160-10-3	None	5.0	3160-10-3 (0-2.5')	Soil	VOCs/SVOCs/Total, TCLP, and SPLP Metals
SGS #3160-16 (Re	sidence)				
3160-16-1	None	5.0	3160-16-1 (0-4')	Soil	VOCs/SVOCs/Total, TCLP, and SPLP Metals
3160-16-2	None	5.0	3160-16-2 (0-4')	Soil	VOCs/SVOCs/Total, TCLP, and SPLP Metals
3160-16-3	None	5.0	3160-16-3 (0-4')	Soil	VOCs/SVOCs/Total, TCLP, and SPLP Metals
3160-16-4	None	5.0	3160-16-4 (0-4')	Soil	VOCs/SVOCs/Total, TCLP, and SPLP Metals
3160-16-5	None	5.0	3160-16-5 (0-4')	Soil	VOCs/SVOCs/Total, TCLP, and SPLP Metals
SGS #3160-21 (UF	PRR)				
3160-21-1	None	5.0	3160-21-1 (0-2.5')	Soil	VOCs/SVOCs/Total, TCLP, and SPLP Metals
3160-21-2	None	5.0	3160-21-2 (0-2.5')	Soil	VOCs/SVOCs/Total, TCLP, and SPLP Metals
3160-21-3	None	5.0	3160-21-3 (0-2.5')	Soil	VOCs/SVOCs/Total, TCLP, and SPLP Metals
3160-21-4	None	5.0	3160-21-4 (0-2.5')	Soil	VOCs/SVOCs/Total, TCLP, and SPLP Metals
3160-21-5	None	5.0	3160-21-5 (0-2.5')	Soil	VOCs/SVOCs/Total, TCLP, and SPLP Metals
3160-21-6	None	5.0	3160-21-6 (0-2.5')	Soil	VOCs/SVOCs/Total, TCLP, and SPLP Metals
3160-21-7	None	5.0	3160-21-7 (0-2.5')	Soil	VOCs/SVOCs/Total, TCLP, and SPLP Metals
3160-21-8	None	5.0	3160-21-8 (0-2.5')	Soil	VOCs/SVOCs/Total, TCLP, and SPLP Metals
3160-21-9	None	5.0	3160-21-9 (0-2.5')	Soil	VOCs/SVOCs/Total, TCLP, and SPLP Metals
3160-21-10	None	5.0	3160-21-10 (0-2.5')	Soil	VOCs/SVOCs/Total, TCLP, and SPLP Metals

Table 3-1. Summary of Sampling and Analysis Program

Borings	Offset from Proposed Location	Boring Depth (feet)	Sample(s)	Matrix	Parameters
SGS #3160-23 (Va	cant Land)				
3160-23-1	None	5.0	3160-23-1 (0-4.5')	Soil	VOCs/SVOCs/Pest./Herb./Total, TCLP, and SPLP Metals
3160-23-2	None	5.0	3160-23-2 (0-4.5')	Soil	VOCs/SVOCs/Pest./Herb./Total, TCLP, and SPLP Metals
SGS #3160-25 (Co	mmercial Building and Residence)	•		•	
3160-25-1	None	5.0	3160-25-1 (0-4')	Soil	VOCs/SVOCs/Total, TCLP, and SPLP Metals
3160-25-2	None	5.0	3160-25-2 (0-4')	Soil	VOCs/SVOCs/Total, TCLP, and SPLP Metals
SGS #3160-26 (Re	sidence)				
3160-26-1	None	5.0	3160-26-1 (0-4')	Soil	VOCs/SVOCs/Total, TCLP, and SPLP Metals
3160-26-2	None	5.0	3160-26-2 (0-4')	Soil	VOCs/SVOCs/Total, TCLP, and SPLP Metals
SGS #3160-28 (Re	sidence)				
3160-28-1	None	5.0	3160-28-1 (0-5')	Soil	VOCs/SVOCs/Total, TCLP, and SPLP Metals
3160-28-2	None	5.0	3160-28-2 (0-5')	Soil	VOCs/SVOCs/Total, TCLP, and SPLP Metals
3160-28-3	None	5.0	3160-28-3 (0-5')	Soil	VOCs/SVOCs/Total, TCLP, and SPLP Metals
SGS #3160-32 (Ro	ute 37 Collection Center)				
3160-32-1	None	5.0	3160-32-1 (0-3.5')	Soil	VOCs/SVOCs/PCBs/Total, TCLP, and SPLP Metals
3160-32-2	None	5.0	3160-32-2 (0-3.5')	Soil	VOCs/SVOCs/PCBs/Total, TCLP, and SPLP Metals
3160-32-3	None	5.0	3160-32-3 (0-3.5')	Soil	VOCs/SVOCs/PCBs/Total, TCLP, and SPLP Metals
3160-32-4	None	5.0	3160-32-4 (0-3.5')	Soil	VOCs/SVOCs/PCBs/Total, TCLP, and SPLP Metals
3160-32-5	None	5.0	3160-32-5 (0-3.5')	Soil	VOCs/SVOCs/PCBs/Total, TCLP, and SPLP Metals
3160-32-6	None	5.0	3160-32-6 (0-3.5')	Soil	VOCs/SVOCs/PCBs/Total, TCLP, and SPLP Metals
3160-32-7	None	5.0	3160-32-7 (0-3.5')	Soil	VOCs/SVOCs/PCBs/Total, TCLP, and SPLP Metals
SGS #3160-36 (UP	PRR)				
3160-36-1	None	5.0	3160-36-1 (0-3')	Soil	VOCs/SVOCs/Total, TCLP, and SPLP Metals
3160-36-2	None	5.0	3160-36-2 (0-3')	Soil	VOCs/SVOCs/Total, TCLP, and SPLP Metals
3160-36-3	None	5.0	3160-36-3 (0-3')	Soil	VOCs/SVOCs/Total, TCLP, and SPLP Metals
3160-36-4	None	5.0	3160-36-4 (0-3')	Soil	VOCs/SVOCs/Total, TCLP, and SPLP Metals
3160-36-5	None	5.0	3160-36-5 (0-3')	Soil	VOCs/SVOCs/Total, TCLP, and SPLP Metals
3160-36-6	None	5.0	3160-36-6 (0-3')	Soil	VOCs/SVOCs/Total, TCLP, and SPLP Metals
3160-36-7	None	5.0	3160-36-7 (0-3')	Soil	VOCs/SVOCs/Total, TCLP, and SPLP Metals
3160-36-8	None	5.0	3160-36-8 (0-3')	Soil	VOCs/SVOCs/Total, TCLP, and SPLP Metals
3160-36-9	None	5.0	3160-36-9 (0-3')	Soil	VOCs/SVOCs/Total, TCLP, and SPLP Metals
3160-36-10	None	5.0	3160-36-10 (0-3')	Soil	VOCs/SVOCs/Total, TCLP, and SPLP Metals
3160-36-11	None	5.0	3160-36-11 (0-3')	Soil	VOCs/SVOCs/Total, TCLP, and SPLP Metals

Table 3-1. Summary of Sampling and Analysis Program FAS 2882 (IL 37)

Borings	Offset from Proposed Location	Boring Depth (feet)	Sample(s)	Matrix	Parameters
GS #3160-45 (Re	esidence)				
3160-45-1	None	10.0	3160-45-1 (0-5')	Soil	VOCs/SVOCs/PCBs/Total, TCLP, and SPLP Metals
3100-43-1	None	10.0	3160-45-1 (5-6')	3011	VOCs/SVOCs/PCBs/Total, TCLP, and SPLP Metals
3160-45-2	None	10.0	3160-45-2 (0-5')	Soil	VOCs/SVOCs/PCBs/Total, TCLP, and SPLP Metals
3100-45-2	None	10.0	3160-45-2 (5-6')	2011	VOCs/SVOCs/PCBs/Total, TCLP, and SPLP Metals
3160-45-3	None	10.0	3160-45-3 (0-5')	Soil	VOCs/SVOCs/PCBs/Total, TCLP, and SPLP Metals
3100-43-3	None	10.0	3160-45-3 (5-6')	3011	VOCs/SVOCs/PCBs/Total, TCLP, and SPLP Metals
3160-45-4	None	10.0	3160-45-4 (0-5')	Soil	VOCs/SVOCs/PCBs/Total, TCLP, and SPLP Metals
3100-43-4	None	10.0	3160-45-4 (5-6')	3011	VOCs/SVOCs/PCBs/Total, TCLP, and SPLP Metals
GS #3160-50 (Va	cant Land)				
3160-50-1	None	5.0	3160-50-1 (0-2')	Soil	VOCs/SVOCs/Total, TCLP, and SPLP Metals
3160-50-2	None	5.0	3160-50-2 (0-2')	Soil	VOCs/SVOCs/Total, TCLP, and SPLP Metals
3160-50-3	None	5.0	3160-50-3 (0-2')	Soil	VOCs/SVOCs/Total, TCLP, and SPLP Metals
GS #3160-51 (UF	PRR)			•	
3160-51-1	None	5.0	3160-51-1 (0-1.5')	Soil	VOCs/SVOCs/Total, TCLP, and SPLP Metals
3160-51-2	None	5.0	3160-51-2 (0-1.5')	Soil	VOCs/SVOCs/Total, TCLP, and SPLP Metals
3160-51-3	None	5.0	3160-51-3 (0-1.5')	Soil	VOCs/SVOCs/Total, TCLP, and SPLP Metals
GS #3160-55 (Ag	riculture Land)			•	
3160-55-1	None	5.0	3160-55-1 (0-3')	Soil	VOCs/SVOCs/Pest./Herb./Total, TCLP, and SPLP Metals
3160-55-2	None	5.0	3160-55-2 (0-3')	Soil	VOCs/SVOCs/Pest./Herb./Total, TCLP, and SPLP Metals
GS #3160-56 (Ag	riculture Land)				
3160-56-1	None	5.0	3160-56-1 (0-1.5')	Soil	VOCs/SVOCs/Pest./Herb./Total, TCLP, and SPLP Metals
3160-56-2	None	5.0	3160-56-2 (0-1.5')	Soil	VOCs/SVOCs/Pest./Herb./Total, TCLP, and SPLP Metals
GS #3160-62 (UF	PRR)			•	
3160-62-1	None	5.0	3160-62-1 (0-1.5')	Soil	VOCs/SVOCs/Total, TCLP, and SPLP Metals
3160-62-2	None	5.0	3160-62-2 (0-1.5')	Soil	VOCs/SVOCs/Total, TCLP, and SPLP Metals
3160-62-3	None	5.0	3160-62-3 (0-1.5')	Soil	VOCs/SVOCs/Total, TCLP, and SPLP Metals
3160-62-4	None	5.0	3160-62-4 (0-1.5')	Soil	VOCs/SVOCs/Total, TCLP, and SPLP Metals
3160-62-5	None	5.0	3160-62-5 (0-1.5')	Soil	VOCs/SVOCs/Total, TCLP, and SPLP Metals
3160-62-6	None	5.0	3160-62-6 (0-1.5')	Soil	VOCs/SVOCs/Total, TCLP, and SPLP Metals
3160-62-7	None	5.0	3160-62-7 (0-1.5')	Soil	VOCs/SVOCs/Total, TCLP, and SPLP Metals
3160-62-8	None	5.0	3160-62-8 (0-1.5')	Soil	VOCs/SVOCs/Total, TCLP, and SPLP Metals
3160-62-9	None	5.0	3160-62-9 (0-1.5')	Soil	VOCs/SVOCs/Total, TCLP, and SPLP Metals
3160-62-10	None	5.0	3160-62-10 (0-1.5')	Soil	VOCs/SVOCs/Total, TCLP, and SPLP Metals

Table 3-1. Summary of Sampling and Analysis Program

Benton, Franklin County, Illinois

Borings	Offset from Proposed Location	Boring Depth (feet)	Sample(s)	Matrix	Parameters
ISGS #3160-64 (Re	sidence)				
3160-64-1	None	5.0	3160-64-1 (0-1.5')	Soil	VOCs/SVOCs/PCBs/Total, TCLP, and SPLP Metals
3160-64-2	None	5.0	3160-64-2 (0-1.5')	Soil	VOCs/SVOCs/PCBs/Total, TCLP, and SPLP Metals
3160-64-3	None	None 5.0 3		Soil	VOCs/SVOCs/PCBs/Total, TCLP, and SPLP Metals

NA = Not Applicable GW = Groundwater

ISGS = Illinois State Geological Survey

VOCs= Volatile organic compounds. SVOCs= Semivolatile organic compounds.

TCLP= Toxicity characteristics leaching procedure.

 $\label{eq:SPLP} \textit{SPLP=Synthetic precipitation leaching procedure}.$

PCBs= Polychlorinated biphenyls

Pest. = Pesticides Herb. = Herbicides

Analysis Methods:

VOCs: SW8260B SVOCs: SW8270C

Total Metals: SW6010B/SW7470A/SW7471A

TCLP/SPLP Metals: SW6010B/SW7041/SW7470A/SW7841

PCBs: SW8082A

Pesticides = SW 8081B Herbicides = 8151A pH: SW9054D

percent solids: SW2540G

Table 4-2. Detected Soil Analytes and Comparison to Applicable Criteria FAS 2882 (IL 37)

FA3 200	Z (IL 31)			
Renton	Franklin	County	Illinois	

Sample ID	ois 3160-5-1 (0-1.2')	3160-5-2 (0-1.2	3160-5-3 (0-1.2')	3160-8-1 (0-3)	3160-8-2 (0-3)	3160-9-1 (0-4.0')	3160-9-2 (0-4')	3160-9-3 (0-4')	3160-10-1 (0-2.5')	3160-10-2 (0-2.5')	1000		Maximum Allo	owable Concentr	rations			TACO Rem	ediation Objectives
Sample Depth (ft.)	0-1.2	0-1.2	0-1.2	0-3	0-3	0-4	0-4	0-4	0-2.5	0-2.5								Most Stringent	•
ample Date	11/02/2017	11/02/2017	11/02/2017	11/03/2017	11/03/2017	10/30/2017	10/30/2017	10/30/2017	10/30/2017	10/30/2017	Most Stringent	Mishin Chinana	Military - Daniel at all Aven		Within a			TACO Tier 1	Most Stringent TACO Tie
ID	0	0	0	0	0	0	0	0 7.6	380	347	Maximum Allowable	Corporate	Within a Populated Area in a MSA (excluding	Within a MSA	Populated Area in a non-MSA	Outside a	Within a non-	Construction Worker Exposure	1 Residential Objective and Groundwater
ample pH latrix	8.6 Soil	6.1 Soil	8.0 Soil	8.5 Soil	8.3 Soil	4.6 Soil	5.4 Soil	7.6 Soil	5.4 Soil	4.8 Soil	Concentration ¹	Limits ²	Chicago) ³	County 4	County 5	Populated Area	6	Objective 8	Protection (TCLP/SPLP)
OCs (mg/kg)		3011	3011	3011	3011	3011	3011	3011	3011	3011	Concentration	LITTILS	Cilicago)	County	County	Populated Area	INISA County	Objective	Protection (TCLP/SPLP)
cetone	NA	NA	NA	0.020	<0.017	0.021	<0.020	0.021	<0.41	<0.020	25	NA	NA	NA	NA	NA	NA	100,000	100,000
	NA	NA	NA	<0.0019	<0.0017	<0.0019	<0.0020	<0.0016	0.65 1,9	<0.0020	0.03	NA	NA	NA	NA	NA	NA	2.2	0.03
Ethylbenzene	NA	NA	NA	<0.0019	<0.0017	<0.0019	<0.0020	<0.0016	0.52	<0.0020	13	NA	NA	NA	NA	NA	NA	58	400
Toluene	NA	NA	NA	<0.0019	<0.0017	<0.0019	<0.0020	<0.0016	0.22	<0.0020	12	NA	NA	NA	NA	NA	NA	42	650
THEMOTOCHICHE	147.1	NA	NA	<0.0019	<0.0017	<0.0019	<0.0020	<0.0016	0.022J	<0.0020	0.06	NA	NA	NA	NA	NA	NA	12	5
	NA	NA	NA	<0.0019	<0.0017	<0.0038	<0.0039	<0.0032	2.6	<0.0040	5.6	NA	NA NA	NA	NA	NA	NA	5.6	320
SVOCs (mg/kg)	7 I	lara I	lava —	0.00551	.0.000		.0.020	.0.20		.0.020	N1A	0.00	0.07		N.A	0.20		NIA .	
Acenaphthylene Anthracene	NA NA	NA NA	NA NA	0.0055J 0.016J	<0.039 0.012J	<0.039 <0.039	<0.039 <0.039	<0.38 0.0084J	<0.040 <0.040	<0.038 <0.038	NA 12,000	0.03 NA	0.07 NA	NA NA	NA NA	0.29	NA NA	NA 610,000	NA 23,000
	1	NA	NA	0.0163	0.020J	<0.039	<0.039	0.00843	0.0086J	<0.038	0.9	1.1	1.8	NA NA	0.9	NA 0.9	NA NA	170	0.9
	+	NA	NA NA	0.032	0.052	<0.039	<0.039	0.052	<0.040	<0.038	0.09	1.3	2.1	NA NA	0.98	0.09	NA NA	170	0.09
	NA	NA	NA	0.084	0.055	<0.039	<0.039	0.087	<0.040	<0.038	0.9	1.5	2.1	NA NA	0.9	0.9	NA	170	0.9
	NA	NA	NA	0.051	0.041	<0.039	<0.039	0.037J	<0.040	<0.038	NA	NA	NA	NA	NA	NA	NA	NA	NA
	NA	NA	NA	0.019J	<0.039	<0.039	<0.039	0.025J	<0.040	<0.038	9	NA	NA	NA	NA	NA	NA	1,700	9
	NA	NA	NA	0.052	0.019J	<0.039	<0.039	0.073	<0.040	<0.038	88	NA	NA	NA	NA	NA	NA	17,000	88
2.00.120.01.01.	107.	NA	NA	0.047J	<0.20	<0.039	<0.039	<0.38	<0.040	<0.038	NA	NA	NA	NA	NA	NA	NA	NA	NA
	1.0,	NA	NA	<0.38	<0.39	<0.39	<0.39	<0.38	0.21J	<0.38	0.48	NA	NA	NA	NA	NA	NA	610	1
Hadranthene	14/ (NA	NA NA	0.075	0.050	<0.039	<0.039	0.077	0.019J	<0.038	3,100	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	82,000	3,100
114016116	1	NA NA	NA NA	<0.038 0.044	<0.039 0.037J	<0.039 <0.039	<0.039 <0.039	<0.038 0.027J	0.0096J <0.040	<0.038 <0.038	560 0.9	NA 0.9	NA 1.6	NA NA	0.9	NA O O	NA NA	82,000 170	3,100 0.9
macho[1,2,5 ca]pyrene	10/1	NA	NA	0.12	0.0373	<0.039	<0.039	0.0273	0.63	<0.038	0.9 NA	NA	1.6 0.14	NA NA	0.9 NA	0.9 0.29	NA NA	NA	NA
2 Weenymaphenaiene	10/1	NA NA	NA NA	0.053	0.0153	<0.080	<0.039	0.023J	0.83 0.37 2,3,5	<0.076	1.8	0.04	0.14	NA NA	NA NA	0.29	NA NA	1.8	170
<u>'</u>	1	NA	NA	0.15	0.044	<0.039	<0.039	0.070	0.023J	<0.038	0.99	1.3	2.5	NA NA	2.5	0.99	NA NA	NA	NA NA
	NA	NA	NA	0.070	0.082	<0.039	<0.039	0.069	0.018J	<0.038	2,300	NA	NA	NA	NA	NA	NA	61,000	2,300
PCBs (mg/kg)	1	'	1					<u>'</u>	<u> </u>	'			1			1			
No Analytes Detected											NA	NA	NA	NA	NA	NA	NA	NA	NA
Pesticides (mg/kg)																			
Not Analyzed in this sample suite.											NA	NA	NA	NA	NA	NA	NA	NA	NA
Herbicides (mg/kg)																			
Not Analyzed in this sample suite.											NA	NA	NA	NA	NA	NA	NA	NA	NA
Inorganics (mg/kg) Antimony	0.27J	<1.2	<1.1	0.21J	0.77J	0.32J	0.41J	0.48J	0.48J	0.27J	5	NA	NA	NA	NA	NA	NA	82	31
Arsenic	13 1.7	4.7	5.1	7.9	8.1	6.2	6.5	6.6	7.8	7.7	11.3	NA NA	NA NA	13.0	NA NA	NA	11.3	61	750
Barium	83	42	94	91	100	78	84	93	84	130	1,500	NA NA	NA	NA NA	NA	NA	NA NA	14,000	5,500
Beryllium	0.60	0.43	0.48	0.53	0.55	0.27	0.44	0.45	0.38	0.35	22	NA	NA	NA	NA	NA	NA	410	160
Cadmium	0.22	0.043J	0.19	0.53	0.18	<0.12	<0.12	0.37	<0.12	<0.11	5.2	NA	NA	NA	NA	NA	NA	200	78
Chromium	13	9.7	10	14	14	16	17	16	17	20	21	NA	NA	NA	NA	NA	NA	690	230
Cobalt	8.6	5.7	7.0	8.3	13	4.8	6.3	7.3	6.8	6.0	20	NA	NA	NA	NA	NA	NA	12,000	4,700
Copper	12	8.3	12	13	17	13	15	16	16	18	2,900	NA	NA	NA	NA	NA	NA	8,200	2,900
Iron	16000 1,4,7	20000	1,4,7 13000	15000	15000	16000 1,4,7	16000 1,4,7	15000	18000 1,4,7	20000 1,4,	15,000	NA	NA NA	15,900	NA NA	NA	15,000	NA 700	NA 100
Lead	110 1 310	43 110	73 270	82 440	54 720 1.4.7	9.6	210	210	210	210	107 630	NA NA	NA NA	636	NA NA	NA NA	630	700 4,100	400 1,600
Manganese Mercury	0.037	0.020	0.028	0.045	0.033	0.011J	0.015J	0.049	0.020	0.018	0.89	NA NA	NA NA	NA	NA NA	NA NA	NA	0.1	1,600
Nickel	17	8.3	11	14	11	9.5	14	14	14	13	100	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	4,100	1,600
Selenium	<0.52	<0.59	0.38J	0.47J	0.97	<0.60	<0.60	<0.58	<0.59	<0.57	1.3	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	1,000	390
Silver	<0.26	<0.29	<0.28	<0.27	<0.29	<0.30	<0.30	<0.29	<0.30	<0.29	4.4	NA	NA	NA	NA	NA	NA	1,000	390
Thallium	<0.52	<0.59	<0.57	<0.54	<0.59	<0.60	<0.60	<0.58	<0.59	<0.57	2.6	NA	NA	NA	NA	NA	NA	160	6.3
Vanadium	20	16	17	22	26	30	29	26	30	33	550	NA	NA	NA	NA	NA	NA	1,400	550
Zinc	75	48	58	71	54	31	48	96	56	53	5,100	NA	NA	NA	NA	NA	NA	61,000	23,000
TCLP Metals (mg/L)		1					0.05-5-1		00000	1									
Arsenic	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060									0.006
Antimony	<0.050	<0.050 0.27J	<0.050 0.97	<0.050	<0.050	<0.050 0.48J	<0.050	<0.050	<0.050	<0.050 0.096J									0.05
Barium Bervllium	1.2 <0.0040	<0.0040	<0.0040	0.86	0.72 <0.0040	<0.0040	0.51 <0.0040	0.67 <0.0040	0.66 <0.0040	<0.096J <0.0040									0.004
Cadmium	<0.0040	<0.0040	<0.0040	0.0041J	<0.0040	<0.0040	<0.0040	0.0020J	<0.0040	<0.0040									0.004
Chromium	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025									0.1
Cobalt	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025									1
Copper	0.017J	0.010J	<0.025	0.017J	0.021J	0.031	<0.025	0.011J	0.020J	0.081									0.65
Iron	<0.40	0.31J	<0.40	0.20J	<0.40	<0.40	0.21J	<0.40	3.0	0.21J									5
Lead	<0.0075	<0.0075	<0.0075	<0.0075	<0.0075	<0.0075	<0.0075	<0.0075	<0.0075	<0.0075									0.0075
Manganese	0.089	0.038	0.089	0.029	0.10	0.28 10	0.072	0.030	3.0 10	0.066									0.15
Mercury	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020									0.002
Nickel	<0.025	<0.025	<0.025	<0.025	<0.025	0.012J	0.019J	<0.025	<0.025	<0.025									0.1
Selenium	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050									0.05
Silver	<0.025	<0.025 <0.0020	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025 <0.0020	<0.025									0.05
Thallium Vanadium	<0.0020 <0.025	<0.0020 <0.025	<0.0020 <0.025	<0.0020 <0.025	<0.0020 <0.025	<0.0020 <0.025	<0.0020 <0.025	<0.0020 <0.025	<0.0020 <0.025	<0.0020 <0.025									0.002 0.049
Vanadium Zinc	<0.025 0.040J	<0.025 0.020J	<0.025 0.031J	0.061J	<0.025 0.062J	0.025 0.078J	0.025J	<0.025 <0.50	0.025 0.035J	0.025 0.081J									U.U49 5
	0.0-703	5.0203	3.0313	3.0013	3.3023	0.0700	3.0231	٠٥.٥٥	3.0533	0.001			1						
SPLP Metals (mg/L)																			

NA= Not available

ND= Not detected above laboratory reporting limit NT= Not tested

mg/kg= Milligrams per kilogram mg/L= Milligrams per liter

TCLP= Toxicity Characteristic Leaching Procedure **SPLP**= Synthetic Precipitation Leaching Procedure

F2= Matrix spike or matrix spike duplicate relative percent difference exceeds control limits. **CCDD** = Clean Construction Demolition Debris

MAC= Maximum Allowable Concentrations of Chemical Constituents in Uncontaminated Soil Used as Fill Material at Regulated Fill Operations (35 Ill. Adm. Code 110. Subpart F). **TACO** = Tiered Approach to Corrective Action Objectives

Applicable Screening Criteria

¹ Exceeds the most stringent MAC value (35 IAC (1100.605(e))

² Exceeds the Chicago Corporate Limits MAC values ³ Exceeds the Within a Populated Area in a MSA (excluding Chicago) MAC value

⁴ Exceeds the Within a MSA County MAC value ⁵ Exceeds the Within a Populated Area in a non-MSA County MAC value

⁶ Exceeds the Outside a Populated Area MAC value ⁷ Exceeds the Within a non-MSA County MAC value

⁸ Exceeds the Most Stringent TACO Tier 1 Construction Worker Exposure Objective

¹¹ Exceeds the Most Stringent TACO Tier 1 Class 1 Groundwater Objective

⁹ Exceeds the Most Stringent TACO Tier 1 Residential Objective $^{
m 10}$ Exceeds the TACO Tier 1 Soil to Groundwater TCLP/SPLP Objective Unrestrictive- metals exceed Totals but not TCLP and SPLP; or metals exceed TCLP or SPLP but not both

^= Instrument related QC is outside acceptance limits.

F1= Matrix spike or matrix spike duplicate recovery is outside acceptance limits.

B= Compound was found in the blank and sample.

CCDD Eligible- metals exceed TCLP and SPLP but not Totals

CCDD Eligible- VOCs or SVOCs exceedances; limited CCDD disposal availability Greater than TACO Construction Worker Exposure Objectives

Non-special Waste- Greater than all MACs, Greater than most stringent TACO Tier 1 Criteria; Metals exceed Totals, TCLP, and SPLP; Metals exceed TACO Residential and not considered background; pH outside of the acceptable range (6.25 to 9.0)

J= Result is less than the reporting limit but greater than or equal to the method detection limit, concentration reported as an approximate value.

*= Laboratory Control Sample (LCS) or Laboratory Control Sample Duplicate (LCSD) is outside acceptance limits.

Table 4-2. Detected Soil Analytes and Comparison to Applicable Criteria

FAS 2882 (IL 37) Benton, Franklin County, Illin	nois																		
Sample ID	3160-10-3 (0-2.5')	3160-16-1 (0-4')	3160-16-2 (0-4')	3160-16-3 (0-4')	3160-16-4 (0-4')	3160-16-5 (0-4')	3160-21-1 (0-2.5')	3160-21-2 (0-2.5')	3160-21-3 (0-2.5')	3160-21-4 (0-2.5')			Maximum Allo	wahla Cancanti	rations			TACO Pon	nediation Objectives
Sample Depth (ft.)	0-2.5	0-4	0-4	0-4	0-4	0-4	0-2.5	0-2.5	0-2.5	0-2.5			IVIAXIIIIUIII AIIO	T Concenti	T			Most Stringent	lieulation Objectives
Sample Date	10/30/2017	10/31/2017	10/31/2017	10/31/2017	10/31/2017	10/31/2017	11/02/2017	11/02/2017	11/02/2017	11/02/2017	Most Stringent				Within a			TACO Tier 1	Most Stringent TACO Tier
PID	25	0	0	0	0	0	0	0	0	0	Maximum	Within Chicago	Within a Populated Area	,	Populated Area			Construction	1 Residential Objective ⁹
Sample pH	8.2	6.3	5.6	4.9	7.9	6.0	8.3	8.2	7.0	8.0	Allowable	Corporate	in a MSA (excluding	Within a MSA	•	Outside a	Within a non-	Worker Exposure	and Groundwater
Matrix	Soil	Soil	Soil	Soil	Soil	Soil					Concentration ¹	Limits ²	Chicago) ³	County 4	County 5	Populated Area	⁶ MSA County ⁷	Objective 8	Protection (TCLP/SPLP) 10
VOCs (mg/kg)					<u> </u>					<u> </u>				<u>, </u>	1			, ,	, , , , , , , , , , , , , , , , , , , ,
Acetone	<0.31	0.029	0.066	0.075	0.057	<0.017	0.025	0.036	<0.019	0.023	25	NA	NA	NA	NA	NA	NA	100,000	100,000
SVOCs (mg/kg)	•		•	•		•			<u> </u>	•	<u></u>					3			
Acenaphthylene	<0.041	<0.037	<0.038	<0.037	0.0075J	<0.037	<0.039	<0.038	<0.037	<0.044	NA	0.03	0.07	NA	NA	0.29	NA	NA	NA
Anthracene	<0.041	<0.037	<0.038	<0.037	<0.036	0.043	<0.039	0.036J	<0.037	0.013J	12,000	NA	NA	NA	NA	NA	NA	610,000	23,000
Benzo[a]anthracene	<0.041	0.016J	<0.038	<0.037	0.10	0.084	<0.039	0.063	<0.037	0.037J	0.9	1.1	1.8	NA	0.9	0.9	NA	170	0.9
Benzo[a]pyrene	<0.041	0.023J	<0.038	<0.037	0.083	0.079	<0.039	0.050	0.015J	0.051	0.09	1.3	2.1	NA	0.98	0.09	NA	17	0.09
Benzo[b]fluoranthene	<0.041	0.017J	<0.038	<0.037	0.078	0.10	<0.039	0.059	<0.037	0.074	0.9	1.5	2.1	NA	0.9	0.9	NA	170	0.9
Benzo[g,h,i]perylene	<0.041	<0.037	<0.038	<0.037	0.065	0.062	<0.039	0.015J	<0.037	0.040J	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo[k]fluoranthene	<0.041	<0.037	<0.038	<0.037	0.036	<0.037	<0.039	0.016J	<0.037	0.030J	9	NA	NA	NA	NA	NA	NA	1,700	9
Chrysene	<0.041	0.014J	<0.038	<0.037	0.10	0.095	<0.039	0.060	<0.037	0.058	88	NA	NA	NA	NA	NA	NA	17,000	88
Dibenz(a,h)anthracene	<0.041	<0.037	<0.038	<0.037	0.044	0.044	<0.039	<0.038	<0.037	<0.044	0.09	0.2	0.42	NA	0.15	0.09	NA	17	0.09
Dibenzofuran	<0.21	<0.19	<0.19	<0.19	0.15J	<0.19	<0.20	0.096J	<0.19	<0.22	NA 2.100	NA	NA	NA	NA	NA	NA	NA 02.000	NA 2.100
Fluoranthene	<0.041	0.018J	<0.038	<0.037	0.12	0.092	<0.039	0.065	<0.037	0.082	3,100	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	82,000	3,100
Fluorene	<0.041 <0.041	<0.037 <0.037	<0.038 <0.038	<0.037 <0.037	<0.036 0.051	0.0082J 0.050	<0.039 <0.039	<0.038 0.013J	<0.037 <0.037	<0.044 0.025J	560 0.9	0.9	NA 1.6	NA NA	0.9	NA 0.0	NA NA	82,000	3,100
Indeno[1,2,3-cd]pyrene 2-Methylnaphthalene	<0.041 <0.082	<0.037 0.013J	<0.038 <0.077	<0.037 <0.075	0.051 0.34 3,6	0.050	<0.039 3 <0.079	0.0133	<0.037 3 <0.076	0.025J	0.9 NA	NA	1.6	NA NA	0.9 NA	0.9	NA NA	170 NA	0.9 NA
Naphthalene	<0.082 <0.041	<0.037	<0.077	<0.075	0.34 3,6	2 0.17	2 <0.079	0.18	2 <0.076	0.044J	1.8	0.04	0.14	NA NA	NA NA	0.29	NA NA	1.8	170
Phenanthrene	0.0064J	0.018J	<0.038	<0.037	0.46	0.34	0.017J	0.25	0.014J	0.0233	0.99	1.3	2.5	NA NA	2.5	0.17	NA NA	NA	NA
Pyrene	<0.041	0.018J	<0.038	<0.037	0.14	0.11	<0.039	0.25	<0.037	0.075	2,300	NA	NA	NA NA	NA	NA	NA NA	61,000	2,300
PCBs (mg/kg)	10.011	0.0273	10.030	10.037	0121	0.22	10.000	0.075	10.037	0.075	2,300	107	107	107	107	10/1	14/1	01,000	2,300
Not Analyzed in this sample suite.).										NA	NA	NA	NA	NA	NA	NA	NA	NA
Pesticides (mg/kg)												1							
No Analytes Detected											NA	NA	NA	NA	NA	NA	NA	NA	NA
Herbicides (mg/kg)															-1	3			
Not Analyzed in this sample suite.	·.										NA	NA	NA	NA	NA	NA	NA	NA	NA
Inorganics (mg/kg)																			
Antimony	0.30J	<1.1	<0.98	<1.1	0.46J	<1.1	0.24J	0.32J	0.35J	0.49J	5	NA	NA	NA	NA	NA	NA	82	31
Arsenic	9.2	10	7.2	7.5	6.1	8.2	7.6	9.6	8.7	7.6	11.3	NA	NA	13.0	NA	NA	11.3	61	750
Barium	110	120	51	530	100	120	67	220	74	88	1,500	NA	NA	NA	NA	NA	NA	14,000	5,500
Beryllium	0.42	0.60	0.37	0.48	0.48	0.63	0.49	0.72	0.60	0.47	22	NA	NA	NA	NA	NA	NA	410	160
Cadmium	0.022J	0.10J	0.059J	0.16	0.26	0.39	0.069J	0.24	<0.10	0.25	5.2	NA	NA	NA	NA	NA	NA	200	78
Chromium	21	16	17	19	9.5	14	13	11	24 1	. 16	21	NA	NA	NA	NA	NA	NA	690	230
Cobalt	8.3	17	5.9	6.9	5.0	10	7.7	17	7.0	6.0	20	NA	NA	NA	NA	NA	NA	12,000	4,700
Copper	16	9.3	13 7 19000 1,4,7	15 19000 1.4.7	7 16000 1.4.7	22 7 16000 1,4,	12	15 16000 1,4	11	21	2,900	NA	NA NA	NA 15.000	NA NA	NA	NA 15.000	8,200	2,900
Iron	19000 1,4,		19000 1,4,7	, ,	30	· · ·	, ,	,	22000 1,4,7	18000 1,4,	15,000	NA NA	NA NA	15,900	NA NA	NA NA	15,000	700	NA 400
Lead	250	25 1600 1.4.3	170	13	180	53 350	370	55 3200 1.4.7	7,9 310	220	107 630	NA NA	NA NA	NA 626	NA NA	NA NA	NA 630	4,100	400
Manganese Mercury	0.024	0.041	0.040	0.018	0.036	0.058	0.038	0.033	0.037	0.019J	0.89	NA NA	NA NA	636 NA	NA NA	NA NA	630 NA	0.1	1,600
Nickel	13	12	12	15	9.5	15	12	15	0.057	0.0193	100	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	4,100	1,600
Selenium	<0.58	0.90	0.74	0.50J	0.77	1.3	<0.56	0.71	<0.52	<0.63	1.3	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	1,000	390
Silver	<0.29	<0.28	<0.24	<0.28	<0.27	<0.29	<0.28	0.23J	<0.26	<0.32	4.4	NA NA	NA	NA NA	NA NA	NA NA	NA NA	1,000	390
Thallium	<0.58	<0.56	0.27J	<0.55	<0.53	<0.57	<0.56	0.30J	<0.52	<0.63	2.6	NA NA	NA	NA	NA NA	NA NA	NA	160	6.3
Vanadium	35	32	28	33	17	24	25	25	26	27	550	NA	NA	NA	NA	NA	NA	1,400	550
Zinc	64	45	58	53	71	130	53	66	36	97	5,100	NA	NA	NA	NA	NA	NA	61,000	23,000
TCLP Metals (mg/L)			·	·				·	· .			-4						- <u>*</u>	
Arsenic	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060									0.006
Antimony	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050									0.05
Barium	1.4	0.67	0.30J	1.0	0.32J	0.37J	0.32J	0.50	0.47J	0.49J									2
Beryllium	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040									0.004
Cadmium	0.0022J	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0026J									0.005
Chromium	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025									0.1
Cobalt	0.026	<0.025	<0.025	0.011J	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025									1
Copper	0.042	<0.025	<0.025	0.012J	<0.025	<0.025	0.011J	<0.025	<0.025	<0.025									0.65
Iron	7.6 1	0.41	0.72	<0.40	0.41	0.29J	0.24J	0.23J	0.24J	<0.40									5
Lead	<0.0075	<0.0075	<0.0075	<0.0075	<0.0075	<0.0075	<0.0075	<0.0075	<0.0075	<0.0075									0.0075
Manganese	4.1 1	0 0.011J	0.017J	0.013J	0.027	0.010J	0.014J	0.085	0.029	0.29 1	0								0.15
Mercury	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020									0.002
Nickel	0.019J	<0.025	<0.025	0.018J	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025									0.1
Selenium	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050									0.05
Silver	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025									0.05
Thallium	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020									0.002
Vanadium	<0.025 0.14J	<0.025 0.030J	<0.025 <0.50	<0.025 0.042J	<0.025 0.053J	<0.025 0.095 J	<0.025 <0.50	<0.025 0.058J	<0.025 <0.50	<0.025									0.049
SDI D Motals (mg/L)	U.14J	U.U3UJ	\0.50	U.U42J	U.U53J	0.0321	\(\cdot \cdo	ן נאכט.ט	<0.50	0.084J									5
SPLP Metals (mg/L)	88 1	0 NA	NA	NA	l NA	NA	NA	l NA	NΔ	l NA								_	Ε
Manganese	0.61 1	O NA	NA	NA	NΑ	NA	NA	NA	NA	0.056									0.15
Manganese	0.01	INA	INA	INA INA	INA	INA	INA	INA	INA	ا مدر، ۱									0.13

Notes:

NA= Not available

ND= Not detected above laboratory reporting limit

NT= Not tested mg/kg= Milligrams per kilogram

mg/L= Milligrams per liter

TCLP= Toxicity Characteristic Leaching Procedure **SPLP**= Synthetic Precipitation Leaching Procedure

MAC= Maximum Allowable Concentrations of Chemical Constituents in Uncontaminated Soil Used as Fill Material at Regulated Fill Operations (35 Ill. Adm. Code 110. Subpart F).

Applicable Screening Criteria

¹ Exceeds the most stringent MAC value (35 IAC (1100.605(e))

² Exceeds the Chicago Corporate Limits MAC values

³ Exceeds the Within a Populated Area in a MSA (excluding Chicago) MAC value

⁴ Exceeds the Within a MSA County MAC value

⁵ Exceeds the Within a Populated Area in a non-MSA County MAC value ⁶ Exceeds the Outside a Populated Area MAC value

⁷ Exceeds the Within a non-MSA County MAC value

⁸ Exceeds the Most Stringent TACO Tier 1 Construction Worker Exposure Objective

⁹ Exceeds the Most Stringent TACO Tier 1 Residential Objective

¹⁰ Exceeds the TACO Tier 1 Soil to Groundwater TCLP/SPLP Objective ¹¹ Exceeds the Most Stringent TACO Tier 1 Class 1 Groundwater Objective *= Laboratory Control Sample (LCS) or Laboratory Control Sample Duplicate (LCSD) is outside acceptance limits.

^= Instrument related QC is outside acceptance limits. **B=** Compound was found in the blank and sample.

J= Result is less than the reporting limit but greater than or equal to the method detection limit, concentration reported as an approximate value.

F1= Matrix spike or matrix spike duplicate recovery is outside acceptance limits.

F2= Matrix spike or matrix spike duplicate relative percent difference exceeds control limits.

CCDD = Clean Construction Demolition Debris

TACO = Tiered Approach to Corrective Action Objectives

Unrestrictive- metals exceed Totals but not TCLP and SPLP; or metals exceed TCLP or SPLP but not both

CCDD Eligible- metals exceed TCLP and SPLP but not Totals

CCDD Eligible- VOCs or SVOCs exceedances; limited CCDD disposal availability Greater than TACO Construction Worker Exposure Objectives

Non-special Waste- Greater than all MACs, Greater than most stringent TACO Tier 1 Criteria; Metals exceed Totals, TCLP, and SPLP; Metals exceed TACO Residential and not considered background; pH outside of the acceptable range (6.25 to 9.0)

Table 4-2. Detected Soil Analytes and Comparison to Applicable Criteria FAS 2882 (IL 37)

= = = =	_ (,			
Renton.	Franklin	County.	Illinois	

Benton, Franklin County, Illin	nois																	
Sample ID	3160-26-1 (0-4')	3160-26-2 (0-4')	3160-28-1 (0-5')	3160-28-2 (0-5')	3160-28-3 (0-5')	3160-32-1 (0-3.5')	3160-32-2 (0-3.5')	3160-32-3 (0-3.5')	3160-32-4 (0-3.5')	3160-32-5 (0-3.5')		Maximum All	owable Concent	rations				ediation Objectives
Sample Depth (ft.)	0-4 10/31/2017	0-4 10/31/2017	0-5 10/31/2017	0-5 10/31/2017	0-5 10/31/2017	0-3.5 10/31/2017	0-3.5 10/31/2017	0-3.5 10/31/2017	0-3.5 10/31/2017	0-3.5 10/31/2017	Most Stringent			Within a			Most Stringent TACO Tier 1	Most Stringent TACO Ti
Sample Date PID	0	0	0	0	0	0	0	0	0	0	Maximum Within Chica	go Within a Populated		Populated Area	a		Construction	1 Residential Objective
Sample pH	5.0	4.3	4.3	4.9	3.8	6.4	6.6	6.7	6.7	5.9	Allowable Corporate	•	Within a MSA	•	Outside a	Within a non	- Worker Exposure	and Groundwater
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Concentration ¹ Limits ²	(excluding Chicago) ³	County 4	County ⁵	Populated Area	⁶ MSA County ⁷	Objective 8	Protection (TCLP/SPLP)
VOCs (mg/kg)																		
Acetone	0.041	0.042	<0.020	0.045	0.032	<0.019	0.025	0.093	0.034	<0.018	25 NA	NA	NA	NA	NA	NA	100,000	100,000
SVOCs (mg/kg)	1 0000		1 0000		1	1 0000	1 22221 1		1 241		10.000			1		1		
Anthracene	<0.038 0.0078J	<0.038 <0.038	<0.040 <0.040	<0.038 0.0085J	0.073 0.15	<0.040 <0.040	0.0086J 0.023J	<0.039 0.010J	0.11	0.0077J 0.020J	12,000 NA 0.9 1.1	NA 1.0	NA NA	0.9	0.9	NA NA	610,000 170	23,000
Benzo[a]anthracene Benzo[a]pyrene	0.0078J	<0.038	<0.040	0.0085J	0.089	0.016J	0.0233	0.0103	0.17	0.0203	0.9 1.1 0.09 1.3	1.8	NA NA	0.98	0.09	NA NA	170	0.9
Benzo[b]fluoranthene	0.025J	<0.038	<0.040	0.010J	0.11	<0.040	0.038J	0.017J	0.095	0.012J	0.9 1.5	2.1	NA NA	0.9	0.9	NA NA	170	0.9
Benzo[g,h,i]perylene	<0.038	<0.038	<0.040	<0.038	0.072	<0.040	0.019J	<0.039	<0.040	<0.040	NA NA	NA	NA	NA	NA	NA	NA	NA
Benzo[k]fluoranthene	<0.038	<0.038	<0.040	<0.038	0.012J	<0.040	0.016J	<0.039	0.040	<0.040	9 NA	NA	NA	NA	NA	NA	1,700	9
Chrysene	0.012J	<0.038	<0.040	<0.038	0.16	<0.040	0.035J	0.011J	0.19	0.027J	88 NA	NA	NA	NA	NA	NA	17,000	88
Dibenz(a,h)anthracene	<0.038	<0.038	<0.040	<0.038	0.053	<0.040	<0.040	<0.039	<0.040	<0.040	0.09 0.2	0.42	NA	0.15	0.09	NA	17	0.09
Dibenzofuran	<0.19	<0.19	<0.20	<0.19	0.74	<0.20	<0.20	<0.20	0.27	<0.20	NA NA	NA NA	NA NA	NA	NA	NA	NA 22.000	NA 2.100
Fluoranthene	<0.038 <0.038	<0.038 <0.038	<0.040 <0.040	0.0093J <0.038	0.17 0.028J	<0.040 <0.040	0.028J <0.040	0.014J <0.039	0.17 <0.040	0.023J <0.040	3,100 NA	NA NA	NA NA	NA NA	NA NA	NA NA	82,000	3,100
Fluorene Indeno[1,2,3-cd]pyrene	<0.038	<0.038	<0.040	<0.038	0.0283	<0.040	<0.040	<0.039	<0.040	<0.040	560 NA 0.9 0.9	NA 1.6	NA NA	0.9	0.9	NA NA	82,000 170	3,100
2-Methylnaphthalene	<0.038	<0.038	<0.040	0.018J	3.7	0.0097J	0.040 0.051J	0.015J	0.65	0.039J	NA NA	0.14	NA NA	NA	0.29	NA NA	NA	NA
2-Methlphenol	<0.19	<0.19	<0.20	<0.19	0.56	<0.20	<0.20	<0.20	<0.20	<0.20	15 NA	NA	NA NA	NA NA	NA	NA NA	100000	15
3 & 4 Methyl phenol	<0.19	<0.19	<0.20	<0.19	0.46	<0.20	<0.20	<0.20	<0.20	<0.20	NA NA	NA	NA NA	NA NA	NA NA	NA	NA	NA NA
Naphthalene	<0.038	<0.038	<0.040	0.011J	2.5 1,2,3,6	6 <0.040	0.027J	0.0069J	0.32 2,3,6	0.018J	1.8 0.04	0.2	NA	NA	0.17	NA	1.8	170
Phenanthrene	<0.038	<0.038	<0.040	0.021J	0.97	0.0097J	0.057	0.022J	1.2 1,6	0.087	0.99 1.3	2.5	NA	2.5	0.99	NA	NA	NA
Phenol	<0.19	<0.19	<0.20	<0.19	0.41	<0.20	<0.20	<0.20	<0.20	<0.20	100 NA	NA	NA	NA	NA	NA	61000	100
Pyrene	0.0083J	<0.038	<0.040	0.0099J	0.19	<0.040	0.034J	0.019J	0.22	0.024J	2,300 NA	NA NA	NA	NA	NA	NA	61,000	2,300
PCBs (mg/kg)																		
No Analytes Detected											NA NA	NA	NA	NA	NA	NA	NA	NA
Pesticides (mg/kg) Not Analyzed in this sample suite.											NA NA	NA	NA	NA	NA	NA	NA	NA
Herbicides (mg/kg)											IVA IVA	IVA	IVA	IVA	IVA	I IVA	IVA	IVA
Not Analyzed in this sample suite.											NA NA	NA	NA	NA	NA	NA	NA	NA
Inorganics (mg/kg)													·					
Antimony	<1.1	<1.2	<1.2	<1.1	<1.0	<1.1	<1.2	<1.1	<1.1	<1.2	5 NA	NA	NA	NA	NA	NA	82	31
Arsenic	9.5	6.4	8.1	7.4	11	5.1	14 1,4,7	9.9	11	7.1	11.3 NA	NA	13.0	NA	NA	11.3	61	750
Barium	92	53	74	120	84	120	280	1100	150	85	1,500 NA	NA NA	NA NA	NA NA	NA NA	NA NA	14,000	5,500
Beryllium Cadmium	0.52 0.097J	0.43 0.065J	0.51 0.085J	0.52 0.12	0.32	0.42	1.0 0.14	0.74	0.56	0.49	22 NA 5.2 NA	NA NA	NA NA	NA NA	NA NA	NA NA	410 200	160 78
Chromium	19	20	21	18	13	12	30 1	17	14	16	21 NA	NA NA	NA NA	NA NA	NA NA	NA NA	690	230
Cobalt	11	6.5	7.2	8.7	2.7	9.1	15	15	4.7	5.8	20 NA	NA NA	NA NA	NA NA	NA	NA NA	12,000	4,700
Copper	16	15	18	16	9.7	14	20	15	19	23	2,900 NA	NA	NA	NA	NA	NA	8,200	2,900
Iron	21000 1,4,7	20000 1,4	,7 22000 1,4,7	21000 1,4	1,7 16000 1,4,7	7 14000	35000 1,4,7	25000 1,4,7	26000 1,4,7	19000 1,4	,7 15,000 NA	NA	15,900	NA	NA	15,000	NA	NA
Lead	21	12	13	23	45	21	31	44	41	32	107 NA	NA	NA	NA	NA	NA	700	400
Manganese	540	140	140	270	65	660 1,4,	/ /	480	110	180	630 NA	NA	636	NA	NA	630	4,100	1,600
Mercury	0.063	0.022	0.031	0.035	0.14	0.039	0.050	0.043	0.11	0.048	0.89 NA	NA	NA	NA	NA	NA	0.1	10
Nickel	14	15	19	17	7.4	10	17	16	11	14	100 NA	NA NA	NA NA	NA NA	NA	NA NA	4,100	1,600
Selenium Silver	0.86	<0.59 <0.29	0.89	0.63 <0.28	1.9 3	1.1 <0.29	1.7 1	0.83 <0.28	1.7 1	0.55J <0.30	1.3 NA NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	1,000 1,000	390 390
Thallium	<0.28	<0.29	<0.29	<0.28 <0.55	0.26	<0.29	<0.30	<0.28 <0.55	<0.29	<0.30	2.6 NA	NA NA	NA NA	NA NA	NA NA	NA NA	1,000	6.3
Vanadium	36	30	35	30	28	21	35	24	22	26	550 NA	NA	NA NA	NA NA	NA	NA	1,400	550
Zinc	58	60	56	63	32	40	54	110	61	82	5,100 NA	NA	NA	NA	NA	NA	61,000	23,000
TCLP Metals (mg/L)																		
Arsenic	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060								0.006
Antimony	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050								0.05
Barium	0.27J	0.15J	0.27J	0.58	0.33J	0.61	0.78	1.2	0.57	0.52								2
Beryllium	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040 <0.0050	<0.0040	<0.0040	<0.0040	<0.0040								0.004
Cadmium Chromium	<0.0050 <0.025	<0.0050 <0.025	<0.0050 <0.025	<0.0050 <0.025	<0.0050 <0.025	<0.0050 <0.025	<0.0050 <0.025	<0.0050 <0.025	<0.0050 <0.025	<0.0050 <0.025								0.005
Cobalt	0.012J	0.012J	0.018J	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025								1
Copper	0.012J	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	0.010J								0.65
Iron	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	0.23J	<0.40								5
Lead	<0.0075	<0.0075	<0.0075	<0.0075	<0.0075	<0.0075	<0.0075	<0.0075	<0.0075	<0.0075								0.0075
Manganese	0.85 10	0.10	0.74 10	0.25	0.84 10	<0.025	<0.025	0.065	0.026	0.080								0.15
Mercury	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020								0.002
Nickel	0.019J	0.027	0.024J	0.014J	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025								0.1
Selenium	<0.050	<0.050	<0.050	0.020J	<0.050	0.021J	<0.050	<0.050	0.020J	0.020J								0.05
Silver	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025							<u></u>	0.05
Thallium Vanadium	<0.0020 <0.025	<0.0020 <0.025	<0.0020 <0.025	<0.0020 <0.025	<0.0020 <0.025	<0.0020 <0.025	<0.0020 <0.025	<0.0020 <0.025	<0.0020 <0.025	<0.0020 <0.025								0.002 0.049
Zinc	0.053J	0.027J	0.025J	0.025 0.035J	0.037J	<0.025	<0.50	0.029J	0.023 0.022J	0.067J								5
SPLP Metals (mg/L)	0.0333	1 0.02/3	0.0233	. 5.555	0.0377		10.50	0.0237	1 0.0223	3.0073				1				
Manganese	0.14	NA	0.099	0.075	0.44	NA NA	NA	NA	NA	NA								0.15
				•														
Notes:																		

NA= Not available

ND= Not detected above laboratory reporting limit NT= Not tested

mg/kg= Milligrams per kilogram mg/L= Milligrams per liter

TCLP= Toxicity Characteristic Leaching Procedure

SPLP= Synthetic Precipitation Leaching Procedure

MAC= Maximum Allowable Concentrations of Chemical Constituents in Uncontaminated Soil Used as Fill Material at Regulated Fill Operations (35 Ill. Adm. Code 110. Subpart F). **TACO** = Tiered Approach to Corrective Action Objectives

Applicable Screening Criteria

¹ Exceeds the most stringent MAC value (35 IAC (1100.605(e))

² Exceeds the Chicago Corporate Limits MAC values ³ Exceeds the Within a Populated Area in a MSA (excluding Chicago) MAC value

⁴ Exceeds the Within a MSA County MAC value ⁵ Exceeds the Within a Populated Area in a non-MSA County MAC value

⁶ Exceeds the Outside a Populated Area MAC value ⁷ Exceeds the Within a non-MSA County MAC value

⁸ Exceeds the Most Stringent TACO Tier 1 Construction Worker Exposure Objective

⁹ Exceeds the Most Stringent TACO Tier 1 Residential Objective ¹⁰ Exceeds the TACO Tier 1 Soil to Groundwater TCLP/SPLP Objective

¹¹ Exceeds the Most Stringent TACO Tier 1 Class 1 Groundwater Objective

*= Laboratory Control Sample (LCS) or Laboratory Control Sample Duplicate (LCSD) is outside acceptance limits.

^= Instrument related QC is outside acceptance limits.

B= Compound was found in the blank and sample.

J= Result is less than the reporting limit but greater than or equal to the method detection limit, concentration reported as an approximate value.

F1= Matrix spike or matrix spike duplicate recovery is outside acceptance limits.

F2= Matrix spike or matrix spike duplicate relative percent difference exceeds control limits.

CCDD = Clean Construction Demolition Debris

Unrestrictive- metals exceed Totals but not TCLP and SPLP; or metals exceed TCLP or SPLP but not both

CCDD Eligible- metals exceed TCLP and SPLP but not Totals

CCDD Eligible- VOCs or SVOCs exceedances; limited CCDD disposal availability Greater than TACO Construction Worker Exposure Objectives

Non-special Waste- Greater than all MACs, Greater than most stringent TACO Tier 1 Criteria; Metals exceed Totals, TCLP, and SPLP; Metals exceed TACO Residential and not considered background; pH outside of the

acceptable range (6.25 to 9.0)

Table 4-2. Detected Soil Analytes and Comparison to Applicable Criteria FAS 2882 (IL 37)

Benton,	Franklin	County, Illino	is
	, ,		

Benton, Franklin County, Illin				•			1	T											
Sample ID	3160-21-5 (0-2.5')	3160-21-6 (0-2.5')		3160-21-8 (0-2.5')	3160-21-9 (0-2.5')	3160-21-10 (0-2.5')	3160-23-1 (0-4.5')	3160-23-2 (0-4.5')	3160-25-1 (0-4')	3160-25-2 (0-4')			Maximum Allo	wable Concentra	ations				nediation Objectives
Sample Depth (ft.)	0-2.5	0-2.5	0-2.5	0-2.5	0-2.5	0-2.5	0-4.5	0-4.5	0-4	0-4	Most String and				VA/Jah.im			Most Stringent	Most Stringent TACO Ti
Sample Date	11/02/2017	11/02/2017	11/02/2017	11/02/2017	11/02/2017	11/02/2017	10/31/2017	10/31/2017	10/31/2017	10/31/2017	Most Stringent Maximum	Within Chicago	Within a Populated		Within a			TACO Tier 1	1 Residential Objective
Sample nu	7.8	5.5	7.6	6.4	0 7.9	7.6	6.2	8.1	4.8	4.8	Allowable	Corporate	Area in a MSA	Within a MSA	Populated Area in a non-MSA	Outside a	Within a non-	Construction Worker Exposure	and Groundwater
Sample pH Matrix	7.0	5.5	7.0	0.4	7.9	7.0	Soil	Soil	Soil	Soil	Concentration ¹	Limits ²	(excluding Chicago) ³	County 4	County 5		MSA County 7	Objective 8	Protection (TCLP/SPLP)
VOCs (mg/kg)							3011	3011	3011	3011	Concentration	Lillits	(excluding chicago)	County	County	Populateu Alea	WISA County	Objective	Protection (TCLP/SPLP)
Acetone	<0.019	0.041	<0.019	0.044	0.059	0.043	0.052	<0.017	0.039	0.024	25	NA	NA	NA	NA	NA	NA	100,000	100,000
SVOCs (mg/kg)	101013	1 0.0.2	101013	0.01.1	0.005		1 0.002	(0.017)	1 0.005	0.02.1		1	1		101			200,000	
Anthracene	<0.041	<0.041	0.015J	<0.039	0.013J	0.025J	<0.036	0.046	<0.040	<0.038	12,000	NA	NA	NA	NA	NA	NA	610,000	23,000
Benzo[a]anthracene	0.0071J	<0.041	0.032J	0.0058J	0.026J	0.047	0.0058J	0.086	<0.040	<0.038	0.9	1.1	1.8	NA	0.9	0.9	NA	170	0.9
Benzo[a]pyrene	<0.041	<0.041	0.053	<0.039	0.045	0.060	0.015J	0.087	<0.040	<0.038	0.09	1.3	2.1	NA	0.98	0.09	NA	17	0.09
Benzo[b]fluoranthene	<0.041	<0.041	0.061	<0.039	0.047	0.065	0.0099J	0.091	<0.040	<0.038	0.9	1.5	2.1	NA	0.9	0.9	NA	170	0.9
Benzo[g,h,i]perylene	<0.041	<0.041	0.047	<0.039	0.038	0.048	<0.036	0.074	<0.040	<0.038	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo[k]fluoranthene	<0.041	<0.041	0.014J	<0.039	<0.038	0.013J	<0.036	0.015J	<0.040	<0.038	9	NA	NA	NA	NA	NA	NA	1,700	9
Chrysene	<0.041	<0.041	0.031J	<0.039	0.024J	0.046	0.0098J	0.086	<0.040	<0.038	88	NA	NA	NA	NA	NA	NA	17,000	88
Dibenz(a,h)anthracene	<0.041	<0.041	0.043	<0.039	<0.038	0.042	<0.036	0.046	<0.040	<0.038	0.09	0.2	0.42	NA	0.15	0.09	NA	17	0.09
Dibenzofuran	<0.21	<0.21	<0.21	<0.20	<0.19	0.063J	<0.18	0.13J	<0.20	<0.19	NA 3.100	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		2.400
Fluoranthene	0.0082J	<0.041	0.049	<0.039	0.030J	0.060	0.011J	0.10	<0.040	<0.038	3,100	NA 0.0	NA 1.6	NA NA	NA 0.0	NA 0.0	NA NA	82,000	3,100
Indeno[1,2,3-cd]pyrene	<0.041 0.016J	<0.041 <0.083	0.044 0.055J	<0.039 <0.079	0.034J 0.071J	0.043	<0.036 0.0091J	0.054	<0.040 3 <0.081	<0.038 <0.077	0.9 NA	0.9 NA	1.6 0.14	NA NA	0.9 NA	0.9 0.29	NA NA	170 NA	0.9 NA
2-Methylnaphthalene Naphthalene	<0.041	<0.083	0.026J	<0.079	0.033J	0.13	2 <0.036	0.12	2 <0.040	<0.077	1.8	0.04	0.14	NA NA	NA NA	0.29	NA NA	1.8	170
Phenanthrene	0.021J	<0.041	0.0267	0.0082J	0.099	0.039	0.017J	0.34	<0.040	<0.038	0.99	1.3	2.5	NA NA	2.5	0.17	NA NA	NA	NA
Pyrene	0.0093J	<0.041	0.050	0.00823	0.034J	0.066	0.010J	0.12	<0.040	<0.038	2,300	NA	NA	NA NA	NA	NA	NA NA	61,000	2,300
PCBs (mg/kg)		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3335	3,000					1 372.75						1	1			
Not Analyzed in this sample suite.											NA	NA	NA	NA	NA	NA	NA	NA	NA
Pesticides (mg/kg)													·	· · · · · · · · · · · · · · · · · · ·					
No Analytes Detected											NA	NA	NA	NA	NA	NA	NA	NA	NA
Herbicides (mg/kg)																			
Not Analyzed in this sample suite.											NA	NA	NA	NA	NA	NA	NA	NA	NA
Inorganics (mg/kg)				1 1				1				1			T	I		T	
Antimony	<1.1	<1.1	<1.0	<1.1	0.26J	<1.2	<1.1	<1.2	<1.1	<0.98	5	NA	NA	NA	NA	NA	NA	82	31
Arsenic	9.5	11	7.0	7.2	7.4	8.4	6.7	5.8	7.8	9.2	11.3	NA	NA NA	13.0	NA	NA	11.3	61	750
Barium	98	74	130	110	200 0.58	79	0.46	130	70	100	1,500	NA NA	NA NA	NA	NA NA	NA NA	NA NA	14,000	5,500
Beryllium Cadmium	0.73	0.61 <0.11	0.57	0.83 <0.11	0.58	0.61	0.46	0.50	0.52	0.46 0.089J	5.2	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	410 200	160 78
Chromium	0.18	<0.11	13	18	0.15	0.19	12	14	20	0.0893	21	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	690	230
Cobalt	7 9	5 9	9.9	19	11	9.0	5.8	8.2	11	6.7	20	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	12,000	4,700
Copper	15	16	12	11	14	19	9.7	19	16	16	2,900	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	8,200	2,900
Iron	20000 1,4,	7 28000 1,	4,7 17000 1,4,7	22000 1,4,7	18000 1	,4,7 19000 1,4,7	7 12000	12000	20000 1,4,7	21000 1,4,	7 15,000	NA	NA	15,900	NA	NA	15,000	NA	NA NA
Lead	60	19	21	24	45	45	19	100	17	14	107	NA	NA	NA	NA	NA	NA NA	700	400
Manganese	440	250	540	460	540	480	280	320	560	220	630	NA	NA	636	NA	NA	630	4,100	1,600
Mercury	0.034	0.025	0.025	0.013J	0.030	0.026	0.031	0.046	0.048	0.023	0.89	NA	NA	NA	NA	NA	NA	0.1	10
Nickel	15	14	12	16	12	14	12	16	16	15	100	NA	NA	NA	NA	NA	NA	4,100	1,600
Selenium	0.40J	<0.54	0.30J	<0.57	0.41J	0.38J	0.41J	0.67	0.93	0.66	1.3	NA	NA	NA	NA	NA	NA	1,000	390
Silver	<0.28	<0.27	<0.25	<0.28	<0.26	<0.30	<0.26	<0.30	<0.28	<0.25	4.4	NA	NA	NA	NA	NA	NA	1,000	390
Thallium	<0.57	<0.54	<0.50	<0.57	<0.51	<0.61	<0.53	<0.60	<0.56	<0.49	2.6	NA	NA	NA	NA	NA	NA	160	6.3
Vanadium	27	35	23	24	23	28	20	18	31	32	550	NA	NA	NA	NA	NA	NA	1,400	550
ZINC	66	55	45	47	60	81	180	91	110	55	5,100	NA	NA	NA	NA	NA	NA	61,000	23,000
TCLP Metals (mg/L) Arsenic	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060									0.006
Antimony	<0.050	<0.050	<0.050	<0.050	<0.050	<0.0060	<0.0060	<0.0060	<0.0060	<0.050									0.006
Barium	0.34J	0.39J	0.50	0.72	0.39J	0.38J	0.30J	0.85	0.35J	0.33J									2
Beryllium	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040									0.004
Cadmium	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0020J	0.0031J	<0.0050									0.005
Chromium	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025									0.1
Cobalt	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025									1
Copper	0.019J	0.041	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	0.013J	<0.025									0.65
Iron	0.87	<0.40	0.35J	0.74	0.61	0.25J	0.22J	<0.40	<0.40	<0.40									5
Lead	<0.0075	<0.0075	<0.0075	<0.0075	<0.0075	<0.0075	<0.0075	<0.0075	<0.0075	<0.0075									0.0075
Manganese	0.027	0.035	0.035	0.055	0.018J	0.096	0.057	0.077	4.8 10	0.018J									0.15
Mercury	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020									0.002
Nickel	<0.025	0.012J	<0.025	0.020J	<0.025	<0.025	<0.025	<0.025	0.032	<0.025									0.1
Selenium	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050									0.05
Silver	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025									0.05
Thallium	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020									0.002
Vanadium	<0.025 0.046J	<0.025 0.042 J	<0.025 <0.50	<0.025 0.024J	<0.025 <0.50	<0.025 0.047J	<0.025 0.35J	<0.025 0.058J	<0.025 0.25J	<0.025 <0.50									0.049
Zinc SPLP Metals (mg/L)	U.U40J	U.U42J	\0.50	U.UZ4J	<u.5u< td=""><td>0.04/J</td><td>1 0.331</td><td>1 0.0201</td><td>U.23J</td><td><u.3u< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></u.3u<></td></u.5u<>	0.04/J	1 0.331	1 0.0201	U.23J	<u.3u< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></u.3u<>									
Manganese	NA	l NA	NA I	NA	NA	l NA	l NA	NA NA	0.43 10	NA	–								0.15
manganese	I IVA	I IVA	INA	INA	IVA	INA	INU	I IVA	0.43 10	NA NA	1				1	1	1	1	0.13
Notes:																			

NA= Not available ND= Not detected above laboratory reporting limit

NT= Not tested

mg/kg= Milligrams per kilogram mg/L= Milligrams per liter

SPLP= Synthetic Precipitation Leaching Procedure

TACO = Tiered Approach to Corrective Action Objectives

TCLP= Toxicity Characteristic Leaching Procedure

*= Laboratory Control Sample (LCS) or Laboratory Control Sample Duplicate (LCSD) is outside acceptance limits.

^= Instrument related QC is outside acceptance limits. **B=** Compound was found in the blank and sample.

J= Result is less than the reporting limit but greater than or equal to the method detection limit, concentration reported as an approximate value.

F1= Matrix spike or matrix spike duplicate recovery is outside acceptance limits.

F2= Matrix spike or matrix spike duplicate relative percent difference exceeds control limits.

CCDD = Clean Construction Demolition Debris MAC= Maximum Allowable Concentrations of Chemical Constituents in Uncontaminated Soil Used as Fill Material at Regulated Fill Operations (35 Ill. Adm. Code 110. Subpart F).

Applicable Screening Criteria

¹ Exceeds the most stringent MAC value (35 IAC (1100.605(e))

² Exceeds the Chicago Corporate Limits MAC values

³ Exceeds the Within a Populated Area in a MSA (excluding Chicago) MAC value

⁴ Exceeds the Within a MSA County MAC value ⁵ Exceeds the Within a Populated Area in a non-MSA County MAC value

⁶ Exceeds the Outside a Populated Area MAC value

⁷ Exceeds the Within a non-MSA County MAC value ⁸ Exceeds the Most Stringent TACO Tier 1 Construction Worker Exposure Objective

⁹ Exceeds the Most Stringent TACO Tier 1 Residential Objective

¹⁰ Exceeds the TACO Tier 1 Soil to Groundwater TCLP/SPLP Objective

¹¹ Exceeds the Most Stringent TACO Tier 1 Class 1 Groundwater Objective

Unrestrictive- metals exceed Totals but not TCLP and SPLP; or metals exceed TCLP or SPLP but not both

CCDD Eligible- metals exceed TCLP and SPLP but not Totals

CCDD Eligible- VOCs or SVOCs exceedances; limited CCDD disposal availability

Greater than TACO Construction Worker Exposure Objectives Non-special Waste- Greater than all MACs, Greater than most stringent TACO Tier 1 Criteria; Metals exceed Totals, TCLP, and SPLP; Metals exceed TACO Residential and not considered background; pH outside of the acceptable range (6.25 to 9.0)

Table 4-2. Detected Soil Analytes and Comparison to Applicable Criteria

Benton, Franklin County, Illi		T		_		1	_	1											
Sample ID	3160-32-6 (0-3.5')	3160-32-7 (0-3.5')	3160-36-1 (0-3')	3160-36-2 (0-3	· · · · · · · · · · · · · · · · · · ·	3160-36-4 (0-3')	3160-36-5 (0-3')	3160-36-6 (0-3')	3160-36-7 (0-3')	3160-36-8 (0-3')			Maximum Allov	wable Concent	rations				nediation Objectives
Sample Depth (ft.)	0-3.5	0-3.5	0-3	0-3	0-3	0-3	0-3	0-3	0-3	0-3	Most Stringent				Within a			Most Stringent	Most Stringent TACO Tio
Sample Date	10/31/2017	11/21/2017	11/02/2017	11/02/2017	11/02/2017	11/02/2017	11/02/2017	11/02/2017	11/02/2017 0	11/02/2017 0	Most Stringent Maximum	Within Chicago	Within a Populated Area		Within a Populated Area			TACO Tier 1 Construction	1 Residential Objective
Sample pH	4.6	5.4	7.0	5.0	4.6	4.6	4.6	4.3	4.8	7.9	Allowable	Corporate	•	Within a MSA		Outside a	Within a non-		and Groundwater
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Concentration ¹	Limits ²	Chicago) ³	County 4	County 5	Populated Area	_	Objective ⁸	Protection (TCLP/SPLP)
VOCs (mg/kg)	00	55	00				33		5511	0011	Concentration	Lillies	emeago _j	county	County	i opulatea Alea	Wish county	Objective	Trocedion (Tell / 51 Li /
Acetone	0.066	<0.020	<0.021	<0.019	0.028	<0.020	<0.021	<0.022	0.036	<0.016	25	NA	NA	NA	NA	NA	NA	100,000	100,000
SVOCs (mg/kg)	-			•	•			•	1	•		-		1	-		1		
Anthracene	0.0076J	<0.040	0.0085J	<0.040		<0.042	<0.040	<0.039	<0.041	0.013J	12,000	NA	NA	NA	NA	NA	NA	610,000	23,000
Benzo[a]anthracene	0.018J	0.0054J	0.012J	0.0068J		<0.042	<0.040	<0.039	<0.041	0.042	0.9	1.1	1.8	NA	0.9	0.9	NA	170	0.9
Benzo[a]pyrene	0.0089J	<0.040	0.019J	<0.040		<0.042	<0.040	<0.039	<0.041	0.064	0.09	1.3	2.1	NA	0.98	0.09	NA	17	0.09
Benzo[b]fluoranthene	0.013J	<0.040	0.016J	<0.040		<0.042	<0.040	<0.039	<0.041	0.076	0.9	1.5	2.1	NA	0.9	0.9	NA	170	0.9
Benzo[g,h,i]perylene Benzo[k]fluoranthene	<0.040 <0.040	<0.040 <0.040	0.017J <0.042	<0.040 <0.040		<0.042 <0.042	<0.040 <0.040	<0.039 <0.039	<0.041 <0.041	0.049 0.017J	NA Q	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA 1,700	NA o
Chrysene	0.020J	<0.040	0.014J	<0.040		<0.042	<0.040	<0.039	<0.041	0.0173	88	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	17,000	88
Fluoranthene	0.017J	<0.040	0.025J	0.0088J		<0.042	<0.040	<0.039	<0.041	0.063	3,100	NA	NA	NA	NA NA	NA	NA	82,000	3,100
Indeno[1,2,3-cd]pyrene	<0.040	<0.040	<0.042	<0.040		<0.042	<0.040	<0.039	<0.041	0.046	0.9	0.9	1.6	NA	0.9	0.9	NA	170	0.9
2-Methylnaphthalene	0.033J	0.021J	<0.085	<0.080		<0.086	<0.082	<0.080	<0.083	0.058J	NA	NA	0.14	NA	NA	0.29	NA	NA	NA
Naphthalene	0.017J	0.0094J	<0.042	<0.040	<0.039	<0.042	<0.040	<0.039	<0.041	0.026J	1.8	0.04	0.2	NA	NA	0.17	NA	1.8	170
Phenanthrene	0.082	0.027J	0.026J	0.014J		<0.042	<0.040	<0.039	<0.041	0.097	0.99	1.3	2.5	NA	2.5	0.99	NA	NA	NA
Pyrene	0.023J	<0.040	0.049	0.0095J	<0.039	<0.042	<0.040	<0.039	<0.041	0.069	2,300	NA	NA	NA	NA	NA	NA	61,000	2,300
PCBs (mg/kg)											A1.A	814	NI A	81.6	A1A	818	81.8	A1.A	ALA
No Analytes Detected											NA	NA	NA	NA	NA	NA	NA	NA	NA
Pesticides (mg/kg) Not Analyzed in this sample suite	<u> </u>										NA	NA	NA	NA	NA	NA	NA	NA	NA
Herbicides (mg/kg)	••										IVA	IVA	14/7	IN/A	INA	IVA	NA	IVA	IVA
Not Analyzed in this sample suite	2.										NA	NA	NA	NA	NA	NA	NA	NA	NA
Inorganics (mg/kg)											_	,		1		1	I	1	<u> </u>
Antimony	<1.1	<1.2	0.29J	<1.1	<1.1	0.38J	<1.2	<1.1	<1.2	<1.1	5	NA	NA	NA	NA	NA	NA	82	31
Arsenic	9.1	10	7.0	8.8	0.0	9.3	7.2	8.5	7.9	8.1	11.3	NA	NA	13.0	NA	NA	11.3	61	750
Barium	83	79	110	90		100	120	52	51	300	1,500	NA	NA	NA	NA	NA	NA	14,000	5,500
Beryllium	0.44	0.36	0.53	0.53		0.46	0.51	0.52	0.53	0.74	22	NA	NA NA	NA	NA	NA	NA	410	160
Chromium	0.13	0.022J	0.066J	<0.11		<0.12	0.074J	<0.11	0.024J	0.55	5.2	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	200	78
Chromium Cobalt	5.4	4.3	12	16 8.7		16 8.1	6.5	18 5.0	4.7	11 27	1 20	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	690 12,000	230 4,700
Copper	16	14	9.5	13		10	15	14	14	12	2,900	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	8,200	2,900
Iron	21000 1,4,7	25000 1,4,7	15000	20000	7.1-1	19000 1,4		22000 1,4,		19000 1,4,	,7 15,000	NA	NA	15,900	NA	NA	15,000	NA	NA NA
Lead	21	16	33	18		23	13	13	14	47	107	NA	NA	NA	NA	NA	NA	700	400
Manganese	190	180	910 1,4,7	7 430	140	820 1,4		120	140	3700 1,4,7,	<mark>,9</mark> 630	NA	NA	636	NA	NA	630	4,100	1,600
Mercury	0.035	0.022	0.040	0.041		0.034	0.016J	0.043	0.011J	0.037	0.89	NA	NA	NA	NA	NA	NA	0.1	10
Nickel	11	15	9.8	13		10	16	12	12	21	100	NA	NA	NA	NA	NA	NA	4,100	1,600
Selenium	0.60	0.53J	0.45J	<0.57		0.92	0.62	0.93	0.63	1.2	1.3	NA	NA NA	NA	NA NA	NA	NA	1,000	390
Silver	<0.27	<0.31	<0.26	<0.28 <0.57		<0.30	<0.31	<0.27 <0.55	<0.30	<0.28	4.4	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	1,000	390
Thallium Vanadium	<0.53	<0.61	<0.53	<0.57		< 0.60	<0.61 30	<0.55 31	<0.61 31	1.1	2.6 550	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	160 1,400	6.3 550
Zinc	62	59	50	47		40	76	53	53	60	5,100	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	61,000	23,000
TCLP Metals (mg/L)		<u>, 331 </u>		-47		-10			1 33		5,200					100	7.07	02,000	
Arsenic	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060									0.006
Antimony	<0.050	<0.050	<0.050	<0.050		<0.050	<0.050	<0.050	<0.050	<0.050									0.05
Barium	0.34J	0.37J	0.30J	0.52		0.45J	0.40J	0.22J	0.21J	0.61									2
Beryllium	<0.0040	<0.0040	<0.0040	<0.0040		<0.0040	<0.0040	<0.0040	<0.0040	<0.0040									0.004
Changeine	<0.0050	<0.0050	<0.0050	<0.0050		<0.0050	0.0025J	<0.0050	<0.0050	<0.0050									0.005
Cohalt	<0.025	<0.025	<0.025	<0.025		<0.025	<0.025	<0.025	<0.025	<0.025									0.1
Copper	0.012J <0.025	0.014J 0.021J	<0.025 <0.025	<0.025 <0.025		<0.025 <0.025	0.017J 0.014J	0.013J 0.024J	0.011J <0.025	<0.025 0.012J									0.65
Copper	<0.025	0.0213	<0.025 0.45	<0.025		0.025 0.29J	0.0143	0.0243	<0.025 0.71	0.0123									0.65
Lead	<0.0075	<0.0075	<0.0075	<0.40		<0.0075	<0.0075	<0.0075	<0.0075	<0.0075									0.0075
Manganese	0.99 10	1.7 10	0.023J	0.24		0.15	0.28 10	0.21 1	0 0.23 10	0.011J									0.15
Mercury	<0.00020	<0.00020	<0.00020	<0.00020		<0.00020	<0.00020	<0.00020	<0.00020	<0.00020									0.002
Nickel	0.011J	0.048	<0.025	0.014J	0.021J	0.022J	0.029	0.028	0.024J	<0.025									0.1
Selenium	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050									0.05
Silver	<0.025	<0.025	<0.025	<0.025		<0.025	<0.025	<0.025	<0.025	<0.025									0.05
Thallium	<0.0020	<0.0020	<0.0020	<0.0020		<0.0020	<0.0020	<0.0020	<0.0020	<0.0020									0.002
Vanadium	<0.025	<0.025	<0.025	<0.025		<0.025	<0.025	<0.025	<0.025	<0.025									0.049
Zinc	0.14J	0.22J	<0.50	0.036J	0.025J	0.034J	0.53	0.080J	0.039J	0.045J									5
SPLP Metals (mg/L)	0.17	0.21 40	N NA	0.040	0.004	NA	0.073	0.070	0.20 10	NIA	1								0.15
Manganese	0.17 10	0.2 10) NA	0.049	0.084	INA	0.073	0.078	0.26 10	NA									0.15

NA= Not available

ND= Not detected above laboratory reporting limit

NT= Not tested mg/kg= Milligrams per kilogram

mg/L= Milligrams per liter

TCLP= Toxicity Characteristic Leaching Procedure **SPLP**= Synthetic Precipitation Leaching Procedure *= Laboratory Control Sample (LCS) or Laboratory Control Sample Duplicate (LCSD) is outside acceptance limits.

F1= Matrix spike or matrix spike duplicate recovery is outside acceptance limits.

F2= Matrix spike or matrix spike duplicate relative percent difference exceeds control limits.

CCDD = Clean Construction Demolition Debris

MAC= Maximum Allowable Concentrations of Chemical Constituents in Uncontaminated Soil Used as Fill Material at Regulated Fill Operations (35 Ill. Adm. Code 110. Subpart F).

Applicable Screening Criteria

¹ Exceeds the most stringent MAC value (35 IAC (1100.605(e))

² Exceeds the Chicago Corporate Limits MAC values

³ Exceeds the Within a Populated Area in a MSA (excluding Chicago) MAC value ⁴ Exceeds the Within a MSA County MAC value

⁵ Exceeds the Within a Populated Area in a non-MSA County MAC value

⁶ Exceeds the Outside a Populated Area MAC value ⁷ Exceeds the Within a non-MSA County MAC value

⁸ Exceeds the Most Stringent TACO Tier 1 Construction Worker Exposure Objective

⁹ Exceeds the Most Stringent TACO Tier 1 Residential Objective

¹⁰ Exceeds the TACO Tier 1 Soil to Groundwater TCLP/SPLP Objective

¹¹ Exceeds the Most Stringent TACO Tier 1 Class 1 Groundwater Objective

^= Instrument related QC is outside acceptance limits.

B= Compound was found in the blank and sample.

J= Result is less than the reporting limit but greater than or equal to the method detection limit, concentration reported as an approximate value.

TACO = Tiered Approach to Corrective Action Objectives

Unrestrictive- metals exceed Totals but not TCLP and SPLP; or metals exceed TCLP or SPLP but not both

CCDD Eligible- metals exceed TCLP and SPLP but not Totals CCDD Eligible- VOCs or SVOCs exceedances; limited CCDD disposal availability

Greater than TACO Construction Worker Exposure Objectives

Non-special Waste- Greater than all MACs, Greater than most stringent TACO Tier 1 Criteria; Metals exceed Totals, TCLP, and SPLP; Metals exceed TACO Residential and not considered background; pH outside of the acceptable range (6.25 to 9.0)

Table 4-2. Detected Soil Analytes and Comparison to Applicable Criteria

FAS 2882 (IL 37) Benton, Franklin County, Illinois

Benton, Franklin County, Illin Sample ID	3160-36-9 (0-3')	3160-36-10 (0-3')	3160-36-11 (0-3')	3160-45-1 (0-5')	3160-45-1 (5-6')	3160-45-2 (0-5')	3160-45-2 (5-6')	3160-45-3 (0-5')	3160-45-3 (5-6')	3160-45-4 (0-5')			Maximum Allo	wable Concent	rations			TACO Rem	nediation Objectives
Sample Depth (ft.)	0-3	0-3	0-3	0-5	5-6	0-5	5-6	0-5	5-6	0-5			I I I I I I I I I I I I I I I I I I I	- Concent	1			Most Stringent	
Sample Date	11/02/2017	11/02/2017	11/02/2017	10/31/2017	10/31/2017	10/31/2017	10/31/2017	10/31/2017	10/31/2017	10/31/2017	Most Stringent				Within a			TACO Tier 1	Most Stringent TACO Tier
PID	0	0	0	0	0	0	0	0	0	0	Maximum	Within Chicago	Within a Populated Area		Populated Area			Construction	1 Residential Objective ⁹
Sample pH	8.7	6.6	5.3	8.0	7.8	7.7	7.5	8.1	7.7	6.3	Allowable	Corporate	in a MSA (excluding	Within a MSA	in a non-MSA	Outside a	Within a non-	Worker Exposure	and Groundwater
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Concentration ¹	Limits ²	Chicago) ³	County 4	County ⁵	Populated Area	⁶ MSA County ⁷	Objective ⁸	Protection (TCLP/SPLP) 10
VOCs (mg/kg)		1	1 1	1 1					1	· · · · · · · · · · · · · · · · · · ·								1	
Acetone	<0.016	<0.018	<0.017	0.030	0.074	0.019	0.025	0.054	<0.022	<0.017	25	NA	NA	NA	NA	NA	NA	100,000	100,000
SVOCs (mg/kg)	0.0401	1 40 020	10.044	-0.040	10.040	10,000	.0.020	-0.026	1 .0 040	-0.040		0.00	0.07	NIA.	NIA.	0.12	NIA .	NIA.	NIA I
Acenaphthene	0.010J 0.0090J	<0.039 <0.039	<0.041 <0.041	<0.040 <0.040	<0.040 <0.040	<0.039 <0.039	<0.039 <0.039	<0.036 <0.036	<0.040 <0.040	<0.040 <0.040	570 NA	0.09	0.07 NA	NA NA	NA NA	0.13	NA NA	NA 120,000	NA 570
Acenaphthylene Anthracene	0.051	<0.039	<0.041	<0.040	<0.040	<0.039	<0.039	<0.036	0.011J	<0.040	12,000	NA	NA NA	NA NA	NA NA	NA	NA NA	610,000	23,000
Benzo[a]anthracene	0.15	0.0059J	<0.041	<0.040	0.0080J	<0.039	0.0064J	<0.036	0.044	<0.040	0.9	1.1	1.8	NA NA	0.9	0.9	NA NA	170	0.9
Benzo[a]pyrene	0.17 1,6	0.032J	<0.041	<0.040	0.0085J	<0.039	<0.039	<0.036	0.039	<0.040	0.09	1.3	2.1	NA	0.98	0.09	NA	17	0.09
Benzo[b]fluoranthene	0.21	<0.039	<0.041	<0.040	0.015J	<0.039	0.012J	<0.036	0.056	<0.040	0.9	1.5	2.1	NA	0.9	0.9	NA	170	0.9
Benzo[g,h,i]perylene	0.11	0.032J	<0.041	<0.040	<0.040	<0.039	<0.039	<0.036	0.024J	<0.040	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo[k]fluoranthene	0.069	<0.039	<0.041	<0.040	<0.040	<0.039	<0.039	<0.036	0.027J	<0.040	9	NA	NA	NA	NA	NA	NA	1,700	9
Chrysene	0.18	<0.039	<0.041	<0.040	<0.040	<0.039	0.011J	<0.036	0.058	<0.040	88	NA	NA	NA	NA	NA	NA	17,000	88
Dibenz(a,h)anthracene	0.054	<0.039	<0.041	<0.040	<0.040	<0.039	<0.039	<0.036	<0.040	<0.040	0.09	0.2	0.42	NA	0.15	0.09	NA	17	0.09
Dibenzofuran	0.15J	<0.20	<0.21	<0.040	<0.040	<0.039	<0.039	<0.036	<0.040	<0.040	NA 2.100	NA	NA	NA	NA	NA	NA	NA 02.000	NA 2.100
Fluoranthene Indeno[1,2,3-cd]pyrene	0.24	<0.039 <0.039	<0.041 <0.041	<0.040 <0.040	0.013 <0.040	<0.039 <0.039	0.0088J <0.039	<0.036 <0.036	0.066 0.019J	<0.040 <0.040	3,100 0.9	0.9	NA 1.6	NA NA	0.9	0.9	NA NA	82,000 170	3,100
2-Methylnaphthalene	0.095	0.010J	<0.041	<0.040	<0.040	<0.039	0.0091J	<0.036	0.019J	<0.040	NA	NA	0.14	NA NA	NA	0.29	NA NA	NA	NA
Naphthalene	0.11 2	<0.039	<0.041	<0.040	<0.040	<0.039	0.0063J	<0.036	0.016J	<0.040	1.8	0.04	0.14	NA NA	NA	0.17	NA NA	1.8	170
Phenanthrene	0.44	0.018J	<0.041	<0.040	0.012J	<0.039	0.021J	<0.036	0.069	<0.040	0.99	1.3	2.5	NA NA	2.5	0.99	NA NA	NA NA	NA NA
Pyrene	0.22	<0.039	<0.041	<0.040	0.015J	<0.039	0.011J	<0.036	0.072	<0.040	2,300	NA	NA	NA	NA	NA	NA	61,000	2,300
PCBs (mg/kg)						•		•											
No Analytes Detected											NA	NA	NA	NA	NA	NA	NA	NA	NA
Pesticides (mg/kg)												4	1					ı	
Not Analyzed in this sample suite	•										NA	NA	NA	NA	NA	NA	NA	NA	NA
Herbicides (mg/kg)											N/A	NI A	NIA	NIA.	NI A	NIA	NIA	NIA	NIA
Not Analyzed in this sample suite Inorganics (mg/kg)	•										NA NA	NA	NA	NA	NA	NA	NA	NA	NA
Antimony	<1.1	<1.1	<1.2	0.40J	<1.1	<1.2	<0.99	<1.0	<1.0	<1.1	5	NA	NA	NA	NA	NA	NA	82	31
Arsenic	10	6.7	5.9	7.5	7.2	7.4	6.8	3.3	11	4.7	11.3	NA NA	NA NA	13.0	NA	NA NA	11.3	61	750
Barium	91	120	35	81	100	86	97	92	99	190	1,500	NA	NA	NA	NA	NA	NA	14,000	5,500
Beryllium	0.63	0.45	0.44	0.65	0.62	0.53	0.54	2.0	0.59	0.83	22	NA	NA	NA	NA	NA	NA	410	160
Cadmium	0.82	0.12	0.023J	0.088J	0.15	0.084J	0.13	0.12	0.35	0.11	5.2	NA	NA	NA	NA	NA	NA	200	78
Chromium	18	17	17	17	16	16	20	13	15	14	21	NA	NA	NA	NA	NA	NA	690	230
Cobalt	7.5	5.5	3.4	9.8	13	12	12	22	1 14	9.2	20	NA	NA	NA	NA	NA	NA	12,000	4,700
Copper	25	17	10	10	12	12	11	14	22	9.8	2,900	NA	NA	NA 17.000	NA	NA	NA 17.000	8,200	2,900
Iron	18000 1,4,7	19000 1,4,7	7 19000 1,4,7	20000 1,4,7	18000 1,4,7	18000 1,4,7	17000 1,4,7	50000 1,4,	7 24000 1,4,7	13000	15,000 107	NA NA	NA NA	15,900 NA	NA NA	NA NA	15,000	NA 700	NA 400
Lead Manganese	250 1 410	220	24	400	880 14.7	540	530	660 1.4.	.7 770 1.4.7	280	630	NA NA	NA NA	636	NA NA	NA NA	NA 630	4,100	1,600
Mercury	0.039	0.011J	0.016J	0.023	0.039	0.061	0.038	0.030	0.058	0.016J	0.89	NA NA	NA NA	NA	NA NA	NA NA	NA	0.1	10
Nickel	14	12	7.3	13	18	15	15	31	26	13	100	NA	NA NA	NA	NA	NA	NA NA	4,100	1,600
Selenium	1.0	0.39J	0.52J	0.55J	0.61	0.37J	0.69	0.69	0.69	0.79	1.3	NA	NA	NA	NA	NA	NA	1,000	390
Silver	<0.28	<0.28	<0.30	<0.29	<0.27	<0.31	<0.25	<0.25	<0.25	<0.27	4.4	NA	NA	NA	NA	NA	NA	1,000	390
Thallium	<0.55	<0.55	<0.59	<0.57	<0.55	<0.61	<0.49	<0.50	<0.51	<0.55	2.6	NA	NA	NA	NA	NA	NA	160	6.3
Vanadium	21	23	29	29	23	32	24	19	17	25	550	NA	NA	NA	NA	NA	NA	1,400	550
Zinc	180	66	27	38	48	45	51	59	97	38	5,100	NA	NA	NA	NA	NA	NA	61,000	23,000
TCLP Metals (mg/L)	40,0000	40,0000	-0.00col I	ا ممدما	40 00C0	40,0000	40,0000	40 00C0	40,0000	-0.0000		**************************************			1	- Control of the Cont			0.000
Arsenic	<0.0060 <0.050	<0.0060 <0.050	<0.0060 <0.050	<0.0060 <0.050	<0.0060 <0.050	<0.0060 <0.050	<0.0060 <0.050	<0.0060 <0.050	<0.0060 <0.050	<0.0060 <0.050									0.006
Antimony Barium	<0.050 0.47J	<0.050 0.34J	<0.050 0.21J	<0.050 1.1	<0.050 0.87	<0.050 0.31J	<0.050 1.0	<0.050 0.35J	<0.050 0.74	<0.050 1.3									0.05
Beryllium	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040									0.004
Cadmium	0.0036J	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050									0.005
Chromium	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025									0.1
Cobalt	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025									1
Copper	0.040	0.042	0.011J	<0.025	0.020J	<0.025	0.022J	<0.025	<0.025	<0.025									0.65
Iron	0.30J	0.65	0.20J	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40									5
Lead	0.019 10	<0.0075	<0.0075	<0.0075	<0.0075	<0.0075	<0.0075	<0.0075	<0.0075	<0.0075									0.0075
Manganese	0.038 10	0.041	0.054	0.019J	0.031	0.015J	0.060	<0.025	0.12	0.039									0.15
Mercury	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020									0.002
Nickel	<0.025 <0.050	<0.025	<0.025	<0.025 <0.050	<0.025	<0.025 <0.050	<0.025	<0.025 <0.050	<0.025	0.021J									0.1
Selenium Silver	<0.050 <0.025	<0.050 <0.025	<0.050 <0.025	<0.050 <0.025	0.021J <0.025	<0.050 <0.025	<0.050 <0.025	<0.050 <0.025	0.022J <0.025	<0.050 <0.025									0.05
Thallium	<0.0020	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.0020	<0.025									0.002
Vanadium	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025									0.002
Zinc	1.4	0.086J	0.030J	<0.50	0.028J	<0.50	0.038J	<0.50	0.030J	<0.50									5
SPLP Metals (mg/L)	<u> </u>		<u> </u>			1	, 1	· I				1	.1	-1	-1		1	1	-
SPLP IVICIAIS (IIIg/L)												1						I	
Lead	0.40 10	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA									0.0075

Notes:

NA= Not available

ND= Not detected above laboratory reporting limit NT= Not tested

mg/kg= Milligrams per kilogram

mg/L= Milligrams per liter

SPLP= Synthetic Precipitation Leaching Procedure

TCLP= Toxicity Characteristic Leaching Procedure

MAC= Maximum Allowable Concentrations of Chemical Constituents in Uncontaminated Soil Used as Fill Material at Regulated Fill Operations (35 Ill. Adm. Code 110. Subpart F). **TACO** = Tiered Approach to Corrective Action Objectives

Applicable Screening Criteria

¹ Exceeds the most stringent MAC value (35 IAC (1100.605(e))

² Exceeds the Chicago Corporate Limits MAC values

³ Exceeds the Within a Populated Area in a MSA (excluding Chicago) MAC value ⁴ Exceeds the Within a MSA County MAC value

⁵ Exceeds the Within a Populated Area in a non-MSA County MAC value

⁶ Exceeds the Outside a Populated Area MAC value ⁷ Exceeds the Within a non-MSA County MAC value

⁸ Exceeds the Most Stringent TACO Tier 1 Construction Worker Exposure Objective

⁹ Exceeds the Most Stringent TACO Tier 1 Residential Objective

¹⁰ Exceeds the TACO Tier 1 Soil to Groundwater TCLP/SPLP Objective ¹¹ Exceeds the Most Stringent TACO Tier 1 Class 1 Groundwater Objective

- *= Laboratory Control Sample (LCS) or Laboratory Control Sample Duplicate (LCSD) is outside acceptance limits.
- ^= Instrument related QC is outside acceptance limits.
- **B=** Compound was found in the blank and sample.
- J= Result is less than the reporting limit but greater than or equal to the method detection limit, concentration reported as an approximate value.
- **F1=** Matrix spike or matrix spike duplicate recovery is outside acceptance limits.
- **F2=** Matrix spike or matrix spike duplicate relative percent difference exceeds control limits.
- **CCDD** = Clean Construction Demolition Debris

CCDD Eligible- metals exceed TCLP and SPLP but not Totals

CCDD Eligible- VOCs or SVOCs exceedances; limited CCDD disposal availability Greater than TACO Construction Worker Exposure Objectives

Unrestrictive- metals exceed Totals but not TCLP and SPLP; or metals exceed TCLP or SPLP but not both

Non-special Waste- Greater than all MACs, Greater than most stringent TACO Tier 1 Criteria; Metals exceed Totals, TCLP, and SPLP; Metals exceed TACO Residential and not considered background; pH outside of the acceptable range (6.25 to 9.0)

Table 4-2. Detected Soil Analytes and Comparison to Applicable Criteria

FAS 2882 (IL 37) Benton, Franklin County, Illinois

Benton, Franklin County, Illino		1	T	T	T	T	1 1											
Sample ID	3160-45-4 (5-6') 5-6	3160-50-1 (0-2') 0-2	3160-50-2 (0-2') 0-2	3160-50-3 (0-2') 0-2	3160-51-1 (0-1.5') 0-1.5	3160-51-2 (0-1.5') 0-1.5	3160-51-3 (0-1.5') 0-1.5	3160-55-1 (0-3) 0-3	3160-55-2 (0-3) 0-3			Maximum Allov	wable Concentr	rations		1	TACO Remo	ediation Objectives
Sample Depth (ft.) Sample Date	10/31/2017	10/31/2017	10/31/2017	10/31/2017	11/02/2017	11/02/2017	11/02/2017	11/01/2017	11/01/2017	Most Stringent				Within a			TACO Tier 1	Most Stringent TACO T
PID	0	0	0	0	0	0	0	0	0	Maximum	Within Chicago	Within a Populated Area		Populated Area			Construction	1 Residential Objectiv
Sample pH	6.5	6.2	7.8	8.0	7.8	8.9	8.5	5.2	8.0	Allowable	Corporate	in a MSA (excluding	Within a MSA	in a non-MSA	Outside a	Within a non-	Worker Exposure	and Groundwater
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Concentration ¹	Limits ²	Chicago) ³	County 4	County ⁵	Populated Area ⁶	MSA County ⁷	Objective ⁸	Protection (TCLP/SPLP)
VOCs (mg/kg)	0.063	0.074	<0.019	<0.018	<0.019	<0.016	<0.018	<0.018	0.024	25	NA	NA	NA	NA	NA	NA	100,000	100,000
Acetone SVOCs (mg/kg)	0.065	0.074	<0.019	<0.018	V0.019	(0.010	(0.016	<0.016	0.024	25	INA	NA	INA .	INA	INA	INA	100,000	100,000
Anthracene	<0.039	<0.040	<0.040	0.011J	0.025J	0.031J	<0.038	<0.040	<0.038	12,000	NA	NA	NA	NA	NA	NA	610,000	23,000
Benzo[a]anthracene	0.0077J	<0.040	0.011J	0.028J	0.049	0.098	0.016J	<0.040	0.0075J	0.9	1.1	1.8	NA	0.9	0.9	NA	170	0.9
Benzo[a]pyrene	<0.039	<0.040	<0.040	0.020J	0.066	0.13 1,	0.043	0.036J	0.018J	0.09	1.3	2.1	NA	0.98	0.09	NA	17	0.09
Benzo[b]fluoranthene	0.0084J <0.039	<0.040 <0.040	0.012J <0.040	0.024J <0.040	0.073 0.054	0.15 0.10	0.049 0.043	0.037J 0.035J	<0.038 <0.038	0.9 NA	1.5 NA	2.1 NA	NA NA	0.9 NA	0.9 NA	NA NA	170 NA	0.9 NA
Benzo[g,h,i]perylene Benzo[k]fluoranthene	<0.039	<0.040	<0.040	<0.040	0.015J	0.038	<0.038	<0.040	<0.038	9	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	1,700	9
Chrysene	<0.039	<0.040	<0.040	0.034J	0.053	0.12	0.019J	<0.040	<0.038	88	NA	NA	NA	NA	NA	NA	17,000	88
Dibenz(a,h)anthracene	<0.039	<0.040	<0.040	<0.040	<0.041	0.050	0.039	<0.040	<0.038	0.09	0.2	0.42	NA	0.15	0.09	NA	17	0.09
Dibenzofuran	<0.039	<0.040	<0.040	<0.040	0.054J	0.073J	<0.19	<0.040	<0.038	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fluoranthene Fluorene	0.012J <0.039	<0.040 <0.040	0.017J	0.034J <0.040	0.060 <0.041	0.14 0.0059J	0.024J <0.038	<0.040 <0.040	0.013J <0.038	3,100 560	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	82,000 82,000	3,100 3,100
Indeno[1,2,3-cd]pyrene	<0.039	<0.040	<0.040	<0.040	0.046	0.00393	0.038	<0.040	<0.038	0.9	0.9	1.6	NA NA	0.9	0.9	NA NA	170	0.9
2-Methylnaphthalene	<0.078	<0.080	0.014J	0.058J	0.099	0.14	0.022J	<0.081	0.0080J	NA NA	NA	0.14	NA	NA NA	0.29	NA	NA NA	NA NA
Naphthalene	<0.039	<0.040	<0.040	0.030J	0.044 2	0.063	0.0097J	<0.040	<0.038	1.8	0.04	0.2	NA	NA	0.17	NA	1.8	170
Phenanthrene	<0.039	0.0067J	0.030J	0.12	0.17	0.25	0.038	<0.040	0.014J	0.99	1.3	2.5	NA	2.5	0.99	NA	NA	NA
Pyrene PCBs (mg/kg)	0.020J	<0.040	0.018J	0.044	0.068	0.20	0.029J	0.013J	0.015J	2,300	NA	NA	NA	NA	NA	NA	61,000	2,300
Not Analyzed in this sample suite.										NA	NA	NA	NA	NA	NA	NA	NA	NA
Pesticides (mg/kg)													1				1	
No Analytes Detected										NA	NA	NA	NA	NA	NA	NA	NA	NA
Herbicides (mg/kg)										1			1					
Not Analyzed in this sample suite.										NA	NA	NA	NA	NA	NA	NA	NA	NA
Inorganics (mg/kg) Antimony	<1.1	<1.1	<1.1	<1.2	<1.2	<1.1	0.43J	<5.4	<1.1	5	NA	NA	NA	NA	NA	NA	82	31
Arsenic	1.9	4.9	9.4	7.3	7.3	6.4	6.8	8.2	10	11.3	NA	NA	13.0	NA	NA	11.3	61	750
Barium	60	64	70	66	88	82	89	100	92	1,500	NA	NA	NA	NA	NA	NA	14,000	5,500
Beryllium	0.64	0.44	0.48	0.42	0.52	0.68	0.49	1.0J	0.56	22	NA	NA	NA	NA	NA	NA	410	160
Charactives	0.12	0.079J	0.16	0.11J	0.29	0.45	0.24	0.14J	<0.11	5.2	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	200	78
Chromium Cobalt	15 5.9	4.8	6.6	22 1 6.2	15 7.7	21 8.6	5.2	9.4	7.1	21 20	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	690 12,000	230 4,700
Copper	7.3	10	20	17	16	15	14	11	17	2,900	NA	NA NA	NA	NA NA	NA	NA	8,200	2,900
Iron	13000	15000	22000 1,4,7	21000 1,4,7	16000 1,4,7	17000 1,4,	7 16000 1,4,7	25000 1,4,7	23000 1,4,7	15,000	NA	NA	15,900	NA	NA	15,000	NA	NA
Lead	8.8	11	57	19	69	290	99	14	21	107	NA	NA	NA	NA	NA	NA	700	400
Margarese	270 0.021	0.018J	0.040	190 0.025	340 0.035	360 0.023	200 0.016J	0.019J	0.038	630 0.89	NA NA	NA NA	636	NA NA	NA NA	630 NA	4,100	1,600
Mercury Nickel	12	0.0183	15	14	13	14	11	19	14	100	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.1 4,100	1,600
Selenium	<0.55	0.47J	<0.56	0.49J	0.59J	0.63	0.49J	<2.7	1.1	1.3	NA	NA	NA	NA NA	NA	NA	1,000	390
Silver	<0.28	<0.29	<0.28	<0.31	<0.31	<0.28	<0.28	<0.27	<0.28	4.4	NA	NA	NA	NA	NA	NA	1,000	390
Thallium	<0.55	<0.57	<0.56	<0.61	<0.62	<0.56	<0.56	<0.54	<0.55	2.6	NA	NA	NA	NA	NA	NA	160	6.3
Vanadium	21 34	27 35	33 66	37 53	24 78	20 110	22 66	28 54	43 58	550 5,100	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	1,400 61,000	550 23,000
Zinc TCLP Metals (mg/L)	<u> </u>	33	1 00	<u> </u> 33	10	1 110	00	54	50	3,100	INA	INA	INA	INA	INA	INA	01,000	23,000
Arsenic	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060									0.006
Antimony	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050									0.05
Barium	0.64	0.31J	0.28J	0.22J	0.37J	0.85	0.70	0.51	0.48J									2
Beryllium Cadmium	<0.0040 <0.0050	<0.0040 <0.0050	<0.0040 <0.0050	<0.0040 <0.0050	<0.0040 <0.0050	<0.0040 <0.0050	<0.0040 <0.0050	<0.0040 <0.0050	<0.0040 <0.0050									0.004 0.005
Chromium	<0.025	<0.0030	<0.025	<0.025	<0.0030	<0.025	<0.025	<0.025	<0.0030									0.003
Cobalt	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025									1
Copper	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	0.025	0.014J									0.65
Iron	<0.40	0.55	<0.40	<0.40	3.5	0.20J	0.33J	0.42	0.42									5
Lead Manganese	<0.0075 0.033	<0.0075 0.55 1	<0.0075 0 0.097	<0.0075 0.089	0.011 10 0.040	<0.0075 0.022J	<0.0075 0.031	<0.0075 0.12	<0.0075 0.021J									0.0075 0.15
Manganese Mercury	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.0022	<0.00020	<0.00020	<0.00213		 							0.13
Nickel	0.011J	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	0.023J	<0.025									0.1
Selenium	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050									0.05
Silver	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025									0.05
Thallium Vanadium	<0.0020 <0.025	<0.0020 <0.025	<0.0020 <0.025	<0.0020 <0.025	<0.0020 <0.025	<0.0020 <0.025	<0.0020 <0.025	<0.0020 <0.025	<0.0020 <0.025									0.002 0.049
Zinc	<0.023	<0.025	<0.025	<0.025	0.061J	0.049J	<0.025	0.048J	0.049J		 							5
SPLP Metals (mg/L)												1					1	
Lead	NA	NA	NA	NA	0.21 10	NA	NA	NA	NA									0.0075
Manganese	NA	0.39 1	.0 NA	NA	NA	NA	NA	NA	NA									0.15
Notes:																		

Notes:

NA= Not available

ND= Not detected above laboratory reporting limit NT= Not tested

mg/kg= Milligrams per kilogram mg/L= Milligrams per liter

TCLP= Toxicity Characteristic Leaching Procedure

SPLP= Synthetic Precipitation Leaching Procedure

MAC= Maximum Allowable Concentrations of Chemical Constituents in Uncontaminated Soil Used as Fill Material at Regulated Fill Operations (35 Ill. Adm. Code 110. Subpart F). **TACO** = Tiered Approach to Corrective Action Objectives

Applicable Screening Criteria

¹ Exceeds the most stringent MAC value (35 IAC (1100.605(e))

² Exceeds the Chicago Corporate Limits MAC values

³ Exceeds the Within a Populated Area in a MSA (excluding Chicago) MAC value ⁴ Exceeds the Within a MSA County MAC value

⁵ Exceeds the Within a Populated Area in a non-MSA County MAC value ⁶ Exceeds the Outside a Populated Area MAC value

⁷ Exceeds the Within a non-MSA County MAC value

⁸ Exceeds the Most Stringent TACO Tier 1 Construction Worker Exposure Objective

⁹ Exceeds the Most Stringent TACO Tier 1 Residential Objective

 $^{
m 10}$ Exceeds the TACO Tier 1 Soil to Groundwater TCLP/SPLP Objective ¹¹ Exceeds the Most Stringent TACO Tier 1 Class 1 Groundwater Objective *= Laboratory Control Sample (LCS) or Laboratory Control Sample Duplicate (LCSD) is outside acceptance limits.

^= Instrument related QC is outside acceptance limits.

B= Compound was found in the blank and sample.

J= Result is less than the reporting limit but greater than or equal to the method detection limit, concentration reported as an approximate value. **F1=** Matrix spike or matrix spike duplicate recovery is outside acceptance limits.

F2= Matrix spike or matrix spike duplicate relative percent difference exceeds control limits.

CCDD = Clean Construction Demolition Debris

Unrestrictive- metals exceed Totals but not TCLP and SPLP; or metals exceed TCLP or SPLP but not both

CCDD Eligible- metals exceed TCLP and SPLP but not Totals

CCDD Eligible- VOCs or SVOCs exceedances; limited CCDD disposal availability

Greater than TACO Construction Worker Exposure Objectives

Non-special Waste- Greater than all MACs, Greater than most stringent TACO Tier 1 Criteria; Metals exceed Totals, TCLP, and SPLP; Metals exceed TACO Residential and not considered background; pH outside of the acceptable range (6.25 to 9.0)

Table 4-2. Detected Soil Analytes and Comparison to Applicable Criteria FAS 2882 (IL 37)

Benton, Franklin County, Illinois

Benton, Franklin County, Illir			_		<u> </u>			_											
Sample ID	3160-56-1 (0-1.5')	3160-56-2 (0-1.5')	3160-62-1 (0-1.5')	3160-62-2 (0-1.5')	3160-62-3 (0-1.5')	3160-62-4 (0-1.5')	3160-62-5 (0-1.5')	3160-62-6 (0-1.5')	3160-62-7 (0-1.5')	3160-62-8 (0-1.5')			Maximum Allow	vable Concent	rations				ediation Objectives
Sample Depth (ft.)	0-1.5	0-1.5	0-1.5	0-1.5	0-1.5	0-1.5	0-1.5	0-1.5	0-1.5	0-1.5					MARCHET			Most Stringent	Most Stringent TACO Tier
Sample Date	11/01/2017	11/01/2017	11/01/2017	11/01/2017	11/01/2017	11/01/2017	11/01/2017	11/01/2017	11/01/2017	11/01/2017	Most Stringent	Within Chinago	Within a Danielated Area		Within a			TACO Tier 1	
PID	0 7.2	0	0	0	0	7.6	0	0	0	0	Maximum	_	Within a Populated Area	Mithin a MS/	Populated Area	Outside a	Within a non	Construction	1 Residential Objective
Sample pH Matrix	7.3 Soil	8.3 Soil	8.6 Soil	6.7 Soil	5.5 Soil	7.6 Soil	6.9 Soil	6.0 Soil	5.7 Soil	5.2 Soil	Allowable	Corporate Limits ²	. ,	4	in a non-MSA	Outside a	Within a non-		and Groundwater
VOCs (mg/kg)	3011	3011	3011	3011	3011	3011	3011	3011	3011	3011	Concentration ¹	Limits	Chicago) ³	County ⁴	County	Populated Area	MSA County	Objective ⁸	Protection (TCLP/SPLP) 10
Acetone	<0.016	0.030	<0.018	<0.015	<0.019	<0.019	<0.019	<0.018	<0.020	<0.020	25	NA	NA	NA	NA	NA	NA	100,000	100,000
SVOCs (mg/kg)	10.010	0.000	10.010	10.013	10.013	10.013	10.013	10.010	10.020	10.020	23	107	10/1	10/1	10/1	1471	107	100,000	100,000
Anthracene	0.0084J	0.019J	0.033J	<0.036	<0.038	<0.039	0.0075J	<0.039	<0.038	<0.038	12,000	NA	NA	NA	NA	NA	NA	610,000	23,000
Benzo[a]anthracene	0.030J	0.063	0.088	0.031J	0.0068J	0.011J	0.025J	0.022J	0.015J	0.011J	0.9	1.1	1.8	NA	0.9	0.9	NA	170	0.9
Benzo[a]pyrene	0.058	0.072	0.086	0.040	0.018J	0.019J	0.035J	0.029J	0.023J	0.022J	0.09	1.3	2.1	NA	0.98	0.09	NA	17	0.09
Benzo[b]fluoranthene	0.071	0.092	0.090	0.053	<0.038	0.010J	0.035J	0.031J	0.017J	0.018J	0.9	1.5	2.1	NA	0.9	0.9	NA	170	0.9
Benzo[g,h,i]perylene	0.047	0.026J	0.058	0.012J	<0.038	<0.039	0.014J	<0.039	<0.038	<0.038	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo[k]fluoranthene	0.014J	0.029J	0.044	0.019J	<0.038	<0.039	0.013J	<0.039	<0.038	<0.038	9	NA	NA	NA	NA	NA	NA	1,700	9
Chrysene	0.040	0.083	0.11	0.047	<0.038	0.011J	0.028J	0.024J	0.016J	0.012J	88	NA	NA	NA	NA	NA	NA	17,000	88
Fluoranthene	0.049	0.090	0.11	0.038	0.0085J	0.012J	0.048	0.031J	0.018J	<0.038	3,100	NA	NA	NA	NA	NA	NA	82,000	3,100
Indeno[1,2,3-cd]pyrene	0.042	0.018J	0.035J	0.011J	<0.038	<0.039	0.012J	<0.039	<0.038	<0.038	0.9	0.9	1.6	NA	0.9	0.9	NA	170	0.9
2-Methylnaphthalene	0.040J	0.11	0.12	0.018J	<0.077	0.012J	0.018J	0.026J	0.012J	0.0085J	NA 1.3	NA 2.24	0.14	NA	NA	0.29	NA	NA 1.0	NA 170
Naphthalene	0.023J	0.071	2 0.049 2	0.0080J	<0.038	<0.039	0.0070J	0.0075J	<0.038	<0.038	1.8	0.04	0.2	NA	NA 3.5	0.17	NA	1.8	170
Phenanthrene	0.093	0.16	0.24	0.046	0.012J	0.026J	0.052	0.054	0.036J	0.017J	0.99 2,300	1.3	2.5 NA	NA NA	2.5	0.99 NA	NA NA	NA 61,000	NA 2 200
Pyrene PCBs (mg/kg)	0.051	0.12	0.15	0.040	0.0086J	0.014J	0.039	0.031J	0.024J	0.013J	2,300	NA	INA	NA	NA	INA	NA	01,000	2,300
Not Analyzed in this sample suite.	2										NA	NA	NA	NA	NA	NA	NA	NA	NA
Pesticides (mg/kg)	••										IVA	IVA	IVA	INA	IVA	INC	IVA	IVA	14/7
Total Pesticides	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Herbicides (mg/kg)			[<u> </u>	<u>1</u>												
Total Herbicides	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Inorganics (mg/kg)					•		<u> </u>	<u> </u>			•								
Antimony	0.22J	<1.0	<0.95	0.24J	<1.1	<1.0	<1.0	<1.2	<1.1	<1.2	5	NA	NA	NA	NA	NA	NA	82	31
Arsenic	6.3	9.2	7.0	3.8	5.1	3.8	5.4	7.2	6.0	9.9	11.3	NA	NA	13.0	NA	NA	11.3	61	750
Barium	95	120	77	29	58	97	89	120	100	92	1,500	NA	NA	NA	NA	NA	NA	14,000	5,500
Beryllium	0.54	0.60	0.53	0.29	0.37	0.47	0.44	0.47	0.61	0.59	22	NA	NA	NA	NA	NA	NA	410	160
Cadmium	0.21	0.44	0.18	0.61	<0.11	0.058J	<0.10	0.048J	0.035J	<0.12	5.2	NA	NA	NA	NA	NA	NA	200	78
Chromium	14	35	1 12	9.2	12	12	12	14	15	16	21	NA	NA NA	NA	NA	NA	NA	690	230
Cobalt	8.8	10	8.3	2.5	4.9	4.5	8.4	7.9	6.8	7.7	20	NA	NA NA	NA	NA NA	NA NA	NA NA	12,000	4,700
Copper	14000	19 16000 1,4,	11 7 15000	9700	5.9 12000	9.2 10000	7.6 11000	9.8	9.9 15000	8.0 18000 1,4,7	2,900 15,000	NA NA	NA NA	NA 15.000	NA NA	NA NA	15.000	8,200	2,900
Lead	210 1	270	1 86	210 1	1 15	21	11000	15000 31	15000	25	107	NA NA	NA NA	15,900 NA	NA NA	NA NA	15,000 NA	NA 700	NA 400
Manganese	720 1.4.7	980 14	7 900 1.4.7	170	370	250	670 1.4.7	720 1.4	7 490	670 1.4.7	630	NA NA	NA NA	636	NA NA	NA NA	630	4,100	1,600
Mercury	0.029	0.041	0.035	0.037	0.027	0.026	0.032	0.20	0.035	0.019J	0.89	NA	NA NA	NA	NA NA	NA NA	NA	0.1	10
Nickel	14	13	11	9.7	6.6	9.6	7.4	9.4	11	9.0	100	NA	NA	NA	NA	NA	NA	4,100	1,600
Selenium	0.42J	1.0	0.81	0.45J	1.0	0.66	0.61	1.1	0.99	1.4 1	1.3	NA	NA	NA	NA	NA	NA	1,000	390
Silver	0.11J	0.15J	0.080J	<0.27	<0.26	<0.26	<0.26	<0.30	<0.28	<0.30	4.4	NA	NA	NA	NA	NA	NA	1,000	390
Thallium	<0.54	<0.51	<0.47	<0.55	<0.53	<0.51	<0.52	<0.59	<0.56	<0.60	2.6	NA	NA	NA	NA	NA	NA	160	6.3
Vanadium	22	26	24	9.8	23	21	22	27	28	37	550	NA	NA	NA	NA	NA	NA	1,400	550
Zinc	67	100	55	75	26	36	28	40	48	32	5,100	NA	NA	NA	NA	NA	NA	61,000	23,000
TCLP Metals (mg/L)			, , , , , , , , , , , , , , , , , , , 	1		<u> </u>	<u>, </u>	<u>, </u>	<u>, , , , , , , , , , , , , , , , , , , </u>	т	1			1					
Arsenic	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060									0.006
Antimony	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050									0.05
Barium	1.0	0.76	0.72	0.45J	0.42J	0.51	0.43J	0.64	0.71	0.42J									0.004
Beryllium Cadmium	<0.0040 0.0025J	<0.0040 0.0029J	<0.0040 0.0026J	<0.0040 0.0028J	<0.0040 <0.0050	<0.0040 <0.0050	<0.0040 <0.0050	<0.0040 <0.0050	<0.0040 <0.0050	<0.0040 <0.0050			<u></u>						0.004
Chromium	<0.025j	<0.025	<0.025	<0.025	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050									0.005
Cobalt	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025									1
Copper	0.016J	0.017J	0.018J	0.019J	0.016J	0.012J	0.011J	0.012J	0.011J	0.013J									0.65
Iron	<0.40	0.27J	0.20J	0.29J	<0.40	0.88	0.28J	0.39J	<0.40	<0.40									5
Lead	<0.0075	<0.0075	<0.0075	<0.0075	<0.0075	<0.0075	<0.0075	<0.0075	<0.0075	<0.0075									0.0075
Manganese	0.53 10	0.042	0.031	0.17 10	0.10	0.033	0.033	0.037	0.048	0.21 10									0.15
Mercury	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020									0.002
Nickel	0.012J	<0.025	0.010J	0.012J	0.011J	<0.025	<0.025	<0.025	0.013J	0.016J									0.1
Selenium	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050									0.05
Silver	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025									0.05
Thallium	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020									0.002
Vanadium	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025									0.049
Zinc	0.053J	0.093J	0.057J	0.052J	0.060J	0.051J	0.041J	0.071J	0.074J	0.056J									5
CDID NA																			
SPLP Metals (mg/L) Manganese	0.010J	NA	NA	0.019J	NA	NA	NA	NA	NA NA	0.053									0.15

Notes:

NA= Not available

ND= Not detected above laboratory reporting limit

NT= Not tested

mg/kg= Milligrams per kilogram mg/L= Milligrams per liter

TCLP= Toxicity Characteristic Leaching Procedure

SPLP= Synthetic Precipitation Leaching Procedure

*= Laboratory Control Sample (LCS) or Laboratory Control Sample Duplicate (LCSD) is outside acceptance limits.

^= Instrument related QC is outside acceptance limits.

B= Compound was found in the blank and sample.

J= Result is less than the reporting limit but greater than or equal to the method detection limit, concentration reported as an approximate value.

F1= Matrix spike or matrix spike duplicate recovery is outside acceptance limits. **F2=** Matrix spike or matrix spike duplicate relative percent difference exceeds control limits.

MAC= Maximum Allowable Concentrations of Chemical Constituents in Uncontaminated Soil Used as Fill Material at Regulated Fill Operations (35 Ill. Adm. Code 110. Subpart F). **TACO** = Tiered Approach to Corrective Action Objectives

Applicable Screening Criteria ¹ Exceeds the most stringent MAC value (35 IAC (1100.605(e))

² Exceeds the Chicago Corporate Limits MAC values

³ Exceeds the Within a Populated Area in a MSA (excluding Chicago) MAC value

⁴ Exceeds the Within a MSA County MAC value

⁵ Exceeds the Within a Populated Area in a non-MSA County MAC value

⁶ Exceeds the Outside a Populated Area MAC value ⁷ Exceeds the Within a non-MSA County MAC value

⁸ Exceeds the Most Stringent TACO Tier 1 Construction Worker Exposure Objective

⁹ Exceeds the Most Stringent TACO Tier 1 Residential Objective

¹⁰ Exceeds the TACO Tier 1 Soil to Groundwater TCLP/SPLP Objective

¹¹ Exceeds the Most Stringent TACO Tier 1 Class 1 Groundwater Objective

CCDD = Clean Construction Demolition Debris

Unrestrictive- metals exceed Totals but not TCLP and SPLP; or metals exceed TCLP or SPLP but not both

CCDD Eligible- metals exceed TCLP and SPLP but not Totals

CCDD Eligible- VOCs or SVOCs exceedances; limited CCDD disposal availability

Greater than TACO Construction Worker Exposure Objectives

Non-special Waste- Greater than all MACs, Greater than most stringent TACO Tier 1 Criteria; Metals exceed Totals, TCLP, and SPLP; Metals exceed TACO Residential and not considered background; pH outside of the acceptable range (6.25 to 9.0)

Table 4-2. Detected Soil Analytes and Comparison to Applicable Criteria

FAS 2882 (IL 37) Benton, Franklin County, Illinois

Benton, Franklin County, III		24.50.52.40.40.4.51	2450 54 4 (0 4 51)	2450 54 2 (0 4 51)	24.50.54.2 (0.4.51)								TACO B	disting Objectives
Sample ID Sample Depth (ft.)	3160-62-9 (0-1.5') 0-1.5	3160-62-10 (0-1.5') 0-1.5	3160-64-1 (0-1.5') 0-1.5	3160-64-2 (0-1.5') 0-1.5	3160-64-3 (0-1.5') 0-1.5			Maximum Alio	wable Concentr	ations			Most Stringent	diation Objectives
Sample Date	11/01/2017	11/01/2017	11/01/2017	11/01/2017	11/01/2017	Most Stringent				Within a			TACO Tier 1	Most Stringent TACO Tie
PID	0	0	0	0	0	Maximum	Within Chicago	Within a Populated		Populated Area			Construction	1 Residential Objective
Sample pH	6	5.5	8.1	7.1	8.2	Allowable	Corporate	Area in a MSA		in a non-MSA	Outside a	Within a non-	Worker Exposure	and Groundwater
Matrix	Soil	Soil	Soil	Soil	Soil	Concentration ¹	Limits ²	(excluding Chicago) ³	County 4	County ⁵	Populated Area	MSA County	Objective ⁸	Protection (TCLP/SPLP)
VOCs (mg/kg)						NI A	NIA	NIA .	NIA NIA	NIA .	NIA.	NIA .	NIA .	NIA.
No Analytes Detected SVOCs (mg/kg)						NA	NA	NA NA	NA	NA NA	NA NA	NA	NA	NA NA
Acenaphthene	<0.041	<0.041	0.035J	<0.040	<0.038	570	0.09	0.07	NA	NA	0.13	NA	NA	NA
Acenaphthylene	<0.041	<0.041	0.0088J	<0.040	<0.038	NA	0.03	NA	NA	NA	0.07	NA	120,000	570
Anthracene	<0.041	0.013J	0.13	0.0079J	0.034J	12,000	NA	NA	NA	NA	NA	NA	610,000	23,000
Benzo[a]anthracene	0.0099J	0.030J	1.1 1,5,6,9	0.021J	0.055	0.9	1.1	1.8	NA	0.9	0.9	NA	170	0.9
Benzo[a]pyrene	0.022J	0.031J	0.85 1,6,9	0.029J	0.054	0.09	1.3	2.1	NA	0.98	0.09	NA NA	17	0.09
Benzo[b]fluoranthene Benzo[g,h,i]perylene	<0.041 <0.041	0.030J <0.041	1.3 1,5,6,9 0.30	0.030J <0.040	0.069 0.023J	0.9 NA	1.5 NA	2.1 NA	NA NA	0.9 NA	0.9 NA	NA NA	170 NA	0.9 NA
Benzo[k]fluoranthene	<0.041	<0.041	0.48	<0.040	0.019J	9	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	1,700	9
Carbazole	<0.21	<0.21	0.15J	<0.20	<0.19	0.6	NA	NA	NA	NA	NA	NA	290	32
Chrysene	0.012J	0.031J	1.4	0.025J	0.064	88	NA	NA	NA	NA	NA	NA	17,000	88
Dibenz(a,h)anthracene	<0.041	<0.040	0.17 1,6,9	<0.040	<0.038	0.09	0.2	0.42	NA	0.15	0.09	NA	17	0.09
Dibenzofuran	<0.21	<0.21	0.061J	<0.20	0.047J	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fluoranthene	0.014J	0.034J	1.5	0.026J	0.077	3,100	NA NA	NA NA	NA	NA NA	NA NA	NA NA	82,000	3,100
Fluorene Indeno[1,2,3-cd]pyrene	<0.041 <0.041	<0.041 <0.041	0.026J 0.33	<0.040 <0.040	<0.038 0.018 J	560 0.9	0.9	NA 1.6	NA NA	0.9	NA 0.9	NA NA	82,000 170	3,100 0.9
2-Methylnaphthalene	0.041 0.016J	0.041 0.064J	0.33	0.021J	0.0183	0.9 NA	0.9 NA	0.14	NA NA	0.9 NA	0.9	NA NA	170 NA	NA
Naphthalene	<0.041	0.030J	0.052 2	0.0082J	0.034J	1.8	0.04	0.14	NA NA	NA NA	0.17	NA NA	1.8	170
Phenanthrene	0.023J	0.098	0.84	0.044	0.20	0.99	1.3	2.5	NA	2.5	0.99	NA	NA	NA NA
Pyrene	0.015J	0.041	1.4	0.032J	0.085	2,300	NA	NA	NA	NA	NA	NA	61,000	2,300
PCBs (mg/kg)		1	,	·	1						T			
PCB-1260	NA	NA	0.020J	0.021	<0.020	NA	NA	NA	NA	NA	NA	NA	NA	NA
Pesticides (mg/kg) Not Analyzed in this sample suit	to.					NA	NA	NA	NA	NA	NA	NA	NA	NA
Herbicides (mg/kg)	ie.					NA	NA	INA	NA	INA	INA	INA	INA	IVA
Not Analyzed in this sample suit	te.					NA	NA	NA	NA	NA	NA	NA	NA	NA
Inorganics (mg/kg)								J						J
Antimony	<1.2	<1.1	0.24J	<1.2	<1.1	5	NA	NA	NA	NA	NA	NA	82	31
Arsenic	5.0	6.4	5.8	4.2	6.0	11.3	NA	NA	13.0	NA	NA	11.3	61	750
Barium	86	85	67	59	110	1,500	NA	NA	NA	NA	NA	NA	14,000	5,500
Beryllium Cadmium	0.49 0.038J	0.52 <0.11	0.45 0.37	0.43 <0.12	0.65	5.2	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	410 200	160 78
Chromium	14	13	13	11	12	21	NA	NA NA	NA NA	NA NA	NA NA	NA NA	690	230
Cobalt	6.3	6.5	5.3	3.7	9.1	20	NA	NA	NA	NA	NA	NA	12,000	4,700
Copper	8.8	12	18	9.3	34	2,900	NA	NA	NA	NA	NA	NA	8,200	2,900
Iron	12000	14000	12000	9200	13000	15,000	NA	NA	15,900	NA	NA	15,000	NA	NA
Lead	22	22	160 1	17	110	107	NA	NA	NA	NA	NA	NA	700	400
Manganese	300 0.021	640 1,4,7		390	300 0.041	630	NA NA	NA NA	636	NA NA	NA NA	630	4,100	1,600
Mercury Nickel	12	0.021 7.1	0.041	0.074 6.2	18	0.89	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.1 4,100	1,600
Selenium	0.96	0.90	<0.61	0.60J	0.90	1.3	NA	NA NA	NA NA	NA NA	NA NA	NA NA	1,000	390
Silver	<0.31	<0.27	<0.30	<0.31	<0.29	4.4	NA	NA	NA	NA	NA	NA	1,000	390
Thallium	<0.62	<0.54	<0.61	<0.61	<0.57	2.6	NA	NA	NA	NA	NA	NA	160	6.3
Vanadium	23	29	21	22	19	550	NA	NA	NA	NA	NA	NA	1,400	550
Zinc TCLD Mattels (mag/l)	38	32	73	31	91	5,100	NA	NA	NA	NA	NA	NA	61,000	23,000
TCLP Metals (mg/L)	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060									0.006
Arsenic Antimony	<0.0060	<0.0060	<0.0060	<0.0060 <0.050	<0.0060									0.006
Barium	0.56	0.56	0.76	0.46J	1.4									2
Beryllium	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040									0.004
Cadmium	<0.0050	<0.0050	0.0028J	0.0021J	0.0035J									0.005
Chromium	<0.025	<0.025	<0.025	<0.025	<0.025									0.1
Cobalt	<0.025	<0.025	<0.025	<0.025	<0.025									1
Copper	0.014J	0.014J	0.014J	0.023J	0.013J									0.65
Iron Lead	0.58 <0.0075	0.58 <0.0075	0.34J 0.022 10	0.82 <0.0075	<0.40 <0.0075									0.0075
Manganese	0.035	0.14	0.022	0.0073	0.41 1	0								0.0075
Mercury	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020									0.002
Nickel	<0.025	<0.025	<0.025	<0.025	<0.025									0.1
Selenium	<0.050	<0.050	<0.050	<0.050	<0.050									0.05
Silver	<0.025	<0.025	<0.025	<0.025	<0.025									0.05
Thallium	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020									0.002
Vanadium	<0.025 0.049J	<0.025 0.049J	<0.025 0.072J	<0.025 0.11J	<0.025 0.047 J									0.049
Zinc SPLP Metals (mg/L)	0.0491	U.U49J	U.U/2J	l 0.111]	J 0.04/J									<u> </u>
Iron	NA	NA	0.14	NA	NA									5
Manganese	NA	NA	NA	NA	0.093									0.15
Notes:														

Notes:

NA= Not available

ND= Not detected above laboratory reporting limit

NT= Not tested mg/kg= Milligrams per kilogram

mg/L= Milligrams per liter

SPLP= Synthetic Precipitation Leaching Procedure

TCLP= Toxicity Characteristic Leaching Procedure

MAC= Maximum Allowable Concentrations of Chemical Constituents in Uncontaminated Soil Used as Fill Material at Regulated Fill Operations (35 Ill. Adm. Code 110. Subpart F). **TACO** = Tiered Approach to Corrective Action Objectives

Applicable Screening Criteria

¹ Exceeds the most stringent MAC value (35 IAC (1100.605(e)) ² Exceeds the Chicago Corporate Limits MAC values

³ Exceeds the Within a Populated Area in a MSA (excluding Chicago) MAC value

⁵ Exceeds the Within a Populated Area in a non-MSA County MAC value

⁶ Exceeds the Outside a Populated Area MAC value ⁷ Exceeds the Within a non-MSA County MAC value

⁴ Exceeds the Within a MSA County MAC value

⁸ Exceeds the Most Stringent TACO Tier 1 Construction Worker Exposure Objective

⁹ Exceeds the Most Stringent TACO Tier 1 Residential Objective ¹⁰ Exceeds the TACO Tier 1 Soil to Groundwater TCLP/SPLP Objective

¹¹ Exceeds the Most Stringent TACO Tier 1 Class 1 Groundwater Objective

*= Laboratory Control Sample (LCS) or Laboratory Control Sample Duplicate (LCSD) is outside acceptance limits.

^= Instrument related QC is outside acceptance limits. **B=** Compound was found in the blank and sample.

J= Result is less than the reporting limit but greater than or equal to the method detection limit, concentration reported as an approximate value.

F1= Matrix spike or matrix spike duplicate recovery is outside acceptance limits.

F2= Matrix spike or matrix spike duplicate relative percent difference exceeds control limits.

CCDD = Clean Construction Demolition Debris

Unrestrictive- metals exceed Totals but not TCLP and SPLP; or metals exceed TCLP or SPLP but not both

CCDD Eligible- metals exceed TCLP and SPLP but not Totals CCDD Eligible- VOCs or SVOCs exceedances; limited CCDD disposal availability

Greater than TACO Construction Worker Exposure Objectives TACO Tier 1 Criteria; Metals exceed Totals, TCLP, and SPLP; Metals exceed

TACO Residential and not considered background; pH outside of the

Table 4-3. Summary of Soil Impacts and Contaminants of Concern

Benton, Franklin County, Illinois

							Off-Site Ma	nagement
Boring ID	pН	PID Reading	Contaminants of Concern Above TCLP and SPLP Criteria	Contaminants of Concern Above Total Metal, TCLP, and SPLP Criteria	Contaminants of Concern Above Select Location Specific MACs ac	Contaminants of Concern Above All Location Specific MACs ^a	Eligible for CCDD or Uncontaminated Soil Fill Operation? ^c	Classification
ISGS #3160-5 (UPRR)						·		
3160-5-1 (0-1.2')	8.60	0.0	None	None	None	Arsenic, Iron, Lead	Yes	Uncontaminated ^{bd}
3160-5-2 (0-1.2')	6.10	0.0	None	None	None	Iron	No	Uncontaminated
3160-5-3 (0-1.2')	8.00	0.0	None	None	None	None	Yes	Unrestrictive
ISGS #3160-8 (J.W. Reynold	s Memorial)					'	
3160-8-1 (0-3')	8.50	0.0	None	None	None	None	Yes	Unrestrictive
3160-8-2 (0-3')	8.30	0.0	None	None	None	Manganese	Yes	Uncontaminated bd
ISGS #3160-9 (C.N.C Guns a	nd Ammo)				<u> </u>	<u> </u>		
3160-9-1 (0-4')	4.60	0.0	Manganese	None	None	Iron	No	Uncontaminated
3160-9-2 (0-4')	5.40	0.0	None	None	None	Iron	No	Uncontaminated
3160-9-3 (0-4')	7.60	0.0	None	None	None	None	Yes	Unrestrictive
ISGS #3160-10 (Benton Gra	de School D	istrict #47)					<u>'</u>	
3160-10-1 (0-2.5')	5.4	380.0	Manganese	None	Naphthalene	Benzene, Iron	No	Non-special
3160-10-2 (0-2.5')	4.8	347.0	None	None	None	Iron	No	Non-special
3160-10-3 (0-2.5')	8.2	25.0	Manganese	Iron	None	None	No	Non-special
ISGS #3160-16 (Residence)								
3160-16-1 (0-4')	6.3	0.0	None	None	None	Iron, Manganese	Yes	Unrestrictive
3160-16-2 (0-4')	5.6	0.0	None	None	None	Iron	No	Uncontaminated
3160-16-3 (0-4')	4.9	0.0	None	None	None	Iron	No	Uncontaminated
3160-16-4 (0-4')	7.9	0.0	None	None	2-Methylnaphthalene, Naphthalene	Iron	Yes	Uncontaminated ^{bd}
3160-16-5 (0-4')	6	0.0	None	None	Naphthalene	2-Methylnaphthalene, Iron	No	Non-special
ISGS #3160-21 (UPRR)								
3160-21-1 (0-2.5')	8.3	0.0	None	None	None	Iron	Yes	Unrestrictive
3160-21-2 (0-2.5')	8.2	0.0	None	None	Naphthalene	2-Methylnaphthalene, Iron, Manganese	Yes	Uncontaminated ^{bd}
3160-21-3 (0-2.5')	7	0.0	None	None	None	Chromium, Iron	Yes	Unrestrictive
3160-21-4 (0-2.5')	8	0.0	None	None	None	Iron, Manganese	Yes	Unrestrictive
3160-21-5 (0-2.5')	7.8	0.0	None	None	None	Iron	Yes	Unrestrictive
3160-21-6 (0-2.5')	5.5	0.0	None	None	None	Iron	No	Uncontaminated
3160-21-7 (0-2.5')	7.6	0.0	None	None	None	Iron	Yes	Unrestrictive
3160-21-8 (0-2.5')	6.4	0.0	None	None	None	Iron	Yes	Unrestrictive
3160-21-9 (0-2.5')	7.9	0.0	None	None	None	Iron	Yes	Unrestrictive
3160-21-10 (0-2.5')	7.6	0.0	None	None	None	Naphthalene, Iron	Yes	Uncontaminated ^{bd}

See footnotes last page.

Table 4-3. Summary of Soil Impacts and Contaminants of Concern

Benton, Franklin County, Illinois

Benton, Franklin County	, minois						Off Cit- Ma-	
							Off-Site Ma	nagement
				Contaminants of Concern			Eligible for CCDD or	
			Contaminants of Concern Above		Contaminants of Concern Above		Uncontaminated Soil Fill	
Boring ID	pН	PID Reading	TCLP and SPLP Criteria	SPLP Criteria	Select Location Specific MACs ac	All Location Specific MACs ^a	Operation? ^c	Classification
ISGS #3160-23 (Vacant Land))	, ,			_		,	
3160-23-1 (0-4.5')	6.2	0.0	None	None	None	None	No	Uncontaminated
3160-23-2 (0-4.5')	8.1	0.0	None	None	None	2-Methylnaphthalene, Naphthalene	Yes	Uncontaminated ^{bd}
ISGS #3160-25 (Commercial	Building ar	nd Residence)					<u>'</u>	
3160-25-1 (0-4')	4.8	0.0	Manganese	None	None	Iron	No	Uncontaminated
3160-25-2 (0-4')	4.8	0.0	None	None	None	Iron	No	Uncontaminated
ISGS #3160-26 (Residence)								
3160-26-1 (0-4')	5	0.0	None	None	None	Iron, Manganese	No	Uncontaminated
3160-26-2 (0-4')	4.3	0.0	None	None	None	Iron	No	Uncontaminated
ISGS #3160-28 (Residence)								
3160-28-1 (0-5')	4.3	0.0	None	None	None	Iron, Manganese	No	Uncontaminated
3160-28-2 (0-5')	4.9	0.0	None	None	None	Iron, Manganese	No	Uncontaminated
3160-28-3 (0-5')	3.8	0.0	Manganese	None	None	Naphthalene, Iron, Selenium	No	Non-special
ISGS #3160-32 (Route 37 Col	llection Ce	nter)						
3160-32-1 (0-3.5')	6.4	0.0	None	None	None	Manganese	Yes	Unrestrictive
3160-32-2 (0-3.5')	6.6	0.0	None	None	None	Arsenic, Chromium, Iron, Manganese, Selenium	Yes	Unrestrictive
3160-32-3 (0-3.5')	6.7	0.0	None	None	None	Iron	Yes	Unrestrictive
3160-32-4 (0-3.5')	6.7	0.0	None	None	None	2-Methylnaphthalene, Naphthalene, iron	Yes	Uncontaminated bd
3160-32-5 (0-3.5')	5.9	0.0	None	None	None	Iron	No	Uncontaminated
3160-32-6 (0-3.5')	4.6	0.0	Manganese	None	None	Iron	No	Uncontaminated
3160-32-7 (0-3.5')	5.4	0.0	Manganese	None	None	Iron	No	Uncontaminated
ISGS #3160-36 (UPRR)			-				<u>'</u>	
3160-36-1 (0-3')	7	0.0	None	None	None	Manganese	Yes	Unrestrictive
3160-36-2 (0-3')	5	0.0	None	None	None	Iron, Manganese	No	Uncontaminated
3160-36-3 (0-3')	4.6	0.0	None	None	None	Manganese	No	Uncontaminated
3160-36-4 (0-3')	4.6	0.0	None	None	None	Iron, Manganese	No	Non-special
3160-36-5 (0-3')	4.6	0.0	None	None	None	Iron, Manganese	No	Uncontaminated
3160-36-6 (0-3')	4.3	0.0	None	None	None	Iron, Manganese	No	Uncontaminated
3160-36-7 (0-3')	4.8	0.0	Manganese	None	None	Iron	No	Uncontaminated
3160-36-8 (0-3')	7.9	0.0	None	None	None	Cobalt, Iron, Manganese	Yes	Unrestrictive
3160-36-9 (0-3')	8.7	0.0	Lead	None	None	Benzo(a)pyrene, 2- Methylnaphthalene, Naphthalene, Iron, Manganese	Yes	Uncontaminated bd
3160-36-10 (0-3')	6.6	0.0	None	None	None	Iron	Yes	Unrestrictive
3160-36-11 (0-3')	5.3	0.0	None	None	None	Iron	No	Uncontaminated

See footnotes last page.

Table 4-3. Summary of Soil Impacts and Contaminants of Concern

Benton, Franklin County, Illinois

Benton, Franklin County							Off-Site Mar	nagement
				Contaminants of Concern			Eligible for CCDD or	
			Contaminants of Concern Above		Contaminants of Concern Above	Contaminants of Concern Above	Uncontaminated Soil Fill	
Boring ID	pН	PID Reading	TCLP and SPLP Criteria	SPLP Criteria	Select Location Specific MACs ac	All Location Specific MACs ^a	Operation? ^c	Classification
ISGS #3160-45 (Residence)								
3160-45-1 (0-5')	8	0.0	None	None	None	Iron	Yes	Unrestrictive
3160-45-1 (5-6')	7.8	0.0	None	None	None	Iron, Manganese	Yes	Officestrictive
3160-45-2 (0-5')	7.7	0.0	None	None	None	Iron	Yes	Unrestrictive
3160-45-2 (5-6')	7.5	0.0	None	None	None	Iron	Yes	Official
3160-45-3 (0-5')	8.1	0.0	None	None	None	Cobalt, Iron, Manganese	Yes	Unrestrictive
3160-45-3 (5-6')	7.7	0.0	None	None	None	Iron, Manganese	Yes	Unrestrictive
3160-45-4 (0-5')	6.3	0.0	None	None	None	Iron	Yes	Unrestrictive
3160-45-4 (5-6')	6.5	0.0	None	None	None	None	Yes	Unrestrictive
ISGS #3160-50 (Vacant Land)							
3160-50-1 (0-2')	6.2	0.0	Manganese	None	None	None	No	Uncontaminated
3160-50-2 (0-2')	7.8	0.0	None	None	None	Iron	Yes	Unrestrictive
3160-50-3 (0-2')	8	0.0	None	None	None	Chromium, Iron	Yes	Unrestrictive
ISGS #3160-51 (UPRR)				_				
3160-51-1 (0-1.5')	7.8	0.0	Lead	None	None	Naphthalene, Iron	Yes	Uncontaminated ^{bd}
3160-51-2 (0-1.5')	8.9	0.0	None	None	None	Benzo(a)pyrene, Naphthalene, Iron	Yes	Uncontaminated ^{bd}
3160-51-3 (0-1.5')	8.5	0.0	None	None	None	Iron	Yes	Unrestrictive
ISGS #3160-55 (Agriculture L	and)							
3160-55-1 (0-3')	5.2	0.0	None	None	None	Iron	No	Uncontaminated
3160-55-2 (0-3')	8	0.0	None	None	None	Iron	Yes	Unrestrictive
ISGS #3160-56 (Agriculture L	and)							
3160-56-1 (0-1.5')	7.3	0.0	None	None	None	Lead, Manganese	Yes	Unrestrictive
3160-56-2 (0-1.5')	8.3	0.0	None	None	None	Naphthalene, Chromium, Iron, Lead, Manganese	Yes	Uncontaminated ^{bd}
ISGS #3160-62 (UPRR)								
3160-62-1 (0-1.5')	8.6	0.0	None	None	None	Naphthalene, Manganese	Yes	Uncontaminated ^{bd}
3160-62-2 (0-1.5')	6.7	0.0	None	None	None	Lead, Manganese	Yes	Unrestrictive
3160-62-3 (0-1.5')	5.5	0.0	None	None	None	None	No	Uncontaminated
3160-62-4 (0-1.5')	7.6	0.0	None	None	None	None	Yes	Unrestrictive
3160-62-5 (0-1.5')	6.9	0.0	None	None	None	Manganese	Yes	Unrestrictive
3160-62-6 (0-1.5')	6	0.0	None	None	None	Manganese	No	Uncontaminated
3160-62-7 (0-1.5')	5.7	0.0	None	None	None	None	No	Uncontaminated
3160-62-8 (0-1.5')	5.2	0.0	None	None	None	Iron, Manganese, Selenium	No	Uncontaminated
3160-62-9 (0-1.5')	6	0.0	None	None	None	None	No	Uncontaminated
3160-62-10 (0-1.5')	5.5	0.0	None	None	None	Manganese	No	Uncontaminated

See footnotes last page.

Table 4-3. Summary of Soil Impacts and Contaminants of Concern

Benton, Franklin County, Illinois

Benton, Franklin County	y, illiliois							
							Off-Site Mar	nagement
				Contaminants of Concern			Eligible for CCDD or	
			Contaminants of Concern Above	Above Total Metal, TCLP, and	Contaminants of Concern Above	Contaminants of Concern Above	Uncontaminated Soil Fill	
Boring ID	рН	PID Reading	TCLP and SPLP Criteria		Select Location Specific MACs ac	All Location Specific MACs ^a	Operation? ^c	Classification
ISGS #3160-64 (Residence)								
						Benzo(a)anthracene,		
						Benzo(a)pyrene,		
3160-64-1 (0-1.5')	8.1	0.0	None	None	None	Benzo(b)fluoranthene,	Yes	Uncontaminated ^{bd}
						Dibenz(a,h)anthracene,		
						Naphthalene, Lead		
3160-64-2 (0-1.5')	7.1	0.0	None	None	None	None	Yes	Unrestrictive
3160-64-3 (0-1.5')	8.2	0.0	None	None	None	Lead, Manganese	Yes	Unrestrictive

ISGS = Illinois State Geological Society

MAC = Maximum Allowable Concentration

TCLP = Toxicity Characteristic Leaching Procedure

SPLP = Synthetic Precipitation Leaching Procedure

PID = Photo-ionization Detector

[&]quot;Unrestrictive soil"- may be managed onsite as fill or off-site at a Clean Construction and Demolition Debris (CCDD) or Uncontaminated Soil Fill Operation (USFO) facility

[&]quot;Uncontaminated soil"- impacted soil suitable for off-site management to an uncontaminated soil fill operation, CCDD or USFO

^a Site contaminants of concern are above location specific MACs. TCLP and SPLP metals results are compared to the TACO Tier 1 remediation objectives for the soil component of the groundwater ingestion exposure route. Metals (excluding arsenic) are considered eligible for off-site management to a CCDD of USFO facility unless the detected total, TCLP, and SPLP concentrations exceed applicable comparison criteria.

b Soils that contain constituent concentrations below the most stringent MACs may be managed off site as "uncontaminated soil" pursuant to 35 IAC 1100. Uncontaminated soil with a pH ranged of 6.25 to 9.0 and no PID readings above background levels may be managed off site to a CCDD or USFO. When a constituent exceeds a MAC based on a non-MSA, soils that contain constituents below the applicable MACS for a non-MSA, exhibit a pH within the range of 6.25 to 9.0, and do not exhibit PID readings above background levels may be managed off site as "uncontaminated soil" to a CCDD or USFO within the non-MSA county.

^c Metals are considered eligible for off-site management to a CCDD or USFO facility if the detected total concentrations are below background or pH-specific objectives (MAC table), or if the detected TCLP or SPLP concentrations are below TACO Tier 1 Class I soil component of groundwater ingestion objectives.

^d CCDD disposal may not meet acceptance requirements based on detectable impacts.

e Off-site management to a CCDD or USFO facility restricted to facilities located in a populated area or within Chicago Corporate Limits.

^f Off-site management to a CCDD or USFO facility restricted to facilities located in a populated area (excluding Chicago)

Table 4-4 Estimated Volumes of Impacted Soil FAS 2882/IL 37 Benton, Franklin County, IL

		Contan	ninants of Concern			Esti			ion of Impacte	d Soil (cubic yaı 59.09	rds) ^a
Boring ID	Impacted Stationing Along	Above All Applicable Comparison Critera	Above Most Stringent MAC, Chicago MAC or SCGIER Criteria Only	Construction Feature Involving Excavation of Impacted Soil	Excavation Dimension Assumption b	(a)(1)	(a)(2)	(a)(3)	(a)(4)	(a)(5)	(b)(1)
ISGS #3160-5 (UPRR)				·	<u> </u>						
3160-5-2 (0-1.2')	Station 12+00, 0' to 50' LT to Station 14+00, 0' to 50' LT	рН	Iron	Cut and Fill							314
					Total Volume of Impacted Soil in Construction Zone:						314
ISGS #3160-9 (C.N.C (
3160-9-1 (0-4')	Station 0+0, 0' to 50' RT to Station	Manganese, pH	Iron	Cut and Fill	Excavation volume estimated from cross sections						215
3160-9-2 (0-4')	1+25, 0' to 47' RT	pH	Iron	Cut and Fill	provided by IDOT						215
ISCS #2160 10 (Banks	on Grade School District #47)				Total Volume of Impacted Soil in Construction Zone:						430
15G2 #3160-10 (Bento	I Grade School District #47)		1				Г	Г	Г		
3160-10-1 (0-2.5')	Station 1+75, 0' to 50' RT to Station 3+90. 0' to 55' LT	Manganese, pH	Benzene, Naphthalene, Iron	Cut and Fill	Excavation volume estimated from cross sections provided by IDOT					266.67	
3160-10-2 (0-2.5')	3+90, 0 to 55 LI	pH	Iron	Cut and Fill	provided by IDO1					266,67	
3160-10-3 (0-2.5')		Manganese	Iron	Cut and Fill						266.67	
					Total Volume of Impacted Soil in Construction Zone:					800	
ISGS #3160-16 (Resid	ence)										
3160-16-2 (0-4')	Station 10+40, 0' to 35' RT to Station	рН	Iron	Cut and Fill							493
3160-16-3 (0-4')	11+70, 0' to 190' RT	pН	Iron	Cut and Fill							493
3160-16-4 (0-4')	Station 12+15, 0 to 65'RT to Station 14+00, 0 to 45' RT	None	2-Methylnaphthalene, Naphthalene, Iron	Cut and Fill			493				
3160-16-5 (0-4')	Station 14+00, 0 to 45'RT to Station 15+40, 0 to 55' RT	рН	2-Methylnaphthalene, Naphthalene, Iron	Cut and Fill		493					
			•		Total Volume of Impacted Soil in Construction Zone:	493	493				986
ISGS #3160-21 (UPRR)										
3160-21-2 (0-2.5')	Station 30+00, 0' to 50' LT to Station 31+25, 0' to 50' LT	None	2-Methylnaphthalene, Naphthalene, Iron	Cut and Fill			259				
3160-21-6 (0-2.5')	Station 37+25, 0 to 50'LT to Station 39+25, 0 to 50' LT	рН	Iron	Cut and Fill							259
3160-21-10 (0-2.5')	Station 45+45, 0' to 65' LT to Station 46+55, 0' to 40' LT	None	Naphthalene, Iron	Cut and Fill					259		
			•		Total Volume of Impacted Soil in Construction Zone:		259		259		259
See footnotes last page	ge.				· · · · · · · · · · · · · · · · · · ·		•	•	•		

Table 4-4 Estimated Volumes of Impacted Soil FAS 2882/IL 37

Benton, Franklin County, IL

Signature Security	3160-23-1 (0-4.5') 3160-23-2 (0-4.5') 3160-23-2 (0-4.5') SGS #3160-25 (Comm 3160-25-1 (0-4')	t Land) Station 22+00, 0' to 65' RT to Station 23+00, 0' to 65' RT to Station 23+00, 0' to 65' RT to Station 24+00, 0' to 65' RT Station 23+00, 0' to 65' RT to Station 24+00, 0' to 65' RT ercial Building and Residence) Station 30+75, 0' to 50' RT to Station 32+75, 0' to 50' RT	PH None Manganese, pH	MAC or SCGIER Criteria Only None 2-Methylnaphthalene, Naphthalene	Involving Excavation of Impacted Soil Cut and Fill	Excavation volume estimated from cross sections				(b)(1)
Select S	3160-23-1 (0-4.5') 3160-23-2 (0-4.5') SGS #3160-25 (Comm 3160-25-1 (0-4')	Station 22+00, 0' to 65' RT to Station 23+00, 0' to 65' RT Station 23+00, 0' to 65' RT to Station 24+00, 0' to 65' RT to Station 24+00, 0' to 65' RT ercial Building and Residence) Station 30+75, 0' to 50' RT to Station 32+75, 0' to 50' RT	None Manganese, pH	2-Methylnaphthalene, Naphthalene		-			 	 80
3509-22 (0.4-5) 2300,07 to 65' RT 941 None Cut and Fill Section in Construction Zone 0. 0. 0. 0. 0. 0. 0. 0	3160-23-2 (0-4.5') SGS #3160-25 (Comm 3160-25-1 (0-4')	23+00, 0' to 65' RT Station 23+00, 0' to 65' RT to Station 24+00, 0' to 65' RT to ercial Building and Residence) Station 30+75, 0' to 50' RT to Station 32+75, 0' to 50' RT	None Manganese, pH	2-Methylnaphthalene, Naphthalene		-			 	 80
State Stat	3160-23-2 (0-4.5') SGS #3160-25 (Comm 3160-25-1 (0-4')	24+00, 0' to 65' RT ercial Building and Residence) Station 30+75, 0' to 50' RT to Station 32+75, 0' to 50' RT	Manganese, pH		Cut and Fill	provided by IDOT		90		1 00
SSS #150-25 (General Part Fig.	3160-25-1 (0-4')	Station 30+75, 0' to 50' RT to Station 32+75, 0' to 50' RT						80	 	
3160-321 (0-4) 3210-3075, O't to 50't RT	3160-25-1 (0-4')	Station 30+75, 0' to 50' RT to Station 32+75, 0' to 50' RT				Total Volume of Impacted Soil in Construction Zone:		80	 	 80
3150-252 [O-4] 32-75, 0° to 50° RT 9H 1/00 Cut and Fill		32+75, 0' to 50' RT								
Section Sect	3160-25-2 (0-4')		pH	Iron, Manganese	Cut and Fill	Excavation volume estimated from cross sections			 	 236.5
State Stat		nce)		Iron	Cut and Fill	provided by IDOT			 	 236.5
3160-26-1 (0-4) 3410 (0-5) 3475, 0° to 50° RT to Station 3475, 0° to 50° RT to Statio		nce)				Total Volume of Impacted Soil in Construction Zone:			 	 473
34-75, 0' to 60' LT										
Station 35-75, 0' to 45' RT to Station Station 35-95 (0') as Station 35-95 (0') to 45' LT to Station Amaganese Cut and Fill First Manganese Cut and Fill Excavation volume estimated from cross sections Ph Iron, Manganese Cut and Fill Excavation volume estimated from cross sections Ph Iron, Manganese Cut and Fill Excavation volume estimated from cross sections Ph Iron, Manganese Cut and Fill Excavation volume estimated from cross sections Ph Iron, Manganese Cut and Fill Excavation volume estimated from cross sections Ph Iron, Manganese Cut and Fill Excavation volume estimated from cross sections Ph Iron, Manganese Cut and Fill Excavation volume estimated from cross sections Ph Iron, Manganese Cut and Fill Excavation volume estimated from cross sections Ph Iron, Manganese Cut and Fill Excavation volume estimated from cross sections Ph Iron, Manganese Cut and Fill Ph Iron, Manganese				Iron, Manganese	Cut and Fill	- 4			 	
Sign	3160-26-2 (0-4')	34+75, 0' to 60' LT	pH	Iron	Cut and Fill				 	
3160-28-1 (0-51) 3160-38-1 (0-51) 3160-38-3 (0-51) 3160-38-3 (0-31) 3160-38-3 (Total Volume of Impacted Soil in Construction Zone:			 	 138
3160-28-2 (0-5) 347-5, 0' to 55' RT to Station 347-5, 0' to 55' RT										
Station 37+75, 0' to 55' RT to Station 38+75, 0' to 55' RT to Station 38+75, 0' to 55' RT to Station 38+75, 0' to 55' RT to Station 46+50, 0' to 65' RT										
3475, 0' to 55' RT			pH	Iron, Manganese	Cut and Fill				 	 159.7
Sign	3160-28-3 (0-5')		Manganese, pH	Naphthalene, Iron, Selenium	Cut and Fill	provided by IDOT	159.7		 	
Station 45+50, 0' to 65' RT to Station 46+50, 0' to 65' RT to Station 49+50, 0' to 65' RT to Station 59+50, 0' to 45' LT to Station 59+50, 0' to 45' LT to Station 59+50, 0' to 45' LT to Station 59+50, 0' to 40' LT t						Total Volume of Impacted Soil in Construction Zone:	159.7		 	 319.33
1860-32-5 (0-3.5) 3160-32	SGS #3160-32 (Route	37 Collection Center)								
Station 3-2-6 (0-3.5') 3160-32-7 (0-3.5') 240-0 (1-7-5)	3160-32-4 (0-3.5')		None		Cut and Fill			128.6	 	
3160-32-7 (0-3.5) 3160-32-7 (0-3.5) 3160-32-7 (0-3.5) 3160-32-7 (0-3.5) 3160-32-7 (0-3.5) 3160-36-6 (0-3.2) 3160-36-7 (0-3.2) 3160	3160-32-5 (0-3.5')	Station 46+E0 0' to 6E' PT to Station	pH	Iron	Cut and Fill				 	 128.6
Total Volume of Impacted Soil in Construction Zone 128.6	3160-32-6 (0-3.5')		pH	Iron, Manganese	Cut and Fill				 	 128.6
SIGN #3160-36 (UPRR) Station 50+50, 0" to 45" LT to Station DH Iron, Manganese Cut and Fill Station 50+50, 0" to 40" LT Station 50+50, 0" to 40" LT Station 50+50, 0" to 40" LT to Station S7+25, 0" to 45" LT to Station DH Iron, Manganese Cut and Fill Station 50+50, 0" to 40" LT to Station S7+25, 0" to 45" LT to Station DH Iron, Manganese Cut and Fill Station 50+50, 0" to 40" LT to Station S7+25, 0" to 45" LT to Station DH Iron, Manganese Cut and Fill Station 50+50, 0" to 40" LT to Station DH Iron, Manganese Cut and Fill Station 50+50, 0" to 40" LT to Station DH Iron, Manganese Cut and Fill Station 50+50, 0" to 40" LT to Station T1+75, 0" to 40" LT to Station T2+75, 0" to 40" LT to Stat	3160-32-7 (0-3.5')	45150,0 10 05 111	Manganese, pH	Iron	Cut and Fill				 	 128.6
3160-36-2 (0-3') 3160-36-2 (0-3') 3160-36-3 (0-3') 55+50, 0' to 40' LT DH Manganese Cut and Fill						Total Volume of Impacted Soil in Construction Zone:		128.6	 	 385.71
3160-36-3 (0-3') 55+50, 0' to 40' LT pH Manganese Cut and Fill 290.5 290.5 290.5 290.5 290.5 290.5 290.5 290.5 290.5 290.5										
3160-36-4 (0-3') Station 55+55, 0' to 40' LT to Station 57+25, 0' to 40' LT to Station 57+25, 0' to 40' LT to Station 77+26, 0' to 40' LT to Station 77+25, 0' to 40' LT to Station 77+00, 0' to 40' LT to 50' LT to Station 77+00, 0' to 40' LT to 50' LT to 5				Iron, Manganese					 	 290.5
160-36-5 (0-3') 2160-36-5 (0-3') 2160-36-5 (0-3') 2160-36-6 (0-3') 2160-36-6 (0-3') 2160-36-6 (0-3') 2160-36-6 (0-3') 2160-36-6 (0-3') 2160-36-6 (0-3') 2160-36-6 (0-3') 2160-36-6 (0-3') 2160-36-6 (0-3') 2160-36-6 (0-3') 2160-36-7 (0-3') 2160-36	3160-36-3 (0-3')	55+50, 0' to 40' LT	pН	Manganese	Cut and Fill				 	 290.5
Sation 37-42, to 48' L1 to Station PH Iron, Manganese Cut and Fill	3160-36-4 (0-3')		рН	Iron, Manganese	Cut and Fill		290.5		 	
3160-36-6 (0-3) 3160-36-7 (0-3) 63+00, 0" to 50" LT		Station E7+2E O' to 4E' LT to Station	pH	Iron, Manganese	Cut and Fill				 	 290.5
3160-36-7 (0-3')	3160-36-6 (0-3')		pH	Iron, Manganese	Cut and Fill				 	 290.5
3160-36-9 (0-3') Station 71-75, 0' to 40' LT to Station 72-75, 0' to 40' LT to Station 77-700, 0' to 40' LT to Station 77-700, 0' to 40' LT pH Iron Cut and Fill 290.5 290.5 290.5 290.5 290.5 290.5 290.5	3160-36-7 (0-3')	03+00, 0 (0 50 E1	Manganese	Iron	Cut and Fill				 	 290.5
3160-36-11 (0-3') Station 75+75, 0' to 40' LT to Station 77+00, 0' to 40' LT pH Iron Cut and Fill 290.5	3160-36-9 (0-3')		Lead	Methylnaphthalene, Naphthalene,	Cut and Fill			290.5	 	
Total Volume of Impacted Soil in Construction Zone: 290.5 290.5 1743.	3160-36-11 (0-3')				Cut and Fill				 	 290.5
						Total Volume of Impacted Soil in Construction Zone:	290.5	290.5	 	 1743.3

Table 4-4 Estimated Volumes of Impacted Soil FAS 2882/IL 37

Benton, Franklin County, IL

		Contam	ninants of Concern			Esti			ion of Impacted		.rds) ^a
Boring ID	Impacted Stationing Along	Above All Applicable Comparison Critera	Above Most Stringent MAC, Chicago MAC or SCGIER Criteria Only	Construction Feature Involving Excavation of Impacted Soil	Excavation Dimension Assumption ^b	(a)(1)	(a)(2)	(a)(3)	(a)(4)	(a)(5)	(b)(1)
ISGS #3160-50 (Vacar	nt Land)					. , , ,	. ,,,,				
3160-50-1 (0-2')	Station 75+50, 0' to 60' RT to Station 76+, 0' to 75' RT	Manganese, pH	None	Cut and Fill	Excavation volume estimated from cross sections provided by IDOT						18
					Total Volume of Impacted Soil in Construction Zone:						18
ISGS #3160-51 (UPRR)							ı			
3160-51-1 (0-1.5')	Station 81+00, 0' to 55' LT to Station	Lead	Naphthalene, Iron	Cut and Fill	Excavation volume estimated from cross sections				455.67		
3160-51-2 (0-1.5')	84+25, 0' to 35' LT	None	Benzo(a)pyrene, Naphthalene, Iron	Cut and Fill	provided by IDOT				455.67		
					Total Volume of Impacted Soil in Construction Zone:				911.33		
ISGS #3160-55 (Agricu											
3160-55-1 (0-3')	Station 87+00, 0' to 55' RT to Station 88+00, 0' to 55' RT	рН	Iron	Cut and Fill	Excavation volume estimated from cross sections provided by IDOT						197
					Total Volume of Impacted Soil in Construction Zone:						197
ISGS #3160-56 (Agrica			1								
3160-56-2 (0-1.5')	Station 90+00, 0' to 55' RT to Station 91+00, 0' to 45' RT	None	Naphthalene, Chromium, Iron, Lead, Manganese	Cut and Fill					92		
					Total Volume of Impacted Soil in Construction Zone:				92		
ISGS #3160-62 (UPRR											
3160-62-1 (0-1.5')	Station 104+0, 0' to 35' LT to Station 105+50, 0' to 35' LT	None	Naphthalene, Manganese	Cut and Fill					144.3		
3160-62-3 (0-1.5')	Station 112+0, 0' to 40' LT to Station 113+50, 0' to 40' LT	рН	None	Cut and Fill							144.3
3160-62-6 (0-1.5')		pH	Manganese	Cut and Fill	Excavation volume estimated from cross sections provided by IDOT						144.3
3160-62-7 (0-1.5')	Station 117+50, 0' to 40' LT to Station	pH	None	Cut and Fill	provided by IDO1						144.3
3160-62-8 (0-1.5')	128+00, 0' to 40' LT	pН	Iron, Manganese, Selenium	Cut and Fill							144.3
3160-62-9 (0-1.5')	128+00, 0 10 40 11	pН	None	Cut and Fill							144.3
3160-62-10 (0-1.5')		pН	Manganese	Cut and Fill							144.3
					Total Volume of Impacted Soil in Construction Zone:				144.3		865.8
ISGS #3160-64 (Resid	ence)							1		1	
3160-64-1 (0-1.5')	Station 115+50, 0' to 50' RT to Station 116+55, 0' to 50' RT	None	Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Dibenz(a,h)anthracene, Naphthalene, Lead	Cut and Fill	Excavation volume estimated from cross sections provided by IDOT		62.33				
					Total Volume of Impacted Soil in Construction Zone:		62.33				

CCDD - Clean Construction Demolition Debris

GW = Groundwater

ISGS = Illinois State Geological Survey

"Unrestrictive soil"- may be managed onsite as fill or off-site at a CCDD or USFO facility

"Uncontaminated soil"- impacted soil suitable for off-site management to an uncontaminated soil fill operation, CCDD or USFO

"*"- Exceeds only contruction worker exposure limits

Applicable Screening Criteria

1 Exceeds the most stringent MAC value

² Exceeds the Chicago Corporate Limits MAC values

 $^{\rm 3}$ Exceeds the Within a Populated Area in a MSA (excluding Chicago) MAC value

 $^{\rm 4}$ Exceeds the Within a MSA County MAC value

⁵ Exceeds the Within a Populated Area in a non-MSA County MAC value

⁶ Exceeds the Outside a Populated Area MAC value

⁷ Exceeds the Within a non-MSA County MAC value

 $^8\,\mathrm{Exceeds}$ the Most Stringent TACO Tier 1 Construction Worker Exposure Objective

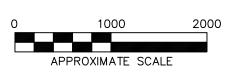
⁹ Exceeds the Most Stringent TACO Tier 1 Residential Objective

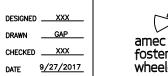
10 Exceeds the TACO Tier 1 Soil to Groundwater TCLP/SPLP Objective

 $^{\rm 11}$ Exceeds the Most Stringent TACO Tier 1 Class 1 Groundwater Objective

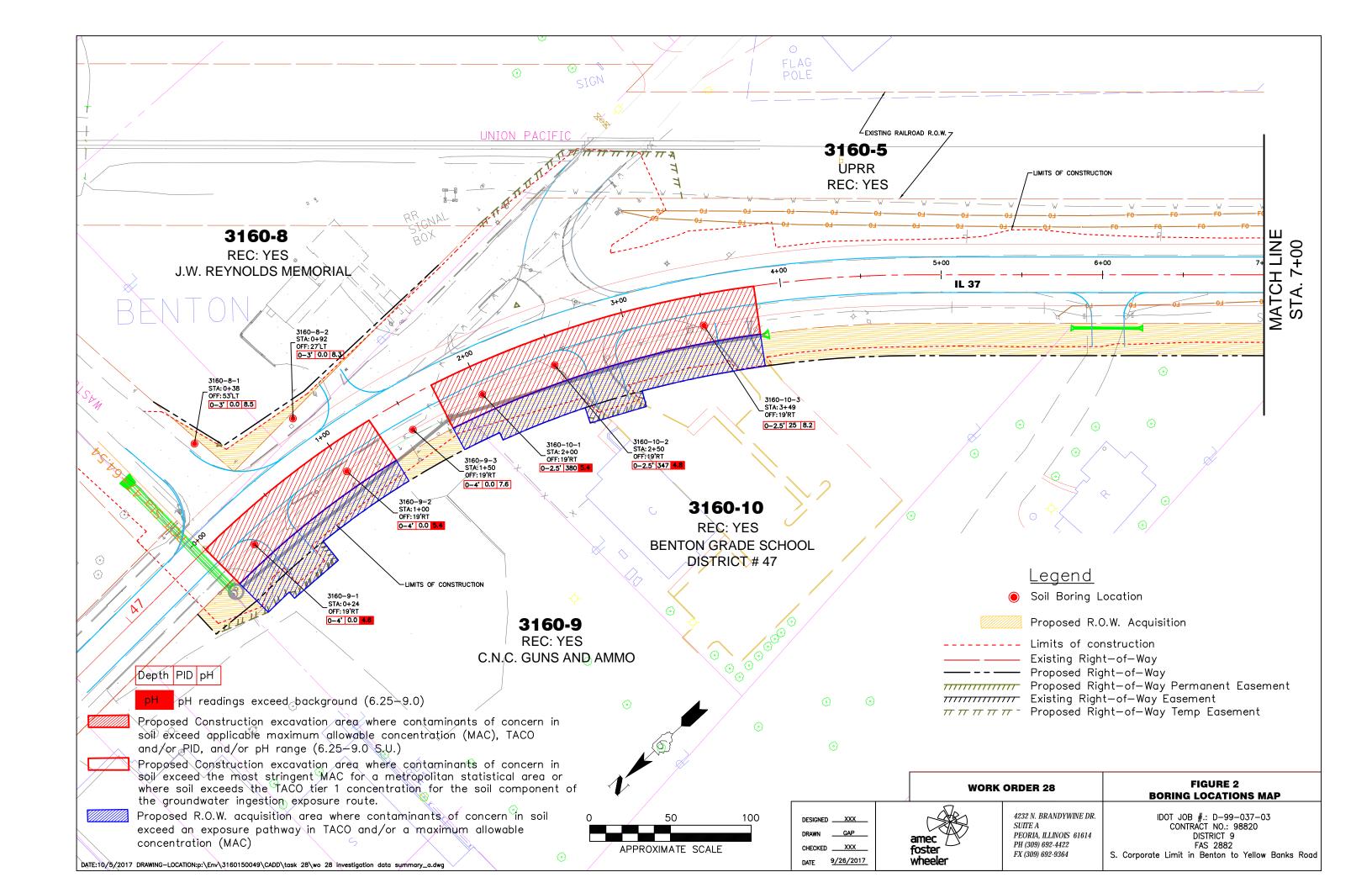
Table 5-1. Remediation Cost Associated with IDOT's Construction Project

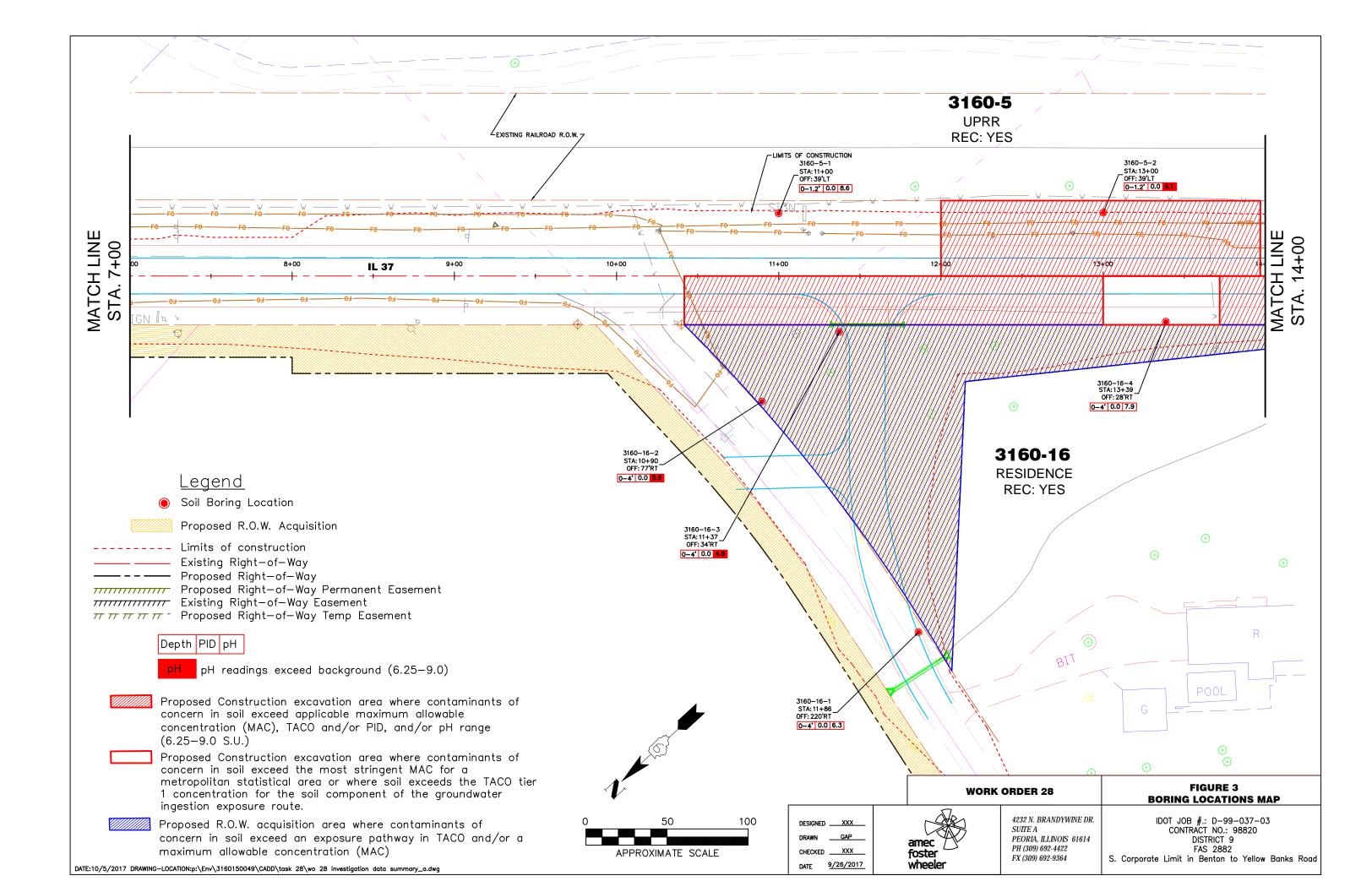
	Pay Item/Cost per Unit																
	Special V	Vaste Plans and		Jaste Disposal cubic yard			CCDD/Non-Special Waste Disposal \$71.00 per cubic yard			Non-Special Waste Disposal \$71.00 per cubic yard							
	F	eports ^a	669.09(a)(1) ^b			669.09(a)(5) ^b			669.09(a)(2)/(3)/(4) ^c			669.09(b)(1) ^d		Soil Disposal Analysis		Tota	al Cost (Rounded to
Site	Quantity	Cost	Quantity	Cost		Quantity	Cost		Quantity	Cost		Quantity	Cost	Quantity	Cost		nearest dollar)
ISGS #3160-5 (UPRR)	1	\$ 1,052.63		\$	-		\$	-		\$	-	314	\$ 22,294.00	1	\$ 1,000	\$	24,346.63
ISGS #3160-9 (C.N.C Guns and Ammo)	1	\$ 1,052.63		\$	-		\$	-		\$	-	430	\$ 30,530.00	1	\$ 1,000	\$	32,582.63
ISGS #3160-10 (Benton Grade School District #47)	1	\$ 1,052.63		\$	-	800	\$	56,800.00		\$	-		\$ -	1	\$ 1,000	\$	58,852.63
ISGS #3160-16 (Residence)	1	\$ 1,052.63	493	\$ 35,0	003.00		\$	-	493	\$	35,003.00	986	\$ 70,006.00	1	\$ 1,000	\$	142,064.63
ISGS #3160-21 (UPRR)	1	\$ 1,052.63		\$	-		\$	-	518	\$	36,778.00	259	\$ 18,389.00	1	\$ 1,000	\$	57,219.63
ISGS #3160-23 (Vacant Land)	1	\$ 1,052.63		\$	-		\$	-	80	\$	5,680.00	80	\$ 5,680.00	1	\$ 1,000	\$	13,412.63
ISGS #3160-25 (Commercial Building and Residence)	1	\$ 1,052.63		\$	-		\$	-		\$	-	473	\$ 33,583.00	1	\$ 1,000	\$	35,635.63
ISGS #3160-26 (Residence)	1	\$ 1,052.63		\$	-		\$	-		\$	-	138	\$ 9,798.00	1	\$ 1,000	\$	11,850.63
ISGS #3160-28 (Residence)	1	\$ 1,052.63	159.7	\$ 11,	338.70		\$	-		\$	-	319.33	\$ 22,672.43	1	\$ 1,000	\$	36,063.76
ISGS #3160-32 (Route 37 Collection Center)	1	\$ 1,052.63		\$	-		\$	-	128.6	\$	9,130.60	385.71	\$ 27,385.41	1	\$ 1,000	\$	38,568.64
ISGS #3160-36 (UPRR)	1	\$ 1,052.63	290.5	\$ 20,	525.50		\$	-	290.5	\$	20,625.50	1743.3	\$ 123,774.30	1	\$ 1,000	\$	167,077.93
ISGS #3160-50 (Vacant Land)	1	\$ 1,052.63		\$	-		\$	-		\$	-	18	\$ 1,278.00	1	\$ 1,000	\$	3,330.63
ISGS #3160-51 (UPRR)	1	\$ 1,052.63		\$	-		\$	-	911.33	\$	64,704.43		\$ -	1	\$ 1,000	\$	66,757.06
ISGS #3160-55 (Agriculture Land)	1	\$ 1,052.63		\$	-		\$	-		\$	-	197	\$ 13,987.00	1	\$ 1,000	\$	16,039.63
ISGS #3160-56 (Agriculture Land)	1	\$ 1,052.63		\$	-		\$	-	92	\$	6,532.00		\$ -	1	\$ 1,000	\$	8,584.63
ISGS #3160-62 (UPRR)	1	\$ 1,052.63		\$	-		\$	-	144.3	\$	10,245.30	865.8	\$ 61,471.80	1	\$ 1,000	\$	73,769.73
ISGS #3160-64 (Residence)	1	\$ 1,052.63		\$	-		\$	-	62.33	\$	4,425.43		\$ -	1	\$ 1,000	\$	6,478.06
Project Totals	19	\$ 17,894.74	943.2	\$ 66,	967.20	800	\$	56,800.00	2720.06	\$	193,124.26	6209.14	\$ 440,848.94	19	\$ 17,000.00	\$	792,635.14

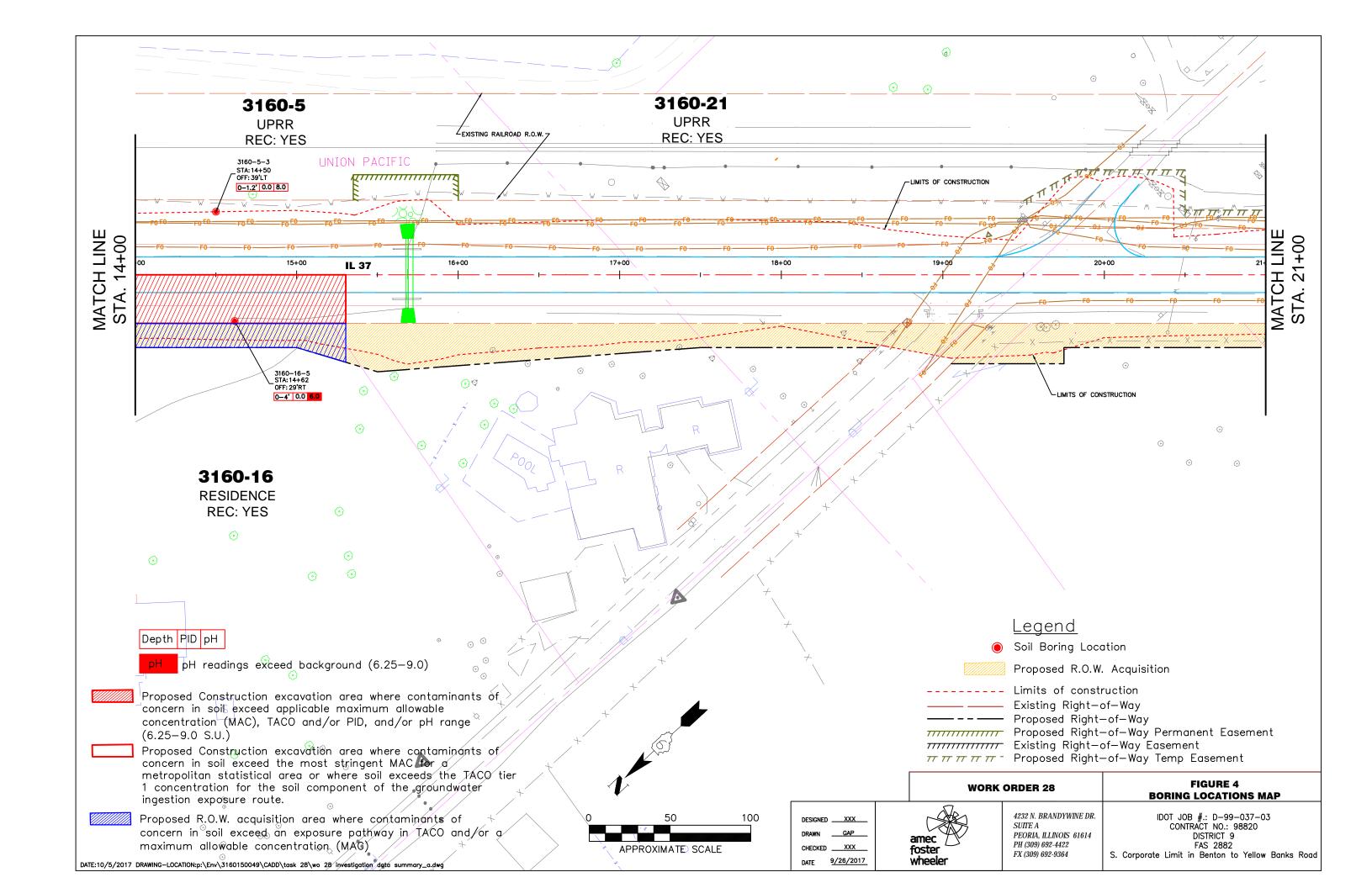

^aSpecial waste plans assume the following documents and costs are required - (Site health and safety plan, site contamination operation plan, erosion control plan, and one final environmental construction report. The total cost for documents described is apportioned equally between the potential waste properties listed above and assumes the activities will occur during one mobilization. This line item also includes labor, expenses and equipment for air monitoring field oversight.

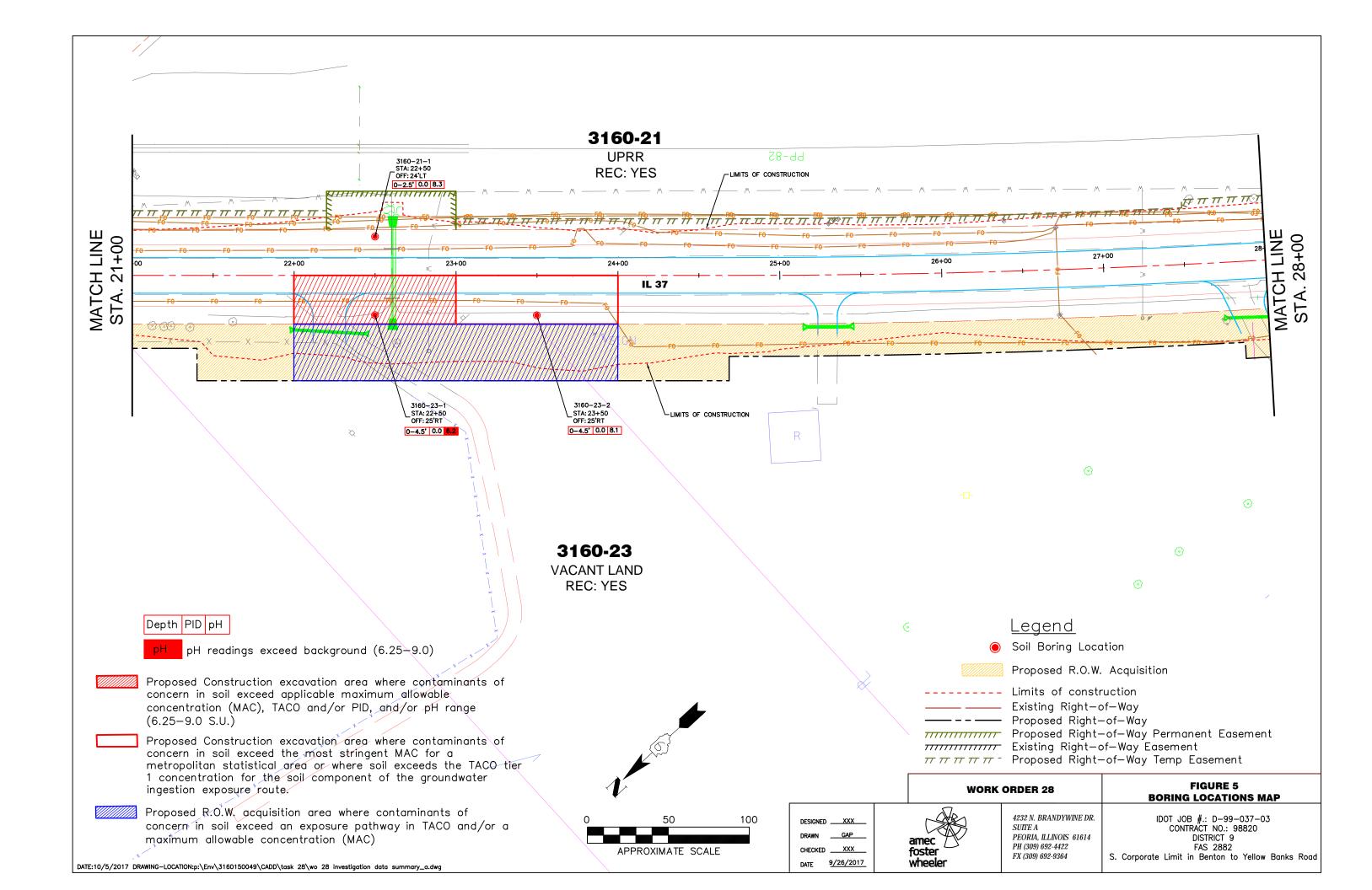

bMaterial must be managed to a non-special waste disposal facility. Transportation costs are based on generic 100-mile distance facility and a truck capacity of 14 cubic yards.

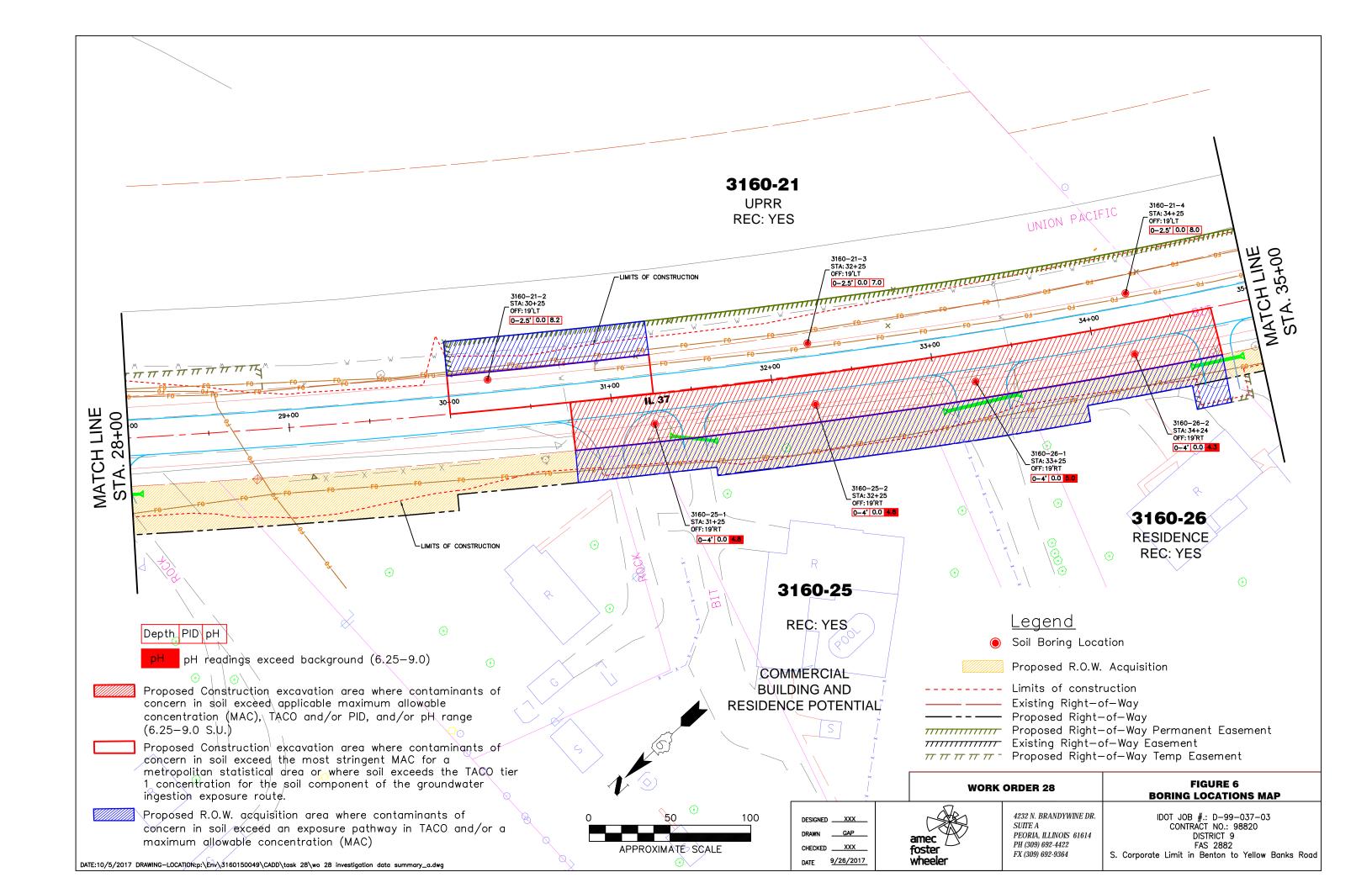
cAlthough the disposal costs are estimated as a non-special waste, soil in this category may be managed at a CCDD facility or USFO as uncontaminated soil.

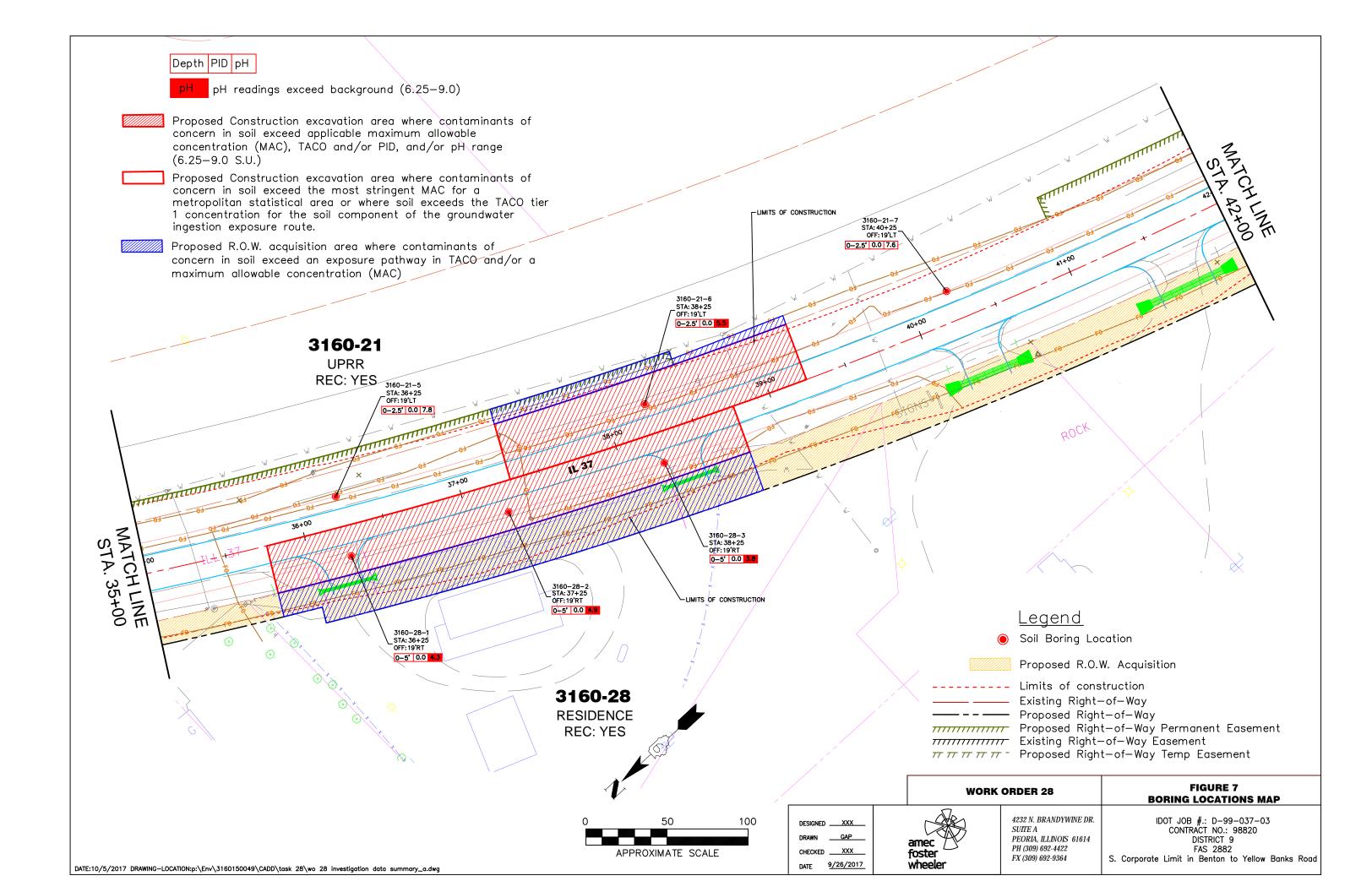

^eAlthough the disposal costs are estimated as a non-special waste, soil in this category ma be managed as uncontaminated soil, but not at a CCDD facility or USFO due to pH outside of the acceptable range. Disposal Analysis Methods: EPA Methods 1311, 8260B, 8270C, 8081, 8151A, 9045C, 1030 and 9095A.

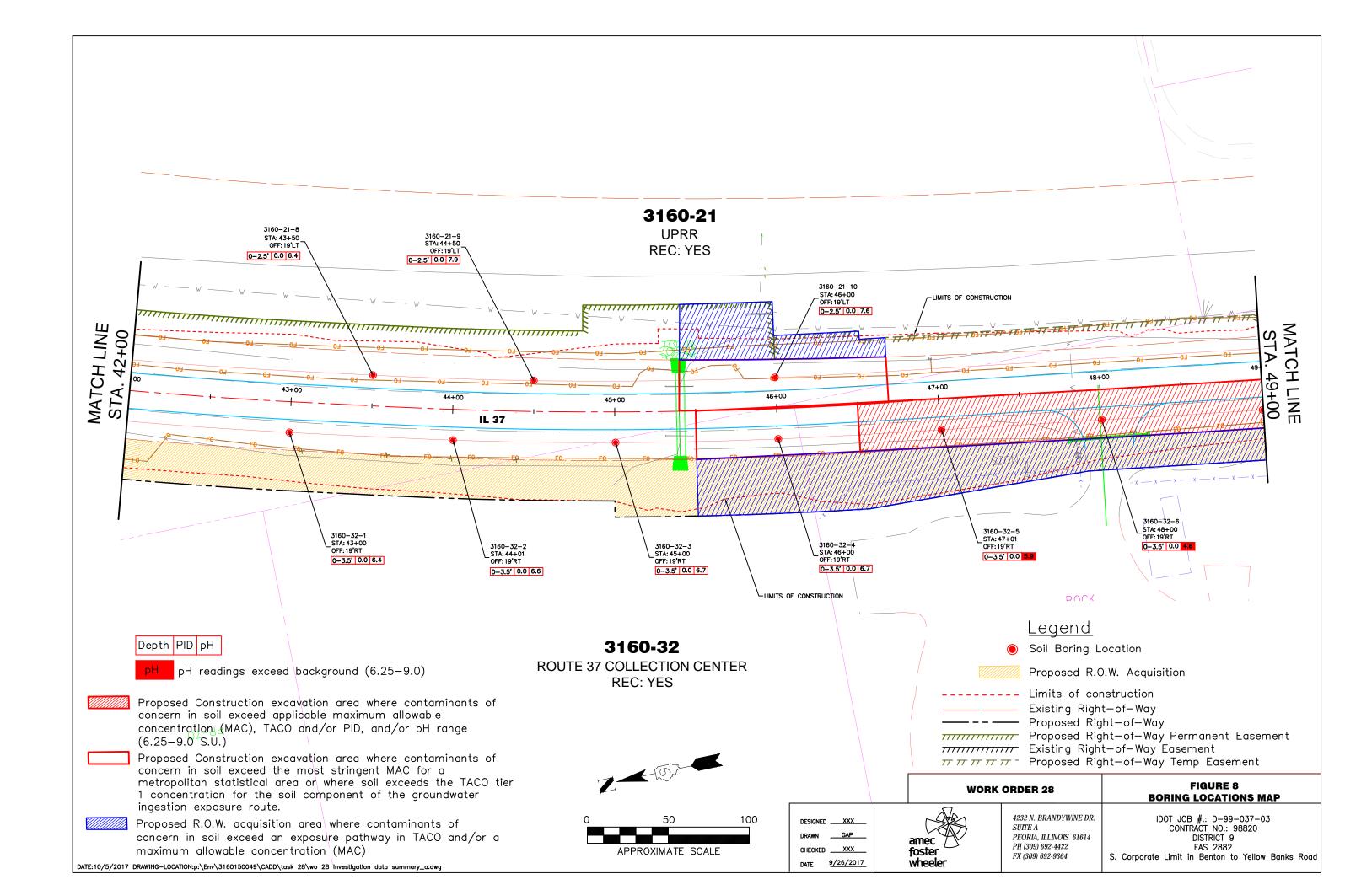


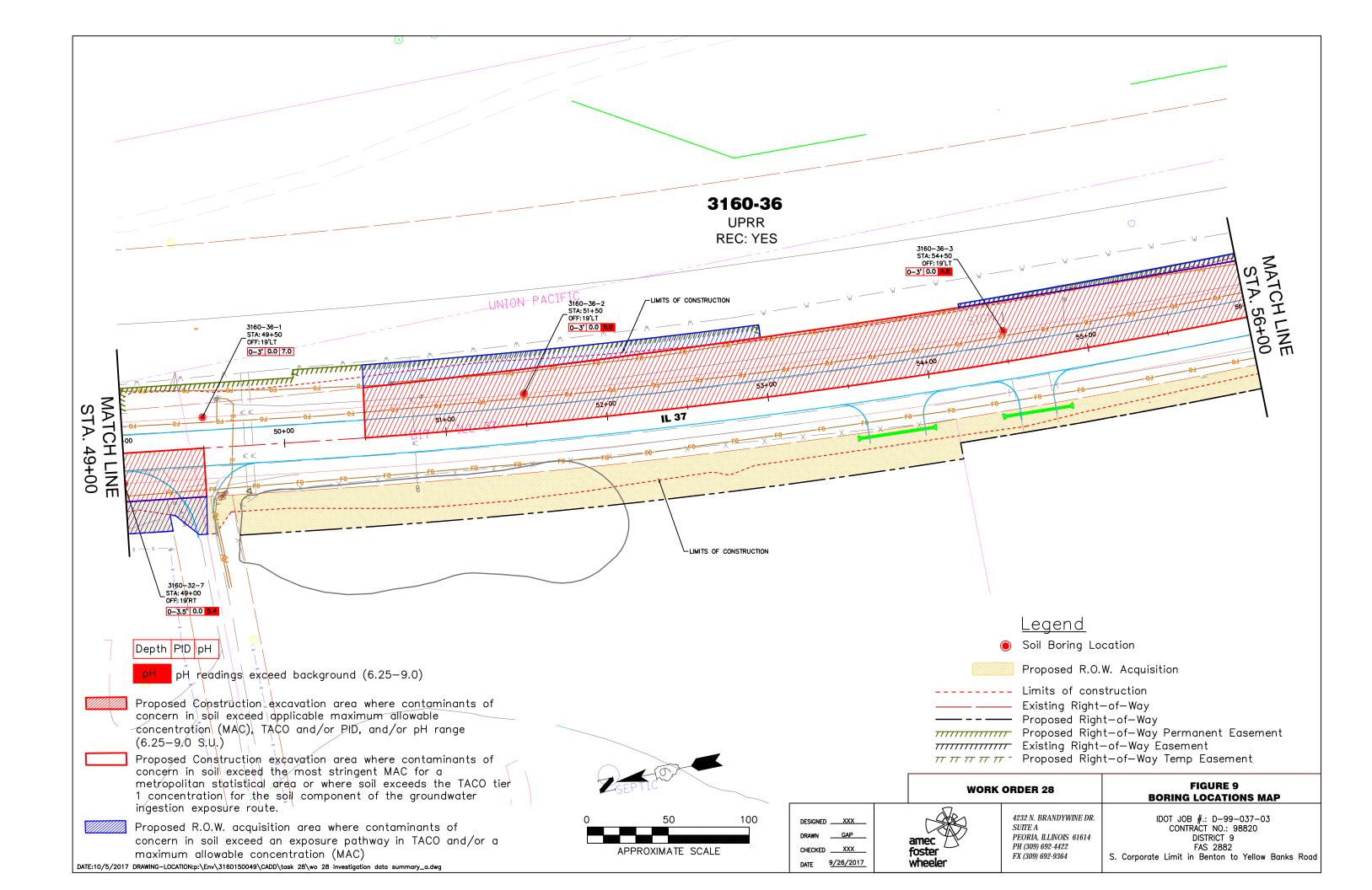


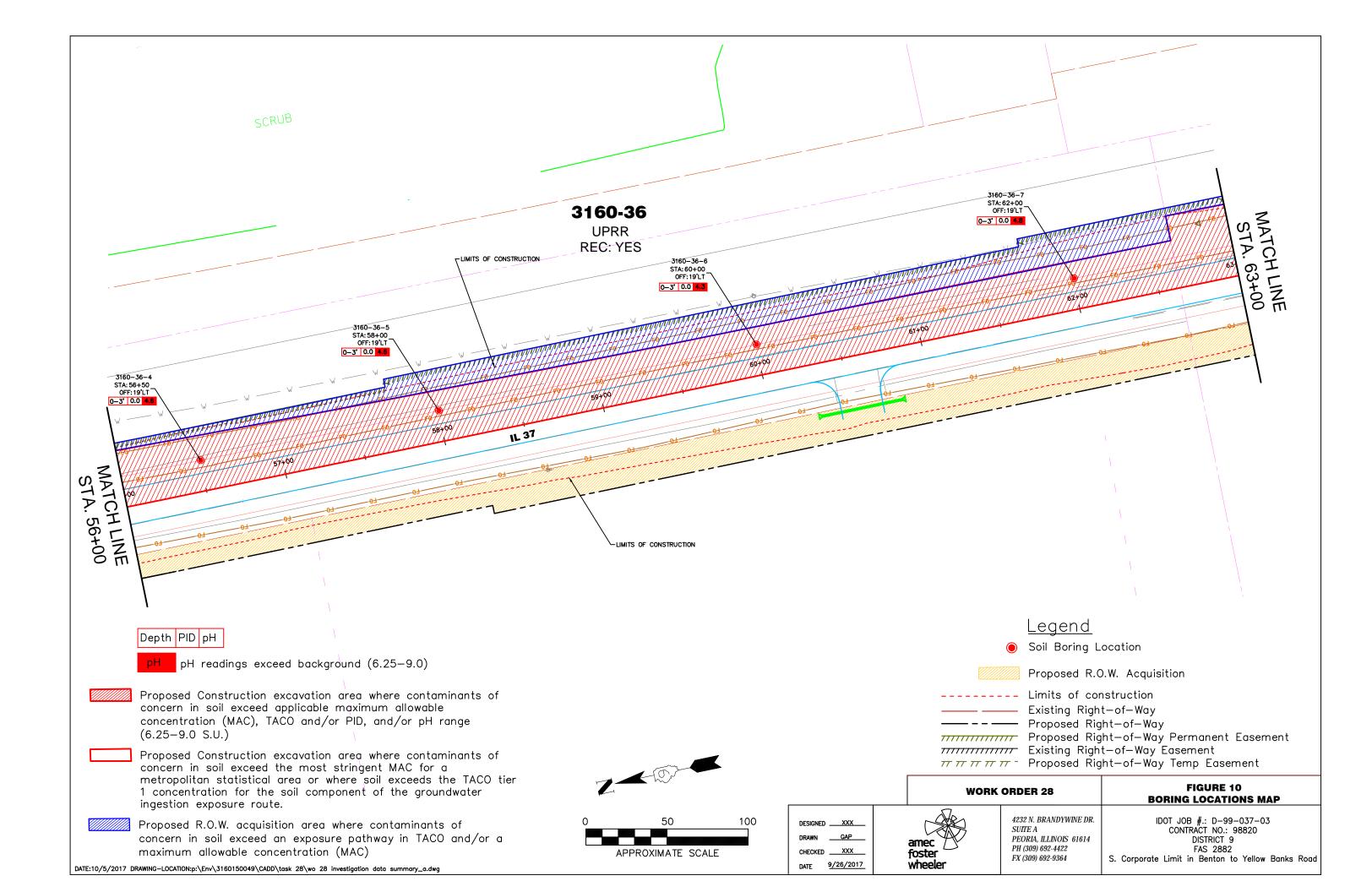


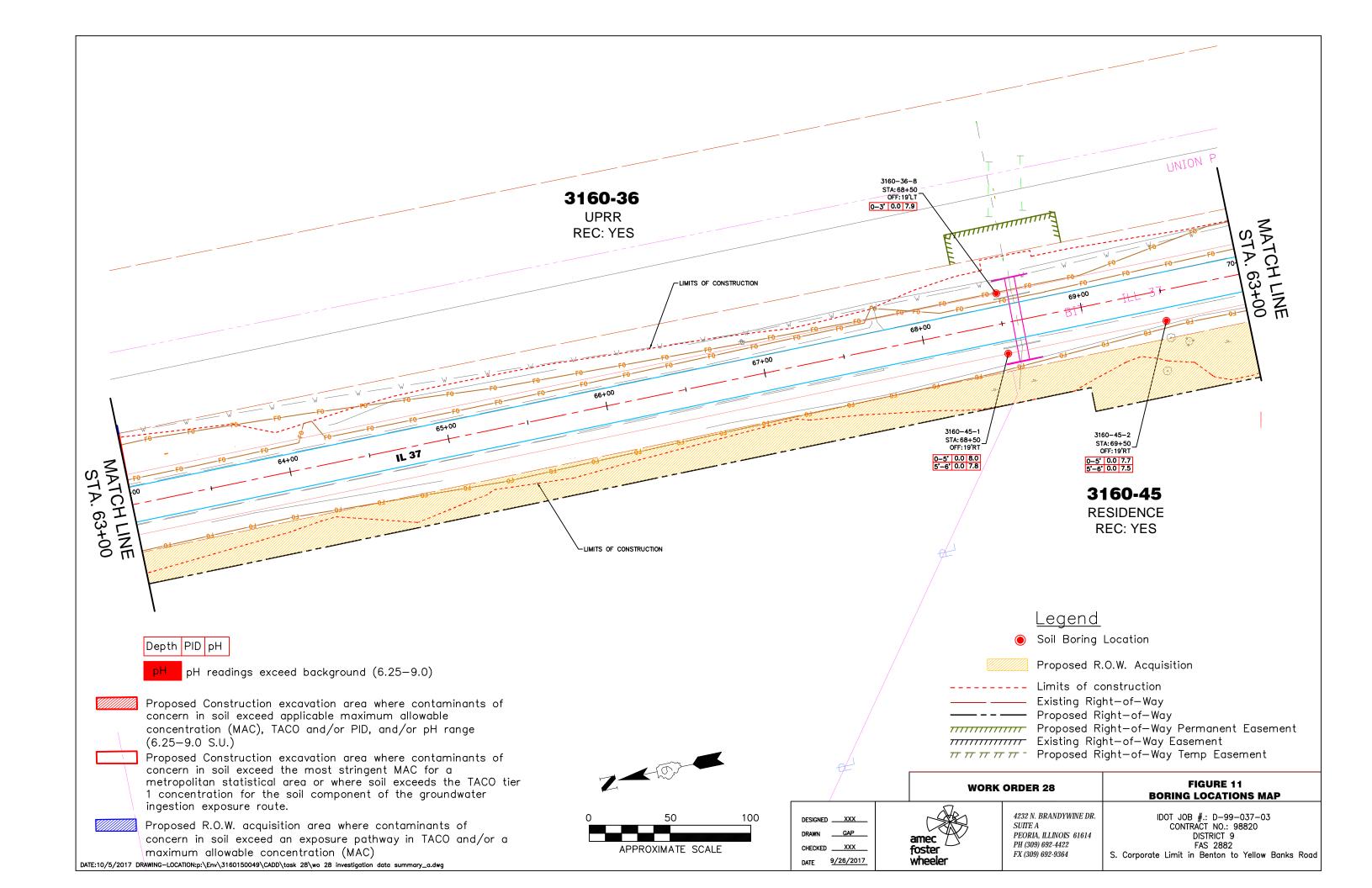

amec foster wheeler 4232 N. BRANDYWINE DR. SUITE A PEORIA, ILLINOIS 61614 PH (309) 692-4422 FX (309) 692-9364 IDOT JOB #.: D-99-037-03 CONTRACT NO.: 98820 DISTRICT 9 FAS 2882 S. Corporate Limit in Benton to Yellow Banks Road

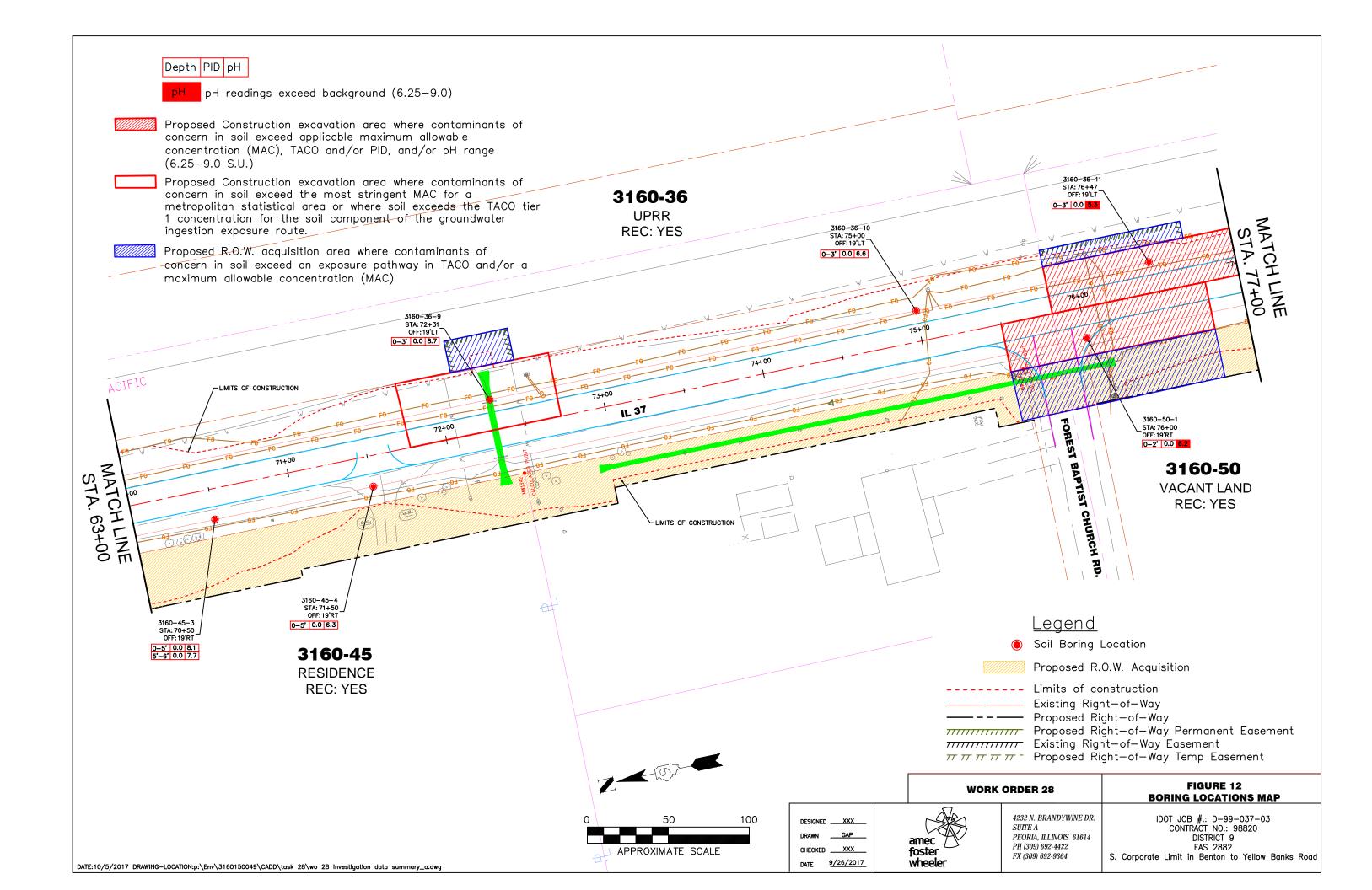


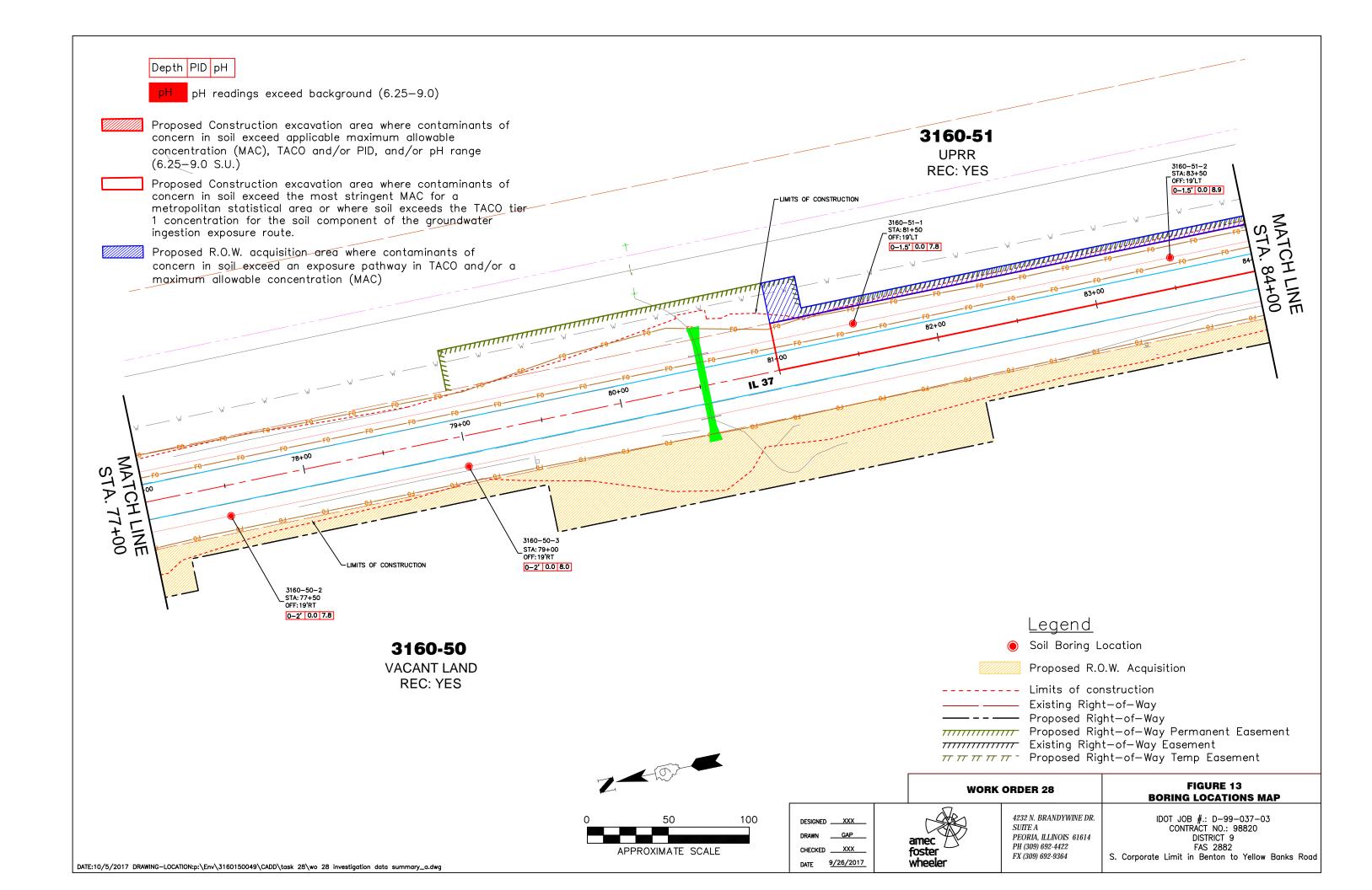


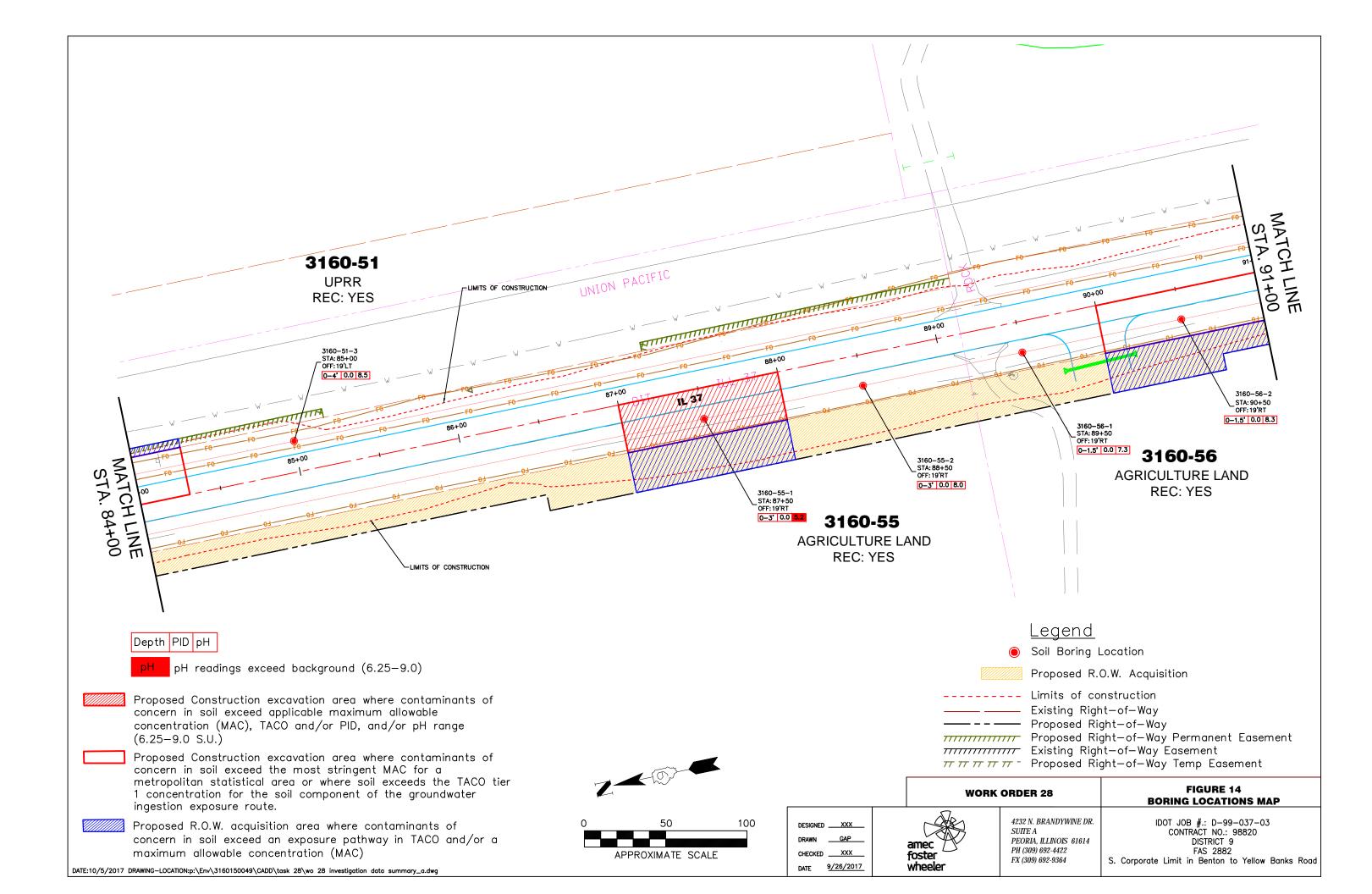


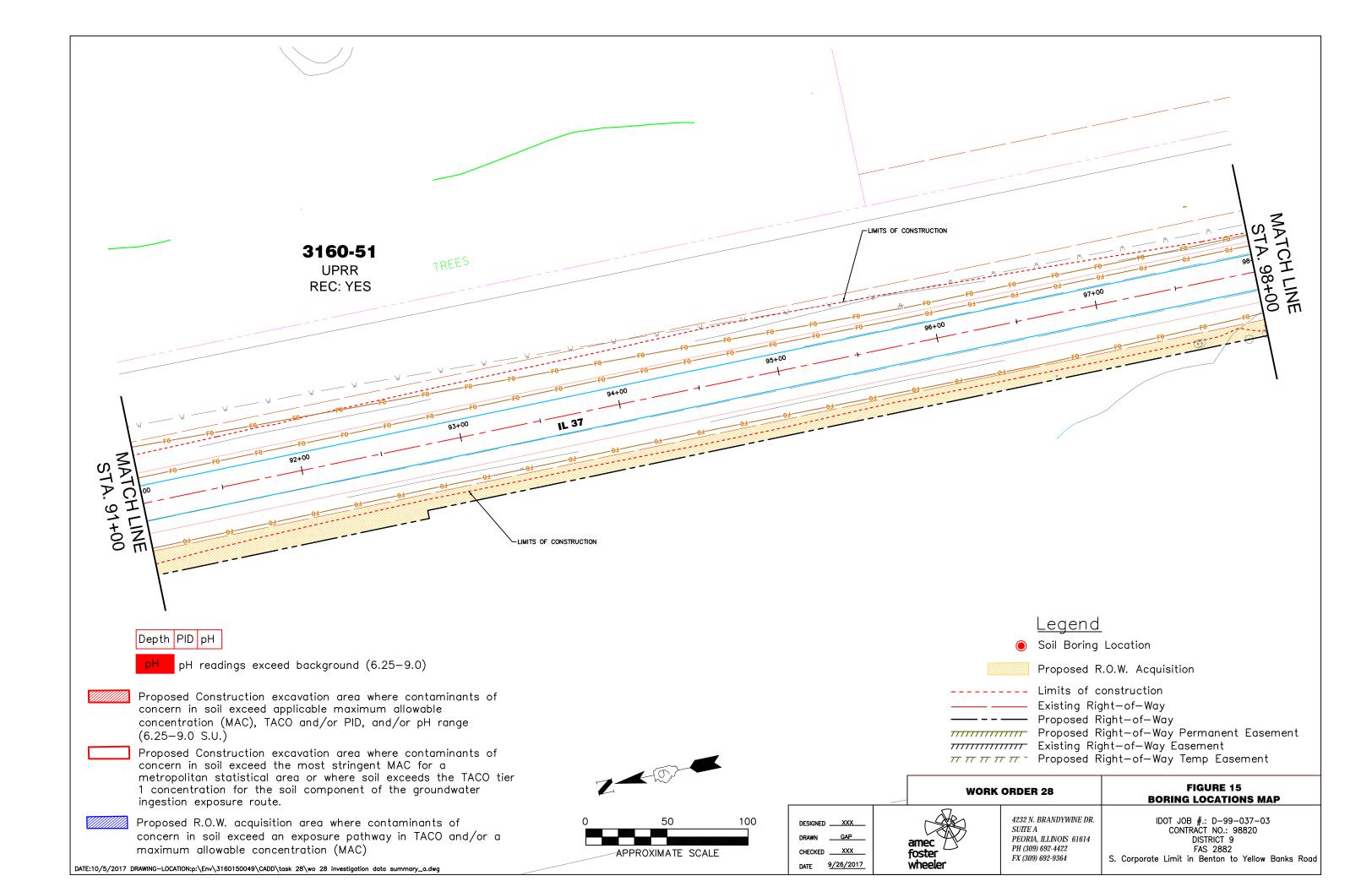


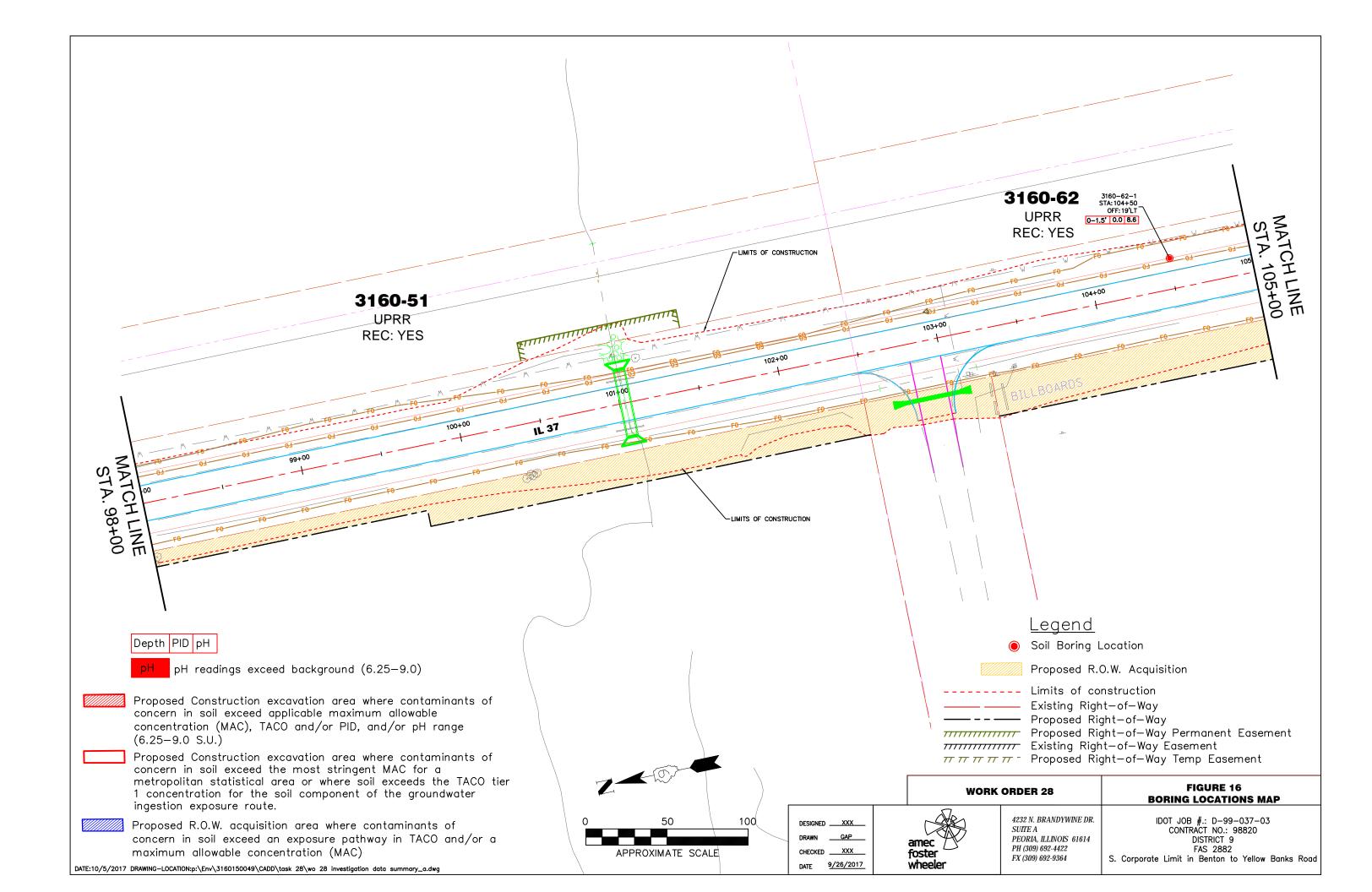


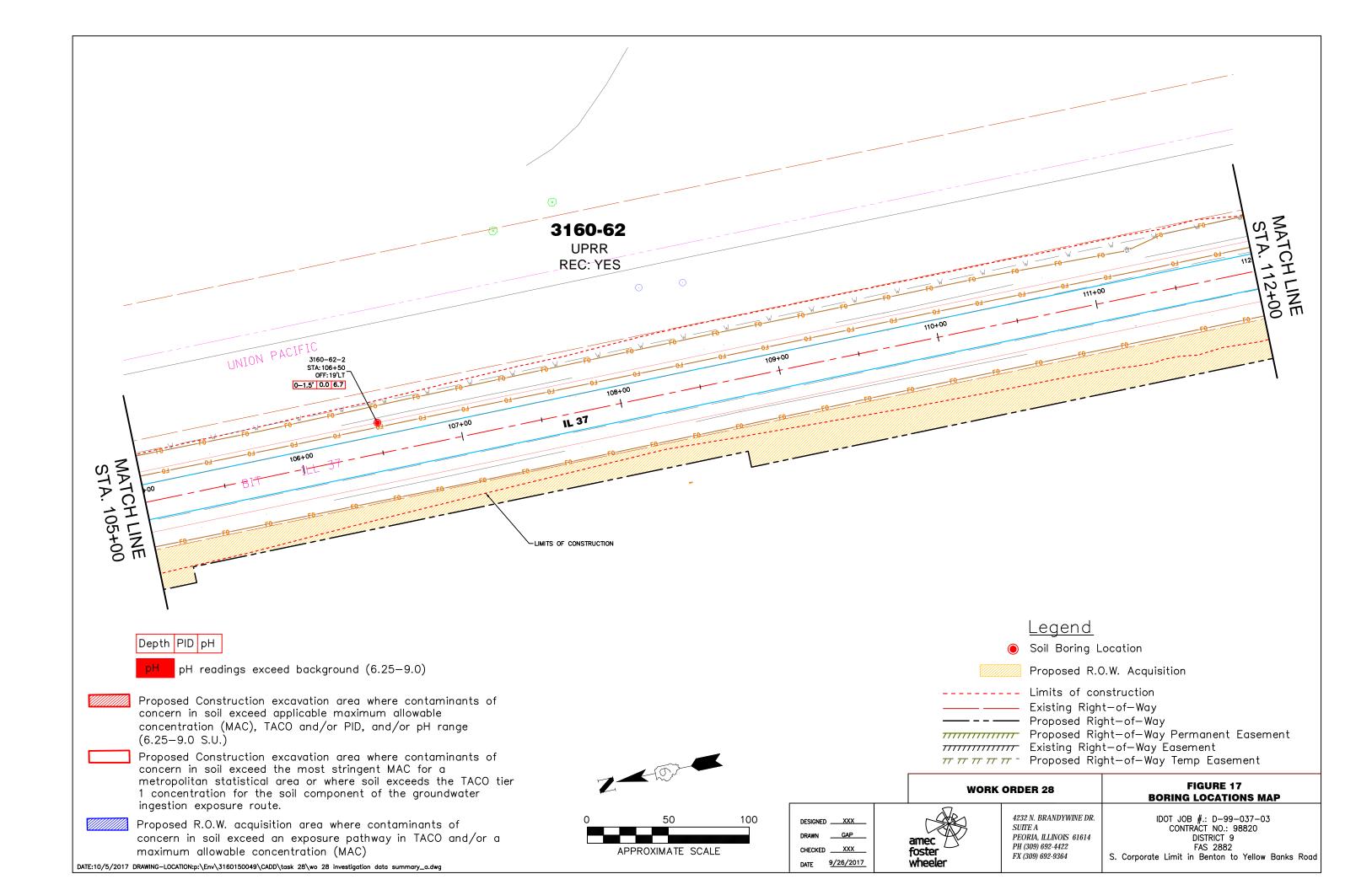


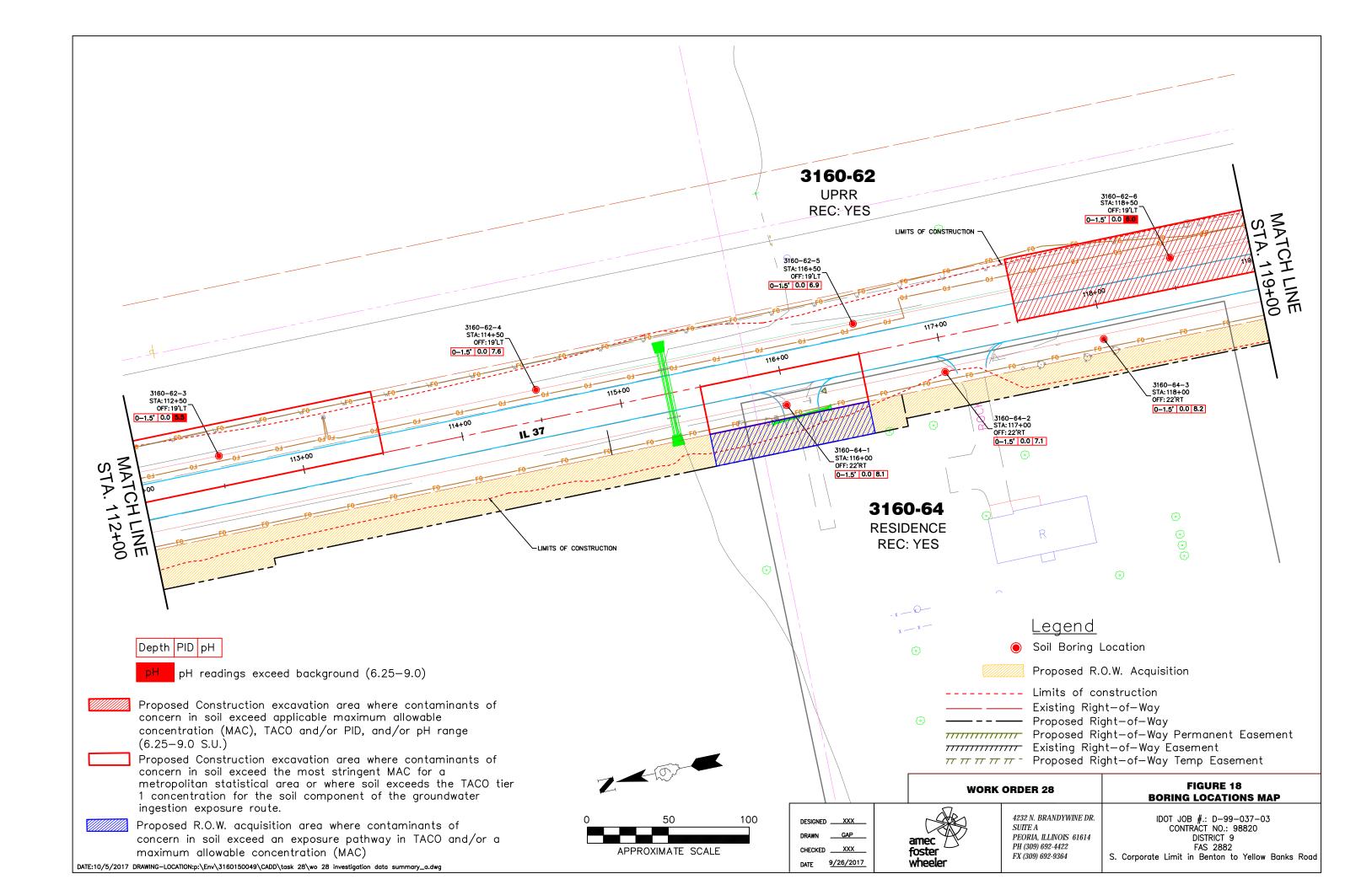


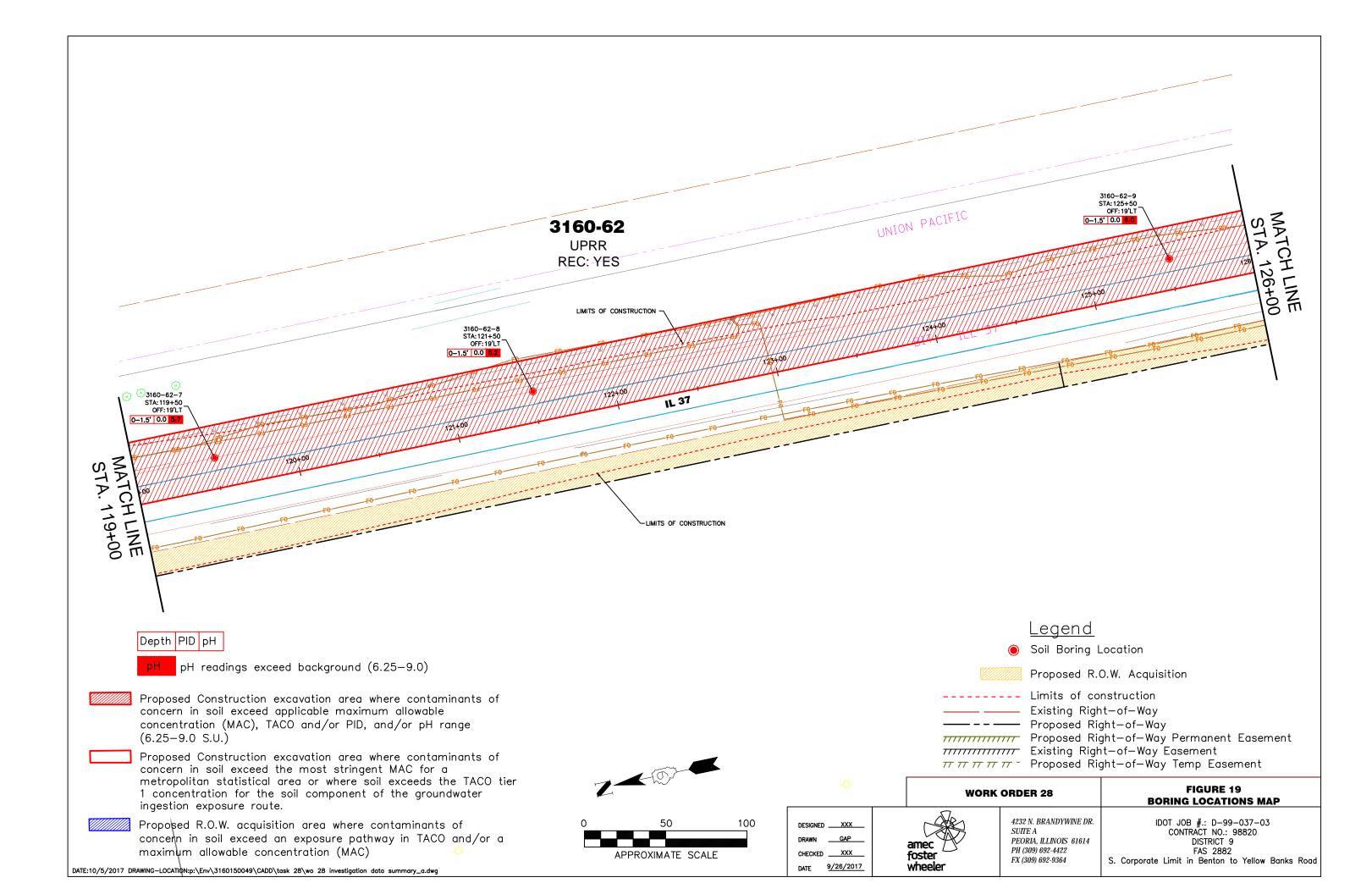


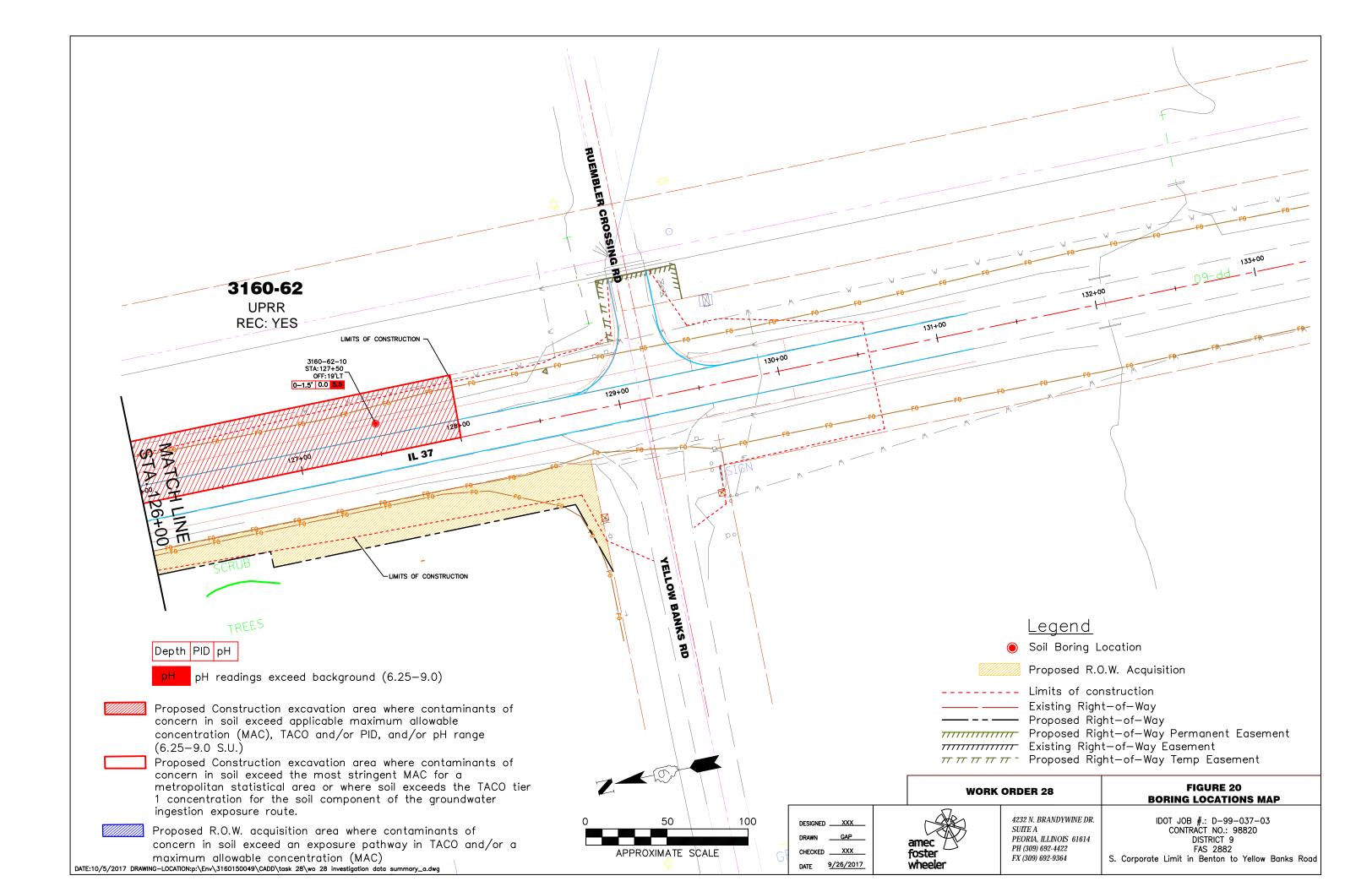












FAS 2882 (IL 37)

Benton, Franklin County, Illinois

Benton, Franklin County	r, minos																		
Sample ID	3160-5-1 (0-1.2')	3160-5-2 (0-1.2')	3160-5-3 (0-1.2')	3160-8-1 (0-3)	3160-8-2 (0-3)	3160-9-1 (0-4.0')	3160-9-2 (0-4')	3160-9-3 (0-4')	3160-10-1 (0-2.5')	3160-10-2 (0-2.5')			Maximum Allor	wable Concent	rations			TACO Rem	ediation Objectives
Sample Depth (ft.)	0-1.2	0-1.2	0-1.2	0-3	0-3	0-4	0-4	0-4	0-2.5	0-2. 5								Most Stringent	Most Stringent TACC
Sample Date	11/02/2017	11/02/2017	11/02/2017	11/03/2017	11/03/2017	10/30/2017	10/30/2017	10/30/2017	10/30/2017	10/30/2017	Most Stringent	Within			Within a			TACO Tier 1	Tier 1 Residential
PID	0	0	0	0	0	0	0	0	380	347	Maximum	Chicago	Within a Populated	Withina	Populated		Within a non	Construction	Objective ⁹ and
Sample pH	8.6	6.1	8.0	8.5	8.3	4.6	5.4	7.6	5.4	4.8	Allowable	Corporate	Area in a MSA	MSA County	Area in a non-	Outside a	MSA County	Worker Exposure	Groundwater Protecti
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Concentration 1	Limits 2	(excluding Chicago) ³	4	MSA County 5	Populated Area	7	Objective ⁸	(TCLP/SPLP) 10
VOCs (mg/kg)																			
Benzene	NA	NA	NA	<0.0019	< 0.0017	< 0.0019	<0.0020	< 0.0016	0.65 1,9	< 0.0020	0.03	NA	NA	NA	NA	NA	NA	2.2	0.03
SVOCs (mg/kg)																			
Naphthalene	NA	NA	NA	0.053	0.0069J	< 0.039	< 0.039	0.023J	0.37 2,3,5	<0.038	1.8	0.04	0.2	NA	NA	0.17	NA	1.8	170
Inorganics (mg/kg)																			
Arsenic	13 1,7	7 4.7	5.1	7.9	8.1	6.2	6.5	6.6	7.8	7.7	11.3	NA	NA	13.0	NA	NA	11.3	61	750
Iron	16000 1,4,7	7 20000 1,4,7	13000	15000	15000	16000 1,4,7	16000 1,4,7	15000	18000 1,4,7	20000 1,4,	7 15,000	NA	NA	15,900	NA	NA	15,000	NA	NA
Lead	110	43	73	82	54	9.6	11	46	14	12	107	NA	NA	NA	NA	NA	NA	700	400
Manganese	310	110	270	440	720 1,4,7	150	210	210	210	210	630	NA	NA	636	NA	NA	630	4,100	1,600
TCLP Metals (mg/L)																			
Manganese	0.089	0.038	0.089	0.029	0.10	0.28 10	0.072	0.030	3.0 10	0.066									0.15
SPLP Metals (mg/L)	·	·		·				·	·										
Manganese	NA	NA	NA	NA	NA	0.21 10	NA	NA	0.34 10	NA									0.15

Notes:

NA= Not available

ND= Not detected above laboratory reporting limit

NT= Not tested

mg/kg= Milligrams per kilogram

mg/L= Milligrams per liter

TCLP= Toxicity Characteristic Leaching Procedure

SPLP = Synthetic Precipitation Leaching Procedure

MAC= Maximum Allowable Concentrations of Chemical Constituents in Uncontaminated Soil Used as Fill Material at Regulated Fill Operations (35 III. Adm. Code 110. Subpart F).

TACO = Tiered Approach to Corrective Action Objectives

Applicable Screening Criteria

Exceeds the most stringent MAC value (35 IAC (1100.605(e))

² Exceeds the Chicago Corporate Limits MAC values

³ Exceeds the Within a Populated Area in a MSA (excluding Chicago) MAC value

Exceeds the Within a Populated Area in a non-MSA County MAC value

⁶ Exceeds the Outside a Populated Area MAC value

Exceeds the Within a non-MSA County MAC value 8 Exceeds the Most Stringent TACO Tier 1 Construction Worker Exposure Objective

⁹ Exceeds the Most Stringent TACO Tier 1 Residential Objective

10 Exceeds the TACO Tier 1 Soil to Groundwater TCLP/SPLP Objective Exceeds the Most Stringent TACO Tier 1 Class 1 Groundwater Objective *= Laboratory Control Sample (LCS) or Laboratory Control Sample Duplicate (LCSD) is outside acceptance limits.

^= Instrument related OC is outside acceptance limits

B= Compound was found in the blank and sample.

J= Result is less than the reporting limit but greater than or equal to the method detection limit, concentration reported as an approximate value.

F1= Matrix spike or matrix spike duplicate recovery is outside acceptance limits.

F2= Matrix spike or matrix spike duplicate relative percent difference exceeds control limits.

CCDD = Clean Construction Demolition Debris

Unirestrictive- metals exceed Totals but not TCLP and SPLP; or metals exceed TCLP or SPLP but not both

CCDD Eligible- metals exceed TCLP and SPLP but not Totals CCDD Eligible- VOCs or SVOCs exceedances; limited CCDD disposal availability

Greater than TACO Construction Worker Exposure Objectives

Non-special Waste- Greater than all MACs, Greater than most stringent TACO Tier 1 Criteria; Metals exceed Totals, TCLP, and SPLP; Metals exceed TACO Residential and not considered background; pH outside of the acceptable range (6.25 to 9.0)

> FIGURE 21 **WORK ORDER 28 CONTAMINANTS OF CONCERN**

DESIGNED XXX DRAWN GAP CHECKED XXX

DATE 7/17/2017

4232 N. BRANDYWINE DR. SUITE A PEORIA, ILLINOIS 61614 PH (309) 692-4422 FX (309) 692-9364

FAS 2882 (IL 37)

Sample ID	3160-10-3 (0-2.5')	3160-16-1 (0-4')	3160-16-2 (0-4')	3160-16-3 (0-4')	3160-16-4 (0-4')	3160-16-5 (0-4')	3160-21-1 (0-2.5')	3160-21-2 (0-2.5')	3160-21-3 (0-2.5')	3160-21-4 (0-2.5')			Maximum Allo	wable Concent	rations			TACO Reme	ediation Objectives
Sample Depth (ft.)	0-2.5	0-4	0-4	0-4	0-4	0-4	0-2.5	0-2.5	0-2. 5	0-2.5								Most Stringent	
Sample Date	10/30/2017	10/31/2017	10/31/2017	10/31/2017	10/31/2017	10/31/2017	11/02/2017	11/02/2017	11/02/2017	11/02/2017	Most Stringent	Within			Within a			TACO Tier 1	Tier 1 Residential
PID	25	0	0	0	0	0	0	D	0	0	Maximum	Chicago	Within a Populated	Within a	Populated		Within a non	Construction	Objective ⁹ and
Sample pH	8.2	6.3	5.6	4.9	7.9	6.0	8.3	8.2	7.0	8.0	Allowable	Corporate	Area in a MSA	MSA County	Area in a non-	Outside a	MSA County	Worker Exposure	Groundwater Protection
Matrix	Soil	Soil	Soil	Soil	Soil	Soil					Concentration 1	Limits ²	(excluding Chicago)3	4	MSA County 5	Populated Area	7	Objective ⁸	(TCLP/SPLP) 10
SVOCs (mg/kg)																			
2-Methylnaphthalene	<0.082	0.013J	<0.077	< 0.075	0.34 3,6	0.26	< 0.079	0.18 3	<0.076	0.0441	NA	NA	0.14	NA	NA	0.29	NA	NA	NA
Naphthalene	<0.041	< 0.037	<0.038	< 0.037	0.20 2	0.17 2	< 0.039	0.081 2	<0.037	0.023J	1.8	0.04	0.2	NA	NA	0.17	NA	1.8	170
Inorganics (mg/kg)																			
Chromium	21	16	17	19	9.5	14	13	11	24 1	16	21	NA	NA	NA	NA	NA	NA	690	230
lron	19000 1,4,7	17000 1,4,7	19000 1,4,7	19000 1,4,7	7 16000 1,4,7	16000 1,4,7	17000 1,4,7	16000 1,4,7	22000 1,4,7	18000 1,4,7	15,000	NA	NA	15,900	NA	NA	15,000	NA	NA
Manganese	250	1600 1,4,7	170	170	180	350	370	3200 1,4,7,9	310	220	630	NA	NA	636	NA	NA	630	4,100	1,600
TCLP Metals (mg/L)									· · ·										
Iron	7.6 10	0.41	0.72	<0.40	0.41	0.29J	0.24J	0.23J	0.24J	< 0.40									5
Manganese	4.1 10	0.011	0.017J	0.013J	0.027	0.010J	0.014J	0.085	0.029	0.29 10									0.15
SPLP Metals (mg/L)								-	-										
Iron	88 10	NA NA	NA	NA	NA	NA	NA	NA	NA	NA									5
Manganese	0.61 10	NA NA	NA	NA	NA	NA	NA NA	NA	NA	0.056									0.15

Notes:

NA= Not available

ND= Not detected above laboratory reporting limit

NT= Not tested

mg/kg= Milligrams per kilogram

mg/L= Milligrams per liter

TCLP= Toxicity Characteristic Leaching Procedure

SPLP= Synthetic Precipitation Leaching Procedure

MAC= Maximum Allowable Concentrations of Chemical Constituents in Uncontaminated Soil Used as Fill Material at Regulated Fill Operations (35 III. Adm. Code 110. Subpart F).

TACO = Tiered Approach to Corrective Action Objectives

Applicable Screening Criteria

¹ Exceeds the most stringent MAC value (35 IAC (1100.605(e))

² Exceeds the Chicago Corporate Limits MAC values

³ Exceeds the Within a Populated Area in a MSA (excluding Chicago) MAC value

4 Exceeds the Within a MSA County MAC value

⁵ Exceeds the Within a Populated Area in a non-MSA County MAC value

⁶ Exceeds the Outside a Populated Area MAC value ⁷ Exceeds the Within a non-MSA County MAC value

⁸ Exceeds the Most Stringent TACO Tier 1 Construction Worker Exposure Objective

⁹ Exceeds the Most Stringent TACO Tier 1 Residential Objective

11 Exceeds the Most Stringent TACO Tier 1 Class 1 Groundwater Objective

¹⁰ Exceeds the TACO Tier 1 Soil to Groundwater TCLP/SPLP Objective

CCDD = Clean Construction Demolition Debris

^= Instrument related QC is outside acceptance limits.

F1= Matrix spike or matrix spike duplicate recovery is outside acceptance limits.

 $\textbf{F2=} \ \mathsf{Matrix} \ \mathsf{spike} \ \mathsf{or} \ \mathsf{matrix} \ \mathsf{spike} \ \mathsf{duplicate} \ \mathsf{relative} \ \mathsf{percent} \ \mathsf{difference} \ \mathsf{exceeds} \ \mathsf{control} \ \mathsf{limits}.$

B= Compound was found in the blank and sample.

Unrestrictive- metals exceed Totals but not TCLP and SPLP; or metals exceed TCLP or SPLP but not both CCDD Eligible- metals exceed TCLP and SPLP but not Totals

CCDD Eligible- VOCs or SVOCs exceedances; limited CCDD disposal availability

Greater than TACO Construction Worker Exposure Objectives

Non-special Waste- Greater than all MACs, Greater than most stringent TACO Tier 1 Criteria; Metals exceed Totals, TCLP, and SPLP; Metals exceed TACO Residential and not considered background; pH outside of the acceptable range (6.25 to 9.0)

J= Result is less than the reporting limit but greater than or equal to the method detection limit, concentration reported as an approximate value.

 $\hbox{\ensuremath{^*=}} Laboratory\ Control\ Sample\ (LCSD)\ is\ outside\ acceptance\ limits.$

FIGURE 22 **WORK ORDER 28 CONTAMINANTS OF CONCERN**

DESIGNED XXX DRAWN GAP CHECKED XXX DATE 7/17/2017

4232 N. BRANDYWINE DR. SUITE A PEORIA, ILLINOIS 61614 PH (309) 692-4422 FX (309) 692-9364

FAS 2882 (IL 37)

Benton, Franklin County, IIII																			
Sample ID	3160-21-5 (0-2.5')	3160-21-6 (0-2.5')	3160-21-7 (0-2.5')	3160-21-8 (0-2.5')	3160-21-9 (0-2.5')	3160-21-10 (0-2.5')	3160-23-1 (0-4.5')	3160-23-2 (0-4.5')	3160-25-1 (0-4')	3160-25-2 (0-4')			Maximum Allov	wable Concent	rations			TACO Reme	diation Objectives
Sample Depth (ft.)	0-2.5	0-2.5	0-2.5	0-2.5	0-2.5	0-2.5	0-4.5	0-4.5	0-4	0-4								Most Stringent	
Sample Date	11/02/2017	11/02/2017	11/02/2017	11/02/2017	11/02/2017	11/02/2017	10/31/2017	10/31/2017	10/31/2017	10/31/2017	Most Stringent	Within			Withina			TACO Tier 1	Tier 1 Residential
PID	0	0	0	0	0	0	0	0	0	0	Maximum	Chicago	Within a Populated	Within a	Populated		Within a non	Construction	Objective ⁹ and
Sample pH	7.8	5.5	7.6	6.4	7.9	7.6	6.2	8.1	4.8	4.8	Allowable	Corporate	Areain a MSA	MSA County	Area in a non-	Outside a	MSA County	Worker Exposure	Groundwater Protection
Matrix							Soil	Soil	Soil	Soil	Concentration 1	Limits ²	(excluding Chicago) ³	4	MSA County 5	Populated Area	6 7	Objective ⁸	(TCLP/SPLP) 10
SVOCs (mg/kg)																			
2-Methylnaphthalene	0.016J	<0.083	0.055J	<0.079	0.071	0.13	0.00911	0.25	< 0.081	<0.077	NA	NA	0.14	NA	NA	0.29	NA	NA	NA
Naphthalene	<0.041	<0.041	0.026J	< 0.039	0.033J	0.059 2	< 0.036	0.12	< 0.040	<0.038	1.8	0.04	0.2	NA	NA	0.17	NA	1.8	170
Inorganics (mg/kg)																			
Iron	20000 1,4,7	7 28000 1,4,7	17000 1,4,7	22000 1,4,7	18000 1,4,7	19000 1,4,7	12000	12000	20000 1,4,7	21000 1,4,7	15,000	NA	NA	15,900	NA	NA	15,000	NA	NA
TCLP Metals (mg/L)																			
Manganese	0.027	0.035	0.035	0.055	0.018J	0.096	0.057	0.077	4.8 10	0.018J									0.15
SPLP Metals (mg/L)																			
Manganese	NA	NA	NA	NA	NA	NA	NA	NA	0.43 10	NA									0.15

Note s:

NA= Not available

ND= Not detected above laboratory reporting limit

NT= Not tested

mg/kg= Milligrams per kilogram

mg/L= Milligrams per liter

TCLP= Toxicity Characteristic Leaching Procedure

SPLP= Synthetic Precipitation Leaching Procedure

TACO = Tiered Approach to Corrective Action Objectives

MAC= Maximum Allowable Concentrations of Chemical Constituents in Uncontaminated Soil Used as Fill Material at Regulated Fill Operations (35 III. Adm. Code 110. Subpart F).

Applicable Screening Criteria

¹ Exceeds the most stringent MAC value (35 IAC (1100.605(e))

² Exceeds the Chicago Corporate Limits MAC values

³ Exceeds the Within a Populated Area in a MSA (excluding Chicago) MAC value

⁴ Exceeds the Within a MSA County MAC value

⁵ Exceeds the Within a Populated Area in a non-MSA County MAC value

⁶ Exceeds the Outside a Populated Area MAC value

⁷ Exceeds the Within a non-MSA County MAC value

⁸ Exceeds the Most Stringent TACO Tier 1 Construction Worker Exposure Objective

⁹ Exceeds the Most Stringent TACO Tier 1 Residential Objective

¹⁰ Exceeds the TACO Tier 1 Soil to Groundwater TCLP/SPLP Objective 11 Exceeds the Most Stringent TACO Tier 1 Class 1 Groundwater Objective *= Laboratory Control Sample (LCS) or Laboratory Control Sample Duplicate (LCSD) is outside acceptance limits.

^= Instrument related QC is outside acceptance limits.

B= Compound was found in the blank and sample.

J= Result is less than the reporting limit but greater than or equal to the method detection limit, concentration reported as an approximate value.

F1= Matrix spike or matrix spike duplicate recovery is outside acceptance limits.

F2= Matrix spike or matrix spike duplicate relative percent difference exceeds control limits.

CCDD = Clean Construction Demolition Debris

Inrestrictive- metals exceed Totals but not TCLP and SPLP; or metals exceed TCLP or SPLP but not both

CCDD Eligible- metals exceed TCLP and SPLP but not Totals

CCDD Eligible- VOCs or SVOCs exceedances; limited CCDD disposal availability

Greater than TACO Construction Worker Exposure Objectives

Non-special Waste- Greater than all MACs, Greater than most stringent TACO Tier 1 Criteria; Metals exceed Totals, TCLP, and SPLP; Metals exceed TACO Residential and not considered background; pH outside of the

FIGURE 23 **WORK ORDER 28 CONTAMINANTS OF CONCERN**

DESIGNED XXX DRAWN GAP CHECKED XXX DATE 7/17/2017

4232 N. BRANDYWINE DR. SUITE A PEORIA, ILLINOIS 61614 PH (309) 692-4422 FX (309) 692-9364

FAS 2882 (IL 37)

Benton, Franklin County,	IIII 1013																		
Sample ID	3160-26-1 (0-4')	3160-26-2 (0-4')	3160-28-1 (0-5')	3160-28-2 (0-5')	3160-28-3 (0-5')	3160-32-1 (0-3.5')	3160-32-2 (0-3.5')	3160-32-3 (0-3.5')	3160-32-4 (0-3.5')	3160-32-5 (0-3.5')			Maximum Allo	wable Concent	rations			TACO Reme	ediation Objectives
Sample Depth (ft.)	0-4	0-4	0-5	0-5	0-5	0-3.5	0-3.5	0-3.5	0-3.5	0-3.5								Most Stringent	Most Stringent TACC
Sample Date	10/31/2017	10/31/2017	10/31/2017	10/31/2017	10/31/2017	10/31/2017	10/31/2017	10/31/2017	10/31/2017	10/31/2017	Most Stringent	Within			Within a			TACO Tier 1	Tier 1 Residential
PID	0	0	0	0	0	0	0	0	0	0	Maximum	Chicago	Within a Populated	Within a	Populated		Within a non	Construction	Objective ⁹ and
Sample pH	5.0	4.3	4.3	4.9	3.8	6.4	6.6	6.7	6.7	5.9	Allowable	Corporate	Area in a MSA	MSA County	Area in a non-	Outside a	MSA County	Worker Exposure	Groundwater Protection
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Concentration 1	Limits 2	(excluding Chicago) ³	4	MSA County 5	Populated Area	7	Objective ⁸	(TCLP/SPLP) 10
SVOCs (mg/kg)																			
Naphthalene	<0.038	<0.038	<0.040	0.011J	2.5 1,2,3,6	<0.040	0.0271	0.0069J	0.32 2,3,6	0.018J	1.8	0.04	0.2	NA	NA	0.17	NA	1.8	170
Phenanthrene	<0.038	<0.038	<0.040	0.021J	0.97	0.00971	0.057	0.022J	1.2 1,6	0.087	0.99	1.3	2.5	NA	2.5	0.99	NA	NA	NA
Inorganics (mg/kg)																			
Arsenic	9.5	6.4	8.1	7.4	11	5.1	14 1,4,7	9.9	11	7.1	11.3	NA	NA	13.0	NA	NA	11.3	61	750
Chromium	19	20	21	18	13	12	30 1	17	14	16	21	NA	NA	NA	NA	NA	NA	690	230
Iron	21000 1,4,7	20000 1,4,7	22000 1,4,7	21000 1,4,7	16000 1,4,7	14000	35000 1,4,7	25000 1,4,7	26000 1,4,7	19000 1,4,	7 15,000	NA	NA	15,900	NA	NA	15,000	NA	NA
Manganese	540	140	140	270	65	660 1,4,7	1600 1,4,7	480	110	180	630	NA	NA	636	NA	NA	630	4,100	1,600
Selenium	0.86	<0.59	0.89	0.63	1.9 1	1.1	1.7 1	0.83	1.7 1	0.55J	1.3	NA	NA	NA	NA	NA	NA	1,000	390
TCLP Metals (mg/L)		•		,				_		•							-1		(
Manganese	0.85 10	0.10	0.74 10	0.2 5 10	0.84 10	<0.025	<0.025	0.065	0.026	0.080									0.15
SPLP Metals (mg/L)																			
Manganese	0.14	NA	0.099	0.075	0.44 10	NA	NA	NA	NA	NA									0.15

Note s:

NA= Not available

ND= Not detected above laboratory reporting limit

NT= Not tested

mg/kg= Milligrams per kilogram

mg/L= Milligrams per liter

TCLP= Toxicity Characteristic Leaching Procedure

SPLP= Synthetic Precipitation Leaching Procedure

MAC= Maximum Allowable Concentrations of Chemical Constituents in Uncontaminated Soil Used as Fill Material at Regulated Fill Operations (35 III. Adm. Code 110. Subpart F).

TACO = Tiered Approach to Corrective Action Objectives

Applicable Screening Criteria

¹ Exceeds the most stringent MAC value (35 IAC (1100.605(e))

² Exceeds the Chicago Corporate Limits MAC values

³ Exceeds the Within a Populated Area in a MSA (excluding Chicago) MAC value

⁴ Exceeds the Within a MSA County MAC value

⁵ Exceeds the Within a Populated Area in a non-MSA County MAC value

⁶ Exceeds the Outside a Populated Area MAC value

⁷ Exceeds the Within a non-MSA County MAC value

⁸ Exceeds the Most Stringent TACO Tier 1 Construction Worker Exposure Objective

⁹ Exceeds the Most Stringent TACO Tier 1 Residential Objective ¹⁰ Exceeds the TACO Tier 1 Soil to Groundwater TCLP/SPLP Objective

Exceeds the Most Stringent TACO Tier 1 Class 1 Groundwater Objective

*= Laboratory Control Sample (LCS) or Laboratory Control Sample Duplicate (LCSD) is outside acceptance limits.

^= Instrument related QC is outside acceptance limits.

B= Compound was found in the blank and sample.

J= Result is less than the reporting limit but greater than or equal to the method detection limit, concentration reported as an approximate value.

F1= Matrix spike or matrix spike duplicate recovery is outside acceptance limits.

F2= Matrix spike or matrix spike duplicate relative percent difference exceeds control limits.

CCDD = Clean Construction Demolition Debris

Inrestrictive- metals exceed Totals but not TCLP and SPLP; or metals exceed TCLP or SPLP but not both

CCDD Eligible- metals exceed TCLP and SPLP but not Totals

CCDD Eligible- VOCs or SVOCs exceedances; limited CCDD disposal availability

Greater than TACO Construction Worker Exposure Objectives

Non-special Waste- Greater than all MACs, Greater than most stringent TACO Tier 1 Criteria; Metals exceed Totals, TCLP, and SPLP; Metals exceed TACO Residential and not considered background; pH outside of the

acceptable range (6.25 to 9.0)

FIGURE 24 **WORK ORDER 28 CONTAMINANTS OF CONCERN**

DESIGNED XXX DRAWN GAP CHECKED XXX DATE 7/17/2017 amec foster wheeler

4232 N. BRANDYWINE DR. SUITE A PEORIA, ILLINOIS 61614 PH (309) 692-4422 FX (309) 692-9364

FAS 2882 (IL 37)

Benton, Franklin County	ple ID 3160-32-6 (0-3.5') 3160-32-7 (0-3.5') 3160-32-7 (0-3.5') 3160-36-1 (0-3') 3160-36-2 (0-3') 3160-36-3 (0-3') 3160-36-6 (0-3') 3160-36-6 (0-3') 3160-36-8 (0-3') 3160-36 (0-3') 3160-36 (0-3') 3160-36 (0-3') 3160-36 (0-3') 3160-36 (0-3') 316																		
Sample ID	3160-32-6 (0-3.5')	3160-32-7 (0-3.51)	3160-36-1 (0-3')	3160-36-2 (0-3')	3160-36-3 (0-3')	3160-36-4 (0-3')	3160-36-5 (0-3')	3160-36-6 (0-3')	3160-36-7 (0-3')	3160-36-8 (0-3')			Maximum Allo	wable Concent	rations			TACO Reme	ediation Objectives
Sample Depth (ft.)	0-3.5	0-3.5	0-3	0-3	0-3	0-3	0-3	0-3	0-3	0-3								Most Stringent	
Sample Date	10/31/2017	11/21/2017	11/02/2017	11/02/2017	11/02/2017	11/02/2017	11/02/2017	11/02/2017	11/02/2017	11/02/2017	Most Stringent	Within			Withina			TACO Tier 1	Tier 1 Residential
PID	0	0	0	0	0	0	0	0	O	0	Maximum	Chicago	Within a Populated	Within a	Populated		Within a nor	Construction	Objective ⁹ and
Sample pH	4.6	5.4	7.0	5.0	4.6	4.6	4.6	4.3	4.8	7.9	Allowable	Corporate	Area in a MSA	MSA County	Area in a non-	Outside a	MSA County	Worker Exposure	Groundwater Protection
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soîl	Soil	Soil	Concentration 1	Limits ²	(excluding Chicago) ³	4	MSA County ⁵	Populated Area	7	Objective ⁸	(TCLP/SPLP) 10
norganics (mg/kg)																			
Cobalt	5.4	4.3	14	8.7	3.2	8.1	6.5	5.0	4.7	27	1 20	NA	NA	NA	NA	NA	NA	12,000	4,700
Iron	21000 1,4,7	25000 1,4,7	15000	20000 1,4,7	14000	19000 1,4,7	19000 1,4,7	22000 1,4,7	20000 1,4,7	19000 1,4,	7 15,000	NA	NA	15,900	NA	NA	15,000	NA	NA
Manganese	190	180	910 1,4,7	430	140	820 1,4,7	150	120	140	3700 1,4,7,	630	NA	NA	636	NA	NA	630	4,100	1,600
TCLP Metals (mg/L)				,				,		'									
Manganese	0.99 10	1.7 10	0.023J	0.24 10	0.38 10	0.15	0.28 10	0.21 10	0.23 10	0.011									0.15
SPLP Metals (mg/L)																			
Manganese	0.17 10	0.2 10	NA NA	0.049	0.084	NA	0.073	0.078	0.26 10	NA									0.15
1+langariese	0.17	0:2 10	101	0.0.0	0.00	101	5.575	0.070	0.20	10.1							<u> </u>		

Notes:

NA=Not available

ND= Not detected above laboratory reporting limit

NT= Not tested

mg/kg= Milligrams per kilogram

mg/L= Milligrams per liter

TCLP= Toxicity Characteristic Leaching Procedure

SPLP= Synthetic Precipitation Leaching Procedure

MAC= Maximum Allowable Concentrations of Chemical Constituents in Uncontaminated Soil Used as Fill Material at Regulated Fill Operations (35 III. Adm. Code 110. Subpart F).

Applicable Screening Criteria

¹ Exceeds the most stringent MAC value (35 IAC (1100.605(e))

² Exceeds the Chicago Corporate Limits MAC values

³ Exceeds the Within a Populated Area in a MSA (excluding Chicago) MAC value

⁴ Exceeds the Within a MSA County MAC value

 $^{\rm 5}$ Exceeds the Within a Populated Area in a non-MSA County MAC value

⁶ Exceeds the Outside a Populated Area MAC value

⁷ Exceeds the Within a non-MSA County MAC value Exceeds the Most Stringent TACO Tier 1 Construction Worker Exposure Objective

 1 Exceeds the Most Stringent TACO Tier 1 Class 1 Groundwater Objective

⁹ Exceeds the Most Stringent TACO Tier 1 Residential Objective

Exceeds the TACO Tier 1 Soil to Groundwater TCLP/SPLP Objective

*= Laboratory Control Sample (LCS) or Laboratory Control Sample Duplicate (LCSD) is outside acceptance limits

^= Instrument related QC is outside acceptance limits.

B= Compound was found in the blank and sample.

J=Result is less than the reporting limit but greater than or equal to the method detection limit, concentration reported as an approximate value.

F1= Matrix spike or matrix spike duplicate recovery is outside acceptance limits.

F2= Matrix spike or matrix spike duplicate relative percent difference exceeds control limits.

CCDD = Clean Construction Demolition Debris

restrictive- metals exceed Totals but not TCLP and SPLP; or metals exceed TCLP or SPLP but not both

CCDD Eligible- metals exceed TCLP and SPLP but not Totals

CCDD Eligible- VOCs or SVOCs exceedances; limited CCDD disposal availability

Greater than TACO Construction Worker Exposure Objectives

Non-special Waste- Greater than all MACs, Greater than most stringent TACO Tier 1 Criteria; Metals exceed Totals, TCLP, and SPLP; Metals exceed TACO Residential and not considered background; pH outside of

FIGURE 25 **WORK ORDER 28 CONTAMINANTS OF CONCERN**

DESIGNED XXX DRAWN GAP CHECKED XXX DATE 7/17/2017

4232 N. BRANDYWINE DR. SUITE A PEORIA, ILLINOIS 61614 PH (309) 692-4422 FX (309) 692-9364

FAS 2882 (IL 37) Benton, Franklin

Sample ID	3160-36-9 (0-3')	3160-36-10 (0-3')	3160-36-11 (0-3')	3160-45-1 (0-5')	3160-45-1 (5-6')	3160-45-2 (0-5')	3160-45-2 (5-6')	3160-45-3 (0-5')	3160-45-3 (5-6')	3160-45-4 (0-5¹)			Maximum Allo	wable Concent	rations			TACO Reme	ediation Objectives
Sample Depth (ft.)	0-3	0-3	0-3	0-5	5-6	0-5	5-6	0-5	5-6	0-5								Most Stringent	Most Stringent TACC
Sample Date	11/02/2017	11/02/2017	11/02/2017	10/31/2017	10/31/2017	10/31/2017	10/31/2017	10/31/2017	10/31/2017	10/31/2017	Most Stringent	Within			Within a	A r	4	TACO Tier 1	Tier 1 Residential
PID	0	0	O	0	0	0	0	0	0	0	Maximum	Chicago	Within a Populated	Within a	Populated	A	Within a non	Construction	Objective ⁹ and
Sample pH	8.7	6.6	5.3	8.0	7.8	7.7	7.5	8.1	7.7	6.3	Allowable	Corporate	Area in a MSA	MSA County	Area in a non-	- Outside a	MSA County	Worker Exposure	Groundwater Protection
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Concentration 1	Limits ²	(excluding Chicago) ³	4	MSA County 5	Populated Area	5 7	Objective ⁸	(TCLP/SPLP) 10
SVOCs (mg/kg)																			
Benzo[a]pyrene	0.17 1,6	0.0321	<0.041	< 0.040	0.0085J	< 0.039	<0.039	< 0.036	0.039	<0.040	0.09	1.3	2.1	NA	0.98	0.09	NA	17	0.09
2-Methylnaphthalene	0.26 3	0.010J	< 0.083	<0.080	<0.081	<0.079	0.00911	<0.074	0.035J	<0.081	NA	NA	0.14	NA	NA	0.29	NA	NA	NA
Naphthalene	0.11 2	<0.039	<0.041	< 0.040	<0.040	< 0.039	0.0063J	< 0.036	0.016J	<0.040	1.8	0.04	0.2	NA	NA	0.17	NA	1.8	170
Inorganics (mg/kg)		,														.,			
Cobalt	7.5	5.5	3.4	9.8	13	12	12	22 1	14	9.2	20	NA	NA	NA	NA	NA	NA	12,000	4,700
Iron	18000 1,4,7	19 000 1,4,7	19000 1,4,7	20000 1,4,7	18000 1,4,7	18000 1,4,7	17000 1,4,7	50000 1,4,7	24000 1,4,7	13000	15,000	NA	NA	15,900	NA	NA	15,000	NA	NA
Lead	250 1	27	12	13	27	18	49	15	78	15	107	NA	NA	NA	NA	NA	NA	700	400
Manganese	410	220	84	400	880 1,4,7	540	530	660 1,4,7	770 1,4,7	280	630	NA	NA	636	NA	NA	630	4,100	1,600
TCLP Metals (mg/L)																			
Lead	0.019	<0.0075	<0.0075	<0.0075	<0.0075	<0.0075	<0.0075	<0.0075	<0.0075	<0.0075									0.0075
Manganese	0.038 10	0.041	0.054	0.019J	0.031	0.015J	0.060	<0.025	0.12	0.039									0.15
SPLP Metals (mg/L)																			
Lead	0.40 10	NA	NA	NA	NA	NA	NA	NA	NA	NA									0.0075

Notes:

NA= Not available

ND= Not detected above laboratory reporting limit

NT= Not tested

mg/kg= Milligrams per kilogram

mg/L= Milligrams per liter

TCLP= Toxicity Characteristic Leaching Procedure

SPLP= Synthetic Precipitation Leaching Procedure

MAC= Maximum Allowable Concentrations of Chemical Constituents in Uncontaminated Soil Used as Fill Material at Regulated Fill Operations (35 III. Adm. Code 110. Subpart F). TACO = Tiered Approach to Corrective Action Objectives

Applicable Screening Criteria

¹ Exceeds the most stringent MAC value (35 IAC (1100.605(e))

2 Exceeds the Chicago Corporate Limits MAC values

³ Exceeds the Within a Populated Area in a MSA (excluding Chicago) MAC value

⁴ Exceeds the Within a MSA County MAC value

Exceeds the Within a Populated Area in a non-MSA County MAC value ⁶ Exceeds the Outside a Populated Area MAC value

⁷ Exceeds the Within a non-MSA County MAC value

⁸ Exceeds the Most Stringent TACO Tier 1 Construction Worker Exposure Objective

Exceeds the Most Stringent TACO Tier 1 Residential Objective

¹⁰ Exceeds the TACO Tier 1 Soil to Groundwater TCLP/SPLP Objective 11 Exceeds the Most Stringent TACO Tier 1 Class 1 Groundwater Objective *= Laboratory Control Sample (LCS) or Laboratory Control Sample Duplicate (LCSD) is outside acceptance limits.

^= Instrument related QC is outside acceptance limits.

B= Compound was found in the blank and sample.

J=Result is less than the reporting limit but greater than or equal to the method detection limit, concentration reported as an approximate value.

F1= Matrix spike or matrix spike duplicate recovery is outside acceptance limits.

F2= Matrix spike or matrix spike duplicate relative percent difference exceeds control limits.

CCDD = Clean Construction Demolition Debris

Unrestrictive- metals exceed Totals but not TCLP and SPLP; or metals exceed TCLP or SPLP but not both

CCDD Eligible- metals exceed TCLP and SPLP but not Totals

CCDD Eligible- VOCs or SVOCs exceedances; limited CCDD disposal availability

Greater than TACO Construction Worker Exposure Objectives

Non-special Waste- Greater than all MACs, Greater than most stringent TACO Tier 1 Criteria; Metals exceed Totals, TCLP, and SPLP; Metals exceed TACO Residential and not considered background; pH outside of the acceptable range (6.25 to 9.0)

> FIGURE 26 **WORK ORDER 28 CONTAMINANTS OF CONCERN**

DESIGNED XXX DRAWN GAP CHECKED XXX DATE 7/17/2017

4232 N. BRANDYWINE DR. SUITE A PEORIA, ILLINOIS 61614 PH (309) 692-4422 FX (309) 692-9364

FAS 2882 (IL 37)

Benton, Franklin County, Illinois

Benton, Franklin County,	minors																	
Sample ID	3160-45-4 (5-6')	3160-50-1 (0-2')	3160-50-2 (0-2')	3160-50-3 (0-2')	3160-51-1 (0-1.5')	3160-51-2 (0-1.5')	3160-51-3 (0-1.5')	3160-55-1 (0-3)	3160-55-2 (0-3)			Maximum Allo	wable Concen	trations			TACO Reme	diation Objectives
Sample Depth (ft.)	5-6	0-2	0-2	0-2	0-1.5	0-1.5	0-1.5	0-3	0-3								Most Stringent	Most Stringent TAC
Sample Date	10/31/2017	10/31/2017	10/31/2017	10/31/2017	11/02/2017	11/02/2017	11/02/2017	11/01/2017	11/01/2017	Most Stringent	Within			Within a			TACO Tier 1	Tier 1 Residential
PID	0	0	0	0	0	0	0	0	0	Maximum	Chicago	Within a Populated	Withina	Populated		Within a non	Construction	Objective ⁹ and
Sample pH	6.5	6.2	7.8	8.0	7.8	8.9	8.5	5.2	8.0	Allowable	Corporate	Area in a MSA	MSA County	Area in a non-	Outside a	MSA County	Worker Exposure	Groundwater Protecti
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Concentration 1	Limits ²	(excluding Chicago) ³	4	MSA County 5	Populated Area	5 7	Objective 8	(TCLP/SPLP) 10
SVOCs (mg/kg)																		
Benzo[a]pyrene	<0.039	<0.040	<0.040	0.020J	0.066	0.13 1,6	0.043	0.036J	0.018J	0.09	1.3	2.1	NA	0.98	0.09	NA	17	0.09
Naphthalene	<0.039	<0.040	<0.040	0.030J	0.044 2	0.063 2	0.0097J	<0.040	<0.038	1.8	0.04	0.2	NA	NA	0.17	NA	1.8	170
Inorganics (mg/kg)																		
Chromium	15	15	20	22 1	15	21	15	17	22	21	NA	NA	NA	NA	NA	NA	690	230
Iron	13000	15000	22000 1,4,7	21000 1,4,7	16000 1,4,7	17000 1,4,7	16000 1,4,7	25000 1,4,7	23000 1,4,7	15,000	NA	NA	15,900	NA	NA	15,000	NA	NA
TCLP Metals (mg/L)	,		,	· ·	,		,	·						, , , , , , , , , , , , , , , , , , , ,			•	
Lead	<0.0075	<0.0075	<0.0075	<0.0075	0.011 10	<0.0075	<0.0075	<0.0075	<0.0075									0.0075
Manganese	0.033	0.55 10	0.097	0.089	0.040	0.022J	0.031	0.12	0.021J									0.15
SPLP Metals (mg/L)	•	•							•									
Lead	NA	NA	NA	NA	0.21 10	NA	NA	NA	NA									0.0075
Manganese	NA	0.39 10	NA NA	NA	NA	NA	NA	NA	NA									0.15

Notes:

NA= Not available

ND= Not detected above laboratory reporting limit

NT= Not tested

mg/kg= Milligrams per kilogram

mg/L= Milligrams per liter

TCLP= Toxicity Characteristic Leaching Procedure

SPLP= Synthetic Precipitation Leaching Procedure

F1= Matrix spike or matrix spike duplicate recovery is outside acceptance limits.

CCDD = Clean Construction Demolition Debris

MAC= Maximum Allowable Concentrations of Chemical Constituents in Uncontaminated Soil Used as Fill Material at Regulated Fill Operations (35 III. Adm. Code 110. Subpart F).

TACO = Tiered Approach to Corrective Action Objectives

Applicable Screening Criteria

Exceeds the most stringent MAC value (35 IAC (1100.605(e))

² Exceeds the Chicago Corporate Limits MAC values

³ Exceeds the Within a Populated Area in a MSA (excluding Chicago) MAC value

Exceeds the Within a MSA County MAC value

⁵ Exceeds the Within a Populated Area in a non-MSA County MAC value

⁶ Exceeds the Outside a Populated Area MAC value

⁷ Exceeds the Within a non-MSA County MAC value

 $^{\rm 8}$ Exceeds the Most Stringent TACO Tier 1 Construction Worker Exposure Objective

⁹ Exceeds the Most Stringent TACO Tier 1 Residential Objective

Exceeds the TACO Tier 1 Soil to Groundwater TCLP/SPLP Objective

Exceeds the Most Stringent TACO Tier 1 Class 1 Groundwater Objective

*= Laboratory Control Sample (LCS) or Laboratory Control Sample Duplicate (LCSD) is outside acceptance limits. ^= Instrument related QC is outside acceptance limits.

B= Compound was found in the blank and sample.

J= Result is less than the reporting limit but greater than or equal to the method detection limit, concentration reported as an approximate value.

F2= Matrix spike or matrix spike duplicate relative percent difference exceeds control limits.

Unrestrictive- metals exceed Totals but not TCLP and SPLP; or metals exceed TCLP or SPLP but not both

CCDD Eligible- metals exceed TCLP and SPLP but not Totals

CCDD Eligible- VOCs or SVOCs exceedances; limited CCDD disposal availability

Greater than TACO Construction Worker Exposure Objectives

Non-special Waste- Greater than all MACs, Greater than most stringent TACO Tier 1 Criteria; Metals exceed Totals, TCLP, and SPLP; Metals exceed TACO Residential and not considered

background; pH outside of the acceptable range (6.25 to 9.0)

FIGURE 27 **WORK ORDER 28 CONTAMINANTS OF CONCERN**

DESIGNED XXX DRAWN <u>GAP</u> CHECKED XXX DATE 7/17/2017

amec foster wheeler

4232 N. BRANDYWINE DR. SUITE A PEORIA, ILLINOIS 61614 PH (309) 692-4422 FX (309) 692-9364

FAS 2882 (IL 37)

Benton, Franklin County, Illinois

Benton, Franklin County,	<u>IIII</u> IOIS																		
Sample ID	3160-56-1 (0-1.5')	3160-56-2 (0-1.5')	3160-62-1 (0-1.5')	3160-62-2 (0-1.5')	3160-62-3 (0-1.5')	3160-62-4 (0-1.5')	3160-62-5 (0-1.5')	3160-62-6 (0-1.5')	3160-62-7 (0-1.5')	3160-62-8 (0-1.5')			Maximum Allo	wable Concent	trations			TACO Reme	ediation Objectives
Sample Depth (ft.)	0-1.5	0-1.5	0-1.5	0-1.5	0-1.5	0-1.5	0-1.5	0-1.5	0-1.5	0-1.5								Most Stringent	Most Stringent TACO
Sample Date	11/01/2017	11/01/2017	11/01/2017	11/01/2017	11/01/2017	11/01/2017	11/01/2017	11/01/2017	11/01/2017	11/01/2017	Most Stringent	Within			Within a			TACO Tier 1	Tier 1 Residential
PID	0	0	0	0	0	0	0	0	0	0	Maximum	Chicago	Within a Populated	Within a	Populated		Within a non	Construction	Objective ⁹ and
Sample pH	7.3	8.3	8.6	6.7	5.5	7.6	6.9	6.0	5.7	5.2	Allowable	Corporate	Area in a MSA	MSA County	Area in a non-	Outside a	MSA County	Worker Exposure	Groundwater Protectio
Matrix	Soil	Concentration 1	Limits ²	(excluding Chicago) ³	4	MSA County 5	Populated Area	6 7	Objective ⁸	(TCLP/SPLP) 10									
SVOCs (mg/kg)																			
Naphthalene	0.023J	0.071 2	0.049 2	0.00801	< 0.038	<0.039	0.0070J	0.00751	<0.038	<0.038	1.8	0.04	0.2	NA	NA	0.17	NA	1.8	170
Inorganics (mg/kg)		•																	
Chromium	14	35 1	12	9.2	12	12	12	14	15	16	21	NA	NA	NA	NA	NA	NA	690	230
Iron	14000	16000 1,4,7	15000	9700	12000	10000	11000	15000	15000	18000 1,4,7	7 15,000	NA	NA	15,900	NA	NA	15,000	NA	NA
Lead	210 1	270 1	86	210 1	. 15	21	19	31	32	25	107	NA	NA	NA	NA	NA	NA	700	400
Manganese	720 1,4,7	980 1,4,7	900 1,4,7	170	370	250	670 1,4,7	720 1,4,7	490	670 1,4,7	7 630	NA	NA	636	NA	NA	630	4,100	1,600
Selenium	0.421	1.0	0.81	0.451	1.0	0.66	0.61	1.1	0.99	1.4 1	1.3	NA	NA	NA	NA	NA	NA	1,000	390
TCLP Metals (mg/L)	•	•	•		•	•	•	•	•										
Manganese	0.53 10	0.042	0.031	0.17 10	0.10	0.033	0.033	0.037	0.048	0.21 10	O								0.15

lotes:

NA= Not available

ND= Not detected above laboratory reporting limit

NT= Not tested

mg/kg= Milligrams per kilogram

mg/L= Milligrams per liter

TCLP= Toxicity Characteristic Leaching Procedure

SPLP= Synthetic Precipitation Leaching Procedure

*= Laboratory Control Sample (LCS) or Laboratory Control Sample Duplicate (LCSD) is outside acceptance limits.

^= Instrument related QC is outside acceptance limits. **B**= Compound was found in the blank and sample.

J= Result is less than the reporting limit but greater than or equal to the method detection limit, concentration reported as an approximate value.

F1= Matrix spike or matrix spike duplicate recovery is outside acceptance limits.

F2= Matrix spike or matrix spike duplicate relative percent difference exceeds control limits.

CCDD = Clean Construction Demolition Debris

MAC= Maximum Allowable Concentrations of Chemical Constituents in Uncontaminated Soil Used as Fill Material at Regulated Fill Operations (35 III. Adm. Code 110. Subpart F).

TACO = Tiered Approach to Corrective Action Objectives

...

Applicable Screening Criteria

¹ Exceeds the most stringent MAC value (35 IAC (1100.605(e))

² Exceeds the Chicago Corporate Limits MAC values

³ Exceeds the Within a Populated Area in a MSA (excluding Chicago) MAC value

⁴ Exceeds the Within a MSA County MAC value

⁵ Exceeds the Within a Populated Area in a non-MSA County MAC value

⁶ Exceeds the Outside a Populated Area MAC value

⁷ Exceeds the Within a non-MSA County MAC value

⁸ Exceeds the Most Stringent TACO Tier 1 Construction Worker Exposure Objective

⁹ Exceeds the Most Stringent TACO Tier 1 Residential Objective

¹⁰ Exceeds the TACO Tier 1 Soil to Groundwater TCLP/SPLP Objective

 11 Exceeds the Most Stringent TACO Tier 1 Class 1 Groundwater Objective

Unrestrictive- metals exceed Totals but not TCLP and SPLP; or metals exceed TCLP or SPLP but not both

CCDD Eligible- metals exceed TCLP and SPLP but not Totals

CCDD Eligible- VOCs or SVOCs exceedances; limited CCDD disposal availability

Greater than TACO Construction Worker Exposure Objectives

Non-special Waste- Greater than all MACs, Greater than most stringent TACO Tier 1 Criteria; Metals exceed Totals, TCLP, and SPLP; Metals exceed TACO Residential and not considered background; pH outside of the

WORK ORDER 28 FIGURE 28 CONTAMINANTS OF CONCERN

 DESIGNED
 XXX

 DRAWN
 GAP

 CHECKED
 XXX

 DATE
 7/17/2017

amec foster wheeler 4232 N. BRANDYWINE DR. SUITE A PEORIA, ILLINOIS 61614 PH (309) 692-4422 FX (309) 692-9364

FAS 2882 (IL 37)

Benton, Franklin County, Illinois

Sample ID	3160-62-9 (0-1.5')	3160-62-10 (0-1.5')	3160-64-1 (0-1.5')	3160-64-2 (0-1.5')	3160-64-3 (0-1.5')			Maximum Allov	wable Concenti	rations			TACO Reme	diation Objectives
Sample Depth (ft.)	0-1.5	0-1.5	0-1.5	0-1.5	0-1.5								Most Stringent	Most Stringent TACO
Sample Date	11/01/2017	11/01/2017	11/01/2017	11/01/2017	11/01/2017	Most Stringent	Within			Within a			TACO Tier 1	Tier 1 Residential
PID	0	0	0	0	0	Maximum	Chicago	Within a Populated	Within a	Populated		Within a non	Construction	Objective ⁹ and
Sample pH	6	5.5	8.1	7.1	8.2	Allowable	Corporate	Area in a MSA	MSA County	Area in a non-	Outside a	MSA County	Worker Exposure	Groundwater Protection
Matrix	Soil	Soil	Soil	Soil	Soil	Concentration 1	Limits ²	(excluding Chicago) ³	4	MSA County 5	Populated Area	7	Objective ⁸	(TCLP/SPLP) 10
SVOCs (mg/kg)														
Benzo[a]anthracene	0.0099J	0.030J	1.1 1,5,6,9	0.021J	0.055	0.9	1.1	1.8	NA	0.9	0.9	NA	170	0.9
Benzo[a]pyrene	0.022J	0.031	0.85 1,6,9	0.029J	0.054	0.09	1.3	2.1	NA	0.98	0.09	NA	17	0.09
Benzo[b]fluoranthene	<0.041	0.030J	1.3 1,5,6,9	0.030J	0.069	0.9	1.5	2.1	NA	0.9	0.9	NA	170	0.9
Dibenz(a,h)anthracene	<0.041	<0.040	0.17 1,6,9	<0.040	<0.038	0.09	0.2	0.42	NA	0.15	0.09	NA	17	0.09
Naphthalene	<0.041	0.030J	0.052 2	0.0082J	0.034J	1.8	0.04	0.2	NA	NA	0.17	NA	1.8	170
PCBs (mg/kg)				<u> </u>						~			ga-un-un-un-un-un-un-un-un-un-un-un-un-un-	
PCB-1260	NA NA	NA	0.020J	0.021	<0.020	NA	NA	NA	NA	NA	NA	NA	NA	NA
Pesticides (mg/kg)														
Not Analyzed in this sample su	ite.					NA	NA	NA	NA	NA	NA	NA	NA	NA
Herbicides (mg/kg)						_					·		-	
Not Analyzed in this sample su	ite.					NA	NA	NA	NA	NA	NA	NA	NA	NA
Inorganics (mg/kg)										gp	~			
Lead	22	22	160 1	17	110	107	NA	NA	NA	NA	NA	NA	700	400
Manganese	300	640 1,4,7	270	390	300	630	NA	NA	636	NA	NA	630	4,100	1,600
TCLP Metals (mg/L)					,				~	<i>-</i>			p-11-12-1-1-12-1-12-1-12-1-12-1-1-1-1-1-	
Lead	<0.0075	<0.0075	0.022 10	<0.0075	<0.0075									0.0075
Manganese	0.035	0.14	0.097	0.093	0.41 10									0.15

Note s:

NA= Not available

ND= Not detected above laboratory reporting limit

NT= Not tested

mg/kg= Milligrams per kilogram

mg/L= Milligrams per liter

TCLP= Toxicity Characteristic Leaching Procedure

SPLP= Synthetic Precipitation Leaching Procedure

*= Laboratory Control Sample (LCS) or Laboratory Control Sample Duplicate (LCSD) is outside acceptance limits.

^= Instrument related QC is outside acceptance limits.

 $\mbox{\bf B}\mbox{=}\mbox{ Compound was found in the blank and sample.}$

J= Result is less than the reporting limit but greater than or equal to the method detection limit, concentration reported as an approximate value.

F1= Matrix spike or matrix spike duplicate recovery is outside acceptance limits.

F2= Matrix spike or matrix spike duplicate relative percent difference exceeds control limits.

CCDD = Clean Construction Demolition Debris

MAC= Maximum Allowable Concentrations of Chemical Constituents in Uncontaminated Soil Used as Fill Material at Regulated Fill Operations (35 III. Adm. Code 110. Subpart F).

TACO = Tiered Approach to Corrective Action Objectives

Applicable Screening Criteria

¹ Exceeds the most stringent MAC value (35 IAC (1100.605(e))

² Exceeds the Chicago Corporate Limits MAC values

³ Exceeds the Within a Populated Area in a MSA (excluding Chicago) MAC value

⁴ Exceeds the Within a MSA County MAC value

⁵ Exceeds the Within a Populated Area in a non-MSA County MAC value

⁶ Exceeds the Outside a Populated Area MAC value

⁷ Exceeds the Within a non-MSA County MAC value

⁸ Exceeds the Most Stringent TACO Tier 1 Construction Worker Exposure Objective

⁹ Exceeds the Most Stringent TACO Tier 1 Residential Objective

¹⁰ Exceeds the TACO Tier 1 Soil to Groundwater TCLP/SPLP Objective

 11 Exceeds the Most Stringent TACO Tier 1 Class 1 Groundwater Objective

Unrestrictive- metals exceed Totals but not TCLP and SPLP; or metals exceed TCLP or SPLP but not both CCDD Eligible- metals exceed TCLP and SPLP but not Totals

CCDD Eligible- VOCs or SVOCs exceedances; limited CCDD disposal availability

Greater than TACO Construction Worker Exposure Objectives

TACO Tier 1 Criteria; Metals exceed Totals, TCLP, and SPLP; Metals exceed TACO Residential and not considered background; pH outside of

WORK ORDER 28 FIGURE 29
CONTAMINANTS OF CONCERN

DESIGNED XXX

DRAWN GAP

CHECKED XXX

DATE 7/17/2017

DATE 7/17/2017

Wheeler

4232 N. BRANDYWINE DR. SUITE A PEORIA, ILLINOIS 61614 PH (309) 692-4422 FX (309) 692-9364

Appendix A – PESA

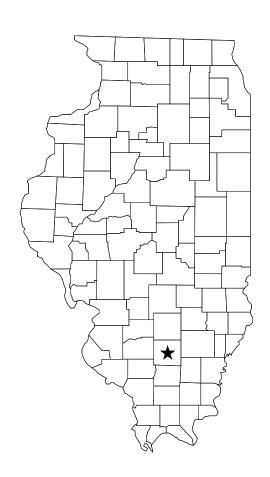
IDOT Sequence #: 19627 ISGS: 3160
IDOT Job #: D99-037-03 IDOT District #: 9

PRELIMINARY ENVIRONMENTAL SITE ASSESSMENT

FINAL REPORT

DATE: April 14, 2016

IDOT DESIGN DATE: October 28, 2016


SURVEY TARGET DATE: May 1, 2016

DATE REQUEST RECEIVED: October 28, 2015

LOCATION: FAS 2882 (IL 37), Capital Street to south of Yellow Banks

Road, Benton, and Benton, Browning, Denning, and Frankfort Townships, Franklin County; West Frankfort quadrangle (USGS 7.5-minute topographic map), T6S, R2E, Sections 25 and 36; T6S, R3E, Sections 19, 30, and 31;

T7S, R2E, Section 1; T7S, R3E, Section 6.

Table of Contents

GLOSSARY OF ACRONYMS3
EXECUTIVE SUMMARY4
INTRODUCTION
GEOLOGY11
HYDROGEOLOGY12
NATURAL FEATURES AND HAZARDS12
PROJECT SITES
ADJOINING SITES59
CONCLUSIONS
ENDORSEMENTS64
ADDRESS LISTINGS65
INFORMATION SOURCES
APPENDIX
LIST OF ATTACHMENTS77

GLOSSARY OF ACRONYMS

AAI	_	All Appropriate Inquiries	M.P.	-	mile post
ACM	_	asbestos-containing material	MSDS	_	material safety data sheet
AST	_	aboveground storage tank	MTBE	_	methyl tertiary butyl ether
ASTM	-	American Society for Testing and	NFR	_	No Further Remediation
AOTIVI		Materials	NPL	_	National Priorities List
۸۱۱۱۵	_	activity and use limitations	NRCS	-	Natural Resources Conservation
AULs	-		INICO	-	
		(includes institutional controls,	OCEM		Service
la ana		engineered barriers, and HAAs)	OSFM	-	Office of the State Fire Marshal
bgs	-	below ground surface	PAA	-	Permit Access Agreement
BOL	-	Bureau of Land (IEPA)	PAH/PN	NA-	polynuclear aromatic hydrocarbons
BTEX	-	benzene, toluene, ethylbenzene,	PCB	-	polychlorinated biphenyls
		and total xylenes	PESA	-	Preliminary Environmental Site
CDPH	-	Chicago Department of Public			Assessment
		Health	P.G.	-	Professional Geologist
CCDD	-	Clean construction and demolition	ppb	-	parts per billion (equivalent to i g/kg
		debris			for solids, and i g/l in liquids)
CERCL	.IS-	Comprehensive Environmental	ppm	-	parts per million (equivalent to
		Response, Compensation, and			mg/kg in solids, and mg/l in liquids)
		Liability Information System	PRP	-	Potentially Responsible Party
CTA	-	Chicago Transit Authority	PSI	-	Preliminary Site Investigation
ERNS	-	Emergency Response Notification	RCRA	-	Resource Conservation and
		System			Recovery Act
FEMA	_	Federal Emergency Management	REC	-	recognized environmental condition
. =		Agency	ROW	_	right-of-way
FIRM	-	Flood Insurance Rate map	SEMS	_	Superfund Enterprise Management
FOIA	_	Freedom of Information Act	OLIVIO		System
GIS	-	Geographic Information System	SIC	_	Standard Industrial Classification
GRO	-	Groundwater Remediation	SPLP	-	synthetic precipitation leaching
GIVO	_	Objective	OI LI	_	procedure
HAA			SRO		
	-	Highway Authority Agreement		-	Soil Remediation Objective
IDNR	-	Illinois Department of Natural	SRP	-	Site Remediation Program
IDOT		Resources	SSTS	-	Section Seven Tracking System
IDOT	-	Illinois Department of	0) (00		(USEPA)
		Transportation	SVOCs		semi-volatile organic compounds
IEMA	-	Illinois Emergency Management	TACO	-	Tiered Approach to Cleanup
		Agency			Objectives (IEPA)
IEPA	-	Illinois Environmental Protection	TCLP	-	toxicity characteristic leaching
		Agency			procedure
IMD	-	Illinois Manufacturers Directory	TPH	-	total petroleum hydrocarbons
ISGS	-	Illinois State Geological Survey	TRI	-	Toxics Release Inventory
ISTC	-	Illinois Sustainable Technology	TVOC	-	Total volatile organic compounds
		Center (formerly Waste	UPRR	-	Union Pacific Railroad
		Management and Research	USDA	-	United States Department of
		Center)			Agriculture
ISWS	-	Illinois State Water Survey	USEPA	_	United States Environmental
LUST	-	leaking underground storage tank			Protection Agency
ì g/kg	-	micrograms per kilogram (ppb)	USGS	_	United States Geological Survey
ì g/l	_	micrograms per liter (ppb)	UST	_	underground storage tank
mg/kg	_	milligrams per kilogram (ppm)	VOC	_	volatile organic compounds
mg/l	_	milligrams per liter (ppm)	• • • •		Totalio organio compoundo
M.M.	_	mile marker			
IVI.IVI.	-	mile marker			

EXECUTIVE SUMMARY

This report presents the results of an environmental site assessment for improvements to IL 37 from Capital Street to south of Yellow Banks Road, Benton, and Benton, Browning, Denning, and Frankfort Townships, Franklin County. This report was prepared on behalf of the Illinois Department of Transportation (IDOT) by the Illinois State Geological Survey (ISGS).

The following sites were examined for this project. The tables below list sites along the project for which recognized environmental conditions (RECs)* were identified for each address or address range (Table 1); sites along the project for which only de minimis conditions were identified (Table 2); sites along the project for which no RECs or de minimis conditions were identified (Table 3); and sites adjoining but not on the project that were identified on environmental databases (Table 4). Further investigation of sites with RECs may be desired.

Table 1. The following sites along the project were determined to contain RECs:

Property name IDOT parcel #	ISGS site #	REC(s), including de minimis conditions	Regulatory database(s)	Land use
UPRR NA	3160-5	Railroad signal boxes	None	Transportation
Freeman Environmental Services, Inc. NA	3160-6	Former UST; evidence of chemical use; transformers; potential ACM and lead paint	BOL, UST	Commercial
J.W. Reynolds Memorial NA	3160-8	Potential UST(s); potential former chemical use; potential ACM and lead paint	None	Commercial
C.N.C. Guns & Ammo NA	3160-9	Potential UST(s); potential former chemical use; transformers; potential ACM and lead paint	None	Commercial
Benton Grade School District #47 NA	3160-10	Potential UST(s); potential former chemical use; potential ACM and lead paint	None	Educational
Masonic & Odd Fellows Cemetery NA	3160-13	AST; former dumping; potential ACM and lead paint	BOL	Cemetery
Residence NA	3160-16	ASTs; natural gas pipeline; potential ACM and lead paint	None	Residential

UPRR NA	3160-21	Fill; petroleum pipeline; railroad signal box	None	Transportation
Vacant land NA	3160-22	Petroleum pipeline	None	Vacant
Vacant land NA	3160-23	Former ASTs; evidence of former chemical use; natural gas pipeline; likely past pesticide and/or herbicide use	None	Vacant
Commercial building and residence NA	3160-25	Potential UST(s); former ASTs; drums; evidence of former chemical use; solid waste; likely natural gas pipeline; potential ACM and lead paint	BOL	Commercial/ residential
Residence NA	3160-26	Petroleum pipeline; likely natural gas pipeline; potential ACM and lead paint	None	Residential
Vacant land NA	3160-28	Potential UST(s); potential former chemical use; natural gas pipeline	None	Vacant
Vacant land	3160-29	Former ASTs; evidence of former chemical use; likely past pesticide and/or herbicide use	None	Vacant
Route 37 Collection Center NA	3160-32	Potential UST(s); ASTs; drums; evidence of former chemical use; solid waste; natural gas pipeline; potential ACM and lead paint	None	Commercial
Vacant land NA	3160-33	Evidence of former chemical use	None	Vacant
Vacant land NA	3160-35	Evidence of former chemical use	None	Vacant
UPRR NA	3160-36	Fill	None	Transportation

Agricultural land NA	3160-39	Evidence of former chemical use; likely pesticide and/or herbicide use	None	Agricultural
Agricultural land NA	3160-41	Evidence of former chemical use; likely pesticide and/or herbicide use	None	Agricultural
Residence NA	3160-45	Evidence of former chemical use; transformer; natural gas pipeline; potential ACM	None	Residential
Vacant land NA	3160-46	Evidence of former chemical use	None	Vacant
Vacant land NA	3160-50	Evidence of former chemical use; former ASTs; likely natural gas pipeline	None	Vacant
UPRR NA	3160-51	Fill	None	Transportation
Agricultural land NA	3160-52	Evidence of former chemical use; likely pesticide and/or herbicide use	None	Agricultural
Agricultural land NA	3160-54	Evidence of former chemical use; likely pesticide and/or herbicide use	None	Agricultural
Vacant land NA	3160-55	Evidence of former chemical use; natural gas pipeline; likely past pesticide and/or herbicide use	None	Vacant
Agricultural land NA	3160-56	Evidence of former chemical use; likely natural gas pipeline; likely pesticide and/or herbicide use	None	Agricultural
Vacant land NA	3160-57	Potential former chemical use	None	Vacant

UPRR NA	3160-62	Fill; railroad signal box	None	Transportation
Residence NA	3160-64	AST; natural gas pipeline; transformer; potential ACM and lead paint	None	Residential

Table 2. The following sites along the project were determined to contain de minimis conditions only:

Property name IDOT parcel #	ISGS site #	De minimis condition(s)	Land use
Greater Life Sanctuary NA	3160-1	Potential ACM and lead paint	Religious
Residence NA	3160-2	Potential ACM and lead paint	Residential
Commercial building NA	3160-3	Transformer; potential ACM and lead paint	Commercial
Residences NA	3160-4	Potential ACM and lead paint	Residential
Roger Clark Veterinary and residence NA	3160-11	Potential ACM and lead paint	Commercial/ residential
Residence NA	3160-14	Potential ACM and lead paint	Residential
Agricultural land NA	3160-15	Likely pesticide and/or herbicide use	Agricultural
Residence NA	3160-17	Natural gas pipeline; potential ACM and lead paint	Residential
Residence NA	3160-18	Potential ACM and lead paint	Residential
Vacant land NA	3160-19	Natural gas pipeline; likely past pesticide and/or herbicide	Vacant
Vacant land NA	3160-20	Natural gas pipeline; likely past pesticide and/or herbicide	Vacant
Residences NA	3160-24	Natural gas pipeline; potential ACM and lead paint	Residential

Agricultural land NA	3160-27	Likely natural gas pipeline; likely pesticide and/or herbicide use	Agricultural
Vacant land NA	3160-30	Likely past pesticide and/or herbicide use	Vacant
Pearson's Skating Rink NA	3160-31	Likely natural gas pipeline; potential ACM and lead paint	Commercial
Vacant land NA	3160-37	Natural gas pipeline; likely past pesticide and/or herbicide use	Vacant
Agricultural land NA	3160-38	Natural gas pipeline; likely pesticide and/or herbicide use	Agricultural
Vacant land NA	3160-40	Likely past pesticide and/or herbicide use	Vacant
Middle Fork Big Muddy River tributary NA	3160-42	Likely natural gas pipeline	Stream
Vacant land NA	3160-43	Likely natural gas pipeline; likely past pesticide and/or herbicide use	Vacant
Vacant land NA	3160-44	Likely past pesticide and/or herbicide use	Vacant
Residence NA	3160-47	Likely natural gas pipeline; potential ACM	Residential
Vacant land NA	3160-48	Likely past pesticide and/or herbicide use	Vacant
Agricultural land NA	3160-49	Natural gas pipeline; likely pesticide and/or herbicide use	Agricultural
Vacant land NA	3160-53	Likely natural gas pipeline; likely past pesticide and/or herbicide use	Vacant
Vacant land NA	3160-59	Natural gas pipeline; likely past pesticide and/or herbicide use	Vacant
Middle Fork Big Muddy River tributary NA	3160-60	Likely natural gas pipeline	Stream
Agricultural land NA	3160-61	Natural gas pipeline; likely pesticide and/or herbicide use	Agricultural
Vacant land NA	3160-63	Likely past pesticide and/or herbicide use	Vacant

Vacant land	3160-65	Likely past pesticide and/or herbicide	Vacant
NA		use	

Table 3. The following sites along the project were determined not to contain RECs or de minimis conditions:

Property name IDOT parcel #	ISGS site #	Land use
Vacant land NA	3160-7	Vacant
Vacant land NA	3160-12	Vacant
Vacant land NA	3160-34	Vacant
Vacant land NA	3160-58	Vacant

Table 4. The following additional sites, adjoining but not on the project, were identified on environmental databases:

Property name	ISGS site #	Regulatory database(s)	Land use
Amanda Barnhart	3160-A	BOL	Residential

* For all sites:

Where REC(s) are indicated as present, a condition was noted that may be indicative of releases or potential releases of hazardous substances on, at, in, or to the site, as discussed in the text. Potential hazards were not verified by ISGS testing. Radon, biological hazards (such as mold, medical waste, or septic waste), and non-agricultural pesticides and/or herbicides may also be of concern. No further investigation concerning the presence or use of these factors was conducted for this PESA.

Where RECs are not indicated as present, radon, biological hazards (such as mold, medical waste, or septic waste), and non-agricultural pesticides and/or herbicides may still be of concern. No further investigation concerning the presence or use of these factors was conducted for this PESA.

For the purposes of this report, the following are considered to be de minimis conditions:

- Normal use of lead-based paint on exteriors and interiors of buildings and structures.
- Use of asbestos-containing materials in building construction.
- Transformers in normal use, unless the transformers were observed to be leaking, appear

- on an environmental regulatory list, or were otherwise determined to pose a hazard not related to normal use.
- Agricultural use of pesticides and herbicides. In addition, most land in Illinois was under agricultural use prior to its conversion to residential, industrial, or commercial development. Pesticides, both regulated and otherwise, may have been used throughout the project area at any time. Unless specifically discussed elsewhere in this report, no information regarding past pesticide use that would be subject to enforcement action was located for this project, and such use is considered a de minimis condition.

The following data gaps exist for all PESAs:

- For residences, only areas visible from public roads are inspected.
- Interiors of buildings are not inspected.
- Interiors of agricultural areas are not inspected during growing seasons.

Radon and biological hazards are not considered in this PESA unless specifically noted.

NA = No parcel number was supplied by IDOT for this site.

Although potential natural hazards and undermining, if present, are described in this report, they are not considered as RECs or de minimis conditions for the purposes of this report, and are therefore not listed in the tables above.

INTRODUCTION

This is the **Final Report** of a preliminary environmental assessment by the ISGS of natural and man-made hazards that may be encountered for improvements to IL 37 from Capital Street to south of Yellow Banks Road, Benton, and Benton, Browning, Denning, and Frankfort Townships, Franklin County (Attachment 1). The acquisition of additional ROW or easement, in-stream work, and excavation or subsurface utility relocation are anticipated for this project. No railroad ROW involvement is expected. Stationing information was provided by IDOT in feet, and is presented as such in this report. IL 37 stationing north of Wastena Street in Benton had a different stationing system than stationing along the rest of IL 37 in the project area. Stationing where present and legible is given to the approximate mid-point of the site or as ranges where appropriate. This report identifies and evaluates recognized environmental conditions (RECs) that may be indicative of releases or potential releases of hazardous substances on, at, in, or to the proposed project.

This assessment has been prepared using historical and geological information including aerial photographs, U.S. Geological Survey topographic maps, plat maps, file information of the ISGS regulatory file information from federal, state, and other agencies, and various other sources of information. An on-site investigation has been completed. The specific methods used to conduct the assessment are contained in "A Manual for Conducting Preliminary Environmental Site Assessments for Illinois Department of Transportation Infrastructure Projects" (Erdmann et al., 2014). If new information is received concerning this project that is considered to have a significant impact on the findings of this report, the report will be revised and resubmitted to IDOT Bureau of Design and Environment.

This Preliminary Environmental Site Assessment (PESA) was performed in compliance with the IDOT-ISGS PESA Manual (Erdmann et al., 2014) and not with the All Appropriate Inquiries environmental assessment standard (40 CFR Part 312) that took effect on November 1, 2006, or with the ASTM standard E1527-05 or E1527-13.

GEOLOGY

Bedrock geology. The topmost bedrock unit in all but the south edge of the project area consists of Pennsylvanian-age rocks of the Bond Formation. This formation primarily consists of limestones, sandstones, and coals. The south edge of the project area is underlain by Pennsylvanian-age rocks of the Shelburn-Patoka Formation. This formation consists primarily of shales, limestones, and coals.

Surficial geology. The total thickness of surficial deposits has been mapped as 8 to 15 m (25 to 50 ft) in the north and south ends of the project area. The total thickness of surficial deposits in the central portion of the project area has been mapped as less than 6 m (20 ft). Throughout the project area, these deposits consist of less than 6 m (20 ft) of loamy and sandy glacial deposits of the Glasford Formation overlying bedrock.

Soils. Along the project ROW, the NRCS has classified the Bonnie silt loam, 0 to 2% slopes, frequently flooded, Cisne silt loam, bench, 0 to 2% slopes, and Wynoose silt loam, bench, 0 to 2% slopes as containing 33 to 100% hydric components. None of the other soils in the project area have been classified by NRCS as containing more than 33% hydric components. The

NRCS has classified the Hickory-Kell silt loams, 18 to 35% slopes, and Orthents, loamy, undulating, Plumfield silty clay loam, 5 to 18% slopes as non-prime farmland.

Coal mining. Illinois Coal Mine Maps of Franklin County indicate that coal mining has taken place throughout the entire project area. This map and ISGS Online Coal Maps of West Frankfort Quadrangle indicate that two former mines, Benton #1 and Orient #2, underlie the project area.

The Benton #1 mine underlies the northern portion of the project area. This mine operated from 1905 to 1924; it was last operated by the Chicago, Wilmington and Franklin Coal Company. This mine worked the Herrin coal seam by the room-and-pillar-panel method. Depth of the coal ranged from 188 to 190 m (618 to 624 ft).

The Orient #2 mine underlies the central and southern portions of the project area. This mine operated from 1922 to 1960; it was last operated by the Orient Number Two Coal Company. This mine worked the Herrin coal seam by a modified room-and-pillar method. Depth of the coal ranged from 146 to 150 m (480 to 500 ft).

No shafts were identified within 0.4 kilometers (0.25 miles) of the project ROW for these mines. The entire project area is undermined by some form of the room-and-pillar method, and therefore may be subject to subsidence.

HYDROGEOLOGY

Due to project type or IDOT internal procedure, the sections on surficial public water supplies, groundwater recharge, groundwater protection areas, potential for contamination of shallow aquifers, and well log information are not included in this report.

Drainage direction. Surficial drainage in the project area is generally to the southeast, in the direction of Middle Fork Big Muddy River. Two unnamed tributaries of Middle Fork Big Muddy River (Site 3160-42 and 3160-60) cross the project area and generally flow to the southeast. However, since drainage ditches and a few storm sewers are present, most surficial runoff will be controlled by the ditch and sewer system; such systems typically are designed to follow natural drainage patterns.

Neither the near-surface nor the shallow unconfined groundwater flow direction was specifically determined for this project, but they generally mimic local topography.

NATURAL FEATURES AND HAZARDS

Wetlands. According to National Wetlands Inventory maps, one palustrine wetland has been mapped in each of the following sites:

- Site 3160-22
- Site 3160-26
- Site 3160-38
- Site 3160-58

- Site 3160-59
- Site 3160-60

These wetland maps were defined primarily by aerial photographs, which may reflect conditions specific to the year or season that the photography was completed. Therefore, wetland areas may be either overstated or missing entirely.

Seismic risk. According to the U.S. Geological Survey, the project is located in an area where the peak horizontal ground accelerations on bedrock (expressed as a percentage of the gravitational acceleration, g) that have a 2% probability of being exceeded in 50 years are between 20% and 80% g. These accelerations are from the USGS 2014 national seismic hazard maps that incorporate the earthquake magnitudes and rates of return from historical events and expected maximum magnitudes from all known fault zones and background events for the general geologic setting. These accelerations on bedrock may be modified by the soils and be greater on the ground surface.

No other observed or known natural hazards were identified for this project.

PROJECT SITES

The project area is primarily under commercial, residential, and agricultural use. Sites will be described from north to south along IL 37 below. Attachment 1 contains a project location map. Attachment 2 contains maps of all sites discussed in this report. The versions of the OSFM's UST database, IEPA's LUST database, IEPA's Bureau of Land database, and USEPA's SEMS database utilized for this report were dated April 8, 2016, April 4, 2016, April 8, 2016, and April 8, 2016, respectively. OSFM files were received on January 5, 2016. IEPA files were received on January 11, 2016. No USEPA files were reviewed for this project. Fieldwork for this project was conducted on February 3 and 17, 2016.

This project intersects previous ISGS PESAs and PSI as follows:

ISGS PESA #	Date submitted to IDOT	Intersects	PSI
1497	March 15, 2004	Along IL 37 from Capital Street to Yellow Banks Road	None
2651	January 16, 2013	At intersection with Yellow Banks Road	Ecology & Environmental #7, work order #054

Information from these earlier PESAs will be summarized in geographic order below. No sites in this project were covered in PSI Ecology & Environmental #7, work order #054.

Data gaps applicable to the entire project area

The following data gaps applicable to the entire project area were noted for this project. Data gaps specific to individual sites are discussed in the site writeups below.

- Sanborn map coverage varied in the city of Benton portion of the project area. No Sanborn map coverage was found unless otherwise noted in the site discussion.
- Aerial photographs provided information only for those specific times covered by the photographs, as noted in the Information Sources section. No records were available for intervening years, and other land uses could have occurred in these years.

This project occurs within a crude oil extraction area that has been active since about 1941. The current distribution of active pumping wells, tank batteries, and known pipelines and collection lines is likely only a small fraction of those historically present. In addition, the entire area is likely to be underlain by numerous active and abandoned crude oil collection lines. For the most part, the locations of these lines are not mapped, and are generally known only to those who put them there. They could also be made of steel or plastic and are typically shallowly buried. Also, most wellhead pumps in this area are currently powered by electricity or propane, but this was not always the case. In the past, some pumps were run on gasoline or diesel fuel. Because of the nature of these potential hazards, not all potential hazards related to the oil industry in this area could be located as part of this preliminary assessment by ISGS.

Site 3160-1. Greater Life Sanctuary, 1208 S. Main Street, Benton (northeast corner of IL 37 and Capital Street; approximate station 44+00 LT [north of Wastena Street]; Attachment 2, page 1). This site is occupied by a church and an outbuilding. This site did not appear on any of the regulatory lists checked for this project.

The 1900 plat map depicted this site under individual ownership. The 1917 and later plat maps depicted this site as part of undifferentiated Benton. The 1938 through 1965 aerial photographs depicted vacant grassy land. The 1947 and 1957 Sanborn maps depicted a vacant lot. On the 1971 and later aerial photographs, the site had its current configuration. In the 1921 through 1965 city directories, no listings were found for this address. In the 1970 through 2014 city directories, a church was listed.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or underground), pumps or dispensers, protruding pipes, pipelines, drums, monitoring wells, solid waste, transformers, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on February 3 and 17, 2016.

No data gaps were identified at this site.

The buildings on this site may contain friable asbestos-containing materials as a component of floor tiles, wall and pipe insulation, roof materials, patching or painting compounds, ceiling materials, or stove and furnace insulation. Lead paint was banned for residential use in the United States in 1978, but has not been banned for industrial and commercial use. Therefore lead paint may be present in these buildings.

No RECs were identified at this site.

The following de minimis conditions were identified at this site: Potential ACM and lead paint.

Site 3160-2. Residence, 1209 S. Main Street, Benton (northwest corner of IL 37 and Capital Street; approximate station 44+50 RT [north of Wastena Street]; Attachment 2, page 1). This site is occupied by a residence and an outbuilding. This site did not appear on any of the regulatory lists checked for this project.

The 1900 plat map depicted this site under individual ownership. The 1917 and later plat maps depicted this site as part of undifferentiated Benton. On the 1938 and later aerial photographs, and on the 1947 and 1957 Sanborn maps, the current residence was depicted.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or underground), pumps or dispensers, protruding pipes, pipelines, drums, monitoring wells, solid waste, transformers, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on February 3 and 17, 2016.

No data gaps were identified at this site.

The buildings on this site may contain friable asbestos-containing materials as a component of floor tiles, wall and pipe insulation, roof materials, patching or painting compounds, ceiling materials, or stove and furnace insulation. Evidence from aerial photographs and Sanborn maps indicates that this residence was constructed before 1978. Lead paint was banned for residential use in the United States in 1978, and therefore lead paint may be present in these buildings.

No RECs were identified at this site.

The following de minimis conditions were identified at this site: Potential ACM and lead paint.

Site 3160-3 (1497-C). Commercial building, 1301 S. Main Street, Benton (southwest corner of IL 37 and Capital Street; approximate station 46+70 RT [north of Wastena Street]; Attachment 2, page 1). This site is occupied by a vacant commercial building. A pole-mounted transformer was observed on the northeast corner of the site. This site did not appear on any of the regulatory lists checked for this project.

The 1900 plat map depicted this site under individual ownership. The 1917 through 1940 plat maps depicted this site as part of undifferentiated Benton with a railroad along the south edge of the site. The 1938 aerial photograph depicted the eastern portion of the current building; vacant grassy land was depicted across the rest of the site. The use of the commercial building could not be determined from this aerial. The 1947 and 1957 Sanborn maps depicted the current building occupied by a building supply company. On the 1952 and later aerial photographs, the current building was depicted. The 1964 and later plat maps depicted this site as part of undifferentiated Benton. In the 1921 through 1923 city directories, no listings were found for this address. In the 1948 through 2005 city directories, a building supply company was listed. In the 2010 and 2014 city directories, this address was listed as a residence. According to a local resident, from the late 2000s to about 2014, this building was occupied by a commercial storage business and a residence.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or

underground), pumps or dispensers, protruding pipes, pipelines, drums, monitoring wells, solid waste, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on February 3 and 17, 2016.

The following data gap was identified at this site:

• The use of the commercial building depicted on the 1938 aerial photograph is unknown.

The building on this site may contain friable asbestos-containing materials as a component of floor tiles, wall and pipe insulation, roof materials, patching or painting compounds, ceiling materials, or stove and furnace insulation. Lead paint was banned for residential use in the United States in 1978, but has not been banned for industrial and commercial use. Therefore lead paint may be present in this building.

No RECs were identified at this site.

The following de minimis conditions were identified at this site: Transformer; potential ACM and lead paint.

Site 3160-4. Residences, 102-202 E. Capital Street, Benton (southeast corner of IL 37 and Capital Street; approximate station 46+50 LT [north of Wastena Street]; Attachment 2, page 1). This site is occupied by two residences. This site did not appear on any of the regulatory lists checked for this project.

The 1900 plat map depicted this site under individual ownership. The 1917 through 1940 plat maps depicted this site as part of undifferentiated Benton with a railroad along the south edge of the site. The 1964 and later plat maps depicted this site as part of undifferentiated Benton. The 1938 and 1952 aerial photographs, and the 1947 and 1957 Sanborn maps, depicted three different residences on the site. The 1959 through 1998 aerial photographs depicted the current residence on the east half of the site and a different residence on the west half of the site. On the 2005 and later aerial photographs, the site had its current configuration.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or underground), pumps or dispensers, protruding pipes, pipelines, drums, monitoring wells, solid waste, transformers, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on February 3 and 17, 2016.

No data gaps were identified at this site.

The buildings on this site may contain friable asbestos-containing materials as a component of floor tiles, wall and pipe insulation, roof materials, patching or painting compounds, ceiling materials, or stove and furnace insulation. Evidence from aerial photographs and Sanborn maps indicates that one of these residences was constructed before 1978. Lead paint was banned for residential use in the United States in 1978, and therefore lead paint may be present in at least one of these buildings.

No RECs were identified at this site.

The following de minimis conditions were identified at this site: Potential ACM and lead paint.

Site 3160-5. UPRR, 1400 block of S. Main Street, Benton (east of IL 37 between Capital Street and Minier Road; approximate station 0+00 to 20+50 LT; Attachment 2, page 1). This site is occupied by a railroad and its adjoining ROW. Two railroad signal boxes were observed along the west side of the railroad. One of these boxes was observed just north of Wastena Street. The second box was observed just east of Oddfellow Lane. This site did not appear on any of the regulatory lists checked for this project.

On the 1900 and later plat maps, a railroad was present at this site. The date of earliest development is unknown. The 1925 through 1957 Sanborn maps and the 1938 and later aerial photographs depicted a railroad.

Potential hazards associated with railroad signal boxes include batteries and metals.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or underground), pumps or dispensers, protruding pipes, pipelines, drums, monitoring wells, solid waste, transformers, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on February 3 and 17, 2016.

The following data gap was identified at this site:

The date of earliest development is unknown.

Because there are no buildings present and no evidence of fill or demolition debris was observed, asbestos-containing materials and lead paint are unlikely to be present at this site.

The following REC was identified at this site: Railroad signal boxes.

No de minimis conditions were identified at this site.

Site 3160-6. Freeman Environmental Services, Inc., 307 E. Capital Street, Benton (northeast corner of Wastena Street and UPRR; approximate station 18+50 LT [Wastena Street]; Attachment 2, page 1). This site is occupied by an environmental consulting business. The site consisted of two buildings. The east building included offices and a warehouse. The west building was an equipment shelter. A pole-mounted transformer was observed on the southeast corner of the site. Several small pole-mounted transformers were observed centered along the south edge of the site.

The 1900 and 1917 plat maps depicted this site under individual ownership. The 1918 and later plat maps depicted this site as part of undifferentiated Benton. The 1938 through 1971 aerial photographs depicted agricultural use. The 1980 through 1998 aerial photographs depicted the current east building. On the 2005 and later aerial photographs, the site had its current configuration. In the 1921 through 1980 city directories, no listings were found for this address. The 1985 through 1995 city directories listed a warehouse. In the 2001 through 2014 city directories, no listings were found for this address. In 2004 through 2010, IEPA files indicated this was a warehouse. According to a local resident, the current business has occupied this site since about

2013.

Under the name "Benton Storeroom" and the address "E. Watsina [sic] St Rr 1" in Benton, this site appears on the UST list (OSFM #7021521) with one registered UST. According to OSFM files, one diesel UST was removed in 1989. OSFM files contained no information concerning the location of this former UST. Mr. Shane Cockrum, Chief, Benton Fire Department, had no information regarding this former UST location. The location of the former UST listed in OSFM records is unknown.

Under the name "Ameren Illinois-Formerly" and the address "301 Wastena" in Benton, this site appears on the BOL list (IEPA #0550055064). According to IEPA files, in 2004 through 2009, Ameren Benton Storeroom filed Illinois Nonhazardous Special Waste Annual Reports that indicated no nonhazardous special waste was shipped from this facility. In 2010, Ameren Benton Storeroom filed an Illinois Nonhazardous Special Waste Annual Report stating that 624 L (165 gal) of waste containing used oil was shipped from this facility. No further information was available in IEPA files regarding IEPA #0550055064.

Under the name "Freeman Enviro Services Inc" and the address "307 Wastena St" in Benton, this site appears on the BOL list (IEPA #0550055089). According to IEPA files, in March 2014, IEPA issued an inventory number to Freeman Enviro Services Inc. No further information was available in IEPA files regarding IEPA #0550055089.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or underground), pumps or dispensers, protruding pipes, pipelines, drums, monitoring wells, solid waste, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on February 3 and 17, 2016.

The following data gap was identified at this site:

The location of the former UST listed in OSFM records is unknown.

The buildings on this site may contain friable asbestos-containing materials as a component of floor tiles, wall and pipe insulation, roof materials, patching or painting compounds, ceiling materials, or stove and furnace insulation. Lead paint was banned for residential use in the United States in 1978, but has not been banned for industrial and commercial use. Therefore lead paint may be present in these buildings.

The following RECs were identified at this site: Former UST; evidence of chemical use.

The following de minimis conditions were identified at this site: Transformers; potential ACM and lead paint.

Site 3160-7. Vacant land, 300 block of Wastena Street, Benton (southeast corner of Wastena Street and UPRR; approximate station 14+50 RT [Wastena Street]; Attachment 2, page 1). This site is occupied by vacant grassy land. This site did not appear on any of the regulatory lists checked for this project.

On the 1900 and later plat maps, this site was depicted under individual ownership. On the 1938 and later aerial photographs, vacant grassy land was depicted.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or underground), pumps or dispensers, protruding pipes, pipelines, drums, monitoring wells, solid waste, transformers, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on February 3 and 17, 2016.

No data gaps were identified at this site.

Because there are no buildings present and no evidence of fill or demolition debris was observed, asbestos-containing materials and lead paint are unlikely to be present at this site.

No RECs or de minimis conditions were identified at this site.

Site 3160-8 (1497-12). J.W. Reynolds Memorial, 1410 S. Main Street, Benton (southeast corner of IL 37 and Wastena Street; approximate station 1+50 LT; Attachment 2, page 1). This site is occupied by a cemetery monument sales business. This site did not appear on any of the regulatory lists checked for this project.

On the 1900 and later plat maps, this site was depicted under individual ownership. The 1925 Sanborn map depicted a store and residence in a shared building centered along the west edge of the site. The 1938 through 1965 aerial photographs depicted two different commercial buildings. These aerials depicted one of the buildings along the north edge of the current parking lot and the second building along the south edge of the current building. The 1947 and 1957 Sanborn maps depicted an electric motor repair shop on the north edge of the current parking lot and a store along the south edge of the current building. The 1971 through 2010 aerial photographs depicted the same south building, a parking lot west of the building, and vacant grassy land across the rest of the site. On the 2011 and later aerial photographs, the site had its current configuration. In the 1921 through 1923 city directories, no listings were found for this address. The 1948 city directory listed an electric motor repair shop and a monument sales business. The 1951 through1964 city directories listed an auto repair shop and a monument sales business. In the 1970 and later city directories, the current occupant was listed.

In two boreholes completed at this site for ISGS #1497 in 2004, no VOCs were detected. See ISGS #1497 for details.

Potential hazards associated with vehicle repair facilities include waste oil, lubricants, and transmission fluids; spent solvents; waste paints and thinners; sludge from parts-cleaning tanks; oily sludge from floor sumps; used antifreeze; used lead-acid batteries; and undocumented UST(s).

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or underground), pumps or dispensers, protruding pipes, pipelines, drums, monitoring wells, solid waste, transformers, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on February 3 and 17, 2016.

The following data gap was identified at this site:

• The status and location of any undocumented UST(s) at this site are unknown.

The building on this site may contain friable asbestos-containing materials as a component of floor tiles, wall and pipe insulation, roof materials, patching or painting compounds, ceiling materials, or stove and furnace insulation. Lead paint was banned for residential use in the United States in 1978, but has not been banned for industrial and commercial use. Therefore lead paint may be present in this building.

The following RECs were identified at this site: Potential UST(s); potential former chemical use.

The following de minimis conditions were identified at this site: Potential ACM and lead paint.

Site 3160-9 (1497-13). C.N.C. Guns & Ammo, 1401 S. Main Street, Benton (southwest corner of IL 37 and Wastena Street; approximate station 00+80 RT; Attachment 2, page 1). This site is occupied by a retail gun store. Three pole-mounted transformers were observed centered along the east edge of the ste. This site did not appear on any of the regulatory lists checked for this project.

On the 1900 and later plat maps, this site was depicted under individual ownership. The 1938 aerial photograph depicted agricultural use. The 1952 aerial photograph depicted a circular-shaped commercial building near the center of the site. The 1959 through 2005 aerial photographs depicted this same building with additions to its north, south, and west sides and a residence along the west edge of the site. On the 2006 and later aerial photographs, the site had its current configuration. In the 1921 through 1923 city directories, no listings were found for this address. The 1948 through 1995 city directories listed a restaurant. In the 2001 and 2005 city directories, this address was not listed. In the 2010 and later city directories, the current occupant was listed. According to a 2004 interview completed for ISGS #1497, this site was previously a gasoline station. The interviewed local resident could not recall the dates of operation of the station. During fieldwork for ISGS #1497, a vacant commercial building was present near the center of the site.

Mr. Shane Cockrum, Chief, Benton Fire Department, had no information regarding USTs at this site. Mr. Porter, the site owner, was not aware of any past or present USTs on the site. The status and location of the UST(s) associated with the former gasoline station are unknown.

In two boreholes completed at this site for ISGS #1497 in 2004, no VOCs were detected. See ISGS #1497 for details.

Historic gas stations commonly conducted vehicle repair on the premises. Potential hazards associated with vehicle repair facilities include waste oil, lubricants, and transmission fluids; spent solvents; waste paints and thinners; sludge from parts-cleaning tanks; oily sludge from floor sumps; used antifreeze; used lead-acid batteries; and undocumented UST(s).

The following data gap was identified at this site:

The status and location of any undocumented UST(s) at this site are unknown.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or underground), pumps or dispensers, protruding pipes, pipelines, drums, monitoring wells, solid waste, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on February 3 and 17, 2016.

The building on this site may contain friable asbestos-containing materials as a component of floor tiles, wall and pipe insulation, roof materials, patching or painting compounds, ceiling materials, or stove and furnace insulation. Lead paint was banned for residential use in the United States in 1978, but has not been banned for industrial and commercial use. Therefore lead paint may be present in this building.

The following RECs were identified at this site: Potential UST(s); potential former chemical use.

The following de minimis conditions were identified at this site: Transformers; potential ACM and lead paint.

Site 3160-10 (1497-14). Benton Grade School District #47, 1403 S. Main Street, Benton (southwest quadrant of IL 37 and Wastena Street; approximate station 3+50 RT; Attachment 2, page 1). This site is occupied by a school district office. This site did not appear on any of the regulatory lists checked for this project.

On the 1900 and later plat maps, this site was depicted under individual ownership. The 1925 Sanborn map depicted a gasoline station, two gasoline USTs, and an oil warehouse. This Sanborn map depicted the oil warehouse on the northwest corner of the site. This map depicted the northern UST approximately 46 m (150 ft) north of the UPRR and Oddfellow Lane intersection and 15 m (50 ft) west of the IL 37 centerline. This map depicted the southern UST approximately 33 m (110 ft) north of the UPRR and Oddfellow Lane intersection and 14 m (45 ft) northwest of the IL 37 centerline. The 1938 through 1952 aerial photographs depicted the same gasoline station building, an apparent dispenser island southeast of the station building, and a circular-shaped building south of the station building. The 1947 and 1957 Sanborn maps depicted this circular-shaped building as a store, and the same gasoline station and USTs. The 1959 through 1980 aerial photographs depicted the same gasoline station building and apparent dispenser island surrounded by a parking lot. The 1988 and later aerial photographs, depicted the current building and parking lot. In the 1921 through 1923 city directories, no listings were found for this address. The 1948 through 1970 city directories listed a gasoline station. The 1975 and 1980 city directories did not list this address. The 1985 through 2010 city directories listed an electric utility company office. In the 2014 and later city directories, the current occupant was listed.

Mr. Shane Cockrum, Chief, Benton Fire Department, did not know the status of the USTs associated with the former gasoline station. During the interview with Chief Cockrum, he contacted the city's attorney who managed the purchase of this site; the attorney had no information regarding the status of the USTs associated with the former gasoline station. The status of the USTs depicted on the 1925, 1947, and 1957 Sanborn maps and any other potential former UST(s) at this site are unknown.

In three boreholes completed at this site for ISGS #1497 in 2004, VOCs were detected in all three boreholes. See ISGS #1497 for details.

Historic gas stations commonly conducted vehicle repair on the premises. Potential hazards associated with vehicle repair facilities include waste oil, lubricants, and transmission fluids; spent solvents; waste paints and thinners; sludge from parts-cleaning tanks; oily sludge from floor sumps; used antifreeze; used lead-acid batteries; and undocumented UST(s). Potential hazards associated with oil warehouses include lubricants, oils, VOCs, and SVOCs.

The following data gaps were identified at this site:

- The status of the USTs depicted on the 1925, 1947, and 1957 Sanborn maps is unknown.
- The status and location of any undocumented UST(s) at this site are unknown.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or underground), pumps or dispensers, protruding pipes, pipelines, drums, monitoring wells, solid waste, transformers, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on February 3 and 17, 2016.

The building on this site may contain friable asbestos-containing materials as a component of floor tiles, wall and pipe insulation, roof materials, patching or painting compounds, ceiling materials, or stove and furnace insulation. Lead paint was banned for residential use in the United States in 1978, but has not been banned for industrial and commercial use. Therefore lead paint may be present in this building.

The following RECs were identified at this site: Potential UST(s); potential former chemical use.

The following de minimis conditions were identified at this site: Potential ACM and lead paint.

Site 3160-11. Roger Clark Veterinary and residence, 12733 Oddfellow Lane, Benton (southeast corner of UPRR and Oddfellow Lane; approximate station 3+00 LT; Attachment 2, page 1). This site is occupied by a veterinary clinic and a residence with the same address. The site consisted of a residence and two commercial buildings. The residence was on the south half of the site and the two veterinary clinic buildings were on the north half of the site. This site did not appear on any of the regulatory lists checked for this project.

On the 1900 and later plat maps, this site was depicted under individual ownership. The 1938 and 1971 aerial photographs depicted a different residence. The 1980 through 1998 aerial photographs depicted the same residence and the current southern commercial building. The 2005 through 2010 aerial photographs depicted the same residence and the current commercial buildings. On the 2011 and later aerial photographs, the site had its current configuration. In the 1921 through 1995 city directories, no listings were found for this address. In the 2001 and later city directories, the current occupants were listed. Since the late 1970s, according to a local resident, a veterinary clinic and residence have occupied this site.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or underground), pumps or dispensers, protruding pipes, pipelines, drums, monitoring wells, solid waste, transformers, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on February 3 and 17, 2016.

No data gaps were identified at this site.

The buildings on this site may contain friable asbestos-containing materials as a component of floor tiles, wall and pipe insulation, roof materials, patching or painting compounds, ceiling materials, or

stove and furnace insulation. Lead paint was banned for residential use in the United States in 1978, but has not been banned for industrial and commercial use. Therefore lead paint may be present in these buildings.

No RECs were identified at this site.

The following de minimis conditions were identified at this site: Potential ACM and lead paint.

Site 3160-12. Vacant land, 12700 block of Oddfellow Lane, Benton (southeast quadrant of UPRR and Oddfellow Lane; approximate station 9+00 LT; Attachment 2, page 1). This site is occupied by vacant grassy land. This site did not appear on any of the regulatory lists checked for this project.

On the 1900 and later plat maps, this site was depicted under individual ownership. On the 1938 and later aerial photographs, vacant grassy land was depicted.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or underground), pumps or dispensers, protruding pipes, pipelines, drums, monitoring wells, solid waste, transformers, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on February 3 and 17, 2016.

No data gaps were identified at this site.

Because there are no buildings present and no evidence of fill or demolition debris was observed, asbestos-containing materials and lead paint are unlikely to be present at this site.

No RECs or de minimis conditions were identified at this site.

Site 3160-13. Masonic & Odd Fellows Cemetery, 12740 Oddfellow Lane, Benton (southwest corner and southeast quadrant of UPRR and Oddfellow Lane; approximate station 0+00 to 18+50 LT; Attachment 2, page 1). This site is occupied by a cemetery. The site consisted of two buildings on the northwest corner of the site and burial plots across the rest of the site. The cemetery office was in the northern building and equipment storage was in the southern building. An AST of unknown contents was observed along the east side of the southern building.

The 1900 and 1917 plat maps depicted this site under individual ownership. On the 1918 and later plat maps, this site was depicted as a cemetery. The 1938 and 1952 aerial photographs depicted most of the current cemetery and vacant grassy land on the northeast corner of the site. On the 1959 and later aerial photographs, the current cemetery and buildings were depicted. The 1921 through 1951 city directories did not list this address. In the 1955 and later city directories, the current occupant was listed.

Under the name "Masonic-Odd Fellows Cemetery" and the address "12740 Oddfellows Ln" in Benton, this site appears on the BOL list (IEPA #0550055086). According to IEPA files, in August 2012 IEPA personnel completed an inspection due to a complaint of dumping. During this inspection, dumped material was observed on the southeast corner of the site. The dumped material consisted of graveside decorations. In November 2012, during a follow-up inspection, no

violations were observed and the site had returned to compliance. No further information was available in IEPA files regarding IEPA #0550055086. During fieldwork for this project, no evidence of dumping was observed.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, pumps or dispensers, protruding pipes, pipelines, drums, monitoring wells, solid waste, transformers, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on February 3 and 17, 2016.

The following data gap was identified at this site:

The contents of the AST are unknown.

The buildings on this site may contain friable asbestos-containing materials as a component of floor tiles, wall and pipe insulation, roof materials, patching or painting compounds, ceiling materials, or stove and furnace insulation. Lead paint was banned for residential use in the United States in 1978, but has not been banned for industrial and commercial use. Therefore lead paint may be present in these buildings.

The following RECs were identified at this site: AST; former dumping.

The following de minimis conditions were identified at this site: Potential ACM and lead paint.

Site 3160-14. Residence, 1411 S. Main Street, Benton (west side of IL 37 between Wastena Street and Park Road; approximate station 6+50 RT; Attachment 2, page 1). This site is occupied by a residence and an outbuilding. This site did not appear on any of the regulatory lists checked for this project.

On the 1900 and later plat maps, this site was depicted under individual ownership. The 1938 aerial photograph depicted agricultural use. On the 1952 and later aerial photographs, the current residence was depicted.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or underground), pumps or dispensers, protruding pipes, pipelines, drums, monitoring wells, solid waste, transformers, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on February 3 and 17, 2016.

No data gaps were identified at this site.

The buildings on this site may contain friable asbestos-containing materials as a component of floor tiles, wall and pipe insulation, roof materials, patching or painting compounds, ceiling materials, or stove and furnace insulation. Evidence from aerial photographs indicates that this residence was constructed before 1978. Lead paint was banned for residential use in the United States in 1978, and therefore lead paint may be present in these buildings.

No RECs were identified at this site.

The following de minimis conditions were identified at this site: Potential ACM and lead paint.

Site 3160-15. Agricultural land, 1400 block of S. Main Street, Benton (northwest corner of IL 37 and Park Road; approximate station 8+50 RT; Attachment 2, page 1). This site is occupied by agricultural land. This site did not appear on any of the regulatory lists checked for this project.

On the 1900 and later plat maps, this site was depicted under individual ownership. On the 1938 and later aerial photographs, agricultural use was depicted.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or underground), pumps or dispensers, protruding pipes, pipelines, drums, monitoring wells, solid waste, transformers, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on February 3 and 17, 2016.

No data gaps were identified at this site.

Because there are no buildings present and no evidence of fill or demolition debris was observed, asbestos-containing materials and lead paint are unlikely to be present at this site.

No RECs were identified at this site.

The following de minimis condition was identified at this site: Likely pesticide and/or herbicide use based on agricultural land use.

Site 3160-16. Residence, 12524 S. Park Road, Benton Township (southwest corner of IL 37 and Park Road; approximate station 12+50 RT; Attachment 2, page 1). This site is occupied by a residence and two outbuildings. Two ASTs of unknown contents were observed along the west side of the western outbuilding. A natural gas pipeline marker was observed on the northwest corner of the site. Based on the pipeline marker observed on the site and other sites in the vicinity, this pipeline is likely oriented north-south. This site did not appear on any of the regulatory lists checked for this project.

On the 1900 and later plat maps, this site was depicted under individual ownership. The 1938 through 1959 aerial photographs depicted a different residence. The 1965 and 1971 aerial photographs depicted vacant grassy land with some trees. On the 1980 and later aerial photographs, the site had its current configuration.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, pumps or dispensers, protruding pipes, drums, monitoring wells, solid waste, transformers, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on February 3 and 17, 2016.

The following data gap was identified at this site:

The contents of the ASTs are unknown.

The buildings on this site may contain friable asbestos-containing materials as a component of floor tiles, wall and pipe insulation, roof materials, patching or painting compounds, ceiling materials, or stove and furnace insulation. Evidence from aerial photographs indicates that this residence may have been constructed before 1978. Lead paint was banned for residential use in the United States in 1978, and therefore lead paint may be present in these buildings.

The following REC was identified at this site: ASTs.

The following de minimis conditions were identified at this site: Natural gas pipeline; potential ACM and lead paint.

Site 3160-17. Residence, 8046 Minier Road, Benton Township (southwest quadrant of IL 37 and Park Road; approximate station 17+50 RT; Attachment 2, page 1). This site is occupied by a residence. Two natural gas pipeline markers were observed along the west edge of the site. Based on the pipeline markers observed on the site and other sites in the vicinity, this pipeline is likely oriented north-south. This site did not appear on any of the regulatory lists checked for this project.

On the 1900 and later plat maps, this site was depicted under individual ownership. The 1938 through 1971 aerial photographs depicted vacant grassy land. On the 1980 and later aerial photographs, the current residence was depicted.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or underground), pumps or dispensers, protruding pipes, drums, monitoring wells, solid waste, transformers, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on February 3 and 17, 2016.

No data gaps were identified at this site.

The building on this site may contain friable asbestos-containing materials as a component of floor tiles, wall and pipe insulation, roof materials, patching or painting compounds, ceiling materials, or stove and furnace insulation. Evidence from aerial photographs indicates that this residence may have been constructed before 1978. Lead paint was banned for residential use in the United States in 1978, and therefore lead paint may be present in this building.

No RECs were identified at this site.

The following de minimis conditions were identified at this site: Natural gas pipeline; potential ACM and lead paint.

Site 3160-18. Residence, 7968 Minier Road, Benton Township (southeast quadrant of IL 37 and Minier Road; approximate station 19+50 RT; Attachment 2, page 1). This site is occupied by a residence and two outbuildings. This site did not appear on any of the regulatory lists checked for this project.

On the 1900 and later plat maps, this site was depicted under individual ownership. On the 1938 and later aerial photographs, the current residence was depicted.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or underground), pumps or dispensers, protruding pipes, pipelines, drums, monitoring wells, solid waste, transformers, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on February 3 and 17, 2016.

No data gaps were identified at this site.

The buildings on this site may contain friable asbestos-containing materials as a component of floor tiles, wall and pipe insulation, roof materials, patching or painting compounds, ceiling materials, or stove and furnace insulation. Evidence from aerial photographs indicate that this residence was constructed before 1978. Lead paint was banned for residential use in the United States in 1978, and therefore lead paint may be present in these buildings.

No RECs were identified at this site.

The following de minimis conditions were identified at this site: Potential ACM and lead paint.

Site 3160-19. Vacant land, 7000 block of IL 37, Benton Township (northwest corner of IL 37 and Minier Road; approximate station 20+00 RT; Attachment 2, page 2). This site is occupied by vacant grassy land. A natural gas pipeline marker was observed on the southeast corner of the site. Based on the pipeline marker observed on the site and other sites in the vicinity, this pipeline is likely oriented northeast-southwest. This site did not appear on any of the regulatory lists checked for this project.

On the 1900 and later plat maps, this site was depicted under individual ownership. The 1938 aerial photograph depicted agricultural use. On the 1952 and later aerial photographs, vacant grassy land was depicted.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or underground), pumps or dispensers, protruding pipes, drums, monitoring wells, solid waste, transformers, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on February 3 and 17, 2016.

No data gaps were identified at this site.

Because there are no buildings present and no evidence of fill or demolition debris was observed, asbestos-containing materials and lead paint are unlikely to be present at this site.

No RECs were identified at this site.

The following de minimis conditions were identified at this site: Natural gas pipeline; likely past pesticide and/or herbicide use based on former agricultural land use.

Site 3160-20. Vacant land, 7000 block of IL 37, Benton Township (west side of IL 37 between Minier and Andrews Roads; approximate station 21+50 RT; Attachment 2, page 2). This site is occupied by vacant wooded land. A natural gas pipeline marker was observed centered along

the east edge of the site. Based on the pipeline marker observed on the site and other sites in the vicinity, this pipeline is likely oriented northeast-southwest. A complete site investigation could not be done due to dense vegetation across the site. This site did not appear on any of the regulatory lists checked for this project.

On the 1900 and later plat maps, this site was depicted under individual ownership. The 1938 aerial photograph depicted agricultural use. On the 1952 and later aerial photographs, vacant wooded land was depicted.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or underground), pumps or dispensers, protruding pipes, drums, monitoring wells, solid waste, transformers, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on February 3 and 17, 2016.

The following data gap was identified at this site:

A complete site investigation could not be done due to dense vegetation across the site.

Because there are no buildings present and no evidence of fill or demolition debris was observed, asbestos-containing materials and lead paint are unlikely to be present at this site.

No RECs were identified at this site.

The following de minimis conditions were identified at this site: Natural gas pipeline; likely past pesticide and/or herbicide use based on former agricultural land use.

Site 3160-21 (1497-15 [partial]). UPRR, 7000 block of IL 37, Benton Township (northeast corner of IL 37 and Andrews Road; approximate station 20+50 to 49+50 LT; Attachment 2, page 1). This site is occupied by a railroad and its adjoining ROW. The railroad grade in the southern third of the site was elevated above the surrounding ground. The composition of the fill material used to elevate the southern third of the railroad grade is unknown. A petroleum pipeline marker and vent pipe were observed centered along the west edge of the site. Based on the pipeline marker observed on the site and other sites in the vicinity, this pipeline is likely oriented east-west. A railroad signal box was observed along the north side of the railroad and west of Minier Road. This site did not appear on any of the regulatory lists checked for this project.

On the 1900 and later plat maps, a railroad was present at this site. The date of earliest development is unknown. On the 1938 and later aerial photographs, a railroad was depicted.

In one borehole completed at this site for ISGS #1497 in 2004, no VOCs were detected. See ISGS #1497 for details.

Potential hazards associated with railroad signal boxes include batteries and metals.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, storage tanks (above or underground), pumps or dispensers, drums, monitoring wells, solid waste, transformers, non-

petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on February 3 and 17, 2016.

The following data gaps were identified at this site:

- The composition of the fill material used to elevate the southern third of the railroad grade is unknown.
- The date of earliest development is unknown.

Because there are no buildings present and no evidence of fill containing demolition debris was observed, asbestos-containing materials and lead paint are unlikely to be present at this site.

The following RECs were identified at this site: Fill of unknown composition; petroleum pipeline; railroad signal box.

No de minimis conditions were identified at this site.

Site 3160-22. Vacant land, 7000 block of Minier Road, Benton Township (southwest corner of UPRR and Minier Road; approximate station east of 21+00 to 34+00 LT; Attachment 2, page 2). This site is occupied by vacant wooded land. A petroleum pipeline marker was observed on the southwest corner of the site. Based on the pipeline marker observed on the site and other sites in the vicinity, this pipeline is likely oriented east-west. A complete site investigation could not be done due to dense vegetation across the site. This site did not appear on any of the regulatory lists checked for this project.

On the 1900 and later plat maps, this site was depicted under individual ownership. On the 1938 and later aerial photographs, vacant wooded land was depicted.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or underground), pumps or dispensers, protruding pipes, drums, monitoring wells, solid waste, transformers, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on February 3 and 17, 2016.

The following data gap was identified at this site:

A complete site investigation could not be done due to dense vegetation across the site.

Because there are no buildings present and no evidence of fill or demolition debris was observed, asbestos-containing materials and lead paint are unlikely to be present at this site.

The following REC was identified at this site: Petroleum pipeline.

No de minimis conditions were identified at this site.

Site 3160-23. Vacant land, 7000 block of IL 37, Benton Township (west side of IL 37 between Minier and Andrews Roads; approximate station 23+50 RT; Attachment 2, page 2). This site

is occupied by vacant wooded land. A natural gas pipeline marker was observed on the southeast corner of the site. Based on the pipeline marker observed on the site and other sites in the vicinity, this pipeline is likely oriented northeast-southwest. A complete site investigation could not be done due to dense vegetation across the site. This site did not appear on any of the regulatory lists checked for this project.

On the 1900 and later plat maps, this site was depicted under individual ownership. The 1938 aerial photograph depicted agricultural use. According to ISGS records, in 1944, an oil well was completed at this site. The 1952 through 1993 aerial photographs depicted an oil well and a tank battery consisting of two ASTs. On the 1998 and later aerial photographs, vacant wooded land was depicted.

Potential hazards associated with oil wells include VOCs, SVOCs, and metals.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or underground), pumps or dispensers, protruding pipes, drums, monitoring wells, solid waste, transformers, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on February 3 and 17, 2016.

The following data gap was identified at this site:

A complete site investigation could not be done due to dense vegetation across the site.

Because there are no buildings present and no evidence of fill or demolition debris was observed, asbestos-containing materials and lead paint are unlikely to be present at this site.

The following RECs were identified at this site: Former ASTs; evidence of former chemical use.

The following de minimis conditions were identified at this site: Natural gas pipeline; likely past pesticide and/or herbicide use based on former agricultural land use.

Site 3160-24. Residences, 7843-7871 IL 37, Benton Township (west side of IL 37 between Minier and Andrews Roads; approximate station 24+00 to 31+00 RT; Attachment 2, page 2). This site is occupied by two residences and three outbuildings. A natural gas pipeline marker was observed on the southeast corner of the site. Based on the pipeline marker observed on the site and other sites in the vicinity, this pipeline is likely oriented northeast-southwest. A propane AST was observed along the north side of the northern residence. This site did not appear on any of the regulatory lists checked for this project.

On the 1900 and later plat maps, this site was depicted under individual ownership. The 1938 aerial photograph depicted agricultural use. On the 1952 and later aerial photographs, the current residences were depicted.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, pumps or dispensers, protruding pipes, drums, monitoring wells, solid waste, transformers, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on February 3 and 17, 2016.

No data gaps were identified at this site.

The buildings on this site may contain friable asbestos-containing materials as a component of floor tiles, wall and pipe insulation, roof materials, patching or painting compounds, ceiling materials, or stove and furnace insulation. Evidence from aerial photographs indicates that these residences were constructed before 1978. Lead paint was banned for residential use in the United States in 1978, and therefore lead paint may be present in these buildings.

No RECs were identified at this site.

The following de minimis conditions were identified at this site: Natural gas pipeline; potential ACM and lead paint.

Site 3160-25. Commercial building and residence, 7837 IL 37, Benton Township (west side of IL 37 between Minier and Andrews Roads; approximate station 32+00 RT; Attachment 2, page 2). This site is occupied by a vacant commercial building and a residence with the same address. The vacant commercial building and its associated parking lot were on the west half of the site and the residence was on the east half of the site. Two auto bays observed on the south side of this commercial building indicated it may have previously been used as an auto repair shop. Four metal drums of unknown contents were observed at the southeast corner of the commercial building. About 12 scrap tires were observed near the southwest corner of the commercial building. No natural gas pipeline markers were observed at this site. However, natural gas pipeline markers were observed at Site 3160-24 and Site 3160-28, and it is likely that a natural gas pipeline passes through this site as well. Based on the pipeline markers observed on other sites in the vicinity, this pipeline is likely oriented northeast-southwest.

On the 1900 and later plat maps, this site was depicted under individual ownership. The 1938 aerial photograph depicted agricultural use. According to ISGS records, in 1941, an oil well (designated as 25a on Attachment 2, page 2) was completed at this site. The 1952 through 1980 aerial photographs depicted the same oil well, a tank battery consisting of two ASTs in the northwest corner of the site, and agricultural use on the rest of the site. On the 1988 and later aerial photographs, the site had its current configuration. The 1921 through 1995 city directories did not list this address. The 2001 through 2010 city directories listed a trucking company. On the 2014 and later city directories, this address was not listed.

Under the name "Jim Conner Enterprises" and the address "7837 Rte 37" in Benton, this site appears on the BOL list (IEPA #0558015004). According to IEPA files, in February 2004, IEPA issued an inventory number to Jim Conner Enterprises. No further information was available in IEPA files regarding IEPA #0558015004.

Potential hazards associated with vehicle repair facilities include waste oil, lubricants, and transmission fluids; spent solvents; waste paints and thinners; sludge from parts-cleaning tanks; oily sludge from floor sumps; used antifreeze; used lead-acid batteries; and undocumented UST(s). Potential hazards associated with oil wells and tank batteries include ASTs, VOCs, SVOCs, and metals.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or

underground), pumps or dispensers, protruding pipes, monitoring wells, transformers, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on February 3 and 17, 2016.

The following data gaps were identified at this site:

- The contents of the drums are unknown.
- No natural gas pipelines markers were observed at this site. However, natural gas pipeline
 markers were observed elsewhere throughout the project along the west side of IL 37
 between Minier Road and the south project limit, and it is likely that a natural gas pipeline
 passes through this site as well.
- The status and location of any undocumented UST(s) at this site are unknown.

The buildings on this site may contain friable asbestos-containing materials as a component of floor tiles, wall and pipe insulation, roof materials, patching or painting compounds, ceiling materials, or stove and furnace insulation. Lead paint was banned for residential use in the United States in 1978, but has not been banned for industrial and commercial use. Therefore lead paint may be present in these buildings.

The following RECs were identified at this site: Potential UST(s); former ASTs; drums; evidence of former chemical use.

The following de minimis conditions were identified at this site: Solid waste; likely natural gas pipeline; potential ACM and lead paint.

Site 3160-26 (1497-15 [partial]). Residence, 7789 IL 37, Benton Township (west side of IL 37 between Minier and Andrews Roads; approximate station 34+00 RT; Attachment 2, page 2). This site is occupied by a residence and two outbuildings. A petroleum pipeline marker and vent pipe were observed on the southeast corner of the site. Based on the pipeline marker observed on the site and other sites in the vicinity, this petroleum pipeline is likely oriented east-west. A propane AST was observed along the west side of the residence. No natural gas pipeline markers were observed at this site. However, natural gas pipeline markers were observed along the west side of IL 37 at Site 3160-24 and Site 3160-28, and it is likely that a natural gas pipeline passes through this site as well. Based on the pipeline markers observed on other sites in the vicinity, this pipeline is likely oriented northeast-southwest. This site did not appear on any of the regulatory lists checked for this project.

On the 1900 and later plat maps, this site was depicted under individual ownership. The 1938 through 1971 aerial photographs depicted vacant grassy land. On the 1980 and later aerial photographs, the current residence was depicted.

In one borehole completed at this site for ISGS #1497 in 2004, no VOCs were detected. See ISGS #1497 for details.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, pumps or dispensers, drums, monitoring wells, solid waste, transformers, non-petroleum chemical use or storage, or

unusual or noxious odors was observed at this site during site inspections by ISGS on February 3 and 17, 2016.

The following data gap was identified at this site:

No natural gas pipelines markers were observed at this site. However, natural gas pipeline
markers were observed along the west side of IL 37 at Site 3160-24 and Site 3160-28, and
it is likely that a natural gas pipeline passes through this site as well.

The buildings on this site may contain friable asbestos-containing materials as a component of floor tiles, wall and pipe insulation, roof materials, patching or painting compounds, ceiling materials, or stove and furnace insulation. Evidence from aerial photographs indicates that this residence may have been constructed before 1978. Lead paint was banned for residential use in the United States in 1978, and therefore lead paint may be present in these buildings.

The following REC was identified at this site: Petroleum pipeline.

The following de minimis conditions were identified at this site: Likely natural gas pipeline; potential ACM and lead paint.

Site 3160-27. Agricultural land, 7000 block of IL 37, Benton Township (east and west sides of IL 37 between Minier and Andrews Roads; approximate station 42+50 RT and east of 35+50 LT; Attachment 2, page 2). This site is occupied by agricultural land. No natural gas pipeline markers were observed at this site. However, natural gas pipeline markers were observed along the west side of IL 37 at Site 3160-28 and Site 3160-32, and it is likely that a natural gas pipeline passes through the portion of this site west of IL 37 as well. Based on the pipeline markers observed on other sites in the vicinity, this pipeline is likely oriented north-south. This site did not appear on any of the regulatory lists checked for this project.

On the 1900 and later plat maps, this site was depicted under individual ownership. On the 1938 and later aerial photographs, agricultural use was depicted.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or underground), pumps or dispensers, protruding pipes, pipelines, drums, monitoring wells, solid waste, transformers, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on February 3 and 17, 2016.

The following data gap was identified at this site:

No natural gas pipelines markers were observed at this site. However, natural gas pipeline
markers were observed along the west side of IL 37 at Site 3160-28 and Site 3160-32, and
it is likely that a natural gas pipeline passes through the portion of this site west of IL 37 as
well.

Because there are no buildings present and no evidence of fill or demolition debris was observed, asbestos-containing materials and lead paint are unlikely to be present at this site.

No RECs were identified at this site.

The following de minimis conditions were identified at this site: Likely natural gas pipeline; likely pesticide and/or herbicide use based on agricultural land use.

Site 3160-28. Vacant land, 7745 IL 37, Benton Township (west side of IL 37 between Minier and Andrews Roads; approximate station 37+50 RT; Attachment 2, page 2). This site is occupied by vacant grassy land. The address for this site was obtained through an internet search of a former business name which was provided by the Benton Fire Chief. This fenced site consisted of the foundations of two former buildings on the north half of the site, a billboard on the southeast corner of the site, and a pile of scrap metal on the southwest corner of the site. A natural gas pipeline marker was observed on the northeast corner of the site. Based on the pipeline marker observed on the site and other sites in the vicinity, this pipeline is likely oriented north-south. This site did not appear on any of the regulatory lists checked for this project.

On the 1900 and later plat maps, this site was depicted under individual ownership. The 1938 through 2009 aerial photographs depicted two commercial buildings on the north half of the site and parking on the rest of the site. In the 1921 and later city directories, this address was not listed. According to Mr. Shane Cockrum, Chief, Benton Fire Department, the previous occupants of this site included a construction company followed by a towing and auto repair service. He indicated the site had been vacant since about 2010. On the 2010 and later aerial photographs, vacant grassy land with the two current foundations was depicted.

Potential hazards associated with vehicle repair facilities include waste oil, lubricants, and transmission fluids; spent solvents; waste paints and thinners; sludge from parts-cleaning tanks; oily sludge from floor sumps; used antifreeze; used lead-acid batteries; and undocumented UST(s). No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or underground), pumps or dispensers, protruding pipes, drums, monitoring wells, transformers, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on February 3 and 17, 2016.

The following data gap was identified at this site:

The status and location of any undocumented UST(s) at this site are unknown.

Because there are no buildings present and no evidence of fill or demolition debris was observed, asbestos-containing materials and lead paint are unlikely to be present at this site.

The following RECs were identified at this site: Potential UST(s); potential former chemical use.

The following de minimis condition was identified at this site: Natural gas pipeline.

Site 3160-29. Vacant land, 7000 block of IL 37, Benton Township (east of IL 37 between Minier and Andrews Roads; approximate station east of 38+00 LT; Attachment 2, page 2). This site is occupied by vacant wooded land. A complete site investigation could not be done due to dense vegetation across the site. This site did not appear on any of the regulatory lists checked for this project.

On the 1900 and later plat maps, this site was depicted under individual ownership. The 1938 aerial photograph depicted agricultural use. According to ISGS records, in 1943, an oil well was completed at this site. The 1952 through 1988 aerial photographs depicted an oil well and a tank battery consisting of two ASTs. On the 1993 and later aerial photographs, vacant wooded land was depicted.

Potential hazards associated with oil wells include VOCs, SVOCs, and metals.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or underground), pumps or dispensers, protruding pipes, pipelines, drums, monitoring wells, solid waste, transformers, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on February 3 and 17, 2016.

The following data gap was identified at this site:

A complete site investigation could not be done due to dense vegetation across the site.

Because there are no buildings present and no evidence of fill containing demolition debris was observed, asbestos-containing materials and lead paint are unlikely to be present at this site.

The following RECs were identified at this site: Former ASTs; evidence of former chemical use.

The following de minimis condition was identified at this site: Likely past pesticide and/or herbicide use based on former agricultural land use.

Site 3160-30. Vacant land, 7000 block of IL 37, Benton Township (east of IL 37 between Minier and Andrews Roads; approximate station east of 41+00 LT; Attachment 2, page 2). This site is occupied by vacant wooded land. A complete site investigation could not be done due to dense vegetation across the site. This site did not appear on any of the regulatory lists checked for this project.

On the 1900 and later plat maps, this site was depicted under individual ownership. The 1938 aerial photograph depicted agricultural use. On the 1952 and later aerial photographs, vacant wooded land was depicted.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or underground), pumps or dispensers, protruding pipes, pipelines, drums, monitoring wells, solid waste, transformers, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on February 3 and 17, 2016.

The following data gap was identified at this site:

A complete site investigation could not be done due to dense vegetation across the site.

Because there are no buildings present and no evidence of fill or demolition debris was observed, asbestos-containing materials and lead paint are unlikely to be present at this site.

No RECs were identified at this site.

The following de minimis condition was identified at this site: Likely past pesticide and/or herbicide use based on former agricultural land use.

Site 3160-31. Pearson's Skating Rink, 7697 IL 37, Benton Township (west side of IL 37 between Minier and Andrews Roads; approximate station 40+50 RT; Attachment 2, page 2). This site is occupied by a roller skating rink. No natural gas pipeline markers were observed at this site. However, natural gas pipeline markers were observed along the west side of IL 37 at Site 3160-28 and Site 3160-32, and it is likely that a natural gas pipeline passes through this site as well. Based on the pipeline markers observed on other sites in the vicinity, this pipeline is likely oriented north-south. This site did not appear on any of the regulatory lists checked for this project.

On the 1900 and later plat maps, this site was depicted under individual ownership. The 1938 aerial photograph depicted agricultural use. The 1952 through 1971 aerial photographs depicted vacant grassy land. On the 1980 and later aerial photographs, the site had its current configuration. In the 1921 and later city directories, this address was not listed.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or underground), pumps or dispensers, protruding pipes, pipelines, drums, monitoring wells, solid waste, transformers, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on February 3 and 17, 2016.

The following data gap was identified at this site:

• No natural gas pipelines markers were observed at this site. However, natural gas pipeline markers were observed along the west side of IL 37 at Site 3160-28 and Site 3160-32, and it is likely that a natural gas pipeline passes through this site as well.

The building on this site may contain friable asbestos-containing materials as a component of floor tiles, wall and pipe insulation, roof materials, patching or painting compounds, ceiling materials, or stove and furnace insulation. Lead paint was banned for residential use in the United States in 1978, but has not been banned for industrial and commercial use. Therefore lead paint may be present in this building.

No RECs were identified at this site.

The following de minimis conditions were identified at this site: Likely natural gas pipeline; potential ACM and lead paint.

Site 3160-32. Route 37 Collection Center, 7533 IL 37, Browning Township (northwest corner of IL 37 and Andrews Road; approximate station 43+00 to 49+00 RT; Attachment 2, page 2). This site is occupied by a commercial building containing a recycling business. Recyclable materials, including automobiles and scrap metal, were stockpiled to the west and northwest of the building. According to a site employee, motors, radiators, gas tanks, batteries, and tires are removed from the vehicles before they arrive. Two ASTs, one containing diesel and the other containing gasoline, and three drums of unknown contents were observed at the southwest corner

of the building. Five natural gas pipeline markers were observed at this site. Two of these natural gas markers were along the east edge of the site and the other three markers were along the south edge of the site. Based on the pipeline markers observed on the site and other sites in the vicinity, this pipeline separates into two pipelines; one likely oriented north-south and the other oriented east-west. This site did not appear on any of the regulatory lists checked for this project.

On the 1900 and later plat maps, this site was depicted under individual ownership. The 1938 aerial photograph depicted a commercial building on the southeast corner of the site and agricultural use across the rest of the site. According to ISGS records, in 1941, an oil well (designated as 32a on Attachment 2, page 2) was completed at this site. The 1952 through 1980 aerial photographs depicted this well, the same building, and vacant grassy land across the rest of the site. The 1988 through 1993 aerial photographs depicted the same building. The use of this building could not be determined from the aerials. On the 1998 and later aerial photographs, the site had its current configuration. The 1921 through 1995 city directories did not list this address. In the 2001 and later city directories, the current occupant was listed. According to a local resident, this site was occupied by an auto repair shop prior to the current occupant. A site employee indicated the current business has been present since 1995.

Potential hazards associated with vehicle repair facilities include waste oil, lubricants, and transmission fluids; spent solvents; waste paints and thinners; sludge from parts-cleaning tanks; oily sludge from floor sumps; used antifreeze; used lead-acid batteries; and undocumented UST(s). Potential hazards associated with oil wells include VOCs, SVOCs, and metals.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, pumps or dispensers, protruding pipes, monitoring wells, transformers, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on February 3 and 17, 2016.

The following data gap was identified at this site:

The status and location of any undocumented UST(s) at this site are unknown.

The building on this site may contain friable asbestos-containing materials as a component of floor tiles, wall and pipe insulation, roof materials, patching or painting compounds, ceiling materials, or stove and furnace insulation. Lead paint was banned for residential use in the United States in 1978, but has not been banned for industrial and commercial use. Therefore lead paint may be present in this building.

The following RECs were identified at this site: Potential UST(s); ASTs; drums; evidence of former chemical use; solid waste.

The following de minimis conditions were identified at this site: Natural gas pipeline; potential ACM and lead paint.

Site 3160-33. Vacant land, 7000 block of IL 37, Benton Township (east of IL 37 between Minier and Andrews Roads; approximate station east of 44+00+00 RT; Attachment 2, page 2). This site is occupied by vacant wooded land. A complete site investigation could not be done

due to dense vegetation across the site. This site did not appear on any of the regulatory lists checked for this project.

On the 1900 and later plat maps, this site was depicted under individual ownership. The 1938 aerial photograph depicted vacant grassy land. According to ISGS records, in 1941, an oil well was completed at this site. The 1952 through 1998 aerial photographs depicted an oil well and vacant wooded land across the rest of the site. On the 2005 and later aerial photographs, vacant wooded land was depicted.

Potential hazards associated with oil wells include VOCs, SVOCs, and metals.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or underground), pumps or dispensers, protruding pipes, pipelines, drums, monitoring wells, solid waste, transformers, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on February 3 and 17, 2016.

The following data gap was identified at this site:

A complete site investigation could not be done due to dense vegetation across the site.

Because there are no buildings present and no evidence of fill or demolition debris was observed, asbestos-containing materials and lead paint are unlikely to be present at this site.

The following REC was identified at this site: Evidence of former chemical use.

No de minimis conditions were identified at this site.

Site 3160-34. Vacant land, 12000 block of Wyatt Road, Benton Township (northeast and southeast corners of UPRR and Wyatt Road; approximate station east of 47+00 LT; Attachment 2, page 2). This site is occupied by vacant wooded land. A complete site investigation could not be done due to dense vegetation across the site. This site did not appear on any of the regulatory lists checked for this project.

On the 1900 and later plat maps, this site was depicted under individual ownership. The 1938 aerial photograph depicted vacant grassy land. On the 1952 and later aerial photographs, vacant wooded land was depicted.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or underground), pumps or dispensers, protruding pipes, pipelines, drums, monitoring wells, solid waste, transformers, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on February 3 and 17, 2016.

The following data gap was identified at this site:

A complete site investigation could not be done due to dense vegetation across the site.

Because there are no buildings present and no evidence of fill or demolition debris was observed, asbestos-containing materials and lead paint are unlikely to be present at this site.

No RECs or de minimis conditions were identified at this site.

Site 3160-35. Vacant land, 7000 block of IL 37, Benton Township (southeast quadrant of IL 37 and Andrews Road; approximate station east of 51+00 LT; Attachment 2, page 3). This site is occupied by vacant wooded land. A complete site investigation could not be done due to dense vegetation across the site. This site did not appear on any of the regulatory lists checked for this project.

On the 1900 and later plat maps, this site was depicted under individual ownership. The 1938 aerial photograph depicted vacant grassy land. According to ISGS records, in 1941, an oil well (designated as 35a on Attachment 2, page 3) was completed at this site. The 1952 through 1971 aerial photographs depicted an oil well and vacant wooded land across the rest of the site. On the 1980 and later aerial photographs, vacant wooded land was depicted.

Potential hazards associated with oil wells include VOCs, SVOCs, and metals.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or underground), pumps or dispensers, protruding pipes, pipelines, drums, monitoring wells, solid waste, transformers, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on February 3 and 17, 2016.

The following data gap was identified at this site:

A complete site investigation could not be done due to dense vegetation across the site.

Because there are no buildings present and no evidence of fill or demolition debris was observed, asbestos-containing materials and lead paint are unlikely to be present at this site.

The following REC was identified at this site: Evidence of former chemical use.

No de minimis conditions were identified at this site.

Site 3160-36. UPRR, 6000-7000 blocks of IL 37, Benton Township (northeast and southeast corners of IL 37 and Andrews Road; approximate station 49+00 to 80+50 LT; Attachment 2, page 3). This site is occupied by a railroad and its adjoining ROW. This site crosses a Middle Fork Big Muddy River tributary (Site 3160-42). The railroad grade was elevated above the surrounding ground. The composition of the fill material used to elevate the railroad grade is unknown. This site did not appear on any of the regulatory lists checked for this project.

On the 1900 and later plat maps, a railroad was present at this site. The date of earliest development is unknown. On the 1938 and later aerial photographs, a railroad was depicted.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, storage tanks (above or

underground), pumps or dispensers, protruding pipes, pipelines, drums, monitoring wells, solid waste, transformers, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on February 3 and 17, 2016.

The following data gap was identified at this site:

- The composition of the fill material used to elevate the railroad grade is unknown.
- The date of earliest development is unknown.

Because there are no buildings present and no evidence of fill containing demolition debris was observed, asbestos-containing materials and lead paint are unlikely to be present at this site.

The following REC was identified at this site: Fill of unknown composition.

No de minimis conditions were identified at this site.

Site 3160-37. Vacant land, 7000 block of IL 37, Browning Township (southwest corner of IL 37 and Andrews Road; approximate station 52+00 RT; Attachment 2, page 3). This site is occupied by vacant grassy land. A natural gas pipeline marker was observed on the northeast corner of the site. Based on the pipeline marker observed on the site and other sites in the vicinity, this pipeline is likely oriented north-south. This site did not appear on any of the regulatory lists checked for this project.

On the 1900 and later plat maps, this site was depicted under individual ownership. The 1938 through 1993 aerial photographs depicted agricultural use. On the 1998 and later aerial photographs, vacant grassy land was depicted.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or underground), pumps or dispensers, protruding pipes, drums, monitoring wells, solid waste, transformers, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on February 3 and 17, 2016.

No data gaps were identified at this site.

Because there are no buildings present and no evidence of fill or demolition debris was observed, asbestos-containing materials and lead paint are unlikely to be present at this site.

No RECs were identified at this site.

The following de minimis conditions were identified at this site: Natural gas pipeline; likely past pesticide and/or herbicide use based on former agricultural land use.

Site 3160-38. Agricultural land, 7000 block of IL 37, Benton and Browning Townships (east and west of IL 37 between Andrews and Forest Baptist Church Roads; approximate station 53+50 to 68+50 RT and east of 52+50 to 68+00 LT; Attachment 2, page 3). This site is occupied by agricultural land. A natural gas pipeline marker and vent pipe were observed nearly centered

along the east edge of the portion of this site that was west of IL 37. Based on the pipeline marker observed on the site and other sites in the vicinity, this pipeline is likely oriented north-south. This site did not appear on any of the regulatory lists checked for this project.

On the 1900 and later plat maps, this site was depicted under individual ownership. On the 1938 and later aerial photographs, agricultural use was depicted.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or underground), pumps or dispensers, drums, monitoring wells, solid waste, transformers, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on February 3 and 17, 2016.

No data gaps were identified at this site.

Because there are no buildings present and no evidence of fill or demolition debris was observed, asbestos-containing materials and lead paint are unlikely to be present at this site.

No RECs were identified at this site.

The following de minimis conditions were identified at this site: Natural gas pipeline; likely pesticide and/or herbicide use based on agricultural land use.

Site 3160-39. Agricultural land, 7000 block of IL 37, Benton Township (east of IL 37 between Andrews and Forest Baptist Church Roads; approximate station east of 58+50 LT; Attachment 2, page 3). This site is occupied by agricultural land. This site did not appear on any of the regulatory lists checked for this project.

On the 1900 and later plat maps, this site was depicted under individual ownership. The 1938 aerial photograph depicted agricultural use. According to ISGS records, in 1941, an oil well was completed at this site. The 1952 through 1980 aerial photographs depicted an oil well. On the 1988 and later aerial photographs, agricultural use was depicted.

Potential hazards associated with oil wells include VOCs, SVOCs, and metals.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or underground), pumps or dispensers, protruding pipes, pipelines, drums, monitoring wells, solid waste, transformers, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on February 3 and 17, 2016.

No data gaps were identified at this site.

Because there are no buildings present and no evidence of fill or demolition debris was observed, asbestos-containing materials and lead paint are unlikely to be present at this site.

The following REC was identified at this site: Evidence of former chemical use.

The following de minimis condition was identified at this site: Likely pesticide and/or herbicide use based on agricultural land use.

Site 3160-40. Vacant land, 7000 block of IL 37, Benton Township (east of IL 37 between Andrews and Forest Baptist Church Roads; approximate station east of 61+50 LT; Attachment 2, page 3). This site is occupied by vacant wooded land. A complete site investigation could not be done due to dense vegetation across the site. This site did not appear on any of the regulatory lists checked for this project.

On the 1900 and later plat maps, this site was depicted under individual ownership. The 1938 through 1993 aerial photographs depicted agricultural use. On the 1998 and later aerial photographs, vacant wooded land was depicted.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or underground), pumps or dispensers, protruding pipes, pipelines, drums, monitoring wells, solid waste, transformers, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on February 3 and 17, 2016.

The following data gap was identified at this site:

A complete site investigation could not be done due to dense vegetation across the site.

Because there are no buildings present and no evidence of fill or demolition debris was observed, asbestos-containing materials and lead paint are unlikely to be present at this site.

No RECs were identified at this site.

The following de minimis condition was identified at this site: Likely past pesticide and/or herbicide use based on former agricultural land use.

Site 3160-41. Agricultural land, 7000 block of IL 37, Benton Township (east of IL 37 between Andrews and Forest Baptist Church Roads; approximate station 65+00 LT; Attachment 2, page 3). This site is occupied by agricultural land. This site did not appear on any of the regulatory lists checked for this project.

On the 1900 and later plat maps, this site was depicted under individual ownership. The 1938 aerial photograph depicted agricultural use. According to ISGS records, in 1941, an oil well was completed at this site. The 1952 through 1980 aerial photographs depicted an oil well. On the 1988 and later aerial photographs, agricultural use was depicted.

Potential hazards associated with oil wells include VOCs, SVOCs, and metals.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or underground), pumps or dispensers, protruding pipes, pipelines, drums, monitoring wells, solid waste, transformers, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on February 3 and 17, 2016.

No data gaps were identified at this site.

Because there are no buildings present and no evidence of fill or demolition debris was observed, asbestos-containing materials and lead paint are unlikely to be present at this site.

The following REC was identified at this site: Evidence of former chemical use.

The following de minimis condition was identified at this site: Likely pesticide and/or herbicide use based on agricultural land use.

Site 3160-42. Middle Fork Big Muddy River tributary, 7000 block of IL 37, Benton and Browning Townships (east and west sides of IL 37 between Andrews and Forest Baptist Church Roads; approximate station 68+80 LT and RT; Attachment 2, page 3). This site is occupied by a stream. This stream crosses Site 3160-36, Site 3160-43, and Site 3160-44. No natural gas pipeline markers were observed at this site. However, natural gas pipeline markers were observed at this site 3160-38 and Site 3160-45, and it is likely that a natural gas pipeline passes through this site as well. Based on the pipeline markers observed on other sites in the vicinity, this pipeline is likely oriented north-south. According to the 2016 IEPA Illinois Integrated Water Quality report, this Middle Fork Big Muddy River tributary has not been assessed in the project area. This site did not appear on any of the regulatory lists checked for this project.

On the 1900 and later plat maps, this stream was not depicted. On the 1938 and later aerial photographs, the current stream was depicted.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or underground), pumps or dispensers, protruding pipes, pipelines, drums, monitoring wells, solid waste, transformers, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on February 3 and 17, 2016.

The following data gap was identified at this site:

No natural gas pipeline markers were observed at this site. However, natural gas pipeline
markers were observed along the west side of IL 37 at Site 3160-38 and Site 3160-45, and
it is likely that a natural gas pipeline passes through this site as well.

Because there are no buildings present and no evidence of fill or demolition debris was observed, asbestos-containing materials and lead paint are unlikely to be present at this site.

No RECs were identified at this site.

The following de minimis condition was identified at this site: Likely natural gas pipeline.

Site 3160-43. Vacant land, 7000 block of IL 37, Browning Township (west side of IL 37 between Andrews and Forest Baptist Church Roads; approximate station 69+50 RT; Attachment 2, page 3). This site is occupied by vacant grassy land. This site is crossed by a Middle Fork Big Muddy River tributary (Site 3160-42). No natural gas pipeline markers were

observed at this site. However, natural gas pipeline markers were observed along the west side of IL 37 at Site 3160-38 and Site 3160-45, and it is likely that a natural gas pipeline passes through this site as well. This site did not appear on any of the regulatory lists checked for this project.

On the 1900 and later plat maps, this site was depicted under individual ownership. The 1938 through 1988 aerial photographs depicted agricultural use. On the 1993 and later aerial photographs, vacant grassy land was depicted.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or underground), pumps or dispensers, protruding pipes, pipelines, drums, monitoring wells, solid waste, transformers, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on February 3 and 17, 2016.

The following data gap was identified at this site:

No natural gas pipeline markers were observed at this site. However, natural gas pipeline
markers were observed along the west side of IL 37 at Site 3160-38 and Site 3160-45, and
it is likely that a natural gas pipeline passes through this site as well.

Because there are no buildings present and no evidence of fill or demolition debris was observed, asbestos-containing materials and lead paint are unlikely to be present at this site.

No RECs were identified at this site.

The following de minimis conditions were identified at this site: Likely natural gas pipeline; likely past pesticide and/or herbicide use based on former agricultural land use.

Site 3160-44. Vacant land, 7000 block of IL 37, Benton Township (east of IL 37 between Andrews and Forest Baptist Church Roads; approximate station east of 70+00 LT; Attachment 2, page 3). This site is occupied by vacant wooded land. This site is crossed by a Middle Fork Big Muddy River tributary (Site 3160-42). A complete site investigation could not be done due to dense vegetation across the site. This site did not appear on any of the regulatory lists checked for this project.

On the 1900 and later plat maps, this site was depicted under individual ownership. The 1938 aerial photograph depicted agricultural use. On the 1952 and later aerial photographs, vacant wooded land was depicted.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or underground), pumps or dispensers, protruding pipes, pipelines, drums, monitoring wells, solid waste, transformers, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on February 3 and 17, 2016.

The following data gap was identified at this site:

A complete site investigation could not be done due to dense vegetation across the site.

Because there are no buildings present and no evidence of fill or demolition debris was observed, asbestos-containing materials and lead paint are unlikely to be present at this site.

No RECs were identified at this site.

The following de minimis condition was identified at this site: Likely past pesticide and/or herbicide use based on former agricultural land use.

Site 3160-45. Residence, 7127 IL 37, Browning Township (northwest quadrant of IL 37 and Forest Baptist Church Road; approximate station 71+00 RT; Attachment 2, page 3). This site is occupied by a residence and two outbuildings. A natural gas pipeline marker was observed at northeast corner of the site. Based on the pipeline marker observed on the site and other sites in the vicinity, this pipeline is likely oriented north-south. A pole-mounted transformer was observed on the southeast corner of the site. This site did not appear on any of the regulatory lists checked for this project.

On the 1900 and later plat maps, this site was depicted under individual ownership. The 1938 aerial photograph depicted agricultural use. According to ISGS records, in 1941, two oil wells (designated as 45a and 45b, respectively on Attachment 2, page 3) were completed at this site. The 1952 through 1980 aerial photographs depicted the same oil wells and agricultural use across the rest of the site. The 1988 through 2005 aerial photographs depicted agricultural use. On the 2006 and later aerial photographs, the current residence was depicted.

Potential hazards associated with oil wells include VOCs, SVOCs, and metals.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or underground), pumps or dispensers, protruding pipes, drums, monitoring wells, solid waste, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on February 3 and 17, 2016.

No data gaps were identified at this site.

The buildings on this site may contain friable asbestos-containing materials as a component of floor tiles, wall and pipe insulation, roof materials, patching or painting compounds, ceiling materials, or stove and furnace insulation. Evidence from aerial photographs indicates that this residence was constructed after 1978. Lead paint was banned for residential use in the United States in 1978, and therefore lead paint is unlikely to be present in these buildings.

The following REC was identified at this site: Evidence of former chemical use; former ASTs.

The following de minimis conditions were identified at this site: Transformer; natural gas pipeline; potential ACM.

Site 3160-46. Vacant land, 7000 block of IL 37, Benton Township (east of IL 37 between Minier and Andrews Roads; approximate station east of 73+00 LT; Attachment 2, page 2). This site is occupied by vacant wooded land. A complete site investigation could not be done due to dense vegetation across the site. This site did not appear on any of the regulatory lists checked

for this project.

On the 1900 and later plat maps, this site was depicted under individual ownership. The 1938 aerial photograph depicted vacant grassy land. According to ISGS records, in 1941, an oil well was completed at this site. The 1952 through 1980 aerial photographs depicted an oil well and vacant wooded land across the rest of the site. On the 1988 and later aerial photographs, vacant wooded land was depicted.

Potential hazards associated with oil wells include VOCs, SVOCs, and metals.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or underground), pumps or dispensers, protruding pipes, pipelines, drums, monitoring wells, solid waste, transformers, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on February 3 and 17, 2016.

The following data gap was identified at this site:

A complete site investigation could not be done due to dense vegetation across the site.

Because there are no buildings present and no evidence of fill or demolition debris was observed, asbestos-containing materials and lead paint are unlikely to be present at this site.

The following REC was identified at this site: Evidence of former chemical use.

No de minimis conditions were identified at this site.

Site 3160-47. Residence, 12189 Forest Baptist Church Road, Browning Township (northwest corner of IL 37 and Forest Baptist Church Road; approximate station 74+50 RT; Attachment 2, page 3). This site is occupied by a residence and two outbuildings. No natural gas pipeline markers were observed at this site. However, natural gas pipeline markers were observed along the west side of IL 37 at Site 3160-45 and at the southwest corner of IL 37 and Forest Baptist Church Road (Site 3160-49; Attachment 2, page 4), and it is likely that a natural gas pipeline passes through this site as well. Based on the pipeline markers observed on other sites in the vicinity, this pipeline is likely oriented north-south. This site did not appear on any of the regulatory lists checked for this project.

On the 1900 and later plat maps, this site was depicted under individual ownership. The 1938 through 2005 aerial photographs depicted agricultural use. On the 2006 and later aerial photographs, the current residence was depicted.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or underground), pumps or dispensers, protruding pipes, pipelines, drums, monitoring wells, solid waste, transformers, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on February 3 and 17, 2016.

The following data gap was identified at this site:

• No natural gas pipeline markers were observed at this site. However, natural gas pipeline markers were observed along the west side of IL 37 at Site 3160-45 and at the southwest corner of IL 37 and Forest Baptist Church Road (Site 3160-49; Attachment 2, page 4), and it is likely that a natural gas pipeline passes through this site as well.

The buildings on this site may contain friable asbestos-containing materials as a component of floor tiles, wall and pipe insulation, roof materials, patching or painting compounds, ceiling materials, or stove and furnace insulation. Evidence from aerial photographs indicates that this residence was constructed after 1978. Lead paint was banned for residential use in the United States in 1978, and therefore lead paint is unlikely to be present in these buildings.

No RECs were identified at this site.

The following de minimis conditions were identified at this site: Likely natural gas pipeline; potential ACM.

Site 3160-48. Vacant land, 7000 block of IL 37, Benton Township (northeast and southeast quadrants of IL 37 and Forest Baptist Church Road; approximate station east of 76+00 LT; Attachment 2, page 3). This site is occupied by vacant wooded land with a pond on the southern portion of the site. A complete site investigation could not be done due to dense vegetation across the site. This site did not appear on any of the regulatory lists checked for this project.

On the 1900 and later plat maps, this site was depicted under individual ownership. The 1938 aerial photograph depicted agricultural use. The 1952 through 2006 aerial photographs depicted vacant wooded land. On the 2007 and later aerial photographs, vacant wooded land and the current pond were depicted.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, stained soil or pavement, water discoloration, fill, storage tanks (above or underground), pumps or dispensers, protruding pipes, pipelines, drums, monitoring wells, solid waste, transformers, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on February 3 and 17, 2016.

The following data gap was identified at this site:

A complete site investigation could not be done due to dense vegetation across the site.

Because there are no buildings present and no evidence of fill or demolition debris was observed, asbestos-containing materials and lead paint are unlikely to be present at this site.

No RECs were identified at this site.

The following de minimis condition was identified at this site: Likely past pesticide and/or herbicide use based on former agricultural land use.

Site 3160-49. Agricultural land, 6000 block of IL 37, Benton and Browning Townships (east and west of IL 37 between Forest Baptist Church Road and Commerce Lane; approximate station 76+00 to 100+50 RT and east of 78+50 to 96+00 LT; Attachment 2, page 4). This site

is occupied by agricultural land. A natural gas pipeline marker was observed on the southwest corner of IL 37 and Forest Baptist Church Road. Based on the pipeline marker observed on the site and other sites in the vicinity, this pipeline is likely oriented north-south. This site did not appear on any of the regulatory lists checked for this project.

On the 1900 and later plat maps, this site was depicted under individual ownership. On the 1938 and later aerial photographs, agricultural use was depicted.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or underground), pumps or dispensers, protruding pipes, drums, monitoring wells, solid waste, transformers, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on February 3 and 17, 2016.

No data gaps were identified at this site.

Because there are no buildings present and no evidence of fill or demolition debris was observed, asbestos-containing materials and lead paint are unlikely to be present at this site.

No RECs were identified at this site.

The following de minimis conditions were identified at this site: Natural gas pipeline; likely pesticide and/or herbicide use based on agricultural land use.

Site 3160-50. Vacant land, 6000 block of IL 37, Browning Township (southwest quadrant of IL 37 and Forest Baptist Church Road; approximate station 78+50 RT; Attachment 2, page 4). This site is occupied by vacant wooded land. No natural gas pipeline markers were observed at this site. However, natural gas pipeline markers were observed along the west side of IL 37 at Sites 3160-49 and Site 3160-55, and it is likely that a natural gas pipeline passes through this site as well. Based on the pipeline markers observed on other sites in the vicinity, this pipeline is likely oriented north-south. A complete site investigation could not be done due to dense vegetation across the site. This site did not appear on any of the regulatory lists checked for this project.

On the 1900 and later plat maps, this site was depicted under individual ownership. The 1938 aerial photograph depicted agricultural use. According to ISGS records, in 1941, an oil well was completed at this site. The 1952 through 1971 aerial photographs depicted an oil well, a tank battery consisting of three ASTs, and vacant grassy land across the rest of the site. On the 1980 and later aerial photographs, vacant wooded land was depicted.

Potential hazards associated with oil wells include VOCs, SVOCs, and metals.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or underground), pumps or dispensers, protruding pipes, pipelines, drums, monitoring wells, solid waste, transformers, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on February 3 and 17, 2016.

The following data gaps were identified at this site:

- No natural gas pipeline markers were observed at this site. However, natural gas pipeline
 markers were observed along the west side of IL 37 at Sites 3160-49 and Site 3160-55, and
 it is likely that a natural gas pipeline passes through this site as well.
- A complete site investigation could not be done due to dense vegetation across the site.

Because there are no buildings present and no evidence of fill or demolition debris was observed, asbestos-containing materials and lead paint are unlikely to be present at this site.

The following RECs were identified at this site: Evidence of former chemical use; former ASTs.

The following de minimis condition was identified at this site: Likely natural gas pipeline.

Site 3160-51. UPRR, 6000 block of IL 37, Benton Township (southeast quadrant of IL 37 and Forest Baptist Church Road; approximate station 78+50 to 104+50 LT; Attachment 2, page 4). This site is occupied by a railroad and its adjoining ROW. This site crosses a Middle Fork Big Muddy River tributary (Site 3160-60). The railroad grade was elevated above the surrounding ground. The composition of the fill material used to elevate the railroad grade is unknown. This site did not appear on any of the regulatory lists checked for this project.

On the 1900 and later plat maps, a railroad was present at this site. The date of earliest development is unknown. On the 1938 and later aerial photographs, a railroad was depicted.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, storage tanks (above or underground), pumps or dispensers, protruding pipes, pipelines, drums, monitoring wells, solid waste, transformers, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on February 3 and 17, 2016.

The following data gaps were identified at this site:

- The composition of the fill material used to elevate the railroad grade is unknown.
- The date of earliest development is unknown.

Because there are no buildings present and no evidence of fill containing demolition debris was observed, asbestos-containing materials and lead paint are unlikely to be present at this site.

The following REC was identified at this site: Fill of unknown composition.

No de minimis conditions were identified at this site.

Site 3160-52. Agricultural land, 6000 block of IL 37, Benton Township (southeast quadrant of IL 37 and Forest Baptist Church Road; approximate station east of 79+00 LT; Attachment 2, page 4). This site is occupied by agricultural land. This site did not appear on any of the regulatory lists checked for this project.

On the 1900 and later plat maps, this site was depicted under individual ownership. The 1938 aerial

photograph depicted agricultural use. According to ISGS records, in 1941, an oil well was completed at this site. The 1952 through 1971 aerial photographs depicted an oil well and agricultural use across the rest of the site. On the 1980 and later aerial photographs, agricultural use was depicted.

Potential hazards associated with oil wells include VOCs, SVOCs, and metals.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or underground), pumps or dispensers, protruding pipes, pipelines, drums, monitoring wells, solid waste, transformers, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on February 3 and 17, 2016.

No data gaps were identified at this site.

Because there are no buildings present and no evidence of fill or demolition debris was observed, asbestos-containing materials and lead paint are unlikely to be present at this site.

The following REC was identified at this site: Evidence of former chemical use.

The following de minimis condition was identified at this site: Likely pesticide and/or herbicide use based on agricultural land use.

Site 3160-53. Vacant land, 6000 block of IL 37, Browning Township (west side of IL 37 between Forest Baptist Church Road and Commerce Lane; approximate station 85+00 RT; Attachment 2, page 4). This site is occupied by vacant wooded land. No natural gas pipeline markers were observed at this site. However, natural gas pipeline markers were observed along the west side of IL 37 at Sites 3160-49 and Site 3160-55, and it is likely that a natural gas pipeline passes through this site as well. A complete site investigation could not be done due to dense vegetation across the site. This site did not appear on any of the regulatory lists checked for this project.

On the 1900 and later plat maps, this site was depicted under individual ownership. The 1938 aerial photograph depicted agricultural use. The 1952 through 1971 aerial photographs depicted vacant grassy land. On the 1980 and later aerial photographs, vacant wooded land was depicted.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or underground), pumps or dispensers, protruding pipes, drums, monitoring wells, solid waste, transformers, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on February 3 and 17, 2016.

The following data gaps were identified at this site:

• No natural gas pipeline markers were observed at this site. However, natural gas pipeline markers were observed along the west side of IL 37 at Sites 3160-49 and Site 3160-55, and it is likely that a natural gas pipeline passes through this site as well.

A complete site investigation could not be done due to dense vegetation across the site.

Because there are no buildings present and no evidence of fill or demolition debris was observed, asbestos-containing materials and lead paint are unlikely to be present at this site.

No RECs were identified at this site.

The following de minimis conditions were identified at this site: Likely natural gas pipeline; likely past pesticide and/or herbicide use based on former agricultural land use.

Site 3160-54. Agricultural land, 6000 block of IL 37, Benton Township (east of IL 37 between Forest Baptist Church Road and Commerce Lane; approximate station east of 88+50 LT; Attachment 2, page 4). This site is occupied by agricultural land. This site did not appear on any of the regulatory lists checked for this project.

On the 1900 and later plat maps, this site was depicted under individual ownership. The 1938 aerial photograph depicted agricultural use. According to ISGS records, in 1941, an oil well was completed at this site. The 1952 through 1980 aerial photographs depicted an oil well and agricultural use across the rest of the site. On the 1988 and later aerial photographs, agricultural use was depicted.

Potential hazards associated with oil wells include VOCs, SVOCs, and metals.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or underground), pumps or dispensers, protruding pipes, pipelines, drums, monitoring wells, solid waste, transformers, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on February 3 and 17, 2016.

No data gaps were identified at this site.

Because there are no buildings present and no evidence of fill or demolition debris was observed, asbestos-containing materials and lead paint are unlikely to be present at this site.

The following REC was identified at this site: Evidence of former chemical use.

The following de minimis condition was identified at this site: Likely pesticide and/or herbicide use based on agricultural land use.

Site 3160-55. Vacant land, 6000 block of IL 37, Browning Township (west side of IL 37 between Forest Baptist Church Road and Commerce Lane; approximate station 89+00 RT; Attachment 2, page 4). This site is occupied by vacant wooded land. A natural gas pipeline marker was observed on the southeast corner of the site. Based on the pipeline marker observed on the site and other sites in the vicinity, this pipeline is likely oriented north-south. A complete site investigation could not be done due to dense vegetation across the site. This site did not appear on any of the regulatory lists checked for this project.

On the 1900 and later plat maps, this site was depicted under individual ownership. The 1938 aerial

photograph depicted agricultural use. According to ISGS records, in 1941, an oil well was completed at this site. The 1952 through 1980 aerial photographs depicted an oil well and vacant grassy land across the rest of the site. On the 1988 and later aerial photographs, vacant wooded land was depicted.

Potential hazards associated with oil wells include VOCs, SVOCs, and metals.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or underground), pumps or dispensers, protruding pipes, drums, monitoring wells, solid waste, transformers, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on February 3 and 17, 2016.

The following data gap was identified at this site:

A complete site investigation could not be done due to dense vegetation across the site.

Because there are no buildings present and no evidence of fill or demolition debris was observed, asbestos-containing materials and lead paint are unlikely to be present at this site.

The following REC was identified at this site: Evidence of former chemical use.

The following de minimis conditions were identified at this site: Natural gas pipeline; likely past pesticide and/or herbicide use based on former agricultural land use.

Site 3160-56. Agricultural land, 6000 block of IL 37, Browning Township (west side of IL 37 between Forest Baptist Church Road and Commerce Lane; approximate station 91+00 RT; Attachment 2, page 4). This site is occupied by agricultural land. No natural gas pipeline markers were observed at this site. However, natural gas pipeline markers were observed along the west side of IL 37 at Sites 3160-55 and Site 3160-59, and it is likely that a natural gas pipeline passes through this site as well. Based on the pipeline markers observed on other sites in the vicinity, this pipeline is likely oriented north-south. This site did not appear on any of the regulatory lists checked for this project.

On the 1900 and later plat maps, this site was depicted under individual ownership. The 1938 aerial photograph depicted agricultural use. According to ISGS records, in 1941, an oil well was completed at this site. The 1952 through 1980 aerial photographs depicted an oil well and agricultural use across the rest of the site. On the 1988 and later aerial photographs, agricultural use was depicted.

Potential hazards associated with oil wells include VOCs, SVOCs, and metals.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or underground), pumps or dispensers, protruding pipes, pipelines, drums, monitoring wells, solid waste, transformers, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on February 3 and 17, 2016.

The following data gap was identified at this site:

No natural gas pipeline markers were observed at this site. However, natural gas pipeline
markers were observed along the west side of IL 37 at Sites 3160-55 and Site 3160-59, and
it is likely that a natural gas pipeline passes through this site as well.

Because there are no buildings present and no evidence of fill or demolition debris was observed, asbestos-containing materials and lead paint are unlikely to be present at this site.

The following REC was identified at this site: Evidence of former chemical use.

The following de minimis conditions were identified at this site: Likely natural gas pipeline; likely pesticide and/or herbicide use based on agricultural land use.

Site 3160-57. Vacant land, 6000 block of IL 37, Benton Township (east of IL 37 between Forest Baptist Church Road and Commerce Lane; approximate station east of 99+00 LT; Attachment 2, page 4). This site is occupied by vacant wooded land. A complete site investigation could not be done due to dense vegetation across the site. This site did not appear on any of the regulatory lists checked for this project.

On the 1900 and later plat maps, this site was depicted under individual ownership. On the 1938 and later aerial photographs, vacant wooded land was depicted. According to ISGS records, in 1942, an oil well was completed at this site. No evidence of this oil well was observed on any of the available aerial photographs and no evidence was observed during fieldwork for this project. The presence of the oil well listed in ISGS records could not be verified.

Potential hazards associated with oil wells include VOCs, SVOCs, and metals.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or underground), pumps or dispensers, protruding pipes, pipelines, drums, monitoring wells, solid waste, transformers, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on February 3 and 17, 2016.

The following data gaps were identified at this site:

- A complete site investigation could not be done due to dense vegetation across the site.
- The presence of the oil well listed in ISGS records could not be verified.

Because there are no buildings present and no evidence of fill or demolition debris was observed, asbestos-containing materials and lead paint are unlikely to be present at this site.

The following REC was identified at this site: Potential former chemical use.

No de minimis conditions were identified at this site.

Site 3160-58. Vacant land, 6000 block of IL 37, Benton Township (east of IL 37 between

Forest Baptist Church Road and Commerce Lane; approximate station east of 101+50 LT; Attachment 2, page 4). This site is occupied by vacant wooded land. This site is crossed by a Middle Fork Big Muddy River tributary (Site 3160-60). A complete site investigation could not be done due to dense vegetation across the site. This site did not appear on any of the regulatory lists checked for this project.

On the 1900 and later plat maps, this site was depicted under individual ownership. On the 1938 and later aerial photographs, vacant wooded land was depicted.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or underground), pumps or dispensers, protruding pipes, pipelines, drums, monitoring wells, solid waste, transformers, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on February 3 and 17, 2016.

The following data gap was identified at this site:

A complete site investigation could not be done due to dense vegetation across the site.

Because there are no buildings present and no evidence of fill or demolition debris was observed, asbestos-containing materials and lead paint are unlikely to be present at this site.

No RECs or de minimis conditions were identified at this site.

Site 3160-59. Vacant land, 6000 block of IL 37, Browning Township (northwest corner of IL 37 and Commerce Lane; approximate station 101+50 RT; Attachment 2, page 4). This site is occupied by vacant wooded land. This site is crossed by a Middle Fork Big Muddy River tributary (Site 3160-60). A natural gas pipeline marker was observed on the southeast corner of this site. Based on the pipeline marker observed on the site and other sites in the vicinity, this pipeline is likely oriented north-south. A complete site investigation could not be done due to dense vegetation across the site. This site did not appear on any of the regulatory lists checked for this project.

On the 1900 and later plat maps, this site was depicted under individual ownership. The 1938 aerial photograph depicted agricultural use. The 1952 through 1959 aerial photographs depicted vacant grassy land. On the 1965 and later aerial photographs, vacant wooded land was depicted.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or underground), pumps or dispensers, protruding pipes, pipelines, drums, monitoring wells, solid waste, transformers, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on February 3 and 17, 2016.

The following data gap was identified at this site:

A complete site investigation could not be done due to dense vegetation across the site.

Because there are no buildings present and no evidence of fill or demolition debris was observed, asbestos-containing materials and lead paint are unlikely to be present at this site.

No RECs were identified at this site.

The following de minimis conditions were identified at this site: Natural gas pipeline; likely past pesticide and/or herbicide use based on former agricultural land use.

Site 3160-60. Middle Fork Big Muddy River tributary, 6000 block of IL 37, Benton and Browning Townships (northwest and northeast quadrants of IL 37 and Commerce Lane; approximate station 101+30 LT and RT; Attachment 2, page 4). This site is occupied by a stream. This stream crosses Site 3160-51, Site 3160-58, and Site 3160-59. No natural gas pipeline markers were observed at this site. However, natural gas pipeline markers were observed along the west side of IL 37 at Sites 3160-55 and Site 3160-59, and it is likely that a natural gas pipeline passes through this site as well. Based on the pipeline markers observed on other sites in the vicinity, this pipeline is likely oriented north-south. According to the 2016 IEPA Illinois Integrated Water Quality report, this Middle Fork Big Muddy River tributary has not been assessed in the project area. This site did not appear on any of the regulatory lists checked for this project.

On the 1900 and later plat maps, this stream was not depicted. On the 1938 and later aerial photographs, the current stream was depicted.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or underground), pumps or dispensers, protruding pipes, pipelines, drums, monitoring wells, solid waste, transformers, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on February 3 and 17, 2016.

The following data gap was identified at this site:

• No natural gas pipeline markers were observed at this site. However, natural gas pipeline markers were observed along the west side of IL 37 at Sites 3160-55 and Site 3160-59, and it is likely that a natural gas pipeline passes through this site as well.

Because there are no buildings present and no evidence of fill or demolition debris was observed, asbestos-containing materials and lead paint are unlikely to be present at this site.

No RECs were identified at this site.

The following de minimis condition was identified at this site: Likely natural gas pipeline.

Site 3160-61 (2651-23 [partial]). Agricultural land, 5000 block of IL 37, Denning Township, and 6000 block of IL 37, Benton and Browning Townships (east and west of IL 37 from Commerce Lane to south of Yellow Banks Road; approximate station 103+50 to 131+00 RT and east of 104+50 to 129+00 LT; Attachment 2, page 5). This site is occupied by agricultural land. A natural gas pipeline marker was observed on the southwest corner of IL 37 and Yellow Banks Road. Based on the pipeline marker observed on the site and other sites in the vicinity, this pipeline is likely oriented north-south. This site did not appear on any of the regulatory lists checked for this project.

The 1900 through 1918 plat maps depicted this site under individual ownership. The 1940 plat map

depicted most of this site under individual ownership and the portion southwest of IL 37 and Yellow Banks Road under ownership of Chicago, Wilmington & Franklin Fuel Co. The 1938 through 1971 aerial photographs depicted a residence on the northwest corner of IL 37 and Yellow Banks Road and agricultural use across the rest of the site. On the 1964 and later plat maps, this site was depicted under individual ownership. On the 1980 and later aerial photographs, agricultural use was depicted.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or underground), pumps or dispensers, protruding pipes, drums, monitoring wells, solid waste, transformers, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on February 3 and 17, 2016.

No data gaps were identified at this site.

Because there are no buildings present and no evidence of fill or demolition debris was observed, asbestos-containing materials and lead paint are unlikely to be present at this site.

No RECs were identified at this site.

The following de minimis conditions were identified at this site: Natural gas pipeline; likely pesticide and/or herbicide use based on agricultural land use.

Site 3160-62 (2651-32 [partial]). UPRR, 5000 block of IL 37, Frankfort Township, and 6000 block of IL 37, Benton Township (southeast quadrant of IL 37 and Commerce Lane; approximate station 104+50 to 131+00 LT; Attachment 2, page 5). This site is occupied by a railroad and its adjoining ROW. The railroad grade was elevated above the surrounding ground. The composition of the fill material used to elevate the railroad grade is unknown. A railroad signal box was observed along the west side of the railroad and south of Reumbler Crossing Road. This site did not appear on any of the regulatory lists checked for this project.

On the 1900 and later plat maps, a railroad was present at this site. The date of earliest development is unknown. On the 1938 and later aerial photographs, a railroad was depicted.

Potential hazards associated with railroad signal boxes include batteries and metals.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, storage tanks (above or underground), pumps or dispensers, protruding pipes, pipelines, drums, monitoring wells, solid waste, transformers, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on February 3 and 17, 2016.

The following data gaps were identified at this site:

- The composition of the fill material used to elevate the railroad grade is unknown.
- The date of earliest development is unknown.

Because there are no buildings present and no evidence of fill containing demolition debris was observed, asbestos-containing materials and lead paint are unlikely to be present at this site.

The following RECs were identified at this site: Fill of unknown composition; railroad signal box.

No de minimis conditions were identified at this site.

Site 3160-63. Vacant land, east of 6000 block of IL 37, Benton Township (east of IL 37 between Commerce Lane and Ruembler Crossing Road; approximate station east of 116+00 LT; Attachment 2, page 5). This site is occupied by vacant wooded land. A complete site investigation could not be done due to dense vegetation across the site. This site did not appear on any of the regulatory lists checked for this project.

On the 1900 and later plat maps, this site was depicted under individual ownership. The 1938 through 1971 aerial photographs depicted agricultural use. On the 1980 and later aerial photographs, vacant wooded land was depicted.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or underground), pumps or dispensers, protruding pipes, pipelines, drums, monitoring wells, solid waste, transformers, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on February 3 and 17, 2016.

The following data gap was identified at this site:

A complete site investigation could not be done due to dense vegetation across the site.

Because there are no buildings present and no evidence of fill or demolition debris was observed, asbestos-containing materials and lead paint are unlikely to be present at this site.

No RECs were identified at this site.

The following de minimis condition was identified at this site: Likely past pesticide and/or herbicide use based on former agricultural land use.

Site 3160-64. Residence, 6229 IL 37, Benton Township (northwest quadrant of IL 37 and Yellow Banks Road; approximate station 117+00 RT; Attachment 2, page 5). This site is occupied by a residence and three outbuildings. An AST of unknown contents was observed along the east side of the northern outbuilding. A natural gas pipeline marker was observed on the northeast corner of the site. Based on the pipeline marker observed on the site and other sites in the vicinity, this pipeline is likely oriented north-south. A pole-mounted transformer was observed centered along the south edge of the site. This site did not appear on any of the regulatory lists checked for this project.

On the 1900 and later plat maps, this site was depicted under individual ownership. The 1938 through 1971 aerial photographs depicted a farmstead with the current residence. On the 1980 and later aerial photographs, the site had its current configuration.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, pumps or dispensers, protruding pipes, drums, monitoring wells, solid waste, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on February 3 and 17, 2016.

The following data gap was identified at this site:

The contents of the AST are unknown.

The buildings on this site may contain friable asbestos-containing materials as a component of floor tiles, wall and pipe insulation, roof materials, patching or painting compounds, ceiling materials, or stove and furnace insulation. Evidence from aerial photographs indicates that this residence was constructed before 1978. Lead paint was banned for residential use in the United States in 1978, and therefore lead paint may be present in these buildings.

The following REC was identified at this site: AST.

The following de minimis conditions were identified at this site: Natural gas pipeline; transformer; potential ACM and lead paint.

Site 3160-65. Vacant land, 5000 block of IL 37, Frankfort Township (southeast of IL 37 and Ruembler Crossing Road; approximate station east of 130+20 LT; Attachment 2, page 5). This site is occupied by vacant wooded land. A complete site investigation could not be done due to dense vegetation across the site. This site did not appear on any of the regulatory lists checked for this project.

On the 1900 and later plat maps, this site was depicted under individual ownership. The 1938 and 1652 aerial photographs depicted agricultural use. The 1959 through 1980 aerial photographs depicted vacant grassy land. On the 1988 and later aerial photographs, vacant wooded land was depicted.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or underground), pumps or dispensers, protruding pipes, pipelines, drums, monitoring wells, solid waste, transformers, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on February 3 and 17, 2016.

The following data gap was identified at this site:

A complete site investigation could not be done due to dense vegetation across the site.

Because there are no buildings present and no evidence of fill or demolition debris was observed, asbestos-containing materials and lead paint are unlikely to be present at this site.

No RECs were identified at this site.

The following de minimis condition was identified at this site: Likely past pesticide and/or herbicide use based on former agricultural land use.

ADJOINING SITES

The ISGS conducted a search of federal, state, and other environmental databases for reported environmental concerns on sites adjoining the project. For certain resources, the search distances may have been expanded when deemed applicable in the judgment of the project manager. Refer to the Appendix for complete citations for these databases and the date of update of each database. Sites along the project are listed in the preceding section. Sites adjoining the project that do not appear on regulatory databases are not included. The following sites adjoining but not along, the project were identified.

Federal records

SEMS: NPL, Active, and Archived None.

RCRA sites subject to corrective action (CORRACTS)

RCRA sites – non-CORRACTS TSD None.

RCRA sites – other None.

Brownfields pilot sites None.

Non-LUST releases None.

State records

Leaking underground storage tanks (LUST) None.

Registered underground storage tanks (UST) None.

Activity and Use Limitations (including institutional controls, engineered barriers, and Highway Authority Agreements)

None.

Brownfields

None.

IEPA Bureau of Land Inventory

Site 3160-A. Amanda Barnhart, 12180 Andrews Road, Benton. IEPA #0550255004. Adjoining property to the south of Site 3160-32 and to the west of Site 3160-37 (Attachment

2, page 3).

IEPA Site Remediation Program None.

Non-LUST releases None.

Municipal records

. None.

Tribal records

There are no tribally owned lands in the state of Illinois; therefore, the checking of tribal records is not applicable for this report.

CONCLUSIONS

- (1) RECs were identified at the following sites along the project:
- Site 3160-5: UPRR. Railroad signal boxes.
- Site 3160-6: Freeman Environmental Services, Inc. Former UST; evidence of chemical use; transformers; potential ACM and lead paint.
- Site 3160-8: J.W. Reynolds Memorial. Potential UST(s); potential former chemical use; potential ACM and lead paint.
- Site 3160-9: C.N.C. Guns & Ammo. Potential UST(s); potential former chemical use; transformers; potential ACM and lead paint.
- Site 3160-10: Benton Grade School District #47. Potential UST(s); potential former chemical use; potential ACM and lead paint.
- Site 3160-13: Masonic & Odd Fellows Cemetery. AST; former dumping; potential ACM and lead paint.
- Site 3160-16: Residence. ASTs; natural gas pipeline; potential ACM and lead paint.
- Site 3160-21: UPRR. Fill; petroleum pipeline; railroad signal box.
- Site 3160-22: Vacant land. Petroleum pipeline.
- Site 3160-23: Vacant land. Former ASTs; evidence of former chemical use; natural gas pipeline; likely past pesticide and/or herbicide use.
- Site 3160-25: Commercial building and residence. Potential UST(s); former ASTs; drums; evidence of former chemical use; solid waste; likely natural gas pipeline; potential ACM and lead paint.
- Site 3160-26: Residence. Petroleum pipeline; likely natural gas pipeline; potential ACM and lead paint.
- Site 3160-28: Vacant land. Potential UST(s); potential former chemical use; natural gas pipeline.
- Site 3160-29: Vacant land. Former ASTs; evidence of former chemical use; likely past pesticide and/or herbicide use.
- Site 3160-32: Route 37 Collection Center. Potential UST(s); ASTs; drums; evidence of former chemical use; solid waste; natural gas pipeline; potential ACM and lead paint.
- Site 3160-33: Vacant land. Evidence of former chemical use.
- Site 3160-35: Vacant land. Evidence of former chemical use.
- Site 3160-36: UPRR. Fill.
- Site 3160-39: Agricultural land. Evidence of former chemical use; likely pesticide and/or herbicide use.
- Site 3160-41: Agricultural land. Evidence of former chemical use; likely pesticide and/or herbicide use.
- Site 3160-45: Residence. Evidence of former chemical use; transformer; natural gas pipeline; potential ACM.
- Site 3160-46: Vacant land. Evidence of former chemical use.
- Site 3160-50: Vacant land. Evidence of former chemical use; former ASTs; likely natural gas pipeline.
- Site 3160-51: UPRR. Fill.
- Site 3160-52: Agricultural land. Evidence of former chemical use; likely pesticide and/or herbicide use.
- Site 3160-54: Agricultural land. Evidence of former chemical use; likely pesticide and/or herbicide use.
- Site 3160-55: Vacant land. Evidence of former chemical use; natural gas pipeline; likely

- past pesticide and/or herbicide use.
- Site 3160-56: Agricultural land. Evidence of former chemical use; likely natural gas pipeline; likely pesticide and/or herbicide use.
- Site 3160-57: Vacant land. Potential former chemical use.
- Site 3160-62: UPRR. Fill; railroad signal box.
- Site 3160-64: Residence. AST; natural gas pipeline; transformer; potential ACM and lead paint.
- (2) De minimis conditions were identified at the following sites along the project:
- Site 3160-1: Greater Life Sanctuary. Potential ACM and lead paint.
- Site 3160-2: Residence. Potential ACM and lead paint.
- Site 3160-3: Commercial building. Transformer; potential ACM and lead paint.
- Site 3160-4: Residences. Potential ACM and lead paint.
- Site 3160-11: Roger Clark Veterinary and residence. Potential ACM and lead paint.
- Site 3160-14: Residence. Potential ACM and lead paint.
- Site 3160-15: Agricultural land. Likely pesticide and/or herbicide use.
- Site 3160-17: Residence. Natural gas pipeline; potential ACM and lead paint.
- Site 3160-18: Residence. Potential ACM and lead paint.
- Site 3160-19: Vacant land. Natural gas pipeline; likely past pesticide and/or herbicide.
- Site 3160-20: Vacant land. Natural gas pipeline; likely past pesticide and/or herbicide.
- Site 3160-24: Residences. Natural gas pipeline; potential ACM and lead paint.
- Site 3160-27: Agricultural land. Likely natural gas pipeline; likely pesticide and/or herbicide use.
- Site 3160-30: Vacant land. Likely past pesticide and/or herbicide use.
- Site 3160-31: Pearson's Skating Rink. Likely natural gas pipeline; potential ACM and lead paint.
- Site 3160-37: Vacant land. Natural gas pipeline; likely past pesticide and/or herbicide use.
- Site 3160-38: Agricultural land. Natural gas pipeline; likely pesticide and/or herbicide use.
- Site 3160-40: Vacant land. Likely past pesticide and/or herbicide use.
- Site 3160-42: Middle Fork Big Muddy River tributary. Likely natural gas pipeline.
- Site 3160-43: Vacant land. Likely natural gas pipeline; likely past pesticide and/or herbicide use.
- Site 3160-44: Vacant land. Likely past pesticide and/or herbicide use.
- Site 3160-47: Residence. Likely natural gas pipeline; potential ACM.
- Site 3160-48: Vacant land. Likely past pesticide and/or herbicide use.
- Site 3160-49: Agricultural land. Natural gas pipeline; likely pesticide and/or herbicide use.
- Site 3160-53: Vacant land. Likely natural gas pipeline; likely past pesticide and/or herbicide use.
- Site 3160-59: Vacant land. Natural gas pipeline; likely past pesticide and/or herbicide use.
- Site 3160-60: Middle Fork Big Muddy River tributary. Likely natural gas pipeline.
- Site 3160-61: Agricultural land. Natural gas pipeline; likely pesticide and/or herbicide use.
- Site 3160-63: Vacant land. Likely past pesticide and/or herbicide use.
- Site 3160-65: Vacant land. Likely past pesticide and/or herbicide use.
- (3) No RECs or de minimis conditions were identified at the following sites along the project:
- Site 3160-7: Vacant land.
- Site 3160-12: Vacant land.

- Site 3160-34: Vacant land.
- Site 3160-58: Vacant land.
- (4) The following property was identified that appears on an environmental database and that is adjoining, but not along, the project:
- Site 3160-A: Amanda Barnhart. BOL.
- (5) The entire project area is undermined by some form of the room-and-pillar method, and therefore may be subject to subsidence.
- (6) According to the U.S. Geological Survey, the project is located in an area where the peak horizontal ground accelerations on bedrock (expressed as a percentage of the gravitational acceleration, g) that have a 2% probability of being exceeded in 50 years are between 20% and 80% g. These accelerations are from the USGS 2014 national seismic hazard maps that incorporate the earthquake magnitudes and rates of return from historical events and expected maximum magnitudes from all known fault zones and background events for the general geologic setting. These accelerations on bedrock may be modified by the soils and be greater on the ground surface.
- (7) For the purposes of this report, the following are considered to be de minimis conditions:
- Normal use of lead-based paint on exteriors and interiors of buildings and structures.
- Use of asbestos-containing materials in building construction.
- Transformers in normal use, unless the transformers were observed to be leaking, appear
 on an environmental regulatory list, or were otherwise determined to pose a hazard not
 related to normal use.
- Agricultural use of pesticides and herbicides. In addition, most land in Illinois was under agricultural use prior to its conversion to residential, industrial, or commercial development. Pesticides, both regulated and otherwise, may have been used throughout the project area at any time. Unless specifically discussed elsewhere in this report, no information regarding past pesticide use that would be subject to enforcement action was located for this project, and such use is considered a de minimis condition.

ENDORSEMENTS

James Deiger

Project Manager: _____ Date: 04/14/16 Jim Geiger

Am L Ell

Approved: Date: 04/14/16

Anne Ellison, P.G., State of Illinois License #196-000546

ADDRESS LISTINGS

The following addresses along the project were evaluated for this project. Addresses of sites, if any, adjoining but not along the project are not listed here; see text for discussion of these sites.

Property name and address	ISGS site #	Parcel #
Greater Life Sanctuary 1208 S. Main Street, Benton	3160-1	NA
Residence 1209 S. Main Street, Benton	3160-2	NA
Commercial building 1301 S. Main Street, Benton	3160-3	NA
Residence 102 E. Capital Street, Benton	3160-4	NA
Residence 202 E. Capital Street, Benton	3160-4	NA
UPRR 1400 block of S. Main Street, Benton	3160-5	NA
Freeman Environmental Services, Inc. 307 E. Capital Street, Benton	3160-6	NA
Vacant land 300 block of Wastena Street, Benton	3160-7	NA
J.W. Reynolds Memorial 1410 S. Main Street, Benton	3160-8	NA
C.N.C. Guns & Ammo 1401 S. Main Street, Benton	3160-9	NA
Benton Grade School District #47 1403 S. Main Street, Benton	3160-10	NA
Roger Clark Veterinary 12733 Oddfellow Lane, Benton	3160-11	NA
Residence 12733 Oddfellow Lane, Benton	3160-11	NA
Vacant land 12700 block of Oddfellow Lane, Benton	3160-12	NA
Masonic & Odd Fellows Cemetery 12740 Oddfellow Lane, Benton	3160-13	NA

Residence 1411 S. Main Street, Benton	3160-14	NA
Agricultural land 1400 block of S. Main Street, Benton	3160-15	NA
Residence 12524 S. Park Road, Benton Township	3160-16	NA
Residence 8046 Minier Road, Benton Township	3160-17	NA
Residence 7968 Minier Road, Benton Township	3160-18	NA
Vacant land 7000 block of IL 37, Benton Township	3160-19	NA
Vacant land 7000 block of IL 37, Benton Township	3160-20	NA
UPRR 7000 block of IL 37, Benton Township	3160-21	NA
Vacant land 7000 block of Minier Road, Benton Township	3160-22	NA
Vacant land 7000 block of IL 37, Benton Township	3160-23	NA
Residence 7843 IL 37, Benton Township	3160-24	NA
Residence 7871 IL 37, Benton Township	3160-24	NA
Commercial building 7837 IL 37, Benton Township	3160-25	NA
Residence 7837 IL 37, Benton Township	3160-25	NA
Residence 7789 IL 37, Benton Township	3160-26	NA
Agricultural land 7000 block of IL 37, Benton Township	3160-27	NA
Vacant land 7745 IL 37, Benton Township	3160-28	NA
Vacant land 7000 block of IL 37, Benton Township	3160-29	NA

Vacant land 7000 block of IL 37, Benton Township	3160-30	NA
Pearson's Skating Rink 7697 IL 37, Benton Township	3160-31	NA
Route 37 Collection Center 7533 IL 37, Browning Township	3160-32	NA
Vacant land 7000 block of IL 37, Benton Township	3160-33	NA
Vacant land 12000 block of Wyatt Road, Benton Township	3160-34	NA
Vacant land 7000 block of IL 37, Benton Township	3160-35	NA
UPRR 6000-7000 blocks of IL 37, Benton Township	3160-36	NA
Vacant land 7000 block of IL 37, Browning Township	3160-37	NA
Agricultural land 7000 block of IL 37, Benton and Browning Townships	3160-38	NA
Agricultural land 7000 block of IL 37, Benton Township	3160-39	NA
Vacant land 7000 block of IL 37, Benton Township	3160-40	NA
Agricultural land 7000 block of IL 37, Benton Township	3160-41	NA
Middle Fork Big Muddy River tributary 7000 block of IL 37, Benton and Browning Townships	3160-42	NA
Vacant land 7000 block of IL 37, Browning Township	3160-43	NA
Vacant land 7000 block of IL 37, Benton Township	3160-44	NA
Residence 7127 IL 37, Browning Township	3160-45	NA
Vacant land 7000 block of IL 37, Benton Township	3160-46	NA
Residence 12189 Forest Baptist Church Road, Browning Township	3160-47	NA

Vacant land	3160-48	NA
7000 block of IL 37, Benton Township	0.00	
Agricultural land 6000 block of IL 37, Benton and Browning Townships	3160-49	NA
Vacant land 6000 block of IL 37, Browning Township	3160-50	NA
UPRR 6000 block of IL 37, Benton Township	3160-51	NA
Agricultural land 6000 block of IL 37, Benton Township	3160-52	NA
Vacant land 6000 block of IL 37, Browning Township	3160-53	NA
Agricultural land 6000 block of IL 37, Benton Township	3160-54	NA
Vacant land 6000 block of IL 37, Browning Township	3160-55	NA
Agricultural land 6000 block of IL 37, Browning Township	3160-56	NA
Vacant land 6000 block of IL 37, Benton Township	3160-57	NA
Vacant land 6000 block of IL 37, Benton Township	3160-58	NA
Vacant land 6000 block of IL 37, Browning Township	3160-59	NA
Middle Fork Big Muddy River tributary 6000 block of IL 37, Benton and Browning Townships	3160-60	NA
Agricultural land 5000 block of IL 37, Denning Township, and 6000 block of IL 37, Benton and Browning Townships	3160-61	NA
UPRR 5000 block of IL 37, Frankfort Township, and 6000 block of IL 37, Benton Township	3160-62	NA
Vacant land 6000 block of IL 37, Benton Township	3160-63	NA
Residence 6229 IL 37, Benton Township	3160-64	NA

Vacant land	3160-65	NA
5000 block of IL 37, Frankfort Township		

INFORMATION SOURCES

Website addresses listed below were accurate and active as of the date viewed or cited in the Appendix; however, websites change frequently and web addresses may be different in the future or may cease to exist entirely.

- Armstead, A. (January 5, 2016). Written correspondence. Office of the State Fire Marshal.
- Berg, R.C., and Kempton, J. P. (1988). Stack-unit mapping of geologic materials in Illinois to a depth of 15 meters. Illinois State Geological Survey Circular 542. GIS data produced from publication plates (1995, revised 1998).
- Beuaman, Guy (1900). Map of Franklin County.
- Chadwyck-Healey Inc. (1925, 1947). Sanborn fire insurance maps. Benton, Sheet #s: 6 and 31. sanborn.umi.com.
- Cockrum, S. (February 17, 2016). Personal conversation. Chief, Benton Fire Department.
- Con Survey Directories (1959). Benton.
- Local resident (February 17, 2016). Personal interview.
- Erdmann, A.L., Adomaitis, D.J., Bannon-Nilles, P.L., Kientop, G.A., and Schmidt, D.R. (2014). A manual for conducting preliminary environmental site assessments for Illinois Department of Transportation infrastructure projects. Illinois State Geological Survey Circular 585. 38 pp.
- Federal Emergency Management Agency, National Flood Insurance Program (November 18, 2009). Flood Insurance Rate Maps (FIRM), panel #17055C0185D, Franklin County, Illinois.
- Geiger, J.W. (2006). Summary of former manufactured gas plants of Illinois (draft). Illinois State Geological Survey.
- Historicaerials.com (January 6, 2016). Topographic maps (1909, 1941, 1959, 1964, 1966, 1978, 1985, 1987). Franklin quadrangle.
- Hixson, W.W. & Co. (1940). Plat maps, Franklin County.
- Hoffman Directories (1921, 1923, 1948, 1951, 1955). Benton.
- Illinois Department of Transportation Bridge Information System: http://apps.dot.illinois.gov/bridgesinfosystem/main.aspx.
- Illinois Department of Transportation Site Assessment Tracking System: https://frostycap.isgs.illinois.edu/idot extranet/default.asp.
- Illinois Emergency Management Agency (April 6, 2016). Incident database: tier2.iema.state.il.us/FOIAHazmatSearch/.

- Illinois Environmental Protection Agency, Bureau of Land (April 8, 2016). BOL database: epadata.epa.state.il.us/land/inventory/.
- Illinois Environmental Protection Agency, Bureau of Land (February 11, 2010). Brownfields database: epadata.epa.state.il.us/land/brownfields.
- Illinois Environmental Protection Agency, Bureau of Land (April 6, 2016). Groundwater ordinance: epadata.epa.state.il.us/land/gwordinance/municipality.asp.
- Illinois Environmental Protection Agency, Bureau of Land (April 4, 2016). Leaking Underground Storage Tank (LUST) database: http://epadata.epa.state.il.us/land/ust/.
- Illinois Environmental Protection Agency, Bureau of Land (April 6, 2016). Site Remediation Program (SRP) database: epadata.epa.state.il.us/land/srp/.
- Illinois Environmental Protection Agency, Bureau of Land (January 2016). State Underground Injection Control inventory, 1984-January 2016.
- Illinois Environmental Protection Agency, Bureau of Water (2016). Illinois Integrated Water Quality Report and Section 303(d) List: www.epa.state.il.us/water/water-quality/index.html.
- Illinois Environmental Protection Agency, Bureau of Water (2016). Illinois Integrated Water Quality Report and Section 303(d) list: Appendix B-2. Stream Assessments: http://www.epa.illinois.gov/Assets/iepa/water-quality/watershed-management/tmdls/2016/303-d-list/appendix-b2.pdf
- Illinois Environmental Protection Agency, Bureau of Water. Illinois Water Quality Mapping Tool: maps.epa.state.il.us/website/wqinfo/.
- Illinois State Geological Survey. Directory of coal mines, Franklin County.
- Illinois State Geological Survey, Environmental Site Assessments section (2008). Summary of SEMS sites in Illinois (draft). Illinois State Geological Survey.
- Illinois State Geological Survey, Environmental Site Assessments section (2008). Summary of landfill sites in Illinois (draft). Illinois State Geological Survey.
- Illinois State Geological Survey, Environmental Site Assessments section (2008). Summary of LUST sites in Illinois (draft). Illinois State Geological Survey.
- Illinois State Geological Survey. ILOIL Interactive Mapping System: http://maps.isgs.illinois.edu/iloil/.
- Illinois State Geological Survey (June 9, 2004). Online coal maps. Directory of Coal Mines in Illinois, 7.5-minute quadrangle series. West Frankfort Quadrangle. http://isgs.illinois.edu/research/coal/maps/quads
- Killey, M.M., Hines, J.K., and DuMontelle, P.D. (1985). Landslide inventory of Illinois. Illinois State Geological Survey Circular 534. GIS data produced from Plate 1 (1995).

Kirkpatrick, R.J. (1917). Map of Franklin County.

Kolata, D.R. (2005). Bedrock geology of Illinois. Illinois State Geological Survey Illinois Map 14.

Manufacturers' News, Inc. (1949, 1955, 1964, 1966, 1974, 1976, 1980, 1990, 1994, 1996, 2000, 2005, 2010, 2014). Illinois manufacturers directories.

Markhurd Corporation aerial photographs: Line 25 IL 448 (1988, 1993)

Masters, J.M., Ipe, V.C., Smith, L.R., and Falter, M. (1999). Directory of Illinois Mineral Producers and Maps of Extraction Sites, 1997. Illinois State Geological Survey, Illinois Minerals 117.

National Response Center (March 27, 2016). Emergency Response Notification System (ERNS) database: http://www.nrc.uscg.mil/.

Office of the State Fire Marshal (April 8, 2016). Underground Storage Tank (UST) database: http://webapps.sfm.illinois.gov/ustsearch/Search.aspx.

Piskin, K. (1975). Glacial drift in Illinois: Thickness and character. Illinois State Geological Survey Circular 490. GIS data produced from Plate 1 (1994, revised 1998).

Polk Directories (1964, 1970, 1975, 1980, 1985, 1990, 1995, 2001, 2005, 2010, 2014). Benton.

Porter (February 17, 2016). Personal interview. Owner, C.N.C. Guns & Ammo.

Rockford Map Publishers (1964, 1970, 1974, 1977, 1988, 1993, 1998). Plat maps, Franklin County.

Shineldecker, C.L. (1992). Handbook of environmental contaminants: A guide for site assessment. Lewis Publishers, Inc., Chelsea, MI.

Simms & Sons (1918). Map of Franklin County.

Superpages.com (March 21, 2016). Chief's Towing & Recovery (Site 3160-28).

USDA aerial photographs: BGM-1 59, 185 (1938)

BGM-2K 15, 16 (1952) BGM-2W 96, 122 (1959) BGM-2FF 109, 110 (1965) BGM-1MM 181 (1971) 17055-180 38 (1980)

USDA; Franklin County photomosaic (1938).

USDA-NAIP; Franklin County photomosaic (2005, 2007, 2009, 2010, 2012, 2014).

USDA-NAPP; Franklin County photomosaic (1998, 2005).

U.S. Department of Agriculture, Natural Resources Conservation Service web soil survey

- (September 25, 2015). websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx.
- U.S. Department of Transportation, Office of Pipeline Safety (2016). Pipeline Integrity Management Mapping Application: www.npms.phmsa.dot.gov.
- U.S. Environmental Protection Agency. Asbestos ban and phaseout. http://www2.epa.gov/asbestos/us-federal-bans-asbestos.
- U.S. Environmental Protection Agency (1982-1989). Emergency Response Notification System (ERNS) database: www.rtknet.org/db/erns/.
- U.S. Environmental Protection Agency (April 6, 2016). Illinois Brownfields pilot sites database: http://ofmpub.epa.gov/apex/cimc/f?p=cimc:68.
- U.S. Environmental Protection Agency (July 2014). Notification of PCB activity, Region 5: https://www.epa.gov/sites/production/files/2015-08/documents/national.pdf
- U.S. Environmental Protection Agency (February 2011). EPA Regulated PCB Transformer Data: https://www.epa.gov/sites/production/files/2015-10/documents/most_recent_registrations_excel_document.xls_.pdf
- U.S. Environmental Protection Agency (March 11, 2016). Resource Conservation and Recovery Act Information (RCRAinfo) database, CORRACTS and non-CORRACTS databases: http://www3.epa.gov/enviro/facts/rcrainfo/search.html.
- U.S. Environmental Protection Agency (April 6, 2016). Section Seven Tracking System: http://www.epa.gov/enviro/html/fii/fii_query_java.html.
- U.S. Environmental Protection Agency (April 8, 2016). Superfund Enterprise Management System (SEMS) database: cumulis.epa.gov/supercpad/cursites/srchsites.cfm.
- U.S. Environmental Protection Agency (1982-2014). Toxics Release Inventory (TRI): http://www2.epa.gov/enviro/tri-search.
- U.S. Fish and Wildlife Service, Illinois Department of Natural Resources, and Illinois Natural History Survey (1996). Illinois wetlands inventory.
- U.S. Geological Survey (2014). Earthquake Hazards Program, National Seismic Hazard Map. Peak Acceleration (% g) with 2% Probability of Exceedance in 50 Years: http://earthquake.usgs.gov/hazards/products/conterminous/2014/2014pga2pct.pdf.
- U.S. Geological Survey (1963, 1978, 2012, 2015). Topographic maps, 1:24,000 (7.5-minute) series: West Frankfort Quadrangle.
- U.S. Geological Survey and Illinois Environmental Protection Agency (2016). Source Water Assessment Program (SWAP) ArcIMS Mapping Tool: http://www.epa.illinois.gov/topics/water-quality/swap/index.
- University Publications of America (1957). Sanborn fire insurance maps. Benton, sheet #s: 6 and

31.

- Weibel, C.P. and Panno, S.V. (1997). Karst terrains and carbonate rocks of Illinois [map], in Karst regions of Illinois. Illinois State Geological Survey Open File Series 1997-2.
- Wright, Carolyn (January 11, 2016). Written correspondence. Freedom of Information Officer, Illinois Environmental Protection Agency, Bureau of Land, Springfield, Illinois.

APPENDIX

ISGS PRELIMINARY ENVIRONMENTAL SITE ASSESSMENT CHECKLIST

IDOT: ISGS: 3160

<u>D99-037-03</u> <u>Benton, and Benton, Browning, Denning, and Frankfort Townships</u> City: County:

Franklin

T6S, R2E, Sections 25, 36; T6S, R3E, Sections 19, 30, 31; T7S, R2E, Section 1; T7S, R3E, Location Coordinates:

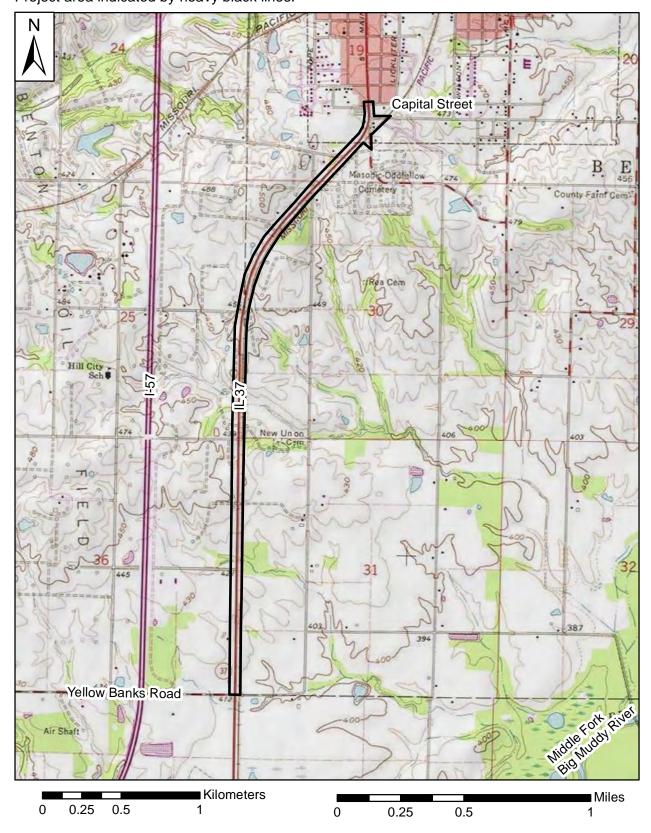
IDOT District Contact:

ISGS Lead: Jim Geiger

Name: Julie Klamm Phone: 618-351-5286

Task	Status*	Date	Ву
Original Material Copied	MF	10/28/15	ALE
IDOT Project Location Database – (All other projects/IDOT sites in the vicinity of the project) Other Preliminary Environmental Site Assessments Preliminary Site Investigations/Phase II Reports Maintenance Facilities Permit-Access Agreements Draft Highway Authority Agreements/Highway Authority Agreements Miscellaneous Sites	MF MF NF NF NF	1/4/16 1/4/16 1/4/16 1/4/16 1/4/16 1/4/16	JWG JWG JWG JWG JWG
Local Collections County City	NF NF	1/4/16 1/4/16	JWG JWG
Geologic Information ISGS Stack-Unit Map (GIS) ISGS Glacial Drift in Illinois (GIS) ISGS Bedrock Geology of Illinois (GIS) USDA NRCS Soil Survey Maps USDA NRCS Hydric Soils USDA NRCS Prime Farmland Soils	MF MF MF MF MF	1/5/16 1/5/16 1/5/16 1/6/16 1/6/16 1/6/16	JWG JWG JWG JWG JWG
Hydrogeologic Information (non-CE projects only) IEPA Restricted Status List USGS-IEPA SWAP-IL Public Water Supplies ISGS Wells (GIS) ISWS Public Water Supply Surface Water Intakes in Illinois (GIS) Potential for Aquifer Contamination Map Potential for Aquifer Recharge Map Sole Source Aquifer Protection Program	NA NA NA NA NA NA	1/4/16 1/4/16 1/4/16 1/4/16 1/4/16 1/4/16 1/4/16	JWG JWG JWG JWG JWG
Hydrogeologic Information (all projects) ► USGS-IEPA SWAP Wellhead Protection ► USGS-IEPA SWAP Fact Sheets /IEPA Well Site Survey Reports	NF NF	1/5/16 1/5/16	JWG JWG
Historical Records Aerial Photographs USGS Topographic Maps Plat Maps Sanborn Fire Insurance Maps: Chadwyck-Healey Inc. Sanborn Fire Insurance Maps: University Publications of America Sanborn Fire Insurance Maps: Rascher Publishing Company City Directories Industrial Directories (optional) IEPA-ISGS Summary of Former Manufactured Gas Plant Sites (GIS) ISGS Draft SEMS Site Coverage (GIS) ISGS Draft LUST Site Coverage (GIS) ISGS Draft Landfill Site Coverage (GIS)	MF MF MF MF NA MF NF NF NF	1/11/16 1/7/16 1/7/16 1/4/16 1/4/16 1/4/16 2/3/16 2/4/16 1/5/16 1/5/16 1/5/16	SRE JWG JWG JWG JWG JWG JWG JWG JWG

Task	Status*	Date	Ву
Federal Records			-
SEMS (NPL, Active, Archived)	NF	4/8/16	JWG
► Mercury Site Lists ► RCRA CORRACTS	NF NF	4/6/16	JWG JWG
 ▶ RCRA CORRACTS ▶ RCRA Non-CORRACTS TSD Facilities 	NF NF	4/6/16 4/6/16	JWG
RCRA (Other)	NF	4/6/16	JWG
► ERNS	NF	4/6/16	JWG
► Brownfields Pilot Sites	NF	4/6/16	JWG
► Toxics Release Inventory	NF	4/6/16	JWG
→ SSTS	NF	4/6/16	JWG
► PCB Transformer Registration Database/PCB Activity Quarterly Reports	NF	4/6/16	JWG
USEPA Information Request			
► Sent	NF	1/5/16	JWG
► Received	NF	1/5/16	JWG
State Records			
► IEPA Brownfields	NF	4/6/16	JWG
► IEPA Bureau of Land Inventory	MF	4/8/16	JWG
► IEPA Illinois Water Quality Reports	NF	4/6/16	JWG
► IEPA LUST	NF	4/8/16	JWG
► IEPA Site Remediation Program	NF	4/6/16	JWG
→ OSFM UST	MF	4/8/16	JWG
► IEMA non-LUST Incidents	NF	4/6/16	JWG
► Activity and Use Limitations (AULs)	NF	4/6/16	JWG
For Groundwater Ordinances	NF NF	4/6/16 4/6/16	JWG JWG
▶ Cook County Bridge List▶ IDOT Bridge List	NF	4/6/16	JWG
► Landfills (GIS)	NF	4/6/16	JWG
► State Underground Injection Control Inventory	NF	4/6/16	JWG
IEPA BOL Information Request			
→ Sent	MF	1/5/16	JWG
► Received	MF	1/11/16	DJA
OSFM Information Request			
► Sent	MF	1/5/16	JWG
► Received	MF	1/5/16	JWG
Local Records			
► Fire Department Records (optional)	MF	2/17/16	JWG
Mining Maps and Publications			
► ISGS Quadrangle/County On-Line Coal Maps and Directories	MF	1/5/16	JWG
► ISGS Non-Coal Underground Mines	NF	1/5/16	JWG
► Lead Mining	NF	1/5/16	JWG
Oil and Cas Information			
Oil and Gas Information ► ISGS Oil and Gas Fields/Oil Wells (ILOIL GIS)	MF	1/5/16	JWG
ISGS Oil and Gas Fields/Oil Wells (ILOIL GIS) USDOT OPS Pipeline Integrity Management Mapping Application	MF	1/5/16	JWG
7 00001 Of 01 perine integrity management mapping Application	1411	1/3/10	3440
Natural Hazards			
► USGS Seismic Risk Map	MF	1/7/16	JWG
► FEMA FIRM Maps	NF	1/7/16	JWG
► ISGS Landslide Inventory (GIS)	NF	1/7/16	JWG
► Karst Terrains and Carbonate Rocks of Illinois Maps	NF	1/7/16	JWG
► USFWS, IDNR, and INHS Illinois Wetlands Inventory (GIS)	MF	1/7/16	JWG


^{*} MF = Material found within search radius; NF = Nothing found within search radius; NA = Not applicable

Date of Records Review Completion: April 8, 2016

LIST OF ATTACHMENTS

- 1. Project location map, ISGS #3160.
- 2. Site location maps (5 pages).

Attachment 1. Project location map, ISGS #3160. Project area indicated by heavy black lines.

Attachment 2, page 1. Site location map, Sites 3160-1 through 3160-18.

All site boundaries are approximate and should not be used as actual parcel boundaries.

Attachment 2, page 2. Site location map, Sites 3160-19 through 3160-34. All site boundaries are approximate and should not be used as actual parcel boundaries.

Attachment 2, page 3. Site location map, Sites 3160-35 through 3160-48. All site boundaries are approximate and should not be used as actual parcel boundaries.

Attachment 2, page 4. Site location map, Sites 3160-49 through 3160-60. All site boundaries are approximate and should not be used as actual parcel boundaries.

Attachment 2, page 5. Site location map, Sites 3160-61 through 3160-65. All site boundaries are approximate and should not be used as actual parcel boundaries.

Appendix B – Soil Boring Logs

Amec Foster Wheeler Environment & Infrastructure, Inc. 4232 N Brandywine Drive, Suite A

Peoria, IL 61614

Telephone: (309) 692-4422 Fax: 248-926-4009

BORING NUMBER 3160-05-01

			240-32							
CLIEN	IT <u>IDOT</u>									
PROJ	ECT NUM	IBER 316	015004	9.028		PROJECT LOCATION Benton, IL				
DATE	STARTE	D _11/2/17	•		COMPLETED 11/2/17	GROUND SURFACE ELEVATION	HOLE SIZE 2"			
DRILL	ING CON	ITRACTOR	GSG	Cons	utlants	GROUND WATER LEVELS:				
DRILL	ING MET	HOD Geo	probe			AT TIME OF DRILLING				
		-	•		CHECKED BY					
						AFTER DRILLING				
1										
о <u></u> ОЕРТН (ft)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	PID (ppm)	GRAPHIC LOG		ERIAL DESCRIPTION	WELL	DIAGRAM		
					SILTY CLAY (CL-ML), BF					
			0							
• -										
•			0							
5					5.0					
			0			tom of hole at 5.0 feet.				
			l .	1			1 1			

Amec Foster Wheeler Environment & Infrastructure, Inc.

4232 N Brandywine Drive, Suite A Peoria, IL 61614
Telephone: (309) 692-4422

BORING NUMBER 3160-05-02

wheeler	Fax:	248-9	26-400	09				
CLIENT ID	ОТ				PROJECT NAME WO 28 Benton			
PROJECT N	IUMBER 316	015004	19.028		PROJECT LOCATION Benton, IL			
					GROUND SURFACE ELEVATION	HOLE SIZE	2"	
					GROUND WATER LEVELS:	_		
	METHOD Geo				47 TIME OF DDU LING			
					AT END OF DRILLING			
NOTES					AFTER DRILLING			
		Ι						
O DEPTH (ft) (SAMPLE TYPE NI IMBEP	BLOW COUNTS (N VALUE)	PID (ppm)	GRAPHIC LOG		MATERIAL DESCRIPTION	V	VELL DIAGRAM	
		0		SAND (SP), F-M, BR	OWN, MOIST, FILL			
		0						
_								
5		0		5.0	Bottom of hole at 5.0 feet.			
					Bottom of Hole at 5.0 leet.			

Amec Foster Wheeler Environment & Infrastructure, Inc.

4232 N Brandywine Drive, Suite A Peoria, IL 61614

Peoria, IL 61614 Telephone: (309) 692-4422 Fax: 248-926-4009 **BORING NUMBER 3160-05-03**

CLIEN	T IDOT						PROJECT NAME WO 28 Benton			
PROJE	ECT NUM	IBER 316	015004	9.028	}		PROJECT LOCATION Benton, IL			
							GROUND SURFACE ELEVATION			
DRILL	ING CON	TRACTOR	GSG	Cons	utlants		GROUND WATER LEVELS:			
DRILL	ING MET	HOD Geo	probe			_	AT TIME OF DRILLING			
LOGG	ED BY	T. McNally			CHECKED BY		AT END OF DRILLING	ND OF DRILLING		
NOTE	s						AFTER DRILLING			
о DEРТН (ft)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	PID (ppm)	GRAPHIC LOG		MATI	ERIAL DESCRIPTION	V	VELL DIAGRAM	
0					SILTY	CLAY (CL-ML), BR	OWN, MOIST			
			0							
			0							
5			0		5.0					
						Bott	om of hole at 5.0 feet.			

Amec Foster Wheeler Environment & Infrastructure, Inc.

4232 N Brandywine Drive, Suite A Peoria, IL 61614
Telephone: (309) 692-4422

BORING NUMBER 3160-08-01

wheeler	wheeler Fax: 248-926-4009								
CLIENT IDOT	•				PROJECT NAME WO 28 Benton				
PROJECT NUM	MBER 316	015004	9.028		PROJECT LOCATION Benton, IL				
					GROUND SURFACE ELEVATION	HOLE SIZE 2"			
				utlants					
					AT TIME OF DRILLING				
				CHECKED BY					
NOTES									
					AFTER DRILLING				
O DEPTH (ft) SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	PID (ppm)	GRAPHIC LOG		ERIAL DESCRIPTION	WELL DIAGRAM			
		0		0.5 SILT (ML), BLACK, MOIS SILTY CLAY (CL-ML), BF		_			
				SILTT OLAT (OL-ML), DI	COVIN, MOIOT				
		0							
_									
5		0		5.0					
				Bot	ttom of hole at 5.0 feet.				

Amec Foster Wheeler Environment & Infrastructure, Inc.

4232 N Brandywine Drive, Suite A

Peoria, IL 61614 Telephone: (309) 692-4422

BORING NUMBER 3160-08-02

whee	eler	Fax:	248-92	26-400)9				
CLIEN	IT IDOT					PROJECT NAME WO 28 Benton			
PROJ	ECT NUN	IBER 316	015004	9.028		PROJECT LOCATION Benton, IL			
DATE	STARTE	D _11/3/17			COMPLETED 11/3/17	GROUND SURFACE ELEVATION HOLE SIZE _2"			
DRILL	ING CON	ITRACTOR	GSG	Cons	utlants				
					CHECKED BY				
NOTE						AFTER DRILLING			
DEРТН (ft)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	PID (ppm)	GRAPHIC LOG	M	ATERIAL DESCRIPTION		VELL DIAGRAM	
	SAN	02		O					
0	• • • • • • • • • • • • • • • • • • • •				0.5 SILT (ML), BLACK, MO	Tele		I	
			0		SILTY CLAY (CL-ML), I				
					, , ,				
			0						
5			0		5.0	Bottom of hole at 5.0 feet.			
						oction of note at 5.0 feet.			

amec foster wheeler

ENVIRONMENTAL BH WO 28 BORING LOGS.GPJ GINT STD US.GDT 12/4/17

Amec Foster Wheeler Environment & Infrastructure, Inc.

4232 N Brandywine Drive, Suite A

Peoria, IL 61614 Telephone: (309) 692-4422 Fax: 248-926-4009

BORING NUMBER 3160-9-01

CLIEN	IT <u>IDO</u> T					PROJECT NAME WO 28 Benton				
PROJ	ECT NUM	IBER 316	015004	9.028						
						GROUND SURFACE ELEVATION HOLE SIZE _2"				
					utlants					
					CHECKED BY					
NOTE	s					AFTER DRILLING				
O DEPTH (ft)	SAMPLE TYPE NUMBER COUNTS (N VALUE) PID (ppm) GRAPHIC LOG					ATERIAL DESCRIPTION WELL DIAGRAM				
			0	X	0.3 ASPHALT PAVEMENT	TE ODAVEL FILL				
					FINE TO COARSE WHI SILT (ML), BROWN &TA					
			0		, ,					
5			0		5.0	ottom of hole at 5.0 feet.				
					D.	Stom of hole at 5.0 leet.				

amec foster wheeler

ENVIRONMENTAL BH WO 28 BORING LOGS.GPJ GINT STD US.GDT 12/4/17

Amec Foster Wheeler Environment & Infrastructure, Inc.

4232 N Brandywine Drive, Suite A

Peoria, IL 61614

Telephone: (309) 692-4422 Fax: 248-926-4009

BORING NUMBER 3160-9-02

			240-32							
CLIEN	IT <u>IDOT</u>					PROJECT NAME WO 28 Benton				
PROJI	ECT NUM	IBER 316	015004	9.028	<u> </u>	PROJECT LOCATION Benton, IL				
DATE	STARTE	D 10/30/1	7		COMPLETED 10/30/17	GROUND SURFACE ELEVATION HOLE SIZE 2"				
					utlants					
					CHECKED BY					
NOIL						AFTER DRILLING				
O DEPTH (ff)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	PID (ppm)	GRAPHIC LOG	MAT	ERIAL DESCRIPTION	WELL DIAGRAM			
			0		0.5 SILT (ML), BLACK, MOIS					
 5			0		SILT (ML), BROWN & TA	tom of hole at 5.0 feet.				

amec foster

ENVIRONMENTAL BH WO 28 BORING LOGS.GPJ GINT STD US.GDT 12/4/17

Amec Foster Wheeler Environment & Infrastructure, Inc.

4232 N Brandywine Drive, Suite A Peoria, IL 61614
Telephone: (309) 692-4422

BORING NUMBER 3160-9-03
PAGE 1 OF 1

wheeler Fax: 248-926-4009				
CLIENT IDOT	PROJECT NAME WO 28 Benton			
PROJECT NUMBER _3160150049.028	PROJECT LOCATION Benton, IL			
DATE STARTED 10/30/17 COMPLETED 10/30/17	GROUND SURFACE ELEVATION	HOLE SIZE 2"		
DRILLING CONTRACTOR GSG Consutlants	GROUND WATER LEVELS:			
DRILLING METHOD Geoprobe	AT TIME OF DRILLING			
LOGGED BY _T. McNally CHECKED BY				
NOTES	AFTER DRILLING			
□ WA O O O O O O O O O O O O O O O O O O	ATERIAL DESCRIPTION TAN, MOIST	WELL DIAGRAM		
	IST	_		
5	Bottom of hole at 5.0 feet.	_		

Amec Foster Wheeler Environment & Infrastructure, Inc.

4232 N Brandywine Drive, Suite A Peoria, IL 61614
Telephone: (309) 692-4422

BORING NUMBER 3160-10-01

whee	eler	Fax:	248-92	26-4009	9						
CLIENT IDOT PROJECT NAME WO 28 Benton											
PROJ	ECT NUM	IBER 316	015004	9.028			PROJECT LOCATION Benton, IL				
DATE	STARTE	D 10/30/1	7		COMPLETED 10/30/1	7	GROUND SURFACE ELEVATION	HOLE SIZE 2"			
							GROUND WATER LEVELS:				
DRILL	ING MET	HOD Geo	probe				AT TIME OF DRILLING				
LOGG	ED BY	T. McNally		c	CHECKED BY		AT END OF DRILLING				
NOTE	s						AFTER DRILLING				
O DEPTH (ft)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)		GRAPHIC LOG	0.5 F-M GRAVEL F		ERIAL DESCRIPTION CE CINDERS, BLACK, MOIST	V	VELL DIAGRAM		
 5			380			I & GREEN	tom of hole at 5.0 feet.				

amec foster

ENVIRONMENTAL BH WO 28 BORING LOGS.GPJ GINT STD US.GDT 12/4/17

Amec Foster Wheeler Environment & Infrastructure, Inc.

BORING NUMBER 3160-10-02

PAGE 1 OF 1

4232 N Brandywine Drive, Suite A Peoria, IL 61614 Telephone: (309) 692-4422

wheeler Fax: 248-926-4009 CLIENT IDOT PROJECT NAME WO 28 Benton **PROJECT NUMBER** 3160150049.028 PROJECT LOCATION Benton, IL **DATE STARTED** <u>10/30/17</u> **COMPLETED** <u>10/30/17</u> GROUND SURFACE ELEVATION HOLE SIZE 2" _____ GROUND WATER LEVELS: DRILLING CONTRACTOR GSG Consutlants DRILLING METHOD Geoprobe AT TIME OF DRILLING _---LOGGED BY _T. McNally CHECKED BY _____ AT END OF DRILLING ---AFTER DRILLING _---NOTES SAMPLE TYPE NUMBER GRAPHIC LOG BLOW COUNTS (N VALUE) PID (ppm) DEPTH (ft) MATERIAL DESCRIPTION WELL DIAGRAM 0 SILTY CLAY (CL-ML), BROWN & TAN, MOIST 347 SILTY CLAY (CL-ML), BLACK & GREYISH GREEN, MOIST, MODERATE TO STRONG PRETROLEUM ODOR 5 Bottom of hole at 5.0 feet.

Amec Foster Wheeler Environment & Infrastructure, Inc.

4232 N Brandywine Drive, Suite A

Peoria, IL 61614 Telephone: (309) 692-4422 Fax: 248-926-4009

BORING NUMBER 3160-10-03

CLIENT IDOT	PROJECT NAME WO 28 Benton				
PROJECT NUMBER 3160150049.028					
	GROUND SURFACE ELEVATION HOLE SIZE _2"				
DRILLING CONTRACTOR GSG Consuttants	_ GROUND WATER LEVELS:				
DRILLING METHOD Geoprobe					
LOGGED BY T. McNally CHECKED BY					
NOTES	AFTER ROULING				
SAMPLE TYPE NUMBER (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft)	TERIAL DESCRIPTION	WELL DIAGRAM			
SILTY CLAY (CL-ML), B	LACK AND BROWN, MOIST, FILL				
PETROLEUM ODOR TH	EEN, MOIST, SLIGHT TO MODERATE HROUGHOUT				

Amec Foster Wheeler Environment & Infrastructure, Inc.

4232 N Brandywine Drive, Suite A

Peoria, IL 61614 Telephone: (309) 692-4422 Fax: 248-926-4009

BORING NUMBER 3160-16-01

CLIEN	IT <u>IDOT</u>					PROJECT NAME WO 28 Benton			
						PROJECT LOCATION Benton, IL			
DATE	STARTE	D 10/31/1	7		COMPLETED <u>10/31/17</u>	GROUND SURFACE ELEVATION HOLE SIZE _2"			
DRILL	ING CON	TRACTOR	GSG	Consi	utlants	GROUND WATER LEVELS:			
						AT TIME OF DRILLING			
LOGG	ED BY	T. McNally			CHECKED BY	AT END OF DRILLING			
NOTE	s					AFTER DRILLING			
DEPTH (ft)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	PID (ppm)	GRAPHIC LOG	MAT	ERIAL DESCRIPTION	VELL DIAGRAM		
0 - 5			0 0		5.0	T ND, BROWN & TAN, MOIST tom of hole at 5.0 feet.			

Amec Foster Wheeler Environment & Infrastructure, Inc.

4232 N Brandywine Drive, Suite A

Peoria, IL 61614 Telephone: (309) 692-4422 Fax: 248-926-4009

BORING NUMBER 3160-16-02

	PROJECT NAME WO 28 Benton			
G Consutlants	GROUND WATER LEVELS:			
	AT TIME OF DRILLING			
CHECKED BY	AT END OF DRILLING			
	AFTER DRILLING			
U H C		WELL DIAGRAM		
SILT (ML) BROWN & 1	AN SLIGHTLY MOIST			
	ottom of hole at 5.0 feet.			
3	COMPLETED 10/31/17 CONSULTANTS CHECKED BY SILT (ML), BROWN & 1	PROJECT LOCATION Benton, IL COMPLETED 10/31/17 GROUND SURFACE ELEVATION GROUND WATER LEVELS: AT TIME OF DRILLING AFTER DRILLING AFTER DRILLING SILT (ML), BROWN & TAN, SLIGHTLY MOIST		

amec foster wheeler

ENVIRONMENTAL BH WO 28 BORING LOGS.GPJ GINT STD US.GDT 12/4/17

Amec Foster Wheeler Environment & Infrastructure, Inc. 4232 N Brandwine Drive, Suite A

4232 N Brandywine Drive, Suite A

Peoria, IL 61614 Telephone: (309) 692-4422 Fax: 248-926-4009 **BORING NUMBER 3160-16-03**

CLIEN	T IDOT						PROJECT NAME WO 28 Benton			
PROJ	ECT NUM	IBER _316	015004	9.028			PROJECT LOCATION Benton, IL			
							GROUND SURFACE ELEVATION _		2"	
DRILL	ING CON	ITRACTOR	GSG	Cons	utlants		GROUND WATER LEVELS:			
DRILL	ING MET	HOD Geo	probe				AT TIME OF DRILLING			
LOGG	ED BY	T. McNally			CHECKED BY		AT END OF DRILLING			
NOTE	s						AFTER DRILLING			
DEPTH (ft)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	PID (ppm)	GRAPHIC LOG		MAT	ERIAL DESCRIPTION	V	VELL DIAGRAM	
0				$\overline{\Box}$	0.5 SILT (N	ML), BROWN, MOIS	ST			
			0				N, FIRM, SLIGHTLY MOIST			
- 1			0							
 5					5.0					
			0		10	Bott	tom of hole at 5.0 feet.			

foster

ENVIRONMENTAL BH WO 28 BORING LOGS.GPJ GINT STD US.GDT 12/4/17

Amec Foster Wheeler Environment & Infrastructure, Inc.

4232 N Brandywine Drive, Suite A Peoria, IL 61614

Telephone: (309) 692-4422

BORING NUMBER 3160-16-04

PAGE 1 OF 1

wheeler Fax: 248-926-4009 CLIENT IDOT PROJECT NAME WO 28 Benton PROJECT NUMBER 3160150049.028 PROJECT LOCATION Benton, IL DATE STARTED 10/31/17 COMPLETED 10/31/17 GROUND SURFACE ELEVATION HOLE SIZE 2" _____ GROUND WATER LEVELS: DRILLING CONTRACTOR GSG Consutlants DRILLING METHOD Geoprobe AT TIME OF DRILLING _---LOGGED BY _T. McNally CHECKED BY _____ AT END OF DRILLING ---AFTER DRILLING _---NOTES SAMPLE TYPE NUMBER BLOW COUNTS (N VALUE) GRAPHIC LOG PID (ppm) DEPTH (ft) MATERIAL DESCRIPTION WELL DIAGRAM 0 SILT (ML), BLACK, MOIST 0 FINE SAND (SP), BROWN & TAN, MOIST 0 5 5.0 0 Bottom of hole at 5.0 feet.

amec foster

ENVIRONMENTAL BH WO 28 BORING LOGS.GPJ GINT STD US.GDT 12/4/17

Amec Foster Wheeler Environment & Infrastructure, Inc.

4232 N Brandywine Drive, Suite A Peoria, IL 61614
Telephone: (309) 692-4422

BORING NUMBER 3160-16-05

wheeler Fax: 248-926-4009	
CLIENT IDOT	PROJECT NAME WO 28 Benton
	PROJECT LOCATION Benton, IL
	7 GROUND SURFACE ELEVATION HOLE SIZE 2"
DRILLING CONTRACTOR GSG Consuttants	
	AT TIME OF DRILLING
	AT END OF DRILLING
NOTES	AFTER DRILLING
SAMPLE TYPE NUMBER NUMBER COUNTS (N VALUE) PID (ppm) GRAPHIC LOG	MATERIAL DESCRIPTION WELL DIAGRAM
0 SILT (ML), BLA	CK, MOIST
2.0	
SILT (ML), BRO	DWN & TAN, MOIST
_	
5 0	
	Bottom of hole at 5.0 feet.

Amec Foster Wheeler Environment & Infrastructure, Inc.

4232 N Brandywine Drive, Suite A Peoria. IL 61614

Peoria, IL 61614 Telephone: (309) 692-4422 Fax: 248-926-4009

BORING NUMBER 3160-21-01

CLIENT	r <u>IDOT</u>									
PROJE	CT NUM	IBER 3160								
							PROJECT LOCATION Benton, IL GROUND SURFACE ELEVATION	HOLE SIZE	2"	
DRILLI	NG CON	TRACTOR	GSG	Cons	utlants		GROUND WATER LEVELS:			
DRILLI	NG MET	HOD Geo	probe				AT TIME OF DRILLING			
LOGGE	ED BY	T. McNally			CHECKED BY		AT END OF DRILLING			
NOTES							AFTER DRILLING			
DEPTH (ft)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	PID (ppm)	GRAPHIC LOG			MATERIAL DESCRIPTION WELL DIAGRAM			
0	•				SII TY	CLAY (CL-ML), BR	OWN MOIST			
 5 -			0 0		5.0		com of hole at 5.0 feet.			
							Official States at 5.0 feet.			

Amec Foster Wheeler Environment & Infrastructure, Inc.

4232 N Brandywine Drive, Suite A Peoria. IL 61614

Peoria, IL 61614 Telephone: (309) 692-4422 Fax: 248-926-4009 **BORING NUMBER 3160-21-02**

CLIEN	T IDOT					PROJECT NAME WO 28 Benton			
			015004			PROJECT LOCATION Benton, IL			
						GROUND SURFACE ELEVATION		2"	
DRILL	ING CON	ITRACTOR	GSG	Cons	utlants	GROUND WATER LEVELS:			
DRILL	ING MET	HOD Geo	probe			AT TIME OF DRILLING			
LOGG	ED BY _	T. McNally			CHECKED BY	AT END OF DRILLING			
NOTE	s					AFTER DRILLING			
DEPTH (ft)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	PID (ppm)	GRAPHIC LOG	М	IATERIAL DESCRIPTION WELL DIAGRAM			
0			0		SILTY CLAY (CL-ML),	BROWN, MOIST			
			0						
			0						
5			0		5.0	Dattern of hole at 5.0 feet			
					ľ	Bottom of hole at 5.0 feet.			

Amec Foster Wheeler Environment & Infrastructure, Inc.

4232 N Brandywine Drive, Suite A

Peoria, IL 61614 Telephone: (309) 692-4422 Fax: 248-926-4009 **BORING NUMBER 3160-21-03**

CLIEN	T IDOT					PROJECT NAME WO 28 Benton			
			015004			PROJECT LOCATION Benton, IL			
						GROUND SURFACE ELEVATION		2"	
DRILL	ING CON	ITRACTOR	GSG	Cons	utlants	GROUND WATER LEVELS:			
DRILL	ING MET	HOD Geo	probe			AT TIME OF DRILLING			
LOGG	ED BY _	T. McNally			CHECKED BY	AT END OF DRILLING			
NOTE	s					AFTER DRILLING			
DEPTH (ft)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	PID (ppm)	GRAPHIC LOG	М	IATERIAL DESCRIPTION WELL DIAGRAM			
0			0		SILTY CLAY (CL-ML),	BROWN, MOIST			
			0						
			0						
5			0		5.0	Dattern of hole at 5.0 feet			
					ľ	Bottom of hole at 5.0 feet.			

Amec Foster Wheeler Environment & Infrastructure, Inc.

4232 N Brandywine Drive, Suite A

Peoria, IL 61614

Telephone: (309) 692-4422 Fax: 248-926-4009

BORING NUMBER 3160-21-04

12.11.00.0			240-32				
CLIEN	T IDOT	•					
PROJ	ECT NUM	IBER 316	015004	9.028		PROJECT LOCATION Benton, IL	
DATE	STARTE	D <u>11/2/17</u>			COMPLETED 11/2/17	GROUND SURFACE ELEVATION	HOLE SIZE 2"
DRILL	ING CON	ITRACTOR	GSG	Cons	utlants	GROUND WATER LEVELS:	
DRILL	ING MET	HOD Geo	probe			AT TIME OF DRILLING	
LOGG	ED BY	T. McNally			CHECKED BY		
		•				AFTER DRILLING	
о DEPTH (ft)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	PID (ppm)	GRAPHIC LOG		ERIAL DESCRIPTION	WELL DIAGRAM
					SILTY CLAY (CL-ML), BF	ROWN & TAN, MOIST	
			0				
			0				
- <u>-</u>							
5			0		5.0 Bot	tom of hole at 5.0 feet.	

Amec Foster Wheeler Environment & Infrastructure, Inc. 4232 N Brandywine Drive, Suite A

BORING NUMBER 3160-21-05

Peoria, IL 61614 Telephone: (309) 692-4422 Fax: 248-926-4009

CLIEN	T <u>IDOT</u>					PROJECT NAME WO 28 Benton			
PROJ	ECT NUM	IBER 316	015004	9.028		PROJECT LOCATION Benton, IL			
DATE	STARTE	D 11/2/17			COMPLETED 11/2/17	GROUND SURFACE ELEVATION	HOLE SIZE	2"	
					utlants				
					CHECKED BY				
NOTE	S					AFTER DRILLING			
O DEPTH (ft)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	PID (ppm)	GRAPHIC LOG		TERIAL DESCRIPTION	V	VELL DIAGRAM	
			0		SILTY CLAY (CL-ML), BF	ROWN & TAN, MOIST			
 - 5			0		5.0	ttom of hole at 5.0 feet.			

Amec Foster Wheeler Environment & Infrastructure, Inc.

4232 N Brandywine Drive, Suite A Peoria, IL 61614

Peoria, IL 61614 Telephone: (309) 692-4422 Fax: 248-926-4009 **BORING NUMBER 3160-21-06**

CLIEN	T IDOT						PROJECT NAME WO 28 Benton			
PROJE	ECT NUM	IBER 316	015004	9.028	}		PROJECT LOCATION Benton, IL			
							GROUND SURFACE ELEVATION	HOLE SIZE	2"	
DRILL	ING CON	TRACTOR	GSG	Cons	utlants		GROUND WATER LEVELS:			
DRILL	ING MET	HOD Geo	probe			_	AT TIME OF DRILLING			
LOGG	ED BY	T. McNally			CHECKED BY		AT END OF DRILLING			
NOTE	s						AFTER DRILLING			
о DEРТН (ft)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	PID (ppm)	GRAPHIC LOG		MATI	MATERIAL DESCRIPTION WELL DIAG			
0					SILTY	CLAY (CL-ML), BR	OWN, MOIST			
			0							
			0							
5			0		5.0					
						Bott	om of hole at 5.0 feet.			

Amec Foster Wheeler Environment & Infrastructure, Inc.

4232 N Brandywine Drive, Suite A

Peoria, IL 61614

Telephone: (309) 692-4422

BORING NUMBER 3160-21-07

PAGE 1 OF 1

wheeler Fax: 248-926-4009 CLIENT IDOT PROJECT NAME WO 28 Benton PROJECT NUMBER 3160150049.028 PROJECT LOCATION Benton, IL DATE STARTED 11/2/17 COMPLETED 11/2/17 GROUND SURFACE ELEVATION HOLE SIZE 2" GROUND WATER LEVELS: DRILLING CONTRACTOR GSG Consutlants DRILLING METHOD Geoprobe AT TIME OF DRILLING _---LOGGED BY _T. McNally CHECKED BY _____ AT END OF DRILLING ---AFTER DRILLING _---NOTES SAMPLE TYPE NUMBER GRAPHIC LOG PID (ppm) MATERIAL DESCRIPTION WELL DIAGRAM 0 SILTY CLAY (CL-ML), BROWN, MOIST 0 0 5 0 Bottom of hole at 5.0 feet.

Amec Foster Wheeler Environment & Infrastructure, Inc.

4232 N Brandywine Drive, Suite A

Telephone: (309) 692-4422 Fax: 248-926-4009

Peoria, IL 61614

BORING NUMBER 3160-21-08

			240-32					
CLIEN	IT <u>IDOT</u>							
PROJ	ECT NUM	IBER 316	015004	9.028		PROJECT LOCATION Benton, IL		
DATE	STARTE	D _11/2/17	•		COMPLETED 11/2/17	GROUND SURFACE ELEVATION	HOLE SIZE 2"	
DRILL	ING CON	ITRACTOR	GSG	Cons	utlants	GROUND WATER LEVELS:		
DRILL	ING MET	HOD Geo	probe			AT TIME OF DRILLING		
		-	•		CHECKED BY			
						AFTER DRILLING		
1						·		
о <u></u> ОЕРТН (ft)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	PID (ppm)	GRAPHIC LOG		ERIAL DESCRIPTION	WELL	DIAGRAM
					SILTY CLAY (CL-ML), BF	OWN, MOIST		
			0					
• -								
•			0					
5					5.0			
			0			tom of hole at 5.0 feet.		
			l .	1			1 1	

Amec Foster Wheeler Environment & Infrastructure, Inc. 4232 N Brandywine Drive, Suite A

Peoria, IL 61614
Telephone: (309) 692-4422
Fax: 248-926-4009

BORING NUMBER 3160-21-09

WITCO	.(6)	Fax:	248-92	26-400	9		
CLIEN	IT IDOT				PROJECT NAM	IE WO 28 Benton	
PROJ	ECT NUN	IBER 316	015004	19.028	PROJECT LOC	ATION Benton, IL	
DATE	STARTE	D 11/2/17	,		COMPLETED 11/2/17 GROUND SURF	FACE ELEVATION I	HOLE SIZE 2"
DRILL	ING CON	ITRACTOR	GSG	Cons	itlants GROUND WATI	ER LEVELS:	
DRILL	ING MET	HOD Geo	probe		AT TIME	OF DRILLING	
					CHECKED BY AT END (
	s					RILLING	
O DEPTH (ft)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	PID (ppm)	GRAPHIC LOG	MATERIAL DESCRIP		WELL DIAGRAM
					SILT (ML), TRACE F-M WHITE GRAVEL, E	BLACK, MOIST	
_			0		1.5 SILTY CLAY (CL-ML), BROWN, MOIST		_
			0				
5			0		5.0		
					Bottom of hole at 5.0	feet.	

Amec Foster Wheeler Environment & Infrastructure, Inc.

4232 N Brandywine Drive, Suite A

Peoria, IL 61614 Telephone: (309) 692-4422 Fax: 248-926-4009

BORING NUMBER 3160-21-10

	IT <u>IDOT</u>					PROJECT NAME WO 28 Benton				
						_ GROUND SURFACE ELEVATION	HOLE SIZE	2"		
					utlants					
					CHECKED BY					
NOTE	s					AFTER DRILLING				
O DEPTH (ft)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	PID (ppm)	GRAPHIC LOG		MATERIAL DESCRIPTION WELL DIAGRA				
			0			HITE GRAVEL, BLACK, MOIST				
 - 5			0		1.5 SILTY CLAY (CL-ML), BI 5.0 Bo	ROWN, MOIST				

Amec Foster Wheeler Environment & Infrastructure, Inc.

4232 N Brandywine Drive, Suite A

Peoria, IL 61614 Telephone: (309) 692-4422 Fax: 248-926-4009

BORING NUMBER 3160-23-01

CLIEN	IT IDOT					PROJECT NAME WO 28 Benton		
						PROJECT LOCATION Benton, IL		
						GROUND SURFACE ELEVATION		
					utlants			
LOGG	ED BY	T. McNally			CHECKED BY	AT END OF DRILLING		
O DEPTH (ft)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	PID (ppm)	GRAPHIC LOG	MAT	ATERIAL DESCRIPTION WELL DIAGRAM		
			0		GRAVEL, BLACK, MOIST 3.0 SILT (ML), BROWN & TA			
5			0		5.0 Bot	tom of hole at 5.0 feet.		

Amec Foster Wheeler Environment & Infrastructure, Inc.

4232 N Brandywine Drive, Suite A Peoria, IL 61614

Telephone: (309) 692-4422 Fax: 248-926-4009 **BORING NUMBER 3160-23-02**

01.154	 IDOT		240-32			DDO IFOT NAME IMO OO Dagtag			
						PROJECT LOCATION Benton, IL GROUND SURFACE ELEVATION HOLE SIZE 2"			
						GROUND WATER LEVELS:			
				'	CHECKED BY	AT END OF DRILLING			
NOTE	S					AFTER DRILLING			
O DEPTH (ft)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	PID (ppm)	GRAPHIC	MATER SILT (ML), BLACK, MOIST	RIAL DESCRIPTION	WELL DIAGRAM		
			0		SILT (IVIL), BLACK, IVIOIST				
 - 5			0		5.0	COAL CINDERS, BROWN & TAN, MOIST m of hole at 5.0 feet.			

Amec Foster Wheeler Environment & Infrastructure, Inc.

4232 N Brandywine Drive, Suite A

Peoria, IL 61614 Telephone: (309) 692-4422 Fax: 248-926-4009

BORING NUMBER 3160-25-01

CLIEN	T IDOT					PROJECT NAME WO 28 Benton					
			015004		}						
						GROUND SURFACE ELEVATION HOLE SIZE _2"					
						GROUND WATER LEVELS:					
		HOD Geo									
						AT END OF DRILLING					
						AFTER RRULING					
DEPTH (ft)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	PID (ppm)	GRAPHIC LOG	M.	TERIAL DESCRIPTION WELL DIAGRAM					
0 -			0			D BRICK FRAGMENTS, BLACK, MOIST, F	LL				
					1.5 SILT (ML), BROWN &T	AN, MOIST					
			0								
_ 5			0		5.0	Bottom of hole at 5.0 feet.					

Amec Foster Wheeler Environment & Infrastructure, Inc.

4232 N Brandywine Drive, Suite A Peoria, IL 61614

Peoria, IL 61614
Telephone: (309) 692-4422
Fax: 248-926-4009

BORING NUMBER 3160-25-02

Wilecter	rax.	248-92	26-400					
CLIENT IDC	Т			PROJECT NAME WO 28 Benton				
PROJECT NU	MBER 316	015004	9.028	PROJECT LOCATION Benton, IL				
DATE START	ED 10/31/1	7		COMPLETED _10/31/17 GROUND SURFACE ELEVATION	GROUND SURFACE ELEVATION HOLE SIZE _2"			
DRILLING CO	NTRACTOR	GSG	Consu	tlants GROUND WATER LEVELS:				
DRILLING ME	THOD Geo	probe		AT TIME OF DRILLING	AT TIME OF DRILLING			
LOGGED BY	T. McNally			CHECKED BY AT END OF DRILLING				
NOTES				AFTER DRILLING				
O DEPTH (ft) SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	PID (ppm)	GRAPHIC LOG	MATERIAL DESCRIPTION	WELL DIAGRAM			
0				SILT (ML), TRACE F-M WHITE GRAVEL, BLACK, MOIST				
		0		1.5				
		0		SILT (ML), BROWN & TAN, MOIST				
_								
5		0	ШШ	5.0				
				Bottom of hole at 5.0 feet.				
	1	1	1		1			

amec foster wheeler

ENVIRONMENTAL BH WO 28 BORING LOGS.GPJ GINT STD US.GDT 12/4/17

Amec Foster Wheeler Environment & Infrastructure, Inc.

4232 N Brandywine Drive, Suite A

Peoria, IL 61614
Telephone: (309) 692-4422
Fax: 248-926-4009

BORING NUMBER 3160-26-01

WITCELL	.1	rax:	248-92	20-400	9				
CLIENT IDOT									
PROJEC	CT NUM	IBER 316	015004	9.028		PROJECT LOCATION Benton, IL			
DATE S	TARTE	D 10/31/1	7		COMPLETED _10/31/17	GROUND SURFACE ELEVATION HOLE SIZE _2"			
DRILLIN	IG CON	TRACTOR	GSG	Consi	utlants	GROUND WATER LEVELS:			
DRILLIN	IG MET	HOD Geo	probe			AT TIME OF DRILLING			
LOGGE	D BY _	T. McNally			CHECKED BY	AT END OF DRILLING			
NOTES						AFTER DRILLING			
O DEPTH (ft)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)		GRAPHIC LOG		ERIAL DESCRIPTION	V	VELL DIAGRAM	
			0		\				
 5			0 0		SILT (ML), BROWN, MOI	tom of hole at 5.0 feet.			

Amec Foster Wheeler Environment & Infrastructure, Inc.

4232 N Brandywine Drive, Suite A

Peoria, IL 61614 Telephone: (309) 692-4422 Fax: 248-926-4009

BORING NUMBER 3160-26-02

	IT <u>IDO</u> T					PROJECT NAME WO 28 Benton				
						GROUND WATER LEVELS:				
					utlants					
					OUTOVED DV					
				—	CHECKED BY					
NOTE					I	AFTER DRILLING				
о DEРТН (ft)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	PID (ppm)	GRAPHIC LOG	MAT	ATERIAL DESCRIPTION WELL DIAGRAM				
			0		SILT (ML), BROWN, MOI	ST				
			0							
			0							
5			0		5.0					
			0		Во	ttom of hole at 5.0 feet.				

Amec Foster Wheeler Environment & Infrastructure, Inc.

4232 N Brandywine Drive, Suite A Peoria, IL 61614

Telephone: (309) 692-4422 Fax: 248-926-4009

BORING NUMBER 3160-28-01

			240-32						
CLIENT IDOT									
PROJ	ECT NUM	IBER 316	015004	9.028		PROJECT LOCATION Benton, IL			
DATE	STARTE	D 10/31/1	7		COMPLETED <u>10/31/17</u>	GROUND SURFACE ELEVATION HOLE SIZE _2"			
DRILL	ING CON	ITRACTOR	GSG	Cons	utlants	GROUND WATER LEVELS:			
			•		CHECKED BY				
11012						AFTER DRILLING			
о DEРТН (ft)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)		GRAPHIC LOG		ERIAL DESCRIPTION	V	VELL DIAGRAM	
			0		():	HITE GRAVEL, BLACK, MOIST			
 5			0		SILT (ML), BROWN & TA	tom of hole at 5.0 feet.			

Amec Foster Wheeler Environment & Infrastructure, Inc.

4232 N Brandywine Drive, Suite A

Peoria, IL 61614
Telephone: (309) 692-4422
Fax: 248-926-4009

BORING NUMBER 3160-28-02

WITCO	.(6)	Fax:	248-92	26- 4 00	19				
CLIENT IDOT						PROJECT NAME WO 28 Benton	1		
PROJ	ECT NUN	IBER 316	015004	9.028		PROJECT LOCATION Benton, IL			
DATE	STARTE	D 10/31/1	7		COMPLETED _10/31/17	GROUND SURFACE ELEVATION	E _2"		
DRILLING CONTRACTOR GSG Consuttants						GROUND WATER LEVELS:			
DRILLING METHOD Geoprobe						AT TIME OF DRILLING			
						AT END OF DRILLING			
	s					AFTER DRILLING			
O DEPTH	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	PID (ppm)	GRAPHIC LOG	М	ATERIAL DESCRIPTION		WELL DIAGRAM	
					SILT (ML), BROWN & T	TAN, MOIST			
_			0						
			0						
 5					5.0				
			0			Sottom of hole at 5.0 feet.			

amec foster wheeler

ENVIRONMENTAL BH WO 28 BORING LOGS.GPJ GINT STD US.GDT 12/4/17

Amec Foster Wheeler Environment & Infrastructure, Inc.

4232 N Brandywine Drive, Suite A

Peoria, IL 61614 Telephone: (309) 692-4422 Fax: 248-926-4009

BORING NUMBER 3160-28-03

CLIEN	IT IDOT					PROJECT NAME WO 28 Benton					
			015004								
						GROUND SURFACE ELEVATION HOLE SIZE _2"					
						GROUND WATER LEVELS:					
		HOD Geo									
						AT END OF DRILLING					
NOTE	s					AFTER DRILLING					
DEPTH (ft)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	PID (ppm)	GRAPHIC LOG	MA	ATERIAL DESCRIPTION	V	VELL DIAGRAM			
0 -			0		SILT (ML), TRACE COA	ARSE WHITE GRAVEL, BLACK, MOIST					
 			0		2.5 SILT (ML), BROWN & T	TAN, MOIST					
5_			0		5.0 B	ottom of hole at 5.0 feet.					

Amec Foster Wheeler Environment & Infrastructure, Inc.

4232 N Brandywine Drive, Suite A

Peoria, IL 61614
Telephone: (309) 692-4422
Fax: 248-926-4009

BORING NUMBER 3160-32-01

MIC	.(6)	rax.	248-92	20-400) S				
CLIENT IDOT									
PROJ	ECT NUN	IBER 316	015004	9.028		PROJECT LOCATION Benton, IL			
DATE	STARTE	D 10/31/1	7		COMPLETED 10/31/17	GROUND SURFACE ELEVATION HOLE SIZE _2"			
DRILLING CONTRACTOR GSG Consuttants						GROUND WATER LEVELS:			
DRILLING METHOD Geoprobe						AT TIME OF DRILLING			
						AT END OF DRILLING			
	s					AFTER DRILLING			
						<u> </u>			
o DEPTH (ff)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	PID (ppm)	GRAPHIC LOG	MA	TERIAL DESCRIPTION	V	VELL DIAGRAM	
					SILT (ML), BROWN, MO	IST			
_			0						
			0						
 5					5.0				
			0			ottom of hole at 5.0 feet.			

Amec Foster Wheeler Environment & Infrastructure, Inc.

4232 N Brandywine Drive, Suite A

Peoria, IL 61614 Telephone: (309) 692-4422 Fax: 248-926-4009

BORING NUMBER 3160-32-02

	IT <u>IDOT</u>					PROJECT NAME _WO 28 Benton				
						GROUND SURFACE ELEVATION	HOLE SIZE	2"		
					utlants					
					OUTOUTE DV					
					CHECKED BY	AT END OF DRILLING AFTER DRILLING				
NOIE					T	AFTER DRILLING	1			
O DEPTH (ft)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	PID (ppm)	GRAPHIC LOG	MAT	TERIAL DESCRIPTION WELL DIAGRAM				
			0		SILT (ML), BROWN & TA	N, MOIST				
_			0							
			0							
 5					5.0					
			0			ttom of hole at 5.0 feet.				

Amec Foster Wheeler Environment & Infrastructure, Inc. 4232 N Brandywine Drive, Suite A

BORING NUMBER 3160-32-03 PAGE 1 OF 1

Peoria, IL 61614 Telephone: (309) 692-4422 Fax: 248-926-4009

CLIEN	T IDOT					PROJECT NAME WO 28 Benton				
PROJI	ECT NUM	IBER _316	015004	9.028	3	PROJECT LOCATION Benton, IL				
						GROUND SURFACE ELEVATION	HOLE SIZE	2"		
						GROUND WATER LEVELS:				
		HOD Geo				AT TIME OF DRILLING				
					CHECKED BY	AT END OF DRILLING				
NOTE					I	AFTER DRILLING				
O DEPTH (ff)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	PID (ppm)	GRAPHIC LOG		MATERIAL DESCRIPTION WELL DIAGRAM				
			0		SILT (ML), BROWN	, MOIST				
_										
			0							
5			0		5.0	Bottom of hole at 5.0 feet.				

Amec Foster Wheeler Environment & Infrastructure, Inc.

4232 N Brandywine Drive, Suite A Peoria, IL 61614
Telephone: (309) 692-4422

BORING NUMBER 3160-32-04

wheel	er	Fax:	248-92	26-40C	09				
						PROJECT NAME WO 28 Benton			
PROJE	CT NUN	IBER 316	015004	9.028	3				
DATE S	STARTE	D 10/31/1	7				GROUND SURFACE ELEVATION	HOLE SIZE	2"
DRILLI	NG CON	TRACTOR	GSG	Cons	sutlants		GROUND WATER LEVELS:		
DRILLI	NG MET	HOD Geo	probe				AT TIME OF DRILLING		
LOGGE	ED BY	T. McNally			CHECKED BY		AT END OF DRILLING		
NOTES	S						AFTER DRILLING		
O DEPTH (ft)	O SILT (ML), BI						MATERIAL DESCRIPTION WELL DIAGRAM K & BROWN, MOIST		
 			0		SILT (ML), BROWN	I, MOI	ST		
5			0		5.0	Po	ttom of hole at 5.0 feet.		

Amec Foster Wheeler Environment & Infrastructure, Inc.

4232 N Brandywine Drive, Suite A

Peoria, IL 61614 Telephone: (309) 692-4422 Fax: 248-926-4009

BORING NUMBER 3160-32-05

CLIEN	IT IDOT					PROJECT NAME WO 28 Benton				
						PROJECT LOCATION Benton, IL				
						GROUND SURFACE ELEVATION				
DRILL	ING CON	TRACTOR	GSG	Cons	utlants	GROUND WATER LEVELS:				
LOGG	ED BY	T. McNally			CHECKED BY	AT END OF DRILLING				
O DEPTH (ft)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	PID (ppm)	GRAPHIC LOG	MAT	ERIAL DESCRIPTION	V	/ELL DIAGRAM		
			_		SILT (ML), BROWN, MO	ST				
-			0							
			0							
5			0		5.0					
					Во	ttom of hole at 5.0 feet.				

Amec Foster Wheeler Environment & Infrastructure, Inc.

4232 N Brandywine Drive, Suite A Peoria, IL 61614
Telephone: (309) 692-4422
Fax: 248-926-4009

BORING	NUMBER	3160	-32-	06
---------------	--------	------	------	----

	T IDOT					PROJECT NAME WO 28 Benton				
						GROUND SURFACE ELEVATION	HOLE SIZE	2"		
					utlants					
					CUECKED DV					
		I. MCINAlly			CHECKED BY	AT END OF DRILLING AFTER DRILLING				
NOIL			l			AFTER DRILLING				
о DEРТН (ft)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	PID (ppm)	GRAPHIC LOG	MA ⁻	TERIAL DESCRIPTION WELL DIAGRAM				
			0		SILTY CLAY (CL-ML), BI	ROWN & GREY, MOIST				
_			0							
			0							
5			0		5.0	ttom of hole at 5.0 feet.				
					50	atom of hole at 0.0 leet.				

Amec Foster Wheeler Environment & Infrastructure, Inc.

4232 N Brandywine Drive, Suite A

Peoria, IL 61614
Telephone: (309) 692-4422
Fax: 248-926-4009

BORING NUMBER 3160-32-07

	.(C)	Fax:	240-92	26-400	J9					
CLIEN	IT IDOT					PROJECT NAME WO 28 Benton				
PROJ	ECT NUN	IBER 316	015004	19.028		PROJECT LOCATION Benton, IL				
DATE	STARTE	D 11/21/1	7		COMPLETED 11/21/17	GROUND SURFACE ELEVATION	HOLE SIZE	2"		
DRILL	ING CON	ITRACTOR	AME	CFW		GROUND WATER LEVELS:				
DRILL	ING MET	HOD Han	d Auge	er		AT TIME OF DRILLING				
						AT END OF DRILLING				
	s						DRILLING			
O DEPTH (ft)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	PID (ppm)	GRAPHIC LOG		ATERIAL DESCRIPTION WELL DIAGRAM				
 5	5.0					ROWN & TAN, MOIST ottom of hole at 5.0 feet.				

Amec Foster Wheeler Environment & Infrastructure, Inc.

4232 N Brandywine Drive, Suite A

Peoria, IL 61614
Telephone: (309) 692-4422
Fax: 248-926-4009

BORING NUMBER 3160-36-01

WITCO	.(0)	Fax:	248-92	20-400	าล					
CLIEN	IT <u>IDOT</u>					PROJECT NAME WO 28 Benton				
PROJ	ECT NUM	IBER 316	015004	19.028		PROJECT LOCATION Benton, IL				
DATE	STARTE	D 11/2/17	•		COMPLETED 11/2/17	GROUND SURFACE ELEVATION	HOLE SIZE	2"		
DRILL	ING CON	ITRACTOR	GSG	Cons	utlants	_ GROUND WATER LEVELS:				
DRILL	ING MET	'HOD Geo	probe			AT TIME OF DRILLING				
						AT END OF DRILLING				
	s					AFTER DRILLING				
O DEPTH (ft)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	PID (ppm)	GRAPHIC LOG		MATERIAL DESCRIPTION WELL DIAGRAM				
					SILTY CLAY (CL-ML), E	BROWN & GREY, MOIST				
			0							
			0							
 5					5.0					
			0		В	ottom of hole at 5.0 feet.				

Amec Foster Wheeler Environment & Infrastructure, Inc.

Peoria, IL 61614
Telephone: (309) 692-4422
Fax: 248-926-4009

4232 N Brandywine Drive, Suite A

BORING NUMBER 3160-36-02

WITCO	.(0)	Fax:	248-92	20-400	าล					
CLIEN	IT <u>IDOT</u>					PROJECT NAME WO 28 Benton				
PROJ	ECT NUM	IBER 316	015004	19.028		PROJECT LOCATION Benton, IL				
DATE	STARTE	D 11/2/17	•		COMPLETED 11/2/17	GROUND SURFACE ELEVATION	HOLE SIZE	2"		
DRILL	ING CON	ITRACTOR	GSG	Cons	utlants	_ GROUND WATER LEVELS:				
DRILL	ING MET	'HOD Geo	probe			AT TIME OF DRILLING				
						AT END OF DRILLING				
	s					AFTER DRILLING				
O DEPTH (ft)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	PID (ppm)	GRAPHIC LOG		MATERIAL DESCRIPTION WELL DIAGRAM				
					SILTY CLAY (CL-ML), E	BROWN & GREY, MOIST				
			0							
			0							
 5					5.0					
			0		В	ottom of hole at 5.0 feet.				

Amec Foster Wheeler Environment & Infrastructure, Inc.

4232 N Brandywine Drive, Suite A Peoria, IL 61614

Telephone: (309) 692-4422 Fax: 248-926-4009

BORING NUMBER 3160-36-03 PAGE 1 OF 1

CLIENT IDOT PROJECT NAME WO 28 Benton PROJECT NUMBER 3160150049.028 PROJECT LOCATION Benton, IL DATE STARTED 11/2/17 COMPLETED 11/2/17 GROUND SURFACE ELEVATION HOLE SIZE 2" GROUND WATER LEVELS: DRILLING CONTRACTOR GSG Consutlants DRILLING METHOD Geoprobe AT TIME OF DRILLING _---LOGGED BY _T. McNally CHECKED BY _____ AT END OF DRILLING ---AFTER DRILLING _---NOTES SAMPLE TYPE NUMBER BLOW COUNTS (N VALUE) GRAPHIC LOG PID (ppm) MATERIAL DESCRIPTION WELL DIAGRAM 0 SILTY CLAY (CL-ML), BROWN & GREY, MOIST 0 0 5 0 Bottom of hole at 5.0 feet.

amec foster wheeler

ENVIRONMENTAL BH WO 28 BORING LOGS.GPJ GINT STD US.GDT 12/4/17

Amec Foster Wheeler Environment & Infrastructure, Inc.

4232 N Brandywine Drive, Suite A Peoria II 61614

Peoria, IL 61614 Telephone: (309) 692-4422 Fax: 248-926-4009 **BORING NUMBER 3160-36-04**

CLIEN	T IDOT					PROJECT NAME WO 28 Benton				
						PROJECT LOCATION Benton, IL				
						GROUND SURFACE ELEVATION		2"		
						GROUND WATER LEVELS:				
LOGG	ED BY	T. McNally			CHECKED BY	AT END OF DRILLING				
DEPTH (ft)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	PID (ppm)	GRAPHIC LOG	MA	ATERIAL DESCRIPTION WELL DIAGRAM				
0			_		SILTY CLAY (CL-ML), E	BROWN & GREY, MOIST				
			0							
			0							
5			0		5.0					
			o		В	ottom of hole at 5.0 feet.				

Amec Foster Wheeler Environment & Infrastructure, Inc.

4232 N Brandywine Drive, Suite A

Peoria, IL 61614 Telephone: (309) 692-4422 **BORING NUMBER 3160-36-05**

whee	ler	Fax:	248-92		9						
CLIEN	T <u>IDOT</u>						PROJECT NAME WO 28 Benton				
PROJI	ECT NUM	IBER <u>316</u>	015004	9.028			PROJECT LOCATION Benton, IL				
DATE	STARTE	D 11/2/17			COMPLETED	11/2/17	GROUND SURFACE ELEVATION	HOLE SIZE	2"		
DRILL	ING CON	TRACTOR	GSG	Cons	utlants		GROUND WATER LEVELS:				
DRILL	ING MET	HOD Geo	probe				AT TIME OF DRILLING				
		T. McNally			CHECKED BY		AT END OF DRILLING				
NOTE	s						AFTER DRILLING				
O DEPTH (ff)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	PID (ppm)	GRAPHIC LOG			ERIAL DESCRIPTION	V	VELL DIAGRAM		
- <u>-</u>			0			ML), BLACK, MOIS CLAY (CL-ML), BR	OWN & GREY, MOIST				
			0								
5			0		5.0	Bot	tom of hole at 5.0 feet.				

Amec Foster Wheeler Environment & Infrastructure, Inc.

4232 N Brandywine Drive, Suite A

Peoria, IL 61614 Telephone: (309) 692-4422 Fax: 248-926-4009

BORING NUMBER 3160-36-06

CLIEN	T IDOT					PROJECT NAME WO 28 Benton					
			015004			PROJECT LOCATION Benton, IL					
						GROUND SURFACE ELEVATION		2"			
DRILL	ING CON	TRACTOR	GSG	Cons	utlants	GROUND WATER LEVELS:					
DRILL	ING MET	HOD Geo	probe			AT TIME OF DRILLING					
LOGG	ED BY _	T. McNally			CHECKED BY	AT END OF DRILLING	AT END OF DRILLING				
NOTE	s					AFTER DRILLING	AFTER DRILLING				
, ОЕРТН (ft)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	PID (ppm)	GRAPHIC LOG	М	ATERIAL DESCRIPTION WELL DIAGRA					
0					SILTY CLAY (CL-ML),	BROWN & TAN, MOIST					
			0								
			0								
			U								
5			0		5.0						
					ŀ	Bottom of hole at 5.0 feet.					

Amec Foster Wheeler Environment & Infrastructure, Inc.

4232 N Brandywine Drive, Suite A

Peoria, IL 61614 Telephone: (309) 692-4422 Fax: 248-926-4009

BORING NUMBER 3160-36-07

CLIEN	T IDOT					PROJECT NAME WO 28 Benton				
						PROJECT LOCATION Benton, IL				
						GROUND SURFACE ELEVATION				
DRILL	ING CON	TRACTOR	GSG	Consi	utlants	GROUND WATER LEVELS:				
LOGG	ED BY	T. McNally			CHECKED BY	AT END OF DRILLING				
, DEPTH (ft)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	PID (ppm)	GRAPHIC LOG	M	ATERIAL DESCRIPTION WELL DIAGRAM				
0			_		SILTY CLAY (CL-ML),	TAN, MOIST				
			0							
_										
			0							
5			0		5.0					
						Bottom of hole at 5.0 feet.				

Amec Foster Wheeler Environment & Infrastructure, Inc.

4232 N Brandywine Drive, Suite A Peoria, IL 61614

Peoria, IL 61614
Telephone: (309) 692-4422
Fax: 248-926-4009

BORING NUMBER 3160-36-08

WITCO	.(6)	Fax:	248-9	26-400	19			
CLIEN	IT IDOT					PROJECT NAME WO 28 Benton		
PROJ	ECT NUN	IBER 316	015004	19.028		PROJECT LOCATION Benton, IL		
DATE	STARTE	D 11/2/17	•		COMPLETED 11/2/17	GROUND SURFACE ELEVATION	HOLE SIZE	2"
DRILL	ING CON	ITRACTOR	GSG	Cons	utlants	GROUND WATER LEVELS:		
DRILL	ING MET	HOD Geo	probe			AT TIME OF DRILLING		
						AT END OF DRILLING		
	s					AFTER DRILLING		
O DEPTH (ft)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	PID (ppm)	GRAPHIC LOG		ATERIAL DESCRIPTION	V	VELL DIAGRAM
			0		SILTY CLAY (CL-ML), E	BLACK & BROWN, MOIST		
			"					
			0					
5					5.0			
			0		В	ottom of hole at 5.0 feet.		

Amec Foster Wheeler Environment & Infrastructure, Inc.

4232 N Brandywine Drive, Suite A

Peoria, IL 61614 Telephone: (309) 692-4422 Fax: 248-926-4009

BORING NUMBER 3160-36-09

CLIEN	IT IDOT					PROJECT NAME WO 28 Benton		
			015004					
						GROUND SURFACE ELEVATION		2"
						GROUND WATER LEVELS:		
		HOD Geo						
						AT END OF DRILLING		
NOTE	s					AFTER DRILLING		
DEPTH (ft)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	PID (ppm)	GRAPHIC LOG	MA	TERIAL DESCRIPTION	V	VELL DIAGRAM
			0		SILT (ML), TRACE MED). WHITE GRAVEL, BLACK, MOIST		
			0		2.5 SILTY CLAY (CL-ML), B	ROWN, MOIST		
5			0		5.0 B	ottom of hole at 5.0 feet.		

Amec Foster Wheeler Environment & Infrastructure, Inc.

4232 N Brandywine Drive, Suite A

Peoria, IL 61614
Telephone: (309) 692-4422
Fax: 248-926-4009

BORING NUMBER 3160-36-10

WITCO	.(C)	Fax:	248-92	20-400	9		
CLIEN	IT IDOT	•			PROJECT NAME WO 28 Benton		
PROJ	ECT NUM	IBER 316	015004	9.028	PROJECT LOCATION Benton, IL		
DATE	STARTE	D 11/2/17	,		COMPLETED 11/2/17 GROUND SURFACE ELEVATION	HOLE SIZE 2"	
DRILL	ING CON	ITRACTOR	GSG	Cons	utlants GROUND WATER LEVELS:		
DRILL	ING MET	HOD Geo	probe		AT TIME OF DRILLING		
					CHECKED BY AT END OF DRILLING		
	s				AFTER DRILLING		
O DEPTH	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	PID (ppm)	GRAPHIC LOG	MATERIAL DESCRIPTION	WELL DIAGI	RAM
			_		SILT (ML), TRACE COARSE WHITE GRAVEL, BLACK, MOIST		
			0		1.5 SILTY CLAY (CL-ML), BROWN & GREY, MOIST		
			0		SILTY CLAY (CL-WIL), BROWN & GRET, MOIST		
 5					5.0		
			0		Bottom of hole at 5.0 feet.		

Amec Foster Wheeler Environment & Infrastructure, Inc.

4232 N Brandywine Drive, Suite A

Peoria, IL 61614 Telephone: (309) 692-4422 Fax: 248-926-4009

BORING NUMBER 3160-36-11

	IT <u>IDOT</u>					PROJECT NAME WO 28 Benton				
						PROJECT LOCATION Benton, IL				
DATE	STARTE	D 11/2/17	•		COMPLETED <u>11/2/17</u>	GROUND SURFACE ELEVATION	HOLE SIZE	2"		
					utlants					
LOGG	ED BY	T. McNally			CHECKED BY	AT END OF DRILLING				
NOTE	s					AFTER DRILLING				
о <u></u> (ft)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	PID (ppm)	GRAPHIC LOG	MAT	ERIAL DESCRIPTION	ELL DIAGRAM			
			0		1.0 SILT (ML), BLACK, MOIS					
			0		SILTY CLAY (CL-ML), BR	OWN & GREY, MOIST				
			0							
_										
5			0		5.0					
					Bot	tom of hole at 5.0 feet.				

amec foster wheeler

ENVIRONMENTAL BH WO 28 BORING LOGS.GPJ GINT STD US.GDT 12/4/17

Amec Foster Wheeler Environment & Infrastructure, Inc.

BORING NUMBER 3160-45-01

PAGE 1 OF 1

4232 N Brandywine Drive, Suite A Peoria, IL 61614

Telephone: (309) 692-4422 Fax: 248-926-4009

CLIEN	IT <u>IDOT</u>						PROJECT NAME WO 28 Benton		
PROJ	ECT NUN	IBER 316	015004	9.028			PROJECT LOCATION Benton, IL		
							GROUND SURFACE ELEVATION		
							GROUND WATER LEVELS:		
DRILL	ING MET	HOD Geo	probe				AT TIME OF DRILLING		
							AT END OF DRILLING		
DEPTH (ft)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	PID (ppm)	GRAPHIC LOG		MA	TERIAL DESCRIPTION	VELL DIAGRAM	
0					SILTY	CLAY (CL-ML) B	ROWN MOIST		
0			0 0 0		SILTY		ttom of hole at 10.0 feet.		

amec foster wheeler

ENVIRONMENTAL BH WO 28 BORING LOGS.GPJ GINT STD US.GDT 12/4/17

Amec Foster Wheeler Environment & Infrastructure, Inc.

4232 N Brandywine Drive, Suite A

Peoria, IL 61614 Telephone: (309) 692-4422 Fax: 248-926-4009

BORING NUMBER 3160-45-02

CLIEN	T IDOT					PROJECT NAME WO 28 Benton			
			015004			PROJECT LOCATION Benton, IL			
						GROUND SURFACE ELEVATION			
DRILL	ING CON	TRACTOR	GSG	Cons	utlants	GROUND WATER LEVELS:			
					CHECKED BY	AT END OF DRILLING			
NOTES	S					AFTER DRILLING			
DEPTH (ft)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	PID (ppm)	GRAPHIC LOG	MA	MATERIAL DESCRIPTION WELL DIAGRAM			
0			0		SILTY CLAY (CL-ML), E	BROWN, MOIST			
			0						
			0						
5			0						
10					10.0				
					В	ottom of hole at 10.0 feet.			

amec foster

ENVIRONMENTAL BH WO 28 BORING LOGS.GPJ GINT STD US.GDT 12/4/17

Amec Foster Wheeler Environment & Infrastructure, Inc.

4232 N Brandywine Drive, Suite A Peoria, IL 61614
Telephone: (309) 692-4422

BORING NUMBER 3160-45-03

wheel	er	Fax:	248-92	26-40C	09			
CLIEN	T IDOT					PROJECT NAME WO 28 Benton		
PROJE	CT NUM	IBER 316	015004	9.028	}	PROJECT LOCATION Benton, IL		
						GROUND SURFACE ELEVATION		2"
						GROUND WATER LEVELS:		
						AT END OF DRILLING		
	s					AFTER DRILLING		
O DEPTH (ft)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	PID (ppm)	GRAPHIC LOG		ATERIAL DESCRIPTION	V	VELL DIAGRAM
			0		SILTY CLAY (CL-ML),	BROWN, MOIST		
			0					
- 4								
5			0					
10					<u>∤10.0</u> B	ottom of hole at 10.0 feet.		

amec foster wheeler

ENVIRONMENTAL BH WO 28 BORING LOGS.GPJ GINT STD US.GDT 12/4/17

Amec Foster Wheeler Environment & Infrastructure, Inc.

BORING NUMBER 3160-45-04

PAGE 1 OF 1

4232 N Brandywine Drive, Suite A Peoria, IL 61614 Telephone: (309) 692-4422 Fax: 248-926-4009

Fax: 248-926-4	1009		
CLIENT IDOT		PROJECT NAME WO 28 Benton	
PROJECT NUMBER _3160150049.0	28	PROJECT LOCATION Benton, IL	
DATE STARTED 10/31/17		GROUND SURFACE ELEVATION H	OLE SIZE 2"
DRILLING CONTRACTOR GSG Co			
DRILLING METHOD Geoprobe			
		AT END OF DRILLING	
NOTES		AFTER DRILLING	
		AI TER BRILLING	
SAMPLE TYPE NUMBER COUNTS (N VALUE) PID (ppm) GRAPHIC		ERIAL DESCRIPTION	WELL DIAGRAM
0	SILTY CLAY (CL-ML) BRO	DWN, MOIST	
_			
0			
5 0			
_			
10	10.0		
	Botto	om of hole at 10.0 feet.	

Amec Foster Wheeler Environment & Infrastructure, Inc.

4232 N Brandywine Drive, Suite A

Peoria, IL 61614
Telephone: (309) 692-4422
Fax: 248-926-4009

BORING NUMBER 3160-50-01

WITCO		rax:	248-92	26-400		
CLIEN.	T <u>IDOT</u>				PROJECT NAME WO 28 Benton	
PROJE	ECT NUN	IBER 316	015004	9.028	PROJECT LOCATION Benton, IL	
DATE	STARTE	D 10/31/1	7		COMPLETED 10/31/17 GROUND SURFACE ELEVATION F	HOLE SIZE 2"
DRILLI	ING CON	ITRACTOR	GSG	Const	utlants GROUND WATER LEVELS:	
DRILLI	ING MET	HOD Geo				
					CHECKED BY AT END OF DRILLING	
NOTES	S				AFTER DRILLING	
о ОЕРТН (ft)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	PID (ppm)	GRAPHIC LOG	MATERIAL DESCRIPTION	WELL DIAGRAM
			0	XXX	1.0 SILT (ML), WITH MED-COARSE WHITE GRAVEL, BLACK, MOIST	
			0		SILTY CLAY (CL-ML), BROWN, MOIST	
			0			
5			_		5.0	
			0		Bottom of hole at 5.0 feet.	

amec foster wheeler

ENVIRONMENTAL BH WO 28 BORING LOGS.GPJ GINT STD US.GDT 12/4/17

Amec Foster Wheeler Environment & Infrastructure, Inc.

4232 N Brandywine Drive, Suite A

Peoria, IL 61614 Telephone: (309) 692-4422 Fax: 248-926-4009

BORING NUMBER 3160-50-02

CLIEN	T IDOT						PROJECT NAME WO 28 Benton			
PROJ	ECT NUM						PROJECT LOCATION Benton, IL			
							GROUND SURFACE ELEVATION		2"	
DRILL	ING CON	ITRACTOR	GSG	Cons	utlants		GROUND WATER LEVELS:			
DRILL	ING MET	HOD Geo	probe				AT TIME OF DRILLING			
LOGG	ED BY	T. McNally			CHECKED BY	·	AT END OF DRILLING			
NOTE	s						AFTER DRILLING			
O DEPTH (ft)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	PID (ppm)	GRAPHIC LOG		MAT	NATERIAL DESCRIPTION WELL DIAGRAM			
					1.0 SILT (I	ML), BLACK, MOIS	Т			
			0			CLAY (CL-ML), BF	ROWN, MOIST			
_]			0							
5			0		5.0		t			
						Bot	tom of hole at 5.0 feet.			

amec foster wheeler

ENVIRONMENTAL BH WO 28 BORING LOGS.GPJ GINT STD US.GDT 12/4/17

Amec Foster Wheeler Environment & Infrastructure, Inc.

4232 N Brandywine Drive, Suite A

Peoria, IL 61614 Telephone: (309) 692-4422 Fax: 248-926-4009

BORING NUMBER 3160-50-03

	T IDOT					PROJECT NAME WO 28 Benton			
						PROJECT LOCATION Benton, IL			
						GROUND SURFACE ELEVATION	HOLE SIZE	2"	
					utlants				
					OUEOVER RV				
					CHECKED BY				
NOTE						AFTER DRILLING			
O DEPTH (ft)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	PID (ppm)	GRAPHIC LOG	MAT	ERIAL DESCRIPTION	W	ELL DIAGRAM	
			0		1.0 SILT (ML), BLACK, MOIS				
					SILTY CLAY (CL-ML), BR	OWN, MOIST			
			0						
5			0		5.0	tom of hole at 5.0 feet.			
					Dot	ioni oi noie at 3.0 leet.			

Amec Foster Wheeler Environment & Infrastructure, Inc.

4232 N Brandywine Drive, Suite A

Peoria, IL 61614 Telephone: (309) 692-4422 Fax: 248-926-4009

BORING NUMBER 3160-51-01

CLIEN	IT IDOT					PROJECT NAME WO 28 Benton		
PROJ	ECT NUM	IBER _316	015004	9.028		PROJECT LOCATION Benton, IL		
DATE	STARTE	D 11/2/17			COMPLETED <u>11/2/17</u>	GROUND SURFACE ELEVATION	_ HOLE SIZE	2"
					utlants			
					CHECKED BY			
NOTE	S					AFTER DRILLING		
O DEPTH (ft)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	PID (ppm)	GRAPHIC LOG	MAT	TERIAL DESCRIPTION WELL DIAGRAM		
			0		SILTY CLAY (CL-ML), BR	OWN & GREY, MOIST		
			0					
5			0		5.0 Bot	tom of hole at 5.0 feet.		

Amec Foster Wheeler Environment & Infrastructure, Inc.

4232 N Brandywine Drive, Suite A Peoria, IL 61614
Telephone: (309) 692-4422

BORING NUMBER 3160-51-02

wheeler	Fax:	248-92	26-400	9			
CLIENT _I	DOT				PROJECT NAME WO 28 Benton		
PROJECT	NUMBER 316	015004	9.028				
DATE STA	RTED 11/2/17	,		COMPLETED 11/2/17	GROUND SURFACE ELEVATION	HOLE SIZE	2"
DRILLING	CONTRACTOR	GSG	Consu	utlants	GROUND WATER LEVELS:		
DRILLING	METHOD Geo	probe			AT TIME OF DRILLING		
LOGGED E	BY T. McNally		(CHECKED BY	AT END OF DRILLING		
NOTES _					AFTER DRILLING		
O DEPTH (ft) SAMPLE TYPE	BLOW COUNTS (N VALUE)	PID (ppm)	GRAPHIC		ATERIAL DESCRIPTION	V	VELL DIAGRAM
		0		, , , , , , , , , , , , , , , , , , , ,	BROWN & GREY, MOIST		
		0					
 5				5.0			
		0			Bottom of hole at 5.0 feet.		

Amec Foster Wheeler Environment & Infrastructure, Inc.

BORING NUMBER 3160-51-03
PAGE 1 OF 1

4232 N Brandywine Drive, Suite A Peoria, IL 61614

Wilee	ler	Fax:	248-92	26-400)9			
CLIEN.	T <u>IDOT</u>					PROJECT NAME WO 28 Benton		
PROJE	ECT NUM	IBER _316	015004	9.028		PROJECT LOCATION Benton, IL		
DATE:	STARTE	D 11/2/17			COMPLETED <u>11/2/17</u>	GROUND SURFACE ELEVATION	HOLE SIZE 2"	
DRILLI	ING CON	TRACTOR	GSG	Cons	utlants	_ GROUND WATER LEVELS:		
DRILLI	ING MET	HOD Geo	probe			AT TIME OF DRILLING		
					CHECKED BY			
NOTES	s					AFTER DRILLING		
O DEPTH	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	PID (ppm)	GRAPHIC LOG	MA	TERIAL DESCRIPTION	WELL DIAGRAM	
 5			0		SILT (ML), BLACK, MOI SILTY CLAY (CL-ML), B	ST ROWN & GREY, MOIST		
			0			ottom of hole at 5.0 feet.		

Amec Foster Wheeler Environment & Infrastructure, Inc.

4232 N Brandywine Drive, Suite A

Peoria, IL 61614 Telephone: (309) 692-4422 Fax: 248-926-4009

BORING NUMBER 3160-55-01

CLIEN	IT IDOT					PROJECT NAME WO 28 Benton				
			015004							
						GROUND SURFACE ELEVATION	HOLE SIZE	2"		
DRILL	ING CON	ITRACTOR	GSG	Cons	utlants	GROUND WATER LEVELS:				
DRILL	ING MET	HOD Geo	probe			AT TIME OF DRILLING				
LOGG	ED BY	T. McNally			CHECKED BY	AT END OF DRILLING				
NOTE	s					AFTER DRILLING				
о <u></u> (ft)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	PID (ppm)	GRAPHIC LOG	N	ATERIAL DESCRIPTION WELL DIAGRA				
-			_		SILTY CLAY (CL-ML),	BROWN, MOIST				
			0							
			0							
- 4										
5			0		5.0	Bottom of hole at 5.0 feet.				
						Bottom of noie at 5.0 feet.				

Amec Foster Wheeler Environment & Infrastructure, Inc.

4232 N Brandywine Drive, Suite A Peoria, IL 61614

Telephone: (309) 692-4422 Fax: 248-926-4009 **BORING NUMBER 3160-55-02**

17.1.1.0			240-32						
CLIEN	IT IDOT	•							
PROJ	ECT NUM	IBER 316	015004	19.028		PROJECT LOCATION Benton, IL			
DATE	STARTE	D <u>11/1/17</u>	•		COMPLETED 11/1/17	GROUND SURFACE ELEVATION	HOLE SIZE	2"	
DRILL	ING CON	ITRACTOR	GSG	Cons	utlants	GROUND WATER LEVELS:			
DRILL	ING MET	'HOD Geo	probe			AT TIME OF DRILLING			
LOGG	ED BY	T. McNally			CHECKED BY				
		•				AFTER DRILLING			
о DEPTH (ft)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	PID (ppm)	GRAPHIC LOG	MAT	ERIAL DESCRIPTION WELL DIAGRAM			
					1.0 SILT (ML), BLACK, MOIS	Т			
			0		SILTY CLAY (CL-ML), BF	OWN, MOIST			
			0						
 5					5.0				
			0			tom of hole at 5.0 feet.			
			1						

Amec Foster Wheeler Environment & Infrastructure, Inc.

4232 N Brandywine Drive, Suite A

Peoria, IL 61614 Telephone: (309) 692-4422 Fax: 248-926-4009

BORING NUMBER 3160-56-01

CLIEN	T IDOT						PROJECT NAME WO 28 Benton		
PROJI	ECT NUM						PROJECT LOCATION Benton, IL		
							GROUND SURFACE ELEVATION		2"
DRILL	ING CON	ITRACTOR	GSG	Cons	utlants		GROUND WATER LEVELS:		
DRILL	ING MET	HOD Geo	probe			_	AT TIME OF DRILLING		
LOGG	ED BY	T. McNally			CHECKED BY		AT END OF DRILLING		
NOTE	s						AFTER DRILLING		
O DEPTH (ft)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	PID (ppm)	GRAPHIC LOG		MAT	ERIAL DESCRIPTION	V	VELL DIAGRAM
			0		1.0 SILT (N	ML), BLACK, MOIS	Т		
			0			CLAY (CL-ML), BR	OWN, MOIST		
			0						
5			0		5.0	5.0			
						Boti	tom of hole at 5.0 feet.		

Amec Foster Wheeler Environment & Infrastructure, Inc.

4232 N Brandywine Drive, Suite A

Peoria, IL 61614 Telephone: (309) 692-4422 Fax: 248-926-4009

BORING NUMBER 3160-56-02

CLIEN'	T IDOT					PROJECT NAME WO 28 Benton					
		IBER _316	015004								
						GROUND SURFACE ELEVATION		2"			
						GROUND WATER LEVELS:					
		HOD Geo									
						AT END OF DRILLING	AT END OF DRILLING				
NOTES	S					AFTER DRILLING					
O DEPTH (ft)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	PID (ppm)	GRAPHIC LOG	M	ATERIAL DESCRIPTION	W	ELL DIAGRAM			
					SILT (ML), BLACK, MO	IST					
			0		SILTY CLAY (CL-ML), E	BROWN, MOIST					
			0								
5			0		5.0						
					E	ottom of hole at 5.0 feet.					

Amec Foster Wheeler Environment & Infrastructure, Inc.

4232 N Brandywine Drive, Suite A

Peoria, IL 61614 Telephone: (309) 692-4422 Fax: 248-926-4009

BORING NUMBER 3160-62-01

CLIEN	T IDOT					PROJECT NAME WO 28 Benton			
			015004			PROJECT LOCATION Benton, IL			
						GROUND SURFACE ELEVATION		2"	
DRILL	ING CON	TRACTOR	GSG	Consi	utlants	GROUND WATER LEVELS:			
LOGG	ED BY	T. McNally			CHECKED BY	AT END OF DRILLING			
NOTE	s					AFTER DRILLING			
O DEPTH (ft)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	PID (ppm)	GRAPHIC LOG	MAT	TERIAL DESCRIPTION	v	/ELL DIAGRAM	
			_		SILT (ML), BLACK, MOIS	ST			
_			0		SILTY CLAY (CL-ML), BF	ROWN & GREY, MOIST			
			0						
_									
5			0		5.0				
					Во	ttom of hole at 5.0 feet.			

Amec Foster Wheeler Environment & Infrastructure, Inc.

4232 N Brandywine Drive, Suite A Peoria II 61614

Peoria, IL 61614 Telephone: (309) 692-4422 Fax: 248-926-4009 **BORING NUMBER 3160-62-02**

CLIEN	T IDOT					PROJECT NAME WO 28 Benton					
PROJI	ECT NUN	IBER _316	015004								
						GROUND SURFACE ELEVATION		2"			
DRILL	ING CON	TRACTOR	GSG	Cons	utlants	_ GROUND WATER LEVELS:					
DRILL	ING MET	HOD Geo	probe			AT TIME OF DRILLING					
LOGG	ED BY	T. McNally			CHECKED BY	AT END OF DRILLING	AT END OF DRILLING				
NOTE	s					AFTER DRILLING					
O DEPTH (ft)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	PID (ppm)	GRAPHIC LOG	MA	ATERIAL DESCRIPTION WELL DIAGRAM					
			_	Ш	SILT (ML), BLACK, MOI	ST					
			0			ROWN & GREY, MOIST					
			0								
			0								
5			0		5.0						
					Β(ottom of hole at 5.0 feet.					

Amec Foster Wheeler Environment & Infrastructure, Inc.

4232 N Brandywine Drive, Suite A Peoria, IL 61614

Peoria, IL 61614 Telephone: (309) 692-4422 Fax: 248-926-4009 **BORING NUMBER 3160-62-03**

CLIEN	IT <u>IDOT</u>					PROJECT NAME WO 28 Benton	
PROJ	ECT NUN	IBER 3160	015004	9.028		PROJECT LOCATION Benton, IL	
DATE	STARTE	D 11/1/17				GROUND SURFACE ELEVATION	
					utlants		
					CHECKED BY		
	s					AFTER DRILLING	
DEPTH (ft)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	PID (ppm)	GRAPHIC LOG	MA	FERIAL DESCRIPTION	WELL DIAGRAM
0	0,			www		DOMAN & ODEN MOICE	
0 5			0 0		5.0	ttom of hole at 5.0 feet.	

amec foster

ENVIRONMENTAL BH WO 28 BORING LOGS.GPJ GINT STD US.GDT 12/4/17

Amec Foster Wheeler Environment & Infrastructure, Inc.

4232 N Brandywine Drive, Suite A

Peoria, IL 61614 Telephone: (309) 692-4422

BORING NUMBER 3160-62-04

whee	ler	Fax:	248-92	26-400	9					
CLIEN	T IDOT					PROJECT NAME WO 28 Benton				
PROJ	ECT NUM	IBER 316	015004	9.028		PROJECT LOCATION Benton, IL				
DATE	STARTE	D 11/1/17				GROUND SURFACE ELEVATION	HOLE SIZE	2"		
						GROUND WATER LEVELS:				
						AT TIME OF DRILLING				
					CHECKED BY					
	s					AFTER DRILLING				
O DEPTH (ft)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	PID (ppm)	GRAPHIC LOG		TERIAL DESCRIPTION	V	VELL DIAGRAM		
			0		SILT (ML), BROWN, MC	DIST				
			0		2.0					
			_		SILTY CLAY (CL-ML), B	ROWN & GREY, MOIST				
			0							
5					5.0					
			0			ottom of hole at 5.0 feet.				

Amec Foster Wheeler Environment & Infrastructure, Inc.

4232 N Brandywine Drive, Suite A Peoria, IL 61614

Peoria, IL 61614 Telephone: (309) 692-4422

BORING NUMBER 3160-62-05

whee	eler	Fax:	248-92	26-400)9					
CLIEN	IT <u>IDOT</u>					PROJECT NAME WO 28 Benton				
PROJ	ECT NUM	IBER 316	015004	9.028		PROJECT LOCATION Benton, IL				
DATE	STARTE	D _11/1/17			COMPLETED 11/1/17	GROUND SURFACE ELEVATION	HOLE SIZE	_2"		
DRILL	ING CON	ITRACTOR	GSG	Cons	utlants	GROUND WATER LEVELS:				
					CHECKED BY					
NOTE						AFTER DRILLING				
		w (ii)		O						
O DEPTH (ft)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	PID (ppm)	GRAPHIC LOG		MATERIAL DESCRIPTION	V	VELL DIAGRAM		
					SILTY CLAY (CL-ML),	BROWN & GREY, MOIST				
			0							
			_							
			0							
5			_		5.0					
			0		•	Bottom of hole at 5.0 feet.				

amec foster wheeler

ENVIRONMENTAL BH WO 28 BORING LOGS.GPJ GINT STD US.GDT 12/4/17

Amec Foster Wheeler Environment & Infrastructure, Inc.

4232 N Brandywine Drive, Suite A

Peoria, IL 61614 Telephone: (309) 692-4422 Fax: 248-926-4009

BORING NUMBER 3160-62-06

	IT <u>IDOT</u>				PROJECT NAME WO 28 Benton PROJECT LOCATION Benton, IL COMPLETED 11/1/17 GROUND SURFACE ELEVATION HOLE SIZE 2" GROUND WATER LEVELS AT TIME OF DRILLING AFTER DRILLING AFTER DRILLING AFTER DRILLING BOTTON WELL DIAGRAM MATERIAL DESCRIPTION WELL DIAGRAM MATERIAL DESCRIPTION WELL DIAGRAM BOTTON BENTON HOLE at 5.0 feet.			
								
							HOLE SIZE	2"
					CHECKED BY			
NOTE	s		T		T	AFTER DRILLING		
O DEPTH (ft)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	PID (ppm)	GRAPHIC LOG			W	ELL DIAGRAM
			0		11.0			
			0		SILTY CLAY (CL-ML), BI	ROWN, MOIST		
			0					
5			0					
					B0	ittom of hole at 5.0 feet.		

Amec Foster Wheeler Environment & Infrastructure, Inc.

4232 N Brandywine Drive, Suite A

Peoria, IL 61614
Telephone: (309) 692-4422
Fax: 248-926-4009

BORING NUMBER 3160-62-07

WITCO	.(0)	Fax:	248-92	20-4UL	าล			
CLIEN	IT <u>IDOT</u>					PROJECT NAME WO 28 Benton		
PROJ	ECT NUM	IBER 316	015004	19.028		PROJECT LOCATION Benton, IL		
DATE	STARTE	D <u>11/1/17</u>	,		COMPLETED 11/1/17	GROUND SURFACE ELEVATION	HOLE SIZE	2"
DRILL	ING CON	ITRACTOR	GSG	Cons	utlants	GROUND WATER LEVELS:		
DRILL	ING MET	HOD Geo	probe			AT TIME OF DRILLING		
LOGG	ED BY	T. McNally			CHECKED BY	AT END OF DRILLING		
	s					AFTER DRILLING		
O DEPTH (ft)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	PID (ppm)	GRAPHIC LOG		ATERIAL DESCRIPTION	V	VELL DIAGRAM
			0		SILTY CLAY (CL-ML), E	BROWN & GREY, MOIST		
			"					
			0					
5					5.0			
			0		В	ottom of hole at 5.0 feet.		

Amec Foster Wheeler Environment & Infrastructure, Inc.

4232 N Brandywine Drive, Suite A Peoria, IL 61614

Peoria, IL 61614 Telephone: (309) 692-4422 Fax: 248-926-4009 **BORING NUMBER 3160-62-08**

CLIEN	IT IDOT						PROJECT NAME WO 28 Benton		
PROJ	ECT NUN						PROJECT LOCATION Benton, IL		
							GROUND SURFACE ELEVATION	HOLE SIZE	2"
DRILL	ING CON	TRACTOR	GSG	Cons	utlants		GROUND WATER LEVELS:		
DRILL	ING MET	HOD Geo	probe				AT TIME OF DRILLING		
LOGG	ED BY	T. McNally			CHECKED BY		AT END OF DRILLING		
NOTE	s						AFTER DRILLING		
DЕРТН (ft)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	PID (ppm)	GRAPHIC LOG			ERIAL DESCRIPTION	V	VELL DIAGRAM
0	0)			anna.	CILTY	CLAV (CLANL) DD	OWN & GREY, MOIST		I
 5			0 0		5.0		com of hole at 5.0 feet.		
						Ви	om of note at 5.0 feet.		

Amec Foster Wheeler Environment & Infrastructure, Inc.

4232 N Brandywine Drive, Suite A

Peoria, IL 61614
Telephone: (309) 692-4422
Fax: 248-926-4009

BORING NUMBER 3160-62-09

WITCO	.(0)	Fax:	248-92	20-400	าล			
CLIEN	IT <u>IDOT</u>					PROJECT NAME WO 28 Benton		
PROJ	ECT NUN	IBER 316	015004	9.028		PROJECT LOCATION Benton, IL		
DATE	STARTE	D <u>11/1/17</u>	•		COMPLETED 11/1/17	GROUND SURFACE ELEVATION	HOLE SIZE	2"
DRILL	ING CON	ITRACTOR	GSG	Cons	utlants	GROUND WATER LEVELS:		
DRILL	ING MET	'HOD Geo	probe			AT TIME OF DRILLING		
						AT END OF DRILLING		
	s					AFTER DRILLING		
O DEPTH (ft)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	PID (ppm)	GRAPHIC LOG		TERIAL DESCRIPTION	v	VELL DIAGRAM
					SILT (ML), BROWN, MC	DIST		
			0					
			0					
					5.0			
5			0		5.0 Bo	ottom of hole at 5.0 feet.		

Amec Foster Wheeler Environment & Infrastructure, Inc.

4232 N Brandywine Drive, Suite A Peoria, IL 61614

Peoria, IL 61614 Telephone: (309) 692-4422 Fax: 248-926-4009 **BORING NUMBER 3160-62-10**

CLIEN	T IDOT					PROJECT NAME WO 28 Benton		
			015004			PROJECT LOCATION Benton, IL		
						GROUND SURFACE ELEVATION		2"
DRILL	ING CON	TRACTOR	GSG	Consi	utlants	GROUND WATER LEVELS:		
LOGG	ED BY	T. McNally			CHECKED BY	AT END OF DRILLING		
NOTE	s					AFTER DRILLING		
O DEPTH (ft)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	PID (ppm)	GRAPHIC LOG	MAT	TERIAL DESCRIPTION	v	/ELL DIAGRAM
			_		SILT (ML), BLACK, MOIS	ST		
_			0		SILTY CLAY (CL-ML), BF	ROWN & GREY, MOIST		
			0					
_								
5			0		5.0			
					Во	ttom of hole at 5.0 feet.		

Amec Foster Wheeler Environment & Infrastructure, Inc.

4232 N Brandywine Drive, Suite A

Peoria, IL 61614
Telephone: (309) 692-4422
Fax: 248-926-4009

BORING NUMBER 3160-64-01

WITCO	.(6)	Fax:	248-92	26-400	19			
CLIEN	IT <u>IDOT</u>					PROJECT NAME WO 28 Benton		
PROJ	ECT NUM	IBER 316	015004	9.028		PROJECT LOCATION Benton, IL		
DATE	STARTE	D _11/1/17	,		COMPLETED 11/1/17	GROUND SURFACE ELEVATION	HOLE SIZE	2"
						_ GROUND WATER LEVELS:		
					CHECKED BY			
	s					AFTER DRILLING		
	1							
O DEPTH (ft)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	PID (ppm)	GRAPHIC LOG	MA	TERIAL DESCRIPTION	v	/ELL DIAGRAM
			_		1.0 SILT (ML), BLACK, MOI	ST		
_			0		SILTY CLAY (CL-ML), B	ROWN, MOIST		
			0					
_ 5			0		{5.0 Bo	ottom of hole at 5.0 feet.		
	1		1	1			1	

Amec Foster Wheeler Environment & Infrastructure, Inc.

4232 N Brandywine Drive, Suite A Peoria, IL 61614
Telephone: (309) 692-4422
Fax: 248-926-4009

BORING N	UMBER 3	160-64-02
-----------------	---------	-----------

CLIEN	T IDOT					PROJECT NAME WO 28 Benton		
			015004			PROJECT LOCATION Benton, IL		
						GROUND SURFACE ELEVATION		2"
DRILL	ING CON	TRACTOR	GSG	Consi	utlants	GROUND WATER LEVELS:		
LOGG	ED BY	T. McNally			CHECKED BY	AT END OF DRILLING		
NOTE	s					AFTER DRILLING		
O DEPTH (ft)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	PID (ppm)	GRAPHIC LOG	MAT	TERIAL DESCRIPTION	v	/ELL DIAGRAM
			_		SILT (ML), BLACK, MOIS	ST		
_			0		SILTY CLAY (CL-ML), BF	ROWN & GREY, MOIST		
			0					
_								
5			0		5.0			
					Во	ttom of hole at 5.0 feet.		

Amec Foster Wheeler Environment & Infrastructure, Inc.

4232 N Brandywine Drive, Suite A

Peoria, IL 61614 Telephone: (309) 692-4422

BORING NUMBER 3160-64-03

whee	eler	Fax:	248-92	26-400	09			
CLIEN	IT IDOT					PROJECT NAME WO 28 Benton		
PROJ	ECT NUN	IBER 316	015004	9.028	;	PROJECT LOCATION Benton, IL		
DATE	STARTE	D 11/1/17				GROUND SURFACE ELEVATION	HOLE SIZE	2"
						GROUND WATER LEVELS:		
						AT END OF DRILLING		
	s					AFTER DRILLING		
o DEPTH (ft)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	PID (ppm)	GRAPHIC LOG		MATERIAL DESCRIPTION	V	VELL DIAGRAM
			0		1.0 SILT (ML), BLACK, M			
			U		SILT (ML), BROWN &	GREY, MOIST		
			0					
_]			0					
5			0		5.0			
			U			Bottom of hole at 5.0 feet.		

Appendix C – Laboratory Data

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Chicago 2417 Bond Street University Park, IL 60484 Tel: (708)534-5200

TestAmerica Job ID: 500-136509-1

Client Project/Site: IDOT - Benton - WO 028

For:

AMEC Foster Wheeler E & I, Inc 4232 Brandywine Drive Suite A Peoria, Illinois 61614

Attn: Mr. Terry Dixon

RILL KhyM

Authorized for release by: 11/10/2017 3:20:40 PM

Richard Wright, Senior Project Manager (708)534-5200

richard.wright@testamericainc.com

..... LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Detection Summary	4
Method Summary	8
Sample Summary	9
Client Sample Results	10
Definitions	34
QC Association	35
Surrogate Summary	41
QC Sample Results	43
Chronicle	57
Certification Summary	62
Chain of Custody	63
Receipt Checklists	64

3

4

Q

9

11

12

14

Case Narrative

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028 TestAmerica Job ID: 500-136509-1

Job ID: 500-136509-1

Laboratory: TestAmerica Chicago

Narrative

Job Narrative 500-136509-1

Comments

No additional comments.

Receipt

The samples were received on 10/31/2017 8:45 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 1.9° C.

GC/MS VOA

Method(s) 8260B: The following samples were diluted due to the abundance of non-target analytes: 3160-10-1 (0-2.5') (500-136509-3) and 3160-10-3 (0-2.5') (500-136509-6). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

GC Semi VOA

Method(s) 8082A: The following sample required a mercury clean-up, via EPA Method 3660A, to reduce matrix interferences caused by sulfur: 3160-9-3 (0-4') (500-136509-2). The reagent lot number used was: 165418.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

4

5

0

O

9

1 4

12

4 /

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-9-2 (0-4')

Lab Sample ID: 500-136509-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Antimony	0.41	J	1.2	0.23	mg/Kg		\$	6010B	Total/NA
Arsenic	6.5		0.60	0.20	mg/Kg	1	₩	6010B	Total/NA
Barium	84		0.60	0.068	mg/Kg	1	₩	6010B	Total/NA
Beryllium	0.44		0.24	0.056	mg/Kg	1	₩	6010B	Total/NA
Chromium	17		0.60	0.30	mg/Kg	1	₩	6010B	Total/NA
Cobalt	6.3		0.30	0.078	mg/Kg	1	₩	6010B	Total/NA
Copper	15	В	0.60	0.17	mg/Kg	1	₩	6010B	Total/NA
Iron	16000		10	5.3	mg/Kg	1	₩	6010B	Total/NA
Lead	11		0.30	0.14	mg/Kg	1	₩	6010B	Total/NA
Manganese	210	В	0.60	0.087	mg/Kg	1	Ċ.	6010B	Total/NA
Nickel	14		0.60	0.17	mg/Kg	1	₩	6010B	Total/NA
Vanadium	29		0.30	0.071	mg/Kg	1	₩	6010B	Total/NA
Zinc	48		1.2	0.53	mg/Kg	1	ф	6010B	Total/NA
Barium	0.51		0.50	0.050	mg/L	1		6010B	TCLP
Iron	0.21	J	0.40	0.20	mg/L	1		6010B	TCLP
Manganese	0.072		0.025	0.010	mg/L	1		6010B	TCLP
Nickel	0.019	J	0.025	0.010	mg/L	1		6010B	TCLP
Zinc	0.025	J	0.50	0.020	mg/L	1		6010B	TCLP
Mercury	0.015	J	0.019	0.0063	mg/Kg	1	₩.	7471B	Total/NA
pН	5.4	HF	0.2	0.2	SU	1		9045D	Total/NA

Client Sample ID: 3160-9-3 (0-4')

Lab Sample ID: 500-136509-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Typ
Acetone	0.021		0.016	0.0070	mg/Kg	1	₩	8260B	Total/NA
Anthracene	0.0084	J	0.038	0.0063	mg/Kg	1	₩	8270D	Total/NA
Benzo[a]anthracene	0.049		0.038	0.0051	mg/Kg	1	₩	8270D	Total/NA
Benzo[a]pyrene	0.052		0.038	0.0073	mg/Kg	1	₩	8270D	Total/NA
Benzo[b]fluoranthene	0.087		0.038	0.0082	mg/Kg	1	₩	8270D	Total/NA
Benzo[g,h,i]perylene	0.037	J	0.038	0.012	mg/Kg	1	₩	8270D	Total/NA
Benzo[k]fluoranthene	0.025	J	0.038	0.011	mg/Kg	1	₩	8270D	Total/NA
Chrysene	0.073		0.038	0.010	mg/Kg	1	₩	8270D	Total/NA
Fluoranthene	0.077		0.038	0.0070	mg/Kg	1	₩	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	0.027	J	0.038	0.0098	mg/Kg	1	₩	8270D	Total/NA
2-Methylnaphthalene	0.042	J	0.076	0.0070	mg/Kg	1	₩	8270D	Total/NA
Naphthalene	0.023	J	0.038	0.0058	mg/Kg	1	₩	8270D	Total/NA
Phenanthrene	0.070		0.038	0.0053	mg/Kg	1	₩	8270D	Total/NA
Pyrene	0.069		0.038	0.0075	mg/Kg	1	₩	8270D	Total/NA
Antimony	0.48	J	1.2	0.23	mg/Kg	1	₩	6010B	Total/NA
Arsenic	6.6		0.58	0.20	mg/Kg	1	₩	6010B	Total/NA
Barium	93		0.58	0.066	mg/Kg	1	₩	6010B	Total/NA
Beryllium	0.45		0.23	0.054	mg/Kg	1	₩	6010B	Total/NA
Cadmium	0.37	В	0.12	0.021	mg/Kg	1	₩	6010B	Total/NA
Chromium	16		0.58	0.29	mg/Kg	1	₩	6010B	Total/NA
Cobalt	7.3		0.29	0.076	mg/Kg	1	₩	6010B	Total/NA
Copper	16	В	0.58	0.16	mg/Kg	1	₩.	6010B	Total/NA
Iron	15000		11	5.8	mg/Kg	1	₩	6010B	Total/NA
Lead	46		0.29	0.13	mg/Kg	1	₩	6010B	Total/NA
Manganese	210	В	0.58	0.084	mg/Kg	1	₩.	6010B	Total/NA
Nickel	14		0.58	0.17	mg/Kg	1	₩	6010B	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Chicago

11/10/2017

Page 4 of 64

6

1

5

7

9

10

12

4 4

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-9-3 (0-4') (Continued)

Lab Sample ID: 500-136509-2

Analyte	Result Q	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Vanadium	26		0.29	0.069	mg/Kg		₩	6010B	Total/NA
Zinc	96		1.2	0.51	mg/Kg	1	₩.	6010B	Total/NA
Barium	0.67		0.50	0.050	mg/L	1		6010B	TCLP
Cadmium	0.0020 J	0	.0050	0.0020	mg/L	1		6010B	TCLP
Copper	0.011 J		0.025	0.010	mg/L	1		6010B	TCLP
Manganese	0.030		0.025	0.010	mg/L	1		6010B	TCLP
Mercury	0.049		0.017	0.0057	mg/Kg	1	₩	7471B	Total/NA
pH	7.6 H		0.2	0.2	SU	1		9045D	Total/NA

Client Sample ID: 3160-10-1 (0-2.5')

Lab Sample ID: 500-136509-3

onent Gample 15. 5100	(0 =10)								00-100003-
- Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	0.65		0.021	0.012	mg/Kg	50	₩	8260B	Total/NA
Ethylbenzene	0.52		0.021	0.015	mg/Kg	50	₩	8260B	Total/NA
Toluene	0.22		0.021	0.012	mg/Kg	50	₩	8260B	Total/NA
Trichloroethene	0.022	J	0.041	0.014	mg/Kg	50	₩	8260B	Total/NA
Xylenes, Total	2.6		0.041	0.018	mg/Kg	50	₩	8260B	Total/NA
Benzo[a]anthracene	0.0086	J	0.040	0.0054	mg/Kg	1	₩	8270D	Total/NA
2,4-Dimethylphenol	0.21	J	0.40	0.15	mg/Kg	1	₩	8270D	Total/NA
Fluoranthene	0.019	J	0.040	0.0075	mg/Kg	1	₩	8270D	Total/NA
Fluorene	0.0096	J	0.040	0.0057	mg/Kg	1	₩	8270D	Total/NA
2-Methylnaphthalene	0.63		0.081	0.0074	mg/Kg	1	ф	8270D	Total/NA
Naphthalene	0.37		0.040	0.0062	mg/Kg	1	₩	8270D	Total/NA
Phenanthrene	0.023	J	0.040	0.0056	mg/Kg	1	₩	8270D	Total/NA
Pyrene	0.018	J	0.040	0.0080	mg/Kg	1	₩	8270D	Total/NA
Antimony	0.48	J	1.2	0.23	mg/Kg	1	₩	6010B	Total/NA
Arsenic	7.8		0.59	0.20	mg/Kg	1	₩	6010B	Total/NA
Barium	84		0.59	0.067	mg/Kg	1	ψ	6010B	Total/NA
Beryllium	0.38		0.24	0.055	mg/Kg	1	₩	6010B	Total/NA
Chromium	17		0.59	0.29	mg/Kg	1	₩	6010B	Total/NA
Cobalt	6.8		0.30	0.078	mg/Kg	1	Φ.	6010B	Total/NA
Copper	16	В	0.59	0.17	mg/Kg	1	₩	6010B	Total/NA
Iron	18000		11	5.9	mg/Kg	1	₩	6010B	Total/NA
Lead	14		0.30	0.14	mg/Kg	1	₩.	6010B	Total/NA
Manganese	210	В	0.59	0.086	mg/Kg	1	₩	6010B	Total/NA
Nickel	14		0.59	0.17	mg/Kg	1	₩	6010B	Total/NA
Vanadium	30		0.30	0.070	mg/Kg	1	ф	6010B	Total/NA
Zinc	56		1.2	0.52	mg/Kg	1	₩	6010B	Total/NA
Barium	0.66		0.50	0.050	mg/L	1		6010B	TCLP
Copper	0.020	J	0.025	0.010	mg/L	1		6010B	TCLP
Iron	3.0		0.40	0.20	mg/L	1		6010B	TCLP
Manganese	3.0		0.025	0.010	mg/L	1		6010B	TCLP
Zinc	0.035	J	0.50	0.020	mg/L	1		6010B	TCLP
Manganese	0.34		0.025	0.010	mg/L	1		6010B	SPLP East
Mercury	0.020		0.018	0.0061	-	1	₩	7471B	Total/NA
pH	5.4	HF	0.2	0.2	SU	1		9045D	Total/NA

Client Sample ID: 3160-10-2 (0-2.5')

Lab Sample ID: 500-136509-4

This Detection Summary does not include radiochemical test results.

TestAmerica Chicago

11/10/2017

Page 5 of 64

4

6

8

9

- -

12

14

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-10-2 (0-2.5') (Continued)

Lab Sample ID: 500-136509-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Antimony	0.27	J	1.1	0.22	mg/Kg		₩	6010B	Total/NA
Arsenic	7.7		0.57	0.20	mg/Kg	1	₩	6010B	Total/NA
Barium	130		0.57	0.065	mg/Kg	1	₩	6010B	Total/NA
Beryllium	0.35		0.23	0.053	mg/Kg	1		6010B	Total/NA
Chromium	20		0.57	0.28	mg/Kg	1	₩	6010B	Total/NA
Cobalt	6.0		0.29	0.075	mg/Kg	1	₩	6010B	Total/NA
Copper	18	В	0.57	0.16	mg/Kg	1	ф.	6010B	Total/NA
Iron	20000		9.9	5.2	mg/Kg	1	₩	6010B	Total/NA
Lead	12		0.29	0.13	mg/Kg	1	₩	6010B	Total/NA
Manganese	210	В	0.57	0.083	mg/Kg	1	Ċ.	6010B	Total/NA
Nickel	13		0.57	0.17	mg/Kg	1	₩	6010B	Total/NA
Vanadium	33		0.29	0.067	mg/Kg	1	₩	6010B	Total/NA
Zinc	53		1.1	0.50	mg/Kg	1	Ċ.	6010B	Total/NA
Barium	0.096	J	0.50	0.050	mg/L	1		6010B	TCLP
Copper	0.081		0.025	0.010	mg/L	1		6010B	TCLP
Iron	0.21	J	0.40	0.20	mg/L	1		6010B	TCLP
Manganese	0.066		0.025	0.010	mg/L	1		6010B	TCLP
Zinc	0.081	J	0.50	0.020	mg/L	1		6010B	TCLP
Mercury	0.018		0.018	0.0061	mg/Kg	1	₩	7471B	Total/NA
рH	4.8	HF	0.2	0.2	SU	1		9045D	Total/NA

Client Sample ID: 3160-9-1 (0-4.0')

Lab Sample ID: 500-136509-5

	100 0 1 (0 110)								
- Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	0.021		0.019	0.0082	mg/Kg		₩	8260B	Total/NA
Antimony	0.32	J	1.2	0.23	mg/Kg	1	₩	6010B	Total/NA
Arsenic	6.2		0.60	0.20	mg/Kg	1	₩	6010B	Total/NA
Barium	78		0.60	0.068	mg/Kg	1	₩.	6010B	Total/NA
Beryllium	0.27		0.24	0.056	mg/Kg	1	₩	6010B	Total/NA
Chromium	16		0.60	0.29	mg/Kg	1	₩	6010B	Total/NA
Cobalt	4.8		0.30		mg/Kg	1	₩.	6010B	Total/NA
Copper	13	В	0.60		mg/Kg	1	₩	6010B	Total/NA
Iron	16000		11		mg/Kg	1	₩	6010B	Total/NA
Lead	9.6		0.30		mg/Kg	1	ф	6010B	Total/NA
Manganese	150	В	0.60	0.086	mg/Kg	1	₩	6010B	Total/NA
Nickel	9.5		0.60	0.17	mg/Kg	1	₩	6010B	Total/NA
Vanadium	30		0.30	0.070	mg/Kg	1	₩.	6010B	Total/NA
Zinc	31		1.2		mg/Kg	1	₩	6010B	Total/NA
Barium	0.48	J	0.50	0.050	mg/L	1		6010B	TCLP
Copper	0.031		0.025	0.010	mg/L	1		6010B	TCLP
Manganese	0.28		0.025	0.010	mg/L	1		6010B	TCLP
Nickel	0.012	J	0.025	0.010	mg/L	1		6010B	TCLP
Zinc	0.078	J	0.50	0.020	mg/L	1		6010B	TCLP
Manganese	0.21		0.025	0.010	-	1		6010B	SPLP East
Mercury	0.011	J	0.018		mg/Kg	1	₽	7471B	Total/NA
pH	4.6	HF	0.2		SU	1		9045D	Total/NA

Client Sample ID: 3160-10-3 (0-2.5')

Lab Sample ID: 500-136509-6

This Detection Summary does not include radiochemical test results.

Page 6 of 64

Detection Summary

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136509-1

Client Sample ID: 3160-10-3 (0-2.5') (Continued)

Lab Sample ID: 500-136509-6

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Phenanthrene	0.0064	J	0.041	0.0057	mg/Kg		₩	8270D	Total/NA
Antimony	0.30	J	1.2	0.23	mg/Kg	1	₩	6010B	Total/NA
Arsenic	9.2		0.58	0.20	mg/Kg	1	₩	6010B	Total/NA
Barium	110		0.58	0.066	mg/Kg	1	₩	6010B	Total/NA
Beryllium	0.42		0.23	0.054	mg/Kg	1	₩	6010B	Total/NA
Cadmium	0.022	JB	0.12	0.021	mg/Kg	1	₩	6010B	Total/NA
Chromium	21		0.58	0.29	mg/Kg	1	₩	6010B	Total/NA
Cobalt	8.3		0.29	0.076	mg/Kg	1	₩	6010B	Total/NA
Copper	16	В	0.58	0.16	mg/Kg	1	₩	6010B	Total/NA
Iron	19000		13	6.5	mg/Kg	1	₽	6010B	Total/NA
Lead	16		0.29	0.13	mg/Kg	1	₩	6010B	Total/NA
Manganese	250	В	0.58	0.084	mg/Kg	1	₩	6010B	Total/NA
Nickel	13		0.58	0.17	mg/Kg	1	Þ	6010B	Total/NA
Vanadium	35		0.29	0.068	mg/Kg	1	₩	6010B	Total/NA
Zinc	64		1.2	0.51	mg/Kg	1	₩	6010B	Total/NA
Barium	1.4		0.50	0.050	mg/L	1		6010B	TCLP
Cadmium	0.0022	J	0.0050	0.0020	mg/L	1		6010B	TCLP
Cobalt	0.026		0.025	0.010	mg/L	1		6010B	TCLP
Copper	0.042		0.025	0.010	mg/L	1		6010B	TCLP
Iron	7.6		0.40	0.20	mg/L	1		6010B	TCLP
Manganese	4.1		0.025	0.010	mg/L	1		6010B	TCLP
Nickel	0.019	J	0.025	0.010	mg/L	1		6010B	TCLP
Zinc	0.14	J	0.50	0.020	mg/L	1		6010B	TCLP
Iron	88		0.20	0.20	mg/L	1		6010B	SPLP East
Manganese	0.61		0.025	0.010	mg/L	1		6010B	SPLP East
Mercury	0.024		0.021	0.0068	mg/Kg	1	₩	7471B	Total/NA
pН	8.2	HF	0.2	0.2	SU	1		9045D	Total/NA

This Detection Summary does not include radiochemical test results.

Method Summary

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136509-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL CHI
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL CHI
8082A	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	TAL CHI
6010B	Metals (ICP)	SW846	TAL CHI
6010B	SPLP Metals	SW846	TAL CHI
6020A	Metals (ICP/MS)	SW846	TAL CHI
7470A	TCLP Mercury	SW846	TAL CHI
7471B	Mercury (CVAA)	SW846	TAL CHI
9045D	pH	SW846	TAL CHI
Moisture	Percent Moisture	EPA	TAL CHI

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CHI = TestAmerica Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

3

4

5

_

۶

9

TU

46

13

14

Sample Summary

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136509-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
500-136509-1	3160-9-2 (0-4')	Solid	10/30/17 13:05	
500-136509-2	3160-9-3 (0-4')	Solid	10/30/17 13:20	
500-136509-3	3160-10-1 (0-2.5')	Solid	10/30/17 13:35	10/31/17 08:45
500-136509-4	3160-10-2 (0-2.5')	Solid	10/30/17 13:50	10/31/17 08:45
500-136509-5	3160-9-1 (0-4.0')	Solid	10/30/17 14:00	10/31/17 08:45
500-136509-6	3160-10-3 (0-2.5')	Solid	10/30/17 14:20	10/31/17 08:45

2

4

6

Q

9

10

10

13

14

Lab Sample ID: 500-136509-1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-9-2 (0-4')

Date Collected: 10/30/17 13:05

Matrix: Solid

Date Received: 10/31/17 08:45

Percent Solids: 82.1

Method: 8260B - Volatile Organic Compounds (GC/MS) RL **MDL** Unit Dil Fac Analyte Result Qualifier D Prepared Analyzed ₹ Acetone <0.020 0.020 0.0085 mg/Kg 10/31/17 15:36 11/02/17 16:29 Benzene <0.0020 0.0020 0.00050 mg/Kg 10/31/17 15:36 11/02/17 16:29 1 Bromodichloromethane < 0.0020 0.0020 0.00040 mg/Kg 10/31/17 15:36 11/02/17 16:29 Bromoform <0.0020 0.0020 0.00057 mg/Kg 10/31/17 15:36 11/02/17 16:29 Bromomethane <0.0049 0.0049 0.0019 mg/Kg 10/31/17 15:36 11/02/17 16:29 2-Butanone (MEK) < 0.0049 0.0049 0.0022 mg/Kg 10/31/17 15:36 11/02/17 16:29 1 Carbon disulfide < 0.0049 0.0049 0.0010 mg/Kg 10/31/17 15:36 11/02/17 16:29 Carbon tetrachloride <0.0020 0.0020 0.00057 mg/Kg 10/31/17 15:36 11/02/17 16:29 Chlorobenzene 0.0020 0.00072 mg/Kg 10/31/17 15:36 11/02/17 16:29 < 0.0020 Chloroethane < 0.0049 0.0049 0.0015 mg/Kg 10/31/17 15:36 11/02/17 16:29 Chloroform 0.00068 mg/Kg <0.0020 0.0020 10/31/17 15:36 11/02/17 16:29 0.0049 0.0020 Chloromethane < 0.0049 mg/Kg 10/31/17 15:36 11/02/17 16:29 cis-1,2-Dichloroethene 0.0020 0.00055 mg/Kg 10/31/17 15:36 11/02/17 16:29 < 0.0020 0.00059 10/31/17 15:36 11/02/17 16:29 cis-1,3-Dichloropropene <0.0020 0.0020 mg/Kg 10/31/17 15:36 11/02/17 16:29 Dibromochloromethane <0.0020 0.0020 0.00064 mg/Kg 1.1-Dichloroethane < 0.0020 0.0020 0.00067 mg/Kg 10/31/17 15:36 11/02/17 16:29 10/31/17 15:36 11/02/17 16:29 1.2-Dichloroethane < 0.0049 0.0049 0.0015 mg/Kg 1,1-Dichloroethene <0.0020 0.0020 0.00067 mg/Kg 10/31/17 15:36 11/02/17 16:29 0.0020 0.00051 mg/Kg 10/31/17 15:36 11/02/17 16:29 1,2-Dichloropropane < 0.0020 1,3-Dichloropropene, Total <0.0020 0.0020 0.00069 mg/Kg 10/31/17 15:36 11/02/17 16:29 Ethylbenzene < 0.0020 0.0020 0.00094 mg/Kg 10/31/17 15:36 11/02/17 16:29 0.0015 mg/Kg 10/31/17 15:36 11/02/17 16:29 2-Hexanone < 0.0049 0.0049 Methylene Chloride < 0.0049 0.0049 0.0019 ma/Ka 10/31/17 15:36 11/02/17 16:29 4-Methyl-2-pentanone (MIBK) < 0.0049 0.0049 0.0015 mg/Kg 10/31/17 15:36 11/02/17 16:29 Methyl tert-butyl ether < 0.0020 0.0020 0.00058 mg/Kg 10/31/17 15:36 11/02/17 16:29 10/31/17 15:36 11/02/17 16:29 Styrene <0.0020 0.0020 0.00059 mg/Kg 1,1,2,2-Tetrachloroethane <0.0020 0.0020 0.00063 mg/Kg 10/31/17 15:36 11/02/17 16:29 Tetrachloroethene 0.0020 0.00067 mg/Kg 10/31/17 15:36 11/02/17 16:29 <0.0020 Toluene <0.0020 0.0020 0.00050 mg/Kg 10/31/17 15:36 11/02/17 16:29 trans-1,2-Dichloroethene < 0.0020 0.0020 0.00087 mg/Kg 10/31/17 15:36 11/02/17 16:29 trans-1,3-Dichloropropene < 0.0020 0.0020 0.00069 mg/Kg 10/31/17 15:36 11/02/17 16:29 1.1.1-Trichloroethane < 0.0020 0.0020 0.00066 mg/Kg 10/31/17 15:36 11/02/17 16:29 1,1,2-Trichloroethane <0.0020 0.0020 0.00084 mg/Kg 10/31/17 15:36 11/02/17 16:29 Trichloroethene <0.0020 0.0020 0.00066 mg/Kg 10/31/17 15:36 11/02/17 16:29 Vinyl acetate 0.0049 0.0017 mg/Kg 10/31/17 15:36 11/02/17 16:29 < 0.0049 Vinyl chloride < 0.0020 0.0020 0.00087 mg/Kg 10/31/17 15:36 11/02/17 16:29 10/31/17 15:36 11/02/17 16:29 Xylenes, Total < 0.0039 0.0039 0.00063 mg/Kg Qualifier Dil Fac Surrogate %Recovery Limits Prepared Analyzed 4-Bromofluorobenzene (Surr) 92 75 - 131 <u>10/31/17 15:36</u> <u>11/02/17 16:29</u> Dibromofluoromethane 99 75 - 126 10/31/17 15:36 11/02/17 16:29 1,2-Dichloroethane-d4 (Surr) 94 70 - 134 10/31/17 15:36 11/02/17 16:29 Toluene-d8 (Surr) 96 75 - 124 10/31/17 15:36 11/02/17 16:29

Method: 8270D - Semivol	atile Organic Compounds (GC/MS)						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	<0.039	0.039	0.0070	mg/Kg	\	11/06/17 15:06	11/07/17 12:58	1
Acenaphthylene	<0.039	0.039	0.0051	mg/Kg	₩	11/06/17 15:06	11/07/17 12:58	1
Anthracene	<0.039	0.039	0.0065	mg/Kg	₩	11/06/17 15:06	11/07/17 12:58	1
Benzo[a]anthracene	<0.039	0.039	0.0052	mg/Kg	₩	11/06/17 15:06	11/07/17 12:58	1

TestAmerica Chicago

11/10/2017

Page 10 of 64

2

3

5

7

9

11

13

14

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136509-1

Client Sample ID: 3160-9-2 (0-4')

Lab Sample ID: 500-136509-1 Date Collected: 10/30/17 13:05 **Matrix: Solid** Date Received: 10/31/17 08:45 Percent Solids: 82.1

Method: 8270D - Semivolatile Analyte	Result Q		MDL		D	Prepared	Analyzed	Dil Fa
Benzo[a]pyrene	- (0.039	0.039	0.0075		— =	11/06/17 15:06		Diria
Benzo[b]fluoranthene	< 0.039	0.039	0.0076		₩		11/07/17 12:58	
Benzo[g,h,i]perylene	<0.039	0.039		mg/Kg			11/07/17 12:58	
Benzo[g,n,n]perylene Benzo[k]fluoranthene	< 0.039	0.039	0.013	mg/Kg	₩		11/07/17 12:58	
Bis(2-chloroethoxy)methane	<0.20	0.20		mg/Kg			11/07/17 12:58	
Bis(2-chloroethyl)ether	<0.20	0.20		mg/Kg			11/07/17 12:58	
Bis(2-ethylhexyl) phthalate	<0.20	0.20	0.030	mg/Kg			11/07/17 12:58	
4-Bromophenyl phenyl ether	<0.20	0.20	0.071	mg/Kg			11/07/17 12:58	
Butyl benzyl phthalate	<0.20	0.20		mg/Kg			11/07/17 12:58	
Carbazole	<0.20	0.20		mg/Kg			11/07/17 12:58	
					₩			
4-Chloroaniline	<0.79	0.79		mg/Kg	.		11/07/17 12:58	
4-Chloro-3-methylphenol	<0.39	0.39		mg/Kg			11/07/17 12:58	
2-Chloronaphthalene	<0.20	0.20		mg/Kg	₩ ₩		11/07/17 12:58	
2-Chlorophenol	<0.20	0.20		mg/Kg	<u>*</u> .		11/07/17 12:58	
4-Chlorophenyl phenyl ether	<0.20	0.20		mg/Kg	*		11/07/17 12:58	
Chrysene	<0.039	0.039		mg/Kg	₩.		11/07/17 12:58	
Dibenz(a,h)anthracene	<0.039	0.039	0.0075				11/07/17 12:58	
Dibenzofuran	<0.20	0.20		mg/Kg	*		11/07/17 12:58	
1,2-Dichlorobenzene	<0.20	0.20		mg/Kg	₽		11/07/17 12:58	
1,3-Dichlorobenzene	<0.20	0.20		mg/Kg	₩	11/06/17 15:06		
1,4-Dichlorobenzene	<0.20	0.20		mg/Kg	₩	11/06/17 15:06		
3,3'-Dichlorobenzidine	<0.20	0.20	0.055	mg/Kg	₩	11/06/17 15:06	11/07/17 12:58	
2,4-Dichlorophenol	<0.39	0.39	0.093	mg/Kg	₩	11/06/17 15:06	11/07/17 12:58	
Diethyl phthalate	<0.20	0.20	0.066	mg/Kg	₩	11/06/17 15:06	11/07/17 12:58	
2,4-Dimethylphenol	<0.39	0.39		mg/Kg	₩	11/06/17 15:06	11/07/17 12:58	
Dimethyl phthalate	<0.20	0.20	0.051	mg/Kg	₩	11/06/17 15:06	11/07/17 12:58	
Di-n-butyl phthalate	<0.20	0.20	0.059	mg/Kg	.	11/06/17 15:06	11/07/17 12:58	
4,6-Dinitro-2-methylphenol	<0.79	0.79	0.31	mg/Kg	₩	11/06/17 15:06	11/07/17 12:58	
2,4-Dinitrophenol	<0.79	0.79	0.69	mg/Kg	₩	11/06/17 15:06	11/07/17 12:58	
2,4-Dinitrotoluene	<0.20	0.20	0.062	mg/Kg	₽	11/06/17 15:06	11/07/17 12:58	
2,6-Dinitrotoluene	<0.20	0.20	0.077	mg/Kg	₩	11/06/17 15:06	11/07/17 12:58	
Di-n-octyl phthalate	<0.20	0.20	0.064	mg/Kg	₩	11/06/17 15:06	11/07/17 12:58	
Fluoranthene	<0.039	0.039	0.0072	mg/Kg	₽	11/06/17 15:06	11/07/17 12:58	
Fluorene	< 0.039	0.039	0.0055	mg/Kg	₩	11/06/17 15:06	11/07/17 12:58	
Hexachlorobenzene	< 0.079	0.079	0.0090	mg/Kg	₩	11/06/17 15:06	11/07/17 12:58	
Hexachlorobutadiene	<0.20	0.20	0.061	mg/Kg	₩	11/06/17 15:06	11/07/17 12:58	
Hexachlorocyclopentadiene	<0.79	0.79	0.22	mg/Kg	₩	11/06/17 15:06	11/07/17 12:58	
Hexachloroethane	<0.20	0.20		mg/Kg	₩		11/07/17 12:58	
Indeno[1,2,3-cd]pyrene	<0.039	0.039		mg/Kg	. .	11/06/17 15:06	11/07/17 12:58	
Isophorone	<0.20	0.20		mg/Kg	₩		11/07/17 12:58	
2-Methylnaphthalene	< 0.079	0.079	0.0072		₩		11/07/17 12:58	
2-Methylphenol	<0.20	0.20		mg/Kg			11/07/17 12:58	
3 & 4 Methylphenol	<0.20	0.20		mg/Kg	₽		11/07/17 12:58	
Naphthalene	< 0.039	0.039	0.0060		₽		11/07/17 12:58	
2-Nitroaniline	<0.20	0.20		mg/Kg			11/07/17 12:58	
3-Nitroaniline	<0.20	0.20		mg/Kg	₽		11/07/17 12:58	
	<0.39 <0.39	0.39			₩		11/07/17 12:58	
4-Nitroaniline				mg/Kg				
Nitrobenzene 2-Nitrophenol	<0.039 <0.39	0.039 0.39	0.0097	mg/Kg mg/Kg	₽		11/07/17 12:58 11/07/17 12:58	

TestAmerica Chicago

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-9-2 (0-4')

Date Collected: 10/30/17 13:05 Date Received: 10/31/17 08:45

Tetrachloro-m-xylene

DCB Decachlorobiphenyl

TestAmerica Job ID: 500-136509-1

Lab Sample ID: 500-136509-1

Matrix: Solid	
Percent Solids: 82.1	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.79		0.79	0.37	mg/Kg	<u> </u>	11/06/17 15:06	11/07/17 12:58	1
N-Nitrosodi-n-propylamine	<0.079		0.079	0.048	mg/Kg	φ.	11/06/17 15:06	11/07/17 12:58	1
N-Nitrosodiphenylamine	<0.20		0.20	0.046	mg/Kg	☼	11/06/17 15:06	11/07/17 12:58	1
2,2'-oxybis[1-chloropropane]	<0.20		0.20	0.045	mg/Kg	☼	11/06/17 15:06	11/07/17 12:58	1
Pentachlorophenol	<0.79		0.79	0.62	mg/Kg	₽	11/06/17 15:06	11/07/17 12:58	1
Phenanthrene	< 0.039		0.039	0.0054	mg/Kg	☼	11/06/17 15:06	11/07/17 12:58	1
Phenol	<0.20		0.20	0.087	mg/Kg	☼	11/06/17 15:06	11/07/17 12:58	1
Pyrene	<0.039		0.039	0.0077	mg/Kg	₽	11/06/17 15:06	11/07/17 12:58	1
1,2,4-Trichlorobenzene	<0.20		0.20	0.042	mg/Kg	☼	11/06/17 15:06	11/07/17 12:58	1
2,4,5-Trichlorophenol	<0.39		0.39	0.089	mg/Kg	☼	11/06/17 15:06	11/07/17 12:58	1
2,4,6-Trichlorophenol	<0.39		0.39	0.13	mg/Kg	₩	11/06/17 15:06	11/07/17 12:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	84		44 - 121				11/06/17 15:06	11/07/17 12:58	1
2-Fluorophenol	88		46 - 133				11/06/17 15:06	11/07/17 12:58	1
Nitrobenzene-d5	73		41 - 120				11/06/17 15:06	11/07/17 12:58	1
Phenol-d5	75		46 - 125				11/06/17 15:06	11/07/17 12:58	1
Terphenyl-d14	104		35 - 160				11/06/17 15:06	11/07/17 12:58	1
2,4,6-Tribromophenol	104		25 - 139				11/06/17 15:06	11/07/17 12:58	1

Method: 8082A - Po	lychlorinated Bipheny	Is (PCBs)	by Gas Chro	omatogr	aphy				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	<0.020		0.020	0.0069	mg/Kg	<u> </u>	11/03/17 07:23	11/08/17 02:11	1
PCB-1221	<0.020		0.020	0.0086	mg/Kg	☼	11/03/17 07:23	11/08/17 02:11	1
PCB-1232	<0.020		0.020	0.0085	mg/Kg	☼	11/03/17 07:23	11/08/17 02:11	1
PCB-1242	<0.020		0.020	0.0064	mg/Kg		11/03/17 07:23	11/08/17 02:11	1
PCB-1248	<0.020		0.020	0.0077	mg/Kg	☼	11/03/17 07:23	11/08/17 02:11	1
PCB-1254	<0.020		0.020	0.0042	mg/Kg	☼	11/03/17 07:23	11/08/17 02:11	1
PCB-1260	<0.020		0.020	0.0096	mg/Kg		11/03/17 07:23	11/08/17 02:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

49 - 129

37 - 121

78

84

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.41	J –	1.2	0.23	mg/Kg	₩	10/31/17 16:37	11/01/17 14:11	1
Arsenic	6.5		0.60	0.20	mg/Kg	₩	10/31/17 16:37	11/01/17 14:11	1
Barium	84		0.60	0.068	mg/Kg	₩	10/31/17 16:37	11/01/17 14:11	1
Beryllium	0.44		0.24	0.056	mg/Kg	₩	10/31/17 16:37	11/01/17 14:11	1
Cadmium	<0.12		0.12	0.022	mg/Kg	₩	10/31/17 16:37	11/01/17 14:11	1
Chromium	17		0.60	0.30	mg/Kg	₩	10/31/17 16:37	11/01/17 14:11	1
Cobalt	6.3		0.30	0.078	mg/Kg	ф.	10/31/17 16:37	11/01/17 14:11	1
Copper	15	В	0.60	0.17	mg/Kg	₩	10/31/17 16:37	11/01/17 14:11	1
Iron	16000		10	5.3	mg/Kg	₩	11/02/17 07:14	11/02/17 19:13	1
Lead	11		0.30	0.14	mg/Kg	₩	10/31/17 16:37	11/01/17 14:11	1
Manganese	210	В	0.60	0.087	mg/Kg	₩	10/31/17 16:37	11/01/17 14:11	1
Nickel	14		0.60	0.17	mg/Kg	₩	10/31/17 16:37	11/01/17 14:11	1
Selenium	<0.60		0.60	0.35	mg/Kg	₩	10/31/17 16:37	11/01/17 14:11	1
Silver	<0.30		0.30	0.077	mg/Kg	≎	10/31/17 16:37	11/01/17 14:11	1

TestAmerica Chicago

<u>11/03/17 07:23</u> <u>11/08/17 02:11</u>

11/03/17 07:23 11/08/17 02:11

Page 12 of 64

1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136509-1

Lab Sample ID: 500-136509-1

Matrix: Solid Percent Solids: 82.1

Client Sam	ple ID:	3160-	9-2 ((0-4)

Date Collected: 10/30/17 13:05 Date Received: 10/31/17 08:45

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Thallium	<0.60		0.60	0.30	mg/Kg	<u> </u>	10/31/17 16:37	11/01/17 14:11	1
Vanadium	29		0.30	0.071	mg/Kg	₽	10/31/17 16:37	11/01/17 14:11	1
Zinc	48		1.2	0.53	mg/Kg	₩	10/31/17 16:37	11/01/17 14:11	1
Method: 6010B - Metals (ICP) - TCI	_P								
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	-		11/02/17 08:35	11/02/17 16:38	1
Barium	0.51		0.50	0.050	mg/L		11/02/17 08:35	11/02/17 16:38	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/02/17 08:35	11/02/17 16:38	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/02/17 08:35	11/02/17 16:38	1
Chromium	<0.025		0.025	0.010	mg/L		11/02/17 08:35	11/02/17 16:38	1
Cobalt	<0.025		0.025	0.010	mg/L		11/02/17 08:35	11/02/17 16:38	1
Copper	<0.025		0.025	0.010	mg/L		11/02/17 08:35	11/02/17 16:38	1
Iron	0.21	J	0.40	0.20	mg/L		11/02/17 08:35	11/02/17 16:38	1
Lead	<0.0075		0.0075	0.0075	mg/L		11/02/17 08:35	11/02/17 16:38	1
Manganese	0.072		0.025	0.010	mg/L		11/02/17 08:35	11/02/17 16:38	1
Nickel	0.019	J	0.025	0.010	mg/L		11/02/17 08:35	11/02/17 16:38	1
Selenium	<0.050		0.050	0.020	mg/L		11/02/17 08:35	11/02/17 16:38	1
Silver	<0.025		0.025	0.010	mg/L		11/02/17 08:35	11/02/17 16:38	1
Vanadium	<0.025		0.025	0.010	mg/L		11/02/17 08:35	11/02/17 16:38	1
Zinc	0.025	J	0.50	0.020	mg/L		11/02/17 08:35	11/02/17 16:38	1
Method: 6020A - Metals (ICP/MS) -	TCLP								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060		0.0060	0.0060	mg/L		11/02/17 08:35	11/02/17 17:10	1
Thallium	<0.0020		0.0020	0.0020	mg/L		11/02/17 08:35	11/02/17 17:10	1
Method: 7470A - TCLP Mercury - T	CLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury <	0.00020		0.00020	0.00020	mg/L		11/03/17 12:20	11/06/17 09:29	1
Method: 7471B - Mercury (CVAA)									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.015	J	0.019	0.0063	mg/Kg	<u>∓</u>	11/01/17 15:30	11/02/17 12:20	1
General Chemistry									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
pH	5.4	HE	0.2	0.2	SU			11/03/17 08:57	1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Lab Sample ID: 500-136509-2

Client Sample ID: 3160-9-3 (0-4') Date Collected: 10/30/17 13:20 **Matrix: Solid** Date Received: 10/31/17 08:45 Percent Solids: 83.6

Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Acetone	0.021		0.016	0.0070	mg/Kg	☼	10/31/17 15:36	11/02/17 16:54	
Benzene	<0.0016		0.0016	0.00041	mg/Kg	₩	10/31/17 15:36	11/02/17 16:54	
Bromodichloromethane	<0.0016		0.0016	0.00033	mg/Kg	≎	10/31/17 15:36	11/02/17 16:54	
Bromoform	<0.0016		0.0016	0.00047	mg/Kg	₽	10/31/17 15:36	11/02/17 16:54	· · · · · · · · ·
Bromomethane	<0.0040		0.0040	0.0015	mg/Kg	☼	10/31/17 15:36	11/02/17 16:54	•
2-Butanone (MEK)	<0.0040		0.0040	0.0018	mg/Kg	≎	10/31/17 15:36	11/02/17 16:54	
Carbon disulfide	<0.0040		0.0040	0.00084	mg/Kg	₽	10/31/17 15:36	11/02/17 16:54	· · · · · · · · ·
Carbon tetrachloride	<0.0016		0.0016	0.00047	mg/Kg	≎	10/31/17 15:36	11/02/17 16:54	•
Chlorobenzene	<0.0016		0.0016	0.00059	mg/Kg	≎	10/31/17 15:36	11/02/17 16:54	
Chloroethane	<0.0040		0.0040	0.0012	mg/Kg	₽	10/31/17 15:36	11/02/17 16:54	
Chloroform	<0.0016		0.0016	0.00056	mg/Kg	₩	10/31/17 15:36	11/02/17 16:54	•
Chloromethane	<0.0040		0.0040	0.0016	mg/Kg	₩	10/31/17 15:36	11/02/17 16:54	•
cis-1,2-Dichloroethene	<0.0016		0.0016	0.00045	mg/Kg	₩	10/31/17 15:36	11/02/17 16:54	•
cis-1,3-Dichloropropene	<0.0016		0.0016	0.00049	mg/Kg	₩	10/31/17 15:36	11/02/17 16:54	•
Dibromochloromethane	<0.0016		0.0016	0.00053	mg/Kg	≎	10/31/17 15:36	11/02/17 16:54	
1,1-Dichloroethane	<0.0016		0.0016	0.00055	mg/Kg	₽	10/31/17 15:36	11/02/17 16:54	• • • • • • • • • • • • • • • • • • • •
1,2-Dichloroethane	<0.0040		0.0040	0.0013	mg/Kg	₩	10/31/17 15:36	11/02/17 16:54	•
1,1-Dichloroethene	<0.0016		0.0016	0.00055	mg/Kg	☼	10/31/17 15:36	11/02/17 16:54	•
1,2-Dichloropropane	<0.0016		0.0016	0.00042	mg/Kg	₽	10/31/17 15:36	11/02/17 16:54	
1,3-Dichloropropene, Total	<0.0016		0.0016	0.00056	mg/Kg	₩	10/31/17 15:36	11/02/17 16:54	•
Ethylbenzene	<0.0016		0.0016	0.00077	mg/Kg	☼	10/31/17 15:36	11/02/17 16:54	•
2-Hexanone	<0.0040		0.0040	0.0013	mg/Kg		10/31/17 15:36	11/02/17 16:54	•
Methylene Chloride	<0.0040		0.0040	0.0016	mg/Kg	☼	10/31/17 15:36	11/02/17 16:54	•
4-Methyl-2-pentanone (MIBK)	<0.0040		0.0040	0.0012	mg/Kg	☼	10/31/17 15:36	11/02/17 16:54	•
Methyl tert-butyl ether	<0.0016		0.0016	0.00047	mg/Kg	₽	10/31/17 15:36	11/02/17 16:54	•
Styrene	<0.0016		0.0016	0.00049	mg/Kg	₩	10/31/17 15:36	11/02/17 16:54	•
1,1,2,2-Tetrachloroethane	<0.0016		0.0016	0.00051	mg/Kg	₩	10/31/17 15:36	11/02/17 16:54	•
Tetrachloroethene	<0.0016		0.0016	0.00055	mg/Kg	₩	10/31/17 15:36	11/02/17 16:54	•
Toluene	<0.0016		0.0016	0.00041	mg/Kg	₩	10/31/17 15:36	11/02/17 16:54	•
trans-1,2-Dichloroethene	<0.0016		0.0016	0.00071	mg/Kg	₩	10/31/17 15:36	11/02/17 16:54	•
trans-1,3-Dichloropropene	<0.0016		0.0016	0.00056	mg/Kg	₩	10/31/17 15:36	11/02/17 16:54	•
1,1,1-Trichloroethane	<0.0016		0.0016	0.00054	mg/Kg	₩	10/31/17 15:36	11/02/17 16:54	•
1,1,2-Trichloroethane	<0.0016		0.0016	0.00069	mg/Kg	≎	10/31/17 15:36	11/02/17 16:54	•
Trichloroethene	<0.0016		0.0016	0.00054	mg/Kg	₽	10/31/17 15:36	11/02/17 16:54	
Vinyl acetate	<0.0040		0.0040	0.0014	mg/Kg	≎	10/31/17 15:36	11/02/17 16:54	•
Vinyl chloride	< 0.0016		0.0016	0.00071	mg/Kg	≎	10/31/17 15:36	11/02/17 16:54	
Xylenes, Total	<0.0032		0.0032	0.00051	mg/Kg		10/31/17 15:36	11/02/17 16:54	
Surrogate	%Recovery G	Qualifier L	imits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	90	7	5 - 131				10/31/17 15:36	11/02/17 16:54	
Dibromofluoromethane	101	7	5 - 126				10/31/17 15:36	11/02/17 16:54	7
1,2-Dichloroethane-d4 (Surr)	96	7	0 - 134				10/31/17 15:36	11/02/17 16:54	
Toluene-d8 (Surr)	98	7	5 - 124				10/31/17 15:36	11/02/17 16:54	

Method: 8270D - Se	mivolatile Organic Co	mpounds (GC	/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	<0.038		0.038	0.0068	mg/Kg	\	11/06/17 15:06	11/07/17 15:38	1
Acenaphthylene	<0.038		0.038	0.0050	mg/Kg	₽	11/06/17 15:06	11/07/17 15:38	1
Anthracene	0.0084	J	0.038	0.0063	mg/Kg	₽	11/06/17 15:06	11/07/17 15:38	1
Benzo[a]anthracene	0.049		0.038	0.0051	mg/Kg	≎	11/06/17 15:06	11/07/17 15:38	1

TestAmerica Chicago

Page 14 of 64

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-9-3 (0-4')

Date Collected: 10/30/17 13:20

Date Received: 10/31/17 08:45

TestAmerica Job ID: 500-136509-1

Lab Sample ID: 500-136509-2

Matrix: Solid
Percent Solids: 83.6

Benzo[a]pyrene Benzo[b]fluoranthene Benzo[g,h,i]perylene Benzo[k]fluoranthene Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether Bis(2-ethylhexyl) phthalate 4-Bromophenyl phenyl ether Butyl benzyl phthalate Carbazole 4-Chloroaniline 4-Chloro-3-methylphenol 2-Chloronaphthalene 2-Chlorophenol 4-Chlorophenyl phenyl ether Chrysene Dibenz(a,h)anthracene Dibenzofuran 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dichlorophenol Diethyl phthalate 2,4-Dimethylphenol Dimethyl phthalate Di-n-butyl phthalate 4,6-Dinitro-2-methylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 0i-n-octyl phthalate Fluoranthene Fluorene	0.052 0.087 0.037 0.025 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.38 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19		0.038 0.038 0.038 0.038 0.038 0.19 0.19 0.19 0.19 0.19 0.76 0.38 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19	0.011 0.039 0.057 0.069 0.050 0.072 0.095 0.18 0.13 0.042 0.065 0.044 0.010 0.0073 0.044 0.045 0.043	mg/Kg		11/06/17 15:06 11/06/17 15:06	11/07/17 15:38 11/07/17 15:38	1 1 1 1 1
Benzo[g,h,i]perylene Benzo[k]fluoranthene Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether Bis(2-ethylhexyl) phthalate 4-Bromophenyl phenyl ether Butyl benzyl phthalate Carbazole 4-Chloroaniline 4-Chloro-3-methylphenol 2-Chloronaphthalene 2-Chlorophenol 4-Chlorophenyl phenyl ether Chrysene Dibenz(a,h)anthracene Dibenzofuran 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dichlorophenol Diethyl phthalate 2,4-Dimethylphenol Dimethyl phthalate Di-n-butyl phthalate 4,6-Dinitro-2-methylphenol 2,4-Dinitrobluene 2,6-Dinitrotoluene Di-n-octyl phthalate Fluoranthene	0.037 0.025 <0.19 <0.19 <0.19 <0.19 <0.76 <0.38 <0.19 <0.19 <0.19 <0.19 <0.019 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19		0.038 0.038 0.19 0.19 0.19 0.19 0.19 0.76 0.38 0.19 0.19 0.19 0.038 0.038 0.19 0.19 0.19 0.19 0.19 0.19	0.012 0.011 0.039 0.057 0.069 0.050 0.072 0.095 0.18 0.13 0.042 0.065 0.044 0.010 0.0073 0.044 0.045 0.043	mg/Kg		11/06/17 15:06 11/06/17 15:06	11/07/17 15:38 11/07/17 15:38	1 1 1 1 1 1 1 1 1 1 1 1 1
Benzo[k]fluoranthene Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether Bis(2-ethylhexyl) phthalate 4-Bromophenyl phenyl ether Butyl benzyl phthalate Carbazole 4-Chloroaniline 4-Chloro-3-methylphenol 2-Chloronaphthalene 2-Chlorophenol 4-Chlorophenyl phenyl ether Chrysene Dibenz(a,h)anthracene Dibenzofuran 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzidine 2,4-Dichlorobenol Diethyl phthalate 2,4-Dimethylphenol Dimethyl phthalate Di-n-butyl phthalate 4,6-Dinitro-2-methylphenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate Fluoranthene	0.025 <0.19 <0.19 <0.19 <0.19 <0.19 <0.76 <0.38 <0.19 <0.19 <0.09 <0.19 <0.09 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19		0.038 0.19 0.19 0.19 0.19 0.19 0.76 0.38 0.19 0.19 0.038 0.038 0.19 0.19 0.19	0.011 0.039 0.057 0.069 0.050 0.072 0.095 0.18 0.13 0.042 0.065 0.044 0.010 0.0073 0.044 0.045 0.043	mg/Kg		11/06/17 15:06 11/06/17 15:06	11/07/17 15:38 11/07/17 15:38	1 1 1 1 1 1 1 1 1 1 1 1
Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether Bis(2-ethylhexyl) phthalate 4-Bromophenyl phenyl ether Butyl benzyl phthalate Carbazole 4-Chloroaniline 4-Chloro-3-methylphenol 2-Chlorophenol 4-Chlorophenyl phenyl ether Chrysene Dibenz(a,h)anthracene Dibenzofuran 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dichlorobenol Diethyl phthalate 2,4-Dimethylphenol Dimethyl phthalate Di-n-butyl phthalate 4,6-Dinitro-2-methylphenol 2,4-Dinitrobluene 2,6-Dinitrotoluene Di-n-octyl phthalate Fluoranthene	<0.19 <0.19 <0.19 <0.19 <0.19 <0.76 <0.38 <0.19 <0.19 <0.09 <0.19 <0.09 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19	J	0.19 0.19 0.19 0.19 0.19 0.19 0.76 0.38 0.19 0.19 0.19 0.038 0.038 0.19 0.19 0.19 0.19 0.19	0.039 0.057 0.069 0.050 0.072 0.095 0.18 0.13 0.042 0.065 0.044 0.010 0.0073 0.044 0.045 0.043	mg/Kg		11/06/17 15:06 11/06/17 15:06	11/07/17 15:38 11/07/17 15:38	1 1 1 1 1 1 1 1 1 1 1 1
Bis(2-chloroethyl)ether Bis(2-ethylhexyl) phthalate 4-Bromophenyl phenyl ether Butyl benzyl phthalate Carbazole 4-Chloroaniline 4-Chloro-3-methylphenol 2-Chlorophenol 4-Chlorophenyl phenyl ether Chrysene Dibenz(a,h)anthracene Dibenzofuran 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzidine 2,4-Dichlorobenol Diethyl phthalate 2,4-Dimethylphenol Dimethyl phthalate Di-n-butyl phthalate 4,6-Dinitro-2-methylphenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate Fluoranthene	<0.19 <0.19 <0.19 <0.19 <0.76 <0.38 <0.19 <0.19 <0.09 <0.19 <0.09 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19		0.19 0.19 0.19 0.19 0.19 0.76 0.38 0.19 0.19 0.19 0.038 0.038 0.19 0.19 0.19 0.19 0.19	0.057 0.069 0.050 0.072 0.095 0.18 0.042 0.065 0.044 0.010 0.0073 0.044 0.045 0.043	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		11/06/17 15:06 11/06/17 15:06	11/07/17 15:38 11/07/17 15:38	1 1 1 1 1 1 1 1 1 1
Bis(2-ethylhexyl) phthalate 4-Bromophenyl phenyl ether Butyl benzyl phthalate Carbazole 4-Chloroaniline 4-Chloro-3-methylphenol 2-Chlorophenol 4-Chlorophenyl phenyl ether Chrysene Dibenz(a,h)anthracene Dibenzofuran 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzidine 2,4-Dichlorobenol Diethyl phthalate 2,4-Dimethylphenol Dimethyl phthalate Di-n-butyl phthalate 4,6-Dinitro-2-methylphenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate Fluoranthene	<0.19 <0.19 <0.19 <0.76 <0.38 <0.19 <0.19 <0.09 <0.19 <0.09 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19		0.19 0.19 0.19 0.19 0.76 0.38 0.19 0.19 0.19 0.038 0.038 0.19 0.19 0.19 0.19 0.19	0.069 0.050 0.072 0.095 0.18 0.042 0.065 0.044 0.010 0.0073 0.044 0.045 0.043	mg/Kg		11/06/17 15:06 11/06/17 15:06	11/07/17 15:38 11/07/17 15:38	1 1 1 1 1 1 1 1 1
4-Bromophenyl phenyl ether Butyl benzyl phthalate Carbazole 4-Chloroaniline 4-Chloro-3-methylphenol 2-Chlorophenol 4-Chlorophenol 4-Chlorophenyl phenyl ether Chrysene Dibenz(a,h)anthracene Dibenzofuran 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dichlorophenol Diethyl phthalate 2,4-Dimethylphenol Dimethyl phthalate Di-n-butyl phthalate 4,6-Dinitro-2-methylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate Fluoranthene	<0.19 <0.19 <0.76 <0.38 <0.19 <0.19 <0.19 <0.09 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19		0.19 0.19 0.19 0.76 0.38 0.19 0.19 0.038 0.038 0.038 0.19 0.19 0.19 0.19	0.050 0.072 0.095 0.18 0.13 0.042 0.065 0.044 0.010 0.0073 0.044 0.045 0.043	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	* * * * * * * * * * * * *	11/06/17 15:06 11/06/17 15:06	11/07/17 15:38 11/07/17 15:38	1 1 1 1 1 1 1 1 1
Butyl benzyl phthalate Carbazole 4-Chloroaniline 4-Chloro-3-methylphenol 2-Chloronaphthalene 2-Chlorophenol 4-Chlorophenyl phenyl ether Chrysene Dibenz(a,h)anthracene Dibenzofuran 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dichlorophenol Diethyl phthalate 2,4-Dimethylphenol Dimethyl phthalate Di-n-butyl phthalate 4,6-Dinitro-2-methylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate Fluoranthene	<0.19 <0.76 <0.38 <0.19 <0.19 <0.19 <0.09 <0.09 <0.09 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19		0.19 0.19 0.76 0.38 0.19 0.19 0.038 0.038 0.19 0.19 0.19	0.072 0.095 0.18 0.13 0.042 0.065 0.044 0.010 0.0073 0.044 0.045 0.043	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	***************************************	11/06/17 15:06 11/06/17 15:06 11/06/17 15:06 11/06/17 15:06 11/06/17 15:06 11/06/17 15:06 11/06/17 15:06 11/06/17 15:06 11/06/17 15:06 11/06/17 15:06	11/07/17 15:38 11/07/17 15:38 11/07/17 15:38 11/07/17 15:38 11/07/17 15:38 11/07/17 15:38 11/07/17 15:38 11/07/17 15:38 11/07/17 15:38 11/07/17 15:38	1 1 1 1 1 1 1 1 1
Carbazole 4-Chloroaniline 4-Chloro-3-methylphenol 2-Chloronaphthalene 2-Chlorophenol 4-Chlorophenyl phenyl ether Chrysene Dibenz(a,h)anthracene Dibenzofuran 1,2-Dichlorobenzene 1,3-Dichlorobenzene 3,3'-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dichlorophenol Diethyl phthalate 2,4-Dimethylphenol Dimethyl phthalate Di-n-butyl phthalate 4,6-Dinitro-2-methylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate Fluoranthene	<0.19 <0.76 <0.38 <0.19 <0.19 <0.09 0.073 <0.038 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19		0.19 0.76 0.38 0.19 0.19 0.038 0.038 0.19 0.19 0.19	0.095 0.18 0.13 0.042 0.065 0.044 0.010 0.0073 0.044 0.045 0.043	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	* * * * * * * * * * * * * * * * * * * *	11/06/17 15:06 11/06/17 15:06 11/06/17 15:06 11/06/17 15:06 11/06/17 15:06 11/06/17 15:06 11/06/17 15:06 11/06/17 15:06 11/06/17 15:06	11/07/17 15:38 11/07/17 15:38 11/07/17 15:38 11/07/17 15:38 11/07/17 15:38 11/07/17 15:38 11/07/17 15:38 11/07/17 15:38 11/07/17 15:38	1 1 1 1 1 1 1 1
4-Chloroaniline 4-Chloro-3-methylphenol 2-Chloronaphthalene 2-Chlorophenol 4-Chlorophenyl phenyl ether Chrysene Dibenz(a,h)anthracene Dibenzofuran 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dichlorophenol Diethyl phthalate 2,4-Dimethylphenol Dimethyl phthalate Di-n-butyl phthalate 4,6-Dinitro-2-methylphenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,5-Dinitrotoluene Di-n-octyl phthalate Fluoranthene	<0.76 <0.38 <0.19 <0.19 <0.09 0.073 <0.038 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19		0.76 0.38 0.19 0.19 0.019 0.038 0.038 0.19 0.19 0.19 0.19 0.19	0.18 0.13 0.042 0.065 0.044 0.010 0.0073 0.044 0.045 0.043	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	11/06/17 15:06 11/06/17 15:06 11/06/17 15:06 11/06/17 15:06 11/06/17 15:06 11/06/17 15:06 11/06/17 15:06 11/06/17 15:06	11/07/17 15:38 11/07/17 15:38 11/07/17 15:38 11/07/17 15:38 11/07/17 15:38 11/07/17 15:38 11/07/17 15:38 11/07/17 15:38	1 1 1 1 1 1 1
4-Chloro-3-methylphenol 2-Chloronaphthalene 2-Chlorophenol 4-Chlorophenyl phenyl ether Chrysene Dibenz(a,h)anthracene Dibenzofuran 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dichlorobenzidine 2,4-Dimethyl phthalate 2,4-Dimethyl phthalate Di-n-butyl phthalate Di-n-butyl phthalate 4,6-Dinitro-2-methylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate Fluoranthene	<0.38 <0.19 <0.19 <0.09 0.073 <0.038 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19		0.38 0.19 0.19 0.038 0.038 0.19 0.19 0.19 0.19 0.19	0.13 0.042 0.065 0.044 0.010 0.0073 0.044 0.045 0.043	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	11/06/17 15:06 11/06/17 15:06 11/06/17 15:06 11/06/17 15:06 11/06/17 15:06 11/06/17 15:06 11/06/17 15:06	11/07/17 15:38 11/07/17 15:38 11/07/17 15:38 11/07/17 15:38 11/07/17 15:38 11/07/17 15:38 11/07/17 15:38 11/07/17 15:38	1 1 1 1 1 1
2-Chloronaphthalene 2-Chlorophenol 4-Chlorophenyl phenyl ether Chrysene Dibenz(a,h)anthracene Dibenzofuran 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzidine 2,4-Dichlorobenzidine 2,4-Dichlorophenol Diethyl phthalate 2,4-Dimethylphenol Dimethyl phthalate Di-n-butyl phthalate 4,6-Dinitro-2-methylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate Fluoranthene	<0.19 <0.19 <0.038 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19		0.19 0.19 0.19 0.038 0.038 0.19 0.19 0.19 0.19	0.042 0.065 0.044 0.010 0.0073 0.044 0.045 0.043	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	\$ \$ \$ \$ \$ \$	11/06/17 15:06 11/06/17 15:06 11/06/17 15:06 11/06/17 15:06 11/06/17 15:06 11/06/17 15:06	11/07/17 15:38 11/07/17 15:38 11/07/17 15:38 11/07/17 15:38 11/07/17 15:38 11/07/17 15:38 11/07/17 15:38	1 1 1 1 1 1
2-Chlorophenol 4-Chlorophenyl phenyl ether Chrysene Dibenz(a,h)anthracene Dibenzofuran 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzidine 2,4-Dichlorobenzidine 2,4-Dichlorophenol Diethyl phthalate 2,4-Dimethylphenol Dimethyl phthalate Di-n-butyl phthalate 4,6-Dinitro-2-methylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate Fluoranthene	<0.19 <0.073 <0.038 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19		0.19 0.19 0.038 0.038 0.19 0.19 0.19 0.19	0.065 0.044 0.010 0.0073 0.044 0.045 0.043	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	\$ \$ \$ \$ \$	11/06/17 15:06 11/06/17 15:06 11/06/17 15:06 11/06/17 15:06 11/06/17 15:06 11/06/17 15:06	11/07/17 15:38 11/07/17 15:38 11/07/17 15:38 11/07/17 15:38 11/07/17 15:38 11/07/17 15:38	1 1 1 1 1
4-Chlorophenyl phenyl ether Chrysene Dibenz(a,h)anthracene Dibenzofuran 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzidine 2,4-Dichlorobenzidine 2,4-Dichlorophenol Diethyl phthalate 2,4-Dimethyl phthalate Di-n-butyl phthalate 4,6-Dinitro-2-methylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate Fluoranthene	<0.19 0.073 <0.038 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19		0.19 0.038 0.038 0.19 0.19 0.19 0.19	0.044 0.010 0.0073 0.044 0.045 0.043	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	\$ \$ \$ \$	11/06/17 15:06 11/06/17 15:06 11/06/17 15:06 11/06/17 15:06 11/06/17 15:06	11/07/17 15:38 11/07/17 15:38 11/07/17 15:38 11/07/17 15:38 11/07/17 15:38	1 1 1 1
Chrysene Dibenz(a,h)anthracene Dibenzofuran 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzidine 2,4-Dichlorobenzidine 2,4-Dichlorophenol Diethyl phthalate 2,4-Dimethylphenol Dimethyl phthalate Di-n-butyl phthalate 4,6-Dinitro-2-methylphenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,6-Dinitrotoluene Di-n-octyl phthalate Fluoranthene	0.073 <0.038 <0.19 <0.19 <0.19 <0.19 <0.38 <0.19		0.038 0.038 0.19 0.19 0.19 0.19	0.010 0.0073 0.044 0.045 0.043 0.049	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	\$ \$ \$ \$	11/06/17 15:06 11/06/17 15:06 11/06/17 15:06 11/06/17 15:06	11/07/17 15:38 11/07/17 15:38 11/07/17 15:38 11/07/17 15:38	1 1 1
Dibenz(a,h)anthracene Dibenzofuran 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dichlorophenol Diethyl phthalate 2,4-Dimethylphenol Dimethyl phthalate Di-n-butyl phthalate 4,6-Dinitro-2-methylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate Fluoranthene	<0.038 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.38 <0.19		0.038 0.19 0.19 0.19 0.19 0.19	0.0073 0.044 0.045 0.043 0.049	mg/Kg mg/Kg mg/Kg mg/Kg	\$ \$ \$	11/06/17 15:06 11/06/17 15:06 11/06/17 15:06	11/07/17 15:38 11/07/17 15:38 11/07/17 15:38	1 1 1
Dibenzofuran 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dichlorophenol Diethyl phthalate 2,4-Dimethylphenol Dimethyl phthalate Di-n-butyl phthalate 4,6-Dinitro-2-methylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate Fluoranthene	<0.19 <0.19 <0.19 <0.19 <0.19 <0.38 <0.19		0.19 0.19 0.19 0.19 0.19	0.044 0.045 0.043 0.049	mg/Kg mg/Kg mg/Kg	‡	11/06/17 15:06 11/06/17 15:06	11/07/17 15:38 11/07/17 15:38	1
1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dichlorophenol Diethyl phthalate 2,4-Dimethylphenol Dimethyl phthalate Di-n-butyl phthalate 4,6-Dinitro-2-methylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate Fluoranthene	<0.19 <0.19 <0.19 <0.19 <0.38 <0.19		0.19 0.19 0.19 0.19	0.045 0.043 0.049	mg/Kg mg/Kg	‡	11/06/17 15:06	11/07/17 15:38	1
1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dichlorophenol Diethyl phthalate 2,4-Dimethylphenol Dimethyl phthalate Di-n-butyl phthalate 4,6-Dinitro-2-methylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate Fluoranthene	<0.19 <0.19 <0.19 <0.38 <0.19		0.19 0.19 0.19	0.043 0.049	mg/Kg	# #			
1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dichlorophenol Diethyl phthalate 2,4-Dimethylphenol Dimethyl phthalate Di-n-butyl phthalate 4,6-Dinitro-2-methylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate Fluoranthene	<0.19 <0.19 <0.38 <0.19		0.19 0.19	0.049			11/06/17 15:06	11/07/17 15:38	1
3,3'-Dichlorobenzidine 2,4-Dichlorophenol Diethyl phthalate 2,4-Dimethylphenol Dimethyl phthalate Di-n-butyl phthalate 4,6-Dinitro-2-methylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate Fluoranthene	<0.19 <0.38 <0.19		0.19		mg/Kg				
2,4-Dichlorophenol Diethyl phthalate 2,4-Dimethylphenol Dimethyl phthalate Di-n-butyl phthalate 4,6-Dinitro-2-methylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate Fluoranthene	<0.38 <0.19						11/06/17 15:06	11/07/17 15:38	1
Diethyl phthalate 2,4-Dimethylphenol Dimethyl phthalate Di-n-butyl phthalate 4,6-Dinitro-2-methylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate Fluoranthene	<0.19		0.38		mg/Kg	₽	11/06/17 15:06	11/07/17 15:38	1
2,4-Dimethylphenol Dimethyl phthalate Di-n-butyl phthalate 4,6-Dinitro-2-methylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate Fluoranthene					mg/Kg	₽	11/06/17 15:06	11/07/17 15:38	1
2,4-Dimethylphenol Dimethyl phthalate Di-n-butyl phthalate 4,6-Dinitro-2-methylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate Fluoranthene			0.19		mg/Kg	· · · · · · · · · · · · · · · · · · ·	11/06/17 15:06	11/07/17 15:38	1
Dimethyl phthalate Di-n-butyl phthalate 4,6-Dinitro-2-methylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate Fluoranthene	< 0.38		0.38		mg/Kg	☼	11/06/17 15:06	11/07/17 15:38	1
Di-n-butyl phthalate 4,6-Dinitro-2-methylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate Fluoranthene	<0.19		0.19		mg/Kg	☼	11/06/17 15:06	11/07/17 15:38	1
4,6-Dinitro-2-methylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate Fluoranthene	<0.19		0.19		mg/Kg	· · · · · · · · · · · · · · · · · · ·	11/06/17 15:06	11/07/17 15:38	1
2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate Fluoranthene	<0.76		0.76			₽		11/07/17 15:38	1
2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate Fluoranthene	<0.76		0.76	0.67		₽		11/07/17 15:38	1
2,6-Dinitrotoluene Di-n-octyl phthalate Fluoranthene	<0.19		0.19		mg/Kg			11/07/17 15:38	1
Di-n-octyl phthalate Fluoranthene	<0.19		0.19		mg/Kg	₽		11/07/17 15:38	1
Fluoranthene	<0.19		0.19		mg/Kg	₽		11/07/17 15:38	1
	0.077		0.038	0.0070		· · · · · · · · · · · · · · · · · · ·		11/07/17 15:38	1
	<0.038		0.038	0.0053	0 0	☼		11/07/17 15:38	1
Hexachlorobenzene	<0.076		0.076	0.0088	0 0	₽	11/06/17 15:06		1
Hexachlorobutadiene	<0.19		0.19		mg/Kg			11/07/17 15:38	
Hexachlorocyclopentadiene	<0.76		0.76		mg/Kg	₽		11/07/17 15:38	1
Hexachloroethane	<0.19		0.19		mg/Kg	₽		11/07/17 15:38	1
Indeno[1,2,3-cd]pyrene	0.027		0.038	0.0098				11/07/17 15:38	· · · · · · · · · · · · · · · · · · ·
Isophorone	<0.19	3	0.030		mg/Kg	₽		11/07/17 15:38	1
·	0.042		0.19	0.0070		₽		11/07/17 15:38	1
2-Methylphopol	<0.19				mg/Kg			11/07/17 15:38	
2-Methylphenol			0.19			₩			1
3 & 4 Methylphenol	<0.19		0.19		mg/Kg	*		11/07/17 15:38	1
Naphthalene	0.023	J	0.038	0.0058				11/07/17 15:38	
2-Nitroaniline	<0.19		0.19		mg/Kg	₩		11/07/17 15:38	1
3-Nitroaniline	<0.38		0.38		mg/Kg	₩		11/07/17 15:38	1
4-Nitroaniline	<0.38		0.38		mg/Kg	か. 		11/07/17 15:38	
Nitrobenzene 2-Nitrophenol	<0.038 <0.38		0.038 0.38	0.0095	mg/Kg mg/Kg	₽		11/07/17 15:38 11/07/17 15:38	1 1

TestAmerica Chicago

Page 15 of 64

2

3

5

7

9

11

13

14

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136509-1

Lab Sample ID: 500-136509-2

Matrix: Solid Percent Solids: 83.6

Client Sample ID: 3160-9-3 (0-4')

Date Collected: 10/30/17 13:20 Date Received: 10/31/17 08:45

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.76		0.76	0.36	mg/Kg	<u> </u>	11/06/17 15:06	11/07/17 15:38	1
N-Nitrosodi-n-propylamine	<0.076		0.076	0.046	mg/Kg	₽	11/06/17 15:06	11/07/17 15:38	1
N-Nitrosodiphenylamine	<0.19		0.19	0.045	mg/Kg	☼	11/06/17 15:06	11/07/17 15:38	1
2,2'-oxybis[1-chloropropane]	<0.19		0.19	0.044	mg/Kg	☼	11/06/17 15:06	11/07/17 15:38	1
Pentachlorophenol	<0.76		0.76	0.61	mg/Kg	₽	11/06/17 15:06	11/07/17 15:38	1
Phenanthrene	0.070		0.038	0.0053	mg/Kg	☼	11/06/17 15:06	11/07/17 15:38	1
Phenol	<0.19		0.19	0.084	mg/Kg	₽	11/06/17 15:06	11/07/17 15:38	1
Pyrene	0.069		0.038	0.0075	mg/Kg	₽	11/06/17 15:06	11/07/17 15:38	1
1,2,4-Trichlorobenzene	<0.19		0.19	0.041	mg/Kg	₽	11/06/17 15:06	11/07/17 15:38	1
2,4,5-Trichlorophenol	<0.38		0.38	0.086	mg/Kg	₽	11/06/17 15:06	11/07/17 15:38	1
2,4,6-Trichlorophenol	<0.38		0.38	0.13	mg/Kg		11/06/17 15:06	11/07/17 15:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	87		44 - 121				11/06/17 15:06	11/07/17 15:38	1
2-Fluorophenol	87		46 - 133				11/06/17 15:06	11/07/17 15:38	1
Nitrobenzene-d5	69		41 - 120				11/06/17 15:06	11/07/17 15:38	1
Phenol-d5	66		46 - 125				11/06/17 15:06	11/07/17 15:38	1
Terphenyl-d14	85		35 - 160				11/06/17 15:06	11/07/17 15:38	1
2,4,6-Tribromophenol	100		25 - 139				11/06/17 15:06	11/07/17 15:38	1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	<0.019	0.019	0.0068	mg/Kg	<u> </u>	11/03/17 07:23	11/08/17 02:27	1
PCB-1221	<0.019	0.019	0.0085	mg/Kg	☼	11/03/17 07:23	11/08/17 02:27	1
PCB-1232	<0.019	0.019	0.0084	mg/Kg	☼	11/03/17 07:23	11/08/17 02:27	1
PCB-1242	<0.019	0.019	0.0063	mg/Kg	☼	11/03/17 07:23	11/08/17 02:27	1
PCB-1248	<0.019	0.019	0.0076	mg/Kg	☼	11/03/17 07:23	11/08/17 02:27	1
PCB-1254	<0.019	0.019	0.0042	mg/Kg	☼	11/03/17 07:23	11/08/17 02:27	1
PCB-1260	<0.019	0.019	0.0095	mg/Kg	.	11/03/17 07:23	11/08/17 02:27	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	98		49 - 129	11/03/17 07:23	11/08/17 02:27	1
DCB Decachlorobiphenyl	96		37 - 121	11/03/17 07:23	11/08/17 02:27	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.48	J	1.2	0.23	mg/Kg	<u> </u>	10/31/17 16:37	11/01/17 14:24	1
Arsenic	6.6		0.58	0.20	mg/Kg	₩	10/31/17 16:37	11/01/17 14:24	1
Barium	93		0.58	0.066	mg/Kg	₩	10/31/17 16:37	11/01/17 14:24	1
Beryllium	0.45		0.23	0.054	mg/Kg	₩	10/31/17 16:37	11/01/17 14:24	1
Cadmium	0.37	В	0.12	0.021	mg/Kg	₩	10/31/17 16:37	11/01/17 14:24	1
Chromium	16		0.58	0.29	mg/Kg	₩	10/31/17 16:37	11/01/17 14:24	1
Cobalt	7.3		0.29	0.076	mg/Kg	ф.	10/31/17 16:37	11/01/17 14:24	1
Copper	16	В	0.58	0.16	mg/Kg	₩	10/31/17 16:37	11/01/17 14:24	1
Iron	15000		11	5.8	mg/Kg	₩	11/02/17 07:14	11/02/17 19:17	1
Lead	46		0.29	0.13	mg/Kg	ф.	10/31/17 16:37	11/01/17 14:24	1
Manganese	210	В	0.58	0.084	mg/Kg	₩	10/31/17 16:37	11/01/17 14:24	1
Nickel	14		0.58	0.17	mg/Kg	₩	10/31/17 16:37	11/01/17 14:24	1
Selenium	<0.58		0.58	0.34	mg/Kg	₩	10/31/17 16:37	11/01/17 14:24	1
Silver	<0.29		0.29	0.075	mg/Kg	☼	10/31/17 16:37	11/01/17 14:24	1

11/10/2017

Page 16 of 64

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-9-3 (0-4')

Date Collected: 10/30/17 13:20

Date Received: 10/31/17 08:45

TestAmerica Job ID: 500-136509-1

6509-2

Matrix: Solid Percent Solids: 83.6

.ab Sam	ple l	ID:	500-	136

Method: 6010B - Metal	s (ICP) (Continued))							
Analyte	` '`	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Thallium	<0.58		0.58	0.29	mg/Kg	<u>₩</u>	10/31/17 16:37	11/01/17 14:24	1
Vanadium	26		0.29	0.069	mg/Kg	₩.	10/31/17 16:37	11/01/17 14:24	1
Zinc	96		1.2	0.51	mg/Kg	≎	10/31/17 16:37	11/01/17 14:24	1
_ Method: 6010B - Metal	ls (ICP) - TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/02/17 08:35	11/02/17 16:42	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/02/17 08:35	11/02/17 16:42	1
Barium	0.67		0.50	0.050	mg/L		11/02/17 08:35	11/02/17 16:42	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/02/17 08:35	11/02/17 16:42	1
Cadmium	0.0020	J	0.0050	0.0020	mg/L		11/02/17 08:35	11/02/17 16:42	1
Chromium	<0.025		0.025	0.010	mg/L		11/02/17 08:35	11/02/17 16:42	1
Cobalt	<0.025		0.025	0.010	mg/L		11/02/17 08:35	11/02/17 16:42	1
Copper	0.011	J	0.025	0.010	mg/L		11/02/17 08:35	11/02/17 16:42	
Iron	<0.40		0.40	0.20	mg/L		11/02/17 08:35	11/02/17 16:42	•
Lead	<0.0075		0.0075	0.0075	mg/L		11/02/17 08:35	11/02/17 16:42	1
Manganese	0.030		0.025	0.010	mg/L		11/02/17 08:35	11/02/17 16:42	1
Nickel	<0.025		0.025	0.010	mg/L		11/02/17 08:35	11/02/17 16:42	1
Selenium	<0.050		0.050	0.020	mg/L		11/02/17 08:35	11/02/17 16:42	1
Silver	<0.025		0.025	0.010	mg/L		11/02/17 08:35	11/02/17 16:42	
Vanadium	<0.025		0.025	0.010	mg/L		11/02/17 08:35	11/02/17 16:42	1
Zinc	<0.50		0.50	0.020	mg/L		11/02/17 08:35	11/02/17 16:42	1

Method: 6020A - Metals (ICP/MS) - TCLP							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060	0.0060	0.0060	mg/L		11/02/17 08:35	11/02/17 17:13	1
Thallium	<0.0020	0.0020	0.0020	mg/L		11/02/17 08:35	11/02/17 17:13	1

Method: /4	70A - ICLP Mercury - ICLP								
Analyte	Resu	t Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.0002	<u> </u>	0.00020	0.00020	mg/L		11/03/17 12:20	11/06/17 09:34	1

Method: 7471B - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.049		0.017	0.0057	mg/Kg	<u> </u>	11/01/17 15:30	11/02/17 12:29	1

	General Chemistry	Popult	Qualifier	RL	MDL Unit	n	Droporod	Anglyzad	Dil Fac
	Analyte	Result	Qualifier				Prepared	Analyzed	DII Fac
L	_pH	7.6	HF	0.2	0.2 SU			11/03/17 08:57	1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Acenaphthylene

Benzo[a]anthracene

Anthracene

Client Sample ID: 3160-10-1 (0-2.5')

Lab Sample ID: 500-136509-3 Date Collected: 10/30/17 13:35 **Matrix: Solid** Date Received: 10/31/17 08:45 Percent Solids: 80.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	<0.41		0.41	0.14	mg/Kg	<u> </u>	10/30/17 13:35	11/09/17 17:46	50
Benzene	0.65		0.021	0.012	mg/Kg	₩	10/30/17 13:35	11/09/17 17:46	50
Bromodichloromethane	<0.083		0.083	0.031	mg/Kg	☼	10/30/17 13:35	11/09/17 17:46	50
Bromoform	<0.083		0.083	0.040	mg/Kg	₽	10/30/17 13:35	11/09/17 17:46	50
Bromomethane	<0.17		0.17	0.066	mg/Kg	☼	10/30/17 13:35	11/09/17 17:46	50
2-Butanone (MEK)	<0.41		0.41	0.18	mg/Kg	☼	10/30/17 13:35	11/09/17 17:46	50
Carbon disulfide	<0.17		0.17	0.066	mg/Kg		10/30/17 13:35	11/09/17 17:46	50
Carbon tetrachloride	<0.083		0.083	0.032	mg/Kg	☼	10/30/17 13:35	11/09/17 17:46	50
Chlorobenzene	<0.083		0.083	0.032	mg/Kg	☼	10/30/17 13:35	11/09/17 17:46	50
Chloroethane	<0.083		0.083		mg/Kg		10/30/17 13:35	11/09/17 17:46	50
Chloroform	<0.17		0.17		mg/Kg	☼	10/30/17 13:35	11/09/17 17:46	50
Chloromethane	<0.083		0.083		mg/Kg	☼	10/30/17 13:35	11/09/17 17:46	50
cis-1,2-Dichloroethene	<0.083		0.083		mg/Kg		10/30/17 13:35	11/09/17 17:46	50
cis-1,3-Dichloropropene	<0.083		0.083		mg/Kg	₩		11/09/17 17:46	50
Dibromochloromethane	<0.083		0.083		mg/Kg	₩		11/09/17 17:46	50
1,1-Dichloroethane	<0.083		0.083		mg/Kg		10/30/17 13:35	11/09/17 17:46	50
1,2-Dichloroethane	<0.083		0.083		mg/Kg	≎		11/09/17 17:46	50
1,1-Dichloroethene	<0.083		0.083		mg/Kg	₽	10/30/17 13:35	11/09/17 17:46	50
1,2-Dichloropropane	<0.083		0.083		mg/Kg		10/30/17 13:35	11/09/17 17:46	50
1,3-Dichloropropene, Total	<0.083		0.083		mg/Kg	₽		11/09/17 17:46	50
Ethylbenzene	0.52		0.021		mg/Kg	☼		11/09/17 17:46	50
2-Hexanone	<0.41		0.41		mg/Kg			11/09/17 17:46	50
Methylene Chloride	<0.41		0.41		mg/Kg	₩		11/09/17 17:46	50
4-Methyl-2-pentanone (MIBK)	<0.41		0.41		mg/Kg	☼		11/09/17 17:46	50
Methyl tert-butyl ether	<0.083		0.083		mg/Kg	 \$		11/09/17 17:46	50
Styrene	<0.083		0.083		mg/Kg	☼		11/09/17 17:46	50
1,1,2,2-Tetrachloroethane	<0.083		0.083		mg/Kg	☼		11/09/17 17:46	50
Tetrachloroethene	<0.083		0.083		mg/Kg	 \$		11/09/17 17:46	50
Toluene	0.22		0.021		mg/Kg	₩		11/09/17 17:46	50
trans-1,2-Dichloroethene	< 0.083		0.083		mg/Kg	₩		11/09/17 17:46	50
trans-1,3-Dichloropropene	<0.083		0.083		mg/Kg	 ф		11/09/17 17:46	50
1,1,1-Trichloroethane	<0.083		0.083		mg/Kg	₩		11/09/17 17:46	50
1,1,2-Trichloroethane	<0.083		0.083		mg/Kg	₩		11/09/17 17:46	50
Trichloroethene	0.022		0.041		mg/Kg	ф		11/09/17 17:46	50
Vinyl acetate	<0.17	3	0.17		mg/Kg	☆		11/09/17 17:46	50
Vinyl chloride	<0.041		0.041		mg/Kg	₩		11/09/17 17:46	50
Xylenes, Total	2.6		0.041		mg/Kg			11/09/17 17:46	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	84		72 - 124				10/30/17 13:35	11/09/17 17:46	50
Dibromofluoromethane	88		75 - 120				10/30/17 13:35	11/09/17 17:46	50
1,2-Dichloroethane-d4 (Surr)	87		75 - 126				10/30/17 13:35	11/09/17 17:46	50
Toluene-d8 (Surr)	103		75 - 120				10/30/17 13:35	11/09/17 17:46	50
Method: 8270D - Semivolat									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	<0.040		0.040	0.0073	mg/Kg		11/06/17 15:06	11/07/17 13:24	-

TestAmerica Chicago

☼ 11/06/17 15:06 11/07/17 13:24

☼ 11/06/17 15:06 11/07/17 13:24

11/06/17 15:06 11/07/17 13:24

Page 18 of 64

0.040

0.040

0.040

0.0053 mg/Kg

0.0067 mg/Kg

0.0054 mg/Kg

<0.040

<0.040

0.0086 J

11/10/2017

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/30/17 13:35

Date Received: 10/31/17 08:45

Client Sample ID: 3160-10-1 (0-2.5')

TestAmerica Job ID: 500-136509-1

Lab Sample ID: 500-136509-3

Matrix: Solid

Percent Solids: 80.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]pyrene	<0.040		0.040	0.0078	mg/Kg	<u> </u>	11/06/17 15:06	11/07/17 13:24	
Benzo[b]fluoranthene	<0.040		0.040	0.0087	mg/Kg	₩	11/06/17 15:06	11/07/17 13:24	
Benzo[g,h,i]perylene	<0.040		0.040	0.013	mg/Kg	₩	11/06/17 15:06	11/07/17 13:24	•
Benzo[k]fluoranthene	<0.040		0.040	0.012	mg/Kg	₩	11/06/17 15:06	11/07/17 13:24	
Bis(2-chloroethoxy)methane	<0.20		0.20	0.041	mg/Kg	₩	11/06/17 15:06	11/07/17 13:24	
Bis(2-chloroethyl)ether	<0.20		0.20	0.060	mg/Kg		11/06/17 15:06	11/07/17 13:24	
Bis(2-ethylhexyl) phthalate	<0.20		0.20	0.074	mg/Kg	₩	11/06/17 15:06	11/07/17 13:24	
4-Bromophenyl phenyl ether	<0.20		0.20	0.053	mg/Kg	₩	11/06/17 15:06	11/07/17 13:24	
Butyl benzyl phthalate	<0.20		0.20	0.077	mg/Kg	₩	11/06/17 15:06	11/07/17 13:24	
Carbazole	<0.20		0.20		mg/Kg	₩	11/06/17 15:06	11/07/17 13:24	
4-Chloroaniline	<0.81		0.81		mg/Kg	₩	11/06/17 15:06	11/07/17 13:24	
4-Chloro-3-methylphenol	<0.40		0.40		mg/Kg		11/06/17 15:06	11/07/17 13:24	
2-Chloronaphthalene	<0.20		0.20	0.045	mg/Kg	₩	11/06/17 15:06	11/07/17 13:24	
2-Chlorophenol	<0.20		0.20		mg/Kg	₩	11/06/17 15:06	11/07/17 13:24	
4-Chlorophenyl phenyl ether	<0.20		0.20		mg/Kg			11/07/17 13:24	
Chrysene	<0.040		0.040	0.011	mg/Kg	₩		11/07/17 13:24	
Dibenz(a,h)anthracene	<0.040		0.040	0.0078		₩	11/06/17 15:06	11/07/17 13:24	
Dibenzofuran	<0.20		0.20		mg/Kg		11/06/17 15:06	11/07/17 13:24	
1,2-Dichlorobenzene	<0.20		0.20		mg/Kg	₩		11/07/17 13:24	
1,3-Dichlorobenzene	<0.20		0.20		mg/Kg	₩		11/07/17 13:24	
1,4-Dichlorobenzene	<0.20		0.20		mg/Kg			11/07/17 13:24	
3,3'-Dichlorobenzidine	<0.20		0.20		mg/Kg	₩		11/07/17 13:24	
2,4-Dichlorophenol	<0.40		0.40		mg/Kg	₩		11/07/17 13:24	
Diethyl phthalate	<0.20		0.20		mg/Kg			11/07/17 13:24	
2,4-Dimethylphenol	0.21	J	0.40		mg/Kg	₩		11/07/17 13:24	
Dimethyl phthalate	<0.20		0.20		mg/Kg	₩		11/07/17 13:24	
Di-n-butyl phthalate	<0.20		0.20	0.061				11/07/17 13:24	
4,6-Dinitro-2-methylphenol	<0.81		0.81		mg/Kg	₩		11/07/17 13:24	
2,4-Dinitrophenol	<0.81		0.81	0.71		₩		11/07/17 13:24	
2,4-Dinitrotoluene	<0.20		0.20		mg/Kg	<u>.</u> .		11/07/17 13:24	
2,6-Dinitrotoluene	<0.20		0.20		mg/Kg	₩		11/07/17 13:24	
Di-n-octyl phthalate	<0.20		0.20		mg/Kg	₩		11/07/17 13:24	
Fluoranthene	0.019		0.040	0.0075				11/07/17 13:24	
Fluorene	0.0096		0.040	0.0073	0 0	₩		11/07/17 13:24	
Hexachlorobenzene	<0.081		0.081	0.0094	0 0	₩		11/07/17 13:24	
Hexachlorobutadiene	<0.20		0.20		mg/Kg			11/07/17 13:24	
Hexachlorocyclopentadiene	<0.81		0.81		mg/Kg	₽		11/07/17 13:24	
Hexachloroethane	<0.20		0.20		mg/Kg	₽		11/07/17 13:24	
ndeno[1,2,3-cd]pyrene	<0.040		0.040		mg/Kg			11/07/17 13:24	
Isophorone	<0.20		0.20		mg/Kg	₽		11/07/17 13:24	
2-Methylnaphthalene	0.63		0.20	0.0074		₩		11/07/17 13:24	
2-Methylphenol	<0.20		0.20		mg/Kg			11/07/17 13:24	
3 & 4 Methylphenol	<0.20		0.20		mg/Kg	₽		11/07/17 13:24	
• •			0.20	0.007		₽		11/07/17 13:24	
Naphthalene 2-Nitroaniline	0.37				mg/Kg	 \$		11/07/17 13:24	
	<0.20		0.20 0.40		mg/Kg mg/Kg	₩		11/07/17 13:24	
3-Nitroaniline	<0.40					₩			
4-Nitroaniline	<0.40		0.40		mg/Kg			11/07/17 13:24	
Nitrobenzene 2-Nitrophenol	<0.040 <0.40		0.040 0.40		mg/Kg mg/Kg	₽		11/07/17 13:24 11/07/17 13:24	1

TestAmerica Chicago

Page 19 of 64

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136509-1

Client Sample ID: 3160-10-1 (0-2.5')

Lab Sample ID: 500-136509-3 Date Collected: 10/30/17 13:35 **Matrix: Solid**

Date Received: 10/31/17 08:45 Percent Solids: 80.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.81		0.81	0.38	mg/Kg	<u> </u>	11/06/17 15:06	11/07/17 13:24	1
N-Nitrosodi-n-propylamine	<0.081		0.081	0.049	mg/Kg	φ.	11/06/17 15:06	11/07/17 13:24	1
N-Nitrosodiphenylamine	<0.20		0.20	0.048	mg/Kg	₩	11/06/17 15:06	11/07/17 13:24	1
2,2'-oxybis[1-chloropropane]	<0.20		0.20	0.047	mg/Kg	₩	11/06/17 15:06	11/07/17 13:24	1
Pentachlorophenol	<0.81		0.81	0.65	mg/Kg	₩.	11/06/17 15:06	11/07/17 13:24	1
Phenanthrene	0.023	J	0.040	0.0056	mg/Kg	₩	11/06/17 15:06	11/07/17 13:24	1
Phenol	<0.20		0.20	0.090	mg/Kg	₩	11/06/17 15:06	11/07/17 13:24	1
Pyrene	0.018	J	0.040	0.0080	mg/Kg		11/06/17 15:06	11/07/17 13:24	1
1,2,4-Trichlorobenzene	<0.20		0.20	0.043	mg/Kg	₩	11/06/17 15:06	11/07/17 13:24	1
2,4,5-Trichlorophenol	<0.40		0.40	0.092	mg/Kg	₩	11/06/17 15:06	11/07/17 13:24	1
2,4,6-Trichlorophenol	<0.40		0.40	0.14	mg/Kg	₽	11/06/17 15:06	11/07/17 13:24	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	85		44 - 121				11/06/17 15:06	11/07/17 13:24	1
2-Fluorophenol	91		46 - 133				11/06/17 15:06	11/07/17 13:24	1
Nitrobenzene-d5	72		41 - 120				11/06/17 15:06	11/07/17 13:24	1
Phenol-d5	77		46 - 125				11/06/17 15:06	11/07/17 13:24	1
Terphenyl-d14	91		35 - 160				11/06/17 15:06	11/07/17 13:24	1
2,4,6-Tribromophenol	117		25 - 139				11/06/17 15:06	11/07/17 13:24	1

Method: 6010B - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.48	J	1.2	0.23	mg/Kg	<u></u>	10/31/17 16:37	11/01/17 14:28	1
Arsenic	7.8		0.59	0.20	mg/Kg	☼	10/31/17 16:37	11/01/17 14:28	1
Barium	84		0.59	0.067	mg/Kg	₩	10/31/17 16:37	11/01/17 14:28	1
Beryllium	0.38		0.24	0.055	mg/Kg	₩.	10/31/17 16:37	11/01/17 14:28	1
Cadmium	<0.12		0.12	0.021	mg/Kg	₩	10/31/17 16:37	11/01/17 14:28	1
Chromium	17		0.59	0.29	mg/Kg	₩	10/31/17 16:37	11/01/17 14:28	1
Cobalt	6.8		0.30	0.078	mg/Kg		10/31/17 16:37	11/01/17 14:28	1
Copper	16	В	0.59	0.17	mg/Kg	₩	10/31/17 16:37	11/01/17 14:28	1
Iron	18000		11	5.9	mg/Kg	₩	11/02/17 07:14	11/02/17 19:21	1
Lead	14		0.30	0.14	mg/Kg		10/31/17 16:37	11/01/17 14:28	1
Manganese	210	В	0.59	0.086	mg/Kg	₩	10/31/17 16:37	11/01/17 14:28	1
Nickel	14		0.59	0.17	mg/Kg	₩	10/31/17 16:37	11/01/17 14:28	1
Selenium	<0.59		0.59	0.35	mg/Kg	φ.	10/31/17 16:37	11/01/17 14:28	1
Silver	< 0.30		0.30	0.076	mg/Kg	₩	10/31/17 16:37	11/01/17 14:28	1
Thallium	<0.59		0.59	0.30	mg/Kg	₩	10/31/17 16:37	11/01/17 14:28	1
Vanadium	30		0.30	0.070	mg/Kg	ф.	10/31/17 16:37	11/01/17 14:28	1
Zinc	56		1.2		mg/Kg	₩	10/31/17 16:37	11/01/17 14:28	1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050	0.050	0.010	mg/L		11/02/17 08:35	11/02/17 16:46	1
Barium	0.66	0.50	0.050	mg/L		11/02/17 08:35	11/02/17 16:46	1
Beryllium	<0.0040	0.0040	0.0040	mg/L		11/02/17 08:35	11/02/17 16:46	1
Cadmium	<0.0050	0.0050	0.0020	mg/L		11/02/17 08:35	11/02/17 16:46	1
Chromium	<0.025	0.025	0.010	mg/L		11/02/17 08:35	11/02/17 16:46	1
Cobalt	<0.025	0.025	0.010	mg/L		11/02/17 08:35	11/02/17 16:46	1
Copper	0.020 J	0.025	0.010	mg/L		11/02/17 08:35	11/02/17 16:46	1
Iron	3.0	0.40	0.20	mg/L		11/02/17 08:35	11/02/17 16:46	1

TestAmerica Chicago

Page 20 of 64

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/30/17 13:35

Date Received: 10/31/17 08:45

Client Sample ID: 3160-10-1 (0-2.5')

TestAmerica Job ID: 500-136509-1

Lab Sample ID: 500-136509-3

Matrix: Solid

Percent Solids: 80.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	<0.0075		0.0075	0.0075	mg/L		11/02/17 08:35	11/02/17 16:46	1
Manganese	3.0		0.025	0.010	mg/L		11/02/17 08:35	11/02/17 16:46	1
Nickel	<0.025		0.025	0.010	mg/L		11/02/17 08:35	11/02/17 16:46	1
Selenium	<0.050		0.050	0.020	mg/L		11/02/17 08:35	11/02/17 16:46	1
Silver	<0.025		0.025	0.010	mg/L		11/02/17 08:35	11/02/17 16:46	1
Vanadium	<0.025		0.025	0.010	mg/L		11/02/17 08:35	11/02/17 16:46	1
Zinc	0.035	J	0.50	0.020	mg/L		11/02/17 08:35	11/02/17 16:46	1
- Method: 6010B - Metals	s (ICP) - SPLP East	t							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Manganese	0.34		0.025	0.010	mg/L		11/02/17 14:21	11/03/17 23:04	1
- Method: 6020A - Metals	s (ICP/MS) - TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060		0.0060	0.0060	mg/L		11/02/17 08:35	11/02/17 17:16	1
Thallium	<0.0020		0.0020	0.0020	mg/L		11/02/17 08:35	11/02/17 17:16	1
Method: 7470A - TCLP	Mercury - TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/03/17 12:20	11/06/17 09:38	1
- Method: 7471B - Mercเ	ıry (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.020		0.018	0.0061	mg/Kg	\	11/01/17 15:30	11/02/17 12:31	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	5.4	HE	0.2	0.2	SU			11/03/17 08:57	1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-10-2 (0-2.5')

Lab Sample ID: 500-136509-4

Date Collected: 10/30/17 13:50

Matrix: Solid
Date Received: 10/31/17 08:45

Matrix: Solid
Percent Solids: 83.6

Method: 8260B - Volatile O Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	<0.020	0.020	0.0087	mg/Kg	₩	10/31/17 15:36	11/02/17 17:19	1
Benzene	<0.0020	0.0020	0.00051	mg/Kg	₩	10/31/17 15:36	11/02/17 17:19	1
Bromodichloromethane	<0.0020	0.0020	0.00041	mg/Kg	₩	10/31/17 15:36	11/02/17 17:19	1
Bromoform	<0.0020	0.0020	0.00058	mg/Kg	₩	10/31/17 15:36	11/02/17 17:19	1
Bromomethane	<0.0050	0.0050	0.0019	mg/Kg	₩	10/31/17 15:36	11/02/17 17:19	1
2-Butanone (MEK)	<0.0050	0.0050	0.0022	mg/Kg	₩	10/31/17 15:36	11/02/17 17:19	1
Carbon disulfide	<0.0050	0.0050	0.0010	mg/Kg	₩	10/31/17 15:36	11/02/17 17:19	1
Carbon tetrachloride	<0.0020	0.0020	0.00058	mg/Kg	₩	10/31/17 15:36	11/02/17 17:19	1
Chlorobenzene	<0.0020	0.0020	0.00074	mg/Kg	₩	10/31/17 15:36	11/02/17 17:19	1
Chloroethane	<0.0050	0.0050	0.0015	mg/Kg	₽	10/31/17 15:36	11/02/17 17:19	1
Chloroform	<0.0020	0.0020	0.00069	mg/Kg	☼	10/31/17 15:36	11/02/17 17:19	1
Chloromethane	<0.0050	0.0050	0.0020	mg/Kg	☼	10/31/17 15:36	11/02/17 17:19	1
cis-1,2-Dichloroethene	<0.0020	0.0020	0.00056	mg/Kg	₩	10/31/17 15:36	11/02/17 17:19	1
cis-1,3-Dichloropropene	<0.0020	0.0020	0.00060	mg/Kg	☼	10/31/17 15:36	11/02/17 17:19	1
Dibromochloromethane	<0.0020	0.0020	0.00065	mg/Kg	₩	10/31/17 15:36	11/02/17 17:19	1
1,1-Dichloroethane	<0.0020	0.0020	0.00068	mg/Kg	₩.	10/31/17 15:36	11/02/17 17:19	1
1,2-Dichloroethane	<0.0050	0.0050	0.0016	mg/Kg	☼	10/31/17 15:36	11/02/17 17:19	1
1,1-Dichloroethene	<0.0020	0.0020	0.00069	mg/Kg	☼	10/31/17 15:36	11/02/17 17:19	1
1,2-Dichloropropane	<0.0020	0.0020	0.00052	mg/Kg		10/31/17 15:36	11/02/17 17:19	1
1,3-Dichloropropene, Total	<0.0020	0.0020	0.00070	mg/Kg	☼	10/31/17 15:36	11/02/17 17:19	1
Ethylbenzene	<0.0020	0.0020	0.00096	mg/Kg	☼	10/31/17 15:36	11/02/17 17:19	1
2-Hexanone	<0.0050	0.0050	0.0016	mg/Kg		10/31/17 15:36	11/02/17 17:19	1
Methylene Chloride	<0.0050	0.0050	0.0020	mg/Kg	₩	10/31/17 15:36	11/02/17 17:19	1
4-Methyl-2-pentanone (MIBK)	<0.0050	0.0050	0.0015	mg/Kg	☼	10/31/17 15:36	11/02/17 17:19	1
Methyl tert-butyl ether	<0.0020	0.0020	0.00059	mg/Kg	₩.	10/31/17 15:36	11/02/17 17:19	1
Styrene	<0.0020	0.0020	0.00060	mg/Kg	₩	10/31/17 15:36	11/02/17 17:19	1
1,1,2,2-Tetrachloroethane	<0.0020	0.0020	0.00064	mg/Kg	☼	10/31/17 15:36	11/02/17 17:19	1
Tetrachloroethene	<0.0020	0.0020	0.00068	mg/Kg	₽	10/31/17 15:36	11/02/17 17:19	1
Toluene	<0.0020	0.0020	0.00050	mg/Kg	☼	10/31/17 15:36	11/02/17 17:19	1
trans-1,2-Dichloroethene	<0.0020	0.0020	0.00088	mg/Kg	☼	10/31/17 15:36	11/02/17 17:19	1
trans-1,3-Dichloropropene	<0.0020	0.0020	0.00070	mg/Kg		10/31/17 15:36	11/02/17 17:19	1
1,1,1-Trichloroethane	<0.0020	0.0020	0.00067	mg/Kg	☼	10/31/17 15:36	11/02/17 17:19	1
1,1,2-Trichloroethane	<0.0020	0.0020	0.00086	mg/Kg	₩	10/31/17 15:36	11/02/17 17:19	1
Trichloroethene	<0.0020	0.0020	0.00067	mg/Kg		10/31/17 15:36	11/02/17 17:19	1
Vinyl acetate	<0.0050	0.0050	0.0017	mg/Kg	₩	10/31/17 15:36	11/02/17 17:19	1
Vinyl chloride	<0.0020	0.0020	0.00088	mg/Kg	₩	10/31/17 15:36	11/02/17 17:19	1
Xylenes, Total	<0.0040	0.0040	0.00064	mg/Kg	₽	10/31/17 15:36	11/02/17 17:19	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	92	75 - 131				10/31/17 15:36	11/02/17 17:19	1
Dibromofluoromethane	101	75 - 126				10/31/17 15:36	11/02/17 17:19	1
1,2-Dichloroethane-d4 (Surr)	96	70 - 134				10/31/17 15:36	11/02/17 17:19	1
Toluene-d8 (Surr)	98	75 - 124				10/31/17 15:36	11/02/17 17:19	1

Method: 8270D - Semivolatile Organic Compounds (GC/MS)									
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac		
Acenaphthene	<0.038	0.038	0.0068 mg/Kg	j 🌣	11/06/17 15:06	11/07/17 13:51	1		
Acenaphthylene	<0.038	0.038	0.0050 mg/Kg) [‡]	11/06/17 15:06	11/07/17 13:51	1		
Anthracene	<0.038	0.038	0.0063 mg/Kg) [‡]	11/06/17 15:06	11/07/17 13:51	1		
Benzo[a]anthracene	<0.038	0.038	0.0051 mg/Kg)	11/06/17 15:06	11/07/17 13:51	1		

TestAmerica Chicago

Page 22 of 64

5

3

5

7

9

11

14

15

11/10/2017

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-10-2 (0-2.5')

TestAmerica Job ID: 500-136509-1

Lab Sample ID: 500-136509-4

Matrix: Solid

Percent Solids: 83.6

Date Collected: 10/30/17 13:50 Date Received: 10/31/17 08:45

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]pyrene	<0.038	0.038	0.0073	mg/Kg	<u> </u>	11/06/17 15:06	11/07/17 13:51	1
Benzo[b]fluoranthene	<0.038	0.038	0.0082	mg/Kg	₩	11/06/17 15:06	11/07/17 13:51	1
Benzo[g,h,i]perylene	<0.038	0.038	0.012	mg/Kg	₽	11/06/17 15:06	11/07/17 13:51	1
Benzo[k]fluoranthene	<0.038	0.038	0.011	mg/Kg	₩	11/06/17 15:06	11/07/17 13:51	1
Bis(2-chloroethoxy)methane	<0.19	0.19	0.039	mg/Kg	₩	11/06/17 15:06	11/07/17 13:51	1
Bis(2-chloroethyl)ether	<0.19	0.19	0.057	mg/Kg	₽	11/06/17 15:06	11/07/17 13:51	1
Bis(2-ethylhexyl) phthalate	<0.19	0.19	0.069	mg/Kg	☼	11/06/17 15:06	11/07/17 13:51	1
4-Bromophenyl phenyl ether	<0.19	0.19	0.050	mg/Kg	₩	11/06/17 15:06	11/07/17 13:51	1
Butyl benzyl phthalate	<0.19	0.19	0.072	mg/Kg	₩	11/06/17 15:06	11/07/17 13:51	1
Carbazole	<0.19	0.19	0.095	mg/Kg	₩	11/06/17 15:06	11/07/17 13:51	1
4-Chloroaniline	<0.76	0.76	0.18	mg/Kg	☼	11/06/17 15:06	11/07/17 13:51	1
4-Chloro-3-methylphenol	<0.38	0.38	0.13	mg/Kg		11/06/17 15:06	11/07/17 13:51	1
2-Chloronaphthalene	<0.19	0.19	0.042	mg/Kg	☼	11/06/17 15:06	11/07/17 13:51	1
2-Chlorophenol	<0.19	0.19	0.065	mg/Kg	☼	11/06/17 15:06	11/07/17 13:51	1
4-Chlorophenyl phenyl ether	<0.19	0.19	0.044	mg/Kg	₽	11/06/17 15:06	11/07/17 13:51	1
Chrysene	<0.038	0.038	0.010	mg/Kg	₩	11/06/17 15:06	11/07/17 13:51	1
Dibenz(a,h)anthracene	<0.038	0.038	0.0073	mg/Kg	₩	11/06/17 15:06	11/07/17 13:51	1
Dibenzofuran	<0.19	0.19	0.044	mg/Kg	ф.	11/06/17 15:06	11/07/17 13:51	1
1,2-Dichlorobenzene	<0.19	0.19	0.045	mg/Kg	☆	11/06/17 15:06	11/07/17 13:51	1
1,3-Dichlorobenzene	<0.19	0.19	0.043	mg/Kg	☼	11/06/17 15:06	11/07/17 13:51	1
1,4-Dichlorobenzene	<0.19	0.19	0.049	mg/Kg		11/06/17 15:06	11/07/17 13:51	1
3,3'-Dichlorobenzidine	<0.19	0.19	0.053	mg/Kg	₩	11/06/17 15:06	11/07/17 13:51	1
2,4-Dichlorophenol	<0.38	0.38	0.090	mg/Kg	☼	11/06/17 15:06	11/07/17 13:51	1
Diethyl phthalate	<0.19	0.19		mg/Kg	· · · · · · · · · · · · · · · · · · ·	11/06/17 15:06	11/07/17 13:51	1
2,4-Dimethylphenol	<0.38	0.38		mg/Kg	☼	11/06/17 15:06	11/07/17 13:51	1
Dimethyl phthalate	<0.19	0.19	0.050	mg/Kg	₩	11/06/17 15:06	11/07/17 13:51	1
Di-n-butyl phthalate	<0.19	0.19		mg/Kg	· · · · · ·	11/06/17 15:06	11/07/17 13:51	1
4,6-Dinitro-2-methylphenol	<0.76	0.76		mg/Kg	☼	11/06/17 15:06	11/07/17 13:51	1
2,4-Dinitrophenol	<0.76	0.76		mg/Kg	☼	11/06/17 15:06	11/07/17 13:51	1
2,4-Dinitrotoluene	<0.19	0.19	0.060	mg/Kg		11/06/17 15:06	11/07/17 13:51	1
2,6-Dinitrotoluene	<0.19	0.19		mg/Kg	₩	11/06/17 15:06	11/07/17 13:51	1
Di-n-octyl phthalate	<0.19	0.19	0.062	mg/Kg	☆	11/06/17 15:06	11/07/17 13:51	1
Fluoranthene	<0.038	0.038	0.0070			11/06/17 15:06	11/07/17 13:51	1
Fluorene	<0.038	0.038	0.0053	mg/Kg	☼	11/06/17 15:06	11/07/17 13:51	1
Hexachlorobenzene	<0.076	0.076	0.0088	mg/Kg	☼	11/06/17 15:06	11/07/17 13:51	1
Hexachlorobutadiene	<0.19	0.19		mg/Kg		11/06/17 15:06	11/07/17 13:51	1
Hexachlorocyclopentadiene	<0.76	0.76		mg/Kg	☼		11/07/17 13:51	1
Hexachloroethane	<0.19	0.19		mg/Kg	₩	11/06/17 15:06	11/07/17 13:51	1
Indeno[1,2,3-cd]pyrene	<0.038	0.038	0.0098				11/07/17 13:51	1
Isophorone	<0.19	0.19		mg/Kg	☆		11/07/17 13:51	1
2-Methylnaphthalene	<0.076	0.076	0.0070		₩		11/07/17 13:51	1
2-Methylphenol	<0.19	0.19		mg/Kg	· · · · · · · · · · · · · · · · · · ·		11/07/17 13:51	1
3 & 4 Methylphenol	<0.19	0.19		mg/Kg	₩		11/07/17 13:51	1
Naphthalene	<0.038	0.038	0.0058		₩		11/07/17 13:51	1
2-Nitroaniline	<0.19	0.19		mg/Kg			11/07/17 13:51	· · · · · · · · 1
3-Nitroaniline	<0.38	0.38		mg/Kg	≎		11/07/17 13:51	1
4-Nitroaniline	<0.38	0.38		mg/Kg	≎		11/07/17 13:51	1
Nitrobenzene	<0.038	0.038	0.0095				11/07/17 13:51	· · · · · · · · · · · · · · · · · · ·
2-Nitrophenol	<0.38	0.38		mg/Kg	≎		11/07/17 13:51	1

TestAmerica Chicago

Page 23 of 64

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/30/17 13:50

Date Received: 10/31/17 08:45

Client Sample ID: 3160-10-2 (0-2.5')

TestAmerica Job ID: 500-136509-1

Lab Sample ID: 500-136509-4

Matrix: Solid

Percent Solids: 83.6

Method: 8270D - Semivola	tile Organic Co	mpounds	(GC/MS) (Cd	ntinued)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.76		0.76	0.36	mg/Kg	₩	11/06/17 15:06	11/07/17 13:51	1
N-Nitrosodi-n-propylamine	<0.076		0.076	0.046	mg/Kg	φ.	11/06/17 15:06	11/07/17 13:51	1
N-Nitrosodiphenylamine	<0.19		0.19	0.045	mg/Kg	☼	11/06/17 15:06	11/07/17 13:51	1
2,2'-oxybis[1-chloropropane]	<0.19		0.19	0.044	mg/Kg	☼	11/06/17 15:06	11/07/17 13:51	1
Pentachlorophenol	<0.76		0.76	0.61	mg/Kg	₽	11/06/17 15:06	11/07/17 13:51	1
Phenanthrene	<0.038		0.038	0.0053	mg/Kg	☼	11/06/17 15:06	11/07/17 13:51	1
Phenol	<0.19		0.19	0.084	mg/Kg	₽	11/06/17 15:06	11/07/17 13:51	1
Pyrene	<0.038		0.038	0.0075	mg/Kg	₽	11/06/17 15:06	11/07/17 13:51	1
1,2,4-Trichlorobenzene	<0.19		0.19	0.041	mg/Kg	☼	11/06/17 15:06	11/07/17 13:51	1
2,4,5-Trichlorophenol	<0.38		0.38	0.086	mg/Kg	☼	11/06/17 15:06	11/07/17 13:51	1
2,4,6-Trichlorophenol	<0.38		0.38	0.13	mg/Kg		11/06/17 15:06	11/07/17 13:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	83		44 - 121				11/06/17 15:06	11/07/17 13:51	1
2-Fluorophenol	92		46 - 133				11/06/17 15:06	11/07/17 13:51	1
Nitrobenzene-d5	69		41 - 120				11/06/17 15:06	11/07/17 13:51	1
Phenol-d5	64		46 - 125				11/06/17 15:06	11/07/17 13:51	1
Terphenyl-d14	98		35 - 160				11/06/17 15:06	11/07/17 13:51	1
2,4,6-Tribromophenol	116		25 - 139				11/06/17 15:06	11/07/17 13:51	1

Method: 6010B - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.27		1.1	0.22	mg/Kg	<u> </u>	10/31/17 16:37	11/01/17 14:32	1
Arsenic	7.7		0.57	0.20	mg/Kg	☼	10/31/17 16:37	11/01/17 14:32	1
Barium	130		0.57	0.065	mg/Kg	☼	10/31/17 16:37	11/01/17 14:32	1
Beryllium	0.35		0.23	0.053	mg/Kg	₩	10/31/17 16:37	11/01/17 14:32	1
Cadmium	<0.11		0.11	0.021	mg/Kg	₩	10/31/17 16:37	11/01/17 14:32	1
Chromium	20		0.57	0.28	mg/Kg	☼	10/31/17 16:37	11/01/17 14:32	1
Cobalt	6.0		0.29	0.075	mg/Kg	₩.	10/31/17 16:37	11/01/17 14:32	1
Copper	18	В	0.57	0.16	mg/Kg	☼	10/31/17 16:37	11/01/17 14:32	1
Iron	20000		9.9	5.2	mg/Kg	☼	11/02/17 07:14	11/02/17 19:25	1
Lead	12		0.29	0.13	mg/Kg	₩	10/31/17 16:37	11/01/17 14:32	1
Manganese	210	В	0.57	0.083	mg/Kg	☼	10/31/17 16:37	11/01/17 14:32	1
Nickel	13		0.57	0.17	mg/Kg	☼	10/31/17 16:37	11/01/17 14:32	1
Selenium	<0.57		0.57	0.34	mg/Kg	₩	10/31/17 16:37	11/01/17 14:32	1
Silver	<0.29		0.29	0.074	mg/Kg	☼	10/31/17 16:37	11/01/17 14:32	1
Thallium	<0.57		0.57	0.28	mg/Kg	☼	10/31/17 16:37	11/01/17 14:32	1
Vanadium	33		0.29	0.067	mg/Kg	₩.	10/31/17 16:37	11/01/17 14:32	1
Zinc	53		1.1	0.50	mg/Kg	☼	10/31/17 16:37	11/01/17 14:32	1

Method: 6010B - Meta	Is (ICP) - TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/02/17 08:35	11/02/17 16:50	1
Barium	0.096	J	0.50	0.050	mg/L		11/02/17 08:35	11/02/17 16:50	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/02/17 08:35	11/02/17 16:50	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/02/17 08:35	11/02/17 16:50	1
Chromium	<0.025		0.025	0.010	mg/L		11/02/17 08:35	11/02/17 16:50	1
Cobalt	<0.025		0.025	0.010	mg/L		11/02/17 08:35	11/02/17 16:50	1
Copper	0.081		0.025	0.010	mg/L		11/02/17 08:35	11/02/17 16:50	1
Iron	0.21	J	0.40	0.20	mg/L		11/02/17 08:35	11/02/17 16:50	1

Page 24 of 64

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/30/17 13:50

Date Received: 10/31/17 08:45

Client Sample ID: 3160-10-2 (0-2.5')

TestAmerica Job ID: 500-136509-1

Lab Sample ID: 500-136509-4

Matrix: Solid

Percent Solids: 83.6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	<0.0075		0.0075	0.0075	mg/L		11/02/17 08:35	11/02/17 16:50	1
Manganese	0.066		0.025	0.010	mg/L		11/02/17 08:35	11/02/17 16:50	1
Nickel	<0.025		0.025	0.010	mg/L		11/02/17 08:35	11/02/17 16:50	1
Selenium	<0.050		0.050	0.020	mg/L		11/02/17 08:35	11/02/17 16:50	1
Silver	<0.025		0.025	0.010	mg/L		11/02/17 08:35	11/02/17 16:50	1
Vanadium	<0.025		0.025	0.010	mg/L		11/02/17 08:35	11/02/17 16:50	1
Zinc	0.081	J	0.50	0.020	mg/L		11/02/17 08:35	11/02/17 16:50	1
Method: 6020A - Metals ((ICP/MS) - TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060		0.0060	0.0060	mg/L		11/02/17 08:35	11/02/17 17:20	1
Thallium	<0.0020		0.0020	0.0020	mg/L		11/02/17 08:35	11/02/17 17:20	1
Method: 7470A - TCLP M	lercury - TCLP								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/03/17 12:20	11/06/17 09:40	1
Method: 7471B - Mercury	/ (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.018		0.018	0.0061	mg/Kg	<u>∓</u>	11/01/17 15:30	11/02/17 12:37	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	4.8	HE	0.2	0.2	SU			11/03/17 08:57	1

11/10/2017

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Lab Sample ID: 500-136509-5

Client Sample ID: 3160-9-1 (0-4.0') Date Collected: 10/30/17 14:00 **Matrix: Solid** Date Received: 10/31/17 08:45 Percent Solids: 83.2

Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Acetone	0.021		0.019	0.0082	mg/Kg	<u> </u>	10/31/17 15:36	11/02/17 17:44	1
Benzene	<0.0019		0.0019	0.00048	mg/Kg	₩	10/31/17 15:36	11/02/17 17:44	1
Bromodichloromethane	<0.0019		0.0019	0.00038	mg/Kg	₩	10/31/17 15:36	11/02/17 17:44	1
Bromoform	<0.0019		0.0019	0.00055	mg/Kg	≎	10/31/17 15:36	11/02/17 17:44	1
Bromomethane	<0.0047		0.0047	0.0018	mg/Kg	☼	10/31/17 15:36	11/02/17 17:44	1
2-Butanone (MEK)	<0.0047		0.0047	0.0021	mg/Kg	☼	10/31/17 15:36	11/02/17 17:44	1
Carbon disulfide	<0.0047		0.0047	0.00098	mg/Kg	☼	10/31/17 15:36	11/02/17 17:44	1
Carbon tetrachloride	<0.0019		0.0019	0.00055	mg/Kg	₩	10/31/17 15:36	11/02/17 17:44	1
Chlorobenzene	< 0.0019		0.0019	0.00069	mg/Kg	₩	10/31/17 15:36	11/02/17 17:44	1
Chloroethane	<0.0047		0.0047	0.0014	mg/Kg	\$	10/31/17 15:36	11/02/17 17:44	1
Chloroform	< 0.0019		0.0019	0.00065	mg/Kg	☼	10/31/17 15:36	11/02/17 17:44	1
Chloromethane	< 0.0047		0.0047	0.0019	mg/Kg	☼	10/31/17 15:36	11/02/17 17:44	1
cis-1,2-Dichloroethene	<0.0019		0.0019	0.00053	mg/Kg		10/31/17 15:36	11/02/17 17:44	1
cis-1,3-Dichloropropene	< 0.0019		0.0019	0.00057	mg/Kg	≎	10/31/17 15:36	11/02/17 17:44	1
Dibromochloromethane	< 0.0019		0.0019	0.00062	mg/Kg	☼	10/31/17 15:36	11/02/17 17:44	1
1,1-Dichloroethane	<0.0019		0.0019	0.00064	mg/Kg	₩.	10/31/17 15:36	11/02/17 17:44	1
1,2-Dichloroethane	< 0.0047		0.0047	0.0015	mg/Kg	☼	10/31/17 15:36	11/02/17 17:44	1
1,1-Dichloroethene	< 0.0019		0.0019	0.00065	mg/Kg	₩	10/31/17 15:36	11/02/17 17:44	1
1,2-Dichloropropane	<0.0019		0.0019	0.00049	mg/Kg	₩	10/31/17 15:36	11/02/17 17:44	1
1,3-Dichloropropene, Total	< 0.0019		0.0019	0.00066	mg/Kg	₩	10/31/17 15:36	11/02/17 17:44	1
Ethylbenzene	< 0.0019		0.0019	0.00090	mg/Kg	₩	10/31/17 15:36	11/02/17 17:44	1
2-Hexanone	<0.0047		0.0047	0.0015	mg/Kg		10/31/17 15:36	11/02/17 17:44	1
Methylene Chloride	< 0.0047		0.0047	0.0019	mg/Kg	₩	10/31/17 15:36	11/02/17 17:44	1
4-Methyl-2-pentanone (MIBK)	< 0.0047		0.0047	0.0014	mg/Kg	₩	10/31/17 15:36	11/02/17 17:44	1
Methyl tert-butyl ether	<0.0019		0.0019	0.00055	mg/Kg		10/31/17 15:36	11/02/17 17:44	1
Styrene	< 0.0019		0.0019	0.00057	mg/Kg	₩	10/31/17 15:36	11/02/17 17:44	1
1,1,2,2-Tetrachloroethane	<0.0019		0.0019	0.00060	mg/Kg	₩	10/31/17 15:36	11/02/17 17:44	1
Tetrachloroethene	<0.0019		0.0019	0.00064	mg/Kg		10/31/17 15:36	11/02/17 17:44	1
Toluene	< 0.0019		0.0019	0.00048	mg/Kg	₩	10/31/17 15:36	11/02/17 17:44	1
trans-1,2-Dichloroethene	< 0.0019		0.0019	0.00083	mg/Kg	₩	10/31/17 15:36	11/02/17 17:44	1
trans-1,3-Dichloropropene	<0.0019		0.0019	0.00066	mg/Kg		10/31/17 15:36	11/02/17 17:44	1
1,1,1-Trichloroethane	< 0.0019		0.0019	0.00063		₩	10/31/17 15:36	11/02/17 17:44	1
1,1,2-Trichloroethane	< 0.0019		0.0019	0.00081	mg/Kg	₩	10/31/17 15:36	11/02/17 17:44	1
Trichloroethene	<0.0019		0.0019	0.00064	mg/Kg	ф.	10/31/17 15:36	11/02/17 17:44	1
Vinyl acetate	< 0.0047		0.0047	0.0016	mg/Kg	☆	10/31/17 15:36	11/02/17 17:44	1
Vinyl chloride	<0.0019		0.0019	0.00083	mg/Kg	☆	10/31/17 15:36	11/02/17 17:44	1
Xylenes, Total	<0.0038		0.0038	0.00060	mg/Kg	φ.	10/31/17 15:36	11/02/17 17:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	93		75 - 131				10/31/17 15:36	11/02/17 17:44	
Dibromofluoromethane	101		75 - 126				10/31/17 15:36	11/02/17 17:44	1
1,2-Dichloroethane-d4 (Surr)	98		70 - 134				10/31/17 15:36	11/02/17 17:44	1
Toluene-d8 (Surr)	95		75 - 124				10/31/17 15:36	11/02/17 17:44	

Method: 8270D - Semivolatile Organic Compounds (GC/MS)									
	Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Acenaphthene	<0.039	0.039	0.0071	mg/Kg	\tilde{\	11/06/17 15:06	11/07/17 14:18	1
	Acenaphthylene	<0.039	0.039	0.0052	mg/Kg	₩	11/06/17 15:06	11/07/17 14:18	1
	Anthracene	<0.039	0.039	0.0066	mg/Kg	₩	11/06/17 15:06	11/07/17 14:18	1
	Benzo[a]anthracene	<0.039	0.039	0.0053	mg/Kg	☼	11/06/17 15:06	11/07/17 14:18	1

TestAmerica Chicago

Page 26 of 64

11/10/2017

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028 TestAmerica Job ID: 500-136509-1

Client Sample ID: 3160-9-1 (0-4.0')

Lab Sample ID: 500-136509-5

Date Collected: 10/30/17 14:00 Matrix: Solid

Date Received: 10/31/17 08:45 Percent Solids: 83.2

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued) MDL Unit Analyte Result Qualifier RL D Prepared Analyzed Dil Fac Benzo[a]pyrene <0.039 0.039 0.0076 mg/Kg 11/06/17 15:06 11/07/17 14:18 Benzo[b]fluoranthene < 0.039 0.039 0.0085 mg/Kg 11/06/17 15:06 11/07/17 14:18 1 à Benzo[g,h,i]perylene < 0.039 0.039 0.013 mg/Kg 11/06/17 15:06 11/07/17 14:18 Benzo[k]fluoranthene < 0.039 0.039 0.012 mg/Kg 11/06/17 15:06 11/07/17 14:18 Ö 11/06/17 15:06 Bis(2-chloroethoxy)methane < 0.20 0.20 0.040 mg/Kg 11/07/17 14:18 Bis(2-chloroethyl)ether < 0.20 0.20 0.059 ma/Ka 11/06/17 15:06 11/07/17 14:18 Bis(2-ethylhexyl) phthalate < 0.20 0.20 0.072 mg/Kg 11/06/17 15:06 11/07/17 14:18 4-Bromophenyl phenyl ether <0.20 0.20 0.052 mg/Kg 11/06/17 15:06 11/07/17 14:18 Butyl benzyl phthalate < 0.20 0.20 0.075 mg/Kg 11/06/17 15:06 11/07/17 14:18 0.099 11/06/17 15:06 Carbazole < 0.20 0.20 mg/Kg 11/07/17 14:18 4-Chloroaniline <0.80 0.80 0.19 mg/Kg 11/06/17 15:06 11/07/17 14:18 4-Chloro-3-methylphenol < 0.39 0.39 0.13 11/06/17 15:06 11/07/17 14:18 mg/Kg 2-Chloronaphthalene 0.20 11/06/17 15:06 11/07/17 14:18 1 < 0.20 0.044 mg/Kg ₩ 2-Chlorophenol < 0.20 0.20 0.067 mg/Kg 11/06/17 15:06 11/07/17 14:18 4-Chlorophenyl phenyl ether < 0.20 0.20 0.046 mg/Kg 11/06/17 15:06 11/07/17 14:18 Chrysene <0.039 0.039 0.011 mg/Kg 11/06/17 15:06 11/07/17 14:18 < 0.039 0.039 0.0076 11/06/17 15:06 11/07/17 14:18 Dibenz(a,h)anthracene mg/Kg Dibenzofuran < 0.20 0.20 0.046 mg/Kg 11/06/17 15:06 11/07/17 14:18 1,2-Dichlorobenzene < 0.20 0.20 0.047 mg/Kg 11/06/17 15:06 11/07/17 14:18 ₩ 11/07/17 14:18 1,3-Dichlorobenzene 0.044 mg/Kg 11/06/17 15:06 < 0.20 0.20 1,4-Dichlorobenzene < 0.20 0.20 0.051 mg/Kg 11/06/17 15:06 11/07/17 14:18 0.20 3,3'-Dichlorobenzidine < 0.20 0.055 mg/Kg 11/06/17 15:06 11/07/17 14:18 11/06/17 15:06 2,4-Dichlorophenol < 0.39 0.39 0.094 mg/Kg 11/07/17 14:18 < 0.20 0.20 0.067 11/06/17 15:06 11/07/17 14:18 Diethyl phthalate mg/Kg 2,4-Dimethylphenol < 0.39 0.39 0.15 mg/Kg 11/06/17 15:06 11/07/17 14:18 Dimethyl phthalate < 0.20 0.20 0.052 mg/Kg 11/06/17 15:06 11/07/17 14:18 Di-n-butyl phthalate < 0.20 0.20 0.060 mg/Kg 11/06/17 15:06 11/07/17 14:18 4,6-Dinitro-2-methylphenol < 0.80 0.80 0.32 mg/Kg 11/06/17 15:06 11/07/17 14:18 2,4-Dinitrophenol <0.80 0.80 0.70 mg/Kg 11/06/17 15:06 11/07/17 14:18 2,4-Dinitrotoluene < 0.20 0.20 0.063 mg/Kg 11/06/17 15:06 11/07/17 14:18 2,6-Dinitrotoluene < 0.20 0.20 0.078 mg/Kg 11/06/17 15:06 11/07/17 14:18 Di-n-octyl phthalate < 0.20 0.20 0.064 mg/Kg 11/06/17 15:06 11/07/17 14:18 Fluoranthene 0.039 0.0073 mg/Kg 11/06/17 15:06 11/07/17 14:18 < 0.039 0.0056 Fluorene < 0.039 0.039 mg/Kg 11/06/17 15:06 11/07/17 14:18 <0.080 0.080 0.0092 11/06/17 15:06 11/07/17 14:18 Hexachlorobenzene mg/Kg Hexachlorobutadiene 0.062 11/06/17 15:06 11/07/17 14:18 < 0.20 0.20 mg/Kg Hexachlorocyclopentadiene 0.80 11/06/17 15:06 11/07/17 14:18 < 0.80 0.23 mg/Kg Hexachloroethane 0.060 11/06/17 15:06 < 0.20 0.20 mg/Kg 11/07/17 14:18 0.039 Indeno[1,2,3-cd]pyrene < 0.039 0.010 mg/Kg 11/06/17 15:06 11/07/17 14:18 Isophorone < 0.20 0.20 0.044 mg/Kg 11/06/17 15:06 11/07/17 14:18 0.0073 0.080 2-Methylnaphthalene < 0.080 mg/Kg 11/06/17 15:06 11/07/17 14:18 2-Methylphenol < 0.20 0.20 0.063 mg/Kg 11/06/17 15:06 11/07/17 14:18 3 & 4 Methylphenol <0.20 0.20 0.066 11/06/17 15:06 11/07/17 14:18 mg/Kg 0.039 Naphthalene < 0.039 0.0061 mg/Kg 11/06/17 15:06 11/07/17 14:18 2-Nitroaniline < 0.20 0.20 0.053 mg/Kg 11/06/17 15:06 11/07/17 14:18 ₩ 3-Nitroaniline < 0.39 0.39 0.12 mg/Kg 11/06/17 15:06 11/07/17 14:18 4-Nitroaniline < 0.39 0.39 0.17 mg/Kg 11/06/17 15:06 11/07/17 14:18 Nitrobenzene < 0.039 0.039 0.0099 mg/Kg 11/06/17 15:06 11/07/17 14:18 2-Nitrophenol < 0.39 0.39 0.093 mg/Kg 11/06/17 15:06 11/07/17 14:18

TestAmerica Chicago

11/10/2017

Page 27 of 64

5

3

Ē

7

9

11

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-9-1 (0-4.0')

Lab Sample ID: 500-136509-5 Date Collected: 10/30/17 14:00 **Matrix: Solid**

Date Received: 10/31/17 08:45 Percent Solids: 83.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.80		0.80	0.38	mg/Kg	<u> </u>	11/06/17 15:06	11/07/17 14:18	1
N-Nitrosodi-n-propylamine	<0.080		0.080	0.048	mg/Kg	₽	11/06/17 15:06	11/07/17 14:18	1
N-Nitrosodiphenylamine	<0.20		0.20	0.047	mg/Kg	☼	11/06/17 15:06	11/07/17 14:18	1
2,2'-oxybis[1-chloropropane]	<0.20		0.20	0.046	mg/Kg	☼	11/06/17 15:06	11/07/17 14:18	1
Pentachlorophenol	<0.80		0.80	0.63	mg/Kg	₽	11/06/17 15:06	11/07/17 14:18	1
Phenanthrene	< 0.039		0.039	0.0055	mg/Kg	☼	11/06/17 15:06	11/07/17 14:18	1
Phenol	<0.20		0.20	0.088	mg/Kg	☼	11/06/17 15:06	11/07/17 14:18	1
Pyrene	<0.039		0.039	0.0078	mg/Kg	☼	11/06/17 15:06	11/07/17 14:18	1
1,2,4-Trichlorobenzene	<0.20		0.20	0.043	mg/Kg	☼	11/06/17 15:06	11/07/17 14:18	1
2,4,5-Trichlorophenol	<0.39		0.39	0.090	mg/Kg	☼	11/06/17 15:06	11/07/17 14:18	1
2,4,6-Trichlorophenol	<0.39		0.39	0.14	mg/Kg	₩.	11/06/17 15:06	11/07/17 14:18	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	81		44 - 121				11/06/17 15:06	11/07/17 14:18	1
2-Fluorophenol	91		46 - 133				11/06/17 15:06	11/07/17 14:18	1
Nitrobenzene-d5	71		41 - 120				11/06/17 15:06	11/07/17 14:18	1
Phenol-d5	67		46 - 125				11/06/17 15:06	11/07/17 14:18	1
Terphenyl-d14	64		35 - 160				11/06/17 15:06	11/07/17 14:18	1
2.4.6-Tribromophenol	112		25 - 139				11/06/17 15:06	11/07/17 14:18	1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	<0.019	0.019	0.0069	mg/Kg	<u> </u>	11/03/17 07:23	11/08/17 02:42	1
PCB-1221	<0.019	0.019	0.0085	mg/Kg	₩	11/03/17 07:23	11/08/17 02:42	1
PCB-1232	<0.019	0.019	0.0085	mg/Kg	☼	11/03/17 07:23	11/08/17 02:42	1
PCB-1242	<0.019	0.019	0.0064	mg/Kg		11/03/17 07:23	11/08/17 02:42	1
PCB-1248	<0.019	0.019	0.0076	mg/Kg	☼	11/03/17 07:23	11/08/17 02:42	1
PCB-1254	<0.019	0.019	0.0042	mg/Kg	☼	11/03/17 07:23	11/08/17 02:42	1
PCB-1260	<0.019	0.019	0.0095	mg/Kg	\$	11/03/17 07:23	11/08/17 02:42	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	85		49 - 129	11/03/17 07:23	11/08/17 02:42	1
DCB Decachlorobiphenyl	92		37 - 121	11/03/17 07:23	11/08/17 02:42	1

Method: 6010B - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.32	J	1.2	0.23	mg/Kg	<u></u>	10/31/17 16:37	11/01/17 14:36	1
Arsenic	6.2		0.60	0.20	mg/Kg	₩	10/31/17 16:37	11/01/17 14:36	1
Barium	78		0.60	0.068	mg/Kg	☼	10/31/17 16:37	11/01/17 14:36	1
Beryllium	0.27		0.24	0.056	mg/Kg	₩.	10/31/17 16:37	11/01/17 14:36	1
Cadmium	<0.12		0.12	0.021	mg/Kg	₩	10/31/17 16:37	11/01/17 14:36	1
Chromium	16		0.60	0.29	mg/Kg	₩	10/31/17 16:37	11/01/17 14:36	1
Cobalt	4.8		0.30	0.078	mg/Kg	₩.	10/31/17 16:37	11/01/17 14:36	1
Copper	13	В	0.60	0.17	mg/Kg	₩	10/31/17 16:37	11/01/17 14:36	1
Iron	16000		11	5.5	mg/Kg	₩	11/02/17 07:14	11/02/17 19:29	1
Lead	9.6		0.30	0.14	mg/Kg		10/31/17 16:37	11/01/17 14:36	1
Manganese	150	В	0.60	0.086	mg/Kg	₩	10/31/17 16:37	11/01/17 14:36	1
Nickel	9.5		0.60	0.17	mg/Kg	₩	10/31/17 16:37	11/01/17 14:36	1
Selenium	<0.60		0.60	0.35	mg/Kg		10/31/17 16:37	11/01/17 14:36	1
Silver	< 0.30		0.30	0.077	mg/Kg	₩	10/31/17 16:37	11/01/17 14:36	1

Page 28 of 64

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/30/17 14:00

Date Received: 10/31/17 08:45

Client Sample ID: 3160-9-1 (0-4.0')

TestAmerica Job ID: 500-136509-1

Lab Sample ID: 500-136509-5 **Matrix: Solid**

Percent Solids: 83.2

-	Dil Fac	
-	Dil Fac	
-	Dil Fac	
ī	Dil Fac	
	Dil Fac	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Thallium	<0.60		0.60	0.30	mg/Kg	<u> </u>	10/31/17 16:37	11/01/17 14:36	
Vanadium	30		0.30	0.070	mg/Kg		10/31/17 16:37	11/01/17 14:36	
Zinc	31		1.2	0.52	mg/Kg	₩	10/31/17 16:37	11/01/17 14:36	
Method: 6010B - Metals	(ICP) - TCLP								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Arsenic	<0.050		0.050	0.010	mg/L		11/02/17 08:35	11/02/17 16:54	
Barium	0.48	J	0.50	0.050	mg/L		11/02/17 08:35	11/02/17 16:54	
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/02/17 08:35	11/02/17 16:54	
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/02/17 08:35	11/02/17 16:54	
Chromium	<0.025		0.025	0.010	mg/L		11/02/17 08:35	11/02/17 16:54	
Cobalt	<0.025		0.025	0.010	mg/L		11/02/17 08:35	11/02/17 16:54	
Copper	0.031		0.025	0.010	mg/L		11/02/17 08:35	11/02/17 16:54	
Iron	<0.40		0.40	0.20	mg/L		11/02/17 08:35	11/02/17 16:54	
Lead	< 0.0075		0.0075	0.0075	mg/L		11/02/17 08:35	11/02/17 16:54	
Manganese	0.28		0.025	0.010	mg/L		11/02/17 08:35	11/02/17 16:54	
Nickel	0.012	J	0.025	0.010	mg/L		11/02/17 08:35	11/02/17 16:54	
Selenium	< 0.050		0.050	0.020	mg/L		11/02/17 08:35	11/02/17 16:54	
Silver	<0.025		0.025	0.010	mg/L		11/02/17 08:35	11/02/17 16:54	
Vanadium	< 0.025		0.025	0.010	mg/L		11/02/17 08:35	11/02/17 16:54	
Zinc	0.078	J	0.50	0.020	mg/L		11/02/17 08:35	11/02/17 16:54	
•									
Method: 6010B - Metals	(ICP) - SPLP East	ŧ							
	· /	t Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Analyte	· /		RL 0.025	MDL 0.010		<u>D</u>	<u> </u>	Analyzed 11/03/17 23:12	Dil Fa
Analyte	Result 0.21					<u>D</u>	<u> </u>		
Analyte Manganese Method: 6020A - Metals	Result 0.21 (ICP/MS) - TCLP			0.010		_ <u>D</u>	<u> </u>		
Analyte Manganese Method: 6020A - Metals Analyte	Result 0.21 (ICP/MS) - TCLP	Qualifier	0.025	0.010 MDL	mg/L Unit		11/02/17 14:21 Prepared	11/03/17 23:12	Dil Fa
Analyte Manganese Method: 6020A - Metals Analyte Antimony	Result 0.21 (ICP/MS) - TCLP Result	Qualifier	0.025	0.010 MDL	mg/L Unit mg/L		Prepared 11/02/17 08:35	11/03/17 23:12 Analyzed	Dil Fa
Analyte Manganese Method: 6020A - Metals Analyte Antimony Thallium	Result 0.21 (ICP/MS) - TCLP Result <0.0060 <0.0020	Qualifier	0.025 RL 0.0060	0.010 MDL 0.0060	mg/L Unit mg/L		Prepared 11/02/17 08:35	11/03/17 23:12 Analyzed 11/02/17 17:23	Dil Fa
	Result 0.21	Qualifier	0.025 RL 0.0060	0.010 MDL 0.0060 0.0020	mg/L Unit mg/L		Prepared 11/02/17 08:35	11/03/17 23:12 Analyzed 11/02/17 17:23	
Analyte Manganese Method: 6020A - Metals Analyte Antimony Thallium Method: 7470A - TCLP N Analyte	Result 0.21	Qualifier Qualifier	0.025 RL 0.0060 0.0020	0.010 MDL 0.0060 0.0020	mg/L Unit mg/L mg/L Unit	<u>D</u>	Prepared 11/02/17 08:35 11/02/17 08:35	Analyzed 11/03/17 23:12 Analyzed 11/02/17 17:23 11/02/17 17:23 Analyzed	Dil Fa
Analyte Manganese Method: 6020A - Metals Analyte Antimony Thallium Method: 7470A - TCLP N	Result 0.21 (ICP/MS) - TCLP Result < 0.0060 < 0.0020 (Qualifier Qualifier	0.025 RL 0.0060 0.0020	0.010 MDL 0.0060 0.0020	mg/L Unit mg/L mg/L Unit	<u>D</u>	Prepared 11/02/17 08:35 11/02/17 08:35 Prepared	Analyzed 11/03/17 23:12 Analyzed 11/02/17 17:23 11/02/17 17:23 Analyzed	Dil Fa
Analyte Manganese Method: 6020A - Metals Analyte Antimony Thallium Method: 7470A - TCLP N Analyte Mercury Method: 7471B - Mercur	Result 0.21	Qualifier Qualifier	0.025 RL 0.0060 0.0020	0.010 MDL 0.0060 0.0020 MDL 0.00020	mg/L Unit mg/L mg/L Unit	<u>D</u>	Prepared 11/02/17 08:35 11/02/17 08:35 Prepared	Analyzed 11/03/17 23:12 Analyzed 11/02/17 17:23 11/02/17 17:23 Analyzed	Dil Fa
Analyte Manganese Method: 6020A - Metals Analyte Antimony Thallium Method: 7470A - TCLP N Analyte Mercury Method: 7471B - Mercur Analyte	Result 0.21	Qualifier Qualifier Qualifier	0.025 RL 0.0060 0.0020 RL 0.00020	0.010 MDL 0.0060 0.0020 MDL 0.00020	mg/L Unit mg/L mg/L Unit mg/L Unit mg/L	D	Prepared 11/02/17 14:21 Prepared 11/02/17 08:35 11/02/17 08:35 Prepared 11/03/17 12:20 Prepared	Analyzed 11/02/17 17:23 11/02/17 17:23 11/02/17 17:23 Analyzed 11/06/17 09:41	Dil Fa
Analyte Manganese Method: 6020A - Metals Analyte Antimony Thallium Method: 7470A - TCLP N Analyte Mercury	Result 0.21 (ICP/MS) - TCLP Result <0.0060 <0.0020 Result <0.00020 Result <0.00020 Result <0.00020 Result Result <0.00020 Result Result Result <0.00020 Result Result Result Result Result Result Result	Qualifier Qualifier Qualifier	RL 0.0020	0.010 MDL 0.0060 0.0020 MDL 0.00020	mg/L Unit mg/L mg/L Unit mg/L Unit mg/L		Prepared 11/02/17 14:21 Prepared 11/02/17 08:35 11/02/17 08:35 Prepared 11/03/17 12:20 Prepared	Analyzed Analyzed 11/02/17 17:23 11/02/17 17:23 Analyzed 11/06/17 09:41 Analyzed	Dil Fa
Analyte Manganese Method: 6020A - Metals Analyte Antimony Thallium Method: 7470A - TCLP N Analyte Mercury Method: 7471B - Mercur Analyte Mercury	Result	Qualifier Qualifier Qualifier	RL 0.0020	0.010 MDL 0.0060 0.0020 MDL 0.00020 MDL 0.0059	mg/L Unit mg/L mg/L Unit mg/L Unit mg/L		Prepared 11/02/17 14:21 Prepared 11/02/17 08:35 11/02/17 08:35 Prepared 11/03/17 12:20 Prepared	Analyzed Analyzed 11/02/17 17:23 11/02/17 17:23 Analyzed 11/06/17 09:41 Analyzed	Dil Fa

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-10-3 (0-2.5')

Lab Sample ID: 500-136509-6 Date Collected: 10/30/17 14:20 **Matrix: Solid** Date Received: 10/31/17 08:45 Percent Solids: 79.7

Method: 8260B - Volatile O Analyte	Result Qua		MDL	Unit	D	Prepared	Analyzed	Dil Fa
Acetone	<0.31	0.31	0.11	mg/Kg	☼	10/30/17 14:20	11/09/17 18:12	5
Benzene	<0.016	0.016	0.0091	mg/Kg	₩	10/30/17 14:20	11/09/17 18:12	5
Bromodichloromethane	<0.062	0.062	0.023	mg/Kg	≎	10/30/17 14:20	11/09/17 18:12	5
Bromoform	<0.062	0.062	0.030	mg/Kg	₽	10/30/17 14:20	11/09/17 18:12	5
Bromomethane	<0.12	0.12	0.050	mg/Kg	≎	10/30/17 14:20	11/09/17 18:12	5
2-Butanone (MEK)	<0.31	0.31	0.13	mg/Kg	₩	10/30/17 14:20	11/09/17 18:12	5
Carbon disulfide	<0.12	0.12	0.050	mg/Kg	₩	10/30/17 14:20	11/09/17 18:12	5
Carbon tetrachloride	< 0.062	0.062	0.024	mg/Kg	☆	10/30/17 14:20	11/09/17 18:12	5
Chlorobenzene	< 0.062	0.062	0.024	mg/Kg	₩	10/30/17 14:20	11/09/17 18:12	5
Chloroethane	<0.062	0.062	0.031	mg/Kg	₽	10/30/17 14:20	11/09/17 18:12	5
Chloroform	<0.12	0.12	0.023	mg/Kg	≎	10/30/17 14:20	11/09/17 18:12	50
Chloromethane	< 0.062	0.062	0.020	mg/Kg	≎	10/30/17 14:20	11/09/17 18:12	50
cis-1,2-Dichloroethene	<0.062	0.062	0.025	mg/Kg		10/30/17 14:20	11/09/17 18:12	50
cis-1,3-Dichloropropene	< 0.062	0.062		mg/Kg	≎	10/30/17 14:20	11/09/17 18:12	50
Dibromochloromethane	<0.062	0.062		mg/Kg	₩	10/30/17 14:20	11/09/17 18:12	5
1,1-Dichloroethane	<0.062	0.062	0.026	mg/Kg	₩.	10/30/17 14:20	11/09/17 18:12	5
1,2-Dichloroethane	< 0.062	0.062	0.024	mg/Kg	≎	10/30/17 14:20	11/09/17 18:12	5
1,1-Dichloroethene	< 0.062	0.062		mg/Kg	☆	10/30/17 14:20	11/09/17 18:12	5
1,2-Dichloropropane	<0.062	0.062	0.027	mg/Kg		10/30/17 14:20	11/09/17 18:12	5
1,3-Dichloropropene, Total	< 0.062	0.062		mg/Kg	₩	10/30/17 14:20	11/09/17 18:12	5
Ethylbenzene	<0.016	0.016	0.011	mg/Kg	≎	10/30/17 14:20	11/09/17 18:12	5
2-Hexanone	<0.31	0.31	0.097	mg/Kg		10/30/17 14:20	11/09/17 18:12	5
Methylene Chloride	<0.31	0.31	0.10	mg/Kg	≎	10/30/17 14:20	11/09/17 18:12	50
4-Methyl-2-pentanone (MIBK)	<0.31	0.31	0.13	mg/Kg	≎	10/30/17 14:20	11/09/17 18:12	5
Methyl tert-butyl ether	<0.062	0.062		mg/Kg		10/30/17 14:20	11/09/17 18:12	50
Styrene	< 0.062	0.062	0.024	mg/Kg	₩	10/30/17 14:20	11/09/17 18:12	5
1,1,2,2-Tetrachloroethane	< 0.062	0.062	0.025	mg/Kg	₩	10/30/17 14:20	11/09/17 18:12	5
Tetrachloroethene	<0.062	0.062		mg/Kg		10/30/17 14:20	11/09/17 18:12	5
Toluene	<0.016	0.016	0.0092		☆	10/30/17 14:20	11/09/17 18:12	5
trans-1,2-Dichloroethene	< 0.062	0.062		mg/Kg	₩	10/30/17 14:20	11/09/17 18:12	5
trans-1,3-Dichloropropene	<0.062	0.062		mg/Kg		10/30/17 14:20	11/09/17 18:12	5
1,1,1-Trichloroethane	< 0.062	0.062		mg/Kg	≎	10/30/17 14:20	11/09/17 18:12	5
1,1,2-Trichloroethane	<0.062	0.062		mg/Kg	₩	10/30/17 14:20	11/09/17 18:12	5
Trichloroethene	<0.031	0.031		mg/Kg	· · · · · ☆·	10/30/17 14:20	11/09/17 18:12	5
Vinyl acetate	<0.12	0.12		mg/Kg	₩	10/30/17 14:20	11/09/17 18:12	5
Vinyl chloride	< 0.031	0.031		mg/Kg	₩	10/30/17 14:20	11/09/17 18:12	5
Xylenes, Total	<0.031	0.031		mg/Kg	 ☆	10/30/17 14:20	11/09/17 18:12	5
, ,				3 3				
Surrogate	%Recovery Qua					Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	87	72 - 124					11/09/17 18:12	5
Dibromofluoromethane	88	75 - 120					11/09/17 18:12	5
1,2-Dichloroethane-d4 (Surr)	88	75 - 126					11/09/17 18:12	5
Toluene-d8 (Surr)	103	75 - 120				10/30/17 14:20	11/09/17 18:12	5
Method: 8270D - Semivolat	•	•		11	-	Duna a serial	Anakaad	D:: -
Analyte	Result Qua	alifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa

11/06/17 15:06 11/07/17 14:45 11/06/17 15:06 11/07/17 14:45

☼ 11/06/17 15:06 11/07/17 14:45

Page 30 of 64

0.041

0.041

0.041

0.041

0.0073 mg/Kg

0.0054 mg/Kg

0.0068 mg/Kg

0.0055 mg/Kg

<0.041

<0.041

<0.041

< 0.041

Acenaphthene

Anthracene

Acenaphthylene

Benzo[a]anthracene

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/30/17 14:20

3,3'-Dichlorobenzidine

2,4-Dichlorophenol

2,4-Dimethylphenol

Dimethyl phthalate

Di-n-butyl phthalate

4,6-Dinitro-2-methylphenol

Diethyl phthalate

Client Sample ID: 3160-10-3 (0-2.5')

TestAmerica Job ID: 500-136509-1

Lab Sample ID: 500-136509-6

11/06/17 15:06 11/07/17 14:45

☼ 11/06/17 15:06 11/07/17 14:45

* 11/06/17 15:06 11/07/17 14:45

11/06/17 15:06 11/07/17 14:45

☼ 11/06/17 15:06 11/07/17 14:45 * 11/06/17 15:06 11/07/17 14:45

11/06/17 15:06 11/07/17 14:45

Matrix: Solid

Pate Received: 10/31/17 08:45	5							Percent Solid	ls: 79.7
Method: 8270D - Semivolatil	_	•			•	_	D	Amakanad	DU E
Analyte	Result (Qualifier	RL -	MDL		D	Prepared	Analyzed	Dil Fac
Benzo[a]pyrene	<0.041		0.041	0.0079	0 0	₩.	11/06/17 15:06	11/07/17 14:45	1
Benzo[b]fluoranthene	<0.041		0.041	0.0088		₩	11/06/17 15:06	11/07/17 14:45	1
Benzo[g,h,i]perylene	<0.041		0.041	0.013	mg/Kg	₩	11/06/17 15:06	11/07/17 14:45	1
Benzo[k]fluoranthene	<0.041		0.041	0.012	mg/Kg	☆	11/06/17 15:06	11/07/17 14:45	1
Bis(2-chloroethoxy)methane	<0.21		0.21	0.042	mg/Kg	☼	11/06/17 15:06	11/07/17 14:45	1
Bis(2-chloroethyl)ether	<0.21		0.21	0.061	mg/Kg	₽	11/06/17 15:06	11/07/17 14:45	1
Bis(2-ethylhexyl) phthalate	<0.21		0.21	0.075	mg/Kg	☼	11/06/17 15:06	11/07/17 14:45	1
4-Bromophenyl phenyl ether	<0.21		0.21	0.054	mg/Kg	₩	11/06/17 15:06	11/07/17 14:45	1
Butyl benzyl phthalate	<0.21		0.21	0.078	mg/Kg	₩	11/06/17 15:06	11/07/17 14:45	1
Carbazole	<0.21		0.21	0.10	mg/Kg	₩	11/06/17 15:06	11/07/17 14:45	1
4-Chloroaniline	< 0.82		0.82	0.19	mg/Kg	₩	11/06/17 15:06	11/07/17 14:45	1
4-Chloro-3-methylphenol	<0.41		0.41	0.14	mg/Kg	₩	11/06/17 15:06	11/07/17 14:45	1
2-Chloronaphthalene	<0.21		0.21	0.045	mg/Kg	₩	11/06/17 15:06	11/07/17 14:45	1
2-Chlorophenol	<0.21		0.21	0.070	mg/Kg	₩	11/06/17 15:06	11/07/17 14:45	1
4-Chlorophenyl phenyl ether	<0.21		0.21	0.048	mg/Kg		11/06/17 15:06	11/07/17 14:45	1
Chrysene	< 0.041		0.041	0.011	mg/Kg	₩	11/06/17 15:06	11/07/17 14:45	1
Dibenz(a,h)anthracene	< 0.041		0.041	0.0079	mg/Kg	₩	11/06/17 15:06	11/07/17 14:45	1
Dibenzofuran	<0.21		0.21	0.048	mg/Kg		11/06/17 15:06	11/07/17 14:45	1
1,2-Dichlorobenzene	<0.21		0.21		mg/Kg	₩	11/06/17 15:06	11/07/17 14:45	1
1,3-Dichlorobenzene	<0.21		0.21		mg/Kg	₩	11/06/17 15:06	11/07/17 14:45	1
1,4-Dichlorobenzene	<0.21		0.21		mg/Kg		11/06/17 15:06	11/07/17 14:45	1

0.21

0.41

0.21

0.41

0.21

0.21

0.82

0.057 mg/Kg

0.097 mg/Kg

0.069 mg/Kg

0.15 mg/Kg

0.053 mg/Kg

0.062 mg/Kg

0.33 mg/Kg

<0.21

< 0.41

<0.21

< 0.41

< 0.21

< 0.21

< 0.82

2,4-Dinitrophenol	<0.82	0.82	0.72 mg/Kg	11/06/17 15:06 11/07/17 14:45
2,4-Dinitrotoluene	<0.21	0.21	0.065 mg/Kg	11/06/17 15:06 11/07/17 14:45
2,6-Dinitrotoluene	<0.21	0.21	0.080 mg/Kg	11/06/17 15:06 11/07/17 14:45
Di-n-octyl phthalate	<0.21	0.21	0.067 mg/Kg	11/06/17 15:06 11/07/17 14:45
Fluoranthene	<0.041	0.041	0.0076 mg/Kg	* 11/06/17 15:06 11/07/17 14:45
Fluorene	<0.041	0.041	0.0057 mg/Kg	11/06/17 15:06 11/07/17 14:45
Hexachlorobenzene	<0.082	0.082	0.0095 mg/Kg	11/06/17 15:06 11/07/17 14:45
Hexachlorobutadiene	<0.21	0.21	0.064 mg/Kg	* 11/06/17 15:06 11/07/17 14:45
Hexachlorocyclopentadiene	<0.82	0.82	0.23 mg/Kg	11/06/17 15:06 11/07/17 14:45
Hexachloroethane	<0.21	0.21	0.062 mg/Kg	11/06/17 15:06 11/07/17 14:45
Indeno[1,2,3-cd]pyrene	<0.041	0.041	0.011 mg/Kg	11/06/17 15:06 11/07/17 14:45
Isophorone	<0.21	0.21	0.046 mg/Kg	11/06/17 15:06 11/07/17 14:45
2-Methylnaphthalene	<0.082	0.082	0.0075 mg/Kg	11/06/17 15:06 11/07/17 14:45
2-Methylphenol	<0.21	0.21	0.066 mg/Kg	11/06/17 15:06 11/07/17 14:45
3 & 4 Methylphenol	<0.21	0.21	0.068 mg/Kg	11/06/17 15:06 11/07/17 14:45
Naphthalene	<0.041	0.041	0.0063 mg/Kg	11/06/17 15:06 11/07/17 14:45
2-Nitroaniline	<0.21	0.21	0.055 mg/Kg	* 11/06/17 15:06 11/07/17 14:45
3-Nitroaniline	<0.41	0.41	0.13 mg/Kg	11/06/17 15:06 11/07/17 14:45
4-Nitroaniline	<0.41	0.41	0.17 mg/Kg	11/06/17 15:06 11/07/17 14:45
Nitrobenzene	<0.041	0.041	0.010 mg/Kg	* 11/06/17 15:06 11/07/17 14:45
2-Nitrophenol	<0.41	0.41	0.097 mg/Kg	11/06/17 15:06 11/07/17 14:45

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/30/17 14:20

Date Received: 10/31/17 08:45

Client Sample ID: 3160-10-3 (0-2.5')

TestAmerica Job ID: 500-136509-1

Lab Sample ID: 500-136509-6

Matrix: Solid Percent Solids: 79.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.82		0.82	0.39	mg/Kg	<u>₩</u>	11/06/17 15:06	11/07/17 14:45	1
N-Nitrosodi-n-propylamine	<0.082		0.082	0.050	mg/Kg	φ.	11/06/17 15:06	11/07/17 14:45	1
N-Nitrosodiphenylamine	<0.21		0.21	0.048	mg/Kg	₩	11/06/17 15:06	11/07/17 14:45	1
2,2'-oxybis[1-chloropropane]	<0.21		0.21	0.047	mg/Kg	₩	11/06/17 15:06	11/07/17 14:45	1
Pentachlorophenol	<0.82		0.82	0.66	mg/Kg	₽	11/06/17 15:06	11/07/17 14:45	1
Phenanthrene	0.0064	J	0.041	0.0057	mg/Kg	₩	11/06/17 15:06	11/07/17 14:45	1
Phenol	<0.21		0.21	0.091	mg/Kg	☼	11/06/17 15:06	11/07/17 14:45	1
Pyrene	<0.041		0.041	0.0081	mg/Kg	₽	11/06/17 15:06	11/07/17 14:45	1
1,2,4-Trichlorobenzene	<0.21		0.21	0.044	mg/Kg	₩	11/06/17 15:06	11/07/17 14:45	1
2,4,5-Trichlorophenol	<0.41		0.41	0.093	mg/Kg	₩	11/06/17 15:06	11/07/17 14:45	1
2,4,6-Trichlorophenol	<0.41		0.41	0.14	mg/Kg	₽	11/06/17 15:06	11/07/17 14:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	81		44 - 121				11/06/17 15:06	11/07/17 14:45	1
2-Fluorophenol	88		46 - 133				11/06/17 15:06	11/07/17 14:45	1
Nitrobenzene-d5	70		41 - 120				11/06/17 15:06	11/07/17 14:45	1
Phenol-d5	65		46 - 125				11/06/17 15:06	11/07/17 14:45	1
Terphenyl-d14	93		35 - 160				11/06/17 15:06	11/07/17 14:45	1
2,4,6-Tribromophenol	112		25 - 139				11/06/17 15:06	11/07/17 14:45	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.30	J	1.2	0.23	mg/Kg	<u> </u>	10/31/17 16:37	11/01/17 14:40	1
Arsenic	9.2		0.58	0.20	mg/Kg	₩	10/31/17 16:37	11/01/17 14:40	1
Barium	110		0.58	0.066	mg/Kg	₩	10/31/17 16:37	11/01/17 14:40	1
Beryllium	0.42		0.23	0.054	mg/Kg	φ.	10/31/17 16:37	11/01/17 14:40	1
Cadmium	0.022	JB	0.12	0.021	mg/Kg	₩	10/31/17 16:37	11/01/17 14:40	1
Chromium	21		0.58	0.29	mg/Kg	₩	10/31/17 16:37	11/01/17 14:40	1
Cobalt	8.3		0.29	0.076	mg/Kg	₩.	10/31/17 16:37	11/01/17 14:40	1
Copper	16	В	0.58	0.16	mg/Kg	₩	10/31/17 16:37	11/01/17 14:40	1
Iron	19000		13	6.5	mg/Kg	₩	11/02/17 07:14	11/02/17 19:33	1
Lead	16		0.29	0.13	mg/Kg	₩	10/31/17 16:37	11/01/17 14:40	1
Manganese	250	В	0.58	0.084	mg/Kg	₩	10/31/17 16:37	11/01/17 14:40	1
Nickel	13		0.58	0.17	mg/Kg	₩	10/31/17 16:37	11/01/17 14:40	1
Selenium	<0.58		0.58	0.34	mg/Kg		10/31/17 16:37	11/01/17 14:40	1
Silver	<0.29		0.29	0.075	mg/Kg	₩	10/31/17 16:37	11/01/17 14:40	1
Thallium	<0.58		0.58	0.29	mg/Kg	₩	10/31/17 16:37	11/01/17 14:40	1
Vanadium	35		0.29	0.068	mg/Kg	₩.	10/31/17 16:37	11/01/17 14:40	1
Zinc	64		1.2	0.51	mg/Kg	₩	10/31/17 16:37	11/01/17 14:40	1

Analyte	Result Qua	alifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050	0.050	0.010	mg/L		11/02/17 08:35	11/02/17 16:58	1
Barium	1.4	0.50	0.050	mg/L		11/02/17 08:35	11/02/17 16:58	1
Beryllium	<0.0040	0.0040	0.0040	mg/L		11/02/17 08:35	11/02/17 16:58	1
Cadmium	0.0022 J	0.0050	0.0020	mg/L		11/02/17 08:35	11/02/17 16:58	1
Chromium	<0.025	0.025	0.010	mg/L		11/02/17 08:35	11/02/17 16:58	1
Cobalt	0.026	0.025	0.010	mg/L		11/02/17 08:35	11/02/17 16:58	1
Copper	0.042	0.025	0.010	mg/L		11/02/17 08:35	11/02/17 16:58	1
Iron	7.6	0.40	0.20	mg/L		11/02/17 08:35	11/02/17 16:58	1

Page 32 of 64

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/30/17 14:20

Date Received: 10/31/17 08:45

Client Sample ID: 3160-10-3 (0-2.5')

TestAmerica Job ID: 500-136509-1

Lab Sample ID: 500-136509-6

Matrix: Solid

Percent Solids: 79.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	<0.0075		0.0075	0.0075	mg/L		11/02/17 08:35	11/02/17 16:58	1
Manganese	4.1		0.025	0.010	mg/L		11/02/17 08:35	11/02/17 16:58	1
Nickel	0.019	J	0.025	0.010	mg/L		11/02/17 08:35	11/02/17 16:58	1
Selenium	<0.050		0.050	0.020	mg/L		11/02/17 08:35	11/02/17 16:58	1
Silver	<0.025		0.025	0.010	mg/L		11/02/17 08:35	11/02/17 16:58	1
Vanadium	<0.025		0.025	0.010	mg/L		11/02/17 08:35	11/02/17 16:58	1
Zinc	0.14	J	0.50	0.020	mg/L		11/02/17 08:35	11/02/17 16:58	1
Method: 6010B - SPLP Metals - S	PLP Eas	st							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	88		0.20	0.20	mg/L		11/02/17 14:21	11/03/17 23:16	1
Manganese	0.61		0.025	0.010	mg/L		11/02/17 14:21	11/03/17 23:16	1
Method: 6020A - Metals (ICP/MS)	- TCLP								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060	-	0.0060	0.0060	mg/L		11/02/17 08:35	11/02/17 17:27	1
Thallium	<0.0020		0.0020	0.0020	mg/L		11/02/17 08:35	11/02/17 17:27	1
Method: 7470A - TCLP Mercury -	TCLP								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/03/17 12:20	11/06/17 09:43	1
Method: 7471B - Mercury (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.024		0.021	0.0068	mg/Kg	\	11/01/17 15:30	11/02/17 12:42	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH		HF	0.2	0.2	CII			11/03/17 08:57	

Definitions/Glossary

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136509-1

Qualifiers

GC/MS VOA

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC/MS Semi VOA

Qualifier	Qualifier	Description
a,aaiiiioi	a.a.a	-000: pt:0::

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Metals

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
В	Compound was found in the blank and sample.
F5	Duplicate RPD exceeds limit, and one or both sample results are less than 5 times RL. The data are considered valid because the absolute difference is less than the RL.
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.

General Chemistry

Qualifier	Qualifier	Descri	ntion
Qualifici	Qualifici	Descri	ριισιι

HF Field parameter with a holding time of 15 minutes. Test performed by laboratory at client's request.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

Minimum Detectable Activity (Radiochemistry) MDA MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit Minimum Level (Dioxin) ML

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) TEF Toxicity Equivalent Quotient (Dioxin) TEQ

Page 34 of 64

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

GC/MS VOA

Prep Batch: 408047

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136509-3	3160-10-1 (0-2.5')	Total/NA	Solid	5035	
500-136509-6	3160-10-3 (0-2.5')	Total/NA	Solid	5035	

Analysis Batch: 408093

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136509-1	3160-9-2 (0-4')	Total/NA	Solid	8260B	408124
500-136509-2	3160-9-3 (0-4')	Total/NA	Solid	8260B	408124
500-136509-4	3160-10-2 (0-2.5')	Total/NA	Solid	8260B	408124
500-136509-5	3160-9-1 (0-4.0')	Total/NA	Solid	8260B	408124
MB 500-408093/8	Method Blank	Total/NA	Solid	8260B	
LCS 500-408093/5	Lab Control Sample	Total/NA	Solid	8260B	
LCSD 500-408093/6	Lab Control Sample Dup	Total/NA	Solid	8260B	

Prep Batch: 408124

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136509-1	3160-9-2 (0-4')	Total/NA	Solid	5035	
500-136509-2	3160-9-3 (0-4')	Total/NA	Solid	5035	
500-136509-4	3160-10-2 (0-2.5')	Total/NA	Solid	5035	
500-136509-5	3160-9-1 (0-4.0')	Total/NA	Solid	5035	

Analysis Batch: 409141

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136509-3	3160-10-1 (0-2.5')	Total/NA	Solid	8260B	408047
500-136509-6	3160-10-3 (0-2.5')	Total/NA	Solid	8260B	408047
MB 500-409141/6	Method Blank	Total/NA	Solid	8260B	
LCS 500-409141/4	Lab Control Sample	Total/NA	Solid	8260B	

GC/MS Semi VOA

Prep Batch: 408658

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136509-1	3160-9-2 (0-4')	Total/NA	Solid	3541	-
500-136509-2	3160-9-3 (0-4')	Total/NA	Solid	3541	
500-136509-3	3160-10-1 (0-2.5')	Total/NA	Solid	3541	
500-136509-4	3160-10-2 (0-2.5')	Total/NA	Solid	3541	
500-136509-5	3160-9-1 (0-4.0')	Total/NA	Solid	3541	
500-136509-6	3160-10-3 (0-2.5')	Total/NA	Solid	3541	
MB 500-408658/1-A	Method Blank	Total/NA	Solid	3541	
LCS 500-408658/2-A	Lab Control Sample	Total/NA	Solid	3541	

Analysis Batch: 408747

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 500-408658/1-A	Method Blank	Total/NA	Solid	8270D	408658
LCS 500-408658/2-A	Lab Control Sample	Total/NA	Solid	8270D	408658

Analysis Batch: 408758

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136509-1	3160-9-2 (0-4')	Total/NA	Solid	8270D	408658
500-136509-2	3160-9-3 (0-4')	Total/NA	Solid	8270D	408658
500-136509-3	3160-10-1 (0-2.5')	Total/NA	Solid	8270D	408658

TestAmerica Chicago

11/10/2017

Page 35 of 64

2

3

4

6

7

g

10

1 1

13

14

QC Association Summary

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136509-1

GC/MS Semi VOA (Continued)

Analysis Batch: 408758 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136509-4	3160-10-2 (0-2.5')	Total/NA	Solid	8270D	408658
500-136509-5	3160-9-1 (0-4.0')	Total/NA	Solid	8270D	408658
500-136509-6	3160-10-3 (0-2.5')	Total/NA	Solid	8270D	408658

GC Semi VOA

Prep Batch: 408289

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136509-1	3160-9-2 (0-4')	Total/NA	Solid	3541	
500-136509-2	3160-9-3 (0-4')	Total/NA	Solid	3541	
500-136509-5	3160-9-1 (0-4.0')	Total/NA	Solid	3541	
MB 500-408289/1-A	Method Blank	Total/NA	Solid	3541	
LCS 500-408289/2-A	Lab Control Sample	Total/NA	Solid	3541	

Analysis Batch: 408791

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136509-1	3160-9-2 (0-4')	Total/NA	Solid	8082A	408289
500-136509-2	3160-9-3 (0-4')	Total/NA	Solid	8082A	408289
500-136509-5	3160-9-1 (0-4.0')	Total/NA	Solid	8082A	408289
MB 500-408289/1-A	Method Blank	Total/NA	Solid	8082A	408289
LCS 500-408289/2-A	Lab Control Sample	Total/NA	Solid	8082A	408289

Metals

Prep Batch: 407860

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136509-1	3160-9-2 (0-4')	Total/NA	Solid	3050B	
500-136509-2	3160-9-3 (0-4')	Total/NA	Solid	3050B	
500-136509-3	3160-10-1 (0-2.5')	Total/NA	Solid	3050B	
500-136509-4	3160-10-2 (0-2.5')	Total/NA	Solid	3050B	
500-136509-5	3160-9-1 (0-4.0')	Total/NA	Solid	3050B	
500-136509-6	3160-10-3 (0-2.5')	Total/NA	Solid	3050B	
MB 500-407860/1-A	Method Blank	Total/NA	Solid	3050B	
LCS 500-407860/2-A	Lab Control Sample	Total/NA	Solid	3050B	

Leach Batch: 407959

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136509-1	3160-9-2 (0-4')	TCLP	Solid	1311	
500-136509-2	3160-9-3 (0-4')	TCLP	Solid	1311	
500-136509-3	3160-10-1 (0-2.5')	TCLP	Solid	1311	
500-136509-4	3160-10-2 (0-2.5')	TCLP	Solid	1311	
500-136509-5	3160-9-1 (0-4.0')	TCLP	Solid	1311	
500-136509-6	3160-10-3 (0-2.5')	TCLP	Solid	1311	
LB 500-407959/1-B	Method Blank	TCLP	Solid	1311	
LB 500-407959/1-D	Method Blank	TCLP	Solid	1311	
500-136509-1 MS	3160-9-2 (0-4')	TCLP	Solid	1311	
500-136509-1 DU	3160-9-2 (0-4')	TCLP	Solid	1311	

TestAmerica Chicago

Page 36 of 64

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Metals (Continued)

Leach Batch: 407967

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136509-3	3160-10-1 (0-2.5')	SPLP East	Solid	1312	
500-136509-5	3160-9-1 (0-4.0')	SPLP East	Solid	1312	
500-136509-6	3160-10-3 (0-2.5')	SPLP East	Solid	1312	
LB 500-407967/1-B	Method Blank	SPLP East	Solid	1312	
500-136509-6 MS	3160-10-3 (0-2.5')	SPLP East	Solid	1312	
500-136509-6 DU	3160-10-3 (0-2.5')	SPLP East	Solid	1312	

Prep Batch: 407976

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136509-1	3160-9-2 (0-4')	Total/NA	Solid	7471B	
500-136509-2	3160-9-3 (0-4')	Total/NA	Solid	7471B	
500-136509-3	3160-10-1 (0-2.5')	Total/NA	Solid	7471B	
500-136509-4	3160-10-2 (0-2.5')	Total/NA	Solid	7471B	
500-136509-5	3160-9-1 (0-4.0')	Total/NA	Solid	7471B	
500-136509-6	3160-10-3 (0-2.5')	Total/NA	Solid	7471B	
MB 500-407976/12-A	Method Blank	Total/NA	Solid	7471B	
LCS 500-407976/13-A	Lab Control Sample	Total/NA	Solid	7471B	
500-136509-1 MS	3160-9-2 (0-4')	Total/NA	Solid	7471B	
500-136509-1 MSD	3160-9-2 (0-4')	Total/NA	Solid	7471B	
500-136509-1 DU	3160-9-2 (0-4')	Total/NA	Solid	7471B	

Analysis Batch: 408000

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136509-1	3160-9-2 (0-4')	Total/NA	Solid	6010B	407860
500-136509-2	3160-9-3 (0-4')	Total/NA	Solid	6010B	407860
500-136509-3	3160-10-1 (0-2.5')	Total/NA	Solid	6010B	407860
500-136509-4	3160-10-2 (0-2.5')	Total/NA	Solid	6010B	407860
500-136509-5	3160-9-1 (0-4.0')	Total/NA	Solid	6010B	407860
500-136509-6	3160-10-3 (0-2.5')	Total/NA	Solid	6010B	407860
MB 500-407860/1-A	Method Blank	Total/NA	Solid	6010B	407860
LCS 500-407860/2-A	Lab Control Sample	Total/NA	Solid	6010B	407860

Prep Batch: 408066

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136509-1	3160-9-2 (0-4')	Total/NA	Solid	3050B	_
500-136509-2	3160-9-3 (0-4')	Total/NA	Solid	3050B	
500-136509-3	3160-10-1 (0-2.5')	Total/NA	Solid	3050B	
500-136509-4	3160-10-2 (0-2.5')	Total/NA	Solid	3050B	
500-136509-5	3160-9-1 (0-4.0')	Total/NA	Solid	3050B	
500-136509-6	3160-10-3 (0-2.5')	Total/NA	Solid	3050B	
MB 500-408066/1-A	Method Blank	Total/NA	Solid	3050B	
LCS 500-408066/2-A	Lab Control Sample	Total/NA	Solid	3050B	

Prep Batch: 408096

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136509-1	3160-9-2 (0-4')	TCLP	Solid	3010A	407959
500-136509-2	3160-9-3 (0-4')	TCLP	Solid	3010A	407959
500-136509-3	3160-10-1 (0-2.5')	TCLP	Solid	3010A	407959
500-136509-4	3160-10-2 (0-2.5')	TCLP	Solid	3010A	407959
500-136509-5	3160-9-1 (0-4.0')	TCLP	Solid	3010A	407959
500-136509-6	3160-10-3 (0-2.5')	TCLP	Solid	3010A	407959

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Metals (Continued)

Prep Batch: 408096 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LB 500-407959/1-B	Method Blank	TCLP	Solid	3010A	407959
LCS 500-408096/2-A	Lab Control Sample	Total/NA	Solid	3010A	

Analysis Batch: 408181

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
500-136509-1	3160-9-2 (0-4')	Total/NA	Solid	7471B	407976	
500-136509-2	3160-9-3 (0-4')	Total/NA	Solid	7471B	407976	
500-136509-3	3160-10-1 (0-2.5')	Total/NA	Solid	7471B	407976	
500-136509-4	3160-10-2 (0-2.5')	Total/NA	Solid	7471B	407976	
500-136509-5	3160-9-1 (0-4.0')	Total/NA	Solid	7471B	407976	
500-136509-6	3160-10-3 (0-2.5')	Total/NA	Solid	7471B	407976	
MB 500-407976/12-A	Method Blank	Total/NA	Solid	7471B	407976	
LCS 500-407976/13-A	Lab Control Sample	Total/NA	Solid	7471B	407976	
500-136509-1 MS	3160-9-2 (0-4')	Total/NA	Solid	7471B	407976	
500-136509-1 MSD	3160-9-2 (0-4')	Total/NA	Solid	7471B	407976	
500-136509-1 DU	3160-9-2 (0-4')	Total/NA	Solid	7471B	407976	

Prep Batch: 408219

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136509-3	3160-10-1 (0-2.5')	SPLP East	Solid	3010A	407967
500-136509-5	3160-9-1 (0-4.0')	SPLP East	Solid	3010A	407967
500-136509-6	3160-10-3 (0-2.5')	SPLP East	Solid	3010A	407967
LB 500-407967/1-B	Method Blank	SPLP East	Solid	3010A	407967
LCS 500-408219/2-A	Lab Control Sample	Total/NA	Solid	3010A	
500-136509-6 MS	3160-10-3 (0-2.5')	SPLP East	Solid	3010A	407967
500-136509-6 DU	3160-10-3 (0-2.5')	SPLP East	Solid	3010A	407967

Analysis Batch: 408311

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136509-1	3160-9-2 (0-4')	TCLP	Solid	Solid 6010B	408096
500-136509-1	3160-9-2 (0-4')	Total/NA	Solid	6010B	408066
500-136509-2	3160-9-3 (0-4')	TCLP	Solid	6010B	408096
500-136509-2	3160-9-3 (0-4')	Total/NA	Solid	6010B	408066
500-136509-3	3160-10-1 (0-2.5')	TCLP	Solid	6010B	408096
500-136509-3	3160-10-1 (0-2.5')	Total/NA	Solid	6010B	408066
500-136509-4	3160-10-2 (0-2.5')	TCLP	Solid	6010B	408096
500-136509-4	3160-10-2 (0-2.5')	Total/NA	Solid	6010B	408066
500-136509-5	3160-9-1 (0-4.0')	TCLP	Solid	6010B	408096
500-136509-5	3160-9-1 (0-4.0')	Total/NA	Solid	6010B	408066
500-136509-6	3160-10-3 (0-2.5')	TCLP	Solid	6010B	408096
500-136509-6	3160-10-3 (0-2.5')	Total/NA	Solid	6010B	408066
LB 500-407959/1-B	Method Blank	TCLP	Solid	6010B	408096
MB 500-408066/1-A	Method Blank	Total/NA	Solid	6010B	408066
LCS 500-408066/2-A	Lab Control Sample	Total/NA	Solid	6010B	408066
LCS 500-408096/2-A	Lab Control Sample	Total/NA	Solid	6010B	408096

Analysis Batch: 408313

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136509-1	3160-9-2 (0-4')	TCLP	Solid	6020A	408096
500-136509-2	3160-9-3 (0-4')	TCLP	Solid	6020A	408096
500-136509-3	3160-10-1 (0-2.5')	TCLP	Solid	6020A	408096

TestAmerica Chicago

a omoago

C31/4111C11C4 00D 1D. 000-100005-1

6

8

4.0

11

13

14

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Metals (Continued)

Analysis Batch: 408313 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136509-4	3160-10-2 (0-2.5')	TCLP	Solid	6020A	408096
500-136509-5	3160-9-1 (0-4.0')	TCLP	Solid	6020A	408096
500-136509-6	3160-10-3 (0-2.5')	TCLP	Solid	6020A	408096
LB 500-407959/1-B	Method Blank	TCLP	Solid	6020A	408096
LCS 500-408096/2-A	Lab Control Sample	Total/NA	Solid	6020A	408096

Prep Batch: 408351

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136509-1	3160-9-2 (0-4')	TCLP	Solid	7470A	407959
500-136509-2	3160-9-3 (0-4')	TCLP	Solid	7470A	407959
500-136509-3	3160-10-1 (0-2.5')	TCLP	Solid	7470A	407959
500-136509-4	3160-10-2 (0-2.5')	TCLP	Solid	7470A	407959
500-136509-5	3160-9-1 (0-4.0')	TCLP	Solid	7470A	407959
500-136509-6	3160-10-3 (0-2.5')	TCLP	Solid	7470A	407959
LB 500-407959/1-D	Method Blank	TCLP	Solid	7470A	407959
MB 500-408351/12-A	Method Blank	Total/NA	Solid	7470A	
LCS 500-408351/13-A	Lab Control Sample	Total/NA	Solid	7470A	
500-136509-1 MS	3160-9-2 (0-4')	TCLP	Solid	7470A	407959
500-136509-1 DU	3160-9-2 (0-4')	TCLP	Solid	7470A	407959

Analysis Batch: 408480

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136509-3	3160-10-1 (0-2.5')	SPLP East	Solid	6010B	408219
500-136509-5	3160-9-1 (0-4.0')	SPLP East	Solid	6010B	408219
500-136509-6	3160-10-3 (0-2.5')	SPLP East	Solid	6010B	408219
LB 500-407967/1-B	Method Blank	SPLP East	Solid	6010B	408219
LCS 500-408219/2-A	Lab Control Sample	Total/NA	Solid	6010B	408219
500-136509-6 MS	3160-10-3 (0-2.5')	SPLP East	Solid	6010B	408219
500-136509-6 DU	3160-10-3 (0-2.5')	SPLP East	Solid	6010B	408219

Analysis Batch: 408624

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136509-1	3160-9-2 (0-4')	TCLP	Solid	7470A	408351
500-136509-2	3160-9-3 (0-4')	TCLP	Solid	7470A	408351
500-136509-3	3160-10-1 (0-2.5')	TCLP	Solid	7470A	408351
500-136509-4	3160-10-2 (0-2.5')	TCLP	Solid	7470A	408351
500-136509-5	3160-9-1 (0-4.0')	TCLP	Solid	7470A	408351
500-136509-6	3160-10-3 (0-2.5')	TCLP	Solid	7470A	408351
LB 500-407959/1-D	Method Blank	TCLP	Solid	7470A	408351
MB 500-408351/12-A	Method Blank	Total/NA	Solid	7470A	408351
LCS 500-408351/13-A	Lab Control Sample	Total/NA	Solid	7470A	408351
500-136509-1 MS	3160-9-2 (0-4')	TCLP	Solid	7470A	408351
500-136509-1 DU	3160-9-2 (0-4')	TCLP	Solid	7470A	408351

General Chemistry

Analysis Batch: 407791

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136509-1	3160-9-2 (0-4')	Total/NA	Solid	Moisture	
500-136509-2	3160-9-3 (0-4')	Total/NA	Solid	Moisture	

TestAmerica Chicago

11/10/2017

Page 39 of 64

2

3

4

6

_

9

10

12

13

14

QC Association Summary

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136509-1

General Chemistry (Continued)

Analysis Batch: 407791 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136509-3	3160-10-1 (0-2.5')	Total/NA	Solid	Moisture	
500-136509-4	3160-10-2 (0-2.5')	Total/NA	Solid	Moisture	
500-136509-5	3160-9-1 (0-4.0')	Total/NA	Solid	Moisture	
500-136509-6	3160-10-3 (0-2.5')	Total/NA	Solid	Moisture	
500-136509-1 DU	3160-9-2 (0-4')	Total/NA	Solid	Moisture	

Analysis Batch: 408326

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136509-1	3160-9-2 (0-4')	Total/NA	Solid	9045D	
500-136509-2	3160-9-3 (0-4')	Total/NA	Solid	9045D	
500-136509-3	3160-10-1 (0-2.5')	Total/NA	Solid	9045D	
500-136509-4	3160-10-2 (0-2.5')	Total/NA	Solid	9045D	
500-136509-5	3160-9-1 (0-4.0')	Total/NA	Solid	9045D	
500-136509-6	3160-10-3 (0-2.5')	Total/NA	Solid	9045D	

6

8

9

11

1 4

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Solid Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		BFB	DBFM	12DCE	TOL
Lab Sample ID	Client Sample ID	(75-131)	(75-126)	(70-134)	(75-124)
500-136509-1	3160-9-2 (0-4')	92	99	94	96
500-136509-2	3160-9-3 (0-4')	90	101	96	98
500-136509-4	3160-10-2 (0-2.5')	92	101	96	98
500-136509-5	3160-9-1 (0-4.0')	93	101	98	95
LCS 500-408093/5	Lab Control Sample	93	100	90	99
LCSD 500-408093/6	Lab Control Sample Dup	93	98	92	98
MB 500-408093/8	Method Blank	91	99	92	96

Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane

12DCE = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Solid Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		BFB	DBFM	12DCE	TOL
Lab Sample ID	Client Sample ID	(72-124)	(75-120)	(75-126)	(75-120)
500-136509-3	3160-10-1 (0-2.5')	84	88	87	103
500-136509-6	3160-10-3 (0-2.5')	87	88	88	103
LCS 500-409141/4	Lab Control Sample	83	88	88	104
MB 500-409141/6	Method Blank	88	90	92	104

Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane

12DCE = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Solid Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco	very (Acce	otance Lim
		FBP	2FP	NBZ	PHL	TPH	TBP
Lab Sample ID	Client Sample ID	(44-121)	(46-133)	(41-120)	(46-125)	(35-160)	(25-139)
500-136509-1	3160-9-2 (0-4')	84	88	73	75	104	104
500-136509-2	3160-9-3 (0-4')	87	87	69	66	85	100
500-136509-3	3160-10-1 (0-2.5')	85	91	72	77	91	117
500-136509-4	3160-10-2 (0-2.5')	83	92	69	64	98	116
500-136509-5	3160-9-1 (0-4.0')	81	91	71	67	64	112
500-136509-6	3160-10-3 (0-2.5')	81	88	70	65	93	112
LCS 500-408658/2-A	Lab Control Sample	68	72	69	76	76	76
MB 500-408658/1-A	Method Blank	80	86	73	80	81	74

Surrogate Legend

FBP = 2-Fluorobiphenyl

2FP = 2-Fluorophenol

NBZ = Nitrobenzene-d5

Page 41 of 64

Surrogate Summary

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028 TestAmerica Job ID: 500-136509-1

PHL = Phenol-d5 TPH = Terphenyl-d14

 $\mathsf{TBP} = 2,4,6$ -Tribromophenol

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Matrix: Solid Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)						
		TCX1	DCB1					
Lab Sample ID	Client Sample ID	(49-129)	(37-121)					
500-136509-1	3160-9-2 (0-4')	78	84					
500-136509-2	3160-9-3 (0-4')	98	96					
500-136509-5	3160-9-1 (0-4.0')	85	92					
LCS 500-408289/2-A	Lab Control Sample	89	96					
MB 500-408289/1-A	Method Blank	94	103					

Surrogate Legend

TCX = Tetrachloro-m-xylene

DCB = DCB Decachlorobiphenyl

3

4

7

8

10

10

13

14

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 500-408093/8 Client Sample ID: Method Blank **Matrix: Solid Prep Type: Total/NA Analysis Batch: 408093**

•	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	<0.020		0.020	0.0087	mg/Kg			11/02/17 12:43	1
Benzene	<0.0020		0.0020	0.00051	mg/Kg			11/02/17 12:43	1
Bromodichloromethane	<0.0020		0.0020	0.00041	mg/Kg			11/02/17 12:43	1
Bromoform	<0.0020		0.0020	0.00058	mg/Kg			11/02/17 12:43	1
Bromomethane	<0.0050		0.0050	0.0019	mg/Kg			11/02/17 12:43	1
2-Butanone (MEK)	<0.0050		0.0050	0.0022	mg/Kg			11/02/17 12:43	1
Carbon disulfide	<0.0050		0.0050	0.0010	mg/Kg			11/02/17 12:43	1
Carbon tetrachloride	<0.0020		0.0020	0.00058	mg/Kg			11/02/17 12:43	1
Chlorobenzene	<0.0020		0.0020	0.00074	mg/Kg			11/02/17 12:43	1
Chloroethane	<0.0050		0.0050	0.0015	mg/Kg			11/02/17 12:43	1
Chloroform	<0.0020		0.0020	0.00069	mg/Kg			11/02/17 12:43	1
Chloromethane	<0.0050		0.0050	0.0020	mg/Kg			11/02/17 12:43	1
cis-1,2-Dichloroethene	<0.0020		0.0020	0.00056	mg/Kg			11/02/17 12:43	1
cis-1,3-Dichloropropene	<0.0020		0.0020	0.00060	mg/Kg			11/02/17 12:43	1
Dibromochloromethane	<0.0020		0.0020	0.00065	mg/Kg			11/02/17 12:43	1
1,1-Dichloroethane	<0.0020		0.0020	0.00069	mg/Kg			11/02/17 12:43	1
1,2-Dichloroethane	<0.0050		0.0050	0.0016	mg/Kg			11/02/17 12:43	1
1,1-Dichloroethene	<0.0020		0.0020	0.00069	mg/Kg			11/02/17 12:43	1
1,2-Dichloropropane	<0.0020		0.0020	0.00052	mg/Kg			11/02/17 12:43	1
1,3-Dichloropropene, Total	<0.0020		0.0020	0.00070	mg/Kg			11/02/17 12:43	1
Ethylbenzene	<0.0020		0.0020	0.00096	mg/Kg			11/02/17 12:43	1
2-Hexanone	<0.0050		0.0050	0.0016	mg/Kg			11/02/17 12:43	1
Methylene Chloride	<0.0050		0.0050	0.0020	mg/Kg			11/02/17 12:43	1
4-Methyl-2-pentanone (MIBK)	<0.0050		0.0050	0.0015	mg/Kg			11/02/17 12:43	1
Methyl tert-butyl ether	<0.0020		0.0020	0.00059	mg/Kg			11/02/17 12:43	1
Styrene	<0.0020		0.0020	0.00060	mg/Kg			11/02/17 12:43	1
1,1,2,2-Tetrachloroethane	<0.0020		0.0020	0.00064	mg/Kg			11/02/17 12:43	1
Tetrachloroethene	<0.0020		0.0020	0.00068	mg/Kg			11/02/17 12:43	1
Toluene	<0.0020		0.0020	0.00051	mg/Kg			11/02/17 12:43	1
trans-1,2-Dichloroethene	<0.0020		0.0020	0.00089	mg/Kg			11/02/17 12:43	1
trans-1,3-Dichloropropene	<0.0020		0.0020	0.00070	mg/Kg			11/02/17 12:43	1
1,1,1-Trichloroethane	<0.0020		0.0020	0.00067				11/02/17 12:43	1
1,1,2-Trichloroethane	<0.0020		0.0020	0.00086				11/02/17 12:43	1
Trichloroethene	<0.0020		0.0020	0.00068				11/02/17 12:43	1
Vinyl acetate	<0.0050		0.0050	0.0017	mg/Kg			11/02/17 12:43	1
Vinyl chloride	<0.0020		0.0020	0.00089	mg/Kg			11/02/17 12:43	1
Xylenes, Total	<0.0040		0.0040	0.00064				11/02/17 12:43	1

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91		75 - 131		11/02/17 12:43	1
Dibromofluoromethane	99		75 - 126		11/02/17 12:43	1
1,2-Dichloroethane-d4 (Surr)	92		70 - 134		11/02/17 12:43	1
Toluene-d8 (Surr)	96		75 - 124		11/02/17 12:43	1

TestAmerica Job ID: 500-136509-1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 500-408093/5

Matrix: Solid

Analysis Batch: 408093

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS LCS			%Rec.
Analyte	Added	Result Qualifier	Unit	D %Rec	Limits
Acetone	0.0500	0.0405	mg/Kg	81	40 - 150
Benzene	0.0500	0.0479	mg/Kg	96	70 - 125
Bromodichloromethane	0.0500	0.0501	mg/Kg	100	67 - 129
Bromoform	0.0500	0.0504	mg/Kg	101	68 - 136
Bromomethane	0.0500	0.0490	mg/Kg	98	70 - 130
2-Butanone (MEK)	0.0500	0.0422	mg/Kg	84	47 - 138
Carbon disulfide	0.0500	0.0504	mg/Kg	101	70 - 129
Carbon tetrachloride	0.0500	0.0472	mg/Kg	94	75 - 125
Chlorobenzene	0.0500	0.0474	mg/Kg	95	50 - 150
Chloroethane	0.0500	0.0406	mg/Kg	81	75 - 125
Chloroform	0.0500	0.0470	mg/Kg	94	57 - 135
Chloromethane	0.0500	0.0498	mg/Kg	100	70 - 125
cis-1,2-Dichloroethene	0.0500	0.0482	mg/Kg	96	70 - 125
cis-1,3-Dichloropropene	0.0500	0.0511	mg/Kg	102	70 - 125
Dibromochloromethane	0.0500	0.0507	mg/Kg	101	69 - 125
1,1-Dichloroethane	0.0500	0.0452	mg/Kg	90	70 - 125
1,2-Dichloroethane	0.0500	0.0466	mg/Kg	93	70 - 130
1,1-Dichloroethene	0.0500	0.0465	mg/Kg	93	70 - 120
1,2-Dichloropropane	0.0500	0.0480	mg/Kg	96	70 - 125
Ethylbenzene	0.0500	0.0463	mg/Kg	93	61 - 136
2-Hexanone	0.0500	0.0451	mg/Kg	90	48 - 146
Methylene Chloride	0.0500	0.0468	mg/Kg	94	70 - 126
4-Methyl-2-pentanone (MIBK)	0.0500	0.0447	mg/Kg	89	50 - 148
Methyl tert-butyl ether	0.0500	0.0523	mg/Kg	105	50 - 140
Styrene	0.0500	0.0482	mg/Kg	96	70 - 125
1,1,2,2-Tetrachloroethane	0.0500	0.0570	mg/Kg	114	70 - 122
Tetrachloroethene	0.0500	0.0486	mg/Kg	97	70 - 124
Toluene	0.0500	0.0472	mg/Kg	94	70 - 125
trans-1,2-Dichloroethene	0.0500	0.0472	mg/Kg	94	70 - 125
trans-1,3-Dichloropropene	0.0500	0.0501	mg/Kg	100	70 - 125
1,1,1-Trichloroethane	0.0500	0.0447	mg/Kg	89	70 - 128
1,1,2-Trichloroethane	0.0500	0.0511	mg/Kg	102	70 - 125
Trichloroethene	0.0500	0.0496	mg/Kg	99	70 ₋ 125
Vinyl acetate	0.0500	0.0591	mg/Kg	118	40 - 153
Vinyl chloride	0.0500	0.0507	mg/Kg	101	70 - 125
Xylenes, Total	0.100	0.0918	mg/Kg	92	53 - 147

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	93		75 - 131
Dibromofluoromethane	100		75 - 126
1,2-Dichloroethane-d4 (Surr)	90		70 - 134
Toluene-d8 (Surr)	99		75 - 124

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 500-408093/6

Matrix: Solid

Analysis Batch: 408093

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

, ,	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acetone	0.0500	0.0424		mg/Kg		85	40 - 150	4	30
Benzene	0.0500	0.0474		mg/Kg		95	70 - 125	1	30
Bromodichloromethane	0.0500	0.0489		mg/Kg		98	67 - 129	2	30
Bromoform	0.0500	0.0509		mg/Kg		102	68 - 136	1	30
Bromomethane	0.0500	0.0467		mg/Kg		93	70 - 130	5	30
2-Butanone (MEK)	0.0500	0.0428		mg/Kg		86	47 - 138	1	30
Carbon disulfide	0.0500	0.0502		mg/Kg		100	70 - 129	0	30
Carbon tetrachloride	0.0500	0.0454		mg/Kg		91	75 - 125	4	30
Chlorobenzene	0.0500	0.0468		mg/Kg		94	50 ₋ 150	1	30
Chloroethane	0.0500	0.0407		mg/Kg		81	75 - 125	0	30
Chloroform	0.0500	0.0462		mg/Kg		92	57 ₋ 135	2	30
Chloromethane	0.0500	0.0498		mg/Kg		100	70 - 125	0	30
cis-1,2-Dichloroethene	0.0500	0.0468		mg/Kg		94	70 - 125	3	30
cis-1,3-Dichloropropene	0.0500	0.0514		mg/Kg		103	70 - 125	1	30
Dibromochloromethane	0.0500	0.0529		mg/Kg		106	69 - 125	4	30
1,1-Dichloroethane	0.0500	0.0450		mg/Kg		90	70 - 125	1	30
1,2-Dichloroethane	0.0500	0.0473		mg/Kg		95	70 - 130	1	30
1,1-Dichloroethene	0.0500	0.0474		mg/Kg		95	70 - 120	2	30
1,2-Dichloropropane	0.0500	0.0483		mg/Kg		97	70 - 125	1	30
Ethylbenzene	0.0500	0.0461		mg/Kg		92	61 - 136	1	30
2-Hexanone	0.0500	0.0488		mg/Kg		98	48 - 146	8	30
Methylene Chloride	0.0500	0.0476		mg/Kg		95	70 - 126	2	30
4-Methyl-2-pentanone (MIBK)	0.0500	0.0477		mg/Kg		95	50 - 148	6	30
Methyl tert-butyl ether	0.0500	0.0536		mg/Kg		107	50 - 140	2	30
Styrene	0.0500	0.0483		mg/Kg		97	70 - 125	0	30
1,1,2,2-Tetrachloroethane	0.0500	0.0583		mg/Kg		117	70 - 122	2	30
Tetrachloroethene	0.0500	0.0478		mg/Kg		96	70 - 124	2	30
Toluene	0.0500	0.0466		mg/Kg		93	70 - 125	1	30
trans-1,2-Dichloroethene	0.0500	0.0461		mg/Kg		92	70 - 125	2	30
trans-1,3-Dichloropropene	0.0500	0.0500		mg/Kg		100	70 - 125	0	30
1,1,1-Trichloroethane	0.0500	0.0463		mg/Kg		93	70 - 128	4	30
1,1,2-Trichloroethane	0.0500	0.0501		mg/Kg		100	70 - 125	2	30
Trichloroethene	0.0500	0.0485		mg/Kg		97	70 - 125	2	30
Vinyl acetate	0.0500	0.0606		mg/Kg		121	40 - 153	3	30
Vinyl chloride	0.0500	0.0509		mg/Kg		102	70 - 125	0	30
Xylenes, Total	0.100	0.0912		mg/Kg		91	53 - 147	1	30

LCSD	LCSD
------	------

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	93		75 - 131
Dibromofluoromethane	98		75 ₋ 126
1,2-Dichloroethane-d4 (Surr)	92		70 - 134
Toluene-d8 (Surr)	98		75 - 124

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

2

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 500-409141/6

Matrix: Solid

Client Sample ID: Method Blank
Prep Type: Total/NA

Analysis Batch: 409141

		MB							
Analyte		Qualifier	RL .	MDL		D	Prepared	Analyzed	Dil Fac
Acetone	<0.0050		0.0050	0.0017	mg/Kg			11/09/17 13:16	1
Benzene	<0.00025		0.00025	0.00015				11/09/17 13:16	1
Bromodichloromethane	<0.0010		0.0010	0.00037				11/09/17 13:16	1
Bromoform	<0.0010		0.0010	0.00048	mg/Kg			11/09/17 13:16	1
Bromomethane	<0.0020		0.0020	0.00080	mg/Kg			11/09/17 13:16	1
2-Butanone (MEK)	<0.0050		0.0050	0.0021	mg/Kg			11/09/17 13:16	1
Carbon disulfide	<0.0020		0.0020	0.00080	mg/Kg			11/09/17 13:16	1
Carbon tetrachloride	<0.0010		0.0010	0.00038	mg/Kg			11/09/17 13:16	1
Chlorobenzene	<0.0010		0.0010	0.00039	mg/Kg			11/09/17 13:16	1
Chloroethane	<0.0010		0.0010	0.00050	mg/Kg			11/09/17 13:16	1
Chloroform	<0.0020		0.0020	0.00037	mg/Kg			11/09/17 13:16	1
Chloromethane	<0.0010		0.0010	0.00032	mg/Kg			11/09/17 13:16	1
cis-1,2-Dichloroethene	<0.0010		0.0010	0.00041	mg/Kg			11/09/17 13:16	1
cis-1,3-Dichloropropene	< 0.0010		0.0010	0.00042	mg/Kg			11/09/17 13:16	1
Dibromochloromethane	<0.0010		0.0010	0.00049	mg/Kg			11/09/17 13:16	1
1,1-Dichloroethane	<0.0010		0.0010	0.00041	mg/Kg			11/09/17 13:16	1
1,2-Dichloroethane	<0.0010		0.0010	0.00039	mg/Kg			11/09/17 13:16	1
1,1-Dichloroethene	<0.0010		0.0010	0.00039	mg/Kg			11/09/17 13:16	1
1,2-Dichloropropane	<0.0010		0.0010	0.00043	mg/Kg			11/09/17 13:16	1
1,3-Dichloropropene, Total	<0.0010		0.0010	0.00042	mg/Kg			11/09/17 13:16	1
Ethylbenzene	<0.00025		0.00025	0.00018				11/09/17 13:16	1
2-Hexanone	<0.0050		0.0050	0.0016				11/09/17 13:16	1
Methylene Chloride	<0.0050		0.0050	0.0016				11/09/17 13:16	1
4-Methyl-2-pentanone (MIBK)	<0.0050		0.0050	0.0022	mg/Kg			11/09/17 13:16	1
Methyl tert-butyl ether	<0.0010		0.0010	0.00039				11/09/17 13:16	1
Styrene	<0.0010		0.0010	0.00039				11/09/17 13:16	1
1,1,2,2-Tetrachloroethane	<0.0010		0.0010	0.00040				11/09/17 13:16	1
Tetrachloroethene	<0.0010		0.0010	0.00037	mg/Kg			11/09/17 13:16	1
Toluene	<0.00025		0.00025	0.00015				11/09/17 13:16	1
trans-1,2-Dichloroethene	<0.0010		0.0010	0.00035				11/09/17 13:16	1
trans-1,3-Dichloropropene	<0.0010		0.0010	0.00036				11/09/17 13:16	1
1,1,1-Trichloroethane	<0.0010		0.0010	0.00038				11/09/17 13:16	1
1,1,2-Trichloroethane	<0.0010		0.0010	0.00035				11/09/17 13:16	1
Trichloroethene	<0.00050		0.00050	0.00016				11/09/17 13:16	1
Vinyl acetate	<0.0020		0.0020	0.00090				11/09/17 13:16	1
Vinyl chloride	<0.00050		0.00050	0.00026				11/09/17 13:16	1
Xylenes, Total	<0.00050		0.00050	0.00022				11/09/17 13:16	

	МВ	МВ				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	88		72 - 124		11/09/17 13:16	1
Dibromofluoromethane	90		75 - 120		11/09/17 13:16	1
1,2-Dichloroethane-d4 (Surr)	92		75 - 126		11/09/17 13:16	1
Toluene-d8 (Surr)	104		75 - 120		11/09/17 13:16	1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

4

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 500-409141/4

Matrix: Solid

Analysis Batch: 409141

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analyte	Spike Added	LCS Result	LCS Qualifier	Unit	D	%Rec	%Rec. Limits	
Acetone	0.0500	0.0436		mg/Kg	_ =	87	40 - 143	
Benzene	0.0500	0.0497		mg/Kg		99	70 ₋ 120	
Bromodichloromethane	0.0500	0.0449		mg/Kg		90	69 ₋ 120	
Bromoform	0.0500	0.0410		mg/Kg		82	56 ₋ 132	
Bromomethane	0.0500	0.0478		mg/Kg		96	40 - 130	
2-Butanone (MEK)	0.0500	0.0534		mg/Kg		107	53 - 141	
Carbon disulfide	0.0500	0.0525		mg/Kg		105	66 - 120	
Carbon tetrachloride	0.0500	0.0443		mg/Kg		89	65 ₋ 122	
Chlorobenzene	0.0500	0.0503		mg/Kg		101	70 - 120	
Chloroethane	0.0500	0.0496		mg/Kg		99	45 - 127	
Chloroform	0.0500	0.0472		mg/Kg		94	70 - 120	
Chloromethane	0.0500	0.0540		mg/Kg		108	54 ₋ 147	
cis-1,2-Dichloroethene	0.0500	0.0491		mg/Kg		98	70 - 125	
cis-1,3-Dichloropropene	0.0500	0.0492		mg/Kg		98	64 - 127	
Dibromochloromethane	0.0500	0.0447		mg/Kg		89	68 - 125	
1,1-Dichloroethane	0.0500	0.0541		mg/Kg		108	70 - 125	
1,2-Dichloroethane	0.0500	0.0467		mg/Kg		93	68 - 127	
1,1-Dichloroethene	0.0500	0.0514		mg/Kg		103	67 - 122	
1,2-Dichloropropane	0.0500	0.0548		mg/Kg		110	67 - 130	
Ethylbenzene	0.0500	0.0521		mg/Kg		104	70 - 120	
2-Hexanone	0.0500	0.0504		mg/Kg		101	56 ₋ 135	
Methylene Chloride	0.0500	0.0532		mg/Kg		106	69 - 125	
4-Methyl-2-pentanone (MIBK)	0.0500	0.0517		mg/Kg		103	56 - 133	
Methyl tert-butyl ether	0.0500	0.0479		mg/Kg		96	70 - 120	
Styrene	0.0500	0.0514		mg/Kg		103	70 - 120	
1,1,2,2-Tetrachloroethane	0.0500	0.0472		mg/Kg		94	67 - 127	
Tetrachloroethene	0.0500	0.0544		mg/Kg		109	70 - 128	
Toluene	0.0500	0.0497		mg/Kg		99	70 ₋ 125	
trans-1,2-Dichloroethene	0.0500	0.0506		mg/Kg		101	70 - 125	
trans-1,3-Dichloropropene	0.0500	0.0475		mg/Kg		95	62 - 128	
1,1,1-Trichloroethane	0.0500	0.0458		mg/Kg		92	70 - 125	
1,1,2-Trichloroethane	0.0500	0.0520		mg/Kg		104	70 - 122	
Trichloroethene	0.0500	0.0516		mg/Kg		103	70 ₋ 125	
Vinyl acetate	0.0500	0.0509		mg/Kg		102	43 - 133	
Vinyl chloride	0.0500	0.0595		mg/Kg		119	64 - 126	
Xylenes, Total	0.100	0.0974		mg/Kg		97	70 - 125	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	83		72 - 124
Dibromofluoromethane	88		75 - 120
1,2-Dichloroethane-d4 (Surr)	88		75 - 126
Toluene-d8 (Surr)	104		75 - 120

TestAmerica Chicago

-

6

8

46

11

13

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

100000 100000 1000000 1

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 500-408658/1-A	Client Sample ID: Method Blank
Matrix: Solid	Prep Type: Total/NA
Analysis Batch: 408747	Prep Batch: 408658

Analysis Batch: 408747								Prep Type: 10 Prep Batch:	
Analysis Batch. 400747	МВ	МВ						Frep Batch.	400030
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Acenaphthene	<0.033		0.033	0.0060				11/07/17 12:37	1
Acenaphthylene	<0.033		0.033	0.0044	mg/Kg		11/06/17 15:06	11/07/17 12:37	1
Anthracene	< 0.033		0.033	0.0056	mg/Kg		11/06/17 15:06	11/07/17 12:37	1
Benzo[a]anthracene	<0.033		0.033	0.0045	mg/Kg		11/06/17 15:06	11/07/17 12:37	1
Benzo[a]pyrene	< 0.033		0.033	0.0064	mg/Kg			11/07/17 12:37	1
Benzo[b]fluoranthene	< 0.033		0.033	0.0072	mg/Kg		11/06/17 15:06	11/07/17 12:37	1
Benzo[g,h,i]perylene	<0.033		0.033	0.011	mg/Kg		11/06/17 15:06	11/07/17 12:37	1
Benzo[k]fluoranthene	<0.033		0.033	0.0098	mg/Kg		11/06/17 15:06	11/07/17 12:37	1
Bis(2-chloroethoxy)methane	<0.17		0.17	0.034	mg/Kg		11/06/17 15:06	11/07/17 12:37	1
Bis(2-chloroethyl)ether	<0.17		0.17	0.050	mg/Kg		11/06/17 15:06	11/07/17 12:37	1
Bis(2-ethylhexyl) phthalate	<0.17		0.17	0.061	mg/Kg		11/06/17 15:06	11/07/17 12:37	1
4-Bromophenyl phenyl ether	<0.17		0.17	0.044	mg/Kg		11/06/17 15:06	11/07/17 12:37	1
Butyl benzyl phthalate	<0.17		0.17	0.063	mg/Kg		11/06/17 15:06	11/07/17 12:37	1
Carbazole	<0.17		0.17	0.083	mg/Kg		11/06/17 15:06	11/07/17 12:37	1
4-Chloroaniline	<0.67		0.67	0.16	mg/Kg		11/06/17 15:06	11/07/17 12:37	1
4-Chloro-3-methylphenol	<0.33		0.33	0.11	mg/Kg		11/06/17 15:06	11/07/17 12:37	1
2-Chloronaphthalene	<0.17		0.17		mg/Kg		11/06/17 15:06	11/07/17 12:37	1
2-Chlorophenol	<0.17		0.17		mg/Kg		11/06/17 15:06	11/07/17 12:37	1
4-Chlorophenyl phenyl ether	<0.17		0.17		mg/Kg		11/06/17 15:06	11/07/17 12:37	1
Chrysene	< 0.033		0.033	0.0091				11/07/17 12:37	1
Dibenz(a,h)anthracene	<0.033		0.033	0.0064	0 0			11/07/17 12:37	1
Dibenzofuran	<0.17		0.17		mg/Kg			11/07/17 12:37	1
1,2-Dichlorobenzene	<0.17		0.17		mg/Kg			11/07/17 12:37	1
1,3-Dichlorobenzene	<0.17		0.17		mg/Kg			11/07/17 12:37	1
1,4-Dichlorobenzene	<0.17		0.17		mg/Kg			11/07/17 12:37	1
3,3'-Dichlorobenzidine	<0.17		0.17		mg/Kg			11/07/17 12:37	1
2,4-Dichlorophenol	<0.33		0.33		mg/Kg			11/07/17 12:37	. 1
Diethyl phthalate	<0.17		0.17		mg/Kg			11/07/17 12:37	
2,4-Dimethylphenol	<0.33		0.33		mg/Kg			11/07/17 12:37	1
Dimethyl phthalate	<0.17		0.17		mg/Kg			11/07/17 12:37	1
Di-n-butyl phthalate	<0.17		0.17		mg/Kg			11/07/17 12:37	
• •	<0.17		0.17		mg/Kg			11/07/17 12:37	1
4,6-Dinitro-2-methylphenol	<0.67		0.67		mg/Kg			11/07/17 12:37	
2,4-Dinitrophenol 2,4-Dinitrotoluene	<0.07		0.07		mg/Kg			11/07/17 12:37	1 1
,	<0.17								1
2,6-Dinitrotoluene			0.17		mg/Kg			11/07/17 12:37	1
Di-n-octyl phthalate	<0.17		0.17		mg/Kg			11/07/17 12:37	1
Fluoranthene	<0.033		0.033	0.0062				11/07/17 12:37	1
Fluorene	<0.033		0.033	0.0047				11/07/17 12:37	1
Hexachlorobenzene	<0.067		0.067	0.0077				11/07/17 12:37	
Hexachlorobutadiene	<0.17		0.17		mg/Kg			11/07/17 12:37	1
Hexachlorocyclopentadiene	<0.67		0.67		mg/Kg			11/07/17 12:37	1
Hexachloroethane	<0.17		0.17		mg/Kg			11/07/17 12:37	1
Indeno[1,2,3-cd]pyrene	<0.033		0.033	0.0086				11/07/17 12:37	1
Isophorone	<0.17		0.17		mg/Kg			11/07/17 12:37	1
2-Methylnaphthalene	<0.067		0.067	0.0061				11/07/17 12:37	1
2-Methylphenol	<0.17		0.17	0.053	mg/Kg		11/06/17 15:06	11/07/17 12:37	1
3 & 4 Methylphenol	<0.17		0.17		mg/Kg		11/06/17 15:06	11/07/17 12:37	1
Naphthalene	< 0.033		0.033	0.0051	mg/Kg		11/06/17 15:06	11/07/17 12:37	1

TestAmerica Chicago

Page 48 of 64

2

3

4

6

10

12

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 500-408658/1-A

Matrix: Solid

Analysis Batch: 408747

Client Sample ID: Method Blank **Prep Type: Total/NA Prep Batch: 408658**

7 mary 510 Batom 400747	МВ	МВ						Trop Butom	100000
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Nitroaniline	<0.17		0.17	0.045	mg/Kg		11/06/17 15:06	11/07/17 12:37	1
3-Nitroaniline	<0.33		0.33	0.10	mg/Kg		11/06/17 15:06	11/07/17 12:37	1
4-Nitroaniline	<0.33		0.33	0.14	mg/Kg		11/06/17 15:06	11/07/17 12:37	1
Nitrobenzene	<0.033		0.033	0.0083	mg/Kg		11/06/17 15:06	11/07/17 12:37	1
2-Nitrophenol	<0.33		0.33	0.079	mg/Kg		11/06/17 15:06	11/07/17 12:37	1
4-Nitrophenol	<0.67		0.67	0.32	mg/Kg		11/06/17 15:06	11/07/17 12:37	1
N-Nitrosodi-n-propylamine	<0.067		0.067	0.041	mg/Kg		11/06/17 15:06	11/07/17 12:37	1
N-Nitrosodiphenylamine	<0.17		0.17	0.039	mg/Kg		11/06/17 15:06	11/07/17 12:37	1
2,2'-oxybis[1-chloropropane]	<0.17		0.17	0.039	mg/Kg		11/06/17 15:06	11/07/17 12:37	1
Pentachlorophenol	<0.67		0.67	0.53	mg/Kg		11/06/17 15:06	11/07/17 12:37	1
Phenanthrene	<0.033		0.033	0.0046	mg/Kg		11/06/17 15:06	11/07/17 12:37	1
Phenol	<0.17		0.17	0.074	mg/Kg		11/06/17 15:06	11/07/17 12:37	1
Pyrene	<0.033		0.033	0.0066	mg/Kg		11/06/17 15:06	11/07/17 12:37	1
1,2,4-Trichlorobenzene	<0.17		0.17	0.036	mg/Kg		11/06/17 15:06	11/07/17 12:37	1
2,4,5-Trichlorophenol	<0.33		0.33	0.076	mg/Kg		11/06/17 15:06	11/07/17 12:37	1
2,4,6-Trichlorophenol	<0.33		0.33	0.11	mg/Kg		11/06/17 15:06	11/07/17 12:37	1

MB MB

Surrogate	%Recovery (Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	80		44 - 121	11/06/17 15:06	11/07/17 12:37	1
2-Fluorophenol	86		46 - 133	11/06/17 15:06	11/07/17 12:37	1
Nitrobenzene-d5	73		41 - 120	11/06/17 15:06	11/07/17 12:37	1
Phenol-d5	80		46 - 125	11/06/17 15:06	11/07/17 12:37	1
Terphenyl-d14	81		35 - 160	11/06/17 15:06	11/07/17 12:37	1
2,4,6-Tribromophenol	74		25 - 139	11/06/17 15:06	11/07/17 12:37	1

Lab Sample ID: LCS 500-408658/2-A

Matrix: Solid

Analysis Batch: 408747

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 408658

Analysis Batch: 408747	Cmiles	1.00	1.00				Prep Batch: 408658
	Spike		LCS		_		%Rec.
Analyte	Added	Result	Qualifier	Unit	_ D	%Rec	Limits
Acenaphthene	1.33	0.884		mg/Kg		66	58 - 110
Acenaphthylene	1.33	0.910		mg/Kg		68	60 - 110
Anthracene	1.33	0.988		mg/Kg		74	63 - 110
Benzo[a]anthracene	1.33	1.01		mg/Kg		75	63 - 110
Benzo[a]pyrene	1.33	0.987		mg/Kg		74	61 - 120
Benzo[b]fluoranthene	1.33	1.03		mg/Kg		77	62 - 120
Benzo[g,h,i]perylene	1.33	0.936		mg/Kg		70	64 - 120
Benzo[k]fluoranthene	1.33	1.05		mg/Kg		79	65 - 120
Bis(2-chloroethoxy)methane	1.33	0.933		mg/Kg		70	60 - 112
Bis(2-chloroethyl)ether	1.33	0.956		mg/Kg		72	55 - 111
Bis(2-ethylhexyl) phthalate	1.33	1.15		mg/Kg		86	63 - 118
4-Bromophenyl phenyl ether	1.33	0.991		mg/Kg		74	63 - 110
Butyl benzyl phthalate	1.33	1.13		mg/Kg		85	61 - 116
Carbazole	1.33	1.14		mg/Kg		86	59 - 158
4-Chloroaniline	1.33	0.911		mg/Kg		68	30 - 150
4-Chloro-3-methylphenol	1.33	1.02		mg/Kg		77	61 - 114
2-Chloronaphthalene	1.33	0.912		mg/Kg		68	64 - 110
2-Chlorophenol	1.33	0.953		mg/Kg		71	64 - 110

TestAmerica Chicago

Page 49 of 64

QC Sample Results

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136509-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 500-408658/2-A Matrix: Solid

Client Sample ID: Lab Control Sample
Prep Type: Total/NA
Prep Batch: 408658

Analysis Batch: 408747	Spike	LCS	LCS				Prep Batch: 40865 %Rec.
Analyte	Added		Qualifier	Unit	D '	%Rec	Limits
4-Chlorophenyl phenyl ether	1.33	0.933		mg/Kg		70	63 - 110
Chrysene	1.33	1.02		mg/Kg		77	63 - 120
Dibenz(a,h)anthracene	1.33	0.989		mg/Kg		74	64 - 119
Dibenzofuran	1.33	0.929		mg/Kg		70	64 - 110
1,2-Dichlorobenzene	1.33	0.904		mg/Kg		68	62 - 110
1,3-Dichlorobenzene	1.33	0.861		mg/Kg		65	60 - 110
1,4-Dichlorobenzene	1.33	0.870		mg/Kg		65	61 - 110
3,3'-Dichlorobenzidine	1.33	1.08		mg/Kg		81	49 - 112
2,4-Dichlorophenol	1.33	0.991		mg/Kg		74	58 - 120
Diethyl phthalate	1.33	0.947		mg/Kg		71	58 - 120
2,4-Dimethylphenol	1.33	0.844		mg/Kg		63	60 - 110
Dimethyl phthalate	1.33	0.959		mg/Kg		72	64 - 110
Di-n-butyl phthalate	1.33	0.991		mg/Kg		74	65 - 120
4,6-Dinitro-2-methylphenol	2.67	1.33		mg/Kg		50	10 - 110
2,4-Dinitrophenol	2.67	0.914		mg/Kg		34	10 - 100
2,4-Dinitrotoluene	1.33	1.04		mg/Kg		78	62 - 117
2,6-Dinitrotoluene	1.33	0.988		mg/Kg		74	67 - 120
Di-n-octyl phthalate	1.33	1.21		mg/Kg		91	63 - 119
Fluoranthene	1.33	1.02		mg/Kg		76	62 - 120
Fluorene	1.33	0.917		mg/Kg		69	62 - 120
Hexachlorobenzene	1.33	0.943		mg/Kg		71	55 - 117
Hexachlorobutadiene	1.33	0.863		mg/Kg		65	56 - 120
Hexachlorocyclopentadiene	1.33	0.738		mg/Kg		55	10 - 106
Hexachloroethane	1.33	0.899		mg/Kg		67	61 - 110
Indeno[1,2,3-cd]pyrene	1.33	0.982		mg/Kg		74	57 - 127
Isophorone	1.33	0.888		mg/Kg		67	55 - 110
2-Methylnaphthalene	1.33	0.920		mg/Kg		69	62 - 110
2-Methylphenol	1.33	0.959		mg/Kg		72	60 - 120
3 & 4 Methylphenol	1.33	0.999		mg/Kg		75	57 ₋ 120
Naphthalene	1.33	0.902		mg/Kg		68	63 - 110
2-Nitroaniline	1.33	0.990		mg/Kg		74	57 - 124
3-Nitroaniline	1.33	1.05		mg/Kg		79	40 - 122
4-Nitroaniline	1.33	1.32		mg/Kg		99	60 - 160
Nitrobenzene	1.33	0.925		mg/Kg		69	60 - 116
2-Nitrophenol	1.33	1.02		mg/Kg		77	60 - 120
•	2.67	1.65				62	30 - 122
4-Nitrophenol N-Nitrosodi-n-propylamine				mg/Kg			
	1.33	0.958		mg/Kg		72 76	56 - 118
N-Nitrosodiphenylamine	1.33	1.01		mg/Kg		76 70	65 - 112
2,2'-oxybis[1-chloropropane]	1.33	1.03		mg/Kg		78	40 - 124
Pentachlorophenol	2.67	1.56		mg/Kg		58	13 - 112
Phenanthrene	1.33	0.976		mg/Kg		73	62 - 120
Phenol	1.33	0.916		mg/Kg		69	56 - 122
Pyrene	1.33	1.01		mg/Kg		76	63 - 120
1,2,4-Trichlorobenzene	1.33	0.900		mg/Kg		67	62 - 110
2,4,5-Trichlorophenol	1.33	1.05		mg/Kg		79	50 - 120
2,4,6-Trichlorophenol	1.33	0.922		mg/Kg		69	57 - 120

TestAmerica Chicago

3

5

7

9

11

12

14

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 500-408658/2-A

Matrix: Solid

Analysis Batch: 408747

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 408658

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	68		44 - 121
2-Fluorophenol	72		46 - 133
Nitrobenzene-d5	69		41 - 120
Phenol-d5	76		46 - 125
Terphenyl-d14	76		35 - 160
2,4,6-Tribromophenol	76		25 - 139

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Lab Sample ID: MB 500-408289/1-A

Matrix: Solid

Analysis Batch: 408791

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 408289

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac PCB-1016 0.017 0.0059 mg/Kg 11/03/17 07:23 11/07/17 21:50 < 0.017 11/03/17 07:23 11/07/17 21:50 PCB-1221 < 0.017 0.017 0.0073 mg/Kg PCB-1232 < 0.017 0.017 0.0073 mg/Kg 11/03/17 07:23 11/07/17 21:50 0.0055 mg/Kg 11/03/17 07:23 11/07/17 21:50 PCB-1242 < 0.017 0.017 PCB-1248 0.0066 mg/Kg 11/03/17 07:23 11/07/17 21:50 < 0.017 0.017 PCB-1254 < 0.017 0.017 0.0036 mg/Kg 11/03/17 07:23 11/07/17 21:50 PCB-1260 < 0.017 0.017 0.0082 mg/Kg 11/03/17 07:23 11/07/17 21:50

MB MB Surrogate Qualifier %Recovery Tetrachloro-m-xylene 94

103

r	Limits	Prepared	Analyzed	Dil Fac
	49 - 129	11/03/17 07:23	11/07/17 21:50	1
	37 - 121	11/03/17 07:23	11/07/17 21:50	1

Lab Sample ID: LCS 500-408289/2-A

Matrix: Solid

Analysis Batch: 408791

DCB Decachlorobiphenyl

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 408289 %Rec.

Analyte Added Result Qualifier Unit D %Rec Limits PCB-1016 0.167 0.140 84 57 - 120 mg/Kg PCB-1260 0.167 0.153 mg/Kg 92 61 - 125

LCS LCS

Spike

LCS LCS

Surrogate	%Recovery Qualifier	Limits
Tetrachloro-m-xylene	89	49 - 129
DCB Decachlorobiphenyl	96	37 - 121

Method: 6010B - Metals (ICP)

Lab Sample ID: MB 500-407860/1-A

Matrix: Solid

Analysis Batch: 408000

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 407860

MB MB Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Antimony <2.0 2.0 0.39 mg/Kg 10/31/17 16:37 11/01/17 12:36 10/31/17 16:37 11/01/17 12:36 Arsenic <1.0 1.0 0.34 mg/Kg

TestAmerica Chicago

Page 51 of 64

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: MB 500-407860/1-A

Matrix: Solid

Analysis Batch: 408000

Client Sample ID: Method Blank **Prep Type: Total/NA Prep Batch: 407860**

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	<1.0		1.0	0.11	mg/Kg		10/31/17 16:37	11/01/17 12:36	1
Beryllium	<0.40		0.40	0.093	mg/Kg		10/31/17 16:37	11/01/17 12:36	1
Cadmium	0.0615	J	0.20	0.036	mg/Kg		10/31/17 16:37	11/01/17 12:36	1
Chromium	<1.0		1.0	0.50	mg/Kg		10/31/17 16:37	11/01/17 12:36	1
Cobalt	<0.50		0.50	0.13	mg/Kg		10/31/17 16:37	11/01/17 12:36	1
Copper	0.486	J	1.0	0.28	mg/Kg		10/31/17 16:37	11/01/17 12:36	1
Lead	<0.50		0.50	0.23	mg/Kg		10/31/17 16:37	11/01/17 12:36	1
Manganese	0.391	J	1.0	0.15	mg/Kg		10/31/17 16:37	11/01/17 12:36	1
Nickel	<1.0		1.0	0.29	mg/Kg		10/31/17 16:37	11/01/17 12:36	1
Selenium	<1.0		1.0	0.59	mg/Kg		10/31/17 16:37	11/01/17 12:36	1
Silver	<0.50		0.50	0.13	mg/Kg		10/31/17 16:37	11/01/17 12:36	1
Thallium	<1.0		1.0	0.50	mg/Kg		10/31/17 16:37	11/01/17 12:36	1
Vanadium	<0.50		0.50	0.12	mg/Kg		10/31/17 16:37	11/01/17 12:36	1
Zinc	<2.0		2.0	0.88	mg/Kg		10/31/17 16:37	11/01/17 12:36	1

Lab Sample ID: LCS 500-407860/2-A

Matrix: Solid

Analysis Batch: 408000

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 407860

7 maryone Battern 100000	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Antimony	50.0	46.8	-	mg/Kg		94	80 - 120
Arsenic	10.0	9.38		mg/Kg		94	80 - 120
Barium	200	203		mg/Kg		102	80 - 120
Beryllium	5.00	5.02		mg/Kg		100	80 - 120
Cadmium	5.00	4.83		mg/Kg		97	80 - 120
Chromium	20.0	21.4		mg/Kg		107	80 - 120
Cobalt	50.0	50.8		mg/Kg		102	80 - 120
Copper	25.0	26.5		mg/Kg		106	80 - 120
Lead	10.0	9.14		mg/Kg		91	80 - 120
Manganese	50.0	52.1		mg/Kg		104	80 - 120
Nickel	50.0	50.4		mg/Kg		101	80 - 120
Selenium	10.0	8.74		mg/Kg		87	80 - 120
Silver	5.00	4.92		mg/Kg		98	80 - 120
Thallium	10.0	8.21		mg/Kg		82	80 - 120
Vanadium	50.0	53.4		mg/Kg		107	80 - 120
Zinc	50.0	51.6		mg/Kg		103	80 - 120

Lab Sample ID: MB 500-408066/1-A

Matrix: Solid

Analysis Batch: 408311

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 408066

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	<20		20	10	mg/Kg		11/02/17 07:14	11/02/17 17:49	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: LCS 500-408066/2-A Client Sample ID: Lab Control Sample **Matrix: Solid Prep Type: Total/NA** Analysis Batch: 408311 **Prep Batch: 408066** Spike LCS LCS %Rec.

Analyte Added Result Qualifier Unit D %Rec Limits 100 104 104 80 - 120 Iron mg/Kg

Lab Sample ID: LCS 500-408096/2-A **Matrix: Solid**

Analysis Batch: 408311	Spike	LCS	LCS				Prep Batch: 408096 %Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Arsenic	0.100	0.0976		mg/L		98	80 - 120
Barium	0.500	0.527		mg/L		105	80 - 120
Beryllium	0.0500	0.0493		mg/L		99	80 - 120
Cadmium	0.0500	0.0514		mg/L		103	80 - 120
Chromium	0.200	0.202		mg/L		101	80 - 120
Cobalt	0.500	0.509		mg/L		102	80 - 120
Copper	0.250	0.270		mg/L		108	80 - 120
Iron	1.00	1.06		mg/L		106	80 - 120
Lead	0.100	0.102		mg/L		102	80 - 120
Manganese	0.500	0.490		mg/L		98	80 - 120
Nickel	0.500	0.502		mg/L		100	80 - 120
Selenium	0.100	0.0962		mg/L		96	80 - 120
Silver	0.0500	0.0499		mg/L		100	80 - 120
Vanadium	0.500	0.512		mg/L		102	80 - 120
Zinc	0.500	0.492	J	ma/L		98	80 - 120

Lab Sample ID: LCS 500-408219/2-A

Matrix: Solid

Analysis Batch: 408480

l			Spike	LCS	LCS					%Rec.	
	Analyte		Added	Result	Qualifier	Unit	[)	%Rec	Limits	
	Iron		1.00	1.04		mg/L			104	80 - 120	
ı	Manganese		0.500	0.483		mg/L			97	80 - 120	

Lab Sample ID: LB 500-407959/1-B

Matrix: Solid

Analysis Batch: 408311

Client Sample	ID: Method Blank
	Prep Type: TCLP

Client Sample ID: Lab Control Sample

Prep Batch: 408096

Prep Type: Total/NA

Prep Batch: 408219

	LB	LB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/02/17 08:35	11/02/17 16:18	1
Barium	<0.50		0.50	0.050	mg/L		11/02/17 08:35	11/02/17 16:18	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/02/17 08:35	11/02/17 16:18	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/02/17 08:35	11/02/17 16:18	1
Chromium	<0.025		0.025	0.010	mg/L		11/02/17 08:35	11/02/17 16:18	1
Cobalt	<0.025		0.025	0.010	mg/L		11/02/17 08:35	11/02/17 16:18	1
Copper	<0.025		0.025	0.010	mg/L		11/02/17 08:35	11/02/17 16:18	1
Iron	<0.40		0.40	0.20	mg/L		11/02/17 08:35	11/02/17 16:18	1
Lead	<0.0075		0.0075	0.0075	mg/L		11/02/17 08:35	11/02/17 16:18	1
Manganese	<0.025		0.025	0.010	mg/L		11/02/17 08:35	11/02/17 16:18	1
Nickel	<0.025		0.025	0.010	mg/L		11/02/17 08:35	11/02/17 16:18	1
Selenium	<0.050		0.050	0.020	mg/L		11/02/17 08:35	11/02/17 16:18	1
Silver	<0.025		0.025	0.010	mg/L		11/02/17 08:35	11/02/17 16:18	1

TestAmerica Chicago

Page 53 of 64

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: LB 500-407959/1-B

Matrix: Solid

Analysis Batch: 408311

Client Sample ID: Method Blank **Prep Type: TCLP**

Prep Batch: 408096

IR IR

LB LB

Sample Sample

88

0.61

Result Qualifier

Result Qualifier **MDL** Unit Analyte RL Prepared Analyzed Dil Fac Vanadium <0.025 0.025 0.010 mg/L 11/02/17 08:35 11/02/17 16:18 11/02/17 08:35 11/02/17 16:18 Zinc < 0.50 0.50 0.020 mg/L

Lab Sample ID: LB 500-407967/1-B

Matrix: Solid

Analysis Batch: 408480

Client Sample ID: Method Blank **Prep Type: SPLP East**

Prep Batch: 408219

Result Qualifier **MDL** Unit Analyte RL D Prepared Analyzed Dil Fac < 0.40 0.40 0.20 mg/L 11/02/17 14:21 11/03/17 22:38 Iron 0.025 11/02/17 14:21 11/03/17 22:38 Manganese <0.025 0.010 mg/L

MS MS

99.3 4

LCS LCS

1.00

Result Qualifier

Unit

mg/L

mg/L

Spike

Added

1.00

0.500

Lab Sample ID: 500-136509-6 MS

Matrix: Solid

Analyte

Manganese

Iron

Analysis Batch: 408480

Client Sample ID: 3160-10-3 (0-2.5')

Prep Type: SPLP East

%Rec.

D %Rec

1086

79

Prep Batch: 408219

Limits 50 - 150

Lab Sample ID: 500-136509-6 DU

Matrix: Solid

Analysis Batch: 408480

Client Sample ID: 3160-10-3 (0-2.5')

50 - 150

Prep Type: SPLP East

Prep Batch: 408219

RPD Limit

DU DU Sample Sample Result Qualifier Result Qualifier Unit **Analyte** Iron 88 96.7 mg/L 9 20 Manganese 0.61 0.678 mg/L 20

Method: 6020A - Metals (ICP/MS)

Lab Sample ID: LCS 500-408096/2-A

Matrix: Solid

Analysis Batch: 408313

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 408096

%Rec.

Analyte Added Result Qualifier Unit D %Rec Limits Antimony 0.500 0.485 mg/L 97 80 - 120 Thallium 0.100 0.101 mg/L 101 80 - 120

Spike

Lab Sample ID: LB 500-407959/1-B

Matrix: Solid

Analysis Batch: 408313

Client Sample ID: Method Blank Prep Type: TCLP

Prep Batch: 408096

LB LB

Result Qualifier **MDL** Unit Analyte RL Prepared Analyzed Dil Fac 0.0060 Antimony <0.0060 0.0060 mg/L 11/02/17 08:35 11/02/17 17:03 Thallium < 0.0020 0.0020 0.0020 mg/L 11/02/17 08:35 11/02/17 17:03

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

%Rec.

Limits

80 - 120

Client Sample ID: Method Blank

Client Sample ID: 3160-9-2 (0-4')

%Rec.

Limits

50 - 150

Client Sample ID: 3160-9-2 (0-4')

Client Sample ID: Method Blank

Analyzed

11/03/17 12:20 11/06/17 09:26

%Rec

Prepared

%Rec

94

92

Prep Type: Total/NA

Prep Batch: 408351

Prep Type: Total/NA

Prep Batch: 408351

Prep Type: TCLP

Prep Type: TCLP

Prep Type: TCLP

RPD

NC

Prep Batch: 408351

Prep Type: Total/NA

Prep Batch: 407976

Prep Type: Total/NA

Prep Batch: 407976

Prep Batch: 408351

Dil Fac

RPD

Limit

Dil Fac

20

Prep Batch: 408351

Analyzed

Method: 7470A - TCLP Mercury

Lab Sample ID: MB 500-408351/12-A

Matrix: Solid

Analysis Batch: 408624

MB MB

Sample Sample

Sample Sample

<0.00020

Result Qualifier

Result Qualifier

Analyte Result Qualifier RL **MDL** Unit Analyzed Dil Fac Prepared 0.00020 11/03/17 12:20 11/06/17 09:23 0.00020 mg/L Mercury <0.00020

LCS LCS

0.00185

RL

0.00020

Result Qualifier

MDL Unit

0.00020 mg/L

MS MS

DU DU

Result Qualifier

0.000942

<0.00020

Result Qualifier

Unit

mg/L

Unit

mg/L

Unit

mg/L

Spike

Added

0.00200

Spike

Added

0.00100

Lab Sample ID: LCS 500-408351/13-A

Matrix: Solid

Analysis Batch: 408624

Analyte

Lab Sample ID: LB 500-407959/1-D

Matrix: Solid

Mercury

Analysis Batch: 408624

LB LB

Result Qualifier Analyte

Mercury <0.00020

Lab Sample ID: 500-136509-1 MS

Matrix: Solid

Analysis Batch: 408624

Analyte

Mercury <0.00020 Lab Sample ID: 500-136509-1 DU

Matrix: Solid

Analysis Batch: 408624

Analyte

Mercury

Method: 7471B - Mercury (CVAA)

Lab Sample ID: MB 500-407976/12-A

Matrix: Solid

Analysis Batch: 408181

MB MB Result Qualifier

Analyte

Mercury < 0.017

Lab Sample ID: LCS 500-407976/13-A

Matrix: Solid

Analysis Batch: 408181

Analyte Mercury 0.167

Added Result Qualifier 0.170

Spike

RL

0.017

LCS LCS

MDL Unit

0.0056 mg/Kg

Unit mg/Kg

D %Rec 102

Prepared

Limits 80 - 120

%Rec.

11/01/17 15:30 11/02/17 11:48

Client Sample ID: Lab Control Sample

QC Sample Results

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028 TestAmerica Job ID: 500-136509-1

3

Method: 7471B - Mercury (CVAA) (Continued)

Lab Sample ID: 500-136509	9-1 MS						Clie	ent Sam	nple ID: 316	0-9-2 (0-	-4')
Matrix: Solid									Prep Type	: Total/l	NA
Analysis Batch: 408181									Prep Bate	ch: 4079	76
-	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Mercury	0.015	J	0.0921	0 102		ma/Ka	<u>∓</u>	95	75 - 125		

Lab Sample ID: 500-136509- Matrix: Solid Analysis Batch: 408181		Sample	Spike	MSD	MSD		Clie	ent Sam	ple ID: 31 Prep Typ Prep Ba %Rec.	pe: Tot	àl/NÁ
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Mercury	0.015	J	0.0883	0.0962		mg/Kg	<u> </u>	92	75 - 125	6	20

Lab Sample ID: 500-136509-1 DU		Client Sample ID: 3160-9-2 (0-4')
Matrix: Solid		Prep Type: Total/NA
Analysis Batch: 408181		Prep Batch: 407976
Sample Sample	DU DU	RPD

 Analyte
 Result Mercury
 Qualifier 0.015
 Result Qualifier 0.0258
 Qualifier F5
 Unit mg/Kg
 D
 RPD kpp
 Limit mg/Kg

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-9-2 (0-4') Lab Sample ID: 500-136509-1

TAL CHI

TAL CHI

Date Collected: 10/30/17 13:05 Date Received: 10/31/17 08:45

Total/NA

Total/NA

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			407959	11/01/17 13:31	JLC	TAL CHI
TCLP	Prep	3010A			408096	11/02/17 08:35	JEF	TAL CHI
TCLP	Analysis	6010B		1	408311	11/02/17 16:38	PJ1	TAL CHI
TCLP	Leach	1311			407959	11/01/17 13:31	JLC	TAL CHI
TCLP	Prep	3010A			408096	11/02/17 08:35	JEF	TAL CHI
TCLP	Analysis	6020A		1	408313	11/02/17 17:10	FXG	TAL CHI
TCLP	Leach	1311			407959	11/01/17 13:31	JLC	TAL CHI
TCLP	Prep	7470A			408351	11/03/17 12:20	EEN	TAL CHI
TCLP	Analysis	7470A		1	408624	11/06/17 09:29	EEN	TAL CHI

Client Sample ID: 3160-9-2 (0-4') Lab Sample ID: 500-136509-1

1

408326 11/03/17 08:57 SMO

407791 10/31/17 13:23 LWN

Date Collected: 10/30/17 13:05 **Matrix: Solid** Date Received: 10/31/17 08:45 Percent Solids: 82.1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			408124	10/31/17 15:36	WRE	TAL CH
Total/NA	Analysis	8260B		1	408093	11/02/17 16:29	DJD	TAL CH
Total/NA	Prep	3541			408658	11/06/17 15:06	NRJ	TAL CH
Total/NA	Analysis	8270D		1	408758	11/07/17 12:58	WDS	TAL CH
Total/NA	Prep	3541			408289	11/03/17 07:23	STW	TAL CH
Total/NA	Analysis	8082A		1	408791	11/08/17 02:11	BJH	TAL CH
Total/NA	Prep	3050B			407860	10/31/17 16:37	BDE	TAL CH
Total/NA	Analysis	6010B		1	408000	11/01/17 14:11	PJ1	TAL CH
Total/NA	Prep	3050B			408066	11/02/17 07:14	JEF	TAL CH
Total/NA	Analysis	6010B		1	408311	11/02/17 19:13	PJ1	TAL CH
Total/NA	Prep	7471B			407976	11/01/17 15:30	EEN	TAL CH
Total/NA	Analysis	7471B		1	408181	11/02/17 12:20	EEN	TAL CH

Client Sample ID: 3160-9-3 (0-4') Lab Sample ID: 500-136509-2

Date Collected: 10/30/17 13:20 Date Received: 10/31/17 08:45

9045D

Moisture

Analysis

Analysis

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			407959	11/01/17 13:31	JLC	TAL CHI
TCLP	Prep	3010A			408096	11/02/17 08:35	JEF	TAL CHI
TCLP	Analysis	6010B		1	408311	11/02/17 16:42	PJ1	TAL CHI
TCLP	Leach	1311			407959	11/01/17 13:31	JLC	TAL CHI
TCLP	Prep	3010A			408096	11/02/17 08:35	JEF	TAL CHI
TCLP	Analysis	6020A		1	408313	11/02/17 17:13	FXG	TAL CHI
TCLP	Leach	1311			407959	11/01/17 13:31	JLC	TAL CHI
TCLP	Prep	7470A			408351	11/03/17 12:20	EEN	TAL CHI
TCLP	Analysis	7470A		1	408624	11/06/17 09:34	EEN	TAL CHI

Page 57 of 64

TestAmerica Chicago

11/10/2017

Matrix: Solid

Client: AMEC Foster Wheeler E & I, Inc

Project/Site: IDOT - Benton - WO 028

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9045D		1	408326	11/03/17 08:57	SMO	TAL CHI
Total/NA	Analysis	Moisture		1	407791	10/31/17 13:23	LWN	TAL CHI

Client Sample ID: 3160-9-3 (0-4')

Date Collected: 10/30/17 13:20 Date Received: 10/31/17 08:45 Lab Sample ID: 500-136509-2 **Matrix: Solid**

Percent Solids: 83.6

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			408124	10/31/17 15:36	WRE	TAL CHI
Total/NA	Analysis	8260B		1	408093	11/02/17 16:54	DJD	TAL CHI
Total/NA	Prep	3541			408658	11/06/17 15:06	NRJ	TAL CHI
Total/NA	Analysis	8270D		1	408758	11/07/17 15:38	WDS	TAL CHI
Total/NA	Prep	3541			408289	11/03/17 07:23	STW	TAL CHI
Total/NA	Analysis	8082A		1	408791	11/08/17 02:27	BJH	TAL CHI
Total/NA	Prep	3050B			407860	10/31/17 16:37	BDE	TAL CHI
Total/NA	Analysis	6010B		1	408000	11/01/17 14:24	PJ1	TAL CHI
Total/NA	Prep	3050B			408066	11/02/17 07:14	JEF	TAL CHI
Total/NA	Analysis	6010B		1	408311	11/02/17 19:17	PJ1	TAL CHI
Total/NA	Prep	7471B			407976	11/01/17 15:30	EEN	TAL CHI
Total/NA	Analysis	7471B		1	408181	11/02/17 12:29	EEN	TAL CHI

Client Sample ID: 3160-10-1 (0-2.5')

Date Collected: 10/30/17 13:35

Date Received: 10/31/17 08:45

Lab Sample ID: 500-136509-3 **Matrix: Solid**

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
SPLP East	Leach	1312			407967	11/01/17 13:31	JLC	TAL CHI
SPLP East	Prep	3010A			408219	11/02/17 14:21	BDE	TAL CHI
SPLP East	Analysis	6010B		1	408480	11/03/17 23:04	KML	TAL CHI
TCLP	Leach	1311			407959	11/01/17 13:31	JLC	TAL CHI
TCLP	Prep	3010A			408096	11/02/17 08:35	JEF	TAL CHI
TCLP	Analysis	6010B		1	408311	11/02/17 16:46	PJ1	TAL CHI
TCLP	Leach	1311			407959	11/01/17 13:31	JLC	TAL CHI
TCLP	Prep	3010A			408096	11/02/17 08:35	JEF	TAL CHI
TCLP	Analysis	6020A		1	408313	11/02/17 17:16	FXG	TAL CHI
TCLP	Leach	1311			407959	11/01/17 13:31	JLC	TAL CHI
TCLP	Prep	7470A			408351	11/03/17 12:20	EEN	TAL CHI
TCLP	Analysis	7470A		1	408624	11/06/17 09:38	EEN	TAL CH
Total/NA	Analysis	9045D		1	408326	11/03/17 08:57	SMO	TAL CH
Total/NA	Analysis	Moisture		1	407791	10/31/17 13:23	LWN	TAL CH

Client Sample ID: 3160-10-1 (0-2.5')

Date Collected: 10/30/17 13:35

Date Received: 10/31/17 08:45

Lab Sample ID: 500-136509-3 **Matrix: Solid**

Percent Solids: 80.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			408047	10/30/17 13:35	WRE	TAL CHI

Page 58 of 64

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/30/17 13:35

Date Received: 10/31/17 08:45

Client Sample ID: 3160-10-1 (0-2.5')

Lab Sample ID: 500-136509-3

Matrix: Solid Percent Solids: 80.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		50	409141	11/09/17 17:46	PMF	TAL CHI
Total/NA	Prep	3541			408658	11/06/17 15:06	NRJ	TAL CHI
Total/NA	Analysis	8270D		1	408758	11/07/17 13:24	WDS	TAL CHI
Total/NA	Prep	3050B			407860	10/31/17 16:37	BDE	TAL CHI
Total/NA	Analysis	6010B		1	408000	11/01/17 14:28	PJ1	TAL CHI
Total/NA	Prep	3050B			408066	11/02/17 07:14	JEF	TAL CHI
Total/NA	Analysis	6010B		1	408311	11/02/17 19:21	PJ1	TAL CHI
Total/NA	Prep	7471B			407976	11/01/17 15:30	EEN	TAL CHI
Total/NA	Analysis	7471B		1	408181	11/02/17 12:31	EEN	TAL CHI

Client Sample ID: 3160-10-2 (0-2.5') Lab Sample ID: 500-136509-4

Date Collected: 10/30/17 13:50 **Matrix: Solid**

Date Received: 10/31/17 08:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			407959	11/01/17 13:31	JLC	TAL CH
TCLP	Prep	3010A			408096	11/02/17 08:35	JEF	TAL CH
TCLP	Analysis	6010B		1	408311	11/02/17 16:50	PJ1	TAL CH
TCLP	Leach	1311			407959	11/01/17 13:31	JLC	TAL CH
TCLP	Prep	3010A			408096	11/02/17 08:35	JEF	TAL CH
TCLP	Analysis	6020A		1	408313	11/02/17 17:20	FXG	TAL CH
TCLP	Leach	1311			407959	11/01/17 13:31	JLC	TAL CH
TCLP	Prep	7470A			408351	11/03/17 12:20	EEN	TAL CH
TCLP	Analysis	7470A		1	408624	11/06/17 09:40	EEN	TAL CH
Total/NA	Analysis	9045D		1	408326	11/03/17 08:57	SMO	TAL CH
Total/NA	Analysis	Moisture		1	407791	10/31/17 13:23	LWN	TAL CH

Lab Sample ID: 500-136509-4 Client Sample ID: 3160-10-2 (0-2.5')

Date Collected: 10/30/17 13:50 **Matrix: Solid** Date Received: 10/31/17 08:45 Percent Solids: 83.6

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	5035			408124	10/31/17 15:36		TAL CHI
Total/NA	Analysis	8260B		1	408093	11/02/17 17:19	DJD	TAL CHI
Total/NA	Prep	3541			408658	11/06/17 15:06	NRJ	TAL CHI
Total/NA	Analysis	8270D		1	408758	11/07/17 13:51	WDS	TAL CHI
Total/NA	Prep	3050B			407860	10/31/17 16:37	BDE	TAL CHI
Total/NA	Analysis	6010B		1	408000	11/01/17 14:32	PJ1	TAL CHI
Total/NA	Prep	3050B			408066	11/02/17 07:14	JEF	TAL CHI
Total/NA	Analysis	6010B		1	408311	11/02/17 19:25	PJ1	TAL CHI
Total/NA	Prep	7471B			407976	11/01/17 15:30	EEN	TAL CHI
Total/NA	Analysis	7471B		1	408181	11/02/17 12:37	EEN	TAL CHI

Page 59 of 64

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-9-1 (0-4.0')

Lab Sample ID: 500-136509-5 Date Collected: 10/30/17 14:00

Matrix: Solid

Date Received: 10/31/17 08:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
SPLP East	Leach	1312			407967	11/01/17 13:31	JLC	TAL CHI
SPLP East	Prep	3010A			408219	11/02/17 14:21	BDE	TAL CHI
SPLP East	Analysis	6010B		1	408480	11/03/17 23:12	KML	TAL CHI
TCLP	Leach	1311			407959	11/01/17 13:31	JLC	TAL CHI
TCLP	Prep	3010A			408096	11/02/17 08:35	JEF	TAL CHI
TCLP	Analysis	6010B		1	408311	11/02/17 16:54	PJ1	TAL CHI
TCLP	Leach	1311			407959	11/01/17 13:31	JLC	TAL CHI
TCLP	Prep	3010A			408096	11/02/17 08:35	JEF	TAL CHI
TCLP	Analysis	6020A		1	408313	11/02/17 17:23	FXG	TAL CHI
TCLP	Leach	1311			407959	11/01/17 13:31	JLC	TAL CHI
TCLP	Prep	7470A			408351	11/03/17 12:20	EEN	TAL CHI
TCLP	Analysis	7470A		1	408624	11/06/17 09:41	EEN	TAL CHI
Total/NA	Analysis	9045D		1	408326	11/03/17 08:57	SMO	TAL CHI
Total/NA	Analysis	Moisture		1	407791	10/31/17 13:23	LWN	TAL CHI

Client Sample ID: 3160-9-1 (0-4.0') Lab Sample ID: 500-136509-5

Date Collected: 10/30/17 14:00

Matrix: Solid

Date Received: 10/31/17 08:45

Percent Solids: 83.2

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			408124	10/31/17 15:36	WRE	TAL CHI
Total/NA	Analysis	8260B		1	408093	11/02/17 17:44	DJD	TAL CHI
Total/NA	Prep	3541			408658	11/06/17 15:06	NRJ	TAL CHI
Total/NA	Analysis	8270D		1	408758	11/07/17 14:18	WDS	TAL CHI
Total/NA	Prep	3541			408289	11/03/17 07:23	STW	TAL CHI
Total/NA	Analysis	8082A		1	408791	11/08/17 02:42	BJH	TAL CHI
Total/NA	Prep	3050B			407860	10/31/17 16:37	BDE	TAL CHI
Total/NA	Analysis	6010B		1	408000	11/01/17 14:36	PJ1	TAL CHI
Total/NA	Prep	3050B			408066	11/02/17 07:14	JEF	TAL CHI
Total/NA	Analysis	6010B		1	408311	11/02/17 19:29	PJ1	TAL CHI
Total/NA	Prep	7471B			407976	11/01/17 15:30	EEN	TAL CHI
Total/NA	Analysis	7471B		1	408181	11/02/17 12:40	EEN	TAL CHI

Client Sample ID: 3160-10-3 (0-2.5')

Lab Sample ID: 500-136509-6

Date Collected: 10/30/17 14:20 **Matrix: Solid**

Date Received: 10/31/17 08:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
SPLP East	Leach	1312			407967	11/01/17 13:31	JLC	TAL CHI
SPLP East	Prep	3010A			408219	11/02/17 14:21	BDE	TAL CHI
SPLP East	Analysis	6010B		1	408480	11/03/17 23:16	KML	TAL CHI
TCLP	Leach	1311			407959	11/01/17 13:31	JLC	TAL CHI
TCLP	Prep	3010A			408096	11/02/17 08:35	JEF	TAL CHI
TCLP	Analysis	6010B		1	408311	11/02/17 16:58	PJ1	TAL CHI

TestAmerica Chicago

Page 60 of 64

11/10/2017

Lab Chronicle

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028 TestAmerica Job ID: 500-136509-1

Lab Sample ID: 500-136509-6

Matrix: Solid

Client Sample ID: 3160-10-3 (0-2.5')

Date Collected: 10/30/17 14:20 Date Received: 10/31/17 08:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			407959	11/01/17 13:31	JLC	TAL CHI
TCLP	Prep	3010A			408096	11/02/17 08:35	JEF	TAL CHI
TCLP	Analysis	6020A		1	408313	11/02/17 17:27	FXG	TAL CHI
TCLP	Leach	1311			407959	11/01/17 13:31	JLC	TAL CHI
TCLP	Prep	7470A			408351	11/03/17 12:20	EEN	TAL CHI
TCLP	Analysis	7470A		1	408624	11/06/17 09:43	EEN	TAL CHI
Total/NA	Analysis	9045D		1	408326	11/03/17 08:57	SMO	TAL CHI
Total/NA	Analysis	Moisture		1	407791	10/31/17 13:23	LWN	TAL CHI

Client Sample ID: 3160-10-3 (0-2.5')

Lab Sample ID: 500-136509-6

Date Collected: 10/30/17 14:20 Matrix: Solid
Date Received: 10/31/17 08:45 Percent Solids: 79.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			408047	10/30/17 14:20	WRE	TAL CHI
Total/NA	Analysis	8260B		50	409141	11/09/17 18:12	PMF	TAL CHI
Total/NA	Prep	3541			408658	11/06/17 15:06	NRJ	TAL CHI
Total/NA	Analysis	8270D		1	408758	11/07/17 14:45	WDS	TAL CHI
Total/NA	Prep	3050B			407860	10/31/17 16:37	BDE	TAL CHI
Total/NA	Analysis	6010B		1	408000	11/01/17 14:40	PJ1	TAL CHI
Total/NA	Prep	3050B			408066	11/02/17 07:14	JEF	TAL CHI
Total/NA	Analysis	6010B		1	408311	11/02/17 19:33	PJ1	TAL CHI
Total/NA	Prep	7471B			407976	11/01/17 15:30	EEN	TAL CHI
Total/NA	Analysis	7471B		1	408181	11/02/17 12:42	EEN	TAL CHI

Laboratory References:

TAL CHI = TestAmerica Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

6

6

0

10

12

14

Accreditation/Certification Summary

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136509-1

Laboratory: TestAmerica Chicago

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Program		EPA Region	Identification Number	Expiration Date					
Illinois	NELAP		5	100201	04-30-18					
The following analytes are included in this report, but accreditation/certification is not offered by the governing authority:										
Analysis Method	Prep Method	Matrix Ar		te						
6020A	3010A	Solid	Antimo	ony						
6020A	3010A	Solid	Thalliu	Thallium						
8260B	5035	Solid	1,3-Di	chloropropene, Total						
Moisture		Solid	Percei	nt Moisture						
Moisture		Solid	Percei	nt Solids						

6

4

5

7

10

11

13

14

THE LEADER IN ENVIRONMENT

5 77.

A – Air

Client

THE LEADER IN ENVIRONMENTAL 2417 Bond Street, University Park, IL 604 Phone: 708.534.5200 Fax: 708.534. 500-136509 COC	Contact: TERRY DIX Company: Amer-Fw WOSD Address: 4232 by and young to Address: Just A Phone: Process I wos A Section 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		Bill To Contact:	(optional)	Lab Job #;_ Chain of Cu Page	Chain of Custody Record Lab Job #: 500 - 136509 Chain of Custody Number: Page of Temperature °C of Cooler: 119	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Preservative Parameter Sampling Preservative Parameter	X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X	XXXX + TCLP Spirals XXXXX PH	*	Preservative Key 1. HCL, Cool to 4° 2. H2SO4, Cool to 4° 3. HNO3, Cool to 4° 4. NaOH, Cool to 4° 5. NaOH/Zn, Cool to 4° 6. NaHSO4 7. Cool to 4° 8. None 9. Other Comments PLEASE HOLD SPLE BEDNITT. PLEASE SEE EMAIL 3 TO THAL METHINS LIJ+ FROM TERRY DIX PM	
Turnaround Time Required (Business Days) 1 Day2 Days5 Days7 Days			Company Company	Date Lab Comments:	e may be assessed if samples are	retained longer than 1 month) Lab Courier Shipped Hand Delivered	

Page 63 of 64

TAL-41217990722017

Client: AMEC Foster Wheeler E & I, Inc

Job Number: 500-136509-1

Login Number: 136509 List Source: TestAmerica Chicago

List Number: 1

Creator: Scott, Sherri L

Creator: Scott, Sherri L		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	1.9
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

TestAmerica Chicago

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Chicago 2417 Bond Street University Park, IL 60484 Tel: (708)534-5200

TestAmerica Job ID: 500-136575-1

Client Project/Site: IDOT - Benton - WO 028

For:

AMEC Foster Wheeler E & I, Inc 4232 Brandywine Drive Suite A Peoria, Illinois 61614

Attn: Mr. Terry Dixon

Rill Why

Authorized for release by: 11/13/2017 4:41:04 PM

Richard Wright, Senior Project Manager (708)534-5200

richard.wright@testamericainc.com

..... LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Detection Summary	4
Sample Summary	24
	25
Definitions	151
QC Association	152
Surrogate Summary	169
QC Sample Results	173
Chronicle	203
Certification Summary	226
Chain of Custody	227
Receipt Checklists	231

3

6

9

10

12

Case Narrative

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028 TestAmerica Job ID: 500-136575-1

Job ID: 500-136575-1

Laboratory: TestAmerica Chicago

Narrative

Job Narrative 500-136575-1

Receipt

The samples were received on 11/1/2017 9:05 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 3 coolers at receipt time were 1.9° C, 2.4° C and 3.8° C.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

GC/MS Semi VOA

Method(s) 8270D: The method blank for preparation batch 500-408732 and analytical batch 500-408867 contained Benzo[a]anthracene above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

Method(s) 8081B: The following sample was diluted due to the nature of the sample matrix: 3160-23-2 (0-4.5') (500-136575-7). Elevated reporting limits (RLs) are provided.

Method(s) 8081B: The following sample required a mercury clean-up, via EPA Method 3660A, to reduce matrix interferences caused by sulfur: 3160-23-1 (0-4.5') (500-136575-6). The reagent lot number used was: 165418.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

Method(s) 6010B: Due to sample matrix effect on the internal standard (ISTD), a dilution was required for the following sample: 3160-45-3 (0-5') (500-136575-25).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

4

5

6

7

8

9

11

12

10

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-16-4 (0-4')

Lab Sample ID: 500-136575-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	0.057		0.017	0.0074	mg/Kg		₩	8260B	Total/NA
Acenaphthylene	0.0075	J	0.036	0.0048	mg/Kg	1	₩	8270D	Total/NA
Benzo[a]anthracene	0.10		0.036	0.0049	mg/Kg	1	₩	8270D	Total/NA
Benzo[a]pyrene	0.083		0.036	0.0071	mg/Kg	1	₽	8270D	Total/NA
Benzo[b]fluoranthene	0.078		0.036	0.0079	mg/Kg	1	₩	8270D	Total/NA
Benzo[g,h,i]perylene	0.065		0.036	0.012	mg/Kg	1	₩	8270D	Total/NA
Benzo[k]fluoranthene	0.036		0.036	0.011	mg/Kg	1	₩	8270D	Total/NA
Chrysene	0.10		0.036	0.010	mg/Kg	1	₩	8270D	Total/NA
Dibenz(a,h)anthracene	0.044		0.036	0.0071	mg/Kg	1	₩	8270D	Total/NA
Dibenzofuran	0.15	J	0.18	0.043	mg/Kg	1	₩	8270D	Total/NA
Fluoranthene	0.12		0.036	0.0068	mg/Kg	1	₩	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	0.051		0.036	0.0095	mg/Kg	1	₩	8270D	Total/NA
2-Methylnaphthalene	0.34		0.074	0.0067	mg/Kg	1	₩	8270D	Total/NA
Naphthalene	0.20		0.036	0.0056	mg/Kg	1	₩	8270D	Total/NA
Phenanthrene	0.46		0.036	0.0051	mg/Kg	1	₩	8270D	Total/NA
Pyrene	0.14		0.036	0.0073	mg/Kg	1	Ф	8270D	Total/NA
Antimony	0.46	J F2 F1	1.1	0.21	mg/Kg	1	₩	6010B	Total/NA
Arsenic	6.1	F2 F1	0.53	0.18	mg/Kg	1	₩	6010B	Total/NA
Barium	100		0.53	0.061	mg/Kg	1	₩	6010B	Total/NA
Beryllium	0.48		0.21	0.050	mg/Kg	1	₩	6010B	Total/NA
Cadmium	0.26	В	0.11	0.019	mg/Kg	1	₩	6010B	Total/NA
Chromium	9.5	F1	0.53	0.26	mg/Kg	1	₩	6010B	Total/NA
Cobalt	5.0		0.27	0.070	mg/Kg	1	₩	6010B	Total/NA
Copper	13	F1	0.53	0.15	mg/Kg	1	₩	6010B	Total/NA
Iron	16000	В	11	5.6	mg/Kg	1	₩	6010B	Total/NA
Lead	30		0.27	0.12	mg/Kg	1	₩	6010B	Total/NA
Manganese	180		0.53	0.078	mg/Kg	1	₩	6010B	Total/NA
Nickel	9.5		0.53	0.16	mg/Kg	1	Ф	6010B	Total/NA
Selenium	0.77	F1	0.53	0.31	mg/Kg	1	₩	6010B	Total/NA
Vanadium	17		0.27	0.063	mg/Kg	1	₽	6010B	Total/NA
Zinc	71	F1	1.1	0.47	mg/Kg	1	₩	6010B	Total/NA
Barium	0.32	J	0.50	0.050	mg/L	1		6010B	TCLP
Iron	0.41		0.40	0.20	mg/L	1		6010B	TCLP
Manganese	0.027		0.025	0.010	mg/L	1		6010B	TCLP
Zinc	0.053	J	0.50	0.020	-	1		6010B	TCLP
Mercury	0.036		0.017	0.0058	mg/Kg	1	₩	7471B	Total/NA
pH	7.9		0.20	0.20				9045D	Total/NA

Client Sample ID: 3160-16-3 (0-4')

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	0.075		0.021	0.0092	mg/Kg	1	₩	8260B	Total/NA
Arsenic	7.5		0.55	0.19	mg/Kg	1	₩	6010B	Total/NA
Barium	530		0.55	0.063	mg/Kg	1	₩	6010B	Total/NA
Beryllium	0.48		0.22	0.052	mg/Kg	1	₩.	6010B	Total/NA
Cadmium	0.16	В	0.11	0.020	mg/Kg	1	₩	6010B	Total/NA
Chromium	19		0.55	0.27	mg/Kg	1	₩	6010B	Total/NA
Cobalt	6.9		0.28	0.073	mg/Kg	1	₩.	6010B	Total/NA
Copper	15		0.55	0.16	mg/Kg	1	₩	6010B	Total/NA
Iron	19000	В	11	5.8	ma/Ka	1	₩	6010B	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Chicago

Page 4 of 231

Lab Sample ID: 500-136575-2

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Lab Sample ID: 500-136575-2

Client Sample ID: 3160-16-3 (0-4') (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Lead	13		0.28	0.13	mg/Kg	1	₩	6010B	Total/NA
Manganese	170		0.55	0.080	mg/Kg	1	*	6010B	Total/NA
Nickel	15		0.55	0.16	mg/Kg	1	₩	6010B	Total/NA
Selenium	0.50	J	0.55	0.33	mg/Kg	1	\	6010B	Total/NA
Vanadium	33		0.28	0.065	mg/Kg	1	₩	6010B	Total/NA
Zinc	53		1.1	0.49	mg/Kg	1	₩	6010B	Total/NA
Barium	1.0		0.50	0.050	mg/L	1		6010B	TCLP
Cobalt	0.011	J	0.025	0.010	mg/L	1		6010B	TCLP
Copper	0.012	J	0.025	0.010	mg/L	1		6010B	TCLP
Manganese	0.013	J	0.025	0.010	mg/L	1		6010B	TCLP
Nickel	0.018	J	0.025	0.010	mg/L	1		6010B	TCLP
Zinc	0.042	J	0.50	0.020	mg/L	1		6010B	TCLP
Mercury	0.018		0.017	0.0057	mg/Kg	1	₽	7471B	Total/NA
Hq	4.9		0.20	0.20	SU	1		9045D	Total/NA

Client Sample ID: 3160 16 2 (0 41)

Client Sample ID: 3160-16	-2 (0-4')					Lab Sa	an	ple ID: 5	00-136575-3
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	0.066		0.021	0.0090	mg/Kg	1	₩	8260B	Total/NA
Arsenic	7.2		0.49	0.17	mg/Kg	1	₩	6010B	Total/NA
Barium	51		0.49	0.056	mg/Kg	1	₩	6010B	Total/NA
Beryllium	0.37		0.20	0.046	mg/Kg	1	₩	6010B	Total/NA
Cadmium	0.059	JB	0.098	0.018	mg/Kg	1	₩	6010B	Total/NA
Chromium	17		0.49	0.24	mg/Kg	1	₩	6010B	Total/NA
Cobalt	5.9		0.24	0.064	mg/Kg	1	ψ	6010B	Total/NA
Copper	13		0.49	0.14	mg/Kg	1	₩	6010B	Total/NA
Iron	19000	В	9.8	5.1	mg/Kg	1	₩	6010B	Total/NA
Lead	13		0.24	0.11	mg/Kg	1	₩.	6010B	Total/NA
Manganese	170		0.49	0.071	mg/Kg	1	₩	6010B	Total/NA
Nickel	12		0.49	0.14	mg/Kg	1	₩	6010B	Total/NA
Selenium	0.74		0.49		mg/Kg	1	ψ.	6010B	Total/NA
Thallium	0.27	J	0.49		mg/Kg	1	₩	6010B	Total/NA
Vanadium	28		0.24		mg/Kg	1	₩	6010B	Total/NA
Zinc	58		0.98		mg/Kg	1		6010B	Total/NA
Barium	0.30	J	0.50	0.050		1		6010B	TCLP
Iron	0.72		0.40		mg/L	1		6010B	TCLP
Manganese	0.017	J	0.025	0.010		1		6010B	TCLP
Mercury	0.040		0.018		mg/Kg	1	₩	7471B	Total/NA
pH	5.6		0.20	0.20		1		9045D	Total/NA

Client Sample ID: 3160-16-1 (0-4')

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	0.029		0.018	0.0079	mg/Kg	1	₩	8260B	Total/NA
Benzo[a]anthracene	0.016	J	0.037	0.0051	mg/Kg	1	₩	8270D	Total/NA
Benzo[a]pyrene	0.023	J	0.037	0.0073	mg/Kg	1	₽	8270D	Total/NA
Benzo[b]fluoranthene	0.017	J	0.037	0.0081	mg/Kg	1	₽	8270D	Total/NA
Chrysene	0.014	J	0.037	0.010	mg/Kg	1	₩	8270D	Total/NA
Fluoranthene	0.018	J	0.037	0.0070	mg/Kg	1	₽	8270D	Total/NA
2-Methylnaphthalene	0.013	J	0.076	0.0069	mg/Kg	1	₩	8270D	Total/NA

This Detection Summary does not include radiochemical test results.

Lab Sample ID: 500-136575-4

Page 5 of 231

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Lab Sample ID: 500-136575-4

	Client Sample II	D: 3160-16-1	(0-4 ⁻)	(Continue	ed,
ĺ	Analyte		Rasıı	lt Qualifier	

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Phenanthrene	0.018	J	0.037	0.0053	mg/Kg	1	₩	8270D	Total/NA
Pyrene	0.017	J	0.037	0.0075	mg/Kg	1	☼	8270D	Total/NA
Arsenic	10		0.56	0.19	mg/Kg	1	₩	6010B	Total/NA
Barium	120		0.56	0.064	mg/Kg	1	☼	6010B	Total/NA
Beryllium	0.60		0.22	0.052	mg/Kg	1	₩	6010B	Total/NA
Cadmium	0.10	JB	0.11	0.020	mg/Kg	1	₩	6010B	Total/NA
Chromium	16		0.56	0.28	mg/Kg	1	☼	6010B	Total/NA
Cobalt	17		0.28	0.073	mg/Kg	1	☼	6010B	Total/NA
Copper	9.3		0.56	0.16	mg/Kg	1	₩	6010B	Total/NA
Iron	17000	В	11	5.8	mg/Kg	1	☼	6010B	Total/NA
Lead	25		0.28	0.13	mg/Kg	1	☼	6010B	Total/NA
Manganese	1600		2.8	0.41	mg/Kg	5	₩	6010B	Total/NA
Nickel	12		0.56	0.16	mg/Kg	1	☼	6010B	Total/NA
Selenium	0.90		0.56	0.33	mg/Kg	1	₩	6010B	Total/NA
Vanadium	32		0.28	0.066	mg/Kg	1	₩	6010B	Total/NA
Zinc	45		1.1	0.49	mg/Kg	1	₩	6010B	Total/NA
Barium	0.67		0.50	0.050	mg/L	1		6010B	TCLP
Iron	0.41		0.40	0.20	mg/L	1		6010B	TCLP
Manganese	0.011	J	0.025	0.010	mg/L	1		6010B	TCLP
Zinc	0.030	J	0.50	0.020	mg/L	1		6010B	TCLP
Mercury	0.041		0.017	0.0058	mg/Kg	1	₽	7471B	Total/NA
рН	6.3		0.20	0.20	SU	1		9045D	Total/NA

Client Sample ID: 3160-16-5 (0-4')

Lab Sample ID: 500-136575-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Anthracene	0.043		0.037	0.0063	mg/Kg		苺	8270D	Total/NA
Benzo[a]anthracene	0.084		0.037	0.0051	mg/Kg	1	₩	8270D	Total/NA
Benzo[a]pyrene	0.079		0.037	0.0073	mg/Kg	1	₩	8270D	Total/NA
Benzo[b]fluoranthene	0.10		0.037	0.0081	mg/Kg	1	Þ	8270D	Total/NA
Benzo[g,h,i]perylene	0.062		0.037	0.012	mg/Kg	1	☼	8270D	Total/NA
Chrysene	0.095		0.037	0.010	mg/Kg	1	₩	8270D	Total/NA
Dibenz(a,h)anthracene	0.044		0.037	0.0073	mg/Kg	1	Ď.	8270D	Total/NA
Fluoranthene	0.092		0.037	0.0070	mg/Kg	1	₩	8270D	Total/NA
Fluorene	0.0082	J	0.037	0.0053	mg/Kg	1	₩	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	0.050		0.037	0.0098	mg/Kg	1	Д	8270D	Total/NA
2-Methylnaphthalene	0.26		0.076	0.0069	mg/Kg	1	₩	8270D	Total/NA
Naphthalene	0.17		0.037	0.0058	mg/Kg	1	₩	8270D	Total/NA
Phenanthrene	0.34		0.037	0.0053	mg/Kg	1	₩.	8270D	Total/NA
Pyrene	0.11		0.037	0.0075	mg/Kg	1	₩	8270D	Total/NA
Arsenic	8.2		0.57	0.20	mg/Kg	1	₩	6010B	Total/NA
Barium	120		0.57	0.065	mg/Kg	1	Ċ.	6010B	Total/NA
Beryllium	0.63		0.23	0.053	mg/Kg	1	₩	6010B	Total/NA
Cadmium	0.39	В	0.11	0.021	mg/Kg	1	₩	6010B	Total/NA
Chromium	14		0.57	0.28	mg/Kg	1	ψ	6010B	Total/NA
Cobalt	10		0.29	0.075	mg/Kg	1	₩	6010B	Total/NA
Copper	22		0.57	0.16	mg/Kg	1	₩	6010B	Total/NA
Iron	16000	В	11	5.9	mg/Kg	1	Ď.	6010B	Total/NA
Lead	53		0.29	0.13	mg/Kg	1	₽	6010B	Total/NA
Manganese	350		0.57	0.083	mg/Kg	1	☼	6010B	Total/NA

This Detection Summary does not include radiochemical test results.

Page 6 of 231

TestAmerica Chicago

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-16-5 (0-4') (Continued)

Lab Sample ID: 500-136575-	Lab	Sample	ID: 50	0-136575-5
----------------------------	-----	--------	--------	------------

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Nickel	15		0.57	0.17	mg/Kg		₩	6010B	Total/NA
Selenium	1.3		0.57	0.34	mg/Kg	1	₩	6010B	Total/NA
Vanadium	24		0.29	0.067	mg/Kg	1	₩	6010B	Total/NA
Zinc	130		1.1	0.50	mg/Kg	1	₩.	6010B	Total/NA
Barium	0.37	J	0.50	0.050	mg/L	1		6010B	TCLP
Iron	0.29	J	0.40	0.20	mg/L	1		6010B	TCLP
Manganese	0.010	J	0.025	0.010	mg/L	1		6010B	TCLP
Zinc	0.095	J	0.50	0.020	mg/L	1		6010B	TCLP
Mercury	0.058		0.020	0.0066	mg/Kg	1	₩	7471B	Total/NA
pH	6.0		0.20	0.20	SU	1		9045D	Total/NA

Client Sample ID: 3160-23-1 (0-4.5')

Lab Sample ID: 500-136575-6

onone campio ib. c rec	7 20 1 (0 4.0)					Lub	<u> </u>	іріо ів. осо	100070
- Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	0.052		0.018	0.0077	mg/Kg	1	₩	8260B	Total/NA
Benzo[a]anthracene	0.0058	J	0.036	0.0049	mg/Kg	1	₩	8270D	Total/NA
Benzo[a]pyrene	0.015	J	0.036	0.0070	mg/Kg	1	₩	8270D	Total/NA
Benzo[b]fluoranthene	0.0099	J	0.036	0.0078	mg/Kg	1	₩	8270D	Total/NA
Chrysene	0.0098	J	0.036	0.0098	mg/Kg	1	₩	8270D	Total/NA
Fluoranthene	0.011	J	0.036	0.0067	mg/Kg	1	₩	8270D	Total/NA
2-Methylnaphthalene	0.0091	J	0.073	0.0066	mg/Kg	1	₩	8270D	Total/NA
Phenanthrene	0.017	J	0.036	0.0050	mg/Kg	1	₩	8270D	Total/NA
Pyrene	0.010	J	0.036	0.0072	mg/Kg	1	₩	8270D	Total/NA
Arsenic	6.7		0.53	0.18	mg/Kg	1	₩	6010B	Total/NA
Barium	68		0.53	0.060	mg/Kg	1	₩	6010B	Total/NA
Beryllium	0.46		0.21	0.049	mg/Kg	1	₩	6010B	Total/NA
Cadmium	0.31	В	0.11	0.019	mg/Kg	1	₩.	6010B	Total/NA
Chromium	12		0.53	0.26	mg/Kg	1	₩	6010B	Total/NA
Cobalt	5.8		0.26	0.069	mg/Kg	1	₩	6010B	Total/NA
Copper	9.7		0.53	0.15	mg/Kg	1	₩.	6010B	Total/NA
Iron	12000	В	11	5.5	mg/Kg	1	₩	6010B	Total/NA
Lead	19		0.26	0.12	mg/Kg	1	₩	6010B	Total/NA
Manganese	280		0.53	0.077	mg/Kg	1	Ď.	6010B	Total/NA
Nickel	12		0.53	0.15	mg/Kg	1	₩	6010B	Total/NA
Selenium	0.41	J	0.53	0.31	mg/Kg	1	₩	6010B	Total/NA
Vanadium	20		0.26	0.062	mg/Kg	1	₩	6010B	Total/NA
Zinc	180		1.1	0.46	mg/Kg	1	₩	6010B	Total/NA
Barium	0.30	J	0.50	0.050	mg/L	1		6010B	TCLP
Iron	0.22	J	0.40	0.20	mg/L	1		6010B	TCLP
Manganese	0.057		0.025	0.010	mg/L	1		6010B	TCLP
Zinc	0.35	J	0.50	0.020	mg/L	1		6010B	TCLP
Mercury	0.031		0.018	0.0060	mg/Kg	1	₩	7471B	Total/NA
pH	6.2		0.20	0.20	SU	1		9045D	Total/NA

Client Sample ID: 3160)-23-2 (0-4.5')			Lab Sample ID: 5	00-136575-7
Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Anthracene	0.046	0.039	0.0066 mg/Kg	1 ₹ 8270D	Total/NA
Benzo[a]anthracene	0.086	0.039	0.0053 mg/Kg	1 ☼ 8270D	Total/NA
Benzo[a]pyrene	0.087	0.039	0.0076 mg/Kg	1 🌣 8270D	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Chicago

11/13/2017

Page 7 of 231

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-23-2 (0-4.5') (Continued)

Lab Sample ID: 500-136575-7

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzo[b]fluoranthene	0.091		0.039	0.0085	mg/Kg		₩	8270D	Total/NA
Benzo[g,h,i]perylene	0.074		0.039	0.013	mg/Kg	1	₩	8270D	Total/NA
Benzo[k]fluoranthene	0.015	J	0.039	0.012	mg/Kg	1	₩	8270D	Total/NA
Chrysene	0.086		0.039	0.011	mg/Kg	1	₩.	8270D	Total/NA
Dibenz(a,h)anthracene	0.046		0.039	0.0076	mg/Kg	1	₩	8270D	Total/NA
Dibenzofuran	0.13	J	0.20	0.046	mg/Kg	1	₩	8270D	Total/NA
Fluoranthene	0.10		0.039	0.0073	mg/Kg	1	Ċ.	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	0.054		0.039	0.010	mg/Kg	1	₩	8270D	Total/NA
2-Methylnaphthalene	0.25		0.079	0.0072	mg/Kg	1	₩	8270D	Total/NA
Naphthalene	0.12		0.039	0.0061	mg/Kg	1	Ċ.	8270D	Total/NA
Phenanthrene	0.34		0.039	0.0055	mg/Kg	1	₩	8270D	Total/NA
Pyrene	0.12		0.039	0.0078	mg/Kg	1	₩	8270D	Total/NA
Arsenic	5.8		0.60	0.21	mg/Kg	1	Ϋ́	6010B	Total/NA
Barium	130		0.60	0.069	mg/Kg	1	₽	6010B	Total/NA
Beryllium	0.50		0.24	0.056	mg/Kg	1	₩	6010B	Total/NA
Cadmium	0.50	В	0.12	0.022	mg/Kg	1	Ф	6010B	Total/NA
Chromium	14		0.60	0.30	mg/Kg	1	₩	6010B	Total/NA
Cobalt	8.2		0.30	0.079	mg/Kg	1	₩	6010B	Total/NA
Copper	19		0.60	0.17	mg/Kg	1	₩	6010B	Total/NA
Iron	12000	В	12	6.3	mg/Kg	1	₩	6010B	Total/NA
Lead	100		0.30	0.14	mg/Kg	1	₩	6010B	Total/NA
Manganese	320		0.60	0.088	mg/Kg	1	₩	6010B	Total/NA
Nickel	16		0.60	0.18	mg/Kg	1	₩	6010B	Total/NA
Selenium	0.67		0.60	0.35	mg/Kg	1	₩	6010B	Total/NA
Vanadium	18		0.30	0.071	mg/Kg	1	ф.	6010B	Total/NA
Zinc	91		1.2	0.53	mg/Kg	1	₽	6010B	Total/NA
Barium	0.85		0.50	0.050	mg/L	1		6010B	TCLP
Cadmium	0.0020	J	0.0050	0.0020	mg/L	1		6010B	TCLP
Manganese	0.077		0.025	0.010	mg/L	1		6010B	TCLP
Zinc	0.058	J	0.50	0.020	mg/L	1		6010B	TCLP
Mercury	0.046		0.018	0.0059	mg/Kg	1	ф.	7471B	Total/NA
pH	8.1		0.20	0.20		1		9045D	Total/NA

Client Sample ID: 3160-25-1 (0-4')

Lab Sample ID: 500-136575-8

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	0.039		0.020	0.0088	mg/Kg		₩	8260B	Total/NA
Arsenic	7.8		0.56	0.19	mg/Kg	1	₩	6010B	Total/NA
Barium	76		0.56	0.064	mg/Kg	1	₩	6010B	Total/NA
Beryllium	0.52		0.22	0.052	mg/Kg	1	Ċ.	6010B	Total/NA
Cadmium	0.18	В	0.11	0.020	mg/Kg	1	₽	6010B	Total/NA
Chromium	20		0.56	0.28	mg/Kg	1	₩	6010B	Total/NA
Cobalt	11		0.28	0.074	mg/Kg	1	ф	6010B	Total/NA
Copper	16		0.56	0.16	mg/Kg	1	₩	6010B	Total/NA
Iron	20000	В	11	5.8	mg/Kg	1	₩	6010B	Total/NA
Lead	17		0.28	0.13	mg/Kg	1		6010B	Total/NA
Manganese	560		0.56	0.081	mg/Kg	1	₽	6010B	Total/NA
Nickel	16		0.56	0.16	mg/Kg	1	₩	6010B	Total/NA
Selenium	0.93		0.56	0.33	mg/Kg	1	₩.	6010B	Total/NA
Vanadium	31		0.28	0.066	mg/Kg	1	₽	6010B	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Chicago

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-25-1 (0-4') (Continued)

Lab Sample ID: 500-136575-8

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Zinc	110		1.1	0.49	mg/Kg		₩	6010B	Total/NA
Barium	0.35	J	0.50	0.050	mg/L	1		6010B	TCLP
Cadmium	0.0031	J	0.0050	0.0020	mg/L	1		6010B	TCLP
Copper	0.013	J	0.025	0.010	mg/L	1		6010B	TCLP
Manganese	4.8		0.025	0.010	mg/L	1		6010B	TCLP
Nickel	0.032		0.025	0.010	mg/L	1		6010B	TCLP
Zinc	0.25	J	0.50	0.020	mg/L	1		6010B	TCLP
Manganese	0.43		0.025	0.010	mg/L	1		6010B	SPLP East
Mercury	0.048		0.021	0.0069	mg/Kg	1	₩	7471B	Total/NA
рН	4.8		0.20	0.20	SU	1		9045D	Total/NA

Client Sample ID: 3160-25-2 (0-4')

Lab Sample ID: 500-136575-9

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	0.024		0.018	0.0080	mg/Kg	1	₩	8260B	Total/NA
Arsenic	9.2		0.49	0.17	mg/Kg	1	₩	6010B	Total/NA
Barium	100		0.49	0.056	mg/Kg	1	₩	6010B	Total/NA
Beryllium	0.46		0.20	0.046	mg/Kg	1	₩	6010B	Total/NA
Cadmium	0.089	JB	0.098	0.018	mg/Kg	1	₩	6010B	Total/NA
Chromium	19		0.49	0.24	mg/Kg	1	₩	6010B	Total/NA
Cobalt	6.7		0.25	0.064	mg/Kg	1	₩	6010B	Total/NA
Copper	16		0.49	0.14	mg/Kg	1	₩	6010B	Total/NA
Iron	21000	В	9.8	5.1	mg/Kg	1	₩	6010B	Total/NA
Lead	14		0.25	0.11	mg/Kg	1	₩	6010B	Total/NA
Manganese	220		0.49	0.071	mg/Kg	1	₩	6010B	Total/NA
Nickel	15		0.49	0.14	mg/Kg	1	₩	6010B	Total/NA
Selenium	0.66		0.49	0.29	mg/Kg	1	₩	6010B	Total/NA
Vanadium	32		0.25	0.058	mg/Kg	1	₩	6010B	Total/NA
Zinc	55		0.98	0.43	mg/Kg	1	₩	6010B	Total/NA
Barium	0.33	J	0.50	0.050	mg/L	1		6010B	TCLP
Manganese	0.018	J	0.025	0.010	mg/L	1		6010B	TCLP
Mercury	0.023		0.018	0.0062	mg/Kg	1	₩	7471B	Total/NA
pH	4.8		0.20	0.20	SU	1		9045D	Total/NA

Client Sample ID: 3160-26-2 (0-4')

Lab Sample ID: 500-136575-10

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	0.042	-	0.020	0.0087	mg/Kg		₩	8260B	Total/NA
Arsenic	6.4		0.59	0.20	mg/Kg	1	₩	6010B	Total/NA
Barium	53		0.59	0.067	mg/Kg	1	₩	6010B	Total/NA
Beryllium	0.43		0.23	0.055	mg/Kg	1	₩	6010B	Total/NA
Cadmium	0.065	JB	0.12	0.021	mg/Kg	1	₩	6010B	Total/NA
Chromium	20		0.59	0.29	mg/Kg	1	₩	6010B	Total/NA
Cobalt	6.5		0.29	0.077	mg/Kg	1	₩	6010B	Total/NA
Copper	15		0.59	0.16	mg/Kg	1	₩	6010B	Total/NA
Iron	20000	В	12	6.1	mg/Kg	1	₩	6010B	Total/NA
Lead	12		0.29	0.14	mg/Kg	1	₩	6010B	Total/NA
Manganese	140		0.59	0.085	mg/Kg	1	₩	6010B	Total/NA
Nickel	15		0.59	0.17	mg/Kg	1	₩	6010B	Total/NA
Vanadium	30		0.29	0.069	mg/Kg	1	₩.	6010B	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Chicago

11/13/2017

Page 9 of 231

6

5

7

10

12

13

М

Lab Sample ID: 500-136575-10

Lab Sample ID: 500-136575-11

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-26-2 (0-4') (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Zinc	60		1.2	0.52	mg/Kg	1	₩	6010B	Total/NA
Barium	0.15	J	0.50	0.050	mg/L	1		6010B	TCLP
Cobalt	0.012	J	0.025	0.010	mg/L	1		6010B	TCLP
Manganese	0.10		0.025	0.010	mg/L	1		6010B	TCLP
Nickel	0.027		0.025	0.010	mg/L	1		6010B	TCLP
Zinc	0.027	J	0.50	0.020	mg/L	1		6010B	TCLP
Mercury	0.022		0.019	0.0064	mg/Kg	1	₩	7471B	Total/NA
рН	4.3		0.20	0.20	SU	1		9045D	Total/NA

Client Sample ID: 3160-26-1 (0-4')

	(- /						-			-
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type	
Acetone	0.041		0.017	0.0076	mg/Kg	1	₩	8260B	Total/NA	-
Benzo[a]anthracene	0.0078	J	0.038	0.0052	mg/Kg	1	₩	8270D	Total/NA	

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	0.041		0.017	0.0076	mg/Kg		₩	8260B	Total/NA
Benzo[a]anthracene	0.0078	J	0.038	0.0052	mg/Kg	1	₩	8270D	Total/NA
Benzo[a]pyrene	0.022	J	0.038	0.0074	mg/Kg	1	₩	8270D	Total/NA
Benzo[b]fluoranthene	0.025	J	0.038	0.0083	mg/Kg	1	₩	8270D	Total/NA
Chrysene	0.012	J	0.038	0.010	mg/Kg	1	₩	8270D	Total/NA
Pyrene	0.0083	J	0.038	0.0076	mg/Kg	1	₩	8270D	Total/NA
Arsenic	9.5		0.57	0.19	mg/Kg	1	₽	6010B	Total/NA
Barium	92		0.57	0.065	mg/Kg	1	₩	6010B	Total/NA
Beryllium	0.52		0.23	0.053	mg/Kg	1	₩	6010B	Total/NA
Cadmium	0.097	JB	0.11	0.020	mg/Kg	1	₩	6010B	Total/NA
Chromium	19		0.57	0.28	mg/Kg	1	₩	6010B	Total/NA
Cobalt	11		0.28	0.074	mg/Kg	1	₩	6010B	Total/NA
Copper	16		0.57	0.16	mg/Kg	1	₩	6010B	Total/NA
Iron	21000	В	11	5.9	mg/Kg	1	₩	6010B	Total/NA
Lead	21		0.28	0.13	mg/Kg	1	₩	6010B	Total/NA
Manganese	540		0.57	0.082	mg/Kg	1	\	6010B	Total/NA
Nickel	14		0.57	0.16	mg/Kg	1	₩	6010B	Total/NA
Selenium	0.86		0.57	0.33	mg/Kg	1	₩	6010B	Total/NA
Vanadium	36		0.28	0.067	mg/Kg	1	₩	6010B	Total/NA
Zinc	58		1.1	0.50	mg/Kg	1	₩	6010B	Total/NA
Barium	0.27	J	0.50	0.050	mg/L	1		6010B	TCLP
Cobalt	0.012	J	0.025	0.010	mg/L	1		6010B	TCLP
Copper	0.011	J	0.025	0.010	mg/L	1		6010B	TCLP
Manganese	0.85		0.025	0.010	mg/L	1		6010B	TCLP
Nickel	0.019	J	0.025	0.010	mg/L	1		6010B	TCLP
Zinc	0.053	J	0.50	0.020	mg/L	1		6010B	TCLP
Manganese	0.14		0.025	0.010	mg/L	1		6010B	SPLP East
Mercury	0.063		0.019	0.0062	mg/Kg	1	₩.	7471B	Total/NA
рН	5.0		0.20	0.20	SU	1		9045D	Total/NA

Client Sample ID: 3160-28-1 (0-5')

Analyte	Result Qualifier	RL	MDL Uni	it	Dil Fac	D	Method	Prep Type
Arsenic	8.1	0.58	0.20 mg/	/Kg	1	₩	6010B	Total/NA
Barium	74	0.58	0.067 mg/	/Kg	1	₩	6010B	Total/NA
Beryllium	0.51	0.23	0.055 mg/	/Kg	1	₩	6010B	Total/NA
Cadmium	0.085 JB	0.12	0.021 mg/	/Kg	1	₩	6010B	Total/NA
Chromium	21	0.58	0.29 mg/	/Kg	1	₩	6010B	Total/NA

This Detection Summary does not include radiochemical test results.

Page 10 of 231

Lab Sample ID: 500-136575-12

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-28-1 (0-5') (Continued)

Lab Sample ID: 500-136575-12

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Cobalt	7.2		0.29	0.077	mg/Kg	1	₩	6010B	Total/NA
Copper	18		0.58	0.16	mg/Kg	1	₩	6010B	Total/NA
Iron	22000	В	12	6.1	mg/Kg	1	₩	6010B	Total/NA
Lead	13		0.29	0.14	mg/Kg	1	₩	6010B	Total/NA
Manganese	140		0.58	0.085	mg/Kg	1	₩	6010B	Total/NA
Nickel	19		0.58	0.17	mg/Kg	1	₩	6010B	Total/NA
Selenium	0.89		0.58	0.34	mg/Kg	1	₩	6010B	Total/NA
Vanadium	35		0.29	0.069	mg/Kg	1	₩	6010B	Total/NA
Zinc	56		1.2	0.51	mg/Kg	1	₩	6010B	Total/NA
Barium	0.27	J	0.50	0.050	mg/L	1		6010B	TCLP
Cobalt	0.018	J	0.025	0.010	mg/L	1		6010B	TCLP
Manganese	0.74		0.025	0.010	mg/L	1		6010B	TCLP
Nickel	0.024	J	0.025	0.010	mg/L	1		6010B	TCLP
Zinc	0.025	J	0.50	0.020	mg/L	1		6010B	TCLP
Manganese	0.099		0.025	0.010	mg/L	1		6010B	SPLP East
Mercury	0.031		0.019	0.0064	mg/Kg	1	₩	7471B	Total/NA
pH	4.3		0.20	0.20	SU	1		9045D	Total/NA

Client Sample ID: 3160-28-2 (0-5')

Lab Sample ID: 500-136575-13

Analyte	Result	Qualifier	RL	MDL	Unit			Method	Prep Type
Acetone	0.045		0.021	0.0090	mg/Kg	1	☼	8260B	Total/NA
Benzo[a]anthracene	0.0085	J	0.038	0.0052	mg/Kg	1	₩	8270D	Total/NA
Benzo[a]pyrene	0.018	J	0.038	0.0075	mg/Kg	1	₩	8270D	Total/NA
Benzo[b]fluoranthene	0.010	J	0.038	0.0084	mg/Kg	1	₩	8270D	Total/NA
Fluoranthene	0.0093	J	0.038	0.0072	mg/Kg	1	☼	8270D	Total/NA
2-Methylnaphthalene	0.018	J	0.078	0.0071	mg/Kg	1	₩	8270D	Total/NA
Naphthalene	0.011	J	0.038	0.0060	mg/Kg	1	Ď.	8270D	Total/NA
Phenanthrene	0.021	J	0.038	0.0054	mg/Kg	1	₩	8270D	Total/NA
Pyrene	0.0099	J	0.038	0.0077	mg/Kg	1	☼	8270D	Total/NA
Arsenic	7.4		0.55	0.19	mg/Kg	1	₩	6010B	Total/NA
Barium	120		0.55	0.063	mg/Kg	1	₩	6010B	Total/NA
Beryllium	0.52		0.22	0.052	mg/Kg	1	₩	6010B	Total/NA
Cadmium	0.12	В	0.11	0.020	mg/Kg	1	₩	6010B	Total/NA
Chromium	18		0.55	0.27	mg/Kg	1	☼	6010B	Total/NA
Cobalt	8.7		0.28	0.072	mg/Kg	1	₩	6010B	Total/NA
Copper	16		0.55	0.15	mg/Kg	1	Ċ.	6010B	Total/NA
Iron	21000	В	11	5.8	mg/Kg	1	☼	6010B	Total/NA
Lead	23		0.28	0.13	mg/Kg	1	₩	6010B	Total/NA
Manganese	270		0.55	0.080	mg/Kg	1	Ċ.	6010B	Total/NA
Nickel	17		0.55	0.16	mg/Kg	1	☼	6010B	Total/NA
Selenium	0.63		0.55	0.33	mg/Kg	1	₩	6010B	Total/NA
Vanadium	30		0.28	0.065	mg/Kg	1	Ď.	6010B	Total/NA
Zinc	63		1.1	0.49	mg/Kg	1	₩	6010B	Total/NA
Barium	0.58		0.50	0.050	mg/L	1		6010B	TCLP
Manganese	0.25		0.025	0.010	mg/L	1		6010B	TCLP
Nickel	0.014	J	0.025	0.010	mg/L	1		6010B	TCLP
Selenium	0.020	J	0.050	0.020	mg/L	1		6010B	TCLP
Zinc	0.035	J	0.50	0.020	mg/L	1		6010B	TCLP
Manganese	0.075		0.025	0.010	mg/L	1		6010B	SPLP Eas

This Detection Summary does not include radiochemical test results.

TestAmerica Chicago

11/13/2017

5

9

11

4.6

4 /

Lab Sample ID: 500-136575-13

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-28-2 (0-5') (Continued)

	Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type	
	Mercury	0.035		0.018	0.0062	mg/Kg	1	₩	7471B	Total/NA	-
İ	pH	4.9		0.20	0.20	SU	1		9045D	Total/NA	

Client Sample ID: 3160-28-3 (0-5')

Lab Sample ID:	500-136575-14
----------------	---------------

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	0.032		0.018	0.0080	mg/Kg		₩	8260B	Total/NA
Anthracene	0.073		0.040	0.0067	mg/Kg	1	₩	8270D	Total/NA
Benzo[a]anthracene	0.15		0.040	0.0054	mg/Kg	1	₩	8270D	Total/NA
Benzo[a]pyrene	0.089		0.040	0.0078	mg/Kg	1	₩	8270D	Total/NA
Benzo[b]fluoranthene	0.11		0.040	0.0087	mg/Kg	1	₩	8270D	Total/NA
Benzo[g,h,i]perylene	0.072		0.040	0.013	mg/Kg	1	₩	8270D	Total/NA
Benzo[k]fluoranthene	0.012	J	0.040	0.012	mg/Kg	1	₩	8270D	Total/NA
Chrysene	0.16		0.040	0.011	mg/Kg	1	₩	8270D	Total/NA
Dibenz(a,h)anthracene	0.053		0.040	0.0078	mg/Kg	1	₩	8270D	Total/NA
Dibenzofuran	0.74		0.20	0.047	mg/Kg	1	₽	8270D	Total/NA
Fluoranthene	0.17		0.040	0.0074	mg/Kg	1	₩	8270D	Total/NA
Fluorene	0.028	J	0.040	0.0056	mg/Kg	1	₩	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	0.062		0.040	0.010	mg/Kg	1	₩	8270D	Total/NA
2-Methylphenol	0.56		0.20	0.064	mg/Kg	1	₩	8270D	Total/NA
3 & 4 Methylphenol	0.46		0.20	0.067	mg/Kg	1	₩	8270D	Total/NA
Naphthalene	2.5		0.040	0.0062	mg/Kg	1	₩	8270D	Total/NA
Phenanthrene	0.97		0.040	0.0056	mg/Kg	1	₩	8270D	Total/NA
Phenol	0.41		0.20	0.089	mg/Kg	1	₩	8270D	Total/NA
Pyrene	0.19		0.040	0.0080	mg/Kg	1	*	8270D	Total/NA
2-Methylnaphthalene - DL	3.7		0.16	0.015	mg/Kg	2	₩	8270D	Total/NA
Arsenic	11		0.52	0.18	mg/Kg	1	₩	6010B	Total/NA
Barium	84		0.52	0.059	mg/Kg	1	₩	6010B	Total/NA
Beryllium	0.32		0.21	0.048	mg/Kg	1	₩	6010B	Total/NA
Cadmium	0.095	JB	0.10	0.019	mg/Kg	1	₩	6010B	Total/NA
Chromium	13		0.52	0.25	mg/Kg	1	₽	6010B	Total/NA
Cobalt	2.7		0.26	0.067	mg/Kg	1	₩	6010B	Total/NA
Copper	9.7		0.52	0.14	mg/Kg	1	₩	6010B	Total/NA
Iron	16000	В	10	5.4	mg/Kg	1	₩	6010B	Total/NA
Lead	45		0.26	0.12	mg/Kg	1	₩	6010B	Total/NA
Manganese	65		0.52	0.075	mg/Kg	1	₩	6010B	Total/NA
Nickel	7.4		0.52	0.15	mg/Kg	1	₩	6010B	Total/NA
Selenium	1.9		0.52	0.30	mg/Kg	1	₩	6010B	Total/NA
Thallium	0.87		0.52	0.26	mg/Kg	1	₩	6010B	Total/NA
Vanadium	28		0.26	0.061	mg/Kg	1	₩	6010B	Total/NA
Zinc	32		1.0	0.45	mg/Kg	1	₩	6010B	Total/NA
Barium	0.33	J	0.50	0.050	mg/L	1		6010B	TCLP
Manganese	0.84		0.025	0.010	mg/L	1		6010B	TCLP
Zinc	0.037	J	0.50	0.020	mg/L	1		6010B	TCLP
Manganese	0.44		0.025	0.010	mg/L	1		6010B	SPLP Eas
Mercury	0.14		0.019	0.0064	mg/Kg	1	₩	7471B	Total/NA
рН	3.8		0.20	0.20	SU	1		9045D	Total/NA

Client Sample ID: 3160-32-1 (0-3.5')

Lab Sample ID: 500-136575-15

This Detection Summary does not include radiochemical test results.

TestAmerica Chicago

11/13/2017

Page 12 of 231

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

-

Client Sample ID: 3160-32-1 (0-3.5') (Continued)

l ah	Samn	IA ID:	500-	136575-	15
	, Janua				

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzo[a]pyrene	0.016	J	0.040	0.0079	mg/Kg	1	₩	8270D	Total/NA
2-Methylnaphthalene	0.0097	J	0.082	0.0075	mg/Kg	1	₩	8270D	Total/NA
Phenanthrene	0.0097	J	0.040	0.0057	mg/Kg	1	₩	8270D	Total/NA
Arsenic	5.1		0.57	0.20	mg/Kg	1	₩	6010B	Total/NA
Barium	120		0.57	0.065	mg/Kg	1	₩	6010B	Total/NA
Beryllium	0.42		0.23	0.053	mg/Kg	1	₩	6010B	Total/NA
Cadmium	0.088	JB	0.11	0.021	mg/Kg	1	₩	6010B	Total/NA
Chromium	12		0.57	0.28	mg/Kg	1	₩	6010B	Total/NA
Cobalt	9.1		0.29	0.075	mg/Kg	1	₩	6010B	Total/NA
Copper	14		0.57	0.16	mg/Kg	1	₩	6010B	Total/NA
Iron	14000	В	11	5.9	mg/Kg	1	₩	6010B	Total/NA
Lead	21		0.29	0.13	mg/Kg	1	₩	6010B	Total/NA
Manganese	660		0.57	0.083	mg/Kg	1	₩	6010B	Total/NA
Nickel	10		0.57	0.17	mg/Kg	1	₩	6010B	Total/NA
Selenium	1.1		0.57	0.34	mg/Kg	1	₩	6010B	Total/NA
Vanadium	21		0.29	0.067	mg/Kg	1	₩	6010B	Total/NA
Zinc	40		1.1	0.50	mg/Kg	1	₩	6010B	Total/NA
Barium	0.61		0.50	0.050	mg/L	1		6010B	TCLP
Selenium	0.021	J	0.050	0.020	mg/L	1		6010B	TCLP
Mercury	0.039		0.018	0.0061	mg/Kg	1	₩	7471B	Total/NA
pН	6.4		0.20	0.20	SU	1		9045D	Total/NA

Client Sample ID: 3160-32-2 (0-3.5')

Lab Sample ID: 500-136575-16

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	0.025		0.020	0.0089	mg/Kg		₩	8260B	Total/NA
Anthracene	0.0086	J	0.040	0.0068	mg/Kg	1	₩	8270D	Total/NA
Benzo[a]anthracene	0.023	JB	0.040	0.0055	mg/Kg	1	₩	8270D	Total/NA
Benzo[a]pyrene	0.017	J	0.040	0.0079	mg/Kg	1	₽	8270D	Total/NA
Benzo[b]fluoranthene	0.038	J	0.040	0.0088	mg/Kg	1	₩	8270D	Total/NA
Benzo[g,h,i]perylene	0.019	J F1	0.040	0.013	mg/Kg	1	₩	8270D	Total/NA
Benzo[k]fluoranthene	0.016	J	0.040	0.012	mg/Kg	1	₩	8270D	Total/NA
Chrysene	0.035	J	0.040	0.011	mg/Kg	1	₩	8270D	Total/NA
Fluoranthene	0.028	J	0.040	0.0075	mg/Kg	1	₩	8270D	Total/NA
2-Methylnaphthalene	0.051	J F1	0.082	0.0075	mg/Kg	1	Ċ.	8270D	Total/NA
Naphthalene	0.027	J	0.040	0.0063	mg/Kg	1	₩	8270D	Total/NA
Phenanthrene	0.057		0.040	0.0057	mg/Kg	1	₩	8270D	Total/NA
Pyrene	0.034	J	0.040	0.0081	mg/Kg	1	Ċ.	8270D	Total/NA
Arsenic	14		0.61	0.21	mg/Kg	1	₽	6010B	Total/NA
Barium	280		0.61	0.069	mg/Kg	1	₩	6010B	Total/NA
Beryllium	1.0		0.24	0.057	mg/Kg	1	ψ	6010B	Total/NA
Cadmium	0.14	В	0.12	0.022	mg/Kg	1	₩	6010B	Total/NA
Chromium	30		0.61	0.30	mg/Kg	1	₩	6010B	Total/NA
Cobalt	15		0.30	0.080	mg/Kg	1		6010B	Total/NA
Copper	20		0.61	0.17	mg/Kg	1	₩	6010B	Total/NA
Iron	35000	В	12	6.3	mg/Kg	1	₩	6010B	Total/NA
Lead	31		0.30	0.14	mg/Kg	1	₩.	6010B	Total/NA
Manganese	1600		3.0		mg/Kg	5	₩	6010B	Total/NA
Nickel	17		0.61	0.18	mg/Kg	1	₩	6010B	Total/NA
Selenium	1.7		0.61		mg/Kg	1	₩	6010B	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Chicago

11/13/2017

Page 13 of 231

9

4

5

9

10

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-32-3 (0-3.5')

9

Client Sample ID: 3160-32-2 (0-3.5') (Continued)

Lab Sample ID: 500-136575-16

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Vanadium	35	0.30	0.072	mg/Kg	1	₩	6010B	Total/NA
Zinc	54	1.2	0.53	mg/Kg	1	₩	6010B	Total/NA
Barium	0.78	0.50	0.050	mg/L	1		6010B	TCLP
Mercury	0.050	0.020	0.0065	mg/Kg	1	₩	7471B	Total/NA
рН	6.6	0.20	0.20	SU	1		9045D	Total/NA

Lab Sample ID: 500-136575-17

int dample 15. 0100 02 0 (0 0.0)								310 15. 00	
	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
	0.093		0.018	0.0078	mg/Kg	1	₩	8260B	Total/NA
inthracene	0.010	JB	0.039	0.0052	mg/Kg	1	₩	8270D	Total/NA
yrene	0.0097	J	0.039	0.0075	mg/Kg	1	₩	8270D	Total/NA
luoranthene	0.017	J	0.039	0.0084	mg/Kg	1	₽	8270D	Total/NA
	0.011	J	0.039	0.011	mg/Kg	1	₩	8270D	Total/NA
ene	0.014	J	0.039	0.0072	mg/Kg	1	₩	8270D	Total/NA
aphthalene	0.015	J	0.078	0.0071	mg/Kg	1	₽	8270D	Total/NA
ene	0.0069	J	0.039	0.0060	mg/Kg	1	₩	8270D	Total/NA
rene	0.022	J	0.039	0.0054	mg/Kg	1	₩	8270D	Total/NA
	0.019	J	0.039	0.0077	mg/Kg	1	₩	8270D	Total/NA
	9.9		0.55	0.19	mg/Kg	1	₩	6010B	Total/NA
	1100		0.55	0.063	mg/Kg	1	₩	6010B	Total/NA
	0.74		0.22	0.052	mg/Kg	1	₩	6010B	Total/NA
	0.48	В	0.11	0.020	mg/Kg	1	₩	6010B	Total/NA
า	17		0.55	0.27	mg/Kg	1	₩	6010B	Total/NA
	15		0.28	0.072	mg/Kg	1	₩	6010B	Total/NA
	15		0.55	0.15	mg/Kg	1	₩	6010B	Total/NA
	25000	В	11	5.7	mg/Kg	1	₩	6010B	Total/NA
	44		0.28	0.13	mg/Kg	1	₩	6010B	Total/NA
se	480		0.55	0.080	mg/Kg	1	₩	6010B	Total/NA
	16		0.55	0.16	mg/Kg	1	₩	6010B	Total/NA
	0.83		0.55	0.32	mg/Kg	1	₩	6010B	Total/NA
1	24		0.28	0.065	mg/Kg	1	₩	6010B	Total/NA
	110		1.1	0.49	mg/Kg	1	₩	6010B	Total/NA
	1.2		0.50	0.050	mg/L	1		6010B	TCLP
se	0.065		0.025	0.010	mg/L	1		6010B	TCLP
	0.029	J	0.50	0.020	mg/L	1		6010B	TCLP
	0.043		0.019	0.0062	mg/Kg	1	₩.	7471B	Total/NA
	6.7		0.20	0.20	SU	1		9045D	Total/NA
	6.7		0.20	0.20	SU	1		9045D	

Client Sample ID: 3160-32-4 (0-3.5')

Lab Sample ID: 500-136575-18

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	0.034	0.019	0.0083	mg/Kg		₩	8260B	Total/NA
Anthracene	0.11	0.040	0.0067	mg/Kg	1	₩	8270D	Total/NA
Benzo[a]anthracene	0.17 B	0.040	0.0054	mg/Kg	1	₩	8270D	Total/NA
Benzo[a]pyrene	0.084	0.040	0.0078	mg/Kg	1	₽	8270D	Total/NA
Benzo[b]fluoranthene	0.095	0.040	0.0086	mg/Kg	1	₩	8270D	Total/NA
Benzo[k]fluoranthene	0.040	0.040	0.012	mg/Kg	1	₩	8270D	Total/NA
Chrysene	0.19	0.040	0.011	mg/Kg	1		8270D	Total/NA
Dibenzofuran	0.27	0.20	0.047	mg/Kg	1	₽	8270D	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Chicago

11/13/2017

6

4

5

9

10

12

IJ

Ш

Lab Sample ID: 500-136575-18

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-32-4 (0-3.5') (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Fluoranthene	0.17		0.040	0.0074	mg/Kg		₩	8270D	Total/NA
2-Methylnaphthalene	0.65		0.081	0.0074	mg/Kg	1	₩	8270D	Total/NA
Naphthalene	0.32		0.040	0.0062	mg/Kg	1	☆	8270D	Total/NA
Phenanthrene	1.2		0.040	0.0056	mg/Kg	1	☆	8270D	Total/NA
Pyrene	0.22		0.040	0.0080	mg/Kg	1	₩	8270D	Total/NA
Arsenic	11		0.57	0.20	mg/Kg	1	₽	6010B	Total/NA
Barium	150		0.57	0.065	mg/Kg	1	₩	6010B	Total/NA
Beryllium	0.56		0.23	0.053	mg/Kg	1	₽	6010B	Total/NA
Cadmium	0.22	В	0.11	0.021	mg/Kg	1	₩	6010B	Total/NA
Chromium	14		0.57	0.28	mg/Kg	1	₽	6010B	Total/NA
Cobalt	4.7		0.29	0.075	mg/Kg	1	₽	6010B	Total/NA
Copper	19		0.57	0.16	mg/Kg	1	₩	6010B	Total/NA
Iron	26000	В	11	5.9	mg/Kg	1	₽	6010B	Total/NA
Lead	41		0.29	0.13	mg/Kg	1	₩	6010B	Total/NA
Manganese	110		0.57	0.083	mg/Kg	1	₩	6010B	Total/NA
Nickel	11		0.57	0.17	mg/Kg	1	₩	6010B	Total/NA
Selenium	1.7		0.57	0.34	mg/Kg	1	₩	6010B	Total/NA
Vanadium	22		0.29	0.067	mg/Kg	1	₽	6010B	Total/NA
Zinc	61		1.1	0.50	mg/Kg	1	₩	6010B	Total/NA
Barium	0.57		0.50	0.050	mg/L	1		6010B	TCLP
Iron	0.23	J	0.40	0.20	mg/L	1		6010B	TCLP
Manganese	0.026		0.025	0.010	mg/L	1		6010B	TCLP
Selenium	0.020	J	0.050	0.020	mg/L	1		6010B	TCLP
Zinc	0.022	J	0.50	0.020	mg/L	1		6010B	TCLP
Mercury	0.11		0.019	0.0063	mg/Kg	1	₩	7471B	Total/NA
pH	6.7		0.20	0.20	SU	1		9045D	Total/NA

Client Sample ID: 3160-32-5 (0-3.5')

Client Sample ID: 3160	lient Sample ID: 3160-32-5 (0-3.5')							ole ID: 50	0-136575-19
- Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Anthracene	0.0077	J	0.040	0.0067	mg/Kg		₩	8270D	Total/NA
Benzo[a]anthracene	0.020	JB	0.040	0.0054	mg/Kg	1	₩	8270D	Total/NA
Benzo[a]pyrene	0.012	J	0.040	0.0078	mg/Kg	1	₩	8270D	Total/NA
Benzo[b]fluoranthene	0.019	J	0.040	0.0087	mg/Kg	1	₽	8270D	Total/NA
Chrysene	0.027	J	0.040	0.011	mg/Kg	1	₩	8270D	Total/NA
Fluoranthene	0.023	J	0.040	0.0074	mg/Kg	1	₽	8270D	Total/NA
2-Methylnaphthalene	0.039	J	0.081	0.0074	mg/Kg	1	₩	8270D	Total/NA
Naphthalene	0.018	J	0.040	0.0062	mg/Kg	1	₩	8270D	Total/NA
Phenanthrene	0.087		0.040	0.0056	mg/Kg	1	₽	8270D	Total/NA
Pyrene	0.024	J	0.040	0.0080	mg/Kg	1	₩	8270D	Total/NA
Arsenic	7.1		0.60	0.20	mg/Kg	1	₽	6010B	Total/NA
Barium	85		0.60	0.068	mg/Kg	1	₽	6010B	Total/NA
Beryllium	0.49		0.24	0.056	mg/Kg	1		6010B	Total/NA
Cadmium	0.19	В	0.12	0.022	mg/Kg	1	₩	6010B	Total/NA
Chromium	16		0.60	0.30	mg/Kg	1	₽	6010B	Total/NA
Cobalt	5.8		0.30	0.078	mg/Kg	1	₩.	6010B	Total/NA
Copper	23		0.60	0.17	mg/Kg	1	₽	6010B	Total/NA
Iron	19000	В	12	6.2	mg/Kg	1	₩	6010B	Total/NA
Lead	32		0.30	0.14	mg/Kg	1	₩.	6010B	Total/NA
Manganese	180		0.60		mg/Kg	1	₩	6010B	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Chicago

Lab Sample ID: 500-136575-20

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Lab Sample ID: 500-136575-19 Client Sample ID: 3160-32-5 (0-3.5') (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Nickel	14		0.60	0.17	mg/Kg	1	₩	6010B	Total/NA
Selenium	0.55	J	0.60	0.35	mg/Kg	1	₩	6010B	Total/NA
Vanadium	26		0.30	0.071	mg/Kg	1	₩	6010B	Total/NA
Zinc	82		1.2	0.53	mg/Kg	1	₩	6010B	Total/NA
Barium	0.52		0.50	0.050	mg/L	1		6010B	TCLP
Copper	0.010	J	0.025	0.010	mg/L	1		6010B	TCLP
Manganese	0.080		0.025	0.010	mg/L	1		6010B	TCLP
Selenium	0.020	J	0.050	0.020	mg/L	1		6010B	TCLP
Zinc	0.067	J	0.50	0.020	mg/L	1		6010B	TCLP
Mercury	0.048		0.019	0.0062	mg/Kg	1	₩	7471B	Total/NA
pH	5.9		0.20	0.20	SU	1		9045D	Total/NA

Client Sample ID: 3160-32-6 (0-3.5')

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac		Method	Prep Type
Acetone	0.066		0.019	0.0083	mg/Kg		₩	8260B	Total/NA
Anthracene	0.0076	J	0.038	0.0064	mg/Kg	1	₩	8270D	Total/NA
Benzo[a]anthracene	0.018	JB	0.038	0.0051	mg/Kg	1	₩	8270D	Total/NA
Benzo[a]pyrene	0.0089	J	0.038	0.0074	mg/Kg	1	₩	8270D	Total/NA
Benzo[b]fluoranthene	0.013	J	0.038	0.0082	mg/Kg	1	₩	8270D	Total/NA
Chrysene	0.020	J	0.038	0.010	mg/Kg	1	₩	8270D	Total/NA
Fluoranthene	0.017	J	0.038	0.0071	mg/Kg	1	₩	8270D	Total/NA
2-Methylnaphthalene	0.033	J	0.077	0.0070	mg/Kg	1	₩	8270D	Total/NA
Naphthalene	0.017	J	0.038	0.0059	mg/Kg	1	₩	8270D	Total/NA
Phenanthrene	0.082		0.038	0.0053	mg/Kg	1	₩	8270D	Total/NA
Pyrene	0.023	J	0.038	0.0076	mg/Kg	1	₩	8270D	Total/NA
Arsenic	9.1		0.53	0.18	mg/Kg	1	₩	6010B	Total/NA
Barium	83		0.53	0.060	mg/Kg	1	₩.	6010B	Total/NA
Beryllium	0.44		0.21	0.050	mg/Kg	1	₩	6010B	Total/NA
Cadmium	0.13	В	0.11	0.019	mg/Kg	1	₩	6010B	Total/NA
Chromium	17		0.53	0.26	mg/Kg	1		6010B	Total/NA
Cobalt	5.4		0.27	0.069	mg/Kg	1	₩	6010B	Total/NA
Copper	16		0.53	0.15	mg/Kg	1	₩	6010B	Total/NA
Iron	21000	В	11	5.5	mg/Kg	1	₩	6010B	Total/NA
Lead	21		0.27	0.12	mg/Kg	1	₩	6010B	Total/NA
Manganese	190		0.53	0.077	mg/Kg	1	₽	6010B	Total/NA
Nickel	11		0.53	0.15	mg/Kg	1	₩	6010B	Total/NA
Selenium	0.60		0.53	0.31	mg/Kg	1	₩	6010B	Total/NA
Vanadium	30		0.27	0.063	mg/Kg	1	₩	6010B	Total/NA
Zinc	62		1.1	0.47	mg/Kg	1		6010B	Total/NA
Barium	0.34	J	0.50	0.050	mg/L	1		6010B	TCLP
Cobalt	0.012	J	0.025	0.010	mg/L	1		6010B	TCLP
Manganese	0.99		0.025	0.010	mg/L	1		6010B	TCLP
Nickel	0.011	J	0.025	0.010	-	1		6010B	TCLP
Zinc	0.14	J	0.50	0.020	-	1		6010B	TCLP
Manganese	0.17		0.025	0.010	mg/L	1		6010B	SPLP East
Mercury	0.035		0.019	0.0063	-	1	₩	7471B	Total/NA
pH	4.6		0.20	0.20		1		9045D	Total/NA

Client Sample ID: 3160-45-1 (0-5')

Lab Sample ID: 500-136575-21

This Detection Summary does not include radiochemical test results.

TestAmerica Chicago

Page 16 of 231

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-45-1 (0-5') (Continued)

Lab Sample ID: 500-136575-21

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	0.030		0.019	0.0081	mg/Kg		₩	8260B	Total/NA
Antimony	0.40	J	1.1	0.22	mg/Kg	1	₩	6010B	Total/NA
Arsenic	7.5		0.57	0.20	mg/Kg	1	₩	6010B	Total/NA
Barium	81		0.57	0.065	mg/Kg	1	₩	6010B	Total/NA
Beryllium	0.65		0.23	0.053	mg/Kg	1	₩	6010B	Total/NA
Cadmium	0.088	J	0.11	0.021	mg/Kg	1	₩	6010B	Total/NA
Chromium	17		0.57	0.28	mg/Kg	1	₩.	6010B	Total/NA
Cobalt	9.8		0.29	0.075	mg/Kg	1	₩	6010B	Total/NA
Copper	10		0.57	0.16	mg/Kg	1	₩	6010B	Total/NA
Iron	20000		11	5.9	mg/Kg	1	₩	6010B	Total/NA
Lead	13		0.29	0.13	mg/Kg	1	₩	6010B	Total/NA
Manganese	400		0.57	0.083	mg/Kg	1	₩	6010B	Total/NA
Nickel	13		0.57	0.17	mg/Kg	1	₩	6010B	Total/NA
Selenium	0.55	J	0.57	0.34	mg/Kg	1	₩	6010B	Total/NA
Vanadium	29		0.29	0.067	mg/Kg	1	₩	6010B	Total/NA
Zinc	38		1.1	0.50	mg/Kg	1	Д	6010B	Total/NA
Barium	1.1		0.50	0.050	mg/L	1		6010B	TCLP
Manganese	0.019	J	0.025	0.010	mg/L	1		6010B	TCLP
Mercury	0.023		0.018	0.0061	mg/Kg	1	₽	7471B	Total/NA
рН	8.0		0.20	0.20	SU	1		9045D	Total/NA

Client Sample ID: 3160-45-1 (5-6')

Lab Sample ID: 500-136575-22

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	0.074		0.019	0.0081	mg/Kg		₩	8260B	Total/NA
Benzo[a]anthracene	0.0080	JB	0.040	0.0054	mg/Kg	1	₩	8270D	Total/NA
Benzo[a]pyrene	0.0085	J	0.040	0.0078	mg/Kg	1	₩	8270D	Total/NA
Benzo[b]fluoranthene	0.015	J	0.040	0.0087	mg/Kg	1	₩.	8270D	Total/NA
Fluoranthene	0.013	J	0.040	0.0075	mg/Kg	1	₩	8270D	Total/NA
Phenanthrene	0.012	J	0.040	0.0056	mg/Kg	1	₩	8270D	Total/NA
Pyrene	0.015	J	0.040	0.0080	mg/Kg	1	₩.	8270D	Total/NA
Arsenic	7.2		0.55	0.19	mg/Kg	1	₩	6010B	Total/NA
Barium	100		0.55	0.063	mg/Kg	1	₩	6010B	Total/NA
Beryllium	0.62		0.22	0.051	mg/Kg	1	Φ.	6010B	Total/NA
Cadmium	0.15		0.11	0.020	mg/Kg	1	₩	6010B	Total/NA
Chromium	16		0.55	0.27	mg/Kg	1	₩	6010B	Total/NA
Cobalt	13		0.27	0.072	mg/Kg	1	₩.	6010B	Total/NA
Copper	12		0.55	0.15	mg/Kg	1	₩	6010B	Total/NA
Iron	18000		11	5.7	mg/Kg	1	₩	6010B	Total/NA
Lead	27		0.27	0.13	mg/Kg	1	Φ.	6010B	Total/NA
Manganese	880		0.55	0.080	mg/Kg	1	₩	6010B	Total/NA
Nickel	18		0.55	0.16	mg/Kg	1	₩	6010B	Total/NA
Selenium	0.61		0.55	0.32	mg/Kg	1	₽	6010B	Total/NA
Vanadium	23		0.27	0.065	mg/Kg	1	₩	6010B	Total/NA
Zinc	48		1.1	0.48	mg/Kg	1	₩	6010B	Total/NA
Barium	0.87		0.50	0.050	mg/L	1		6010B	TCLP
Copper	0.020	J	0.025	0.010	mg/L	1		6010B	TCLP
Manganese	0.031		0.025	0.010	mg/L	1		6010B	TCLP
Selenium	0.021	J	0.050	0.020	mg/L	1		6010B	TCLP
Zinc	0.028	J	0.50	0.020	mg/L	1		6010B	TCLP

This Detection Summary does not include radiochemical test results.

TestAmerica Chicago

11/13/2017

Page 17 of 231

6

1

5

R

9

11

13

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-45-2 (0-5')

Lab Sample ID: 500-136575-22

Client Sample ID: 3160-45-1 (5-6') (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	1	Prep Type
Mercury	0.039		0.018	0.0060	mg/Kg		\	7471B		Total/NA
рН	7.8		0.20	0.20	SU	1		9045D		Total/NA

Lab Sample ID: 500-136575-23

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	0.019		0.018	0.0079	mg/Kg	1	₩	8260B	Total/NA
Arsenic	7.4		0.61	0.21	mg/Kg	1	₩	6010B	Total/NA
Barium	86		0.61	0.070	mg/Kg	1	₩	6010B	Total/NA
Beryllium	0.53		0.24	0.057	mg/Kg	1	₩	6010B	Total/NA
Cadmium	0.084	J	0.12	0.022	mg/Kg	1	₩	6010B	Total/NA
Chromium	16		0.61	0.30	mg/Kg	1	₩	6010B	Total/NA
Cobalt	12		0.31	0.080	mg/Kg	1	₩.	6010B	Total/NA
Copper	12		0.61	0.17	mg/Kg	1	₩	6010B	Total/NA
Iron	18000		12	6.4	mg/Kg	1	₩	6010B	Total/NA
Lead	18		0.31	0.14	mg/Kg	1	₩.	6010B	Total/NA
Manganese	540		0.61	0.089	mg/Kg	1	₩	6010B	Total/NA
Nickel	15		0.61	0.18	mg/Kg	1	₩	6010B	Total/NA
Selenium	0.37	J	0.61	0.36	mg/Kg	1	₩.	6010B	Total/NA
Vanadium	32		0.31	0.072	mg/Kg	1	₩	6010B	Total/NA
Zinc	45		1.2	0.54	mg/Kg	1	₩	6010B	Total/NA
Barium	0.31	J	0.50	0.050	mg/L	1		6010B	TCLP
Manganese	0.015	J	0.025	0.010	mg/L	1		6010B	TCLP
Mercury	0.061		0.019	0.0062	mg/Kg	1	₩	7471B	Total/NA
pH	7.7		0.20	0.20	SU	1		9045D	Total/NA

Client Sample ID: 3160-45-2 (5-6') Lab Sample ID: 500-136575-24

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	0.025		0.019	0.0082	mg/Kg	1	苺	8260B	Total/NA
Benzo[a]anthracene	0.0064	JB	0.039	0.0052	mg/Kg	1	₩	8270D	Total/NA
Benzo[b]fluoranthene	0.012	J	0.039	0.0084	mg/Kg	1	₩	8270D	Total/NA
Chrysene	0.011	J	0.039	0.011	mg/Kg	1	₩	8270D	Total/NA
Fluoranthene	0.0088	J	0.039	0.0072	mg/Kg	1	₩	8270D	Total/NA
2-Methylnaphthalene	0.0091	J	0.078	0.0072	mg/Kg	1	₩	8270D	Total/NA
Naphthalene	0.0063	J	0.039	0.0060	mg/Kg	1	₩	8270D	Total/NA
Phenanthrene	0.021	J	0.039	0.0054	mg/Kg	1	₩	8270D	Total/NA
Pyrene	0.011	J	0.039	0.0077	mg/Kg	1	₩	8270D	Total/NA
Arsenic	6.8		0.49	0.17	mg/Kg	1	₩	6010B	Total/NA
Barium	97		0.49	0.056	mg/Kg	1	₩	6010B	Total/NA
Beryllium	0.54		0.20	0.046	mg/Kg	1	₩	6010B	Total/NA
Cadmium	0.13		0.099	0.018	mg/Kg	1	₩	6010B	Total/NA
Chromium	20		0.49	0.24	mg/Kg	1	₩	6010B	Total/NA
Cobalt	12		0.25	0.065	mg/Kg	1	₩	6010B	Total/NA
Copper	11		0.49	0.14	mg/Kg	1	₩	6010B	Total/NA
Iron	17000		9.9	5.1	mg/Kg	1	₩	6010B	Total/NA
Lead	49		0.25	0.11	mg/Kg	1	₩	6010B	Total/NA
Manganese	530		0.49	0.072	mg/Kg	1	₩.	6010B	Total/NA
Nickel	15		0.49	0.14	mg/Kg	1	₩	6010B	Total/NA
Selenium	0.69		0.49	0.29	mg/Kg	1	₩	6010B	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Chicago

11/13/2017

Page 18 of 231

6

_

5

7

9

11

12

4 4

Ш

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-45-2 (5-6') (Continued)

Lab Sample ID: 500-136575-24

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Vanadium	24	0.25	0.058	mg/Kg		₩	6010B	Total/NA
Zinc	51	0.99	0.43	mg/Kg	1	₩	6010B	Total/NA
Barium	1.0	0.50	0.050	mg/L	1		6010B	TCLP
Copper	0.022 J	0.025	0.010	mg/L	1		6010B	TCLP
Manganese	0.060	0.025	0.010	mg/L	1		6010B	TCLP
Zinc	0.038 J	0.50	0.020	mg/L	1		6010B	TCLP
Mercury	0.038	0.017	0.0058	mg/Kg	1	₩	7471B	Total/NA
pН	7.5	0.20	0.20	SU	1		9045D	Total/NA

Client Sample ID: 3160-45-3 (0-5')

Lab Sample ID: 500-136575-25

Analyte	Result (Qualifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	0.054	0.016	0.0069	mg/Kg	1	₩	8260B	Total/NA
Arsenic	3.3	0.50	0.17	mg/Kg	1	₩	6010B	Total/NA
Barium	92	2.5	0.29	mg/Kg	5	₩	6010B	Total/NA
Beryllium	2.0	1.0	0.23	mg/Kg	5	т Ф	6010B	Total/NA
Cadmium	0.12	0.10	0.018	mg/Kg	1	₩	6010B	Total/NA
Chromium	13	0.50	0.25	mg/Kg	1	₩	6010B	Total/NA
Cobalt	22	0.25	0.066	mg/Kg	1	Ŭ.	6010B	Total/NA
Copper	14	0.50	0.14	mg/Kg	1	₩	6010B	Total/NA
Iron	50000	50	26	mg/Kg	5	₩	6010B	Total/NA
Lead	15	0.25	0.12	mg/Kg	1	₩	6010B	Total/NA
Manganese	660	2.5	0.36	mg/Kg	5	₩	6010B	Total/NA
Nickel	31	0.50	0.15	mg/Kg	1	₩	6010B	Total/NA
Selenium	0.69	0.50	0.29	mg/Kg	1	т Ф	6010B	Total/NA
Vanadium	19	0.25	0.059	mg/Kg	1	₩	6010B	Total/NA
Zinc	59	1.0	0.44	mg/Kg	1	₩	6010B	Total/NA
Barium	0.35	J 0.50	0.050	mg/L	1		6010B	TCLP
Mercury	0.030	0.017	0.0055	mg/Kg	1	₩	7471B	Total/NA
pH	8.1	0.20	0.20		1		9045D	Total/NA

Client Sample ID: 3160-45-3 (5-6')

Lab Sample ID: 500-136575-26

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Anthracene	0.011	J	0.039	0.0065	mg/Kg		₩	8270D	Total/NA
Benzo[a]anthracene	0.044	В	0.039	0.0052	mg/Kg	1	₩	8270D	Total/NA
Benzo[a]pyrene	0.039		0.039	0.0075	mg/Kg	1	₩	8270D	Total/NA
Benzo[b]fluoranthene	0.056		0.039	0.0084	mg/Kg	1	₩	8270D	Total/NA
Benzo[g,h,i]perylene	0.024	J	0.039	0.012	mg/Kg	1	₩	8270D	Total/NA
Benzo[k]fluoranthene	0.027	J	0.039	0.011	mg/Kg	1	₩	8270D	Total/NA
Chrysene	0.058		0.039	0.011	mg/Kg	1	₽	8270D	Total/NA
Fluoranthene	0.066		0.039	0.0072	mg/Kg	1	₩	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	0.019	J	0.039	0.010	mg/Kg	1	₩	8270D	Total/NA
2-Methylnaphthalene	0.035	J	0.078	0.0071	mg/Kg	1	₽	8270D	Total/NA
Naphthalene	0.016	J	0.039	0.0060	mg/Kg	1	₩	8270D	Total/NA
Phenanthrene	0.069		0.039	0.0054	mg/Kg	1	₩	8270D	Total/NA
Pyrene	0.072		0.039	0.0077	mg/Kg	1	₩	8270D	Total/NA
Arsenic	11		0.51	0.17	mg/Kg	1	₩	6010B	Total/NA
Barium	99		0.51	0.058	mg/Kg	1	₩	6010B	Total/NA
Beryllium	0.59		0.20	0.047	mg/Kg	1	Ϋ́	6010B	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Chicago

11/13/2017

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-45-3 (5-6') (Continued)

Lah	Samn	ام اD:	500-1	136575	26

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Cadmium	0.35		0.10	0.018	mg/Kg		₩	6010B	Total/NA
Chromium	15		0.51	0.25	mg/Kg	1	₽	6010B	Total/NA
Cobalt	14		0.25	0.066	mg/Kg	1	ф.	6010B	Total/NA
Copper	22		0.51	0.14	mg/Kg	1	₽	6010B	Total/NA
Iron	24000		10	5.3	mg/Kg	1	₩	6010B	Total/NA
Lead	78		0.25	0.12	mg/Kg	1	ψ	6010B	Total/NA
Manganese	770		0.51	0.074	mg/Kg	1	₩	6010B	Total/NA
Nickel	26		0.51	0.15	mg/Kg	1	₩	6010B	Total/NA
Selenium	0.69		0.51	0.30	mg/Kg	1		6010B	Total/NA
Vanadium	17		0.25	0.060	mg/Kg	1	₩	6010B	Total/NA
Zinc	97		1.0	0.45	mg/Kg	1	₩	6010B	Total/NA
Barium	0.74		0.50	0.050	mg/L	1		6010B	TCLP
Manganese	0.12		0.025	0.010	mg/L	1		6010B	TCLP
Selenium	0.022	J	0.050	0.020	mg/L	1		6010B	TCLP
Zinc	0.030	J	0.50	0.020	mg/L	1		6010B	TCLP
Mercury	0.058		0.019	0.0063	mg/Kg	1	₩	7471B	Total/NA
pH	7.7		0.20	0.20	SU	1		9045D	Total/NA

Client Sample ID: 3160-45-4 (0-5')

Lab Sample ID: 500-136575-27

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	4.7		0.55	0.19	mg/Kg		₩	6010B	Total/NA
Barium	190		0.55	0.062	mg/Kg	1	₩	6010B	Total/NA
Beryllium	0.83		0.22	0.051	mg/Kg	1	₩	6010B	Total/NA
Cadmium	0.11		0.11	0.020	mg/Kg	1	₩	6010B	Total/NA
Chromium	14		0.55	0.27	mg/Kg	1	₩	6010B	Total/NA
Cobalt	9.2		0.27	0.072	mg/Kg	1	₩	6010B	Total/NA
Copper	9.8		0.55	0.15	mg/Kg	1	₩	6010B	Total/NA
Iron	13000		11	5.7	mg/Kg	1	₩	6010B	Total/NA
Lead	15		0.27	0.13	mg/Kg	1	₩	6010B	Total/NA
Manganese	280		0.55	0.079	mg/Kg	1	₩.	6010B	Total/NA
Nickel	13		0.55	0.16	mg/Kg	1	₩	6010B	Total/NA
Selenium	0.79		0.55	0.32	mg/Kg	1	₩	6010B	Total/NA
Vanadium	25		0.27	0.065	mg/Kg	1	Φ.	6010B	Total/NA
Zinc	38		1.1	0.48	mg/Kg	1	₩	6010B	Total/NA
Barium	1.3		0.50	0.050	mg/L	1		6010B	TCLP
Manganese	0.039		0.025	0.010	mg/L	1		6010B	TCLP
Nickel	0.021	J	0.025	0.010	mg/L	1		6010B	TCLP
Mercury	0.016	J	0.019	0.0062	mg/Kg	1	₩	7471B	Total/NA
pH	6.3		0.20	0.20	SU	1		9045D	Total/NA

Client Sample ID: 3160-45-4 (5-6')

Lab Sample ID: 500-136575-28

Analyte	Result Qualifie	er RL	MDL	Unit	Dil Fac	D Method	Prep Type
Acetone	0.063	0.017	0.0073	mg/Kg		≅ 8260B	Total/NA
Benzo[a]anthracene	0.0077 JB	0.039	0.0052	mg/Kg	1	¤ 8270D	Total/NA
Benzo[b]fluoranthene	0.0084 J	0.039	0.0084	mg/Kg	1	¤ 8270D	Total/NA
Fluoranthene	0.012 J	0.039	0.0072	mg/Kg	1	○ 8270D	Total/NA
Pyrene	0.020 J	0.039	0.0077	mg/Kg	1	¤ 8270D	Total/NA
Arsenic	1.9	0.55	0.19	mg/Kg	1	¤ 6010B	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Chicago

Page 20 of 231

9

6

8

9

11

14

1)

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-50-1 (0-2')

6

Client Sample ID: 3160-45-4 (5-6') (Continued)

Lab Sample ID: 500-136575-28

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Barium	60		0.55	0.063	mg/Kg	1	₩	6010B	Total/NA
Beryllium	0.64		0.22	0.051	mg/Kg	1	₩	6010B	Total/NA
Cadmium	0.12		0.11	0.020	mg/Kg	1	₩	6010B	Total/NA
Chromium	15		0.55	0.27	mg/Kg	1	₽	6010B	Total/NA
Cobalt	5.9		0.28	0.072	mg/Kg	1	₩	6010B	Total/NA
Copper	7.3		0.55	0.15	mg/Kg	1	₩	6010B	Total/NA
Iron	13000		11	5.7	mg/Kg	1	₩.	6010B	Total/NA
Lead	8.8		0.28	0.13	mg/Kg	1	₩	6010B	Total/NA
Manganese	270		0.55	0.080	mg/Kg	1	₩	6010B	Total/NA
Nickel	12		0.55	0.16	mg/Kg	1	₩.	6010B	Total/NA
Vanadium	21		0.28	0.065	mg/Kg	1	₩	6010B	Total/NA
Zinc	34		1.1	0.48	mg/Kg	1	₩	6010B	Total/NA
Barium	0.64		0.50	0.050	mg/L	1		6010B	TCLP
Manganese	0.033		0.025	0.010	mg/L	1		6010B	TCLP
Nickel	0.011	J	0.025	0.010	mg/L	1		6010B	TCLP
Mercury	0.021		0.018	0.0060	mg/Kg	1	₩.	7471B	Total/NA
рН	6.5		0.20	0.20	SU	1		9045D	Total/NA

Lab Sample ID: 500-136575-29

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	0.074		0.018	0.0079	mg/Kg	1	₩	8260B	Total/NA
Phenanthrene	0.0067	J	0.040	0.0056	mg/Kg	1	₩	8270D	Total/NA
Arsenic	4.9		0.57	0.20	mg/Kg	1	₩	6010B	Total/NA
Barium	64		0.57	0.065	mg/Kg	1	₩	6010B	Total/NA
Beryllium	0.44		0.23	0.054	mg/Kg	1	₩	6010B	Total/NA
Cadmium	0.079	J	0.11	0.021	mg/Kg	1	₩	6010B	Total/NA
Chromium	15		0.57	0.28	mg/Kg	1	₩	6010B	Total/NA
Cobalt	4.8		0.29	0.075	mg/Kg	1	₩	6010B	Total/NA
Copper	10		0.57	0.16	mg/Kg	1	₩	6010B	Total/NA
ron	15000		11	6.0	mg/Kg	1	₩	6010B	Total/NA
Lead	11		0.29	0.13	mg/Kg	1	₩	6010B	Total/NA
Manganese	89		0.57	0.083	mg/Kg	1	₩	6010B	Total/NA
Nickel	11		0.57	0.17	mg/Kg	1	₩	6010B	Total/NA
Selenium	0.47	J	0.57	0.34	mg/Kg	1	₩	6010B	Total/NA
√anadium	27		0.29	0.068	mg/Kg	1	₩	6010B	Total/NA
Zinc	35		1.1	0.50	mg/Kg	1	₩	6010B	Total/NA
Barium	0.31	J	0.50	0.050	mg/L	1		6010B	TCLP
Iron	0.55		0.40	0.20	mg/L	1		6010B	TCLP
Manganese	0.55		0.025	0.010	mg/L	1		6010B	TCLP
Manganese	0.39		0.025	0.010	mg/L	1		6010B	SPLP East
Mercury	0.018	J	0.020	0.0065	mg/Kg	1	₩	7471B	Total/NA
pH	6.2		0.20	0.20		1		9045D	Total/NA

Client Sample ID: 3160-50-2 (0-2')

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzo[a]anthracene	0.011	JB	0.040	0.0055	mg/Kg	1	₩	8270D	Total/NA
Benzo[b]fluoranthene	0.012	J	0.040	0.0088	mg/Kg	1	₩	8270D	Total/NA
Fluoranthene	0.017	J	0.040	0.0075	mg/Kg	1	₩	8270D	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Chicago

11/13/2017

Lab Sample ID: 500-136575-30

4

5

7

9

10

12

10

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-50-2 (0-2') (Continued)

ī	ah	Samr	ماد	ın.	500	-136575	30
	<i>a</i> .,	Janu	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,)

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
2-Methylnaphthalene	0.014	J	0.082	0.0075	mg/Kg		₩	8270D	Total/NA
Phenanthrene	0.030	J	0.040	0.0057	mg/Kg	1	₩	8270D	Total/NA
Pyrene	0.018	J	0.040	0.0081	mg/Kg	1	₩	8270D	Total/NA
Arsenic	9.4		0.56	0.19	mg/Kg	1	₩	6010B	Total/NA
Barium	70		0.56	0.064	mg/Kg	1	₩	6010B	Total/NA
Beryllium	0.48		0.23	0.053	mg/Kg	1	₩	6010B	Total/NA
Cadmium	0.16		0.11	0.020	mg/Kg	1	₩	6010B	Total/NA
Chromium	20		0.56	0.28	mg/Kg	1	₩	6010B	Total/NA
Cobalt	6.6		0.28	0.074	mg/Kg	1	₩	6010B	Total/NA
Copper	20		0.56	0.16	mg/Kg	1	₩	6010B	Total/NA
Iron	22000		11	5.9	mg/Kg	1	₩	6010B	Total/NA
Lead	57		0.28	0.13	mg/Kg	1	₩	6010B	Total/NA
Manganese	200		0.56	0.082	mg/Kg	1	\	6010B	Total/NA
Nickel	15		0.56	0.16	mg/Kg	1	₩	6010B	Total/NA
Vanadium	33		0.28	0.067	mg/Kg	1	₩	6010B	Total/NA
Zinc	66		1.1	0.49	mg/Kg	1	₩	6010B	Total/NA
Barium	0.28	J	0.50	0.050	mg/L	1		6010B	TCLP
Manganese	0.097		0.025	0.010	mg/L	1		6010B	TCLP
Mercury	0.040		0.020	0.0065	mg/Kg	1	₩	7471B	Total/NA
pH	7.8		0.20	0.20	SU	1		9045D	Total/NA

Client Sample ID: 3160-50-3 (0-2')

Lab Sample ID: 500-136575-31

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Anthracene	0.011	J	0.041	0.0069	mg/Kg	1	₩	8270D	Total/NA
Benzo[a]anthracene	0.028	JB	0.041	0.0056	mg/Kg	1	₩	8270D	Total/NA
Benzo[a]pyrene	0.020	J	0.041	0.0080	mg/Kg	1	₩	8270D	Total/NA
Benzo[b]fluoranthene	0.024	J	0.041	0.0090	mg/Kg	1	₽	8270D	Total/NA
Chrysene	0.034	J	0.041	0.011	mg/Kg	1	₩	8270D	Total/NA
Fluoranthene	0.034	J	0.041	0.0077	mg/Kg	1	₩	8270D	Total/NA
2-Methylnaphthalene	0.058	J	0.084	0.0076	mg/Kg	1	₩	8270D	Total/NA
Naphthalene	0.030	J	0.041	0.0064	mg/Kg	1	₩	8270D	Total/NA
Phenanthrene	0.12		0.041	0.0058	mg/Kg	1	₩	8270D	Total/NA
Pyrene	0.044		0.041	0.0083	mg/Kg	1	₩	8270D	Total/NA
Arsenic	7.3		0.61	0.21	mg/Kg	1	₩	6010B	Total/NA
Barium	66		0.61	0.070	mg/Kg	1	₩	6010B	Total/NA
Beryllium	0.42		0.25	0.057	mg/Kg	1	₩	6010B	Total/NA
Cadmium	0.11	J	0.12	0.022	mg/Kg	1	₩	6010B	Total/NA
Chromium	22		0.61	0.30	mg/Kg	1	₩	6010B	Total/NA
Cobalt	6.2		0.31	0.081	mg/Kg	1	₩	6010B	Total/NA
Copper	17		0.61	0.17	mg/Kg	1	₩	6010B	Total/NA
Iron	21000		12	6.4	mg/Kg	1	₩	6010B	Total/NA
Lead	19	F2 F1	0.31	0.14	mg/Kg	1	₽	6010B	Total/NA
Manganese	190		0.61	0.089	mg/Kg	1	₩	6010B	Total/NA
Nickel	14		0.61	0.18	mg/Kg	1	₩	6010B	Total/NA
Selenium	0.49	J F1	0.61	0.36	mg/Kg	1	₩.	6010B	Total/NA
Vanadium	37		0.31	0.073	mg/Kg	1	₩	6010B	Total/NA
Zinc	53		1.2	0.54	mg/Kg	1	₩	6010B	Total/NA
Barium	0.22	J	0.50	0.050	mg/L	1		6010B	TCLP
Manganese	0.089		0.025	0.010	mg/L	1		6010B	TCLP

This Detection Summary does not include radiochemical test results.

TestAmerica Chicago

11/13/2017

5

R

9

11

12

Detection Summary

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-31

Client Sample ID: 3160-50-3 (0-2') (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Mercury	0.025		0.019	0.0062	mg/Kg	1	₩	7471B	Total/NA
рН	8.0		0.20	0.20	SU	1		9045D	Total/NA

- -

4

5

6

8

11

14

Sample Summary

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136575-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
500-136575-1	3160-16-4 (0-4')	Solid	10/31/17 08:20 11/	/01/17 09:05
500-136575-2	3160-16-3 (0-4')	Solid	10/31/17 08:30 11/	/01/17 09:05
500-136575-3	3160-16-2 (0-4')	Solid	10/31/17 08:07 11/	/01/17 09:05
500-136575-4	3160-16-1 (0-4')	Solid	10/31/17 08:50 11/	/01/17 09:05
500-136575-5	3160-16-5 (0-4')	Solid	10/31/17 09:00 11/	/01/17 09:05
500-136575-6	3160-23-1 (0-4.5')	Solid	10/31/17 09:20 11/	/01/17 09:05
500-136575-7	3160-23-2 (0-4.5')	Solid	10/31/17 09:30 11/	/01/17 09:05
500-136575-8	3160-25-1 (0-4')	Solid	10/31/17 09:50 11/	/01/17 09:05
500-136575-9	3160-25-2 (0-4')	Solid	10/31/17 10:00 11/	/01/17 09:05
500-136575-10	3160-26-2 (0-4')	Solid	10/31/17 10:10 11/	/01/17 09:05
500-136575-11	3160-26-1 (0-4')	Solid	10/31/17 10:20 11/	/01/17 09:05
500-136575-12	3160-28-1 (0-5')	Solid	10/31/17 10:30 11/	/01/17 09:05
500-136575-13	3160-28-2 (0-5')	Solid	10/31/17 10:40 11/	01/17 09:05
500-136575-14	3160-28-3 (0-5')	Solid	10/31/17 10:50 11/	/01/17 09:05
500-136575-15	3160-32-1 (0-3.5')	Solid	10/31/17 11:00 11/	/01/17 09:05
500-136575-16	3160-32-2 (0-3.5')	Solid	10/31/17 11:10 11/	01/17 09:05
500-136575-17	3160-32-3 (0-3.5')	Solid	10/31/17 11:20 11/	/01/17 09:05
500-136575-18	3160-32-4 (0-3.5')	Solid	10/31/17 11:30 11/	/01/17 09:05
500-136575-19	3160-32-5 (0-3.5')	Solid	10/31/17 11:40 11/	/01/17 09:05
500-136575-20	3160-32-6 (0-3.5')	Solid	10/31/17 12:40 11/	/01/17 09:05
500-136575-21	3160-45-1 (0-5')	Solid	10/31/17 12:50 11/	/01/17 09:05
500-136575-22	3160-45-1 (5-6')	Solid	10/31/17 13:00 11/	/01/17 09:05
500-136575-23	3160-45-2 (0-5')	Solid	10/31/17 13:10 11/	/01/17 09:05
500-136575-24	3160-45-2 (5-6')	Solid	10/31/17 13:15 11/	01/17 09:05
500-136575-25	3160-45-3 (0-5')	Solid	10/31/17 13:20 11/	/01/17 09:05
500-136575-26	3160-45-3 (5-6')	Solid	10/31/17 13:25 11/	/01/17 09:05
500-136575-27	3160-45-4 (0-5')	Solid	10/31/17 13:35 11/	/01/17 09:05
500-136575-28	3160-45-4 (5-6')	Solid	10/31/17 13:40 11/	/01/17 09:05
500-136575-29	3160-50-1 (0-2')	Solid	10/31/17 14:00 11/	/01/17 09:05
500-136575-30	3160-50-2 (0-2')	Solid	10/31/17 14:10 11/	/01/17 09:05
500-136575-31	3160-50-3 (0-2')	Solid	10/31/17 14:20 11/	01/17 09:05

9

J

L

8

4 4

12

IJ

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-16-4 (0-4')

Lab Sample ID: 500-136575-1 Date Collected: 10/31/17 08:20 **Matrix: Solid** Date Received: 11/01/17 09:05 Percent Solids: 86.5

Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Acetone	0.057		0.017	0.0074	mg/Kg	<u>₩</u>	11/01/17 18:01	11/02/17 12:17	1
Benzene	<0.0017		0.0017	0.00044	mg/Kg	₩	11/01/17 18:01	11/02/17 12:17	1
Bromodichloromethane	<0.0017		0.0017	0.00035	mg/Kg	₩	11/01/17 18:01	11/02/17 12:17	1
Bromoform	<0.0017		0.0017	0.00050	mg/Kg	₩	11/01/17 18:01	11/02/17 12:17	1
Bromomethane	<0.0043		0.0043	0.0016	mg/Kg	₩	11/01/17 18:01	11/02/17 12:17	1
2-Butanone (MEK)	< 0.0043		0.0043	0.0019	mg/Kg	₩	11/01/17 18:01	11/02/17 12:17	1
Carbon disulfide	<0.0043		0.0043	0.00089	mg/Kg	₽	11/01/17 18:01	11/02/17 12:17	1
Carbon tetrachloride	<0.0017		0.0017	0.00050	mg/Kg	₩	11/01/17 18:01	11/02/17 12:17	1
Chlorobenzene	<0.0017		0.0017	0.00063	mg/Kg	₩	11/01/17 18:01	11/02/17 12:17	1
Chloroethane	<0.0043		0.0043	0.0013	mg/Kg	₽	11/01/17 18:01	11/02/17 12:17	1
Chloroform	<0.0017		0.0017	0.00059	mg/Kg	₩	11/01/17 18:01	11/02/17 12:17	1
Chloromethane	< 0.0043		0.0043	0.0017	mg/Kg	₩	11/01/17 18:01	11/02/17 12:17	1
cis-1,2-Dichloroethene	<0.0017		0.0017	0.00048	mg/Kg	₽	11/01/17 18:01	11/02/17 12:17	1
cis-1,3-Dichloropropene	<0.0017		0.0017	0.00051	mg/Kg	₩	11/01/17 18:01	11/02/17 12:17	1
Dibromochloromethane	< 0.0017		0.0017	0.00056	mg/Kg	₩	11/01/17 18:01	11/02/17 12:17	1
1,1-Dichloroethane	<0.0017		0.0017	0.00058	mg/Kg	₩	11/01/17 18:01	11/02/17 12:17	1
1,2-Dichloroethane	< 0.0043		0.0043	0.0013	mg/Kg	☼	11/01/17 18:01	11/02/17 12:17	1
1,1-Dichloroethene	< 0.0017		0.0017	0.00059	mg/Kg	₩	11/01/17 18:01	11/02/17 12:17	1
1,2-Dichloropropane	<0.0017		0.0017	0.00044	mg/Kg		11/01/17 18:01	11/02/17 12:17	1
1,3-Dichloropropene, Total	< 0.0017		0.0017	0.00060	mg/Kg	₩	11/01/17 18:01	11/02/17 12:17	1
Ethylbenzene	<0.0017		0.0017	0.00082	mg/Kg	₩	11/01/17 18:01	11/02/17 12:17	1
2-Hexanone	<0.0043		0.0043	0.0013	mg/Kg	φ.	11/01/17 18:01	11/02/17 12:17	1
Methylene Chloride	< 0.0043		0.0043	0.0017	mg/Kg	₩	11/01/17 18:01	11/02/17 12:17	1
4-Methyl-2-pentanone (MIBK)	< 0.0043		0.0043	0.0013	mg/Kg	₩	11/01/17 18:01	11/02/17 12:17	1
Methyl tert-butyl ether	<0.0017		0.0017	0.00050	mg/Kg		11/01/17 18:01	11/02/17 12:17	1
Styrene	<0.0017		0.0017	0.00052	mg/Kg	₩	11/01/17 18:01	11/02/17 12:17	1
1,1,2,2-Tetrachloroethane	< 0.0017		0.0017	0.00055	mg/Kg	₩	11/01/17 18:01	11/02/17 12:17	1
Tetrachloroethene	<0.0017		0.0017	0.00058	mg/Kg	₩	11/01/17 18:01	11/02/17 12:17	1
Toluene	<0.0017		0.0017	0.00043	mg/Kg	₩	11/01/17 18:01	11/02/17 12:17	1
trans-1,2-Dichloroethene	<0.0017		0.0017	0.00076		₩	11/01/17 18:01	11/02/17 12:17	1
trans-1,3-Dichloropropene	<0.0017		0.0017	0.00060			11/01/17 18:01	11/02/17 12:17	1
1,1,1-Trichloroethane	<0.0017		0.0017	0.00057		₩	11/01/17 18:01	11/02/17 12:17	1
1,1,2-Trichloroethane	<0.0017		0.0017	0.00073	mg/Kg	₩	11/01/17 18:01	11/02/17 12:17	1
Trichloroethene	<0.0017		0.0017	0.00058	mg/Kg		11/01/17 18:01	11/02/17 12:17	1
Vinyl acetate	< 0.0043		0.0043	0.0015	0 0	₩	11/01/17 18:01	11/02/17 12:17	1
Vinyl chloride	<0.0017		0.0017	0.00076	mg/Kg	₩	11/01/17 18:01	11/02/17 12:17	1
Xylenes, Total	<0.0034		0.0034	0.00055				11/02/17 12:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		75 - 131				11/01/17 18:01	11/02/17 12:17	1
Dibromofluoromethane	100		75 - 126				11/01/17 18:01	11/02/17 12:17	1
1,2-Dichloroethane-d4 (Surr)	94		70 - 134				11/01/17 18:01	11/02/17 12:17	1
Toluene-d8 (Surr)	95		75 - 124				11/01/17 18:01	11/02/17 12:17	1

method: 0270b - definivolatile organic dompounds (domo)											
	Analyte	Result Qualifier	RL	MDL	Unit D	Prepared	Analyzed				
	Acenaphthene	<0.036	0.036	0.0066	mg/Kg	11/07/17 16:14	11/08/17 13:13				

08/17 13:13 Acenaphthylene 0.0075 J 0.036 0.0048 mg/Kg * 11/07/17 16:14 11/08/17 13:13 ☼ 11/07/17 16:14 11/08/17 13:13 Anthracene <0.036 0.036 0.0061 mg/Kg 11/07/17 16:14 11/08/17 13:13 Benzo[a]anthracene 0.10 0.036 0.0049 mg/Kg

TestAmerica Chicago

Page 25 of 231

Dil Fac

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 08:20

Date Received: 11/01/17 09:05

Client Sample ID: 3160-16-4 (0-4')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-1

Matrix: Solid

Percent Solids: 86.5

Method: 8270D - Semivolatile	Organic Co	mpounds	(GC/MS) (C	ontinued)
Analyte	Result	Qualifier	RL	MDL	U
Renzolalnyrene	0.083		0.036	0.0071	m

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]pyrene	0.083	0.036	0.0071	mg/Kg	<u> </u>	11/07/17 16:14	11/08/17 13:13	1
Benzo[b]fluoranthene	0.078	0.036	0.0079	mg/Kg	☼	11/07/17 16:14	11/08/17 13:13	1
Benzo[g,h,i]perylene	0.065	0.036	0.012	mg/Kg	₽	11/07/17 16:14	11/08/17 13:13	1
Benzo[k]fluoranthene	0.036	0.036	0.011	mg/Kg	₩	11/07/17 16:14	11/08/17 13:13	1
Bis(2-chloroethoxy)methane	<0.18	0.18	0.037	mg/Kg	₩	11/07/17 16:14	11/08/17 13:13	1
Bis(2-chloroethyl)ether	<0.18	0.18	0.055	mg/Kg	₩	11/07/17 16:14	11/08/17 13:13	1
Bis(2-ethylhexyl) phthalate	<0.18	0.18	0.067	mg/Kg	₩	11/07/17 16:14	11/08/17 13:13	1
4-Bromophenyl phenyl ether	<0.18	0.18	0.048	mg/Kg	₩	11/07/17 16:14	11/08/17 13:13	1
Butyl benzyl phthalate	<0.18	0.18	0.070	mg/Kg	₩	11/07/17 16:14	11/08/17 13:13	1
Carbazole	<0.18	0.18	0.092	mg/Kg	₩	11/07/17 16:14	11/08/17 13:13	1
4-Chloroaniline	<0.74	0.74	0.17	mg/Kg	₩	11/07/17 16:14	11/08/17 13:13	1
4-Chloro-3-methylphenol	<0.36	0.36	0.12	mg/Kg		11/07/17 16:14	11/08/17 13:13	1
2-Chloronaphthalene	<0.18	0.18	0.040	mg/Kg	₩	11/07/17 16:14	11/08/17 13:13	1
2-Chlorophenol	<0.18	0.18	0.063	mg/Kg	₩	11/07/17 16:14	11/08/17 13:13	1
4-Chlorophenyl phenyl ether	<0.18	0.18	0.043	mg/Kg		11/07/17 16:14	11/08/17 13:13	1
Chrysene	0.10	0.036	0.010	mg/Kg	₩	11/07/17 16:14	11/08/17 13:13	1
Dibenz(a,h)anthracene	0.044	0.036	0.0071	mg/Kg	₩	11/07/17 16:14	11/08/17 13:13	1
Dibenzofuran	0.15 J	0.18		mg/Kg		11/07/17 16:14	11/08/17 13:13	1
1,2-Dichlorobenzene	<0.18	0.18	0.044	mg/Kg	₩	11/07/17 16:14	11/08/17 13:13	1
1,3-Dichlorobenzene	<0.18	0.18	0.041	mg/Kg	₩	11/07/17 16:14	11/08/17 13:13	1
1,4-Dichlorobenzene	<0.18	0.18		mg/Kg	 ф	11/07/17 16:14	11/08/17 13:13	1
3,3'-Dichlorobenzidine	<0.18	0.18		mg/Kg	₩	11/07/17 16:14	11/08/17 13:13	1
2,4-Dichlorophenol	<0.36	0.36		mg/Kg	₩	11/07/17 16:14	11/08/17 13:13	1
Diethyl phthalate	<0.18	0.18		mg/Kg	ф.	11/07/17 16:14	11/08/17 13:13	1
2,4-Dimethylphenol	<0.36	0.36		mg/Kg	₽		11/08/17 13:13	1
Dimethyl phthalate	<0.18	0.18		mg/Kg	₩	11/07/17 16:14	11/08/17 13:13	1
Di-n-butyl phthalate	<0.18	0.18		mg/Kg		11/07/17 16:14	11/08/17 13:13	1
4,6-Dinitro-2-methylphenol	<0.74	0.74		mg/Kg	₩	11/07/17 16:14	11/08/17 13:13	1
2,4-Dinitrophenol	<0.74	0.74		mg/Kg	₩		11/08/17 13:13	1
2,4-Dinitrotoluene	<0.18	0.18		mg/Kg		11/07/17 16:14	11/08/17 13:13	1
2,6-Dinitrotoluene	<0.18	0.18		mg/Kg	₩	11/07/17 16:14	11/08/17 13:13	1
Di-n-octyl phthalate	<0.18	0.18		mg/Kg	₩	11/07/17 16:14	11/08/17 13:13	1
Fluoranthene	0.12	0.036	0.0068			11/07/17 16:14	11/08/17 13:13	1
Fluorene	<0.036	0.036	0.0052	0 0	₩		11/08/17 13:13	1
Hexachlorobenzene	<0.074	0.074	0.0085		₩		11/08/17 13:13	1
Hexachlorobutadiene	<0.18	0.18		mg/Kg		11/07/17 16:14	11/08/17 13:13	1
Hexachlorocyclopentadiene	<0.74	0.74		mg/Kg	₽		11/08/17 13:13	1
Hexachloroethane	<0.18	0.18		mg/Kg	₩		11/08/17 13:13	1
Indeno[1,2,3-cd]pyrene	0.051	0.036	0.0095				11/08/17 13:13	· · · · · · · · 1
Isophorone	<0.18	0.18		mg/Kg	₩		11/08/17 13:13	1
2-Methylnaphthalene	0.34	0.074	0.0067		₩		11/08/17 13:13	1
2-Methylphenol	<0.18	0.18		mg/Kg			11/08/17 13:13	· · · · · · · · · · · 1
3 & 4 Methylphenol	<0.18	0.18		mg/Kg	₩		11/08/17 13:13	1
Naphthalene	0.20	0.036	0.0056		₽		11/08/17 13:13	1
2-Nitroaniline	<0.18	0.18		mg/Kg			11/08/17 13:13	· · · · · · · · · · · · · · · · · · ·
3-Nitroaniline	<0.36	0.36		mg/Kg	₽		11/08/17 13:13	1
4-Nitroaniline	<0.36	0.36		mg/Kg	₩		11/08/17 13:13	1
Nitrobenzene	<0.036	0.036	0.0091		· · · · · · · · · · · · · · · · · · ·		11/08/17 13:13	
2-Nitrophenol	<0.036	0.036		mg/Kg	₽	11/07/17 16:14		1

TestAmerica Chicago

Page 26 of 231

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 08:20

Date Received: 11/01/17 09:05

Client Sample ID: 3160-16-4 (0-4')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-1

Matrix: Solid

Percent Solids: 86.5

Method: 8270D - Semivolat	ile Organic Co	mpounds	(GC/MS) (Cd	ntinued)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.74		0.74	0.35	mg/Kg	<u> </u>	11/07/17 16:14	11/08/17 13:13	1
N-Nitrosodi-n-propylamine	<0.074		0.074	0.045	mg/Kg	φ.	11/07/17 16:14	11/08/17 13:13	1
N-Nitrosodiphenylamine	<0.18		0.18	0.043	mg/Kg	₩	11/07/17 16:14	11/08/17 13:13	1
2,2'-oxybis[1-chloropropane]	<0.18		0.18	0.042	mg/Kg	₩	11/07/17 16:14	11/08/17 13:13	1
Pentachlorophenol	<0.74		0.74	0.59	mg/Kg	₽	11/07/17 16:14	11/08/17 13:13	1
Phenanthrene	0.46		0.036	0.0051	mg/Kg	₩	11/07/17 16:14	11/08/17 13:13	1
Phenol	<0.18		0.18	0.081	mg/Kg	₩	11/07/17 16:14	11/08/17 13:13	1
Pyrene	0.14		0.036	0.0073	mg/Kg	₽	11/07/17 16:14	11/08/17 13:13	1
1,2,4-Trichlorobenzene	<0.18		0.18	0.040	mg/Kg	₩	11/07/17 16:14	11/08/17 13:13	1
2,4,5-Trichlorophenol	<0.36		0.36	0.084	mg/Kg	₩	11/07/17 16:14	11/08/17 13:13	1
2,4,6-Trichlorophenol	<0.36		0.36	0.13	mg/Kg	☼	11/07/17 16:14	11/08/17 13:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	83		44 - 121				11/07/17 16:14	11/08/17 13:13	1
2-Fluorophenol	102		46 - 133				11/07/17 16:14	11/08/17 13:13	1
Nitrobenzene-d5	86		41 - 120				11/07/17 16:14	11/08/17 13:13	1
Phenol-d5	105		46 - 125				11/07/17 16:14	11/08/17 13:13	1
Terphenyl-d14	105		35 - 160				11/07/17 16:14	11/08/17 13:13	1
2,4,6-Tribromophenol	82		25 - 139				11/07/17 16:14	11/08/17 13:13	1

Method: 6010B - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.46	J F2 F1	1.1	0.21	mg/Kg	<u> </u>	11/02/17 07:49	11/02/17 20:03	1
Arsenic	6.1	F2 F1	0.53	0.18	mg/Kg	☼	11/02/17 07:49	11/02/17 20:03	1
Barium	100		0.53	0.061	mg/Kg	☼	11/02/17 07:49	11/02/17 20:03	1
Beryllium	0.48		0.21	0.050	mg/Kg	₩	11/02/17 07:49	11/02/17 20:03	1
Cadmium	0.26	В	0.11	0.019	mg/Kg	☼	11/02/17 07:49	11/02/17 20:03	1
Chromium	9.5	F1	0.53	0.26	mg/Kg	☼	11/02/17 07:49	11/02/17 20:03	1
Cobalt	5.0		0.27	0.070	mg/Kg	₩.	11/02/17 07:49	11/02/17 20:03	1
Copper	13	F1	0.53	0.15	mg/Kg	☼	11/02/17 07:49	11/02/17 20:03	1
Iron	16000	В	11	5.6	mg/Kg	₩	11/02/17 07:49	11/02/17 20:03	1
Lead	30		0.27	0.12	mg/Kg	₽	11/02/17 07:49	11/02/17 20:03	1
Manganese	180		0.53	0.078	mg/Kg	☼	11/02/17 07:49	11/02/17 20:03	1
Nickel	9.5		0.53	0.16	mg/Kg	₩	11/02/17 07:49	11/02/17 20:03	1
Selenium	0.77	F1	0.53	0.31	mg/Kg	₩	11/02/17 07:49	11/02/17 20:03	1
Silver	<0.27		0.27	0.069	mg/Kg	☼	11/02/17 07:49	11/02/17 20:03	1
Thallium	<0.53	F2 F1	0.53	0.27	mg/Kg	₩	11/02/17 07:49	11/02/17 20:03	1
Vanadium	17		0.27	0.063	mg/Kg	*	11/02/17 07:49	11/02/17 20:03	1
Zinc	71	F1	1.1	0.47	mg/Kg	₽	11/02/17 07:49	11/02/17 20:03	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/03/17 14:57	11/05/17 16:23	1
Barium	0.32	J	0.50	0.050	mg/L		11/03/17 14:57	11/05/17 16:23	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/03/17 14:57	11/05/17 16:23	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/03/17 14:57	11/05/17 16:23	1
Chromium	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 16:23	1
Cobalt	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 16:23	1
Copper	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 16:23	1
Iron	0.41		0.40	0.20	mg/L		11/03/17 14:57	11/05/17 16:23	1

Page 27 of 231

TestAmerica Chicago

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 08:20

Date Received: 11/01/17 09:05

Client Sample ID: 3160-16-4 (0-4')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-1

Matrix: Solid

Percent Solids: 86.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	<0.0075		0.0075	0.0075	mg/L		11/03/17 14:57	11/05/17 16:23	1
Manganese	0.027		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 16:23	1
Nickel	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 16:23	1
Selenium	<0.050		0.050	0.020	mg/L		11/03/17 14:57	11/05/17 16:23	1
Silver	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 16:23	1
Vanadium	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 16:23	1
Zinc	0.053	J	0.50	0.020	mg/L		11/03/17 14:57	11/05/17 16:23	1
Method: 6020A - Metals (IC	P/MS) - TCLP								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060		0.0060	0.0060	mg/L		11/03/17 14:57	11/06/17 16:07	1
Thallium	<0.0020		0.0020	0.0020	mg/L		11/03/17 14:57	11/06/17 16:07	1
Method: 7470A - TCLP Mer	cury - TCLP								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/03/17 12:20	11/06/17 10:33	1
- Method: 7471B - Mercury (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.036		0.017	0.0058	mg/Kg	\	11/02/17 16:10	11/03/17 08:05	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.9		0.20	0.20	SU			11/03/17 08:57	1

11/13/2017

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

1,2-Dichloropropane

Methylene Chloride

Methyl tert-butyl ether

Tetrachloroethene

1,1,2,2-Tetrachloroethane

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

Dibromofluoromethane

Toluene-d8 (Surr)

1,2-Dichloroethane-d4 (Surr)

Ethylbenzene

2-Hexanone

Styrene

Toluene

1,3-Dichloropropene, Total

4-Methyl-2-pentanone (MIBK)

Client Sample ID: 3160-16-3 (0-4')

Date Collected: 10/31/17 08:30 Date Received: 11/01/17 09:05 Percent Solids: 88.6

Lab Sample ID: 500-136575-2 **Matrix: Solid**

* 11/01/17 18:01 11/02/17 13:52

11/01/17 18:01 11/02/17 13:52

☼ 11/01/17 18:01 11/02/17 13:52 * 11/01/17 18:01 11/02/17 13:52

11/01/17 18:01 11/02/17 13:52

11/01/17 18:01 11/02/17 13:52

☼ 11/01/17 18:01 11/02/17 13:52

☼ 11/01/17 18:01 11/02/17 13:52

* 11/01/17 18:01 11/02/17 13:52

☼ 11/01/17 18:01 11/02/17 13:52

☼ 11/01/17 18:01 11/02/17 13:52

☼ 11/01/17 18:01 11/02/17 13:52

11/01/17 18:01 11/02/17 13:52

11/01/17 18:01 11/02/17 13:52

11/01/17 18:01 11/02/17 13:52

Method: 8260B - Volatile C Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	0.075		0.021	0.0092	mg/Kg	<u> </u>	11/01/17 18:01	11/02/17 13:52	1
Benzene	<0.0021		0.0021	0.00054	mg/Kg	₩	11/01/17 18:01	11/02/17 13:52	1
Bromodichloromethane	<0.0021		0.0021	0.00043	mg/Kg	₩	11/01/17 18:01	11/02/17 13:52	1
Bromoform	<0.0021		0.0021	0.00061	mg/Kg	₩.	11/01/17 18:01	11/02/17 13:52	1
Bromomethane	< 0.0053		0.0053	0.0020	mg/Kg	₩	11/01/17 18:01	11/02/17 13:52	1
2-Butanone (MEK)	< 0.0053		0.0053	0.0023	mg/Kg	☼	11/01/17 18:01	11/02/17 13:52	1
Carbon disulfide	<0.0053		0.0053	0.0011	mg/Kg	₩.	11/01/17 18:01	11/02/17 13:52	1
Carbon tetrachloride	<0.0021		0.0021	0.00061	mg/Kg	₩	11/01/17 18:01	11/02/17 13:52	1
Chlorobenzene	< 0.0021		0.0021	0.00078	mg/Kg	₩	11/01/17 18:01	11/02/17 13:52	1
Chloroethane	<0.0053		0.0053	0.0016	mg/Kg	₽	11/01/17 18:01	11/02/17 13:52	1
Chloroform	< 0.0021		0.0021	0.00073	mg/Kg	₩	11/01/17 18:01	11/02/17 13:52	1
Chloromethane	< 0.0053		0.0053	0.0021	mg/Kg	☼	11/01/17 18:01	11/02/17 13:52	1
cis-1,2-Dichloroethene	<0.0021		0.0021	0.00059	mg/Kg	₽	11/01/17 18:01	11/02/17 13:52	1
cis-1,3-Dichloropropene	< 0.0021		0.0021	0.00063	mg/Kg	₩	11/01/17 18:01	11/02/17 13:52	1
Dibromochloromethane	<0.0021		0.0021	0.00069	mg/Kg	₩	11/01/17 18:01	11/02/17 13:52	1
1,1-Dichloroethane	<0.0021		0.0021	0.00072	mg/Kg	₩.	11/01/17 18:01	11/02/17 13:52	1
1,2-Dichloroethane	< 0.0053		0.0053	0.0016	mg/Kg	₩	11/01/17 18:01	11/02/17 13:52	1
1,1-Dichloroethene	<0.0021		0.0021	0.00072	mg/Kg	₩	11/01/17 18:01	11/02/17 13:52	1

0.0021

0.0021

0.0021

0.0053

0.0053

0.0053

0.0021

0.0021

0.0021

0.0021

0.0021

0.0021

0.0021

0.00054 mg/Kg

0.00074 mg/Kg

0.0010 mg/Kg

0.0016 mg/Kg

0.0021 mg/Kg

0.0016 mg/Kg

0.00062 mg/Kg

0.00064 mg/Kg

0.00067 mg/Kg

0.00072 mg/Kg

0.00053 mg/Kg

0.00093 mg/Kg

0.00074 mg/Kg

< 0.0021

<0.0021

<0.0021

< 0.0053

< 0.0053

< 0.0053

< 0.0021

<0.0021

<0.0021

< 0.0021

< 0.0021

< 0.0021

< 0.0021

96

96

98

7011CCCVC1 y	Quamii						, , _ c u	
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
<0.0042		0.0042	0.00067	mg/Kg	☼	11/01/17 18:01	11/02/17 13:52	1
<0.0021		0.0021	0.00093	mg/Kg	₩	11/01/17 18:01	11/02/17 13:52	1
< 0.0053		0.0053	0.0018	mg/Kg	☼	11/01/17 18:01	11/02/17 13:52	1
<0.0021		0.0021	0.00071	mg/Kg	₩	11/01/17 18:01	11/02/17 13:52	1
<0.0021		0.0021	0.00090	mg/Kg	☼	11/01/17 18:01	11/02/17 13:52	1
<0.0021		0.0021	0.00071	mg/Kg	☼	11/01/17 18:01	11/02/17 13:52	1
	<0.0021 <0.0021 <0.0053 <0.0021 <0.0042	<0.0021 <0.0021 <0.0053 <0.0021 <0.0042	<0.0021	<0.0021	<0.0021	<0.0021	<0.0021	<0.0021

75 - 126

70 - 134

75 - 124

Method: 8270D - Semivolatile Organic Compounds (GC/MS)									
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Acenaphthene	<0.037	0.037	0.0067	mg/Kg	₩	11/07/17 16:14	11/08/17 16:29	1	
Acenaphthylene	<0.037	0.037	0.0049	mg/Kg	₩	11/07/17 16:14	11/08/17 16:29	1	
Anthracene	<0.037	0.037	0.0062	mg/Kg	≎	11/07/17 16:14	11/08/17 16:29	1	
Benzo[a]anthracene	<0.037	0.037	0.0050	mg/Kg	₩	11/07/17 16:14	11/08/17 16:29	1	

TestAmerica Chicago

Page 29 of 231

11/13/2017

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 08:30

Date Received: 11/01/17 09:05

Client Sample ID: 3160-16-3 (0-4')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-2

Matrix: Solid

Percent Solids: 88.6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]pyrene	<0.037		0.037	0.0072	mg/Kg	<u>₩</u>	11/07/17 16:14	11/08/17 16:29	1
Benzo[b]fluoranthene	< 0.037		0.037	0.0080	mg/Kg	₩	11/07/17 16:14	11/08/17 16:29	1
Benzo[g,h,i]perylene	< 0.037		0.037	0.012	mg/Kg	₩	11/07/17 16:14	11/08/17 16:29	1
Benzo[k]fluoranthene	< 0.037		0.037	0.011	mg/Kg	₩	11/07/17 16:14	11/08/17 16:29	1
Bis(2-chloroethoxy)methane	<0.19		0.19	0.038	mg/Kg	₩	11/07/17 16:14	11/08/17 16:29	1
Bis(2-chloroethyl)ether	<0.19		0.19	0.055	mg/Kg	₩	11/07/17 16:14	11/08/17 16:29	1
Bis(2-ethylhexyl) phthalate	<0.19		0.19	0.068	mg/Kg	☼	11/07/17 16:14	11/08/17 16:29	1
4-Bromophenyl phenyl ether	<0.19		0.19	0.049	mg/Kg	₩	11/07/17 16:14	11/08/17 16:29	1
Butyl benzyl phthalate	<0.19		0.19	0.070	mg/Kg	₩	11/07/17 16:14	11/08/17 16:29	1
Carbazole	<0.19		0.19	0.092	mg/Kg	₩	11/07/17 16:14	11/08/17 16:29	1
4-Chloroaniline	< 0.75		0.75	0.17	mg/Kg	₩	11/07/17 16:14	11/08/17 16:29	1
4-Chloro-3-methylphenol	<0.37		0.37	0.13	mg/Kg	₩	11/07/17 16:14	11/08/17 16:29	1
2-Chloronaphthalene	<0.19		0.19	0.041	mg/Kg	₩	11/07/17 16:14	11/08/17 16:29	1
2-Chlorophenol	<0.19		0.19	0.063	mg/Kg	₩	11/07/17 16:14	11/08/17 16:29	1
4-Chlorophenyl phenyl ether	<0.19		0.19	0.043	mg/Kg	₽	11/07/17 16:14	11/08/17 16:29	1
Chrysene	< 0.037		0.037	0.010	mg/Kg	₩	11/07/17 16:14	11/08/17 16:29	1
Dibenz(a,h)anthracene	< 0.037		0.037	0.0072	mg/Kg	₩	11/07/17 16:14	11/08/17 16:29	1
Dibenzofuran	<0.19		0.19	0.043	mg/Kg	₩	11/07/17 16:14	11/08/17 16:29	1
1,2-Dichlorobenzene	<0.19		0.19	0.044	mg/Kg	₩	11/07/17 16:14	11/08/17 16:29	1
1,3-Dichlorobenzene	<0.19		0.19	0.042	mg/Kg	₩	11/07/17 16:14	11/08/17 16:29	1
1,4-Dichlorobenzene	<0.19		0.19	0.047	mg/Kg		11/07/17 16:14	11/08/17 16:29	1
3,3'-Dichlorobenzidine	<0.19		0.19	0.052	mg/Kg	₩	11/07/17 16:14	11/08/17 16:29	1
0.4 Diablementanal	-0.07		0.07	0.000		**	44/07/47 40:44	44/00/47 40:00	

Bis(2-chloroethyl)ether	<0.19	0.19	0.055 mg/Kg	* 11/07/17 16:14 11/08/17 16:29 1	
Bis(2-ethylhexyl) phthalate	<0.19	0.19	0.068 mg/Kg	☼ 11/07/17 16:14 11/08/17 16:29 1	
4-Bromophenyl phenyl ether	<0.19	0.19	0.049 mg/Kg	‡ 11/07/17 16:14 11/08/17 16:29 1	
Butyl benzyl phthalate	<0.19	0.19	0.070 mg/Kg	☼ 11/07/17 16:14 11/08/17 16:29 1	
Carbazole	<0.19	0.19	0.092 mg/Kg	11/07/17 16:14 11/08/17 16:29 1	
4-Chloroaniline	<0.75	0.75	0.17 mg/Kg	‡ 11/07/17 16:14 11/08/17 16:29 1	
4-Chloro-3-methylphenol	<0.37	0.37	0.13 mg/Kg	‡ 11/07/17 16:14 11/08/17 16:29 1	
2-Chloronaphthalene	<0.19	0.19	0.041 mg/Kg	‡ 11/07/17 16:14 11/08/17 16:29 1	
2-Chlorophenol	<0.19	0.19	0.063 mg/Kg	‡ 11/07/17 16:14 11/08/17 16:29 1	
4-Chlorophenyl phenyl ether	<0.19	0.19	0.043 mg/Kg	\$\pi\$ 11/07/17 16:14 11/08/17 16:29 1	
Chrysene	<0.037	0.037	0.010 mg/Kg	☼ 11/07/17 16:14 11/08/17 16:29 1	
Dibenz(a,h)anthracene	<0.037	0.037	0.0072 mg/Kg	‡ 11/07/17 16:14 11/08/17 16:29 1	
Dibenzofuran	<0.19	0.19	0.043 mg/Kg	☼ 11/07/17 16:14 11/08/17 16:29 1	
1,2-Dichlorobenzene	<0.19	0.19	0.044 mg/Kg	‡ 11/07/17 16:14 11/08/17 16:29 1	
1,3-Dichlorobenzene	<0.19	0.19	0.042 mg/Kg	11/07/17 16:14 11/08/17 16:29 1	
1,4-Dichlorobenzene	<0.19	0.19	0.047 mg/Kg	☼ 11/07/17 16:14 11/08/17 16:29 1	
3,3'-Dichlorobenzidine	<0.19	0.19	0.052 mg/Kg	‡ 11/07/17 16:14 11/08/17 16:29 1	
2,4-Dichlorophenol	<0.37	0.37	0.088 mg/Kg	‡ 11/07/17 16:14 11/08/17 16:29 1	
Diethyl phthalate	<0.19	0.19	0.063 mg/Kg	* 11/07/17 16:14 11/08/17 16:29 1	
2,4-Dimethylphenol	<0.37	0.37	0.14 mg/Kg	11/07/17 16:14 11/08/17 16:29 1	
Dimethyl phthalate	<0.19	0.19	0.048 mg/Kg	11/07/17 16:14 11/08/17 16:29 1	
Di-n-butyl phthalate	<0.19	0.19	0.056 mg/Kg	‡ 11/07/17 16:14 11/08/17 16:29 1	
4,6-Dinitro-2-methylphenol	<0.75	0.75	0.30 mg/Kg	11/07/17 16:14 11/08/17 16:29 1	
2,4-Dinitrophenol	<0.75	0.75	0.65 mg/Kg	‡ 11/07/17 16:14 11/08/17 16:29 1	
2,4-Dinitrotoluene	<0.19	0.19	0.059 mg/Kg	\$\prim 11/07/17 16:14 11/08/17 16:29 1	
2,6-Dinitrotoluene	<0.19	0.19	0.073 mg/Kg	11/07/17 16:14 11/08/17 16:29 1	
Di-n-octyl phthalate	<0.19	0.19	0.060 mg/Kg	‡ 11/07/17 16:14 11/08/17 16:29 1	
Fluoranthene	<0.037	0.037	0.0069 mg/Kg	‡ 11/07/17 16:14 11/08/17 16:29 1	
Fluorene	<0.037	0.037	0.0052 mg/Kg	11/07/17 16:14 11/08/17 16:29 1	
Hexachlorobenzene	<0.075	0.075	0.0086 mg/Kg	11/07/17 16:14 11/08/17 16:29 1	
Hexachlorobutadiene	<0.19	0.19	0.058 mg/Kg	* 11/07/17 16:14 11/08/17 16:29 1	
Hexachlorocyclopentadiene	<0.75	0.75	0.21 mg/Kg	‡ 11/07/17 16:14 11/08/17 16:29 1	
Hexachloroethane	<0.19	0.19	0.056 mg/Kg	‡ 11/07/17 16:14 11/08/17 16:29 1	
Indeno[1,2,3-cd]pyrene	<0.037	0.037	0.0096 mg/Kg	* 11/07/17 16:14 11/08/17 16:29 1	
Isophorone	<0.19	0.19	0.042 mg/Kg	* 11/07/17 16:14 11/08/17 16:29 1	
2-Methylnaphthalene	<0.075	0.075	0.0068 mg/Kg	☼ 11/07/17 16:14 11/08/17 16:29 1	
2-Methylphenol	<0.19	0.19	0.059 mg/Kg	‡ 11/07/17 16:14 11/08/17 16:29 1	
3 & 4 Methylphenol	<0.19	0.19	0.062 mg/Kg	☼ 11/07/17 16:14 11/08/17 16:29 1	
Naphthalene	<0.037	0.037	0.0057 mg/Kg	11/07/17 16:14 11/08/17 16:29 1	
2-Nitroaniline	<0.19	0.19	0.050 mg/Kg	‡ 11/07/17 16:14 11/08/17 16:29 1	
3-Nitroaniline	<0.37	0.37	0.11 mg/Kg	# 11/07/17 16:14 11/08/17 16:29 1	
4-Nitroaniline	<0.37	0.37	0.15 mg/Kg	© 11/07/17 16:14 11/08/17 16:29 1	
4-Milloaniiine	10.01		5 5		
Nitrobenzene	<0.037	0.037	0.0092 mg/Kg	* 11/07/17 16:14 11/08/17 16:29 1	

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 08:30

Date Received: 11/01/17 09:05

2,4,6-Tribromophenol

Client Sample ID: 3160-16-3 (0-4')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-2

Percent Solids: 88.6

Matrix: Solid

11/07/17 16:14 11/08/17 16:29

Method: 8270D - Semivola	tile Organic Co	mpounds	(GC/MS) (Cd	ontinued)				
Analyte	_	Qualifier	RL	MDL	•	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.75		0.75	0.35	mg/Kg	<u> </u>	11/07/17 16:14	11/08/17 16:29	1
N-Nitrosodi-n-propylamine	<0.075		0.075	0.045	mg/Kg	₽	11/07/17 16:14	11/08/17 16:29	1
N-Nitrosodiphenylamine	<0.19		0.19	0.044	mg/Kg	₩	11/07/17 16:14	11/08/17 16:29	1
2,2'-oxybis[1-chloropropane]	<0.19		0.19	0.043	mg/Kg	₩	11/07/17 16:14	11/08/17 16:29	1
Pentachlorophenol	<0.75		0.75	0.59	mg/Kg	₽	11/07/17 16:14	11/08/17 16:29	1
Phenanthrene	< 0.037		0.037	0.0052	mg/Kg	₩	11/07/17 16:14	11/08/17 16:29	1
Phenol	<0.19		0.19	0.082	mg/Kg	₩	11/07/17 16:14	11/08/17 16:29	1
Pyrene	<0.037		0.037	0.0074	mg/Kg	₽	11/07/17 16:14	11/08/17 16:29	1
1,2,4-Trichlorobenzene	<0.19		0.19	0.040	mg/Kg	₩	11/07/17 16:14	11/08/17 16:29	1
2,4,5-Trichlorophenol	<0.37		0.37	0.084	mg/Kg	₩	11/07/17 16:14	11/08/17 16:29	1
2,4,6-Trichlorophenol	<0.37		0.37	0.13	mg/Kg	☆	11/07/17 16:14	11/08/17 16:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	72		44 - 121				11/07/17 16:14	11/08/17 16:29	1
2-Fluorophenol	76		46 - 133				11/07/17 16:14	11/08/17 16:29	1
Nitrobenzene-d5	67		41 - 120				11/07/17 16:14	11/08/17 16:29	1
Phenol-d5	80		46 - 125				11/07/17 16:14	11/08/17 16:29	1
Terphenyl-d14	83		35 - 160				11/07/17 16:14	11/08/17 16:29	1

25 - 139

Method: 6010B - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<1.1		1.1		mg/Kg	— =	11/02/17 07:49		1
Arsenic	7.5		0.55		mg/Kg	☼	11/02/17 07:49	11/02/17 20:23	1
Barium	530		0.55		mg/Kg	≎	11/02/17 07:49	11/02/17 20:23	1
Beryllium	0.48		0.22	0.052	mg/Kg		11/02/17 07:49	11/02/17 20:23	1
Cadmium	0.16	В	0.11	0.020	mg/Kg	☼	11/02/17 07:49	11/02/17 20:23	1
Chromium	19		0.55	0.27	mg/Kg	☼	11/02/17 07:49	11/02/17 20:23	1
Cobalt	6.9		0.28	0.073	mg/Kg	ф.	11/02/17 07:49	11/02/17 20:23	1
Copper	15		0.55	0.16	mg/Kg	☼	11/02/17 07:49	11/02/17 20:23	1
Iron	19000	В	11	5.8	mg/Kg	≎	11/02/17 07:49	11/02/17 20:23	1
Lead	13		0.28	0.13	mg/Kg	φ.	11/02/17 07:49	11/02/17 20:23	1
Manganese	170		0.55	0.080	mg/Kg	≎	11/02/17 07:49	11/02/17 20:23	1
Nickel	15		0.55	0.16	mg/Kg	☼	11/02/17 07:49	11/02/17 20:23	1
Selenium	0.50	J	0.55	0.33	mg/Kg	φ.	11/02/17 07:49	11/02/17 20:23	1
Silver	<0.28		0.28	0.072	mg/Kg	☼	11/02/17 07:49	11/02/17 20:23	1
Thallium	< 0.55		0.55	0.28	mg/Kg	☼	11/02/17 07:49	11/02/17 20:23	1
Vanadium	33		0.28	0.065	mg/Kg		11/02/17 07:49	11/02/17 20:23	1
Zinc	53		1.1	0.49	mg/Kg	₩	11/02/17 07:49	11/02/17 20:23	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/03/17 14:57	11/05/17 16:27	1
Barium	1.0		0.50	0.050	mg/L		11/03/17 14:57	11/05/17 16:27	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/03/17 14:57	11/05/17 16:27	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/03/17 14:57	11/05/17 16:27	1
Chromium	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 16:27	1
Cobalt	0.011	J	0.025	0.010	mg/L		11/03/17 14:57	11/05/17 16:27	1
Copper	0.012	J	0.025	0.010	mg/L		11/03/17 14:57	11/05/17 16:27	1
Iron	<0.40		0.40	0.20	mg/L		11/03/17 14:57	11/05/17 16:27	1

Page 31 of 231

TestAmerica Chicago

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 08:30 Date Received: 11/01/17 09:05

Client Sample ID: 3160-16-3 (0-4')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-2

Matrix: Solid	
Percent Solids: 88.6	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	<0.0075		0.0075	0.0075	mg/L		11/03/17 14:57	11/05/17 16:27	1
Manganese	0.013	J	0.025	0.010	mg/L		11/03/17 14:57	11/05/17 16:27	1
Nickel	0.018	J	0.025	0.010	mg/L		11/03/17 14:57	11/05/17 16:27	1
Selenium	<0.050		0.050	0.020	mg/L		11/03/17 14:57	11/05/17 16:27	1
Silver	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 16:27	1
Vanadium	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 16:27	1
Zinc	0.042	J	0.50	0.020	mg/L		11/03/17 14:57	11/05/17 16:27	1
Method: 6020A - Metals ((ICP/MS) - TCLP								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060		0.0060	0.0060	mg/L		11/03/17 14:57	11/06/17 16:11	1
Thallium	<0.0020		0.0020	0.0020	mg/L		11/03/17 14:57	11/06/17 16:11	1
Method: 7470A - TCLP M	lercury - TCLP								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/03/17 12:20	11/06/17 10:34	1
Method: 7471B - Mercury	(CVAA)								
Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.018		0.017	0.0057	mg/Kg	- -	11/02/17 16:10	11/03/17 08:07	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	4.9		0.20	0.20	SU			11/03/17 08:57	

Client Sample ID: 3160-16-2 (0-4')

Date Collected: 10/31/17 08:07 Date Received: 11/01/17 09:05 Lab Sample ID: 500-136575-3

Matrix: Solid Percent Solids: 87.1

Method: 8260B - Volatile O Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	0.066		0.021	0.0090	mg/Kg	<u> </u>	11/01/17 18:01	11/02/17 14:17	1
Benzene	<0.0021		0.0021	0.00053	mg/Kg	≎	11/01/17 18:01	11/02/17 14:17	1
Bromodichloromethane	<0.0021		0.0021	0.00042	mg/Kg	≎	11/01/17 18:01	11/02/17 14:17	1
Bromoform	<0.0021		0.0021	0.00061	mg/Kg	≎	11/01/17 18:01	11/02/17 14:17	1
Bromomethane	<0.0052		0.0052	0.0020	mg/Kg	≎	11/01/17 18:01	11/02/17 14:17	1
2-Butanone (MEK)	<0.0052		0.0052	0.0023	mg/Kg	≎	11/01/17 18:01	11/02/17 14:17	1
Carbon disulfide	<0.0052		0.0052	0.0011	mg/Kg		11/01/17 18:01	11/02/17 14:17	1
Carbon tetrachloride	<0.0021		0.0021	0.00060	mg/Kg	≎	11/01/17 18:01	11/02/17 14:17	1
Chlorobenzene	<0.0021		0.0021	0.00077	mg/Kg	≎	11/01/17 18:01	11/02/17 14:17	1
Chloroethane	<0.0052		0.0052	0.0015	mg/Kg	₽	11/01/17 18:01	11/02/17 14:17	1
Chloroform	<0.0021		0.0021	0.00072	mg/Kg	≎	11/01/17 18:01	11/02/17 14:17	1
Chloromethane	< 0.0052		0.0052	0.0021	mg/Kg	≎	11/01/17 18:01	11/02/17 14:17	1
cis-1,2-Dichloroethene	<0.0021		0.0021	0.00058	mg/Kg	₽	11/01/17 18:01	11/02/17 14:17	1
cis-1,3-Dichloropropene	<0.0021		0.0021	0.00063	mg/Kg	☼	11/01/17 18:01	11/02/17 14:17	1
Dibromochloromethane	<0.0021		0.0021	0.00068	mg/Kg	≎	11/01/17 18:01	11/02/17 14:17	1
1,1-Dichloroethane	<0.0021		0.0021	0.00071	mg/Kg	\$	11/01/17 18:01	11/02/17 14:17	1
1,2-Dichloroethane	<0.0052		0.0052	0.0016	mg/Kg	☼	11/01/17 18:01	11/02/17 14:17	1
1,1-Dichloroethene	<0.0021		0.0021	0.00071	mg/Kg	₩	11/01/17 18:01	11/02/17 14:17	1
1,2-Dichloropropane	<0.0021		0.0021	0.00054	mg/Kg		11/01/17 18:01	11/02/17 14:17	1
1,3-Dichloropropene, Total	<0.0021		0.0021	0.00073	mg/Kg	☼	11/01/17 18:01	11/02/17 14:17	1
Ethylbenzene	<0.0021		0.0021	0.00099	mg/Kg	₩	11/01/17 18:01	11/02/17 14:17	1
2-Hexanone	<0.0052		0.0052	0.0016	mg/Kg		11/01/17 18:01	11/02/17 14:17	1
Methylene Chloride	< 0.0052		0.0052	0.0020	mg/Kg	₩	11/01/17 18:01	11/02/17 14:17	1
4-Methyl-2-pentanone (MIBK)	< 0.0052		0.0052	0.0015	mg/Kg	₩	11/01/17 18:01	11/02/17 14:17	1
Methyl tert-butyl ether	<0.0021		0.0021	0.00061	mg/Kg	\$	11/01/17 18:01	11/02/17 14:17	1
Styrene	<0.0021		0.0021	0.00063	mg/Kg	₩	11/01/17 18:01	11/02/17 14:17	1
1,1,2,2-Tetrachloroethane	<0.0021		0.0021	0.00066	mg/Kg	≎	11/01/17 18:01	11/02/17 14:17	1
Tetrachloroethene	<0.0021		0.0021	0.00071	mg/Kg	₽	11/01/17 18:01	11/02/17 14:17	1
Toluene	<0.0021		0.0021	0.00052	mg/Kg	☼	11/01/17 18:01	11/02/17 14:17	1
trans-1,2-Dichloroethene	<0.0021		0.0021	0.00092	mg/Kg	≎	11/01/17 18:01	11/02/17 14:17	1
trans-1,3-Dichloropropene	<0.0021		0.0021	0.00073	mg/Kg	\$	11/01/17 18:01	11/02/17 14:17	1
1,1,1-Trichloroethane	<0.0021		0.0021	0.00070	mg/Kg	₩	11/01/17 18:01	11/02/17 14:17	1
1,1,2-Trichloroethane	<0.0021		0.0021	0.00089	mg/Kg	₩	11/01/17 18:01	11/02/17 14:17	1
Trichloroethene	<0.0021		0.0021	0.00070	mg/Kg	₩.	11/01/17 18:01	11/02/17 14:17	1
Vinyl acetate	< 0.0052		0.0052	0.0018	mg/Kg	₩	11/01/17 18:01	11/02/17 14:17	1
Vinyl chloride	< 0.0021		0.0021	0.00092	mg/Kg	₩	11/01/17 18:01	11/02/17 14:17	1
Xylenes, Total	<0.0042		0.0042	0.00066	mg/Kg		11/01/17 18:01	11/02/17 14:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	93		75 - 131				11/01/17 18:01	11/02/17 14:17	1
Dibromofluoromethane	99		75 - 126				11/01/17 18:01	11/02/17 14:17	1
1,2-Dichloroethane-d4 (Surr)	99		70 - 134				11/01/17 18:01	11/02/17 14:17	1
Toluene-d8 (Surr)	93		75 - 124				11/01/17 18:01	11/02/17 14:17	1

Method: 8270D - Semivola	atile Organic Compounds (GC/MS)						
Analyte	Result Qualifier	ŔL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	<0.038	0.038	0.0068	mg/Kg	\	11/07/17 16:14	11/08/17 16:54	1
Acenaphthylene	<0.038	0.038	0.0050	mg/Kg	☼	11/07/17 16:14	11/08/17 16:54	1
Anthracene	<0.038	0.038	0.0063	mg/Kg	☼	11/07/17 16:14	11/08/17 16:54	1
Benzo[a]anthracene	<0.038	0.038	0.0051	mg/Kg	₽	11/07/17 16:14	11/08/17 16:54	1

TestAmerica Chicago

Page 33 of 231

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 08:07

Hexachlorobutadiene

Indeno[1,2,3-cd]pyrene

2-Methylnaphthalene

3 & 4 Methylphenol

Hexachloroethane

Isophorone

2-Methylphenol

Naphthalene

2-Nitroaniline

3-Nitroaniline

4-Nitroaniline

Nitrobenzene

2-Nitrophenol

Hexachlorocyclopentadiene

Client Sample ID: 3160-16-2 (0-4')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-3

Matrix: Solid

Percent Solids: 87 1

Method: 8270D - Semivolatile Analyte		npounds (GC Qualifier	C/MS) (Co RL	ontinued MDL		D	Prepared	Analyzed	Dil Fac
Benzo[a]pyrene	<0.038		0.038	0.0074		— ¤	11/07/17 16:14	•	1
Benzo[b]fluoranthene	<0.038		0.038	0.0082		₩	11/07/17 16:14		. 1
Benzo[g,h,i]perylene	<0.038		0.038		mg/Kg			11/08/17 16:54	
Benzo[k]fluoranthene	<0.038		0.038		mg/Kg	₩		11/08/17 16:54	1
Bis(2-chloroethoxy)methane	<0.19		0.19		mg/Kg	₩		11/08/17 16:54	1
Bis(2-chloroethyl)ether	<0.19		0.19		mg/Kg			11/08/17 16:54	1
Bis(2-ethylhexyl) phthalate	<0.19		0.19		mg/Kg	₩		11/08/17 16:54	1
4-Bromophenyl phenyl ether	<0.19		0.19		mg/Kg	₩	11/07/17 16:14	11/08/17 16:54	1
Butyl benzyl phthalate	<0.19		0.19		mg/Kg		11/07/17 16:14	11/08/17 16:54	1
Carbazole	<0.19		0.19		mg/Kg	₩		11/08/17 16:54	1
4-Chloroaniline	<0.77		0.77		mg/Kg	₩	11/07/17 16:14	11/08/17 16:54	1
4-Chloro-3-methylphenol	<0.38		0.38		mg/Kg		11/07/17 16:14	11/08/17 16:54	1
2-Chloronaphthalene	<0.19		0.19		mg/Kg	₩	11/07/17 16:14	11/08/17 16:54	1
2-Chlorophenol	<0.19		0.19		mg/Kg	₩	11/07/17 16:14	11/08/17 16:54	1
4-Chlorophenyl phenyl ether	<0.19		0.19		mg/Kg		11/07/17 16:14	11/08/17 16:54	1
Chrysene	<0.038		0.038		mg/Kg	₩	11/07/17 16:14	11/08/17 16:54	1
Dibenz(a,h)anthracene	<0.038		0.038	0.0073	mg/Kg	₩	11/07/17 16:14	11/08/17 16:54	1
Dibenzofuran	<0.19		0.19	0.044	mg/Kg	₩	11/07/17 16:14	11/08/17 16:54	1
1,2-Dichlorobenzene	<0.19		0.19	0.045	mg/Kg	₩	11/07/17 16:14	11/08/17 16:54	1
1,3-Dichlorobenzene	<0.19		0.19	0.043	mg/Kg	₩	11/07/17 16:14	11/08/17 16:54	1
1,4-Dichlorobenzene	<0.19		0.19	0.049	mg/Kg	φ.	11/07/17 16:14	11/08/17 16:54	1
3,3'-Dichlorobenzidine	<0.19		0.19	0.053	mg/Kg	☼	11/07/17 16:14	11/08/17 16:54	1
2,4-Dichlorophenol	<0.38		0.38	0.090	mg/Kg	₩	11/07/17 16:14	11/08/17 16:54	1
Diethyl phthalate	<0.19		0.19	0.064	mg/Kg		11/07/17 16:14	11/08/17 16:54	1
2,4-Dimethylphenol	<0.38		0.38	0.14	mg/Kg	☼	11/07/17 16:14	11/08/17 16:54	1
Dimethyl phthalate	<0.19		0.19	0.050	mg/Kg	☼	11/07/17 16:14	11/08/17 16:54	1
Di-n-butyl phthalate	<0.19		0.19	0.058	mg/Kg	₽	11/07/17 16:14	11/08/17 16:54	1
4,6-Dinitro-2-methylphenol	<0.77		0.77	0.31	mg/Kg	☼	11/07/17 16:14	11/08/17 16:54	1
2,4-Dinitrophenol	<0.77		0.77	0.67	mg/Kg	₩	11/07/17 16:14	11/08/17 16:54	1
2,4-Dinitrotoluene	<0.19		0.19	0.060	mg/Kg	₩	11/07/17 16:14	11/08/17 16:54	1
2,6-Dinitrotoluene	<0.19		0.19	0.075	mg/Kg	☼	11/07/17 16:14	11/08/17 16:54	1
Di-n-octyl phthalate	<0.19		0.19	0.062	mg/Kg	₩	11/07/17 16:14	11/08/17 16:54	1
Fluoranthene	<0.038		0.038	0.0070	mg/Kg		11/07/17 16:14	11/08/17 16:54	1
Fluorene	<0.038		0.038	0.0053	mg/Kg	☼	11/07/17 16:14	11/08/17 16:54	1
Hexachlorobenzene	< 0.077		0.077	0.0088	mg/Kg	₩	11/07/17 16:14	11/08/17 16:54	1

TestAmerica Chicago

11/13/2017

11/07/17 16:14 11/08/17 16:54 11/07/17 16:14 11/08/17 16:54

11/07/17 16:14 11/08/17 16:54

11/07/17 16:14 11/08/17 16:54

11/07/17 16:14 11/08/17 16:54

11/07/17 16:14 11/08/17 16:54

11/07/17 16:14 11/08/17 16:54

* 11/07/17 16:14 11/08/17 16:54

11/07/17 16:14 11/08/17 16:54 11/07/17 16:14 11/08/17 16:54

11/07/17 16:14 11/08/17 16:54

11/07/17 16:14 11/08/17 16:54

11/07/17 16:14 11/08/17 16:54

11/07/17 16:14 11/08/17 16:54

Page 34 of 231

0.19

0.77

0.19

0.038

0.19

0.077

0.19

0.19

0.038

0.19

0.38

0.38

0.038

0.38

0.060 mg/Kg

0.22 mg/Kg

0.058 mg/Kg

0.0098 mg/Kg

0.043 mg/Kg

0.061 mg/Kg

0.063 mg/Kg

0.0058 mg/Kg

0.051 mg/Kg

0.12 mg/Kg

0.16 mg/Kg

0.0095 mg/Kg

0.090 mg/Kg

0.0070 mg/Kg

< 0.19

< 0.77

<0.19

< 0.038

< 0.19

< 0.19

< 0.19

<0.038

< 0.19

<0.38

<0.38

< 0.038

< 0.38

< 0.077

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 08:07

Date Received: 11/01/17 09:05

Client Sample ID: 3160-16-2 (0-4')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-3

Matrix: Solid Percent Solids: 87.1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.77	0.77	0.36	mg/Kg	<u> </u>	11/07/17 16:14	11/08/17 16:54	1
N-Nitrosodi-n-propylamine	<0.077	0.077	0.046	mg/Kg	₽	11/07/17 16:14	11/08/17 16:54	1
N-Nitrosodiphenylamine	<0.19	0.19	0.045	mg/Kg	₩	11/07/17 16:14	11/08/17 16:54	1
2,2'-oxybis[1-chloropropane]	<0.19	0.19	0.044	mg/Kg	☼	11/07/17 16:14	11/08/17 16:54	1
Pentachlorophenol	<0.77	0.77	0.61	mg/Kg	₽	11/07/17 16:14	11/08/17 16:54	1
Phenanthrene	<0.038	0.038	0.0053	mg/Kg	☼	11/07/17 16:14	11/08/17 16:54	1
Phenol	<0.19	0.19	0.084	mg/Kg	☼	11/07/17 16:14	11/08/17 16:54	1
Pyrene	<0.038	0.038	0.0075	mg/Kg	₽	11/07/17 16:14	11/08/17 16:54	1
1,2,4-Trichlorobenzene	<0.19	0.19	0.041	mg/Kg	☼	11/07/17 16:14	11/08/17 16:54	1
2,4,5-Trichlorophenol	<0.38	0.38	0.087	mg/Kg	☼	11/07/17 16:14	11/08/17 16:54	1
2,4,6-Trichlorophenol	<0.38	0.38	0.13	mg/Kg		11/07/17 16:14	11/08/17 16:54	1

Surrogate	%Recovery Q	Qualifier Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	74	44 - 121	11/07/17 16:14	11/08/17 16:54	1
2-Fluorophenol	88	46 - 133	11/07/17 16:14	11/08/17 16:54	1
Nitrobenzene-d5	70	41 - 120	11/07/17 16:14	11/08/17 16:54	1
Phenol-d5	83	46 - 125	11/07/17 16:14	11/08/17 16:54	1
Terphenyl-d14	86	35 - 160	11/07/17 16:14	11/08/17 16:54	1
2,4,6-Tribromophenol	91	25 - 139	11/07/17 16:14	11/08/17 16:54	1

Method:	6010B -	Metals ((ICP)
---------	---------	----------	-------

Analyte	Result Q	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.98	0.98	0.19	mg/Kg	<u> </u>	11/02/17 07:49	11/02/17 20:27	1
Arsenic	7.2	0.49	0.17	mg/Kg	₽	11/02/17 07:49	11/02/17 20:27	1
Barium	51	0.49	0.056	mg/Kg	☼	11/02/17 07:49	11/02/17 20:27	1
Beryllium	0.37	0.20	0.046	mg/Kg	₽	11/02/17 07:49	11/02/17 20:27	1
Cadmium	0.059 J	B 0.098	0.018	mg/Kg	₽	11/02/17 07:49	11/02/17 20:27	1
Chromium	17	0.49	0.24	mg/Kg	☼	11/02/17 07:49	11/02/17 20:27	1
Cobalt	5.9	0.24	0.064	mg/Kg	₽	11/02/17 07:49	11/02/17 20:27	1
Copper	13	0.49	0.14	mg/Kg	☼	11/02/17 07:49	11/02/17 20:27	1
Iron	19000 B	9.8	5.1	mg/Kg	₽	11/02/17 07:49	11/02/17 20:27	1
Lead	13	0.24	0.11	mg/Kg	₽	11/02/17 07:49	11/02/17 20:27	1
Manganese	170	0.49	0.071	mg/Kg	☼	11/02/17 07:49	11/02/17 20:27	1
Nickel	12	0.49	0.14	mg/Kg	₽	11/02/17 07:49	11/02/17 20:27	1
Selenium	0.74	0.49	0.29	mg/Kg	₽	11/02/17 07:49	11/02/17 20:27	1
Silver	<0.24	0.24	0.063	mg/Kg	☼	11/02/17 07:49	11/02/17 20:27	1
Thallium	0.27 J	0.49	0.24	mg/Kg	₽	11/02/17 07:49	11/02/17 20:27	1
Vanadium	28	0.24	0.058	mg/Kg	₽	11/02/17 07:49	11/02/17 20:27	1
Zinc	58	0.98	0.43	mg/Kg	₩	11/02/17 07:49	11/02/17 20:27	1

Method: 6010B	- Metals	(ICP) - TCLP
---------------	----------	------	----------

metriod: 0010D - metals (101) - 10E1									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/03/17 14:57	11/05/17 16:31	1
Barium	0.30	J	0.50	0.050	mg/L		11/03/17 14:57	11/05/17 16:31	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/03/17 14:57	11/05/17 16:31	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/03/17 14:57	11/05/17 16:31	1
Chromium	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 16:31	1
Cobalt	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 16:31	1
Copper	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 16:31	1
Iron	0.72		0.40	0.20	mg/L		11/03/17 14:57	11/05/17 16:31	1
	•=								

Page 35 of 231

TestAmerica Chicago

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 08:07 Date Received: 11/01/17 09:05

Client Sample ID: 3160-16-2 (0-4')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-3 Matrix: Solid

Percent Solids: 87.1	IVIC	atrix. Solid
	Percent S	olids: 87.1

Method: 6010B - Meta Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	<0.0075		0.0075	0.0075	mg/L		11/03/17 14:57	11/05/17 16:31	1
Manganese	0.017	J	0.025	0.010	mg/L		11/03/17 14:57	11/05/17 16:31	1
Nickel	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 16:31	1
Selenium	<0.050		0.050	0.020	mg/L		11/03/17 14:57	11/05/17 16:31	1
Silver	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 16:31	1
Vanadium	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 16:31	1
Zinc	<0.50		0.50	0.020	mg/L		11/03/17 14:57	11/05/17 16:31	1
- Method: 6020A - Meta	als (ICP/MS) - TCLP								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060		0.0060	0.0060	mg/L		11/03/17 14:57	11/06/17 16:15	1
Thallium	<0.0020		0.0020	0.0020	mg/L		11/03/17 14:57	11/06/17 16:15	1
Method: 7470A - TCL	P Mercury - TCLP								
Analyte	_	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/03/17 12:20	11/06/17 10:36	1
- Method: 7471B - Merc	cury (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.040		0.018	0.0059	mg/Kg	\	11/02/17 16:10	11/03/17 08:09	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	5.6		0.20	0.20	SU			11/03/17 08:57	

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Anthracene

Benzo[a]anthracene

Lab Sample ID: 500-136575-4

Client Sample ID: 3160-16-1 (0-4') Date Collected: 10/31/17 08:50 **Matrix: Solid** Date Received: 11/01/17 09:05

Percent Solids: 86.6

Method: 8260B - Volatile O Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	0.029		0.018	0.0079	mg/Kg	<u> </u>	11/01/17 18:01	11/02/17 14:43	1
Benzene	<0.0018		0.0018	0.00046	mg/Kg	☼	11/01/17 18:01	11/02/17 14:43	1
Bromodichloromethane	<0.0018		0.0018	0.00037	mg/Kg	☼	11/01/17 18:01	11/02/17 14:43	1
Bromoform	<0.0018		0.0018	0.00053	mg/Kg	₩	11/01/17 18:01	11/02/17 14:43	1
Bromomethane	<0.0045		0.0045	0.0017	mg/Kg	☼	11/01/17 18:01	11/02/17 14:43	1
2-Butanone (MEK)	<0.0045		0.0045	0.0020	mg/Kg	₩	11/01/17 18:01	11/02/17 14:43	1
Carbon disulfide	<0.0045		0.0045	0.00094	mg/Kg		11/01/17 18:01	11/02/17 14:43	1
Carbon tetrachloride	<0.0018		0.0018	0.00052	mg/Kg	₩	11/01/17 18:01	11/02/17 14:43	1
Chlorobenzene	<0.0018		0.0018	0.00067	mg/Kg	₩	11/01/17 18:01	11/02/17 14:43	1
Chloroethane	<0.0045		0.0045	0.0013	mg/Kg		11/01/17 18:01	11/02/17 14:43	1
Chloroform	<0.0018		0.0018	0.00063	mg/Kg	₩	11/01/17 18:01	11/02/17 14:43	1
Chloromethane	<0.0045		0.0045	0.0018	mg/Kg	₩	11/01/17 18:01	11/02/17 14:43	1
cis-1,2-Dichloroethene	<0.0018		0.0018	0.00050	mg/Kg	₩	11/01/17 18:01	11/02/17 14:43	1
cis-1,3-Dichloropropene	<0.0018		0.0018	0.00054	mg/Kg	₩	11/01/17 18:01	11/02/17 14:43	1
Dibromochloromethane	<0.0018		0.0018	0.00059	mg/Kg	₩	11/01/17 18:01	11/02/17 14:43	1
1,1-Dichloroethane	<0.0018		0.0018	0.00062	mg/Kg	₩	11/01/17 18:01	11/02/17 14:43	1
1,2-Dichloroethane	<0.0045		0.0045		mg/Kg	₩	11/01/17 18:01	11/02/17 14:43	1
1,1-Dichloroethene	<0.0018		0.0018	0.00062		₩	11/01/17 18:01	11/02/17 14:43	1
1,2-Dichloropropane	<0.0018		0.0018	0.00047	mg/Kg		11/01/17 18:01	11/02/17 14:43	1
1,3-Dichloropropene, Total	<0.0018		0.0018	0.00063		₩	11/01/17 18:01	11/02/17 14:43	1
Ethylbenzene	<0.0018		0.0018	0.00086		₩	11/01/17 18:01	11/02/17 14:43	1
2-Hexanone	<0.0045		0.0045	0.0014	mg/Kg		11/01/17 18:01	11/02/17 14:43	1
Methylene Chloride	<0.0045		0.0045		mg/Kg	₩	11/01/17 18:01	11/02/17 14:43	1
4-Methyl-2-pentanone (MIBK)	<0.0045		0.0045		mg/Kg	₩	11/01/17 18:01	11/02/17 14:43	1
Methyl tert-butyl ether	<0.0018		0.0018	0.00053	mg/Kg		11/01/17 18:01	11/02/17 14:43	1
Styrene	<0.0018		0.0018	0.00054		₩	11/01/17 18:01	11/02/17 14:43	1
1,1,2,2-Tetrachloroethane	<0.0018		0.0018	0.00058		₩	11/01/17 18:01	11/02/17 14:43	1
Tetrachloroethene	<0.0018		0.0018	0.00061	mg/Kg		11/01/17 18:01	11/02/17 14:43	1
Toluene	<0.0018		0.0018	0.00046		₩	11/01/17 18:01	11/02/17 14:43	1
trans-1,2-Dichloroethene	<0.0018		0.0018	0.00080	mg/Kg	₩	11/01/17 18:01	11/02/17 14:43	1
trans-1,3-Dichloropropene	<0.0018		0.0018	0.00063	mg/Kg		11/01/17 18:01	11/02/17 14:43	1
1,1,1-Trichloroethane	<0.0018		0.0018	0.00060		₩	11/01/17 18:01	11/02/17 14:43	1
1,1,2-Trichloroethane	<0.0018		0.0018	0.00077	mg/Kg	₩	11/01/17 18:01	11/02/17 14:43	1
Trichloroethene	<0.0018		0.0018	0.00061	mg/Kg		11/01/17 18:01	11/02/17 14:43	1
Vinyl acetate	<0.0045		0.0045		mg/Kg	₩	11/01/17 18:01	11/02/17 14:43	1
Vinyl chloride	<0.0018		0.0018	0.00080		₩	11/01/17 18:01	11/02/17 14:43	1
Xylenes, Total	<0.0036		0.0036	0.00058			11/01/17 18:01		1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	88		75 - 131				11/01/17 18:01	11/02/17 14:43	1
Dibromofluoromethane	99		75 - 126				11/01/17 18:01	11/02/17 14:43	1
1,2-Dichloroethane-d4 (Surr)	97		70 - 134				11/01/17 18:01	11/02/17 14:43	1
Toluene-d8 (Surr)	92		75 - 124				11/01/17 18:01	11/02/17 14:43	1
Method: 8270D - Semivolat Analyte		mpounds Qualifier	(GC/MS) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	<0.037		0.037		mg/Kg	<u></u>	•	11/08/17 17:20	1
Acenaphthylene	<0.037		0.037		mg/Kg	₩		11/08/17 17:20	1
* * * * * * * * * * * * * * * * * * *	40.007		0.007	0.0000	J -9	بن ر	44/07/47 40:44	44/00/47 47:00	

TestAmerica Chicago

☼ 11/07/17 16:14 11/08/17 17:20

11/07/17 16:14 11/08/17 17:20

0.037

0.037

<0.037

0.016 J

0.0063 mg/Kg

0.0051 mg/Kg

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028 TestAmerica Job ID: 500-136575-1

Client Sample ID: 3160-16-1 (0-4')

Lab Sample ID: 500-136575-4

Date Collected: 10/31/17 08:50

Matrix: Solid

Date Received: 11/01/17 09:05

Percent Solids: 86.6

Method: 8270D - Semivola					•	_	Dronered	Analyzad	DUES
Analyte		Qualifier	RL	MDL		— D	Prepared	Analyzed	Dil Fac
Benzo[a]pyrene	0.023		0.037	0.0073		₩	11/07/17 16:14	11/08/17 17:20	1
Benzo[b]fluoranthene	0.017	J	0.037	0.0081			11/07/17 16:14		
Benzo[g,h,i]perylene	<0.037		0.037		mg/Kg	☆		11/08/17 17:20	1
Benzo[k]fluoranthene	<0.037		0.037		mg/Kg	☆	11/07/17 16:14		1
Bis(2-chloroethoxy)methane	<0.19		0.19		mg/Kg	<u>.</u> .			1
Bis(2-chloroethyl)ether	<0.19		0.19		mg/Kg	1.t		11/08/17 17:20	1
Bis(2-ethylhexyl) phthalate	<0.19		0.19			Ψ.		11/08/17 17:20	1
4-Bromophenyl phenyl ether	<0.19		0.19		mg/Kg			11/08/17 17:20	1
Butyl benzyl phthalate	<0.19		0.19		mg/Kg	☆		11/08/17 17:20	1
Carbazole	<0.19		0.19		mg/Kg	₽		11/08/17 17:20	1
4-Chloroaniline	<0.76		0.76		mg/Kg		11/07/17 16:14	11/08/17 17:20	
4-Chloro-3-methylphenol	<0.37		0.37	0.13	mg/Kg	₩	11/07/17 16:14	11/08/17 17:20	1
2-Chloronaphthalene	<0.19		0.19	0.042	mg/Kg	₩	11/07/17 16:14	11/08/17 17:20	1
2-Chlorophenol	<0.19		0.19		mg/Kg	₩	11/07/17 16:14	11/08/17 17:20	1
4-Chlorophenyl phenyl ether	<0.19		0.19	0.044	mg/Kg	₽	11/07/17 16:14	11/08/17 17:20	1
Chrysene	0.014	J	0.037	0.010	mg/Kg	₩	11/07/17 16:14	11/08/17 17:20	1
Dibenz(a,h)anthracene	< 0.037		0.037	0.0073	mg/Kg	₩	11/07/17 16:14	11/08/17 17:20	1
Dibenzofuran	<0.19		0.19	0.044	mg/Kg	₽	11/07/17 16:14	11/08/17 17:20	1
1,2-Dichlorobenzene	<0.19		0.19	0.045	mg/Kg	₽	11/07/17 16:14	11/08/17 17:20	1
1,3-Dichlorobenzene	<0.19		0.19	0.042	mg/Kg	☼	11/07/17 16:14	11/08/17 17:20	•
1,4-Dichlorobenzene	<0.19		0.19	0.048	mg/Kg		11/07/17 16:14	11/08/17 17:20	
3,3'-Dichlorobenzidine	<0.19		0.19	0.053	mg/Kg	☼	11/07/17 16:14	11/08/17 17:20	1
2,4-Dichlorophenol	< 0.37		0.37	0.090	mg/Kg	₽	11/07/17 16:14	11/08/17 17:20	1
Diethyl phthalate	<0.19		0.19	0.064	mg/Kg	· · · · · · · · · · · · · · · · · · ·	11/07/17 16:14	11/08/17 17:20	1
2,4-Dimethylphenol	<0.37		0.37	0.14	mg/Kg	☼	11/07/17 16:14	11/08/17 17:20	1
Dimethyl phthalate	<0.19		0.19		mg/Kg	☼	11/07/17 16:14	11/08/17 17:20	1
Di-n-butyl phthalate	<0.19		0.19		mg/Kg	· · · · · · · · · · · · · · · · · · ·	11/07/17 16:14	11/08/17 17:20	,
4,6-Dinitro-2-methylphenol	<0.76		0.76		mg/Kg	₽	11/07/17 16:14	11/08/17 17:20	
2,4-Dinitrophenol	<0.76		0.76		mg/Kg	₩		11/08/17 17:20	
2,4-Dinitrotoluene	<0.19		0.19		mg/Kg	· · · · · · · · · · · · · · · · · · ·		11/08/17 17:20	
2,6-Dinitrotoluene	<0.19		0.19		mg/Kg	₩	11/07/17 16:14		
Di-n-octyl phthalate	<0.19		0.19		mg/Kg	☆		11/08/17 17:20	-
Fluoranthene	0.018		0.037	0.0070				11/08/17 17:20	
Fluorene	< 0.037	3	0.037	0.0073		₽		11/08/17 17:20	
Hexachlorobenzene	<0.037		0.037	0.0033		₩		11/08/17 17:20	
Hexachlorobutadiene	<0.19		0.19			· · · · · · · · · · · · · · · · · · ·	11/07/17 16:14		
Hexachlorocyclopentadiene	<0.19		0.19		mg/Kg mg/Kg	т ф		11/08/17 17:20	
• •						₽			
Hexachloroethane	<0.19		0.19		mg/Kg	· · · · · · · .	11/07/17 16:14		
Indeno[1,2,3-cd]pyrene	<0.037		0.037	0.0098				11/08/17 17:20	
Isophorone	<0.19		0.19		mg/Kg	☆		11/08/17 17:20	1
2-Methylnaphthalene	0.013	. J	0.076	0.0069				11/08/17 17:20	1
2-Methylphenol	<0.19		0.19		mg/Kg	ψ.		11/08/17 17:20	_
3 & 4 Methylphenol	<0.19		0.19		mg/Kg	☆		11/08/17 17:20	•
Naphthalene	<0.037		0.037	0.0058		<u>.</u> .		11/08/17 17:20	
2-Nitroaniline	<0.19		0.19		mg/Kg	₩.		11/08/17 17:20	•
3-Nitroaniline	<0.37		0.37		mg/Kg	*		11/08/17 17:20	•
4-Nitroaniline	<0.37		0.37		mg/Kg			11/08/17 17:20	1
Nitrobenzene	<0.037		0.037	0.0094		₽		11/08/17 17:20	1
2-Nitrophenol	< 0.37		0.37	0.089	mg/Kg	₩	11/07/17 16:14	11/08/17 17:20	1

TestAmerica Chicago

Page 38 of 231

__

3

5

b

10

12

12

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 08:50

Date Received: 11/01/17 09:05

Client Sample ID: 3160-16-1 (0-4')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-4

Matrix: Solid

Percent Solids: 86.6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.76		0.76	0.36	mg/Kg	<u></u>	11/07/17 16:14	11/08/17 17:20	1
N-Nitrosodi-n-propylamine	<0.076		0.076	0.046	mg/Kg		11/07/17 16:14	11/08/17 17:20	1
N-Nitrosodiphenylamine	<0.19		0.19	0.044	mg/Kg	≎	11/07/17 16:14	11/08/17 17:20	1
2,2'-oxybis[1-chloropropane]	<0.19		0.19	0.044	mg/Kg	☼	11/07/17 16:14	11/08/17 17:20	1
Pentachlorophenol	<0.76		0.76	0.60	mg/Kg	₽	11/07/17 16:14	11/08/17 17:20	1
Phenanthrene	0.018	J	0.037	0.0053	mg/Kg	≎	11/07/17 16:14	11/08/17 17:20	1
Phenol	<0.19		0.19	0.084	mg/Kg	☼	11/07/17 16:14	11/08/17 17:20	1
Pyrene	0.017	J	0.037	0.0075	mg/Kg	₽	11/07/17 16:14	11/08/17 17:20	1
1,2,4-Trichlorobenzene	<0.19		0.19	0.041	mg/Kg	≎	11/07/17 16:14	11/08/17 17:20	1
2,4,5-Trichlorophenol	< 0.37		0.37	0.086	mg/Kg	≎	11/07/17 16:14	11/08/17 17:20	1
2,4,6-Trichlorophenol	<0.37		0.37	0.13	mg/Kg	φ.	11/07/17 16:14	11/08/17 17:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	71		44 - 121				11/07/17 16:14	11/08/17 17:20	1
2-Fluorophenol	82		46 - 133				11/07/17 16:14	11/08/17 17:20	1
Nitrobenzene-d5	67		41 - 120				11/07/17 16:14	11/08/17 17:20	1
Phenol-d5	81		46 - 125				11/07/17 16:14	11/08/17 17:20	1
Terphenyl-d14	87		35 - 160				11/07/17 16:14	11/08/17 17:20	1
2,4,6-Tribromophenol	84		25 - 139				11/07/17 16:14	11/08/17 17:20	1

Method: 6010B - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<1.1		1.1	0.22	mg/Kg	<u></u>	11/02/17 07:49		1
Arsenic	10		0.56		mg/Kg	☼	11/02/17 07:49	11/02/17 20:31	1
Barium	120		0.56	0.064	mg/Kg	☼	11/02/17 07:49	11/02/17 20:31	1
Beryllium	0.60		0.22	0.052	mg/Kg	φ.	11/02/17 07:49	11/02/17 20:31	1
Cadmium	0.10	JB	0.11	0.020	mg/Kg	☼	11/02/17 07:49	11/02/17 20:31	1
Chromium	16		0.56	0.28	mg/Kg	☼	11/02/17 07:49	11/02/17 20:31	1
Cobalt	17		0.28	0.073	mg/Kg	φ.	11/02/17 07:49	11/02/17 20:31	1
Copper	9.3		0.56	0.16	mg/Kg	≎	11/02/17 07:49	11/02/17 20:31	1
Iron	17000	В	11	5.8	mg/Kg	☼	11/02/17 07:49	11/02/17 20:31	1
Lead	25		0.28	0.13	mg/Kg	φ.	11/02/17 07:49	11/02/17 20:31	1
Manganese	1600		2.8	0.41	mg/Kg	☼	11/02/17 07:49	11/03/17 13:52	5
Nickel	12		0.56	0.16	mg/Kg	☼	11/02/17 07:49	11/02/17 20:31	1
Selenium	0.90		0.56	0.33	mg/Kg	₽	11/02/17 07:49	11/02/17 20:31	1
Silver	<0.28		0.28	0.072	mg/Kg	☼	11/02/17 07:49	11/02/17 20:31	1
Thallium	<0.56		0.56	0.28	mg/Kg	☼	11/02/17 07:49	11/02/17 20:31	1
Vanadium	32		0.28	0.066	mg/Kg		11/02/17 07:49	11/02/17 20:31	1
Zinc	45		1.1	0.49	mg/Kg	₩	11/02/17 07:49	11/02/17 20:31	1

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050	0.0	50	0.010	mg/L		11/03/17 14:57	11/05/17 16:35	1
Barium	0.67	0	50	0.050	mg/L		11/03/17 14:57	11/05/17 16:35	1
Beryllium	<0.0040	0.00	40 0	.0040	mg/L		11/03/17 14:57	11/05/17 16:35	1
Cadmium	<0.0050	0.00	50 0	.0020	mg/L		11/03/17 14:57	11/05/17 16:35	1
Chromium	<0.025	0.0	25	0.010	mg/L		11/03/17 14:57	11/05/17 16:35	1
Cobalt	<0.025	0.0	25	0.010	mg/L		11/03/17 14:57	11/05/17 16:35	1
Copper	<0.025	0.0	25	0.010	mg/L		11/03/17 14:57	11/05/17 16:35	1
Iron	0.41	0	40	0.20	mg/L		11/03/17 14:57	11/05/17 16:35	1

Page 39 of 231

TestAmerica Chicago

11/13/2017

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 08:50

Date Received: 11/01/17 09:05

рН

Client Sample ID: 3160-16-1 (0-4')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-4 **Matrix: Solid**

Percent Solids: 86.6

11/03/17 08:57

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	<0.0075		0.0075	0.0075	mg/L		11/03/17 14:57	11/05/17 16:35	1
Manganese	0.011	J	0.025	0.010	mg/L		11/03/17 14:57	11/05/17 16:35	1
Nickel	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 16:35	1
Selenium	<0.050		0.050	0.020	mg/L		11/03/17 14:57	11/05/17 16:35	1
Silver	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 16:35	1
Vanadium	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 16:35	1
Zinc	0.030	J	0.50	0.020	mg/L		11/03/17 14:57	11/05/17 16:35	1
_ Method: 6020A - Metals (ICP/M	IS) - TCLP								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060		0.0060	0.0060	mg/L		11/03/17 14:57	11/06/17 16:19	1
Thallium -	<0.0020		0.0020	0.0020	mg/L		11/03/17 14:57	11/06/17 16:19	1
- Method: 7470A - TCLP Mercury	v - TCLP								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/03/17 12:20	11/06/17 10:37	1
- Method: 7471B - Mercury (CVA	(A)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.041		0.017	0.0058	mg/Kg	<u> </u>	11/02/17 16:10	11/03/17 08:11	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

0.20

6.3

0.20 SU

TestAmerica Job ID: 500-136575-1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-16-5 (0-4')

Date Collected: 10/31/17 09:00
Date Received: 11/01/17 09:05

Lab Sample ID: 500-136575-5 Matrix: Solid

Percent Solids: 83.7

Method: 8260B - Volatile O Analyte	Result (RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	<0.017		0.017	0.0074	mg/Kg	<u> </u>	11/01/17 18:01	11/02/17 15:08	1
Benzene	<0.0017		0.0017	0.00043	mg/Kg	≎	11/01/17 18:01	11/02/17 15:08	1
Bromodichloromethane	<0.0017		0.0017	0.00035	mg/Kg	≎	11/01/17 18:01	11/02/17 15:08	1
Bromoform	<0.0017		0.0017	0.00050	mg/Kg	☆	11/01/17 18:01	11/02/17 15:08	1
Bromomethane	< 0.0043		0.0043	0.0016	mg/Kg	≎	11/01/17 18:01	11/02/17 15:08	1
2-Butanone (MEK)	< 0.0043		0.0043	0.0019	mg/Kg	≎	11/01/17 18:01	11/02/17 15:08	1
Carbon disulfide	<0.0043		0.0043	0.00089	mg/Kg	.	11/01/17 18:01	11/02/17 15:08	1
Carbon tetrachloride	<0.0017		0.0017	0.00049	mg/Kg	₩	11/01/17 18:01	11/02/17 15:08	1
Chlorobenzene	<0.0017		0.0017	0.00063	mg/Kg	₩	11/01/17 18:01	11/02/17 15:08	1
Chloroethane	<0.0043		0.0043	0.0013	mg/Kg	₽	11/01/17 18:01	11/02/17 15:08	1
Chloroform	<0.0017		0.0017	0.00059	mg/Kg	₩	11/01/17 18:01	11/02/17 15:08	1
Chloromethane	<0.0043		0.0043	0.0017	mg/Kg	₩	11/01/17 18:01	11/02/17 15:08	1
cis-1,2-Dichloroethene	<0.0017		0.0017	0.00048	mg/Kg	₩.	11/01/17 18:01	11/02/17 15:08	1
cis-1,3-Dichloropropene	<0.0017		0.0017	0.00051	mg/Kg	☼	11/01/17 18:01	11/02/17 15:08	1
Dibromochloromethane	<0.0017		0.0017	0.00056	mg/Kg	₩	11/01/17 18:01	11/02/17 15:08	1
1,1-Dichloroethane	<0.0017		0.0017	0.00058	mg/Kg	₩.	11/01/17 18:01	11/02/17 15:08	1
1,2-Dichloroethane	< 0.0043		0.0043	0.0013	mg/Kg	₩	11/01/17 18:01	11/02/17 15:08	1
1,1-Dichloroethene	<0.0017		0.0017	0.00059	mg/Kg	₩	11/01/17 18:01	11/02/17 15:08	1
1,2-Dichloropropane	<0.0017		0.0017	0.00044	mg/Kg	ф.	11/01/17 18:01	11/02/17 15:08	1
1,3-Dichloropropene, Total	<0.0017		0.0017	0.00060	mg/Kg	₩	11/01/17 18:01	11/02/17 15:08	1
Ethylbenzene	<0.0017		0.0017	0.00082	mg/Kg	₩	11/01/17 18:01	11/02/17 15:08	1
2-Hexanone	<0.0043		0.0043	0.0013	mg/Kg	ф.	11/01/17 18:01	11/02/17 15:08	1
Methylene Chloride	< 0.0043		0.0043	0.0017	mg/Kg	₩	11/01/17 18:01	11/02/17 15:08	1
4-Methyl-2-pentanone (MIBK)	< 0.0043		0.0043	0.0013	mg/Kg	☼	11/01/17 18:01	11/02/17 15:08	1
Methyl tert-butyl ether	<0.0017		0.0017	0.00050	mg/Kg	₩.	11/01/17 18:01	11/02/17 15:08	1
Styrene	<0.0017		0.0017	0.00052	mg/Kg	₩	11/01/17 18:01	11/02/17 15:08	1
1,1,2,2-Tetrachloroethane	<0.0017		0.0017	0.00054	mg/Kg	☼	11/01/17 18:01	11/02/17 15:08	1
Tetrachloroethene	<0.0017		0.0017	0.00058	mg/Kg	₩.	11/01/17 18:01	11/02/17 15:08	1
Toluene	<0.0017		0.0017	0.00043	mg/Kg	☼	11/01/17 18:01	11/02/17 15:08	1
trans-1,2-Dichloroethene	<0.0017		0.0017	0.00076	mg/Kg	₩	11/01/17 18:01	11/02/17 15:08	1
trans-1,3-Dichloropropene	<0.0017		0.0017	0.00060	mg/Kg	₩.	11/01/17 18:01	11/02/17 15:08	1
1,1,1-Trichloroethane	<0.0017		0.0017	0.00057	mg/Kg	₩	11/01/17 18:01	11/02/17 15:08	1
1,1,2-Trichloroethane	<0.0017		0.0017	0.00073	mg/Kg	₩	11/01/17 18:01	11/02/17 15:08	1
Trichloroethene	<0.0017		0.0017	0.00058	mg/Kg		11/01/17 18:01	11/02/17 15:08	1
Vinyl acetate	< 0.0043		0.0043	0.0015	mg/Kg	☼	11/01/17 18:01	11/02/17 15:08	1
Vinyl chloride	<0.0017		0.0017	0.00075	mg/Kg	₩	11/01/17 18:01	11/02/17 15:08	1
Xylenes, Total	<0.0034		0.0034	0.00055	mg/Kg		11/01/17 18:01	11/02/17 15:08	1
Surrogate	%Recovery	Qualifier I	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91		75 - 131				11/01/17 18:01	11/02/17 15:08	1
Dibromofluoromethane	105	7	75 - 126				11/01/17 18:01	11/02/17 15:08	1
1,2-Dichloroethane-d4 (Surr)	97	7	70 - 134				11/01/17 18:01	11/02/17 15:08	1
Toluene-d8 (Surr)	89		75 - 124				11/01/17 18:01	11/02/17 15:08	1

Method: 8270D - Semivolatile Organic Compounds (GC/MS)										
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Acenaphthene	<0.037	0.037	0.0068	mg/Kg	\	11/07/17 16:14	11/08/17 13:41	1		
Acenaphthylene	<0.037	0.037	0.0050	mg/Kg	₩	11/07/17 16:14	11/08/17 13:41	1		
Anthracene	0.043	0.037	0.0063	mg/Kg	₩	11/07/17 16:14	11/08/17 13:41	1		
Benzolalanthracene	0.084	0.037	0.0051	ma/Ka		11/07/17 16:14	11/08/17 13:41	1		

TestAmerica Chicago

11/13/2017

Page 41 of 231

G

6

8

10

13

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136575-1

Matrix: Solid

Client Sample ID: 3160-16-5 (0-4') Lab Sample ID: 500-136575-5

Date Collected: 10/31/17 09:00 Date Received: 11/01/17 09:05 Percent Solids: 83.7

Method: 8270D - Semivolatil Analyte	Result Quali		MDL	•	D	Prepared	Analyzed	Dil Fa
Benzo[a]pyrene	0.079	0.037	0.0073	mg/Kg	<u></u>	11/07/17 16:14	11/08/17 13:41	
Benzo[b]fluoranthene	0.10	0.037	0.0081	mg/Kg	≎	11/07/17 16:14	11/08/17 13:41	
Benzo[g,h,i]perylene	0.062	0.037	0.012	mg/Kg	φ.	11/07/17 16:14	11/08/17 13:41	
Benzo[k]fluoranthene	<0.037	0.037	0.011	mg/Kg	☼	11/07/17 16:14	11/08/17 13:41	
Bis(2-chloroethoxy)methane	<0.19	0.19	0.038	mg/Kg	☼	11/07/17 16:14	11/08/17 13:41	
Bis(2-chloroethyl)ether	<0.19	0.19	0.056	mg/Kg		11/07/17 16:14	11/08/17 13:41	
Bis(2-ethylhexyl) phthalate	<0.19	0.19	0.069	mg/Kg	₩	11/07/17 16:14	11/08/17 13:41	
4-Bromophenyl phenyl ether	<0.19	0.19	0.050	mg/Kg	☼	11/07/17 16:14	11/08/17 13:41	
Butyl benzyl phthalate	<0.19	0.19	0.072	mg/Kg		11/07/17 16:14	11/08/17 13:41	
Carbazole	<0.19	0.19	0.094	mg/Kg	☼	11/07/17 16:14	11/08/17 13:41	
4-Chloroaniline	<0.76	0.76		mg/Kg	☼	11/07/17 16:14	11/08/17 13:41	
4-Chloro-3-methylphenol	<0.37	0.37		mg/Kg	φ.		11/08/17 13:41	
2-Chloronaphthalene	<0.19	0.19		mg/Kg	☼		11/08/17 13:41	
2-Chlorophenol	<0.19	0.19		mg/Kg	₩		11/08/17 13:41	
4-Chlorophenyl phenyl ether	<0.19	0.19		mg/Kg	· · · · · · · · · · · · · · · · · · ·		11/08/17 13:41	
Chrysene	0.095	0.037		mg/Kg	☆		11/08/17 13:41	
Dibenz(a,h)anthracene	0.044	0.037	0.0073		☼		11/08/17 13:41	
Dibenzofuran	<0.19	0.19		mg/Kg			11/08/17 13:41	
1,2-Dichlorobenzene	<0.19	0.19		mg/Kg	☼		11/08/17 13:41	
1,3-Dichlorobenzene	<0.19	0.19		mg/Kg	₽		11/08/17 13:41	
1,4-Dichlorobenzene	<0.19	0.19		mg/Kg			11/08/17 13:41	
3.3'-Dichlorobenzidine	<0.19	0.19		mg/Kg	₽		11/08/17 13:41	
2,4-Dichlorophenol	<0.37	0.13		mg/Kg	☆		11/08/17 13:41	
Diethyl phthalate	<0.19	0.19		mg/Kg			11/08/17 13:41	
2,4-Dimethylphenol	<0.19	0.19		mg/Kg	₩		11/08/17 13:41	
Dimethyl phthalate	<0.19	0.19		mg/Kg			11/08/17 13:41	
Di-n-butyl phthalate	<0.19	0.19		mg/Kg	· · · · · · · · .		11/08/17 13:41	
4,6-Dinitro-2-methylphenol	<0.19	0.19	0.037		т ф		11/08/17 13:41	
* * * * * * * * * * * * * * * * * * * *	<0.76	0.76		mg/Kg mg/Kg	~ ☆		11/08/17 13:41	
2,4-Dinitrophenol 2,4-Dinitrotoluene	<0.76	0.78			· · · · · · · · · · · · · · · · · · ·		11/08/17 13:41	
,	<0.19	0.19		mg/Kg mg/Kg	₩		11/08/17 13:41	
2,6-Dinitrotoluene				0 0	γ. Υ			
Di-n-octyl phthalate	<0.19	0.19		mg/Kg	· · · · · · · · · · · · · · · · · · ·		11/08/17 13:41	
Fluoranthene	0.092	0.037	0.0070	0 0	₩		11/08/17 13:41	
Fluorene	0.0082 J	0.037	0.0053	0 0	≎		11/08/17 13:41	
Hexachlorobenzene	<0.076	0.076	0.0087				11/08/17 13:41	
Hexachlorobutadiene	<0.19	0.19		mg/Kg	☆		11/08/17 13:41	
Hexachlorocyclopentadiene	<0.76	0.76		mg/Kg	₩		11/08/17 13:41	
Hexachloroethane	<0.19	0.19		mg/Kg			11/08/17 13:41	
Indeno[1,2,3-cd]pyrene	0.050	0.037	0.0098		Ψ.		11/08/17 13:41	
Isophorone	<0.19	0.19		mg/Kg			11/08/17 13:41	
2-Methylnaphthalene	0.26	0.076	0.0069				11/08/17 13:41	
2-Methylphenol	<0.19	0.19		mg/Kg			11/08/17 13:41	
3 & 4 Methylphenol	<0.19	0.19		mg/Kg			11/08/17 13:41	
Naphthalene	0.17	0.037	0.0058				11/08/17 13:41	
2-Nitroaniline	<0.19	0.19		mg/Kg	₽		11/08/17 13:41	
3-Nitroaniline	<0.37	0.37		mg/Kg	*		11/08/17 13:41	
4-Nitroaniline	<0.37	0.37		mg/Kg			11/08/17 13:41	
Nitrobenzene	<0.037	0.037	0.0094		₽	11/07/17 16:14	11/08/17 13:41	
2-Nitrophenol	<0.37	0.37	0.089	mg/Kg	₩	11/07/17 16:14	11/08/17 13:41	

TestAmerica Chicago

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 09:00

Date Received: 11/01/17 09:05

Client Sample ID: 3160-16-5 (0-4')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-5

Matrix: Solid

Percent Solids: 83.7

Method: 8270D - Semivola	_	•			•	_	B	A	D!! E
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.76		0.76	0.36	mg/Kg	☼	11/07/17 16:14	11/08/17 13:41	1
N-Nitrosodi-n-propylamine	<0.076		0.076	0.046	mg/Kg	₩	11/07/17 16:14	11/08/17 13:41	1
N-Nitrosodiphenylamine	<0.19		0.19	0.044	mg/Kg	☆	11/07/17 16:14	11/08/17 13:41	1
2,2'-oxybis[1-chloropropane]	<0.19		0.19	0.044	mg/Kg	☆	11/07/17 16:14	11/08/17 13:41	1
Pentachlorophenol	<0.76		0.76	0.60	mg/Kg	₽	11/07/17 16:14	11/08/17 13:41	1
Phenanthrene	0.34		0.037	0.0053	mg/Kg	≎	11/07/17 16:14	11/08/17 13:41	1
Phenol	<0.19		0.19	0.084	mg/Kg	≎	11/07/17 16:14	11/08/17 13:41	1
Pyrene	0.11		0.037	0.0075	mg/Kg	₩	11/07/17 16:14	11/08/17 13:41	1
1,2,4-Trichlorobenzene	<0.19		0.19	0.041	mg/Kg	≎	11/07/17 16:14	11/08/17 13:41	1
2,4,5-Trichlorophenol	<0.37		0.37	0.086	mg/Kg	₩	11/07/17 16:14	11/08/17 13:41	1
2,4,6-Trichlorophenol	<0.37		0.37	0.13	mg/Kg	₩	11/07/17 16:14	11/08/17 13:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	85		44 - 121				11/07/17 16:14	11/08/17 13:41	1
2-Fluorophenol	97		46 - 133				11/07/17 16:14	11/08/17 13:41	1
Nitrobenzene-d5	92		41 - 120				11/07/17 16:14	11/08/17 13:41	1
Phenol-d5	98		46 - 125				11/07/17 16:14	11/08/17 13:41	1
Terphenyl-d14	99		35 - 160				11/07/17 16:14	11/08/17 13:41	1
2,4,6-Tribromophenol	76		25 - 139				11/07/17 16:14	11/08/17 13:41	1

Method: 6010B - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<1.1		1.1	0.22	mg/Kg	<u></u>	11/02/17 07:49	11/02/17 20:44	1
Arsenic	8.2		0.57	0.20	mg/Kg	☼	11/02/17 07:49	11/02/17 20:44	1
Barium	120		0.57	0.065	mg/Kg	☼	11/02/17 07:49	11/02/17 20:44	1
Beryllium	0.63		0.23	0.053	mg/Kg	₽	11/02/17 07:49	11/02/17 20:44	1
Cadmium	0.39	В	0.11	0.021	mg/Kg	☼	11/02/17 07:49	11/02/17 20:44	1
Chromium	14		0.57	0.28	mg/Kg	☼	11/02/17 07:49	11/02/17 20:44	1
Cobalt	10		0.29	0.075	mg/Kg	₽	11/02/17 07:49	11/02/17 20:44	1
Copper	22		0.57	0.16	mg/Kg	☼	11/02/17 07:49	11/02/17 20:44	1
Iron	16000	В	11	5.9	mg/Kg	☼	11/02/17 07:49	11/02/17 20:44	1
Lead	53		0.29	0.13	mg/Kg	⊅	11/02/17 07:49	11/02/17 20:44	1
Manganese	350		0.57	0.083	mg/Kg	☼	11/02/17 07:49	11/02/17 20:44	1
Nickel	15		0.57	0.17	mg/Kg	☼	11/02/17 07:49	11/02/17 20:44	1
Selenium	1.3		0.57	0.34	mg/Kg	₩	11/02/17 07:49	11/02/17 20:44	1
Silver	<0.29		0.29	0.074	mg/Kg	☼	11/02/17 07:49	11/02/17 20:44	1
Thallium	<0.57		0.57	0.29	mg/Kg	☼	11/02/17 07:49	11/02/17 20:44	1
Vanadium	24		0.29	0.067	mg/Kg	₽	11/02/17 07:49	11/02/17 20:44	1
Zinc	130		1.1	0.50	mg/Kg	☼	11/02/17 07:49	11/02/17 20:44	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/03/17 14:57	11/05/17 16:47	1
Barium	0.37	J	0.50	0.050	mg/L		11/03/17 14:57	11/05/17 16:47	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/03/17 14:57	11/05/17 16:47	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/03/17 14:57	11/05/17 16:47	1
Chromium	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 16:47	1
Cobalt	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 16:47	1
Copper	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 16:47	1
Iron	0.29	J	0.40	0.20	mg/L		11/03/17 14:57	11/05/17 16:47	1

Page 43 of 231

TestAmerica Chicago

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 09:00

Date Received: 11/01/17 09:05

Client Sample ID: 3160-16-5 (0-4')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-5

Matrix: Solid

Percent Solids: 83.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	<0.0075		0.0075	0.0075	mg/L		11/03/17 14:57	11/05/17 16:47	1
Manganese	0.010	J	0.025	0.010	mg/L		11/03/17 14:57	11/05/17 16:47	1
Nickel	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 16:47	1
Selenium	<0.050		0.050	0.020	mg/L		11/03/17 14:57	11/05/17 16:47	1
Silver	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 16:47	1
Vanadium	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 16:47	1
Zinc	0.095	J	0.50	0.020	mg/L		11/03/17 14:57	11/05/17 16:47	1
Method: 6020A - Metals	s (ICP/MS) - TCLP								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060		0.0060	0.0060	mg/L		11/03/17 14:57	11/06/17 16:23	1
Thallium	<0.0020		0.0020	0.0020	mg/L		11/03/17 14:57	11/06/17 16:23	1
Method: 7470A - TCLP	Mercury - TCLP								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/03/17 12:20	11/06/17 10:39	1
Method: 7471B - Mercu	ry (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.058		0.020	0.0066	mg/Kg		11/02/17 16:10	11/03/17 08:14	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	6.0		0.20	0.20	QI I			11/03/17 08:57	

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-23-1 (0-4.5')

Lab Sample ID: 500-136575-6

Date Collected: 10/31/17 09:20

Matrix: Solid

Date Received: 11/01/17 09:05

Percent Solids: 89.7

Analyte	Result Qua			Unit	_ D	Prepared	Analyzed	Dil Fac
Acetone	0.052	0.018	0.0077	mg/Kg	<u> </u>	11/01/17 18:01	11/02/17 15:33	1
Benzene	<0.0018	0.0018	0.00045		₩	11/01/17 18:01	11/02/17 15:33	1
Bromodichloromethane	<0.0018	0.0018	0.00036	mg/Kg	₩	11/01/17 18:01	11/02/17 15:33	1
Bromoform	<0.0018	0.0018	0.00052	mg/Kg	₩	11/01/17 18:01	11/02/17 15:33	1
Bromomethane	<0.0044	0.0044	0.0017	mg/Kg	₩	11/01/17 18:01	11/02/17 15:33	1
2-Butanone (MEK)	<0.0044	0.0044	0.0020	mg/Kg	₩	11/01/17 18:01	11/02/17 15:33	1
Carbon disulfide	<0.0044	0.0044	0.00092	mg/Kg		11/01/17 18:01	11/02/17 15:33	1
Carbon tetrachloride	<0.0018	0.0018	0.00051	mg/Kg	₩	11/01/17 18:01	11/02/17 15:33	1
Chlorobenzene	<0.0018	0.0018	0.00065	mg/Kg	₩	11/01/17 18:01	11/02/17 15:33	1
Chloroethane	<0.0044	0.0044	0.0013	mg/Kg	₽	11/01/17 18:01	11/02/17 15:33	1
Chloroform	<0.0018	0.0018	0.00062	mg/Kg	₩	11/01/17 18:01	11/02/17 15:33	1
Chloromethane	<0.0044	0.0044	0.0018	mg/Kg	₩	11/01/17 18:01	11/02/17 15:33	1
cis-1,2-Dichloroethene	<0.0018	0.0018	0.00050	mg/Kg	₩.	11/01/17 18:01	11/02/17 15:33	1
cis-1,3-Dichloropropene	<0.0018	0.0018	0.00053	mg/Kg	₩	11/01/17 18:01	11/02/17 15:33	1
Dibromochloromethane	<0.0018	0.0018	0.00058	mg/Kg	₩	11/01/17 18:01	11/02/17 15:33	1
1,1-Dichloroethane	<0.0018	0.0018	0.00061	mg/Kg	₩.	11/01/17 18:01	11/02/17 15:33	1
1,2-Dichloroethane	<0.0044	0.0044	0.0014	mg/Kg	₩	11/01/17 18:01	11/02/17 15:33	1
1,1-Dichloroethene	<0.0018	0.0018	0.00061	mg/Kg	₩	11/01/17 18:01	11/02/17 15:33	1
1,2-Dichloropropane	<0.0018	0.0018	0.00046	mg/Kg		11/01/17 18:01	11/02/17 15:33	1
1,3-Dichloropropene, Total	<0.0018	0.0018	0.00062	mg/Kg	₩	11/01/17 18:01	11/02/17 15:33	1
Ethylbenzene	<0.0018	0.0018	0.00085	mg/Kg	₩	11/01/17 18:01	11/02/17 15:33	1
2-Hexanone	<0.0044	0.0044	0.0014	mg/Kg		11/01/17 18:01	11/02/17 15:33	1
Methylene Chloride	<0.0044	0.0044	0.0017	mg/Kg	₩	11/01/17 18:01	11/02/17 15:33	1
4-Methyl-2-pentanone (MIBK)	<0.0044	0.0044	0.0013	mg/Kg	₩	11/01/17 18:01	11/02/17 15:33	1
Methyl tert-butyl ether	<0.0018	0.0018	0.00052	mg/Kg		11/01/17 18:01	11/02/17 15:33	1
Styrene	<0.0018	0.0018	0.00054		₩	11/01/17 18:01	11/02/17 15:33	1
1,1,2,2-Tetrachloroethane	<0.0018	0.0018	0.00057	mg/Kg	₩	11/01/17 18:01	11/02/17 15:33	1
Tetrachloroethene	<0.0018	0.0018	0.00060			11/01/17 18:01	11/02/17 15:33	1
Toluene	<0.0018	0.0018	0.00045	0 0	₩	11/01/17 18:01	11/02/17 15:33	1
trans-1,2-Dichloroethene	<0.0018	0.0018	0.00079		₩	11/01/17 18:01	11/02/17 15:33	1
trans-1,3-Dichloropropene	<0.0018	0.0018	0.00062	mg/Kg	 ☆	11/01/17 18:01	11/02/17 15:33	1
1,1,1-Trichloroethane	<0.0018	0.0018	0.00059	0 0	₩	11/01/17 18:01	11/02/17 15:33	1
1,1,2-Trichloroethane	<0.0018	0.0018	0.00076	mg/Kg	₩	11/01/17 18:01	11/02/17 15:33	1
Trichloroethene	<0.0018	0.0018	0.00060			11/01/17 18:01	11/02/17 15:33	1
Vinyl acetate	<0.0044	0.0044	0.0015	0 0	₩		11/02/17 15:33	1
Vinyl chloride	<0.0018	0.0018	0.00078		₩	11/01/17 18:01	11/02/17 15:33	1
Xylenes, Total	<0.0035	0.0035	0.00057	0 0	ф.		11/02/17 15:33	1
Surrogate	%Recovery Qua	alifier Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)		75 - 131				-	11/02/17 15:33	1
Dibromofluoromethane	98	75 - 126				11/01/17 18:01	11/02/17 15:33	1
1,2-Dichloroethane-d4 (Surr)	98	70 - 134				11/01/17 18:01	11/02/17 15:33	1
Toluene-d8 (Surr)	91	75 - 124				11/01/17 18:01	11/02/17 15:33	1

Method: 8	Method: 8270D - Semivolatile Organic Compounds (GC/MS)									
Analyte		Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthen	е	<0.036		0.036	0.0065	mg/Kg	₩	11/07/17 16:14	11/08/17 17:45	1
Acenaphthyle	ene	< 0.036		0.036	0.0048	mg/Kg	≎	11/07/17 16:14	11/08/17 17:45	1
Anthracene		< 0.036		0.036	0.0060	mg/Kg	≎	11/07/17 16:14	11/08/17 17:45	1
Benzo[a]an	thracene	0.0058	J	0.036	0.0049	mg/Kg		11/07/17 16:14	11/08/17 17:45	1

TestAmerica Chicago

Page 45 of 231

2

3

5

7

4.0

11

13

-

J

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 09:20

Fluoranthene

Hexachlorobenzene

Hexachlorobutadiene

Indeno[1,2,3-cd]pyrene

2-Methylnaphthalene

Hexachloroethane

Isophorone

2-Methylphenol

Naphthalene

2-Nitroaniline

3-Nitroaniline

4-Nitroaniline

Nitrobenzene

2-Nitrophenol

3 & 4 Methylphenol

Hexachlorocyclopentadiene

Fluorene

Client Sample ID: 3160-23-1 (0-4.5')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-6

Matrix: Solid

Date Received: 11/01/17 09:0	te Received: 11/01/17 09:05								ls: 89.7
Method: 8270D - Semivolatil	•		, ,		•	_	D	A a la a . d	D.1 E
Analyte		Qualifier	RL		Unit	— D	Prepared	Analyzed 11/08/17 17:45	Dil Fac
Benzo[a]pyrene	0.015		0.036		mg/Kg	*			1
Benzo[b]fluoranthene	0.0099	J	0.036		mg/Kg	· · · · · ¾ ·		11/08/17 17:45	1
Benzo[g,h,i]perylene	<0.036		0.036		mg/Kg	☆		11/08/17 17:45	1
Benzo[k]fluoranthene	<0.036		0.036		mg/Kg	☆		11/08/17 17:45	1
Bis(2-chloroethoxy)methane	<0.18		0.18		mg/Kg	<u>.</u> .		11/08/17 17:45	1
Bis(2-chloroethyl)ether	<0.18		0.18		mg/Kg	φ.		11/08/17 17:45	1
Bis(2-ethylhexyl) phthalate	<0.18		0.18		mg/Kg	☆		11/08/17 17:45	1
4-Bromophenyl phenyl ether	<0.18		0.18		mg/Kg	, .		11/08/17 17:45	1
Butyl benzyl phthalate	<0.18		0.18		mg/Kg	₽		11/08/17 17:45	1
Carbazole	<0.18		0.18		mg/Kg	≎	11/07/17 16:14	11/08/17 17:45	1
4-Chloroaniline	<0.73		0.73	0.17	mg/Kg	₽	11/07/17 16:14	11/08/17 17:45	1
4-Chloro-3-methylphenol	<0.36		0.36	0.12	mg/Kg	₩	11/07/17 16:14	11/08/17 17:45	1
2-Chloronaphthalene	<0.18		0.18	0.040	mg/Kg	₩	11/07/17 16:14	11/08/17 17:45	1
2-Chlorophenol	<0.18		0.18	0.062	mg/Kg	≎	11/07/17 16:14	11/08/17 17:45	1
4-Chlorophenyl phenyl ether	<0.18		0.18	0.042	mg/Kg		11/07/17 16:14	11/08/17 17:45	1
Chrysene	0.0098	J	0.036	0.0098	mg/Kg	₩	11/07/17 16:14	11/08/17 17:45	1
Dibenz(a,h)anthracene	< 0.036		0.036	0.0070	mg/Kg	₩	11/07/17 16:14	11/08/17 17:45	1
Dibenzofuran	<0.18		0.18	0.042	mg/Kg		11/07/17 16:14	11/08/17 17:45	1
1,2-Dichlorobenzene	<0.18		0.18	0.043	mg/Kg	≎	11/07/17 16:14	11/08/17 17:45	1
1,3-Dichlorobenzene	<0.18		0.18	0.041	mg/Kg	₽	11/07/17 16:14	11/08/17 17:45	1
1,4-Dichlorobenzene	<0.18		0.18	0.046	mg/Kg	☆	11/07/17 16:14	11/08/17 17:45	1
3,3'-Dichlorobenzidine	<0.18		0.18	0.051	mg/Kg	≎	11/07/17 16:14	11/08/17 17:45	1
2,4-Dichlorophenol	<0.36		0.36	0.086	mg/Kg	₽	11/07/17 16:14	11/08/17 17:45	1
Diethyl phthalate	<0.18		0.18	0.061	mg/Kg		11/07/17 16:14	11/08/17 17:45	1
2,4-Dimethylphenol	<0.36		0.36	0.14	mg/Kg	₩	11/07/17 16:14	11/08/17 17:45	1
Dimethyl phthalate	<0.18		0.18		mg/Kg	₩	11/07/17 16:14	11/08/17 17:45	1
Di-n-butyl phthalate	<0.18		0.18		mg/Kg			11/08/17 17:45	1
4,6-Dinitro-2-methylphenol	<0.73		0.73		mg/Kg	₩		11/08/17 17:45	1
2,4-Dinitrophenol	<0.73		0.73		mg/Kg	₩		11/08/17 17:45	1
2,4-Dinitrotoluene	<0.18		0.18		mg/Kg			11/08/17 17:45	
2,6-Dinitrotoluene	<0.18		0.18	0.071		☼		11/08/17 17:45	1
Di-n-octyl phthalate	<0.18		0.18		mg/Kg	₽		11/08/17 17:45	
2 55.51 printing 6	-0.10			0.000					

0.036

0.036

0.073

0.18

0.73

0.18

0.036

0.18

0.073

0.18

0.18

0.036

0.18

0.36

0.36

0.036

0.36

0.011 J

< 0.036

< 0.073

< 0.18

< 0.73

<0.18

< 0.036

<0.18

0.0091 J

<0.18

<0.18

< 0.036

< 0.18

<0.36

< 0.36

< 0.036

< 0.36

0.0067 mg/Kg

0.0051 mg/Kg

0.0084 mg/Kg

0.057 mg/Kg

0.21 mg/Kg

0.055 mg/Kg

0.0094 mg/Kg

0.041 mg/Kg

0.0066 mg/Kg

0.058 mg/Kg

0.060 mg/Kg

0.0056 mg/Kg

0.049 mg/Kg

0.11 mg/Kg

0.15 mg/Kg

0.0090 mg/Kg

0.085 mg/Kg

TestAmerica Chicago

☼ 11/07/17 16:14 11/08/17 17:45

☼ 11/07/17 16:14 11/08/17 17:45

11/07/17 16:14 11/08/17 17:45

11/07/17 16:14 11/08/17 17:45 ☼ 11/07/17 16:14 11/08/17 17:45

☼ 11/07/17 16:14 11/08/17 17:45

* 11/07/17 16:14 11/08/17 17:45

11/07/17 16:14 11/08/17 17:45

☼ 11/07/17 16:14 11/08/17 17:45

☼ 11/07/17 16:14 11/08/17 17:45

* 11/07/17 16:14 11/08/17 17:45

☼ 11/07/17 16:14 11/08/17 17:45

11/07/17 16:14 11/08/17 17:45 11/07/17 16:14 11/08/17 17:45

11/07/17 16:14 11/08/17 17:45

Page 46 of 231

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 09:20

Date Received: 11/01/17 09:05

2,4,6-Tribromophenol

Client Sample ID: 3160-23-1 (0-4.5')

TestAmerica Job ID: 500-136575-1

Matrix: Solid Percent Solids: 89.7

Lab Samp	ie iD	: 500	U-1	365)/	5-(
			N# - 4		_	- 12

11/07/17 16:14 11/08/17 17:45

Method: 8270D - Semivola	tile Organic Co	mpounds	(GC/MS) (C	ontinued)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.73		0.73	0.34	mg/Kg	₩	11/07/17 16:14	11/08/17 17:45	1
N-Nitrosodi-n-propylamine	< 0.073		0.073	0.044	mg/Kg	₽	11/07/17 16:14	11/08/17 17:45	1
N-Nitrosodiphenylamine	<0.18		0.18	0.043	mg/Kg	₩	11/07/17 16:14	11/08/17 17:45	1
2,2'-oxybis[1-chloropropane]	<0.18		0.18	0.042	mg/Kg	₩	11/07/17 16:14	11/08/17 17:45	1
Pentachlorophenol	<0.73		0.73	0.58	mg/Kg	₽	11/07/17 16:14	11/08/17 17:45	1
Phenanthrene	0.017	J	0.036	0.0050	mg/Kg	₩	11/07/17 16:14	11/08/17 17:45	1
Phenol	<0.18		0.18	0.080	mg/Kg	₩	11/07/17 16:14	11/08/17 17:45	1
Pyrene	0.010	J	0.036	0.0072	mg/Kg	₩	11/07/17 16:14	11/08/17 17:45	1
1,2,4-Trichlorobenzene	<0.18		0.18	0.039	mg/Kg	₩	11/07/17 16:14	11/08/17 17:45	1
2,4,5-Trichlorophenol	< 0.36		0.36	0.082	mg/Kg	₩	11/07/17 16:14	11/08/17 17:45	1
2,4,6-Trichlorophenol	<0.36		0.36	0.12	mg/Kg	₩	11/07/17 16:14	11/08/17 17:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	74		44 - 121				11/07/17 16:14	11/08/17 17:45	1
2-Fluorophenol	86		46 - 133				11/07/17 16:14	11/08/17 17:45	1
Nitrobenzene-d5	70		41 - 120				11/07/17 16:14	11/08/17 17:45	1
Phenol-d5	82		46 - 125				11/07/17 16:14	11/08/17 17:45	1
Terphenyl-d14	80		35 - 160				11/07/17 16:14	11/08/17 17:45	1

25 - 139

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	<0.0019		0.0019	0.00077	mg/Kg	<u>₩</u>	11/08/17 07:22	11/09/17 11:39	1
alpha-BHC	<0.0019		0.0019	0.00047	mg/Kg	☼	11/08/17 07:22	11/09/17 11:39	1
alpha-Chlordane	<0.0019		0.0019	0.00093	mg/Kg	☼	11/08/17 07:22	11/09/17 11:39	1
beta-BHC	<0.0019		0.0019	0.00057	mg/Kg	₩	11/08/17 07:22	11/09/17 11:39	1
4,4'-DDD	<0.0019		0.0019	0.00037	mg/Kg	₩	11/08/17 07:22	11/09/17 11:39	1
4,4'-DDE	<0.0019		0.0019	0.00031	mg/Kg	☼	11/08/17 07:22	11/09/17 11:39	1
4,4'-DDT	<0.0019		0.0019	0.00097	mg/Kg	₩.	11/08/17 07:22	11/09/17 11:39	1
delta-BHC	<0.0019		0.0019	0.00058	mg/Kg	☼	11/08/17 07:22	11/09/17 11:39	1
Dieldrin	<0.0019		0.0019	0.00025	mg/Kg	₩	11/08/17 07:22	11/09/17 11:39	1
Endosulfan I	<0.0019		0.0019	0.00081	mg/Kg	₽	11/08/17 07:22	11/09/17 11:39	1
Endosulfan II	<0.0019		0.0019	0.00030	mg/Kg	☼	11/08/17 07:22	11/09/17 11:39	1
Endosulfan sulfate	<0.0019		0.0019	0.00034	mg/Kg	₩	11/08/17 07:22	11/09/17 11:39	1
Endrin	<0.0019		0.0019	0.00026	mg/Kg	₩	11/08/17 07:22	11/09/17 11:39	1
Endrin aldehyde	<0.0019		0.0019	0.00031	mg/Kg	₩	11/08/17 07:22	11/09/17 11:39	1
Endrin ketone	<0.0019		0.0019	0.00042	mg/Kg	☼	11/08/17 07:22	11/09/17 11:39	1
gamma-BHC (Lindane)	<0.0019		0.0019	0.00040	mg/Kg	₩	11/08/17 07:22	11/09/17 11:39	1
gamma-Chlordane	<0.0019		0.0019	0.00048	mg/Kg	₩	11/08/17 07:22	11/09/17 11:39	1
Heptachlor	<0.0019		0.0019	0.00077	mg/Kg	☼	11/08/17 07:22	11/09/17 11:39	1
Heptachlor epoxide	<0.0019		0.0019	0.00066	mg/Kg	₩	11/08/17 07:22	11/09/17 11:39	1
Methoxychlor	<0.0092		0.0092	0.00036	mg/Kg	☼	11/08/17 07:22	11/09/17 11:39	1
Toxaphene	<0.018		0.018	0.0078	mg/Kg	₩	11/08/17 07:22	11/09/17 11:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	78		33 - 148				11/08/17 07:22	11/09/17 11:39	1
Tetrachloro-m-xylene	77		30 - 121				11/08/17 07:22	11/09/17 11:39	1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 09:20

Date Received: 11/01/17 09:05

Client Sample ID: 3160-23-1 (0-4.5')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-6

Matrix: Solid

Percent Solids: 89.7

Method: 8151A - Herbicides	s (GC)							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dicamba	<0.37	0.37	0.077	mg/Kg	<u> </u>	11/08/17 22:28	11/10/17 08:21	10
Dichlorprop	<0.37	0.37	0.10	mg/Kg	☼	11/08/17 22:28	11/10/17 08:21	10
2,4-D	<0.37	0.37	0.10	mg/Kg	☼	11/08/17 22:28	11/10/17 08:21	10
Silvex (2,4,5-TP)	<0.37	0.37	0.095	mg/Kg	.	11/08/17 22:28	11/10/17 08:21	10
2,4,5-T	<0.37	0.37	0.090	mg/Kg	☼	11/08/17 22:28	11/10/17 08:21	10
2,4-DB	<0.37	0.37	0.11	mg/Kg	₩	11/08/17 22:28	11/10/17 08:21	10
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCAA	54	25 - 120				11/08/17 22:28	11/10/17 08:21	10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<1.1		1.1	0.21	mg/Kg	<u> </u>	11/02/17 07:49	11/02/17 20:48	1
Arsenic	6.7		0.53	0.18	mg/Kg	☼	11/02/17 07:49	11/02/17 20:48	1
Barium	68		0.53	0.060	mg/Kg	☼	11/02/17 07:49	11/02/17 20:48	1
Beryllium	0.46		0.21	0.049	mg/Kg		11/02/17 07:49	11/02/17 20:48	1
Cadmium	0.31	В	0.11	0.019	mg/Kg	☼	11/02/17 07:49	11/02/17 20:48	1
Chromium	12		0.53	0.26	mg/Kg	☼	11/02/17 07:49	11/02/17 20:48	1
Cobalt	5.8		0.26	0.069	mg/Kg		11/02/17 07:49	11/02/17 20:48	1
Copper	9.7		0.53	0.15	mg/Kg	☼	11/02/17 07:49	11/02/17 20:48	1
Iron	12000	В	11	5.5	mg/Kg	☼	11/02/17 07:49	11/02/17 20:48	1
Lead	19		0.26	0.12	mg/Kg	₩.	11/02/17 07:49	11/02/17 20:48	1
Manganese	280		0.53	0.077	mg/Kg	☼	11/02/17 07:49	11/02/17 20:48	1
Nickel	12		0.53	0.15	mg/Kg	☼	11/02/17 07:49	11/02/17 20:48	1
Selenium	0.41	J	0.53	0.31	mg/Kg	₩	11/02/17 07:49	11/02/17 20:48	1
Silver	<0.26		0.26	0.068	mg/Kg	☼	11/02/17 07:49	11/02/17 20:48	1
Thallium	<0.53		0.53	0.26	mg/Kg	☼	11/02/17 07:49	11/02/17 20:48	1
Vanadium	20		0.26	0.062	mg/Kg	₩	11/02/17 07:49	11/02/17 20:48	1
Zinc	180		1.1	0.46	mg/Kg	₽	11/02/17 07:49	11/02/17 20:48	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/03/17 14:57	11/05/17 16:51	1
Barium	0.30	J	0.50	0.050	mg/L		11/03/17 14:57	11/05/17 16:51	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/03/17 14:57	11/05/17 16:51	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/03/17 14:57	11/05/17 16:51	1
Chromium	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 16:51	1
Cobalt	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 16:51	1
Copper	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 16:51	1
Iron	0.22	J	0.40	0.20	mg/L		11/03/17 14:57	11/05/17 16:51	1
Lead	<0.0075		0.0075	0.0075	mg/L		11/03/17 14:57	11/05/17 16:51	1
Manganese	0.057		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 16:51	1
Nickel	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 16:51	1
Selenium	<0.050		0.050	0.020	mg/L		11/03/17 14:57	11/05/17 16:51	1
Silver	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 16:51	1
Vanadium	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 16:51	1
Zinc	0.35	J	0.50	0.020	mg/L		11/03/17 14:57	11/05/17 16:51	1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136575-1

Client Sample ID: 3160-23-1 (0-4.5') Lab Sample ID: 500-136575-6 Date Collected: 10/31/17 09:20 **Matrix: Solid**

Date Received: 11/01/17 09:05 Percent Solids: 89.7

Method: 6020A - Metals (ICP Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060		0.0060	0.0060	mg/L		11/03/17 14:57	11/06/17 16:27	1
Thallium	<0.0020		0.0020	0.0020	mg/L		11/03/17 14:57	11/06/17 16:27	1
_ Method: 7470A - TCLP Merci	urv - TCLP								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/03/17 12:20	11/06/17 10:40	1
_ Method: 7471B - Mercury (C	VAA)								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.031		0.018	0.0060	mg/Kg		11/02/17 16:10	11/03/17 08:16	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	6.2		0.20	0.20	SU			11/03/17 08:57	

2

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-23-2 (0-4.5')

Lab Sample ID: 500-136575-7

Date Collected: 10/31/17 09:30 Date Received: 11/01/17 09:05 Matrix: Solid Percent Solids: 81.9

Method: 8260B - Volatile O Analyte	Result Qual		MDL	Unit	D	Prepared	Analyzed	Dil Fa
Acetone	<0.017	0.017	0.0073	mg/Kg	<u> </u>	11/01/17 18:01	11/02/17 15:59	
Benzene	<0.0017	0.0017	0.00043	mg/Kg	₽	11/01/17 18:01	11/02/17 15:59	
Bromodichloromethane	<0.0017	0.0017	0.00034	mg/Kg	☼	11/01/17 18:01	11/02/17 15:59	
Bromoform	<0.0017	0.0017	0.00049	mg/Kg	₽	11/01/17 18:01	11/02/17 15:59	
Bromomethane	<0.0042	0.0042	0.0016	mg/Kg	☼	11/01/17 18:01	11/02/17 15:59	
2-Butanone (MEK)	< 0.0042	0.0042	0.0019	mg/Kg	≎	11/01/17 18:01	11/02/17 15:59	
Carbon disulfide	<0.0042	0.0042	0.00088	mg/Kg	<u>\$</u>	11/01/17 18:01	11/02/17 15:59	
Carbon tetrachloride	<0.0017	0.0017	0.00049	mg/Kg	≎	11/01/17 18:01	11/02/17 15:59	
Chlorobenzene	< 0.0017	0.0017	0.00062	mg/Kg	≎	11/01/17 18:01	11/02/17 15:59	
Chloroethane	<0.0042	0.0042	0.0012	mg/Kg	φ.	11/01/17 18:01	11/02/17 15:59	
Chloroform	< 0.0017	0.0017	0.00059	mg/Kg	≎	11/01/17 18:01	11/02/17 15:59	
Chloromethane	< 0.0042	0.0042	0.0017	mg/Kg	☼	11/01/17 18:01	11/02/17 15:59	
cis-1,2-Dichloroethene	<0.0017	0.0017	0.00047	mg/Kg	φ.	11/01/17 18:01	11/02/17 15:59	
cis-1,3-Dichloropropene	<0.0017	0.0017	0.00051		₽	11/01/17 18:01	11/02/17 15:59	
Dibromochloromethane	<0.0017	0.0017	0.00055	mg/Kg	₽	11/01/17 18:01	11/02/17 15:59	
1,1-Dichloroethane	<0.0017	0.0017	0.00058			11/01/17 18:01	11/02/17 15:59	
1,2-Dichloroethane	< 0.0042	0.0042	0.0013		☼	11/01/17 18:01	11/02/17 15:59	
1,1-Dichloroethene	< 0.0017	0.0017	0.00058		≎	11/01/17 18:01	11/02/17 15:59	
1,2-Dichloropropane	<0.0017	0.0017	0.00044		· · · · · · · · · · · · · · · · · · ·	11/01/17 18:01	11/02/17 15:59	
1,3-Dichloropropene, Total	<0.0017	0.0017	0.00059		≎	11/01/17 18:01	11/02/17 15:59	
Ethylbenzene	<0.0017	0.0017	0.00081		≎	11/01/17 18:01	11/02/17 15:59	
2-Hexanone	<0.0042	0.0042	0.0013		· · · · · · · · · · · · · · · · · · ·	11/01/17 18:01	11/02/17 15:59	
Methylene Chloride	<0.0042	0.0042	0.0017		≎	11/01/17 18:01	11/02/17 15:59	
4-Methyl-2-pentanone (MIBK)	< 0.0042	0.0042	0.0012		≎	11/01/17 18:01	11/02/17 15:59	
Methyl tert-butyl ether	<0.0017	0.0017	0.00050		 ф	11/01/17 18:01	11/02/17 15:59	
Styrene	<0.0017	0.0017	0.00051	mg/Kg	☼	11/01/17 18:01	11/02/17 15:59	
1,1,2,2-Tetrachloroethane	<0.0017	0.0017	0.00054	0 0	☼	11/01/17 18:01	11/02/17 15:59	
Tetrachloroethene	<0.0017	0.0017	0.00057				11/02/17 15:59	
Toluene	<0.0017	0.0017	0.00043	0 0	₩		11/02/17 15:59	
trans-1,2-Dichloroethene	<0.0017	0.0017	0.00075	0 0	₩		11/02/17 15:59	
trans-1,3-Dichloropropene	<0.0017	0.0017	0.00059		.		11/02/17 15:59	
1,1,1-Trichloroethane	<0.0017	0.0017	0.00057		☼		11/02/17 15:59	
1,1,2-Trichloroethane	<0.0017	0.0017	0.00072		≎		11/02/17 15:59	
Trichloroethene	<0.0017	0.0017	0.00057		 \$		11/02/17 15:59	
Vinyl acetate	<0.0042	0.0042	0.0015		₩		11/02/17 15:59	
Vinyl chloride	<0.0017	0.0017	0.00075		₩		11/02/17 15:59	
Xylenes, Total	<0.0034	0.0034	0.00054		ф.		11/02/17 15:59	
Surrogate	%Recovery Qual	lifier Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	77	75 - 131				11/01/17 18:01	11/02/17 15:59	
Dibromofluoromethane	99	75 - 126				11/01/17 18:01	11/02/17 15:59	
1,2-Dichloroethane-d4 (Surr)	96	70 - 134				11/01/17 18:01	11/02/17 15:59	
Toluene-d8 (Surr)	98	75 - 124				11/01/17 18:01	11/02/17 15:59	

 * 11/07/17 16:14 11/08/17 14:09
 1

 * 11/07/17 16:14 11/08/17 14:09
 1

Analyzed

Prepared

 \$\overline{\pi}\$
 \overline{11/07/17 16:14}
 \overline{11/08/17 14:09}

11/07/17 16:14 11/08/17 14:09

TestAmerica Chicago

RL

0.039

0.039

0.039

0.039

MDL Unit

0.0071 mg/Kg

0.0052 mg/Kg

0.0066 mg/Kg

0.0053 mg/Kg

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Result Qualifier

<0.039

<0.039

0.046

0.086

Analyte

Acenaphthene

Anthracene

Acenaphthylene

Benzo[a]anthracene

Dil Fac

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 09:30

2-Methylnaphthalene

2-Methylphenol

Naphthalene

2-Nitroaniline

3-Nitroaniline

4-Nitroaniline

Nitrobenzene

2-Nitrophenol

3 & 4 Methylphenol

Client Sample ID: 3160-23-2 (0-4.5')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-7

Matrix: Solid

Percent Solids: 81.9

Method: 8270D - Semivolatil	e Organic Compound	ls (GC/MS) (Cd	ontinued)					
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Benzo[a]pyrene	0.087	0.039	0.0076	mg/Kg	<u>₩</u>	11/07/17 16:14	11/08/17 14:09	
Benzo[b]fluoranthene	0.091	0.039	0.0085	mg/Kg	₩	11/07/17 16:14	11/08/17 14:09	
Benzo[g,h,i]perylene	0.074	0.039	0.013	mg/Kg	₩	11/07/17 16:14	11/08/17 14:09	
Benzo[k]fluoranthene	0.015 J	0.039	0.012	mg/Kg	₩	11/07/17 16:14	11/08/17 14:09	
Bis(2-chloroethoxy)methane	<0.20	0.20	0.040	mg/Kg	₩	11/07/17 16:14	11/08/17 14:09	
Bis(2-chloroethyl)ether	<0.20	0.20	0.059	mg/Kg		11/07/17 16:14	11/08/17 14:09	
Bis(2-ethylhexyl) phthalate	<0.20	0.20	0.072	mg/Kg	₩	11/07/17 16:14	11/08/17 14:09	
4-Bromophenyl phenyl ether	<0.20	0.20	0.052	mg/Kg	₩	11/07/17 16:14	11/08/17 14:09	
Butyl benzyl phthalate	<0.20	0.20	0.075	mg/Kg		11/07/17 16:14	11/08/17 14:09	
Carbazole	<0.20	0.20	0.098	mg/Kg	₩	11/07/17 16:14	11/08/17 14:09	
4-Chloroaniline	<0.79	0.79		mg/Kg	₩	11/07/17 16:14	11/08/17 14:09	
4-Chloro-3-methylphenol	<0.39	0.39	0.13	mg/Kg	φ.	11/07/17 16:14	11/08/17 14:09	
2-Chloronaphthalene	<0.20	0.20	0.044		₩	11/07/17 16:14	11/08/17 14:09	
2-Chlorophenol	<0.20	0.20	0.067	mg/Kg	₩	11/07/17 16:14	11/08/17 14:09	
4-Chlorophenyl phenyl ether	<0.20	0.20	0.046			11/07/17 16:14	11/08/17 14:09	
Chrysene	0.086	0.039	0.011		₩	11/07/17 16:14	11/08/17 14:09	
Dibenz(a,h)anthracene	0.046	0.039	0.0076	mg/Kg	₩	11/07/17 16:14	11/08/17 14:09	
Dibenzofuran	0.13 J	0.20	0.046			11/07/17 16:14	11/08/17 14:09	
1,2-Dichlorobenzene	<0.20	0.20	0.047		₩	11/07/17 16:14	11/08/17 14:09	
1,3-Dichlorobenzene	<0.20	0.20	0.044		₩		11/08/17 14:09	
1,4-Dichlorobenzene	<0.20	0.20	0.050		 ☆		11/08/17 14:09	
3,3'-Dichlorobenzidine	<0.20	0.20	0.055		₩		11/08/17 14:09	
2,4-Dichlorophenol	<0.39	0.39	0.094		₩		11/08/17 14:09	
Diethyl phthalate	<0.20	0.20	0.067				11/08/17 14:09	
2,4-Dimethylphenol	<0.39	0.39		mg/Kg	₩		11/08/17 14:09	
Dimethyl phthalate	<0.20	0.20	0.051		₩		11/08/17 14:09	
Di-n-butyl phthalate	<0.20	0.20	0.060				11/08/17 14:09	
4,6-Dinitro-2-methylphenol	<0.79	0.79		mg/Kg	₩		11/08/17 14:09	
2,4-Dinitrophenol	<0.79	0.79		mg/Kg			11/08/17 14:09	
2,4-Dinitrotoluene	<0.79	0.20	0.063				11/08/17 14:09	
2,6-Dinitrotoluene	<0.20	0.20	0.003				11/08/17 14:09	
Di-n-octyl phthalate	<0.20	0.20	0.077				11/08/17 14:09	
Fluoranthene	0.10	0.039	0.0073	0 0			11/08/17 14:09	
Fluorantnene Fluorene	<0.039	0.039	0.0073		☆		11/08/17 14:09	
Hexachlorobenzene	<0.039	0.039	0.0055		≎		11/08/17 14:09	
Hexachlorobutadiene	<0.20	0.079	0.0091				11/08/17 14:09	
	<0.20 <0.79	0.20		mg/Kg	☆		11/08/17 14:09	
Hexachlorocyclopentadiene					₽			
Hexachloroethane	<0.20	0.20	0.060		.		11/08/17 14:09	
Indeno[1,2,3-cd]pyrene	0.054	0.039	0.010				11/08/17 14:09	
Isophorone	<0.20	0.20	0.044	mg/ n g	3.t	11/07/17 16:14	11/06/17 14:09	

TestAmerica Chicago

11/07/17 16:14 11/08/17 14:09

11/07/17 16:14 11/08/17 14:09

* 11/07/17 16:14 11/08/17 14:09

11/07/17 16:14 11/08/17 14:09 ☼ 11/07/17 16:14 11/08/17 14:09

* 11/07/17 16:14 11/08/17 14:09

11/07/17 16:14 11/08/17 14:09

11/07/17 16:14 11/08/17 14:09

11/07/17 16:14 11/08/17 14:09

Page 51 of 231

0.079

0.20

0.20

0.039

0.20

0.39

0.39

0.039

0.39

0.25

<0.20

<0.20

0.12

< 0.20

< 0.39

< 0.39

< 0.039

< 0.39

0.0072 mg/Kg

0.063 mg/Kg

0.066 mg/Kg

0.0061 mg/Kg

0.053 mg/Kg

0.12 mg/Kg

0.16 mg/Kg

0.0098 mg/Kg

0.093 mg/Kg

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 09:30

Date Received: 11/01/17 09:05

Client Sample ID: 3160-23-2 (0-4.5')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-7

Matrix: Solid Percent Solids: 81.9

Method: 8270D - Semivolatile	Organic Con	npounds	(GC/MS) (C	Continued)
Analyte	Result (Qualifier	RL	MDL	Un
4 5 124					

Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.79		0.79	0.37	mg/Kg	<u> </u>	11/07/17 16:14	11/08/17 14:09	1
N-Nitrosodi-n-propylamine	<0.079		0.079	0.048	mg/Kg	\$	11/07/17 16:14	11/08/17 14:09	1
N-Nitrosodiphenylamine	<0.20		0.20	0.046	mg/Kg	☼	11/07/17 16:14	11/08/17 14:09	1
2,2'-oxybis[1-chloropropane]	<0.20		0.20	0.046	mg/Kg	☼	11/07/17 16:14	11/08/17 14:09	1
Pentachlorophenol	<0.79		0.79	0.63	mg/Kg	₽	11/07/17 16:14	11/08/17 14:09	1
Phenanthrene	0.34		0.039	0.0055	mg/Kg	☼	11/07/17 16:14	11/08/17 14:09	1
Phenol	<0.20		0.20	0.087	mg/Kg	₩	11/07/17 16:14	11/08/17 14:09	1
Pyrene	0.12		0.039	0.0078	mg/Kg	₽	11/07/17 16:14	11/08/17 14:09	1
1,2,4-Trichlorobenzene	<0.20		0.20	0.042	mg/Kg	☼	11/07/17 16:14	11/08/17 14:09	1
2,4,5-Trichlorophenol	< 0.39		0.39	0.090	mg/Kg	☼	11/07/17 16:14	11/08/17 14:09	1
2,4,6-Trichlorophenol	<0.39		0.39	0.14	mg/Kg		11/07/17 16:14	11/08/17 14:09	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	79	44 - 121	11/07/17 16:14	11/08/17 14:09	1
2-Fluorophenol	89	46 - 133	11/07/17 16:14	11/08/17 14:09	1
Nitrobenzene-d5	83	41 - 120	11/07/17 16:14	11/08/17 14:09	1
Phenol-d5	87	46 - 125	11/07/17 16:14	11/08/17 14:09	1
Terphenyl-d14	89	35 - 160	11/07/17 16:14	11/08/17 14:09	1
2,4,6-Tribromophenol	73	25 - 139	11/07/17 16:14	11/08/17 14:09	1

Method: 8081B -	Organochlorine	Pesticides (GC)
-----------------	----------------	--------------	-----

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	<0.0099	0.0099	0.0040	mg/Kg	<u> </u>	11/08/17 07:22	11/08/17 21:54	5
alpha-BHC	<0.0099	0.0099	0.0025	mg/Kg	☼	11/08/17 07:22	11/08/17 21:54	5
alpha-Chlordane	<0.0099	0.0099	0.0049	mg/Kg	☼	11/08/17 07:22	11/08/17 21:54	5
beta-BHC	<0.0099	0.0099	0.0030	mg/Kg	φ.	11/08/17 07:22	11/08/17 21:54	5
4,4'-DDD	<0.0099	0.0099	0.0019	mg/Kg	☼	11/08/17 07:22	11/08/17 21:54	5
4,4'-DDE	<0.0099	0.0099	0.0016	mg/Kg	☼	11/08/17 07:22	11/08/17 21:54	5
4,4'-DDT	<0.0099	0.0099	0.0051	mg/Kg	₩.	11/08/17 07:22	11/08/17 21:54	5
delta-BHC	<0.0099	0.0099	0.0031	mg/Kg	☼	11/08/17 07:22	11/08/17 21:54	5
Dieldrin	<0.0099	0.0099	0.0013	mg/Kg	☼	11/08/17 07:22	11/08/17 21:54	5
Endosulfan I	<0.0099	0.0099	0.0043	mg/Kg	₽	11/08/17 07:22	11/08/17 21:54	5
Endosulfan II	<0.0099	0.0099	0.0016	mg/Kg	☼	11/08/17 07:22	11/08/17 21:54	5
Endosulfan sulfate	<0.0099	0.0099	0.0018	mg/Kg	☼	11/08/17 07:22	11/08/17 21:54	5
Endrin	<0.0099	0.0099	0.0013	mg/Kg	₩	11/08/17 07:22	11/08/17 21:54	5
Endrin aldehyde	<0.0099	0.0099	0.0016	mg/Kg	☼	11/08/17 07:22	11/08/17 21:54	5
Endrin ketone	<0.0099	0.0099	0.0022	mg/Kg	☼	11/08/17 07:22	11/08/17 21:54	5
gamma-BHC (Lindane)	<0.0099	0.0099	0.0021	mg/Kg		11/08/17 07:22	11/08/17 21:54	5
gamma-Chlordane	<0.0099	0.0099	0.0026	mg/Kg	☼	11/08/17 07:22	11/08/17 21:54	5
Heptachlor	<0.0099	0.0099	0.0041	mg/Kg	☼	11/08/17 07:22	11/08/17 21:54	5
Heptachlor epoxide	<0.0099	0.0099	0.0035	mg/Kg	₩	11/08/17 07:22	11/08/17 21:54	5
Methoxychlor	<0.048	0.048	0.0019	mg/Kg	☼	11/08/17 07:22	11/08/17 21:54	5
Toxaphene	<0.097	0.097	0.041	mg/Kg	≎	11/08/17 07:22	11/08/17 21:54	5

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	98		33 - 148	11/08/17 07:22	11/08/17 21:54	5
Tetrachloro-m-xylene	95		30 - 121	11/08/17 07:22	11/08/17 21:54	5

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 09:30

Date Received: 11/01/17 09:05

Client Sample ID: 3160-23-2 (0-4.5')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-7

Matrix: Solid

Percent Solids: 81.9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dicamba	<0.40		0.40	0.082	mg/Kg	<u>₩</u>	11/08/17 22:28	11/10/17 08:45	10
Dichlorprop	<0.40		0.40	0.11	mg/Kg	₩	11/08/17 22:28	11/10/17 08:45	10
2,4-D	<0.40		0.40	0.11	mg/Kg	☼	11/08/17 22:28	11/10/17 08:45	10
Silvex (2,4,5-TP)	<0.40		0.40	0.10	mg/Kg	₩.	11/08/17 22:28	11/10/17 08:45	10
2,4,5-T	<0.40		0.40	0.097	mg/Kg	₩	11/08/17 22:28	11/10/17 08:45	10
2,4-DB	<0.40		0.40	0.12	mg/Kg	₽	11/08/17 22:28	11/10/17 08:45	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCAA	<u> </u>		25 - 120				11/08/17 22:28	11/10/17 08:45	10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<1.2		1.2	0.23	mg/Kg	<u>₩</u>	11/02/17 07:49	11/02/17 20:52	1
Arsenic	5.8		0.60	0.21	mg/Kg	₩	11/02/17 07:49	11/02/17 20:52	1
Barium	130		0.60	0.069	mg/Kg	₩	11/02/17 07:49	11/02/17 20:52	1
Beryllium	0.50		0.24	0.056	mg/Kg	₩.	11/02/17 07:49	11/02/17 20:52	1
Cadmium	0.50	В	0.12	0.022	mg/Kg	₩	11/02/17 07:49	11/02/17 20:52	1
Chromium	14		0.60	0.30	mg/Kg	₩	11/02/17 07:49	11/02/17 20:52	1
Cobalt	8.2		0.30	0.079	mg/Kg	ф	11/02/17 07:49	11/02/17 20:52	1
Copper	19		0.60	0.17	mg/Kg	₩	11/02/17 07:49	11/02/17 20:52	1
Iron	12000	В	12	6.3	mg/Kg	₩	11/02/17 07:49	11/02/17 20:52	1
Lead	100		0.30	0.14	mg/Kg	₩	11/02/17 07:49	11/02/17 20:52	1
Manganese	320		0.60	0.088	mg/Kg	₩	11/02/17 07:49	11/02/17 20:52	1
Nickel	16		0.60	0.18	mg/Kg	₩	11/02/17 07:49	11/02/17 20:52	1
Selenium	0.67		0.60	0.35	mg/Kg	₩.	11/02/17 07:49	11/02/17 20:52	1
Silver	<0.30		0.30	0.078	mg/Kg	₩	11/02/17 07:49	11/02/17 20:52	1
Thallium	<0.60		0.60	0.30	mg/Kg	₩	11/02/17 07:49	11/02/17 20:52	1
Vanadium	18		0.30	0.071	mg/Kg	₩.	11/02/17 07:49	11/02/17 20:52	1
Zinc	91		1.2	0.53	mg/Kg	₩	11/02/17 07:49	11/02/17 20:52	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/03/17 14:57	11/05/17 16:55	1
Barium	0.85		0.50	0.050	mg/L		11/03/17 14:57	11/05/17 16:55	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/03/17 14:57	11/05/17 16:55	1
Cadmium	0.0020	J	0.0050	0.0020	mg/L		11/03/17 14:57	11/05/17 16:55	1
Chromium	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 16:55	1
Cobalt	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 16:55	1
Copper	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 16:55	1
Iron	<0.40		0.40	0.20	mg/L		11/03/17 14:57	11/05/17 16:55	1
Lead	<0.0075		0.0075	0.0075	mg/L		11/03/17 14:57	11/05/17 16:55	1
Manganese	0.077		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 16:55	1
Nickel	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 16:55	1
Selenium	<0.050		0.050	0.020	mg/L		11/03/17 14:57	11/05/17 16:55	1
Silver	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 16:55	1
Vanadium	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 16:55	1
Zinc	0.058	J	0.50	0.020	mg/L		11/03/17 14:57	11/05/17 16:55	1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Received: 11/01/17 09:05

TestAmerica Job ID: 500-136575-1

Client Sample ID: 3160-23-2 (0-4.5') Lab Sample ID: 500-136575-7 Date Collected: 10/31/17 09:30

Matrix: Solid

Percent Solids: 81.9

Method: 6020A - Metals (ICAnalyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060		0.0060	0.0060	mg/L		11/03/17 14:57	11/06/17 16:31	1
Thallium	<0.0020		0.0020	0.0020	mg/L		11/03/17 14:57	11/06/17 16:31	1
_ Method: 7470A - TCLP Me	rcury - TCLP								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/03/17 12:20	11/06/17 10:42	1
_ Method: 7471B - Mercury ((CVAA)								
Analyte	• ,	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.046		0.018	0.0059	mg/Kg		11/02/17 16:10	11/03/17 08:29	1
General Chemistry									
General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

TestAmerica Chicago

11/13/2017

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Lab Sample ID: 500-136575-8

Client Sample ID: 3160-25-1 (0-4') Date Collected: 10/31/17 09:50 **Matrix: Solid** Date Received: 11/01/17 09:05 Percent Solids: 79.7

Method: 8260B - Volatile O Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	0.039		0.020	0.0088	mg/Kg	<u></u>	11/01/17 18:01	11/02/17 16:24	1
Benzene	<0.0020		0.0020	0.00052		₩	11/01/17 18:01	11/02/17 16:24	1
Bromodichloromethane	<0.0020		0.0020	0.00041		₩	11/01/17 18:01	11/02/17 16:24	1
Bromoform	<0.0020		0.0020	0.00059			11/01/17 18:01	11/02/17 16:24	1
Bromomethane	< 0.0051		0.0051	0.0019		₩	11/01/17 18:01	11/02/17 16:24	1
2-Butanone (MEK)	< 0.0051		0.0051	0.0022		☼	11/01/17 18:01	11/02/17 16:24	1
Carbon disulfide	<0.0051		0.0051	0.0011			11/01/17 18:01	11/02/17 16:24	1
Carbon tetrachloride	<0.0020		0.0020	0.00059		₩	11/01/17 18:01	11/02/17 16:24	1
Chlorobenzene	<0.0020		0.0020	0.00075	0 0	₩	11/01/17 18:01	11/02/17 16:24	1
Chloroethane	<0.0051		0.0051	0.0015				11/02/17 16:24	1
Chloroform	<0.0020		0.0020	0.00070		₩		11/02/17 16:24	1
Chloromethane	< 0.0051		0.0051	0.0020		₩		11/02/17 16:24	1
cis-1,2-Dichloroethene	<0.0020		0.0020	0.00056				11/02/17 16:24	1
cis-1,3-Dichloropropene	<0.0020		0.0020	0.00061	mg/Kg	₩		11/02/17 16:24	1
Dibromochloromethane	<0.0020		0.0020	0.00066		₩		11/02/17 16:24	1
1,1-Dichloroethane	<0.0020		0.0020	0.00069				11/02/17 16:24	1
1,2-Dichloroethane	< 0.0051		0.0051	0.0016	0 0	₩		11/02/17 16:24	
1,1-Dichloroethene	<0.0020		0.0020	0.00070	0 0	₩		11/02/17 16:24	1
1,2-Dichloropropane	<0.0020		0.0020	0.00052		ф		11/02/17 16:24	
1,3-Dichloropropene, Total	<0.0020		0.0020	0.00071		₩		11/02/17 16:24	1
Ethylbenzene	<0.0020		0.0020	0.00097		₩		11/02/17 16:24	1
2-Hexanone	<0.0020		0.0020	0.0016		· · · · · · · · · · · · · · · ·		11/02/17 16:24	
Methylene Chloride	<0.0051		0.0051	0.0010				11/02/17 16:24	1
4-Methyl-2-pentanone (MIBK)	<0.0051		0.0051	0.0020				11/02/17 16:24	1
Methyl tert-butyl ether	<0.0020		0.0020	0.00059		· · · · · · · · · · · · · · · · · · ·		11/02/17 16:24	
Styrene	<0.0020		0.0020	0.00061	mg/Kg		11/01/17 18:01	11/02/17 16:24	1
1,1,2,2-Tetrachloroethane	<0.0020		0.0020	0.00061	0 0			11/02/17 16:24	1
Tetrachloroethene	<0.0020		0.0020	0.00069				11/02/17 16:24	
Toluene	<0.0020		0.0020	0.00069	0 0	☆		11/02/17 16:24	1
	<0.0020		0.0020	0.00091	0 0	☆		11/02/17 16:24	1
trans-1,2-Dichloroethene						· · · · · · · · · · · · · · · · · · ·		11/02/17 16:24	
trans-1,3-Dichloropropene	<0.0020		0.0020	0.00071		₩			1
1,1,1-Trichloroethane	<0.0020		0.0020	0.00068				11/02/17 16:24	1
1,1,2-Trichloroethane	<0.0020		0.0020	0.00087				11/02/17 16:24	
Trichloroethene	<0.0020		0.0020	0.00068		₩		11/02/17 16:24	1
Vinyl acetate	<0.0051		0.0051	0.0018		*		11/02/17 16:24	1
Vinyl chloride	<0.0020 <0.0040		0.0020 0.0040	0.00089		⊹ ≎		11/02/17 16:24 11/02/17 16:24	1 1
Xylenes, Total	<0.0040		0.0040	0.00065	mg/kg	*	11/01/17 16.01	11/02/17 10.24	'
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	75		75 - 131				11/01/17 18:01	11/02/17 16:24	1
Dibromofluoromethane	97		75 - 126				11/01/17 18:01	11/02/17 16:24	1
1,2-Dichloroethane-d4 (Surr)	98		70 - 134				11/01/17 18:01	11/02/17 16:24	1
Toluene-d8 (Surr)	99		75 - 124				11/01/17 18:01	11/02/17 16:24	1

Method: 8270D - Semivol	atile Organic Compounds (GC/MS)						
Analyte	Result Qualifier	ŘL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	<0.040	0.040	0.0072	mg/Kg	\	11/07/17 16:14	11/08/17 18:10	1
Acenaphthylene	<0.040	0.040	0.0053	mg/Kg	₩	11/07/17 16:14	11/08/17 18:10	1
Anthracene	<0.040	0.040	0.0067	mg/Kg	☼	11/07/17 16:14	11/08/17 18:10	1
Benzo[a]anthracene	<0.040	0.040	0.0054	mg/Kg	₽	11/07/17 16:14	11/08/17 18:10	1

TestAmerica Chicago

Page 55 of 231

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 09:50

Client Sample ID: 3160-25-1 (0-4')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-8

Matrix: Solid

Percent Solids: 79.7

Date Received: 11/01/17 09:05	
Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)	

Method: 8270D - Semivolatil Analyte		Qualifier	ŔĹ	MDL	•	D	Prepared	Analyzed	Dil Fa
Benzo[a]pyrene	<0.040		0.040	0.0077	mg/Kg	<u></u>	11/07/17 16:14	11/08/17 18:10	
Benzo[b]fluoranthene	< 0.040		0.040	0.0086	mg/Kg	☼	11/07/17 16:14	11/08/17 18:10	
Benzo[g,h,i]perylene	<0.040		0.040	0.013	mg/Kg		11/07/17 16:14	11/08/17 18:10	
Benzo[k]fluoranthene	< 0.040		0.040	0.012	mg/Kg	≎	11/07/17 16:14	11/08/17 18:10	
Bis(2-chloroethoxy)methane	<0.20		0.20		mg/Kg	₽	11/07/17 16:14	11/08/17 18:10	
Bis(2-chloroethyl)ether	<0.20		0.20		mg/Kg		11/07/17 16:14	11/08/17 18:10	
Bis(2-ethylhexyl) phthalate	<0.20		0.20		mg/Kg	₩	11/07/17 16:14	11/08/17 18:10	
4-Bromophenyl phenyl ether	<0.20		0.20	0.053	mg/Kg	₩	11/07/17 16:14	11/08/17 18:10	
Butyl benzyl phthalate	<0.20		0.20		mg/Kg		11/07/17 16:14	11/08/17 18:10	
Carbazole	<0.20		0.20		mg/Kg	₩	11/07/17 16:14	11/08/17 18:10	
4-Chloroaniline	<0.81		0.81		mg/Kg	₽		11/08/17 18:10	
4-Chloro-3-methylphenol	<0.40		0.40		mg/Kg			11/08/17 18:10	
2-Chloronaphthalene	<0.20		0.20		mg/Kg	₽		11/08/17 18:10	
2-Chlorophenol	<0.20		0.20		mg/Kg	₽		11/08/17 18:10	
4-Chlorophenyl phenyl ether	<0.20		0.20		mg/Kg			11/08/17 18:10	
Chrysene	<0.040		0.20		mg/Kg	₽		11/08/17 18:10	
Dibenz(a,h)anthracene	<0.040		0.040	0.0077		₽		11/08/17 18:10	
Dibenzofuran	<0.20		0.040		mg/Kg			11/08/17 18:10	
	<0.20		0.20			≎		11/08/17 18:10	
1,2-Dichlorobenzene					mg/Kg				
1,3-Dichlorobenzene	<0.20		0.20		mg/Kg			11/08/17 18:10	
1,4-Dichlorobenzene	<0.20		0.20		mg/Kg	☆		11/08/17 18:10	
3,3'-Dichlorobenzidine	<0.20		0.20		mg/Kg			11/08/17 18:10	
2,4-Dichlorophenol	<0.40		0.40		mg/Kg	<u>.</u> .		11/08/17 18:10	
Diethyl phthalate	<0.20		0.20		mg/Kg	*		11/08/17 18:10	
2,4-Dimethylphenol	<0.40		0.40		mg/Kg	*		11/08/17 18:10	
Dimethyl phthalate	<0.20		0.20		mg/Kg	, .		11/08/17 18:10	
Di-n-butyl phthalate	<0.20		0.20		mg/Kg	-\$-	11/07/17 16:14	11/08/17 18:10	
4,6-Dinitro-2-methylphenol	<0.81		0.81		mg/Kg	☼	11/07/17 16:14	11/08/17 18:10	
2,4-Dinitrophenol	<0.81		0.81		mg/Kg	☼	11/07/17 16:14	11/08/17 18:10	
2,4-Dinitrotoluene	<0.20		0.20	0.064	mg/Kg	₽	11/07/17 16:14	11/08/17 18:10	
2,6-Dinitrotoluene	<0.20		0.20		mg/Kg	₽	11/07/17 16:14	11/08/17 18:10	
Di-n-octyl phthalate	<0.20		0.20	0.065	mg/Kg	☼	11/07/17 16:14	11/08/17 18:10	
Fluoranthene	<0.040		0.040	0.0074	mg/Kg	₽	11/07/17 16:14	11/08/17 18:10	
Fluorene	< 0.040		0.040	0.0056	mg/Kg	☼	11/07/17 16:14	11/08/17 18:10	
Hexachlorobenzene	<0.081		0.081	0.0093	mg/Kg	₩	11/07/17 16:14	11/08/17 18:10	
Hexachlorobutadiene	<0.20		0.20	0.063	mg/Kg		11/07/17 16:14	11/08/17 18:10	
Hexachlorocyclopentadiene	<0.81		0.81	0.23	mg/Kg	☼	11/07/17 16:14	11/08/17 18:10	
Hexachloroethane	<0.20		0.20		mg/Kg	≎	11/07/17 16:14	11/08/17 18:10	
Indeno[1,2,3-cd]pyrene	<0.040		0.040	0.010	mg/Kg		11/07/17 16:14	11/08/17 18:10	
Isophorone	<0.20		0.20	0.045	mg/Kg	₽	11/07/17 16:14	11/08/17 18:10	
2-Methylnaphthalene	<0.081		0.081	0.0074		₩	11/07/17 16:14	11/08/17 18:10	
2-Methylphenol	<0.20		0.20	0.064	mg/Kg			11/08/17 18:10	
3 & 4 Methylphenol	<0.20		0.20		mg/Kg	₽		11/08/17 18:10	
Naphthalene	<0.040		0.040	0.0062		₩		11/08/17 18:10	
2-Nitroaniline	<0.20		0.20		mg/Kg			11/08/17 18:10	
3-Nitroaniline	<0.40		0.40		mg/Kg	₩		11/08/17 18:10	
4-Nitroaniline	<0.40		0.40		mg/Kg	☼		11/08/17 18:10	
Nitrobenzene	<0.040		0.40		mg/Kg			11/08/17 18:10	
2-Nitrophenol	<0.40		0.040		mg/Kg	≎		11/08/17 18:10	

TestAmerica Chicago

Page 56 of 231

11/13/2017

_

J

^

8

10

12

IJ

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-25-1 (0-4')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-8

Matrix: Solid

Date Collected: 10/31/17 09:50 Date Received: 11/01/17 09:05 Percent Solids: 79.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.81		0.81	0.38	mg/Kg	<u> </u>	11/07/17 16:14	11/08/17 18:10	1
N-Nitrosodi-n-propylamine	<0.081		0.081	0.049	mg/Kg	φ.	11/07/17 16:14	11/08/17 18:10	1
N-Nitrosodiphenylamine	<0.20		0.20	0.047	mg/Kg	₩	11/07/17 16:14	11/08/17 18:10	1
2,2'-oxybis[1-chloropropane]	<0.20		0.20	0.046	mg/Kg	₩	11/07/17 16:14	11/08/17 18:10	1
Pentachlorophenol	<0.81		0.81	0.64	mg/Kg	₽	11/07/17 16:14	11/08/17 18:10	1
Phenanthrene	< 0.040		0.040	0.0056	mg/Kg	₩	11/07/17 16:14	11/08/17 18:10	1
Phenol	<0.20		0.20	0.089	mg/Kg	☼	11/07/17 16:14	11/08/17 18:10	1
Pyrene	<0.040		0.040	0.0079	mg/Kg		11/07/17 16:14	11/08/17 18:10	1
1,2,4-Trichlorobenzene	<0.20		0.20	0.043	mg/Kg	₩	11/07/17 16:14	11/08/17 18:10	1
2,4,5-Trichlorophenol	<0.40		0.40	0.091	mg/Kg	₩	11/07/17 16:14	11/08/17 18:10	1
2,4,6-Trichlorophenol	<0.40		0.40	0.14	mg/Kg	₽	11/07/17 16:14	11/08/17 18:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	83		44 - 121				11/07/17 16:14	11/08/17 18:10	1
2-Fluorophenol	86		46 - 133				11/07/17 16:14	11/08/17 18:10	1
Nitrobenzene-d5	70		41 - 120				11/07/17 16:14	11/08/17 18:10	1
Phenol-d5	93		46 - 125				11/07/17 16:14	11/08/17 18:10	1
Terphenyl-d14	85		35 - 160				11/07/17 16:14	11/08/17 18:10	1
2,4,6-Tribromophenol	93		25 - 139				11/07/17 16:14	11/08/17 18:10	1

Method: 6010B - Metals (ICP) Analyte	Pocult	Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
	<1.1	Qualifier				— =	11/02/17 07:49	11/02/17 20:56	Dirac
Antimony			1.1		mg/Kg				1
Arsenic	7.8		0.56	0.19	mg/Kg	₽	11/02/17 07:49	11/02/17 20:56	1
Barium	76		0.56	0.064	mg/Kg	₩	11/02/17 07:49	11/02/17 20:56	1
Beryllium	0.52		0.22	0.052	mg/Kg	₽	11/02/17 07:49	11/02/17 20:56	1
Cadmium	0.18	В	0.11	0.020	mg/Kg	₩	11/02/17 07:49	11/02/17 20:56	1
Chromium	20		0.56	0.28	mg/Kg	☼	11/02/17 07:49	11/02/17 20:56	1
Cobalt	11		0.28	0.074	mg/Kg	φ.	11/02/17 07:49	11/02/17 20:56	1
Copper	16		0.56	0.16	mg/Kg	☼	11/02/17 07:49	11/02/17 20:56	1
Iron	20000	В	11	5.8	mg/Kg	₩	11/02/17 07:49	11/02/17 20:56	1
Lead	17		0.28	0.13	mg/Kg	₩.	11/02/17 07:49	11/02/17 20:56	1
Manganese	560		0.56	0.081	mg/Kg	☼	11/02/17 07:49	11/02/17 20:56	1
Nickel	16		0.56	0.16	mg/Kg	☼	11/02/17 07:49	11/02/17 20:56	1
Selenium	0.93		0.56	0.33	mg/Kg	₽	11/02/17 07:49	11/02/17 20:56	1
Silver	<0.28		0.28	0.072	mg/Kg	☼	11/02/17 07:49	11/02/17 20:56	1
Thallium	<0.56		0.56	0.28	mg/Kg	₩	11/02/17 07:49	11/02/17 20:56	1
Vanadium	31		0.28	0.066	mg/Kg	₩.	11/02/17 07:49	11/02/17 20:56	1
Zinc	110		1.1	0.49	mg/Kg	₩	11/02/17 07:49	11/02/17 20:56	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/03/17 14:57	11/05/17 16:59	1
Barium	0.35	J	0.50	0.050	mg/L		11/03/17 14:57	11/05/17 16:59	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/03/17 14:57	11/05/17 16:59	1
Cadmium	0.0031	J	0.0050	0.0020	mg/L		11/03/17 14:57	11/05/17 16:59	1
Chromium	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 16:59	1
Cobalt	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 16:59	1
Copper	0.013	J	0.025	0.010	mg/L		11/03/17 14:57	11/05/17 16:59	1
Iron	<0.40		0.40	0.20	mg/L		11/03/17 14:57	11/05/17 16:59	1

Page 57 of 231

TestAmerica Chicago

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 09:50

Date Received: 11/01/17 09:05

Client Sample ID: 3160-25-1 (0-4')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-8

Matrix: Solid

Percent Solids: 79.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	<0.0075		0.0075	0.0075	mg/L		11/03/17 14:57	11/05/17 16:59	1
Manganese	4.8		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 16:59	1
Nickel	0.032		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 16:59	1
Selenium	<0.050		0.050	0.020	mg/L		11/03/17 14:57	11/05/17 16:59	1
Silver	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 16:59	1
Vanadium	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 16:59	1
Zinc	0.25	J	0.50	0.020	mg/L		11/03/17 14:57	11/05/17 16:59	1
- Method: 6010B - Metals	s (ICP) - SPLP East	t							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Manganese	0.43		0.025	0.010	mg/L		11/03/17 14:53	11/06/17 02:24	1
Method: 6020A - Metals	s (ICP/MS) - TCLP								
Analyte	,	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060		0.0060	0.0060	mg/L		11/03/17 14:57	11/06/17 16:44	1
Thallium	<0.0020		0.0020	0.0020	mg/L		11/03/17 14:57	11/06/17 16:44	1
Method: 7470A - TCLP	Mercury - TCLP								
Analyte	_	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/03/17 12:20	11/06/17 11:16	1
Method: 7471B - Mercu	ıry (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.048		0.021	0.0069	mg/Kg	<u></u>	11/02/17 16:10	11/03/17 08:31	1
General Chemistry									
		0	ъ.	MDI	1144		Duamanad	A a l a al	Dil Fac
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dii Fac

2

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-25-2 (0-4')

Lab Sample ID: 500-136575-9

Date Collected: 10/31/17 10:00 Matrix: Solid
Date Received: 11/01/17 09:05 Percent Solids: 85.2

Analyte	Result Qualit			Unit	D	Prepared	Analyzed	Dil Fac
Acetone	0.024	0.018	0.0080	mg/Kg	<u> </u>	11/01/17 18:01	11/02/17 16:49	1
Benzene	<0.0018	0.0018	0.00047	mg/Kg	₩	11/01/17 18:01	11/02/17 16:49	1
Bromodichloromethane	<0.0018	0.0018	0.00037	mg/Kg	₩	11/01/17 18:01	11/02/17 16:49	1
Bromoform	<0.0018	0.0018	0.00053	mg/Kg	₩	11/01/17 18:01	11/02/17 16:49	1
Bromomethane	<0.0046	0.0046	0.0017	mg/Kg	₩	11/01/17 18:01	11/02/17 16:49	1
2-Butanone (MEK)	<0.0046	0.0046	0.0020	mg/Kg	☼	11/01/17 18:01	11/02/17 16:49	1
Carbon disulfide	<0.0046	0.0046	0.00095	mg/Kg	₩	11/01/17 18:01	11/02/17 16:49	1
Carbon tetrachloride	<0.0018	0.0018	0.00053	mg/Kg	☼	11/01/17 18:01	11/02/17 16:49	1
Chlorobenzene	<0.0018	0.0018	0.00068	mg/Kg	₩	11/01/17 18:01	11/02/17 16:49	1
Chloroethane	<0.0046	0.0046	0.0014	mg/Kg	\$	11/01/17 18:01	11/02/17 16:49	1
Chloroform	<0.0018	0.0018	0.00064	mg/Kg	☼	11/01/17 18:01	11/02/17 16:49	1
Chloromethane	<0.0046	0.0046	0.0018	mg/Kg	☼	11/01/17 18:01	11/02/17 16:49	1
cis-1,2-Dichloroethene	<0.0018	0.0018	0.00051	mg/Kg		11/01/17 18:01	11/02/17 16:49	1
cis-1,3-Dichloropropene	<0.0018	0.0018	0.00055	mg/Kg	☼	11/01/17 18:01	11/02/17 16:49	1
Dibromochloromethane	<0.0018	0.0018	0.00060	mg/Kg	☼	11/01/17 18:01	11/02/17 16:49	1
1,1-Dichloroethane	<0.0018	0.0018	0.00063	mg/Kg	₩	11/01/17 18:01	11/02/17 16:49	1
1,2-Dichloroethane	<0.0046	0.0046	0.0014	mg/Kg	₩	11/01/17 18:01	11/02/17 16:49	1
1,1-Dichloroethene	<0.0018	0.0018	0.00063	mg/Kg	₩	11/01/17 18:01	11/02/17 16:49	1
1,2-Dichloropropane	<0.0018	0.0018	0.00047	mg/Kg	· · · · · · · · · · · · · · · · · · ·	11/01/17 18:01	11/02/17 16:49	1
1,3-Dichloropropene, Total	<0.0018	0.0018	0.00064	mg/Kg	₩	11/01/17 18:01	11/02/17 16:49	1
Ethylbenzene	<0.0018	0.0018	0.00088		₩	11/01/17 18:01	11/02/17 16:49	1
2-Hexanone	<0.0046	0.0046	0.0014	mg/Kg	· · · · · · · · · · · · · · · · · · ·	11/01/17 18:01	11/02/17 16:49	1
Methylene Chloride	<0.0046	0.0046	0.0018		☼	11/01/17 18:01	11/02/17 16:49	1
4-Methyl-2-pentanone (MIBK)	<0.0046	0.0046	0.0014	mg/Kg	₩	11/01/17 18:01	11/02/17 16:49	1
Methyl tert-butyl ether	<0.0018	0.0018	0.00054	mg/Kg		11/01/17 18:01	11/02/17 16:49	1
Styrene	<0.0018	0.0018	0.00055	mg/Kg	☼	11/01/17 18:01	11/02/17 16:49	1
1,1,2,2-Tetrachloroethane	<0.0018	0.0018	0.00059	0 0	☼	11/01/17 18:01	11/02/17 16:49	1
Tetrachloroethene	<0.0018	0.0018	0.00062	mg/Kg		11/01/17 18:01	11/02/17 16:49	1
Toluene	<0.0018	0.0018	0.00046	0 0	₩		11/02/17 16:49	1
trans-1,2-Dichloroethene	<0.0018	0.0018	0.00081	0 0	☼	11/01/17 18:01	11/02/17 16:49	1
trans-1,3-Dichloropropene	<0.0018	0.0018	0.00064			11/01/17 18:01	11/02/17 16:49	1
1,1,1-Trichloroethane	<0.0018	0.0018	0.00061	0 0	☼	11/01/17 18:01	11/02/17 16:49	1
1,1,2-Trichloroethane	<0.0018	0.0018	0.00079		☆		11/02/17 16:49	1
Trichloroethene	<0.0018	0.0018	0.00062		· · · · · · · · · · · · · · · · · · ·		11/02/17 16:49	1
Vinyl acetate	<0.0046	0.0046	0.0016		₩		11/02/17 16:49	1
Vinyl chloride	<0.0018	0.0018	0.00081		₩		11/02/17 16:49	1
Xylenes, Total	<0.0037	0.0037	0.00059		φ.		11/02/17 16:49	1
Surrogate	%Recovery Qualit	fier Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	76	75 - 131				11/01/17 18:01	11/02/17 16:49	1
Dibromofluoromethane	101	75 - 126				11/01/17 18:01	11/02/17 16:49	1
1,2-Dichloroethane-d4 (Surr)	102	70 - 134				11/01/17 18:01	11/02/17 16:49	1
Toluene-d8 (Surr)	97	75 - 124					11/02/17 16:49	1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	<0.038	0.038	0.0068	mg/Kg	\	11/07/17 16:14	11/08/17 18:35	1
Acenaphthylene	<0.038	0.038	0.0050	mg/Kg	₩	11/07/17 16:14	11/08/17 18:35	1
Anthracene	<0.038	0.038	0.0063	mg/Kg	₩	11/07/17 16:14	11/08/17 18:35	1
Benzo[a]anthracene	<0.038	0.038	0.0051	mg/Kg		11/07/17 16:14	11/08/17 18:35	1

TestAmerica Chicago

Page 59 of 231

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 10:00 Date Received: 11/01/17 09:05

Client Sample ID: 3160-25-2 (0-4')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-9

Matrix: Solid	
Percent Solids: 85.2	

Method: 8270D - Semivolatil Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzo[a]pyrene	<0.038	0.038	0.0073		**	11/07/17 16:14	11/08/17 18:35	
Benzo[b]fluoranthene	<0.038	0.038	0.0082			11/07/17 16:14	11/08/17 18:35	
Benzo[g,h,i]perylene	<0.038	0.038		mg/Kg	₩	11/07/17 16:14	11/08/17 18:35	
Benzo[k]fluoranthene	<0.038	0.038		mg/Kg	₩	11/07/17 16:14	11/08/17 18:35	
Bis(2-chloroethoxy)methane	<0.19	0.19	0.039	mg/Kg	₩	11/07/17 16:14	11/08/17 18:35	
Bis(2-chloroethyl)ether	<0.19	0.19		mg/Kg	₩	11/07/17 16:14	11/08/17 18:35	
Bis(2-ethylhexyl) phthalate	<0.19	0.19	0.069	mg/Kg	₩	11/07/17 16:14	11/08/17 18:35	
4-Bromophenyl phenyl ether	<0.19	0.19	0.050	mg/Kg	₩	11/07/17 16:14	11/08/17 18:35	
Butyl benzyl phthalate	<0.19	0.19	0.072	mg/Kg	₩	11/07/17 16:14	11/08/17 18:35	
Carbazole	<0.19	0.19	0.095	mg/Kg	₩	11/07/17 16:14	11/08/17 18:35	
4-Chloroaniline	<0.77	0.77	0.18	mg/Kg	₩	11/07/17 16:14	11/08/17 18:35	
4-Chloro-3-methylphenol	<0.38	0.38	0.13	mg/Kg	₩.	11/07/17 16:14	11/08/17 18:35	
2-Chloronaphthalene	<0.19	0.19	0.042	mg/Kg	₩	11/07/17 16:14	11/08/17 18:35	
2-Chlorophenol	<0.19	0.19	0.065	mg/Kg	₩	11/07/17 16:14	11/08/17 18:35	
4-Chlorophenyl phenyl ether	<0.19	0.19		mg/Kg		11/07/17 16:14	11/08/17 18:35	
Chrysene	<0.038	0.038		mg/Kg	₩	11/07/17 16:14	11/08/17 18:35	
Dibenz(a,h)anthracene	<0.038	0.038	0.0073	0 0	₩	11/07/17 16:14	11/08/17 18:35	
Dibenzofuran	<0.19	0.19		mg/Kg		11/07/17 16:14	11/08/17 18:35	
1,2-Dichlorobenzene	<0.19	0.19		mg/Kg	₩		11/08/17 18:35	
1,3-Dichlorobenzene	<0.19	0.19		mg/Kg	₩		11/08/17 18:35	
1,4-Dichlorobenzene	<0.19	0.19		mg/Kg			11/08/17 18:35	
3,3'-Dichlorobenzidine	<0.19	0.19		mg/Kg	₩		11/08/17 18:35	
2,4-Dichlorophenol	<0.38	0.38	0.090	0 0	₩		11/08/17 18:35	
Diethyl phthalate	<0.19	0.19		mg/Kg			11/08/17 18:35	
2,4-Dimethylphenol	<0.38	0.19		mg/Kg			11/08/17 18:35	
Dimethyl phthalate	<0.19	0.30		mg/Kg			11/08/17 18:35	
Di-n-butyl phthalate	<0.19	0.19		mg/Kg			11/08/17 18:35	
• •	<0.77	0.19		mg/Kg			11/08/17 18:35	
4,6-Dinitro-2-methylphenol				0 0	₩			
2,4-Dinitrophenol	<0.77	0.77		mg/Kg	_.		11/08/17 18:35	
2,4-Dinitrotoluene	<0.19	0.19		mg/Kg	*		11/08/17 18:35	
2,6-Dinitrotoluene	<0.19	0.19		mg/Kg	₽ *		11/08/17 18:35	
Di-n-octyl phthalate	<0.19	0.19		mg/Kg			11/08/17 18:35	
Fluoranthene	<0.038	0.038	0.0070		1,2		11/08/17 18:35	
Fluorene	<0.038	0.038	0.0053		φ.		11/08/17 18:35	
Hexachlorobenzene	<0.077	0.077	0.0088				11/08/17 18:35	
Hexachlorobutadiene	<0.19	0.19		mg/Kg	Đ:		11/08/17 18:35	
Hexachlorocyclopentadiene	<0.77	0.77		mg/Kg	.		11/08/17 18:35	
Hexachloroethane	<0.19	0.19		mg/Kg			11/08/17 18:35	
Indeno[1,2,3-cd]pyrene	<0.038	0.038	0.0098		₩	11/07/17 16:14	11/08/17 18:35	
Isophorone	<0.19	0.19	0.043	mg/Kg	₩		11/08/17 18:35	
2-Methylnaphthalene	<0.077	0.077	0.0070		*		11/08/17 18:35	
2-Methylphenol	<0.19	0.19		mg/Kg	₩		11/08/17 18:35	
3 & 4 Methylphenol	<0.19	0.19	0.063	mg/Kg	₩		11/08/17 18:35	
Naphthalene	<0.038	0.038	0.0058	mg/Kg	₩	11/07/17 16:14	11/08/17 18:35	
2-Nitroaniline	<0.19	0.19	0.051	mg/Kg	₽	11/07/17 16:14	11/08/17 18:35	
3-Nitroaniline	<0.38	0.38	0.12	mg/Kg	₩	11/07/17 16:14	11/08/17 18:35	
4-Nitroaniline	<0.38	0.38	0.16	mg/Kg	₩	11/07/17 16:14	11/08/17 18:35	
Nitrobenzene	<0.038	0.038	0.0095	mg/Kg	φ.	11/07/17 16:14	11/08/17 18:35	
2-Nitrophenol	<0.38	0.38		mg/Kg	≎	44/07/47 40:44	11/08/17 18:35	

TestAmerica Chicago

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 10:00

Date Received: 11/01/17 09:05

Client Sample ID: 3160-25-2 (0-4')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-9

Matrix: Solid

Percent Solids: 85.2

Method: 8270D - Semivolation	tile Organic Co	mpounds	(GC/MS) (Cd	ntinued)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.77		0.77	0.36	mg/Kg	<u> </u>	11/07/17 16:14	11/08/17 18:35	1
N-Nitrosodi-n-propylamine	<0.077		0.077	0.046	mg/Kg	\$	11/07/17 16:14	11/08/17 18:35	1
N-Nitrosodiphenylamine	<0.19		0.19	0.045	mg/Kg	☼	11/07/17 16:14	11/08/17 18:35	1
2,2'-oxybis[1-chloropropane]	<0.19		0.19	0.044	mg/Kg	≎	11/07/17 16:14	11/08/17 18:35	1
Pentachlorophenol	<0.77		0.77	0.61	mg/Kg	₽	11/07/17 16:14	11/08/17 18:35	1
Phenanthrene	<0.038		0.038	0.0053	mg/Kg	≎	11/07/17 16:14	11/08/17 18:35	1
Phenol	<0.19		0.19	0.084	mg/Kg	≎	11/07/17 16:14	11/08/17 18:35	1
Pyrene	<0.038		0.038	0.0075	mg/Kg	₽	11/07/17 16:14	11/08/17 18:35	1
1,2,4-Trichlorobenzene	<0.19		0.19	0.041	mg/Kg	☼	11/07/17 16:14	11/08/17 18:35	1
2,4,5-Trichlorophenol	<0.38		0.38	0.087	mg/Kg	☼	11/07/17 16:14	11/08/17 18:35	1
2,4,6-Trichlorophenol	<0.38		0.38	0.13	mg/Kg	₩	11/07/17 16:14	11/08/17 18:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	87		44 - 121				11/07/17 16:14	11/08/17 18:35	1
2-Fluorophenol	100		46 - 133				11/07/17 16:14	11/08/17 18:35	1
Nitrobenzene-d5	77		41 - 120				11/07/17 16:14	11/08/17 18:35	1
Phenol-d5	104		46 - 125				11/07/17 16:14	11/08/17 18:35	1
Terphenyl-d14	89		35 - 160				11/07/17 16:14	11/08/17 18:35	1
2,4,6-Tribromophenol	106		25 - 139				11/07/17 16:14	11/08/17 18:35	1

Method: 6010B - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.98		0.98	0.19	mg/Kg	<u></u>	11/02/17 07:49	11/02/17 21:00	1
Arsenic	9.2		0.49	0.17	mg/Kg	☼	11/02/17 07:49	11/02/17 21:00	1
Barium	100		0.49	0.056	mg/Kg	≎	11/02/17 07:49	11/02/17 21:00	1
Beryllium	0.46		0.20	0.046	mg/Kg	.	11/02/17 07:49	11/02/17 21:00	1
Cadmium	0.089	JB	0.098	0.018	mg/Kg	☼	11/02/17 07:49	11/02/17 21:00	1
Chromium	19		0.49	0.24	mg/Kg	≎	11/02/17 07:49	11/02/17 21:00	1
Cobalt	6.7		0.25	0.064	mg/Kg	φ.	11/02/17 07:49	11/02/17 21:00	1
Copper	16		0.49	0.14	mg/Kg	☼	11/02/17 07:49	11/02/17 21:00	1
Iron	21000	В	9.8	5.1	mg/Kg	☼	11/02/17 07:49	11/02/17 21:00	1
Lead	14		0.25	0.11	mg/Kg	₽	11/02/17 07:49	11/02/17 21:00	1
Manganese	220		0.49	0.071	mg/Kg	☼	11/02/17 07:49	11/02/17 21:00	1
Nickel	15		0.49	0.14	mg/Kg	☼	11/02/17 07:49	11/02/17 21:00	1
Selenium	0.66		0.49	0.29	mg/Kg	₽	11/02/17 07:49	11/02/17 21:00	1
Silver	<0.25		0.25	0.063	mg/Kg	☼	11/02/17 07:49	11/02/17 21:00	1
Thallium	<0.49		0.49	0.24	mg/Kg	☼	11/02/17 07:49	11/02/17 21:00	1
Vanadium	32		0.25	0.058	mg/Kg	₽	11/02/17 07:49	11/02/17 21:00	1
Zinc	55		0.98	0.43	mg/Kg	₩	11/02/17 07:49	11/02/17 21:00	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/03/17 14:57	11/05/17 17:03	1
Barium	0.33	J	0.50	0.050	mg/L		11/03/17 14:57	11/05/17 17:03	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/03/17 14:57	11/05/17 17:03	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/03/17 14:57	11/05/17 17:03	1
Chromium	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:03	1
Cobalt	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:03	1
Copper	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:03	1
Iron	<0.40		0.40	0.20	mg/L		11/03/17 14:57	11/05/17 17:03	1

Page 61 of 231

TestAmerica Chicago

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 10:00

Date Received: 11/01/17 09:05

Client Sample ID: 3160-25-2 (0-4')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-9

Matrix: Solid

Percent Solids: 85.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	<0.0075		0.0075	0.0075	mg/L		11/03/17 14:57	11/05/17 17:03	1
Manganese	0.018	J	0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:03	1
Nickel	< 0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:03	1
Selenium	< 0.050		0.050	0.020	mg/L		11/03/17 14:57	11/05/17 17:03	1
Silver	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:03	1
Vanadium	< 0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:03	1
Zinc	<0.50		0.50	0.020	mg/L		11/03/17 14:57	11/05/17 17:03	1
Method: 6020A - Metals (IC	P/MS) - TCLP								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060		0.0060	0.0060	mg/L		11/03/17 14:57	11/06/17 16:52	1
Thallium	<0.0020		0.0020	0.0020	mg/L		11/03/17 14:57	11/06/17 16:52	1
Method: 7470A - TCLP Me	rcury - TCLP								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/03/17 12:20	11/06/17 11:17	1
- Method: 7471B - Mercury (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.023		0.018	0.0062	mg/Kg	- \$	11/02/17 16:10	11/03/17 08:34	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	4.8		0.20	0.20	SU			11/03/17 08:57	

TestAmerica Job ID: 500-136575-1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-26-2 (0-4')

Lab Sample ID: 500-136575-10 Date Collected: 10/31/17 10:10 **Matrix: Solid**

Date Received: 11/01/17 09:05 Percent Solids: 84.1

Method: 8260B - Volatile O Analyte	Result Q	ualifier RL		Unit	D	Prepared	Analyzed	Dil Fac
Acetone	0.042	0.020	0.0087	mg/Kg	 \	11/01/17 18:01	11/02/17 17:14	1
Benzene	<0.0020	0.0020	0.00051	mg/Kg	☼	11/01/17 18:01	11/02/17 17:14	1
Bromodichloromethane	<0.0020	0.0020	0.00041	mg/Kg	☼	11/01/17 18:01	11/02/17 17:14	1
Bromoform	<0.0020	0.0020	0.00059	mg/Kg	₩	11/01/17 18:01	11/02/17 17:14	1
Bromomethane	<0.0050	0.0050	0.0019	mg/Kg	☼	11/01/17 18:01	11/02/17 17:14	1
2-Butanone (MEK)	<0.0050	0.0050	0.0022	mg/Kg	☼	11/01/17 18:01	11/02/17 17:14	1
Carbon disulfide	<0.0050	0.0050	0.0010	mg/Kg	≎	11/01/17 18:01	11/02/17 17:14	1
Carbon tetrachloride	<0.0020	0.0020	0.00058	mg/Kg	₩	11/01/17 18:01	11/02/17 17:14	1
Chlorobenzene	<0.0020	0.0020	0.00074	mg/Kg	☼	11/01/17 18:01	11/02/17 17:14	1
Chloroethane	<0.0050	0.0050	0.0015	mg/Kg	₽	11/01/17 18:01	11/02/17 17:14	1
Chloroform	<0.0020	0.0020	0.00070	mg/Kg	₩	11/01/17 18:01	11/02/17 17:14	1
Chloromethane	<0.0050	0.0050	0.0020	mg/Kg	₩	11/01/17 18:01	11/02/17 17:14	1
cis-1,2-Dichloroethene	<0.0020	0.0020	0.00056	mg/Kg	₽	11/01/17 18:01	11/02/17 17:14	1
cis-1,3-Dichloropropene	<0.0020	0.0020	0.00060	mg/Kg	₩	11/01/17 18:01	11/02/17 17:14	1
Dibromochloromethane	<0.0020	0.0020	0.00066	mg/Kg	₩	11/01/17 18:01	11/02/17 17:14	1
1,1-Dichloroethane	<0.0020	0.0020	0.00069	mg/Kg	₽	11/01/17 18:01	11/02/17 17:14	1
1,2-Dichloroethane	<0.0050	0.0050	0.0016	mg/Kg	₩	11/01/17 18:01	11/02/17 17:14	1
1,1-Dichloroethene	<0.0020	0.0020	0.00069	mg/Kg	☼	11/01/17 18:01	11/02/17 17:14	1
1,2-Dichloropropane	<0.0020	0.0020	0.00052	mg/Kg	₩	11/01/17 18:01	11/02/17 17:14	1
1,3-Dichloropropene, Total	<0.0020	0.0020	0.00070	mg/Kg	₩	11/01/17 18:01	11/02/17 17:14	1
Ethylbenzene	<0.0020	0.0020	0.00096	mg/Kg	₩	11/01/17 18:01	11/02/17 17:14	1
2-Hexanone	<0.0050	0.0050	0.0016	mg/Kg	₩	11/01/17 18:01	11/02/17 17:14	1
Methylene Chloride	<0.0050	0.0050	0.0020	mg/Kg	☼	11/01/17 18:01	11/02/17 17:14	1
4-Methyl-2-pentanone (MIBK)	<0.0050	0.0050	0.0015	mg/Kg	☼	11/01/17 18:01	11/02/17 17:14	1
Methyl tert-butyl ether	<0.0020	0.0020	0.00059	mg/Kg	₩	11/01/17 18:01	11/02/17 17:14	1
Styrene	<0.0020	0.0020	0.00061	mg/Kg	☼	11/01/17 18:01	11/02/17 17:14	1
1,1,2,2-Tetrachloroethane	<0.0020	0.0020	0.00064	mg/Kg	☼	11/01/17 18:01	11/02/17 17:14	1
Tetrachloroethene	<0.0020	0.0020	0.00068	mg/Kg	₽	11/01/17 18:01	11/02/17 17:14	1
Toluene	<0.0020	0.0020	0.00051	mg/Kg	☼	11/01/17 18:01	11/02/17 17:14	1
trans-1,2-Dichloroethene	<0.0020	0.0020	0.00089	mg/Kg	☼	11/01/17 18:01	11/02/17 17:14	1
trans-1,3-Dichloropropene	<0.0020	0.0020	0.00070	mg/Kg		11/01/17 18:01	11/02/17 17:14	1
1,1,1-Trichloroethane	<0.0020	0.0020	0.00067	mg/Kg	☼	11/01/17 18:01	11/02/17 17:14	1
1,1,2-Trichloroethane	<0.0020	0.0020	0.00086	mg/Kg	₩	11/01/17 18:01	11/02/17 17:14	1
Trichloroethene	<0.0020	0.0020	0.00068	mg/Kg	ф	11/01/17 18:01	11/02/17 17:14	1
Vinyl acetate	< 0.0050	0.0050	0.0017	mg/Kg	☼	11/01/17 18:01	11/02/17 17:14	1
Vinyl chloride	<0.0020	0.0020	0.00089	mg/Kg	☼	11/01/17 18:01	11/02/17 17:14	1
Xylenes, Total	<0.0040	0.0040	0.00064	mg/Kg	φ.	11/01/17 18:01	11/02/17 17:14	1
Surrogate	%Recovery Q	Qualifier Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	89	75 - 131				11/01/17 18:01	11/02/17 17:14	1
Dibromofluoromethane	100	75 - 126				11/01/17 18:01	11/02/17 17:14	1
1,2-Dichloroethane-d4 (Surr)	99	70 - 134				11/01/17 18:01	11/02/17 17:14	1
Toluene-d8 (Surr)	91	75 - 124				11/01/17 18:01	11/02/17 17:14	1

Method: 8270D - Semivol	atile Organic Compounds (GC/MS)					
Analyte	Result Qualifier	RL	MDL Unit		Prepared	Analyzed	Dil Fac
Acenaphthene	<0.038	0.038	0.0070 mg/Kg	3	11/07/17 16:14	11/08/17 19:00	1
Acenaphthylene	<0.038	0.038	0.0051 mg/Kg	3	11/07/17 16:14	11/08/17 19:00	1
Anthracene	<0.038	0.038	0.0065 mg/Kg	3	11/07/17 16:14	11/08/17 19:00	1
Benzo[a]anthracene	<0.038	0.038	0.0052 mg/Kg	3	11/07/17 16:14	11/08/17 19:00	1

TestAmerica Chicago

Page 63 of 231

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 10:10

Date Received: 11/01/17 09:05

Client Sample ID: 3160-26-2 (0-4')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-10

Matrix: Solid

Percent Solids: 84.1

Method: 8270D - Semivolatile Analyte	_	Qualifier RL		Unit	D	Prepared	Analyzed	Dil Fa
Benzo[a]pyrene	<0.038	0.038	0.0075		— -		11/08/17 19:00	
Benzo[b]fluoranthene	<0.038	0.038	0.0083		₩		11/08/17 19:00	
Benzo[g,h,i]perylene	<0.038	0.038		mg/Kg	· · · · · · · · · · · · · · · · · · ·		11/08/17 19:00	
Benzo[k]fluoranthene	<0.038	0.038	0.011		₩		11/08/17 19:00	
Bis(2-chloroethoxy)methane	<0.19	0.19	0.039	mg/Kg	₩		11/08/17 19:00	
Bis(2-chloroethyl)ether	<0.19	0.19	0.058	mg/Kg	· · · · · · · .		11/08/17 19:00	
Bis(2-ethylhexyl) phthalate	<0.19	0.19	0.071	mg/Kg	₩		11/08/17 19:00	
4-Bromophenyl phenyl ether	<0.19	0.19	0.051		₩		11/08/17 19:00	
Butyl benzyl phthalate	<0.19	0.19	0.074				11/08/17 19:00	
Carbazole	<0.19	0.19		mg/Kg	₩		11/08/17 19:00	
4-Chloroaniline	<0.78	0.78		mg/Kg	₩		11/08/17 19:00	
4-Chloro-3-methylphenol	<0.38	0.38			· · · · · · · · · · · · · · · · · · ·		11/08/17 19:00	
2-Chloronaphthalene	<0.19	0.19		mg/Kg	Ď.		11/08/17 19:00	
2-Chlorophenol	<0.19	0.19		mg/Kg	₩		11/08/17 19:00	
4-Chlorophenyl phenyl ether	<0.19	0.19		mg/Kg	· · · · · · · · · · · · · · · · · · ·		11/08/17 19:00	
Chrysene	<0.19	0.038	0.045		~ ☆		11/08/17 19:00	
•	<0.038	0.038	0.011		~ ⇔		11/08/17 19:00	
Dibenz(a,h)anthracene					· · · · · · · · · · · · · · · · · · ·			
Dibenzofuran	<0.19	0.19		mg/Kg	₩		11/08/17 19:00	
1,2-Dichlorobenzene	<0.19	0.19	0.046	0 0			11/08/17 19:00	
1,3-Dichlorobenzene	<0.19	0.19	0.044	mg/Kg	<u>.</u> .		11/08/17 19:00	
1,4-Dichlorobenzene	<0.19	0.19	0.050	mg/Kg	*		11/08/17 19:00	
3,3'-Dichlorobenzidine	<0.19	0.19	0.054	mg/Kg	Ψ.		11/08/17 19:00	
2,4-Dichlorophenol	<0.38	0.38	0.092	mg/Kg	<u>.</u>		11/08/17 19:00	
Diethyl phthalate	<0.19	0.19		mg/Kg	*		11/08/17 19:00	
2,4-Dimethylphenol	<0.38	0.38		0 0	*		11/08/17 19:00	
Dimethyl phthalate	<0.19	0.19	0.051		, .		11/08/17 19:00	
Di-n-butyl phthalate	<0.19	0.19	0.059	0 0	÷.		11/08/17 19:00	
4,6-Dinitro-2-methylphenol	<0.78	0.78	0.31	0 0	₽	11/07/17 16:14	11/08/17 19:00	
2,4-Dinitrophenol	<0.78	0.78				11/07/17 16:14	11/08/17 19:00	
2,4-Dinitrotoluene	<0.19	0.19	0.061	mg/Kg	₩	11/07/17 16:14	11/08/17 19:00	
2,6-Dinitrotoluene	<0.19	0.19	0.076	mg/Kg	≎	11/07/17 16:14	11/08/17 19:00	
Di-n-octyl phthalate	<0.19	0.19		0 0	₩	11/07/17 16:14	11/08/17 19:00	
Fluoranthene	<0.038	0.038	0.0072	mg/Kg	₽	11/07/17 16:14	11/08/17 19:00	
Fluorene	<0.038	0.038	0.0054	mg/Kg	₩	11/07/17 16:14	11/08/17 19:00	
Hexachlorobenzene	<0.078	0.078	0.0090	mg/Kg	₩	11/07/17 16:14	11/08/17 19:00	
Hexachlorobutadiene	<0.19	0.19	0.061	mg/Kg	₽	11/07/17 16:14	11/08/17 19:00	
Hexachlorocyclopentadiene	<0.78	0.78	0.22	mg/Kg	₽	11/07/17 16:14	11/08/17 19:00	
Hexachloroethane	<0.19	0.19	0.059	mg/Kg	☼	11/07/17 16:14	11/08/17 19:00	
Indeno[1,2,3-cd]pyrene	<0.038	0.038	0.010	mg/Kg		11/07/17 16:14	11/08/17 19:00	
Isophorone	<0.19	0.19	0.043	mg/Kg	≎	11/07/17 16:14	11/08/17 19:00	
2-Methylnaphthalene	<0.078	0.078	0.0071	mg/Kg	☼	11/07/17 16:14	11/08/17 19:00	
2-Methylphenol	<0.19	0.19		mg/Kg	· · · · · · · · · · · · · · · · · · ·	11/07/17 16:14	11/08/17 19:00	
3 & 4 Methylphenol	<0.19	0.19		mg/Kg	☼	11/07/17 16:14	11/08/17 19:00	
Naphthalene	<0.038	0.038	0.0060		☼		11/08/17 19:00	
2-Nitroaniline	<0.19	0.19		mg/Kg			11/08/17 19:00	
3-Nitroaniline	<0.38	0.38		mg/Kg	☆		11/08/17 19:00	
4-Nitroaniline	<0.38	0.38		mg/Kg	₩		11/08/17 19:00	
Nitrobenzene	<0.038	0.038	0.0097		· · · · · · · · · · · · · · · · · · ·		11/08/17 19:00	
2-Nitrophenol	<0.38	0.38		mg/Kg	₽		11/08/17 19:00	

TestAmerica Chicago

Page 64 of 231

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 10:10

Date Received: 11/01/17 09:05

Client Sample ID: 3160-26-2 (0-4')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-10

Matrix: Solid Percent Solids: 84.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.78		0.78	0.37	mg/Kg	<u></u>	11/07/17 16:14	11/08/17 19:00	1
N-Nitrosodi-n-propylamine	<0.078		0.078	0.047	mg/Kg	φ.	11/07/17 16:14	11/08/17 19:00	1
N-Nitrosodiphenylamine	<0.19		0.19	0.046	mg/Kg	☼	11/07/17 16:14	11/08/17 19:00	1
2,2'-oxybis[1-chloropropane]	<0.19		0.19	0.045	mg/Kg	₽	11/07/17 16:14	11/08/17 19:00	1
Pentachlorophenol	<0.78		0.78	0.62	mg/Kg	₽	11/07/17 16:14	11/08/17 19:00	1
Phenanthrene	<0.038		0.038	0.0054	mg/Kg	☼	11/07/17 16:14	11/08/17 19:00	1
Phenol	<0.19		0.19	0.086	mg/Kg	☼	11/07/17 16:14	11/08/17 19:00	1
Pyrene	<0.038		0.038	0.0077	mg/Kg	☼	11/07/17 16:14	11/08/17 19:00	1
1,2,4-Trichlorobenzene	<0.19		0.19	0.042	mg/Kg	☼	11/07/17 16:14	11/08/17 19:00	1
2,4,5-Trichlorophenol	<0.38		0.38	0.088	mg/Kg	≎	11/07/17 16:14	11/08/17 19:00	1
2,4,6-Trichlorophenol	<0.38		0.38	0.13	mg/Kg		11/07/17 16:14	11/08/17 19:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	84		44 - 121				11/07/17 16:14	11/08/17 19:00	1
2-Fluorophenol	94		46 - 133				11/07/17 16:14	11/08/17 19:00	1
Nitrobenzene-d5	79		41 - 120				11/07/17 16:14	11/08/17 19:00	1
Phenol-d5	102		46 - 125				11/07/17 16:14	11/08/17 19:00	1
Terphenyl-d14	87		35 - 160				11/07/17 16:14	11/08/17 19:00	1
2,4,6-Tribromophenol	99		25 - 139				11/07/17 16:14	11/08/17 19:00	1

Method: 6010B - Metals (ICP) Analyte	Pocult	Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<1.2		1.2		mg/Kg	— =	11/02/17 07:49		1
Arsenic	6.4		0.59		mg/Kg	₽	11/02/17 07:49		1
Barium	53		0.59	0.067		₩	11/02/17 07:49		1
Beryllium	0.43		0.23	0.055	mg/Kg		11/02/17 07:49	11/02/17 21:03	1
Cadmium	0.065	JB	0.12	0.021	mg/Kg	☼	11/02/17 07:49	11/02/17 21:03	1
Chromium	20		0.59	0.29	mg/Kg	≎	11/02/17 07:49	11/02/17 21:03	1
Cobalt	6.5		0.29	0.077	mg/Kg	ф	11/02/17 07:49	11/02/17 21:03	1
Copper	15		0.59	0.16	mg/Kg	☼	11/02/17 07:49	11/02/17 21:03	1
Iron	20000	В	12	6.1	mg/Kg	☼	11/02/17 07:49	11/02/17 21:03	1
Lead	12		0.29	0.14	mg/Kg	₽	11/02/17 07:49	11/02/17 21:03	1
Manganese	140		0.59	0.085	mg/Kg	≎	11/02/17 07:49	11/02/17 21:03	1
Nickel	15		0.59	0.17	mg/Kg	☼	11/02/17 07:49	11/02/17 21:03	1
Selenium	<0.59		0.59	0.34	mg/Kg	₽	11/02/17 07:49	11/02/17 21:03	1
Silver	<0.29		0.29	0.076	mg/Kg	≎	11/02/17 07:49	11/02/17 21:03	1
Thallium	<0.59		0.59	0.29	mg/Kg	☼	11/02/17 07:49	11/02/17 21:03	1
Vanadium	30		0.29	0.069	mg/Kg	₽	11/02/17 07:49	11/02/17 21:03	1
Zinc	60		1.2	0.52	mg/Kg	₩	11/02/17 07:49	11/02/17 21:03	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/03/17 14:57	11/05/17 17:07	1
Barium	0.15	J	0.50	0.050	mg/L		11/03/17 14:57	11/05/17 17:07	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/03/17 14:57	11/05/17 17:07	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/03/17 14:57	11/05/17 17:07	1
Chromium	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:07	1
Cobalt	0.012	J	0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:07	1
Copper	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:07	1
Iron	<0.40		0.40	0.20	mg/L		11/03/17 14:57	11/05/17 17:07	1

Page 65 of 231

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 10:10

Date Received: 11/01/17 09:05

Client Sample ID: 3160-26-2 (0-4')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-10

Matrix: Solid

Percent Solids: 84.1

Method: 6010B - Metals (ICP) - To Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	<0.0075		0.0075	0.0075	mg/L		11/03/17 14:57	11/05/17 17:07	1
Manganese	0.10		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:07	1
Nickel	0.027		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:07	1
Selenium	< 0.050		0.050	0.020	mg/L		11/03/17 14:57	11/05/17 17:07	1
Silver	< 0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:07	1
Vanadium	< 0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:07	1
Zinc	0.027	J	0.50	0.020	mg/L		11/03/17 14:57	11/05/17 17:07	1
Method: 6020A - Metals (ICP/MS)	- TCLP								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060		0.0060	0.0060	mg/L		11/03/17 14:57	11/06/17 16:56	1
Thallium	<0.0020		0.0020	0.0020	mg/L		11/03/17 14:57	11/06/17 16:56	1
Method: 7470A - TCLP Mercury -	TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/03/17 12:20	11/06/17 11:19	1
Method: 7471B - Mercury (CVAA))								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.022		0.019	0.0064	mg/Kg	- ‡	11/02/17 16:10	11/03/17 08:36	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	4.3		0.20	0.20	SU			11/03/17 08:57	1

TestAmerica Job ID: 500-136575-1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-26-1 (0-4')

Lab Sample ID: 500-136575-11 Date Collected: 10/31/17 10:20 **Matrix: Solid**

Date Received: 11/01/17 09:05 Percent Solids: 85.7

Method: 8260B - Volatile O Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	0.041		0.017	0.0076	mg/Kg	<u> </u>	11/01/17 18:01	11/02/17 17:40	1
Benzene	<0.0017		0.0017	0.00044	mg/Kg	≎	11/01/17 18:01	11/02/17 17:40	1
Bromodichloromethane	<0.0017		0.0017	0.00035	mg/Kg	☼	11/01/17 18:01	11/02/17 17:40	1
Bromoform	<0.0017		0.0017	0.00051	mg/Kg	₩	11/01/17 18:01	11/02/17 17:40	1
Bromomethane	<0.0044		0.0044	0.0016	mg/Kg	☼	11/01/17 18:01	11/02/17 17:40	1
2-Butanone (MEK)	<0.0044		0.0044	0.0019	mg/Kg	₩	11/01/17 18:01	11/02/17 17:40	1
Carbon disulfide	<0.0044		0.0044	0.00091	mg/Kg		11/01/17 18:01	11/02/17 17:40	1
Carbon tetrachloride	<0.0017		0.0017	0.00051	mg/Kg	₩	11/01/17 18:01	11/02/17 17:40	1
Chlorobenzene	< 0.0017		0.0017	0.00064	mg/Kg	₩	11/01/17 18:01	11/02/17 17:40	1
Chloroethane	<0.0044		0.0044	0.0013	mg/Kg		11/01/17 18:01	11/02/17 17:40	1
Chloroform	< 0.0017		0.0017	0.00060	mg/Kg	≎	11/01/17 18:01	11/02/17 17:40	1
Chloromethane	< 0.0044		0.0044	0.0018	mg/Kg	≎	11/01/17 18:01	11/02/17 17:40	1
cis-1,2-Dichloroethene	<0.0017		0.0017	0.00049	mg/Kg		11/01/17 18:01	11/02/17 17:40	1
cis-1,3-Dichloropropene	< 0.0017		0.0017	0.00053	mg/Kg	≎	11/01/17 18:01	11/02/17 17:40	1
Dibromochloromethane	< 0.0017		0.0017	0.00057	mg/Kg	≎	11/01/17 18:01	11/02/17 17:40	1
1,1-Dichloroethane	<0.0017		0.0017	0.00060	mg/Kg	ф	11/01/17 18:01	11/02/17 17:40	1
1,2-Dichloroethane	< 0.0044		0.0044	0.0014		₩	11/01/17 18:01	11/02/17 17:40	1
1,1-Dichloroethene	< 0.0017		0.0017	0.00060		₩	11/01/17 18:01	11/02/17 17:40	1
1,2-Dichloropropane	<0.0017		0.0017	0.00045	mg/Kg	 ф	11/01/17 18:01	11/02/17 17:40	1
1,3-Dichloropropene, Total	< 0.0017		0.0017	0.00061	mg/Kg	₩	11/01/17 18:01	11/02/17 17:40	1
Ethylbenzene	< 0.0017		0.0017	0.00083	mg/Kg	≎	11/01/17 18:01	11/02/17 17:40	1
2-Hexanone	<0.0044		0.0044	0.0014	mg/Kg	 ф	11/01/17 18:01	11/02/17 17:40	1
Methylene Chloride	< 0.0044		0.0044	0.0017	mg/Kg	≎	11/01/17 18:01	11/02/17 17:40	1
4-Methyl-2-pentanone (MIBK)	< 0.0044		0.0044	0.0013	mg/Kg	≎	11/01/17 18:01	11/02/17 17:40	1
Methyl tert-butyl ether	<0.0017		0.0017	0.00051	mg/Kg		11/01/17 18:01	11/02/17 17:40	1
Styrene	<0.0017		0.0017	0.00053		₩	11/01/17 18:01	11/02/17 17:40	1
1,1,2,2-Tetrachloroethane	<0.0017		0.0017	0.00056	mg/Kg	₩	11/01/17 18:01	11/02/17 17:40	1
Tetrachloroethene	<0.0017		0.0017	0.00059			11/01/17 18:01	11/02/17 17:40	1
Toluene	<0.0017		0.0017	0.00044		₩	11/01/17 18:01	11/02/17 17:40	1
trans-1,2-Dichloroethene	<0.0017		0.0017	0.00077	mg/Kg	₩	11/01/17 18:01	11/02/17 17:40	1
trans-1,3-Dichloropropene	<0.0017		0.0017	0.00061	mg/Kg	 ☆	11/01/17 18:01	11/02/17 17:40	1
1,1,1-Trichloroethane	<0.0017		0.0017	0.00058	mg/Kg	₩	11/01/17 18:01	11/02/17 17:40	1
1,1,2-Trichloroethane	<0.0017		0.0017	0.00075	mg/Kg	₩	11/01/17 18:01	11/02/17 17:40	1
Trichloroethene	<0.0017		0.0017	0.00059	mg/Kg		11/01/17 18:01	11/02/17 17:40	1
Vinyl acetate	<0.0044		0.0044	0.0015	mg/Kg	₩	11/01/17 18:01	11/02/17 17:40	1
Vinyl chloride	<0.0017		0.0017	0.00077	mg/Kg	₩	11/01/17 18:01	11/02/17 17:40	1
Xylenes, Total	<0.0035		0.0035	0.00056			11/01/17 18:01	11/02/17 17:40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	89		75 - 131				11/01/17 18:01	11/02/17 17:40	1
Dibromofluoromethane	101		75 - 126				11/01/17 18:01	11/02/17 17:40	1
1,2-Dichloroethane-d4 (Surr)	100		70 - 134				11/01/17 18:01	11/02/17 17:40	1
Toluene-d8 (Surr)	92		75 - 124				11/01/17 18:01	11/02/17 17:40	1

Method: 8270D - Semivolatil	le Organic Compounds	s (GC/MS)	MDI IInii	D. Dramavad	A malumad	DilFaa
Toluene-d8 (Surr)	92	75 - 124		11/01/17 18:01	11/02/17 17:40	1
1,2-Dichloroethane-d4 (Surr)	100	70 - 134		11/01/17 18:01	11/02/17 17:40	1
Dibromofluoromethane	101	75 - 126		11/01/17 18:01	11/02/17 17:40	1
4-bromonuorobenzene (Sun)	09	75-131		11/01/17 16.01	11/02/17 17.40	1

Method: 6270D - Semivolatil	ie Organic Compounds (G	5C/IVI3)					
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	<0.038	0.038	0.0069 mg/Kg	₩	11/07/17 16:14	11/08/17 19:25	1
Acenaphthylene	<0.038	0.038	0.0051 mg/Kg	₩	11/07/17 16:14	11/08/17 19:25	1
Anthracene	<0.038	0.038	0.0064 mg/Kg	₩	11/07/17 16:14	11/08/17 19:25	1
Benzo[a]anthracene	0.0078 J	0.038	0.0052 mg/Kg	₩	11/07/17 16:14	11/08/17 19:25	1

TestAmerica Chicago

Page 67 of 231

11/13/2017

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 10:20

Date Received: 11/01/17 09:05

Client Sample ID: 3160-26-1 (0-4')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-11

Matrix: Solid

Percent Solids: 85.7

Method: 8270D - Semivolatilo Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzo[a]pyrene	0.022		0.038	0.0074		— -		11/08/17 19:25	
Benzo[b]fluoranthene	0.025		0.038	0.0083		☆		11/08/17 19:25	
Benzo[g,h,i]perylene	<0.038		0.038		mg/Kg			11/08/17 19:25	
Benzo[k]fluoranthene	<0.038		0.038	0.012		₽		11/08/17 19:25	
Bis(2-chloroethoxy)methane	<0.19		0.19		mg/Kg	₩		11/08/17 19:25	
Bis(2-chloroethyl)ether	<0.19		0.19		mg/Kg			11/08/17 19:25	
Bis(2-ethylhexyl) phthalate	<0.19		0.19		mg/Kg	₽		11/08/17 19:25	
4-Bromophenyl phenyl ether	<0.19		0.19	0.070	mg/Kg	₩		11/08/17 19:25	
Butyl benzyl phthalate	<0.19		0.19		mg/Kg	.		11/08/17 19:25	
Carbazole	<0.19		0.19		mg/Kg	☆		11/08/17 19:25	
						₩			
4-Chloroaniline	<0.77		0.77		mg/Kg			11/08/17 19:25	
4-Chloro-3-methylphenol	<0.38		0.38		mg/Kg	☼		11/08/17 19:25	
2-Chloronaphthalene	<0.19		0.19		mg/Kg	₩		11/08/17 19:25	
2-Chlorophenol	<0.19		0.19		mg/Kg			11/08/17 19:25	
4-Chlorophenyl phenyl ether	<0.19		0.19		mg/Kg	☆		11/08/17 19:25	
Chrysene	0.012	J	0.038		mg/Kg			11/08/17 19:25	
Dibenz(a,h)anthracene	<0.038		0.038	0.0074				11/08/17 19:25	
Dibenzofuran	<0.19		0.19		mg/Kg	*		11/08/17 19:25	
1,2-Dichlorobenzene	<0.19		0.19		mg/Kg	₽		11/08/17 19:25	
1,3-Dichlorobenzene	<0.19		0.19	0.043	mg/Kg	₩	11/07/17 16:14	11/08/17 19:25	
1,4-Dichlorobenzene	<0.19		0.19	0.049	mg/Kg	₩	11/07/17 16:14	11/08/17 19:25	
3,3'-Dichlorobenzidine	<0.19		0.19	0.054	mg/Kg	₩	11/07/17 16:14	11/08/17 19:25	
2,4-Dichlorophenol	<0.38		0.38	0.091	mg/Kg	☼	11/07/17 16:14	11/08/17 19:25	
Diethyl phthalate	<0.19		0.19	0.065	mg/Kg	₩	11/07/17 16:14	11/08/17 19:25	
2,4-Dimethylphenol	<0.38		0.38	0.15	mg/Kg	₩	11/07/17 16:14	11/08/17 19:25	
Dimethyl phthalate	<0.19		0.19	0.050	mg/Kg	₩	11/07/17 16:14	11/08/17 19:25	
Di-n-butyl phthalate	<0.19		0.19	0.059	mg/Kg		11/07/17 16:14	11/08/17 19:25	
4,6-Dinitro-2-methylphenol	<0.77		0.77	0.31	mg/Kg	☼	11/07/17 16:14	11/08/17 19:25	
2,4-Dinitrophenol	<0.77		0.77	0.68	mg/Kg	☼	11/07/17 16:14	11/08/17 19:25	
2,4-Dinitrotoluene	<0.19		0.19	0.061	mg/Kg	₽	11/07/17 16:14	11/08/17 19:25	
2,6-Dinitrotoluene	<0.19		0.19	0.076	mg/Kg	☼	11/07/17 16:14	11/08/17 19:25	
Di-n-octyl phthalate	<0.19		0.19	0.063	mg/Kg	☼	11/07/17 16:14	11/08/17 19:25	
Fluoranthene	<0.038		0.038	0.0071	mg/Kg	₩.	11/07/17 16:14	11/08/17 19:25	
Fluorene	<0.038		0.038	0.0054	mg/Kg	☼	11/07/17 16:14	11/08/17 19:25	
Hexachlorobenzene	< 0.077		0.077	0.0089	mg/Kg	₩	11/07/17 16:14	11/08/17 19:25	
Hexachlorobutadiene	<0.19		0.19		mg/Kg	 \$	11/07/17 16:14	11/08/17 19:25	
Hexachlorocyclopentadiene	<0.77		0.77		mg/Kg	☼		11/08/17 19:25	
Hexachloroethane	<0.19		0.19		mg/Kg	₩		11/08/17 19:25	
Indeno[1,2,3-cd]pyrene	<0.038		0.038		mg/Kg			11/08/17 19:25	
Isophorone	<0.19		0.19		mg/Kg	☆		11/08/17 19:25	
2-Methylnaphthalene	<0.077		0.077	0.0071		₩		11/08/17 19:25	
2-Methylphenol	<0.19		0.19		mg/Kg			11/08/17 19:25	
3 & 4 Methylphenol	<0.19		0.19		mg/Kg	₽		11/08/17 19:25	
Naphthalene	<0.038		0.19	0.0059		≎		11/08/17 19:25	
2-Nitroaniline	<0.036		0.036		mg/Kg			11/08/17 19:25	
			0.19			₩		11/08/17 19:25	
3-Nitroaniline	<0.38				mg/Kg				
4-Nitroaniline	<0.38		0.38		mg/Kg	¥.		11/08/17 19:25	
Nitrobenzene 2-Nitrophenol	<0.038 <0.38		0.038 0.38	0.0096	mg/Kg mg/Kg	₩		11/08/17 19:25 11/08/17 19:25	

TestAmerica Chicago

11/13/2017

Page 68 of 231

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 10:20

Date Received: 11/01/17 09:05

Client Sample ID: 3160-26-1 (0-4')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-11

Matrix: Solid Percent Solids: 85.7

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Method: 8270D - Semivolatii Analyte	e Organic Compounds (Result Qualifier	GC/MS) (CC RL	ntinuea MDL	•	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.77	0.77	0.37	mg/Kg	— ÿ	11/07/17 16:14	11/08/17 19:25	1
N-Nitrosodi-n-propylamine	<0.077	0.077	0.047	mg/Kg		11/07/17 16:14	11/08/17 19:25	1
N-Nitrosodiphenylamine	<0.19	0.19	0.045	mg/Kg	₩	11/07/17 16:14	11/08/17 19:25	1
2,2'-oxybis[1-chloropropane]	<0.19	0.19	0.045	mg/Kg	₩	11/07/17 16:14	11/08/17 19:25	1
Pentachlorophenol	<0.77	0.77	0.62	mg/Kg		11/07/17 16:14	11/08/17 19:25	1
Phenanthrene	<0.038	0.038	0.0054	mg/Kg	☼	11/07/17 16:14	11/08/17 19:25	1
Phenol	<0.19	0.19	0.085	mg/Kg	₩	11/07/17 16:14	11/08/17 19:25	1
Pyrene	0.0083 J	0.038	0.0076	mg/Kg	₩.	11/07/17 16:14	11/08/17 19:25	1
1,2,4-Trichlorobenzene	<0.19	0.19	0.041	mg/Kg	₩	11/07/17 16:14	11/08/17 19:25	1
2,4,5-Trichlorophenol	<0.38	0.38	0.088	mg/Kg	₩	11/07/17 16:14	11/08/17 19:25	1
2,4,6-Trichlorophenol	<0.38	0.38	0.13	mg/Kg	.	11/07/17 16:14	11/08/17 19:25	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	74		44 - 121	11/07/17 16:14	11/08/17 19:25	1
2-Fluorophenol	84		46 - 133	11/07/17 16:14	11/08/17 19:25	1
Nitrobenzene-d5	70		41 - 120	11/07/17 16:14	11/08/17 19:25	1
Phenol-d5	88		46 - 125	11/07/17 16:14	11/08/17 19:25	1
Terphenyl-d14	81		35 - 160	11/07/17 16:14	11/08/17 19:25	1
2,4,6-Tribromophenol	92		25 - 139	11/07/17 16:14	11/08/17 19:25	1

Method:	6010B -	Metals	(ICP)
---------	---------	--------	-------

Analyte	Pocult								
Allalyto	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<1.1		1.1	0.22	mg/Kg	₩	11/02/17 07:49	11/02/17 21:07	1
Arsenic	9.5		0.57	0.19	mg/Kg	₩	11/02/17 07:49	11/02/17 21:07	1
Barium	92		0.57	0.065	mg/Kg	₩	11/02/17 07:49	11/02/17 21:07	1
Beryllium	0.52		0.23	0.053	mg/Kg	ф.	11/02/17 07:49	11/02/17 21:07	1
Cadmium	0.097	JB	0.11	0.020	mg/Kg	₩	11/02/17 07:49	11/02/17 21:07	1
Chromium	19		0.57	0.28	mg/Kg	₩	11/02/17 07:49	11/02/17 21:07	1
Cobalt	11		0.28	0.074	mg/Kg	ф.	11/02/17 07:49	11/02/17 21:07	1
Copper	16		0.57	0.16	mg/Kg	₩	11/02/17 07:49	11/02/17 21:07	1
Iron	21000	В	11	5.9	mg/Kg	₩	11/02/17 07:49	11/02/17 21:07	1
Lead	21		0.28	0.13	mg/Kg	₽	11/02/17 07:49	11/02/17 21:07	1
Manganese	540		0.57	0.082	mg/Kg	₩	11/02/17 07:49	11/02/17 21:07	1
Nickel	14		0.57	0.16	mg/Kg	₩	11/02/17 07:49	11/02/17 21:07	1
Selenium	0.86		0.57	0.33	mg/Kg	₩	11/02/17 07:49	11/02/17 21:07	1
Silver	<0.28		0.28	0.073	mg/Kg	₩	11/02/17 07:49	11/02/17 21:07	1
Thallium	<0.57		0.57	0.28	mg/Kg	₩	11/02/17 07:49	11/02/17 21:07	1
Vanadium	36		0.28	0.067	mg/Kg	₽	11/02/17 07:49	11/02/17 21:07	1
Zinc	58		1.1	0.50	mg/Kg	₩	11/02/17 07:49	11/02/17 21:07	1

Method:	COADD	Motolo	/ICD\	TCI D
IVIELLICIO.	DUIUD	- Weiais	IICPI -	IGLE

motification of the motals (i.e.,									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/03/17 14:57	11/05/17 17:11	1
Barium	0.27	J	0.50	0.050	mg/L		11/03/17 14:57	11/05/17 17:11	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/03/17 14:57	11/05/17 17:11	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/03/17 14:57	11/05/17 17:11	1
Chromium	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:11	1
Cobalt	0.012	J	0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:11	1
Copper	0.011	J	0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:11	1
Iron	<0.40		0.40	0.20	mg/L		11/03/17 14:57	11/05/17 17:11	1

TestAmerica Chicago

Page 69 of 231

11/13/2017

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 10:20

Date Received: 11/01/17 09:05

Client Sample ID: 3160-26-1 (0-4')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-11

Matrix: Solid Percent Solids:

85.7	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	<0.0075		0.0075	0.0075	mg/L		11/03/17 14:57	11/05/17 17:11	1
Manganese	0.85		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:11	1
Nickel	0.019	J	0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:11	1
Selenium	< 0.050		0.050	0.020	mg/L		11/03/17 14:57	11/05/17 17:11	1
Silver	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:11	,
Vanadium	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:11	
Zinc	0.053	J	0.50	0.020	mg/L		11/03/17 14:57	11/05/17 17:11	•
Method: 6010B - Metal	s (ICP) - SPLP East	t							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Manganese	0.14		0.025	0.010	mg/L		11/03/17 14:53	11/06/17 02:44	
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Method: 6020A - Metal Analyte Antimony Thallium	Result <0.0060 <0.0020	Qualifier	RL 0.0060 0.0020	MDL 0.0060 0.0020	mg/L	D_	11/03/17 14:57	Analyzed 11/06/17 17:00 11/06/17 17:00	Dil Fac
Analyte Antimony Thallium Method: 7470A - TCLP	Result <0.0060 <0.0020		0.0060 0.0020	0.0060 0.0020	mg/L mg/L	=	11/03/17 14:57 11/03/17 14:57	11/06/17 17:00 11/06/17 17:00	
Analyte Antimony Thallium Method: 7470A - TCLP Analyte	Result <0.0060 <0.0020 Mercury - TCLP Result	Qualifier Qualifier	0.0060 0.0020 RL	0.0060 0.0020 MDL	mg/L mg/L	D_	11/03/17 14:57 11/03/17 14:57 Prepared	11/06/17 17:00 11/06/17 17:00 Analyzed	Dil Fa
Analyte Antimony Thallium Method: 7470A - TCLP Analyte	Result <0.0060 <0.0020		0.0060 0.0020	0.0060 0.0020	mg/L mg/L	=	11/03/17 14:57 11/03/17 14:57	11/06/17 17:00 11/06/17 17:00	
Analyte Antimony Thallium Method: 7470A - TCLP	Result <0.0060 <0.0020 Mercury - TCLP Result <0.00020		0.0060 0.0020 RL	0.0060 0.0020 MDL	mg/L mg/L	=	11/03/17 14:57 11/03/17 14:57 Prepared	11/06/17 17:00 11/06/17 17:00 Analyzed	
Analyte Antimony Thallium Method: 7470A - TCLP Analyte Mercury	Result <0.0060 <0.0020 Mercury - TCLP Result <0.00020 ury (CVAA)		0.0060 0.0020 RL	0.0060 0.0020 MDL	mg/L mg/L Unit mg/L		11/03/17 14:57 11/03/17 14:57 Prepared	11/06/17 17:00 11/06/17 17:00 Analyzed	
Analyte Antimony Thallium Method: 7470A - TCLP Analyte Mercury Method: 7471B - Mercur	Result <0.0060 <0.0020 Mercury - TCLP Result <0.00020 ury (CVAA)	Qualifier	0.0060 0.0020 RL 0.00020	0.0060 0.0020 MDL 0.00020	mg/L mg/L Unit mg/L Unit		11/03/17 14:57 11/03/17 14:57 Prepared 11/03/17 12:20	11/06/17 17:00 11/06/17 17:00 Analyzed 11/06/17 11:20	Dil Fa
Analyte Antimony Thallium Method: 7470A - TCLP Analyte Mercury Method: 7471B - Mercu	Result <0.0060 <0.0020 Mercury - TCLP Result <0.00020 ury (CVAA) Result 0.063	Qualifier Qualifier	0.0060 0.0020 RL 0.00020	0.0060 0.0020 MDL 0.00020 MDL 0.0062	mg/L mg/L Unit mg/L Unit mg/Kg		11/03/17 14:57 11/03/17 14:57 Prepared 11/03/17 12:20 Prepared	11/06/17 17:00 11/06/17 17:00 Analyzed 11/06/17 11:20 Analyzed	Dil Fa
Analyte Antimony Thallium Method: 7470A - TCLP Analyte Mercury Method: 7471B - Mercur Analyte Mercury	Result <0.0060 <0.0020 Mercury - TCLP Result <0.00020 ury (CVAA) Result 0.063	Qualifier	0.0060 0.0020 RL 0.00020	0.0060 0.0020 MDL 0.00020 MDL 0.0062	mg/L mg/L Unit mg/L Unit		11/03/17 14:57 11/03/17 14:57 Prepared 11/03/17 12:20 Prepared	11/06/17 17:00 11/06/17 17:00 Analyzed 11/06/17 11:20 Analyzed	Dil Fa

TestAmerica Job ID: 500-136575-1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-28-1 (0-5')

Date Collected: 10/31/17 10:30 Date Received: 11/01/17 09:05 Lab Sample ID: 500-136575-12

Matrix: Solid
Percent Solids: 79.6

Method: 8260B - Volatile O Analyte	Result Qualifier		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	<0.020	0.020	0.0089	mg/Kg	<u> </u>	11/01/17 18:01	11/03/17 12:34	1
Benzene	<0.0020	0.0020	0.00052	mg/Kg	₽	11/01/17 18:01	11/03/17 12:34	1
Bromodichloromethane	<0.0020	0.0020	0.00041	mg/Kg	☼	11/01/17 18:01	11/03/17 12:34	1
Bromoform	<0.0020	0.0020	0.00059	mg/Kg		11/01/17 18:01	11/03/17 12:34	1
Bromomethane	<0.0051	0.0051	0.0019	mg/Kg	₩	11/01/17 18:01	11/03/17 12:34	1
2-Butanone (MEK)	<0.0051	0.0051	0.0023	mg/Kg	₩	11/01/17 18:01	11/03/17 12:34	1
Carbon disulfide	<0.0051	0.0051	0.0011	mg/Kg		11/01/17 18:01	11/03/17 12:34	1
Carbon tetrachloride	<0.0020	0.0020	0.00059	mg/Kg	☼	11/01/17 18:01	11/03/17 12:34	1
Chlorobenzene	<0.0020	0.0020	0.00075	mg/Kg	☼	11/01/17 18:01	11/03/17 12:34	1
Chloroethane	<0.0051	0.0051	0.0015	mg/Kg		11/01/17 18:01	11/03/17 12:34	1
Chloroform	<0.0020	0.0020	0.00071	mg/Kg	₩	11/01/17 18:01	11/03/17 12:34	1
Chloromethane	<0.0051	0.0051	0.0020	mg/Kg	₩	11/01/17 18:01	11/03/17 12:34	1
cis-1,2-Dichloroethene	<0.0020	0.0020	0.00057	mg/Kg	\$	11/01/17 18:01	11/03/17 12:34	1
cis-1,3-Dichloropropene	<0.0020	0.0020	0.00061	mg/Kg	≎	11/01/17 18:01	11/03/17 12:34	1
Dibromochloromethane	<0.0020	0.0020	0.00066	mg/Kg	☼	11/01/17 18:01	11/03/17 12:34	1
1,1-Dichloroethane	<0.0020	0.0020	0.00070	mg/Kg		11/01/17 18:01	11/03/17 12:34	1
1,2-Dichloroethane	<0.0051	0.0051	0.0016	mg/Kg	≎	11/01/17 18:01	11/03/17 12:34	1
1,1-Dichloroethene	<0.0020	0.0020	0.00070		₩	11/01/17 18:01	11/03/17 12:34	1
1,2-Dichloropropane	<0.0020	0.0020	0.00053	mg/Kg	φ.	11/01/17 18:01	11/03/17 12:34	1
1,3-Dichloropropene, Total	<0.0020	0.0020	0.00071		₽	11/01/17 18:01	11/03/17 12:34	1
Ethylbenzene	<0.0020	0.0020	0.00097	mg/Kg	₩	11/01/17 18:01	11/03/17 12:34	1
2-Hexanone	<0.0051	0.0051	0.0016			11/01/17 18:01	11/03/17 12:34	1
Methylene Chloride	<0.0051	0.0051			₩	11/01/17 18:01	11/03/17 12:34	1
4-Methyl-2-pentanone (MIBK)	<0.0051	0.0051	0.0015		₩	11/01/17 18:01	11/03/17 12:34	1
Methyl tert-butyl ether	<0.0020	0.0020	0.00060			11/01/17 18:01	11/03/17 12:34	1
Styrene	<0.0020	0.0020	0.00061		₩	11/01/17 18:01	11/03/17 12:34	1
1,1,2,2-Tetrachloroethane	<0.0020	0.0020	0.00065	mg/Kg	₩	11/01/17 18:01	11/03/17 12:34	1
Tetrachloroethene	<0.0020	0.0020	0.00069			11/01/17 18:01	11/03/17 12:34	1
Toluene	<0.0020	0.0020	0.00051		☼	11/01/17 18:01	11/03/17 12:34	1
trans-1,2-Dichloroethene	<0.0020	0.0020	0.00090	mg/Kg	₩	11/01/17 18:01	11/03/17 12:34	1
trans-1,3-Dichloropropene	<0.0020	0.0020	0.00071			11/01/17 18:01	11/03/17 12:34	1
1,1,1-Trichloroethane	<0.0020	0.0020	0.00068		₩	11/01/17 18:01	11/03/17 12:34	1
1,1,2-Trichloroethane	<0.0020	0.0020	0.00087		₩	11/01/17 18:01	11/03/17 12:34	1
Trichloroethene	<0.0020	0.0020	0.00069			11/01/17 18:01	11/03/17 12:34	1
Vinyl acetate	<0.0051	0.0051	0.0018		≎	11/01/17 18:01	11/03/17 12:34	1
Vinyl chloride	<0.0020	0.0020	0.00090		₽	11/01/17 18:01	11/03/17 12:34	1
Xylenes, Total	<0.0041	0.0041	0.00065			11/01/17 18:01	11/03/17 12:34	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	89	75 - 131				11/01/17 18:01	11/03/17 12:34	1
Dibromofluoromethane	98	75 - 126				11/01/17 18:01	11/03/17 12:34	1
1,2-Dichloroethane-d4 (Surr)	98	70 - 134				11/01/17 18:01	11/03/17 12:34	1
Toluene-d8 (Surr)	93	75 - 124				11/01/17 18:01	11/03/17 12:34	1

Method: 8270D - Semivolatile Organic Compounds (GC/MS)									
Analyte	Result	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Acenaphthene	<0.040	0.040	0.0072	mg/Kg	\	11/07/17 16:14	11/08/17 19:50	1	
Acenaphthylene	<0.040	0.040	0.0053	mg/Kg	₩	11/07/17 16:14	11/08/17 19:50	1	
Anthracene	<0.040	0.040	0.0067	mg/Kg	₩	11/07/17 16:14	11/08/17 19:50	1	
Benzo[a]anthracene	<0.040	0.040	0.0054	mg/Kg	₩	11/07/17 16:14	11/08/17 19:50	1	

TestAmerica Chicago

11/13/2017

Page 71 of 231

G

4

6

8

10

12

13

М

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-28-1 (0-5')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-12

Matrix: Solid

Percent Solids: 79.6

•	•	•	
Date Collected: 10/31/17 10:30			
Date Received: 11/01/17 09:05			

Method: 8270D - Semivolat Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]pyrene	<0.040		0.040	0.0078	mg/Kg	<u>∓</u>	11/07/17 16:14	11/08/17 19:50	1
Benzo[b]fluoranthene	<0.040		0.040	0.0087	mg/Kg	₩	11/07/17 16:14	11/08/17 19:50	1
Benzo[g,h,i]perylene	<0.040		0.040	0.013	mg/Kg	₩	11/07/17 16:14	11/08/17 19:50	1
Benzo[k]fluoranthene	<0.040		0.040	0.012	mg/Kg	₩	11/07/17 16:14	11/08/17 19:50	1
Bis(2-chloroethoxy)methane	<0.20		0.20	0.041	mg/Kg	₩	11/07/17 16:14	11/08/17 19:50	1
Bis(2-chloroethyl)ether	<0.20		0.20	0.060	mg/Kg	₽	11/07/17 16:14	11/08/17 19:50	1
Bis(2-ethylhexyl) phthalate	<0.20		0.20	0.073	mg/Kg	₩	11/07/17 16:14	11/08/17 19:50	1
4-Bromophenyl phenyl ether	<0.20		0.20	0.053	mg/Kg	₩	11/07/17 16:14	11/08/17 19:50	1
Butyl benzyl phthalate	<0.20		0.20	0.076	mg/Kg	\$	11/07/17 16:14	11/08/17 19:50	1
Carbazole	<0.20		0.20	0.10	mg/Kg	☼	11/07/17 16:14	11/08/17 19:50	1
4-Chloroaniline	<0.81		0.81	0.19	mg/Kg	₩	11/07/17 16:14	11/08/17 19:50	1
4-Chloro-3-methylphenol	<0.40		0.40	0.14	mg/Kg		11/07/17 16:14	11/08/17 19:50	1
2-Chloronaphthalene	<0.20		0.20	0.044	mg/Kg	₩	11/07/17 16:14	11/08/17 19:50	1
2-Chlorophenol	<0.20		0.20	0.068	mg/Kg	₩	11/07/17 16:14	11/08/17 19:50	1
4-Chlorophenyl phenyl ether	<0.20		0.20	0.047	mg/Kg		11/07/17 16:14	11/08/17 19:50	1
Chrysene	<0.040		0.040	0.011	mg/Kg	₩	11/07/17 16:14	11/08/17 19:50	1
Dibenz(a,h)anthracene	<0.040		0.040	0.0077	mg/Kg	₩	11/07/17 16:14	11/08/17 19:50	1
Dibenzofuran	<0.20		0.20	0.047	mg/Kg		11/07/17 16:14	11/08/17 19:50	1
1,2-Dichlorobenzene	<0.20		0.20		mg/Kg	₩	11/07/17 16:14	11/08/17 19:50	1
1,3-Dichlorobenzene	<0.20		0.20		mg/Kg	₽	11/07/17 16:14	11/08/17 19:50	1
1,4-Dichlorobenzene	<0.20		0.20		mg/Kg		11/07/17 16:14	11/08/17 19:50	1
3,3'-Dichlorobenzidine	<0.20		0.20		mg/Kg	₽		11/08/17 19:50	1
2,4-Dichlorophenol	<0.40		0.40		mg/Kg	₩		11/08/17 19:50	1
Diethyl phthalate	<0.20		0.20		mg/Kg			11/08/17 19:50	1
2,4-Dimethylphenol	<0.40		0.40		mg/Kg	₩		11/08/17 19:50	1
Dimethyl phthalate	<0.20		0.20		mg/Kg	₩		11/08/17 19:50	1
Di-n-butyl phthalate	<0.20		0.20		mg/Kg			11/08/17 19:50	1
4,6-Dinitro-2-methylphenol	<0.81		0.81		mg/Kg	₩		11/08/17 19:50	1
2,4-Dinitrophenol	<0.81		0.81	0.71	mg/Kg	₩		11/08/17 19:50	1
2,4-Dinitrotoluene	<0.20		0.20		mg/Kg			11/08/17 19:50	
2,6-Dinitrotoluene	<0.20		0.20		mg/Kg	₩		11/08/17 19:50	1
Di-n-octyl phthalate	<0.20		0.20		mg/Kg	₩		11/08/17 19:50	1
Fluoranthene	<0.040		0.040	0.0074				11/08/17 19:50	
Fluorene	<0.040		0.040	0.0056	0 0	☼		11/08/17 19:50	1
Hexachlorobenzene	<0.081		0.040	0.0093		₩		11/08/17 19:50	1
Hexachlorobutadiene	<0.20		0.20		mg/Kg			11/08/17 19:50	
Hexachlorocyclopentadiene	<0.81		0.81		mg/Kg	₩		11/08/17 19:50	1
Hexachloroethane	<0.20		0.20		mg/Kg	₩		11/08/17 19:50	1
Indeno[1,2,3-cd]pyrene	<0.040		0.20		mg/Kg			11/08/17 19:50	1
Isophorone	<0.20		0.040		mg/Kg	₽		11/08/17 19:50	1
2-Methylnaphthalene	<0.081		0.20	0.0074		≎		11/08/17 19:50	
2-Methylphenol	<0.20		0.001		mg/Kg			11/08/17 19:50	1 1
• •						₽			
3 & 4 Methylphenol	<0.20 <0.040		0.20 0.040	0.067	mg/Kg	₩		11/08/17 19:50 11/08/17 19:50	1
Naphthalene									1
2-Nitroaniline	<0.20		0.20		mg/Kg	₩ ₩		11/08/17 19:50	1
3-Nitroaniline	<0.40		0.40		mg/Kg	Ф Ж		11/08/17 19:50	1
4-Nitroaniline	<0.40		0.40		mg/Kg			11/08/17 19:50	
Nitrobenzene	<0.040		0.040		mg/Kg	₩		11/08/17 19:50	1
2-Nitrophenol	<0.40		0.40	0.095	mg/Kg	₽	11/07/17 16:14	11/08/17 19:50	1

11/13/2017

4

6

8

10

12

13

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 10:30

Date Received: 11/01/17 09:05

Client Sample ID: 3160-28-1 (0-5')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-12

Matrix: Solid Percent Solids: 79.6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.81		0.81	0.38	mg/Kg	<u> </u>	11/07/17 16:14	11/08/17 19:50	1
N-Nitrosodi-n-propylamine	<0.081		0.081	0.049	mg/Kg	.	11/07/17 16:14	11/08/17 19:50	1
N-Nitrosodiphenylamine	<0.20		0.20	0.047	mg/Kg	₩	11/07/17 16:14	11/08/17 19:50	1
2,2'-oxybis[1-chloropropane]	<0.20		0.20	0.046	mg/Kg	₩	11/07/17 16:14	11/08/17 19:50	1
Pentachlorophenol	<0.81		0.81	0.64	mg/Kg	₽	11/07/17 16:14	11/08/17 19:50	1
Phenanthrene	<0.040		0.040	0.0056	mg/Kg	☼	11/07/17 16:14	11/08/17 19:50	1
Phenol	<0.20		0.20	0.089	mg/Kg	₩	11/07/17 16:14	11/08/17 19:50	1
Pyrene	<0.040		0.040	0.0080	mg/Kg	₽	11/07/17 16:14	11/08/17 19:50	1
1,2,4-Trichlorobenzene	<0.20		0.20	0.043	mg/Kg	☼	11/07/17 16:14	11/08/17 19:50	1
2,4,5-Trichlorophenol	<0.40		0.40	0.091	mg/Kg	≎	11/07/17 16:14	11/08/17 19:50	1
2,4,6-Trichlorophenol	<0.40		0.40	0.14	mg/Kg		11/07/17 16:14	11/08/17 19:50	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	79		44 - 121				11/07/17 16:14	11/08/17 19:50	1
2-Fluorophenol	93		46 - 133				11/07/17 16:14	11/08/17 19:50	1
Nitrobenzene-d5	73		41 - 120				11/07/17 16:14	11/08/17 19:50	1
Phenol-d5	100		46 - 125				11/07/17 16:14	11/08/17 19:50	1
Terphenyl-d14	86		35 - 160				11/07/17 16:14	11/08/17 19:50	1
2,4,6-Tribromophenol	96		25 - 139				11/07/17 16:14	11/08/17 19:50	1

Method: 6010B - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<1.2		1.2	0.23	mg/Kg	<u></u>	11/02/17 07:49	11/02/17 21:11	1
Arsenic	8.1		0.58	0.20	mg/Kg	☼	11/02/17 07:49	11/02/17 21:11	1
Barium	74		0.58	0.067	mg/Kg	≎	11/02/17 07:49	11/02/17 21:11	1
Beryllium	0.51		0.23	0.055	mg/Kg	₽	11/02/17 07:49	11/02/17 21:11	1
Cadmium	0.085	JB	0.12	0.021	mg/Kg	₽	11/02/17 07:49	11/02/17 21:11	1
Chromium	21		0.58	0.29	mg/Kg	☼	11/02/17 07:49	11/02/17 21:11	1
Cobalt	7.2		0.29	0.077	mg/Kg	₽	11/02/17 07:49	11/02/17 21:11	1
Copper	18		0.58	0.16	mg/Kg	☼	11/02/17 07:49	11/02/17 21:11	1
Iron	22000	В	12	6.1	mg/Kg	☼	11/02/17 07:49	11/02/17 21:11	1
Lead	13		0.29	0.14	mg/Kg	₽	11/02/17 07:49	11/02/17 21:11	1
Manganese	140		0.58	0.085	mg/Kg	☼	11/02/17 07:49	11/02/17 21:11	1
Nickel	19		0.58	0.17	mg/Kg	₽	11/02/17 07:49	11/02/17 21:11	1
Selenium	0.89		0.58	0.34	mg/Kg	₽	11/02/17 07:49	11/02/17 21:11	1
Silver	<0.29		0.29	0.075	mg/Kg	☼	11/02/17 07:49	11/02/17 21:11	1
Thallium	<0.58		0.58	0.29	mg/Kg	₽	11/02/17 07:49	11/02/17 21:11	1
Vanadium	35		0.29	0.069	mg/Kg	₽	11/02/17 07:49	11/02/17 21:11	1
Zinc	56		1.2	0.51	mg/Kg	☼	11/02/17 07:49	11/02/17 21:11	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/03/17 14:57	11/05/17 17:15	1
Barium	0.27	J	0.50	0.050	mg/L		11/03/17 14:57	11/05/17 17:15	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/03/17 14:57	11/05/17 17:15	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/03/17 14:57	11/05/17 17:15	1
Chromium	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:15	1
Cobalt	0.018	J	0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:15	1
Copper	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:15	1
Iron	<0.40		0.40	0.20	mg/L		11/03/17 14:57	11/05/17 17:15	1

Page 73 of 231

TestAmerica Chicago

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Received: 11/01/17 09:05

TestAmerica Job ID: 500-136575-1

Client Sample ID: 3160-28-1 (0-5') Lab Sample ID: 500-136575-12 Date Collected: 10/31/17 10:30

Matrix: Solid

Percent Solids: 79.6

Method: 6010B - Metals Analyte	. ,	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	<0.0075		0.0075	0.0075	mg/L		11/03/17 14:57	11/05/17 17:15	1
Manganese	0.74		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:15	1
Nickel	0.024	J	0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:15	1
Selenium	<0.050		0.050	0.020	mg/L		11/03/17 14:57	11/05/17 17:15	1
Silver	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:15	1
Vanadium	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:15	1
Zinc	0.025	J	0.50	0.020	mg/L		11/03/17 14:57	11/05/17 17:15	1
- Method: 6010B - Metals	s (ICP) - SPLP East	t							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Manganese	0.099		0.025	0.010	mg/L		11/03/17 14:53	11/06/17 02:48	1
Method: 6020A - Metals Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte Antimony	Result <0.0060	Qualifier	0.0060	0.0060	mg/L	D	11/03/17 14:57	11/06/17 17:04	1
Analyte Antimony Thallium	Result <0.0060 <0.0020	Qualifier			mg/L	<u>D</u>	<u> </u>		
Analyte Antimony Thallium Method: 7470A - TCLP	Result <0.0060 <0.0020		0.0060 0.0020	0.0060 0.0020	mg/L mg/L	=	11/03/17 14:57 11/03/17 14:57	11/06/17 17:04 11/06/17 17:04	1
Analyte Antimony Thallium Method: 7470A - TCLP Analyte	Result <0.0060 <0.0020	Qualifier Qualifier	0.0060 0.0020 RL	0.0060 0.0020 MDL	mg/L mg/L	D	11/03/17 14:57 11/03/17 14:57 Prepared	11/06/17 17:04 11/06/17 17:04 Analyzed	1 1 Dil Fac
Analyte Antimony Thallium Method: 7470A - TCLP	Result <0.0060 <0.0020		0.0060 0.0020	0.0060 0.0020 MDL	mg/L mg/L	=	11/03/17 14:57 11/03/17 14:57	11/06/17 17:04 11/06/17 17:04	1
Analyte Antimony Thallium Method: 7470A - TCLP Analyte Mercury	Result <0.0060 <0.0020		0.0060 0.0020 RL	0.0060 0.0020 MDL	mg/L mg/L	=	11/03/17 14:57 11/03/17 14:57 Prepared	11/06/17 17:04 11/06/17 17:04 Analyzed	1 1 Dil Fac
Analyte Antimony Thallium Method: 7470A - TCLP Analyte	Result <0.0060 <0.0020		0.0060 0.0020 RL	0.0060 0.0020 MDL	mg/L mg/L Unit mg/L		11/03/17 14:57 11/03/17 14:57 Prepared	11/06/17 17:04 11/06/17 17:04 Analyzed	1 1 Dil Fac
Analyte Antimony Thallium Method: 7470A - TCLP Analyte Mercury Method: 7471B - Mercur	Result <0.0060 <0.0020	Qualifier	0.0060 0.0020 RL 0.00020	0.0060 0.0020 MDL 0.00020	mg/L mg/L Unit mg/L Unit		11/03/17 14:57 11/03/17 14:57 Prepared 11/03/17 12:20	11/06/17 17:04 11/06/17 17:04 Analyzed 11/06/17 11:22	1 1 Dil Fac 1
Analyte Antimony Thallium Method: 7470A - TCLP Analyte Mercury Method: 7471B - Mercur Analyte	Result <0.0060 <0.0020	Qualifier Qualifier	0.0060 0.0020 RL 0.00020	0.0060 0.0020 MDL 0.00020	mg/L mg/L Unit mg/L Unit		11/03/17 14:57 11/03/17 14:57 Prepared 11/03/17 12:20 Prepared	11/06/17 17:04 11/06/17 17:04 Analyzed 11/06/17 11:22 Analyzed	Dil Fac Dil Fac 1
Analyte Antimony Thallium Method: 7470A - TCLP Analyte Mercury Method: 7471B - Mercur Analyte Mercury	Result <0.0060 <0.0020	Qualifier	0.0060 0.0020 RL 0.00020	0.0060 0.0020 MDL 0.00020	mg/L mg/L Unit mg/L Unit mg/Kg		11/03/17 14:57 11/03/17 14:57 Prepared 11/03/17 12:20 Prepared	11/06/17 17:04 11/06/17 17:04 Analyzed 11/06/17 11:22 Analyzed	Dil Fac Dil Fac

TestAmerica Job ID: 500-136575-1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-28-2 (0-5')

Date Collected: 10/31/17 10:40 Date Received: 11/01/17 09:05 Lab Sample ID: 500-136575-13

Matrix: Solid Percent Solids: 84.0

Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Acetone	0.045		0.021	0.0090	mg/Kg	₩	11/01/17 18:01	11/02/17 18:30	1
Benzene	<0.0021		0.0021	0.00053	mg/Kg	₩	11/01/17 18:01	11/02/17 18:30	1
Bromodichloromethane	<0.0021		0.0021	0.00042	mg/Kg	₩	11/01/17 18:01	11/02/17 18:30	1
Bromoform	<0.0021		0.0021	0.00060	mg/Kg	φ.	11/01/17 18:01	11/02/17 18:30	1
Bromomethane	<0.0052		0.0052	0.0019	mg/Kg	₩	11/01/17 18:01	11/02/17 18:30	1
2-Butanone (MEK)	<0.0052		0.0052	0.0023	mg/Kg	☼	11/01/17 18:01	11/02/17 18:30	1
Carbon disulfide	<0.0052		0.0052	0.0011	mg/Kg	φ.	11/01/17 18:01	11/02/17 18:30	1
Carbon tetrachloride	<0.0021		0.0021	0.00060	mg/Kg	☼	11/01/17 18:01	11/02/17 18:30	1
Chlorobenzene	<0.0021		0.0021	0.00076	mg/Kg	☼	11/01/17 18:01	11/02/17 18:30	1
Chloroethane	<0.0052		0.0052	0.0015	mg/Kg	₽	11/01/17 18:01	11/02/17 18:30	1
Chloroform	<0.0021		0.0021	0.00072	mg/Kg	☼	11/01/17 18:01	11/02/17 18:30	1
Chloromethane	< 0.0052		0.0052	0.0021	mg/Kg	☼	11/01/17 18:01	11/02/17 18:30	1
cis-1,2-Dichloroethene	<0.0021		0.0021	0.00058	mg/Kg		11/01/17 18:01	11/02/17 18:30	1
cis-1,3-Dichloropropene	<0.0021		0.0021	0.00062	mg/Kg	₩	11/01/17 18:01	11/02/17 18:30	1
Dibromochloromethane	<0.0021		0.0021	0.00067	mg/Kg	₩	11/01/17 18:01	11/02/17 18:30	1
1,1-Dichloroethane	<0.0021		0.0021	0.00071	mg/Kg		11/01/17 18:01	11/02/17 18:30	1
1,2-Dichloroethane	<0.0052		0.0052	0.0016		₩	11/01/17 18:01	11/02/17 18:30	1
1,1-Dichloroethene	<0.0021		0.0021	0.00071	mg/Kg	₩	11/01/17 18:01	11/02/17 18:30	1
1,2-Dichloropropane	<0.0021		0.0021	0.00053	mg/Kg	₩.	11/01/17 18:01	11/02/17 18:30	1
1,3-Dichloropropene, Total	<0.0021		0.0021	0.00072		₩	11/01/17 18:01	11/02/17 18:30	1
Ethylbenzene	<0.0021		0.0021	0.00099		₩	11/01/17 18:01	11/02/17 18:30	1
2-Hexanone	<0.0052		0.0052	0.0016			11/01/17 18:01	11/02/17 18:30	1
Methylene Chloride	<0.0052		0.0052	0.0020		₩	11/01/17 18:01	11/02/17 18:30	1
4-Methyl-2-pentanone (MIBK)	<0.0052		0.0052	0.0015	mg/Kg	₩	11/01/17 18:01	11/02/17 18:30	1
Methyl tert-butyl ether	<0.0021		0.0021	0.00060	mg/Kg		11/01/17 18:01	11/02/17 18:30	1
Styrene	<0.0021		0.0021	0.00062		₩	11/01/17 18:01	11/02/17 18:30	1
1,1,2,2-Tetrachloroethane	<0.0021		0.0021	0.00066	mg/Kg	₩	11/01/17 18:01	11/02/17 18:30	1
Tetrachloroethene	<0.0021		0.0021	0.00070			11/01/17 18:01	11/02/17 18:30	1
Toluene	<0.0021		0.0021	0.00052		₩	11/01/17 18:01	11/02/17 18:30	1
trans-1,2-Dichloroethene	<0.0021		0.0021	0.00091		₩	11/01/17 18:01	11/02/17 18:30	1
trans-1,3-Dichloropropene	<0.0021		0.0021	0.00072			11/01/17 18:01	11/02/17 18:30	1
1,1,1-Trichloroethane	<0.0021		0.0021	0.00069		₩	11/01/17 18:01	11/02/17 18:30	1
1,1,2-Trichloroethane	<0.0021		0.0021	0.00088		₩	11/01/17 18:01	11/02/17 18:30	1
Trichloroethene	<0.0021		0.0021	0.00070	0 0		11/01/17 18:01	11/02/17 18:30	1
Vinyl acetate	<0.0052		0.0052	0.0018		₩	11/01/17 18:01	11/02/17 18:30	1
Vinyl chloride	<0.0021		0.0021	0.00091	0 0	₩	11/01/17 18:01	11/02/17 18:30	1
Xylenes, Total	<0.0041		0.0041	0.00066		.		11/02/17 18:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	85		75 - 131				11/01/17 18:01	11/02/17 18:30	1
Dibromofluoromethane	103		75 - 126				11/01/17 18:01	11/02/17 18:30	1
1,2-Dichloroethane-d4 (Surr)	102		70 - 134				11/01/17 18:01	11/02/17 18:30	1
Toluene-d8 (Surr)	98		75 - 124				11/01/17 18:01	11/02/17 18:30	1

Method: 8270D - Semivolat	tile Organic Compounds (GC/MS)					
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	<0.038	0.038	0.0070 mg/Kg	₽	11/07/17 16:14	11/08/17 21:06	1
Acenaphthylene	<0.038	0.038	0.0051 mg/Kg	₽	11/07/17 16:14	11/08/17 21:06	1
Anthracene	<0.038	0.038	0.0065 mg/Kg	₽	11/07/17 16:14	11/08/17 21:06	1
Benzo[a]anthracene	0.0085 J	0.038	0.0052 mg/Kg	Þ	11/07/17 16:14	11/08/17 21:06	1

TestAmerica Chicago

11/13/2017

Page 75 of 231

2

3

6

8

11

4.0

ь

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 10:40

Date Received: 11/01/17 09:05

Nitrobenzene

2-Nitrophenol

Client Sample ID: 3160-28-2 (0-5')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-13

Matrix: Solid Percent Solids: 84.0

Matrix: Solid

Analyzed	Dil Fac
08/17 21:06	
08/17 21:06	
08/17 21:06	
08/17 21:06	
08/17 21:06	
08/17 21:06	,
08/17 21:06	
08/17 21:06	
08/17 21:06	· · · · · · .
08/17 21:06	
08/17 21:06	
08/17 21:06	· · · · · · .
08/17 21:06	
08/17 21:06	
08/17 21:06	,
08/17 21:06	
08/17 21:06	
08/17 21:06	
08/17 21:06	
08/17 21:06	
08/17 21:06	
08/17 21:06	
08/17 21:06	
08/17 21:06	· · · · · · .
08/17 21:06	
08/17 21:06	
08/17 21:06	· · · · · · .
08/17 21:06	
	· · · · · .
	•
	ĺ
	•
	,
	•
	•
	•
	•
38/17 21:06	
/(0//0//0//0//0//0//0//0//0//0//0//0//0/	/08/17 21:06 /08/17 21:06

TestAmerica Chicago

11/13/2017

* 11/07/17 16:14 11/08/17 21:06

☼ 11/07/17 16:14 11/08/17 21:06

Page 76 of 231

0.038

0.38

<0.038

< 0.38

0.0097 mg/Kg

0.092 mg/Kg

2

3

5

7

9

11

12

4 4

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 10:40

Date Received: 11/01/17 09:05

Client Sample ID: 3160-28-2 (0-5')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-13

Matrix: Solid

Percent Solids: 84.0

Method: 8270D - Semivolat	ile Organic Co	mpounds	(GC/MS) (Cd	ntinued)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.78		0.78	0.37	mg/Kg	₩	11/07/17 16:14	11/08/17 21:06	1
N-Nitrosodi-n-propylamine	<0.078		0.078	0.047	mg/Kg	\$	11/07/17 16:14	11/08/17 21:06	1
N-Nitrosodiphenylamine	<0.19		0.19	0.046	mg/Kg	☼	11/07/17 16:14	11/08/17 21:06	1
2,2'-oxybis[1-chloropropane]	<0.19		0.19	0.045	mg/Kg	☼	11/07/17 16:14	11/08/17 21:06	1
Pentachlorophenol	<0.78		0.78	0.62	mg/Kg	\$	11/07/17 16:14	11/08/17 21:06	1
Phenanthrene	0.021	J	0.038	0.0054	mg/Kg	☼	11/07/17 16:14	11/08/17 21:06	1
Phenol	<0.19		0.19	0.086	mg/Kg	≎	11/07/17 16:14	11/08/17 21:06	1
Pyrene	0.0099	J	0.038	0.0077	mg/Kg	₽	11/07/17 16:14	11/08/17 21:06	1
1,2,4-Trichlorobenzene	<0.19		0.19	0.042	mg/Kg	≎	11/07/17 16:14	11/08/17 21:06	1
2,4,5-Trichlorophenol	<0.38		0.38	0.088	mg/Kg	☼	11/07/17 16:14	11/08/17 21:06	1
2,4,6-Trichlorophenol	<0.38		0.38	0.13	mg/Kg	₩	11/07/17 16:14	11/08/17 21:06	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	69		44 - 121				11/07/17 16:14	11/08/17 21:06	1
2-Fluorophenol	86		46 - 133				11/07/17 16:14	11/08/17 21:06	1
Nitrobenzene-d5	65		41 - 120				11/07/17 16:14	11/08/17 21:06	1
Phenol-d5	86		46 - 125				11/07/17 16:14	11/08/17 21:06	1
Terphenyl-d14	76		35 - 160				11/07/17 16:14	11/08/17 21:06	1
2,4,6-Tribromophenol	82		25 - 139				11/07/17 16:14	11/08/17 21:06	1

Method: 6010B - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<1.1		1.1	0.22	mg/Kg	<u></u> ₩	11/02/17 07:49	11/02/17 21:15	1
Arsenic	7.4		0.55	0.19	mg/Kg	☼	11/02/17 07:49	11/02/17 21:15	1
Barium	120		0.55	0.063	mg/Kg	☼	11/02/17 07:49	11/02/17 21:15	1
Beryllium	0.52		0.22	0.052	mg/Kg	₽	11/02/17 07:49	11/02/17 21:15	1
Cadmium	0.12	В	0.11	0.020	mg/Kg	☼	11/02/17 07:49	11/02/17 21:15	1
Chromium	18		0.55	0.27	mg/Kg	☼	11/02/17 07:49	11/02/17 21:15	1
Cobalt	8.7		0.28	0.072	mg/Kg		11/02/17 07:49	11/02/17 21:15	1
Copper	16		0.55	0.15	mg/Kg	☼	11/02/17 07:49	11/02/17 21:15	1
Iron	21000	В	11	5.8	mg/Kg	☼	11/02/17 07:49	11/02/17 21:15	1
Lead	23		0.28	0.13	mg/Kg	₽	11/02/17 07:49	11/02/17 21:15	1
Manganese	270		0.55	0.080	mg/Kg	☼	11/02/17 07:49	11/02/17 21:15	1
Nickel	17		0.55	0.16	mg/Kg	☼	11/02/17 07:49	11/02/17 21:15	1
Selenium	0.63		0.55	0.33	mg/Kg	₽	11/02/17 07:49	11/02/17 21:15	1
Silver	<0.28		0.28	0.071	mg/Kg	☼	11/02/17 07:49	11/02/17 21:15	1
Thallium	<0.55		0.55	0.28	mg/Kg	☼	11/02/17 07:49	11/02/17 21:15	1
Vanadium	30		0.28	0.065	mg/Kg	₽	11/02/17 07:49	11/02/17 21:15	1
Zinc	63		1.1	0.49	mg/Kg	₩	11/02/17 07:49	11/02/17 21:15	1

Analyte	Result Qualifie	er RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050	0.050	0.010	mg/L		11/03/17 14:57	11/05/17 17:19	1
Barium	0.58	0.50	0.050	mg/L		11/03/17 14:57	11/05/17 17:19	1
Beryllium	<0.0040	0.0040	0.0040	mg/L		11/03/17 14:57	11/05/17 17:19	1
Cadmium	<0.0050	0.0050	0.0020	mg/L		11/03/17 14:57	11/05/17 17:19	1
Chromium	<0.025	0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:19	1
Cobalt	<0.025	0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:19	1
Copper	<0.025	0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:19	1
Iron	<0.40	0.40	0.20	mg/L		11/03/17 14:57	11/05/17 17:19	1

TestAmerica Chicago

Page 77 of 231

11/13/2017

3

5

7

0

10

12

13

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 10:40

Date Received: 11/01/17 09:05

рН

Client Sample ID: 3160-28-2 (0-5')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-13

Matrix: Solid

Percent Solids: 84.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	<0.0075		0.0075	0.0075	mg/L		11/03/17 14:57	11/05/17 17:19	1
Manganese	0.25		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:19	1
Nickel	0.014	J	0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:19	1
Selenium	0.020	J	0.050	0.020	mg/L		11/03/17 14:57	11/05/17 17:19	1
Silver	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:19	1
Vanadium	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:19	1
Zinc	0.035	J	0.50	0.020	mg/L		11/03/17 14:57	11/05/17 17:19	1
- Method: 6010B - Meta	ls (ICP) - SPLP Eas	t							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Manganese	0.075		0.025	0.010	mg/L		11/03/17 14:53	11/06/17 02:52	1
- Method: 6020A - Meta	Is (ICP/MS) - TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060		0.0060	0.0060	mg/L		11/03/17 14:57	11/06/17 17:08	1
Thallium	<0.0020		0.0020	0.0020	mg/L		11/03/17 14:57	11/06/17 17:08	1
Method: 7470A - TCLF	P Mercury - TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/03/17 12:20	11/06/17 11:23	1
Method: 7471B - Merc	cury (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.035		0.018	0.0062	mg/Kg		11/02/17 16:10	11/03/17 08:43	1
General Chemistry									

0.20

4.9

0.20 SU

11/03/17 08:57

TestAmerica Job ID: 500-136575-1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-28-3 (0-5')

Lab Sample ID: 500-136575-14 Date Collected: 10/31/17 10:50 **Matrix: Solid**

Date Received: 11/01/17 09:05 Percent Solids: 80.7

Method: 8260B - Volatile O Analyte	Result Qualifier	•	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	0.032	0.018	0.0080	mg/Kg	₩	11/01/17 18:01	11/02/17 18:55	1
Benzene	<0.0018	0.0018	0.00047	mg/Kg	☼	11/01/17 18:01	11/02/17 18:55	1
Bromodichloromethane	<0.0018	0.0018	0.00037	mg/Kg	₩	11/01/17 18:01	11/02/17 18:55	1
Bromoform	<0.0018	0.0018	0.00053	mg/Kg	\$	11/01/17 18:01	11/02/17 18:55	1
Bromomethane	<0.0046	0.0046	0.0017	mg/Kg	☼	11/01/17 18:01	11/02/17 18:55	1
2-Butanone (MEK)	<0.0046	0.0046	0.0020	mg/Kg	₩	11/01/17 18:01	11/02/17 18:55	1
Carbon disulfide	<0.0046	0.0046	0.00095	mg/Kg	\$	11/01/17 18:01	11/02/17 18:55	1
Carbon tetrachloride	<0.0018	0.0018	0.00053	mg/Kg	☼	11/01/17 18:01	11/02/17 18:55	1
Chlorobenzene	<0.0018	0.0018	0.00067	mg/Kg	₩	11/01/17 18:01	11/02/17 18:55	1
Chloroethane	<0.0046	0.0046	0.0014	mg/Kg	₽	11/01/17 18:01	11/02/17 18:55	1
Chloroform	<0.0018	0.0018	0.00063	mg/Kg	☼	11/01/17 18:01	11/02/17 18:55	1
Chloromethane	<0.0046	0.0046	0.0018	mg/Kg	☼	11/01/17 18:01	11/02/17 18:55	1
cis-1,2-Dichloroethene	<0.0018	0.0018	0.00051	mg/Kg	₽	11/01/17 18:01	11/02/17 18:55	1
cis-1,3-Dichloropropene	<0.0018	0.0018	0.00055	mg/Kg	☼	11/01/17 18:01	11/02/17 18:55	1
Dibromochloromethane	<0.0018	0.0018	0.00060	mg/Kg	☼	11/01/17 18:01	11/02/17 18:55	1
1,1-Dichloroethane	<0.0018	0.0018	0.00063	mg/Kg	₩	11/01/17 18:01	11/02/17 18:55	1
1,2-Dichloroethane	<0.0046	0.0046	0.0014	mg/Kg	☼	11/01/17 18:01	11/02/17 18:55	1
1,1-Dichloroethene	<0.0018	0.0018	0.00063	mg/Kg	☼	11/01/17 18:01	11/02/17 18:55	1
1,2-Dichloropropane	<0.0018	0.0018	0.00047	mg/Kg	ф	11/01/17 18:01	11/02/17 18:55	1
1,3-Dichloropropene, Total	<0.0018	0.0018	0.00064	mg/Kg	☼	11/01/17 18:01	11/02/17 18:55	1
Ethylbenzene	<0.0018	0.0018	0.00087	mg/Kg	☼	11/01/17 18:01	11/02/17 18:55	1
2-Hexanone	<0.0046	0.0046	0.0014	mg/Kg	ф	11/01/17 18:01	11/02/17 18:55	1
Methylene Chloride	<0.0046	0.0046	0.0018	mg/Kg	☼	11/01/17 18:01	11/02/17 18:55	1
4-Methyl-2-pentanone (MIBK)	<0.0046	0.0046	0.0014	mg/Kg	☼	11/01/17 18:01	11/02/17 18:55	1
Methyl tert-butyl ether	<0.0018	0.0018	0.00054	mg/Kg	₽	11/01/17 18:01	11/02/17 18:55	1
Styrene	<0.0018	0.0018	0.00055	mg/Kg	☼	11/01/17 18:01	11/02/17 18:55	1
1,1,2,2-Tetrachloroethane	<0.0018	0.0018	0.00058	mg/Kg	☼	11/01/17 18:01	11/02/17 18:55	1
Tetrachloroethene	<0.0018	0.0018	0.00062	mg/Kg		11/01/17 18:01	11/02/17 18:55	1
Toluene	<0.0018	0.0018	0.00046	mg/Kg	₩	11/01/17 18:01	11/02/17 18:55	1
trans-1,2-Dichloroethene	<0.0018	0.0018	0.00081	mg/Kg	☼	11/01/17 18:01	11/02/17 18:55	1
trans-1,3-Dichloropropene	<0.0018	0.0018	0.00064	mg/Kg		11/01/17 18:01	11/02/17 18:55	1
1,1,1-Trichloroethane	<0.0018	0.0018	0.00061	mg/Kg	☼	11/01/17 18:01	11/02/17 18:55	1
1,1,2-Trichloroethane	<0.0018	0.0018	0.00078	mg/Kg	₩	11/01/17 18:01	11/02/17 18:55	1
Trichloroethene	<0.0018	0.0018	0.00062	mg/Kg	ф	11/01/17 18:01	11/02/17 18:55	1
Vinyl acetate	<0.0046	0.0046	0.0016	mg/Kg	☼	11/01/17 18:01	11/02/17 18:55	1
Vinyl chloride	<0.0018	0.0018	0.00081	mg/Kg	☼	11/01/17 18:01	11/02/17 18:55	1
Xylenes, Total	<0.0037	0.0037	0.00058	mg/Kg	φ.	11/01/17 18:01	11/02/17 18:55	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	84	75 - 131				11/01/17 18:01	11/02/17 18:55	1
Dibromofluoromethane	97	75 - 126				11/01/17 18:01	11/02/17 18:55	1
1,2-Dichloroethane-d4 (Surr)	95	70 - 134				11/01/17 18:01	11/02/17 18:55	1
Toluene-d8 (Surr)	99	75 - 124				11/01/17 18:01	11/02/17 18:55	1

Method: 8270D - Semivolatile Organic Compounds (GC/MS)								
Analyte	Result	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	<0.040	0.040	0.0072	mg/Kg	\	11/07/17 16:14	11/08/17 14:37	1
Acenaphthylene	<0.040	0.040	0.0053	mg/Kg	₩	11/07/17 16:14	11/08/17 14:37	1
Anthracene	0.073	0.040	0.0067	mg/Kg	₩	11/07/17 16:14	11/08/17 14:37	1
Benzo[a]anthracene	0.15	0.040	0.0054	mg/Kg	₽	11/07/17 16:14	11/08/17 14:37	1

TestAmerica Chicago

Page 79 of 231

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 10:50

Date Received: 11/01/17 09:05

Client Sample ID: 3160-28-3 (0-5')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-14

Matrix: Solid

Percent Solids: 80.7

Method: 8270D - Semivolatil Analyte	Result Q	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzo[a]pyrene	0.089	0.040	0.0078		**		11/08/17 14:37	
Benzo[b]fluoranthene	0.11	0.040	0.0087			11/07/17 16:14	11/08/17 14:37	
Benzo[g,h,i]perylene	0.072	0.040		mg/Kg	☼	11/07/17 16:14	11/08/17 14:37	
Benzo[k]fluoranthene	0.012 J	0.040		mg/Kg	☼	11/07/17 16:14	11/08/17 14:37	
Bis(2-chloroethoxy)methane	<0.20	0.20	0.041	mg/Kg	#	11/07/17 16:14	11/08/17 14:37	
Bis(2-chloroethyl)ether	<0.20	0.20		mg/Kg	₩	11/07/17 16:14	11/08/17 14:37	
Bis(2-ethylhexyl) phthalate	<0.20	0.20	0.073	mg/Kg	₩	11/07/17 16:14	11/08/17 14:37	
4-Bromophenyl phenyl ether	<0.20	0.20	0.053	mg/Kg	☼	11/07/17 16:14	11/08/17 14:37	
Butyl benzyl phthalate	<0.20	0.20	0.076	mg/Kg	₽	11/07/17 16:14	11/08/17 14:37	
Carbazole	<0.20	0.20	0.10	mg/Kg	₩	11/07/17 16:14	11/08/17 14:37	
4-Chloroaniline	<0.81	0.81	0.19	mg/Kg	₩	11/07/17 16:14	11/08/17 14:37	
4-Chloro-3-methylphenol	<0.40	0.40	0.14	mg/Kg	₽	11/07/17 16:14	11/08/17 14:37	
2-Chloronaphthalene	<0.20	0.20	0.044	mg/Kg	≎	11/07/17 16:14	11/08/17 14:37	
2-Chlorophenol	<0.20	0.20	0.069	mg/Kg	☼	11/07/17 16:14	11/08/17 14:37	
4-Chlorophenyl phenyl ether	<0.20	0.20	0.047	mg/Kg	₽	11/07/17 16:14	11/08/17 14:37	
Chrysene	0.16	0.040	0.011	mg/Kg	☼	11/07/17 16:14	11/08/17 14:37	
Dibenz(a,h)anthracene	0.053	0.040	0.0078	mg/Kg	☼	11/07/17 16:14	11/08/17 14:37	
Dibenzofuran	0.74	0.20	0.047	mg/Kg	₽	11/07/17 16:14	11/08/17 14:37	
1,2-Dichlorobenzene	<0.20	0.20	0.048	mg/Kg	☼	11/07/17 16:14	11/08/17 14:37	
1,3-Dichlorobenzene	<0.20	0.20	0.045	mg/Kg	₽	11/07/17 16:14	11/08/17 14:37	
1,4-Dichlorobenzene	<0.20	0.20		mg/Kg		11/07/17 16:14	11/08/17 14:37	
3,3'-Dichlorobenzidine	<0.20	0.20		mg/Kg	₽	11/07/17 16:14	11/08/17 14:37	
2,4-Dichlorophenol	<0.40	0.40	0.095	mg/Kg	☼	11/07/17 16:14	11/08/17 14:37	
Diethyl phthalate	<0.20	0.20		mg/Kg	ф.	11/07/17 16:14	11/08/17 14:37	
2,4-Dimethylphenol	<0.40	0.40		mg/Kg	₽	11/07/17 16:14	11/08/17 14:37	
Dimethyl phthalate	<0.20	0.20		mg/Kg	☼		11/08/17 14:37	
Di-n-butyl phthalate	<0.20	0.20		mg/Kg	· · · · · · · · · · · · · · · · · · ·		11/08/17 14:37	
4,6-Dinitro-2-methylphenol	<0.81	0.81		mg/Kg	☼		11/08/17 14:37	
2,4-Dinitrophenol	<0.81	0.81		mg/Kg	☼		11/08/17 14:37	
2,4-Dinitrotoluene	<0.20	0.20		mg/Kg			11/08/17 14:37	
2,6-Dinitrotoluene	<0.20	0.20		mg/Kg	☼		11/08/17 14:37	
Di-n-octyl phthalate	<0.20	0.20		mg/Kg	☼		11/08/17 14:37	
Fluoranthene	0.17	0.040	0.0074				11/08/17 14:37	
Fluorene	0.028 J		0.0056		₽		11/08/17 14:37	
Hexachlorobenzene	<0.081	0.040	0.0093		₽		11/08/17 14:37	
Hexachlorobutadiene				mg/Kg		11/07/17 16:14		
Hexachlorocyclopentadiene	<0.20 <0.81	0.20 0.81		mg/Kg	₽		11/08/17 14:37	
Hexachloroethane	<0.20	0.20			☼		11/08/17 14:37	
				mg/Kg	· · · · · · · · · · · · · · · · · · ·		11/08/17 14:37	
Indeno[1,2,3-cd]pyrene	0.062 <0.20	0.040 0.20		mg/Kg	₩			
Isophorone				mg/Kg			11/08/17 14:37	
2-Methylphenol	0.56	0.20		mg/Kg			11/08/17 14:37	
3 & 4 Methylphenol	0.46	0.20		mg/Kg	∯ **		11/08/17 14:37	
Naphthalene	2.5	0.040	0.0062		₩		11/08/17 14:37	
2-Nitroaniline	<0.20	0.20		mg/Kg	 		11/08/17 14:37	
3-Nitroaniline	<0.40	0.40		mg/Kg	φ. 		11/08/17 14:37	
4-Nitroaniline	<0.40	0.40		mg/Kg	φ. 		11/08/17 14:37	
Nitrobenzene	<0.040	0.040		mg/Kg			11/08/17 14:37	
2-Nitrophenol	<0.40	0.40		mg/Kg	*		11/08/17 14:37	
4-Nitrophenol	< 0.81	0.81	0.38	mg/Kg	₩	11/07/17 16:14	11/08/17 14:37	

TestAmerica Chicago

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-28-3 (0-5')

Date Collected: 10/31/17 10:50

Date Received: 11/01/17 09:05

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-14

olid Percent Solids: 80.7

Matrix: Sol
Davaget Calida, 90

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
N-Nitrosodi-n-propylamine	<0.081		0.081	0.049	mg/Kg	<u> </u>	11/07/17 16:14	11/08/17 14:37	1
N-Nitrosodiphenylamine	<0.20		0.20	0.047	mg/Kg	φ.	11/07/17 16:14	11/08/17 14:37	1
2,2'-oxybis[1-chloropropane]	<0.20		0.20	0.047	mg/Kg	₩	11/07/17 16:14	11/08/17 14:37	1
Pentachlorophenol	<0.81		0.81	0.64	mg/Kg	₩	11/07/17 16:14	11/08/17 14:37	1
Phenanthrene	0.97		0.040	0.0056	mg/Kg	₩.	11/07/17 16:14	11/08/17 14:37	1
Phenol	0.41		0.20	0.089	mg/Kg	₩	11/07/17 16:14	11/08/17 14:37	1
Pyrene	0.19		0.040	0.0080	mg/Kg	₩	11/07/17 16:14	11/08/17 14:37	1
1,2,4-Trichlorobenzene	<0.20		0.20	0.043	mg/Kg	₩.	11/07/17 16:14	11/08/17 14:37	1
2,4,5-Trichlorophenol	<0.40		0.40	0.092	mg/Kg	₩	11/07/17 16:14	11/08/17 14:37	1
2,4,6-Trichlorophenol	<0.40		0.40	0.14	mg/Kg	₩	11/07/17 16:14	11/08/17 14:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	91		44 - 121				11/07/17 16:14	11/08/17 14:37	1
2-Fluorophenol	101		46 - 133				11/07/17 16:14	11/08/17 14:37	1
Nitrobenzene-d5	90		41 - 120				11/07/17 16:14	11/08/17 14:37	1
Phenol-d5	100		46 - 125				11/07/17 16:14	11/08/17 14:37	1
Terphenyl-d14	111		35 - 160				11/07/17 16:14	11/08/17 14:37	1
2,4,6-Tribromophenol	83		25 - 139				11/07/17 16:14	11/08/17 14:37	1

Method: 8270D - Semivolatile	Organic Compounds (G	C/MS) - DL					
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	3.7	0.16	0.015 mg/Kg	₩	11/07/17 16:14	11/09/17 13:20	2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<1.0		1.0	0.20	mg/Kg	<u>₩</u>	11/02/17 07:49	11/02/17 21:19	1
Arsenic	11		0.52	0.18	mg/Kg	☼	11/02/17 07:49	11/02/17 21:19	1
Barium	84		0.52	0.059	mg/Kg	₩	11/02/17 07:49	11/02/17 21:19	1
Beryllium	0.32		0.21	0.048	mg/Kg	₩	11/02/17 07:49	11/02/17 21:19	1
Cadmium	0.095	JB	0.10	0.019	mg/Kg	₩	11/02/17 07:49	11/02/17 21:19	1
Chromium	13		0.52	0.25	mg/Kg	₩	11/02/17 07:49	11/02/17 21:19	1
Cobalt	2.7		0.26	0.067	mg/Kg	₩	11/02/17 07:49	11/02/17 21:19	1
Copper	9.7		0.52	0.14	mg/Kg	₩	11/02/17 07:49	11/02/17 21:19	1
Iron	16000	В	10	5.4	mg/Kg	₩	11/02/17 07:49	11/02/17 21:19	1
Lead	45		0.26	0.12	mg/Kg	₩.	11/02/17 07:49	11/02/17 21:19	1
Manganese	65		0.52	0.075	mg/Kg	₩	11/02/17 07:49	11/02/17 21:19	1
Nickel	7.4		0.52	0.15	mg/Kg	₩	11/02/17 07:49	11/02/17 21:19	1
Selenium	1.9		0.52	0.30	mg/Kg	₩.	11/02/17 07:49	11/02/17 21:19	1
Silver	<0.26		0.26	0.066	mg/Kg	₩	11/02/17 07:49	11/02/17 21:19	1
Thallium	0.87		0.52	0.26	mg/Kg	☼	11/02/17 07:49	11/02/17 21:19	1
Vanadium	28		0.26	0.061	mg/Kg	₩.	11/02/17 07:49	11/02/17 21:19	1
Zinc	32		1.0	0.45	mg/Kg	₩	11/02/17 07:49	11/02/17 21:19	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/03/17 14:57	11/05/17 17:23	1
Barium	0.33	J	0.50	0.050	mg/L		11/03/17 14:57	11/05/17 17:23	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/03/17 14:57	11/05/17 17:23	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/03/17 14:57	11/05/17 17:23	1
Chromium	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:23	1

TestAmerica Chicago

Page 81 of 231

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136575-1

Client Sample ID: 3160-28-3 (0-5')

Lab Sample ID: 500-136575-14 Date Collected: 10/31/17 10:50 **Matrix: Solid** Date Received: 11/01/17 09:05

Percent Solids: 80.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:23	1
Copper	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:23	1
Iron	< 0.40		0.40	0.20	mg/L		11/03/17 14:57	11/05/17 17:23	1
Lead	<0.0075		0.0075	0.0075	mg/L		11/03/17 14:57	11/05/17 17:23	1
Manganese	0.84		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:23	1
Nickel	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:23	1
Selenium	<0.050		0.050	0.020	mg/L		11/03/17 14:57	11/05/17 17:23	1
Silver	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:23	1
Vanadium	< 0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:23	1
Zinc	0.037	J	0.50	0.020	mg/L		11/03/17 14:57	11/05/17 17:23	1
Method: 6010B - Metals (ICP) - SF									
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Manganese	0.44		0.025	0.010	mg/L		11/03/17 14:53	11/06/17 02:56	1
. -									
						_			
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Analyte Antimony	Result <0.0060	Qualifier	0.0060	0.0060	mg/L	<u>D</u>	11/03/17 14:57	11/06/17 17:12	Dil Fac
Method: 6020A - Metals (ICP/MS) Analyte Antimony Thallium	Result	Qualifier			mg/L	D	11/03/17 14:57		Dil Fac
Analyte Antimony Thallium Method: 7470A - TCLP Mercury -	Result <0.0060 <0.0020		0.0060 0.0020	0.0060 0.0020	mg/L mg/L	<u>D</u>	11/03/17 14:57 11/03/17 14:57	11/06/17 17:12 11/06/17 17:12	1
Analyte Antimony Thallium Method: 7470A - TCLP Mercury -	Result <0.0060 <0.0020	Qualifier Qualifier	0.0060 0.0020 RL	0.0060 0.0020 MDL	mg/L mg/L Unit	D_	11/03/17 14:57 11/03/17 14:57 Prepared	11/06/17 17:12 11/06/17 17:12 Analyzed	Dil Fac
Analyte Antimony Thallium Method: 7470A - TCLP Mercury - Analyte	Result <0.0060 <0.0020		0.0060 0.0020	0.0060 0.0020	mg/L mg/L Unit	=	11/03/17 14:57 11/03/17 14:57	11/06/17 17:12 11/06/17 17:12	1
Analyte Antimony Thallium Method: 7470A - TCLP Mercury - Analyte Mercury	Result <0.00020 TCLP Result <0.00020		0.0060 0.0020 RL	0.0060 0.0020 MDL	mg/L mg/L Unit	=	11/03/17 14:57 11/03/17 14:57 Prepared	11/06/17 17:12 11/06/17 17:12 Analyzed	1
Analyte Antimony Thallium Method: 7470A - TCLP Mercury - Analyte Mercury Method: 7471B - Mercury (CVAA)	Result <0.00020 TCLP Result <0.00020		0.0060 0.0020 RL	0.0060 0.0020 MDL	mg/L mg/L Unit mg/L		11/03/17 14:57 11/03/17 14:57 Prepared	11/06/17 17:12 11/06/17 17:12 Analyzed	1 1 Dil Fac
Analyte Antimony Thallium Method: 7470A - TCLP Mercury - Analyte Mercury Method: 7471B - Mercury (CVAA) Analyte	Result <0.00020 TCLP Result <0.00020	Qualifier	0.0060 0.0020 RL 0.00020	0.0060 0.0020 MDL 0.00020	mg/L mg/L Unit mg/L Unit		11/03/17 14:57 11/03/17 14:57 Prepared 11/03/17 12:20	11/06/17 17:12 11/06/17 17:12 Analyzed 11/06/17 11:27	Dil Fac
Analyte Antimony Thallium Method: 7470A - TCLP Mercury - Analyte Mercury Method: 7471B - Mercury (CVAA) Analyte Mercury	Result	Qualifier	0.0060 0.0020 RL 0.00020	0.0060 0.0020 MDL 0.00020	mg/L mg/L Unit mg/L Unit		11/03/17 14:57 11/03/17 14:57 Prepared 11/03/17 12:20 Prepared	11/06/17 17:12 11/06/17 17:12 11/06/17 17:12 Analyzed 11/06/17 11:27	Dil Fac
Analyte Antimony	Result <0.0020 TCLP Result <0.00020 Result 0.14	Qualifier	0.0060 0.0020 RL 0.00020	0.0060 0.0020 MDL 0.00020	mg/L mg/L Unit mg/L Unit mg/Kg		11/03/17 14:57 11/03/17 14:57 Prepared 11/03/17 12:20 Prepared	11/06/17 17:12 11/06/17 17:12 11/06/17 17:12 Analyzed 11/06/17 11:27	1

2

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-32-1 (0-3.5')

Lab Sample ID: 500-136575-15

Analyte	Result C	Qualifier	RL	MDL	Unit	_ D	Prepared	Analyzed	Dil Fa
Acetone	<0.019		0.019	0.0084	mg/Kg	<u> </u>	11/01/17 18:01	11/02/17 19:21	
Benzene	<0.0019		0.0019	0.00049	mg/Kg	₩	11/01/17 18:01	11/02/17 19:21	
Bromodichloromethane	<0.0019		0.0019	0.00039	mg/Kg	☼	11/01/17 18:01	11/02/17 19:21	
Bromoform	<0.0019		0.0019	0.00056	mg/Kg	₩	11/01/17 18:01	11/02/17 19:21	
Bromomethane	<0.0048		0.0048	0.0018	mg/Kg	₩	11/01/17 18:01	11/02/17 19:21	
2-Butanone (MEK)	<0.0048		0.0048	0.0021	mg/Kg	☼	11/01/17 18:01	11/02/17 19:21	
Carbon disulfide	<0.0048		0.0048	0.0010	mg/Kg	☼	11/01/17 18:01	11/02/17 19:21	
Carbon tetrachloride	<0.0019		0.0019	0.00056	mg/Kg	≎	11/01/17 18:01	11/02/17 19:21	
Chlorobenzene	<0.0019		0.0019	0.00071	mg/Kg	≎	11/01/17 18:01	11/02/17 19:21	
Chloroethane	<0.0048		0.0048	0.0014	mg/Kg	₩	11/01/17 18:01	11/02/17 19:21	
Chloroform	<0.0019		0.0019	0.00067	mg/Kg	₩	11/01/17 18:01	11/02/17 19:21	
Chloromethane	<0.0048		0.0048	0.0019	mg/Kg	₩	11/01/17 18:01	11/02/17 19:21	
cis-1,2-Dichloroethene	<0.0019		0.0019	0.00054	mg/Kg	₽	11/01/17 18:01	11/02/17 19:21	
cis-1,3-Dichloropropene	< 0.0019		0.0019	0.00058	mg/Kg	☼	11/01/17 18:01	11/02/17 19:21	
Dibromochloromethane	< 0.0019		0.0019	0.00063	mg/Kg	☼	11/01/17 18:01	11/02/17 19:21	
1,1-Dichloroethane	<0.0019		0.0019	0.00066	mg/Kg		11/01/17 18:01	11/02/17 19:21	
1,2-Dichloroethane	<0.0048		0.0048	0.0015	mg/Kg	≎	11/01/17 18:01	11/02/17 19:21	
1,1-Dichloroethene	< 0.0019		0.0019	0.00066	mg/Kg	₩	11/01/17 18:01	11/02/17 19:21	
1,2-Dichloropropane	<0.0019		0.0019	0.00050	mg/Kg		11/01/17 18:01	11/02/17 19:21	
1,3-Dichloropropene, Total	< 0.0019		0.0019	0.00068	mg/Kg	☼	11/01/17 18:01	11/02/17 19:21	
Ethylbenzene	<0.0019		0.0019	0.00092	mg/Kg	☼	11/01/17 18:01	11/02/17 19:21	
2-Hexanone	<0.0048		0.0048	0.0015	mg/Kg	ф.	11/01/17 18:01	11/02/17 19:21	
Methylene Chloride	<0.0048		0.0048	0.0019	mg/Kg	☼	11/01/17 18:01	11/02/17 19:21	
4-Methyl-2-pentanone (MIBK)	<0.0048		0.0048	0.0014	mg/Kg	☼	11/01/17 18:01	11/02/17 19:21	
Methyl tert-butyl ether	<0.0019		0.0019	0.00056	mg/Kg		11/01/17 18:01	11/02/17 19:21	
Styrene	< 0.0019		0.0019	0.00058	mg/Kg	₩	11/01/17 18:01	11/02/17 19:21	
1,1,2,2-Tetrachloroethane	< 0.0019		0.0019	0.00062	mg/Kg	☼	11/01/17 18:01	11/02/17 19:21	
Tetrachloroethene	<0.0019		0.0019	0.00066	mg/Kg	₩.	11/01/17 18:01	11/02/17 19:21	
Toluene	< 0.0019		0.0019	0.00049	mg/Kg	☼	11/01/17 18:01	11/02/17 19:21	
trans-1,2-Dichloroethene	< 0.0019		0.0019	0.00085	mg/Kg	≎	11/01/17 18:01	11/02/17 19:21	
trans-1,3-Dichloropropene	<0.0019		0.0019	0.00068	mg/Kg		11/01/17 18:01	11/02/17 19:21	
1,1,1-Trichloroethane	< 0.0019		0.0019	0.00065	mg/Kg	☼	11/01/17 18:01	11/02/17 19:21	
1,1,2-Trichloroethane	< 0.0019		0.0019	0.00083	mg/Kg	☼	11/01/17 18:01	11/02/17 19:21	
Trichloroethene	<0.0019		0.0019	0.00065	mg/Kg		11/01/17 18:01	11/02/17 19:21	
Vinyl acetate	<0.0048		0.0048	0.0017	mg/Kg	≎	11/01/17 18:01	11/02/17 19:21	
Vinyl chloride	< 0.0019		0.0019	0.00085	mg/Kg	≎	11/01/17 18:01	11/02/17 19:21	
Xylenes, Total	<0.0038		0.0038	0.00062			11/01/17 18:01	11/02/17 19:21	
Surrogate	%Recovery 0	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	89		75 - 131				11/01/17 18:01	11/02/17 19:21	
Dibromofluoromethane	100		75 - 126				11/01/17 18:01	11/02/17 19:21	
1,2-Dichloroethane-d4 (Surr)	100		70 - 134				11/01/17 18:01	11/02/17 19:21	
Toluene-d8 (Surr)	93		75 - 124				11/01/17 18:01	11/02/17 19:21	

Method: 8270D - S	Method: 8270D - Semivolatile Organic Compounds (GC/MS)								
Analyte	Result	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Acenaphthene	<0.040	0.040	0.0073	mg/Kg	\	11/07/17 16:14	11/08/17 21:31	1	
Acenaphthylene	<0.040	0.040	0.0054	mg/Kg	₩	11/07/17 16:14	11/08/17 21:31	1	
Anthracene	<0.040	0.040	0.0068	mg/Kg	₩	11/07/17 16:14	11/08/17 21:31	1	
Benzo[a]anthracene	<0.040	0.040	0.0055	mg/Kg	₩	11/07/17 16:14	11/08/17 21:31	1	

TestAmerica Chicago

Page 83 of 231

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 11:00

Date Received: 11/01/17 09:05

2-Nitrophenol

Client Sample ID: 3160-32-1 (0-3.5')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-15

Matrix: Solid

Percent Solids: 79.4

Method: 8270D - Semivolatil Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Benzo[a]pyrene	0.016		0.040	0.0079	mg/Kg	— ğ	11/07/17 16:14	11/08/17 21:31	Бита
Benzo[b]fluoranthene	<0.040	•	0.040	0.0088	0 0	₩		11/08/17 21:31	
Benzo[g,h,i]perylene	<0.040		0.040		mg/Kg			11/08/17 21:31	
Benzo[k]fluoranthene	<0.040		0.040		mg/Kg	☼		11/08/17 21:31	
Bis(2-chloroethoxy)methane	<0.20		0.20		mg/Kg	☼		11/08/17 21:31	
Bis(2-chloroethyl)ether	<0.20		0.20		mg/Kg			11/08/17 21:31	
Bis(2-ethylhexyl) phthalate	<0.20		0.20			☆		11/08/17 21:31	
4-Bromophenyl phenyl ether	<0.20		0.20	0.054		☼		11/08/17 21:31	
Butyl benzyl phthalate	<0.20		0.20	0.077				11/08/17 21:31	
Carbazole	<0.20		0.20		mg/Kg	₩		11/08/17 21:31	
4-Chloroaniline	<0.82		0.82		mg/Kg	₩		11/08/17 21:31	
4-Chloro-3-methylphenol	<0.40		0.40		mg/Kg			11/08/17 21:31	
2-Chloronaphthalene	<0.20		0.40		mg/Kg	₽		11/08/17 21:31	
2-Chlorophenol	<0.20		0.20		mg/Kg	₽		11/08/17 21:31	
4-Chlorophenyl phenyl ether	<0.20		0.20		mg/Kg			11/08/17 21:31	
Chrysene	<0.040		0.040		mg/Kg	₩		11/08/17 21:31	
Dibenz(a,h)anthracene	<0.040		0.040	0.0079	mg/Kg	₩		11/08/17 21:31	
Dibenzofuran	<0.20		0.040					11/08/17 21:31	
1.2-Dichlorobenzene	<0.20		0.20	0.048	mg/Kg	≎		11/08/17 21:31	
,	<0.20		0.20		mg/Kg mg/Kg	≎		11/08/17 21:31	
1,3-Dichlorobenzene						 .			
1,4-Dichlorobenzene	<0.20		0.20 0.20		mg/Kg	₩		11/08/17 21:31	
3,3'-Dichlorobenzidine	<0.20				mg/Kg	₩		11/08/17 21:31	
2,4-Dichlorophenol	<0.40		0.40	0.097		.		11/08/17 21:31	
Diethyl phthalate	<0.20		0.20		mg/Kg	₩		11/08/17 21:31	
2,4-Dimethylphenol	<0.40		0.40		mg/Kg			11/08/17 21:31	
Dimethyl phthalate	<0.20		0.20		mg/Kg	X .		11/08/17 21:31	
Di-n-butyl phthalate	<0.20		0.20		mg/Kg	₩		11/08/17 21:31	
4,6-Dinitro-2-methylphenol	<0.82		0.82		mg/Kg	₩		11/08/17 21:31	
2,4-Dinitrophenol	<0.82		0.82		mg/Kg			11/08/17 21:31	
2,4-Dinitrotoluene	<0.20		0.20		mg/Kg	☆		11/08/17 21:31	
2,6-Dinitrotoluene	<0.20		0.20	0.080	0 0	☆		11/08/17 21:31	•
Di-n-octyl phthalate	<0.20		0.20		mg/Kg	<u>.</u> .		11/08/17 21:31	
Fluoranthene	<0.040		0.040	0.0076		φ.		11/08/17 21:31	•
Fluorene	<0.040		0.040	0.0057	0 0	φ.		11/08/17 21:31	•
Hexachlorobenzene	<0.082		0.082	0.0094		<u>.</u> .		11/08/17 21:31	
Hexachlorobutadiene	<0.20		0.20		mg/Kg			11/08/17 21:31	•
Hexachlorocyclopentadiene	<0.82		0.82		mg/Kg	:D		11/08/17 21:31	•
Hexachloroethane	<0.20		0.20		mg/Kg	p		11/08/17 21:31	
Indeno[1,2,3-cd]pyrene	<0.040		0.040		mg/Kg	: :		11/08/17 21:31	•
Isophorone	<0.20		0.20		mg/Kg	: *		11/08/17 21:31	
2-Methylnaphthalene	0.0097	J	0.082	0.0075		, .		11/08/17 21:31	
2-Methylphenol	<0.20		0.20		mg/Kg	*		11/08/17 21:31	
3 & 4 Methylphenol	<0.20		0.20		mg/Kg	\$		11/08/17 21:31	
Naphthalene	<0.040		0.040	0.0063				11/08/17 21:31	
2-Nitroaniline	<0.20		0.20		mg/Kg	₩		11/08/17 21:31	
3-Nitroaniline	<0.40		0.40		mg/Kg	₩		11/08/17 21:31	
4-Nitroaniline	<0.40		0.40	0.17	mg/Kg	☼		11/08/17 21:31	
Nitrobenzene	<0.040		0.040	0.010	mg/Kg	₽	11/07/17 16:14	11/08/17 21:31	
O Allton a language			0.46	0 000		y4.	44/07/47 40 11	44/00/47 04 01	

TestAmerica Chicago

11/13/2017

11/07/17 16:14 11/08/17 21:31

Page 84 of 231

0.40

0.096 mg/Kg

< 0.40

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 11:00

Date Received: 11/01/17 09:05

Client Sample ID: 3160-32-1 (0-3.5')

TestAmerica Job ID: 500-136575-1

Percent Solids: 79.4

Lab Sample ID: 500-136575-15 **Matrix: Solid**

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.82		0.82	0.39	mg/Kg	₽	11/07/17 16:14	11/08/17 21:31	1
N-Nitrosodi-n-propylamine	<0.082		0.082	0.050	mg/Kg	\$	11/07/17 16:14	11/08/17 21:31	1
N-Nitrosodiphenylamine	<0.20		0.20	0.048	mg/Kg	☼	11/07/17 16:14	11/08/17 21:31	1
2,2'-oxybis[1-chloropropane]	<0.20		0.20	0.047	mg/Kg	☼	11/07/17 16:14	11/08/17 21:31	1
Pentachlorophenol	<0.82		0.82	0.65	mg/Kg	₽	11/07/17 16:14	11/08/17 21:31	1
Phenanthrene	0.0097	J	0.040	0.0057	mg/Kg	☼	11/07/17 16:14	11/08/17 21:31	1
Phenol	<0.20		0.20	0.090	mg/Kg	☼	11/07/17 16:14	11/08/17 21:31	1
Pyrene	<0.040		0.040	0.0081	mg/Kg	₽	11/07/17 16:14	11/08/17 21:31	1
1,2,4-Trichlorobenzene	<0.20		0.20	0.044	mg/Kg	☼	11/07/17 16:14	11/08/17 21:31	1
2,4,5-Trichlorophenol	<0.40		0.40	0.093	mg/Kg	₽	11/07/17 16:14	11/08/17 21:31	1
2,4,6-Trichlorophenol	<0.40		0.40	0.14	mg/Kg	☼	11/07/17 16:14	11/08/17 21:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	68		44 - 121				11/07/17 16:14	11/08/17 21:31	1
2-Fluorophenol	82		46 - 133				11/07/17 16:14	11/08/17 21:31	1
Nitrobenzene-d5	63		41 - 120				11/07/17 16:14	11/08/17 21:31	1
Phenol-d5	84		46 - 125				11/07/17 16:14	11/08/17 21:31	1
Terphenyl-d14	78		35 - 160				11/07/17 16:14	11/08/17 21:31	1
2,4,6-Tribromophenol	65		25 - 139				11/07/17 16:14	11/08/17 21:31	1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	<0.020	0.020	0.0071	mg/Kg	<u> </u>	11/07/17 16:20	11/10/17 18:49	1
PCB-1221	<0.020	0.020	0.0089	mg/Kg	☼	11/07/17 16:20	11/10/17 18:49	1
PCB-1232	<0.020	0.020	0.0088	mg/Kg	☼	11/07/17 16:20	11/10/17 18:49	1
PCB-1242	<0.020	0.020	0.0066	mg/Kg	₩	11/07/17 16:20	11/10/17 18:49	1
PCB-1248	<0.020	0.020	0.0079	mg/Kg	☼	11/07/17 16:20	11/10/17 18:49	1
PCB-1254	<0.020	0.020	0.0043	mg/Kg	☼	11/07/17 16:20	11/10/17 18:49	1
PCB-1260	<0.020	0.020	0.0099	mg/Kg		11/07/17 16:20	11/10/17 18:49	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	83		49 - 129	11/07/17 16:20	11/10/17 18:49	1
DCB Decachlorobiphenyl	95		37 - 121	11/07/17 16:20	11/10/17 18:49	1

Method: 6010B - Metal Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<1.1		1.1	0.22	mg/Kg	₩	11/02/17 07:49	11/02/17 21:32	1
Arsenic	5.1		0.57	0.20	mg/Kg	₩	11/02/17 07:49	11/02/17 21:32	1
Barium	120		0.57	0.065	mg/Kg	₩	11/02/17 07:49	11/02/17 21:32	1
Beryllium	0.42		0.23	0.053	mg/Kg	₩	11/02/17 07:49	11/02/17 21:32	1
Cadmium	0.088	JB	0.11	0.021	mg/Kg	☆	11/02/17 07:49	11/02/17 21:32	1
Chromium	12		0.57	0.28	mg/Kg	≎	11/02/17 07:49	11/02/17 21:32	1
Cobalt	9.1		0.29	0.075	mg/Kg	₩	11/02/17 07:49	11/02/17 21:32	1
Copper	14		0.57	0.16	mg/Kg	☆	11/02/17 07:49	11/02/17 21:32	1
Iron	14000	В	11	5.9	mg/Kg	≎	11/02/17 07:49	11/02/17 21:32	1
Lead	21		0.29	0.13	mg/Kg		11/02/17 07:49	11/02/17 21:32	1
Manganese	660		0.57	0.083	mg/Kg	≎	11/02/17 07:49	11/02/17 21:32	1
Nickel	10		0.57	0.17	mg/Kg	≎	11/02/17 07:49	11/02/17 21:32	1
Selenium	1.1		0.57	0.34	mg/Kg	ф	11/02/17 07:49	11/02/17 21:32	1
Silver	<0.29		0.29	0.074	mg/Kg	≎	11/02/17 07:49	11/02/17 21:32	1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Received: 11/01/17 09:05

Mercury

Analyte

рН

General Chemistry

TestAmerica Job ID: 500-136575-1

Client Sample ID: 3160-32-1 (0-3.5') Lab Sample ID: 500-136575-15 Date Collected: 10/31/17 11:00

Matrix: Solid

Percent Solids: 79.4

Method: 6010B - Metals Analyte		Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
Thallium	<0.57		0.57		mg/Kg	— -	11/02/17 07:49	11/02/17 21:32	1
Vanadium	21		0.29		mg/Kg	· · · · · · · · · · · · · · · · · · ·		11/02/17 21:32	
Zinc	40		1.1		mg/Kg	≎	11/02/17 07:49	11/02/17 21:32	1
Mothodi 6040B - Motole	(ICD) TOLD								
Method: 6010B - Metals Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010			•	11/05/17 17:35	1
Barium	0.61		0.50	0.050	-			11/05/17 17:35	1
Beryllium	<0.0040		0.0040	0.0040	-		11/03/17 14:57	11/05/17 17:35	1
Cadmium	<0.0050		0.0050	0.0020			11/03/17 14:57	11/05/17 17:35	1
Chromium	<0.025		0.025	0.010	-			11/05/17 17:35	1
Cobalt	<0.025		0.025	0.010	•		11/03/17 14:57	11/05/17 17:35	1
Copper	<0.025		0.025	0.010	-		11/03/17 14:57	11/05/17 17:35	1
Iron	<0.40		0.40		mg/L		11/03/17 14:57	11/05/17 17:35	1
Lead	<0.0075		0.0075	0.0075	mg/L		11/03/17 14:57	11/05/17 17:35	1
Manganese	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:35	1
Nickel	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:35	1
Selenium	0.021	J	0.050	0.020	mg/L		11/03/17 14:57	11/05/17 17:35	1
Silver	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:35	1
Vanadium	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:35	1
Zinc	<0.50		0.50	0.020	mg/L		11/03/17 14:57	11/05/17 17:35	1
Method: 6020A - Metals	s (ICP/MS) - TCLP								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060		0.0060	0.0060	mg/L		11/03/17 14:57	11/06/17 17:17	1
Thallium	<0.0020		0.0020	0.0020	mg/L		11/03/17 14:57	11/06/17 17:17	1
Method: 7470A - TCLP	Mercury - TCLP								
Analyte	_	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/03/17 12:20	11/06/17 11:29	1
Method: 7471B - Mercu	ırv (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

0.018

RL

0.20

0.039

6.4

Result Qualifier

0.0061 mg/Kg

MDL Unit

0.20 SU

Analyzed

11/03/17 08:57

Dil Fac

Prepared

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-32-2 (0-3.5')

Date Collected: 10/31/17 11:10 Date Received: 11/01/17 09:05

Toluene-d8 (Surr)

Lab Sample ID: 500-136575-16

Matrix: Solid Percent Solids: 79.1

Method: 8260B - Volatile O Analyte	Result Q		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	0.025	0.020	0.0089	mg/Kg	₩	11/01/17 18:01	11/02/17 19:46	1
Benzene	<0.0020	0.0020	0.00052	mg/Kg	☼	11/01/17 18:01	11/02/17 19:46	1
Bromodichloromethane	<0.0020	0.0020	0.00042	mg/Kg	☼	11/01/17 18:01	11/02/17 19:46	1
Bromoform	<0.0020	0.0020	0.00060	mg/Kg		11/01/17 18:01	11/02/17 19:46	1
Bromomethane	< 0.0051	0.0051	0.0019	mg/Kg	☼	11/01/17 18:01	11/02/17 19:46	1
2-Butanone (MEK)	< 0.0051	0.0051	0.0023	mg/Kg	₩	11/01/17 18:01	11/02/17 19:46	1
Carbon disulfide	<0.0051	0.0051	0.0011	mg/Kg		11/01/17 18:01	11/02/17 19:46	1
Carbon tetrachloride	<0.0020	0.0020	0.00059	mg/Kg	☼	11/01/17 18:01	11/02/17 19:46	1
Chlorobenzene	<0.0020	0.0020	0.00076	mg/Kg	₩	11/01/17 18:01	11/02/17 19:46	1
Chloroethane	<0.0051	0.0051	0.0015	mg/Kg		11/01/17 18:01	11/02/17 19:46	1
Chloroform	<0.0020	0.0020	0.00071	mg/Kg	₩	11/01/17 18:01	11/02/17 19:46	1
Chloromethane	<0.0051	0.0051	0.0021	mg/Kg	₩	11/01/17 18:01	11/02/17 19:46	1
cis-1,2-Dichloroethene	<0.0020	0.0020	0.00057			11/01/17 18:01	11/02/17 19:46	1
cis-1,3-Dichloropropene	<0.0020	0.0020	0.00062	mg/Kg	₩	11/01/17 18:01	11/02/17 19:46	1
Dibromochloromethane	<0.0020	0.0020	0.00067	mg/Kg	₩	11/01/17 18:01	11/02/17 19:46	1
1,1-Dichloroethane	<0.0020	0.0020	0.00070	mg/Kg		11/01/17 18:01	11/02/17 19:46	1
1,2-Dichloroethane	< 0.0051	0.0051	0.0016	mg/Kg	₩	11/01/17 18:01	11/02/17 19:46	1
1,1-Dichloroethene	<0.0020	0.0020	0.00070	mg/Kg	₩	11/01/17 18:01	11/02/17 19:46	1
1,2-Dichloropropane	<0.0020	0.0020	0.00053	mg/Kg	· · · · · · · ☆ ·	11/01/17 18:01	11/02/17 19:46	1
1,3-Dichloropropene, Total	<0.0020	0.0020	0.00072		₩	11/01/17 18:01	11/02/17 19:46	1
Ethylbenzene	<0.0020	0.0020	0.00098	mg/Kg	☼	11/01/17 18:01	11/02/17 19:46	1
2-Hexanone	<0.0051	0.0051	0.0016		· · · · · · · · · · · · · · · · · · ·		11/02/17 19:46	1
Methylene Chloride	<0.0051	0.0051	0.0020		☼	11/01/17 18:01	11/02/17 19:46	1
4-Methyl-2-pentanone (MIBK)	<0.0051	0.0051	0.0015		☼	11/01/17 18:01	11/02/17 19:46	1
Methyl tert-butyl ether	<0.0020	0.0020	0.00060		ф	11/01/17 18:01	11/02/17 19:46	1
Styrene	<0.0020	0.0020	0.00062	0 0	₩	11/01/17 18:01	11/02/17 19:46	1
1,1,2,2-Tetrachloroethane	<0.0020	0.0020	0.00065		☼	11/01/17 18:01	11/02/17 19:46	1
Tetrachloroethene	<0.0020	0.0020	0.00070	0 0		11/01/17 18:01	11/02/17 19:46	1
Toluene	<0.0020	0.0020	0.00052		₩		11/02/17 19:46	1
trans-1,2-Dichloroethene	<0.0020	0.0020	0.00091	0 0	₩	11/01/17 18:01	11/02/17 19:46	1
trans-1,3-Dichloropropene	<0.0020	0.0020	0.00072				11/02/17 19:46	1
1,1,1-Trichloroethane	<0.0020	0.0020	0.00069	0 0	₩		11/02/17 19:46	1
1,1,2-Trichloroethane	<0.0020	0.0020	0.00088	0 0	₩		11/02/17 19:46	1
Trichloroethene	<0.0020	0.0020	0.00069		· · · · · · · · · · · · · · · · · · ·		11/02/17 19:46	· · · · · · · 1
Vinyl acetate	<0.0051	0.0051	0.0018		₩		11/02/17 19:46	1
Vinyl chloride	<0.0020	0.0020	0.00091	0 0	₩		11/02/17 19:46	1
Xylenes, Total	<0.0041	0.0041	0.00066		φ.		11/02/17 19:46	1
Surrogate	%Recovery Q	ualifier Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	89	75 - 131				11/01/17 18:01	11/02/17 19:46	1
Dibromofluoromethane	101	75 - 126				11/01/17 18:01	11/02/17 19:46	1
1,2-Dichloroethane-d4 (Surr)	100	70 - 134				11/01/17 18:01	11/02/17 19:46	1

Method: 8270D - Semivolatile	Organic Compounds (GC/MS)						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	<0.040	0.040	0.0073	mg/Kg	₩	11/07/17 07:18	11/07/17 21:15	1
Acenaphthylene	<0.040	0.040	0.0054	mg/Kg	≎	11/07/17 07:18	11/07/17 21:15	1
Anthracene	0.0086 J	0.040	0.0068	mg/Kg	≎	11/07/17 07:18	11/07/17 21:15	1
Benzo[a]anthracene	0.023 JB	0.040	0.0055	mg/Kg	₽	11/07/17 07:18	11/07/17 21:15	1

75 - 124

TestAmerica Chicago

11/01/17 18:01 11/02/17 19:46

Page 87 of 231

2

3

5

7

9

11

13

14

11/13/2017

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 11:10

Date Received: 11/01/17 09:05

Client Sample ID: 3160-32-2 (0-3.5')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-16

Matrix: Solid

Percent Solids: 79.1

Method: 8270D - Semivolatile Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Benzo[a]pyrene	0.017		0.040	0.0079		— -	11/07/17 07:18	11/07/17 21:15	
Benzo[b]fluoranthene	0.038		0.040	0.0088		₩		11/07/17 21:15	1
Benzo[g,h,i]perylene	0.019		0.040		mg/Kg	 \$		11/07/17 21:15	1
Benzo[k]fluoranthene	0.016		0.040		mg/Kg	₩		11/07/17 21:15	1
Bis(2-chloroethoxy)methane	<0.20	•	0.20		mg/Kg	₩		11/07/17 21:15	1
Bis(2-chloroethyl)ether	<0.20		0.20		mg/Kg			11/07/17 21:15	
Bis(2-ethylhexyl) phthalate	<0.20		0.20		mg/Kg	₩		11/07/17 21:15	
4-Bromophenyl phenyl ether	<0.20		0.20		mg/Kg	₩		11/07/17 21:15	
Butyl benzyl phthalate	<0.20		0.20		mg/Kg			11/07/17 21:15	
Carbazole	<0.20		0.20		mg/Kg	₩		11/07/17 21:15	
4-Chloroaniline	<0.82		0.82		mg/Kg			11/07/17 21:15	
4-Chloro-3-methylphenol	<0.40		0.40		mg/Kg			11/07/17 21:15	,
2-Chloronaphthalene	<0.20		0.40		mg/Kg	₩		11/07/17 21:15	-
2-Chlorophenol	<0.20		0.20		mg/Kg			11/07/17 21:15	-
4-Chlorophenyl phenyl ether	<0.20		0.20		mg/Kg	.		11/07/17 21:15	
	0.20		0.20		mg/Kg	₩		11/07/17 21:15	
Chrysene Dibenz(a,h)anthracene	<0.040	J	0.040	0.011	0 0	~ -?/-		11/07/17 21:15	
Dibenzofuran								11/07/17 21:15	
	<0.20		0.20 0.20		mg/Kg mg/Kg	**			1
1,2-Dichlorobenzene	<0.20 <0.20		0.20		0 0	*		11/07/17 21:15 11/07/17 21:15	1
1,3-Dichlorobenzene					mg/Kg	_.			
1,4-Dichlorobenzene	<0.20	E4 E0	0.20		mg/Kg	*		11/07/17 21:15	1
3,3'-Dichlorobenzidine		F1 F2	0.20		mg/Kg	*		11/07/17 21:15	1
2,4-Dichlorophenol	<0.40		0.40		mg/Kg			11/07/17 21:15	1
Diethyl phthalate	<0.20		0.20		mg/Kg			11/07/17 21:15	•
2,4-Dimethylphenol	<0.40		0.40		mg/Kg	ψ.		11/07/17 21:15	•
Dimethyl phthalate	<0.20		0.20		mg/Kg	<u>.</u>		11/07/17 21:15	
Di-n-butyl phthalate	<0.20		0.20		mg/Kg	*		11/07/17 21:15	ŕ
4,6-Dinitro-2-methylphenol	<0.82		0.82		mg/Kg	*		11/07/17 21:15	1
2,4-Dinitrophenol	<0.82		0.82		mg/Kg			11/07/17 21:15	1
2,4-Dinitrotoluene	<0.20		0.20		mg/Kg	₽		11/07/17 21:15	1
2,6-Dinitrotoluene	<0.20		0.20		mg/Kg	₽		11/07/17 21:15	1
Di-n-octyl phthalate	<0.20		0.20		mg/Kg	₩	11/07/17 07:18	11/07/17 21:15	1
Fluoranthene	0.028	J	0.040	0.0075		₩	11/07/17 07:18	11/07/17 21:15	1
Fluorene	<0.040		0.040	0.0057		₩		11/07/17 21:15	1
Hexachlorobenzene	<0.082		0.082	0.0094	mg/Kg	₩	11/07/17 07:18	11/07/17 21:15	1
Hexachlorobutadiene	<0.20		0.20	0.064	mg/Kg	₩	11/07/17 07:18	11/07/17 21:15	
Hexachlorocyclopentadiene	<0.82		0.82		mg/Kg	₩	11/07/17 07:18	11/07/17 21:15	•
Hexachloroethane	<0.20		0.20	0.062	mg/Kg	₩	11/07/17 07:18	11/07/17 21:15	•
Indeno[1,2,3-cd]pyrene	<0.040		0.040	0.011	mg/Kg	₩	11/07/17 07:18	11/07/17 21:15	
Isophorone	<0.20		0.20	0.046	mg/Kg	₩	11/07/17 07:18	11/07/17 21:15	•
2-Methylnaphthalene	0.051	J F1	0.082	0.0075	mg/Kg	₩	11/07/17 07:18	11/07/17 21:15	
2-Methylphenol	<0.20		0.20	0.065	mg/Kg	₽	11/07/17 07:18	11/07/17 21:15	
3 & 4 Methylphenol	<0.20		0.20	0.068	mg/Kg	₩	11/07/17 07:18	11/07/17 21:15	
Naphthalene	0.027	J	0.040	0.0063	mg/Kg	₩	11/07/17 07:18	11/07/17 21:15	•
2-Nitroaniline	<0.20		0.20	0.055	mg/Kg		11/07/17 07:18	11/07/17 21:15	· · · · · · · · ·
3-Nitroaniline	<0.40		0.40		mg/Kg	₩	11/07/17 07:18	11/07/17 21:15	
4-Nitroaniline	<0.40		0.40		mg/Kg	₽	11/07/17 07:18	11/07/17 21:15	1
Nitrobenzene	<0.040		0.040		mg/Kg	₩	11/07/17 07:18	11/07/17 21:15	1
2-Nitrophenol	<0.40		0.40		mg/Kg	₩		11/07/17 21:15	1

TestAmerica Chicago

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 11:10

Date Received: 11/01/17 09:05

Client Sample ID: 3160-32-2 (0-3.5')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-16

Matrix: Solid Percent Solids: 79.1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.82	0.82	0.39	mg/Kg	<u>₩</u>	11/07/17 07:18	11/07/17 21:15	1
N-Nitrosodi-n-propylamine	<0.082	0.082	0.050	mg/Kg	₩.	11/07/17 07:18	11/07/17 21:15	1
N-Nitrosodiphenylamine	<0.20	0.20	0.048	mg/Kg	₩	11/07/17 07:18	11/07/17 21:15	1
2,2'-oxybis[1-chloropropane]	<0.20	0.20	0.047	mg/Kg	₩	11/07/17 07:18	11/07/17 21:15	1
Pentachlorophenol	<0.82	0.82	0.65	mg/Kg	₩	11/07/17 07:18	11/07/17 21:15	1
Phenanthrene	0.057	0.040	0.0057	mg/Kg	₩	11/07/17 07:18	11/07/17 21:15	1
Phenol	<0.20	0.20	0.090	mg/Kg	₩	11/07/17 07:18	11/07/17 21:15	1
Pyrene	0.034 J	0.040	0.0081	mg/Kg	₩.	11/07/17 07:18	11/07/17 21:15	1
1,2,4-Trichlorobenzene	<0.20	0.20	0.044	mg/Kg	₩	11/07/17 07:18	11/07/17 21:15	1
2,4,5-Trichlorophenol	<0.40	0.40	0.093	mg/Kg	₩	11/07/17 07:18	11/07/17 21:15	1
2,4,6-Trichlorophenol	<0.40	0.40	0.14	mg/Kg	₩.	11/07/17 07:18	11/07/17 21:15	1

Surrogate	%Recovery Q	Qualifier Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	86	44 - 121	11/07/17 07:18	11/07/17 21:15	1
2-Fluorophenol	100	46 - 133	11/07/17 07:18	11/07/17 21:15	1
Nitrobenzene-d5	94	41 - 120	11/07/17 07:18	11/07/17 21:15	1
Phenol-d5	95	46 - 125	11/07/17 07:18	11/07/17 21:15	1
Terphenyl-d14	93	35 - 160	11/07/17 07:18	11/07/17 21:15	1
2,4,6-Tribromophenol	65	25 - 139	11/07/17 07:18	11/07/17 21:15	1

Method: 8082A - I	Polychlorinated Biphenyl	s (PCBs) by Gas	Chromatography
-------------------	--------------------------	-----------------	----------------

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	<0.020	0.020	0.0072	mg/Kg	<u> </u>	11/07/17 16:20	11/10/17 19:04	1
PCB-1221	<0.020	0.020	0.0090	mg/Kg	₽	11/07/17 16:20	11/10/17 19:04	1
PCB-1232	<0.020	0.020	0.0089	mg/Kg	☼	11/07/17 16:20	11/10/17 19:04	1
PCB-1242	<0.020	0.020	0.0067	mg/Kg	₩	11/07/17 16:20	11/10/17 19:04	1
PCB-1248	<0.020	0.020	0.0080	mg/Kg	☼	11/07/17 16:20	11/10/17 19:04	1
PCB-1254	<0.020	0.020	0.0044	mg/Kg	☼	11/07/17 16:20	11/10/17 19:04	1
PCB-1260	<0.020	0.020	0.010	mg/Kg		11/07/17 16:20	11/10/17 19:04	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	80		49 - 129	11/07/17 16:20	11/10/17 19:04	1
DCB Decachlorobiphenyl	100		37 - 121	11/07/17 16:20	11/10/17 19:04	1

Method:	: 6010B - I	Metals ((ICP)
---------	-------------	----------	-------

Method: 6010B - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<1.2		1.2	0.24	mg/Kg	<u></u>	11/02/17 07:49	11/02/17 21:36	1
Arsenic	14		0.61	0.21	mg/Kg	☼	11/02/17 07:49	11/02/17 21:36	1
Barium	280		0.61	0.069	mg/Kg	☼	11/02/17 07:49	11/02/17 21:36	1
Beryllium	1.0		0.24	0.057	mg/Kg	₽	11/02/17 07:49	11/02/17 21:36	1
Cadmium	0.14	В	0.12	0.022	mg/Kg	☼	11/02/17 07:49	11/02/17 21:36	1
Chromium	30		0.61	0.30	mg/Kg	☼	11/02/17 07:49	11/02/17 21:36	1
Cobalt	15		0.30	0.080	mg/Kg	₽	11/02/17 07:49	11/02/17 21:36	1
Copper	20		0.61	0.17	mg/Kg	₩	11/02/17 07:49	11/02/17 21:36	1
Iron	35000	В	12	6.3	mg/Kg	☼	11/02/17 07:49	11/02/17 21:36	1
Lead	31		0.30	0.14	mg/Kg	₽	11/02/17 07:49	11/02/17 21:36	1
Manganese	1600		3.0	0.44	mg/Kg	☼	11/02/17 07:49	11/03/17 13:56	5
Nickel	17		0.61	0.18	mg/Kg	☼	11/02/17 07:49	11/02/17 21:36	1
Selenium	1.7		0.61	0.36	mg/Kg	₽	11/02/17 07:49	11/02/17 21:36	1
Silver	< 0.30		0.30	0.078	mg/Kg	≎	11/02/17 07:49	11/02/17 21:36	1

Page 89 of 231

TestAmerica Chicago

11/13/2017

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 11:10

Date Received: 11/01/17 09:05

Analyte

рН

Client Sample ID: 3160-32-2 (0-3.5')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-16

Matrix: Solid

Percent Solids: 79.1

Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Thallium	<0.61		0.61	0.30	mg/Kg	<u> </u>	11/02/17 07:49	11/02/17 21:36	1
Vanadium	35		0.30	0.072	mg/Kg		11/02/17 07:49	11/02/17 21:36	1
Zinc	54		1.2	0.53	mg/Kg	₩	11/02/17 07:49	11/02/17 21:36	1
Method: 6010B - Metals (I	CP) - TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/03/17 14:57	11/05/17 17:39	1
Barium	0.78		0.50	0.050	mg/L		11/03/17 14:57	11/05/17 17:39	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/03/17 14:57	11/05/17 17:39	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/03/17 14:57	11/05/17 17:39	1
Chromium	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:39	1
Cobalt	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:39	1
Copper	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:39	1
Iron	<0.40		0.40	0.20	mg/L		11/03/17 14:57	11/05/17 17:39	1
Lead	< 0.0075		0.0075	0.0075	mg/L		11/03/17 14:57	11/05/17 17:39	1
Manganese	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:39	1
Nickel	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:39	1
Selenium	<0.050		0.050	0.020	mg/L		11/03/17 14:57	11/05/17 17:39	1
Silver	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:39	1
Vanadium	<0.025		0.025	0.010	-		11/03/17 14:57	11/05/17 17:39	1
Zinc	<0.50		0.50	0.020	mg/L		11/03/17 14:57	11/05/17 17:39	1
Method: 6020A - Metals (I	CP/MS) - TCLP								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060		0.0060	0.0060	mg/L		11/03/17 14:57	11/06/17 17:21	1
Thallium	<0.0020		0.0020	0.0020	mg/L		11/03/17 14:57	11/06/17 17:21	1
Method: 7470A - TCLP Me	rcury - TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/03/17 12:20	11/06/17 11:30	1
Method: 7471B - Mercury									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.050		0.020	0.0065	mg/Kg	— ಫ	11/02/17 16:10	11/03/17 08:54	1
General Chemistry									
A a L. A	D 14	O	D.	MADI	l lm:4		Duamarasi	A malumad	Dil Car

11/13/2017

Analyzed

11/03/17 08:57

Dil Fac

RL

0.20

MDL Unit

0.20 SU

Prepared

Result Qualifier

6.6

TestAmerica Job ID: 500-136575-1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-32-3 (0-3.5')

Date Collected: 10/31/17 11:20 Date Received: 11/01/17 09:05 Lab Sample ID: 500-136575-17

Matrix: Solid
Percent Solids: 81.3

Method: 8260B - Volatile O Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	0.093		0.018	0.0078	mg/Kg	<u> </u>	11/01/17 18:01	11/02/17 20:11	1
Benzene	<0.0018		0.0018	0.00046	mg/Kg	≎	11/01/17 18:01	11/02/17 20:11	1
Bromodichloromethane	<0.0018		0.0018	0.00036	mg/Kg	₩	11/01/17 18:01	11/02/17 20:11	1
Bromoform	<0.0018		0.0018	0.00052	mg/Kg	₩	11/01/17 18:01	11/02/17 20:11	1
Bromomethane	<0.0045		0.0045	0.0017	mg/Kg	☼	11/01/17 18:01	11/02/17 20:11	1
2-Butanone (MEK)	< 0.0045		0.0045	0.0020	mg/Kg	☼	11/01/17 18:01	11/02/17 20:11	1
Carbon disulfide	<0.0045		0.0045	0.00093	mg/Kg		11/01/17 18:01	11/02/17 20:11	1
Carbon tetrachloride	<0.0018		0.0018	0.00052	mg/Kg	₩	11/01/17 18:01	11/02/17 20:11	1
Chlorobenzene	<0.0018		0.0018	0.00066	mg/Kg	₩	11/01/17 18:01	11/02/17 20:11	1
Chloroethane	<0.0045		0.0045	0.0013	mg/Kg		11/01/17 18:01	11/02/17 20:11	1
Chloroform	<0.0018		0.0018	0.00062	mg/Kg	≎	11/01/17 18:01	11/02/17 20:11	1
Chloromethane	< 0.0045		0.0045	0.0018	mg/Kg	₩	11/01/17 18:01	11/02/17 20:11	1
cis-1,2-Dichloroethene	<0.0018		0.0018	0.00050	mg/Kg		11/01/17 18:01	11/02/17 20:11	1
cis-1,3-Dichloropropene	<0.0018		0.0018	0.00054	mg/Kg	≎	11/01/17 18:01	11/02/17 20:11	1
Dibromochloromethane	<0.0018		0.0018	0.00058	mg/Kg	≎	11/01/17 18:01	11/02/17 20:11	1
1,1-Dichloroethane	<0.0018		0.0018	0.00061	mg/Kg		11/01/17 18:01	11/02/17 20:11	1
1,2-Dichloroethane	<0.0045		0.0045	0.0014		₩	11/01/17 18:01	11/02/17 20:11	1
1,1-Dichloroethene	<0.0018		0.0018	0.00061		₩	11/01/17 18:01	11/02/17 20:11	1
1,2-Dichloropropane	<0.0018		0.0018	0.00046	mg/Kg	 ф	11/01/17 18:01	11/02/17 20:11	1
1,3-Dichloropropene, Total	<0.0018		0.0018	0.00063	mg/Kg	₩	11/01/17 18:01	11/02/17 20:11	1
Ethylbenzene	<0.0018		0.0018	0.00086	mg/Kg	≎	11/01/17 18:01	11/02/17 20:11	1
2-Hexanone	<0.0045		0.0045	0.0014	mg/Kg	ф.	11/01/17 18:01	11/02/17 20:11	1
Methylene Chloride	<0.0045		0.0045	0.0018	mg/Kg	≎	11/01/17 18:01	11/02/17 20:11	1
4-Methyl-2-pentanone (MIBK)	<0.0045		0.0045	0.0013	mg/Kg	≎	11/01/17 18:01	11/02/17 20:11	1
Methyl tert-butyl ether	<0.0018		0.0018	0.00052	mg/Kg		11/01/17 18:01	11/02/17 20:11	1
Styrene	<0.0018		0.0018	0.00054		₩	11/01/17 18:01	11/02/17 20:11	1
1,1,2,2-Tetrachloroethane	<0.0018		0.0018	0.00057	mg/Kg	≎	11/01/17 18:01	11/02/17 20:11	1
Tetrachloroethene	<0.0018		0.0018	0.00061			11/01/17 18:01	11/02/17 20:11	1
Toluene	<0.0018		0.0018	0.00045		₩	11/01/17 18:01	11/02/17 20:11	1
trans-1,2-Dichloroethene	<0.0018		0.0018	0.00079	mg/Kg	≎	11/01/17 18:01	11/02/17 20:11	1
trans-1,3-Dichloropropene	<0.0018		0.0018	0.00063	mg/Kg		11/01/17 18:01	11/02/17 20:11	1
1,1,1-Trichloroethane	<0.0018		0.0018	0.00060	mg/Kg	≎	11/01/17 18:01	11/02/17 20:11	1
1,1,2-Trichloroethane	<0.0018		0.0018	0.00077	mg/Kg	₩	11/01/17 18:01	11/02/17 20:11	1
Trichloroethene	<0.0018		0.0018	0.00060	mg/Kg		11/01/17 18:01	11/02/17 20:11	1
Vinyl acetate	<0.0045		0.0045	0.0016	mg/Kg	₩	11/01/17 18:01	11/02/17 20:11	1
Vinyl chloride	<0.0018		0.0018	0.00079	mg/Kg	₩	11/01/17 18:01	11/02/17 20:11	1
Xylenes, Total	<0.0036		0.0036	0.00057		\$	11/01/17 18:01	11/02/17 20:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	90		75 - 131				11/01/17 18:01	11/02/17 20:11	1
Dibromofluoromethane	100		75 - 126				11/01/17 18:01	11/02/17 20:11	1
1,2-Dichloroethane-d4 (Surr)	101		70 - 134				11/01/17 18:01	11/02/17 20:11	1
Toluene-d8 (Surr)	93		75 - 124				11/01/17 18:01	11/02/17 20:11	1

Method: 8270D - Semivolatile Organic Compounds (GC/MS)									
	Analyte	Result Qualifier	RL	MDL U	Jnit C	Prepared	Analyzed	Dil Fac	
	Acenaphthene	<0.039	0.039	0.0070 m	ng/Kg	11/07/17 07:18	11/07/17 21:42	1	
	Acenaphthylene	<0.039	0.039	0.0051 mg	ng/Kg [♯]	11/07/17 07:18	11/07/17 21:42	1	
	Anthracene	<0.039	0.039	0.0065 mg	ng/Kg [♯]	11/07/17 07:18	11/07/17 21:42	1	
	Benzo[a]anthracene	0.010 JB	0.039	0.0052 m	ng/Kg ≒	11/07/17 07:18	11/07/17 21:42	1	

TestAmerica Chicago

11/13/2017

Page 91 of 231

9

3

5

0

10

12

13

Н

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 11:20

Date Received: 11/01/17 09:05

Client Sample ID: 3160-32-3 (0-3.5')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-17

Matrix: Solid

Percent Solids: 81.3

Analyte		Qualifier	RL -	MDL		— D	Prepared	Analyzed	Dil Fac
Benzo[a]pyrene	0.0097		0.039	0.0075			11/07/17 07:18		
Benzo[b]fluoranthene	0.017	. J	0.039	0.0084				11/07/17 21:42	
Benzo[g,h,i]perylene	<0.039		0.039		mg/Kg	☆		11/07/17 21:42	
Benzo[k]fluoranthene	<0.039		0.039	0.011	0 0	☆		11/07/17 21:42	
Bis(2-chloroethoxy)methane	<0.20		0.20		mg/Kg			11/07/17 21:42	
Bis(2-chloroethyl)ether	<0.20		0.20		mg/Kg	ψ.		11/07/17 21:42	•
Bis(2-ethylhexyl) phthalate	<0.20		0.20	0.071	mg/Kg	₩.		11/07/17 21:42	•
4-Bromophenyl phenyl ether	<0.20		0.20		mg/Kg	<u>.</u> .		11/07/17 21:42	
Butyl benzyl phthalate	<0.20		0.20		mg/Kg	*		11/07/17 21:42	•
Carbazole	<0.20		0.20		0 0	*		11/07/17 21:42	•
4-Chloroaniline	<0.78		0.78		mg/Kg			11/07/17 21:42	
4-Chloro-3-methylphenol	<0.39		0.39		mg/Kg	₩	11/07/17 07:18	11/07/17 21:42	•
2-Chloronaphthalene	<0.20		0.20	0.043	mg/Kg	₩	11/07/17 07:18	11/07/17 21:42	•
2-Chlorophenol	<0.20		0.20		mg/Kg	₩	11/07/17 07:18	11/07/17 21:42	•
4-Chlorophenyl phenyl ether	<0.20		0.20	0.045	mg/Kg	₩	11/07/17 07:18	11/07/17 21:42	
Chrysene	0.011	J	0.039	0.011	mg/Kg	₩	11/07/17 07:18	11/07/17 21:42	•
Dibenz(a,h)anthracene	<0.039		0.039	0.0075	mg/Kg	☼	11/07/17 07:18	11/07/17 21:42	•
Dibenzofuran	<0.20		0.20	0.045	mg/Kg	₽	11/07/17 07:18	11/07/17 21:42	•
1,2-Dichlorobenzene	<0.20		0.20	0.046	mg/Kg	₩	11/07/17 07:18	11/07/17 21:42	•
1,3-Dichlorobenzene	<0.20		0.20	0.044	mg/Kg	₩	11/07/17 07:18	11/07/17 21:42	•
1,4-Dichlorobenzene	<0.20		0.20	0.050	mg/Kg		11/07/17 07:18	11/07/17 21:42	
3,3'-Dichlorobenzidine	<0.20		0.20	0.054	mg/Kg	₩	11/07/17 07:18	11/07/17 21:42	
2,4-Dichlorophenol	<0.39		0.39		mg/Kg	₩	11/07/17 07:18	11/07/17 21:42	
Diethyl phthalate	<0.20		0.20		mg/Kg	· · · · · · · · · · · · · · · · · · ·	11/07/17 07:18	11/07/17 21:42	,
2,4-Dimethylphenol	<0.39		0.39		mg/Kg	₩	11/07/17 07:18	11/07/17 21:42	
Dimethyl phthalate	<0.20		0.20		mg/Kg	≎	11/07/17 07:18	11/07/17 21:42	
Di-n-butyl phthalate	<0.20		0.20		mg/Kg			11/07/17 21:42	· · · · · .
4,6-Dinitro-2-methylphenol	<0.78		0.78		mg/Kg	₽		11/07/17 21:42	
2,4-Dinitrophenol	<0.78		0.78		mg/Kg	₽		11/07/17 21:42	
2,4-Dinitrotoluene	<0.20		0.20		mg/Kg			11/07/17 21:42	
2,6-Dinitrotoluene	<0.20		0.20		mg/Kg	₩		11/07/17 21:42	
Di-n-octyl phthalate	<0.20		0.20		mg/Kg	₩		11/07/17 21:42	
Fluoranthene	0.014		0.039	0.0072				11/07/17 21:42	
Fluorene	<0.039	•	0.039	0.0072		₩		11/07/17 21:42	
Hexachlorobenzene	<0.078		0.078	0.0090		₩		11/07/17 21:42	
Hexachlorobutadiene	<0.20		0.20		mg/Kg		11/07/17 07:18		
Hexachlorocyclopentadiene	<0.78		0.20		mg/Kg		11/07/17 07:18		
Hexachloroethane	<0.20		0.70				11/07/17 07:18		
					mg/Kg	· · · · · · · · · · · · · · · · · · ·	11/07/17 07:18		
Indeno[1,2,3-cd]pyrene	<0.039		0.039		mg/Kg	☆			•
Isophorone	<0.20		0.20		mg/Kg		11/07/17 07:18		,
2-Methylnaphthalene	0.015	J 	0.078	0.0071			11/07/17 07:18		
2-Methylphenol	<0.20		0.20		mg/Kg	₽ **	11/07/17 07:18		
3 & 4 Methylphenol	<0.20		0.20		mg/Kg	Ţ.	11/07/17 07:18		
Naphthalene	0.0069	J	0.039	0.0060			11/07/17 07:18		
2-Nitroaniline	<0.20		0.20		mg/Kg	ψ.		11/07/17 21:42	
3-Nitroaniline	<0.39		0.39		mg/Kg	ά. Έ	11/07/17 07:18		
4-Nitroaniline	<0.39		0.39		mg/Kg		11/07/17 07:18		
Nitrobenzene	<0.039		0.039	0.0097		₩		11/07/17 21:42	•
2-Nitrophenol	<0.39		0.39	0.092	mg/Kg	☼	11/07/17 07:18	11/07/17 21:42	

TestAmerica Chicago

Page 92 of 231

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 11:20

Date Received: 11/01/17 09:05

PCB-1254

PCB-1260

Client Sample ID: 3160-32-3 (0-3.5')

TestAmerica Job ID: 500-136575-1

5-17

Lab Sample ID: 500-136575-17

* 11/07/17 16:20 11/10/17 19:19 * 11/07/17 16:20 11/10/17 19:19

Matrix: Solid Percent Solids: 81.3

3	

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

< 0.020

< 0.020

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.78	0.78	0.37	mg/Kg	<u>₩</u>	11/07/17 07:18	11/07/17 21:42	1
N-Nitrosodi-n-propylamine	<0.078	0.078	0.047	mg/Kg		11/07/17 07:18	11/07/17 21:42	1
N-Nitrosodiphenylamine	<0.20	0.20	0.046	mg/Kg	☼	11/07/17 07:18	11/07/17 21:42	1
2,2'-oxybis[1-chloropropane]	<0.20	0.20	0.045	mg/Kg	☼	11/07/17 07:18	11/07/17 21:42	1
Pentachlorophenol	<0.78	0.78	0.62	mg/Kg	₽	11/07/17 07:18	11/07/17 21:42	1
Phenanthrene	0.022 J	0.039	0.0054	mg/Kg	☼	11/07/17 07:18	11/07/17 21:42	1
Phenol	<0.20	0.20	0.086	mg/Kg	₩	11/07/17 07:18	11/07/17 21:42	1
Pyrene	0.019 J	0.039	0.0077	mg/Kg	☼	11/07/17 07:18	11/07/17 21:42	1
1,2,4-Trichlorobenzene	<0.20	0.20	0.042	mg/Kg	☼	11/07/17 07:18	11/07/17 21:42	1
2,4,5-Trichlorophenol	<0.39	0.39	0.089	mg/Kg	☼	11/07/17 07:18	11/07/17 21:42	1
2,4,6-Trichlorophenol	<0.39	0.39	0.13	mg/Kg	*	11/07/17 07:18	11/07/17 21:42	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	89		44 - 121	11/07/17 07:18	11/07/17 21:42	1
2-Fluorophenol	95		46 - 133	11/07/17 07:18	11/07/17 21:42	1
Nitrobenzene-d5	96		41 - 120	11/07/17 07:18	11/07/17 21:42	1
Phenol-d5	96		46 - 125	11/07/17 07:18	11/07/17 21:42	1
Terphenyl-d14	93		35 - 160	11/07/17 07:18	11/07/17 21:42	1
2,4,6-Tribromophenol	66		25 - 139	11/07/17 07:18	11/07/17 21:42	1

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography									
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
PCB-1016	<0.020	0.020	0.0072	mg/Kg	₩	11/07/17 16:20	11/10/17 19:19	1	
PCB-1221	<0.020	0.020	0.0089	mg/Kg	₩	11/07/17 16:20	11/10/17 19:19	1	
PCB-1232	<0.020	0.020	0.0088	mg/Kg	₩	11/07/17 16:20	11/10/17 19:19	1	
PCB-1242	<0.020	0.020	0.0067	mg/Kg	₩	11/07/17 16:20	11/10/17 19:19	1	
PCB-1248	<0.020	0.020	0.0080	mg/Kg	₩	11/07/17 16:20	11/10/17 19:19	1	

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	87		49 - 129	11/07/17 16:20	11/10/17 19:19	1
DCB Decachlorobiphenyl	101		37 - 121	11/07/17 16:20	11/10/17 19:19	1

0.020

0.020

0.0044 mg/Kg

0.0099 mg/Kg

Method: 6010B - Metal Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<1.1		1.1	0.21	mg/Kg	<u> </u>	11/02/17 07:49	11/02/17 21:40	1
Arsenic	9.9		0.55	0.19	mg/Kg	₩	11/02/17 07:49	11/02/17 21:40	1
Barium	1100		0.55	0.063	mg/Kg	₩	11/02/17 07:49	11/02/17 21:40	1
Beryllium	0.74		0.22	0.052	mg/Kg	₩	11/02/17 07:49	11/02/17 21:40	1
Cadmium	0.48	В	0.11	0.020	mg/Kg	☆	11/02/17 07:49	11/02/17 21:40	1
Chromium	17		0.55	0.27	mg/Kg	≎	11/02/17 07:49	11/02/17 21:40	1
Cobalt	15		0.28	0.072	mg/Kg	₩	11/02/17 07:49	11/02/17 21:40	1
Copper	15		0.55	0.15	mg/Kg	☆	11/02/17 07:49	11/02/17 21:40	1
Iron	25000	В	11	5.7	mg/Kg	☼	11/02/17 07:49	11/02/17 21:40	1
Lead	44		0.28	0.13	mg/Kg		11/02/17 07:49	11/02/17 21:40	1
Manganese	480		0.55	0.080	mg/Kg	☼	11/02/17 07:49	11/02/17 21:40	1
Nickel	16		0.55	0.16	mg/Kg	☼	11/02/17 07:49	11/02/17 21:40	1
Selenium	0.83		0.55	0.32	mg/Kg		11/02/17 07:49	11/02/17 21:40	1
Silver	<0.28		0.28	0.071	mg/Kg	☼	11/02/17 07:49	11/02/17 21:40	1

TestAmerica Chicago

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 11:20

Date Received: 11/01/17 09:05

Client Sample ID: 3160-32-3 (0-3.5')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-17

Matrix: Solid

Percent Solids: 81.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Thallium	<0.55		0.55	0.28	mg/Kg	₽	11/02/17 07:49	11/02/17 21:40	
Vanadium	24		0.28	0.065	mg/Kg	₽	11/02/17 07:49	11/02/17 21:40	
Zinc	110		1.1	0.49	mg/Kg	₩	11/02/17 07:49	11/02/17 21:40	
Method: 6010B - Metals	(ICP) - TCLP								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Arsenic	<0.050		0.050	0.010	mg/L		11/03/17 14:57	11/05/17 17:44	-
Barium	1.2		0.50	0.050	mg/L		11/03/17 14:57	11/05/17 17:44	
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/03/17 14:57	11/05/17 17:44	
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/03/17 14:57	11/05/17 17:44	
Chromium	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:44	
Cobalt	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:44	
Copper	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:44	
Iron	<0.40		0.40	0.20	mg/L		11/03/17 14:57	11/05/17 17:44	
Lead	<0.0075		0.0075	0.0075	mg/L		11/03/17 14:57	11/05/17 17:44	
Manganese	0.065		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:44	
Nickel	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:44	
Selenium	<0.050		0.050	0.020	mg/L		11/03/17 14:57	11/05/17 17:44	
Silver	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:44	
Vanadium	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:44	
Zinc	0.029	J	0.50	0.020	mg/L		11/03/17 14:57	11/05/17 17:44	
Method: 6020A - Metals	(ICP/MS) - TCLP								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Antimony	<0.0060		0.0060	0.0060	mg/L		11/03/17 14:57	11/06/17 17:37	
Thallium	<0.0020		0.0020	0.0020	mg/L		11/03/17 14:57	11/06/17 17:37	
Method: 7470A - TCLP	Mercury - TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	<0.00020		0.00020	0.00020	mg/L		11/03/17 12:20	11/06/17 11:32	
Method: 7471B - Mercu	ry (CVAA)								
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Mercury	0.043		0.019	0.0062	mg/Kg	 ☆	11/02/17 16:10	11/03/17 08:56	
General Chemistry									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
pH	6.7		0.20	0.20	SII		=	11/03/17 08:57	

TestAmerica Job ID: 500-136575-1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-32-4 (0-3.5')

Date Collected: 10/31/17 11:30 Date Received: 11/01/17 09:05 Lab Sample ID: 500-136575-18

Matrix: Solid
Percent Solids: 81.9

Method: 8260B - Volatile O Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	0.034		0.019	0.0083	mg/Kg	<u></u>	11/01/17 18:01	11/02/17 20:36	1
Benzene	<0.0019		0.0019	0.00048	mg/Kg	☆	11/01/17 18:01	11/02/17 20:36	1
Bromodichloromethane	<0.0019		0.0019	0.00039	mg/Kg	₩	11/01/17 18:01	11/02/17 20:36	1
Bromoform	<0.0019		0.0019	0.00055	mg/Kg		11/01/17 18:01	11/02/17 20:36	1
Bromomethane	< 0.0047		0.0047	0.0018	mg/Kg	₩	11/01/17 18:01	11/02/17 20:36	1
2-Butanone (MEK)	< 0.0047		0.0047	0.0021	mg/Kg	₩	11/01/17 18:01	11/02/17 20:36	1
Carbon disulfide	<0.0047		0.0047	0.00099	mg/Kg	₽	11/01/17 18:01	11/02/17 20:36	1
Carbon tetrachloride	<0.0019		0.0019	0.00055	mg/Kg	₩	11/01/17 18:01	11/02/17 20:36	1
Chlorobenzene	<0.0019		0.0019	0.00070	mg/Kg	₩	11/01/17 18:01	11/02/17 20:36	1
Chloroethane	<0.0047		0.0047	0.0014	mg/Kg	₽	11/01/17 18:01	11/02/17 20:36	1
Chloroform	<0.0019		0.0019	0.00066	mg/Kg	₩	11/01/17 18:01	11/02/17 20:36	1
Chloromethane	< 0.0047		0.0047	0.0019	mg/Kg	☆	11/01/17 18:01	11/02/17 20:36	1
cis-1,2-Dichloroethene	<0.0019		0.0019	0.00053	mg/Kg	₽	11/01/17 18:01	11/02/17 20:36	1
cis-1,3-Dichloropropene	<0.0019		0.0019	0.00057	mg/Kg	₩	11/01/17 18:01	11/02/17 20:36	1
Dibromochloromethane	<0.0019		0.0019	0.00062	mg/Kg	₩	11/01/17 18:01	11/02/17 20:36	1
1,1-Dichloroethane	<0.0019		0.0019	0.00065	mg/Kg	₽	11/01/17 18:01	11/02/17 20:36	1
1,2-Dichloroethane	< 0.0047		0.0047	0.0015	mg/Kg	₩	11/01/17 18:01	11/02/17 20:36	1
1,1-Dichloroethene	<0.0019		0.0019	0.00065	mg/Kg	☼	11/01/17 18:01	11/02/17 20:36	1
1,2-Dichloropropane	<0.0019		0.0019	0.00049	mg/Kg	₽	11/01/17 18:01	11/02/17 20:36	1
1,3-Dichloropropene, Total	<0.0019		0.0019	0.00067	mg/Kg	₩	11/01/17 18:01	11/02/17 20:36	1
Ethylbenzene	<0.0019		0.0019	0.00091	mg/Kg	₩	11/01/17 18:01	11/02/17 20:36	1
2-Hexanone	<0.0047		0.0047	0.0015	mg/Kg	\$	11/01/17 18:01	11/02/17 20:36	1
Methylene Chloride	< 0.0047		0.0047	0.0019	mg/Kg	₩	11/01/17 18:01	11/02/17 20:36	1
4-Methyl-2-pentanone (MIBK)	< 0.0047		0.0047	0.0014	mg/Kg	₩	11/01/17 18:01	11/02/17 20:36	1
Methyl tert-butyl ether	<0.0019		0.0019	0.00056	mg/Kg	₩	11/01/17 18:01	11/02/17 20:36	1
Styrene	<0.0019		0.0019	0.00057	mg/Kg	₩	11/01/17 18:01	11/02/17 20:36	1
1,1,2,2-Tetrachloroethane	<0.0019		0.0019	0.00061	mg/Kg	≎	11/01/17 18:01	11/02/17 20:36	1
Tetrachloroethene	<0.0019		0.0019	0.00065	mg/Kg	₩	11/01/17 18:01	11/02/17 20:36	1
Toluene	<0.0019		0.0019	0.00048	mg/Kg	≎	11/01/17 18:01	11/02/17 20:36	1
trans-1,2-Dichloroethene	<0.0019		0.0019	0.00084	mg/Kg	☼	11/01/17 18:01	11/02/17 20:36	1
trans-1,3-Dichloropropene	<0.0019		0.0019	0.00067	mg/Kg	≎	11/01/17 18:01	11/02/17 20:36	1
1,1,1-Trichloroethane	<0.0019		0.0019	0.00064	mg/Kg	≎	11/01/17 18:01	11/02/17 20:36	1
1,1,2-Trichloroethane	<0.0019		0.0019	0.00081	mg/Kg	☆	11/01/17 18:01	11/02/17 20:36	1
Trichloroethene	<0.0019		0.0019	0.00064	mg/Kg	☆	11/01/17 18:01	11/02/17 20:36	1
Vinyl acetate	< 0.0047		0.0047	0.0016	mg/Kg	₽	11/01/17 18:01	11/02/17 20:36	1
Vinyl chloride	<0.0019		0.0019	0.00084	mg/Kg	≎	11/01/17 18:01	11/02/17 20:36	1
Xylenes, Total	<0.0038		0.0038	0.00061	mg/Kg	₽	11/01/17 18:01	11/02/17 20:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	90		75 - 131				11/01/17 18:01	11/02/17 20:36	1
Dibromofluoromethane	99		75 - 126				11/01/17 18:01	11/02/17 20:36	1
1,2-Dichloroethane-d4 (Surr)	98		70 - 134				11/01/17 18:01	11/02/17 20:36	1
Toluene-d8 (Surr)	93		75 - 124				11/01/17 18:01	11/02/17 20:36	1

Method: 8270D - Sem	ivolatile Organic Com	pounds (GC/MS)						
Analyte	Result Q	ualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	<0.040	0.040	0.0072	mg/Kg	₩	11/07/17 07:18	11/07/17 22:08	1
Acenaphthylene	<0.040	0.040	0.0053	mg/Kg	≎	11/07/17 07:18	11/07/17 22:08	1
Anthracene	0.11	0.040	0.0067	mg/Kg	☼	11/07/17 07:18	11/07/17 22:08	1
Benzo[a]anthracene	0.17 B	0.040	0.0054	mg/Kg	₽	11/07/17 07:18	11/07/17 22:08	1

TestAmerica Chicago

11/13/2017

Page 95 of 231

2

3

5

7

9

11

13

14

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 11:30

Date Received: 11/01/17 09:05

Client Sample ID: 3160-32-4 (0-3.5')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-18

Matrix: Solid

Percent Solids: 81.9

Method: 8270D - Semivolatil	Result Q		MDL	•		Droporod	Analyzad	Dil Fac
Analyte	0.084	0.040	0.0078		— D <u>₩</u>	Prepared 11/07/17 07:18	Analyzed 11/07/17 22:08	Dii Fac
Benzo[a]pyrene	0.084 0.095	0.040	0.0078		≎		11/07/17 22:08	1
Benzo[b]fluoranthene Benzo[g,h,i]perylene	<0.040	0.040		mg/Kg			11/07/17 22:08	1
	0.040	0.040		mg/Kg	₽		11/07/17 22:08	1
Benzo[k]fluoranthene Bis(2-chloroethoxy)methane	<0.20	0.20	0.012		≎		11/07/17 22:08	1
		0.20		mg/Kg			11/07/17 22:08	1
Bis(2-chloroethyl)ether	<0.20 <0.20	0.20		mg/Kg	≎		11/07/17 22:08	1
Bis(2-ethylhexyl) phthalate		0.20			₩			•
4-Bromophenyl phenyl ether	<0.20			mg/Kg	· · · · · · ·		11/07/17 22:08	1
Butyl benzyl phthalate Carbazole	<0.20 <0.20	0.20 0.20	0.076	mg/Kg mg/Kg	₩		11/07/17 22:08 11/07/17 22:08	1 1
					₩			
4-Chloroaniline	<0.81	0.81		mg/Kg	 .		11/07/17 22:08	1
4-Chloro-3-methylphenol	<0.40	0.40		mg/Kg			11/07/17 22:08	1
2-Chloronaphthalene	<0.20	0.20		mg/Kg	₩		11/07/17 22:08	1
2-Chlorophenol	<0.20	0.20		mg/Kg				1
4-Chlorophenyl phenyl ether	<0.20	0.20		mg/Kg	*		11/07/17 22:08	1
Chrysene	0.19	0.040	0.011	0 0	‡		11/07/17 22:08	1
Dibenz(a,h)anthracene	<0.040	0.040	0.0077				11/07/17 22:08	1
Dibenzofuran	0.27	0.20		mg/Kg	₩.		11/07/17 22:08	1
1,2-Dichlorobenzene	<0.20	0.20		mg/Kg	☆		11/07/17 22:08	1
1,3-Dichlorobenzene	<0.20	0.20		mg/Kg	, .		11/07/17 22:08	1
1,4-Dichlorobenzene	<0.20	0.20		mg/Kg	*		11/07/17 22:08	1
3,3'-Dichlorobenzidine	<0.20	0.20		mg/Kg	₩	11/07/17 07:18	11/07/17 22:08	1
2,4-Dichlorophenol	<0.40	0.40		mg/Kg	₩	11/07/17 07:18	11/07/17 22:08	1
Diethyl phthalate	<0.20	0.20	0.068	mg/Kg	☼	11/07/17 07:18	11/07/17 22:08	1
2,4-Dimethylphenol	<0.40	0.40	0.15	mg/Kg	₩	11/07/17 07:18	11/07/17 22:08	1
Dimethyl phthalate	<0.20	0.20	0.052	mg/Kg	₩	11/07/17 07:18	11/07/17 22:08	1
Di-n-butyl phthalate	<0.20	0.20	0.061	mg/Kg	₽	11/07/17 07:18	11/07/17 22:08	1
4,6-Dinitro-2-methylphenol	<0.81	0.81	0.32	mg/Kg	☼	11/07/17 07:18	11/07/17 22:08	1
2,4-Dinitrophenol	<0.81	0.81	0.71	mg/Kg	☼	11/07/17 07:18	11/07/17 22:08	1
2,4-Dinitrotoluene	<0.20	0.20	0.064	mg/Kg	₽	11/07/17 07:18	11/07/17 22:08	1
2,6-Dinitrotoluene	<0.20	0.20	0.079	mg/Kg	₩	11/07/17 07:18	11/07/17 22:08	1
Di-n-octyl phthalate	<0.20	0.20	0.065	mg/Kg	₩	11/07/17 07:18	11/07/17 22:08	1
Fluoranthene	0.17	0.040	0.0074	mg/Kg		11/07/17 07:18	11/07/17 22:08	1
Fluorene	< 0.040	0.040	0.0056	mg/Kg	☼	11/07/17 07:18	11/07/17 22:08	1
Hexachlorobenzene	<0.081	0.081	0.0093	mg/Kg	₩	11/07/17 07:18	11/07/17 22:08	1
Hexachlorobutadiene	<0.20	0.20	0.063	mg/Kg		11/07/17 07:18	11/07/17 22:08	1
Hexachlorocyclopentadiene	<0.81	0.81		mg/Kg	₩	11/07/17 07:18	11/07/17 22:08	1
Hexachloroethane	<0.20	0.20		mg/Kg	₩	11/07/17 07:18	11/07/17 22:08	1
Indeno[1,2,3-cd]pyrene	<0.040	0.040		mg/Kg	· · · · · · · · · · · · · · · · · · ·	11/07/17 07:18	11/07/17 22:08	1
Isophorone	<0.20	0.20		mg/Kg	₩		11/07/17 22:08	1
2-Methylnaphthalene	0.65	0.081	0.0074		₩		11/07/17 22:08	1
2-Methylphenol	<0.20	0.20		mg/Kg	-		11/07/17 22:08	1
3 & 4 Methylphenol	<0.20	0.20		mg/Kg	₩		11/07/17 22:08	1
Naphthalene	0.32	0.040	0.0062		☼		11/07/17 22:08	. 1
2-Nitroaniline	<0.20	0.20		mg/Kg			11/07/17 22:08	· · · · · · · · · · · · · · · · · · ·
3-Nitroaniline	<0.40	0.40		mg/Kg	₽		11/07/17 22:08	1
4-Nitroaniline	<0.40	0.40		mg/Kg	Ť		11/07/17 22:08	1
	<0.040	0.040					11/07/17 22:08	
Nitrobenzene 2-Nitrophenol	<0.040 <0.40	0.040		mg/Kg mg/Kg	₩		11/07/17 22:08	1 1

TestAmerica Chicago

Page 96 of 231

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 11:30

Date Received: 11/01/17 09:05

Client Sample ID: 3160-32-4 (0-3.5')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-18

Matrix: Solid Percent Solids: 81.9

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.81	0.81	0.38	mg/Kg	<u>₩</u>	11/07/17 07:18	11/07/17 22:08	1
N-Nitrosodi-n-propylamine	<0.081	0.081	0.049	mg/Kg	₩.	11/07/17 07:18	11/07/17 22:08	1
N-Nitrosodiphenylamine	<0.20	0.20	0.047	mg/Kg	₩	11/07/17 07:18	11/07/17 22:08	1
2,2'-oxybis[1-chloropropane]	<0.20	0.20	0.046	mg/Kg	☼	11/07/17 07:18	11/07/17 22:08	1
Pentachlorophenol	<0.81	0.81	0.64	mg/Kg	₽	11/07/17 07:18	11/07/17 22:08	1
Phenanthrene	1.2	0.040	0.0056	mg/Kg	₩	11/07/17 07:18	11/07/17 22:08	1
Phenol	<0.20	0.20	0.089	mg/Kg	₩	11/07/17 07:18	11/07/17 22:08	1
Pyrene	0.22	0.040	0.0080	mg/Kg	₽	11/07/17 07:18	11/07/17 22:08	1
1,2,4-Trichlorobenzene	<0.20	0.20	0.043	mg/Kg	₩	11/07/17 07:18	11/07/17 22:08	1
2,4,5-Trichlorophenol	<0.40	0.40	0.091	mg/Kg	₩	11/07/17 07:18	11/07/17 22:08	1
2,4,6-Trichlorophenol	<0.40	0.40	0.14	mg/Kg	₩.	11/07/17 07:18	11/07/17 22:08	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	91	44 - 121	11/07/17 07:18	11/07/17 22:08	1
2-Fluorophenol	99	46 - 133	11/07/17 07:18	11/07/17 22:08	1
Nitrobenzene-d5	91	41 - 120	11/07/17 07:18	11/07/17 22:08	1
Phenol-d5	103	46 - 125	11/07/17 07:18	11/07/17 22:08	1
Terphenyl-d14	89	35 - 160	11/07/17 07:18	11/07/17 22:08	1
2,4,6-Tribromophenol	78	25 - 139	11/07/17 07:18	11/07/17 22:08	1

Method: 8082A - I	Polychlorinated Biphenyl	s (PCBs) by Gas	Chromatography
-------------------	--------------------------	-----------------	----------------

		,						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	<0.020	0.020	0.0071	mg/Kg	₩	11/07/17 16:20	11/10/17 19:35	1
PCB-1221	<0.020	0.020	0.0089	mg/Kg	₩	11/07/17 16:20	11/10/17 19:35	1
PCB-1232	<0.020	0.020	0.0088	mg/Kg	₩	11/07/17 16:20	11/10/17 19:35	1
PCB-1242	<0.020	0.020	0.0066	mg/Kg	₩	11/07/17 16:20	11/10/17 19:35	1
PCB-1248	<0.020	0.020	0.0080	mg/Kg	₩	11/07/17 16:20	11/10/17 19:35	1
PCB-1254	<0.020	0.020	0.0044	mg/Kg	₩	11/07/17 16:20	11/10/17 19:35	1
PCB-1260	<0.020	0.020	0.0099	mg/Kg	₽	11/07/17 16:20	11/10/17 19:35	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	75		49 - 129	11/07/17 16:20	11/10/17 19:35	1
DCB Decachlorobiphenyl	86		37 - 121	11/07/17 16:20	11/10/17 19:35	1

Method: (6010B - N	/letals ((ICP)
-----------	-----------	-----------	-------

wiethod: 6010B - Wetais (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<1.1		1.1	0.22	mg/Kg	₽	11/02/17 07:49	11/02/17 21:44	1
Arsenic	11		0.57	0.20	mg/Kg	☼	11/02/17 07:49	11/02/17 21:44	1
Barium	150		0.57	0.065	mg/Kg	☼	11/02/17 07:49	11/02/17 21:44	1
Beryllium	0.56		0.23	0.053	mg/Kg	₩.	11/02/17 07:49	11/02/17 21:44	1
Cadmium	0.22	В	0.11	0.021	mg/Kg	☼	11/02/17 07:49	11/02/17 21:44	1
Chromium	14		0.57	0.28	mg/Kg	₩	11/02/17 07:49	11/02/17 21:44	1
Cobalt	4.7		0.29	0.075	mg/Kg		11/02/17 07:49	11/02/17 21:44	1
Copper	19		0.57	0.16	mg/Kg	☼	11/02/17 07:49	11/02/17 21:44	1
Iron	26000	В	11	5.9	mg/Kg	₩	11/02/17 07:49	11/02/17 21:44	1
Lead	41		0.29	0.13	mg/Kg	φ.	11/02/17 07:49	11/02/17 21:44	1
Manganese	110		0.57	0.083	mg/Kg	₩	11/02/17 07:49	11/02/17 21:44	1
Nickel	11		0.57	0.17	mg/Kg	☼	11/02/17 07:49	11/02/17 21:44	1
Selenium	1.7		0.57	0.34	mg/Kg	₽	11/02/17 07:49	11/02/17 21:44	1
Silver	<0.29		0.29	0.074	mg/Kg	₩	11/02/17 07:49	11/02/17 21:44	1

Page 97 of 231

TestAmerica Chicago

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 11:30

Date Received: 11/01/17 09:05

Analyte

рН

Client Sample ID: 3160-32-4 (0-3.5')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-18

Matrix: Solid Percent Solids: 81.9

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Thallium	<0.57		0.57	0.28	mg/Kg	₩	11/02/17 07:49	11/02/17 21:44	
Vanadium	22		0.29	0.067	mg/Kg		11/02/17 07:49	11/02/17 21:44	
Zinc	61		1.1	0.50	mg/Kg	₩	11/02/17 07:49	11/02/17 21:44	
Method: 6010B - Metals (ICP) - TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Arsenic	<0.050		0.050	0.010	mg/L		11/03/17 14:57	11/05/17 17:48	
Barium	0.57		0.50	0.050	mg/L		11/03/17 14:57	11/05/17 17:48	
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/03/17 14:57	11/05/17 17:48	
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/03/17 14:57	11/05/17 17:48	
Chromium	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:48	
Cobalt	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:48	
Copper	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:48	
Iron	0.23	J	0.40	0.20	mg/L		11/03/17 14:57	11/05/17 17:48	
Lead	<0.0075		0.0075	0.0075	mg/L		11/03/17 14:57	11/05/17 17:48	
Manganese	0.026		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:48	
Nickel	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:48	
Selenium	0.020	J	0.050	0.020	mg/L		11/03/17 14:57	11/05/17 17:48	
Silver	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:48	
Vanadium	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:48	
Zinc	0.022	J	0.50	0.020	mg/L		11/03/17 14:57	11/05/17 17:48	
Method: 6020A - Metals (ICP/MS) - TCLP								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Antimony	<0.0060		0.0060	0.0060	mg/L		11/03/17 14:57	11/06/17 17:41	
Thallium	<0.0020		0.0020	0.0020	mg/L		11/03/17 14:57	11/06/17 17:41	
Method: 7470A - TCLP M	ercury - TCLP								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	<0.00020		0.00020	0.00020	mg/L		11/03/17 12:20	11/06/17 11:33	
Method: 7471B - Mercury									
Analyte		Qualifier	RL	MDL		_ D	Prepared	Analyzed	Dil Fa
Mercury	0.11		0.019	0.0063	mg/Kg	- -	11/02/17 16:10	11/03/17 08:58	

Analyzed

11/03/17 08:57

RL

0.20

MDL Unit

0.20 SU

Prepared

Result Qualifier

6.7

Dil Fac

TestAmerica Job ID: 500-136575-1

Client Sample ID: 3160-32-5 (0-3.5')

Client: AMEC Foster Wheeler E & I, Inc

Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 11:40 Date Received: 11/01/17 09:05 Lab Sample ID: 500-136575-19

Matrix: Solid Percent Solids: 81.8

Method: 8260B - Volatile O Analyte	Result Quali		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	<0.018	0.018	0.0077	mg/Kg	<u> </u>	11/01/17 18:01	11/02/17 21:01	1
Benzene	<0.0018	0.0018	0.00045	mg/Kg	₩	11/01/17 18:01	11/02/17 21:01	1
Bromodichloromethane	<0.0018	0.0018	0.00036	mg/Kg	₩	11/01/17 18:01	11/02/17 21:01	1
Bromoform	<0.0018	0.0018	0.00052	mg/Kg	\$	11/01/17 18:01	11/02/17 21:01	1
Bromomethane	<0.0044	0.0044	0.0017	mg/Kg	☼	11/01/17 18:01	11/02/17 21:01	1
2-Butanone (MEK)	<0.0044	0.0044	0.0020	mg/Kg	₩	11/01/17 18:01	11/02/17 21:01	1
Carbon disulfide	<0.0044	0.0044	0.00092	mg/Kg	\$	11/01/17 18:01	11/02/17 21:01	1
Carbon tetrachloride	<0.0018	0.0018	0.00051	mg/Kg	₩	11/01/17 18:01	11/02/17 21:01	1
Chlorobenzene	<0.0018	0.0018	0.00065	mg/Kg	₩	11/01/17 18:01	11/02/17 21:01	1
Chloroethane	<0.0044	0.0044	0.0013	mg/Kg	₽	11/01/17 18:01	11/02/17 21:01	1
Chloroform	<0.0018	0.0018	0.00061	mg/Kg	₩	11/01/17 18:01	11/02/17 21:01	1
Chloromethane	<0.0044	0.0044	0.0018	mg/Kg	₩	11/01/17 18:01	11/02/17 21:01	1
cis-1,2-Dichloroethene	<0.0018	0.0018	0.00049	mg/Kg	₽	11/01/17 18:01	11/02/17 21:01	1
cis-1,3-Dichloropropene	<0.0018	0.0018	0.00053	mg/Kg	₩	11/01/17 18:01	11/02/17 21:01	1
Dibromochloromethane	<0.0018	0.0018	0.00058	mg/Kg	₩	11/01/17 18:01	11/02/17 21:01	1
1,1-Dichloroethane	<0.0018	0.0018	0.00060	mg/Kg	₩	11/01/17 18:01	11/02/17 21:01	1
1,2-Dichloroethane	<0.0044	0.0044	0.0014	mg/Kg	₩	11/01/17 18:01	11/02/17 21:01	1
1,1-Dichloroethene	<0.0018	0.0018	0.00061	mg/Kg	☼	11/01/17 18:01	11/02/17 21:01	1
1,2-Dichloropropane	<0.0018	0.0018	0.00046	mg/Kg	₽	11/01/17 18:01	11/02/17 21:01	1
1,3-Dichloropropene, Total	<0.0018	0.0018	0.00062	mg/Kg	₩	11/01/17 18:01	11/02/17 21:01	1
Ethylbenzene	<0.0018	0.0018	0.00085	mg/Kg	☼	11/01/17 18:01	11/02/17 21:01	1
2-Hexanone	<0.0044	0.0044	0.0014	mg/Kg		11/01/17 18:01	11/02/17 21:01	1
Methylene Chloride	<0.0044	0.0044	0.0017	mg/Kg	☼	11/01/17 18:01	11/02/17 21:01	1
4-Methyl-2-pentanone (MIBK)	<0.0044	0.0044	0.0013	mg/Kg	☼	11/01/17 18:01	11/02/17 21:01	1
Methyl tert-butyl ether	<0.0018	0.0018	0.00052	mg/Kg	₩	11/01/17 18:01	11/02/17 21:01	1
Styrene	<0.0018	0.0018	0.00053	mg/Kg	☼	11/01/17 18:01	11/02/17 21:01	1
1,1,2,2-Tetrachloroethane	<0.0018	0.0018	0.00056	mg/Kg	☼	11/01/17 18:01	11/02/17 21:01	1
Tetrachloroethene	<0.0018	0.0018	0.00060	mg/Kg	☼	11/01/17 18:01	11/02/17 21:01	1
Toluene	<0.0018	0.0018	0.00045	mg/Kg	☼	11/01/17 18:01	11/02/17 21:01	1
trans-1,2-Dichloroethene	<0.0018	0.0018	0.00078	mg/Kg	☼	11/01/17 18:01	11/02/17 21:01	1
trans-1,3-Dichloropropene	<0.0018	0.0018	0.00062	mg/Kg	₽	11/01/17 18:01	11/02/17 21:01	1
1,1,1-Trichloroethane	<0.0018	0.0018	0.00059	mg/Kg	☼	11/01/17 18:01	11/02/17 21:01	1
1,1,2-Trichloroethane	<0.0018	0.0018	0.00076	mg/Kg	☼	11/01/17 18:01	11/02/17 21:01	1
Trichloroethene	<0.0018	0.0018	0.00060	mg/Kg		11/01/17 18:01	11/02/17 21:01	1
Vinyl acetate	< 0.0044	0.0044	0.0015	mg/Kg	☼	11/01/17 18:01	11/02/17 21:01	1
Vinyl chloride	<0.0018	0.0018	0.00078	mg/Kg	☼	11/01/17 18:01	11/02/17 21:01	1
Xylenes, Total	<0.0035	0.0035	0.00057	mg/Kg	φ.	11/01/17 18:01	11/02/17 21:01	1
Surrogate	%Recovery Quali	ifier Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91	75 - 131				11/01/17 18:01	11/02/17 21:01	1
Dibromofluoromethane	101	75 - 126				11/01/17 18:01	11/02/17 21:01	1
1,2-Dichloroethane-d4 (Surr)	100	70 - 134				11/01/17 18:01	11/02/17 21:01	1
Toluene-d8 (Surr)	83	75 - 124				11/01/17 18:01	11/02/17 21:01	1

Method: 8270D - Semivolatile Organic Compounds (GC/MS)											
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Acenaphthene	<0.040		0.040	0.0072	mg/Kg	<u> </u>	11/07/17 07:18	11/07/17 22:35	1		
Acenaphthylene	<0.040		0.040	0.0053	mg/Kg	≎	11/07/17 07:18	11/07/17 22:35	1		
Anthracene	0.0077	J	0.040	0.0067	mg/Kg	≎	11/07/17 07:18	11/07/17 22:35	1		
Benzo[a]anthracene	0.020	JB	0.040	0.0054	mg/Kg	₩.	11/07/17 07:18	11/07/17 22:35	1		

TestAmerica Chicago

Page 99 of 231

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 11:40

Date Received: 11/01/17 09:05

Client Sample ID: 3160-32-5 (0-3.5')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-19

Matrix: Solid Percent Solids: 81.8

Method: 8270D - Semivolatil Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
<u> </u>			0.040			— =	11/07/17 07:18	11/07/17 22:35	טוו רמ
Benzo[a]pyrene	0.012		0.040	0.0078	mg/Kg	₩		11/07/17 22:35	
Benzo[b]fluoranthene	0.019	J 				· · · · · · · · · · · · · · · · · · ·			
Benzo[g,h,i]perylene	<0.040		0.040		mg/Kg			11/07/17 22:35	
Benzo[k]fluoranthene	<0.040		0.040		mg/Kg	☆		11/07/17 22:35	
Bis(2-chloroethoxy)methane	<0.20		0.20	0.041			11/07/17 07:18	11/07/17 22:35	
Bis(2-chloroethyl)ether	<0.20		0.20	0.060	0 0	☆		11/07/17 22:35	
Bis(2-ethylhexyl) phthalate	<0.20		0.20	0.073	mg/Kg			11/07/17 22:35	
4-Bromophenyl phenyl ether	<0.20		0.20		mg/Kg			11/07/17 22:35	
Butyl benzyl phthalate	<0.20		0.20		mg/Kg	☆		11/07/17 22:35	
Carbazole	<0.20		0.20		mg/Kg	₽		11/07/17 22:35	
4-Chloroaniline	<0.81		0.81		mg/Kg			11/07/17 22:35	
4-Chloro-3-methylphenol	<0.40		0.40	0.14	mg/Kg	☼	11/07/17 07:18	11/07/17 22:35	
2-Chloronaphthalene	<0.20		0.20	0.044	mg/Kg	₩	11/07/17 07:18	11/07/17 22:35	
2-Chlorophenol	<0.20		0.20		mg/Kg	₩	11/07/17 07:18	11/07/17 22:35	
4-Chlorophenyl phenyl ether	<0.20		0.20	0.047	mg/Kg	₽		11/07/17 22:35	
Chrysene	0.027	J	0.040	0.011	mg/Kg	☼	11/07/17 07:18	11/07/17 22:35	
Dibenz(a,h)anthracene	<0.040		0.040	0.0078	mg/Kg	₩	11/07/17 07:18	11/07/17 22:35	
Dibenzofuran	<0.20		0.20	0.047	mg/Kg	₽	11/07/17 07:18	11/07/17 22:35	
1,2-Dichlorobenzene	<0.20		0.20	0.048	mg/Kg	☼	11/07/17 07:18	11/07/17 22:35	
1,3-Dichlorobenzene	<0.20		0.20	0.045	mg/Kg	☼	11/07/17 07:18	11/07/17 22:35	
1,4-Dichlorobenzene	<0.20		0.20	0.052	mg/Kg	₽	11/07/17 07:18	11/07/17 22:35	
3,3'-Dichlorobenzidine	<0.20		0.20	0.056	mg/Kg	☼	11/07/17 07:18	11/07/17 22:35	
2,4-Dichlorophenol	<0.40		0.40	0.095	mg/Kg	☼	11/07/17 07:18	11/07/17 22:35	
Diethyl phthalate	<0.20		0.20	0.068	mg/Kg	ф.	11/07/17 07:18	11/07/17 22:35	
2,4-Dimethylphenol	<0.40		0.40	0.15	mg/Kg	☼	11/07/17 07:18	11/07/17 22:35	
Dimethyl phthalate	<0.20		0.20	0.052	mg/Kg	☼	11/07/17 07:18	11/07/17 22:35	
Di-n-butyl phthalate	<0.20		0.20		mg/Kg	φ.	11/07/17 07:18	11/07/17 22:35	
1,6-Dinitro-2-methylphenol	<0.81		0.81		mg/Kg	☼	11/07/17 07:18	11/07/17 22:35	
2,4-Dinitrophenol	<0.81		0.81		mg/Kg	☼	11/07/17 07:18	11/07/17 22:35	
2,4-Dinitrotoluene	<0.20		0.20		mg/Kg	φ.	11/07/17 07:18	11/07/17 22:35	
2,6-Dinitrotoluene	<0.20		0.20	0.079	mg/Kg	☼		11/07/17 22:35	
Di-n-octyl phthalate	<0.20		0.20		mg/Kg	☼		11/07/17 22:35	
Fluoranthene	0.023		0.040	0.0074				11/07/17 22:35	
Fluorene	<0.040	•	0.040	0.0056	mg/Kg	₩		11/07/17 22:35	
Hexachlorobenzene	<0.081		0.081	0.0093	0 0	₩		11/07/17 22:35	
Hexachlorobutadiene	<0.20		0.20		mg/Kg			11/07/17 22:35	
Hexachlorocyclopentadiene	<0.81		0.20		mg/Kg	₽		11/07/17 22:35	
Hexachloroethane	<0.20		0.20		mg/Kg	₽		11/07/17 22:35	
ndeno[1,2,3-cd]pyrene	<0.20		0.20		mg/Kg			11/07/17 22:35	
	<0.20		0.040					11/07/17 22:35	
sophorone					mg/Kg	ж ж			
2-Methylnaphthalene	0.039		0.081	0.0074		· · · · · · · · · · · · · · · · · · ·		11/07/17 22:35	
2-Methylphenol	<0.20		0.20		mg/Kg	₩ **		11/07/17 22:35	
3 & 4 Methylphenol	<0.20	_	0.20		mg/Kg	₩		11/07/17 22:35	
Naphthalene	0.018	. J	0.040	0.0062		J.		11/07/17 22:35	
2-Nitroaniline	<0.20		0.20		mg/Kg	∵		11/07/17 22:35	
3-Nitroaniline	<0.40		0.40		mg/Kg	*		11/07/17 22:35	
4-Nitroaniline	<0.40		0.40		mg/Kg	, .		11/07/17 22:35	
Nitrobenzene	<0.040		0.040		mg/Kg	₽		11/07/17 22:35	
2-Nitrophenol	< 0.40		0.40	0.095	mg/Kg	₩	11/07/17 07:18	11/07/17 22:35	

TestAmerica Chicago

2

4

6

8

10

12

1 A

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 11:40

Date Received: 11/01/17 09:05

Tetrachloro-m-xylene

DCB Decachlorobiphenyl

Client Sample ID: 3160-32-5 (0-3.5')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-19

Matrix: Solid

Percent Solids: 81.8

<u>11/07/17 16:20</u> <u>11/10/17 19:50</u>

11/07/17 16:20 11/10/17 19:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.81		0.81	0.38	mg/Kg	<u> </u>	11/07/17 07:18	11/07/17 22:35	1
N-Nitrosodi-n-propylamine	<0.081		0.081	0.049	mg/Kg	₽	11/07/17 07:18	11/07/17 22:35	1
N-Nitrosodiphenylamine	<0.20		0.20	0.047	mg/Kg	☼	11/07/17 07:18	11/07/17 22:35	1
2,2'-oxybis[1-chloropropane]	<0.20		0.20	0.047	mg/Kg	☼	11/07/17 07:18	11/07/17 22:35	1
Pentachlorophenol	<0.81		0.81	0.64	mg/Kg	₽	11/07/17 07:18	11/07/17 22:35	1
Phenanthrene	0.087		0.040	0.0056	mg/Kg	☼	11/07/17 07:18	11/07/17 22:35	1
Phenol	<0.20		0.20	0.089	mg/Kg	☼	11/07/17 07:18	11/07/17 22:35	1
Pyrene	0.024	J	0.040	0.0080	mg/Kg	☼	11/07/17 07:18	11/07/17 22:35	1
1,2,4-Trichlorobenzene	<0.20		0.20	0.043	mg/Kg	☼	11/07/17 07:18	11/07/17 22:35	1
2,4,5-Trichlorophenol	<0.40		0.40	0.092	mg/Kg	☼	11/07/17 07:18	11/07/17 22:35	1
2,4,6-Trichlorophenol	<0.40		0.40	0.14	mg/Kg		11/07/17 07:18	11/07/17 22:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	89		44 - 121				11/07/17 07:18	11/07/17 22:35	1
2-Fluorophenol	99		46 - 133				11/07/17 07:18	11/07/17 22:35	1
Nitrobenzene-d5	100		41 - 120				11/07/17 07:18	11/07/17 22:35	1
Phenol-d5	95		46 - 125				11/07/17 07:18	11/07/17 22:35	1
Terphenyl-d14	90		35 - 160				11/07/17 07:18	11/07/17 22:35	1
2.4.6-Tribromophenol	73		25 - 139				11/07/17 07:18	11/07/17 22:35	1

	olychlorinated Biphenyls (_			
Analyte	Result Qua	alifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	<0.019	0.019	0.0068	mg/Kg	<u> </u>	11/07/17 16:20	11/10/17 19:50	1
PCB-1221	<0.019	0.019	0.0085	mg/Kg	₩	11/07/17 16:20	11/10/17 19:50	1
PCB-1232	<0.019	0.019	0.0084	mg/Kg	☼	11/07/17 16:20	11/10/17 19:50	1
PCB-1242	<0.019	0.019	0.0064	mg/Kg	₩.	11/07/17 16:20	11/10/17 19:50	1
PCB-1248	<0.019	0.019	0.0076	mg/Kg	☼	11/07/17 16:20	11/10/17 19:50	1
PCB-1254	<0.019	0.019	0.0042	mg/Kg	☼	11/07/17 16:20	11/10/17 19:50	1
PCB-1260	<0.019	0.019	0.0095	mg/Kg	\$	11/07/17 16:20	11/10/17 19:50	1
Surrogate	%Recovery Qua	alifier Limits				Prepared	Analyzed	Dil Fac

49 - 129

37 - 121

77

88

Method: 6010B - Metal Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<1.2		1.2	0.23	mg/Kg	<u> </u>	11/02/17 07:49	11/02/17 21:48	1
Arsenic	7.1		0.60	0.20	mg/Kg	☼	11/02/17 07:49	11/02/17 21:48	1
Barium	85		0.60	0.068	mg/Kg	₩	11/02/17 07:49	11/02/17 21:48	1
Beryllium	0.49		0.24	0.056	mg/Kg	₩.	11/02/17 07:49	11/02/17 21:48	1
Cadmium	0.19	В	0.12	0.022	mg/Kg	₩	11/02/17 07:49	11/02/17 21:48	1
Chromium	16		0.60	0.30	mg/Kg	☼	11/02/17 07:49	11/02/17 21:48	1
Cobalt	5.8		0.30	0.078	mg/Kg	₩.	11/02/17 07:49	11/02/17 21:48	1
Copper	23		0.60	0.17	mg/Kg	₩	11/02/17 07:49	11/02/17 21:48	1
Iron	19000	В	12	6.2	mg/Kg	₩	11/02/17 07:49	11/02/17 21:48	1
Lead	32		0.30	0.14	mg/Kg		11/02/17 07:49	11/02/17 21:48	1
Manganese	180		0.60	0.087	mg/Kg	₩	11/02/17 07:49	11/02/17 21:48	1
Nickel	14		0.60	0.17	mg/Kg	₩	11/02/17 07:49	11/02/17 21:48	1
Selenium	0.55	J	0.60	0.35	mg/Kg	Φ.	11/02/17 07:49	11/02/17 21:48	1
Silver	<0.30		0.30	0.077	mg/Kg	≎	11/02/17 07:49	11/02/17 21:48	1

TestAmerica Chicago

1

1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Received: 11/01/17 09:05

Mercury

Analyte

рН

General Chemistry

TestAmerica Job ID: 500-136575-1

Client Sample ID: 3160-32-5 (0-3.5') Lab Sample ID: 500-136575-19 Date Collected: 10/31/17 11:40

Matrix: Solid

Percent Solids: 81.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Thallium	<0.60		0.60	0.30	mg/Kg	<u> </u>	11/02/17 07:49	11/02/17 21:48	1
Vanadium	26		0.30	0.071	mg/Kg	φ.	11/02/17 07:49	11/02/17 21:48	1
Zinc	82		1.2	0.53	mg/Kg	₩	11/02/17 07:49	11/02/17 21:48	1
Method: 6010B - Met	als (ICP) - TCLP								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/03/17 14:57	11/05/17 17:52	1
Barium	0.52		0.50	0.050	mg/L		11/03/17 14:57	11/05/17 17:52	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/03/17 14:57	11/05/17 17:52	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/03/17 14:57	11/05/17 17:52	1
Chromium	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:52	1
Cobalt	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:52	1
Copper	0.010	J	0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:52	1
Iron	<0.40		0.40	0.20	mg/L		11/03/17 14:57	11/05/17 17:52	1
Lead	<0.0075		0.0075	0.0075	mg/L		11/03/17 14:57	11/05/17 17:52	1
Manganese	0.080		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:52	1
Nickel	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:52	1
Selenium	0.020	J	0.050	0.020	mg/L		11/03/17 14:57	11/05/17 17:52	1
Silver	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:52	1
Vanadium	<0.025		0.025	0.010	mg/L		11/03/17 14:57	11/05/17 17:52	1
Zinc	0.067	J	0.50	0.020	mg/L		11/03/17 14:57	11/05/17 17:52	1
Method: 6020A - Met	als (ICP/MS) - TCLP								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060		0.0060	0.0060	mg/L		11/03/17 14:57	11/06/17 17:45	1
Thallium	<0.0020		0.0020	0.0020	mg/L		11/03/17 14:57	11/06/17 17:45	1
Method: 7470A - TCL	P Mercury - TCLP								
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/03/17 12:20	11/06/17 11:35	1
Method: 7471B - Mer	cury (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

0.019

RL

0.20

0.0062 mg/Kg

MDL Unit

0.20 SU

0.048

5.9

Result Qualifier

Analyzed

11/03/17 08:57

Dil Fac

Prepared

TestAmerica Job ID: 500-136575-1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-32-6 (0-3.5')

Lab Sample ID: 500-136575-20 Date Collected: 10/31/17 12:40

Matrix: Solid Date Received: 11/01/17 09:05 Percent Solids: 82.8

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	0.066		0.019	0.0083	mg/Kg	<u> </u>	11/01/17 18:01	11/02/17 21:26	1
Benzene	<0.0019		0.0019	0.00048	mg/Kg	₩	11/01/17 18:01	11/02/17 21:26	1
Bromodichloromethane	< 0.0019		0.0019	0.00039	mg/Kg	₩	11/01/17 18:01	11/02/17 21:26	1
Bromoform	<0.0019		0.0019	0.00055	mg/Kg		11/01/17 18:01	11/02/17 21:26	1
Bromomethane	<0.0048		0.0048	0.0018	mg/Kg	₩	11/01/17 18:01	11/02/17 21:26	1
2-Butanone (MEK)	<0.0048		0.0048	0.0021	mg/Kg	₩	11/01/17 18:01	11/02/17 21:26	1
Carbon disulfide	<0.0048		0.0048	0.00099	mg/Kg	₽	11/01/17 18:01	11/02/17 21:26	1
Carbon tetrachloride	< 0.0019		0.0019	0.00055	mg/Kg	₩	11/01/17 18:01	11/02/17 21:26	1
Chlorobenzene	<0.0019		0.0019	0.00070	mg/Kg	₩	11/01/17 18:01	11/02/17 21:26	1
Chloroethane	<0.0048		0.0048	0.0014	mg/Kg	₽	11/01/17 18:01	11/02/17 21:26	1
Chloroform	< 0.0019		0.0019	0.00066	mg/Kg	☼	11/01/17 18:01	11/02/17 21:26	1
Chloromethane	<0.0048		0.0048	0.0019	mg/Kg	₩	11/01/17 18:01	11/02/17 21:26	1
cis-1,2-Dichloroethene	<0.0019		0.0019	0.00053	mg/Kg	₽	11/01/17 18:01	11/02/17 21:26	1
cis-1,3-Dichloropropene	< 0.0019		0.0019	0.00057	mg/Kg	☼	11/01/17 18:01	11/02/17 21:26	1
Dibromochloromethane	< 0.0019		0.0019	0.00062	mg/Kg	☼	11/01/17 18:01	11/02/17 21:26	1
1,1-Dichloroethane	<0.0019		0.0019	0.00065	mg/Kg	₩.	11/01/17 18:01	11/02/17 21:26	1
1,2-Dichloroethane	<0.0048		0.0048	0.0015	mg/Kg	☼	11/01/17 18:01	11/02/17 21:26	1
1,1-Dichloroethene	< 0.0019		0.0019	0.00065	mg/Kg	☼	11/01/17 18:01	11/02/17 21:26	1
1,2-Dichloropropane	<0.0019		0.0019	0.00049	mg/Kg	₩.	11/01/17 18:01	11/02/17 21:26	1
1,3-Dichloropropene, Total	< 0.0019		0.0019	0.00067	mg/Kg	☼	11/01/17 18:01	11/02/17 21:26	1
Ethylbenzene	< 0.0019		0.0019	0.00091	mg/Kg	☼	11/01/17 18:01	11/02/17 21:26	1
2-Hexanone	<0.0048		0.0048	0.0015	mg/Kg	φ.	11/01/17 18:01	11/02/17 21:26	1
Methylene Chloride	<0.0048		0.0048	0.0019	mg/Kg	☼	11/01/17 18:01	11/02/17 21:26	1
4-Methyl-2-pentanone (MIBK)	<0.0048		0.0048	0.0014	mg/Kg	₩	11/01/17 18:01	11/02/17 21:26	1
Methyl tert-butyl ether	<0.0019		0.0019	0.00056	mg/Kg	₩.	11/01/17 18:01	11/02/17 21:26	1
Styrene	<0.0019		0.0019	0.00057	mg/Kg	₩	11/01/17 18:01	11/02/17 21:26	1
1,1,2,2-Tetrachloroethane	< 0.0019		0.0019	0.00061	mg/Kg	☼	11/01/17 18:01	11/02/17 21:26	1
Tetrachloroethene	<0.0019		0.0019	0.00065	mg/Kg	₩.	11/01/17 18:01	11/02/17 21:26	1
Toluene	<0.0019		0.0019	0.00048	mg/Kg	₩	11/01/17 18:01	11/02/17 21:26	1
trans-1,2-Dichloroethene	< 0.0019		0.0019	0.00084	mg/Kg	☼	11/01/17 18:01	11/02/17 21:26	1
trans-1,3-Dichloropropene	<0.0019		0.0019	0.00067	mg/Kg	₩	11/01/17 18:01	11/02/17 21:26	1
1,1,1-Trichloroethane	< 0.0019		0.0019	0.00064	mg/Kg	☼	11/01/17 18:01	11/02/17 21:26	1
1,1,2-Trichloroethane	<0.0019		0.0019	0.00082	mg/Kg	₩	11/01/17 18:01	11/02/17 21:26	1
Trichloroethene	<0.0019		0.0019	0.00064	mg/Kg	₩.	11/01/17 18:01	11/02/17 21:26	1
Vinyl acetate	<0.0048		0.0048	0.0017	mg/Kg	☼	11/01/17 18:01	11/02/17 21:26	1
Vinyl chloride	<0.0019		0.0019	0.00084	mg/Kg	☼	11/01/17 18:01	11/02/17 21:26	1
Xylenes, Total	<0.0038		0.0038	0.00061	mg/Kg	\$	11/01/17 18:01	11/02/17 21:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	87		75 - 131				11/01/17 18:01	11/02/17 21:26	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	87	75 - 131	11/01/17 18:01	11/02/17 21:26	1
4-Bromofluorobenzene (Surr)	89	75 - 131	11/01/17 18:01	11/03/17 12:59	1
Dibromofluoromethane	102	75 - 126	11/01/17 18:01	11/02/17 21:26	1
Dibromofluoromethane	103	75 - 126	11/01/17 18:01	11/03/17 12:59	1
1,2-Dichloroethane-d4 (Surr)	98	70 - 134	11/01/17 18:01	11/02/17 21:26	1
1,2-Dichloroethane-d4 (Surr)	91	70 - 134	11/01/17 18:01	11/03/17 12:59	1
Toluene-d8 (Surr)	95	75 - 124	11/01/17 18:01	11/02/17 21:26	1
Toluene-d8 (Surr)	86	75 ₋ 124	11/01/17 18:01	11/03/17 12:59	1

Page 103 of 231

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 12:40

Date Received: 11/01/17 09:05

Client Sample ID: 3160-32-6 (0-3.5')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-20

Matrix: Solid

Percent Solids: 82.8

Method: 8270D - Semivolatil		mpounds (G Qualifier	•	MD	Unit	_	Dronered	Anglerad	Dil Fac
Analyte		Qualifier	RL -	MDL		— D	Prepared	Analyzed	
Acenaphthene	<0.038		0.038	0.0068		₩	11/07/17 07:18	11/07/17 23:01	1
Acenaphthylene	<0.038		0.038	0.0050				11/07/17 23:01	1
Anthracene	0.0076		0.038	0.0064	0 0	· · · · · · ›		11/07/17 23:01	1
Benzo[a]anthracene	0.018		0.038	0.0051		Ψ.		11/07/17 23:01	1
Benzo[a]pyrene	0.0089		0.038	0.0074		Ψ.		11/07/17 23:01	1
Benzo[b]fluoranthene	0.013	. J	0.038	0.0082		<u>.</u> .		11/07/17 23:01	
Benzo[g,h,i]perylene	<0.038		0.038		mg/Kg	*		11/07/17 23:01	1
Benzo[k]fluoranthene	<0.038		0.038	0.011	0 0	:		11/07/17 23:01	1
Bis(2-chloroethoxy)methane	<0.19		0.19		mg/Kg			11/07/17 23:01	1
Bis(2-chloroethyl)ether	<0.19		0.19		mg/Kg	☼	11/07/17 07:18	11/07/17 23:01	1
Bis(2-ethylhexyl) phthalate	<0.19		0.19	0.070	mg/Kg	₩	11/07/17 07:18	11/07/17 23:01	1
4-Bromophenyl phenyl ether	<0.19		0.19	0.050	mg/Kg	₩	11/07/17 07:18	11/07/17 23:01	1
Butyl benzyl phthalate	<0.19		0.19		mg/Kg	₽	11/07/17 07:18	11/07/17 23:01	1
Carbazole	<0.19		0.19	0.095	mg/Kg	₩	11/07/17 07:18	11/07/17 23:01	1
4-Chloroaniline	<0.77		0.77	0.18	mg/Kg	₩	11/07/17 07:18	11/07/17 23:01	1
4-Chloro-3-methylphenol	<0.38		0.38	0.13	mg/Kg	₩	11/07/17 07:18	11/07/17 23:01	1
2-Chloronaphthalene	<0.19		0.19	0.042	mg/Kg	₩	11/07/17 07:18	11/07/17 23:01	1
2-Chlorophenol	<0.19		0.19	0.065	mg/Kg	≎	11/07/17 07:18	11/07/17 23:01	1
4-Chlorophenyl phenyl ether	<0.19		0.19	0.044	mg/Kg	φ.	11/07/17 07:18	11/07/17 23:01	1
Chrysene	0.020	J	0.038	0.010	mg/Kg	☼	11/07/17 07:18	11/07/17 23:01	1
Dibenz(a,h)anthracene	<0.038		0.038	0.0074	mg/Kg	₩	11/07/17 07:18	11/07/17 23:01	1
Dibenzofuran	<0.19		0.19	0.045	mg/Kg		11/07/17 07:18	11/07/17 23:01	1
1,2-Dichlorobenzene	<0.19		0.19	0.046	mg/Kg	☼	11/07/17 07:18	11/07/17 23:01	1
1,3-Dichlorobenzene	<0.19		0.19	0.043	mg/Kg	☼	11/07/17 07:18	11/07/17 23:01	1
1,4-Dichlorobenzene	<0.19		0.19	0.049	mg/Kg		11/07/17 07:18	11/07/17 23:01	1
3,3'-Dichlorobenzidine	<0.19		0.19	0.053	mg/Kg	☼	11/07/17 07:18	11/07/17 23:01	1
2,4-Dichlorophenol	<0.38		0.38	0.090	mg/Kg	☼	11/07/17 07:18	11/07/17 23:01	1
Diethyl phthalate	<0.19		0.19		mg/Kg	· · · · · · · · · · · · · · · · · · ·	11/07/17 07:18	11/07/17 23:01	1
2,4-Dimethylphenol	<0.38		0.38		mg/Kg	☼	11/07/17 07:18	11/07/17 23:01	1
Dimethyl phthalate	<0.19		0.19		mg/Kg	₩		11/07/17 23:01	1
Di-n-butyl phthalate	<0.19		0.19		mg/Kg	· · · · · · · · · · · · · · · · · · ·		11/07/17 23:01	1
4,6-Dinitro-2-methylphenol	<0.77		0.77	0.31		₩		11/07/17 23:01	1
2,4-Dinitrophenol	<0.77		0.77		mg/Kg	₩		11/07/17 23:01	1
2,4-Dinitrotoluene	<0.19		0.19	0.061		· · · · · · · · · · · · · · · · · · ·		11/07/17 23:01	· · · · · · · · 1
2,6-Dinitrotoluene	<0.19		0.19		mg/Kg	₩		11/07/17 23:01	1
Di-n-octyl phthalate	<0.19		0.19		mg/Kg	₽		11/07/17 23:01	1
Fluoranthene	0.017		0.038	0.002		· · · · · · · · · · · · · · · · · · ·		11/07/17 23:01	
Fluorene	<0.038	J	0.038	0.0071		~ ⇔		11/07/17 23:01	1
Hexachlorobenzene	<0.038		0.038	0.0034	0 0			11/07/17 23:01	
						~~ 			1
Hexachlorobutadiene	<0.19		0.19		mg/Kg	*		11/07/17 23:01	1
Hexachlorocyclopentadiene	<0.77		0.77		mg/Kg	Ţ.		11/07/17 23:01	1
Hexachloroethane	<0.19		0.19		mg/Kg	 .		11/07/17 23:01	1
Indeno[1,2,3-cd]pyrene	<0.038		0.038	0.0099		₩		11/07/17 23:01	1
Isophorone	<0.19		0.19		mg/Kg	\Q		11/07/17 23:01	1
2-Methylnaphthalene	0.033	J	0.077	0.0070		<u>.</u>		11/07/17 23:01	
2-Methylphenol	<0.19		0.19		mg/Kg	*		11/07/17 23:01	1
3 & 4 Methylphenol	<0.19		0.19		mg/Kg	☼		11/07/17 23:01	1
Naphthalene	0.017	J	0.038	0.0059		₩.		11/07/17 23:01	1
2-Nitroaniline	<0.19		0.19	0.051	mg/Kg	₩	11/07/17 07:18	11/07/17 23:01	1

TestAmerica Chicago

2

<u>'</u>

10

12

1 0

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-32-6 (0-3.5')

Date Collected: 10/31/17 12:40 Date Received: 11/01/17 09:05

Terphenyl-d14

2,4,6-Tribromophenol

Tetrachloro-m-xylene

Iron

Lead

DCB Decachlorobiphenyl

Lab Sample ID: 500-136575-20

11/07/17 07:18 11/07/17 23:01

11/07/17 07:18 11/07/17 23:01

11/07/17 16:20 11/10/17 20:05

11/07/17 16:20 11/10/17 20:05

☼ 11/02/17 07:49 11/02/17 21:52

* 11/02/17 07:49 11/02/17 21:52

Matrix: Solid
Percent Solids: 82.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
3-Nitroaniline	<0.38		0.38	0.12	mg/Kg	<u> </u>	11/07/17 07:18	11/07/17 23:01	1
4-Nitroaniline	<0.38		0.38	0.16	mg/Kg	₩	11/07/17 07:18	11/07/17 23:01	1
Nitrobenzene	<0.038		0.038	0.0095	mg/Kg	₽	11/07/17 07:18	11/07/17 23:01	1
2-Nitrophenol	<0.38		0.38	0.090	mg/Kg	₩	11/07/17 07:18	11/07/17 23:01	1
4-Nitrophenol	<0.77		0.77	0.36	mg/Kg	₩	11/07/17 07:18	11/07/17 23:01	1
N-Nitrosodi-n-propylamine	<0.077		0.077	0.047	mg/Kg	₩.	11/07/17 07:18	11/07/17 23:01	1
N-Nitrosodiphenylamine	<0.19		0.19	0.045	mg/Kg	₩	11/07/17 07:18	11/07/17 23:01	1
2,2'-oxybis[1-chloropropane]	<0.19		0.19	0.044	mg/Kg	₩	11/07/17 07:18	11/07/17 23:01	1
Pentachlorophenol	<0.77		0.77	0.61	mg/Kg	₩.	11/07/17 07:18	11/07/17 23:01	1
Phenanthrene	0.082		0.038	0.0053	mg/Kg	☼	11/07/17 07:18	11/07/17 23:01	1
Phenol	<0.19		0.19	0.085	mg/Kg	₩	11/07/17 07:18	11/07/17 23:01	1
Pyrene	0.023	J	0.038	0.0076	mg/Kg	₩.	11/07/17 07:18	11/07/17 23:01	1
1,2,4-Trichlorobenzene	<0.19		0.19	0.041	mg/Kg	₩	11/07/17 07:18	11/07/17 23:01	1
2,4,5-Trichlorophenol	<0.38		0.38	0.087	mg/Kg	☼	11/07/17 07:18	11/07/17 23:01	1
2,4,6-Trichlorophenol	<0.38		0.38	0.13	mg/Kg	₽	11/07/17 07:18	11/07/17 23:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	90		44 - 121				11/07/17 07:18	11/07/17 23:01	1
2-Fluorophenol	98		46 - 133				11/07/17 07:18	11/07/17 23:01	1
Nitrobenzene-d5	93		41 - 120				11/07/17 07:18	11/07/17 23:01	1
Phenol-d5	89		46 - 125				11/07/17 07:18	11/07/17 23:01	1

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography									
Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac	
PCB-1016	<0.019	0.019	0.0068	mg/Kg	-	11/07/17 16:20	11/10/17 20:05	1	
PCB-1221	<0.019	0.019	0.0085	mg/Kg	☼	11/07/17 16:20	11/10/17 20:05	1	
PCB-1232	<0.019	0.019	0.0084	mg/Kg	☼	11/07/17 16:20	11/10/17 20:05	1	
PCB-1242	<0.019	0.019	0.0063	mg/Kg	₩	11/07/17 16:20	11/10/17 20:05	1	
PCB-1248	<0.019	0.019	0.0076	mg/Kg	☼	11/07/17 16:20	11/10/17 20:05	1	
PCB-1254	<0.019	0.019	0.0042	mg/Kg	₩	11/07/17 16:20	11/10/17 20:05	1	
PCB-1260	<0.019	0.019	0.0094	mg/Kg	₩	11/07/17 16:20	11/10/17 20:05	1	
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac	

49 - 129

37 - 121

35 - 160

25 - 139

93

71

71

87

21000 B

21

Method: 6010B - Metals (ICF Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	Result Qualifier	KL	MDL	Onit		Frepareu	Allalyzeu	DII Fac
Antimony	<1.1	1.1	0.21	mg/Kg	₩	11/02/17 07:49	11/02/17 21:52	1
Arsenic	9.1	0.53	0.18	mg/Kg	₩	11/02/17 07:49	11/02/17 21:52	1
Barium	83	0.53	0.060	mg/Kg	₩	11/02/17 07:49	11/02/17 21:52	1
Beryllium	0.44	0.21	0.050	mg/Kg	ф.	11/02/17 07:49	11/02/17 21:52	1
Cadmium	0.13 B	0.11	0.019	mg/Kg	₩	11/02/17 07:49	11/02/17 21:52	1
Chromium	17	0.53	0.26	mg/Kg	₩	11/02/17 07:49	11/02/17 21:52	1
Cobalt	5.4	0.27	0.069	mg/Kg		11/02/17 07:49	11/02/17 21:52	1
Copper	16	0.53	0.15	mg/Kg	☆	11/02/17 07:49	11/02/17 21:52	1

11

0.27

5.5 mg/Kg

0.12 mg/Kg

TestAmerica Chicago

TestAmerica Job ID: 500-136575-1

Client Sample ID: 3160-32-6 (0-3.5')

Date Collected: 10/31/17 12:40

Lab Sample ID: 500-136575-20 Matrix: Solid

Date Received: 11/01/17 09:05 Percent Solids: 82.8

Method: 6010B - Metals (Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Manganese	190		0.53		mg/Kg	₩.	11/02/17 07:49		
Nickel			0.53		mg/Kg		11/02/17 07:49		
Selenium	0.60		0.53		mg/Kg	*	11/02/17 07:49		
Silver	<0.27		0.27		mg/Kg	*	11/02/17 07:49		•
Thallium	<0.53		0.53		mg/Kg	.	11/02/17 07:49	11/02/17 21:52	
Vanadium	30		0.27		mg/Kg	₩	11/02/17 07:49	11/02/17 21:52	•
Zinc	62		1.1	0.47	mg/Kg	☼	11/02/17 07:49	11/02/17 21:52	•
Method: 6010B - Metals (ICP) - TCLP								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Arsenic	<0.050		0.050	0.010	mg/L		11/03/17 15:00	11/05/17 14:44	
Barium	0.34	J	0.50	0.050	mg/L		11/03/17 15:00	11/05/17 14:44	
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/03/17 15:00	11/05/17 14:44	•
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/03/17 15:00	11/05/17 14:44	•
Chromium	<0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 14:44	
Cobalt	0.012	J	0.025	0.010	mg/L		11/03/17 15:00	11/05/17 14:44	
Copper	<0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 14:44	
Iron	<0.40		0.40	0.20	mg/L		11/03/17 15:00	11/05/17 14:44	
Lead	< 0.0075		0.0075	0.0075	mg/L		11/03/17 15:00	11/05/17 14:44	
Manganese	0.99		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 14:44	
Nickel	0.011	J	0.025	0.010	-		11/03/17 15:00	11/05/17 14:44	
Selenium	< 0.050		0.050	0.020	mg/L		11/03/17 15:00	11/05/17 14:44	
Silver	<0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 14:44	
Vanadium	<0.025		0.025	0.010	-		11/03/17 15:00	11/05/17 14:44	
Zinc	0.14	J	0.50	0.020	mg/L		11/03/17 15:00	11/05/17 14:44	
Method: 6010B - Metals (ICP) - SPLP East	l							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Manganese	0.17	· · · · · · · · · · · · · · · · · · ·	0.025	0.010	mg/L		11/03/17 14:56	11/06/17 00:33	
Method: 6020A - Metals (ICD/MS) - TCLD								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Antimony	<0.0060		0.0060	0.0060			11/03/17 15:00	11/06/17 18:10	
Thallium	<0.0020		0.0020	0.0020	-			11/06/17 18:10	
Method: 7470A - TCLP M	ercury - TCLP								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	<0.00020		0.00020	0.00020				11/06/17 08:56	
· · Mothod: 7474D Moverni	· (C)(A A)								
Method: 7471B - Mercury Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	0.035		0.019	0.0063		<u> </u>	11/02/17 16:10		
General Chemistry									
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
pH	4.6		0.20	0.20	SII			11/03/17 08:57	-

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Lab Sample ID: 500-136575-21

Client Sample ID: 3160-45-1 (0-5') Date Collected: 10/31/17 12:50 **Matrix: Solid** Date Received: 11/01/17 09:05 Percent Solids: 81.2

Analyte	Result Qualit	fier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	0.030	0.019	0.0081	mg/Kg	₩	11/01/17 18:01	11/03/17 13:25	1
Benzene	<0.0019	0.0019	0.00048	mg/Kg	₩	11/01/17 18:01	11/03/17 13:25	1
Bromodichloromethane	<0.0019	0.0019	0.00038	mg/Kg	₩	11/01/17 18:01	11/03/17 13:25	1
Bromoform	<0.0019	0.0019	0.00054	mg/Kg	₩	11/01/17 18:01	11/03/17 13:25	1
Bromomethane	<0.0047	0.0047	0.0018	mg/Kg	₩	11/01/17 18:01	11/03/17 13:25	1
2-Butanone (MEK)	<0.0047	0.0047	0.0021	mg/Kg	₩	11/01/17 18:01	11/03/17 13:25	1
Carbon disulfide	<0.0047	0.0047	0.00097	mg/Kg	₽	11/01/17 18:01	11/03/17 13:25	1
Carbon tetrachloride	<0.0019	0.0019	0.00054	mg/Kg	₩	11/01/17 18:01	11/03/17 13:25	1
Chlorobenzene	<0.0019	0.0019	0.00069	mg/Kg	₩	11/01/17 18:01	11/03/17 13:25	1
Chloroethane	<0.0047	0.0047	0.0014	mg/Kg	₽	11/01/17 18:01	11/03/17 13:25	1
Chloroform	<0.0019	0.0019	0.00065	mg/Kg	₩	11/01/17 18:01	11/03/17 13:25	1
Chloromethane	<0.0047	0.0047	0.0019	mg/Kg	₩	11/01/17 18:01	11/03/17 13:25	1
cis-1,2-Dichloroethene	<0.0019	0.0019	0.00052	mg/Kg	₽	11/01/17 18:01	11/03/17 13:25	1
cis-1,3-Dichloropropene	<0.0019	0.0019	0.00056	mg/Kg	₩	11/01/17 18:01	11/03/17 13:25	1
Dibromochloromethane	<0.0019	0.0019	0.00061	mg/Kg	₩	11/01/17 18:01	11/03/17 13:25	1
1,1-Dichloroethane	<0.0019	0.0019	0.00064	mg/Kg	₩	11/01/17 18:01	11/03/17 13:25	1
1,2-Dichloroethane	<0.0047	0.0047	0.0015	mg/Kg	₩	11/01/17 18:01	11/03/17 13:25	1
1,1-Dichloroethene	<0.0019	0.0019	0.00064	mg/Kg	☼	11/01/17 18:01	11/03/17 13:25	1
1,2-Dichloropropane	<0.0019	0.0019	0.00048	mg/Kg	☼	11/01/17 18:01	11/03/17 13:25	1
1,3-Dichloropropene, Total	<0.0019	0.0019	0.00065	mg/Kg	₩	11/01/17 18:01	11/03/17 13:25	1
Ethylbenzene	<0.0019	0.0019	0.00089	mg/Kg	☼	11/01/17 18:01	11/03/17 13:25	1
2-Hexanone	<0.0047	0.0047	0.0015	mg/Kg	₩	11/01/17 18:01	11/03/17 13:25	1
Methylene Chloride	<0.0047	0.0047	0.0018	mg/Kg	☼	11/01/17 18:01	11/03/17 13:25	1
4-Methyl-2-pentanone (MIBK)	<0.0047	0.0047	0.0014	mg/Kg	☼	11/01/17 18:01	11/03/17 13:25	1
Methyl tert-butyl ether	<0.0019	0.0019	0.00055	mg/Kg	₽	11/01/17 18:01	11/03/17 13:25	1
Styrene	<0.0019	0.0019	0.00056	mg/Kg	☼	11/01/17 18:01	11/03/17 13:25	1
1,1,2,2-Tetrachloroethane	<0.0019	0.0019	0.00060	mg/Kg	₩	11/01/17 18:01	11/03/17 13:25	1
Tetrachloroethene	<0.0019	0.0019	0.00064	mg/Kg	₽	11/01/17 18:01	11/03/17 13:25	1
Toluene	<0.0019	0.0019	0.00047	mg/Kg	☼	11/01/17 18:01	11/03/17 13:25	1
trans-1,2-Dichloroethene	<0.0019	0.0019	0.00083	mg/Kg	☼	11/01/17 18:01	11/03/17 13:25	1
trans-1,3-Dichloropropene	<0.0019	0.0019	0.00065	mg/Kg	₩	11/01/17 18:01	11/03/17 13:25	1
1,1,1-Trichloroethane	<0.0019	0.0019	0.00063	mg/Kg	₩	11/01/17 18:01	11/03/17 13:25	1
1,1,2-Trichloroethane	<0.0019	0.0019	0.00080	mg/Kg	₩	11/01/17 18:01	11/03/17 13:25	1
Trichloroethene	<0.0019	0.0019	0.00063	mg/Kg		11/01/17 18:01	11/03/17 13:25	1
Vinyl acetate	<0.0047	0.0047	0.0016	mg/Kg	₩	11/01/17 18:01	11/03/17 13:25	1
Vinyl chloride	<0.0019	0.0019	0.00083	mg/Kg	☼	11/01/17 18:01	11/03/17 13:25	1
Xylenes, Total	<0.0037	0.0037	0.00060	mg/Kg	\$	11/01/17 18:01	11/03/17 13:25	1
Surrogate	%Recovery Quality	fier Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	87	75 - 131				11/01/17 18:01	11/03/17 13:25	1
Dibromofluoromethane	103	75 - 126				11/01/17 18:01	11/03/17 13:25	1
1,2-Dichloroethane-d4 (Surr)	99	70 - 134				11/01/17 18:01	11/03/17 13:25	1

Method: 8270D -	Semivolatile (Organic (Compounds	(GC/MS)

method: 0270B Centivolatile Organic Compounds (Comic)									
	Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Acenaphthene	<0.040	0.040	0.0072	mg/Kg	\	11/07/17 07:18	11/07/17 23:28	1
	Acenaphthylene	<0.040	0.040	0.0052	mg/Kg	₽	11/07/17 07:18	11/07/17 23:28	1
	Anthracene	<0.040	0.040	0.0066	mg/Kg	₽	11/07/17 07:18	11/07/17 23:28	1
	Benzo[a]anthracene	<0.040	0.040	0.0054	mg/Kg	₩	11/07/17 07:18	11/07/17 23:28	1

TestAmerica Chicago

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 12:50

Date Received: 11/01/17 09:05

2-Nitrophenol

Client Sample ID: 3160-45-1 (0-5')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-21

Matrix: Solid

Percent Solids: 81.2

Method: 8270D - Semivolatil Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]pyrene	<0.040		0.040	0.0077		<u></u>	11/07/17 07:18		
Benzo[b]fluoranthene	<0.040		0.040	0.0086		₩	11/07/17 07:18	11/07/17 23:28	
Benzo[g,h,i]perylene	<0.040		0.040		mg/Kg		11/07/17 07:18	11/07/17 23:28	,
Benzo[k]fluoranthene	<0.040		0.040		mg/Kg	₩		11/07/17 23:28	
Bis(2-chloroethoxy)methane	<0.20		0.20		mg/Kg	₩		11/07/17 23:28	
Bis(2-chloroethyl)ether	<0.20		0.20		mg/Kg	₩		11/07/17 23:28	
Bis(2-ethylhexyl) phthalate	<0.20		0.20		mg/Kg	₩		11/07/17 23:28	
4-Bromophenyl phenyl ether	<0.20		0.20		mg/Kg	₩		11/07/17 23:28	
Butyl benzyl phthalate	<0.20		0.20		mg/Kg			11/07/17 23:28	
Carbazole	<0.20		0.20		mg/Kg	₩		11/07/17 23:28	
4-Chloroaniline	<0.80		0.80		mg/Kg	₩		11/07/17 23:28	
4-Chloro-3-methylphenol	<0.40		0.40		mg/Kg			11/07/17 23:28	
2-Chloronaphthalene	<0.20		0.40		mg/Kg	₩		11/07/17 23:28	
2-Chlorophenol	<0.20		0.20		mg/Kg			11/07/17 23:28	
4-Chlorophenyl phenyl ether	<0.20		0.20		mg/Kg	· · · · · · · · · · · · · · · · · · ·		11/07/17 23:28	
			0.20			☆		11/07/17 23:28	
Chrysene Dibertale handbrooms	<0.040				mg/Kg	~ ☆			•
Dibenz(a,h)anthracene	<0.040		0.040	0.0077				11/07/17 23:28	
Dibenzofuran	<0.20		0.20		mg/Kg	*		11/07/17 23:28	•
1,2-Dichlorobenzene	<0.20		0.20		mg/Kg	φ.		11/07/17 23:28	•
1,3-Dichlorobenzene	<0.20		0.20		mg/Kg			11/07/17 23:28	
1,4-Dichlorobenzene	<0.20		0.20		mg/Kg	₩.		11/07/17 23:28	•
3,3'-Dichlorobenzidine	<0.20		0.20		mg/Kg	:		11/07/17 23:28	•
2,4-Dichlorophenol	<0.40		0.40		mg/Kg	.		11/07/17 23:28	
Diethyl phthalate	<0.20		0.20		mg/Kg	₽		11/07/17 23:28	•
2,4-Dimethylphenol	<0.40		0.40		mg/Kg	☼	11/07/17 07:18	11/07/17 23:28	•
Dimethyl phthalate	<0.20		0.20	0.052	mg/Kg	₩	11/07/17 07:18	11/07/17 23:28	
Di-n-butyl phthalate	<0.20		0.20	0.061	mg/Kg	₩	11/07/17 07:18	11/07/17 23:28	
4,6-Dinitro-2-methylphenol	<0.80		0.80	0.32	mg/Kg	₩	11/07/17 07:18	11/07/17 23:28	•
2,4-Dinitrophenol	<0.80		0.80	0.70	mg/Kg	₩	11/07/17 07:18	11/07/17 23:28	
2,4-Dinitrotoluene	<0.20		0.20	0.063	mg/Kg	₽	11/07/17 07:18	11/07/17 23:28	
2,6-Dinitrotoluene	<0.20		0.20	0.078	mg/Kg	₩	11/07/17 07:18	11/07/17 23:28	
Di-n-octyl phthalate	<0.20		0.20	0.065	mg/Kg	₩	11/07/17 07:18	11/07/17 23:28	
Fluoranthene	<0.040		0.040	0.0074	mg/Kg	₩.	11/07/17 07:18	11/07/17 23:28	
Fluorene	<0.040		0.040	0.0056	mg/Kg	₩	11/07/17 07:18	11/07/17 23:28	•
Hexachlorobenzene	<0.080		0.080	0.0092	mg/Kg	₩	11/07/17 07:18	11/07/17 23:28	
Hexachlorobutadiene	<0.20		0.20	0.063	mg/Kg	₩.	11/07/17 07:18	11/07/17 23:28	
Hexachlorocyclopentadiene	<0.80		0.80	0.23	mg/Kg	₩	11/07/17 07:18	11/07/17 23:28	
Hexachloroethane	<0.20		0.20	0.061	mg/Kg	₩	11/07/17 07:18	11/07/17 23:28	
Indeno[1,2,3-cd]pyrene	<0.040		0.040	0.010	mg/Kg		11/07/17 07:18	11/07/17 23:28	
Isophorone	<0.20		0.20		mg/Kg	₩	11/07/17 07:18	11/07/17 23:28	
2-Methylnaphthalene	<0.080		0.080	0.0073		₩	11/07/17 07:18	11/07/17 23:28	
2-Methylphenol	<0.20		0.20		mg/Kg		11/07/17 07:18	11/07/17 23:28	
3 & 4 Methylphenol	<0.20		0.20		mg/Kg	₩		11/07/17 23:28	
Naphthalene	<0.040		0.040	0.0061		₽		11/07/17 23:28	
2-Nitroaniline	<0.20		0.20		mg/Kg			11/07/17 23:28	,
3-Nitroaniline	<0.40		0.40		mg/Kg			11/07/17 23:28	
4-Nitroaniline	<0.40		0.40		mg/Kg			11/07/17 23:28	
Nitrobenzene	<0.040		0.40	0.0099		· · · · · · · · · · · · · · · · · · ·		11/07/17 23:28	· · · · · .
2 Nitrophonel	<0.040		0.040	0.0038	ma/Ka	***		11/07/17 23.20	,

TestAmerica Chicago

☼ 11/07/17 07:18 11/07/17 23:28

0.40

0.094 mg/Kg

< 0.40

2

5

5

6

0

10

12

1 4

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 12:50

Client Sample ID: 3160-45-1 (0-5')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-21

Matrix: Solid Percent Solids: 81.2

Date Received: 11/01/17 09:05

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.80	0.80	0.38	mg/Kg	<u> </u>	11/07/17 07:18	11/07/17 23:28	1
N-Nitrosodi-n-propylamine	<0.080	0.080	0.049	mg/Kg	₽	11/07/17 07:18	11/07/17 23:28	1
N-Nitrosodiphenylamine	<0.20	0.20	0.047	mg/Kg	☼	11/07/17 07:18	11/07/17 23:28	1
2,2'-oxybis[1-chloropropane]	<0.20	0.20	0.046	mg/Kg	☼	11/07/17 07:18	11/07/17 23:28	1
Pentachlorophenol	<0.80	0.80	0.64	mg/Kg	₽	11/07/17 07:18	11/07/17 23:28	1
Phenanthrene	<0.040	0.040	0.0055	mg/Kg	☼	11/07/17 07:18	11/07/17 23:28	1
Phenol	<0.20	0.20	0.088	mg/Kg	☼	11/07/17 07:18	11/07/17 23:28	1
Pyrene	<0.040	0.040	0.0079	mg/Kg	₽	11/07/17 07:18	11/07/17 23:28	1
1,2,4-Trichlorobenzene	<0.20	0.20	0.043	mg/Kg	☼	11/07/17 07:18	11/07/17 23:28	1
2,4,5-Trichlorophenol	<0.40	0.40	0.091	mg/Kg	☼	11/07/17 07:18	11/07/17 23:28	1
2,4,6-Trichlorophenol	<0.40	0.40	0.14	mg/Kg	₩.	11/07/17 07:18	11/07/17 23:28	1

Surrogate	%Recovery C	Qualifier Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	87	44 - 121	11/07/17 07:18	11/07/17 23:28	1
2-Fluorophenol	94	46 - 133	11/07/17 07:18	11/07/17 23:28	1
Nitrobenzene-d5	101	41 - 120	11/07/17 07:18	11/07/17 23:28	1
Phenol-d5	82	46 - 125	11/07/17 07:18	11/07/17 23:28	1
Terphenyl-d14	98	35 - 160	11/07/17 07:18	11/07/17 23:28	1
2,4,6-Tribromophenol	62	25 - 139	11/07/17 07:18	11/07/17 23:28	1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	<0.020	0.020	0.0070	mg/Kg	<u> </u>	11/07/17 16:20	11/10/17 20:21	1
PCB-1221	<0.020	0.020	0.0087	mg/Kg	☼	11/07/17 16:20	11/10/17 20:21	1
PCB-1232	<0.020	0.020	0.0086	mg/Kg	☼	11/07/17 16:20	11/10/17 20:21	1
PCB-1242	<0.020	0.020	0.0065	mg/Kg	₽	11/07/17 16:20	11/10/17 20:21	1
PCB-1248	<0.020	0.020	0.0078	mg/Kg	☼	11/07/17 16:20	11/10/17 20:21	1
PCB-1254	<0.020	0.020	0.0043	mg/Kg	☼	11/07/17 16:20	11/10/17 20:21	1
PCB-1260	<0.020	0.020	0.0097	mg/Kg		11/07/17 16:20	11/10/17 20:21	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	86		49 - 129	11/07/17 16:20	11/10/17 20:21	1
DCB Decachlorobiphenyl	92		37 - 121	11/07/17 16:20	11/10/17 20:21	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.40	J	1.1	0.22	mg/Kg	<u> </u>	11/02/17 07:14	11/02/17 17:57	1
Arsenic	7.5		0.57	0.20	mg/Kg	₩	11/02/17 07:14	11/02/17 17:57	1
Barium	81		0.57	0.065	mg/Kg	₩	11/02/17 07:14	11/02/17 17:57	1
Beryllium	0.65		0.23	0.053	mg/Kg	₩	11/02/17 07:14	11/02/17 17:57	1
Cadmium	0.088	J	0.11	0.021	mg/Kg	₩	11/02/17 07:14	11/02/17 17:57	1
Chromium	17		0.57	0.28	mg/Kg	₩	11/02/17 07:14	11/02/17 17:57	1
Cobalt	9.8		0.29	0.075	mg/Kg	₩	11/02/17 07:14	11/02/17 17:57	1
Copper	10		0.57	0.16	mg/Kg	₩	11/02/17 07:14	11/02/17 17:57	1
Iron	20000		11	5.9	mg/Kg	☼	11/02/17 07:14	11/02/17 17:57	1
Lead	13		0.29	0.13	mg/Kg	₩.	11/02/17 07:14	11/02/17 17:57	1
Manganese	400		0.57	0.083	mg/Kg	☼	11/02/17 07:14	11/02/17 17:57	1
Nickel	13		0.57	0.17	mg/Kg	☼	11/02/17 07:14	11/02/17 17:57	1
Selenium	0.55	J	0.57	0.34	mg/Kg		11/02/17 07:14	11/02/17 17:57	1
Silver	<0.29		0.29	0.074	mg/Kg	☼	11/02/17 07:14	11/02/17 17:57	1

TestAmerica Chicago

2

4

6

8

46

11

12

13

14

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136575-1

Client Sample ID: 3160-45-1 (0-5')

Date Collected: 10/31/17 12:50 Date Received: 11/01/17 09:05

Lab Sample ID: 500-136575-21

Matrix: Solid

Wati ix. Joliu	
Percent Solids: 81.2	

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Thallium	<0.57		0.57	0.29	mg/Kg	-	11/02/17 07:14	11/02/17 17:57	1
Vanadium	29		0.29	0.067	mg/Kg	₽	11/02/17 07:14	11/02/17 17:57	1
Zinc	38		1.1	0.50	mg/Kg	☼	11/02/17 07:14	11/02/17 17:57	1
Method: 6010B - Metals	s (ICP) - TCLP								
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/03/17 15:00	11/05/17 14:48	1
Barium	1.1		0.50	0.050	mg/L		11/03/17 15:00	11/05/17 14:48	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/03/17 15:00	11/05/17 14:48	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/03/17 15:00	11/05/17 14:48	1
Chromium	<0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 14:48	1
Cobalt	<0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 14:48	1
Copper	<0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 14:48	1
Iron	<0.40		0.40	0.20	mg/L		11/03/17 15:00	11/05/17 14:48	1
Lead	<0.0075		0.0075	0.0075	mg/L		11/03/17 15:00	11/05/17 14:48	1
Manganese	0.019	J	0.025	0.010	mg/L		11/03/17 15:00	11/05/17 14:48	1
Nickel	<0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 14:48	1
Selenium	<0.050		0.050	0.020	mg/L		11/03/17 15:00	11/05/17 14:48	1
Silver	<0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 14:48	1
Vanadium	<0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 14:48	1
Zinc	<0.50		0.50	0.020	mg/L		11/03/17 15:00	11/05/17 14:48	1
Method: 6020A - Metals	s (ICP/MS) - TCLP								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060		0.0060	0.0060	mg/L		11/03/17 15:00	11/06/17 18:14	1
Thallium	<0.0020		0.0020	0.0020	mg/L		11/03/17 15:00	11/06/17 18:14	1
Method: 7470A - TCLP	Mercury - TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/03/17 12:20	11/06/17 09:03	1
Method: 7471B - Mercu	ıry (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.023		0.018	0.0061	mg/Kg	<u>∓</u>	11/02/17 16:10	11/03/17 09:10	1
General Chemistry									
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
pH	8.0		0.20	0.20	SU			11/03/17 08:57	1

TestAmerica Job ID: 500-136575-1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-45-1 (5-6')

Lab Sample ID: 500-136575-22 Date Collected: 10/31/17 13:00 **Matrix: Solid** Date Received: 11/01/17 09:05 Percent Solids: 82.1

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	0.074		0.019	0.0081	mg/Kg	☼	11/01/17 18:01	11/03/17 13:50	1
Benzene	<0.0019		0.0019	0.00047	mg/Kg	☼	11/01/17 18:01	11/03/17 13:50	1
Bromodichloromethane	<0.0019		0.0019	0.00038	mg/Kg	☼	11/01/17 18:01	11/03/17 13:50	1
Bromoform	<0.0019		0.0019	0.00054	mg/Kg	₩	11/01/17 18:01	11/03/17 13:50	1
Bromomethane	<0.0046		0.0046	0.0018	mg/Kg	₩	11/01/17 18:01	11/03/17 13:50	1
2-Butanone (MEK)	<0.0046		0.0046	0.0021	mg/Kg	₩	11/01/17 18:01	11/03/17 13:50	1
Carbon disulfide	<0.0046		0.0046	0.00097	mg/Kg	₽	11/01/17 18:01	11/03/17 13:50	1
Carbon tetrachloride	<0.0019		0.0019	0.00054	mg/Kg	₩	11/01/17 18:01	11/03/17 13:50	1
Chlorobenzene	< 0.0019		0.0019	0.00069	mg/Kg	☼	11/01/17 18:01	11/03/17 13:50	1
Chloroethane	<0.0046		0.0046	0.0014	mg/Kg	₽	11/01/17 18:01	11/03/17 13:50	1
Chloroform	<0.0019		0.0019	0.00065	mg/Kg	₩	11/01/17 18:01	11/03/17 13:50	1
Chloromethane	<0.0046		0.0046	0.0019	mg/Kg	₩	11/01/17 18:01	11/03/17 13:50	1
cis-1,2-Dichloroethene	<0.0019		0.0019	0.00052	mg/Kg	\$	11/01/17 18:01	11/03/17 13:50	1
cis-1,3-Dichloropropene	<0.0019		0.0019	0.00056	mg/Kg	₩	11/01/17 18:01	11/03/17 13:50	1
Dibromochloromethane	<0.0019		0.0019	0.00061	mg/Kg	☼	11/01/17 18:01	11/03/17 13:50	1
1,1-Dichloroethane	<0.0019		0.0019	0.00064	mg/Kg	₩.	11/01/17 18:01	11/03/17 13:50	1
1,2-Dichloroethane	<0.0046		0.0046	0.0014	mg/Kg	☼	11/01/17 18:01	11/03/17 13:50	1
1,1-Dichloroethene	< 0.0019		0.0019	0.00064	mg/Kg	₩	11/01/17 18:01	11/03/17 13:50	1
1,2-Dichloropropane	<0.0019		0.0019	0.00048	mg/Kg	₩	11/01/17 18:01	11/03/17 13:50	1
1,3-Dichloropropene, Total	< 0.0019		0.0019	0.00065	mg/Kg	₩	11/01/17 18:01	11/03/17 13:50	1
Ethylbenzene	< 0.0019		0.0019	0.00089	mg/Kg	₩	11/01/17 18:01	11/03/17 13:50	1
2-Hexanone	<0.0046		0.0046	0.0014	mg/Kg	ф.	11/01/17 18:01	11/03/17 13:50	1
Methylene Chloride	<0.0046		0.0046	0.0018	mg/Kg	₩	11/01/17 18:01	11/03/17 13:50	1
4-Methyl-2-pentanone (MIBK)	<0.0046		0.0046	0.0014		₩	11/01/17 18:01	11/03/17 13:50	1
Methyl tert-butyl ether	<0.0019		0.0019	0.00055	mg/Kg		11/01/17 18:01	11/03/17 13:50	1
Styrene	< 0.0019		0.0019	0.00056	mg/Kg	₩	11/01/17 18:01	11/03/17 13:50	1
1,1,2,2-Tetrachloroethane	< 0.0019		0.0019	0.00059	mg/Kg	₩	11/01/17 18:01	11/03/17 13:50	1
Tetrachloroethene	<0.0019		0.0019	0.00063	mg/Kg		11/01/17 18:01	11/03/17 13:50	1
Toluene	<0.0019		0.0019	0.00047	0 0	☼	11/01/17 18:01	11/03/17 13:50	1
trans-1,2-Dichloroethene	< 0.0019		0.0019	0.00082	mg/Kg	₩	11/01/17 18:01	11/03/17 13:50	1
trans-1,3-Dichloropropene	<0.0019		0.0019	0.00065			11/01/17 18:01	11/03/17 13:50	1
1,1,1-Trichloroethane	<0.0019		0.0019	0.00062		☼	11/01/17 18:01	11/03/17 13:50	1
1,1,2-Trichloroethane	<0.0019		0.0019	0.00080		₩	11/01/17 18:01	11/03/17 13:50	1
Trichloroethene	<0.0019		0.0019	0.00063		· · · · · · · · · · · · · · · · · · ·	11/01/17 18:01	11/03/17 13:50	1
Vinyl acetate	<0.0046		0.0046	0.0016		₩		11/03/17 13:50	1
Vinyl chloride	<0.0019		0.0019	0.00082		₩	11/01/17 18:01		1
Xylenes, Total	<0.0037		0.0037	0.00059		ф.	11/01/17 18:01		1
Surrogate	%Recovery	Qualifier L	.imits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		75 - 131				-	11/03/17 13:50	1
Dibromofluoromethane	102	7	75 - 126				11/01/17 18:01	11/03/17 13:50	1
1,2-Dichloroethane-d4 (Surr)	97	7	70 ₋ 134				11/01/17 18:01	11/03/17 13:50	1
Toluene-d8 (Surr)	102	7	75 - 124				11/01/17 18:01	11/03/17 13:50	1

TestAmerica Chicago

Analyzed

Prepared

☼ 11/07/17 07:18 11/07/17 23:54

☼ 11/07/17 07:18 11/07/17 23:54

* 11/07/17 07:18 11/07/17 23:54

Page 111 of 231

RL

0.040

0.040

0.040

0.040

MDL Unit

0.0072 mg/Kg

0.0053 mg/Kg

0.0067 mg/Kg

0.0054 mg/Kg

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Result Qualifier

<0.040

<0.040

<0.040

0.0080 JB

Analyte

Acenaphthene

Anthracene

Acenaphthylene

Benzo[a]anthracene

Dil Fac

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-22

Matrix: Solid Percent Solids: 82.1

Client Sample ID: 3160-45-1 (5-6')

Date Collected: 10/31/17 13:00 Date Received: 11/01/17 09:05

	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
0.0085	J	0.040			<u> </u>	11/07/17 07:18	11/07/17 23:54	1
0.015	J	0.040	0.0087	mg/Kg	₩	11/07/17 07:18	11/07/17 23:54	1
<0.040		0.040	0.013	mg/Kg	₩	11/07/17 07:18	11/07/17 23:54	1
<0.040		0.040	0.012	mg/Kg	₩	11/07/17 07:18	11/07/17 23:54	1
<0.20		0.20	0.041	mg/Kg	≎	11/07/17 07:18	11/07/17 23:54	1
<0.20		0.20	0.060	mg/Kg	₽	11/07/17 07:18	11/07/17 23:54	1
<0.20		0.20	0.074	mg/Kg	₽	11/07/17 07:18	11/07/17 23:54	1
<0.20		0.20	0.053	mg/Kg	☼	11/07/17 07:18	11/07/17 23:54	1
<0.20		0.20	0.077	mg/Kg	.	11/07/17 07:18	11/07/17 23:54	1
<0.20		0.20	0.10	mg/Kg	₩	11/07/17 07:18	11/07/17 23:54	1
<0.81		0.81	0.19	mg/Kg	₩	11/07/17 07:18	11/07/17 23:54	1
<0.40		0.40	0.14	mg/Kg		11/07/17 07:18	11/07/17 23:54	1
<0.20		0.20	0.044	mg/Kg	≎	11/07/17 07:18	11/07/17 23:54	1
<0.20		0.20	0.069	mg/Kg	≎	11/07/17 07:18	11/07/17 23:54	1
<0.20		0.20	0.047	mg/Kg	₽	11/07/17 07:18	11/07/17 23:54	1
<0.040		0.040			₩	11/07/17 07:18	11/07/17 23:54	1
<0.040		0.040	0.0078	mg/Kg	₩	11/07/17 07:18	11/07/17 23:54	1
<0.20		0.20				11/07/17 07:18	11/07/17 23:54	1
<0.20		0.20			₩	11/07/17 07:18	11/07/17 23:54	1
<0.20		0.20			₩	11/07/17 07:18	11/07/17 23:54	1
								1
					₩			1
					₽			1
					 \$			1
					₩			1
					₩			1
								1
					₩			1
					₩			1
								· · · · · · · · · · · · · · · · · · ·
								1
								1
								······································
	3							1
				0 0				1
								1
					-75-			1
					 .			
								1
								1
								1
								1
								1
					<i>₩</i>			1
								1
<0.40 <0.040		0.40 0.040		mg/Kg mg/Kg			11/07/17 23:54 11/07/17 23:54	1
								1
	0.015 <0.040 <0.040 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.040 <0.040 <0.020 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.040 <0.20 <0.081 <0.081 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.0	<0.040 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.81 <0.40 <0.20 <0.040 <0.040 <0.020 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.40 <0.20 <0.20 <0.40 <0.20 <0.81 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.81 <0.00 <0.81 <0.20 <0.040 <0.00 <0.081 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00	0.015 J 0.040 <0.040	0.015 J 0.040 0.087 <0.040	0.015 J 0.040 0.0087 mg/Kg	0.015 J 0.040 0.0087 mg/Kg 3 <0.040	0.015 J	0.015 J

TestAmerica Chicago

_

4

6

8

10

12

1 /

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 13:00

Date Received: 11/01/17 09:05

Client Sample ID: 3160-45-1 (5-6')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-22

Percent Solids: 82.1

Matrix: Solid

Method: 8270D - Semivolat	ile Organic Co	mpounds	(GC/MS) (Cd	ntinued)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.81		0.81	0.38	mg/Kg	<u> </u>	11/07/17 07:18	11/07/17 23:54	1
N-Nitrosodi-n-propylamine	<0.081		0.081	0.049	mg/Kg	\$	11/07/17 07:18	11/07/17 23:54	1
N-Nitrosodiphenylamine	<0.20		0.20	0.047	mg/Kg	☼	11/07/17 07:18	11/07/17 23:54	1
2,2'-oxybis[1-chloropropane]	<0.20		0.20	0.047	mg/Kg	≎	11/07/17 07:18	11/07/17 23:54	1
Pentachlorophenol	<0.81		0.81	0.65	mg/Kg	₽	11/07/17 07:18	11/07/17 23:54	1
Phenanthrene	0.012	J	0.040	0.0056	mg/Kg	☼	11/07/17 07:18	11/07/17 23:54	1
Phenol	<0.20		0.20	0.089	mg/Kg	≎	11/07/17 07:18	11/07/17 23:54	1
Pyrene	0.015	J	0.040	0.0080	mg/Kg	₽	11/07/17 07:18	11/07/17 23:54	1
1,2,4-Trichlorobenzene	<0.20		0.20	0.043	mg/Kg	≎	11/07/17 07:18	11/07/17 23:54	1
2,4,5-Trichlorophenol	<0.40		0.40	0.092	mg/Kg	☼	11/07/17 07:18	11/07/17 23:54	1
2,4,6-Trichlorophenol	<0.40		0.40	0.14	mg/Kg	₩	11/07/17 07:18	11/07/17 23:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	86		44 - 121				11/07/17 07:18	11/07/17 23:54	1
2-Fluorophenol	91		46 - 133				11/07/17 07:18	11/07/17 23:54	1
Nitrobenzene-d5	92		41 - 120				11/07/17 07:18	11/07/17 23:54	1
Phenol-d5	78		46 - 125				11/07/17 07:18	11/07/17 23:54	1
Terphenyl-d14	89		35 - 160				11/07/17 07:18	11/07/17 23:54	1
2,4,6-Tribromophenol	62		25 - 139				11/07/17 07:18	11/07/17 23:54	1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	<0.020	0.020	0.0069	mg/Kg	₩	11/07/17 16:20	11/10/17 20:36	1
PCB-1221	<0.020	0.020	0.0086	mg/Kg	☼	11/07/17 16:20	11/10/17 20:36	1
PCB-1232	<0.020	0.020	0.0085	mg/Kg	☼	11/07/17 16:20	11/10/17 20:36	1
PCB-1242	<0.020	0.020	0.0064	mg/Kg	₽	11/07/17 16:20	11/10/17 20:36	1
PCB-1248	<0.020	0.020	0.0077	mg/Kg	₩	11/07/17 16:20	11/10/17 20:36	1
PCB-1254	<0.020	0.020	0.0042	mg/Kg	☼	11/07/17 16:20	11/10/17 20:36	1
PCB-1260	<0.020	0.020	0.0096	mg/Kg	₩.	11/07/17 16:20	11/10/17 20:36	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	85		49 - 129	11/07/17 16:20	11/10/17 20:36	1
DCB Decachlorobiphenyl	93		37 - 121	11/07/17 16:20	11/10/17 20:36	1

Method: 6010B - Metals (ICP)	Popult	Qualifier	RL	MDL	Unit	D	Droporod	Analyzad	Dil Fac
Analyte		Qualifier					Prepared	Analyzed	DII Fac
Antimony	<1.1		1.1	0.21	mg/Kg	₩	11/02/17 07:14	11/02/17 18:01	1
Arsenic	7.2		0.55	0.19	mg/Kg	₩	11/02/17 07:14	11/02/17 18:01	1
Barium	100		0.55	0.063	mg/Kg	₩	11/02/17 07:14	11/02/17 18:01	1
Beryllium	0.62		0.22	0.051	mg/Kg	₽	11/02/17 07:14	11/02/17 18:01	1
Cadmium	0.15		0.11	0.020	mg/Kg	₩	11/02/17 07:14	11/02/17 18:01	1
Chromium	16		0.55	0.27	mg/Kg	₩	11/02/17 07:14	11/02/17 18:01	1
Cobalt	13		0.27	0.072	mg/Kg	₩	11/02/17 07:14	11/02/17 18:01	1
Copper	12		0.55	0.15	mg/Kg	₩	11/02/17 07:14	11/02/17 18:01	1
Iron	18000		11	5.7	mg/Kg	₩	11/02/17 07:14	11/02/17 18:01	1
Lead	27		0.27	0.13	mg/Kg	₽	11/02/17 07:14	11/02/17 18:01	1
Manganese	880		0.55	0.080	mg/Kg	₩	11/02/17 07:14	11/02/17 18:01	1
Nickel	18		0.55	0.16	mg/Kg	₩	11/02/17 07:14	11/02/17 18:01	1
Selenium	0.61		0.55	0.32	mg/Kg	₩.	11/02/17 07:14	11/02/17 18:01	1
Silver	< 0.27		0.27	0.071	mg/Kg	☼	11/02/17 07:14	11/02/17 18:01	1

TestAmerica Chicago

Page 113 of 231

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 13:00

Date Received: 11/01/17 09:05

Client Sample ID: 3160-45-1 (5-6')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-22

Matrix: Solid

Percent Solids: 82.1

Method: 6010B - Metals	• • •) Qualifier	RL	MDL	Unit	D	Dronorod	Analyzad	Dil Fac
Analyte Thallium	<0.55	Quaimer	0.55		mg/Kg	— ¤	Prepared 11/02/17 07:14	Analyzed 11/02/17 18:01	DII Fac
Vanadium			0.33		mg/Kg	<u>\$</u> .		11/02/17 18:01	
	23 48		1.1					11/02/17 18:01	1
Zinc	40		1.1	0.46	mg/Kg	**	11/02/17 07.14	11/02/17 16.01	'
Method: 6010B - Metals	(ICP) - TCLP								
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/03/17 15:00	11/05/17 15:00	1
Barium	0.87		0.50	0.050	mg/L		11/03/17 15:00	11/05/17 15:00	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/03/17 15:00	11/05/17 15:00	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/03/17 15:00	11/05/17 15:00	1
Chromium	<0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 15:00	1
Cobalt	<0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 15:00	1
Copper	0.020	J	0.025	0.010	mg/L		11/03/17 15:00	11/05/17 15:00	1
Iron	<0.40		0.40	0.20	mg/L		11/03/17 15:00	11/05/17 15:00	1
Lead	< 0.0075		0.0075	0.0075	mg/L		11/03/17 15:00	11/05/17 15:00	1
Manganese	0.031		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 15:00	1
Nickel	<0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 15:00	1
Selenium	0.021	J	0.050	0.020	mg/L		11/03/17 15:00	11/05/17 15:00	1
Silver	<0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 15:00	1
Vanadium	<0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 15:00	1
Zinc	0.028	J	0.50	0.020	mg/L		11/03/17 15:00	11/05/17 15:00	1
Method: 6020A - Metals	(ICP/MS) - TCLP								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060		0.0060	0.0060	mg/L		11/03/17 15:00	11/06/17 18:26	1
Thallium -	<0.0020		0.0020	0.0020	mg/L		11/03/17 15:00	11/06/17 18:26	1
Method: 7470A - TCLP I	Mercury - TCLP								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/03/17 12:20	11/06/17 09:04	1
Method: 7471B - Mercui	y (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.039		0.018	0.0060	mg/Kg		11/02/17 16:10	11/03/17 09:12	1
General Chemistry									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
pH	7.8		0.20	0.20	SU			11/03/17 08:57	1

2

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-45-2 (0-5')

Date Collected: 10/31/17 13:10 Date Received: 11/01/17 09:05 Lab Sample ID: 500-136575-23

Matrix: Solid
Percent Solids: 81.0

Method: 8260B - Volatile O Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	0.019		0.018	0.0079	mg/Kg	<u> </u>	11/01/17 18:01	11/03/17 14:15	1
Benzene	<0.0018		0.0018	0.00046	mg/Kg	☼	11/01/17 18:01	11/03/17 14:15	1
Bromodichloromethane	<0.0018		0.0018	0.00037	mg/Kg	☼	11/01/17 18:01	11/03/17 14:15	1
Bromoform	<0.0018		0.0018	0.00053	mg/Kg	₩	11/01/17 18:01	11/03/17 14:15	1
Bromomethane	<0.0045		0.0045	0.0017	mg/Kg	₩	11/01/17 18:01	11/03/17 14:15	1
2-Butanone (MEK)	<0.0045		0.0045	0.0020	mg/Kg	₩	11/01/17 18:01	11/03/17 14:15	1
Carbon disulfide	<0.0045		0.0045	0.00095	mg/Kg		11/01/17 18:01	11/03/17 14:15	1
Carbon tetrachloride	<0.0018		0.0018	0.00053	mg/Kg	₩	11/01/17 18:01	11/03/17 14:15	1
Chlorobenzene	<0.0018		0.0018	0.00067	mg/Kg	☼	11/01/17 18:01	11/03/17 14:15	1
Chloroethane	<0.0045		0.0045	0.0013	mg/Kg		11/01/17 18:01	11/03/17 14:15	1
Chloroform	<0.0018		0.0018	0.00063	mg/Kg	☼	11/01/17 18:01	11/03/17 14:15	1
Chloromethane	< 0.0045		0.0045	0.0018	mg/Kg	₩	11/01/17 18:01	11/03/17 14:15	1
cis-1,2-Dichloroethene	<0.0018		0.0018	0.00051	mg/Kg	\$	11/01/17 18:01	11/03/17 14:15	1
cis-1,3-Dichloropropene	<0.0018		0.0018	0.00055	mg/Kg	₩	11/01/17 18:01	11/03/17 14:15	1
Dibromochloromethane	<0.0018		0.0018	0.00060	mg/Kg	☼	11/01/17 18:01	11/03/17 14:15	1
1,1-Dichloroethane	<0.0018		0.0018	0.00062	mg/Kg		11/01/17 18:01	11/03/17 14:15	1
1,2-Dichloroethane	< 0.0045		0.0045	0.0014	mg/Kg	₩	11/01/17 18:01	11/03/17 14:15	1
1,1-Dichloroethene	<0.0018		0.0018	0.00063	mg/Kg	≎	11/01/17 18:01	11/03/17 14:15	1
1,2-Dichloropropane	<0.0018		0.0018	0.00047	mg/Kg		11/01/17 18:01	11/03/17 14:15	1
1,3-Dichloropropene, Total	<0.0018		0.0018	0.00064	mg/Kg	₩	11/01/17 18:01	11/03/17 14:15	1
Ethylbenzene	<0.0018		0.0018	0.00087	mg/Kg	₩	11/01/17 18:01	11/03/17 14:15	1
2-Hexanone	<0.0045		0.0045	0.0014	mg/Kg		11/01/17 18:01	11/03/17 14:15	1
Methylene Chloride	< 0.0045		0.0045	0.0018	mg/Kg	≎	11/01/17 18:01	11/03/17 14:15	1
4-Methyl-2-pentanone (MIBK)	< 0.0045		0.0045	0.0013	mg/Kg	₩	11/01/17 18:01	11/03/17 14:15	1
Methyl tert-butyl ether	<0.0018		0.0018	0.00053	mg/Kg		11/01/17 18:01	11/03/17 14:15	1
Styrene	<0.0018		0.0018	0.00055	mg/Kg	₩	11/01/17 18:01	11/03/17 14:15	1
1,1,2,2-Tetrachloroethane	<0.0018		0.0018	0.00058	mg/Kg	₩	11/01/17 18:01	11/03/17 14:15	1
Tetrachloroethene	<0.0018		0.0018	0.00062	mg/Kg		11/01/17 18:01	11/03/17 14:15	1
Toluene	<0.0018		0.0018	0.00046	mg/Kg	₩	11/01/17 18:01	11/03/17 14:15	1
trans-1,2-Dichloroethene	<0.0018		0.0018	0.00081	mg/Kg	₩	11/01/17 18:01	11/03/17 14:15	1
trans-1,3-Dichloropropene	<0.0018		0.0018	0.00064	mg/Kg		11/01/17 18:01	11/03/17 14:15	1
1,1,1-Trichloroethane	<0.0018		0.0018	0.00061	mg/Kg	₩	11/01/17 18:01	11/03/17 14:15	1
1,1,2-Trichloroethane	<0.0018		0.0018	0.00078	mg/Kg	₩	11/01/17 18:01	11/03/17 14:15	1
Trichloroethene	<0.0018		0.0018	0.00062	mg/Kg	☆	11/01/17 18:01	11/03/17 14:15	1
Vinyl acetate	< 0.0045		0.0045	0.0016	mg/Kg	₩	11/01/17 18:01	11/03/17 14:15	1
Vinyl chloride	<0.0018		0.0018	0.00081	mg/Kg	≎	11/01/17 18:01	11/03/17 14:15	1
Xylenes, Total	<0.0036		0.0036	0.00058	mg/Kg	\$	11/01/17 18:01	11/03/17 14:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	89		75 - 131				11/01/17 18:01	11/03/17 14:15	1
Dibromofluoromethane	102		75 - 126				11/01/17 18:01	11/03/17 14:15	1
1,2-Dichloroethane-d4 (Surr)	100		70 - 134				11/01/17 18:01	11/03/17 14:15	1
Toluene-d8 (Surr)	96		75 - 124				11/01/17 18:01	11/03/17 14:15	1

Method: 8270D - Semivo	latile Organic Compounds (C	GC/MS)						
Analyte	Result Qualifier	ŔL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	<0.039	0.039	0.0070	mg/Kg	\	11/07/17 07:18	11/08/17 00:21	1
Acenaphthylene	<0.039	0.039	0.0051	mg/Kg	☆	11/07/17 07:18	11/08/17 00:21	1
Anthracene	<0.039	0.039	0.0065	mg/Kg	☆	11/07/17 07:18	11/08/17 00:21	1
Benzo[a]anthracene	<0.039	0.039	0.0052	mg/Kg	₩.	11/07/17 07:18	11/08/17 00:21	1

TestAmerica Chicago

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 13:10

Date Received: 11/01/17 09:05

Hexachlorobenzene

Hexachlorobutadiene

Indeno[1,2,3-cd]pyrene

2-Methylnaphthalene

3 & 4 Methylphenol

2-Methylphenol

Naphthalene

2-Nitroaniline

3-Nitroaniline

4-Nitroaniline

Nitrobenzene

2-Nitrophenol

Hexachloroethane

Isophorone

Hexachlorocyclopentadiene

Client Sample ID: 3160-45-2 (0-5')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-23

Matrix: Solid

Percent Solids: 81.0

Analyte	Result Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]pyrene	<0.039	0.039	0.0075	mg/Kg	<u> </u>	11/07/17 07:18	11/08/17 00:21	1
Benzo[b]fluoranthene	<0.039	0.039	0.0084	mg/Kg	₩	11/07/17 07:18	11/08/17 00:21	1
Benzo[g,h,i]perylene	<0.039	0.039	0.013	mg/Kg	₽	11/07/17 07:18	11/08/17 00:21	1
Benzo[k]fluoranthene	<0.039	0.039	0.011	mg/Kg	☼	11/07/17 07:18	11/08/17 00:21	1
Bis(2-chloroethoxy)methane	<0.20	0.20	0.040	mg/Kg	₩	11/07/17 07:18	11/08/17 00:21	1
Bis(2-chloroethyl)ether	<0.20	0.20	0.058	mg/Kg	₽	11/07/17 07:18	11/08/17 00:21	1
Bis(2-ethylhexyl) phthalate	<0.20	0.20	0.071	mg/Kg	₩	11/07/17 07:18	11/08/17 00:21	1
4-Bromophenyl phenyl ether	<0.20	0.20	0.051	mg/Kg	₩	11/07/17 07:18	11/08/17 00:21	1
Butyl benzyl phthalate	<0.20	0.20	0.074	mg/Kg		11/07/17 07:18	11/08/17 00:21	1
Carbazole	<0.20	0.20	0.097	mg/Kg	₩	11/07/17 07:18	11/08/17 00:21	1
4-Chloroaniline	<0.79	0.79	0.18	mg/Kg	₩	11/07/17 07:18	11/08/17 00:21	1
4-Chloro-3-methylphenol	<0.39	0.39	0.13	mg/Kg	₩	11/07/17 07:18	11/08/17 00:21	1
2-Chloronaphthalene	<0.20	0.20	0.043	mg/Kg	☼	11/07/17 07:18	11/08/17 00:21	1
2-Chlorophenol	<0.20	0.20	0.066	mg/Kg	₩	11/07/17 07:18	11/08/17 00:21	1
4-Chlorophenyl phenyl ether	<0.20	0.20	0.045	mg/Kg	₽	11/07/17 07:18	11/08/17 00:21	1
Chrysene	<0.039	0.039	0.011	mg/Kg	₩	11/07/17 07:18	11/08/17 00:21	1
Dibenz(a,h)anthracene	<0.039	0.039	0.0075	mg/Kg	₩	11/07/17 07:18	11/08/17 00:21	1
Dibenzofuran	<0.20	0.20	0.046	mg/Kg	₩	11/07/17 07:18	11/08/17 00:21	1
1,2-Dichlorobenzene	<0.20	0.20	0.047	mg/Kg	₩	11/07/17 07:18	11/08/17 00:21	1
1,3-Dichlorobenzene	<0.20	0.20	0.044	mg/Kg	₩	11/07/17 07:18	11/08/17 00:21	1
1,4-Dichlorobenzene	<0.20	0.20	0.050	mg/Kg	₽	11/07/17 07:18	11/08/17 00:21	1
3,3'-Dichlorobenzidine	<0.20	0.20	0.055	mg/Kg	☼	11/07/17 07:18	11/08/17 00:21	1
2,4-Dichlorophenol	<0.39	0.39	0.092	mg/Kg	₩	11/07/17 07:18	11/08/17 00:21	1
Diethyl phthalate	<0.20	0.20	0.066	mg/Kg		11/07/17 07:18	11/08/17 00:21	1
2,4-Dimethylphenol	<0.39	0.39	0.15	mg/Kg	₩	11/07/17 07:18	11/08/17 00:21	1
Dimethyl phthalate	<0.20	0.20	0.051	mg/Kg	₩	11/07/17 07:18	11/08/17 00:21	1
Di-n-butyl phthalate	<0.20	0.20	0.059	mg/Kg		11/07/17 07:18	11/08/17 00:21	1
4,6-Dinitro-2-methylphenol	<0.79	0.79	0.31	mg/Kg	₩	11/07/17 07:18	11/08/17 00:21	1
2,4-Dinitrophenol	<0.79	0.79	0.69	mg/Kg	₩	11/07/17 07:18	11/08/17 00:21	1
2,4-Dinitrotoluene	<0.20	0.20		mg/Kg		11/07/17 07:18	11/08/17 00:21	1
2,6-Dinitrotoluene	<0.20	0.20		mg/Kg	₩	11/07/17 07:18	11/08/17 00:21	1
Di-n-octyl phthalate	<0.20	0.20		mg/Kg	₩	11/07/17 07:18	11/08/17 00:21	1
Fluoranthene	<0.039	0.039		mg/Kg	₩	11/07/17 07:18	11/08/17 00:21	1
Fluorene	<0.039	0.039	0.0055		≎	11/07/17 07:18	11/08/17 00:21	1

0.079

0.20

0.79

0.20

0.039

0.20

0.079

0.20

0.20

0.039

0.20

0.39

0.39

0.039

0.39

0.0090 mg/Kg

0.061 mg/Kg

0.22 mg/Kg

0.059 mg/Kg

0.010 mg/Kg

0.044 mg/Kg

0.0072 mg/Kg

0.062 mg/Kg

0.065 mg/Kg

0.0060 mg/Kg

0.052 mg/Kg

0.12 mg/Kg

0.16 mg/Kg

0.0097 mg/Kg

0.092 mg/Kg

₩

TestAmerica Chicago

11/07/17 07:18 11/08/17 00:21

11/07/17 07:18 11/08/17 00:21

11/07/17 07:18 11/08/17 00:21 11/07/17 07:18 11/08/17 00:21

11/07/17 07:18 11/08/17 00:21

11/07/17 07:18 11/08/17 00:21

11/07/17 07:18 11/08/17 00:21

11/07/17 07:18 11/08/17 00:21

11/07/17 07:18 11/08/17 00:21

11/07/17 07:18 11/08/17 00:21

11/07/17 07:18 11/08/17 00:21

11/07/17 07:18 11/08/17 00:21

* 11/07/17 07:18 11/08/17 00:21

11/07/17 07:18 11/08/17 00:2111/07/17 07:18 11/08/17 00:21

< 0.079

< 0.20

< 0.79

<0.20

<0.20

< 0.20

< 0.20

< 0.039

< 0.20

< 0.39

< 0.39

< 0.039

< 0.39

< 0.079

< 0.039

2

4

6

8

9

11

13

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-45-2 (0-5')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-23

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.79		0.79	0.37	mg/Kg	<u> </u>	11/07/17 07:18	11/08/17 00:21	1
N-Nitrosodi-n-propylamine	<0.079		0.079	0.048	mg/Kg	ф.	11/07/17 07:18	11/08/17 00:21	1
N-Nitrosodiphenylamine	<0.20		0.20	0.046	mg/Kg	₩	11/07/17 07:18	11/08/17 00:21	1
2,2'-oxybis[1-chloropropane]	<0.20		0.20	0.045	mg/Kg	₩	11/07/17 07:18	11/08/17 00:21	1
Pentachlorophenol	<0.79		0.79	0.62	mg/Kg	₩	11/07/17 07:18	11/08/17 00:21	1
Phenanthrene	< 0.039		0.039	0.0054	mg/Kg	₩	11/07/17 07:18	11/08/17 00:21	1
Phenol	<0.20		0.20	0.087	mg/Kg	₩	11/07/17 07:18	11/08/17 00:21	1
Pyrene	<0.039		0.039	0.0077	mg/Kg	₽	11/07/17 07:18	11/08/17 00:21	1
1,2,4-Trichlorobenzene	<0.20		0.20	0.042	mg/Kg	☼	11/07/17 07:18	11/08/17 00:21	1
2,4,5-Trichlorophenol	<0.39		0.39	0.089	mg/Kg	₩	11/07/17 07:18	11/08/17 00:21	1
2,4,6-Trichlorophenol	<0.39		0.39	0.13	mg/Kg	₽	11/07/17 07:18	11/08/17 00:21	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	90		44 - 121				11/07/17 07:18	11/08/17 00:21	1
2-Fluorophenol	103		46 - 133				11/07/17 07:18	11/08/17 00:21	1
Nitrobenzene-d5	94		41 - 120				11/07/17 07:18	11/08/17 00:21	1
Phenol-d5	93		46 - 125				11/07/17 07:18	11/08/17 00:21	1
Terphenyl-d14	96		35 - 160				11/07/17 07:18	11/08/17 00:21	1
2,4,6-Tribromophenol	58		25 - 139				11/07/17 07:18	11/08/17 00:21	1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	<0.020	0.020	0.0069	mg/Kg	<u> </u>	11/07/17 16:20	11/10/17 20:51	1
PCB-1221	<0.020	0.020	0.0086	mg/Kg	☼	11/07/17 16:20	11/10/17 20:51	1
PCB-1232	<0.020	0.020	0.0085	mg/Kg	☼	11/07/17 16:20	11/10/17 20:51	1
PCB-1242	<0.020	0.020	0.0064	mg/Kg	☼	11/07/17 16:20	11/10/17 20:51	1
PCB-1248	<0.020	0.020	0.0077	mg/Kg	☼	11/07/17 16:20	11/10/17 20:51	1
PCB-1254	<0.020	0.020	0.0042	mg/Kg	☼	11/07/17 16:20	11/10/17 20:51	1
PCB-1260	<0.020	0.020	0.0096	mg/Kg		11/07/17 16:20	11/10/17 20:51	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	93		49 - 129	11/07/17 16:20	11/10/17 20:51	1
DCB Decachlorobiphenyl	106		37 - 121	11/07/17 16:20	11/10/17 20:51	1

Method: 6010B - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<1.2		1.2		mg/Kg	— -	11/02/17 07:14		1
Arsenic	7.4		0.61	0.21	mg/Kg	₩	11/02/17 07:14	11/02/17 18:05	1
Barium	86		0.61	0.070	mg/Kg	₩	11/02/17 07:14	11/02/17 18:05	1
Beryllium	0.53		0.24	0.057	mg/Kg		11/02/17 07:14	11/02/17 18:05	1
Cadmium	0.084	J	0.12	0.022	mg/Kg	₩	11/02/17 07:14	11/02/17 18:05	1
Chromium	16		0.61	0.30	mg/Kg	₩	11/02/17 07:14	11/02/17 18:05	1
Cobalt	12		0.31	0.080	mg/Kg		11/02/17 07:14	11/02/17 18:05	1
Copper	12		0.61	0.17	mg/Kg	₩	11/02/17 07:14	11/02/17 18:05	1
Iron	18000		12	6.4	mg/Kg	₩	11/02/17 07:14	11/02/17 18:05	1
Lead	18		0.31	0.14	mg/Kg		11/02/17 07:14	11/02/17 18:05	1
Manganese	540		0.61	0.089	mg/Kg	₩	11/02/17 07:14	11/02/17 18:05	1
Nickel	15		0.61	0.18	mg/Kg	₩	11/02/17 07:14	11/02/17 18:05	1
Selenium	0.37	J	0.61	0.36	mg/Kg	φ.	11/02/17 07:14	11/02/17 18:05	1
Silver	< 0.31		0.31	0.079	mg/Kg	₩	11/02/17 07:14	11/02/17 18:05	1

TestAmerica Chicago

Page 117 of 231

2

3

5

7

9

11

13

14

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 13:10

Date Received: 11/01/17 09:05

Client Sample ID: 3160-45-2 (0-5')

TestAmerica Job ID: 500-136575-1

Percent Solids: 81.0

Lab Sample ID: 500-136575-23 **Matrix: Solid**

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Thallium	<0.61		0.61	0.31	mg/Kg		11/02/17 07:14	11/02/17 18:05	
Vanadium	32		0.31	0.072	mg/Kg	₩	11/02/17 07:14	11/02/17 18:05	
Zinc	45		1.2	0.54	mg/Kg	₽	11/02/17 07:14	11/02/17 18:05	
Method: 6010B - Metals (ICP) - To	CLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Arsenic	<0.050		0.050	0.010	mg/L		11/03/17 15:00	11/05/17 15:04	-
Barium	0.31	J	0.50	0.050	mg/L		11/03/17 15:00	11/05/17 15:04	
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/03/17 15:00	11/05/17 15:04	
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/03/17 15:00	11/05/17 15:04	•
Chromium	<0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 15:04	•
Cobalt	<0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 15:04	•
Copper	<0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 15:04	
Iron	<0.40		0.40	0.20	mg/L		11/03/17 15:00	11/05/17 15:04	
Lead	<0.0075		0.0075	0.0075	mg/L		11/03/17 15:00	11/05/17 15:04	
Manganese	0.015	J	0.025	0.010	mg/L		11/03/17 15:00	11/05/17 15:04	· · · · · · · · ·
Nickel	<0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 15:04	
Selenium	<0.050		0.050	0.020	mg/L		11/03/17 15:00	11/05/17 15:04	
Silver	<0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 15:04	· · · · · · · · ·
Vanadium	<0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 15:04	
Zinc	<0.50		0.50	0.020	mg/L		11/03/17 15:00	11/05/17 15:04	
Method: 6020A - Metals (ICP/MS)	- TCLP								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Antimony	<0.0060		0.0060	0.0060	mg/L		11/03/17 15:00	11/06/17 18:30	
Thallium	<0.0020		0.0020	0.0020	mg/L		11/03/17 15:00	11/06/17 18:30	
Method: 7470A - TCLP Mercury -	TCLP								
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Mercury	<0.00020		0.00020	0.00020	mg/L		11/03/17 12:20	11/06/17 09:06	
Method: 7471B - Mercury (CVAA))								
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Mercury	0.061		0.019	0.0062	mg/Kg	<u>∓</u>	11/02/17 16:10	11/03/17 09:19	
General Chemistry									
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
pH	7.7		0.20	0.20	SU			11/03/17 08:57	

TestAmerica Job ID: 500-136575-1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-45-2 (5-6')

Lab Sample ID: 500-136575-24 Date Collected: 10/31/17 13:15 **Matrix: Solid**

Date Received: 11/01/17 09:05 Percent Solids: 82.8

Method: 8260B - Volatile O Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Acetone	0.025	0.019	0.0082	mg/Kg	<u> </u>	11/01/17 18:01	11/03/17 14:40	
Benzene	<0.0019	0.0019	0.00048	mg/Kg	≎	11/01/17 18:01	11/03/17 14:40	
Bromodichloromethane	<0.0019	0.0019	0.00038	mg/Kg	₩	11/01/17 18:01	11/03/17 14:40	
Bromoform	<0.0019	0.0019	0.00055	mg/Kg	₽	11/01/17 18:01	11/03/17 14:40	
Bromomethane	<0.0047	0.0047	0.0018	mg/Kg	₩	11/01/17 18:01	11/03/17 14:40	
2-Butanone (MEK)	<0.0047	0.0047	0.0021	mg/Kg	₩	11/01/17 18:01	11/03/17 14:40	
Carbon disulfide	<0.0047	0.0047	0.00098	mg/Kg	\$	11/01/17 18:01	11/03/17 14:40	
Carbon tetrachloride	<0.0019	0.0019	0.00055	mg/Kg	₩	11/01/17 18:01	11/03/17 14:40	
Chlorobenzene	<0.0019	0.0019	0.00069	mg/Kg	₩	11/01/17 18:01	11/03/17 14:40	
Chloroethane	<0.0047	0.0047	0.0014	mg/Kg	₩	11/01/17 18:01	11/03/17 14:40	
Chloroform	<0.0019	0.0019	0.00065	mg/Kg	₩	11/01/17 18:01	11/03/17 14:40	
Chloromethane	<0.0047	0.0047	0.0019	mg/Kg	₩	11/01/17 18:01	11/03/17 14:40	
cis-1,2-Dichloroethene	<0.0019	0.0019	0.00053	mg/Kg	₽	11/01/17 18:01	11/03/17 14:40	
cis-1,3-Dichloropropene	<0.0019	0.0019	0.00057	mg/Kg	₩	11/01/17 18:01	11/03/17 14:40	
Dibromochloromethane	<0.0019	0.0019	0.00061	mg/Kg	₩	11/01/17 18:01	11/03/17 14:40	
1,1-Dichloroethane	<0.0019	0.0019	0.00064	mg/Kg	\$	11/01/17 18:01	11/03/17 14:40	
1,2-Dichloroethane	<0.0047	0.0047	0.0015	mg/Kg	₩	11/01/17 18:01	11/03/17 14:40	
1,1-Dichloroethene	<0.0019	0.0019	0.00065	mg/Kg	☼	11/01/17 18:01	11/03/17 14:40	
1,2-Dichloropropane	<0.0019	0.0019	0.00049	mg/Kg	₩	11/01/17 18:01	11/03/17 14:40	
1,3-Dichloropropene, Total	<0.0019	0.0019	0.00066	mg/Kg	₩	11/01/17 18:01	11/03/17 14:40	
Ethylbenzene	<0.0019	0.0019	0.00090	mg/Kg	₩	11/01/17 18:01	11/03/17 14:40	
2-Hexanone	<0.0047	0.0047	0.0015	mg/Kg	\$	11/01/17 18:01	11/03/17 14:40	
Methylene Chloride	<0.0047	0.0047	0.0019	mg/Kg	₩	11/01/17 18:01	11/03/17 14:40	
4-Methyl-2-pentanone (MIBK)	<0.0047	0.0047	0.0014	mg/Kg	₩	11/01/17 18:01	11/03/17 14:40	
Methyl tert-butyl ether	<0.0019	0.0019	0.00055	mg/Kg	₽	11/01/17 18:01	11/03/17 14:40	
Styrene	<0.0019	0.0019	0.00057	mg/Kg	₩	11/01/17 18:01	11/03/17 14:40	
1,1,2,2-Tetrachloroethane	<0.0019	0.0019	0.00060	mg/Kg	₩	11/01/17 18:01	11/03/17 14:40	
Tetrachloroethene	<0.0019	0.0019	0.00064	mg/Kg	₩	11/01/17 18:01	11/03/17 14:40	
Toluene	<0.0019	0.0019	0.00047	mg/Kg	₩	11/01/17 18:01	11/03/17 14:40	
trans-1,2-Dichloroethene	<0.0019	0.0019	0.00083	mg/Kg	☼	11/01/17 18:01	11/03/17 14:40	
trans-1,3-Dichloropropene	<0.0019	0.0019	0.00066	mg/Kg	₩	11/01/17 18:01	11/03/17 14:40	
1,1,1-Trichloroethane	<0.0019	0.0019	0.00063	mg/Kg	₩	11/01/17 18:01	11/03/17 14:40	
1,1,2-Trichloroethane	<0.0019	0.0019	0.00081	mg/Kg	₩	11/01/17 18:01	11/03/17 14:40	
Trichloroethene	<0.0019	0.0019	0.00064	mg/Kg	₩	11/01/17 18:01	11/03/17 14:40	
Vinyl acetate	<0.0047	0.0047	0.0016	mg/Kg	☼	11/01/17 18:01	11/03/17 14:40	
Vinyl chloride	<0.0019	0.0019	0.00083	mg/Kg	₩	11/01/17 18:01	11/03/17 14:40	
Xylenes, Total	<0.0038	0.0038	0.00060	mg/Kg	*	11/01/17 18:01	11/03/17 14:40	
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	86	75 - 131				11/01/17 18:01	11/03/17 14:40	
Dibromofluoromethane	103	75 - 126				11/01/17 18:01	11/03/17 14:40	
1,2-Dichloroethane-d4 (Surr)	99	70 - 134				11/01/17 18:01	11/03/17 14:40	
Toluene-d8 (Surr)	96	75 - 124				11/01/17 18:01	11/03/17 14:40	

Method: 8270D - Semivolatile	Organic Compounds (Result Qualifier	GC/MS)	MDL Unit	D	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	96	75 - 124			11/01/17 18:01	11/03/17 14:40	1
1,2-Dichloroethane-d4 (Surr)	99	70 - 134			11/01/17 18:01	11/03/17 14:40	1
Dibromofluoromethane	103	75 - 126			11/01/17 18:01	11/03/17 14:40	1

١	Method. 6270D - Seniivolati	ie Organic Compounds (C	3C/IVIO)					
	Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
	Acenaphthene	<0.039	0.039	0.0070 mg/Kg	₩	11/07/17 07:18	11/08/17 00:47	1
	Acenaphthylene	<0.039	0.039	0.0051 mg/Kg	₩	11/07/17 07:18	11/08/17 00:47	1
	Anthracene	<0.039	0.039	0.0065 mg/Kg	₩	11/07/17 07:18	11/08/17 00:47	1
	Benzo[a]anthracene	0.0064 JB	0.039	0.0052 mg/Kg	₩	11/07/17 07:18	11/08/17 00:47	1

TestAmerica Chicago

Page 119 of 231

11/13/2017

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 13:15

Date Received: 11/01/17 09:05

Client Sample ID: 3160-45-2 (5-6')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-24

Matrix: Solid

Percent Solids: 82.8

Method: 8270D - Semivolatil Analyte	_	Qualifier	RL	MDL	•	D	Prepared	Analyzed	Dil Fa
Benzo[a]pyrene	<0.039		0.039	0.0075	mg/Kg	<u> </u>	11/07/17 07:18	11/08/17 00:47	
Benzo[b]fluoranthene	0.012	J	0.039	0.0084		☼	11/07/17 07:18	11/08/17 00:47	
Benzo[g,h,i]perylene	<0.039		0.039		mg/Kg		11/07/17 07:18	11/08/17 00:47	
Benzo[k]fluoranthene	<0.039		0.039	0.011	mg/Kg	₩	11/07/17 07:18	11/08/17 00:47	
Bis(2-chloroethoxy)methane	<0.20		0.20		mg/Kg	₩		11/08/17 00:47	
Bis(2-chloroethyl)ether	<0.20		0.20		mg/Kg			11/08/17 00:47	
Bis(2-ethylhexyl) phthalate	<0.20		0.20	0.071		₩		11/08/17 00:47	
4-Bromophenyl phenyl ether	<0.20		0.20		mg/Kg	₩	11/07/17 07:18	11/08/17 00:47	
Butyl benzyl phthalate	<0.20		0.20		mg/Kg			11/08/17 00:47	
Carbazole	<0.20		0.20	0.097		₩	11/07/17 07:18	11/08/17 00:47	
4-Chloroaniline	<0.78		0.78		mg/Kg	₩	11/07/17 07:18	11/08/17 00:47	
4-Chloro-3-methylphenol	<0.39		0.39		mg/Kg			11/08/17 00:47	
2-Chloronaphthalene	<0.20		0.20	0.043		₩	11/07/17 07:18	11/08/17 00:47	
2-Chlorophenol	<0.20		0.20		mg/Kg	₩		11/08/17 00:47	
4-Chlorophenyl phenyl ether	<0.20		0.20		mg/Kg			11/08/17 00:47	
Chrysene	0.011	J.	0.039	0.043				11/08/17 00:47	
Dibenz(a,h)anthracene	<0.039	3	0.039	0.0075	0 0	₩		11/08/17 00:47	
Dibenzofuran	<0.20		0.20		mg/Kg		11/07/17 07:18		
1,2-Dichlorobenzene	<0.20		0.20	0.047		₩	11/07/17 07:18		
1,3-Dichlorobenzene	<0.20		0.20		mg/Kg		11/07/17 07:18		
1,4-Dichlorobenzene	<0.20		0.20		mg/Kg			11/08/17 00:47	
3,3'-Dichlorobenzidine	<0.20		0.20		mg/Kg			11/08/17 00:47	
•	<0.39		0.20					11/08/17 00:47	
2,4-Dichlorophenol	<0.39		0.39		mg/Kg	· · · · · · · · · · · · · · · · · · ·		11/08/17 00:47	
Diethyl phthalate	<0.39		0.20		mg/Kg mg/Kg	~ ☆			
2,4-Dimethylphenol						~ ☆		11/08/17 00:47	
Dimethyl phthalate	<0.20		0.20	0.051		· · · · · · · · · · · · · · · · · · ·		11/08/17 00:47	
Di-n-butyl phthalate	<0.20		0.20	0.059	0 0	₩		11/08/17 00:47	
4,6-Dinitro-2-methylphenol	<0.78		0.78	0.31	mg/Kg	₩		11/08/17 00:47	
2,4-Dinitrophenol	<0.78		0.78	0.69	mg/Kg			11/08/17 00:47	
2,4-Dinitrotoluene	<0.20		0.20		mg/Kg	☆		11/08/17 00:47	
2,6-Dinitrotoluene	<0.20		0.20		mg/Kg	₽ **		11/08/17 00:47	
Di-n-octyl phthalate	<0.20		0.20		mg/Kg			11/08/17 00:47	
Fluoranthene	0.0088	J	0.039	0.0072		*		11/08/17 00:47	
Fluorene	< 0.039		0.039	0.0055	0 0	₩		11/08/17 00:47	
Hexachlorobenzene	<0.078		0.078	0.0090		· · · · · ·	11/07/17 07:18		
Hexachlorobutadiene	<0.20		0.20		mg/Kg	*	11/07/17 07:18		
Hexachlorocyclopentadiene	<0.78		0.78		mg/Kg	₩.	11/07/17 07:18		
Hexachloroethane	<0.20		0.20		mg/Kg			11/08/17 00:47	
Indeno[1,2,3-cd]pyrene	<0.039		0.039		mg/Kg	₩.	11/07/17 07:18		
Isophorone	<0.20		0.20		mg/Kg	:	11/07/17 07:18		
2-Methylnaphthalene	0.0091	J	0.078	0.0072				11/08/17 00:47	
2-Methylphenol	<0.20		0.20		mg/Kg	*	11/07/17 07:18		
3 & 4 Methylphenol	<0.20		0.20		mg/Kg	*	11/07/17 07:18		
Naphthalene	0.0063	J	0.039	0.0060		.	11/07/17 07:18		
2-Nitroaniline	<0.20		0.20		mg/Kg	₩	11/07/17 07:18		
3-Nitroaniline	<0.39		0.39		mg/Kg	**	11/07/17 07:18		
4-Nitroaniline	<0.39		0.39		mg/Kg	*	11/07/17 07:18		
Nitrobenzene	<0.039		0.039	0.0097		₽	11/07/17 07:18	11/08/17 00:47	
2-Nitrophenol	<0.39		0.39	0.092	mg/Kg	₩	11/07/17 07:18	11/08/17 00:47	

TestAmerica Chicago

2

1

5

-

9

11

13

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 13:15

Date Received: 11/01/17 09:05

Tetrachloro-m-xylene

DCB Decachlorobiphenyl

Client Sample ID: 3160-45-2 (5-6')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-24

Matrix: Solid

Matrix: Solid Percent Solids: 82.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.78		0.78	0.37	mg/Kg	<u> </u>	11/07/17 07:18	11/08/17 00:47	1
N-Nitrosodi-n-propylamine	<0.078		0.078	0.048	mg/Kg	₽	11/07/17 07:18	11/08/17 00:47	1
N-Nitrosodiphenylamine	<0.20		0.20	0.046	mg/Kg	☼	11/07/17 07:18	11/08/17 00:47	1
2,2'-oxybis[1-chloropropane]	<0.20		0.20	0.045	mg/Kg	☼	11/07/17 07:18	11/08/17 00:47	1
Pentachlorophenol	<0.78		0.78	0.62	mg/Kg	₽	11/07/17 07:18	11/08/17 00:47	1
Phenanthrene	0.021	J	0.039	0.0054	mg/Kg	☼	11/07/17 07:18	11/08/17 00:47	1
Phenol	<0.20		0.20	0.086	mg/Kg	☼	11/07/17 07:18	11/08/17 00:47	1
Pyrene	0.011	J	0.039	0.0077	mg/Kg	☼	11/07/17 07:18	11/08/17 00:47	1
1,2,4-Trichlorobenzene	<0.20		0.20	0.042	mg/Kg	☼	11/07/17 07:18	11/08/17 00:47	1
2,4,5-Trichlorophenol	<0.39		0.39	0.089	mg/Kg	☼	11/07/17 07:18	11/08/17 00:47	1
2,4,6-Trichlorophenol	<0.39		0.39	0.13	mg/Kg		11/07/17 07:18	11/08/17 00:47	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	91		44 - 121				11/07/17 07:18	11/08/17 00:47	1
2-Fluorophenol	96		46 - 133				11/07/17 07:18	11/08/17 00:47	1
Nitrobenzene-d5	94		41 - 120				11/07/17 07:18	11/08/17 00:47	1
Phenol-d5	90		46 - 125				11/07/17 07:18	11/08/17 00:47	1
Terphenyl-d14	91		35 - 160				11/07/17 07:18	11/08/17 00:47	1
2,4,6-Tribromophenol	56		25 - 139				11/07/17 07:18	11/08/17 00:47	1

Method: 8082A - Pol	ychlorinated Biphenyls (PCBs)	by Gas Chr	omatogr	aphy				
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	<0.020	0.020	0.0070	mg/Kg	<u></u>	11/07/17 16:20	11/10/17 21:07	1
PCB-1221	<0.020	0.020	0.0088	mg/Kg	☼	11/07/17 16:20	11/10/17 21:07	1
PCB-1232	<0.020	0.020	0.0087	mg/Kg	☼	11/07/17 16:20	11/10/17 21:07	1
PCB-1242	<0.020	0.020	0.0065	mg/Kg	₽	11/07/17 16:20	11/10/17 21:07	1
PCB-1248	<0.020	0.020	0.0078	mg/Kg	☼	11/07/17 16:20	11/10/17 21:07	1
PCB-1254	<0.020	0.020	0.0043	mg/Kg	☼	11/07/17 16:20	11/10/17 21:07	1
PCB-1260	<0.020	0.020	0.0098	mg/Kg	φ.	11/07/17 16:20	11/10/17 21:07	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac

49 - 129

37 - 121

88

100

Method: 6010B - Metal Analyte	s (ICP) Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.99	0.99	0.19	mg/Kg	<u></u>	11/02/17 07:14		1
Arsenic	6.8	0.49	0.17		₩	11/02/17 07:14	11/02/17 18:18	1
Barium	97	0.49	0.056	mg/Kg	₩	11/02/17 07:14	11/02/17 18:18	1
Beryllium	0.54	0.20	0.046	mg/Kg		11/02/17 07:14	11/02/17 18:18	1
Cadmium	0.13	0.099	0.018	mg/Kg	₩	11/02/17 07:14	11/02/17 18:18	1
Chromium	20	0.49	0.24	mg/Kg	₩	11/02/17 07:14	11/02/17 18:18	1
Cobalt	12	0.25	0.065	mg/Kg	₩.	11/02/17 07:14	11/02/17 18:18	1
Copper	11	0.49	0.14	mg/Kg	₩	11/02/17 07:14	11/02/17 18:18	1
Iron	17000	9.9	5.1	mg/Kg	₩	11/02/17 07:14	11/02/17 18:18	1
Lead	49	0.25	0.11	mg/Kg		11/02/17 07:14	11/02/17 18:18	1
Manganese	530	0.49	0.072	mg/Kg	₩	11/02/17 07:14	11/02/17 18:18	1
Nickel	15	0.49	0.14	mg/Kg	₩	11/02/17 07:14	11/02/17 18:18	1
Selenium	0.69	0.49	0.29	mg/Kg	₽	11/02/17 07:14	11/02/17 18:18	1
Silver	<0.25	0.25	0.064	mg/Kg	₩	11/02/17 07:14	11/02/17 18:18	1

TestAmerica Chicago

<u>11/07/17 16:20</u> <u>11/10/17 21:07</u>

11/07/17 16:20 11/10/17 21:07

2

4

6

8

10

11 12

13

1

1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 13:15

Date Received: 11/01/17 09:05

Client Sample ID: 3160-45-2 (5-6')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-24

Matrix: Solid

Percent Solids: 82.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Thallium	<0.49		0.49	0.25	mg/Kg	<u> </u>	11/02/17 07:14	11/02/17 18:18	1
Vanadium	24		0.25	0.058	mg/Kg	ф.	11/02/17 07:14	11/02/17 18:18	1
Zinc	51		0.99	0.43	mg/Kg	₩	11/02/17 07:14	11/02/17 18:18	1
Method: 6010B - Metals (ICP) -	TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/03/17 15:00	11/05/17 15:08	1
Barium	1.0		0.50	0.050	mg/L		11/03/17 15:00	11/05/17 15:08	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/03/17 15:00	11/05/17 15:08	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/03/17 15:00	11/05/17 15:08	1
Chromium	< 0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 15:08	1
Cobalt	<0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 15:08	1
Copper	0.022	J	0.025	0.010	mg/L		11/03/17 15:00	11/05/17 15:08	1
Iron	<0.40		0.40	0.20	mg/L		11/03/17 15:00	11/05/17 15:08	1
Lead	< 0.0075		0.0075	0.0075	mg/L		11/03/17 15:00	11/05/17 15:08	1
Manganese	0.060		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 15:08	1
Nickel	<0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 15:08	1
Selenium	< 0.050		0.050	0.020	mg/L		11/03/17 15:00	11/05/17 15:08	1
Silver	<0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 15:08	1
Vanadium	< 0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 15:08	1
Zinc	0.038	J	0.50	0.020	mg/L		11/03/17 15:00	11/05/17 15:08	1
Method: 6020A - Metals (ICP/M	S) - TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060		0.0060	0.0060	mg/L		11/03/17 15:00	11/06/17 18:34	1
Thallium	<0.0020		0.0020	0.0020	mg/L		11/03/17 15:00	11/06/17 18:34	1
Method: 7470A - TCLP Mercury	- TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/03/17 12:20	11/06/17 09:07	1
Method: 7471B - Mercury (CVA									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.038		0.017	0.0058	mg/Kg	<u> </u>	11/02/17 16:10	11/03/17 09:21	•
General Chemistry									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
pH	7.5		0.20	0.20	SU			11/03/17 08:57	1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-45-3 (0-5')

Date Collected: 10/31/17 13:20 Date Received: 11/01/17 09:05

Toluene-d8 (Surr)

Lab Sample ID: 500-136575-25

Matrix: Solid Percent Solids: 88.4

Method: 8260B - Volatile O Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	0.054		0.016	0.0069	mg/Kg	\	11/01/17 18:01	11/03/17 15:05	1
Benzene	<0.0016		0.0016	0.00040	mg/Kg	₩	11/01/17 18:01	11/03/17 15:05	1
Bromodichloromethane	<0.0016		0.0016	0.00032	mg/Kg	₩	11/01/17 18:01	11/03/17 15:05	1
Bromoform	<0.0016		0.0016	0.00046	mg/Kg		11/01/17 18:01	11/03/17 15:05	1
Bromomethane	< 0.0039		0.0039	0.0015	mg/Kg	☼	11/01/17 18:01	11/03/17 15:05	1
2-Butanone (MEK)	< 0.0039		0.0039	0.0017	mg/Kg	☼	11/01/17 18:01	11/03/17 15:05	1
Carbon disulfide	<0.0039		0.0039	0.00082	mg/Kg		11/01/17 18:01	11/03/17 15:05	1
Carbon tetrachloride	<0.0016		0.0016	0.00046	mg/Kg	☼	11/01/17 18:01	11/03/17 15:05	1
Chlorobenzene	< 0.0016		0.0016	0.00058	mg/Kg	☼	11/01/17 18:01	11/03/17 15:05	1
Chloroethane	<0.0039		0.0039	0.0012	mg/Kg		11/01/17 18:01	11/03/17 15:05	1
Chloroform	< 0.0016		0.0016	0.00055	mg/Kg	₩	11/01/17 18:01	11/03/17 15:05	1
Chloromethane	< 0.0039		0.0039	0.0016	mg/Kg	₩	11/01/17 18:01	11/03/17 15:05	1
cis-1,2-Dichloroethene	<0.0016		0.0016	0.00044	mg/Kg	ф.	11/01/17 18:01	11/03/17 15:05	1
cis-1,3-Dichloropropene	< 0.0016		0.0016	0.00048	mg/Kg	₩	11/01/17 18:01	11/03/17 15:05	1
Dibromochloromethane	< 0.0016		0.0016	0.00052	mg/Kg	₩	11/01/17 18:01	11/03/17 15:05	1
1,1-Dichloroethane	<0.0016		0.0016	0.00054	mg/Kg	ф.	11/01/17 18:01	11/03/17 15:05	1
1,2-Dichloroethane	< 0.0039		0.0039	0.0012	mg/Kg	₩	11/01/17 18:01	11/03/17 15:05	1
1,1-Dichloroethene	< 0.0016		0.0016	0.00054		₩	11/01/17 18:01	11/03/17 15:05	1
1,2-Dichloropropane	<0.0016		0.0016	0.00041	mg/Kg		11/01/17 18:01	11/03/17 15:05	1
1,3-Dichloropropene, Total	< 0.0016		0.0016	0.00055		₩	11/01/17 18:01	11/03/17 15:05	1
Ethylbenzene	<0.0016		0.0016	0.00075	mg/Kg	₩	11/01/17 18:01	11/03/17 15:05	1
2-Hexanone	<0.0039		0.0039	0.0012	mg/Kg		11/01/17 18:01	11/03/17 15:05	1
Methylene Chloride	< 0.0039		0.0039	0.0016		₩	11/01/17 18:01	11/03/17 15:05	1
4-Methyl-2-pentanone (MIBK)	< 0.0039		0.0039	0.0012	0 0	₩	11/01/17 18:01	11/03/17 15:05	1
Methyl tert-butyl ether	<0.0016		0.0016	0.00046			11/01/17 18:01	11/03/17 15:05	1
Styrene	<0.0016		0.0016	0.00048	mg/Kg	₩	11/01/17 18:01	11/03/17 15:05	1
1,1,2,2-Tetrachloroethane	<0.0016		0.0016	0.00050		₩	11/01/17 18:01	11/03/17 15:05	1
Tetrachloroethene	<0.0016		0.0016	0.00054			11/01/17 18:01	11/03/17 15:05	1
Toluene	<0.0016		0.0016	0.00040	0 0	₩	11/01/17 18:01	11/03/17 15:05	1
trans-1,2-Dichloroethene	<0.0016		0.0016	0.00070		☼		11/03/17 15:05	1
trans-1,3-Dichloropropene	<0.0016		0.0016	0.00055	0 0			11/03/17 15:05	1
1,1,1-Trichloroethane	<0.0016		0.0016	0.00053		₩		11/03/17 15:05	1
1,1,2-Trichloroethane	<0.0016		0.0016	0.00068		₩		11/03/17 15:05	1
Trichloroethene	<0.0016		0.0016	0.00053				11/03/17 15:05	· · · · · · · 1
Vinyl acetate	<0.0039		0.0039	0.0014		₩		11/03/17 15:05	1
Vinyl chloride	<0.0016		0.0016	0.00070	0 0	₽		11/03/17 15:05	1
Xylenes, Total	<0.0032		0.0032	0.00050		ф.		11/03/17 15:05	1
Surrogate	%Recovery	Qualifier L	imits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	89		5 - 131				11/01/17 18:01	11/03/17 15:05	1
Dibromofluoromethane	102	73	5 - 126				11/01/17 18:01	11/03/17 15:05	1
1,2-Dichloroethane-d4 (Surr)	101	70	0 - 134				11/01/17 18:01	11/03/17 15:05	1

Method: 8270D - Semivol	atile Organic Compounds (GC/MS)						
Analyte	Result Qualifier	ŘL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	<0.036	0.036	0.0066	mg/Kg	\	11/07/17 07:18	11/08/17 01:14	1
Acenaphthylene	<0.036	0.036	0.0048	mg/Kg	☼	11/07/17 07:18	11/08/17 01:14	1
Anthracene	<0.036	0.036	0.0061	mg/Kg	☼	11/07/17 07:18	11/08/17 01:14	1
Benzo[a]anthracene	<0.036	0.036	0.0049	mg/Kg		11/07/17 07:18	11/08/17 01:14	1

75 - 124

TestAmerica Chicago

11/01/17 18:01 11/03/17 15:05

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 13:20

2-Methylnaphthalene

3 & 4 Methylphenol

2-Methylphenol

Naphthalene

2-Nitroaniline

3-Nitroaniline

4-Nitroaniline

Nitrobenzene

2-Nitrophenol

Client Sample ID: 3160-45-3 (0-5')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-25

Matrix: Solid

Mathadi 9270D Caminalati	o Organia Campaus da	(CC/MS) (C	neting and					
Method: 8270D - Semivolatil Analyte	Result Qualifier	(GC/MS) (CC	ontinuea) MDL L	Jnit	D	Prepared	Analyzed	Dil Fa
Benzo[a]pyrene	<0.036	0.036	0.0071 n	ng/Kg	<u></u> ∓	•	11/08/17 01:14	
Benzo[b]fluoranthene	<0.036	0.036	0.0079 n	ng/Kg	☼	11/07/17 07:18	11/08/17 01:14	
Benzo[g,h,i]perylene	<0.036	0.036	0.012 n			11/07/17 07:18	11/08/17 01:14	
Benzo[k]fluoranthene	<0.036	0.036		ng/Kg	☼	11/07/17 07:18	11/08/17 01:14	
Bis(2-chloroethoxy)methane	<0.18	0.18	0.037 n	ng/Kg	☆		11/08/17 01:14	
Bis(2-chloroethyl)ether	<0.18	0.18	0.055 n		☆-	11/07/17 07:18	11/08/17 01:14	
Bis(2-ethylhexyl) phthalate	<0.18	0.18	0.067 n		☆	11/07/17 07:18	11/08/17 01:14	
4-Bromophenyl phenyl ether	<0.18	0.18	0.048 n		☼		11/08/17 01:14	
Butyl benzyl phthalate	<0.18	0.18	0.070 n		· · · · · · · · · · · · · · · · · · ·	11/07/17 07:18	11/08/17 01:14	
Carbazole	<0.18	0.18		ng/Kg	☼	11/07/17 07:18	11/08/17 01:14	
4-Chloroaniline	<0.74	0.74	0.17 n		☼		11/08/17 01:14	
4-Chloro-3-methylphenol	<0.36	0.36	0.12 n	0 0			11/08/17 01:14	
2-Chloronaphthalene	<0.18	0.18	0.040 n		₽		11/08/17 01:14	
2-Chlorophenol	<0.18	0.18	0.062 n		₽		11/08/17 01:14	
4-Chlorophenyl phenyl ether	<0.18	0.18	0.043 n				11/08/17 01:14	
Chrysene	<0.036	0.036	0.010 n	• •	☼	11/07/17 07:18	11/08/17 01:14	
Dibenz(a,h)anthracene	<0.036	0.036		ng/Kg	☼	11/07/17 07:18	11/08/17 01:14	
Dibenzofuran	<0.18	0.18	0.043 n				11/08/17 01:14	
1,2-Dichlorobenzene	<0.18	0.18	0.044 n		☼		11/08/17 01:14	
1,3-Dichlorobenzene	<0.18	0.18		ng/Kg	₩		11/08/17 01:14	
1,4-Dichlorobenzene	<0.18	0.18	0.047 n				11/08/17 01:14	
3,3'-Dichlorobenzidine	<0.18	0.18		ng/Kg	☼		11/08/17 01:14	
2,4-Dichlorophenol	<0.36	0.36	0.087 n		☆		11/08/17 01:14	
Diethyl phthalate	<0.18	0.18	0.062 n				11/08/17 01:14	
2,4-Dimethylphenol	<0.36	0.36	0.14 n		☆		11/08/17 01:14	
Dimethyl phthalate	<0.18	0.18	0.048 n	0 0	☆		11/08/17 01:14	
Di-n-butyl phthalate	<0.18	0.18	0.056 n		 \$		11/08/17 01:14	
4,6-Dinitro-2-methylphenol	<0.74	0.74	0.29 n	• •	☆		11/08/17 01:14	
2,4-Dinitrophenol	<0.74	0.74	0.64 n		☼		11/08/17 01:14	
2,4-Dinitrotoluene	<0.18	0.18	0.058 n		 \$		11/08/17 01:14	
2,6-Dinitrotoluene	<0.18	0.18	0.072 n		☆		11/08/17 01:14	
Di-n-octyl phthalate	<0.18	0.18	0.060 n		☆		11/08/17 01:14	
Fluoranthene	<0.036	0.036	0.0068 n				11/08/17 01:14	
Fluorene	<0.036	0.036		ng/Kg	☆		11/08/17 01:14	
Hexachlorobenzene	<0.074	0.074	0.0085 n		☆		11/08/17 01:14	
Hexachlorobutadiene	<0.18	0.18	0.057 n				11/08/17 01:14	
Hexachlorocyclopentadiene	<0.74	0.74		ng/Kg	☆		11/08/17 01:14	
Hexachloroethane	<0.18	0.18	0.056 n		☆		11/08/17 01:14	
ndeno[1,2,3-cd]pyrene	<0.036	0.036	0.0095 n	0 0			11/08/17 01:14	
Isophorone	<0.18	0.18	0.041 n		☆		11/08/17 01:14	
O Martha de calatta de ca	-0.74	0.10	0.041 11		*	11/07/17 07:10	44/00/47 04:44	

TestAmerica Chicago

☼ 11/07/17 07:18 11/08/17 01:14 * 11/07/17 07:18 11/08/17 01:14

11/07/17 07:18 11/08/17 01:14 ☼ 11/07/17 07:18 11/08/17 01:14

11/07/17 07:18 11/08/17 01:14

☼ 11/07/17 07:18 11/08/17 01:14

☼ 11/07/17 07:18 11/08/17 01:14

11/07/17 07:18 11/08/17 01:14

11/07/17 07:18 11/08/17 01:14

0.074

0.18

0.18

0.036

0.18

0.36

0.36

0.036

0.36

0.0067 mg/Kg

0.059 mg/Kg

0.061 mg/Kg

0.0056 mg/Kg

0.049 mg/Kg

0.11 mg/Kg

0.15 mg/Kg

0.0091 mg/Kg

0.086 mg/Kg

< 0.074

< 0.18

<0.18

<0.036

< 0.18

< 0.36

< 0.36

< 0.036

< 0.36

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 13:20

Date Received: 11/01/17 09:05

Client Sample ID: 3160-45-3 (0-5')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-25

Matrix: Solid

Percent Solids: 88.4

Method: 8270D - Semivolat	ile Organic Co	mpounds	(GC/MS) (Cd	ontinued)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.74		0.74	0.35	mg/Kg	<u></u>	11/07/17 07:18	11/08/17 01:14	1
N-Nitrosodi-n-propylamine	<0.074		0.074	0.045	mg/Kg	φ.	11/07/17 07:18	11/08/17 01:14	1
N-Nitrosodiphenylamine	<0.18		0.18	0.043	mg/Kg	☼	11/07/17 07:18	11/08/17 01:14	1
2,2'-oxybis[1-chloropropane]	<0.18		0.18	0.042	mg/Kg	☼	11/07/17 07:18	11/08/17 01:14	1
Pentachlorophenol	<0.74		0.74	0.59	mg/Kg	₽	11/07/17 07:18	11/08/17 01:14	1
Phenanthrene	< 0.036		0.036	0.0051	mg/Kg	☼	11/07/17 07:18	11/08/17 01:14	1
Phenol	<0.18		0.18	0.081	mg/Kg	☼	11/07/17 07:18	11/08/17 01:14	1
Pyrene	<0.036		0.036	0.0073	mg/Kg	₽	11/07/17 07:18	11/08/17 01:14	1
1,2,4-Trichlorobenzene	<0.18		0.18	0.039	mg/Kg	☼	11/07/17 07:18	11/08/17 01:14	1
2,4,5-Trichlorophenol	<0.36		0.36	0.083	mg/Kg	₽	11/07/17 07:18	11/08/17 01:14	1
2,4,6-Trichlorophenol	<0.36		0.36	0.13	mg/Kg	☼	11/07/17 07:18	11/08/17 01:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	98		44 - 121				11/07/17 07:18	11/08/17 01:14	1
2-Fluorophenol	104		46 - 133				11/07/17 07:18	11/08/17 01:14	1
Nitrobenzene-d5	94		41 - 120				11/07/17 07:18	11/08/17 01:14	1
Phenol-d5	93		46 - 125				11/07/17 07:18	11/08/17 01:14	1
Terphenyl-d14	98		35 - 160				11/07/17 07:18	11/08/17 01:14	1
2,4,6-Tribromophenol	56		25 - 139				11/07/17 07:18	11/08/17 01:14	1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	<0.018	0.018	0.0064	mg/Kg	<u> </u>	11/08/17 07:22	11/09/17 11:41	1
PCB-1221	<0.018	0.018	0.0079	mg/Kg	☼	11/08/17 07:22	11/09/17 11:41	1
PCB-1232	<0.018	0.018	0.0078	mg/Kg	☼	11/08/17 07:22	11/09/17 11:41	1
PCB-1242	<0.018	0.018	0.0059	mg/Kg	₩	11/08/17 07:22	11/09/17 11:41	1
PCB-1248	<0.018	0.018	0.0071	mg/Kg	☼	11/08/17 07:22	11/09/17 11:41	1
PCB-1254	<0.018	0.018	0.0039	mg/Kg	☼	11/08/17 07:22	11/09/17 11:41	1
PCB-1260	<0.018	0.018	0.0088	mg/Kg		11/08/17 07:22	11/09/17 11:41	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	102		49 - 129	11/08/17 07:22	11/09/17 11:41	1
DCB Decachlorobiphenyl	79		37 - 121	11/08/17 07:22	11/09/17 11:41	1

Method: 6010B - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<1.0		1.0	0.19	mg/Kg	— ☆	11/02/17 07:14		1
Arsenic	3.3		0.50	0.17	mg/Kg	₩	11/02/17 07:14	11/02/17 18:22	1
Barium	92		2.5	0.29	mg/Kg	₩	11/02/17 07:14	11/09/17 11:51	5
Beryllium	2.0		1.0	0.23	mg/Kg	₩.	11/02/17 07:14	11/09/17 11:51	5
Cadmium	0.12		0.10	0.018	mg/Kg	₩	11/02/17 07:14	11/02/17 18:22	1
Chromium	13		0.50	0.25	mg/Kg	₩	11/02/17 07:14	11/02/17 18:22	1
Cobalt	22		0.25	0.066	mg/Kg		11/02/17 07:14	11/02/17 18:22	1
Copper	14		0.50	0.14	mg/Kg	₩	11/02/17 07:14	11/02/17 18:22	1
Iron	50000		50	26	mg/Kg	₩	11/02/17 07:14	11/09/17 11:51	5
Lead	15		0.25	0.12	mg/Kg		11/02/17 07:14	11/02/17 18:22	1
Manganese	660		2.5	0.36	mg/Kg	☆	11/02/17 07:14	11/09/17 11:51	5
Nickel	31		0.50	0.15	mg/Kg	₩	11/02/17 07:14	11/02/17 18:22	1
Selenium	0.69		0.50	0.29	mg/Kg		11/02/17 07:14	11/02/17 18:22	1
Silver	< 0.25		0.25	0.065	mg/Kg	☆	11/02/17 07:14	11/02/17 18:22	1

TestAmerica Chicago

Page 125 of 231

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136575-1

Client Sample ID: 3160-45-3 (0-5')

Date Collected: 10/31/17 13:20 Date Received: 11/01/17 09:05

рН

Lab Sample ID: 500-136575-25

Matrix: Solid Percent Solids: 88.4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Thallium	<0.50		0.50	0.25	mg/Kg	<u> </u>	11/02/17 07:14	11/02/17 18:22	1
Vanadium	19		0.25	0.059	mg/Kg		11/02/17 07:14	11/02/17 18:22	1
Zinc	59		1.0	0.44	mg/Kg	₽	11/02/17 07:14	11/02/17 18:22	1
Method: 6010B - Metals (I	CP) - TCLP								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/03/17 15:00	11/05/17 15:12	1
Barium	0.35	J	0.50	0.050	mg/L		11/03/17 15:00	11/05/17 15:12	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/03/17 15:00	11/05/17 15:12	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/03/17 15:00	11/05/17 15:12	1
Chromium	< 0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 15:12	1
Cobalt	< 0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 15:12	1
Copper	<0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 15:12	1
Iron	<0.40		0.40	0.20	mg/L		11/03/17 15:00	11/05/17 15:12	1
Lead	< 0.0075		0.0075	0.0075	mg/L		11/03/17 15:00	11/05/17 15:12	1
Manganese	<0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 15:12	1
Nickel	< 0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 15:12	1
Selenium	<0.050		0.050	0.020	mg/L		11/03/17 15:00	11/05/17 15:12	1
Silver	<0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 15:12	1
Vanadium	<0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 15:12	1
Zinc	<0.50		0.50	0.020	mg/L		11/03/17 15:00	11/05/17 15:12	1
Method: 6020A - Metals (I	CP/MS) - TCLP								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060		0.0060	0.0060	mg/L		11/03/17 15:00	11/06/17 18:39	1
Thallium	<0.0020		0.0020	0.0020	mg/L		11/03/17 15:00	11/06/17 18:39	1
Method: 7470A - TCLP Me	ercury - TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/03/17 12:20	11/06/17 09:09	1
Method: 7471B - Mercury									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.030		0.017	0.0055	mg/Kg	<u>∓</u>	11/02/17 16:10	11/03/17 09:23	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

11/03/17 08:57

0.20

8.1

0.20 SU

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: 500-136575-26

Client Sample ID: 3160-45-3 (5-6') Date Collected: 10/31/17 13:25 Date Received: 11/01/17 09:05

pie ii	J. 300-1303 Moteiv	: Solid	
	Percent Solid		
ared	Analyzed	Dil Fac	
7 18:01	11/03/17 15:30	1	
7 18:01	11/03/17 15:30	1	
7 18:01	11/03/17 15:30	1	ī
7 18:01	11/03/17 15:30	1	
7 18:01	11/03/17 15:30	1	
7 18:01	11/03/17 15:30	1	
7 18:01	11/03/17 15:30	1	
7 18:01	11/03/17 15:30	1	
7 18:01	11/03/17 15:30	1	
7 18:01	11/03/17 15:30	1	
7 18:01	11/03/17 15:30	1	
7 18:01	11/03/17 15:30	1	
7 18:01	11/03/17 15:30	1	
7 18:01	11/03/17 15:30	1	
7 18:01	11/03/17 15:30	1	
7 18:01	11/03/17 15:30	1	
7 18:01	11/03/17 15:30	1	
7 18:01	11/03/17 15:30	1	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	<0.022		0.022	0.0094	mg/Kg	<u></u>	11/01/17 18:01	11/03/17 15:30	1
Benzene	<0.0022		0.0022	0.00055	mg/Kg	≎	11/01/17 18:01	11/03/17 15:30	1
Bromodichloromethane	<0.0022		0.0022	0.00044	mg/Kg	☼	11/01/17 18:01	11/03/17 15:30	1
Bromoform	<0.0022		0.0022	0.00063	mg/Kg	Φ.	11/01/17 18:01	11/03/17 15:30	1
Bromomethane	<0.0054		0.0054	0.0020	mg/Kg	☼	11/01/17 18:01	11/03/17 15:30	1
2-Butanone (MEK)	<0.0054		0.0054	0.0024	mg/Kg	☼	11/01/17 18:01	11/03/17 15:30	1
Carbon disulfide	<0.0054		0.0054	0.0011	mg/Kg	ф.	11/01/17 18:01	11/03/17 15:30	1
Carbon tetrachloride	<0.0022		0.0022	0.00062	mg/Kg	₩	11/01/17 18:01	11/03/17 15:30	1
Chlorobenzene	<0.0022		0.0022	0.00079	mg/Kg	₽	11/01/17 18:01	11/03/17 15:30	1
Chloroethane	<0.0054		0.0054	0.0016	mg/Kg	₩	11/01/17 18:01	11/03/17 15:30	1
Chloroform	<0.0022		0.0022	0.00075	mg/Kg	₩	11/01/17 18:01	11/03/17 15:30	1
Chloromethane	<0.0054		0.0054	0.0022	mg/Kg	₽	11/01/17 18:01	11/03/17 15:30	1
cis-1,2-Dichloroethene	<0.0022		0.0022	0.00060	mg/Kg	₽	11/01/17 18:01	11/03/17 15:30	1
cis-1,3-Dichloropropene	<0.0022		0.0022	0.00065	mg/Kg	₩	11/01/17 18:01	11/03/17 15:30	1
Dibromochloromethane	<0.0022		0.0022	0.00070	mg/Kg	₩	11/01/17 18:01	11/03/17 15:30	1
1,1-Dichloroethane	<0.0022		0.0022	0.00074	mg/Kg		11/01/17 18:01	11/03/17 15:30	1
1,2-Dichloroethane	<0.0054		0.0054	0.0017	mg/Kg	₩	11/01/17 18:01	11/03/17 15:30	1
1,1-Dichloroethene	<0.0022		0.0022	0.00074	mg/Kg	≎	11/01/17 18:01	11/03/17 15:30	1
1,2-Dichloropropane	<0.0022		0.0022	0.00056	mg/Kg	.	11/01/17 18:01	11/03/17 15:30	1
1,3-Dichloropropene, Total	<0.0022		0.0022	0.00076	mg/Kg	₩	11/01/17 18:01	11/03/17 15:30	1
Ethylbenzene	<0.0022		0.0022	0.0010	mg/Kg	≎	11/01/17 18:01	11/03/17 15:30	1
2-Hexanone	<0.0054		0.0054	0.0017	mg/Kg	<u>\$</u> .	11/01/17 18:01	11/03/17 15:30	1
Methylene Chloride	<0.0054		0.0054	0.0021	mg/Kg	≎	11/01/17 18:01	11/03/17 15:30	1
4-Methyl-2-pentanone (MIBK)	< 0.0054		0.0054	0.0016	mg/Kg	₽	11/01/17 18:01	11/03/17 15:30	1
Methyl tert-butyl ether	<0.0022		0.0022	0.00063	mg/Kg	φ.	11/01/17 18:01	11/03/17 15:30	1
Styrene	<0.0022		0.0022	0.00065	mg/Kg	≎	11/01/17 18:01	11/03/17 15:30	1
1,1,2,2-Tetrachloroethane	<0.0022		0.0022	0.00069	mg/Kg	₽	11/01/17 18:01	11/03/17 15:30	1
Tetrachloroethene	<0.0022		0.0022	0.00073	mg/Kg	φ.	11/01/17 18:01	11/03/17 15:30	1
Toluene	<0.0022		0.0022	0.00054	mg/Kg	≎	11/01/17 18:01	11/03/17 15:30	1
trans-1,2-Dichloroethene	<0.0022		0.0022	0.00095	mg/Kg	≎	11/01/17 18:01	11/03/17 15:30	1
trans-1,3-Dichloropropene	<0.0022		0.0022	0.00076	mg/Kg	₩.	11/01/17 18:01	11/03/17 15:30	1
1,1,1-Trichloroethane	<0.0022		0.0022	0.00072	mg/Kg	☼	11/01/17 18:01	11/03/17 15:30	1
1,1,2-Trichloroethane	<0.0022		0.0022	0.00092	mg/Kg	☼	11/01/17 18:01	11/03/17 15:30	1
Trichloroethene	<0.0022		0.0022	0.00073	mg/Kg	ф.	11/01/17 18:01	11/03/17 15:30	1
Vinyl acetate	<0.0054		0.0054	0.0019		☼	11/01/17 18:01	11/03/17 15:30	1
Vinyl chloride	<0.0022		0.0022	0.00095		☼	11/01/17 18:01	11/03/17 15:30	1
Xylenes, Total	<0.0043		0.0043	0.00069		 ☆	11/01/17 18:01		1

Surrogate	%Recovery Qu	ualifier Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	96	75 - 131	11/01/17 18:01	11/03/17 15:30	1
Dibromofluoromethane	103	75 - 126	11/01/17 18:01	11/03/17 15:30	1
1,2-Dichloroethane-d4 (Surr)	102	70 - 134	11/01/17 18:01	11/03/17 15:30	1
Toluene-d8 (Surr)	99	75 - 124	11/01/17 18:01	11/03/17 15:30	1

Method: 8270D - Semivolatile Organic Compounds (GC/MS)										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Acenaphthene	<0.039		0.039	0.0070	mg/Kg	\	11/07/17 07:18	11/08/17 01:41	1	
Acenaphthylene	<0.039		0.039	0.0051	mg/Kg	₩	11/07/17 07:18	11/08/17 01:41	1	
Anthracene	0.011	J	0.039	0.0065	mg/Kg	₩	11/07/17 07:18	11/08/17 01:41	1	
Benzo[a]anthrace	ne 0.044	В	0.039	0.0052	mg/Kg	☆	11/07/17 07:18	11/08/17 01:41	1	

TestAmerica Chicago

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136575-1

Client Sample ID: 3160-45-3 (5-6')

Lab Sample ID: 500-136575-26

Date Collected: 10/31/17 13:25

Date Received: 11/01/17 09:05

Matrix: Solid
Percent Solids: 84.3

Method: 8270D - Semivolatile	Organic Compour	nde (GC/MS) (C	antinuad)	\				
Method: 6270D - Semivolatile Analyte	Result Qualific		MDL		D	Prepared	Analyzed	Dil Fac
Benzo[a]pyrene	0.039	0.039	0.0075	mg/Kg	<u></u>	11/07/17 07:18		1
Benzo[b]fluoranthene	0.056	0.039	0.0084	mg/Kg	₩	11/07/17 07:18	11/08/17 01:41	1
Benzo[g,h,i]perylene	0.024 J	0.039	0.012	mg/Kg	ф.	11/07/17 07:18	11/08/17 01:41	1
Benzo[k]fluoranthene	0.027 J	0.039		mg/Kg	₩	11/07/17 07:18	11/08/17 01:41	1
Bis(2-chloroethoxy)methane	<0.20	0.20	0.040	mg/Kg	₩	11/07/17 07:18	11/08/17 01:41	1
Bis(2-chloroethyl)ether	<0.20	0.20	0.058	mg/Kg		11/07/17 07:18	11/08/17 01:41	1
Bis(2-ethylhexyl) phthalate	<0.20	0.20		mg/Kg	₩	11/07/17 07:18	11/08/17 01:41	1
4-Bromophenyl phenyl ether	<0.20	0.20	0.051	mg/Kg	₩	11/07/17 07:18	11/08/17 01:41	1
Butyl benzyl phthalate	<0.20	0.20	0.074	mg/Kg	· · · · · · · · · · · · · · · · · · ·	11/07/17 07:18	11/08/17 01:41	1
Carbazole	<0.20	0.20	0.097	mg/Kg	☼	11/07/17 07:18	11/08/17 01:41	1
4-Chloroaniline	<0.78	0.78		mg/Kg	☼	11/07/17 07:18	11/08/17 01:41	1
4-Chloro-3-methylphenol	<0.39	0.39		mg/Kg	· · · · · · · · · · · · · · · · · · ·	11/07/17 07:18	11/08/17 01:41	1
2-Chloronaphthalene	<0.20	0.20		mg/Kg	₩	11/07/17 07:18	11/08/17 01:41	1
2-Chlorophenol	<0.20	0.20		mg/Kg	₩		11/08/17 01:41	1
4-Chlorophenyl phenyl ether	<0.20	0.20		mg/Kg			11/08/17 01:41	1
Chrysene	0.058	0.039		mg/Kg	☼		11/08/17 01:41	1
Dibenz(a,h)anthracene	<0.039	0.039	0.0075		₩		11/08/17 01:41	1
Dibenzofuran	<0.20	0.20		mg/Kg			11/08/17 01:41	·
1,2-Dichlorobenzene	<0.20	0.20		mg/Kg	₩		11/08/17 01:41	1
1,3-Dichlorobenzene	<0.20	0.20		mg/Kg	₩		11/08/17 01:41	. 1
1,4-Dichlorobenzene	<0.20	0.20		mg/Kg			11/08/17 01:41	
3,3'-Dichlorobenzidine	<0.20	0.20		mg/Kg	₩		11/08/17 01:41	1
2,4-Dichlorophenol	<0.39	0.39		mg/Kg	₩		11/08/17 01:41	1
Diethyl phthalate	<0.20	0.20		mg/Kg	· · · · · · · · · · · · · · · · · · ·		11/08/17 01:41	
2,4-Dimethylphenol	<0.39	0.39		mg/Kg	☼		11/08/17 01:41	1
Dimethyl phthalate	<0.20	0.20		mg/Kg	☼		11/08/17 01:41	1
Dirn-butyl phthalate	<0.20	0.20		mg/Kg	· · · · · · ·		11/08/17 01:41	1
• •	<0.78	0.78		mg/Kg	₩		11/08/17 01:41	1
4,6-Dinitro-2-methylphenol 2,4-Dinitrophenol	<0.78	0.78		mg/Kg	≎		11/08/17 01:41	
2,4-Dinitrophenol	<0.78	0.70		mg/Kg			11/08/17 01:41	1
•	<0.20	0.20		mg/Kg	≎		11/08/17 01:41	-
2,6-Dinitrotoluene				0 0	₩		11/08/17 01:41	1
Di-n-octyl phthalate	<0.20	0.20		mg/Kg	· · · · · · · · · · · · · · · · · · ·			1
Fluoranthene	0.066	0.039	0.0072	0 0			11/08/17 01:41	1
Fluorene	<0.039	0.039	0.0055	0 0	☆		11/08/17 01:41	1
Hexachlorobenzene	<0.078	0.078	0.0090		· · · · · · ›		11/08/17 01:41	1
Hexachlorobutadiene	<0.20	0.20		mg/Kg	1,t	11/07/17 07:18		1
Hexachlorocyclopentadiene	<0.78	0.78		mg/Kg	φ.	11/07/17 07:18		1
Hexachloroethane	<0.20	0.20		mg/Kg			11/08/17 01:41	1
Indeno[1,2,3-cd]pyrene	0.019 J	0.039		mg/Kg	₩		11/08/17 01:41	1
Isophorone	<0.20	0.20		mg/Kg	*		11/08/17 01:41	1
2-Methylnaphthalene	0.035 J	0.078	0.0071		.		11/08/17 01:41	1
2-Methylphenol	<0.20	0.20		mg/Kg	∵		11/08/17 01:41	1
3 & 4 Methylphenol	<0.20	0.20		mg/Kg	:¤		11/08/17 01:41	1
Naphthalene	0.016 J	0.039	0.0060	mg/Kg	₩	11/07/17 07:18	11/08/17 01:41	1
2-Nitroaniline	<0.20	0.20		mg/Kg	₩	11/07/17 07:18		1
3-Nitroaniline	<0.39	0.39		mg/Kg	₩	11/07/17 07:18	11/08/17 01:41	1
4-Nitroaniline	<0.39	0.39		mg/Kg	₩	11/07/17 07:18	11/08/17 01:41	1
Nitrobenzene	<0.039	0.039	0.0097	mg/Kg	☼	11/07/17 07:18	11/08/17 01:41	1
2-Nitrophenol	< 0.39	0.39	0.092	mg/Kg	₩	11/07/17 07:18	11/08/17 01:41	1

TestAmerica Chicago

11/13/2017

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 13:25

Date Received: 11/01/17 09:05

Client Sample ID: 3160-45-3 (5-6')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-26

Matrix: Solid Percent Solids: 84.3

Method: 8270D - Semivolatile Org	anic Compounds	(GC/MS) (Continu	ued)

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.78	0.78	0.37	mg/Kg	<u> </u>	11/07/17 07:18	11/08/17 01:41	1
N-Nitrosodi-n-propylamine	<0.078	0.078	0.047	mg/Kg	₽	11/07/17 07:18	11/08/17 01:41	1
N-Nitrosodiphenylamine	<0.20	0.20	0.046	mg/Kg	₩	11/07/17 07:18	11/08/17 01:41	1
2,2'-oxybis[1-chloropropane]	<0.20	0.20	0.045	mg/Kg	☼	11/07/17 07:18	11/08/17 01:41	1
Pentachlorophenol	<0.78	0.78	0.62	mg/Kg	₽	11/07/17 07:18	11/08/17 01:41	1
Phenanthrene	0.069	0.039	0.0054	mg/Kg	☼	11/07/17 07:18	11/08/17 01:41	1
Phenol	<0.20	0.20	0.086	mg/Kg	☼	11/07/17 07:18	11/08/17 01:41	1
Pyrene	0.072	0.039	0.0077	mg/Kg	₽	11/07/17 07:18	11/08/17 01:41	1
1,2,4-Trichlorobenzene	<0.20	0.20	0.042	mg/Kg	☼	11/07/17 07:18	11/08/17 01:41	1
2,4,5-Trichlorophenol	<0.39	0.39	0.089	mg/Kg	☼	11/07/17 07:18	11/08/17 01:41	1
2,4,6-Trichlorophenol	<0.39	0.39	0.13	mg/Kg		11/07/17 07:18	11/08/17 01:41	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	92		44 - 121	11/07/17 07:18	11/08/17 01:41	1
2-Fluorophenol	103		46 - 133	11/07/17 07:18	11/08/17 01:41	1
Nitrobenzene-d5	96		41 - 120	11/07/17 07:18	11/08/17 01:41	1
Phenol-d5	93		46 - 125	11/07/17 07:18	11/08/17 01:41	1
Terphenyl-d14	96		35 - 160	11/07/17 07:18	11/08/17 01:41	1
2,4,6-Tribromophenol	61		25 - 139	11/07/17 07:18	11/08/17 01:41	1

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	<0.019	0.019	0.0068	mg/Kg	₩	11/08/17 07:22	11/09/17 11:56	1
PCB-1221	<0.019	0.019	0.0085	mg/Kg	₩	11/08/17 07:22	11/09/17 11:56	1
PCB-1232	<0.019	0.019	0.0084	mg/Kg	☼	11/08/17 07:22	11/09/17 11:56	1
PCB-1242	<0.019	0.019	0.0063	mg/Kg	₩	11/08/17 07:22	11/09/17 11:56	1
PCB-1248	<0.019	0.019	0.0076	mg/Kg	₩	11/08/17 07:22	11/09/17 11:56	1
PCB-1254	<0.019	0.019	0.0042	mg/Kg	₩	11/08/17 07:22	11/09/17 11:56	1
PCB-1260	<0.019	0.019	0.0095	mg/Kg	₩	11/08/17 07:22	11/09/17 11:56	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	109		49 - 129	11/08/17 07:22	11/09/17 11:56	1
DCB Decachlorobiphenyl	86		37 - 121	11/08/17 07:22	11/09/17 11:56	1

Method: 6010B - Metals (ICP) Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<1.0	1.0	0.20	mg/Kg	<u></u>	11/02/17 07:14	11/02/17 18:25	1
Arsenic	11	0.51	0.17	mg/Kg	☼	11/02/17 07:14	11/02/17 18:25	1
Barium	99	0.51	0.058	mg/Kg	₩	11/02/17 07:14	11/02/17 18:25	1
Beryllium	0.59	0.20	0.047	mg/Kg	₩.	11/02/17 07:14	11/02/17 18:25	1
Cadmium	0.35	0.10	0.018	mg/Kg	☼	11/02/17 07:14	11/02/17 18:25	1
Chromium	15	0.51	0.25	mg/Kg	☼	11/02/17 07:14	11/02/17 18:25	1
Cobalt	14	0.25	0.066	mg/Kg	₩	11/02/17 07:14	11/02/17 18:25	1
Copper	22	0.51	0.14	mg/Kg	☼	11/02/17 07:14	11/02/17 18:25	1
Iron	24000	10	5.3	mg/Kg	☼	11/02/17 07:14	11/02/17 18:25	1
Lead	78	0.25	0.12	mg/Kg		11/02/17 07:14	11/02/17 18:25	1
Manganese	770	0.51	0.074	mg/Kg	☼	11/02/17 07:14	11/02/17 18:25	1
Nickel	26	0.51	0.15	mg/Kg	☼	11/02/17 07:14	11/02/17 18:25	1
Selenium	0.69	0.51	0.30	mg/Kg	₩.	11/02/17 07:14	11/02/17 18:25	1
Silver	<0.25	0.25	0.065	mg/Kg	≎	11/02/17 07:14	11/02/17 18:25	1

TestAmerica Chicago

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Received: 11/01/17 09:05

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-26 Client Sample ID: 3160-45-3 (5-6') Date Collected: 10/31/17 13:25

Matrix: Solid

Percent Solids: 84.3

Method: 6010B - Meta Analyte) Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Thallium	<0.51		0.51	0.25	mg/Kg	<u></u>	11/02/17 07:14	11/02/17 18:25	1
Vanadium	17		0.25	0.060	mg/Kg		11/02/17 07:14	11/02/17 18:25	1
Zinc	97		1.0	0.45	mg/Kg	₽	11/02/17 07:14	11/02/17 18:25	1
_ Method: 6010B - Meta	als (ICP) - TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/03/17 15:00	11/05/17 15:16	1
Davium	0.74		0.50	0.050	ma/l		11/03/17 15:00	11/05/17 15:16	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Arsenic	<0.050		0.050	0.010	mg/L		11/03/17 15:00	11/05/17 15:16	
Barium	0.74		0.50	0.050	mg/L		11/03/17 15:00	11/05/17 15:16	
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/03/17 15:00	11/05/17 15:16	
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/03/17 15:00	11/05/17 15:16	
Chromium	<0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 15:16	
Cobalt	<0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 15:16	
Copper	<0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 15:16	
Iron	<0.40		0.40	0.20	mg/L		11/03/17 15:00	11/05/17 15:16	
Lead	<0.0075		0.0075	0.0075	mg/L		11/03/17 15:00	11/05/17 15:16	
Manganese	0.12		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 15:16	
Nickel	<0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 15:16	
Selenium	0.022	J	0.050	0.020	mg/L		11/03/17 15:00	11/05/17 15:16	
Silver	<0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 15:16	
Vanadium	<0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 15:16	
Zinc	0.030	J	0.50	0.020	mg/L		11/03/17 15:00	11/05/17 15:16	

Method: 6020A - Metals (ICP/	MS) - TCLP							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060	0.0060	0.0060	mg/L		11/03/17 15:00	11/06/17 18:43	1
Thallium	<0.0020	0.0020	0.0020	mg/L		11/03/17 15:00	11/06/17 18:43	1

Method: /4/UA - ICLP Mercury	/ - ICLP							
Analyte	Result Qua	ualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020	0.00020	0.00020	mg/L	_	11/03/17 12:20	11/06/17 09:10	1

Method: 7471B - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.058		0.019	0.0063	mg/Kg	<u> </u>	11/02/17 16:10	11/03/17 09:26	1

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.7		0.20	0.20	SU			11/03/17 08:57	1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-45-4 (0-5')

Date Collected: 10/31/17 13:35 Date Received: 11/01/17 09:05

Toluene-d8 (Surr)

Lab Sample ID: 500-136575-27

Matrix: Solid Percent Solids: 81.0

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Acetone	<0.017		0.017	0.0075	mg/Kg	<u></u>	11/01/17 18:01	11/03/17 15:55	
Benzene	< 0.0017		0.0017	0.00044	mg/Kg	₩	11/01/17 18:01	11/03/17 15:55	
Bromodichloromethane	< 0.0017		0.0017	0.00035	mg/Kg	₩	11/01/17 18:01	11/03/17 15:55	
Bromoform	<0.0017		0.0017	0.00050	mg/Kg	₽	11/01/17 18:01	11/03/17 15:55	
Bromomethane	< 0.0043		0.0043	0.0016	mg/Kg	₩	11/01/17 18:01	11/03/17 15:55	
2-Butanone (MEK)	< 0.0043		0.0043	0.0019	mg/Kg	₩	11/01/17 18:01	11/03/17 15:55	
Carbon disulfide	<0.0043		0.0043	0.00089	mg/Kg	ф.	11/01/17 18:01	11/03/17 15:55	
Carbon tetrachloride	< 0.0017		0.0017	0.00050	mg/Kg	₩	11/01/17 18:01	11/03/17 15:55	
Chlorobenzene	< 0.0017		0.0017	0.00063	mg/Kg	₩	11/01/17 18:01	11/03/17 15:55	
Chloroethane	<0.0043		0.0043	0.0013	mg/Kg	\$	11/01/17 18:01	11/03/17 15:55	
Chloroform	< 0.0017		0.0017	0.00060	mg/Kg	₩	11/01/17 18:01	11/03/17 15:55	
Chloromethane	< 0.0043		0.0043	0.0017	mg/Kg	₩	11/01/17 18:01	11/03/17 15:55	
cis-1,2-Dichloroethene	<0.0017		0.0017	0.00048	mg/Kg		11/01/17 18:01	11/03/17 15:55	
cis-1,3-Dichloropropene	< 0.0017		0.0017	0.00052	mg/Kg	₩	11/01/17 18:01	11/03/17 15:55	
Dibromochloromethane	< 0.0017		0.0017	0.00056	mg/Kg	₩	11/01/17 18:01	11/03/17 15:55	
1,1-Dichloroethane	<0.0017		0.0017	0.00059	mg/Kg	₩.	11/01/17 18:01	11/03/17 15:55	
1,2-Dichloroethane	< 0.0043		0.0043	0.0013	mg/Kg	₩	11/01/17 18:01	11/03/17 15:55	
1,1-Dichloroethene	< 0.0017		0.0017	0.00059	mg/Kg	₩	11/01/17 18:01	11/03/17 15:55	
1,2-Dichloropropane	<0.0017		0.0017	0.00044	mg/Kg		11/01/17 18:01	11/03/17 15:55	
1,3-Dichloropropene, Total	< 0.0017		0.0017	0.00060	mg/Kg	₩	11/01/17 18:01	11/03/17 15:55	
Ethylbenzene	<0.0017		0.0017	0.00082	mg/Kg	≎	11/01/17 18:01	11/03/17 15:55	
2-Hexanone	<0.0043		0.0043	0.0013			11/01/17 18:01	11/03/17 15:55	
Methylene Chloride	< 0.0043		0.0043	0.0017	mg/Kg	₩	11/01/17 18:01	11/03/17 15:55	
4-Methyl-2-pentanone (MIBK)	< 0.0043		0.0043	0.0013		₩	11/01/17 18:01	11/03/17 15:55	
Methyl tert-butyl ether	<0.0017		0.0017	0.00050	mg/Kg		11/01/17 18:01	11/03/17 15:55	
Styrene	<0.0017		0.0017	0.00052	mg/Kg	₩	11/01/17 18:01	11/03/17 15:55	
1,1,2,2-Tetrachloroethane	< 0.0017		0.0017	0.00055	mg/Kg	₩	11/01/17 18:01	11/03/17 15:55	
Tetrachloroethene	<0.0017		0.0017	0.00058			11/01/17 18:01	11/03/17 15:55	
Toluene	<0.0017		0.0017	0.00043		≎	11/01/17 18:01	11/03/17 15:55	
trans-1,2-Dichloroethene	< 0.0017		0.0017	0.00076	mg/Kg	₩	11/01/17 18:01	11/03/17 15:55	
trans-1,3-Dichloropropene	<0.0017		0.0017	0.00060			11/01/17 18:01	11/03/17 15:55	
1,1,1-Trichloroethane	<0.0017		0.0017	0.00058		≎		11/03/17 15:55	
1,1,2-Trichloroethane	<0.0017		0.0017	0.00074		₩		11/03/17 15:55	
Trichloroethene	<0.0017		0.0017	0.00058			11/01/17 18:01	11/03/17 15:55	
Vinyl acetate	<0.0043		0.0043	0.0015		₩		11/03/17 15:55	
Vinyl chloride	<0.0017		0.0017	0.00076		₩		11/03/17 15:55	
Xylenes, Total	<0.0034		0.0034	0.00055		ф.	11/01/17 18:01	11/03/17 15:55	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
4-Bromofluorobenzene (Surr)	87		75 - 131				11/01/17 18:01	11/03/17 15:55	
Dibromofluoromethane	100		75 - 126				11/01/17 18:01	11/03/17 15:55	
1,2-Dichloroethane-d4 (Surr)	91		70 - 134				11/01/17 18:01	11/03/17 15:55	

Method: 8270D - Semivolatile	Organic Compounds (GC/MS)						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	<0.040	0.040	0.0072	mg/Kg	₩	11/07/17 07:18	11/08/17 02:07	1
Acenaphthylene	<0.040	0.040	0.0053	mg/Kg	≎	11/07/17 07:18	11/08/17 02:07	1
Anthracene	<0.040	0.040	0.0067	mg/Kg	≎	11/07/17 07:18	11/08/17 02:07	1
Benzo[a]anthracene	<0.040	0.040	0.0054	mg/Kg	₽	11/07/17 07:18	11/08/17 02:07	1

75 - 124

TestAmerica Chicago

11/01/17 18:01 11/03/17 15:55

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 13:35

Date Received: 11/01/17 09:05

2-Nitrophenol

Client Sample ID: 3160-45-4 (0-5')

TestAmerica Job ID: 500-136575-1

Matrix: Solid Percent Solids: 81.0

Lab Sample ID: 500-136575-27

Analyte	Result	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]pyrene	<0.040	0.040	0.0078	mg/Kg	\	11/07/17 07:18	11/08/17 02:07	1
Benzo[b]fluoranthene	<0.040	0.040	0.0087	mg/Kg	₩	11/07/17 07:18	11/08/17 02:07	1
Benzo[g,h,i]perylene	<0.040	0.040	0.013	mg/Kg	≎	11/07/17 07:18	11/08/17 02:07	1
Benzo[k]fluoranthene	<0.040	0.040	0.012	mg/Kg	☼	11/07/17 07:18	11/08/17 02:07	1
Bis(2-chloroethoxy)methane	<0.20	0.20	0.041	mg/Kg	≎	11/07/17 07:18	11/08/17 02:07	1
Bis(2-chloroethyl)ether	<0.20	0.20	0.060	mg/Kg	☆	11/07/17 07:18	11/08/17 02:07	1
Bis(2-ethylhexyl) phthalate	<0.20	0.20	0.074	mg/Kg	≎	11/07/17 07:18	11/08/17 02:07	1
4-Bromophenyl phenyl ether	<0.20	0.20	0.053	mg/Kg	☆	11/07/17 07:18	11/08/17 02:07	1
Butyl benzyl phthalate	<0.20	0.20	0.077	mg/Kg	₩	11/07/17 07:18	11/08/17 02:07	1
Carbazole	<0.20	0.20	0.10	mg/Kg	₩	11/07/17 07:18	11/08/17 02:07	1
4-Chloroaniline	<0.81	0.81	0.19	mg/Kg	₩	11/07/17 07:18	11/08/17 02:07	1
4-Chloro-3-methylphenol	<0.40	0.40	0.14	mg/Kg		11/07/17 07:18	11/08/17 02:07	1
2-Chloronaphthalene	<0.20	0.20	0.045	mg/Kg	≎	11/07/17 07:18	11/08/17 02:07	1
2-Chlorophenol	<0.20	0.20	0.069	mg/Kg	☼	11/07/17 07:18	11/08/17 02:07	1
4-Chlorophenyl phenyl ether	<0.20	0.20	0.047	mg/Kg	☆	11/07/17 07:18	11/08/17 02:07	1
Chrysene	<0.040	0.040	0.011	mg/Kg	≎	11/07/17 07:18	11/08/17 02:07	1
Dibenz(a,h)anthracene	<0.040	0.040	0.0078		≎	11/07/17 07:18	11/08/17 02:07	1
Dibenzofuran	<0.20	0.20	0.047			11/07/17 07:18	11/08/17 02:07	1
1,2-Dichlorobenzene	<0.20	0.20	0.048		₩	11/07/17 07:18	11/08/17 02:07	1
1,3-Dichlorobenzene	<0.20	0.20			≎	11/07/17 07:18	11/08/17 02:07	1
1,4-Dichlorobenzene	<0.20	0.20		mg/Kg	· · · · · · · · · · · · · · · · · · ·	11/07/17 07:18	11/08/17 02:07	1
3,3'-Dichlorobenzidine	<0.20	0.20			₽	11/07/17 07:18	11/08/17 02:07	1
2,4-Dichlorophenol	<0.40	0.40		0 0	₩	11/07/17 07:18	11/08/17 02:07	1
Diethyl phthalate	<0.20	0.20				11/07/17 07:18	11/08/17 02:07	· · · · · · · · · · · · · · · · · · ·
2,4-Dimethylphenol	<0.40	0.40		0 0	₩	11/07/17 07:18	11/08/17 02:07	1
Dimethyl phthalate	<0.20	0.20			₩	11/07/17 07:18	11/08/17 02:07	1
Di-n-butyl phthalate	<0.20	0.20				11/07/17 07:18	11/08/17 02:07	· · · · · · · · · · · · · · · · · · ·
4,6-Dinitro-2-methylphenol	<0.81	0.81		mg/Kg	₩	11/07/17 07:18	11/08/17 02:07	1
2,4-Dinitrophenol	<0.81	0.81			₩	11/07/17 07:18	11/08/17 02:07	1
2,4-Dinitrotoluene	<0.20	0.20					11/08/17 02:07	· · · · · · · · · · · · · · · · · · ·
2,6-Dinitrotoluene	<0.20	0.20			*		11/08/17 02:07	1
Di-n-octyl phthalate	<0.20	0.20		mg/Kg	☼		11/08/17 02:07	1
Fluoranthene	<0.040	0.040		mg/Kg	·		11/08/17 02:07	
Fluorene	<0.040	0.040			*		11/08/17 02:07	. 1
Hexachlorobenzene	<0.081	0.081		mg/Kg	₩		11/08/17 02:07	. 1
Hexachlorobutadiene	<0.20	0.20		mg/Kg			11/08/17 02:07	
Hexachlorocyclopentadiene	<0.81	0.81		mg/Kg	₽		11/08/17 02:07	1
Hexachloroethane	<0.20	0.20		mg/Kg	₽		11/08/17 02:07	1
Indeno[1,2,3-cd]pyrene	<0.040	0.040		mg/Kg			11/08/17 02:07	
Isophorone	<0.20	0.20		mg/Kg	т Ф		11/08/17 02:07	1
•	<0.081	0.081		mg/Kg	☆		11/08/17 02:07	1
2-Methylabasel					ф.			
2-Methylphenol	<0.20	0.20		mg/Kg			11/08/17 02:07	1
3 & 4 Methylphenol	<0.20	0.20		mg/Kg	☆		11/08/17 02:07	1
Naphthalene	<0.040	0.040		mg/Kg			11/08/17 02:07	1
2-Nitroaniline	<0.20	0.20		mg/Kg	☆		11/08/17 02:07	1
3-Nitroaniline	<0.40	0.40		mg/Kg	☆		11/08/17 02:07	1
4-Nitroaniline	<0.40	0.40		mg/Kg	<u></u> .		11/08/17 02:07	1
Nitrobenzene	<0.040	0.040	0.010	mg/Kg	₽	11/07/17 07:18	11/08/17 02:07	1

TestAmerica Chicago

☼ 11/07/17 07:18 11/08/17 02:07

Page 132 of 231

0.40

0.095 mg/Kg

< 0.40

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-45-4 (0-5')

Date Collected: 10/31/17 13:35

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-27

11/07/17 07:18 11/08/17 02:07

11/07/17 07:18 11/08/17 02:07

11/07/17 07:18 11/08/17 02:07

11/07/17 07:18 11/08/17 02:07

Matrix: Solid Percent Solids: 81.0

Date Received: 11/01/17 09:0	5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.81		0.81	0.38	mg/Kg	₩	11/07/17 07:18	11/08/17 02:07	1
N-Nitrosodi-n-propylamine	<0.081		0.081	0.049	mg/Kg	\$	11/07/17 07:18	11/08/17 02:07	1
N-Nitrosodiphenylamine	<0.20		0.20	0.048	mg/Kg	☼	11/07/17 07:18	11/08/17 02:07	1
2,2'-oxybis[1-chloropropane]	<0.20		0.20	0.047	mg/Kg	☼	11/07/17 07:18	11/08/17 02:07	1
Pentachlorophenol	<0.81		0.81	0.65	mg/Kg	₽	11/07/17 07:18	11/08/17 02:07	1
Phenanthrene	<0.040		0.040	0.0056	mg/Kg	☼	11/07/17 07:18	11/08/17 02:07	1
Phenol	<0.20		0.20	0.090	mg/Kg	☼	11/07/17 07:18	11/08/17 02:07	1
Pyrene	<0.040		0.040	0.0080	mg/Kg	₩	11/07/17 07:18	11/08/17 02:07	1
1,2,4-Trichlorobenzene	<0.20		0.20	0.043	mg/Kg	☼	11/07/17 07:18	11/08/17 02:07	1
2,4,5-Trichlorophenol	<0.40		0.40	0.092	mg/Kg	☼	11/07/17 07:18	11/08/17 02:07	1
2,4,6-Trichlorophenol	<0.40		0.40	0.14	mg/Kg	☼	11/07/17 07:18	11/08/17 02:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	97		44 - 121				11/07/17 07:18	11/08/17 02:07	1
2-Fluorophenol	101		46 - 133				11/07/17 07:18	11/08/17 02:07	1

41 - 120

46 - 125

35 - 160

25 - 139

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

102

93

98

		,						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	<0.020	0.020	0.0070	mg/Kg	<u> </u>	11/08/17 07:22	11/09/17 12:12	1
PCB-1221	<0.020	0.020	0.0087	mg/Kg	☼	11/08/17 07:22	11/09/17 12:12	1
PCB-1232	<0.020	0.020	0.0086	mg/Kg	☼	11/08/17 07:22	11/09/17 12:12	1
PCB-1242	<0.020	0.020	0.0065	mg/Kg	₩	11/08/17 07:22	11/09/17 12:12	1
PCB-1248	<0.020	0.020	0.0078	mg/Kg	☼	11/08/17 07:22	11/09/17 12:12	1
PCB-1254	<0.020	0.020	0.0043	mg/Kg	☼	11/08/17 07:22	11/09/17 12:12	1
PCB-1260	<0.020	0.020	0.0097	mg/Kg	₩.	11/08/17 07:22	11/09/17 12:12	1
1								

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	98		49 - 129	11/08/17 07:22	11/09/17 12:12	1
DCB Decachlorobiphenyl	78		37 - 121	11/08/17 07:22	11/09/17 12:12	1

Method: 6010B - Metals (ICP)

Nitrobenzene-d5

Terphenyl-d14

2,4,6-Tribromophenol

Phenol-d5

(ICF)							
Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
<1.1	1.1	0.21	mg/Kg	<u> </u>	11/02/17 07:14	11/02/17 18:29	1
4.7	0.55	0.19	mg/Kg	☼	11/02/17 07:14	11/02/17 18:29	1
190	0.55	0.062	mg/Kg	☼	11/02/17 07:14	11/02/17 18:29	1
0.83	0.22	0.051	mg/Kg	₩.	11/02/17 07:14	11/02/17 18:29	1
0.11	0.11	0.020	mg/Kg	☼	11/02/17 07:14	11/02/17 18:29	1
14	0.55	0.27	mg/Kg	₩	11/02/17 07:14	11/02/17 18:29	1
9.2	0.27	0.072	mg/Kg		11/02/17 07:14	11/02/17 18:29	1
9.8	0.55	0.15	mg/Kg	☼	11/02/17 07:14	11/02/17 18:29	1
13000	11	5.7	mg/Kg	☼	11/02/17 07:14	11/02/17 18:29	1
15	0.27	0.13	mg/Kg	φ.	11/02/17 07:14	11/02/17 18:29	1
280	0.55	0.079	mg/Kg	₩	11/02/17 07:14	11/02/17 18:29	1
13	0.55	0.16	mg/Kg	☼	11/02/17 07:14	11/02/17 18:29	1
0.79	0.55	0.32	mg/Kg	₽	11/02/17 07:14	11/02/17 18:29	1
<0.27	0.27	0.071	mg/Kg	☼	11/02/17 07:14	11/02/17 18:29	1
	Result Qualifier <1.1 4.7 190 0.83 0.11 14 9.2 9.8 13000 15 280 13 0.79	Result Qualifier RL <1.1	Result Qualifier RL MDL <1.1	Result Qualifier RL MDL unit <1.1	Result Qualifier RL MDL Unit D <1.1	Result Qualifier RL MDL mg/Kg D mg/Kg Prepared <1.1	Result Qualifier RL MDL Unit D Prepared Analyzed <1.1

TestAmerica Chicago

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 13:35

Date Received: 11/01/17 09:05

Client Sample ID: 3160-45-4 (0-5')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-27

Matrix: Solid

Percent Solids: 81.0

Method: 6010B - Metals (Analyte) Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
Thallium	<0.55	Qualifier	0.55		mg/Kg	— ~	11/02/17 07:14	11/02/17 18:29	DII Fac
			0.33			.		11/02/17 18:29	
Vanadium	25				mg/Kg				
Zinc	38		1.1	0.48	mg/Kg	☼	11/02/17 07:14	11/02/17 18:29	1
Method: 6010B - Metals (
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/03/17 15:00	11/05/17 15:20	1
Barium	1.3		0.50	0.050	mg/L		11/03/17 15:00	11/05/17 15:20	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/03/17 15:00	11/05/17 15:20	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/03/17 15:00	11/05/17 15:20	1
Chromium	<0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 15:20	1
Cobalt	<0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 15:20	1
Copper	<0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 15:20	1
Iron	<0.40		0.40	0.20	mg/L		11/03/17 15:00	11/05/17 15:20	1
Lead	<0.0075		0.0075	0.0075	mg/L		11/03/17 15:00	11/05/17 15:20	1
Manganese	0.039		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 15:20	1
Nickel	0.021	J	0.025	0.010	mg/L		11/03/17 15:00	11/05/17 15:20	1
Selenium	< 0.050		0.050	0.020	mg/L		11/03/17 15:00	11/05/17 15:20	1
Silver	<0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 15:20	1
Vanadium	<0.025		0.025	0.010	-		11/03/17 15:00	11/05/17 15:20	1
Zinc	<0.50		0.50	0.020	mg/L		11/03/17 15:00	11/05/17 15:20	1
Method: 6020A - Metals (ICP/MS) - TCLP								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060		0.0060	0.0060	mg/L		11/03/17 15:00	11/06/17 18:47	1
Thallium	<0.0020		0.0020	0.0020	Ū		11/03/17 15:00	11/06/17 18:47	1
Method: 7470A - TCLP M	ercury - TCLP								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/03/17 12:20	11/06/17 09:12	1
Method: 7471B - Mercury	(CVAA)								
Analyte	•	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.016	J	0.019	0.0062	mg/Kg	<u>∓</u>	11/02/17 16:10	11/03/17 09:28	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	6.3		0.20	0.20	SU			11/03/17 08:57	1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Acenaphthylene

Benzo[a]anthracene

Anthracene

Lab Sample ID: 500-136575-28

Client Sample ID: 3160-45-4 (5-6') Date Collected: 10/31/17 13:40 **Matrix: Solid** Date Received: 11/01/17 09:05

Percent Solids: 84.5

Method: 8260B - Volatile O Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	0.063		0.017	0.0073	mg/Kg	<u> </u>	11/01/17 18:01	11/03/17 16:21	1
Benzene	<0.0017		0.0017	0.00042	mg/Kg	₩	11/01/17 18:01	11/03/17 16:21	1
Bromodichloromethane	<0.0017		0.0017	0.00034	mg/Kg	₩	11/01/17 18:01	11/03/17 16:21	1
Bromoform	<0.0017		0.0017	0.00049	mg/Kg		11/01/17 18:01	11/03/17 16:21	1
Bromomethane	<0.0042		0.0042	0.0016	mg/Kg	₩	11/01/17 18:01	11/03/17 16:21	1
2-Butanone (MEK)	<0.0042		0.0042	0.0018	mg/Kg	₩	11/01/17 18:01	11/03/17 16:21	1
Carbon disulfide	<0.0042		0.0042	0.00087	mg/Kg	₩	11/01/17 18:01	11/03/17 16:21	1
Carbon tetrachloride	< 0.0017		0.0017	0.00048	mg/Kg	₩	11/01/17 18:01	11/03/17 16:21	1
Chlorobenzene	< 0.0017		0.0017	0.00061	mg/Kg	₩	11/01/17 18:01	11/03/17 16:21	1
Chloroethane	<0.0042		0.0042	0.0012	mg/Kg		11/01/17 18:01	11/03/17 16:21	1
Chloroform	<0.0017		0.0017	0.00058	mg/Kg	₩	11/01/17 18:01	11/03/17 16:21	1
Chloromethane	< 0.0042		0.0042	0.0017		₩	11/01/17 18:01	11/03/17 16:21	1
cis-1,2-Dichloroethene	<0.0017		0.0017	0.00047			11/01/17 18:01	11/03/17 16:21	1
cis-1,3-Dichloropropene	<0.0017		0.0017	0.00050		₩	11/01/17 18:01	11/03/17 16:21	1
Dibromochloromethane	<0.0017		0.0017	0.00054	0 0	₩		11/03/17 16:21	1
1,1-Dichloroethane	<0.0017		0.0017	0.00057	mg/Kg	 ф	11/01/17 18:01	11/03/17 16:21	1
1,2-Dichloroethane	< 0.0042		0.0042	0.0013	0 0	₩	11/01/17 18:01	11/03/17 16:21	1
1,1-Dichloroethene	< 0.0017		0.0017	0.00057	mg/Kg	₩	11/01/17 18:01	11/03/17 16:21	1
1,2-Dichloropropane	<0.0017		0.0017	0.00043			11/01/17 18:01	11/03/17 16:21	1
1,3-Dichloropropene, Total	<0.0017		0.0017	0.00058	0 0	₩	11/01/17 18:01	11/03/17 16:21	1
Ethylbenzene	<0.0017		0.0017	0.00080		₽		11/03/17 16:21	1
2-Hexanone	<0.0042		0.0042	0.0013	0 0			11/03/17 16:21	1
Methylene Chloride	<0.0042		0.0042	0.0016		₩		11/03/17 16:21	1
4-Methyl-2-pentanone (MIBK)	<0.0042		0.0042	0.0012		₩		11/03/17 16:21	1
Methyl tert-butyl ether	<0.0017		0.0017	0.00049				11/03/17 16:21	
Styrene	<0.0017		0.0017	0.00050		₩		11/03/17 16:21	1
1,1,2,2-Tetrachloroethane	<0.0017		0.0017	0.00053	0 0	₩		11/03/17 16:21	1
Tetrachloroethene	<0.0017		0.0017	0.00057		 ф		11/03/17 16:21	
Toluene	< 0.0017		0.0017	0.00042	0 0	₩		11/03/17 16:21	1
trans-1,2-Dichloroethene	< 0.0017		0.0017	0.00074	0 0	₩		11/03/17 16:21	. 1
trans-1,3-Dichloropropene	<0.0017		0.0017	0.00058				11/03/17 16:21	
1,1,1-Trichloroethane	<0.0017		0.0017	0.00056		₩		11/03/17 16:21	1
1,1,2-Trichloroethane	<0.0017		0.0017	0.00071		₩		11/03/17 16:21	. 1
Trichloroethene	<0.0017		0.0017	0.00071				11/03/17 16:21	
Vinyl acetate	<0.0042		0.0042	0.0014		₩		11/03/17 16:21	1
Vinyl chloride	< 0.0017		0.0017	0.00074		₽	11/01/17 18:01		1
Xylenes, Total	<0.0033		0.0033	0.00053			11/01/17 18:01		· · · · · · · 1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	89		75 - 131				11/01/17 18:01	11/03/17 16:21	1
Dibromofluoromethane	103		75 - 126				11/01/17 18:01	11/03/17 16:21	1
1,2-Dichloroethane-d4 (Surr)	101		70 - 134				11/01/17 18:01	11/03/17 16:21	1
Toluene-d8 (Surr)	107		75 - 124				11/01/17 18:01	11/03/17 16:21	1
Method: 8270D - Semivolat	tile Organic Co	mpounds	(GC/MS)						
					11!4	_	D	A a l a al	D11 E
Analyte Acenaphthene	Result < 0.039	Qualifier	RL 0.039	MDL	mg/Kg	— D	Prepared 11/07/17 07:18	Analyzed 11/08/17 02:34	Dil Fac

TestAmerica Chicago

☼ 11/07/17 07:18 11/08/17 02:34

☼ 11/07/17 07:18 11/08/17 02:34

* 11/07/17 07:18 11/08/17 02:34

0.039

0.039

0.039

0.0051 mg/Kg

0.0065 mg/Kg

0.0052 mg/Kg

<0.039

<0.039

0.0077 JB

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 13:40

Date Received: 11/01/17 09:05

Client Sample ID: 3160-45-4 (5-6')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-28

Matrix: Solid

Percent Solids: 84.5

Method: 8270D - Semivolatil Analyte		mpounds (Qualifier	GC/MS) (CC RL	ntinuea MDL		D	Prepared	Analyzed	Dil Fac
Benzo[a]pyrene	<0.039		0.039	0.0075	mg/Kg	<u>₩</u>	11/07/17 07:18	11/08/17 02:34	1
Benzo[b]fluoranthene	0.0084	J	0.039	0.0084	0 0	₩	11/07/17 07:18	11/08/17 02:34	1
Benzo[g,h,i]perylene	<0.039		0.039	0.013		ф.	11/07/17 07:18	11/08/17 02:34	1
Benzo[k]fluoranthene	<0.039		0.039	0.011		₩	11/07/17 07:18	11/08/17 02:34	1
Bis(2-chloroethoxy)methane	<0.20		0.20	0.040	mg/Kg	₩	11/07/17 07:18	11/08/17 02:34	1
Bis(2-chloroethyl)ether	<0.20		0.20	0.058	mg/Kg	· · · · · · · · ☆ ·	11/07/17 07:18	11/08/17 02:34	1
Bis(2-ethylhexyl) phthalate	<0.20		0.20	0.071	mg/Kg	₩	11/07/17 07:18	11/08/17 02:34	1
4-Bromophenyl phenyl ether	<0.20		0.20	0.051		₩	11/07/17 07:18	11/08/17 02:34	1
Butyl benzyl phthalate	<0.20		0.20	0.074			11/07/17 07:18	11/08/17 02:34	1
Carbazole	<0.20		0.20	0.097	mg/Kg	₩	11/07/17 07:18	11/08/17 02:34	1
4-Chloroaniline	<0.78		0.78	0.18	mg/Kg	₩	11/07/17 07:18	11/08/17 02:34	1
4-Chloro-3-methylphenol	<0.39		0.39	0.13			11/07/17 07:18	11/08/17 02:34	1
2-Chloronaphthalene	<0.20		0.20	0.043		₩	11/07/17 07:18	11/08/17 02:34	1
2-Chlorophenol	<0.20		0.20		mg/Kg	₩	11/07/17 07:18	11/08/17 02:34	1
4-Chlorophenyl phenyl ether	<0.20		0.20	0.045			11/07/17 07:18	11/08/17 02:34	1
Chrysene	<0.039		0.039	0.011	0 0	₩	11/07/17 07:18	11/08/17 02:34	1
Dibenz(a,h)anthracene	<0.039		0.039	0.0075	mg/Kg	₩		11/08/17 02:34	1
Dibenzofuran	<0.20		0.20	0.046	mg/Kg			11/08/17 02:34	1
1,2-Dichlorobenzene	<0.20		0.20	0.047		₽		11/08/17 02:34	1
1,3-Dichlorobenzene	<0.20		0.20	0.044	mg/Kg	₩	11/07/17 07:18	11/08/17 02:34	1
1,4-Dichlorobenzene	<0.20		0.20	0.050	mg/Kg	 ф	11/07/17 07:18	11/08/17 02:34	1
3,3'-Dichlorobenzidine	<0.20		0.20	0.054	mg/Kg	₩	11/07/17 07:18	11/08/17 02:34	1
2,4-Dichlorophenol	<0.39		0.39	0.092	mg/Kg	₩		11/08/17 02:34	1
Diethyl phthalate	<0.20		0.20		mg/Kg			11/08/17 02:34	
2,4-Dimethylphenol	< 0.39		0.39		mg/Kg	₩		11/08/17 02:34	1
Dimethyl phthalate	<0.20		0.20	0.051	mg/Kg	₩		11/08/17 02:34	. 1
Di-n-butyl phthalate	<0.20		0.20	0.059				11/08/17 02:34	· · · · · · · · · · · · · · · · · · ·
4,6-Dinitro-2-methylphenol	<0.78		0.78	0.31		₩		11/08/17 02:34	. 1
2,4-Dinitrophenol	<0.78		0.78	0.69	mg/Kg	₩		11/08/17 02:34	1
2,4-Dinitrotoluene	<0.20		0.20		mg/Kg			11/08/17 02:34	······································
2.6-Dinitrotoluene	<0.20		0.20		mg/Kg	₩		11/08/17 02:34	1
Di-n-octyl phthalate	<0.20		0.20	0.063	mg/Kg	₩		11/08/17 02:34	1
Fluoranthene	0.012	· · · · · · · · · · · · · · · · · · ·	0.039	0.0072				11/08/17 02:34	· · · · · · · · · · · · · · · · · · ·
Fluorene	< 0.039	3	0.039	0.0072	mg/Kg	.;;	11/07/17 07:18	11/08/17 02:34	1
Hexachlorobenzene	<0.078		0.078	0.0090	0 0	₩		11/08/17 02:34	1
Hexachlorobutadiene	<0.20		0.20		mg/Kg	· · · · · · · · · · · · · · · · · · ·		11/08/17 02:34	
Hexachlorocyclopentadiene	<0.78		0.20		mg/Kg			11/08/17 02:34	1
Hexachloroethane	<0.20		0.70		mg/Kg			11/08/17 02:34	1
Indeno[1,2,3-cd]pyrene	<0.039		0.039		mg/Kg	· · · · · · · · · · · · · · · · · · ·		11/08/17 02:34	
Isophorone	<0.20		0.039		mg/Kg	☼		11/08/17 02:34	1
•	<0.20		0.20			≎		11/08/17 02:34	1
2-Methylnaphthalene				0.0072		· · · · · · · · · · · · · · · · · · ·		11/08/17 02:34	
2-Methylphenol	<0.20 <0.20		0.20 0.20		mg/Kg	₽		11/08/17 02:34	1
3 & 4 Methylphenol Naphthalene	<0.20		0.20		mg/Kg	₽		11/08/17 02:34	1
•				0.0060					۱ ر
2-Nitroaniline	<0.20		0.20		mg/Kg	₽		11/08/17 02:34	1
3-Nitroaniline	<0.39		0.39		mg/Kg	₽		11/08/17 02:34	1
4-Nitroaniline	< 0.39		0.39		mg/Kg	. %		11/08/17 02:34	1
Nitrobenzene	< 0.039		0.039	0.0097	mg/Kg	₽	11/07/17 07:18	11/08/17 02:34	1

TestAmerica Chicago

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 13:40

Client Sample ID: 3160-45-4 (5-6')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-28

Matrix: Solid Percent Solids: 84.5

Date Received: 11/01/17 09:05

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.78	0.78	0.37	mg/Kg	<u> </u>	11/07/17 07:18	11/08/17 02:34	1
N-Nitrosodi-n-propylamine	<0.078	0.078	0.048	mg/Kg	φ.	11/07/17 07:18	11/08/17 02:34	1
N-Nitrosodiphenylamine	<0.20	0.20	0.046	mg/Kg	₩	11/07/17 07:18	11/08/17 02:34	1
2,2'-oxybis[1-chloropropane]	<0.20	0.20	0.045	mg/Kg	₩	11/07/17 07:18	11/08/17 02:34	1
Pentachlorophenol	<0.78	0.78	0.62	mg/Kg	₩.	11/07/17 07:18	11/08/17 02:34	1
Phenanthrene	<0.039	0.039	0.0054	mg/Kg	₩	11/07/17 07:18	11/08/17 02:34	1
Phenol	<0.20	0.20	0.086	mg/Kg	₩	11/07/17 07:18	11/08/17 02:34	1
Pyrene	0.020 J	0.039	0.0077	mg/Kg	₩.	11/07/17 07:18	11/08/17 02:34	1
1,2,4-Trichlorobenzene	<0.20	0.20	0.042	mg/Kg	₩	11/07/17 07:18	11/08/17 02:34	1
2,4,5-Trichlorophenol	<0.39	0.39	0.089	mg/Kg	₩	11/07/17 07:18	11/08/17 02:34	1
2,4,6-Trichlorophenol	<0.39	0.39	0.13	mg/Kg	ф.	11/07/17 07:18	11/08/17 02:34	1

Surrogate	%Recovery C	Qualifier Lin	nits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	90	44	- 121	11/07/17 07:18	11/08/17 02:34	1
2-Fluorophenol	102	46	- 133	11/07/17 07:18	11/08/17 02:34	1
Nitrobenzene-d5	89	41	- 120	11/07/17 07:18	11/08/17 02:34	1
Phenol-d5	88	46	₋ 125	11/07/17 07:18	11/08/17 02:34	1
Terphenyl-d14	98	35	- 160	11/07/17 07:18	11/08/17 02:34	1
2,4,6-Tribromophenol	62	25	₋ 139	11/07/17 07:18	11/08/17 02:34	1

Method: 8082A - Poly	chlorinated Biphenyls (PCBs) by	Gas Chr	omatogr	aphy				
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	<0.020	0.020	0.0070	mg/Kg	₩	11/08/17 07:22	11/09/17 12:27	1
PCB-1221	<0.020	0.020	0.0087	mg/Kg	≎	11/08/17 07:22	11/09/17 12:27	1
PCB-1232	<0.020	0.020	0.0086	mg/Kg	₽	11/08/17 07:22	11/09/17 12:27	1
PCB-1242	<0.020	0.020	0.0065	mg/Kg	₽	11/08/17 07:22	11/09/17 12:27	1
PCB-1248	<0.020	0.020	0.0078	mg/Kg	₽	11/08/17 07:22	11/09/17 12:27	1
PCB-1254	<0.020	0.020	0.0043	mg/Kg	☼	11/08/17 07:22	11/09/17 12:27	1
PCB-1260	<0.020	0.020	0.0097	mg/Kg		11/08/17 07:22	11/09/17 12:27	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	95		49 - 129	11/08/17 07:22	11/09/17 12:27	1
DCB Decachlorobiphenyl	79		37 - 121	11/08/17 07:22	11/09/17 12:27	1

Method: 6010B - Metals Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<1.1		1.1	0.21	mg/Kg	<u></u>	11/02/17 07:14	11/02/17 18:33	1
Arsenic	1.9		0.55	0.19	mg/Kg	☼	11/02/17 07:14	11/02/17 18:33	1
Barium	60		0.55	0.063	mg/Kg	₩	11/02/17 07:14	11/02/17 18:33	1
Beryllium	0.64		0.22	0.051	mg/Kg	₩.	11/02/17 07:14	11/02/17 18:33	1
Cadmium	0.12		0.11	0.020	mg/Kg	₩	11/02/17 07:14	11/02/17 18:33	1
Chromium	15		0.55	0.27	mg/Kg	₩	11/02/17 07:14	11/02/17 18:33	1
Cobalt	5.9		0.28	0.072	mg/Kg	₩.	11/02/17 07:14	11/02/17 18:33	1
Copper	7.3		0.55	0.15	mg/Kg	₩	11/02/17 07:14	11/02/17 18:33	1
Iron	13000		11	5.7	mg/Kg	₩	11/02/17 07:14	11/02/17 18:33	1
Lead	8.8		0.28	0.13	mg/Kg		11/02/17 07:14	11/02/17 18:33	1
Manganese	270		0.55	0.080	mg/Kg	₩	11/02/17 07:14	11/02/17 18:33	1
Nickel	12		0.55	0.16	mg/Kg	₩	11/02/17 07:14	11/02/17 18:33	1
Selenium	<0.55		0.55	0.32	mg/Kg	φ.	11/02/17 07:14	11/02/17 18:33	1
Silver	<0.28		0.28	0.071	mg/Kg	≎	11/02/17 07:14	11/02/17 18:33	1

TestAmerica Chicago

2

_

5

7

9

11

13

14

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136575-1

3

Client Sample ID: 3160-45-4 (5-6')

Date Collected: 10/31/17 13:40

Lab Sample ID: 500-136575-28

Matrix: Solid

Date Collected: 10/31/17 13:40

Date Received: 11/01/17 09:05

Matrix: Solid
Percent Solids: 84.5

Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Thallium	<0.55		0.55	0.27	mg/Kg	<u> </u>	11/02/17 07:14	11/02/17 18:33	1
Vanadium	21		0.28	0.065	mg/Kg	ф.	11/02/17 07:14	11/02/17 18:33	1
Zinc	34		1.1	0.48	mg/Kg	≎	11/02/17 07:14	11/02/17 18:33	1
Method: 6010B - Metals	(ICP) - TCLP								
Analyte	· /	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/03/17 15:00	11/05/17 15:24	1
Barium	0.64		0.50	0.050	mg/L		11/03/17 15:00	11/05/17 15:24	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/03/17 15:00	11/05/17 15:24	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/03/17 15:00	11/05/17 15:24	1
Chromium	<0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 15:24	1
Cobalt	<0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 15:24	1
Copper	<0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 15:24	1
Iron	<0.40		0.40	0.20	mg/L		11/03/17 15:00	11/05/17 15:24	1
Lead	< 0.0075		0.0075	0.0075	mg/L		11/03/17 15:00	11/05/17 15:24	1
Manganese	0.033		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 15:24	1
Nickel	0.011	J	0.025	0.010	mg/L		11/03/17 15:00	11/05/17 15:24	1
Selenium	<0.050		0.050	0.020	mg/L		11/03/17 15:00	11/05/17 15:24	1
Silver	<0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 15:24	1
Vanadium	<0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 15:24	1
Zinc	<0.50		0.50	0.020	mg/L		11/03/17 15:00	11/05/17 15:24	1
Method: 6020A - Metals	(ICP/MS) - TCLP								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060		0.0060	0.0060	mg/L		11/03/17 15:00	11/06/17 18:51	1
Thallium	<0.0020		0.0020	0.0020	mg/L		11/03/17 15:00	11/06/17 18:51	1
Method: 7470A - TCLP N	lercury - TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/03/17 12:20	11/06/17 09:13	
Method: 7471B - Mercur	y (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.021		0.018	0.0060	mg/Kg	<u>∓</u>	11/02/17 16:10	11/03/17 09:30	
General Chemistry									
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
рН	6.5		0.20	0.20	SU			11/03/17 08:57	1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Lab Sample ID: 500-136575-29

Client Sample ID: 3160-50-1 (0-2') Date Collected: 10/31/17 14:00 **Matrix: Solid** Date Received: 11/01/17 09:05 Percent Solids: 82.6

Analyte	Result Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Acetone	0.074	0.018	0.0079	mg/Kg	<u>₩</u>	11/01/17 18:01	11/03/17 16:45	1
Benzene	<0.0018	0.0018	0.00046	mg/Kg	₩	11/01/17 18:01	11/03/17 16:45	1
Bromodichloromethane	<0.0018	0.0018	0.00037	mg/Kg	₩	11/01/17 18:01	11/03/17 16:45	1
Bromoform	<0.0018	0.0018	0.00053	mg/Kg	₩	11/01/17 18:01	11/03/17 16:45	1
Bromomethane	<0.0045	0.0045	0.0017	mg/Kg	₩	11/01/17 18:01	11/03/17 16:45	1
2-Butanone (MEK)	<0.0045	0.0045	0.0020	mg/Kg	₩	11/01/17 18:01	11/03/17 16:45	1
Carbon disulfide	<0.0045	0.0045	0.00095	mg/Kg	₩	11/01/17 18:01	11/03/17 16:45	1
Carbon tetrachloride	<0.0018	0.0018	0.00053	mg/Kg	₩	11/01/17 18:01	11/03/17 16:45	1
Chlorobenzene	<0.0018	0.0018	0.00067	mg/Kg	☼	11/01/17 18:01	11/03/17 16:45	1
Chloroethane	<0.0045	0.0045	0.0013	mg/Kg	₩	11/01/17 18:01	11/03/17 16:45	1
Chloroform	<0.0018	0.0018	0.00063	mg/Kg	₩	11/01/17 18:01	11/03/17 16:45	1
Chloromethane	<0.0045	0.0045	0.0018	mg/Kg	₩	11/01/17 18:01	11/03/17 16:45	1
cis-1,2-Dichloroethene	<0.0018	0.0018	0.00051	mg/Kg	₩	11/01/17 18:01	11/03/17 16:45	1
cis-1,3-Dichloropropene	<0.0018	0.0018	0.00055	mg/Kg	₩	11/01/17 18:01	11/03/17 16:45	1
Dibromochloromethane	<0.0018	0.0018	0.00059	mg/Kg	₩	11/01/17 18:01	11/03/17 16:45	1
1,1-Dichloroethane	<0.0018	0.0018	0.00062	mg/Kg	₩	11/01/17 18:01	11/03/17 16:45	1
1,2-Dichloroethane	<0.0045	0.0045	0.0014	mg/Kg	₩	11/01/17 18:01	11/03/17 16:45	1
1,1-Dichloroethene	<0.0018	0.0018	0.00063	mg/Kg	☼	11/01/17 18:01	11/03/17 16:45	1
1,2-Dichloropropane	<0.0018	0.0018	0.00047	mg/Kg	₩	11/01/17 18:01	11/03/17 16:45	1
1,3-Dichloropropene, Total	<0.0018	0.0018	0.00064	mg/Kg	₩	11/01/17 18:01	11/03/17 16:45	1
Ethylbenzene	<0.0018	0.0018	0.00087	mg/Kg	☼	11/01/17 18:01	11/03/17 16:45	1
2-Hexanone	<0.0045	0.0045	0.0014	mg/Kg		11/01/17 18:01	11/03/17 16:45	1
Methylene Chloride	<0.0045	0.0045	0.0018	mg/Kg	₩	11/01/17 18:01	11/03/17 16:45	1
4-Methyl-2-pentanone (MIBK)	<0.0045	0.0045	0.0013	mg/Kg	₩	11/01/17 18:01	11/03/17 16:45	1
Methyl tert-butyl ether	<0.0018	0.0018	0.00053	mg/Kg		11/01/17 18:01	11/03/17 16:45	1
Styrene	<0.0018	0.0018	0.00055	mg/Kg	₩	11/01/17 18:01	11/03/17 16:45	1
1,1,2,2-Tetrachloroethane	<0.0018	0.0018	0.00058	mg/Kg	☼	11/01/17 18:01	11/03/17 16:45	1
Tetrachloroethene	<0.0018	0.0018	0.00062	mg/Kg		11/01/17 18:01	11/03/17 16:45	1
Toluene	<0.0018	0.0018	0.00046	mg/Kg	☼	11/01/17 18:01	11/03/17 16:45	1
trans-1,2-Dichloroethene	<0.0018	0.0018	0.00081	mg/Kg	☼	11/01/17 18:01	11/03/17 16:45	1
trans-1,3-Dichloropropene	<0.0018	0.0018	0.00064	mg/Kg	₩	11/01/17 18:01	11/03/17 16:45	1
1,1,1-Trichloroethane	<0.0018	0.0018	0.00061	mg/Kg	☼	11/01/17 18:01	11/03/17 16:45	1
1,1,2-Trichloroethane	<0.0018	0.0018	0.00078	mg/Kg	₩	11/01/17 18:01	11/03/17 16:45	1
Trichloroethene	<0.0018	0.0018	0.00061	mg/Kg	ф .	11/01/17 18:01	11/03/17 16:45	1
Vinyl acetate	<0.0045	0.0045	0.0016	mg/Kg	₩	11/01/17 18:01	11/03/17 16:45	1
Vinyl chloride	<0.0018	0.0018	0.00080	mg/Kg	₩	11/01/17 18:01	11/03/17 16:45	1
Xylenes, Total	<0.0036	0.0036	0.00058	mg/Kg	φ.	11/01/17 18:01	11/03/17 16:45	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	90	75 - 131				11/01/17 18:01	11/03/17 16:45	1
Dibromofluoromethane	102	75 - 126				11/01/17 18:01	11/03/17 16:45	1
1,2-Dichloroethane-d4 (Surr)	100	70 - 134				11/01/17 18:01	11/03/17 16:45	1
Toluene-d8 (Surr)	84	75 - 124				11/01/17 18:01	11/03/17 16:45	1

Method: 8270D - Semivolatile Organic Compounds (GC/MS)									
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Acenaphthene	<0.040	0.040	0.0072	mg/Kg	\tilde{\	11/07/17 07:18	11/08/17 03:00	1	
Acenaphthylene	<0.040	0.040	0.0053	mg/Kg	₩	11/07/17 07:18	11/08/17 03:00	1	
Anthracene	<0.040	0.040	0.0067	mg/Kg	₩	11/07/17 07:18	11/08/17 03:00	1	
Benzo[a]anthracene	<0.040	0.040	0.0054	mg/Kg	₩	11/07/17 07:18	11/08/17 03:00	1	

TestAmerica Chicago

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 14:00

Fluorene

Hexachlorobenzene

Hexachlorobutadiene

Indeno[1,2,3-cd]pyrene

2-Methylnaphthalene

3 & 4 Methylphenol

2-Methylphenol

Naphthalene

2-Nitroaniline

3-Nitroaniline

4-Nitroaniline

Nitrobenzene

2-Nitrophenol

Hexachloroethane

Isophorone

Hexachlorocyclopentadiene

Client Sample ID: 3160-50-1 (0-2')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-29

Matrix: Solid

ate Received: 11/01/17 09:09								Percent Solid	is: 82.t
Method: 8270D - Semivolatil Analyte		mpounds (GO Qualifier	C/MS) (C RL	ontinued MDL		D	Prepared	Analyzed	Dil Fa
Benzo[a]pyrene	<0.040		0.040	0.0077	mg/Kg	<u> </u>	11/07/17 07:18	11/08/17 03:00	
Benzo[b]fluoranthene	<0.040		0.040	0.0086	mg/Kg	☼	11/07/17 07:18	11/08/17 03:00	
Benzo[g,h,i]perylene	<0.040		0.040	0.013	mg/Kg	₩	11/07/17 07:18	11/08/17 03:00	· · · · · · · · ·
Benzo[k]fluoranthene	<0.040		0.040	0.012	mg/Kg	☼	11/07/17 07:18	11/08/17 03:00	
Bis(2-chloroethoxy)methane	<0.20		0.20	0.041	mg/Kg	☼	11/07/17 07:18	11/08/17 03:00	
Bis(2-chloroethyl)ether	<0.20		0.20	0.060	mg/Kg		11/07/17 07:18	11/08/17 03:00	
Bis(2-ethylhexyl) phthalate	<0.20		0.20	0.073	mg/Kg	☼	11/07/17 07:18	11/08/17 03:00	
4-Bromophenyl phenyl ether	<0.20		0.20	0.053	mg/Kg	☼	11/07/17 07:18	11/08/17 03:00	
Butyl benzyl phthalate	<0.20		0.20	0.076	mg/Kg		11/07/17 07:18	11/08/17 03:00	· · · · · · · · ·
Carbazole	<0.20		0.20	0.10	mg/Kg	₩	11/07/17 07:18	11/08/17 03:00	
4-Chloroaniline	<0.80		0.80	0.19	mg/Kg	☼	11/07/17 07:18	11/08/17 03:00	
4-Chloro-3-methylphenol	<0.40		0.40	0.14	mg/Kg		11/07/17 07:18	11/08/17 03:00	· · · · · · · · ·
2-Chloronaphthalene	<0.20		0.20	0.044	mg/Kg	₩	11/07/17 07:18	11/08/17 03:00	
2-Chlorophenol	<0.20		0.20	0.068	mg/Kg	☼	11/07/17 07:18	11/08/17 03:00	
4-Chlorophenyl phenyl ether	<0.20		0.20	0.047	mg/Kg		11/07/17 07:18	11/08/17 03:00	· · · · · · · · ·
Chrysene	<0.040		0.040	0.011	mg/Kg	☼	11/07/17 07:18	11/08/17 03:00	
Dibenz(a,h)anthracene	<0.040		0.040	0.0077	mg/Kg	₩	11/07/17 07:18	11/08/17 03:00	
Dibenzofuran	<0.20		0.20	0.047	mg/Kg	₩	11/07/17 07:18	11/08/17 03:00	· · · · · · · · ·
1,2-Dichlorobenzene	<0.20		0.20	0.048	mg/Kg	☼	11/07/17 07:18	11/08/17 03:00	
1,3-Dichlorobenzene	<0.20		0.20	0.045	mg/Kg	₩	11/07/17 07:18	11/08/17 03:00	
1,4-Dichlorobenzene	<0.20		0.20	0.051	mg/Kg		11/07/17 07:18	11/08/17 03:00	• • • • • • • • • • • • • • • • • • • •
3,3'-Dichlorobenzidine	<0.20		0.20	0.056	mg/Kg	₩	11/07/17 07:18	11/08/17 03:00	
2,4-Dichlorophenol	<0.40		0.40	0.095	mg/Kg	☼	11/07/17 07:18	11/08/17 03:00	
Diethyl phthalate	<0.20		0.20	0.068	mg/Kg	ф	11/07/17 07:18	11/08/17 03:00	· · · · · · · · · ·
2,4-Dimethylphenol	<0.40		0.40	0.15	mg/Kg	₩	11/07/17 07:18	11/08/17 03:00	
Dimethyl phthalate	<0.20		0.20	0.052	mg/Kg	☼	11/07/17 07:18	11/08/17 03:00	
Di-n-butyl phthalate	<0.20		0.20	0.061	mg/Kg		11/07/17 07:18	11/08/17 03:00	· · · · · · · · ·
4,6-Dinitro-2-methylphenol	<0.80		0.80		mg/Kg	₩	11/07/17 07:18	11/08/17 03:00	
2,4-Dinitrophenol	<0.80		0.80		mg/Kg	₩	11/07/17 07:18	11/08/17 03:00	
2,4-Dinitrotoluene	<0.20		0.20		mg/Kg		11/07/17 07:18	11/08/17 03:00	· · · · · · · · ·
2,6-Dinitrotoluene	<0.20		0.20		mg/Kg	₩	11/07/17 07:18	11/08/17 03:00	
Di-n-octyl phthalate	<0.20		0.20		mg/Kg	₩	11/07/17 07:18	11/08/17 03:00	
Fluoranthene	<0.040		0.040	0.0074	mg/Kg		11/07/17 07:18	11/08/17 03:00	

0.040

0.080

0.20

0.80

0.20

0.040

0.20

0.080

0.20

0.20

0.040

0.20

0.40

0.40

0.040

0.40

0.0056 mg/Kg

0.0092 mg/Kg

0.063 mg/Kg

0.23 mg/Kg

0.061 mg/Kg

0.010 mg/Kg

0.045 mg/Kg

0.0073 mg/Kg

0.064 mg/Kg

0.067 mg/Kg

0.0061 mg/Kg

0.054 mg/Kg

0.12 mg/Kg

0.17 mg/Kg

0.010 mg/Kg

0.094 mg/Kg

TestAmerica Chicago

☼ 11/07/17 07:18 11/08/17 03:00

11/07/17 07:18 11/08/17 03:00

☼ 11/07/17 07:18 11/08/17 03:00

11/07/17 07:18 11/08/17 03:00

11/07/17 07:18 11/08/17 03:00

11/07/17 07:18 11/08/17 03:00

* 11/07/17 07:18 11/08/17 03:00

11/07/17 07:18 11/08/17 03:00

☼ 11/07/17 07:18 11/08/17 03:00

11/07/17 07:18 11/08/17 03:00

11/07/17 07:18 11/08/17 03:00

11/07/17 07:18 11/08/17 03:00

11/07/17 07:18 11/08/17 03:00 ☼ 11/07/17 07:18 11/08/17 03:00

11/07/17 07:18 11/08/17 03:00 11/07/17 07:18 11/08/17 03:00

< 0.040

<0.080

< 0.20

<0.80

<0.20

< 0.040

<0.20

< 0.20

< 0.20

< 0.040

< 0.20

<0.40

<0.40

< 0.040

< 0.40

<0.080

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 14:00

Date Received: 11/01/17 09:05

Client Sample ID: 3160-50-1 (0-2')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-29

Matrix: Solid

Percent Solids: 82.6

Method: 8270D - Semivola	tile Organic Co	mpounds	(GC/MS) (Cd	ntinued)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.80		0.80	0.38	mg/Kg	<u></u>	11/07/17 07:18	11/08/17 03:00	1
N-Nitrosodi-n-propylamine	<0.080		0.080	0.049	mg/Kg	φ.	11/07/17 07:18	11/08/17 03:00	1
N-Nitrosodiphenylamine	<0.20		0.20	0.047	mg/Kg	☼	11/07/17 07:18	11/08/17 03:00	1
2,2'-oxybis[1-chloropropane]	<0.20		0.20	0.046	mg/Kg	☼	11/07/17 07:18	11/08/17 03:00	1
Pentachlorophenol	<0.80		0.80	0.64	mg/Kg	₽	11/07/17 07:18	11/08/17 03:00	1
Phenanthrene	0.0067	J	0.040	0.0056	mg/Kg	☼	11/07/17 07:18	11/08/17 03:00	1
Phenol	<0.20		0.20	0.089	mg/Kg	☼	11/07/17 07:18	11/08/17 03:00	1
Pyrene	<0.040		0.040	0.0079	mg/Kg	₽	11/07/17 07:18	11/08/17 03:00	1
1,2,4-Trichlorobenzene	<0.20		0.20	0.043	mg/Kg	☼	11/07/17 07:18	11/08/17 03:00	1
2,4,5-Trichlorophenol	<0.40		0.40	0.091	mg/Kg	₽	11/07/17 07:18	11/08/17 03:00	1
2,4,6-Trichlorophenol	<0.40		0.40	0.14	mg/Kg	☆	11/07/17 07:18	11/08/17 03:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	94		44 - 121				11/07/17 07:18	11/08/17 03:00	1
2-Fluorophenol	101		46 - 133				11/07/17 07:18	11/08/17 03:00	1
Nitrobenzene-d5	100		41 - 120				11/07/17 07:18	11/08/17 03:00	1
Phenol-d5	90		46 - 125				11/07/17 07:18	11/08/17 03:00	1
Terphenyl-d14	93		35 - 160				11/07/17 07:18	11/08/17 03:00	1
2,4,6-Tribromophenol	57		25 - 139				11/07/17 07:18	11/08/17 03:00	1

Method: 6010B - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<1.1		1.1	0.22	mg/Kg	<u> </u>	11/02/17 07:14	11/02/17 18:37	1
Arsenic	4.9		0.57	0.20	mg/Kg	₩	11/02/17 07:14	11/02/17 18:37	1
Barium	64		0.57	0.065	mg/Kg	₩	11/02/17 07:14	11/02/17 18:37	1
Beryllium	0.44		0.23	0.054	mg/Kg		11/02/17 07:14	11/02/17 18:37	1
Cadmium	0.079	J	0.11	0.021	mg/Kg	☼	11/02/17 07:14	11/02/17 18:37	1
Chromium	15		0.57	0.28	mg/Kg	☼	11/02/17 07:14	11/02/17 18:37	1
Cobalt	4.8		0.29	0.075	mg/Kg		11/02/17 07:14	11/02/17 18:37	1
Copper	10		0.57	0.16	mg/Kg	☼	11/02/17 07:14	11/02/17 18:37	1
Iron	15000		11	6.0	mg/Kg	☼	11/02/17 07:14	11/02/17 18:37	1
Lead	11		0.29	0.13	mg/Kg		11/02/17 07:14	11/02/17 18:37	1
Manganese	89		0.57	0.083	mg/Kg	☼	11/02/17 07:14	11/02/17 18:37	1
Nickel	11		0.57	0.17	mg/Kg	☼	11/02/17 07:14	11/02/17 18:37	1
Selenium	0.47	J	0.57	0.34	mg/Kg	₽	11/02/17 07:14	11/02/17 18:37	1
Silver	<0.29		0.29	0.074	mg/Kg	☼	11/02/17 07:14	11/02/17 18:37	1
Thallium	<0.57		0.57	0.29	mg/Kg	☼	11/02/17 07:14	11/02/17 18:37	1
Vanadium	27		0.29	0.068	mg/Kg		11/02/17 07:14	11/02/17 18:37	1
Zinc	35		1.1	0.50	mg/Kg	₩	11/02/17 07:14	11/02/17 18:37	1

Method: 6010B - Meta	• •	Ouglifier	RL	MDL	l lmi4	_	Dronovad	Amalumad	Dil Fac
Analyte	Result	Qualifier	KL	MDL	Unit	D	Prepared	Analyzed	DII Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/03/17 15:00	11/05/17 15:28	1
Barium	0.31	J	0.50	0.050	mg/L		11/03/17 15:00	11/05/17 15:28	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/03/17 15:00	11/05/17 15:28	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/03/17 15:00	11/05/17 15:28	1
Chromium	<0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 15:28	1
Cobalt	<0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 15:28	1
Copper	<0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 15:28	1
Iron	0.55		0.40	0.20	mg/L		11/03/17 15:00	11/05/17 15:28	1

TestAmerica Chicago

Page 141 of 231

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 14:00 Date Received: 11/01/17 09:05

Client Sample ID: 3160-50-1 (0-2')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-29

Matrix: Solid	
Percent Solids: 82.6	

Method: 6010B - Meta Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	<0.0075		0.0075	0.0075	mg/L		11/03/17 15:00	11/05/17 15:28	1
Manganese	0.55		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 15:28	1
Nickel	<0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 15:28	1
Selenium	<0.050		0.050	0.020	mg/L		11/03/17 15:00	11/05/17 15:28	1
Silver	<0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 15:28	1
Vanadium	<0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 15:28	1
Zinc	<0.50		0.50	0.020	mg/L		11/03/17 15:00	11/05/17 15:28	•
Method: 6010B - Meta	als (ICP) - SPLP Eas	t							
Analyte	. ,	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Manganese	0.39		0.025	0.010	mg/L		11/03/17 14:56	11/06/17 01:17	
Method: 6020A - Meta Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Antimony	<0.0060		0.0060	0.0060	mg/L		11/03/17 15:00	11/06/17 18:55	
Antimony Thallium	<0.0060 <0.0020		0.0060 0.0020	0.0060 0.0020	U		11/03/17 15:00 11/03/17 15:00	11/06/17 18:55 11/06/17 18:55	
Thallium	<0.0020				U				
Thallium Method: 7470A - TCL	<0.0020 P Mercury - TCLP	Qualifier			mg/L				Dil Fa
Thallium Method: 7470A - TCL Analyte	<0.0020 P Mercury - TCLP	Qualifier	0.0020	0.0020 MDL	mg/L Unit	<u>D</u>	11/03/17 15:00	11/06/17 18:55	Dil Fac
Thallium Method: 7470A - TCL Analyte Mercury	<0.0020 P Mercury - TCLP Result <p><0.00020</p>	Qualifier	0.0020 RL	0.0020 MDL	mg/L Unit	D	11/03/17 15:00 Prepared	11/06/17 18:55 Analyzed	Dil Fa
Thallium Method: 7470A - TCL Analyte Mercury Method: 7471B - Merc	<0.0020 P Mercury - TCLP Result <	Qualifier Qualifier	0.0020 RL	0.0020 MDL	mg/L Unit mg/L	D	11/03/17 15:00 Prepared	11/06/17 18:55 Analyzed	
•	<0.0020 P Mercury - TCLP Result <	Qualifier	0.0020 RL 0.00020	0.0020 MDL 0.00020	mg/L Unit mg/L Unit	=	11/03/17 15:00 Prepared 11/03/17 12:20	11/06/17 18:55 Analyzed 11/06/17 09:15	
Thallium Method: 7470A - TCL Analyte Mercury Method: 7471B - Merc Analyte	<0.0020 P Mercury - TCLP Result <-0.00020 cury (CVAA) Result	Qualifier	0.0020 RL 0.00020	0.0020 MDL 0.00020	mg/L Unit mg/L Unit		11/03/17 15:00 Prepared 11/03/17 12:20 Prepared	11/06/17 18:55 Analyzed 11/06/17 09:15 Analyzed	Dil Fac
Thallium Method: 7470A - TCL Analyte Mercury Method: 7471B - Merc Analyte Mercury	<0.0020 P Mercury - TCLP Result <0.00020 cury (CVAA) Result 0.018	Qualifier	0.0020 RL 0.00020	0.0020 MDL 0.00020	mg/L Unit mg/L Unit mg/Kg		11/03/17 15:00 Prepared 11/03/17 12:20 Prepared	11/06/17 18:55 Analyzed 11/06/17 09:15 Analyzed	

11/13/2017

TestAmerica Job ID: 500-136575-1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-50-2 (0-2') Lab Sample ID: 500-136575-30

Date Collected: 10/31/17 14:10 **Matrix: Solid** Date Received: 11/01/17 09:05 Percent Solids: 81.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	<0.019		0.019	0.0081	mg/Kg	<u> </u>	11/01/17 18:01	11/03/17 17:11	1
Benzene	<0.0019		0.0019	0.00048	mg/Kg	₩	11/01/17 18:01	11/03/17 17:11	1
Bromodichloromethane	<0.0019		0.0019	0.00038	mg/Kg	₩	11/01/17 18:01	11/03/17 17:11	1
Bromoform	<0.0019		0.0019	0.00054	mg/Kg	₩	11/01/17 18:01	11/03/17 17:11	1
Bromomethane	<0.0047		0.0047	0.0018	mg/Kg	₩	11/01/17 18:01	11/03/17 17:11	1
2-Butanone (MEK)	<0.0047		0.0047	0.0021	mg/Kg	₩	11/01/17 18:01	11/03/17 17:11	1
Carbon disulfide	<0.0047		0.0047	0.00097	mg/Kg	₽	11/01/17 18:01	11/03/17 17:11	1
Carbon tetrachloride	<0.0019		0.0019	0.00054	mg/Kg	₩	11/01/17 18:01	11/03/17 17:11	1
Chlorobenzene	<0.0019		0.0019	0.00069	mg/Kg	₩	11/01/17 18:01	11/03/17 17:11	1
Chloroethane	<0.0047		0.0047	0.0014	mg/Kg	₽	11/01/17 18:01	11/03/17 17:11	1
Chloroform	< 0.0019		0.0019	0.00065	mg/Kg	₩	11/01/17 18:01	11/03/17 17:11	1
Chloromethane	< 0.0047		0.0047	0.0019	mg/Kg	₩	11/01/17 18:01	11/03/17 17:11	1
cis-1,2-Dichloroethene	<0.0019		0.0019	0.00052	mg/Kg	Φ.	11/01/17 18:01	11/03/17 17:11	1
cis-1,3-Dichloropropene	< 0.0019		0.0019	0.00056	mg/Kg	₩	11/01/17 18:01	11/03/17 17:11	1
Dibromochloromethane	< 0.0019		0.0019	0.00061	mg/Kg	₩	11/01/17 18:01	11/03/17 17:11	1
1,1-Dichloroethane	<0.0019		0.0019	0.00064	mg/Kg	₩	11/01/17 18:01	11/03/17 17:11	1
1,2-Dichloroethane	< 0.0047		0.0047	0.0015	mg/Kg	₩	11/01/17 18:01	11/03/17 17:11	1
1,1-Dichloroethene	< 0.0019		0.0019	0.00064	mg/Kg	₩	11/01/17 18:01	11/03/17 17:11	1
1,2-Dichloropropane	<0.0019		0.0019	0.00048			11/01/17 18:01	11/03/17 17:11	1
1,3-Dichloropropene, Total	< 0.0019		0.0019	0.00065		₩	11/01/17 18:01	11/03/17 17:11	1
Ethylbenzene	<0.0019		0.0019	0.00089		₩	11/01/17 18:01	11/03/17 17:11	1
2-Hexanone	<0.0047		0.0047	0.0015			11/01/17 18:01	11/03/17 17:11	1
Methylene Chloride	< 0.0047		0.0047	0.0018		₩	11/01/17 18:01	11/03/17 17:11	1
4-Methyl-2-pentanone (MIBK)	< 0.0047		0.0047	0.0014		₩	11/01/17 18:01	11/03/17 17:11	1
Methyl tert-butyl ether	<0.0019		0.0019	0.00055		<u>.</u> .	11/01/17 18:01	11/03/17 17:11	1
Styrene	<0.0019		0.0019	0.00056		₩	11/01/17 18:01	11/03/17 17:11	1
1,1,2,2-Tetrachloroethane	<0.0019		0.0019	0.00060	0 0	₩	11/01/17 18:01	11/03/17 17:11	1
Tetrachloroethene	<0.0019		0.0019	0.00064			11/01/17 18:01	11/03/17 17:11	1
Toluene	<0.0019		0.0019	0.00047	0 0	₩		11/03/17 17:11	1
trans-1,2-Dichloroethene	<0.0019		0.0019	0.00083	0 0	₩	11/01/17 18:01	11/03/17 17:11	1
trans-1,3-Dichloropropene	<0.0019		0.0019	0.00065				11/03/17 17:11	1
1,1,1-Trichloroethane	<0.0019		0.0019	0.00063	0 0	₩		11/03/17 17:11	1
1,1,2-Trichloroethane	<0.0019		0.0019	0.00080		₩		11/03/17 17:11	1
Trichloroethene	<0.0019		0.0019	0.00063				11/03/17 17:11	1
Vinyl acetate	<0.0047		0.0047	0.0016		₩		11/03/17 17:11	1
Vinyl chloride	<0.0019		0.0019	0.00083	0 0	₩	11/01/17 18:01		1
Xylenes, Total	<0.0037		0.0037	0.00060			11/01/17 18:01		1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	87		75 - 131				•	11/03/17 17:11	1
Dibromofluoromethane	106		75 - 126					11/03/17 17:11	1
1,2-Dichloroethane-d4 (Surr)	107		70 - 134					11/03/17 17:11	1
Toluene-d8 (Surr)	77		75 - 124					11/03/17 17:11	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	DII Fac	
4-Bromofluorobenzene (Surr)	87		75 - 131	11/01/17 18:01	11/03/17 17:11	1	
Dibromofluoromethane	106		75 - 126	11/01/17 18:01	11/03/17 17:11	1	
1,2-Dichloroethane-d4 (Surr)	107		70 - 134	11/01/17 18:01	11/03/17 17:11	1	
Toluene-d8 (Surr)	77		75 - 124	11/01/17 18:01	11/03/17 17:11	1	
_							

Method: 8270D - Semivolatile Organic Compounds (GC/MS)								
Analyte	Result	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	<0.040	0.040	0.0073	mg/Kg	₩	11/07/17 07:18	11/08/17 03:27	1
Acenaphthylene	<0.040	0.040	0.0053	mg/Kg	₽	11/07/17 07:18	11/08/17 03:27	1
Anthracene	<0.040	0.040	0.0068	mg/Kg	≎	11/07/17 07:18	11/08/17 03:27	1
Benzo[a]anthracene	0.011	J B 0.040	0.0055	mg/Kg	≎	11/07/17 07:18	11/08/17 03:27	1

TestAmerica Chicago

Page 143 of 231

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 14:10

Date Received: 11/01/17 09:05

Client Sample ID: 3160-50-2 (0-2')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-30

Matrix: Solid

Percent Solids: 81.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzo[a]pyrene	<0.040		0.040	0.0078	mg/Kg	— Ţ	11/07/17 07:18	11/08/17 03:27	
Benzo[b]fluoranthene	0.012	J	0.040	0.0088	mg/Kg	₩	11/07/17 07:18	11/08/17 03:27	
Benzo[g,h,i]perylene	<0.040		0.040		mg/Kg		11/07/17 07:18	11/08/17 03:27	
Benzo[k]fluoranthene	<0.040		0.040		mg/Kg	☼	11/07/17 07:18	11/08/17 03:27	
Bis(2-chloroethoxy)methane	<0.20		0.20	0.041		₩	11/07/17 07:18	11/08/17 03:27	
Bis(2-chloroethyl)ether	<0.20		0.20	0.061	mg/Kg		11/07/17 07:18	11/08/17 03:27	
Bis(2-ethylhexyl) phthalate	<0.20		0.20		mg/Kg	₩		11/08/17 03:27	
4-Bromophenyl phenyl ether	<0.20		0.20		mg/Kg	₩		11/08/17 03:27	
Butyl benzyl phthalate	<0.20		0.20		mg/Kg			11/08/17 03:27	
Carbazole	<0.20		0.20		mg/Kg	₩	11/07/17 07:18	11/08/17 03:27	
4-Chloroaniline	<0.82		0.82		mg/Kg	₩	11/07/17 07:18	11/08/17 03:27	
4-Chloro-3-methylphenol	<0.40		0.40		mg/Kg			11/08/17 03:27	
2-Chloronaphthalene	<0.20		0.20		mg/Kg	₩	11/07/17 07:18	11/08/17 03:27	
2-Chlorophenol	<0.20		0.20	0.069	mg/Kg	₩		11/08/17 03:27	
4-Chlorophenyl phenyl ether	<0.20		0.20		mg/Kg			11/08/17 03:27	
Chrysene	<0.040		0.040	0.011	mg/Kg	₽		11/08/17 03:27	
Dibenz(a,h)anthracene	<0.040		0.040			₩	11/07/17 07:18		
Dibenzofuran	<0.20		0.20		mg/Kg		11/07/17 07:18		
1,2-Dichlorobenzene	<0.20		0.20	0.048	mg/Kg	₩	11/07/17 07:18		
1,3-Dichlorobenzene	<0.20		0.20		mg/Kg	₩		11/08/17 03:27	
1,4-Dichlorobenzene	<0.20		0.20		mg/Kg			11/08/17 03:27	
3,3'-Dichlorobenzidine	<0.20		0.20		mg/Kg	₩		11/08/17 03:27	
2,4-Dichlorophenol	<0.40		0.40		mg/Kg	₩		11/08/17 03:27	
Diethyl phthalate	<0.20		0.40		mg/Kg	· · · · · · · · · · · · · · · ·		11/08/17 03:27	
2,4-Dimethylphenol	<0.40		0.40		mg/Kg			11/08/17 03:27	
Dimethyl phthalate	<0.20		0.40	0.13				11/08/17 03:27	
Dirn-butyl phthalate	<0.20		0.20		mg/Kg			11/08/17 03:27	
4,6-Dinitro-2-methylphenol	<0.82		0.20		mg/Kg			11/08/17 03:27	
2,4-Dinitrophenol	<0.82		0.82	0.33	mg/Kg			11/08/17 03:27	
2,4-Dinitrotoluene	<0.20		0.02		mg/Kg	· · · · · · · · · · · · · · · · · · ·	11/07/17 07:18		
2,6-Dinitrotoluene	<0.20		0.20		mg/Kg			11/08/17 03:27	
Di-n-octyl phthalate	<0.20		0.20		mg/Kg	Ϋ́	11/07/17 07:18		
			0.20	0.0075		· · · · · · · · · · · · · · · · · · ·		11/08/17 03:27	
Fluoranthene Fluorene	0.017 < 0.040	J	0.040	0.0075		☆		11/08/17 03:27	
Hexachlorobenzene	<0.040		0.040	0.0057	0 0	~ ☆	11/07/17 07:18		
Hexachlorobutadiene						· · · · · · · · · · · · · · · · · · ·			
	<0.20		0.20		mg/Kg	₩	11/07/17 07:18		
Hexachlorocyclopentadiene	<0.82		0.82		mg/Kg		11/07/17 07:18		
Hexachloroethane	<0.20		0.20		mg/Kg	¥.		11/08/17 03:27	
ndeno[1,2,3-cd]pyrene	<0.040		0.040		mg/Kg	₽	11/07/17 07:18		
sophorone	<0.20	_	0.20		mg/Kg	*	11/07/17 07:18		
2-Methylnaphthalene	0.014	J	0.082	0.0075		¥.	11/07/17 07:18		
2-Methylphenol	<0.20		0.20		mg/Kg	₽	11/07/17 07:18		
3 & 4 Methylphenol	<0.20		0.20		mg/Kg	☆	11/07/17 07:18		
Naphthalene	<0.040		0.040	0.0062		· · · · ·	11/07/17 07:18		
2-Nitroaniline	<0.20		0.20		mg/Kg	*	11/07/17 07:18		
3-Nitroaniline	<0.40		0.40		mg/Kg	*	11/07/17 07:18		
4-Nitroaniline	<0.40		0.40		mg/Kg	<u>.</u> .	11/07/17 07:18		
Nitrobenzene	<0.040		0.040	0.010	mg/Kg	₽	11/07/17 07:18	11/08/17 03:27	

TestAmerica Chicago

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 14:10

Date Received: 11/01/17 09:05

Client Sample ID: 3160-50-2 (0-2')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-30

Matrix: Solid

Percent Solids: 81.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.82		0.82	0.39	mg/Kg	<u></u>	11/07/17 07:18	11/08/17 03:27	1
N-Nitrosodi-n-propylamine	<0.082		0.082	0.050	mg/Kg	φ.	11/07/17 07:18	11/08/17 03:27	1
N-Nitrosodiphenylamine	<0.20		0.20	0.048	mg/Kg	☼	11/07/17 07:18	11/08/17 03:27	1
2,2'-oxybis[1-chloropropane]	<0.20		0.20	0.047	mg/Kg	₽	11/07/17 07:18	11/08/17 03:27	1
Pentachlorophenol	<0.82		0.82	0.65	mg/Kg	₽	11/07/17 07:18	11/08/17 03:27	1
Phenanthrene	0.030	J	0.040	0.0057	mg/Kg	☼	11/07/17 07:18	11/08/17 03:27	1
Phenol	<0.20		0.20	0.090	mg/Kg	₽	11/07/17 07:18	11/08/17 03:27	1
Pyrene	0.018	J	0.040	0.0081	mg/Kg	₽	11/07/17 07:18	11/08/17 03:27	1
1,2,4-Trichlorobenzene	<0.20		0.20	0.044	mg/Kg	₽	11/07/17 07:18	11/08/17 03:27	1
2,4,5-Trichlorophenol	<0.40		0.40	0.093	mg/Kg	☼	11/07/17 07:18	11/08/17 03:27	1
2,4,6-Trichlorophenol	<0.40		0.40	0.14	mg/Kg		11/07/17 07:18	11/08/17 03:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	87		44 - 121				11/07/17 07:18	11/08/17 03:27	1
2-Fluorophenol	95		46 - 133				11/07/17 07:18	11/08/17 03:27	1
Nitrobenzene-d5	93		41 - 120				11/07/17 07:18	11/08/17 03:27	1
Phenol-d5	85		46 - 125				11/07/17 07:18	11/08/17 03:27	1
Terphenyl-d14	86		35 - 160				11/07/17 07:18	11/08/17 03:27	1
2,4,6-Tribromophenol	57		25 - 139				11/07/17 07:18	11/08/17 03:27	1

Method: 6010B - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<1.1		1.1	0.22	mg/Kg	<u></u>	11/02/17 07:14	11/02/17 18:41	1
Arsenic	9.4		0.56	0.19	mg/Kg	☼	11/02/17 07:14	11/02/17 18:41	1
Barium	70		0.56	0.064	mg/Kg	☼	11/02/17 07:14	11/02/17 18:41	1
Beryllium	0.48		0.23	0.053	mg/Kg	₩	11/02/17 07:14	11/02/17 18:41	1
Cadmium	0.16		0.11	0.020	mg/Kg	☼	11/02/17 07:14	11/02/17 18:41	1
Chromium	20		0.56	0.28	mg/Kg	☼	11/02/17 07:14	11/02/17 18:41	1
Cobalt	6.6		0.28	0.074	mg/Kg	☼	11/02/17 07:14	11/02/17 18:41	1
Copper	20		0.56	0.16	mg/Kg	☼	11/02/17 07:14	11/02/17 18:41	1
Iron	22000		11	5.9	mg/Kg	☼	11/02/17 07:14	11/02/17 18:41	1
Lead	57		0.28	0.13	mg/Kg	₽	11/02/17 07:14	11/02/17 18:41	1
Manganese	200		0.56	0.082	mg/Kg	☼	11/02/17 07:14	11/02/17 18:41	1
Nickel	15		0.56	0.16	mg/Kg	☼	11/02/17 07:14	11/02/17 18:41	1
Selenium	<0.56		0.56	0.33	mg/Kg	₽	11/02/17 07:14	11/02/17 18:41	1
Silver	<0.28		0.28	0.073	mg/Kg	☼	11/02/17 07:14	11/02/17 18:41	1
Thallium	<0.56		0.56	0.28	mg/Kg	☼	11/02/17 07:14	11/02/17 18:41	1
Vanadium	33		0.28	0.067	mg/Kg		11/02/17 07:14	11/02/17 18:41	1
Zinc	66		1.1	0.49	mg/Kg	☼	11/02/17 07:14	11/02/17 18:41	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/03/17 15:00	11/05/17 15:32	1
Barium	0.28	J	0.50	0.050	mg/L		11/03/17 15:00	11/05/17 15:32	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/03/17 15:00	11/05/17 15:32	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/03/17 15:00	11/05/17 15:32	1
Chromium	<0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 15:32	1
Cobalt	<0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 15:32	1
Copper	<0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 15:32	1
Iron	<0.40		0.40	0.20	mg/L		11/03/17 15:00	11/05/17 15:32	1

TestAmerica Chicago

Page 145 of 231

2

5

7

9

10

12

13

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 14:10

Date Received: 11/01/17 09:05

Client Sample ID: 3160-50-2 (0-2')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-30

Matrix: Solid

Percent Solids: 81.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	<0.0075		0.0075	0.0075	mg/L		11/03/17 15:00	11/05/17 15:32	1
Manganese	0.097		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 15:32	1
Nickel	<0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 15:32	1
Selenium	<0.050		0.050	0.020	mg/L		11/03/17 15:00	11/05/17 15:32	1
Silver	<0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 15:32	1
Vanadium	<0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 15:32	1
Zinc	<0.50		0.50	0.020	mg/L		11/03/17 15:00	11/05/17 15:32	1
Method: 6020A - Metals	(ICP/MS) - TCLP								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060		0.0060	0.0060	mg/L		11/03/17 15:00	11/06/17 18:59	1
Thallium	<0.0020		0.0020	0.0020	mg/L		11/03/17 15:00	11/06/17 18:59	1
- Method: 7470A - TCLP N	Mercury - TCLP								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/03/17 12:20	11/06/17 09:16	1
- Method: 7471B - Mercur	y (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.040		0.020	0.0065	mg/Kg	<u>∓</u>	11/02/17 16:10	11/03/17 09:42	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.8		0.20	0.20	SU			11/03/17 08:57	1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-50-3 (0-2')

Date Collected: 10/31/17 14:20 Date Received: 11/01/17 09:05

Xylenes, Total

Lab Sample ID: 500-136575-31

Matrix: Solid
Percent Solids: 77.8

Method: 8260B - Volatile Organic Compounds (GC/MS) RL **MDL** Unit Dil Fac Analyte Result Qualifier D Prepared Analyzed Acetone <0.018 0.018 0.0078 mg/Kg 11/01/17 18:01 11/03/17 17:36 <0.0018 Benzene 0.0018 0.00046 mg/Kg 11/01/17 18:01 11/03/17 17:36 Bromodichloromethane <0.0018 0.0018 0.00037 mg/Kg 11/01/17 18:01 11/03/17 17:36 Bromoform <0.0018 0.0018 0.00053 mg/Kg 11/01/17 18:01 11/03/17 17:36 Bromomethane <0.0045 0.0045 0.0017 mg/Kg 11/01/17 18:01 11/03/17 17:36 2-Butanone (MEK) < 0.0045 0.0045 0.0020 mg/Kg 11/01/17 18:01 11/03/17 17:36 Carbon disulfide < 0.0045 0.0045 0.00094 mg/Kg 11/01/17 18:01 11/03/17 17:36 Carbon tetrachloride <0.0018 0.0018 0.00052 mg/Kg 11/01/17 18:01 11/03/17 17:36 Chlorobenzene 0.0018 0.00066 mg/Kg < 0.0018 11/01/17 18:01 11/03/17 17:36 Chloroethane < 0.0045 0.0045 0.0013 mg/Kg 11/01/17 18:01 11/03/17 17:36 Chloroform 0.00063 mg/Kg <0.0018 0.0018 11/01/17 18:01 11/03/17 17:36 0.0045 Chloromethane < 0.0045 0.0018 mg/Kg 11/01/17 18:01 11/03/17 17:36 cis-1,2-Dichloroethene 0.0018 0.00050 mg/Kg 11/01/17 18:01 11/03/17 17:36 < 0.0018 0.00054 11/01/17 18:01 11/03/17 17:36 cis-1,3-Dichloropropene <0.0018 0.0018 mg/Kg Dibromochloromethane 0.0018 0.00059 mg/Kg 11/01/17 18:01 11/03/17 17:36 < 0.0018 1.1-Dichloroethane <0.0018 0.0018 0.00062 mg/Kg 11/01/17 18:01 11/03/17 17:36 11/01/17 18:01 11/03/17 17:36 1.2-Dichloroethane < 0.0045 0.0045 0.0014 mg/Kg 1,1-Dichloroethene <0.0018 0.0018 0.00062 mg/Kg 11/01/17 18:01 11/03/17 17:36 0.0018 0.00047 mg/Kg 11/01/17 18:01 11/03/17 17:36 1,2-Dichloropropane <0.0018 1,3-Dichloropropene, Total <0.0018 0.0018 0.00063 mg/Kg 11/01/17 18:01 11/03/17 17:36 Ethylbenzene <0.0018 0.0018 0.00086 mg/Kg 11/01/17 18:01 11/03/17 17:36 0.0014 mg/Kg 2-Hexanone <0.0045 0.0045 11/01/17 18:01 11/03/17 17:36 Methylene Chloride < 0.0045 0.0045 0.0018 mg/Kg 11/01/17 18:01 11/03/17 17:36 4-Methyl-2-pentanone (MIBK) < 0.0045 0.0045 0.0013 mg/Kg 11/01/17 18:01 11/03/17 17:36 0.00053 mg/Kg 11/01/17 18:01 11/03/17 17:36 Methyl tert-butyl ether <0.0018 0.0018 Styrene < 0.0018 0.0018 0.00054 mg/Kg 11/01/17 18:01 11/03/17 17:36 1,1,2,2-Tetrachloroethane <0.0018 0.0018 0.00058 mg/Kg 11/01/17 18:01 11/03/17 17:36 Tetrachloroethene 0.0018 0.00061 mg/Kg 11/01/17 18:01 11/03/17 17:36 <0.0018 Toluene 0.0018 0.00045 mg/Kg 11/01/17 18:01 11/03/17 17:36 < 0.0018 trans-1,2-Dichloroethene < 0.0018 0.0018 0.00080 mg/Kg 11/01/17 18:01 11/03/17 17:36 trans-1,3-Dichloropropene <0.0018 0.0018 0.00063 mg/Kg 11/01/17 18:01 11/03/17 17:36 1.1.1-Trichloroethane < 0.0018 0.0018 0.00060 mg/Kg 11/01/17 18:01 11/03/17 17:36 1,1,2-Trichloroethane <0.0018 0.0018 0.00077 mg/Kg 11/01/17 18:01 11/03/17 17:36 Trichloroethene <0.0018 0.0018 0.00061 mg/Kg 11/01/17 18:01 11/03/17 17:36 Vinyl acetate 0.0045 0.0016 mg/Kg 11/01/17 18:01 11/03/17 17:36 <0.0045 Vinyl chloride <0.0018 0.0018 0.00080 mg/Kg 11/01/17 18:01 11/03/17 17:36

Surrogate	%Recovery Q	Qualifier L	imits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	77	7	5 - 131	11/01/17 18:01	11/03/17 17:36	1
Dibromofluoromethane	108	7	5 - 126	11/01/17 18:01	11/03/17 17:36	1
1,2-Dichloroethane-d4 (Surr)	105	7	0 - 134	11/01/17 18:01	11/03/17 17:36	1
Toluene-d8 (Surr)	102	7	5 - 124	11/01/17 18:01	11/03/17 17:36	1

0.0036

0.00058 mg/Kg

< 0.0036

Method: 8270D - Semivolatile Organic Compounds (GC/MS)									
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Acenaphthene	<0.041	0.041	0.0075	mg/Kg	₩	11/07/17 07:18	11/08/17 03:54	1	
Acenaphthylene	<0.041	0.041	0.0055	mg/Kg	≎	11/07/17 07:18	11/08/17 03:54	1	
Anthracene	0.011 J	0.041	0.0069	mg/Kg	₽	11/07/17 07:18	11/08/17 03:54	1	
Benzo[a]anthracene	0.028 JB	0.041	0.0056	mg/Kg	₩	11/07/17 07:18	11/08/17 03:54	1	

TestAmerica Chicago

11/01/17 18:01 11/03/17 17:36

Page 147 of 231

2

3

5

8

10

12

13

Н

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-50-3 (0-2')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-31

Matrix: Solid

Percent Solids: 77.8

Date Collected: 10/31/17 14:20	, ,	
Date Received: 11/01/17 09:05		

Method: 8270D - Semivolat Analyte		Qualifier	RL	MDL	•	D	Prepared	Analyzed	Dil Fac
Benzo[a]pyrene	0.020	\overline{J}	0.041	0.0080	mg/Kg	<u></u>	11/07/17 07:18	11/08/17 03:54	1
Benzo[b]fluoranthene	0.024		0.041	0.0090	mg/Kg	₩	11/07/17 07:18	11/08/17 03:54	1
Benzo[g,h,i]perylene	<0.041		0.041	0.013	mg/Kg		11/07/17 07:18	11/08/17 03:54	1
Benzo[k]fluoranthene	<0.041		0.041	0.012	mg/Kg	≎	11/07/17 07:18	11/08/17 03:54	1
Bis(2-chloroethoxy)methane	<0.21		0.21	0.042	mg/Kg	≎	11/07/17 07:18	11/08/17 03:54	1
Bis(2-chloroethyl)ether	<0.21		0.21	0.062	mg/Kg	ф.	11/07/17 07:18	11/08/17 03:54	1
Bis(2-ethylhexyl) phthalate	<0.21		0.21		mg/Kg	₽	11/07/17 07:18	11/08/17 03:54	1
4-Bromophenyl phenyl ether	<0.21		0.21		mg/Kg	₽	11/07/17 07:18	11/08/17 03:54	1
Butyl benzyl phthalate	<0.21		0.21		mg/Kg	 ф	11/07/17 07:18	11/08/17 03:54	1
Carbazole	<0.21		0.21		mg/Kg	₩	11/07/17 07:18	11/08/17 03:54	1
4-Chloroaniline	<0.84		0.84		mg/Kg	₩	11/07/17 07:18	11/08/17 03:54	1
4-Chloro-3-methylphenol	<0.41		0.41		mg/Kg		11/07/17 07:18	11/08/17 03:54	1
2-Chloronaphthalene	<0.21		0.21		mg/Kg	₩	11/07/17 07:18	11/08/17 03:54	1
2-Chlorophenol	<0.21		0.21		mg/Kg	₩		11/08/17 03:54	1
4-Chlorophenyl phenyl ether	<0.21		0.21					11/08/17 03:54	1
Chrysene	0.034	J.	0.041			₽	11/07/17 07:18	11/08/17 03:54	1
Dibenz(a,h)anthracene	<0.041		0.041	0.0080		₽		11/08/17 03:54	1
Dibenzofuran	<0.21		0.21		mg/Kg	.		11/08/17 03:54	1
1,2-Dichlorobenzene	<0.21		0.21	0.050		₽		11/08/17 03:54	1
1.3-Dichlorobenzene	<0.21		0.21	0.047		₩		11/08/17 03:54	1
1.4-Dichlorobenzene	<0.21		0.21		mg/Kg			11/08/17 03:54	
3.3'-Dichlorobenzidine	<0.21		0.21		mg/Kg	₩		11/08/17 03:54	
2,4-Dichlorophenol	<0.41		0.41		mg/Kg	₩		11/08/17 03:54	1
Diethyl phthalate	<0.21		0.41		mg/Kg			11/08/17 03:54	· · · · · · · · · · · · · · · · · · ·
2,4-Dimethylphenol	<0.41		0.41		mg/Kg	₩		11/08/17 03:54	
Dimethyl phthalate	<0.21		0.21		mg/Kg	₩		11/08/17 03:54	
Di-n-butyl phthalate	<0.21		0.21		mg/Kg			11/08/17 03:54	
4,6-Dinitro-2-methylphenol	<0.84		0.84		mg/Kg	₩		11/08/17 03:54	
2,4-Dinitrophenol	<0.84		0.84		mg/Kg	₩			1
2,4-Dinitrotoluene	<0.21		0.04		mg/Kg			11/08/17 03:54	
2,6-Dinitrotoluene	<0.21		0.21		mg/Kg	≎		11/08/17 03:54	1
Di-n-octyl phthalate	<0.21		0.21		mg/Kg	₽		11/08/17 03:54	1
			0.21					11/08/17 03:54	
Fluoranthene Fluorene	0.034 < 0.041	J	0.041	0.0077		☆	11/07/17 07:18	11/08/17 03:54	
Hexachlorobenzene	<0.041		0.041	0.0036	mg/Kg mg/Kg				1
			0.004						
Hexachlorobutadiene	<0.21				mg/Kg			11/08/17 03:54	
Hexachlorocyclopentadiene	<0.84		0.84		mg/Kg	₽		11/08/17 03:54	1
Hexachloroethane	<0.21		0.21		mg/Kg			11/08/17 03:54	1
Indeno[1,2,3-cd]pyrene	<0.041		0.041		mg/Kg	☆		11/08/17 03:54	1
Isophorone	<0.21		0.21		mg/Kg	₽		11/08/17 03:54	1
2-Methylnaphthalene	0.058	. J	0.084	0.0076				11/08/17 03:54	1
2-Methylphenol	<0.21		0.21		mg/Kg	☆		11/08/17 03:54	1
3 & 4 Methylphenol	<0.21		0.21		mg/Kg	☆		11/08/17 03:54	1
Naphthalene	0.030	J	0.041	0.0064		% .		11/08/17 03:54	1
2-Nitroaniline	<0.21		0.21		mg/Kg	☆		11/08/17 03:54	1
3-Nitroaniline	<0.41		0.41		mg/Kg	₽		11/08/17 03:54	1
4-Nitroaniline	<0.41		0.41		mg/Kg	J.		11/08/17 03:54	1
Nitrobenzene	<0.041		0.041		mg/Kg	₩.		11/08/17 03:54	1
2-Nitrophenol	<0.41		0.41	0.098	mg/Kg	₩	11/07/17 07:18	11/08/17 03:54	1

TestAmerica Chicago

4

6

8

10

12

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 14:20

Date Received: 11/01/17 09:05

Client Sample ID: 3160-50-3 (0-2')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-31

Matrix: Solid

Percent Solids: 77.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.84		0.84	0.40	mg/Kg	<u></u>	11/07/17 07:18	11/08/17 03:54	1
N-Nitrosodi-n-propylamine	<0.084		0.084	0.051	mg/Kg		11/07/17 07:18	11/08/17 03:54	1
N-Nitrosodiphenylamine	<0.21		0.21	0.049	mg/Kg	≎	11/07/17 07:18	11/08/17 03:54	1
2,2'-oxybis[1-chloropropane]	<0.21		0.21	0.048	mg/Kg	≎	11/07/17 07:18	11/08/17 03:54	1
Pentachlorophenol	<0.84		0.84	0.67	mg/Kg	₽	11/07/17 07:18	11/08/17 03:54	1
Phenanthrene	0.12		0.041	0.0058	mg/Kg	☼	11/07/17 07:18	11/08/17 03:54	1
Phenol	<0.21		0.21	0.092	mg/Kg	₩	11/07/17 07:18	11/08/17 03:54	1
Pyrene	0.044		0.041	0.0083	mg/Kg	₽	11/07/17 07:18	11/08/17 03:54	1
1,2,4-Trichlorobenzene	<0.21		0.21	0.045	mg/Kg	₩	11/07/17 07:18	11/08/17 03:54	1
2,4,5-Trichlorophenol	<0.41		0.41	0.095	mg/Kg	≎	11/07/17 07:18	11/08/17 03:54	1
2,4,6-Trichlorophenol	<0.41		0.41	0.14	mg/Kg	☆	11/07/17 07:18	11/08/17 03:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	89		44 - 121				11/07/17 07:18	11/08/17 03:54	1
2-Fluorophenol	90		46 - 133				11/07/17 07:18	11/08/17 03:54	1
Nitrobenzene-d5	86		41 - 120				11/07/17 07:18	11/08/17 03:54	1
Phenol-d5	89		46 - 125				11/07/17 07:18	11/08/17 03:54	1
Terphenyl-d14	94		35 - 160				11/07/17 07:18	11/08/17 03:54	1
2,4,6-Tribromophenol	64		25 - 139				11/07/17 07:18	11/08/17 03:54	1

Method: 6010B - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<1.2	F1 -	1.2	0.24	mg/Kg	<u> </u>	11/02/17 07:14	11/02/17 18:45	1
Arsenic	7.3		0.61	0.21	mg/Kg	☼	11/02/17 07:14	11/02/17 18:45	1
Barium	66		0.61	0.070	mg/Kg	₩	11/02/17 07:14	11/02/17 18:45	1
Beryllium	0.42		0.25	0.057	mg/Kg		11/02/17 07:14	11/02/17 18:45	1
Cadmium	0.11	J	0.12	0.022	mg/Kg	☼	11/02/17 07:14	11/02/17 18:45	1
Chromium	22		0.61	0.30	mg/Kg	₩	11/02/17 07:14	11/02/17 18:45	1
Cobalt	6.2		0.31	0.081	mg/Kg		11/02/17 07:14	11/02/17 18:45	1
Copper	17		0.61	0.17	mg/Kg	☼	11/02/17 07:14	11/02/17 18:45	1
Iron	21000		12	6.4	mg/Kg	₩	11/02/17 07:14	11/02/17 18:45	1
Lead	19	F2 F1	0.31	0.14	mg/Kg		11/02/17 07:14	11/02/17 18:45	1
Manganese	190		0.61	0.089	mg/Kg	☼	11/02/17 07:14	11/02/17 18:45	1
Nickel	14		0.61	0.18	mg/Kg	₩	11/02/17 07:14	11/02/17 18:45	1
Selenium	0.49	J F1	0.61	0.36	mg/Kg		11/02/17 07:14	11/02/17 18:45	1
Silver	<0.31		0.31	0.079	mg/Kg	☼	11/02/17 07:14	11/02/17 18:45	1
Thallium	<0.61		0.61	0.31	mg/Kg	₩	11/02/17 07:14	11/02/17 18:45	1
Vanadium	37		0.31	0.073	mg/Kg		11/02/17 07:14	11/02/17 18:45	1
Zinc	53		1.2	0.54	mg/Kg	₩	11/02/17 07:14	11/02/17 18:45	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/03/17 15:00	11/05/17 15:36	1
Barium	0.22	J	0.50	0.050	mg/L		11/03/17 15:00	11/05/17 15:36	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/03/17 15:00	11/05/17 15:36	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/03/17 15:00	11/05/17 15:36	1
Chromium	<0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 15:36	1
Cobalt	<0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 15:36	1
Copper	<0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 15:36	1
Iron	<0.40		0.40	0.20	mg/L		11/03/17 15:00	11/05/17 15:36	1

TestAmerica Chicago

Page 149 of 231

2

2

5

7

9

10

12

13

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 14:20

Date Received: 11/01/17 09:05

Client Sample ID: 3160-50-3 (0-2')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-31 **Matrix: Solid**

Percent Solids: 77.8

Method: 6010B - Metals	• •	•				_			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	<0.0075		0.0075	0.0075	mg/L		11/03/17 15:00	11/05/17 15:36	1
Manganese	0.089		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 15:36	1
Nickel	< 0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 15:36	1
Selenium	< 0.050		0.050	0.020	mg/L		11/03/17 15:00	11/05/17 15:36	1
Silver	<0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 15:36	1
Vanadium	< 0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 15:36	1
Zinc _	<0.50		0.50	0.020	mg/L		11/03/17 15:00	11/05/17 15:36	1
Method: 6020A - Metals	(ICP/MS) - TCLP								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060		0.0060	0.0060	mg/L		11/03/17 15:00	11/06/17 19:03	1
Thallium -	<0.0020		0.0020	0.0020	mg/L		11/03/17 15:00	11/06/17 19:03	1
- Method: 7470A - TCLP N	Mercury - TCLP								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/03/17 12:20	11/06/17 09:21	1
- Method: 7471B - Mercur	y (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.025		0.019	0.0062	mg/Kg	<u> </u>	11/02/17 16:10	11/03/17 09:45	1
- General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	8.0		0.20	0.20	SU			11/03/17 08:57	1

Definitions/Glossary

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136575-1

Qualifiers

GC/MS Semi VOA

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
F1	MS and/or MSD Recovery is outside acceptance limits.
F2	MS/MSD RPD exceeds control limits
В	Compound was found in the blank and sample.
Metals	

Qualifier	Qualifier Description
F1	MS and/or MSD Recovery is outside acceptance limits.
F2	MS/MSD RPD exceeds control limits
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
В	Compound was found in the blank and sample.
F3	Duplicate RPD exceeds the control limit
F5	Duplicate RPD exceeds limit, and one or both sample results are less than 5 times RL. The data are considered valid because the absolute difference is less than the RL.
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.
F4	MS/MSD RPD exceeds control limits due to sample size difference.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

GC/MS VOA

Analysis Batch: 408095

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136575-1	3160-16-4 (0-4')	Total/NA	Solid	8260B	408142
500-136575-2	3160-16-3 (0-4')	Total/NA	Solid	8260B	408142
500-136575-3	3160-16-2 (0-4')	Total/NA	Solid	8260B	408142
500-136575-4	3160-16-1 (0-4')	Total/NA	Solid	8260B	408142
500-136575-5	3160-16-5 (0-4')	Total/NA	Solid	8260B	408142
500-136575-6	3160-23-1 (0-4.5')	Total/NA	Solid	8260B	408142
500-136575-7	3160-23-2 (0-4.5')	Total/NA	Solid	8260B	408142
500-136575-8	3160-25-1 (0-4')	Total/NA	Solid	8260B	408142
500-136575-9	3160-25-2 (0-4')	Total/NA	Solid	8260B	408142
500-136575-10	3160-26-2 (0-4')	Total/NA	Solid	8260B	408142
500-136575-11	3160-26-1 (0-4')	Total/NA	Solid	8260B	408142
500-136575-13	3160-28-2 (0-5')	Total/NA	Solid	8260B	408142
500-136575-14	3160-28-3 (0-5')	Total/NA	Solid	8260B	408142
500-136575-15	3160-32-1 (0-3.5')	Total/NA	Solid	8260B	408142
500-136575-16	3160-32-2 (0-3.5')	Total/NA	Solid	8260B	408142
500-136575-17	3160-32-3 (0-3.5')	Total/NA	Solid	8260B	408142
500-136575-18	3160-32-4 (0-3.5')	Total/NA	Solid	8260B	408142
500-136575-19	3160-32-5 (0-3.5')	Total/NA	Solid	8260B	408142
500-136575-20	3160-32-6 (0-3.5')	Total/NA	Solid	8260B	408142
MB 500-408095/6	Method Blank	Total/NA	Solid	8260B	
LCS 500-408095/4	Lab Control Sample	Total/NA	Solid	8260B	

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
500-136575-1	3160-16-4 (0-4')	Total/NA	Solid	5035	_
500-136575-2	3160-16-3 (0-4')	Total/NA	Solid	5035	
500-136575-3	3160-16-2 (0-4')	Total/NA	Solid	5035	
500-136575-4	3160-16-1 (0-4')	Total/NA	Solid	5035	
500-136575-5	3160-16-5 (0-4')	Total/NA	Solid	5035	
500-136575-6	3160-23-1 (0-4.5')	Total/NA	Solid	5035	
500-136575-7	3160-23-2 (0-4.5')	Total/NA	Solid	5035	
500-136575-8	3160-25-1 (0-4')	Total/NA	Solid	5035	
500-136575-9	3160-25-2 (0-4')	Total/NA	Solid	5035	
500-136575-10	3160-26-2 (0-4')	Total/NA	Solid	5035	
500-136575-11	3160-26-1 (0-4')	Total/NA	Solid	5035	
500-136575-12	3160-28-1 (0-5')	Total/NA	Solid	5035	
500-136575-13	3160-28-2 (0-5')	Total/NA	Solid	5035	
500-136575-14	3160-28-3 (0-5')	Total/NA	Solid	5035	
500-136575-15	3160-32-1 (0-3.5')	Total/NA	Solid	5035	
500-136575-16	3160-32-2 (0-3.5')	Total/NA	Solid	5035	
500-136575-17	3160-32-3 (0-3.5')	Total/NA	Solid	5035	
500-136575-18	3160-32-4 (0-3.5')	Total/NA	Solid	5035	
500-136575-19	3160-32-5 (0-3.5')	Total/NA	Solid	5035	
500-136575-20	3160-32-6 (0-3.5')	Total/NA	Solid	5035	
500-136575-20	3160-32-6 (0-3.5')	Total/NA	Solid	5035	
500-136575-21	3160-45-1 (0-5')	Total/NA	Solid	5035	
500-136575-22	3160-45-1 (5-6')	Total/NA	Solid	5035	
500-136575-23	3160-45-2 (0-5')	Total/NA	Solid	5035	
500-136575-24	3160-45-2 (5-6')	Total/NA	Solid	5035	
500-136575-25	3160-45-3 (0-5')	Total/NA	Solid	5035	
500-136575-26	3160-45-3 (5-6')	Total/NA	Solid	5035	

Page 152 of 231

TestAmerica Chicago

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

GC/MS VOA (Continued)

Prep Batch: 408142 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136575-27	3160-45-4 (0-5')	Total/NA	Solid	5035	
500-136575-28	3160-45-4 (5-6')	Total/NA	Solid	5035	
500-136575-29	3160-50-1 (0-2')	Total/NA	Solid	5035	
500-136575-30	3160-50-2 (0-2')	Total/NA	Solid	5035	
500-136575-31	3160-50-3 (0-2')	Total/NA	Solid	5035	

Analysis Batch: 408295

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136575-12	3160-28-1 (0-5')	Total/NA	Solid	8260B	408142
500-136575-20	3160-32-6 (0-3.5')	Total/NA	Solid	8260B	408142
500-136575-21	3160-45-1 (0-5')	Total/NA	Solid	8260B	408142
500-136575-22	3160-45-1 (5-6')	Total/NA	Solid	8260B	408142
500-136575-23	3160-45-2 (0-5')	Total/NA	Solid	8260B	408142
500-136575-24	3160-45-2 (5-6')	Total/NA	Solid	8260B	408142
500-136575-25	3160-45-3 (0-5')	Total/NA	Solid	8260B	408142
500-136575-26	3160-45-3 (5-6')	Total/NA	Solid	8260B	408142
500-136575-27	3160-45-4 (0-5')	Total/NA	Solid	8260B	408142
500-136575-28	3160-45-4 (5-6')	Total/NA	Solid	8260B	408142
500-136575-29	3160-50-1 (0-2')	Total/NA	Solid	8260B	408142
500-136575-30	3160-50-2 (0-2')	Total/NA	Solid	8260B	408142
500-136575-31	3160-50-3 (0-2')	Total/NA	Solid	8260B	408142
MB 500-408295/6	Method Blank	Total/NA	Solid	8260B	
LCS 500-408295/29	Lab Control Sample	Total/NA	Solid	8260B	
LCSD 500-408295/30	Lab Control Sample Dup	Total/NA	Solid	8260B	

GC/MS Semi VOA

Prep Batch: 408732

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136575-16	3160-32-2 (0-3.5')	Total/NA	Solid	3541	-
500-136575-17	3160-32-3 (0-3.5')	Total/NA	Solid	3541	
500-136575-18	3160-32-4 (0-3.5')	Total/NA	Solid	3541	
500-136575-19	3160-32-5 (0-3.5')	Total/NA	Solid	3541	
500-136575-20	3160-32-6 (0-3.5')	Total/NA	Solid	3541	
500-136575-21	3160-45-1 (0-5')	Total/NA	Solid	3541	
500-136575-22	3160-45-1 (5-6')	Total/NA	Solid	3541	
500-136575-23	3160-45-2 (0-5')	Total/NA	Solid	3541	
500-136575-24	3160-45-2 (5-6')	Total/NA	Solid	3541	
500-136575-25	3160-45-3 (0-5')	Total/NA	Solid	3541	
500-136575-26	3160-45-3 (5-6')	Total/NA	Solid	3541	
500-136575-27	3160-45-4 (0-5')	Total/NA	Solid	3541	
500-136575-28	3160-45-4 (5-6')	Total/NA	Solid	3541	
500-136575-29	3160-50-1 (0-2')	Total/NA	Solid	3541	
500-136575-30	3160-50-2 (0-2')	Total/NA	Solid	3541	
500-136575-31	3160-50-3 (0-2')	Total/NA	Solid	3541	
MB 500-408732/1-A	Method Blank	Total/NA	Solid	3541	
LCS 500-408732/2-A	Lab Control Sample	Total/NA	Solid	3541	
500-136575-16 MS	3160-32-2 (0-3.5')	Total/NA	Solid	3541	
500-136575-16 MSD	3160-32-2 (0-3.5')	Total/NA	Solid	3541	

Page 153 of 231

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

GC/MS Semi VOA (Continued)

Prep Batch: 408852

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136575-1	3160-16-4 (0-4')	Total/NA	Solid	3541	_
500-136575-2	3160-16-3 (0-4')	Total/NA	Solid	3541	
500-136575-3	3160-16-2 (0-4')	Total/NA	Solid	3541	
500-136575-4	3160-16-1 (0-4')	Total/NA	Solid	3541	
500-136575-5	3160-16-5 (0-4')	Total/NA	Solid	3541	
500-136575-6	3160-23-1 (0-4.5')	Total/NA	Solid	3541	
500-136575-7	3160-23-2 (0-4.5')	Total/NA	Solid	3541	
500-136575-8	3160-25-1 (0-4')	Total/NA	Solid	3541	
500-136575-9	3160-25-2 (0-4')	Total/NA	Solid	3541	
500-136575-10	3160-26-2 (0-4')	Total/NA	Solid	3541	
500-136575-11	3160-26-1 (0-4')	Total/NA	Solid	3541	
500-136575-12	3160-28-1 (0-5')	Total/NA	Solid	3541	
500-136575-13	3160-28-2 (0-5')	Total/NA	Solid	3541	
500-136575-14 - DL	3160-28-3 (0-5')	Total/NA	Solid	3541	
500-136575-14	3160-28-3 (0-5')	Total/NA	Solid	3541	
500-136575-15	3160-32-1 (0-3.5')	Total/NA	Solid	3541	
MB 500-408852/1-A	Method Blank	Total/NA	Solid	3541	
LCS 500-408852/2-A	Lab Control Sample	Total/NA	Solid	3541	

Analysis Batch: 408867

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136575-16	3160-32-2 (0-3.5')	Total/NA	Solid	8270D	408732
500-136575-17	3160-32-3 (0-3.5')	Total/NA	Solid	8270D	408732
500-136575-18	3160-32-4 (0-3.5')	Total/NA	Solid	8270D	408732
500-136575-19	3160-32-5 (0-3.5')	Total/NA	Solid	8270D	408732
500-136575-20	3160-32-6 (0-3.5')	Total/NA	Solid	8270D	408732
500-136575-21	3160-45-1 (0-5')	Total/NA	Solid	8270D	408732
500-136575-22	3160-45-1 (5-6')	Total/NA	Solid	8270D	408732
500-136575-23	3160-45-2 (0-5')	Total/NA	Solid	8270D	408732
500-136575-24	3160-45-2 (5-6')	Total/NA	Solid	8270D	408732
500-136575-25	3160-45-3 (0-5')	Total/NA	Solid	8270D	408732
500-136575-26	3160-45-3 (5-6')	Total/NA	Solid	8270D	408732
500-136575-27	3160-45-4 (0-5')	Total/NA	Solid	8270D	408732
500-136575-28	3160-45-4 (5-6')	Total/NA	Solid	8270D	408732
500-136575-29	3160-50-1 (0-2')	Total/NA	Solid	8270D	408732
500-136575-30	3160-50-2 (0-2')	Total/NA	Solid	8270D	408732
500-136575-31	3160-50-3 (0-2')	Total/NA	Solid	8270D	408732
MB 500-408732/1-A	Method Blank	Total/NA	Solid	8270D	408732
LCS 500-408732/2-A	Lab Control Sample	Total/NA	Solid	8270D	408732
500-136575-16 MS	3160-32-2 (0-3.5')	Total/NA	Solid	8270D	408732
500-136575-16 MSD	3160-32-2 (0-3.5')	Total/NA	Solid	8270D	408732

Analysis Batch: 408968

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136575-2	3160-16-3 (0-4')	Total/NA	Solid	8270D	408852
500-136575-3	3160-16-2 (0-4')	Total/NA	Solid	8270D	408852
500-136575-4	3160-16-1 (0-4')	Total/NA	Solid	8270D	408852
500-136575-6	3160-23-1 (0-4.5')	Total/NA	Solid	8270D	408852
500-136575-8	3160-25-1 (0-4')	Total/NA	Solid	8270D	408852
500-136575-9	3160-25-2 (0-4')	Total/NA	Solid	8270D	408852
500-136575-10	3160-26-2 (0-4')	Total/NA	Solid	8270D	408852

TestAmerica Chicago

QC Association Summary

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136575-1

GC/MS Semi VOA (Continued)

Analysis Batch: 408968 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136575-11	3160-26-1 (0-4')	Total/NA	Solid	8270D	408852
500-136575-12	3160-28-1 (0-5')	Total/NA	Solid	8270D	408852
500-136575-13	3160-28-2 (0-5')	Total/NA	Solid	8270D	408852
500-136575-15	3160-32-1 (0-3.5')	Total/NA	Solid	8270D	408852
MB 500-408852/1-A	Method Blank	Total/NA	Solid	8270D	408852
LCS 500-408852/2-A	Lab Control Sample	Total/NA	Solid	8270D	408852

Analysis Batch: 408988

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136575-1	3160-16-4 (0-4')	Total/NA	Solid	8270D	408852
500-136575-5	3160-16-5 (0-4')	Total/NA	Solid	8270D	408852
500-136575-7	3160-23-2 (0-4.5')	Total/NA	Solid	8270D	408852
500-136575-14	3160-28-3 (0-5')	Total/NA	Solid	8270D	408852

Analysis Batch: 409184

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136575-14 - DL	3160-28-3 (0-5')	Total/NA	Solid	8270D	408852

GC Semi VOA

Prep Batch: 408853

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136575-15	3160-32-1 (0-3.5')	Total/NA	Solid	3541	_
500-136575-16	3160-32-2 (0-3.5')	Total/NA	Solid	3541	
500-136575-17	3160-32-3 (0-3.5')	Total/NA	Solid	3541	
500-136575-18	3160-32-4 (0-3.5')	Total/NA	Solid	3541	
500-136575-19	3160-32-5 (0-3.5')	Total/NA	Solid	3541	
500-136575-20	3160-32-6 (0-3.5')	Total/NA	Solid	3541	
500-136575-21	3160-45-1 (0-5')	Total/NA	Solid	3541	
500-136575-22	3160-45-1 (5-6')	Total/NA	Solid	3541	
500-136575-23	3160-45-2 (0-5')	Total/NA	Solid	3541	
500-136575-24	3160-45-2 (5-6')	Total/NA	Solid	3541	
MB 500-408853/1-A	Method Blank	Total/NA	Solid	3541	
LCS 500-408853/2-A	Lab Control Sample	Total/NA	Solid	3541	
500-136575-24 MS	3160-45-2 (5-6')	Total/NA	Solid	3541	
500-136575-24 MSD	3160-45-2 (5-6')	Total/NA	Solid	3541	

Prep Batch: 408939

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136575-6	3160-23-1 (0-4.5')	Total/NA	Solid	3541	
500-136575-7	3160-23-2 (0-4.5')	Total/NA	Solid	3541	
500-136575-25	3160-45-3 (0-5')	Total/NA	Solid	3541	
500-136575-26	3160-45-3 (5-6')	Total/NA	Solid	3541	
500-136575-27	3160-45-4 (0-5')	Total/NA	Solid	3541	
500-136575-28	3160-45-4 (5-6')	Total/NA	Solid	3541	
MB 500-408939/1-A	Method Blank	Total/NA	Solid	3541	
LCS 500-408939/2-A	Lab Control Sample	Total/NA	Solid	3541	
LCS 500-408939/3-A	Lab Control Sample	Total/NA	Solid	3541	

TestAmerica Chicago

Page 155 of 231

QC Association Summary

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028 TestAmerica Job ID: 500-136575-1

2

GC Semi VOA (Continued)

Analysis Batch: 409021

Lab S	Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-1	36575-6	3160-23-1 (0-4.5')	Total/NA	Solid	8151A	409129
500-1	36575-7	3160-23-2 (0-4.5')	Total/NA	Solid	8151A	409129
MB 5	00-409129/1-A	Method Blank	Total/NA	Solid	8151A	409129
LCS !	500-409129/2-A	Lab Control Sample	Total/NA	Solid	8151A	409129

Analysis Batch: 409066

Lab Sample	ID Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136575-7	3160-23-2 (0-4.5')	Total/NA	Solid	8081B	408939
MB 500-4089	39/1-A Method Blank	Total/NA	Solid	8081B	408939
LCS 500-408	939/2-A Lab Control Sample	Total/NA	Solid	8081B	408939

Prep Batch: 409129

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136575-6	3160-23-1 (0-4.5')	Total/NA	Solid	8151A	
500-136575-7	3160-23-2 (0-4.5')	Total/NA	Solid	8151A	
MB 500-409129/1-A	Method Blank	Total/NA	Solid	8151A	
LCS 500-409129/2-A	Lab Control Sample	Total/NA	Solid	8151A	

Analysis Batch: 409181

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136575-25	3160-45-3 (0-5')	Total/NA	Solid	8082A	408939
500-136575-26	3160-45-3 (5-6')	Total/NA	Solid	8082A	408939
500-136575-27	3160-45-4 (0-5')	Total/NA	Solid	8082A	408939
500-136575-28	3160-45-4 (5-6')	Total/NA	Solid	8082A	408939
MB 500-408939/1-A	Method Blank	Total/NA	Solid	8082A	408939
LCS 500-408939/3-A	Lab Control Sample	Total/NA	Solid	8082A	408939

Analysis Batch: 409183

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136575-6	3160-23-1 (0-4.5')	Total/NA	Solid	8081B	408939

Analysis Batch: 409369

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136575-15	3160-32-1 (0-3.5')	Total/NA	Solid	8082A	408853
500-136575-16	3160-32-2 (0-3.5')	Total/NA	Solid	8082A	408853
500-136575-17	3160-32-3 (0-3.5')	Total/NA	Solid	8082A	408853
500-136575-18	3160-32-4 (0-3.5')	Total/NA	Solid	8082A	408853
500-136575-19	3160-32-5 (0-3.5')	Total/NA	Solid	8082A	408853
500-136575-20	3160-32-6 (0-3.5')	Total/NA	Solid	8082A	408853
500-136575-21	3160-45-1 (0-5')	Total/NA	Solid	8082A	408853
500-136575-22	3160-45-1 (5-6')	Total/NA	Solid	8082A	408853
500-136575-23	3160-45-2 (0-5')	Total/NA	Solid	8082A	408853
500-136575-24	3160-45-2 (5-6')	Total/NA	Solid	8082A	408853
MB 500-408853/1-A	Method Blank	Total/NA	Solid	8082A	408853
LCS 500-408853/2-A	Lab Control Sample	Total/NA	Solid	8082A	408853
500-136575-24 MS	3160-45-2 (5-6')	Total/NA	Solid	8082A	408853
500-136575-24 MSD	3160-45-2 (5-6')	Total/NA	Solid	8082A	408853

TestAmerica Chicago

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Metals

Prep Batch: 408066

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136575-21	3160-45-1 (0-5')	Total/NA	Solid	3050B	
500-136575-22	3160-45-1 (5-6')	Total/NA	Solid	3050B	
500-136575-23	3160-45-2 (0-5')	Total/NA	Solid	3050B	
500-136575-24	3160-45-2 (5-6')	Total/NA	Solid	3050B	
500-136575-25	3160-45-3 (0-5')	Total/NA	Solid	3050B	
500-136575-26	3160-45-3 (5-6')	Total/NA	Solid	3050B	
500-136575-27	3160-45-4 (0-5')	Total/NA	Solid	3050B	
500-136575-28	3160-45-4 (5-6')	Total/NA	Solid	3050B	
500-136575-29	3160-50-1 (0-2')	Total/NA	Solid	3050B	
500-136575-30	3160-50-2 (0-2')	Total/NA	Solid	3050B	
500-136575-31	3160-50-3 (0-2')	Total/NA	Solid	3050B	
MB 500-408066/1-A	Method Blank	Total/NA	Solid	3050B	
LCS 500-408066/2-A	Lab Control Sample	Total/NA	Solid	3050B	
500-136575-31 MS	3160-50-3 (0-2')	Total/NA	Solid	3050B	
500-136575-31 MSD	3160-50-3 (0-2')	Total/NA	Solid	3050B	
500-136575-31 DU	3160-50-3 (0-2')	Total/NA	Solid	3050B	

Prep Batch: 408083

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
500-136575-1	3160-16-4 (0-4')	Total/NA	Solid	3050B	<u> </u>
500-136575-2	3160-16-3 (0-4')	Total/NA	Solid	3050B	
500-136575-3	3160-16-2 (0-4')	Total/NA	Solid	3050B	
500-136575-4	3160-16-1 (0-4')	Total/NA	Solid	3050B	
500-136575-5	3160-16-5 (0-4')	Total/NA	Solid	3050B	
500-136575-6	3160-23-1 (0-4.5')	Total/NA	Solid	3050B	
500-136575-7	3160-23-2 (0-4.5')	Total/NA	Solid	3050B	
500-136575-8	3160-25-1 (0-4')	Total/NA	Solid	3050B	
500-136575-9	3160-25-2 (0-4')	Total/NA	Solid	3050B	
500-136575-10	3160-26-2 (0-4')	Total/NA	Solid	3050B	
500-136575-11	3160-26-1 (0-4')	Total/NA	Solid	3050B	
500-136575-12	3160-28-1 (0-5')	Total/NA	Solid	3050B	
500-136575-13	3160-28-2 (0-5')	Total/NA	Solid	3050B	
500-136575-14	3160-28-3 (0-5')	Total/NA	Solid	3050B	
500-136575-15	3160-32-1 (0-3.5')	Total/NA	Solid	3050B	
500-136575-16	3160-32-2 (0-3.5')	Total/NA	Solid	3050B	
500-136575-17	3160-32-3 (0-3.5')	Total/NA	Solid	3050B	
500-136575-18	3160-32-4 (0-3.5')	Total/NA	Solid	3050B	
500-136575-19	3160-32-5 (0-3.5')	Total/NA	Solid	3050B	
500-136575-20	3160-32-6 (0-3.5')	Total/NA	Solid	3050B	
MB 500-408083/1-A	Method Blank	Total/NA	Solid	3050B	
LCS 500-408083/2-A	Lab Control Sample	Total/NA	Solid	3050B	
500-136575-1 MS	3160-16-4 (0-4')	Total/NA	Solid	3050B	
500-136575-1 MSD	3160-16-4 (0-4')	Total/NA	Solid	3050B	
500-136575-1 DU	3160-16-4 (0-4')	Total/NA	Solid	3050B	

Leach Batch: 408171

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136575-8	3160-25-1 (0-4')	SPLP East	Solid	1312	
500-136575-11	3160-26-1 (0-4')	SPLP East	Solid	1312	
500-136575-12	3160-28-1 (0-5')	SPLP East	Solid	1312	
500-136575-13	3160-28-2 (0-5')	SPLP East	Solid	1312	

TestAmerica Chicago

Page 157 of 231

9

9

4

6

8

9

10

12

13

QC Association Summary

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136575-1

Metals (Continued)

Leach Batch: 408171 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136575-14	3160-28-3 (0-5')	SPLP East	Solid	1312	
LB 500-408171/1-B	Method Blank	SPLP East	Solid	1312	

Leach Batch: 408172

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136575-20	3160-32-6 (0-3.5')	SPLP East	Solid	1312	
500-136575-29	3160-50-1 (0-2')	SPLP East	Solid	1312	
LB 500-408172/1-B	Method Blank	SPLP East	Solid	1312	

Leach Batch: 408173

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136575-1	3160-16-4 (0-4')	TCLP	Solid	1311	
500-136575-2	3160-16-3 (0-4')	TCLP	Solid	1311	
500-136575-3	3160-16-2 (0-4')	TCLP	Solid	1311	
500-136575-4	3160-16-1 (0-4')	TCLP	Solid	1311	
500-136575-5	3160-16-5 (0-4')	TCLP	Solid	1311	
500-136575-6	3160-23-1 (0-4.5')	TCLP	Solid	1311	
500-136575-7	3160-23-2 (0-4.5')	TCLP	Solid	1311	
500-136575-8	3160-25-1 (0-4')	TCLP	Solid	1311	
500-136575-9	3160-25-2 (0-4')	TCLP	Solid	1311	
500-136575-10	3160-26-2 (0-4')	TCLP	Solid	1311	
500-136575-11	3160-26-1 (0-4')	TCLP	Solid	1311	
500-136575-12	3160-28-1 (0-5')	TCLP	Solid	1311	
500-136575-13	3160-28-2 (0-5')	TCLP	Solid	1311	
500-136575-14	3160-28-3 (0-5')	TCLP	Solid	1311	
500-136575-15	3160-32-1 (0-3.5')	TCLP	Solid	1311	
500-136575-16	3160-32-2 (0-3.5')	TCLP	Solid	1311	
500-136575-17	3160-32-3 (0-3.5')	TCLP	Solid	1311	
500-136575-18	3160-32-4 (0-3.5')	TCLP	Solid	1311	
500-136575-19	3160-32-5 (0-3.5')	TCLP	Solid	1311	
LB 500-408173/1-B	Method Blank	TCLP	Solid	1311	
LB 500-408173/1-C	Method Blank	TCLP	Solid	1311	
500-136575-19 MS	3160-32-5 (0-3.5')	TCLP	Solid	1311	

Leach Batch: 408176

3160-32-5 (0-3.5')

500-136575-19 DU

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136575-20	3160-32-6 (0-3.5')	TCLP	Solid	1311	
500-136575-21	3160-45-1 (0-5')	TCLP	Solid	1311	
500-136575-22	3160-45-1 (5-6')	TCLP	Solid	1311	
500-136575-23	3160-45-2 (0-5')	TCLP	Solid	1311	
500-136575-24	3160-45-2 (5-6')	TCLP	Solid	1311	
500-136575-25	3160-45-3 (0-5')	TCLP	Solid	1311	
500-136575-26	3160-45-3 (5-6')	TCLP	Solid	1311	
500-136575-27	3160-45-4 (0-5')	TCLP	Solid	1311	
500-136575-28	3160-45-4 (5-6')	TCLP	Solid	1311	
500-136575-29	3160-50-1 (0-2')	TCLP	Solid	1311	
500-136575-30	3160-50-2 (0-2')	TCLP	Solid	1311	
500-136575-31	3160-50-3 (0-2')	TCLP	Solid	1311	
LB 500-408176/1-C	Method Blank	TCLP	Solid	1311	
LB 500-408176/1-D	Method Blank	TCLP	Solid	1311	

TCLP

Solid

1311

TestAmerica Chicago

11/13/2017

Page 158 of 231

3

6

8

9

11

13

1 /

М

QC Association Summary

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136575-1

Metals (Continued)

Leach Batch: 408176 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136575-20 MS	3160-32-6 (0-3.5')	TCLP	Solid	1311	
500-136575-20 DU	3160-32-6 (0-3.5')	TCLP	Solid	1311	

Prep Batch: 408223

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136575-1	3160-16-4 (0-4')	Total/NA	Solid	7471B	_
500-136575-2	3160-16-3 (0-4')	Total/NA	Solid	7471B	
500-136575-3	3160-16-2 (0-4')	Total/NA	Solid	7471B	
500-136575-4	3160-16-1 (0-4')	Total/NA	Solid	7471B	
500-136575-5	3160-16-5 (0-4')	Total/NA	Solid	7471B	
500-136575-6	3160-23-1 (0-4.5')	Total/NA	Solid	7471B	
500-136575-7	3160-23-2 (0-4.5')	Total/NA	Solid	7471B	
500-136575-8	3160-25-1 (0-4')	Total/NA	Solid	7471B	
500-136575-9	3160-25-2 (0-4')	Total/NA	Solid	7471B	
500-136575-10	3160-26-2 (0-4')	Total/NA	Solid	7471B	
500-136575-11	3160-26-1 (0-4')	Total/NA	Solid	7471B	
500-136575-12	3160-28-1 (0-5')	Total/NA	Solid	7471B	
500-136575-13	3160-28-2 (0-5')	Total/NA	Solid	7471B	
500-136575-14	3160-28-3 (0-5')	Total/NA	Solid	7471B	
500-136575-15	3160-32-1 (0-3.5')	Total/NA	Solid	7471B	
500-136575-16	3160-32-2 (0-3.5')	Total/NA	Solid	7471B	
500-136575-17	3160-32-3 (0-3.5')	Total/NA	Solid	7471B	
500-136575-18	3160-32-4 (0-3.5')	Total/NA	Solid	7471B	
500-136575-19	3160-32-5 (0-3.5')	Total/NA	Solid	7471B	
500-136575-20	3160-32-6 (0-3.5')	Total/NA	Solid	7471B	
MB 500-408223/12-A	Method Blank	Total/NA	Solid	7471B	
LCS 500-408223/13-A	Lab Control Sample	Total/NA	Solid	7471B	
500-136575-6 MS	3160-23-1 (0-4.5')	Total/NA	Solid	7471B	
500-136575-6 MSD	3160-23-1 (0-4.5')	Total/NA	Solid	7471B	
500-136575-6 DU	3160-23-1 (0-4.5')	Total/NA	Solid	7471B	

Prep Batch: 408246

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136575-21	3160-45-1 (0-5')	Total/NA	Solid	7471B	_
500-136575-22	3160-45-1 (5-6')	Total/NA	Solid	7471B	
500-136575-23	3160-45-2 (0-5')	Total/NA	Solid	7471B	
500-136575-24	3160-45-2 (5-6')	Total/NA	Solid	7471B	
500-136575-25	3160-45-3 (0-5')	Total/NA	Solid	7471B	
500-136575-26	3160-45-3 (5-6')	Total/NA	Solid	7471B	
500-136575-27	3160-45-4 (0-5')	Total/NA	Solid	7471B	
500-136575-28	3160-45-4 (5-6')	Total/NA	Solid	7471B	
500-136575-29	3160-50-1 (0-2')	Total/NA	Solid	7471B	
500-136575-30	3160-50-2 (0-2')	Total/NA	Solid	7471B	
500-136575-31	3160-50-3 (0-2')	Total/NA	Solid	7471B	
MB 500-408246/12-A	Method Blank	Total/NA	Solid	7471B	
LCS 500-408246/13-A	Lab Control Sample	Total/NA	Solid	7471B	
500-136575-31 MS	3160-50-3 (0-2')	Total/NA	Solid	7471B	
500-136575-31 MSD	3160-50-3 (0-2')	Total/NA	Solid	7471B	
500-136575-31 DU	3160-50-3 (0-2')	Total/NA	Solid	7471B	

TestAmerica Chicago

Page 159 of 231

11/13/2017

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Metals (Continued)

Analysis Batch: 408311

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136575-1	3160-16-4 (0-4')	Total/NA	Solid	6010B	408083
500-136575-2	3160-16-3 (0-4')	Total/NA	Solid	6010B	408083
500-136575-3	3160-16-2 (0-4')	Total/NA	Solid	6010B	408083
500-136575-4	3160-16-1 (0-4')	Total/NA	Solid	6010B	408083
500-136575-5	3160-16-5 (0-4')	Total/NA	Solid	6010B	408083
500-136575-6	3160-23-1 (0-4.5')	Total/NA	Solid	6010B	408083
500-136575-7	3160-23-2 (0-4.5')	Total/NA	Solid	6010B	408083
500-136575-8	3160-25-1 (0-4')	Total/NA	Solid	6010B	408083
500-136575-9	3160-25-2 (0-4')	Total/NA	Solid	6010B	408083
500-136575-10	3160-26-2 (0-4')	Total/NA	Solid	6010B	408083
500-136575-11	3160-26-1 (0-4')	Total/NA	Solid	6010B	408083
500-136575-12	3160-28-1 (0-5')	Total/NA	Solid	6010B	408083
500-136575-13	3160-28-2 (0-5')	Total/NA	Solid	6010B	408083
500-136575-14	3160-28-3 (0-5')	Total/NA	Solid	6010B	408083
500-136575-15	3160-32-1 (0-3.5')	Total/NA	Solid	6010B	408083
500-136575-16	3160-32-2 (0-3.5')	Total/NA	Solid	6010B	408083
500-136575-17	3160-32-3 (0-3.5')	Total/NA	Solid	6010B	408083
500-136575-18	3160-32-4 (0-3.5')	Total/NA	Solid	6010B	408083
500-136575-19	3160-32-5 (0-3.5')	Total/NA	Solid	6010B	408083
500-136575-20	3160-32-6 (0-3.5')	Total/NA	Solid	6010B	408083
500-136575-21	3160-45-1 (0-5')	Total/NA	Solid	6010B	408066
500-136575-22	3160-45-1 (5-6')	Total/NA	Solid	6010B	408066
500-136575-23	3160-45-2 (0-5')	Total/NA	Solid	6010B	408066
500-136575-24	3160-45-2 (5-6')	Total/NA	Solid	6010B	408066
500-136575-25	3160-45-3 (0-5')	Total/NA	Solid	6010B	408066
500-136575-26	3160-45-3 (5-6')	Total/NA	Solid	6010B	408066
500-136575-27	3160-45-4 (0-5')	Total/NA	Solid	6010B	408066
500-136575-28	3160-45-4 (5-6')	Total/NA	Solid	6010B	408066
500-136575-29	3160-50-1 (0-2')	Total/NA	Solid	6010B	408066
500-136575-30	3160-50-2 (0-2')	Total/NA	Solid	6010B	408066
500-136575-31	3160-50-3 (0-2')	Total/NA	Solid	6010B	408066
MB 500-408066/1-A	Method Blank	Total/NA	Solid	6010B	408066
MB 500-408083/1-A	Method Blank	Total/NA	Solid	6010B	408083
LCS 500-408066/2-A	Lab Control Sample	Total/NA	Solid	6010B	408066
LCS 500-408083/2-A	Lab Control Sample	Total/NA	Solid	6010B	408083
500-136575-1 MS	3160-16-4 (0-4')	Total/NA	Solid	6010B	408083
500-136575-1 MSD	3160-16-4 (0-4')	Total/NA	Solid	6010B	408083
500-136575-31 MS	3160-50-3 (0-2')	Total/NA	Solid	6010B	408066
500-136575-31 MSD	3160-50-3 (0-2')	Total/NA	Solid	6010B	408066
500-136575-1 DU	3160-16-4 (0-4')	Total/NA	Solid	6010B	408083
500-136575-31 DU	3160-50-3 (0-2')	Total/NA	Solid	6010B	408066

Prep Batch: 408350

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136575-1	3160-16-4 (0-4')	TCLP	Solid	7470A	408173
500-136575-2	3160-16-3 (0-4')	TCLP	Solid	7470A	408173
500-136575-3	3160-16-2 (0-4')	TCLP	Solid	7470A	408173
500-136575-4	3160-16-1 (0-4')	TCLP	Solid	7470A	408173
500-136575-5	3160-16-5 (0-4')	TCLP	Solid	7470A	408173
500-136575-6	3160-23-1 (0-4.5')	TCLP	Solid	7470A	408173
500-136575-7	3160-23-2 (0-4.5')	TCLP	Solid	7470A	408173

TestAmerica Chicago

11/13/2017

Page 160 of 231

2

3

4

6

0

10

13

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Metals (Continued)

Prep Batch: 408350 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136575-8	3160-25-1 (0-4')	TCLP	Solid	7470A	408173
500-136575-9	3160-25-2 (0-4')	TCLP	Solid	7470A	408173
500-136575-10	3160-26-2 (0-4')	TCLP	Solid	7470A	408173
500-136575-11	3160-26-1 (0-4')	TCLP	Solid	7470A	408173
500-136575-12	3160-28-1 (0-5')	TCLP	Solid	7470A	408173
500-136575-13	3160-28-2 (0-5')	TCLP	Solid	7470A	408173
500-136575-14	3160-28-3 (0-5')	TCLP	Solid	7470A	408173
500-136575-15	3160-32-1 (0-3.5')	TCLP	Solid	7470A	408173
500-136575-16	3160-32-2 (0-3.5')	TCLP	Solid	7470A	408173
500-136575-17	3160-32-3 (0-3.5')	TCLP	Solid	7470A	408173
500-136575-18	3160-32-4 (0-3.5')	TCLP	Solid	7470A	408173
500-136575-19	3160-32-5 (0-3.5')	TCLP	Solid	7470A	408173
LB 500-408173/1-B	Method Blank	TCLP	Solid	7470A	408173
MB 500-408350/12-A	Method Blank	Total/NA	Solid	7470A	
LCS 500-408350/13-A	Lab Control Sample	Total/NA	Solid	7470A	
500-136575-19 MS	3160-32-5 (0-3.5')	TCLP	Solid	7470A	408173
500-136575-19 DU	3160-32-5 (0-3.5')	TCLP	Solid	7470A	408173

Prep Batch: 408360

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136575-20	3160-32-6 (0-3.5')	TCLP	Solid	7470A	408176
500-136575-21	3160-45-1 (0-5')	TCLP	Solid	7470A	408176
500-136575-22	3160-45-1 (5-6')	TCLP	Solid	7470A	408176
500-136575-23	3160-45-2 (0-5')	TCLP	Solid	7470A	408176
500-136575-24	3160-45-2 (5-6')	TCLP	Solid	7470A	408176
500-136575-25	3160-45-3 (0-5')	TCLP	Solid	7470A	408176
500-136575-26	3160-45-3 (5-6')	TCLP	Solid	7470A	408176
500-136575-27	3160-45-4 (0-5')	TCLP	Solid	7470A	408176
500-136575-28	3160-45-4 (5-6')	TCLP	Solid	7470A	408176
500-136575-29	3160-50-1 (0-2')	TCLP	Solid	7470A	408176
500-136575-30	3160-50-2 (0-2')	TCLP	Solid	7470A	408176
500-136575-31	3160-50-3 (0-2')	TCLP	Solid	7470A	408176
LB 500-408176/1-C	Method Blank	TCLP	Solid	7470A	408176
MB 500-408360/12-A	Method Blank	Total/NA	Solid	7470A	
LCS 500-408360/13-A	Lab Control Sample	Total/NA	Solid	7470A	
500-136575-20 MS	3160-32-6 (0-3.5')	TCLP	Solid	7470A	408176
500-136575-20 DU	3160-32-6 (0-3.5')	TCLP	Solid	7470A	408176

Analysis Batch: 408366

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136575-1	3160-16-4 (0-4')	Total/NA	Solid	7471B	408223
500-136575-2	3160-16-3 (0-4')	Total/NA	Solid	7471B	408223
500-136575-3	3160-16-2 (0-4')	Total/NA	Solid	7471B	408223
500-136575-4	3160-16-1 (0-4')	Total/NA	Solid	7471B	408223
500-136575-5	3160-16-5 (0-4')	Total/NA	Solid	7471B	408223
500-136575-6	3160-23-1 (0-4.5')	Total/NA	Solid	7471B	408223
500-136575-7	3160-23-2 (0-4.5')	Total/NA	Solid	7471B	408223
500-136575-8	3160-25-1 (0-4')	Total/NA	Solid	7471B	408223
500-136575-9	3160-25-2 (0-4')	Total/NA	Solid	7471B	408223
500-136575-10	3160-26-2 (0-4')	Total/NA	Solid	7471B	408223
500-136575-11	3160-26-1 (0-4')	Total/NA	Solid	7471B	408223

TestAmerica Chicago

4

b

8

10

46

13

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Metals (Continued)

Analysis Batch: 408366 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136575-12	3160-28-1 (0-5')	Total/NA	Solid	7471B	408223
500-136575-13	3160-28-2 (0-5')	Total/NA	Solid	7471B	408223
500-136575-14	3160-28-3 (0-5')	Total/NA	Solid	7471B	408223
500-136575-15	3160-32-1 (0-3.5')	Total/NA	Solid	7471B	408223
500-136575-16	3160-32-2 (0-3.5')	Total/NA	Solid	7471B	408223
500-136575-17	3160-32-3 (0-3.5')	Total/NA	Solid	7471B	408223
500-136575-18	3160-32-4 (0-3.5')	Total/NA	Solid	7471B	408223
500-136575-19	3160-32-5 (0-3.5')	Total/NA	Solid	7471B	408223
500-136575-20	3160-32-6 (0-3.5')	Total/NA	Solid	7471B	408223
500-136575-21	3160-45-1 (0-5')	Total/NA	Solid	7471B	408246
500-136575-22	3160-45-1 (5-6')	Total/NA	Solid	7471B	408246
500-136575-23	3160-45-2 (0-5')	Total/NA	Solid	7471B	408246
500-136575-24	3160-45-2 (5-6')	Total/NA	Solid	7471B	408246
500-136575-25	3160-45-3 (0-5')	Total/NA	Solid	7471B	408246
500-136575-26	3160-45-3 (5-6')	Total/NA	Solid	7471B	408246
500-136575-27	3160-45-4 (0-5')	Total/NA	Solid	7471B	408246
500-136575-28	3160-45-4 (5-6')	Total/NA	Solid	7471B	408246
500-136575-29	3160-50-1 (0-2')	Total/NA	Solid	7471B	408246
500-136575-30	3160-50-2 (0-2')	Total/NA	Solid	7471B	408246
500-136575-31	3160-50-3 (0-2')	Total/NA	Solid	7471B	408246
MB 500-408223/12-A	Method Blank	Total/NA	Solid	7471B	408223
MB 500-408246/12-A	Method Blank	Total/NA	Solid	7471B	408246
LCS 500-408223/13-A	Lab Control Sample	Total/NA	Solid	7471B	408223
LCS 500-408246/13-A	Lab Control Sample	Total/NA	Solid	7471B	408246
500-136575-6 MS	3160-23-1 (0-4.5')	Total/NA	Solid	7471B	408223
500-136575-6 MSD	3160-23-1 (0-4.5')	Total/NA	Solid	7471B	408223
500-136575-31 MS	3160-50-3 (0-2')	Total/NA	Solid	7471B	408246
500-136575-31 MSD	3160-50-3 (0-2')	Total/NA	Solid	7471B	408246
500-136575-6 DU	3160-23-1 (0-4.5')	Total/NA	Solid	7471B	408223
500-136575-31 DU	3160-50-3 (0-2')	Total/NA	Solid	7471B	408246

Prep Batch: 408404

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136575-8	3160-25-1 (0-4')	SPLP East	Solid	3010A	408171
500-136575-11	3160-26-1 (0-4')	SPLP East	Solid	3010A	408171
500-136575-12	3160-28-1 (0-5')	SPLP East	Solid	3010A	408171
500-136575-13	3160-28-2 (0-5')	SPLP East	Solid	3010A	408171
500-136575-14	3160-28-3 (0-5')	SPLP East	Solid	3010A	408171
LB 500-408171/1-B	Method Blank	SPLP East	Solid	3010A	408171
LCS 500-408404/2-A	Lab Control Sample	Total/NA	Solid	3010A	

Prep Batch: 408407

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136575-20	3160-32-6 (0-3.5')	SPLP East	Solid	3010A	408172
500-136575-29	3160-50-1 (0-2')	SPLP East	Solid	3010A	408172
LB 500-408172/1-B	Method Blank	SPLP East	Solid	3010A	408172
LCS 500-408407/2-A	Lab Control Sample	Total/NA	Solid	3010A	

Prep Batch: 408408

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136575-1	3160-16-4 (0-4')	TCLP	Solid	3010A	408173

TestAmerica Chicago

11/13/2017

Page 162 of 231

6

3

6

8

11

12

13

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Metals (Continued)

Prep Batch: 408408 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136575-2	3160-16-3 (0-4')	TCLP	Solid	3010A	408173
500-136575-3	3160-16-2 (0-4')	TCLP	Solid	3010A	408173
500-136575-4	3160-16-1 (0-4')	TCLP	Solid	3010A	408173
500-136575-5	3160-16-5 (0-4')	TCLP	Solid	3010A	408173
500-136575-6	3160-23-1 (0-4.5')	TCLP	Solid	3010A	408173
500-136575-7	3160-23-2 (0-4.5')	TCLP	Solid	3010A	408173
500-136575-8	3160-25-1 (0-4')	TCLP	Solid	3010A	408173
500-136575-9	3160-25-2 (0-4')	TCLP	Solid	3010A	408173
500-136575-10	3160-26-2 (0-4')	TCLP	Solid	3010A	408173
500-136575-11	3160-26-1 (0-4')	TCLP	Solid	3010A	408173
500-136575-12	3160-28-1 (0-5')	TCLP	Solid	3010A	408173
500-136575-13	3160-28-2 (0-5')	TCLP	Solid	3010A	408173
500-136575-14	3160-28-3 (0-5')	TCLP	Solid	3010A	408173
500-136575-15	3160-32-1 (0-3.5')	TCLP	Solid	3010A	408173
500-136575-16	3160-32-2 (0-3.5')	TCLP	Solid	3010A	408173
500-136575-17	3160-32-3 (0-3.5')	TCLP	Solid	3010A	408173
500-136575-18	3160-32-4 (0-3.5')	TCLP	Solid	3010A	408173
500-136575-19	3160-32-5 (0-3.5')	TCLP	Solid	3010A	408173
LB 500-408173/1-C	Method Blank	TCLP	Solid	3010A	408173
LCS 500-408408/2-A	Lab Control Sample	Total/NA	Solid	3010A	
500-136575-19 MS	3160-32-5 (0-3.5')	TCLP	Solid	3010A	408173
500-136575-19 DU	3160-32-5 (0-3.5')	TCLP	Solid	3010A	408173

Prep Batch: 408410

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136575-20	3160-32-6 (0-3.5')	TCLP	Solid	3010A	408176
500-136575-21	3160-45-1 (0-5')	TCLP	Solid	3010A	408176
500-136575-22	3160-45-1 (5-6')	TCLP	Solid	3010A	408176
500-136575-23	3160-45-2 (0-5')	TCLP	Solid	3010A	408176
500-136575-24	3160-45-2 (5-6')	TCLP	Solid	3010A	408176
500-136575-25	3160-45-3 (0-5')	TCLP	Solid	3010A	408176
500-136575-26	3160-45-3 (5-6')	TCLP	Solid	3010A	408176
500-136575-27	3160-45-4 (0-5')	TCLP	Solid	3010A	408176
500-136575-28	3160-45-4 (5-6')	TCLP	Solid	3010A	408176
500-136575-29	3160-50-1 (0-2')	TCLP	Solid	3010A	408176
500-136575-30	3160-50-2 (0-2')	TCLP	Solid	3010A	408176
500-136575-31	3160-50-3 (0-2')	TCLP	Solid	3010A	408176
LB 500-408176/1-D	Method Blank	TCLP	Solid	3010A	408176
LCS 500-408410/2-A	Lab Control Sample	Total/NA	Solid	3010A	

Analysis Batch: 408472

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136575-4	3160-16-1 (0-4')	Total/NA	Solid	6010B	408083
500-136575-16	3160-32-2 (0-3.5')	Total/NA	Solid	6010B	408083

Analysis Batch: 408541

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136575-1	3160-16-4 (0-4')	TCLP	Solid	6010B	408408
500-136575-2	3160-16-3 (0-4')	TCLP	Solid	6010B	408408
500-136575-3	3160-16-2 (0-4')	TCLP	Solid	6010B	408408
500-136575-4	3160-16-1 (0-4')	TCLP	Solid	6010B	408408

TestAmerica Chicago

America 300 iD. 300-130375-1

9

4

O

9

10

15

13

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Metals (Continued)

Analysis Batch: 408541 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136575-5	3160-16-5 (0-4')	TCLP	Solid	6010B	408408
500-136575-6	3160-23-1 (0-4.5')	TCLP	Solid	6010B	408408
500-136575-7	3160-23-2 (0-4.5')	TCLP	Solid	6010B	408408
500-136575-8	3160-25-1 (0-4')	TCLP	Solid	6010B	408408
500-136575-9	3160-25-2 (0-4')	TCLP	Solid	6010B	408408
500-136575-10	3160-26-2 (0-4')	TCLP	Solid	6010B	408408
500-136575-11	3160-26-1 (0-4')	TCLP	Solid	6010B	408408
500-136575-12	3160-28-1 (0-5')	TCLP	Solid	6010B	408408
500-136575-13	3160-28-2 (0-5')	TCLP	Solid	6010B	408408
500-136575-14	3160-28-3 (0-5')	TCLP	Solid	6010B	408408
500-136575-15	3160-32-1 (0-3.5')	TCLP	Solid	6010B	408408
500-136575-16	3160-32-2 (0-3.5')	TCLP	Solid	6010B	408408
500-136575-17	3160-32-3 (0-3.5')	TCLP	Solid	6010B	408408
500-136575-18	3160-32-4 (0-3.5')	TCLP	Solid	6010B	408408
500-136575-19	3160-32-5 (0-3.5')	TCLP	Solid	6010B	408408
500-136575-20	3160-32-6 (0-3.5')	TCLP	Solid	6010B	408410
500-136575-21	3160-45-1 (0-5')	TCLP	Solid	6010B	408410
500-136575-22	3160-45-1 (5-6')	TCLP	Solid	6010B	408410
500-136575-23	3160-45-2 (0-5')	TCLP	Solid	6010B	408410
500-136575-24	3160-45-2 (5-6')	TCLP	Solid	6010B	408410
500-136575-25	3160-45-3 (0-5')	TCLP	Solid	6010B	408410
500-136575-26	3160-45-3 (5-6')	TCLP	Solid	6010B	408410
500-136575-27	3160-45-4 (0-5')	TCLP	Solid	6010B	408410
500-136575-28	3160-45-4 (5-6')	TCLP	Solid	6010B	408410
500-136575-29	3160-50-1 (0-2')	TCLP	Solid	6010B	408410
500-136575-30	3160-50-2 (0-2')	TCLP	Solid	6010B	408410
500-136575-31	3160-50-3 (0-2')	TCLP	Solid	6010B	408410
LB 500-408173/1-C	Method Blank	TCLP	Solid	6010B	408408
LB 500-408176/1-D	Method Blank	TCLP	Solid	6010B	408410
LCS 500-408408/2-A	Lab Control Sample	Total/NA	Solid	6010B	408408
LCS 500-408410/2-A	Lab Control Sample	Total/NA	Solid	6010B	408410
500-136575-19 MS	3160-32-5 (0-3.5')	TCLP	Solid	6010B	408408
500-136575-19 DU	3160-32-5 (0-3.5')	TCLP	Solid	6010B	408408

Analysis Batch: 408545

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136575-8	3160-25-1 (0-4')	SPLP East	Solid	6010B	408404
500-136575-11	3160-26-1 (0-4')	SPLP East	Solid	6010B	408404
500-136575-12	3160-28-1 (0-5')	SPLP East	Solid	6010B	408404
500-136575-13	3160-28-2 (0-5')	SPLP East	Solid	6010B	408404
500-136575-14	3160-28-3 (0-5')	SPLP East	Solid	6010B	408404
500-136575-20	3160-32-6 (0-3.5')	SPLP East	Solid	6010B	408407
500-136575-29	3160-50-1 (0-2')	SPLP East	Solid	6010B	408407
LB 500-408171/1-B	Method Blank	SPLP East	Solid	6010B	408404
LB 500-408172/1-B	Method Blank	SPLP East	Solid	6010B	408407
LCS 500-408404/2-A	Lab Control Sample	Total/NA	Solid	6010B	408404
LCS 500-408407/2-A	Lab Control Sample	Total/NA	Solid	6010B	408407

Analysis Batch: 408624

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136575-1	3160-16-4 (0-4')	TCLP	Solid	7470A	408350

TestAmerica Chicago

Page 164 of 231

6

3

4

6

8

46

11

13

14

11/13/2017

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Metals (Continued)

Analysis Batch: 408624 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136575-2	3160-16-3 (0-4')	TCLP	Solid	7470A	408350
500-136575-3	3160-16-2 (0-4')	TCLP	Solid	7470A	408350
500-136575-4	3160-16-1 (0-4')	TCLP	Solid	7470A	408350
500-136575-5	3160-16-5 (0-4')	TCLP	Solid	7470A	408350
500-136575-6	3160-23-1 (0-4.5')	TCLP	Solid	7470A	408350
500-136575-7	3160-23-2 (0-4.5')	TCLP	Solid	7470A	408350
500-136575-8	3160-25-1 (0-4')	TCLP	Solid	7470A	408350
500-136575-9	3160-25-2 (0-4')	TCLP	Solid	7470A	408350
500-136575-10	3160-26-2 (0-4')	TCLP	Solid	7470A	408350
500-136575-11	3160-26-1 (0-4')	TCLP	Solid	7470A	408350
500-136575-12	3160-28-1 (0-5')	TCLP	Solid	7470A	408350
500-136575-13			Solid	7470A	408350
500-136575-14	3160-28-3 (0-5')	TCLP	Solid	7470A	408350
500-136575-15	3160-32-1 (0-3.5')	TCLP	Solid	7470A	408350
500-136575-16	3160-32-2 (0-3.5')	TCLP	Solid	7470A	408350
500-136575-17	3160-32-3 (0-3.5')	TCLP	Solid	7470A	408350
500-136575-18	3160-32-4 (0-3.5')	TCLP	Solid	7470A	408350
500-136575-19	3160-32-5 (0-3.5')	TCLP	Solid	7470A	408350
500-136575-20	3160-32-6 (0-3.5')	TCLP	Solid	7470A	408360
500-136575-21	3160-45-1 (0-5')	TCLP	Solid	7470A	408360
500-136575-22	3160-45-1 (5-6')	TCLP	Solid	7470A	408360
500-136575-23	3160-45-2 (0-5')	TCLP	Solid	7470A	408360
500-136575-24	3160-45-2 (5-6')	TCLP	Solid	7470A	408360
500-136575-25	3160-45-3 (0-5')	TCLP	Solid	7470A	408360
500-136575-26	3160-45-3 (5-6')	TCLP	Solid	7470A	408360
500-136575-27	3160-45-4 (0-5')	TCLP	Solid	7470A	408360
500-136575-28	3160-45-4 (5-6')	TCLP	Solid	7470A	408360
500-136575-29	3160-50-1 (0-2')	TCLP	Solid	7470A	408360
500-136575-30	3160-50-2 (0-2')	TCLP	Solid	7470A	408360
500-136575-31	3160-50-3 (0-2')	TCLP	Solid	7470A	408360
LB 500-408173/1-B	Method Blank	TCLP	Solid	7470A	408350
LB 500-408176/1-C	Method Blank	TCLP	Solid	7470A	408360
MB 500-408350/12-A	Method Blank	Total/NA	Solid	7470A	408350
MB 500-408360/12-A	Method Blank	Total/NA	Solid	7470A	408360
LCS 500-408350/13-A	Lab Control Sample	Total/NA	Solid	7470A	408350
LCS 500-408360/13-A	Lab Control Sample	Total/NA	Solid	7470A	408360
500-136575-19 MS	3160-32-5 (0-3.5')	TCLP	Solid	7470A	408350
500-136575-20 MS	3160-32-6 (0-3.5')	TCLP	Solid	7470A	408360
500-136575-19 DU	3160-32-5 (0-3.5')	TCLP	Solid	7470A	408350
500-136575-20 DU	3160-32-6 (0-3.5')	TCLP	Solid	7470A	408360

Analysis Batch: 408763

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136575-1	3160-16-4 (0-4')	TCLP	Solid	6020A	408408
500-136575-2	3160-16-3 (0-4')	TCLP	Solid	6020A	408408
500-136575-3	3160-16-2 (0-4')	TCLP	Solid	6020A	408408
500-136575-4	3160-16-1 (0-4')	TCLP	Solid	6020A	408408
500-136575-5	3160-16-5 (0-4')	TCLP	Solid	6020A	408408
500-136575-6	3160-23-1 (0-4.5')	TCLP	Solid	6020A	408408
500-136575-7	3160-23-2 (0-4.5')	TCLP	Solid	6020A	408408
500-136575-8	3160-25-1 (0-4')	TCLP	Solid	6020A	408408

TestAmerica Chicago

11/13/2017

Page 165 of 231

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Metals (Continued)

Analysis Batch: 408763 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136575-9	3160-25-2 (0-4')	TCLP	Solid	6020A	408408
500-136575-10	3160-26-2 (0-4')	TCLP	Solid	6020A	408408
500-136575-11	3160-26-1 (0-4')	TCLP	Solid	6020A	408408
500-136575-12	3160-28-1 (0-5')	TCLP	Solid	6020A	408408
500-136575-13	3160-28-2 (0-5')	TCLP	Solid	6020A	408408
500-136575-14	3160-28-3 (0-5')	TCLP	Solid	6020A	408408
500-136575-15	3160-32-1 (0-3.5')	TCLP	Solid	6020A	408408
500-136575-16	3160-32-2 (0-3.5')	TCLP	Solid	6020A	408408
500-136575-17	3160-32-3 (0-3.5')	TCLP	Solid	6020A	408408
500-136575-18	3160-32-4 (0-3.5')	TCLP	Solid	6020A	408408
500-136575-19	3160-32-5 (0-3.5')	TCLP	Solid	6020A	408408
500-136575-20	3160-32-6 (0-3.5')	TCLP	Solid	6020A	408410
500-136575-21	3160-45-1 (0-5')	TCLP	Solid	6020A	408410
500-136575-22	3160-45-1 (5-6')	TCLP	Solid	6020A	408410
500-136575-23	3160-45-2 (0-5')	TCLP	Solid	6020A	408410
500-136575-24	3160-45-2 (5-6')	TCLP	Solid	6020A	408410
500-136575-25	3160-45-3 (0-5')	TCLP	Solid	6020A	408410
500-136575-26	3160-45-3 (5-6')	TCLP	Solid	6020A	408410
500-136575-27	3160-45-4 (0-5')	TCLP	Solid	6020A	408410
500-136575-28	3160-45-4 (5-6')	TCLP	Solid	6020A	408410
500-136575-29	3160-50-1 (0-2')	TCLP	Solid	6020A	408410
500-136575-30	3160-50-2 (0-2')	TCLP	Solid	6020A	408410
500-136575-31	3160-50-3 (0-2')	TCLP	Solid	6020A	408410
LB 500-408173/1-C	Method Blank	TCLP	Solid	6020A	408408
LB 500-408176/1-D	Method Blank	TCLP	Solid	6020A	408410
LCS 500-408408/2-A	Lab Control Sample	Total/NA	Solid	6020A	408408
LCS 500-408410/2-A	Lab Control Sample	Total/NA	Solid	6020A	408410
500-136575-19 MS	3160-32-5 (0-3.5')	TCLP	Solid	6020A	408408
500-136575-19 DU	3160-32-5 (0-3.5')	TCLP	Solid	6020A	408408

Analysis Batch: 409230

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136575-25	3160-45-3 (0-5')	Total/NA	Solid	6010B	408066

General Chemistry

Analysis Batch: 407988

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136575-1	3160-16-4 (0-4')	Total/NA	Solid	Moisture	
500-136575-2	3160-16-3 (0-4')	Total/NA	Solid	Moisture	
500-136575-3	3160-16-2 (0-4')	Total/NA	Solid	Moisture	
500-136575-4	3160-16-1 (0-4')	Total/NA	Solid	Moisture	
500-136575-5	3160-16-5 (0-4')	Total/NA	Solid	Moisture	
500-136575-6	3160-23-1 (0-4.5')	Total/NA	Solid	Moisture	
500-136575-7	3160-23-2 (0-4.5')	Total/NA	Solid	Moisture	
500-136575-8	3160-25-1 (0-4')	Total/NA	Solid	Moisture	
500-136575-9	3160-25-2 (0-4')	Total/NA	Solid	Moisture	
500-136575-10	3160-26-2 (0-4')	Total/NA	Solid	Moisture	
500-136575-11	3160-26-1 (0-4')	Total/NA	Solid	Moisture	
500-136575-12	3160-28-1 (0-5')	Total/NA	Solid	Moisture	

TestAmerica Chicago

11/13/2017

Page 166 of 231

2

4

6

8

10

11

13

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

General Chemistry (Continued)

Analysis Batch: 407988 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136575-13	3160-28-2 (0-5')	Total/NA	Solid	Moisture	
500-136575-14	3160-28-3 (0-5')	Total/NA	Solid	Moisture	
500-136575-15	3160-32-1 (0-3.5')	Total/NA	Solid	Moisture	
500-136575-16	3160-32-2 (0-3.5')	Total/NA	Solid	Moisture	
500-136575-17	3160-32-3 (0-3.5')	Total/NA	Solid	Moisture	
500-136575-18	3160-32-4 (0-3.5')	Total/NA	Solid	Moisture	
500-136575-19	3160-32-5 (0-3.5')	Total/NA	Solid	Moisture	
500-136575-20	3160-32-6 (0-3.5')	Total/NA	Solid	Moisture	
500-136575-1 DU	3160-16-4 (0-4')	Total/NA	Solid	Moisture	

Analysis Batch: 408166

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136575-21	3160-45-1 (0-5')	Total/NA	Solid	Moisture	·
500-136575-22	3160-45-1 (5-6')	Total/NA	Solid	Moisture	
500-136575-23	3160-45-2 (0-5')	Total/NA	Solid	Moisture	
500-136575-24	3160-45-2 (5-6')	Total/NA	Solid	Moisture	
500-136575-25	3160-45-3 (0-5')	Total/NA	Solid	Moisture	
500-136575-26	3160-45-3 (5-6')	Total/NA	Solid	Moisture	
500-136575-27	3160-45-4 (0-5')	Total/NA	Solid	Moisture	
500-136575-28	3160-45-4 (5-6')	Total/NA	Solid	Moisture	
500-136575-29	3160-50-1 (0-2')	Total/NA	Solid	Moisture	
500-136575-30	3160-50-2 (0-2')	Total/NA	Solid	Moisture	
500-136575-31	3160-50-3 (0-2')	Total/NA	Solid	Moisture	
500-136575-24 DU	3160-45-2 (5-6')	Total/NA	Solid	Moisture	

Analysis Batch: 408326

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136575-1	3160-16-4 (0-4')	Total/NA	Solid	9045D	
500-136575-2	3160-16-3 (0-4')	Total/NA	Solid	9045D	
500-136575-3	3160-16-2 (0-4')	Total/NA	Solid	9045D	
500-136575-4	3160-16-1 (0-4')	Total/NA	Solid	9045D	
500-136575-5	3160-16-5 (0-4')	Total/NA	Solid	9045D	
500-136575-6	3160-23-1 (0-4.5')	Total/NA	Solid	9045D	
500-136575-7	3160-23-2 (0-4.5')	Total/NA	Solid	9045D	
500-136575-8	3160-25-1 (0-4')	Total/NA	Solid	9045D	
500-136575-9	3160-25-2 (0-4')	Total/NA	Solid	9045D	
500-136575-10	3160-26-2 (0-4')	Total/NA	Solid	9045D	
500-136575-11	3160-26-1 (0-4')	Total/NA	Solid	9045D	
500-136575-12	3160-28-1 (0-5')	Total/NA	Solid	9045D	
500-136575-13	3160-28-2 (0-5')	Total/NA	Solid	9045D	
500-136575-14	3160-28-3 (0-5')	Total/NA	Solid	9045D	
500-136575-15	3160-32-1 (0-3.5')	Total/NA	Solid	9045D	
500-136575-16	3160-32-2 (0-3.5')	Total/NA	Solid	9045D	
500-136575-17	3160-32-3 (0-3.5')	Total/NA	Solid	9045D	
500-136575-18	3160-32-4 (0-3.5')	Total/NA	Solid	9045D	
500-136575-19	3160-32-5 (0-3.5')	Total/NA	Solid	9045D	
500-136575-20	3160-32-6 (0-3.5')	Total/NA	Solid	9045D	
500-136575-21	3160-45-1 (0-5')	Total/NA	Solid	9045D	
500-136575-22	3160-45-1 (5-6')	Total/NA	Solid	9045D	
500-136575-23	3160-45-2 (0-5')	Total/NA	Solid	9045D	
500-136575-24	3160-45-2 (5-6')	Total/NA	Solid	9045D	

TestAmerica Chicago

Page 167 of 231

3

4

6

8

9

11

12

13

Ш,

QC Association Summary

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136575-1

General Chemistry (Continued)

Analysis Batch: 408326 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136575-25	3160-45-3 (0-5')	Total/NA	Solid	9045D	
500-136575-26	3160-45-3 (5-6')	Total/NA	Solid	9045D	
500-136575-27	3160-45-4 (0-5')	Total/NA	Solid	9045D	
500-136575-28	3160-45-4 (5-6')	Total/NA	Solid	9045D	
500-136575-29	3160-50-1 (0-2')	Total/NA	Solid	9045D	
500-136575-30	3160-50-2 (0-2')	Total/NA	Solid	9045D	
500-136575-31	3160-50-3 (0-2')	Total/NA	Solid	9045D	
500-136575-6 DU	3160-23-1 (0-4.5')	Total/NA	Solid	9045D	
500-136575-25 DU	3160-45-3 (0-5')	Total/NA	Solid	9045D	

9

3

4

5

6

8

9

10

12

13

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Solid Prep Type: Total/NA

			Pe	ercent Surre	ogate Recov	ery (Accep
		BFB	DBFM	12DCE	TOL	
Lab Sample ID	Client Sample ID	(75-131)	(75-126)	(70-134)	(75-124)	
500-136575-1	3160-16-4 (0-4')	95	100	94	95	
500-136575-2	3160-16-3 (0-4')	86	96	96	98	
500-136575-3	3160-16-2 (0-4')	93	99	99	93	
500-136575-4	3160-16-1 (0-4')	88	99	97	92	
500-136575-5	3160-16-5 (0-4')	91	105	97	89	
500-136575-6	3160-23-1 (0-4.5')	88	98	98	91	
500-136575-7	3160-23-2 (0-4.5')	77	99	96	98	
500-136575-8	3160-25-1 (0-4')	75	97	98	99	
500-136575-9	3160-25-2 (0-4')	76	101	102	97	
00-136575-10	3160-26-2 (0-4')	89	100	99	91	
500-136575-11	3160-26-1 (0-4')	89	101	100	92	
500-136575-12	3160-28-1 (0-5')	89	98	98	93	
500-136575-13	3160-28-2 (0-5')	85	103	102	98	
500-136575-14	3160-28-3 (0-5')	84	97	95	99	
500-136575-15	3160-32-1 (0-3.5')	89	100	100	93	
00-136575-16	3160-32-2 (0-3.5')	89	101	100	95	
500-136575-17	3160-32-3 (0-3.5')	90	100	101	93	
500-136575-18	3160-32-4 (0-3.5')	90	99	98	93	
600-136575-19	3160-32-5 (0-3.5')	91	101	100	83	
500-136575-20	3160-32-6 (0-3.5')	87	102	98	95	
600-136575-20	3160-32-6 (0-3.5')	89	103	91	86	
600-136575-21	3160-45-1 (0-5')	87	103	99	96	
500-136575-22	3160-45-1 (5-6')	95	102	97	102	
500-136575-23	3160-45-2 (0-5')	89	102	100	96	
500-136575-24	3160-45-2 (5-6')	86	103	99	96	
500-136575-25	3160-45-3 (0-5')	89	102	101	93	
500-136575-26	3160-45-3 (5-6')	96	103	102	99	
500-136575-27	3160-45-4 (0-5')	87	100	91	90	
500-136575-28	3160-45-4 (5-6')	89	103	101	107	
500-136575-29	3160-50-1 (0-2')	90	102	100	84	
500-136575-30	3160-50-2 (0-2')	87	106	107	77	
500-136575-31	3160-50-3 (0-2')	77	108	107	102	
LCS 500-408095/4	Lab Control Sample	84	94	91	102	
LCS 500-408095/4 LCS 500-408295/29	Lab Control Sample	88	97	93	89	
LCS 500-408295/29 LCSD 500-408295/30	Lab Control Sample Dup	91	107	100	80	
MB 500-408095/6	Method Blank	84	96	91	91	
MB 500-408295/6	Method Blank	86	110	103	91	

Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane

12DCE = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

_

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Solid Prep Type: Total/NA

			Pe	ercent Surro	ogate Reco	very (Accer	tance Limits)
		FBP	2FP	NBZ	PHL	TPH	TBP
Lab Sample ID	Client Sample ID	(44-121)	(46-133)	(41-120)	(46-125)	(35-160)	(25-139)
500-136575-1	3160-16-4 (0-4')	83	102	86	105	105	82
500-136575-2	3160-16-3 (0-4')	72	76	67	80	83	91
00-136575-3	3160-16-2 (0-4')	74	88	70	83	86	91
00-136575-4	3160-16-1 (0-4')	71	82	67	81	87	84
00-136575-5	3160-16-5 (0-4')	85	97	92	98	99	76
00-136575-6	3160-23-1 (0-4.5')	74	86	70	82	80	85
00-136575-7	3160-23-2 (0-4.5')	79	89	83	87	89	73
00-136575-8	3160-25-1 (0-4')	83	86	70	93	85	93
00-136575-9	3160-25-2 (0-4')	87	100	77	104	89	106
00-136575-10	3160-26-2 (0-4')	84	94	79	102	87	99
00-136575-11	3160-26-1 (0-4')	74	84	70	88	81	92
00-136575-12	3160-28-1 (0-5')	79	93	73	100	86	96
00-136575-13	3160-28-2 (0-5')	69	86	65	86	76	82
00-136575-14	3160-28-3 (0-5')	91	101	90	100	111	83
00-136575-14 - DL	3160-28-3 (0-5')	94	122	92	112	106	92
0-136575-15	3160-32-1 (0-3.5')	68	82	63	84	78	65
0-136575-16	3160-32-2 (0-3.5')	86	100	94	95	93	65
D-136575-16 MS	3160-32-2 (0-3.5')	85	86	86	92	86	70
D-136575-16 MSD	3160-32-2 (0-3.5')	85	74	83	90	94	67
0-136575-17	3160-32-3 (0-3.5')	89	95	96	96	93	66
0-136575-18	3160-32-4 (0-3.5')	91	99	91	103	89	78
0-136575-19	3160-32-5 (0-3.5')	89	99	100	95	90	73
0-136575-20	3160-32-6 (0-3.5')	90	98	93	89	93	71
0-136575-21	3160-45-1 (0-5')	87	94	101	82	98	62
0-136575-22	3160-45-1 (5-6')	86	91	92	78	89	62
0-136575-23	3160-45-2 (0-5')	90	103	94	93	96	58
00-136575-24	3160-45-2 (5-6')	91	96	94	90	91	56
00-136575-25	3160-45-3 (0-5')	98	104	94	93	98	56
00-136575-26	3160-45-3 (5-6')	92	103	96	93	96	61
00-136575-27	3160-45-4 (0-5')	97	101	102	93	98	66
00-136575-28	3160-45-4 (5-6')	90	102	89	88	98	62
00-136575-29	3160-50-1 (0-2')	94	101	100	90	93	57
00-136575-30	3160-50-2 (0-2')	87	95	93	85	86	57
00-136575-31	3160-50-3 (0-2')	89	90	86	89	94	64
CS 500-408732/2-A	Lab Control Sample	87	93	93	96	92	69
CS 500-408852/2-A	Lab Control Sample	78	86	77	89	83	90
B 500-408732/1-A	Method Blank	93	102	96	102	101	61
	Method Blank	77	81	73	85	80	77

Surrogate Legend

FBP = 2-Fluorobiphenyl

2FP = 2-Fluorophenol

NBZ = Nitrobenzene-d5

PHL = Phenol-d5

TPH = Terphenyl-d14

TBP = 2,4,6-Tribromophenol

TestAmerica Chicago

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Method: 8081B - Organochlorine Pesticides (GC)

Matrix: Solid Prep Type: Total/NA

			Perce	nt Surrogate Recovery (Acceptance Limits)
		DCB1	TCX1	
Lab Sample ID	Client Sample ID	(33-148)	(30-121)	
500-136575-6	3160-23-1 (0-4.5')	78	77	
500-136575-7	3160-23-2 (0-4.5')	98	95	
LCS 500-408939/2-A	Lab Control Sample	84	84	
MB 500-408939/1-A	Method Blank	83	79	

DCB = DCB Decachlorobiphenyl

TCX = Tetrachloro-m-xylene

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Matrix: Solid Prep Type: Total/NA

			Per
		TCX1	DCB1
Lab Sample ID	Client Sample ID	(49-129)	(37-121)
500-136575-15	3160-32-1 (0-3.5')	83	95
500-136575-16	3160-32-2 (0-3.5')	80	100
500-136575-17	3160-32-3 (0-3.5')	87	101
500-136575-18	3160-32-4 (0-3.5')	75	86
500-136575-19	3160-32-5 (0-3.5')	77	88
500-136575-20	3160-32-6 (0-3.5')	71	87
500-136575-21	3160-45-1 (0-5')	86	92
500-136575-22	3160-45-1 (5-6')	85	93
500-136575-23	3160-45-2 (0-5')	93	106
500-136575-24	3160-45-2 (5-6')	88	100
500-136575-24 MS	3160-45-2 (5-6')	87	105
500-136575-24 MSD	3160-45-2 (5-6')	88	102
LCS 500-408853/2-A	Lab Control Sample	76	103
MB 500-408853/1-A	Method Blank	79	96
Surrogate Legend			

TCX = Tetrachloro-m-xylene

DCB = DCB Decachlorobiphenyl

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Matrix: Solid Prep Type: Total/NA

			Percent	Surrogate Recovery (Acceptance Limits)
		TCX2	DCB2	
Lab Sample ID	Client Sample ID	(49-129)	(37-121)	
500-136575-25	3160-45-3 (0-5')	102	79	
500-136575-26	3160-45-3 (5-6')	109	86	
500-136575-27	3160-45-4 (0-5')	98	78	
500-136575-28	3160-45-4 (5-6')	95	79	
LCS 500-408939/3-A	Lab Control Sample	109	108	
MB 500-408939/1-A	Method Blank	114	115	

TCX = Tetrachloro-m-xylene

DCB = DCB Decachlorobiphenyl

TestAmerica Chicago

Page 171 of 231

Surrogate Summary

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Method: 8151A - Herbicides (GC)

TestAmerica Job ID: 500-136575-1

Matrix: Solid			Prep Type: Total/NA
_			Percent Surrogate Recovery (Acceptance Limits)
		DCPA2	
Lab Sample ID	Client Sample ID	(25-120)	
500-136575-6	3160-23-1 (0-4.5')	54	
500-136575-7	3160-23-2 (0-4.5')	51	
LCS 500-409129/2-A	Lab Control Sample	55	
MB 500-409129/1-A	Method Blank	50	
Surrogate Legend			
DCPA = DCAA			

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

9

Method: 8260B - Volatile Organic Compounds (GC/MS)

Client Sample ID: Method Blank Prep Type: Total/NA

Lab Sample ID: MB 500-408095/6 Matrix: Solid

Analysis Batch: 408095

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	<0.020		0.020	0.0087	mg/Kg			11/02/17 11:51	1
Benzene	<0.0020		0.0020	0.00051	mg/Kg			11/02/17 11:51	1
Bromodichloromethane	<0.0020		0.0020	0.00041	mg/Kg			11/02/17 11:51	1
Bromoform	<0.0020		0.0020	0.00058	mg/Kg			11/02/17 11:51	1
Bromomethane	<0.0050		0.0050	0.0019	mg/Kg			11/02/17 11:51	1
2-Butanone (MEK)	<0.0050		0.0050	0.0022	mg/Kg			11/02/17 11:51	1
Carbon disulfide	<0.0050		0.0050	0.0010	mg/Kg			11/02/17 11:51	1
Carbon tetrachloride	<0.0020		0.0020	0.00058	mg/Kg			11/02/17 11:51	1
Chlorobenzene	<0.0020		0.0020	0.00074	mg/Kg			11/02/17 11:51	1
Chloroethane	<0.0050		0.0050	0.0015	mg/Kg			11/02/17 11:51	1
Chloroform	<0.0020		0.0020	0.00069	mg/Kg			11/02/17 11:51	1
Chloromethane	<0.0050		0.0050	0.0020	mg/Kg			11/02/17 11:51	1
cis-1,2-Dichloroethene	<0.0020		0.0020	0.00056	mg/Kg			11/02/17 11:51	1
cis-1,3-Dichloropropene	<0.0020		0.0020	0.00060	mg/Kg			11/02/17 11:51	1
Dibromochloromethane	<0.0020		0.0020	0.00065	mg/Kg			11/02/17 11:51	1
1,1-Dichloroethane	<0.0020		0.0020	0.00069	mg/Kg			11/02/17 11:51	1
1,2-Dichloroethane	< 0.0050		0.0050	0.0016	mg/Kg			11/02/17 11:51	1
1,1-Dichloroethene	< 0.0020		0.0020	0.00069	mg/Kg			11/02/17 11:51	1
1,2-Dichloropropane	<0.0020		0.0020	0.00052	mg/Kg			11/02/17 11:51	1
1,3-Dichloropropene, Total	<0.0020		0.0020	0.00070	mg/Kg			11/02/17 11:51	1
Ethylbenzene	< 0.0020		0.0020	0.00096	mg/Kg			11/02/17 11:51	1
2-Hexanone	<0.0050		0.0050	0.0016	mg/Kg			11/02/17 11:51	1
Methylene Chloride	< 0.0050		0.0050	0.0020	mg/Kg			11/02/17 11:51	1
4-Methyl-2-pentanone (MIBK)	< 0.0050		0.0050	0.0015	mg/Kg			11/02/17 11:51	1
Methyl tert-butyl ether	<0.0020		0.0020	0.00059	mg/Kg			11/02/17 11:51	1
Styrene	< 0.0020		0.0020	0.00060	mg/Kg			11/02/17 11:51	1
1,1,2,2-Tetrachloroethane	<0.0020		0.0020	0.00064	mg/Kg			11/02/17 11:51	1
Tetrachloroethene	<0.0020		0.0020	0.00068	mg/Kg			11/02/17 11:51	1
Toluene	< 0.0020		0.0020	0.00051	mg/Kg			11/02/17 11:51	1
trans-1,2-Dichloroethene	< 0.0020		0.0020	0.00089	mg/Kg			11/02/17 11:51	1
trans-1,3-Dichloropropene	<0.0020		0.0020	0.00070	mg/Kg			11/02/17 11:51	1
1,1,1-Trichloroethane	< 0.0020		0.0020	0.00067	mg/Kg			11/02/17 11:51	1
1,1,2-Trichloroethane	<0.0020		0.0020	0.00086				11/02/17 11:51	1
Trichloroethene	<0.0020		0.0020	0.00068				11/02/17 11:51	1
Vinyl acetate	<0.0050		0.0050	0.0017				11/02/17 11:51	1
Vinyl chloride	<0.0020		0.0020	0.00089				11/02/17 11:51	1
Xylenes, Total	<0.0040		0.0040	0.00064				11/02/17 11:51	1

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	84		75 - 131		11/02/17 11:51	1
Dibromofluoromethane	96		75 - 126		11/02/17 11:51	1
1,2-Dichloroethane-d4 (Surr)	91		70 - 134		11/02/17 11:51	1
Toluene-d8 (Surr)	91		75 - 124		11/02/17 11:51	1

TestAmerica Chicago

TestAmerica Job ID: 500-136575-1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 500-408095/4

Matrix: Solid

Analysis Batch: 408095

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS L	.cs		%Rec.
Analyte	Added	Result C		D %Rec	Limits
Acetone	0.0500	0.0544	mg/Kg	109	40 - 150
Benzene	0.0500	0.0492	mg/Kg	98	70 - 125
Bromodichloromethane	0.0500	0.0489	mg/Kg	98	67 - 129
Bromoform	0.0500	0.0569	mg/Kg	114	68 - 136
Bromomethane	0.0500	0.0574	mg/Kg	115	70 - 130
2-Butanone (MEK)	0.0500	0.0434	mg/Kg	87	47 - 138
Carbon disulfide	0.0500	0.0521	mg/Kg	104	70 - 129
Carbon tetrachloride	0.0500	0.0507	mg/Kg	101	75 ₋ 125
Chlorobenzene	0.0500	0.0466	mg/Kg	93	50 - 150
Chloroethane	0.0500	0.0550	mg/Kg	110	75 - 125
Chloroform	0.0500	0.0489	mg/Kg	98	57 - 135
Chloromethane	0.0500	0.0569	mg/Kg	114	70 - 125
cis-1,2-Dichloroethene	0.0500	0.0499	mg/Kg	100	70 - 125
cis-1,3-Dichloropropene	0.0500	0.0543	mg/Kg	109	70 ₋ 125
Dibromochloromethane	0.0500	0.0545	mg/Kg	109	69 - 125
1,1-Dichloroethane	0.0500	0.0507	mg/Kg	101	70 - 125
1,2-Dichloroethane	0.0500	0.0508	mg/Kg	102	70 - 130
1,1-Dichloroethene	0.0500	0.0519	mg/Kg	104	70 - 120
1,2-Dichloropropane	0.0500	0.0502	mg/Kg	100	70 - 125
Ethylbenzene	0.0500	0.0463	mg/Kg	93	61 - 136
2-Hexanone	0.0500	0.0429	mg/Kg	86	48 - 146
Methylene Chloride	0.0500	0.0488	mg/Kg	98	70 - 126
4-Methyl-2-pentanone (MIBK)	0.0500	0.0428	mg/Kg	86	50 - 148
Methyl tert-butyl ether	0.0500	0.0513	mg/Kg	103	50 ₋ 140
Styrene	0.0500	0.0545	mg/Kg	109	70 - 125
1,1,2,2-Tetrachloroethane	0.0500	0.0458	mg/Kg	92	70 - 122
Tetrachloroethene	0.0500	0.0535	mg/Kg	107	70 - 124
Toluene	0.0500	0.0537	mg/Kg	107	70 - 125
trans-1,2-Dichloroethene	0.0500	0.0513	mg/Kg	103	70 ₋ 125
trans-1,3-Dichloropropene	0.0500	0.0534	mg/Kg	107	70 - 125
1,1,1-Trichloroethane	0.0500	0.0501	mg/Kg	100	70 - 128
1,1,2-Trichloroethane	0.0500	0.0529	mg/Kg	106	70 - 125
Trichloroethene	0.0500	0.0497	mg/Kg	99	70 - 125
Vinyl acetate	0.0500	0.0632	mg/Kg	126	40 - 153
Vinyl chloride	0.0500	0.0573	mg/Kg	115	70 ₋ 125
Xylenes, Total	0.100	0.103	mg/Kg	103	53 ₋ 147

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	84		75 - 131
Dibromofluoromethane	94		75 - 126
1,2-Dichloroethane-d4 (Surr)	91		70 - 134
Toluene-d8 (Surr)	108		75 - 124

TestAmerica Chicago

Page 174 of 231

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 500-408295/6

Matrix: Solid

Toluene-d8 (Surr)

Analysis Batch: 408295

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	<0.020		0.020	0.0087	mg/Kg			11/03/17 11:19	1
Benzene	<0.0020		0.0020	0.00051	mg/Kg			11/03/17 11:19	1
Bromodichloromethane	<0.0020		0.0020	0.00041	mg/Kg			11/03/17 11:19	1
Bromoform	<0.0020		0.0020	0.00058	mg/Kg			11/03/17 11:19	1
Bromomethane	<0.0050		0.0050	0.0019	mg/Kg			11/03/17 11:19	1
2-Butanone (MEK)	<0.0050		0.0050	0.0022	mg/Kg			11/03/17 11:19	1
Carbon disulfide	<0.0050		0.0050	0.0010	mg/Kg			11/03/17 11:19	1
Carbon tetrachloride	<0.0020		0.0020	0.00058	mg/Kg			11/03/17 11:19	1
Chlorobenzene	<0.0020		0.0020	0.00074	mg/Kg			11/03/17 11:19	1
Chloroethane	<0.0050		0.0050	0.0015	mg/Kg			11/03/17 11:19	1
Chloroform	<0.0020		0.0020	0.00069	mg/Kg			11/03/17 11:19	1
Chloromethane	< 0.0050		0.0050	0.0020	mg/Kg			11/03/17 11:19	1
cis-1,2-Dichloroethene	<0.0020		0.0020	0.00056	mg/Kg			11/03/17 11:19	1
cis-1,3-Dichloropropene	<0.0020		0.0020	0.00060	mg/Kg			11/03/17 11:19	1
Dibromochloromethane	<0.0020		0.0020	0.00065	mg/Kg			11/03/17 11:19	1
1,1-Dichloroethane	<0.0020		0.0020	0.00069	mg/Kg			11/03/17 11:19	1
1,2-Dichloroethane	<0.0050		0.0050	0.0016	mg/Kg			11/03/17 11:19	1
1,1-Dichloroethene	<0.0020		0.0020	0.00069	mg/Kg			11/03/17 11:19	1
1,2-Dichloropropane	<0.0020		0.0020	0.00052	mg/Kg			11/03/17 11:19	1
1,3-Dichloropropene, Total	<0.0020		0.0020	0.00070	mg/Kg			11/03/17 11:19	1
Ethylbenzene	<0.0020		0.0020	0.00096	mg/Kg			11/03/17 11:19	1
2-Hexanone	<0.0050		0.0050	0.0016	mg/Kg			11/03/17 11:19	1
Methylene Chloride	<0.0050		0.0050	0.0020	mg/Kg			11/03/17 11:19	1
4-Methyl-2-pentanone (MIBK)	<0.0050		0.0050	0.0015	mg/Kg			11/03/17 11:19	1
Methyl tert-butyl ether	<0.0020		0.0020	0.00059	mg/Kg			11/03/17 11:19	1
Styrene	<0.0020		0.0020	0.00060	mg/Kg			11/03/17 11:19	1
1,1,2,2-Tetrachloroethane	<0.0020		0.0020	0.00064	mg/Kg			11/03/17 11:19	1
Tetrachloroethene	<0.0020		0.0020	0.00068	mg/Kg			11/03/17 11:19	1
Toluene	<0.0020		0.0020	0.00051	mg/Kg			11/03/17 11:19	1
trans-1,2-Dichloroethene	< 0.0020		0.0020	0.00089	mg/Kg			11/03/17 11:19	1
trans-1,3-Dichloropropene	<0.0020		0.0020	0.00070	mg/Kg			11/03/17 11:19	1
1,1,1-Trichloroethane	< 0.0020		0.0020	0.00067	mg/Kg			11/03/17 11:19	1
1,1,2-Trichloroethane	< 0.0020		0.0020	0.00086	mg/Kg			11/03/17 11:19	1
Trichloroethene	<0.0020		0.0020	0.00068	mg/Kg			11/03/17 11:19	1
Vinyl acetate	<0.0050		0.0050	0.0017	mg/Kg			11/03/17 11:19	1
Vinyl chloride	<0.0020		0.0020	0.00089	mg/Kg			11/03/17 11:19	1
Xylenes, Total	<0.0040		0.0040	0.00064	mg/Kg			11/03/17 11:19	1

	MB MB				
Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	86	75 - 131		11/03/17 11:19	1
Dibromofluoromethane	110	75 - 126		11/03/17 11:19	1
1 2-Dichloroethane-d4 (Surr)	103	70 - 134		11/03/17 11:19	1

75 - 124

11/03/17 11:19

Page 175 of 231

Spike

LCS LCS

TestAmerica Job ID: 500-136575-1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

2

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 500-408295/29

Matrix: Solid

Analysis Batch: 408295

Client Sample ID: Lab Control Sample Prep Type: Total/NA

%Rec.

	Spike	LC3 L	C3		MREC.	
Analyte	Added	Result Q	ualifier Unit	D %Rec	Limits	
Acetone	0.0500	0.0556	mg/Kg		40 - 150	
Benzene	0.0500	0.0428	mg/Kg	86	70 - 125	
Bromodichloromethane	0.0500	0.0420	mg/Kg	84	67 - 129	
Bromoform	0.0500	0.0418	mg/Kg	84	68 - 136	
Bromomethane	0.0500	0.0463	mg/Kg	93	70 - 130	
2-Butanone (MEK)	0.0500	0.0466	mg/Kg	93	47 - 138	
Carbon disulfide	0.0500	0.0439	mg/Kg	88	70 - 129	
Carbon tetrachloride	0.0500	0.0433	mg/Kg	87	75 - 125	
Chlorobenzene	0.0500	0.0419	mg/Kg	84	50 - 150	
Chloroethane	0.0500	0.0499	mg/Kg	100	75 - 125	
Chloroform	0.0500	0.0423	mg/Kg	85	57 ₋ 135	
Chloromethane	0.0500	0.0525	mg/Kg	105	70 - 125	
cis-1,2-Dichloroethene	0.0500	0.0436	mg/Kg	87	70 - 125	
cis-1,3-Dichloropropene	0.0500	0.0379	mg/Kg	76	70 - 125	
Dibromochloromethane	0.0500	0.0367	mg/Kg	73	69 - 125	
1,1-Dichloroethane	0.0500	0.0438	mg/Kg	88	70 - 125	
1,2-Dichloroethane	0.0500	0.0444	mg/Kg	89	70 - 130	
1,1-Dichloroethene	0.0500	0.0455	mg/Kg	91	70 - 120	
1,2-Dichloropropane	0.0500	0.0434	mg/Kg	87	70 - 125	
Ethylbenzene	0.0500	0.0414	mg/Kg	83	61 - 136	
2-Hexanone	0.0500	0.0365	mg/Kg	73	48 - 146	
Methylene Chloride	0.0500	0.0419	mg/Kg	84	70 - 126	
4-Methyl-2-pentanone (MIBK)	0.0500	0.0382	mg/Kg	76	50 - 148	
Methyl tert-butyl ether	0.0500	0.0449	mg/Kg	90	50 - 140	
Styrene	0.0500	0.0421	mg/Kg	84	70 - 125	
1,1,2,2-Tetrachloroethane	0.0500	0.0414	mg/Kg	83	70 - 122	
Tetrachloroethene	0.0500	0.0387	mg/Kg	77	70 - 124	
Toluene	0.0500	0.0381	mg/Kg	76	70 - 125	
trans-1,2-Dichloroethene	0.0500	0.0447	mg/Kg	89	70 - 125	
trans-1,3-Dichloropropene	0.0500	0.0389	mg/Kg	78	70 - 125	
1,1,1-Trichloroethane	0.0500	0.0439	mg/Kg	88	70 - 128	
1,1,2-Trichloroethane	0.0500	0.0399	mg/Kg	80	70 - 125	
Trichloroethene	0.0500	0.0443	mg/Kg	89	70 - 125	
Vinyl acetate	0.0500	0.0509	mg/Kg	102	40 - 153	
Vinyl chloride	0.0500	0.0528	mg/Kg	106	70 - 125	
Xylenes, Total	0.100	0.0829	mg/Kg	83	53 - 147	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	88		75 - 131
Dibromofluoromethane	97		75 - 126
1,2-Dichloroethane-d4 (Surr)	93		70 - 134
Toluene-d8 (Surr)	89		75 - 124

TestAmerica Chicago

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

31America 300 ib. 300-130373-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 500-408295/30

Matrix: Solid

Analysis Batch: 408295

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

-	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acetone	0.0500	0.0580		mg/Kg		116	40 - 150	4	30
Benzene	0.0500	0.0504		mg/Kg		101	70 - 125	16	30
Bromodichloromethane	0.0500	0.0457		mg/Kg		91	67 - 129	8	30
Bromoform	0.0500	0.0453		mg/Kg		91	68 - 136	8	30
Bromomethane	0.0500	0.0517		mg/Kg		103	70 - 130	11	30
2-Butanone (MEK)	0.0500	0.0427		mg/Kg		85	47 - 138	9	30
Carbon disulfide	0.0500	0.0524		mg/Kg		105	70 - 129	18	30
Carbon tetrachloride	0.0500	0.0508		mg/Kg		102	75 - 125	16	30
Chlorobenzene	0.0500	0.0456		mg/Kg		91	50 - 150	9	30
Chloroethane	0.0500	0.0510		mg/Kg		102	75 - 125	2	30
Chloroform	0.0500	0.0495		mg/Kg		99	57 ₋ 135	16	30
Chloromethane	0.0500	0.0523		mg/Kg		105	70 - 125	0	30
cis-1,2-Dichloroethene	0.0500	0.0509		mg/Kg		102	70 - 125	15	30
cis-1,3-Dichloropropene	0.0500	0.0372		mg/Kg		74	70 - 125	2	30
Dibromochloromethane	0.0500	0.0401		mg/Kg		80	69 - 125	9	30
1,1-Dichloroethane	0.0500	0.0515		mg/Kg		103	70 - 125	16	30
1,2-Dichloroethane	0.0500	0.0524		mg/Kg		105	70 - 130	17	30
1,1-Dichloroethene	0.0500	0.0537		mg/Kg		107	70 - 120	17	30
1,2-Dichloropropane	0.0500	0.0479		mg/Kg		96	70 - 125	10	30
Ethylbenzene	0.0500	0.0446		mg/Kg		89	61 - 136	7	30
2-Hexanone	0.0500	0.0286		mg/Kg		57	48 - 146	24	30
Methylene Chloride	0.0500	0.0501		mg/Kg		100	70 - 126	18	30
4-Methyl-2-pentanone (MIBK)	0.0500	0.0290		mg/Kg		58	50 - 148	27	30
Methyl tert-butyl ether	0.0500	0.0518		mg/Kg		104	50 - 140	14	30
Styrene	0.0500	0.0464		mg/Kg		93	70 - 125	10	30
1,1,2,2-Tetrachloroethane	0.0500	0.0461		mg/Kg		92	70 - 122	11	30
Tetrachloroethene	0.0500	0.0382		mg/Kg		76	70 - 124	1	30
Toluene	0.0500	0.0361		mg/Kg		72	70 - 125	5	30
trans-1,2-Dichloroethene	0.0500	0.0517		mg/Kg		103	70 - 125	14	30
trans-1,3-Dichloropropene	0.0500	0.0379		mg/Kg		76	70 - 125	3	30
1,1,1-Trichloroethane	0.0500	0.0511		mg/Kg		102	70 - 128	15	30
1,1,2-Trichloroethane	0.0500	0.0372		mg/Kg		74	70 - 125	7	30
Trichloroethene	0.0500	0.0472		mg/Kg		94	70 - 125	6	30
Vinyl acetate	0.0500	0.0572		mg/Kg		114	40 - 153	12	30
Vinyl chloride	0.0500	0.0527		mg/Kg		105	70 - 125	0	30
Xylenes, Total	0.100	0.0908		mg/Kg		91	53 - 147	9	30

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	91		75 - 131
Dibromofluoromethane	107		75 - 126
1,2-Dichloroethane-d4 (Surr)	100		70 - 134
Toluene-d8 (Surr)	80		75 - 124

TestAmerica Chicago

11/13/2017

3

5

7

9

11

13

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 500-408732/1-A

Matrix: Solid

Naphthalene

Client Sample ID: Method Blank **Prep Type: Total/NA**

Analysis Batch: 408867	MD							Prep Batch:	408732
Analyte		MB Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	- <0.033		0.033	0.0060			-	11/07/17 20:48	1
Acenaphthylene	< 0.033		0.033	0.0044				11/07/17 20:48	1
Anthracene	< 0.033		0.033	0.0056	0 0			11/07/17 20:48	1
Benzo[a]anthracene	0.00556		0.033	0.0045				11/07/17 20:48	
Benzo[a]pyrene	<0.033	0	0.033	0.0043				11/07/17 20:48	1
Benzo[b]fluoranthene	<0.033		0.033	0.0072	0 0			11/07/17 20:48	1
Benzo[g,h,i]perylene	<0.033		0.033		mg/Kg			11/07/17 20:48	1
Benzo[k]fluoranthene	<0.033		0.033	0.0098				11/07/17 20:48	1
Bis(2-chloroethoxy)methane	<0.03		0.033		mg/Kg			11/07/17 20:48	1
Bis(2-chloroethyl)ether	<0.17		0.17		mg/Kg			11/07/17 20:48	
Bis(2-ethylhexyl) phthalate	<0.17		0.17		mg/Kg			11/07/17 20:48	1
4-Bromophenyl phenyl ether	<0.17		0.17		mg/Kg			11/07/17 20:48	1
Butyl benzyl phthalate	<0.17		0.17		mg/Kg			11/07/17 20:48	
Carbazole	<0.17		0.17		mg/Kg			11/07/17 20:48	1
4-Chloroaniline	<0.17		0.17		mg/Kg			11/07/17 20:48	1
4-Chloro-3-methylphenol	<0.33		0.33		mg/Kg			11/07/17 20:48	' 1
2-Chloronaphthalene	<0.33		0.33		mg/Kg			11/07/17 20:48	1
2-Chlorophenol	<0.17		0.17		mg/Kg			11/07/17 20:48	1
4-Chlorophenyl phenyl ether	<0.17		0.17		mg/Kg			11/07/17 20:48	
	<0.033		0.17	0.0091				11/07/17 20:48	1
Chrysene Dibenz(a,h)anthracene	<0.033		0.033					11/07/17 20:48	1
				0.0064				11/07/17 20:48	
Dibenzofuran	<0.17 <0.17		0.17 0.17		mg/Kg				1
1,2-Dichlorobenzene	<0.17		0.17		mg/Kg			11/07/17 20:48 11/07/17 20:48	1
1,3-Dichlorobenzene	<0.17		0.17		mg/Kg			11/07/17 20:48	
1,4-Dichlorobenzene	<0.17		0.17		mg/Kg			11/07/17 20:48	1
3,3'-Dichlorobenzidine	<0.17		0.17		mg/Kg			11/07/17 20:48	1
2,4-Dichlorophenol	<0.33		0.33		mg/Kg			11/07/17 20:48	י 1
Diethyl phthalate	<0.17		0.17		mg/Kg			11/07/17 20:48	1
2,4-Dimethylphenol					mg/Kg				
Dimethyl phthalate	<0.17		0.17		mg/Kg			11/07/17 20:48	1 1
Di-n-butyl phthalate	<0.17		0.17		mg/Kg			11/07/17 20:48	-
4,6-Dinitro-2-methylphenol	< 0.67		0.67		mg/Kg			11/07/17 20:48 11/07/17 20:48	1
2,4-Dinitrophenol	<0.67		0.67		mg/Kg			11/07/17 20:48	1
2,4-Dinitrotoluene	<0.17		0.17		mg/Kg				1
2,6-Dinitrotoluene	<0.17		0.17		mg/Kg			11/07/17 20:48	1
Di-n-octyl phthalate	<0.17		0.17		mg/Kg			11/07/17 20:48	ا ر
Fluoranthene	<0.033		0.033	0.0062				11/07/17 20:48	1
Fluorene	<0.033		0.033	0.0047				11/07/17 20:48	1
Hexachlorobenzene	<0.067		0.067	0.0077				11/07/17 20:48	1
Hexachlorobutadiene	<0.17		0.17		mg/Kg			11/07/17 20:48	1
Hexachlorocyclopentadiene	<0.67		0.67		mg/Kg			11/07/17 20:48	1
Hexachloroethane	<0.17		0.17		mg/Kg			11/07/17 20:48	
Indeno[1,2,3-cd]pyrene	<0.033		0.033	0.0086				11/07/17 20:48	1
Isophorone	<0.17		0.17		mg/Kg			11/07/17 20:48	1
2-Methylnaphthalene	<0.067		0.067	0.0061				11/07/17 20:48	
2-Methylphenol	<0.17		0.17		mg/Kg			11/07/17 20:48	1
3 & 4 Methylphenol	<0.17		0.17	0.055	mg/Kg		11/07/17 07:18	11/07/17 20:48	1

TestAmerica Chicago

11/07/17 07:18 11/07/17 20:48

Page 178 of 231

0.033

0.0051 mg/Kg

<0.033

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID:	MB 500-408732/1-A
Madeline Oallel	

Matrix: Solid

Analysis Batch: 408867

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 408732

Analyte Result Qualifier RL MDL Unit D Prepared	Analyzed	Dil Fac
2-Nitroaniline <0.17 0.045 mg/Kg 11/07/17 07:18	11/07/17 20:48	1
3-Nitroaniline <0.33 0.33 0.10 mg/Kg 11/07/17 07:18	11/07/17 20:48	1
4-Nitroaniline <0.33 0.34 mg/Kg 11/07/17 07:18	11/07/17 20:48	1
Nitrobenzene <0.033 0.0083 mg/Kg 11/07/17 07:18	11/07/17 20:48	1
2-Nitrophenol <0.33 0.079 mg/Kg 11/07/17 07:18	11/07/17 20:48	1
4-Nitrophenol <0.67 0.67 0.32 mg/Kg 11/07/17 07:18	11/07/17 20:48	1
N-Nitrosodi-n-propylamine <0.067 0.041 mg/Kg 11/07/17 07:18	11/07/17 20:48	1
N-Nitrosodiphenylamine <0.17 0.039 mg/Kg 11/07/17 07:18	11/07/17 20:48	1
2,2'-oxybis[1-chloropropane] <0.17 0.039 mg/Kg 11/07/17 07:18	11/07/17 20:48	1
Pentachlorophenol <0.67 0.67 0.53 mg/Kg 11/07/17 07:18	11/07/17 20:48	1
Phenanthrene <0.033 0.0046 mg/Kg 11/07/17 07:18	11/07/17 20:48	1
Phenol <0.17 0.17 0.074 mg/Kg 11/07/17 07:18	11/07/17 20:48	1
Pyrene <0.033 0.033 0.0066 mg/Kg 11/07/17 07:18	11/07/17 20:48	1
1,2,4-Trichlorobenzene <0.17 0.036 mg/Kg 11/07/17 07:18	11/07/17 20:48	1
2,4,5-Trichlorophenol <0.33 0.076 mg/Kg 11/07/17 07:18	11/07/17 20:48	1
2,4,6-Trichlorophenol <0.33 0.31 mg/Kg 11/07/17 07:18	11/07/17 20:48	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	93		44 - 121	11/07/17 07:18	11/07/17 20:48	1
2-Fluorophenol	102		46 - 133	11/07/17 07:18	11/07/17 20:48	1
Nitrobenzene-d5	96		41 - 120	11/07/17 07:18	11/07/17 20:48	1
Phenol-d5	102		46 - 125	11/07/17 07:18	11/07/17 20:48	1
Terphenyl-d14	101		35 - 160	11/07/17 07:18	11/07/17 20:48	1
2,4,6-Tribromophenol	61		25 - 139	11/07/17 07:18	11/07/17 20:48	1

Lab Sample ID: LCS 500-408732/2-A

Matrix: Solid

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 408867	Spike	LCS	LCS				Prep Batch: 408732 %Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Acenaphthene	1.33	1.22		mg/Kg		92	58 - 110
Acenaphthylene	1.33	1.16		mg/Kg		87	60 - 110
Anthracene	1.33	1.30		mg/Kg		98	63 - 110
Benzo[a]anthracene	1.33	1.22		mg/Kg		91	63 - 110
Benzo[a]pyrene	1.33	1.32		mg/Kg		99	61 - 120
Benzo[b]fluoranthene	1.33	1.36		mg/Kg		102	62 - 120
Benzo[g,h,i]perylene	1.33	1.36		mg/Kg		102	64 - 120
Benzo[k]fluoranthene	1.33	1.34		mg/Kg		100	65 - 120
Bis(2-chloroethoxy)methane	1.33	1.28		mg/Kg		96	60 - 112
Bis(2-chloroethyl)ether	1.33	1.12		mg/Kg		84	55 - 111
Bis(2-ethylhexyl) phthalate	1.33	1.45		mg/Kg		109	63 - 118
4-Bromophenyl phenyl ether	1.33	1.06		mg/Kg		80	63 - 110
Butyl benzyl phthalate	1.33	1.44		mg/Kg		108	61 - 116
Carbazole	1.33	1.37		mg/Kg		103	59 - 158
4-Chloroaniline	1.33	1.19		mg/Kg		89	30 - 150
4-Chloro-3-methylphenol	1.33	1.15		mg/Kg		86	61 - 114
2-Chloronaphthalene	1.33	1.20		mg/Kg		90	64 - 110
2-Chlorophenol	1.33	1.20		mg/Kg		90	64 - 110

TestAmerica Chicago

Page 179 of 231

11/13/2017

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

2,4,6-Trichlorophenol

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 500-408732/2-A Matrix: Solid				Clier	nt Sample ID	: Lab Control Sample Prep Type: Total/NA
Analysis Batch: 408867						Prep Batch: 408732
Allalysis Batch. 400007	Spike	LCS	LCS			%Rec.
Analyte	Added		Qualifier	Unit	D %Rec	Limits
4-Chlorophenyl phenyl ether	1.33	1.13		mg/Kg		63 - 110
Chrysene	1.33	1.27		mg/Kg	95	63 - 120
Dibenz(a,h)anthracene	1.33	1.45		mg/Kg	108	64 ₋ 119
Dibenzofuran	1.33	1.19		mg/Kg	89	64 - 110
1,2-Dichlorobenzene	1.33	1.12		mg/Kg	84	62 - 110
1,3-Dichlorobenzene	1.33	1.13		mg/Kg	84	60 - 110
1,4-Dichlorobenzene	1.33	1.16		mg/Kg	87	61 - 110
3,3'-Dichlorobenzidine	1.33	0.941		mg/Kg	71	49 - 112
2,4-Dichlorophenol	1.33	1.14		mg/Kg	86	58 - 120
Diethyl phthalate	1.33	1.26		mg/Kg	94	58 - 120
2,4-Dimethylphenol	1.33	1.25		mg/Kg	94	60 - 110
Dimethyl phthalate	1.33	1.19		mg/Kg	89	64 - 110
Di-n-butyl phthalate	1.33	1.33		mg/Kg	100	65 - 120
4,6-Dinitro-2-methylphenol	2.67	1.59		mg/Kg	60	10 - 110
2,4-Dinitrophenol	2.67	1.51		mg/Kg	57	10 - 100
2,4-Dinitrotoluene	1.33	1.23		mg/Kg	92	62 - 117
2,6-Dinitrotoluene	1.33	1.24		mg/Kg	93	67 - 120
Di-n-octyl phthalate	1.33	1.26		mg/Kg	94	63 - 119
Fluoranthene	1.33	1.16		mg/Kg	87	62 - 120
Fluorene	1.33	1.10		mg/Kg	90	62 - 120
Hexachlorobenzene	1.33	0.993		mg/Kg	74	55 - 117
Hexachlorobutadiene	1.33	1.00		mg/Kg	75	56 - 120
Hexachlorocyclopentadiene	1.33	0.762		mg/Kg	57	10 - 106
Hexachloroethane	1.33	1.17		mg/Kg	87	61 - 110
Indeno[1,2,3-cd]pyrene	1.33	1.17			107	57 - 127
Isophorone	1.33	1.43		mg/Kg	90	55 - 110
•	1.33	1.21		mg/Kg		62 - 110
2-Methylphanel	1.33	1.33		mg/Kg	101 86	60 - 120
2-Methylphenol 3 & 4 Methylphenol		1.14		mg/Kg		
· · · · · · · · · · · · · · · · · · ·	1.33			mg/Kg	88	57 ₋ 120
Naphthalene	1.33	1.20		mg/Kg	90	63 - 110
2-Nitroaniline	1.33	1.32		mg/Kg	99	57 - 124
3-Nitroaniline	1.33	1.08		mg/Kg	81	40 - 122
4-Nitroaniline	1.33	1.54		mg/Kg	115	60 - 160
Nitrobenzene	1.33	1.40		mg/Kg	105	60 - 116
2-Nitrophenol	1.33	1.20		mg/Kg	90	60 - 120
4-Nitrophenol	2.67	2.07		mg/Kg	77	30 - 122
N-Nitrosodi-n-propylamine	1.33	1.18		mg/Kg	89	56 - 118
N-Nitrosodiphenylamine	1.33	1.26		mg/Kg	94	65 - 112
2,2'-oxybis[1-chloropropane]	1.33	1.19		mg/Kg	89	40 - 124
Pentachlorophenol	2.67	1.40		mg/Kg	53	13 - 112
Phenanthrene	1.33	1.24		mg/Kg	93	62 - 120
Phenol	1.33	1.10		mg/Kg	82	56 - 122
Pyrene	1.33	1.37		mg/Kg	102	63 - 120
1,2,4-Trichlorobenzene	1.33	1.15		mg/Kg	86	62 - 110
2,4,5-Trichlorophenol	1.33	1.06		mg/Kg	79	50 - 120
O 4 O Table and the said	4.00	4 4 =		".		== 400

TestAmerica Chicago

57 - 120

1.15

mg/Kg

1.33

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 500-408732/2-A

Matrix: Solid

Analysis Batch: 408867

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 408732

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	87		44 - 121
2-Fluorophenol	93		46 - 133
Nitrobenzene-d5	93		41 - 120
Phenol-d5	96		46 - 125
Terphenyl-d14	92		35 - 160
2,4,6-Tribromophenol	69		25 - 139

Prep Type: Total/NA

Prep Batch: 408732

10

Lab Sample ID: 500-136575-16 MS Client Sample ID: 3160-32-2 (0-3.5') **Matrix: Solid**

Analysis Batch: 408867

Di-n-octyl phthalate

Sample Sample MS MS Spike %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits Acenaphthene <0.040 1.64 1.43 mg/Kg ₩ 87 58 - 110 Acenaphthylene ₩ 83 <0.040 1.64 1.36 mg/Kg 60 - 110 0.0086 J ₩ 97 Anthracene 1.64 1.61 mg/Kg 63 - 110 Ö 0.023 JB 91 Benzo[a]anthracene 1.64 1.52 63 - 110 mg/Kg ₩ Benzo[a]pyrene 0.017 J 1.64 1.62 mq/Kq 98 61 - 120₩ Benzo[b]fluoranthene 0.038 J 1.64 1.85 mg/Kg 110 62 - 120Ö 0.019 JF1 0.973 F1 Benzo[g,h,i]perylene 1.64 mg/Kg 58 64 - 120 Benzo[k]fluoranthene 0.016 1.64 1.61 mg/Kg Ö 97 65 - 120 Bis(2-chloroethoxy)methane < 0.20 1.64 ∜ 86 60 - 112 1.41 mg/Kg 1.64 ₩ 75 55 - 111 Bis(2-chloroethyl)ether < 0.20 1 23 mg/Kg Ö Bis(2-ethylhexyl) phthalate < 0.20 1.64 1.63 99 63 - 118 mg/Kg ₩ < 0.20 1.64 1.38 84 63 - 110 4-Bromophenyl phenyl ether mg/Kg ₩ Butyl benzyl phthalate < 0.20 1.64 1.70 mg/Kg 104 61 - 116₩ Carbazole < 0.20 1.64 1.70 mg/Kg 104 59 - 158 ₩ 4-Chloroaniline < 0.82 1.64 1.06 mg/Kg 64 30 - 150 4-Chloro-3-methylphenol < 0.40 1.64 1.34 ď 82 61 - 114 mg/Kg Ö 86 2-Chloronaphthalene < 0.20 1.64 64 - 110 1.42 mg/Kg Ö 2-Chlorophenol 79 < 0.20 1.64 1.30 mg/Kg 64 - 110. . 87 4-Chlorophenyl phenyl ether < 0.20 1.64 63 - 1101.44 mg/Kg Ö 0.035 J 1.64 1.57 93 63 - 120Chrysene mg/Kg Dibenz(a,h)anthracene ₿ 78 < 0.040 1.64 1.29 mg/Kg 64 - 119₩ Dibenzofuran <0.20 1.64 1.45 mg/Kg 89 64 - 110 1.2-Dichlorobenzene < 0.20 1.64 1 27 mg/Kg ₩ 77 62 - 110 Ö 1,3-Dichlorobenzene < 0.20 1.64 1.23 mg/Kg 75 60 - 110 . ₩ 1,4-Dichlorobenzene < 0.20 1.64 1.25 76 61 - 110 mg/Kg ₩ 3,3'-Dichlorobenzidine <0.20 F1 F2 1.64 0.410 F1 mg/Kg 25 49 - 112 mg/Kg ₩ 79 2,4-Dichlorophenol < 0.40 1.64 1.29 58 - 120 . ₩ Diethyl phthalate < 0.20 1.64 1.57 mg/Kg 96 58 - 120 2,4-Dimethylphenol < 0.40 1.64 1.32 mg/Kg ₩ 81 60 - 110 Dimethyl phthalate < 0.20 1.64 1.46 mg/Kg 89 64 - 110 ď 101 65 - 120 Di-n-butyl phthalate < 0.20 1.64 1.65 mg/Kg 48 4,6-Dinitro-2-methylphenol < 0.82 3.28 1.59 mg/Kg 10 - 110∜ 2,4-Dinitrophenol < 0.82 3.28 1.44 mg/Kg 44 10 - 100 ₩ 62 - 117 88 2.4-Dinitrotoluene < 0.20 1 64 1.45 mg/Kg ₩ 2,6-Dinitrotoluene < 0.20 1.64 1.47 mg/Kg 90 67 - 120

TestAmerica Chicago

1.72

mg/Kg

₩

105

63 - 119

1.64

< 0.20

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample	ID: 500-	136575-1	6 MS
------------	----------	----------	------

Matrix: Solid

Analysis Batch: 408867

Client Sample ID: 3160-32-2 (0-3.5')

Prep Type: Total/NA Prep Batch: 408732

•	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Fluoranthene	0.028	J	1.64	1.62		mg/Kg	<u> </u>	97	62 - 120	
Fluorene	<0.040		1.64	1.47		mg/Kg		90	62 - 120	
Hexachlorobenzene	<0.082		1.64	1.29		mg/Kg	☼	79	55 - 117	
Hexachlorobutadiene	<0.20		1.64	1.13		mg/Kg	₩.	69	56 - 120	
Hexachlorocyclopentadiene	<0.82		1.64	0.334	J	mg/Kg	₩	20	10 - 106	
Hexachloroethane	<0.20		1.64	1.22		mg/Kg	☼	74	61 - 110	
Indeno[1,2,3-cd]pyrene	<0.040		1.64	1.20		mg/Kg	₩.	73	57 - 127	
Isophorone	<0.20		1.64	1.37		mg/Kg	₩	84	55 - 110	
2-Methylnaphthalene	0.051	J F1	1.64	1.90	F1	mg/Kg	☼	112	62 - 110	
2-Methylphenol	<0.20		1.64	1.48		mg/Kg	₩.	90	60 - 120	
3 & 4 Methylphenol	<0.20		1.64	1.30		mg/Kg	₩	79	57 - 120	
Naphthalene	0.027	J	1.64	1.39		mg/Kg	☼	83	63 - 110	
2-Nitroaniline	<0.20		1.64	1.56		mg/Kg		95	57 - 124	
3-Nitroaniline	<0.40		1.64	1.52		mg/Kg	☼	92	40 - 122	
4-Nitroaniline	<0.40		1.64	2.07		mg/Kg	☼	126	60 - 160	
Nitrobenzene	<0.040		1.64	1.60		mg/Kg	**	97	60 - 116	
2-Nitrophenol	<0.40		1.64	1.38		mg/Kg	☼	84	60 - 120	
4-Nitrophenol	<0.82		3.28	2.18		mg/Kg	₩	66	30 - 122	
N-Nitrosodi-n-propylamine	<0.082		1.64	1.30		mg/Kg	₩.	79	56 - 118	
N-Nitrosodiphenylamine	<0.20		1.64	1.52		mg/Kg	☼	93	65 - 112	
2,2'-oxybis[1-chloropropane]	<0.20		1.64	1.23		mg/Kg	☼	75	40 - 124	
Pentachlorophenol	<0.82		3.28	2.03		mg/Kg	₩.	62	13 - 112	
Phenanthrene	0.057		1.64	1.58		mg/Kg	₩	93	62 - 120	
Phenol	<0.20		1.64	1.41		mg/Kg	₩	86	56 - 122	
Pyrene	0.034	J	1.64	1.59		mg/Kg		95	63 - 120	
1,2,4-Trichlorobenzene	<0.20		1.64	1.26		mg/Kg	☼	77	62 - 110	
2,4,5-Trichlorophenol	<0.40		1.64	1.22		mg/Kg	☼	74	50 - 120	
2,4,6-Trichlorophenol	<0.40		1.64	1.41		mg/Kg		86	57 - 120	

MS MS

Sample Sample

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	85		44 - 121
2-Fluorophenol	86		46 - 133
Nitrobenzene-d5	86		41 - 120
Phenol-d5	92		46 - 125
Terphenyl-d14	86		35 - 160
2,4,6-Tribromophenol	70		25 - 139

Lab Sample ID: 500-136575-16 MSD

Matrix: Solid

Analysis Batch: 408867

Client Sam	ple ID:	3160-32-2	(0-3.5')
------------	---------	-----------	----------

Prep Type: Total/NA Prep Batch: 408732

%Rec.

Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acenaphthene	<0.040		1.64	1.47		mg/Kg	<u> </u>	89	58 - 110	2	30
Acenaphthylene	<0.040		1.64	1.41		mg/Kg	≎	86	60 - 110	3	30
Anthracene	0.0086	J	1.64	1.71		mg/Kg	₩	104	63 - 110	6	30
Benzo[a]anthracene	0.023	JΒ	1.64	1.59		mg/Kg	₩.	96	63 - 110	5	30
Benzo[a]pyrene	0.017	J	1.64	1.78		mg/Kg	≎	107	61 - 120	9	30
Benzo[b]fluoranthene	0.038	J	1.64	1.94		mg/Kg	₽	116	62 - 120	5	30

MSD MSD

Spike

TestAmerica Chicago

Page 182 of 231

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Lab Sample ID: 500-136575-16 MSD

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Client Sample ID: 3160-32-2 (0-3.5')

Lab Sample ID: 500-13657	5-16 MSD					(Juent	Sample	ID: 3160		
Matrix: Solid									Prep Ty	-	
Analysis Batch: 408867									Prep B	atch: 40	
	•	Sample	Spike		MSD				%Rec.		RPD
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzo[g,h,i]perylene	0.019		1.64	1.04	F1	mg/Kg	<u> </u>	62	64 - 120	7	30
Benzo[k]fluoranthene	0.016	J	1.64	1.88		mg/Kg	ψ.	113	65 - 120	15	30
Bis(2-chloroethoxy)methane	<0.20		1.64	1.28		mg/Kg		78	60 - 112	10	30
Bis(2-chloroethyl)ether	<0.20		1.64	1.37		mg/Kg	‡	84	55 - 111	11	30
Bis(2-ethylhexyl) phthalate	<0.20		1.64	1.84		mg/Kg	‡	112	63 - 118	12	30
4-Bromophenyl phenyl ether	<0.20		1.64	1.55		mg/Kg	₩	95	63 - 110	12	30
Butyl benzyl phthalate	<0.20		1.64	1.81		mg/Kg	₩	110	61 - 116	6	30
Carbazole	<0.20		1.64	1.79		mg/Kg	‡	109	59 - 158	5	30
4-Chloroaniline	<0.82		1.64	1.21		mg/Kg	₩	73	30 - 150	13	30
4-Chloro-3-methylphenol	<0.40		1.64	1.42		mg/Kg	₩	86	61 - 114	6	30
2-Chloronaphthalene	<0.20		1.64	1.39		mg/Kg	☼	85	64 - 110	2	30
2-Chlorophenol	<0.20		1.64	1.24		mg/Kg	₩	76	64 - 110	5	30
4-Chlorophenyl phenyl ether	<0.20		1.64	1.44		mg/Kg	₽	88	63 - 110	0	30
Chrysene	0.035	J	1.64	1.68		mg/Kg	₩	101	63 - 120	7	30
Dibenz(a,h)anthracene	<0.040		1.64	1.35		mg/Kg	₩	82	64 - 119	5	30
Dibenzofuran	<0.20		1.64	1.49		mg/Kg	\$	91	64 - 110	2	30
1,2-Dichlorobenzene	<0.20		1.64	1.29		mg/Kg	₩	79	62 - 110	2	30
1,3-Dichlorobenzene	<0.20		1.64	1.27		mg/Kg	☼	77	60 - 110	3	30
1,4-Dichlorobenzene	<0.20		1.64	1.30		mg/Kg	₩.	79	61 - 110	4	30
3,3'-Dichlorobenzidine	<0.20	F1 F2	1.64	0.630	F1 F2	mg/Kg	☼	38	49 - 112	42	30
2,4-Dichlorophenol	<0.40		1.64	1.38		mg/Kg	₩	84	58 - 120	7	30
Diethyl phthalate	<0.20		1.64	1.57		mg/Kg	₩.	96	58 - 120	0	30
2,4-Dimethylphenol	<0.40		1.64	1.34		mg/Kg	☼	82	60 - 110	1	30
Dimethyl phthalate	<0.20		1.64	1.49		mg/Kg	☼	91	64 - 110	2	30
Di-n-butyl phthalate	<0.20		1.64	1.73		mg/Kg		105	65 - 120	4	30
4,6-Dinitro-2-methylphenol	< 0.82		3.28	1.57		mg/Kg	☼	48	10 - 110	1	30
2,4-Dinitrophenol	<0.82		3.28	1.47		mg/Kg	☼	45	10 - 100	2	30
2,4-Dinitrotoluene	<0.20		1.64	1.45		mg/Kg	₩.	88	62 - 117	0	30
2,6-Dinitrotoluene	<0.20		1.64	1.51		mg/Kg	☼	92	67 - 120	3	30
Di-n-octyl phthalate	<0.20		1.64	1.78		mg/Kg	☼	109	63 - 119	3	30
Fluoranthene	0.028	j	1.64	1.62		mg/Kg		97	62 - 120	0	30
Fluorene	<0.040		1.64	1.48		mg/Kg	₽	90	62 - 120	1	30
Hexachlorobenzene	<0.082		1.64	1.42		mg/Kg	₩	87	55 - 117	10	30
Hexachlorobutadiene	<0.20		1.64	1.11		mg/Kg		68	56 - 120	1	30
Hexachlorocyclopentadiene	<0.82		1.64	0.325	J	mg/Kg	₽	20	10 - 106	3	30
Hexachloroethane	<0.20		1.64	1.25		mg/Kg	₩	76	61 - 110	3	30
Indeno[1,2,3-cd]pyrene	<0.040		1.64	1.28		mg/Kg		78	57 - 127	6	30
Isophorone	<0.20		1.64	1.28		mg/Kg	≎	78	55 ₋ 110	7	30
2-Methylnaphthalene	0.051	JF1	1.64	1.80		mg/Kg	≎	107	62 - 110	5	30
2-Methylphenol	<0.20		1.64	1.24		mg/Kg	₋	75	60 - 120	18	30
3 & 4 Methylphenol	<0.20		1.64	1.34		mg/Kg	₽	82	57 - 120	3	30
Naphthalene	0.027	J	1.64	1.40		mg/Kg	☼	84	63 - 110	1	30
2-Nitroaniline	<0.20		1.64	1.49		mg/Kg		91	57 - 124	5	30
3-Nitroaniline	<0.40		1.64	1.45		mg/Kg	≎	89	40 - 122	4	30
4-Nitroaniline	<0.40		1.64	2.04		mg/Kg	≎	125	60 - 160	1	30
Nitrobenzene	<0.040		1.64	1.52		mg/Kg		93	60 - 116	5	30
2-Nitrophenol	<0.40		1.64	1.27		mg/Kg	₩	78	60 - 120	8	30
4-Nitrophenol	<0.40		3.28	2.41		mg/Kg	☼	73	30 - 122	10	30
T-141(10)/11C1101	~0.02		3.20	Z. 4 I		mg/rtg	~	13	JU - 122	10	30

TestAmerica Chicago

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 500-136575-16 MSD

Matrix: Solid

Analysis Batch: 408867

Client Sample ID: 3160-32-2 (0-3.5')

Prep Type: Total/NA Prep Batch: 408732

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
N-Nitrosodi-n-propylamine	<0.082		1.64	1.23		mg/Kg	₩	75	56 - 118	6	30
N-Nitrosodiphenylamine	<0.20		1.64	1.68		mg/Kg	₩.	102	65 - 112	10	30
2,2'-oxybis[1-chloropropane]	<0.20		1.64	1.25		mg/Kg	₩	76	40 - 124	2	30
Pentachlorophenol	<0.82		3.28	2.39		mg/Kg	₩.	73	13 - 112	17	30
Phenanthrene	0.057		1.64	1.67		mg/Kg	₩	98	62 - 120	5	30
Phenol	<0.20		1.64	1.35		mg/Kg	₩	83	56 - 122	4	30
Pyrene	0.034	J	1.64	1.70		mg/Kg	₩.	102	63 - 120	7	30
1,2,4-Trichlorobenzene	<0.20		1.64	1.26		mg/Kg	≎	77	62 - 110	1	30
2,4,5-Trichlorophenol	<0.40		1.64	1.44		mg/Kg	₩	88	50 - 120	16	30
2,4,6-Trichlorophenol	<0.40		1.64	1.48		mg/Kg		90	57 ₋ 120	5	30

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	85		44 - 121
2-Fluorophenol	74		46 - 133
Nitrobenzene-d5	83		41 - 120
Phenol-d5	90		46 - 125
Terphenyl-d14	94		35 - 160
2,4,6-Tribromophenol	67		25 - 139

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 408852

Lab Sample ID: MB 500-408852/1-A **Matrix: Solid**

Analysis Ratch: 408968

Analysis Batch: 408968								Prep Batch:	408852
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	<0.033		0.033	0.0060	mg/Kg		11/07/17 16:14	11/08/17 12:36	1
Acenaphthylene	<0.033		0.033	0.0044	mg/Kg		11/07/17 16:14	11/08/17 12:36	1
Anthracene	<0.033		0.033	0.0056	mg/Kg		11/07/17 16:14	11/08/17 12:36	1
Benzo[a]anthracene	<0.033		0.033	0.0045	mg/Kg		11/07/17 16:14	11/08/17 12:36	1
Benzo[a]pyrene	<0.033		0.033	0.0064	mg/Kg		11/07/17 16:14	11/08/17 12:36	1
Benzo[b]fluoranthene	<0.033		0.033	0.0072	mg/Kg		11/07/17 16:14	11/08/17 12:36	1
Benzo[g,h,i]perylene	<0.033		0.033	0.011	mg/Kg		11/07/17 16:14	11/08/17 12:36	1
Benzo[k]fluoranthene	<0.033		0.033	0.0098	mg/Kg		11/07/17 16:14	11/08/17 12:36	1
Bis(2-chloroethoxy)methane	<0.17		0.17	0.034	mg/Kg		11/07/17 16:14	11/08/17 12:36	1
Bis(2-chloroethyl)ether	<0.17		0.17	0.050	mg/Kg		11/07/17 16:14	11/08/17 12:36	1
Bis(2-ethylhexyl) phthalate	<0.17		0.17	0.061	mg/Kg		11/07/17 16:14	11/08/17 12:36	1
4-Bromophenyl phenyl ether	<0.17		0.17	0.044	mg/Kg		11/07/17 16:14	11/08/17 12:36	1
Butyl benzyl phthalate	<0.17		0.17	0.063	mg/Kg		11/07/17 16:14	11/08/17 12:36	1
Carbazole	<0.17		0.17	0.083	mg/Kg		11/07/17 16:14	11/08/17 12:36	1
4-Chloroaniline	<0.67		0.67	0.16	mg/Kg		11/07/17 16:14	11/08/17 12:36	1
4-Chloro-3-methylphenol	<0.33		0.33	0.11	mg/Kg		11/07/17 16:14	11/08/17 12:36	1
2-Chloronaphthalene	<0.17		0.17	0.037	mg/Kg		11/07/17 16:14	11/08/17 12:36	1
2-Chlorophenol	<0.17		0.17	0.057	mg/Kg		11/07/17 16:14	11/08/17 12:36	1
4-Chlorophenyl phenyl ether	<0.17		0.17	0.039	mg/Kg		11/07/17 16:14	11/08/17 12:36	1
Chrysene	< 0.033		0.033	0.0091	mg/Kg		11/07/17 16:14	11/08/17 12:36	1
Dibenz(a,h)anthracene	<0.033		0.033	0.0064	mg/Kg		11/07/17 16:14	11/08/17 12:36	1
Dibenzofuran	<0.17		0.17	0.039	mg/Kg		11/07/17 16:14	11/08/17 12:36	1
1,2-Dichlorobenzene	<0.17		0.17	0.040	mg/Kg		11/07/17 16:14	11/08/17 12:36	1
1,3-Dichlorobenzene	<0.17		0.17	0.037	mg/Kg		11/07/17 16:14	11/08/17 12:36	1
					_				

TestAmerica Chicago

Page 184 of 231

11/13/2017

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 500-408852/1-A

Matrix: Solid

Analysis Batch: 408968

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 408852

Analysis Baten. 400000	МВ	MB						Trep Batem.	
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	<0.17		0.17	0.043	mg/Kg		11/07/17 16:14	11/08/17 12:36	1
3,3'-Dichlorobenzidine	<0.17		0.17	0.047	mg/Kg		11/07/17 16:14	11/08/17 12:36	1
2,4-Dichlorophenol	<0.33		0.33	0.079	mg/Kg		11/07/17 16:14	11/08/17 12:36	1
Diethyl phthalate	<0.17		0.17	0.056	mg/Kg		11/07/17 16:14	11/08/17 12:36	1
2,4-Dimethylphenol	<0.33		0.33	0.13	mg/Kg		11/07/17 16:14	11/08/17 12:36	1
Dimethyl phthalate	<0.17		0.17	0.043	mg/Kg		11/07/17 16:14	11/08/17 12:36	1
Di-n-butyl phthalate	<0.17		0.17	0.051	mg/Kg		11/07/17 16:14	11/08/17 12:36	1
4,6-Dinitro-2-methylphenol	<0.67		0.67	0.27	mg/Kg		11/07/17 16:14	11/08/17 12:36	1
2,4-Dinitrophenol	< 0.67		0.67	0.59	mg/Kg		11/07/17 16:14	11/08/17 12:36	1
2,4-Dinitrotoluene	<0.17		0.17	0.053	mg/Kg		11/07/17 16:14	11/08/17 12:36	1
2,6-Dinitrotoluene	<0.17		0.17	0.065	mg/Kg		11/07/17 16:14	11/08/17 12:36	1
Di-n-octyl phthalate	<0.17		0.17	0.054	mg/Kg		11/07/17 16:14	11/08/17 12:36	1
Fluoranthene	<0.033		0.033	0.0062	mg/Kg		11/07/17 16:14	11/08/17 12:36	1
Fluorene	< 0.033		0.033	0.0047	mg/Kg		11/07/17 16:14	11/08/17 12:36	1
Hexachlorobenzene	< 0.067		0.067	0.0077	mg/Kg		11/07/17 16:14	11/08/17 12:36	1
Hexachlorobutadiene	<0.17		0.17	0.052	mg/Kg		11/07/17 16:14	11/08/17 12:36	1
Hexachlorocyclopentadiene	<0.67		0.67	0.19	mg/Kg		11/07/17 16:14	11/08/17 12:36	1
Hexachloroethane	<0.17		0.17	0.051	mg/Kg		11/07/17 16:14	11/08/17 12:36	1
Indeno[1,2,3-cd]pyrene	<0.033		0.033	0.0086	mg/Kg		11/07/17 16:14	11/08/17 12:36	1
Isophorone	<0.17		0.17	0.037	mg/Kg		11/07/17 16:14	11/08/17 12:36	1
2-Methylnaphthalene	< 0.067		0.067	0.0061	mg/Kg		11/07/17 16:14	11/08/17 12:36	1
2-Methylphenol	<0.17		0.17	0.053	mg/Kg		11/07/17 16:14	11/08/17 12:36	1
3 & 4 Methylphenol	<0.17		0.17	0.055	mg/Kg		11/07/17 16:14	11/08/17 12:36	1
Naphthalene	< 0.033		0.033	0.0051	mg/Kg		11/07/17 16:14	11/08/17 12:36	1
2-Nitroaniline	<0.17		0.17	0.045	mg/Kg		11/07/17 16:14	11/08/17 12:36	1
3-Nitroaniline	<0.33		0.33	0.10	mg/Kg		11/07/17 16:14	11/08/17 12:36	1
4-Nitroaniline	<0.33		0.33	0.14	mg/Kg		11/07/17 16:14	11/08/17 12:36	1
Nitrobenzene	<0.033		0.033	0.0083	mg/Kg		11/07/17 16:14	11/08/17 12:36	1
2-Nitrophenol	<0.33		0.33	0.079	mg/Kg		11/07/17 16:14	11/08/17 12:36	1
4-Nitrophenol	<0.67		0.67	0.32	mg/Kg		11/07/17 16:14	11/08/17 12:36	1
N-Nitrosodi-n-propylamine	<0.067		0.067	0.041	mg/Kg		11/07/17 16:14	11/08/17 12:36	1
N-Nitrosodiphenylamine	<0.17		0.17		mg/Kg		11/07/17 16:14	11/08/17 12:36	1
2,2'-oxybis[1-chloropropane]	<0.17		0.17		mg/Kg		11/07/17 16:14	11/08/17 12:36	1
Pentachlorophenol	<0.67		0.67		mg/Kg		11/07/17 16:14	11/08/17 12:36	1
Phenanthrene	< 0.033		0.033	0.0046			11/07/17 16:14	11/08/17 12:36	1
Phenol	<0.17		0.17		mg/Kg		11/07/17 16:14	11/08/17 12:36	1
Pyrene	<0.033		0.033	0.0066				11/08/17 12:36	1
1,2,4-Trichlorobenzene	<0.17		0.17		mg/Kg			11/08/17 12:36	1
2,4,5-Trichlorophenol	<0.33		0.33		mg/Kg			11/08/17 12:36	1
2,4,6-Trichlorophenol	<0.33		0.33		mg/Kg			11/08/17 12:36	

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	77		44 - 121	11/07/17 16:14	11/08/17 12:36	1
2-Fluorophenol	81		46 - 133	11/07/17 16:14	11/08/17 12:36	1
Nitrobenzene-d5	73		41 - 120	11/07/17 16:14	11/08/17 12:36	1
Phenol-d5	85		46 - 125	11/07/17 16:14	11/08/17 12:36	1
Terphenyl-d14	80		35 - 160	11/07/17 16:14	11/08/17 12:36	1
2 4 6-Tribromonhenol	77		25 130	11/07/17 16:14	11/08/17 12:36	1

TestAmerica Chicago

Page 185 of 231

11/13/2017

2

5

7

10

12

13

14

QC Sample Results

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136575-1

Lab Sample ID: LCS 500-408852/2-A

Matrix: Solid

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 408968	Spike	LCS	LCS				Prep Batch: 40885 %Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Acenaphthene	1.33	1.04		mg/Kg		78	58 - 110
Acenaphthylene	1.33	1.06		mg/Kg		80	60 - 110
Anthracene	1.33	1.11		mg/Kg		84	63 - 110
Benzo[a]anthracene	1.33	1.15		mg/Kg		87	63 - 110
Benzo[a]pyrene	1.33	1.14		mg/Kg		85	61 - 120
Benzo[b]fluoranthene	1.33	1.23		mg/Kg		92	62 - 120
Benzo[g,h,i]perylene	1.33	1.19		mg/Kg		89	64 - 120
Benzo[k]fluoranthene	1.33	1.13		mg/Kg		85	65 - 120
Bis(2-chloroethoxy)methane	1.33	1.12		mg/Kg		84	60 - 112
Bis(2-chloroethyl)ether	1.33	1.15		mg/Kg		86	55 - 111
Bis(2-ethylhexyl) phthalate	1.33	1.31		mg/Kg		98	63 - 118
4-Bromophenyl phenyl ether	1.33	1.17		mg/Kg		87	63 - 110
Butyl benzyl phthalate	1.33	1.26		mg/Kg		94	61 - 116
Carbazole	1.33	1.36		mg/Kg		102	59 ₋ 158
4-Chloroaniline	1.33	0.981		mg/Kg		74	30 - 150
4-Chloro-3-methylphenol	1.33	1.18		mg/Kg		88	61 - 114
2-Chloronaphthalene	1.33	1.06		mg/Kg		80	64 - 110
2-Chlorophenol	1.33	1.07		mg/Kg		81	64 - 110
4-Chlorophenyl phenyl ether	1.33	1.08		mg/Kg		81	63 - 110
Chrysene	1.33	1.14		mg/Kg		86	63 - 120
Dibenz(a,h)anthracene	1.33	1.26		mg/Kg		94	64 - 119
Dibenzofuran	1.33	1.07		mg/Kg		81	64 - 110
1,2-Dichlorobenzene	1.33	1.06		mg/Kg		79	62 - 110
1,3-Dichlorobenzene	1.33	1.03		mg/Kg		77	60 - 110
1,4-Dichlorobenzene	1.33	1.03		mg/Kg		77	61 - 110
3,3'-Dichlorobenzidine	1.33	1.10		mg/Kg		82	49 - 112
2,4-Dichlorophenol	1.33	1.15		mg/Kg		86	58 - 120
Diethyl phthalate	1.33	1.09		mg/Kg		82	58 - 120
2,4-Dimethylphenol	1.33	1.19		mg/Kg		89	60 - 110
Dimethyl phthalate	1.33	1.10		mg/Kg		82	64 - 110
Di-n-butyl phthalate	1.33	1.17		mg/Kg		88	65 - 120
4,6-Dinitro-2-methylphenol	2.67	1.52		mg/Kg		57	10 - 110
2,4-Dinitrophenol	2.67	1.08		mg/Kg		41	10 - 100
2,4-Dinitrotoluene	1.33	1.20		mg/Kg		90	62 - 117
2,6-Dinitrotoluene	1.33	1.13		mg/Kg		85	67 - 120
Di-n-octyl phthalate	1.33	1.43		mg/Kg		107	63 - 119
Fluoranthene	1.33	1.19		mg/Kg		89	62 - 120
Fluorene	1.33	1.06		mg/Kg		79	62 - 120
Hexachlorobenzene	1.33	1.11		mg/Kg		83	55 ₋ 117
Hexachlorobutadiene	1.33	1.03		mg/Kg		77	56 - 120
Hexachlorocyclopentadiene	1.33	0.898		mg/Kg		67	10 - 106
Hexachloroethane	1.33	1.04		mg/Kg		78	61 - 110
Indeno[1,2,3-cd]pyrene	1.33	1.25		mg/Kg		94	57 ₋ 127
Isophorone	1.33	1.05		mg/Kg		79	55 ₋ 110
2-Methylnaphthalene	1.33	1.09		mg/Kg		82	62 - 110
2-Methylphenol	1.33	1.16		mg/Kg		87	60 - 120
3 & 4 Methylphenol	1.33	1.11		mg/Kg		83	57 ₋ 120
Naphthalene	1.33	1.08		mg/Kg		81	63 - 110
2-Nitroaniline	1.33	1.13		mg/Kg		85	57 - 124
3-Nitroaniline	1.33	1.09		mg/Kg		82	40 - 122
5 5 di illini	1.00	1.00		9,119		02	.5-122

TestAmerica Chicago

Page 186 of 231

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 500-408852/2-A

Matrix: Solid

Analysis Batch: 408968

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 408852 %Rec.

Analysis Batom 400000	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
4-Nitroaniline	1.33	1.56	-	mg/Kg		117	60 - 160
Nitrobenzene	1.33	1.05		mg/Kg		79	60 - 116
2-Nitrophenol	1.33	1.21		mg/Kg		91	60 - 120
4-Nitrophenol	2.67	1.95		mg/Kg		73	30 - 122
N-Nitrosodi-n-propylamine	1.33	1.12		mg/Kg		84	56 - 118
N-Nitrosodiphenylamine	1.33	1.17		mg/Kg		88	65 - 112
2,2'-oxybis[1-chloropropane]	1.33	1.16		mg/Kg		87	40 - 124
Pentachlorophenol	2.67	2.02		mg/Kg		76	13 - 112
Phenanthrene	1.33	1.12		mg/Kg		84	62 - 120
Phenol	1.33	1.09		mg/Kg		82	56 - 122
Pyrene	1.33	1.13		mg/Kg		85	63 - 120
1,2,4-Trichlorobenzene	1.33	1.06		mg/Kg		80	62 - 110
2,4,5-Trichlorophenol	1.33	1.19		mg/Kg		89	50 - 120
2,4,6-Trichlorophenol	1.33	1.09		mg/Kg		82	57 - 120

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	78		44 - 121
2-Fluorophenol	86		46 - 133
Nitrobenzene-d5	77		41 - 120
Phenol-d5	89		46 - 125
Terphenyl-d14	83		35 - 160
2,4,6-Tribromophenol	90		25 - 139

Method: 8081B - Organochlorine Pesticides (GC)

Lab Sample ID: MB 500-408939/1-A

Matrix: Solid

Analysis Batch: 409066

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 408939

-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	<0.0017		0.0017	0.00069	mg/Kg		11/08/17 07:22	11/08/17 20:52	1
alpha-BHC	<0.0017		0.0017	0.00042	mg/Kg		11/08/17 07:22	11/08/17 20:52	1
alpha-Chlordane	<0.0017		0.0017	0.00085	mg/Kg		11/08/17 07:22	11/08/17 20:52	1
beta-BHC	<0.0017		0.0017	0.00052	mg/Kg		11/08/17 07:22	11/08/17 20:52	1
4,4'-DDD	<0.0017		0.0017	0.00033	mg/Kg		11/08/17 07:22	11/08/17 20:52	1
4,4'-DDE	<0.0017		0.0017	0.00028	mg/Kg		11/08/17 07:22	11/08/17 20:52	1
4,4'-DDT	<0.0017		0.0017	0.00088	mg/Kg		11/08/17 07:22	11/08/17 20:52	1
delta-BHC	<0.0017		0.0017	0.00053	mg/Kg		11/08/17 07:22	11/08/17 20:52	1
Dieldrin	<0.0017		0.0017	0.00023	mg/Kg		11/08/17 07:22	11/08/17 20:52	1
Endosulfan I	<0.0017		0.0017	0.00073	mg/Kg		11/08/17 07:22	11/08/17 20:52	1
Endosulfan II	<0.0017		0.0017	0.00027	mg/Kg		11/08/17 07:22	11/08/17 20:52	1
Endosulfan sulfate	<0.0017		0.0017	0.00031	mg/Kg		11/08/17 07:22	11/08/17 20:52	1
Endrin	<0.0017		0.0017	0.00023	mg/Kg		11/08/17 07:22	11/08/17 20:52	1
Endrin aldehyde	<0.0017		0.0017	0.00028	mg/Kg		11/08/17 07:22	11/08/17 20:52	1
Endrin ketone	<0.0017		0.0017	0.00038	mg/Kg		11/08/17 07:22	11/08/17 20:52	1
gamma-BHC (Lindane)	<0.0017		0.0017	0.00036	mg/Kg		11/08/17 07:22	11/08/17 20:52	1
gamma-Chlordane	<0.0017		0.0017	0.00044	mg/Kg		11/08/17 07:22	11/08/17 20:52	1
Heptachlor	<0.0017		0.0017	0.00070	mg/Kg		11/08/17 07:22	11/08/17 20:52	1

TestAmerica Chicago

Page 187 of 231

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Method: 8081B - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: MB 500-408939/1-A

Matrix: Solid

Analysis Batch: 409066

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 408939

	INID I							
Analyte	Result (Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Heptachlor epoxide	<0.0017	0.0017	0.00059	mg/Kg		11/08/17 07:22	11/08/17 20:52	1
Methoxychlor	<0.0083	0.0083	0.00032	mg/Kg		11/08/17 07:22	11/08/17 20:52	1
Toxaphene	<0.017	0.017	0.0070	mg/Kg		11/08/17 07:22	11/08/17 20:52	1

MB MB

МЕ

Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
DCB Decachlorobiphenyl	83		33 - 148	11/08/17 07:22 11/08/17 20:52	1
Tetrachloro-m-xylene	79		30 - 121	11/08/17 07:22 11/08/17 20:52	1

Client Sample ID: Lab Control Sample

Lab Sample ID: LCS 500-408939/2-A **Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 409066 Prep Batch: 408939** Spike LCS LCS %Rec. Added Result Qualifier Unit %Rec Limits

Analyte Aldrin 0.0133 52 - 122 0.0108 mg/Kg 81 alpha-BHC 0.0133 0.0113 mg/Kg 84 50 - 123alpha-Chlordane 0.0133 0.0105 mg/Kg 78 52 - 129 0.0133 0.0125 44 - 140 beta-BHC mg/Kg 4,4'-DDD 0.0133 0.0114 mg/Kg 86 47 - 137 4,4'-DDE 0.0133 0.0107 mg/Kg 80 50 - 130 4,4'-DDT 0.0133 0.0109 mg/Kg 82 46 - 143 delta-BHC 0.0133 0.0127 96 57 - 125 mg/Kg Dieldrin 0.0133 0.0108 81 51 - 133 mg/Kg Endosulfan I 0.0133 0.00822 mg/Kg 62 30 - 120 Endosulfan II 0.0133 0.00942 71 30 - 120 mg/Kg Endosulfan sulfate 104 42 - 150 0.0133 0.0138 mg/Kg Endrin 0.0133 0.0119 mg/Kg 89 43 - 144 Endrin aldehyde 0.0133 0.0114 mg/Kg 85 39 - 131 Endrin ketone 0.0133 0.0111 mg/Kg 84 51 - 135 83 50 - 122 gamma-BHC (Lindane) 0.0133 0.0111 mg/Kg gamma-Chlordane 0.0133 0.0101 76 52 - 132 mg/Kg 85 53 - 129 Heptachlor 0.0133 0.0113 mg/Kg Heptachlor epoxide 0.0133 0.0108 81 50 - 139 mg/Kg Methoxychlor 0.0133 0.0102 mg/Kg 77 45 - 144

LCS LCS %Recovery Limits Surrogate Qualifier DCB Decachlorobiphenyl 84 33 - 148 Tetrachloro-m-xylene 84 30 - 121

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Lab Sample ID: MB 500-408853/1-A **Client Sample ID: Method Blank Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 409369

MB MB RL Result Qualifier **MDL** Unit D Prepared Dil Fac Analyte Analyzed PCB-1016 < 0.017 0.017 0.0059 mg/Kg 11/07/17 16:20 11/10/17 14:44 PCB-1221 < 0.017 0.017 0.0073 mg/Kg 11/07/17 16:20 11/10/17 14:44

TestAmerica Chicago

Prep Batch: 408853

10

Client Sample ID: 3160-45-2 (5-6')

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

10

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Lab Sample ID: MB 500-408853/1-A

Matrix: Solid

Analysis Batch: 409369

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 408853

МВ	MB			-	
Analyte Result	Qualifier RL	MDL Unit D	Prepared	Analyzed	Dil Fac
PCB-1232 <0.017	0.017	0.0073 mg/Kg	11/07/17 16:20	11/10/17 14:44	1
PCB-1242 <0.017	0.017	0.0055 mg/Kg	11/07/17 16:20	11/10/17 14:44	1
PCB-1248 <0.017	0.017	0.0066 mg/Kg	11/07/17 16:20	11/10/17 14:44	1
PCB-1254 <0.017	0.017	0.0036 mg/Kg	11/07/17 16:20	11/10/17 14:44	1
PCB-1260 <0.017	0.017	0.0082 mg/Kg	11/07/17 16:20	11/10/17 14:44	1

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	79		49 - 129	11/07/17 16:20	11/10/17 14:44	1
DCB Decachlorobiphenyl	96		37 - 121	11/07/17 16:20	11/10/17 14:44	1

Lab Sample ID: LCS 500-408853/2-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 409369 Prep Batch: 408853** LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits PCB-1016 0.167 0.119 mg/Kg 72 57 - 120 PCB-1260 0.167 0.145 mq/Kq 87 61 - 125 LCS LCS

		_00		
Surrogate	%Recovery	Qualifier	Limits	
Tetrachloro-m-xylene	76		49 - 129	
DCB Decachlorobiphenyl	103		37 - 121	

Lab Sample ID: 500-136575-24 MS

Matrix: Solid Prep Type: Total/NA **Analysis Batch: 409369 Prep Batch: 408853** MS MS Sample Sample Spike %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits $\overline{\phi}$ PCB-1016 <0.020 0.198 0.177 mg/Kg 89 57 - 120 ☼ PCB-1260 < 0.020 0.198 0.187 mg/Kg 94 61 - 125

	MS MS	
Surrogate	%Recovery Qualifie	er Limits
Tetrachloro-m-xylene	87	49 - 129
DCB Decachlorobiphenyl	105	37 - 121

Lab Sample ID: 500-136575-24 MSD Client Sample ID: 3160-45-2 (5-6') **Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 409369 Prep Batch: 408853** MSD MSD Sample Sample Spike %Rec. **RPD** Result Qualifier Limits Limit Analyte Added Result Qualifier Unit D %Rec RPD ₩ PCB-1016 <0.020 0.198 0.175 mg/Kg 88 57 - 120 30 PCB-1260 <0.020 0.198 0.179 90 61 - 125 30 mg/Kg MSD MSD

 Surrogate
 %Recovery
 Qualifier
 Limits

 Tetrachloro-m-xylene
 88
 49 - 129

 DCB Decachlorobiphenyl
 102
 37 - 121

TestAmerica Chicago

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Lab Sample ID: MB 500-408939/1-A

Matrix: Solid

Analysis Batch: 409181

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 408939

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	<0.017		0.017	0.0059	mg/Kg		11/08/17 07:22	11/09/17 10:25	1
PCB-1221	<0.017		0.017	0.0073	mg/Kg		11/08/17 07:22	11/09/17 10:25	1
PCB-1232	<0.017		0.017	0.0073	mg/Kg		11/08/17 07:22	11/09/17 10:25	1
PCB-1242	<0.017		0.017	0.0055	mg/Kg		11/08/17 07:22	11/09/17 10:25	1
PCB-1248	<0.017		0.017	0.0066	mg/Kg		11/08/17 07:22	11/09/17 10:25	1
PCB-1254	<0.017		0.017	0.0036	mg/Kg		11/08/17 07:22	11/09/17 10:25	1
PCB-1260	<0.017		0.017	0.0082	mg/Kg		11/08/17 07:22	11/09/17 10:25	1

MB MB %Recovery Qualifier Limits Prepared Dil Fac Analyzed 114 49 - 129 11/08/17 07:22 11/09/17 10:25 37 - 121 11/08/17 07:22 11/09/17 10:25 115

Lab Sample ID: LCS 500-408939/3-A

Matrix: Solid

Tetrachloro-m-xylene

DCB Decachlorobiphenyl

Surrogate

Analysis Batch: 409181

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 408939 %Rec.

LCS LCS Spike Added Analyte Result Qualifier Unit D %Rec Limits PCB-1016 0.167 0.177 106 57 - 120 mg/Kg PCB-1260 0.167 0.176 mg/Kg 106 61 - 125

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	109		49 - 129
DCB Decachlorobiphenyl	108		37 - 121

Method: 8151A - Herbicides (GC)

Lab Sample ID: MB 500-409129/1-A

Matrix: Solid

Analysis Batch: 409021

Client Sample ID: Method Blank Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prep Batch: 409129

	MB	MR							
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dicamba	<0.33		0.33	0.069	mg/Kg		11/08/17 22:08	11/10/17 02:41	10
Dichlorprop	< 0.33		0.33	0.090	mg/Kg		11/08/17 22:08	11/10/17 02:41	10
2,4-D	< 0.33		0.33	0.094	mg/Kg		11/08/17 22:08	11/10/17 02:41	10
Silvex (2,4,5-TP)	<0.33		0.33	0.085	mg/Kg		11/08/17 22:08	11/10/17 02:41	10
2,4,5-T	< 0.33		0.33	0.081	mg/Kg		11/08/17 22:08	11/10/17 02:41	10
2,4-DB	<0.33		0.33	0.098	mg/Kg		11/08/17 22:08	11/10/17 02:41	10
	MD	MD							

Surrogate %Recovery Qualifier Limits Prepared Analyzed DCAA 50 25 - 120 11/08/17 22:08 11/10/17 02:41

Lab Sample ID: LCS 500-409129/2-A

Matrix: Solid							Prep Type: Total/NA
Analysis Batch: 409021							Prep Batch: 409129
_	Spil	e LCS	LCS				%Rec.
Analyte	Adde	d Result	Qualifier	Unit	D	%Rec	Limits
Dicamba	1.3	0.790		ma/Ka	_	59	25 - 110

TestAmerica Chicago

Page 190 of 231

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Method: 8151A - Herbicides (GC) (Continued)

Lab Sample ID: LCS 500-409129/2-A

Matrix: Solid

Analysis Batch: 409021	Spike	LCS	LCS				Prep Batch: 409129 %Rec.	1
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Dichlorprop	1.34	0.771		mg/Kg		58	25 - 110	-
2,4-D	1.33	0.618		mg/Kg		46	20 - 115	
Silvex (2,4,5-TP)	1.34	0.784		mg/Kg		59	29 - 115	
2,4,5-T	1.33	0.848		mg/Kg		64	25 - 115	
2,4-DB	1.33	0.897		mg/Kg		67	20 - 120	

LCS LCS

Surrogate %Recovery Qualifier Limits DCAA 55 25 - 120

Method: 6010B - Metals (ICP)

Lab Sample ID: MB 500-408066/1-A

Matrix: Solid

Analysis Batch: 408311

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 408066

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 11/02/17 07:14 11/02/17 17:49 Antimony <2.0 2.0 0.39 mg/Kg 11/02/17 07:14 11/02/17 17:49 Arsenic <1.0 1.0 0.34 mg/Kg Barium 11/02/17 07:14 11/02/17 17:49 <1.0 1.0 0.11 mg/Kg Beryllium < 0.40 0.40 0.093 mg/Kg 11/02/17 07:14 11/02/17 17:49 Cadmium < 0.20 0.20 0.036 mg/Kg 11/02/17 07:14 11/02/17 17:49 0.50 mg/Kg Chromium <1.0 1.0 11/02/17 07:14 11/02/17 17:49 Cobalt < 0.50 0.50 0.13 mg/Kg 11/02/17 07:14 11/02/17 17:49 Copper 0.28 mg/Kg 11/02/17 07:14 11/02/17 17:49 <1.0 1.0 Iron <20 20 10 mg/Kg 11/02/17 07:14 11/02/17 17:49 11/02/17 07:14 11/02/17 17:49 Lead < 0.50 0.50 0.23 mg/Kg Manganese <1.0 1.0 0.15 mg/Kg 11/02/17 07:14 11/02/17 17:49 Nickel <1.0 1.0 0.29 mg/Kg 11/02/17 07:14 11/02/17 17:49 Selenium 0.59 mg/Kg <1.0 1.0 11/02/17 07:14 11/02/17 17:49 Silver < 0.50 0.50 0.13 mg/Kg 11/02/17 07:14 11/02/17 17:49 Thallium 0.50 mg/Kg <1.0 1.0 11/02/17 07:14 11/02/17 17:49 Vanadium < 0.50 0.50 0.12 mg/Kg 11/02/17 07:14 11/02/17 17:49 Zinc 0.88 mg/Kg <2.0 2.0 11/02/17 07:14 11/02/17 17:49

Lab Sample ID: LCS 500-408066/2-A

Matrix: Solid

Analysis Batch: 408311

Client Sample ID: Lab Control Sample
Prep Type: Total/NA
Prep Batch: 408066

,, o.o	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Antimony	50.0	43.5		mg/Kg		87	80 - 120
Arsenic	10.0	8.87		mg/Kg		89	80 - 120
Barium	200	189		mg/Kg		95	80 - 120
Beryllium	5.00	4.52		mg/Kg		90	80 - 120
Cadmium	5.00	4.78		mg/Kg		96	80 - 120
Chromium	20.0	19.2		mg/Kg		96	80 - 120
Cobalt	50.0	47.6		mg/Kg		95	80 - 120
Copper	25.0	24.0		mg/Kg		96	80 - 120
Iron	100	104		mg/Kg		104	80 - 120

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: LCS 500-408066/2-A

Lab Sample ID: 500-136575-31 MS

Matrix: Solid

Analysis Batch: 408311

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 408066

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Lead	10.0	9.44		mg/Kg		94	80 - 120	_
Manganese	50.0	45.8		mg/Kg		92	80 - 120	
Nickel	50.0	47.0		mg/Kg		94	80 - 120	
Selenium	10.0	8.54		mg/Kg		85	80 - 120	
Silver	5.00	4.59		mg/Kg		92	80 - 120	
Thallium	10.0	9.03		mg/Kg		90	80 - 120	
Vanadium	50.0	47.0		mg/Kg		94	80 - 120	
Zinc	50.0	46.1		mg/Kg		92	80 - 120	

Client Sample ID: 3160-50-3 (0-2')

Matrix: Solid

Prep Type: Total/NA

Prep Batch: 408066

Analysis Batch: 408311 Sample Sample Spike MS MS %Rec. Result Qualifier Result Qualifier %Rec Added Limits **Analyte** Unit D ₩ Antimony <1.2 F1 29.7 4.55 F1 mg/Kg 15 75 - 125 ☼ Arsenic 7.3 5.95 12.9 93 75 - 125 mg/Kg Ö Barium 66 119 171 mg/Kg 88 75 - 125 Beryllium 0.42 2.97 2.88 mg/Kg Ţ 83 75 - 125 ₩ Cadmium 0.11 2.97 2.61 mg/Kg 84 75 - 125 ₩ Chromium 22 11.9 33.2 mg/Kg 98 75 - 125 ₩ Cobalt 6.2 29.7 35.6 99 75 - 125 mg/Kg ₩ Copper 17 14.9 31.8 mg/Kg 97 75 - 125 Ö Iron 21000 59.5 23100 4 mg/Kg 2947 75 - 125 Ö Lead 19 F2 F1 5.95 31.0 F1 mg/Kg 206 75 - 125 ₩ 310 75 - 125 Manganese 190 29.7 278 4 mg/Kg Ö Nickel 29.7 43.0 mg/Kg 98 75 - 12514 ₩ JF1 75 Selenium 0.49 5.95 4.94 mg/Kg 75 - 125₩ Silver <0.31 2.97 2.36 mg/Kg 79 75 - 125 5.95 4.91 83 75 - 125 Thallium <0.61 mg/Kg Ö 67.5 Vanadium 37 29.7 mg/Kg 104 75 - 125

Lab Sample ID: 500-136575-31 MSD

29.7

85.2

mg/Kg

53

Matrix: Solid

Zinc

Analysis Batch: 408311

Client Sample ID: 3160-50-3 (0-2') Prep Type: Total/NA

75 - 125

108

Prep Batch: 408066 MSD MSD **RPD** Sample Sample Spike %Rec. Result Qualifier Added Result Qualifier **RPD** Limit Analyte Unit D %Rec Limits Antimony <1.2 F1 30.1 5.09 F1 ₩ 17 75 - 125 20 mg/Kg 11 ∜ Arsenic 7.3 6.02 13.5 mg/Kg 103 75 - 125 5 20 75 - 125 Barium 66 120 166 mg/Kg 83 20 Ö 0.42 Beryllium 3.01 2.84 mg/Kg 80 75 - 125 20 ☼ 3.01 82 75 - 125 20 Cadmium 0.11 J 2 57 mg/Kg ₩ Chromium 22 12.0 33.7 mg/Kg 101 75 - 12520 Cobalt 6.2 30.1 35.2 mg/Kg ₩ 96 75 - 125 20 32.2 ₩ Copper 17 15.0 mg/Kg 98 75 - 125 20 ₩ Iron 21000 60.2 23300 4 mg/Kg 3351 75 - 125 20 . . 6.02 39.3 F1 F2 75 - 125 20 Lead 19 F2 F1 mg/Kg 341 24 Ö 30.1 273 4 289 75 - 125 2 20 Manganese 190 mg/Kg Nickel 30.1 43.0 97 75 - 125 n 20 14 mg/Kg

TestAmerica Chicago

Page 192 of 231

10

11/13/2017

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: 500-136575-31 MSD

Lab Sample ID: 500-136575-31 DU

Matrix: Solid

Matrix: Solid

Analyte **Antimony** Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Iron Lead

Analysis Batch: 408311

Analysis Batch: 408311

Client Sampl	le ID: 3160-50-3	(0-2')
	Prep Type: Tot	al/NA

Prep Batch: 408066

%Rec. RP				MSD	MSD	Spike	Sample	Sample	
Limits RPD Lim	%Rec	D	Unit	Qualifier	Result	Added	Qualifier	Result	Analyte
75 - 125 0 2	74	₩	mg/Kg	F1	4.92	6.02	J F1	0.49	Selenium
75 - 125 0 2	78	≎	mg/Kg		2.36	3.01		<0.31	Silver
75 - 125 1 2	81	≎	mg/Kg		4.87	6.02		<0.61	Thallium
75 - 125 2 2	107	₩	mg/Kg		68.7	30.1		37	Vanadium
75 - 125 4 2	119	☼	mg/Kg		88.7	30.1		53	Zinc
75 - 125 0 75 - 125 0 75 - 125 1 75 - 125 2	74 78 81 107	**************************************	mg/Kg mg/Kg mg/Kg mg/Kg		4.92 2.36 4.87 68.7	6.02 3.01 6.02 30.1		0.49 <0.31 <0.61 37	Selenium Silver Thallium Vanadium

Client Sample ID: 3160-50-3 (0-2')

Prep Type: Total/NA

Prep Batch: 408066

Sample	Sample	DU	DU				RPD	
Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit	
<1.2	F1	<1.2		mg/Kg	- -	NC	20	
7.3		9.19	F3	mg/Kg	☼	23	20	
66		66.3		mg/Kg	☼	0.2	20	
0.42		0.426		mg/Kg	₩	1	20	
0.11	J	0.173	F5	mg/Kg	☼	44	20	
22		20.3		mg/Kg	₩	6	20	
6.2		6.87		mg/Kg	Ψ	10	20	
17		18.8		mg/Kg	₩	8	20	
21000		25200		mg/Kg	₩	16	20	
19	F2 F1	40.8	F3	mg/Kg		74	20	
190		295	F3	mg/Kg	₩	45	20	

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

Ö

₩

₩

14.6

< 0.30

< 0.60

35.1

60.9

1.08 F5

Lab Sample ID: MB 500-408083/1-A

14

< 0.31

< 0.61

37

53

0.49 JF1

Matrix: Solid

Manganese

Nickel

Silver

Zinc

Selenium

Thallium

Vanadium

Analysis Batch: 408311

Client Sample ID: Method Blank **Prep Type: Total/NA Prep Batch: 408083**

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<2.0		2.0	0.39	mg/Kg		11/02/17 07:49	11/02/17 19:56	1
Arsenic	<1.0		1.0	0.34	mg/Kg		11/02/17 07:49	11/02/17 19:56	1
Barium	<1.0		1.0	0.11	mg/Kg		11/02/17 07:49	11/02/17 19:56	1
Beryllium	<0.40		0.40	0.093	mg/Kg		11/02/17 07:49	11/02/17 19:56	1
Cadmium	0.0466	J	0.20	0.036	mg/Kg		11/02/17 07:49	11/02/17 19:56	1
Chromium	<1.0		1.0	0.50	mg/Kg		11/02/17 07:49	11/02/17 19:56	1
Cobalt	<0.50		0.50	0.13	mg/Kg		11/02/17 07:49	11/02/17 19:56	1
Copper	<1.0		1.0	0.28	mg/Kg		11/02/17 07:49	11/02/17 19:56	1
Iron	11.1	J	20	10	mg/Kg		11/02/17 07:49	11/02/17 19:56	1
Lead	<0.50		0.50	0.23	mg/Kg		11/02/17 07:49	11/02/17 19:56	1
Manganese	<1.0		1.0	0.15	mg/Kg		11/02/17 07:49	11/02/17 19:56	1
Nickel	<1.0		1.0	0.29	mg/Kg		11/02/17 07:49	11/02/17 19:56	1
Selenium	<1.0		1.0	0.59	mg/Kg		11/02/17 07:49	11/02/17 19:56	1
Silver	<0.50		0.50	0.13	mg/Kg		11/02/17 07:49	11/02/17 19:56	1
Thallium	<1.0		1.0	0.50	mg/Kg		11/02/17 07:49	11/02/17 19:56	1

TestAmerica Chicago

Page 193 of 231

10

20

20

20

20

20

20

4

74

NC

NC

4

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: MB 500-408083/1-A

Lab Sample ID: LCS 500-408083/2-A

Matrix: Solid

Matrix: Solid

Analysis Batch: 408311

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 408083

	MB	MB						•	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vanadium	<0.50		0.50	0.12	mg/Kg		11/02/17 07:49	11/02/17 19:56	1
Zinc	<2.0		2.0	0.88	mg/Kg		11/02/17 07:49	11/02/17 19:56	1

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 408311							Prep Batch: 40808
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Antimony	50.0	43.4		mg/Kg		87	80 - 120
Arsenic	10.0	9.01		mg/Kg		90	80 - 120
Barium	200	188		mg/Kg		94	80 - 120
Beryllium	5.00	4.49		mg/Kg		90	80 - 120
Cadmium	5.00	4.65		mg/Kg		93	80 - 120
Chromium	20.0	19.3		mg/Kg		96	80 - 120
Cobalt	50.0	47.0		mg/Kg		94	80 - 120
Copper	25.0	23.6		mg/Kg		95	80 - 120
Iron	100	100		mg/Kg		100	80 - 120
Lead	10.0	9.13		mg/Kg		91	80 - 120
Manganese	50.0	45.2		mg/Kg		90	80 - 120
Nickel	50.0	46.1		mg/Kg		92	80 - 120
Selenium	10.0	8.35		mg/Kg		83	80 - 120
Silver	5.00	4.45		mg/Kg		89	80 - 120
Thallium	10.0	8.46		mg/Kg		85	80 - 120
Vanadium	50.0	47.1		mg/Kg		94	80 - 120
Zinc	50.0	45.6		mg/Kg		91	80 - 120

Lab Sample ID: 500-136575-1 MS Client Sample ID: 3160-16-4 (0-4') **Matrix: Solid**

Analysis Ratch: 408311

Prep Type: Total/NA Pron Batch: 408083

Analysis Batch: 408311	Sample	Sample	Spike	MS	MS				Prep Batch: 408083 %Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Antimony	0.46	J F2 F1	28.1	5.74	F1	mg/Kg	<u> </u>	19	75 - 125
Arsenic	6.1	F2 F1	5.62	10.3	F1	mg/Kg	☼	74	75 - 125
Barium	100		112	197		mg/Kg	☼	85	75 - 125
Beryllium	0.48		2.81	2.71		mg/Kg	*	79	75 - 125
Cadmium	0.26	В	2.81	2.65		mg/Kg	☼	85	75 - 125
Chromium	9.5	F1	11.2	22.1		mg/Kg	☼	112	75 - 125
Cobalt	5.0		28.1	33.5		mg/Kg	₩.	101	75 - 125
Copper	13	F1	14.1	25.4		mg/Kg	☼	88	75 - 125
Iron	16000	В	56.2	14700	4	mg/Kg	☼	-3072	75 - 125
Lead	30		5.62	39.3	4	mg/Kg		163	75 - 125
Manganese	180		28.1	282	4	mg/Kg	☼	368	75 - 125
Nickel	9.5		28.1	37.9		mg/Kg	☼	101	75 - 125
Selenium	0.77	F1	5.62	4.81	F1	mg/Kg	₩	72	75 - 125
Silver	<0.27		2.81	2.17		mg/Kg	☼	77	75 - 125
Thallium	<0.53	F2 F1	5.62	4.41		mg/Kg	☼	78	75 - 125
Vanadium	17		28.1	45.1		mg/Kg	₩	101	75 - 125
Zinc	71	F1	28.1	103		mg/Kg	₩	115	75 ₋ 125

TestAmerica Chicago

Page 194 of 231

11/13/2017

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: 500-136575-1 MSD Client Sample ID: 3160-16-4 (0-4') **Matrix: Solid** Prep Type: Total/NA Analysis Batch: 408311 **Prep Batch: 408083** nit

-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Antimony	0.46	J F2 F1	24.6	4.10	F4 F1	mg/Kg	<u> </u>	15	75 - 125	33	20
Arsenic	6.1	F2 F1	4.92	12.6	F1 F4	mg/Kg	₩	132	75 - 125	21	20
Barium	100		98.4	180		mg/Kg	₩	80	75 - 125	9	20
Beryllium	0.48		2.46	2.48		mg/Kg	₩.	81	75 - 125	9	20
Cadmium	0.26	В	2.46	2.36		mg/Kg	₩	85	75 - 125	12	20
Chromium	9.5	F1	9.84	22.0	F1	mg/Kg	₩	127	75 - 125	1	20
Cobalt	5.0		24.6	29.8		mg/Kg	₩	101	75 - 125	12	20
Copper	13	F1	12.3	29.0	F1	mg/Kg	₩	130	75 - 125	13	20
Iron	16000	В	49.2	17000	4	mg/Kg	₩	1112	75 - 125	14	20
Lead	30		4.92	41.2	4	mg/Kg	₩	226	75 - 125	5	20
Manganese	180		24.6	283	4	mg/Kg	₩	428	75 - 125	1	20
Nickel	9.5		24.6	36.1		mg/Kg	₩	108	75 - 125	5	20
Selenium	0.77	F1	4.92	4.82		mg/Kg	₩.	82	75 - 125	0	20
Silver	<0.27		2.46	1.85		mg/Kg	₩	75	75 - 125	16	20
Thallium	<0.53	F2 F1	4.92	3.39	F4 F1	mg/Kg	₩	69	75 - 125	26	20
Vanadium	17		24.6	44.8		mg/Kg	₩.	114	75 - 125	1	20
Zinc	71	F1	24.6	110	F1	mg/Kg	₩	161	75 - 125	7	20

Lab Sample ID: 500-136575-1 DU

Matrix: Solid

Client Sample ID: 3160-16-4 (0-4') **Prep Type: Total/NA**

Analysis Batch: 408311							Prep Batch: 40	08083
_	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Antimony	0.46	J F2 F1	<1.1		mg/Kg	-	NC	20
Arsenic	6.1	F2 F1	5.91		mg/Kg	₩	3	20
Barium	100		90.2		mg/Kg	₩	12	20
Beryllium	0.48		0.471		mg/Kg		3	20
Cadmium	0.26	В	0.270		mg/Kg	₩	5	20
Chromium	9.5	F1	9.95		mg/Kg	₩	4	20
Cobalt	5.0		5.86		mg/Kg		16	20
Copper	13	F1	13.2		mg/Kg	₩	1	20
Iron	16000	В	14600		mg/Kg	₩	12	20
Lead	30		33.6		mg/Kg	₩	11	20
Manganese	180		221	F3	mg/Kg	₩	22	20
Nickel	9.5		10.2		mg/Kg	₩	7	20
Selenium	0.77	F1	0.569	F5	mg/Kg	₩	30	20
Silver	<0.27		<0.28		mg/Kg	₩	NC	20
Thallium	<0.53	F2 F1	<0.55		mg/Kg	₽	NC	20
Vanadium	17		17.1		mg/Kg		2	20
Zinc	71	F1	79.2		mg/Kg	₩	11	20

Lab Sample ID: LCS 500-408404/2-A

Matrix: Solid							Prep Type: Total/NA
Analysis Batch: 408545							Prep Batch: 408404
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Manganese	0.500	0.477		mg/L	_	95	80 - 120

TestAmerica Chicago

Client Sample ID: Lab Control Sample

Page 195 of 231

80 - 120

95

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Manganese

10

Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: LCS 500-408407/2-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA Analysis Batch: 408545 Prep Batch: 408407 Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits

Lab Sample ID: LCS 500-408408/2-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA Analysis Batch: 408541 **Prep Batch: 408408**

0.475

mg/L

0.500

Spike LCS LCS %Rec. Added **Analyte** Result Qualifier Unit D %Rec Limits Arsenic 0.100 0.0911 mg/L 91 80 - 120 80 - 120 Barium 0.500 0.518 mg/L 104 Beryllium 0.0500 0.0490 mg/L 98 80 - 120 Cadmium 0.0500 0.0501 mg/L 100 80 - 120 Chromium 0.200 0.203 mg/L 102 80 - 120 Cobalt 0.500 0.495 mg/L 99 80 - 120 0.250 104 Copper 0.260 mg/L 80 - 120 Iron 1.00 1.10 mg/L 110 80 - 120 0.100 0.0968 mg/L 97 80 - 120 Lead Manganese 0.500 0.495 99 80 - 120 mg/L 80 - 120 Nickel 0.500 0.494 mg/L 99 Selenium 0.100 0.0996 mg/L 100 80 - 120 Silver 0.0484 80 - 120 0.0500 mg/L 97 Vanadium 0.500 0.503 mg/L 101 80 - 120 Zinc 0.500 0.487 J mg/L 97 80 - 120

Lab Sample ID: LCS 500-408410/2-A Matrix: Solid			Clie	nt Sample ID	: Lab Control Sample Prep Type: Total/NA
Analysis Batch: 408541					Prep Batch: 408410
	Spike	LCS LCS			%Rec.
Analyte	Added	Result Qualif	ier Unit	D %Rec	Limits
Arsenic	0.100	0.102	mg/L		80 - 120
Barium	0.500	0.525	mg/L	105	80 - 120
Beryllium	0.0500	0.0508	mg/L	102	80 - 120
Cadmium	0.0500	0.0509	mg/L	102	80 - 120
Chromium	0.200	0.206	mg/L	103	80 - 120
Cobalt	0.500	0.504	mg/L	101	80 - 120
Copper	0.250	0.262	mg/L	105	80 - 120
Iron	1.00	1.04	mg/L	104	80 - 120
Lead	0.100	0.0993	mg/L	99	80 - 120
Manganese	0.500	0.505	mg/L	101	80 - 120
Nickel	0.500	0.504	mg/L	101	80 - 120
Selenium	0.100	0.0980	mg/L	98	80 - 120
Silver	0.0500	0.0493	mg/L	99	80 - 120
Vanadium	0.500	0.518	mg/L	104	80 - 120
Zinc	0.500	0.492 J	mg/L	98	80 - 120

TestAmerica Chicago

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: LB 500-408173/1-C

Matrix: Solid

Analysis Batch: 408541

Client Sample ID: Method Blank

Prep Type: TCLP Prep Batch: 408408

/ many one Datem 1000 m							op =atom	
-	LB L	.В					•	
Analyte	Result C	Qualifier	RL MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050	0.	050 0.010	mg/L		11/03/17 14:57	11/05/17 16:15	1
Barium	<0.50	(0.050	mg/L		11/03/17 14:57	11/05/17 16:15	1
Beryllium	<0.0040	0.0	0.0040	mg/L		11/03/17 14:57	11/05/17 16:15	1
Cadmium	<0.0050	0.0	0.0020	mg/L		11/03/17 14:57	11/05/17 16:15	1
Chromium	<0.025	0.	0.010	mg/L		11/03/17 14:57	11/05/17 16:15	1
Cobalt	<0.025	0.	0.010	mg/L		11/03/17 14:57	11/05/17 16:15	1
Copper	<0.025	0.	0.010	mg/L		11/03/17 14:57	11/05/17 16:15	1
Iron	<0.40	(0.40 0.20	mg/L		11/03/17 14:57	11/05/17 16:15	1
Lead	< 0.0075	0.0	0.0075	mg/L		11/03/17 14:57	11/05/17 16:15	1
Manganese	<0.025	0.	0.010	mg/L		11/03/17 14:57	11/05/17 16:15	1
Nickel	<0.025	0.	0.010	mg/L		11/03/17 14:57	11/05/17 16:15	1
Selenium	<0.050	0.	050 0.020	mg/L		11/03/17 14:57	11/05/17 16:15	1
Silver	<0.025	0.	0.010	mg/L		11/03/17 14:57	11/05/17 16:15	1
Vanadium	<0.025	0.	0.010	mg/L		11/03/17 14:57	11/05/17 16:15	1
Zinc	< 0.50	(0.50 0.020	mg/L		11/03/17 14:57	11/05/17 16:15	1

Lab Sample ID: 500-136575-19 MS

Matrix: Solid

Analysis Batch: 408541

Client Sample ID: 3160-32-5 (0-3.5')

Prep Type: TCLP

Prep Batch: 408408

7 maryolo Batom 400041	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Arsenic	<0.050		0.100	0.109		mg/L		109	50 - 150
Barium	0.52		0.500	1.05		mg/L		106	50 - 150
Beryllium	<0.0040		0.0500	0.0518		mg/L		104	50 ₋ 150
Cadmium	<0.0050		0.0500	0.0587		mg/L		117	50 - 150
Chromium	<0.025		0.200	0.202		mg/L		101	50 ₋ 150
Cobalt	<0.025		0.500	0.511		mg/L		102	50 ₋ 150
Copper	0.010	J	0.250	0.300		mg/L		120	50 - 150
Iron	<0.40		1.00	1.28		mg/L		128	50 ₋ 150
Lead	< 0.0075		0.100	0.101		mg/L		101	50 ₋ 150
Manganese	0.080		0.500	0.568		mg/L		98	50 ₋ 150
Nickel	<0.025		0.500	0.512		mg/L		102	50 ₋ 150
Selenium	0.020	J	0.100	0.127		mg/L		127	50 - 150
Silver	<0.025		0.0500	0.0597		mg/L		119	50 - 150
Vanadium	<0.025		0.500	0.496		mg/L		99	50 ₋ 150
Zinc	0.067	J	0.500	0.612		mg/L		109	50 ₋ 150

Lab Sample ID: 500-136575-19 DU

Matrix: Solid

Analysis Batch: 408541

Client Sample ID: 3160-32-5 (0-3.5')

Prep Type: TCLP

Prep Batch: 408408

Allulysis Butoll: 400041							i icp Datoii. Ti	70 +00
-	Sample	Sample	DU	DU			•	RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Arsenic	<0.050		<0.050		mg/L		NC	20
Barium	0.52		0.530		mg/L		2	20
Beryllium	<0.0040		<0.0040		mg/L		NC	20
Cadmium	<0.0050		<0.0050		mg/L		NC	20
Chromium	<0.025		<0.025		mg/L		NC	20
Cobalt	<0.025		<0.025		mg/L		NC	20

TestAmerica Chicago

Page 197 of 231

11/13/2017

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: 500-136575-19 DU	Client Sample ID: 3160-32-5 (0-3.5')
Matrix: Solid	Prep Type: TCLP
Analysis Batch: 408541	Prep Batch: 408408

	Sample	Sample	DU	DU			•	RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Copper	0.010	J	0.0103	J	mg/L		4	20
Iron	<0.40		<0.40		mg/L		NC	20
Lead	< 0.0075		<0.0075		mg/L		NC	20
Manganese	0.080		0.0813		mg/L		2	20
Nickel	<0.025		<0.025		mg/L		NC	20
Selenium	0.020	J	<0.050		mg/L		NC	20
Silver	<0.025		<0.025		mg/L		NC	20
Vanadium	<0.025		<0.025		mg/L		NC	20
Zinc	0.067	J	0.0695	J	mg/L		4	20

Lab Sample ID: LB 500-408176/1-D **Client Sample ID: Method Blank Matrix: Solid Prep Type: TCLP** Analysis Batch: 408541

Prep Batch: 408410

	LB	LB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/03/17 15:00	11/05/17 14:24	1
Barium	<0.50		0.50	0.050	mg/L		11/03/17 15:00	11/05/17 14:24	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/03/17 15:00	11/05/17 14:24	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/03/17 15:00	11/05/17 14:24	1
Chromium	<0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 14:24	1
Cobalt	<0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 14:24	1
Copper	<0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 14:24	1
Iron	<0.40		0.40	0.20	mg/L		11/03/17 15:00	11/05/17 14:24	1
Lead	<0.0075		0.0075	0.0075	mg/L		11/03/17 15:00	11/05/17 14:24	1
Manganese	<0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 14:24	1
Nickel	<0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 14:24	1
Selenium	<0.050		0.050	0.020	mg/L		11/03/17 15:00	11/05/17 14:24	1
Silver	<0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 14:24	1
Vanadium	<0.025		0.025	0.010	mg/L		11/03/17 15:00	11/05/17 14:24	1
Zinc	<0.50		0.50	0.020	mg/L		11/03/17 15:00	11/05/17 14:24	1

Lab Sample ID: LB 500-408171/1-B Client Sample ID: Method Blank **Prep Type: SPLP East Matrix: Solid** Analysis Batch: 408545 Prep Batch: 408404

LB LB Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac

Manganese <0.025 0.025 0.010 mg/L 11/03/17 14:53 11/06/17 01:48

Lab Sample ID: LB 500-408172/1-B **Client Sample ID: Method Blank Matrix: Solid Prep Type: SPLP East** Analysis Batch: 408545 **Prep Batch: 408407**

LB LB Analyte RL **MDL** Unit Analyzed Result Qualifier Prepared Manganese <0.025 0.025 0.010 mg/L 11/03/17 14:56 11/06/17 00:25

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Method: 6020A - Metals (ICP/MS)

Lab Sample ID: LCS 500-408408/2-A

Lab Sample ID: LCS 500-408410/2-A

Matrix: Solid

Matrix: Solid

Analysis Batch: 408763

Analysis Batch: 408763

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 408408 %Rec.

Spike LCS LCS Added Result Qualifier Unit D %Rec Limits **Analyte** 0.500 80 - 120 **Antimony** 0.467 mg/L 93 Thallium 0.100 0.0990 99 80 - 120 mg/L

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 408410 %Rec.

LCS LCS Spike Analyte Added Result Qualifier Unit %Rec Limits **Antimony** 0.500 0.477 mg/L 95 80 - 120 Thallium 0.100 0.104 mg/L 104 80 - 120

Lab Sample ID: LB 500-408173/1-C **Client Sample ID: Method Blank Matrix: Solid**

Prep Type: TCLP Prep Batch: 408408

Analysis Batch: 408763

LB LB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Antimony <0.0060 0.0060 0.0060 mg/L 11/03/17 14:57 11/06/17 15:59 Thallium < 0.0020 0.0020 0.0020 mg/L 11/03/17 14:57 11/06/17 15:59

Lab Sample ID: 500-136575-19 MS Client Sample ID: 3160-32-5 (0-3.5')

Matrix: Solid

Prep Type: TCLP Analysis Batch: 408763

Prep Batch: 408408

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits 0.500 **Antimony** 0.465 mg/L 93 50 - 150 <0.0060 Thallium <0.0020 0.100 0.105 mg/L 105 50 - 150

Lab Sample ID: 500-136575-19 DU Client Sample ID: 3160-32-5 (0-3.5')

Sample Sample

<0.0060

<0.0020

Result Qualifier

DU DU

<0.0060

<0.0020

Result Qualifier

Unit

mg/L

mg/L

Matrix: Solid

Analyte

Antimony

Thallium

Analysis Batch: 408763

Prep Type: TCLP

Prep Batch: 408408 RPD RPD Limit NC 20

Lab Sample ID: LB 500-408176/1-D **Client Sample ID: Method Blank**

Matrix: Solid

Analysis Batch: 408763

Prep Type: TCLP

Prep Batch: 408410

LB LB Result Qualifier **MDL** Unit **Analyte** RL Prepared Analyzed Dil Fac Antimony <0.0060 0.0060 0.0060 mg/L 11/03/17 15:00 11/06/17 18:02 Thallium < 0.0020 0.0020 0.0020 mg/L 11/03/17 15:00 11/06/17 18:02

11/13/2017

10

10

Prep Type: Total/NA

Prep Batch: 408360

Prep Batch: 408350

Method: 7470A - TCLP Mercury

Lab Sample ID: MB 500-408350/12-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA Analysis Batch: 408624 **Prep Batch: 408350**

MB MB

Analyte Result Qualifier RL **MDL** Unit Analyzed Dil Fac Prepared 0.00020 11/03/17 12:20 11/06/17 10:28 <0.00020 0.00020 mg/L Mercury

Lab Sample ID: LCS 500-408350/13-A Client Sample ID: Lab Control Sample **Matrix: Solid** Prep Type: Total/NA Analysis Batch: 408624 **Prep Batch: 408350** Spike LCS LCS %Rec. Added Limits Analyte Result Qualifier Unit %Rec 80 - 120 Mercury 0.00200 0.00174 mg/L 87

Lab Sample ID: MB 500-408360/12-A **Client Sample ID: Method Blank**

Analysis Batch: 408624

MB MB

Result Qualifier RL **MDL** Unit Analyte Prepared Analyzed Dil Fac Mercury <0.00020 0.00020 0.00020 mg/L 11/03/17 12:20 11/06/17 08:47

Lab Sample ID: LCS 500-408360/13-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA **Prep Batch: 408360**

Analysis Batch: 408624

Matrix: Solid

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Mercury 0.00200 0.00195 98 80 - 120 mg/L

Lab Sample ID: LB 500-408173/1-B Client Sample ID: Method Blank **Matrix: Solid Prep Type: TCLP**

Analysis Batch: 408624

LB LB

Analyte Result Qualifier RL **MDL** Unit **Prepared** Analyzed Dil Fac <0.00020 0.00020 0.00020 mg/L 11/03/17 12:20 11/06/17 10:31 Mercury

Lab Sample ID: 500-136575-19 MS Client Sample ID: 3160-32-5 (0-3.5') **Prep Type: TCLP**

Matrix: Solid

Analysis Batch: 408624 **Prep Batch: 408350**

Sample Sample Spike MS MS %Rec. **Result Qualifier** Added Result Qualifier Limits Analyte Unit D %Rec 0.00100 < 0.00020 0.00105 105 50 - 150 Mercury mg/L

Lab Sample ID: 500-136575-19 DU Client Sample ID: 3160-32-5 (0-3.5')

Matrix: Solid

Prep Type: TCLP Analysis Batch: 408624 Prep Batch: 408350

Sample Sample DU DU **RPD** Result Qualifier Result Qualifier RPD Analyte Unit D Limit Mercury <0.00020 <0.00020 mg/L NC 20

Lab Sample ID: LB 500-408176/1-C

Matrix: Solid Prep Type: TCLP Analysis Batch: 408624 **Prep Batch: 408360**

LB LB

Analyte Result Qualifier **MDL** Unit RL Prepared Analyzed Dil Fac Mercury < 0.00020 0.00020 0.00020 mg/L 11/03/17 12:20 11/06/17 08:49

TestAmerica Chicago

Client Sample ID: Method Blank

10

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Lab Sample ID: 500-136575-20 MS

Client Sample ID: 3160-32-6 (0-3.5')

Matrix: Solid

Analysis Batch: 408624

Prep Type: TCLP

Prep Batch: 408360 %Rec.

Sample Sample Spike MS MS Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits <0.00020 0.00100 0.00102 102 50 - 150 Mercury mg/L

Lab Sample ID: 500-136575-20 DU Client Sample ID: 3160-32-6 (0-3.5')

Matrix: Solid

Analysis Batch: 408624

Prep Type: TCLP

Prep Batch: 408360

DU DU Sample Sample **RPD** Result Qualifier Result Qualifier RPD Limit Analyte Unit D <0.00020 Mercury <0.00020 mg/L NC 20

Method: 7471B - Mercury (CVAA)

Lab Sample ID: MB 500-408223/12-A **Client Sample ID: Method Blank**

Matrix: Solid

Analysis Batch: 408366

Prep Type: Total/NA

Prep Batch: 408223

MB MB

Sample Sample

MDL Unit Analyte Result Qualifier RL Prepared Analyzed Dil Fac Mercury <0.017 0.017 0.0056 mg/Kg 11/02/17 16:10 11/03/17 08:00

Lab Sample ID: LCS 500-408223/13-A Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 408366

Prep Batch: 408223 LCS LCS Spike %Rec.

Analyte Added Result Qualifier Unit %Rec Limits Mercury 0.167 0.172 mg/Kg 103 80 - 120

Lab Sample ID: 500-136575-6 MS Client Sample ID: 3160-23-1 (0-4.5') **Matrix: Solid**

Analysis Batch: 408366

Prep Type: Total/NA **Prep Batch: 408223**

Spike MS MS %Rec. Sample Sample

Added Analyte Result Qualifier Result Qualifier Unit D %Rec Limits 0.0894 97 Mercury 0.031 0.118 75 - 125 mg/Kg

Lab Sample ID: 500-136575-6 MSD Client Sample ID: 3160-23-1 (0-4.5')

Matrix: Solid

Analysis Batch: 408366

Prep Type: Total/NA **Prep Batch: 408223** %Rec. **RPD**

MSD MSD Sample Sample Spike Analyte **Result Qualifier** Added Result Qualifier Limits Unit D RPD Limit 0.0897 97 Mercury 0.031 0.118 mg/Kg 75 - 125

Lab Sample ID: 500-136575-6 DU Client Sample ID: 3160-23-1 (0-4.5')

Matrix: Solid

Analysis Batch: 408366

Prep Type: Total/NA Prep Batch: 408223 RPD

Result Qualifier Result Qualifier RPD Limit **Analyte** Unit ח Mercury 0.031 0.0357 mg/Kg 14 20

DU DU

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Method: 7471B - Mercury (CVAA) (Continued)

Lab Sample ID: MB 500-408246/12-A	Client Sample ID: Method Blank
Matrix: Solid	Prep Type: Total/NA
Analysis Batch: 408366	Prep Batch: 408246

MB MB

Analyte Result Qualifier RL MDL Unit Analyzed Dil Fac **Prepared** 0.017 11/02/17 16:10 11/03/17 09:05 <0.017 0.0056 mg/Kg Mercury

Lab Sample ID: LCS 500-408246/13-A Client Sample ID: Lab Control Sample **Matrix: Solid** Prep Type: Total/NA Analysis Batch: 408366 **Prep Batch: 408246** Spike LCS LCS %Rec. Added Limits Analyte Result Qualifier Unit D %Rec 80 - 120 Mercury 0.167 0.177 mg/Kg 106

Lab Sample ID: 500-136575-31 MS Client Sample ID: 3160-50-3 (0-2') **Matrix: Solid** Prep Type: Total/NA Analysis Batch: 408366 Prep Batch: 408246 Sample Sample Spike MS MS %Rec. Result Qualifier Added Result Qualifier Limits Analyte Unit D %Rec 74 Mercury 0.025 0.0932 0.114 mg/Kg 95 75 - 125

Client Sample ID: 3160-50-3 (0-2') Lab Sample ID: 500-136575-31 MSD **Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 408366** Prep Batch: 408246 Sample Sample Spike MSD MSD %Rec. RPD Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit Mercury 0.025 0.0928 0.112 75 - 125 mg/Kg

Lab Sample ID: 500-136575-31 DU Client Sample ID: 3160-50-3 (0-2') **Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 408366** Prep Batch: 408246 DU DU Sample Sample RPD Analyte **Result Qualifier** Result Qualifier Unit D Limit 0.0227 mg/Kg Mercury 0.025

Method: 9045D - pH

Lab Sample ID: 500-136575-6 DU Client Sample ID: 3160-23-1 (0-4.5') **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 408326

Sample Sample DU DU **RPD** Result Qualifier Result Qualifier Unit Analyte RPD Limit SU 6.2 0.3 Hq 6.24

Lab Sample ID: 500-136575-25 DU Client Sample ID: 3160-45-3 (0-5') **Matrix: Solid Prep Type: Total/NA**

Analysis Batch: 408326

DU DU Sample Sample **RPD** Analyte Result Qualifier Result Qualifier Unit D RPD Limit рН 8.1 8.09 SU

10

TestAmerica Chicago

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Lab Sample ID: 500-136575-1

Matrix: Solid

Client Sample ID: 3160-16-4 (0-4')

Date Collected: 10/31/17 08:20 Date Received: 11/01/17 09:05

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			408173	11/02/17 12:37	JLC	TAL CHI
TCLP	Prep	3010A			408408	11/03/17 14:57	BDE	TAL CHI
TCLP	Analysis	6010B		1	408541	11/05/17 16:23	PJ1	TAL CHI
TCLP	Leach	1311			408173	11/02/17 12:37	JLC	TAL CHI
TCLP	Prep	3010A			408408	11/03/17 14:57	BDE	TAL CHI
TCLP	Analysis	6020A		1	408763	11/06/17 16:07	FXG	TAL CHI
TCLP	Leach	1311			408173	11/02/17 12:37	JLC	TAL CHI
TCLP	Prep	7470A			408350	11/03/17 12:20	EEN	TAL CHI
TCLP	Analysis	7470A		1	408624	11/06/17 10:33	EEN	TAL CHI
Total/NA	Analysis	9045D		1	408326	11/03/17 08:57	SMO	TAL CHI
Total/NA	Analysis	Moisture		1	407988	11/01/17 14:42	LWN	TAL CHI

Lab Sample ID: 500-136575-1 Client Sample ID: 3160-16-4 (0-4')

Date Collected: 10/31/17 08:20 Date Received: 11/01/17 09:05

Eas campic is. coo-record-i
Matrix: Solid
Parcent Solids: 86 5

Lab Sample ID: 500-136575-2

Matrix: Solid

									÷
_	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Prep	5035			408142	11/01/17 18:01	WRE	TAL CHI	_
Total/NA	Analysis	8260B		1	408095	11/02/17 12:17	DJD	TAL CHI	
Total/NA	Prep	3541			408852	11/07/17 16:14	NRJ	TAL CHI	
Total/NA	Analysis	8270D		1	408988	11/08/17 13:13	AJD	TAL CHI	
Total/NA	Prep	3050B			408083	11/02/17 07:49	JEF	TAL CHI	
Total/NA	Analysis	6010B		1	408311	11/02/17 20:03	PJ1	TAL CHI	
Total/NA	Prep	7471B			408223	11/02/17 16:10	EEN	TAL CHI	
Total/NA	Analysis	7471B		1	408366	11/03/17 08:05	EEN	TAL CHI	

Client Sample ID: 3160-16-3 (0-4')

Date Collected: 10/31/17 08:30

Date Received: 11/01/17 09:05

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			408173	11/02/17 12:37	JLC	TAL CH
TCLP	Prep	3010A			408408	11/03/17 14:57	BDE	TAL CH
TCLP	Analysis	6010B		1	408541	11/05/17 16:27	PJ1	TAL CH
TCLP	Leach	1311			408173	11/02/17 12:37	JLC	TAL CH
TCLP	Prep	3010A			408408	11/03/17 14:57	BDE	TAL CH
TCLP	Analysis	6020A		1	408763	11/06/17 16:11	FXG	TAL CH
TCLP	Leach	1311			408173	11/02/17 12:37	JLC	TAL CH
TCLP	Prep	7470A			408350	11/03/17 12:20	EEN	TAL CH
TCLP	Analysis	7470A		1	408624	11/06/17 10:34	EEN	TAL CH
Total/NA	Analysis	9045D		1	408326	11/03/17 08:57	SMO	TAL CH
Total/NA	Analysis	Moisture		1	407988	11/01/17 14:42	LWN	TAL CH

TestAmerica Chicago

Page 203 of 231

2

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-16-3 (0-4')

Lab Sample ID: 500-136575-2

 Date Collected: 10/31/17 08:30
 Matrix: Solid

 Date Received: 11/01/17 09:05
 Percent Solids: 88.6

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			408142	11/01/17 18:01	WRE	TAL CHI
Total/NA	Analysis	8260B		1	408095	11/02/17 13:52	DJD	TAL CHI
Total/NA	Prep	3541			408852	11/07/17 16:14	NRJ	TAL CHI
Total/NA	Analysis	8270D		1	408968	11/08/17 16:29	AJD	TAL CHI
Total/NA	Prep	3050B			408083	11/02/17 07:49	JEF	TAL CHI
Total/NA	Analysis	6010B		1	408311	11/02/17 20:23	PJ1	TAL CHI
Total/NA	Prep	7471B			408223	11/02/17 16:10	EEN	TAL CHI
Total/NA	Analysis	7471B		1	408366	11/03/17 08:07	EEN	TAL CHI

Client Sample ID: 3160-16-2 (0-4')

Lab Sample ID: 500-136575-3

Date Collected: 10/31/17 08:07 Matrix: Solid

Date Received: 11/01/17 09:05

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			408173	11/02/17 12:37	JLC	TAL CH
TCLP	Prep	3010A			408408	11/03/17 14:57	BDE	TAL CH
TCLP	Analysis	6010B		1	408541	11/05/17 16:31	PJ1	TAL CH
TCLP	Leach	1311			408173	11/02/17 12:37	JLC	TAL CH
TCLP	Prep	3010A			408408	11/03/17 14:57	BDE	TAL CH
TCLP	Analysis	6020A		1	408763	11/06/17 16:15	FXG	TAL CH
TCLP	Leach	1311			408173	11/02/17 12:37	JLC	TAL CH
TCLP	Prep	7470A			408350	11/03/17 12:20	EEN	TAL CH
TCLP	Analysis	7470A		1	408624	11/06/17 10:36	EEN	TAL CH
Total/NA	Analysis	9045D		1	408326	11/03/17 08:57	SMO	TAL CH
Total/NA	Analysis	Moisture		1	407988	11/01/17 14:42	LWN	TAL CH

Client Sample ID: 3160-16-2 (0-4')

Lab Sample ID: 500-136575-3

Date Collected: 10/31/17 08:07 Matrix: Solid
Date Received: 11/01/17 09:05 Percent Solids: 87.1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			408142	11/01/17 18:01	WRE	TAL CH
Total/NA	Analysis	8260B		1	408095	11/02/17 14:17	DJD	TAL CH
Total/NA	Prep	3541			408852	11/07/17 16:14	NRJ	TAL CH
Total/NA	Analysis	8270D		1	408968	11/08/17 16:54	AJD	TAL CH
Total/NA	Prep	3050B			408083	11/02/17 07:49	JEF	TAL CH
Total/NA	Analysis	6010B		1	408311	11/02/17 20:27	PJ1	TAL CH
Total/NA	Prep	7471B			408223	11/02/17 16:10	EEN	TAL CH
Total/NA	Analysis	7471B		1	408366	11/03/17 08:09	EEN	TAL CH

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Lab Sample ID: 500-136575-4 Client Sample ID: 3160-16-1 (0-4')

Date Collected: 10/31/17 08:50 **Matrix: Solid**

Date Received: 11/01/17 09:05

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311	 -		408173	11/02/17 12:37	JLC	TAL CHI
TCLP	Prep	3010A			408408	11/03/17 14:57	BDE	TAL CHI
TCLP	Analysis	6010B		1	408541	11/05/17 16:35	PJ1	TAL CHI
TCLP	Leach	1311			408173	11/02/17 12:37	JLC	TAL CHI
TCLP	Prep	3010A			408408	11/03/17 14:57	BDE	TAL CHI
TCLP	Analysis	6020A		1	408763	11/06/17 16:19	FXG	TAL CHI
TCLP	Leach	1311			408173	11/02/17 12:37	JLC	TAL CHI
TCLP	Prep	7470A			408350	11/03/17 12:20	EEN	TAL CHI
TCLP	Analysis	7470A		1	408624	11/06/17 10:37	EEN	TAL CHI
Total/NA	Analysis	9045D		1	408326	11/03/17 08:57	SMO	TAL CHI
Total/NA	Analysis	Moisture		1	407988	11/01/17 14:42	LWN	TAL CHI

Client Sample ID: 3160-16-1 (0-4') Lab Sample ID: 500-136575-4

Date Collected: 10/31/17 08:50 **Matrix: Solid** Date Received: 11/01/17 09:05 Percent Solids: 86.6

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			408142	11/01/17 18:01	WRE	TAL CH
Total/NA	Analysis	8260B		1	408095	11/02/17 14:43	DJD	TAL CH
Total/NA	Prep	3541			408852	11/07/17 16:14	NRJ	TAL CH
Total/NA	Analysis	8270D		1	408968	11/08/17 17:20	AJD	TAL CH
Total/NA	Prep	3050B			408083	11/02/17 07:49	JEF	TAL CH
Total/NA	Analysis	6010B		5	408472	11/03/17 13:52	KML	TAL CH
Total/NA	Prep	3050B			408083	11/02/17 07:49	JEF	TAL CH
Total/NA	Analysis	6010B		1	408311	11/02/17 20:31	PJ1	TAL CH
Total/NA	Prep	7471B			408223	11/02/17 16:10	EEN	TAL CH
Total/NA	Analysis	7471B		1	408366	11/03/17 08:11	EEN	TAL CH

Client Sample ID: 3160-16-5 (0-4') Lab Sample ID: 500-136575-5

Date Collected: 10/31/17 09:00 Date Received: 11/01/17 09:05

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			408173	11/02/17 12:37	JLC	TAL CHI
TCLP	Prep	3010A			408408	11/03/17 14:57	BDE	TAL CHI
TCLP	Analysis	6010B		1	408541	11/05/17 16:47	PJ1	TAL CHI
TCLP	Leach	1311			408173	11/02/17 12:37	JLC	TAL CHI
TCLP	Prep	3010A			408408	11/03/17 14:57	BDE	TAL CHI
TCLP	Analysis	6020A		1	408763	11/06/17 16:23	FXG	TAL CHI
TCLP	Leach	1311			408173	11/02/17 12:37	JLC	TAL CHI
TCLP	Prep	7470A			408350	11/03/17 12:20	EEN	TAL CHI
TCLP	Analysis	7470A		1	408624	11/06/17 10:39	EEN	TAL CHI
Total/NA	Analysis	9045D		1	408326	11/03/17 08:57	SMO	TAL CHI
Total/NA	Analysis	Moisture		1	407988	11/01/17 14:42	LWN	TAL CHI

TestAmerica Chicago

Page 205 of 231

Matrix: Solid

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-16-5 (0-4')

Date Collected: 10/31/17 09:00 Date Received: 11/01/17 09:05

Lab Sample ID: 500-136575-5

Matrix: Solid Percent Solids: 83.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			408142	11/01/17 18:01	WRE	TAL CHI
Total/NA	Analysis	8260B		1	408095	11/02/17 15:08	DJD	TAL CHI
Total/NA	Prep	3541			408852	11/07/17 16:14	NRJ	TAL CHI
Total/NA	Analysis	8270D		1	408988	11/08/17 13:41	AJD	TAL CHI
Total/NA	Prep	3050B			408083	11/02/17 07:49	JEF	TAL CHI
Total/NA	Analysis	6010B		1	408311	11/02/17 20:44	PJ1	TAL CHI
Total/NA	Prep	7471B			408223	11/02/17 16:10	EEN	TAL CHI
Total/NA	Analysis	7471B		1	408366	11/03/17 08:14	EEN	TAL CHI

Lab Sample ID: 500-136575-6 Client Sample ID: 3160-23-1 (0-4.5')

Date Collected: 10/31/17 09:20 Date Received: 11/01/17 09:05

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			408173	11/02/17 12:37	JLC	TAL CHI
TCLP	Prep	3010A			408408	11/03/17 14:57	BDE	TAL CHI
TCLP	Analysis	6010B		1	408541	11/05/17 16:51	PJ1	TAL CHI
TCLP	Leach	1311			408173	11/02/17 12:37	JLC	TAL CHI
TCLP	Prep	3010A			408408	11/03/17 14:57	BDE	TAL CHI
TCLP	Analysis	6020A		1	408763	11/06/17 16:27	FXG	TAL CHI
TCLP	Leach	1311			408173	11/02/17 12:37	JLC	TAL CHI
TCLP	Prep	7470A			408350	11/03/17 12:20	EEN	TAL CHI
TCLP	Analysis	7470A		1	408624	11/06/17 10:40	EEN	TAL CHI
Total/NA	Analysis	9045D		1	408326	11/03/17 08:57	SMO	TAL CHI
Total/NA	Analysis	Moisture		1	407988	11/01/17 14:42	LWN	TAL CHI

Client Sample ID: 3160-23-1 (0-4.5')

Date Collected: 10/31/17 09:20 Date Received: 11/01/17 09:05 Lab Sample ID: 500-136575-6 **Matrix: Solid** Percent Solids: 89.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			408142	11/01/17 18:01	WRE	TAL CHI
Total/NA	Analysis	8260B		1	408095	11/02/17 15:33	DJD	TAL CHI
Total/NA	Prep	3541			408852	11/07/17 16:14	NRJ	TAL CHI
Total/NA	Analysis	8270D		1	408968	11/08/17 17:45	AJD	TAL CHI
Total/NA	Prep	3541			408939	11/08/17 07:22	STW	TAL CHI
Total/NA	Analysis	8081B		1	409183	11/09/17 11:39	PJG	TAL CHI
Total/NA	Prep	8151A			409129	11/08/17 22:28	NRJ	TAL CHI
Total/NA	Analysis	8151A		10	409021	11/10/17 08:21	JBJ	TAL CHI
Total/NA	Prep	3050B			408083	11/02/17 07:49	JEF	TAL CHI
Total/NA	Analysis	6010B		1	408311	11/02/17 20:48	PJ1	TAL CHI
Total/NA	Prep	7471B			408223	11/02/17 16:10	EEN	TAL CHI
Total/NA	Analysis	7471B		1	408366	11/03/17 08:16	EEN	TAL CHI

11/13/2017

Page 206 of 231

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Lab Sample ID: 500-136575-7

Client Sample ID: 3160-23-2 (0-4.5') Date Collected: 10/31/17 09:30

Matrix: Solid

Date Received: 11/01/17 09:05

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			408173	11/02/17 12:37	JLC	TAL CHI
TCLP	Prep	3010A			408408	11/03/17 14:57	BDE	TAL CHI
TCLP	Analysis	6010B		1	408541	11/05/17 16:55	PJ1	TAL CHI
TCLP	Leach	1311			408173	11/02/17 12:37	JLC	TAL CHI
TCLP	Prep	3010A			408408	11/03/17 14:57	BDE	TAL CHI
TCLP	Analysis	6020A		1	408763	11/06/17 16:31	FXG	TAL CHI
TCLP	Leach	1311			408173	11/02/17 12:37	JLC	TAL CHI
TCLP	Prep	7470A			408350	11/03/17 12:20	EEN	TAL CHI
TCLP	Analysis	7470A		1	408624	11/06/17 10:42	EEN	TAL CHI
Total/NA	Analysis	9045D		1	408326	11/03/17 08:57	SMO	TAL CHI
Total/NA	Analysis	Moisture		1	407988	11/01/17 14:42	LWN	TAL CHI

Client Sample ID: 3160-23-2 (0-4.5') Lab Sample ID: 500-136575-7

Date Collected: 10/31/17 09:30 **Matrix: Solid** Date Received: 11/01/17 09:05 Percent Solids: 81.9

Batch **Batch** Dilution Batch **Prepared Prep Type** Туре Method Run Factor Number or Analyzed Analyst Lab Total/NA 5035 TAL CHI Prep 408142 11/01/17 18:01 WRE Total/NA Analysis 8260B 408095 11/02/17 15:59 TAL CHI 1 Total/NA Prep 3541 408852 11/07/17 16:14 NRJ TAL CHI Total/NA 408988 11/08/17 14:09 AJD TAL CHI Analysis 8270D 1 TAL CHI Total/NA Prep 3541 408939 11/08/17 07:22 STW Total/NA Analysis 8081B 5 409066 11/08/17 21:54 PJG TAL CHI Total/NA TAL CHI Prep 8151A 409129 11/08/17 22:28 NRJ 409021 11/10/17 08:45 JBJ TAL CHI Total/NA Analysis 8151A 10 Total/NA 3050B 408083 11/02/17 07:49 JEF TAL CHI Prep Total/NA Analysis 6010B 408311 11/02/17 20:52 PJ1 TAL CHI 1 Total/NA Prep 7471B 408223 11/02/17 16:10 EEN TAL CHI 408366 11/03/17 08:29 EEN TAL CHI Total/NA Analysis 7471B 1

Lab Sample ID: 500-136575-8 Client Sample ID: 3160-25-1 (0-4')

Date Collected: 10/31/17 09:50 **Matrix: Solid** Date Received: 11/01/17 09:05

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
SPLP East	Leach	1312			408171	11/02/17 12:37	JLC	TAL CHI
SPLP East	Prep	3010A			408404	11/03/17 14:53	BDE	TAL CHI
SPLP East	Analysis	6010B		1	408545	11/06/17 02:24	PJ1	TAL CHI
TCLP	Leach	1311			408173	11/02/17 12:37	JLC	TAL CHI
TCLP	Prep	3010A			408408	11/03/17 14:57	BDE	TAL CHI
TCLP	Analysis	6010B		1	408541	11/05/17 16:59	PJ1	TAL CHI
TCLP	Leach	1311			408173	11/02/17 12:37	JLC	TAL CHI
TCLP	Prep	3010A			408408	11/03/17 14:57	BDE	TAL CHI
TCLP	Analysis	6020A		1	408763	11/06/17 16:44	FXG	TAL CHI

TestAmerica Chicago

Page 207 of 231

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-25-1 (0-4')

Lab Sample ID: 500-136575-8 Date Collected: 10/31/17 09:50

Matrix: Solid

Date Received: 11/01/17 09:05

	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
TCLP	Leach	1311			408173	11/02/17 12:37	JLC	TAL CHI	
TCLP	Prep	7470A			408350	11/03/17 12:20	EEN	TAL CHI	
TCLP	Analysis	7470A		1	408624	11/06/17 11:16	EEN	TAL CHI	
Total/NA	Analysis	9045D		1	408326	11/03/17 08:57	SMO	TAL CHI	
Total/NA	Analysis	Moisture		1	407988	11/01/17 14:42	LWN	TAL CHI	

Lab Sample ID: 500-136575-8 Client Sample ID: 3160-25-1 (0-4') Date Collected: 10/31/17 09:50

Matrix: Solid

Date Received: 11/01/17 09:05 Percent Solids: 79.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			408142	11/01/17 18:01	WRE	TAL CH
Total/NA	Analysis	8260B		1	408095	11/02/17 16:24	DJD	TAL CH
Total/NA	Prep	3541			408852	11/07/17 16:14	NRJ	TAL CH
Total/NA	Analysis	8270D		1	408968	11/08/17 18:10	AJD	TAL CH
Total/NA	Prep	3050B			408083	11/02/17 07:49	JEF	TAL CH
Total/NA	Analysis	6010B		1	408311	11/02/17 20:56	PJ1	TAL CH
Total/NA	Prep	7471B			408223	11/02/17 16:10	EEN	TAL CH
Total/NA	Analysis	7471B		1	408366	11/03/17 08:31	EEN	TAL CH

Lab Sample ID: 500-136575-9 Client Sample ID: 3160-25-2 (0-4')

Date Collected: 10/31/17 10:00 **Matrix: Solid** Date Received: 11/01/17 09:05

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			408173	11/02/17 12:37	JLC	TAL CH
TCLP	Prep	3010A			408408	11/03/17 14:57	BDE	TAL CH
TCLP	Analysis	6010B		1	408541	11/05/17 17:03	PJ1	TAL CH
TCLP	Leach	1311			408173	11/02/17 12:37	JLC	TAL CH
TCLP	Prep	3010A			408408	11/03/17 14:57	BDE	TAL CH
TCLP	Analysis	6020A		1	408763	11/06/17 16:52	FXG	TAL CH
TCLP	Leach	1311			408173	11/02/17 12:37	JLC	TAL CH
TCLP	Prep	7470A			408350	11/03/17 12:20	EEN	TAL CH
TCLP	Analysis	7470A		1	408624	11/06/17 11:17	EEN	TAL CH
Total/NA	Analysis	9045D		1	408326	11/03/17 08:57	SMO	TAL CH
Total/NA	Analysis	Moisture		1	407988	11/01/17 14:42	LWN	TAL CH

Lab Sample ID: 500-136575-9 Client Sample ID: 3160-25-2 (0-4')

Date Collected: 10/31/17 10:00 **Matrix: Solid** Date Received: 11/01/17 09:05 Percent Solids: 85.2

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			408142	11/01/17 18:01	WRE	TAL CHI

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-25-2 (0-4')

Date Collected: 10/31/17 10:00 Date Received: 11/01/17 09:05

Lab Sample ID: 500-136575-9

Matrix: Solid Percent Solids: 85.2

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	408095	11/02/17 16:49	DJD	TAL CHI
Total/NA	Prep	3541			408852	11/07/17 16:14	NRJ	TAL CHI
Total/NA	Analysis	8270D		1	408968	11/08/17 18:35	AJD	TAL CHI
Total/NA	Prep	3050B			408083	11/02/17 07:49	JEF	TAL CHI
Total/NA	Analysis	6010B		1	408311	11/02/17 21:00	PJ1	TAL CHI
Total/NA	Prep	7471B			408223	11/02/17 16:10	EEN	TAL CHI
Total/NA	Analysis	7471B		1	408366	11/03/17 08:34	EEN	TAL CHI

Client Sample ID: 3160-26-2 (0-4')

Date Collected: 10/31/17 10:10

Date Received: 11/01/17 09:05

Lab Sample ID: 500-136575-10 **Matrix: Solid**

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			408173	11/02/17 12:37	JLC	TAL CHI
TCLP	Prep	3010A			408408	11/03/17 14:57	BDE	TAL CHI
TCLP	Analysis	6010B		1	408541	11/05/17 17:07	PJ1	TAL CHI
TCLP	Leach	1311			408173	11/02/17 12:37	JLC	TAL CHI
TCLP	Prep	3010A			408408	11/03/17 14:57	BDE	TAL CHI
TCLP	Analysis	6020A		1	408763	11/06/17 16:56	FXG	TAL CHI
TCLP	Leach	1311			408173	11/02/17 12:37	JLC	TAL CHI
TCLP	Prep	7470A			408350	11/03/17 12:20	EEN	TAL CHI
TCLP	Analysis	7470A		1	408624	11/06/17 11:19	EEN	TAL CHI
Total/NA	Analysis	9045D		1	408326	11/03/17 08:57	SMO	TAL CHI
Total/NA	Analysis	Moisture		1	407988	11/01/17 14:42	LWN	TAL CHI

Client Sample ID: 3160-26-2 (0-4')

Date Collected: 10/31/17 10:10

Date Received: 11/01/17 09:05

Lab Samp	le ID: {	500-136	575-10
----------	----------	---------	--------

Matrix: Solid Percent Solids: 84.1

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			408142	11/01/17 18:01	WRE	TAL CHI
Total/NA	Analysis	8260B		1	408095	11/02/17 17:14	DJD	TAL CHI
Total/NA	Prep	3541			408852	11/07/17 16:14	NRJ	TAL CHI
Total/NA	Analysis	8270D		1	408968	11/08/17 19:00	AJD	TAL CHI
Total/NA	Prep	3050B			408083	11/02/17 07:49	JEF	TAL CHI
Total/NA	Analysis	6010B		1	408311	11/02/17 21:03	PJ1	TAL CHI
Total/NA	Prep	7471B			408223	11/02/17 16:10	EEN	TAL CHI
Total/NA	Analysis	7471B		1	408366	11/03/17 08:36	EEN	TAL CHI

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-26-1 (0-4')

Lab Sample ID: 500-136575-11 Date Collected: 10/31/17 10:20 **Matrix: Solid**

Date Received: 11/01/17 09:05

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
SPLP East	Leach	1312			408171	11/02/17 12:37	JLC	TAL CHI
SPLP East	Prep	3010A			408404	11/03/17 14:53	BDE	TAL CHI
SPLP East	Analysis	6010B		1	408545	11/06/17 02:44	PJ1	TAL CHI
TCLP	Leach	1311			408173	11/02/17 12:37	JLC	TAL CHI
TCLP	Prep	3010A			408408	11/03/17 14:57	BDE	TAL CHI
TCLP	Analysis	6010B		1	408541	11/05/17 17:11	PJ1	TAL CHI
TCLP	Leach	1311			408173	11/02/17 12:37	JLC	TAL CHI
TCLP	Prep	3010A			408408	11/03/17 14:57	BDE	TAL CHI
TCLP	Analysis	6020A		1	408763	11/06/17 17:00	FXG	TAL CHI
TCLP	Leach	1311			408173	11/02/17 12:37	JLC	TAL CHI
TCLP	Prep	7470A			408350	11/03/17 12:20	EEN	TAL CHI
TCLP	Analysis	7470A		1	408624	11/06/17 11:20	EEN	TAL CHI
Total/NA	Analysis	9045D		1	408326	11/03/17 08:57	SMO	TAL CHI
Total/NA	Analysis	Moisture		1	407988	11/01/17 14:42	LWN	TAL CHI

Client Sample ID: 3160-26-1 (0-4')

Date Collected: 10/31/17 10:20

Date Received: 11/01/17 09:05

Lab Sample ID: 500-136575-11 Matrix: Solid Percent Solids: 85.7

Lab Sample ID: 500-136575-12

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			408142	11/01/17 18:01	WRE	TAL CHI
Total/NA	Analysis	8260B		1	408095	11/02/17 17:40	DJD	TAL CHI
Total/NA	Prep	3541			408852	11/07/17 16:14	NRJ	TAL CHI
Total/NA	Analysis	8270D		1	408968	11/08/17 19:25	AJD	TAL CHI
Total/NA	Prep	3050B			408083	11/02/17 07:49	JEF	TAL CHI
Total/NA	Analysis	6010B		1	408311	11/02/17 21:07	PJ1	TAL CHI
Total/NA	Prep	7471B			408223	11/02/17 16:10	EEN	TAL CHI
Total/NA	Analysis	7471B		1	408366	11/03/17 08:38	EEN	TAL CHI

Client Sample ID: 3160-28-1 (0-5')

Date Collected: 10/31/17 10:30

Date Received: 11/01/17 09:05

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
SPLP East	Leach	1312			408171	11/02/17 12:37	JLC	TAL CHI
SPLP East	Prep	3010A			408404	11/03/17 14:53	BDE	TAL CHI
SPLP East	Analysis	6010B		1	408545	11/06/17 02:48	PJ1	TAL CHI
TCLP	Leach	1311			408173	11/02/17 12:37	JLC	TAL CHI
TCLP	Prep	3010A			408408	11/03/17 14:57	BDE	TAL CHI
TCLP	Analysis	6010B		1	408541	11/05/17 17:15	PJ1	TAL CHI
TCLP	Leach	1311			408173	11/02/17 12:37	JLC	TAL CHI
TCLP	Prep	3010A			408408	11/03/17 14:57	BDE	TAL CHI
TCLP	Analysis	6020A		1	408763	11/06/17 17:04	FXG	TAL CHI
TCLP	Leach	1311			408173	11/02/17 12:37	JLC	TAL CHI

TestAmerica Chicago

Page 210 of 231

Matrix: Solid

Lab Sample ID: 500-136575-12

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-28-1 (0-5')

Date Collected: 10/31/17 10:30 **Matrix: Solid** Date Received: 11/01/17 09:05

Batch Dilution Batch Batch **Prepared** Method **Prep Type** Type Run **Factor** Number or Analyzed Analyst Lab TCLP Prep 7470A 408350 11/03/17 12:20 EEN TAL CHI TCLP 7470A 408624 11/06/17 11:22 EEN TAL CHI Analysis 1 Total/NA Analysis 9045D 1 408326 11/03/17 08:57 SMO TAL CHI Total/NA Analysis Moisture 1 407988 11/01/17 14:42 LWN TAL CHI

Client Sample ID: 3160-28-1 (0-5') Lab Sample ID: 500-136575-12

Date Collected: 10/31/17 10:30 **Matrix: Solid** Date Received: 11/01/17 09:05 Percent Solids: 79.6

Batch Dilution Batch Batch Prepared Method **Prep Type** Type Run **Factor** Number or Analyzed Analyst Lab Total/NA 5035 WRE TAL CHI Prep 408142 11/01/17 18:01 Total/NA Analysis 8260B 1 408295 11/03/17 12:34 DJD TAL CHI Total/NA TAL CHI Prep 3541 408852 11/07/17 16:14 NRJ Total/NA Analysis 8270D 1 408968 11/08/17 19:50 AJD TAL CHI Total/NA Prep 3050B 408083 11/02/17 07:49 JEF TAL CHI Total/NA Analysis 6010B 1 408311 11/02/17 21:11 PJ1 TAL CHI 7471B Total/NA Prep 408223 11/02/17 16:10 EEN TAL CHI Total/NA 408366 11/03/17 08:40 EEN Analysis 7471B 1 TAL CHI

Client Sample ID: 3160-28-2 (0-5') Lab Sample ID: 500-136575-13

Date Collected: 10/31/17 10:40 **Matrix: Solid** Date Received: 11/01/17 09:05

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
SPLP East	Leach	1312	 -		408171	11/02/17 12:37	JLC	TAL CHI
SPLP East	Prep	3010A			408404	11/03/17 14:53	BDE	TAL CHI
SPLP East	Analysis	6010B		1	408545	11/06/17 02:52	PJ1	TAL CHI
TCLP	Leach	1311			408173	11/02/17 12:37	JLC	TAL CHI
TCLP	Prep	3010A			408408	11/03/17 14:57	BDE	TAL CHI
TCLP	Analysis	6010B		1	408541	11/05/17 17:19	PJ1	TAL CHI
TCLP	Leach	1311			408173	11/02/17 12:37	JLC	TAL CHI
TCLP	Prep	3010A			408408	11/03/17 14:57	BDE	TAL CHI
TCLP	Analysis	6020A		1	408763	11/06/17 17:08	FXG	TAL CHI
TCLP	Leach	1311			408173	11/02/17 12:37	JLC	TAL CHI
TCLP	Prep	7470A			408350	11/03/17 12:20	EEN	TAL CHI
TCLP	Analysis	7470A		1	408624	11/06/17 11:23	EEN	TAL CHI
Total/NA	Analysis	9045D		1	408326	11/03/17 08:57	SMO	TAL CHI
Total/NA	Analysis	Moisture		1	407988	11/01/17 14:42	LWN	TAL CHI

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Total/NA

Analysis

Moisture

Client Sample ID: 3160-28-2 (0-5')

Lab Sample ID: 500-136575-13

Date Collected: 10/31/17 10:40 Matrix: Solid
Date Received: 11/01/17 09:05 Percent Solids: 84.0

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			408142	11/01/17 18:01	WRE	TAL CHI
Total/NA	Analysis	8260B		1	408095	11/02/17 18:30	DJD	TAL CHI
Total/NA	Prep	3541			408852	11/07/17 16:14	NRJ	TAL CHI
Total/NA	Analysis	8270D		1	408968	11/08/17 21:06	AJD	TAL CHI
Total/NA	Prep	3050B			408083	11/02/17 07:49	JEF	TAL CHI
Total/NA	Analysis	6010B		1	408311	11/02/17 21:15	PJ1	TAL CHI
Total/NA	Prep	7471B			408223	11/02/17 16:10	EEN	TAL CHI
Total/NA	Analysis	7471B		1	408366	11/03/17 08:43	EEN	TAL CHI

Client Sample ID: 3160-28-3 (0-5')

Lab Sample ID: 500-136575-14

Date Collected: 10/31/17 10:50 Matrix: Solid

Date Received: 11/01/17 09:05 Batch Batch Dilution Batch Prepared **Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab **SPLP East** Leach 1312 408171 11/02/17 12:37 JLC TAL CHI SPLP East 3010A TAL CHI Prep 408404 11/03/17 14:53 BDE SPLP East 6010B 408545 11/06/17 02:56 PJ1 TAL CHI Analysis 1 TAL CHI **TCLP** Leach 1311 408173 11/02/17 12:37 JLC **TCLP** 3010A 408408 11/03/17 14:57 BDE TAL CHI Prep 6010B 408541 11/05/17 17:23 PJ1 TAL CHI **TCLP** Analysis 1 **TCLP** 1311 408173 11/02/17 12:37 JLC TAL CHI Leach 3010A 408408 11/03/17 14:57 BDE TAL CHI **TCLP** Prep **TCLP** 6020A 408763 11/06/17 17:12 FXG TAL CHI Analysis 1 TAL CHI **TCLP** Leach 1311 408173 11/02/17 12:37 JLC **TCLP** 7470A 408350 11/03/17 12:20 EEN TAL CHI Prep **TCLP** Analysis 7470A 408624 11/06/17 11:27 EEN TAL CHI 1 Total/NA Analysis 9045D 408326 11/03/17 08:57 SMO TAL CHI 1

Client Sample ID: 3160-28-3 (0-5')

Lab Sample ID: 500-136575-14

1

407988 11/01/17 14:42 LWN

TAL CHI

Date Collected: 10/31/17 10:50 Matrix: Solid
Date Received: 11/01/17 09:05 Percent Solids: 80.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			408142	11/01/17 18:01	WRE	TAL CH
Total/NA	Analysis	8260B		1	408095	11/02/17 18:55	DJD	TAL CH
Total/NA	Prep	3541			408852	11/07/17 16:14	NRJ	TAL CH
Total/NA	Analysis	8270D		1	408988	11/08/17 14:37	AJD	TAL CH
Total/NA	Prep	3541	DL		408852	11/07/17 16:14	NRJ	TAL CH
Total/NA	Analysis	8270D	DL	2	409184	11/09/17 13:20	AJD	TAL CH
Total/NA	Prep	3050B			408083	11/02/17 07:49	JEF	TAL CH
Total/NA	Analysis	6010B		1	408311	11/02/17 21:19	PJ1	TAL CH
Total/NA	Prep	7471B			408223	11/02/17 16:10	EEN	TAL CH
Total/NA	Analysis	7471B		1	408366	11/03/17 08:45	EEN	TAL CH

Page 212 of 231

2

3

<u>+</u>

6

ŏ

10

12

13

11/13/2017

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-32-1 (0-3.5')

Date Collected: 10/31/17 11:00 Date Received: 11/01/17 09:05

Lab Sample ID: 500-136575-15

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			408173	11/02/17 12:37	JLC	TAL CHI
TCLP	Prep	3010A			408408	11/03/17 14:57	BDE	TAL CHI
TCLP	Analysis	6010B		1	408541	11/05/17 17:35	PJ1	TAL CHI
TCLP	Leach	1311			408173	11/02/17 12:37	JLC	TAL CHI
TCLP	Prep	3010A			408408	11/03/17 14:57	BDE	TAL CHI
TCLP	Analysis	6020A		1	408763	11/06/17 17:17	FXG	TAL CHI
TCLP	Leach	1311			408173	11/02/17 12:37	JLC	TAL CHI
TCLP	Prep	7470A			408350	11/03/17 12:20	EEN	TAL CHI
TCLP	Analysis	7470A		1	408624	11/06/17 11:29	EEN	TAL CHI
Total/NA	Analysis	9045D		1	408326	11/03/17 08:57	SMO	TAL CHI
Total/NA	Analysis	Moisture		1	407988	11/01/17 14:42	LWN	TAL CHI

Client Sample ID: 3160-32-1 (0-3.5')

Date Collected: 10/31/17 11:00

Date Received: 11/01/17 09:05

Lab Sample ID: 500-136575-15

Percent Solids: 79.4

Matrix: Solid

Batch **Batch** Dilution Batch **Prepared** Method **Prep Type** Type Run **Factor** Number or Analyzed Analyst Lab Total/NA Prep 5035 408142 11/01/17 18:01 WRE TAL CHI Total/NA 8260B 408095 11/02/17 19:21 DJD TAL CHI Analysis 1 TAL CHI Total/NA Prep 3541 408852 11/07/17 16:14 NRJ Total/NA 8270D 408968 11/08/17 21:31 AJD TAL CHI Analysis 1 Total/NA Prep 3541 408853 11/07/17 16:20 NRJ TAL CHI Total/NA 8082A 409369 11/10/17 18:49 BJH TAL CHI Analysis 1 Total/NA Prep 3050B 408083 11/02/17 07:49 JEF TAL CHI Total/NA TAL CHI Analysis 6010B 1 408311 11/02/17 21:32 PJ1 Total/NA Prep 7471B 408223 11/02/17 16:10 EEN TAL CHI Total/NA Analysis 7471B 408366 11/03/17 08:52 EEN TAL CHI

Client Sample ID: 3160-32-2 (0-3.5')

Date Collected: 10/31/17 11:10

Date Received: 11/01/17 09:05

Lab Sample ID: 500-136575-16

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			408173	11/02/17 12:37	JLC	TAL CHI
TCLP	Prep	3010A			408408	11/03/17 14:57	BDE	TAL CHI
TCLP	Analysis	6010B		1	408541	11/05/17 17:39	PJ1	TAL CHI
TCLP	Leach	1311			408173	11/02/17 12:37	JLC	TAL CHI
TCLP	Prep	3010A			408408	11/03/17 14:57	BDE	TAL CHI
TCLP	Analysis	6020A		1	408763	11/06/17 17:21	FXG	TAL CHI
TCLP	Leach	1311			408173	11/02/17 12:37	JLC	TAL CHI
TCLP	Prep	7470A			408350	11/03/17 12:20	EEN	TAL CHI
TCLP	Analysis	7470A		1	408624	11/06/17 11:30	EEN	TAL CHI
Total/NA	Analysis	9045D		1	408326	11/03/17 08:57	SMO	TAL CHI

TestAmerica Chicago

Page 213 of 231

11/13/2017

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-32-2 (0-3.5')

Lab Sample ID: 500-136575-16 Date Collected: 10/31/17 11:10 Matrix: Solid

Date Received: 11/01/17 09:05

Batch Batch Dilution Batch **Prepared** Method Number **Prep Type** Type Run **Factor** or Analyzed Analyst Lab TAL CHI Total/NA Analysis Moisture 407988 11/01/17 14:42 LWN

Client Sample ID: 3160-32-2 (0-3.5') Lab Sample ID: 500-136575-16

Date Collected: 10/31/17 11:10 Date Received: 11/01/17 09:05 Percent Solids: 79.1

=	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			408142	11/01/17 18:01	WRE	TAL CHI
Total/NA	Analysis	8260B		1	408095	11/02/17 19:46	DJD	TAL CHI
Total/NA	Prep	3541			408732	11/07/17 07:18	STW	TAL CHI
Total/NA	Analysis	8270D		1	408867	11/07/17 21:15	WDS	TAL CHI
Total/NA	Prep	3541			408853	11/07/17 16:20	NRJ	TAL CHI
Total/NA	Analysis	8082A		1	409369	11/10/17 19:04	BJH	TAL CHI
Total/NA	Prep	3050B			408083	11/02/17 07:49	JEF	TAL CHI
Total/NA	Analysis	6010B		5	408472	11/03/17 13:56	KML	TAL CHI
Total/NA	Prep	3050B			408083	11/02/17 07:49	JEF	TAL CHI
Total/NA	Analysis	6010B		1	408311	11/02/17 21:36	PJ1	TAL CHI
Total/NA	Prep	7471B			408223	11/02/17 16:10	EEN	TAL CHI
Total/NA	Analysis	7471B		1	408366	11/03/17 08:54	EEN	TAL CHI

Client Sample ID: 3160-32-3 (0-3.5') Lab Sample ID: 500-136575-17

Date Collected: 10/31/17 11:20 Date Received: 11/01/17 09:05

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			408173	11/02/17 12:37	JLC	TAL CHI
TCLP	Prep	3010A			408408	11/03/17 14:57	BDE	TAL CHI
TCLP	Analysis	6010B		1	408541	11/05/17 17:44	PJ1	TAL CHI
TCLP	Leach	1311			408173	11/02/17 12:37	JLC	TAL CHI
TCLP	Prep	3010A			408408	11/03/17 14:57	BDE	TAL CHI
TCLP	Analysis	6020A		1	408763	11/06/17 17:37	FXG	TAL CHI
TCLP	Leach	1311			408173	11/02/17 12:37	JLC	TAL CHI
TCLP	Prep	7470A			408350	11/03/17 12:20	EEN	TAL CHI
TCLP	Analysis	7470A		1	408624	11/06/17 11:32	EEN	TAL CHI
Total/NA	Analysis	9045D		1	408326	11/03/17 08:57	SMO	TAL CHI
Total/NA	Analysis	Moisture		1	407988	11/01/17 14:42	LWN	TAL CHI

Client Sample ID: 3160-32-3 (0-3.5') Lab Sample ID: 500-136575-17

Date Collected: 10/31/17 11:20 **Matrix: Solid** Date Received: 11/01/17 09:05 Percent Solids: 81.3

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			408142	11/01/17 18:01	WRE	TAL CHI

Page 214 of 231

Matrix: Solid

Matrix: Solid

TestAmerica Chicago

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 10/31/17 11:20

Date Received: 11/01/17 09:05

Client Sample ID: 3160-32-3 (0-3.5')

Lab Sample ID: 500-136575-17

Matrix: Solid

Percent Solids: 81.3

Duna Tourn	Batch	Batch	Don	Dilution	Batch	Prepared	Amalust	1 -1-
Prep Type Total/NA	Type Analysis	Method 8260B	Run	_	Number 408095	or Analyzed 11/02/17 20:11	Analyst DJD	TAL CHI
Total/NA Total/NA	Prep Analysis	3541 8270D		1	408732 408867	11/07/17 07:18 11/07/17 21:42		TAL CHI TAL CHI
Total/NA Total/NA	Prep Analysis	3541 8082A		1	408853 409369	11/07/17 16:20 11/10/17 19:19		TAL CHI TAL CHI
Total/NA Total/NA	Prep Analysis	3050B 6010B		1	408083 408311	11/02/17 07:49 11/02/17 21:40		TAL CHI TAL CHI
Total/NA Total/NA	Prep Analysis	7471B 7471B		1	408223 408366	11/02/17 16:10 11/03/17 08:56		TAL CHI TAL CHI

Lab Sample ID: 500-136575-18 Client Sample ID: 3160-32-4 (0-3.5')

Date Collected: 10/31/17 11:30 **Matrix: Solid**

Date Received: 11/01/17 09:05

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
TCLP	Prep	3010A			408408	11/03/17 14:57	BDE	TAL CH
TCLP	Analysis	6010B		1	408541	11/05/17 17:48	PJ1	TAL CH
TCLP	Leach	1311			408173	11/02/17 12:37	JLC	TAL CH
TCLP	Prep	3010A			408408	11/03/17 14:57	BDE	TAL CH
TCLP	Analysis	6020A		1	408763	11/06/17 17:41	FXG	TAL CH
TCLP	Leach	1311			408173	11/02/17 12:37	JLC	TAL CH
TCLP	Prep	7470A			408350	11/03/17 12:20	EEN	TAL CH
TCLP	Analysis	7470A		1	408624	11/06/17 11:33	EEN	TAL CH
Total/NA	Analysis	9045D		1	408326	11/03/17 08:57	SMO	TAL CH
Total/NA	Analysis	Moisture		1	407988	11/01/17 14:42	LWN	TAL CH

Lab Sample ID: 500-136575-18 Client Sample ID: 3160-32-4 (0-3.5')

Date Collected: 10/31/17 11:30 **Matrix: Solid** Date Received: 11/01/17 09:05 Percent Solids: 81.9

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			408142	11/01/17 18:01	WRE	TAL CHI
Total/NA	Analysis	8260B		1	408095	11/02/17 20:36	DJD	TAL CHI
Total/NA	Prep	3541			408732	11/07/17 07:18	STW	TAL CHI
Total/NA	Analysis	8270D		1	408867	11/07/17 22:08	WDS	TAL CHI
Total/NA	Prep	3541			408853	11/07/17 16:20	NRJ	TAL CHI
Total/NA	Analysis	8082A		1	409369	11/10/17 19:35	BJH	TAL CHI
Total/NA	Prep	3050B			408083	11/02/17 07:49	JEF	TAL CHI
Total/NA	Analysis	6010B		1	408311	11/02/17 21:44	PJ1	TAL CHI
Total/NA	Prep	7471B			408223	11/02/17 16:10	EEN	TAL CHI
Total/NA	Analysis	7471B		1	408366	11/03/17 08:58	EEN	TAL CHI

Page 215 of 231

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-32-5 (0-3.5')

Lab Sample ID: 500-136575-19

Date Collected: 10/31/17 11:40 **Matrix: Solid**

Date Received: 11/01/17 09:05

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			408173	11/02/17 12:37	JLC	TAL CHI
TCLP	Prep	3010A			408408	11/03/17 14:57	BDE	TAL CHI
TCLP	Analysis	6010B		1	408541	11/05/17 17:52	PJ1	TAL CHI
TCLP	Leach	1311			408173	11/02/17 12:37	JLC	TAL CHI
TCLP	Prep	3010A			408408	11/03/17 14:57	BDE	TAL CHI
TCLP	Analysis	6020A		1	408763	11/06/17 17:45	FXG	TAL CHI
TCLP	Leach	1311			408173	11/02/17 12:37	JLC	TAL CHI
TCLP	Prep	7470A			408350	11/03/17 12:20	EEN	TAL CHI
TCLP	Analysis	7470A		1	408624	11/06/17 11:35	EEN	TAL CHI
Total/NA	Analysis	9045D		1	408326	11/03/17 08:57	SMO	TAL CHI
Total/NA	Analysis	Moisture		1	407988	11/01/17 14:42	LWN	TAL CHI

Client Sample ID: 3160-32-5 (0-3.5') Lab Sample ID: 500-136575-19

Date Collected: 10/31/17 11:40 **Matrix: Solid**

Date Received: 11/01/17 09:05 Percent Solids: 81.8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			408142	11/01/17 18:01	WRE	TAL CH
Total/NA	Analysis	8260B		1	408095	11/02/17 21:01	DJD	TAL CH
Total/NA	Prep	3541			408732	11/07/17 07:18	STW	TAL CH
Total/NA	Analysis	8270D		1	408867	11/07/17 22:35	WDS	TAL CH
Total/NA	Prep	3541			408853	11/07/17 16:20	NRJ	TAL CH
Total/NA	Analysis	8082A		1	409369	11/10/17 19:50	BJH	TAL CH
Total/NA	Prep	3050B			408083	11/02/17 07:49	JEF	TAL CH
Total/NA	Analysis	6010B		1	408311	11/02/17 21:48	PJ1	TAL CH
Total/NA	Prep	7471B			408223	11/02/17 16:10	EEN	TAL CH
Total/NA	Analysis	7471B		1	408366	11/03/17 09:01	EEN	TAL CH

Client Sample ID: 3160-32-6 (0-3.5') Lab Sample ID: 500-136575-20

Date Collected: 10/31/17 12:40 Date Received: 11/01/17 09:05

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
SPLP East	Leach	1312			408172	11/02/17 12:37	JLC	TAL CHI
SPLP East	Prep	3010A			408407	11/03/17 14:56	BDE	TAL CHI
SPLP East	Analysis	6010B		1	408545	11/06/17 00:33	PJ1	TAL CHI
TCLP	Leach	1311			408176	11/02/17 12:37	JLC	TAL CHI
TCLP	Prep	3010A			408410	11/03/17 15:00	BDE	TAL CHI
TCLP	Analysis	6010B		1	408541	11/05/17 14:44	PJ1	TAL CHI
TCLP	Leach	1311			408176	11/02/17 12:37	JLC	TAL CHI
TCLP	Prep	3010A			408410	11/03/17 15:00	BDE	TAL CHI
TCLP	Analysis	6020A		1	408763	11/06/17 18:10	FXG	TAL CHI
TCLP	Leach	1311			408176	11/02/17 12:37	JLC	TAL CHI
TCLP	Prep	7470A			408360	11/03/17 12:20	EEN	TAL CH

TestAmerica Chicago

Page 216 of 231

11/13/2017

Matrix: Solid

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-32-6 (0-3.5')

Lab Sample ID: 500-136575-20 Date Collected: 10/31/17 12:40 **Matrix: Solid**

Date Received: 11/01/17 09:05

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Analysis	7470A		1	408624	11/06/17 08:56	EEN	TAL CHI
Total/NA	Analysis	9045D		1	408326	11/03/17 08:57	SMO	TAL CHI
Total/NA	Analysis	Moisture		1	407988	11/01/17 14:42	LWN	TAL CHI

Lab Sample ID: 500-136575-20 Client Sample ID: 3160-32-6 (0-3.5')

Date Collected: 10/31/17 12:40 **Matrix: Solid** Date Received: 11/01/17 09:05 Percent Solids: 82.8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			408142	11/01/17 18:01	WRE	TAL CHI
Total/NA	Analysis	8260B		1	408095	11/02/17 21:26	DJD	TAL CHI
Total/NA	Prep	5035			408142	11/01/17 18:01	WRE	TAL CHI
Total/NA	Analysis	8260B		1	408295	11/03/17 12:59	DJD	TAL CHI
Total/NA	Prep	3541			408732	11/07/17 07:18	STW	TAL CHI
Total/NA	Analysis	8270D		1	408867	11/07/17 23:01	WDS	TAL CHI
Total/NA	Prep	3541			408853	11/07/17 16:20	NRJ	TAL CHI
Total/NA	Analysis	8082A		1	409369	11/10/17 20:05	BJH	TAL CHI
Total/NA	Prep	3050B			408083	11/02/17 07:49	JEF	TAL CHI
Total/NA	Analysis	6010B		1	408311	11/02/17 21:52	PJ1	TAL CHI
Total/NA	Prep	7471B			408223	11/02/17 16:10	EEN	TAL CHI
Total/NA	Analysis	7471B		1	408366	11/03/17 09:03	EEN	TAL CHI

Client Sample ID: 3160-45-1 (0-5') Lab Sample ID: 500-136575-21

Date Collected: 10/31/17 12:50 **Matrix: Solid** Date Received: 11/01/17 09:05

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			408176	11/02/17 12:37	JLC	TAL CHI
TCLP	Prep	3010A			408410	11/03/17 15:00	BDE	TAL CHI
TCLP	Analysis	6010B		1	408541	11/05/17 14:48	PJ1	TAL CHI
TCLP	Leach	1311			408176	11/02/17 12:37	JLC	TAL CHI
TCLP	Prep	3010A			408410	11/03/17 15:00	BDE	TAL CHI
TCLP	Analysis	6020A		1	408763	11/06/17 18:14	FXG	TAL CHI
TCLP	Leach	1311			408176	11/02/17 12:37	JLC	TAL CHI
TCLP	Prep	7470A			408360	11/03/17 12:20	EEN	TAL CHI
TCLP	Analysis	7470A		1	408624	11/06/17 09:03	EEN	TAL CHI
Total/NA	Analysis	9045D		1	408326	11/03/17 08:57	SMO	TAL CHI
Total/NA	Analysis	Moisture		1	408166	11/02/17 12:28	LWN	TAL CHI

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-45-1 (0-5')

Date Collected: 10/31/17 12:50 Date Received: 11/01/17 09:05

Lab Sample ID: 500-136575-21

Matrix: Solid Percent Solids: 81.2

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			408142	11/01/17 18:01	WRE	TAL CHI
Total/NA	Analysis	8260B		1	408295	11/03/17 13:25	DJD	TAL CHI
Total/NA	Prep	3541			408732	11/07/17 07:18	STW	TAL CHI
Total/NA	Analysis	8270D		1	408867	11/07/17 23:28	WDS	TAL CHI
Total/NA	Prep	3541			408853	11/07/17 16:20	NRJ	TAL CHI
Total/NA	Analysis	8082A		1	409369	11/10/17 20:21	BJH	TAL CHI
Total/NA	Prep	3050B			408066	11/02/17 07:14	JEF	TAL CHI
Total/NA	Analysis	6010B		1	408311	11/02/17 17:57	PJ1	TAL CHI
Total/NA	Prep	7471B			408246	11/02/17 16:10	EEN	TAL CHI
Total/NA	Analysis	7471B		1	408366	11/03/17 09:10	EEN	TAL CHI

Client Sample ID: 3160-45-1 (5-6')

Date Collected: 10/31/17 13:00 Date Received: 11/01/17 09:05

Lab Sample ID: 500-136575-22

Matrix: Solid

Batch Batch Dilution Batch Prepared **Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab TCLP Leach 1311 408176 11/02/17 12:37 JLC TAL CHI **TCLP** 3010A 408410 11/03/17 15:00 BDE TAL CHI Prep **TCLP** Analysis 6010B 408541 11/05/17 15:00 PJ1 TAL CHI 1 **TCLP** 1311 408176 11/02/17 12:37 JLC TAL CHI Leach **TCLP** 3010A 408410 11/03/17 15:00 BDE TAL CHI Prep 408763 11/06/17 18:26 FXG TAL CHI **TCLP** Analysis 6020A 1 **TCLP** Leach 1311 408176 11/02/17 12:37 JLC TAL CHI 7470A TAL CHI **TCLP** Prep 408360 11/03/17 12:20 EEN **TCLP** 7470A TAL CHI Analysis 1 408624 11/06/17 09:04 EEN 9045D TAL CHI Total/NA Analysis 1 408326 11/03/17 08:57 SMO 408166 11/02/17 12:28 LWN Total/NA Analysis Moisture TAL CHI

Client Sample ID: 3160-45-1 (5-6')

Date Collected: 10/31/17 13:00 Date Received: 11/01/17 09:05

Lab Sample ID: 500-136575-22 Matrix: Solid Percent Solids: 82.1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			408142	11/01/17 18:01	WRE	TAL CHI
Total/NA	Analysis	8260B		1	408295	11/03/17 13:50	DJD	TAL CHI
Total/NA	Prep	3541			408732	11/07/17 07:18	STW	TAL CHI
Total/NA	Analysis	8270D		1	408867	11/07/17 23:54	WDS	TAL CHI
Total/NA	Prep	3541			408853	11/07/17 16:20	NRJ	TAL CHI
Total/NA	Analysis	8082A		1	409369	11/10/17 20:36	BJH	TAL CHI
Total/NA	Prep	3050B			408066	11/02/17 07:14	JEF	TAL CHI
Total/NA	Analysis	6010B		1	408311	11/02/17 18:01	PJ1	TAL CHI
Total/NA	Prep	7471B			408246	11/02/17 16:10	EEN	TAL CHI
Total/NA	Analysis	7471B		1	408366	11/03/17 09:12	EEN	TAL CHI

TestAmerica Chicago

Page 218 of 231

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Lab Sample ID: 500-136575-23

Client Sample ID: 3160-45-2 (0-5')

Date Collected: 10/31/17 13:10 Matrix: Solid

Date Received: 11/01/17 09:05

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			408176	11/02/17 12:37	JLC	TAL CHI
TCLP	Prep	3010A			408410	11/03/17 15:00	BDE	TAL CHI
TCLP	Analysis	6010B		1	408541	11/05/17 15:04	PJ1	TAL CHI
TCLP	Leach	1311			408176	11/02/17 12:37	JLC	TAL CHI
TCLP	Prep	3010A			408410	11/03/17 15:00	BDE	TAL CHI
TCLP	Analysis	6020A		1	408763	11/06/17 18:30	FXG	TAL CHI
TCLP	Leach	1311			408176	11/02/17 12:37	JLC	TAL CHI
TCLP	Prep	7470A			408360	11/03/17 12:20	EEN	TAL CHI
TCLP	Analysis	7470A		1	408624	11/06/17 09:06	EEN	TAL CHI
Total/NA	Analysis	9045D		1	408326	11/03/17 08:57	SMO	TAL CHI
Total/NA	Analysis	Moisture		1	408166	11/02/17 12:28	LWN	TAL CHI

Client Sample ID: 3160-45-2 (0-5')

Lab Sample ID: 500-136575-23

Date Collected: 10/31/17 13:10

Matrix: Solid

Pare Received: 11/01/17 09:05

Date Received: 11/01/17 09:05 Percent Solids: 81.0

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			408142	11/01/17 18:01	WRE	TAL CH
Total/NA	Analysis	8260B		1	408295	11/03/17 14:15	DJD	TAL CH
Total/NA	Prep	3541			408732	11/07/17 07:18	STW	TAL CH
Total/NA	Analysis	8270D		1	408867	11/08/17 00:21	WDS	TAL CH
Total/NA	Prep	3541			408853	11/07/17 16:20	NRJ	TAL CH
Total/NA	Analysis	8082A		1	409369	11/10/17 20:51	BJH	TAL CH
Total/NA	Prep	3050B			408066	11/02/17 07:14	JEF	TAL CH
Total/NA	Analysis	6010B		1	408311	11/02/17 18:05	PJ1	TAL CH
Total/NA	Prep	7471B			408246	11/02/17 16:10	EEN	TAL CH
Total/NA	Analysis	7471B		1	408366	11/03/17 09:19	EEN	TAL CH

Client Sample ID: 3160-45-2 (5-6')

Lab Sample ID: 500-136575-24

Date Collected: 10/31/17 13:15 Date Received: 11/01/17 09:05

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			408176	11/02/17 12:37	JLC	TAL CHI
TCLP	Prep	3010A			408410	11/03/17 15:00	BDE	TAL CHI
TCLP	Analysis	6010B		1	408541	11/05/17 15:08	PJ1	TAL CHI
TCLP	Leach	1311			408176	11/02/17 12:37	JLC	TAL CHI
TCLP	Prep	3010A			408410	11/03/17 15:00	BDE	TAL CHI
TCLP	Analysis	6020A		1	408763	11/06/17 18:34	FXG	TAL CHI
TCLP	Leach	1311			408176	11/02/17 12:37	JLC	TAL CHI
TCLP	Prep	7470A			408360	11/03/17 12:20	EEN	TAL CHI
TCLP	Analysis	7470A		1	408624	11/06/17 09:07	EEN	TAL CHI
Total/NA	Analysis	9045D		1	408326	11/03/17 08:57	SMO	TAL CHI
Total/NA	Analysis	Moisture		1	408166	11/02/17 12:28	LWN	TAL CHI

TestAmerica Chicago

Page 219 of 231

2

3

5

7

9

11

12

4 4

-1365/5-24 Matrix: Solid

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-45-2 (5-6')

Date Collected: 10/31/17 13:15

Date Received: 11/01/17 09:05

Lab Sample ID: 500-136575-24

Matrix: Solid

Percent Solids: 82.8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			408142	11/01/17 18:01	WRE	TAL CHI
Total/NA	Analysis	8260B		1	408295	11/03/17 14:40	DJD	TAL CHI
Total/NA	Prep	3541			408732	11/07/17 07:18	STW	TAL CHI
Total/NA	Analysis	8270D		1	408867	11/08/17 00:47	WDS	TAL CHI
Total/NA	Prep	3541			408853	11/07/17 16:20	NRJ	TAL CHI
Total/NA	Analysis	8082A		1	409369	11/10/17 21:07	BJH	TAL CHI
Total/NA	Prep	3050B			408066	11/02/17 07:14	JEF	TAL CHI
Total/NA	Analysis	6010B		1	408311	11/02/17 18:18	PJ1	TAL CHI
Total/NA	Prep	7471B			408246	11/02/17 16:10	EEN	TAL CHI
Total/NA	Analysis	7471B		1	408366	11/03/17 09:21	EEN	TAL CHI

Client Sample ID: 3160-45-3 (0-5')

Lab Sample ID: 500-136575-25 Date Collected: 10/31/17 13:20

Matrix: Solid

Date Received: 11/01/17 09:05

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			408176	11/02/17 12:37	JLC	TAL CHI
TCLP	Prep	3010A			408410	11/03/17 15:00	BDE	TAL CHI
TCLP	Analysis	6010B		1	408541	11/05/17 15:12	PJ1	TAL CHI
TCLP	Leach	1311			408176	11/02/17 12:37	JLC	TAL CHI
TCLP	Prep	3010A			408410	11/03/17 15:00	BDE	TAL CHI
TCLP	Analysis	6020A		1	408763	11/06/17 18:39	FXG	TAL CHI
TCLP	Leach	1311			408176	11/02/17 12:37	JLC	TAL CHI
TCLP	Prep	7470A			408360	11/03/17 12:20	EEN	TAL CHI
TCLP	Analysis	7470A		1	408624	11/06/17 09:09	EEN	TAL CHI
Total/NA	Analysis	9045D		1	408326	11/03/17 08:57	SMO	TAL CHI
Total/NA	Analysis	Moisture		1	408166	11/02/17 12:28	LWN	TAL CHI

Client Sample ID: 3160-45-3 (0-5')

Date Collected: 10/31/17 13:20

Date Received: 11/01/17 09:05

Lab Sample	ID:	500-136575-25

Matrix: Solid

Percent Solids: 88.4

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	5035			408142	11/01/17 18:01	WRE	TAL CHI
Total/NA	Analysis	8260B		1	408295	11/03/17 15:05	DJD	TAL CHI
Total/NA	Prep	3541			408732	11/07/17 07:18	STW	TAL CHI
Total/NA	Analysis	8270D		1	408867	11/08/17 01:14	WDS	TAL CHI
Total/NA	Prep	3541			408939	11/08/17 07:22	STW	TAL CHI
Total/NA	Analysis	8082A		1	409181	11/09/17 11:41	BJH	TAL CHI
Total/NA	Prep	3050B			408066	11/02/17 07:14	JEF	TAL CHI
Total/NA	Analysis	6010B		5	409230	11/09/17 11:51	PJ1	TAL CHI
Total/NA	Prep	3050B			408066	11/02/17 07:14	JEF	TAL CHI
Total/NA	Analysis	6010B		1	408311	11/02/17 18:22	PJ1	TAL CHI

TestAmerica Chicago

Page 220 of 231

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-45-3 (0-5')

Lab Sample ID: 500-136575-25

Matrix: Solid

Percent Solids: 88.4

Date Collected: 10/31/17 13:20 Date Received: 11/01/17 09:05 Datah Dilution

ı		Datch	Datch		Dilution	Daten	Prepared		
l	Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
l	Total/NA	Prep	7471B			408246	11/02/17 16:10	EEN	TAL CHI
	Total/NA	Analysis	7471B		1	408366	11/03/17 09:23	EEN	TAL CHI

Client Sample ID: 3160-45-3 (5-6') Lab Sample ID: 500-136575-26

Date Collected: 10/31/17 13:25 **Matrix: Solid** Date Received: 11/01/17 09:05

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			408176	11/02/17 12:37	JLC	TAL CHI
TCLP	Prep	3010A			408410	11/03/17 15:00	BDE	TAL CHI
TCLP	Analysis	6010B		1	408541	11/05/17 15:16	PJ1	TAL CHI
TCLP	Leach	1311			408176	11/02/17 12:37	JLC	TAL CHI
TCLP	Prep	3010A			408410	11/03/17 15:00	BDE	TAL CHI
TCLP	Analysis	6020A		1	408763	11/06/17 18:43	FXG	TAL CHI
TCLP	Leach	1311			408176	11/02/17 12:37	JLC	TAL CHI
TCLP	Prep	7470A			408360	11/03/17 12:20	EEN	TAL CHI
TCLP	Analysis	7470A		1	408624	11/06/17 09:10	EEN	TAL CHI
Total/NA	Analysis	9045D		1	408326	11/03/17 08:57	SMO	TAL CHI
Total/NA	Analysis	Moisture		1	408166	11/02/17 12:28	LWN	TAL CHI

Client Sample ID: 3160-45-3 (5-6') Lab Sample ID: 500-136575-26

Date Collected: 10/31/17 13:25 **Matrix: Solid** Date Received: 11/01/17 09:05 Percent Solids: 84.3

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	5035			408142	11/01/17 18:01	WRE	TAL CHI
Total/NA	Analysis	8260B		1	408295	11/03/17 15:30	DJD	TAL CHI
Total/NA	Prep	3541			408732	11/07/17 07:18	STW	TAL CHI
Total/NA	Analysis	8270D		1	408867	11/08/17 01:41	WDS	TAL CHI
Total/NA	Prep	3541			408939	11/08/17 07:22	STW	TAL CHI
Total/NA	Analysis	8082A		1	409181	11/09/17 11:56	BJH	TAL CHI
Total/NA	Prep	3050B			408066	11/02/17 07:14	JEF	TAL CHI
Total/NA	Analysis	6010B		1	408311	11/02/17 18:25	PJ1	TAL CHI
Total/NA	Prep	7471B			408246	11/02/17 16:10	EEN	TAL CHI
Total/NA	Analysis	7471B		1	408366	11/03/17 09:26	EEN	TAL CHI

Lab Sample ID: 500-136575-27 Client Sample ID: 3160-45-4 (0-5')

Date Collected: 10/31/17 13:35 **Matrix: Solid** Date Received: 11/01/17 09:05

	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
TCLP	Leach	1311			408176	11/02/17 12:37	JLC	TAL CHI	_
TCLP	Prep	3010A			408410	11/03/17 15:00	BDE	TAL CHI	

TestAmerica Chicago

Lab Sample ID: 500-136575-27

TAL CHI

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Total/NA

Analysis

7471B

Client Sample ID: 3160-45-4 (0-5')

Date Collected: 10/31/17 13:35 **Matrix: Solid**

Date Received: 11/01/17 09:05

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Analysis	6010B			408541	11/05/17 15:20	PJ1	TAL CHI
TCLP	Leach	1311			408176	11/02/17 12:37	JLC	TAL CHI
TCLP	Prep	3010A			408410	11/03/17 15:00	BDE	TAL CHI
TCLP	Analysis	6020A		1	408763	11/06/17 18:47	FXG	TAL CHI
TCLP	Leach	1311			408176	11/02/17 12:37	JLC	TAL CHI
TCLP	Prep	7470A			408360	11/03/17 12:20	EEN	TAL CHI
TCLP	Analysis	7470A		1	408624	11/06/17 09:12	EEN	TAL CHI
Total/NA	Analysis	9045D		1	408326	11/03/17 08:57	SMO	TAL CHI
Total/NA	Analysis	Moisture		1	408166	11/02/17 12:28	LWN	TAL CHI

Client Sample ID: 3160-45-4 (0-5') Lab Sample ID: 500-136575-27

Date Collected: 10/31/17 13:35 Matrix: Solid Date Received: 11/01/17 09:05 Percent Solids: 81.0

Batch **Batch** Dilution Batch **Prepared Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab Total/NA Prep 5035 408142 11/01/17 18:01 WRE TAL CHI Total/NA Analysis 8260B 1 408295 11/03/17 15:55 DJD TAL CHI Total/NA 3541 TAL CHI Prep 408732 11/07/17 07:18 STW Total/NA 8270D TAL CHI Analysis 1 408867 11/08/17 02:07 WDS 3541 408939 11/08/17 07:22 STW TAL CHI Total/NA Prep Total/NA Analysis 8082A 409181 11/09/17 12:12 BJH TAL CHI 1 Total/NA 3050B TAL CHI Prep 408066 11/02/17 07:14 JEF Total/NA Analysis 6010B 1 408311 11/02/17 18:29 PJ1 TAL CHI Total/NA Prep 7471B 408246 11/02/17 16:10 EEN TAL CHI

Client Sample ID: 3160-45-4 (5-6') Lab Sample ID: 500-136575-28

1

408366 11/03/17 09:28 EEN

Date Collected: 10/31/17 13:40 **Matrix: Solid** Date Received: 11/01/17 09:05

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			408176	11/02/17 12:37	JLC	TAL CHI
TCLP	Prep	3010A			408410	11/03/17 15:00	BDE	TAL CHI
TCLP	Analysis	6010B		1	408541	11/05/17 15:24	PJ1	TAL CHI
TCLP	Leach	1311			408176	11/02/17 12:37	JLC	TAL CHI
TCLP	Prep	3010A			408410	11/03/17 15:00	BDE	TAL CHI
TCLP	Analysis	6020A		1	408763	11/06/17 18:51	FXG	TAL CHI
TCLP	Leach	1311			408176	11/02/17 12:37	JLC	TAL CHI
TCLP	Prep	7470A			408360	11/03/17 12:20	EEN	TAL CHI
TCLP	Analysis	7470A		1	408624	11/06/17 09:13	EEN	TAL CHI
Total/NA	Analysis	9045D		1	408326	11/03/17 08:57	SMO	TAL CHI
Total/NA	Analysis	Moisture		1	408166	11/02/17 12:28	LWN	TAL CHI

TestAmerica Chicago

Page 222 of 231

Client: AMEC Foster Wheeler E & I, Inc
Project/Site: IDOT - Benton - WO 028

TestAmerica Job

Client Sample ID: 3160-45-4 (5-6')

Date Collected: 10/31/17 13:40 Date Received: 11/01/17 09:05 Lab Sample ID: 500-136575-28

Matrix: Solid
Percent Solids: 84.5

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			408142	11/01/17 18:01	WRE	TAL CHI
Total/NA	Analysis	8260B		1	408295	11/03/17 16:21	DJD	TAL CHI
Total/NA	Prep	3541			408732	11/07/17 07:18	STW	TAL CHI
Total/NA	Analysis	8270D		1	408867	11/08/17 02:34	WDS	TAL CHI
Total/NA	Prep	3541			408939	11/08/17 07:22	STW	TAL CHI
Total/NA	Analysis	8082A		1	409181	11/09/17 12:27	BJH	TAL CHI
Total/NA	Prep	3050B			408066	11/02/17 07:14	JEF	TAL CHI
Total/NA	Analysis	6010B		1	408311	11/02/17 18:33	PJ1	TAL CHI
Total/NA	Prep	7471B			408246	11/02/17 16:10	EEN	TAL CHI
Total/NA	Analysis	7471B		1	408366	11/03/17 09:30	EEN	TAL CHI

Client Sample ID: 3160-50-1 (0-2')

Lab Sample ID: 500-136575-29

Date Collected: 10/31/17 14:00

Date Received: 11/01/17 09:05

Batch Batch Dilution Batch Prepared **Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab **SPLP East** Leach 1312 408172 11/02/17 12:37 JLC TAL CHI SPLP East 3010A 408407 11/03/17 14:56 BDE TAL CHI Prep SPLP East Analysis 6010B 408545 11/06/17 01:17 PJ1 TAL CHI 1 **TCLP** 1311 408176 11/02/17 12:37 JLC TAL CHI Leach **TCLP** 3010A 408410 11/03/17 15:00 BDE TAL CHI Prep 408541 11/05/17 15:28 PJ1 TAL CHI **TCLP** Analysis 6010B 1 **TCLP** Leach 1311 408176 11/02/17 12:37 JLC TAL CHI **TCLP** Prep 3010A 408410 11/03/17 15:00 BDE TAL CHI **TCLP** 6020A TAL CHI Analysis 1 408763 11/06/17 18:55 FXG TAL CHI **TCLP** Leach 1311 408176 11/02/17 12:37 JLC **TCLP** 7470A 408360 11/03/17 12:20 EEN TAL CHI Prep **TCLP** Analysis 7470A 1 408624 11/06/17 09:15 EEN TAL CHI Total/NA Analysis 9045D 1 408326 11/03/17 08:57 SMO TAL CHI

Client Sample ID: 3160-50-1 (0-2')

Analysis

Moisture

Date Collected: 10/31/17 14:00

Date Received: 11/01/17 09:05

Total/NA

2:28	LWN	TAL CHI
L	ab Sam	ple ID: 500-136575-29
		Matrix: Solid
		Percent Solids: 82.6

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			408142	11/01/17 18:01	WRE	TAL CHI
Total/NA	Analysis	8260B		1	408295	11/03/17 16:45	DJD	TAL CHI
Total/NA	Prep	3541			408732	11/07/17 07:18	STW	TAL CHI
Total/NA	Analysis	8270D		1	408867	11/08/17 03:00	WDS	TAL CHI
Total/NA	Prep	3050B			408066	11/02/17 07:14	JEF	TAL CHI
Total/NA	Analysis	6010B		1	408311	11/02/17 18:37	PJ1	TAL CHI
Total/NA	Prep	7471B			408246	11/02/17 16:10	EEN	TAL CHI
Total/NA	Analysis	7471B		1	408366	11/03/17 09:40	EEN	TAL CHI

TestAmerica Chicago

Page 223 of 231

1

408166 11/02/17 1

11/13/2017

3

6

8

10

-

Matrix: Solid

13

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Lab Sample ID: 500-136575-30

Matrix: Solid

Client Sample ID: 3160-50-2 (0-2')

Date Collected: 10/31/17 14:10 Date Received: 11/01/17 09:05

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			408176	11/02/17 12:37	JLC	TAL CHI
TCLP	Prep	3010A			408410	11/03/17 15:00	BDE	TAL CHI
TCLP	Analysis	6010B		1	408541	11/05/17 15:32	PJ1	TAL CHI
TCLP	Leach	1311			408176	11/02/17 12:37	JLC	TAL CHI
TCLP	Prep	3010A			408410	11/03/17 15:00	BDE	TAL CHI
TCLP	Analysis	6020A		1	408763	11/06/17 18:59	FXG	TAL CHI
TCLP	Leach	1311			408176	11/02/17 12:37	JLC	TAL CHI
TCLP	Prep	7470A			408360	11/03/17 12:20	EEN	TAL CHI
TCLP	Analysis	7470A		1	408624	11/06/17 09:16	EEN	TAL CHI
Total/NA	Analysis	9045D		1	408326	11/03/17 08:57	SMO	TAL CHI
Total/NA	Analysis	Moisture		1	408166	11/02/17 12:28	LWN	TAL CHI

Client Sample ID: 3160-50-2 (0-2')

Date Collected: 10/31/17 14:10

Date Received: 11/01/17 09:05

Lab Sample ID: 500-136575-30

Lab Sample ID: 500-136575-31

Matrix: Solid Percent Solids: 81.2

Matrix: Solid

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			408142	11/01/17 18:01	WRE	TAL CHI
Total/NA	Analysis	8260B		1	408295	11/03/17 17:11	DJD	TAL CHI
Total/NA	Prep	3541			408732	11/07/17 07:18	STW	TAL CHI
Total/NA	Analysis	8270D		1	408867	11/08/17 03:27	WDS	TAL CHI
Total/NA	Prep	3050B			408066	11/02/17 07:14	JEF	TAL CHI
Total/NA	Analysis	6010B		1	408311	11/02/17 18:41	PJ1	TAL CHI
Total/NA	Prep	7471B			408246	11/02/17 16:10	EEN	TAL CHI
Total/NA	Analysis	7471B		1	408366	11/03/17 09:42	EEN	TAL CHI

Client Sample ID: 3160-50-3 (0-2')

Date Collected: 10/31/17 14:20

Date Received: 11/01/17 09:05

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			408176	11/02/17 12:37	JLC	TAL CHI
TCLP	Prep	3010A			408410	11/03/17 15:00	BDE	TAL CHI
TCLP	Analysis	6010B		1	408541	11/05/17 15:36	PJ1	TAL CHI
TCLP	Leach	1311			408176	11/02/17 12:37	JLC	TAL CH
TCLP	Prep	3010A			408410	11/03/17 15:00	BDE	TAL CHI
TCLP	Analysis	6020A		1	408763	11/06/17 19:03	FXG	TAL CH
TCLP	Leach	1311			408176	11/02/17 12:37	JLC	TAL CHI
TCLP	Prep	7470A			408360	11/03/17 12:20	EEN	TAL CH
TCLP	Analysis	7470A		1	408624	11/06/17 09:21	EEN	TAL CH
Total/NA	Analysis	9045D		1	408326	11/03/17 08:57	SMO	TAL CH
Total/NA	Analysis	Moisture		1	408166	11/02/17 12:28	LWN	TAL CHI

TestAmerica Chicago

Page 224 of 231

Lab Chronicle

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-50-3 (0-2')

TestAmerica Job ID: 500-136575-1

Lab Sample ID: 500-136575-31

Matrix: Solid

Date Collected: 10/31/17 14:20 Date Received: 11/01/17 09:05 Percent Solids: 77.8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			408142	11/01/17 18:01	WRE	TAL CHI
Total/NA	Analysis	8260B		1	408295	11/03/17 17:36	DJD	TAL CHI
Total/NA	Prep	3541			408732	11/07/17 07:18	STW	TAL CHI
Total/NA	Analysis	8270D		1	408867	11/08/17 03:54	WDS	TAL CHI
Total/NA	Prep	3050B			408066	11/02/17 07:14	JEF	TAL CHI
Total/NA	Analysis	6010B		1	408311	11/02/17 18:45	PJ1	TAL CHI
Total/NA	Prep	7471B			408246	11/02/17 16:10	EEN	TAL CHI
Total/NA	Analysis	7471B		1	408366	11/03/17 09:45	EEN	TAL CHI

Laboratory References:

TAL CHI = TestAmerica Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

Accreditation/Certification Summary

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136575-1

Laboratory: TestAmerica Chicago

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Program		EPA Region	Identification Number	Expiration Date			
Illinois	NELAP	NELAP		100201	04-30-18			
The following analytes	s are included in this repo	ort, but accreditation/	certification is not offe	ered by the governing author	ority:			
Analysis Method	Prep Method	Matrix	Analyt	е				
6020A	3010A	Solid		Antimony				
6020A	3010A	Solid		m				
8260B	5035	Solid	1,3-Dio	chloropropene, Total				
9045D		Solid	pН					
Moisture		Solid		Percent Moisture				
Moisture		Solid	Percer	Percent Solids				

- 0

5

7

10

11

13

TestAmerica THE LEADER IN ENVIRONMENTAL TESTING

2417 Bond Street, University Park, IL 60484 Phone: 708.534.5200 Fax: 708.534.5211

(optional)	(optional)	
Report To	Bill To	Chai
Contact: TERRY DIXON	Contact: Sam &	
Company: Amec-fw wood	Company:	7,
Address: 4232 BRANDy Nint	Address:	
Address: Surtza	Address:	
Phone: PEURIA, IL 61614	Phone:	
309-692-4422	Fax:	

Chain of Custody Record
 Lab Job #: 500 - 136575
Chain of Custody Number:
Page

		•		E-Mail:				PO#/Refer	ence#		500-1365 	575 COC		Temperature ^c	C of Cooler: (X')/(1')/(
Client	An	WOOD WOOD	Client Project #		Preservative										Preservative Key 1. HCL, Cool to 4°	
Project	Name	BENTON WY	2-2-6		Parameter		_			टम्बर् _ड		5	Q 23		2. H2SO4, Cool to 4° 3. HNO3, Cool to 4° 4. NaOH, Cool to 4°	
Project	Location 2	on/State 37 Benton IL	Lab Project # 50013878	,			4	· .	5	202		6,7	7,		5. NaOH/Zn, Cool to 4° 6. NaHSO4 7. Cool to 4°	
Sample	er 2 " h	merarly	Lab PM Brek WRIG	n+		20	00 /	\(\frac{2}{4} \)	4 4	2 g2	I	100	1		8. None 9. Other	
Lab ID	MS/MSD	Sample ID	Di	Sampling ate Time	# of Containers Matrix	7	Ś	4	3-1	TCL	۵	6	, 34 , 34		Comments	
1		3160-16-4	(0-41) 10/2	s) &825		*	*		Х	×	×	×			PLEASE HOLD	
2		3160-16-3 (0-4. 1 10/2			Х	X		X	X	_X_	_X_			SPLP BASED O	
3		3160-16-2	[0-41) 10/			X	X		X	×	X	X		``	TUP REJULT	5
4		3166-16-1	(0-41) 10/	3, 6856	1 6 5	χ	X		χ	X	X	X			•	
5		3160-16-5 (0-41)10	131 0900	0 6 5	- X	X		メ	×	Х	<u> </u>			PLEASE SEE	
6		3160-23-11	10-4.5-1) 10	131 0929	200	X	X		X	X	X	×	X	,	(18) memis	
7		3160-23-2	(0-4.51) 10			X	X		×	X	λ	X	Х		LIN+ Email	
8		3160-25-1	(0-41) 10)	r		Х	Х		X	Х	X	X			FROM TERRY	,
9		3160-25-2	[0-41] [10/	31/000	65	X	<u>X</u> _		X	×	Х	X			Dixo~,	
10		3160-26-2	(0-4) 10/	3) 1010	65	\times	X		X	X	7	*			·	
Turnava	und Ti	ma Paguirad (Puninasa Daya)		20いれっと	OI- Di											

Turnarouna Time Requirea ((Business Days)	1	Sample Dis	sposal					
1 Day 2 Days Requested Due Date	5 Days 7 Days	10 Days15 Days	_ Other 'Ret	urn to Client	Disposal by Lab Archive for	Months (A	fee may be assessed if samples	are retained longer than 1 m	nonth)
Relinguished By Relinguished By	Company Amechu Company	Date 19/31/17	1700 Time	Received By	Company TA	Date // O	1/17 Time 0905	Lab Courier	
Relinquished By	Company	Date	Time	Received By	Company	Date	Time	Hand Delivered	
Mati WW – Wastewater W – Water S – Soil SL – Sludge MS – Miscellaneous OL – Oil	trix Key SE – Sediment SO – Soil L – Leachate WI – Wipe DW – Drinking Water O – Other	Client Comments			Lab Comm	ents:			

TestAmerica THE LEADER IN ENVIRONMENTAL TESTING

2417 Bond Street, University Park, IL 60484 Phone: 708.534.5200 Fax: 708.534.5211

(optional)	(optional)	
Report To	Bill To	Chain of Custody Record
Contact: TECRY DIX	Contact: Sam &	John 1964 500 - 136575
Company: Amerifu was	Company:	Lab Job #: 500 - 73 6 - 73
Address: 4232 629~0ym154	Address:	Chain of Custody Number:
Address: South A	Address:	Chairl of Custody Number.
Phone: PEORIA IL 61614	Phone:	Page <u>2</u> of <u>4</u>
Fax- 309 692-4422	Fax:	
E-Mail:	PO#/Reference#	Temperature °C of Cooler:

				· · · · · · · · · · · · · · · · · · ·			<u> </u>	1 un,					Tomoporative	e °C of Cooler:
				E-Mail:				PO#/Refere	ence#				remperatur	e Col Cooler.
Client Ameri-fiv	hoop	Client Project #		9	Preservative									Preservative Key 1. HCL, Cool to 4°
Project Name	vo-28	R+	37		Parameter					72.5				2. H2SO4, Coo! to 4° 3. HNO3, Coo! to 4° 4. NaOH, Coo! to 4°
Project Location/State Beyton, エロ Sampler てらっ ねこ		Lab Project #	<u> </u>	ટ					5	38.74		19.5		5. NaOH/Zn, Cool to 4° 6. NaHSO4 7. Cool to 4°
Sampler Town mc	NAVLY	Lab PM りょこべ	m Rr	-H+		ي	500	3	3 4	6 0	,	9		8. None 9. Other
CI qp ID Sample ID	,		Date	Sampling Time	# of Containers Matrix	7	25	9	2 2	teus	2	0		Comments
11 3160	0-26-1	0-41)	10/3	1 1020	65	Х	Х		X	X	X	メ		SEE PS. 1
12 316		(0-5-	1 10/3	1 1030	65	X	ア	-	X	X	X	$\perp \times \perp$		Notes
13 316	0-28-2	(0-51) 10/3	j 1040	6 3	Х	Х		Х	Х	X	$ \dot{\chi} $		
14 3160	0-28-3	(0-51	10/3	1/1050	65	X	X		X	Χ	Χ	X		_
15 3160.	- 32-11	0-35	10/	3/ 1/00	6 5	X	X	X	χ	X	X	X		
16 3260	-32-2(0-3,5	1) 10/3	11110	65	X	X	X	X	X	Х	$\frac{1}{2}$		
1 1 -	-32-31	<i>k</i>	/ /	•	65	X	X	X	X	X	X	×.		
18 316	-32-4 (0-3.51) 10/2	3/ 1/30	6 5	X	X	×	X	א	X	$\lambda \perp$		
19 3160.	-32-5 (0-35) 19/3	1 1140	65	χ	×	X	X	_X_	አ	×		
20 3160	-32-6 (0	2-3,51	10/3	1 1240	65	X	X	X	χ	×	X	\times		
						,						7		

Turnaround Time Requ	uirea (Business Days)	A/*	Sample Dispo	sal -	Apper de la companya			
1 Day 2 Da Requested Due Date _	ays 5 Days 7 Days	10 Days 15 Days	Other	to Client	Disposal by Lab Archive for	Months (A fee	e may be assessed if samples	are retained longer than 1 month)
Figure By	_ Amechw w		700	Received By	Company TA	Date / 01 /	7 Time 0905	Lab Courier
Relinquished By	Company	Date	Time	Received by	Company	Date / /	Time	Shipped
Relinquished By	Company	Date	Time	Received By	Company	Date	Time	Hand Delivered
WW – Wastewater W – Water S – Soil SL – Sludge MS – Miscellaneous OL – Oil A – Air	Matrix Key SE – Sediment SO – Soil L – Leachate WI – Wipe DW – Drinking Water O – Other	Client Comments			Lab Comr	ments:		

TestAr	neri	CC

THE LEADER IN ENVIRONMENTAL TESTING

2417 Bond Street, University Park, IL 60484 Phone: 708.534.5200 Fax: 708.534.5211

____ 1 Day ____ 2 Days ____ 5 Days ____ 7 Days ____ 10 Days ____ 15 Days ____

O - Other

OL - Oil

A – Air

(optional)	(optional)
Report To	Bill To
Contact: TERRY DIXON	Contact: Sam &
Company: Amec for wood	Company:
Address: 4232 BRANDywin &	Address:
Address: Juste A	Address:
Phone: proRIA IL 61614	Phone:
109-692-4422	Fax:
E-Mail:	PO#/Reference#
1	

Chain of Custody Record

Lab Job #: 500-	136575
Chain of Custody Number: _	,
Page 3 of 4	

omporatura	°C of Cooler:	
eniberature	O UI OUUIEI.	

	E-Mail:		PO#/Refere	nce#		Tomporataro	0 01 000kg.
Client Project # Client Project # 3160150	ery 9 Preservative		·				Preservative Key 1. HCL, Cool to 4°
Project Name TOGT WO-28	. Parameter			27			2. H2SO4, Cool to 4° 3. HNO3, Cool to 4° 4. NaOH, Cool to 4°
Project Location/State BENTON IIL Lab Project # 500/389	હ			2 2 4 4 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		S	5. NaOH/Zn, Cool to 4° 6. NaHSO4 7. Cool to 4°
Sampler Menarly Lab PM DICK w		2.3	2 3	\$ t 2 c	2 2	-	8. None 9. Other
CI qa DI Sample ID	Sampling sate Time # Watrix	97	200	107	\$ 5		Comments
21 3160-45-1 (0-5') 10)		XX	X	x X	x X		6 - 0
22 3160-45-1 (5-6) 101	3, 13:00 6 5	X ;	XX	××	XX		NOTES PA. 1
23 3160-45-2 (0-51) 10	131 1310 6 5	×	x x	××	χχ		
24 3160- 45-2 (5-6) 10	31 1315 6 5	X	X X	XX	X X		
25 3160-45-3 (0-51) 10)	31 1320 6 5	X	× X	XX	XXX		
26 3160-45-3 (5-61) 19	13/ 1325 65	X	χ 🗴	× x	λ Χ		
	31 1335 6 5	X	χХ	χ х	χ _χ		
	13,1340 65	X 2	K= X	××	$\mathbf{x} \mathbf{x}$		
A 3160-50-1 (0-21)10)	ا مام سا ن	×	×	x x	XX	,	
30 3160-50-2 (0-21)	14:10 6 5	×	ζ	ХХ	خ لر		
Turnaround Time Required (Business Days)	Sample Dispo	osal		-	,		

Requested Due Date_		4	T Total		Additive tol	WOULD (A ICC)	ilay be assessed ii samples	ale retained longer the	an i monun
Belinquished By	Company Amesh	moon 10/31/17	Time)700	Received By	Company T-A	Date OI	7 Time 0905	Lab Courier	
Relinedished By	Company	Date	Time	Received By	Company	Date	Time	Shipped	
Relinquished By	Company	Date	Time	Received By	Сотрапу	Date	Time	Hand Delivered	
WW – Wastewater W – Water S – Soil SL – Sludge MS – Miscellaneous	Matrix Key SE – Sediment SO – Soll L – Leachate WI – Wipe DW – Drinking Water	Client Comments	•		Lab Comi	ments;			

1 Disposal by Lab

Page 229 of 231

TAL-47247549 53/2017

2

4

6

8

10

12

. .

16	est/	4me	ericc	1	Report 7	To /		(Option	D i	X.o~	Bill To	SA	m E			Cha		f Custody Re			
		IN ENVIRONME								MOOD							Lab Job	# <u>500-136</u>	575		
		Street, University Par		J							Address:_	<u> </u>					Chain of Custody Number:				
		534.5200 Fax: 7							·		Address:_										
																	Page	4 of 4			
					Fax: E-Mail:						Fax:						Temperat	ure °C of Cooler:	·		
Client Pm E	c-fw	Moci	Client Project	t# 015 00		·	Preser	rvative			PO#/Refer	ence#					E	Preserva 1. HCL, Cool			
Project Na	me ムチ	W0 -2	.8				Parar	meter					3 3		5			2. H2SO4, Co 3. HNO3, Co	ol to 4°		
Project Loc	ation/State	ΩL	Lab Project	0138	૧ ન્ટ							5	META		Saire			4. NaOH, Cod 5. NaOH/Zn, 6. NaHSO4			
Sampler	m	enally	Lab PM 10	ick i	wr.	64+			5	0	2	72	200	7	2			7. Cool to 4° 8. None 9. Other			
Lab ID	Sample ID	,)			Samplin ate		# of Containers	Matrix	707	540	PC 13	Total	Teip Spip	Md	60			Comments			
31	316	0-50-3	0-2	19/2	5/ 30	420	b		×	×		X	×	×	X			X 584 PS.	, 1		
<u> </u>	_													•				10			
-						·												13+0N			
1 Day Requested	2 Days Due Date			s 15 Days	Pany	×17℃ Other	Sample		sal to Client	Disp	posal by Lab	Arci	nive for	_ Months	(A fee may	be assessed if	samples a	re retained longer than 1 month)			
Refinquished	Ву	Compa Compa	ny me√w n	Date	0/3)	117	ime 1.7	00	Received By	2m	1/	Company 7	4	Date //	01/17	Time	0905	Lab Courier			
Relinquished		Compa	ny	Date		Т	ime		Received By		PU	Sompany		Date	7	Time		Shipped			
Relinquished		Compa		Date		T	ime		Received By		(Company		Date		Time		Hand Delivered			
WW - Wast W - Water S - Soil SL - Sludge MS - Misce OL - Oil A - Air	ewater	latrix Key SE – Sediment SO – Soil L – Leachate WI – Wipe DW – Drinking \(^1\) O – Other		Comments									Lab Comments:								

TAL-41211501 (38/12) 017

Login Sample Receipt Checklist

Client: AMEC Foster Wheeler E & I, Inc Job Number: 500-136575-1

Login Number: 136575 List Source: TestAmerica Chicago

List Number: 1

Creator: Kelsey, Shawn M

ordior. Reisey, onawn in		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	(2.4)(1.9)(3.8)c
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	True	

G

4

6

0

46

11

13

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Chicago 2417 Bond Street University Park, IL 60484 Tel: (708)534-5200

TestAmerica Job ID: 500-136651-1

Client Project/Site: IDOT - Benton - WO 028

For:

AMEC Foster Wheeler E & I, Inc 4232 Brandywine Drive Suite A Peoria, Illinois 61614

Attn: Mr. Terry Dixon

RILL WhyM

Authorized for release by: 11/14/2017 3:44:29 PM

Richard Wright, Senior Project Manager (708)534-5200

richard.wright@testamericainc.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Detection Summary	4
Sample Summary	17
	18
Definitions	90
QC Association	91
Surrogate Summary	101
QC Sample Results	104
Chronicle	127
Certification Summary	142
	143
Receipt Checklists	145

6

4

9

10

12

13

Case Narrative

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028 TestAmerica Job ID: 500-136651-1

Job ID: 500-136651-1

Laboratory: TestAmerica Chicago

Narrative

Job Narrative 500-136651-1

Receipt

The samples were received on 11/2/2017 9:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 2 coolers at receipt time were 1.9° C and 4.5° C.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

GC/MS Semi VOA

Method(s) 8270D: The following samples contained one base surrogate outside acceptance limits: (LCS 500-409105/2-A). The laboratory's SOP allows one acid and one base surrogate to be outside acceptance limits; therefore, re-extraction was not performed. These results have been reported and qualified.

Method(s) 8270D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 500-409105 and analytical batch 500-409157 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

Method(s) 8081B: The following samples was diluted due to the nature of the sample matrix: 3160-56-1 (0-1.5') (500-136651-3) and 3160-56-2 (0-1.5') (500-136651-4). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

Method(s) 6010B: Due to sample matrix effect on the internal standard (ISTD), a dilution was required for the following sample: 3160-55-1 (0-3) (500-136651-1).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

4

6

_

10

12

13

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-55-1 (0-3)

Lab Sample ID: 500-136651-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzo[a]pyrene	0.036	J	0.040	0.0078	mg/Kg		₩	8270D	Total/NA
Benzo[b]fluoranthene	0.037	J	0.040	0.0087	mg/Kg	1	₩	8270D	Total/NA
Benzo[g,h,i]perylene	0.035	J	0.040	0.013	mg/Kg	1	₩	8270D	Total/NA
Pyrene	0.013	J	0.040	0.0080	mg/Kg	1	₩	8270D	Total/NA
Arsenic	8.2	F1	2.7	0.92	mg/Kg	5	₩	6010B	Total/NA
Barium	100	F1 F2	2.7	0.31	mg/Kg	5	₩	6010B	Total/NA
Beryllium	1.0	J	1.1	0.25	mg/Kg	5	₩	6010B	Total/NA
Cadmium	0.14	J	0.54	0.097	mg/Kg	5	₩	6010B	Total/NA
Chromium	17		0.54	0.27	mg/Kg	1	₩	6010B	Total/NA
Cobalt	9.4		0.27	0.070	mg/Kg	1	₩	6010B	Total/NA
Copper	11	F1	0.54	0.15	mg/Kg	1	₩	6010B	Total/NA
Iron	25000		54	28	mg/Kg	5	₩	6010B	Total/NA
Lead	14	F2 F1	0.27	0.12	mg/Kg	1	₩	6010B	Total/NA
Manganese	600	F2	2.7	0.39	mg/Kg	5	₩	6010B	Total/NA
Nickel	19		0.54	0.16	mg/Kg	1	₩	6010B	Total/NA
Vanadium	28		0.27	0.063	mg/Kg	1	₩	6010B	Total/NA
Zinc	54	F1	1.1	0.47	mg/Kg	1	₩	6010B	Total/NA
Barium	0.51		0.50	0.050	mg/L	1		6010B	TCLP
Copper	0.025		0.025	0.010	mg/L	1		6010B	TCLP
Iron	0.42		0.40	0.20	mg/L	1		6010B	TCLP
Manganese	0.12		0.025	0.010	mg/L	1		6010B	TCLP
Nickel	0.023	J	0.025	0.010	mg/L	1		6010B	TCLP
Zinc	0.048	J	0.50	0.020	mg/L	1		6010B	TCLP
Mercury	0.019	J	0.021	0.0069	mg/Kg	1	₩	7471B	Total/NA
pH	5.2		0.20	0.20	SU	1		9045D	Total/NA

Client Sample ID: 3160-55-2 (0-3)

Lab Sample ID: 500-136651-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	0.024		0.017	0.0076	mg/Kg	1	苺	8260B	Total/NA
Benzo[a]anthracene	0.0075	J	0.038	0.0052	mg/Kg	1	₩	8270D	Total/NA
Benzo[a]pyrene	0.018	J	0.038	0.0074	mg/Kg	1	₩	8270D	Total/NA
Fluoranthene	0.013	J	0.038	0.0071	mg/Kg	1	т ф	8270D	Total/NA
2-Methylnaphthalene	0.0080	J	0.077	0.0071	mg/Kg	1	₩	8270D	Total/NA
Phenanthrene	0.014	J	0.038	0.0054	mg/Kg	1	₩	8270D	Total/NA
Pyrene	0.015	J	0.038	0.0076	mg/Kg	1	т Ф	8270D	Total/NA
Arsenic	10		0.55	0.19	mg/Kg	1	₩	6010B	Total/NA
Barium	92		0.55	0.063	mg/Kg	1	₩	6010B	Total/NA
Beryllium	0.56		0.22	0.052	mg/Kg	1	₩.	6010B	Total/NA
Chromium	22		0.55	0.27	mg/Kg	1	₩	6010B	Total/NA
Cobalt	7.1		0.28	0.072	mg/Kg	1	₩	6010B	Total/NA
Copper	17		0.55	0.15	mg/Kg	1	₩.	6010B	Total/NA
Iron	23000		11	5.7	mg/Kg	1	₩	6010B	Total/NA
Lead	21		0.28	0.13	mg/Kg	1	₩	6010B	Total/NA
Manganese	410		0.55	0.080	mg/Kg	1	₽	6010B	Total/NA
Nickel	14		0.55	0.16	mg/Kg	1	₩	6010B	Total/NA
Selenium	1.1		0.55	0.33	mg/Kg	1	₩	6010B	Total/NA
Vanadium	43		0.28		mg/Kg	1	ф	6010B	Total/NA
Zinc	58		1.1		mg/Kg	1	₩	6010B	Total/NA
Barium	0.48	J	0.50	0.050		1		6010B	TCLP

This Detection Summary does not include radiochemical test results.

TestAmerica Chicago

11/14/2017

Page 4 of 145

5

7

9

10

12

13

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-55-2 (0-3) (Continued)

Lab Sample ID: 500-136651-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Copper	0.014	J	0.025	0.010	mg/L		_	6010B	TCLP
Iron	0.42		0.40	0.20	mg/L	1		6010B	TCLP
Manganese	0.021	J	0.025	0.010	mg/L	1		6010B	TCLP
Zinc	0.049	J	0.50	0.020	mg/L	1		6010B	TCLP
Mercury	0.038		0.020	0.0067	mg/Kg	1	₩	7471B	Total/NA
pН	8.0		0.20	0.20	SU	1		9045D	Total/NA

Client Sample ID: 3160-56-1 (0-1.5')

Lab Sample ID: 500-136651-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Anthracene	0.0084	J	0.036	0.0060	mg/Kg		₩	8270D	Total/NA
Benzo[a]anthracene	0.030	J	0.036	0.0048	mg/Kg	1	₩	8270D	Total/NA
Benzo[a]pyrene	0.058		0.036	0.0070	mg/Kg	1	₩	8270D	Total/NA
Benzo[b]fluoranthene	0.071		0.036	0.0078	mg/Kg	1	₩	8270D	Total/NA
Benzo[g,h,i]perylene	0.047		0.036	0.012	mg/Kg	1	₩	8270D	Total/NA
Benzo[k]fluoranthene	0.014	J	0.036	0.011	mg/Kg	1	₩	8270D	Total/NA
Chrysene	0.040		0.036	0.0098	mg/Kg	1	₩	8270D	Total/NA
Dibenzofuran	0.059	J	0.18	0.042	mg/Kg	1	₩	8270D	Total/NA
Fluoranthene	0.049		0.036	0.0067	mg/Kg	1	☼	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	0.042		0.036	0.0093	mg/Kg	1	₩	8270D	Total/NA
2-Methylnaphthalene	0.040	J	0.073	0.0066	mg/Kg	1	₩	8270D	Total/NA
Naphthalene	0.023	J	0.036	0.0055	mg/Kg	1	☼	8270D	Total/NA
Phenanthrene	0.093		0.036	0.0050	mg/Kg	1	₩	8270D	Total/NA
Pyrene	0.051		0.036	0.0071	mg/Kg	1	₩	8270D	Total/NA
Antimony	0.22	J	1.1	0.21	mg/Kg	1	₩	6010B	Total/NA
Arsenic	6.3		0.54	0.18	mg/Kg	1	₽	6010B	Total/NA
Barium	95		0.54	0.061	mg/Kg	1	☼	6010B	Total/NA
Beryllium	0.54		0.22	0.050	mg/Kg	1	₩	6010B	Total/NA
Cadmium	0.21	В	0.11	0.019	mg/Kg	1	₽	6010B	Total/NA
Chromium	14		0.54	0.27	mg/Kg	1	☼	6010B	Total/NA
Cobalt	8.8		0.27	0.071	mg/Kg	1	₩	6010B	Total/NA
Copper	12		0.54	0.15	mg/Kg	1	₩	6010B	Total/NA
Iron	14000		11	5.6	mg/Kg	1	₩	6010B	Total/NA
Lead	210		0.27	0.12	mg/Kg	1	₩	6010B	Total/NA
Manganese	720		0.54	0.078	mg/Kg	1	₩	6010B	Total/NA
Nickel	14		0.54	0.16	mg/Kg	1	☼	6010B	Total/NA
Selenium	0.42	J	0.54	0.32	mg/Kg	1	☼	6010B	Total/NA
Silver	0.11	J	0.27	0.069	mg/Kg	1	ф	6010B	Total/NA
Vanadium	22		0.27	0.064	mg/Kg	1	₩	6010B	Total/NA
Zinc	67		1.1	0.47	mg/Kg	1	☼	6010B	Total/NA
Barium	1.0		0.50	0.050	mg/L	1		6010B	TCLP
Cadmium	0.0025	J	0.0050	0.0020	mg/L	1		6010B	TCLP
Copper	0.016	J	0.025	0.010	mg/L	1		6010B	TCLP
Manganese	0.53		0.025	0.010	mg/L	1		6010B	TCLP
Nickel	0.012	J	0.025	0.010	Ū	1		6010B	TCLP
Zinc	0.053	J	0.50	0.020	-	1		6010B	TCLP
Manganese	0.010	J	0.025	0.010		1		6010B	SPLP Eas
Mercury	0.029		0.018	0.0060	-	1	☼	7471B	Total/NA
pH	7.3		0.20	0.20		1		9045D	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Chicago

11/14/2017

Page 5 of 145

6

5

9

10

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-56-2 (0-1.5')

Lab Sample ID: 500-136651-4

 Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	0.030		0.019	0.0084	mg/Kg	1	₩	8260B	Total/NA
Anthracene	0.019	J	0.039	0.0066	mg/Kg	1	₩	8270D	Total/NA
Benzo[a]anthracene	0.063		0.039	0.0053	mg/Kg	1	₩	8270D	Total/NA
Benzo[a]pyrene	0.072		0.039	0.0077	mg/Kg	1	₩	8270D	Total/NA
Benzo[b]fluoranthene	0.092		0.039	0.0086	mg/Kg	1	₩	8270D	Total/NA
Benzo[g,h,i]perylene	0.026	J	0.039	0.013	mg/Kg	1	₩	8270D	Total/NA
Benzo[k]fluoranthene	0.029	J	0.039	0.012	mg/Kg	1	₩	8270D	Total/NA
Chrysene	0.083		0.039	0.011	mg/Kg	1	₩	8270D	Total/NA
Dibenzofuran	0.049	J	0.20	0.046	mg/Kg	1	₩	8270D	Total/NA
Fluoranthene	0.090		0.039	0.0074	mg/Kg	1	₩	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	0.018	J	0.039	0.010	mg/Kg	1	₩	8270D	Total/NA
2-Methylnaphthalene	0.11		0.080	0.0073	mg/Kg	1	₩	8270D	Total/NA
Naphthalene	0.071		0.039	0.0061	mg/Kg	1	₩.	8270D	Total/NA
Phenanthrene	0.16		0.039	0.0055	mg/Kg	1	₩	8270D	Total/NA
Pyrene	0.12		0.039	0.0079	mg/Kg	1	₩	8270D	Total/NA
Arsenic	9.2		0.51	0.17	mg/Kg	1	₩.	6010B	Total/NA
Barium	120		0.51	0.058	mg/Kg	1	₩	6010B	Total/NA
Beryllium	0.60		0.20	0.047	mg/Kg	1	₩	6010B	Total/NA
Cadmium	0.44	В	0.10	0.018	mg/Kg	1	₩.	6010B	Total/NA
Chromium	35		0.51	0.25	mg/Kg	1	₩	6010B	Total/NA
Cobalt	10		0.25	0.066	mg/Kg	1	₩	6010B	Total/NA
Copper	19		0.51	0.14	mg/Kg	1	₩.	6010B	Total/NA
Iron	16000		10	5.3	mg/Kg	1	₩	6010B	Total/NA
Lead	270		0.25	0.12	mg/Kg	1	₩	6010B	Total/NA
Manganese	980		0.51	0.073	mg/Kg	1	₩.	6010B	Total/NA
Nickel	13		0.51	0.15	mg/Kg	1	₩	6010B	Total/NA
Selenium	1.0		0.51	0.30	mg/Kg	1	₩	6010B	Total/NA
Silver	0.15	J	0.25	0.065	mg/Kg	1	₩.	6010B	Total/NA
Vanadium	26		0.25	0.060	mg/Kg	1	₩	6010B	Total/NA
Zinc	100		1.0	0.44	mg/Kg	1	₩	6010B	Total/NA
Barium	0.76		0.50	0.050	mg/L	1		6010B	TCLP
Cadmium	0.0029	J	0.0050	0.0020	mg/L	1		6010B	TCLP
Copper	0.017	J	0.025	0.010	mg/L	1		6010B	TCLP
Iron	0.27	J	0.40	0.20	mg/L	1		6010B	TCLP
Manganese	0.042		0.025	0.010	-	1		6010B	TCLP
Zinc	0.093	J	0.50	0.020	mg/L	1		6010B	TCLP
Mercury	0.041		0.020	0.0065	mg/Kg	1	₩	7471B	Total/NA
pH	8.3		0.20	0.20		1		9045D	Total/NA

Client Sample ID: 3160-64-1 (0-1.5')

Lab Sample ID: 500-136651-5

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acenaphthene	0.035 J	0.041	0.0075	mg/Kg	1	₩	8270D	Total/NA
Acenaphthylene	0.0088 J	0.041	0.0055	mg/Kg	1	₩	8270D	Total/NA
Anthracene	0.13	0.041	0.0070	mg/Kg	1	₩	8270D	Total/NA
Benzo[a]anthracene	1.1	0.041	0.0056	mg/Kg	1	₽	8270D	Total/NA
Benzo[a]pyrene	0.85	0.041	0.0081	mg/Kg	1	₩	8270D	Total/NA
Benzo[b]fluoranthene	1.3	0.041	0.0090	mg/Kg	1	₩	8270D	Total/NA
Benzo[g,h,i]perylene	0.30	0.041	0.013	mg/Kg	1	₩.	8270D	Total/NA
Benzo[k]fluoranthene	0.48	0.041	0.012	mg/Kg	1	₩	8270D	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Chicago

11/14/2017

Page 6 of 145

5

7

9

10

12

13

М

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Lab Sample ID: 500-136651-5

Client Sample ID: 3160-64-1 (0-1.5') (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Carbazole	0.15	J	0.21	0.10	mg/Kg		₩	8270D	Total/NA
Chrysene	1.4		0.041	0.011	mg/Kg	1	₩	8270D	Total/NA
Dibenz(a,h)anthracene	0.17		0.041	0.0081	mg/Kg	1	₩	8270D	Total/NA
Dibenzofuran	0.061	J	0.21	0.049	mg/Kg	1	₩	8270D	Total/NA
Fluoranthene	1.5		0.041	0.0077	mg/Kg	1	₩	8270D	Total/NA
Fluorene	0.026	J	0.041	0.0059	mg/Kg	1	₩	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	0.33		0.041	0.011	mg/Kg	1	₩	8270D	Total/NA
2-Methylnaphthalene	0.11		0.084	0.0077	mg/Kg	1	₩	8270D	Total/NA
Naphthalene	0.052		0.041	0.0064	mg/Kg	1	₩	8270D	Total/NA
Phenanthrene	0.84		0.041	0.0058	mg/Kg	1	₩	8270D	Total/NA
Pyrene	1.4		0.041	0.0083	mg/Kg	1	₩	8270D	Total/NA
PCB-1260	0.020	J	0.021	0.010	mg/Kg	1	₩	8082A	Total/NA
Antimony	0.24	J	1.2	0.24	mg/Kg	1	₩	6010B	Total/NA
Arsenic	5.8		0.61	0.21	mg/Kg	1	₩	6010B	Total/NA
Barium	67		0.61	0.069	mg/Kg	1	₩	6010B	Total/NA
Beryllium	0.45		0.24	0.057	mg/Kg	1	₩	6010B	Total/NA
Cadmium	0.37	В	0.12	0.022	mg/Kg	1	₩	6010B	Total/NA
Chromium	13		0.61	0.30	mg/Kg	1	₩	6010B	Total/NA
Cobalt	5.3		0.30	0.079	mg/Kg	1	₩	6010B	Total/NA
Copper	18		0.61	0.17	mg/Kg	1	₩.	6010B	Total/NA
Iron	12000		12	6.3	mg/Kg	1	₩	6010B	Total/NA
Lead	160		0.30	0.14	mg/Kg	1	₩	6010B	Total/NA
Manganese	270		0.61	0.088	mg/Kg	1		6010B	Total/NA
Nickel	11		0.61	0.18	mg/Kg	1	₩	6010B	Total/NA
Vanadium	21		0.30	0.071	mg/Kg	1	₩	6010B	Total/NA
Zinc	73		1.2	0.53	mg/Kg	1	₽	6010B	Total/NA
Barium	0.76		0.50	0.050	mg/L	1		6010B	TCLP
Cadmium	0.0028	J	0.0050	0.0020	mg/L	1		6010B	TCLP
Copper	0.014	J	0.025	0.010	mg/L	1		6010B	TCLP
Iron	0.34	J	0.40		mg/L	1		6010B	TCLP
Lead	0.022		0.0075	0.0075	mg/L	1		6010B	TCLP
Manganese	0.097		0.025	0.010	mg/L	1		6010B	TCLP
Zinc	0.072	J	0.50	0.020	mg/L	1		6010B	TCLP
Lead	0.14		0.0075	0.0075	-	1		6010B	SPLP East
Mercury	0.041		0.021	0.0069	mg/Kg	1	₩	7471B	Total/NA
pH	8.1		0.20	0.20		1		9045D	Total/NA

Client Sample ID: 3160-64-2 (0-1.5')

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Anthracene	0.0079	J	0.040	0.0067	mg/Kg	1	₩	8270D	Total/NA
Benzo[a]anthracene	0.021	J	0.040	0.0054	mg/Kg	1	₩	8270D	Total/NA
Benzo[a]pyrene	0.029	J	0.040	0.0077	mg/Kg	1	₩	8270D	Total/NA
Benzo[b]fluoranthene	0.030	J	0.040	0.0086	mg/Kg	1	₩	8270D	Total/NA
Chrysene	0.025	J	0.040	0.011	mg/Kg	1	₩	8270D	Total/NA
Fluoranthene	0.026	J	0.040	0.0074	mg/Kg	1	₩	8270D	Total/NA
2-Methylnaphthalene	0.021	J	0.080	0.0073	mg/Kg	1	₩	8270D	Total/NA
Naphthalene	0.0082	J	0.040	0.0061	mg/Kg	1	₩	8270D	Total/NA
Phenanthrene	0.044		0.040	0.0056	mg/Kg	1	₩	8270D	Total/NA
Pyrene	0.032	J	0.040	0.0079	mg/Kg	1	₩	8270D	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Chicago

11/14/2017

Lab Sample ID: 500-136651-6

4

5

7

9

11

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Lab Sample ID: 500-136651-6

Client Sample ID: 3160-64-2 (0-1.5') (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
PCB-1260	0.021		0.021	0.010	mg/Kg		₩	8082A	Total/NA
Arsenic	4.2		0.61	0.21	mg/Kg	1	₩	6010B	Total/NA
Barium	59		0.61	0.070	mg/Kg	1	₩	6010B	Total/NA
Beryllium	0.43		0.24	0.057	mg/Kg	1	₩	6010B	Total/NA
Chromium	11		0.61	0.30	mg/Kg	1	₩	6010B	Total/NA
Cobalt	3.7		0.31	0.080	mg/Kg	1	₩	6010B	Total/NA
Copper	9.3		0.61	0.17	mg/Kg	1	₩	6010B	Total/NA
Iron	9200		12	6.3	mg/Kg	1	₩	6010B	Total/NA
Lead	17		0.31	0.14	mg/Kg	1	₽	6010B	Total/NA
Manganese	390		0.61	0.088	mg/Kg	1	₩	6010B	Total/NA
Nickel	6.2		0.61	0.18	mg/Kg	1	₩	6010B	Total/NA
Selenium	0.60	J	0.61	0.36	mg/Kg	1	₩	6010B	Total/NA
Vanadium	22		0.31	0.072	mg/Kg	1	₩	6010B	Total/NA
Zinc	31		1.2	0.54	mg/Kg	1	₩	6010B	Total/NA
Barium	0.46	J	0.50	0.050	mg/L	1		6010B	TCLP
Cadmium	0.0021	J	0.0050	0.0020	mg/L	1		6010B	TCLP
Copper	0.023	J	0.025	0.010	mg/L	1		6010B	TCLP
Iron	0.82		0.40	0.20	mg/L	1		6010B	TCLP
Manganese	0.093		0.025	0.010	mg/L	1		6010B	TCLP
Zinc	0.11	J	0.50	0.020	mg/L	1		6010B	TCLP
Mercury	0.074		0.019	0.0063	mg/Kg	1	ф.	7471B	Total/NA
pH	7.1		0.20	0.20	SU	1		9045D	Total/NA

Client Sample ID: 3160-64-3 (0-1.5')

Sherit Sample ID. 5100.	111 Sample ID. 3160-64-3 (0-1.5)							ipie ib. 5	00-130031-
- Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Anthracene	0.034	J	0.038	0.0064	mg/Kg		₩	8270D	Total/NA
Benzo[a]anthracene	0.055		0.038	0.0052	mg/Kg	1	₩	8270D	Total/NA
Benzo[a]pyrene	0.054		0.038	0.0074	mg/Kg	1	₩	8270D	Total/NA
Benzo[b]fluoranthene	0.069		0.038	0.0083	mg/Kg	1	₩.	8270D	Total/NA
Benzo[g,h,i]perylene	0.023	J	0.038	0.012	mg/Kg	1	₩	8270D	Total/NA
Benzo[k]fluoranthene	0.019	J	0.038	0.011	mg/Kg	1	₩	8270D	Total/NA
Chrysene	0.064		0.038	0.010	mg/Kg	1	ф.	8270D	Total/NA
Dibenzofuran	0.047	J	0.19	0.045	mg/Kg	1	₩	8270D	Total/NA
Fluoranthene	0.077		0.038	0.0071	mg/Kg	1	₩	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	0.018	J	0.038	0.0099	mg/Kg	1	₩.	8270D	Total/NA
2-Methylnaphthalene	0.087		0.077	0.0071	mg/Kg	1	₩	8270D	Total/NA
Naphthalene	0.034	J	0.038	0.0059	mg/Kg	1	₩	8270D	Total/NA
Phenanthrene	0.20		0.038	0.0053	mg/Kg	1	₩.	8270D	Total/NA
Pyrene	0.085		0.038	0.0076	mg/Kg	1	₩	8270D	Total/NA
Arsenic	6.0		0.57	0.20	mg/Kg	1	₩	6010B	Total/NA
Barium	110		0.57	0.065	mg/Kg	1	ψ	6010B	Total/NA
Beryllium	0.65		0.23	0.054	mg/Kg	1	₩	6010B	Total/NA
Cadmium	0.30	В	0.11	0.021	mg/Kg	1	₩	6010B	Total/NA
Chromium	12		0.57	0.28	mg/Kg	1	₩.	6010B	Total/NA
Cobalt	9.1		0.29	0.075	mg/Kg	1	☼	6010B	Total/NA
Copper	34		0.57	0.16	mg/Kg	1	₩	6010B	Total/NA
Iron	13000		11	6.0	mg/Kg	1	ф	6010B	Total/NA
Lead	110		0.29	0.13	mg/Kg	1	₩	6010B	Total/NA
Manganese	300		0.57		mg/Kg	1	☼	6010B	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Chicago

3

5

7

9

10

12

13

| 4

Lab Sample ID: 500-136651-7

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

2

Client Sample ID: 3160-64-3 (0-1.5') (Continued)

Lab Sample ID: 500-136651-7

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Nickel	18		0.57	0.17	mg/Kg		₩	6010B	Total/NA
Selenium	0.90		0.57	0.34	mg/Kg	1	₩	6010B	Total/NA
Vanadium	19		0.29	0.068	mg/Kg	1	₩	6010B	Total/NA
Zinc	91		1.1	0.50	mg/Kg	1	₽	6010B	Total/NA
Barium	1.4		0.50	0.050	mg/L	1		6010B	TCLP
Cadmium	0.0035	J	0.0050	0.0020	mg/L	1		6010B	TCLP
Copper	0.013	J	0.025	0.010	mg/L	1		6010B	TCLP
Manganese	0.41		0.025	0.010	mg/L	1		6010B	TCLP
Zinc	0.047	J	0.50	0.020	mg/L	1		6010B	TCLP
Manganese	0.093		0.025	0.010	mg/L	1		6010B	SPLP East
Mercury	0.041		0.019	0.0064	mg/Kg	1	₩	7471B	Total/NA
pH	8.2		0.20	0.20	SU	1		9045D	Total/NA

Client Sample ID: 3160-62-10 (0-1.5')

Lab Sample ID: 500-136651-8

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Anthracene	0.013	J	0.040	0.0068	mg/Kg		₩	8270D	Total/NA
Benzo[a]anthracene	0.030	J	0.040	0.0055	mg/Kg	1	₩	8270D	Total/NA
Benzo[a]pyrene	0.031	J	0.040	0.0079	mg/Kg	1	₩	8270D	Total/NA
Benzo[b]fluoranthene	0.030	J	0.040	0.0088	mg/Kg	1	₩.	8270D	Total/NA
Chrysene	0.031	J	0.040	0.011	mg/Kg	1	₩	8270D	Total/NA
Fluoranthene	0.034	J	0.040	0.0076	mg/Kg	1	₩	8270D	Total/NA
2-Methylnaphthalene	0.064	J	0.082	0.0075	mg/Kg	1	ф.	8270D	Total/NA
Naphthalene	0.030	J	0.040	0.0063	mg/Kg	1	₩	8270D	Total/NA
Phenanthrene	0.098		0.040	0.0057	mg/Kg	1	₩	8270D	Total/NA
Pyrene	0.041		0.040	0.0081	mg/Kg	1	₩.	8270D	Total/NA
Arsenic	6.4		0.54	0.19	mg/Kg	1	₩	6010B	Total/NA
Barium	85		0.54	0.062	mg/Kg	1	₩	6010B	Total/NA
Beryllium	0.52		0.22	0.051	mg/Kg	1	₩.	6010B	Total/NA
Chromium	13		0.54	0.27	mg/Kg	1	₩	6010B	Total/NA
Cobalt	6.5		0.27	0.071	mg/Kg	1	₩	6010B	Total/NA
Copper	12		0.54	0.15	mg/Kg	1	₩	6010B	Total/NA
Iron	14000		11	5.7	mg/Kg	1	₩	6010B	Total/NA
Lead	22		0.27	0.13	mg/Kg	1	₩	6010B	Total/NA
Manganese	640		0.54	0.079	mg/Kg	1	₩.	6010B	Total/NA
Nickel	7.1		0.54	0.16	mg/Kg	1	₩	6010B	Total/NA
Selenium	0.90		0.54	0.32	mg/Kg	1	₩	6010B	Total/NA
Vanadium	29		0.27	0.064	mg/Kg	1	₩	6010B	Total/NA
Zinc	32		1.1	0.48	mg/Kg	1	₩	6010B	Total/NA
Barium	0.38	J	0.50	0.050	mg/L	1		6010B	TCLP
Copper	0.012	J	0.025	0.010	mg/L	1		6010B	TCLP
Iron	0.60		0.40	0.20	mg/L	1		6010B	TCLP
Manganese	0.14		0.025	0.010	mg/L	1		6010B	TCLP
Zinc	0.075	J	0.50	0.020	mg/L	1		6010B	TCLP
Mercury	0.021		0.019	0.0064	mg/Kg	1	₩	7471B	Total/NA
рН	5.5		0.20	0.20	SU	1		9045D	Total/NA

Client Sample ID: 3160-62-9 (0-1.5')

Lab Sample ID: 500-136651-9

This Detection Summary does not include radiochemical test results.

TestAmerica Chicago

Page 9 of 145

ا

9

11

13

14

11/14/2017

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

2

Client Sample ID: 3160-62-9 (0-1.5') (Continued)

Lab Sample ID: 500-136651-9

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzo[a]anthracene	0.0099	J	0.041	0.0055	mg/Kg		₩	8270D	Total/NA
Benzo[a]pyrene	0.022	J	0.041	0.0080	mg/Kg	1	₩	8270D	Total/NA
Chrysene	0.012	J	0.041	0.011	mg/Kg	1	₩	8270D	Total/NA
Fluoranthene	0.014	J	0.041	0.0076	mg/Kg	1	₽	8270D	Total/NA
2-Methylnaphthalene	0.016	J	0.083	0.0076	mg/Kg	1	₩	8270D	Total/NA
Phenanthrene	0.023	J	0.041	0.0057	mg/Kg	1	₩	8270D	Total/NA
Pyrene	0.015	J	0.041	0.0082	mg/Kg	1	₩	8270D	Total/NA
Arsenic	5.0		0.62	0.21	mg/Kg	1	₩	6010B	Total/NA
Barium	86		0.62	0.071	mg/Kg	1	₩	6010B	Total/NA
Beryllium	0.49		0.25	0.058	mg/Kg	1	₩	6010B	Total/NA
Cadmium	0.038	JB	0.12	0.022	mg/Kg	1	₩	6010B	Total/NA
Chromium	14		0.62	0.31	mg/Kg	1	₩	6010B	Total/NA
Cobalt	6.3		0.31	0.081	mg/Kg	1	₩	6010B	Total/NA
Copper	8.8		0.62	0.17	mg/Kg	1	₩	6010B	Total/NA
Iron	12000		12	6.5	mg/Kg	1	₩	6010B	Total/NA
Lead	22		0.31	0.14	mg/Kg	1	ф.	6010B	Total/NA
Manganese	300		0.62	0.090	mg/Kg	1	₩	6010B	Total/NA
Nickel	12		0.62	0.18	mg/Kg	1	₩	6010B	Total/NA
Selenium	0.96		0.62	0.37	mg/Kg	1	Ф	6010B	Total/NA
Vanadium	23		0.31	0.073	mg/Kg	1	₩	6010B	Total/NA
Zinc	38		1.2	0.55	mg/Kg	1	₩	6010B	Total/NA
Barium	0.56		0.50	0.050	mg/L	1		6010B	TCLP
Copper	0.014	J	0.025	0.010	mg/L	1		6010B	TCLP
Iron	0.58		0.40	0.20	mg/L	1		6010B	TCLP
Manganese	0.035		0.025	0.010	mg/L	1		6010B	TCLP
Zinc	0.049	J	0.50	0.020	mg/L	1		6010B	TCLP
Mercury	0.021		0.021	0.0070	mg/Kg	1	₩	7471B	Total/NA
pH	6.0		0.20	0.20	SU	1		9045D	Total/NA

Client Sample ID: 3160-62-8 (0-1.5')

Lab Sample ID: 500-136651-10

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzo[a]anthracene	0.011	J	0.038	0.0051	mg/Kg	1	₩	8270D	Total/NA
Benzo[a]pyrene	0.022	J	0.038	0.0074	mg/Kg	1	₩	8270D	Total/NA
Benzo[b]fluoranthene	0.018	J	0.038	0.0082	mg/Kg	1	₩	8270D	Total/NA
Chrysene	0.012	J	0.038	0.010	mg/Kg	1	₩	8270D	Total/NA
2-Methylnaphthalene	0.0085	J	0.077	0.0070	mg/Kg	1	₩	8270D	Total/NA
Phenanthrene	0.017	J	0.038	0.0053	mg/Kg	1	₩	8270D	Total/NA
Pyrene	0.013	J	0.038	0.0076	mg/Kg	1	₽	8270D	Total/NA
Arsenic	9.9		0.60	0.20	mg/Kg	1	₩	6010B	Total/NA
Barium	92		0.60	0.068	mg/Kg	1	₩	6010B	Total/NA
Beryllium	0.59		0.24	0.056	mg/Kg	1	₩.	6010B	Total/NA
Chromium	16		0.60	0.30	mg/Kg	1	₩	6010B	Total/NA
Cobalt	7.7		0.30	0.078	mg/Kg	1	₩	6010B	Total/NA
Copper	8.0		0.60	0.17	mg/Kg	1	₩	6010B	Total/NA
Iron	18000		12	6.2	mg/Kg	1	₩	6010B	Total/NA
Lead	25		0.30	0.14	mg/Kg	1	₩	6010B	Total/NA
Manganese	670		0.60	0.087	mg/Kg	1		6010B	Total/NA
Nickel	9.0		0.60	0.17	mg/Kg	1	₩	6010B	Total/NA
Selenium	1.4		0.60		mg/Kg	1	₩	6010B	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Chicago

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-62-8 (0-1.5') (Continued)

Lab Sample ID: 500-136651-10

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Vanadium	37		0.30	0.071	mg/Kg		₩	6010B	Total/NA
Zinc	32		1.2	0.53	mg/Kg	1	₩	6010B	Total/NA
Barium	0.42	J	0.50	0.050	mg/L	1		6010B	TCLP
Copper	0.013	J	0.025	0.010	mg/L	1		6010B	TCLP
Manganese	0.21		0.025	0.010	mg/L	1		6010B	TCLP
Nickel	0.016	J	0.025	0.010	mg/L	1		6010B	TCLP
Zinc	0.056	J	0.50	0.020	mg/L	1		6010B	TCLP
Manganese	0.053		0.025	0.010	mg/L	1		6010B	SPLP East
Mercury	0.019	J	0.020	0.0065	mg/Kg	1	₩	7471B	Total/NA
pH	5.2		0.20	0.20	SU	1		9045D	Total/NA

Client Sample ID: 3160-62-7 (0-1.5')

Lab Sample ID: 500-136651-11

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzo[a]anthracene	0.015	J	0.038	0.0052	mg/Kg		₩	8270D	Total/NA
Benzo[a]pyrene	0.023	J	0.038	0.0075	mg/Kg	1	₩	8270D	Total/NA
Benzo[b]fluoranthene	0.017	J	0.038	0.0083	mg/Kg	1	₩	8270D	Total/NA
Chrysene	0.016	J	0.038	0.011	mg/Kg	1	ф	8270D	Total/NA
Fluoranthene	0.018	J	0.038	0.0072	mg/Kg	1	₩	8270D	Total/NA
2-Methylnaphthalene	0.012	J	0.078	0.0071	mg/Kg	1	₩	8270D	Total/NA
Phenanthrene	0.036	J	0.038	0.0054	mg/Kg	1	₽	8270D	Total/NA
Pyrene	0.024	J	0.038	0.0077	mg/Kg	1	₩	8270D	Total/NA
Arsenic	6.0		0.56	0.19	mg/Kg	1	₩	6010B	Total/NA
Barium	100		0.56	0.064	mg/Kg	1	₩	6010B	Total/NA
Beryllium	0.61		0.22	0.052	mg/Kg	1	₩	6010B	Total/NA
Cadmium	0.035	JB	0.11	0.020	mg/Kg	1	₩	6010B	Total/NA
Chromium	15		0.56	0.28	mg/Kg	1	₩	6010B	Total/NA
Cobalt	6.8		0.28	0.073	mg/Kg	1	₩	6010B	Total/NA
Copper	9.9		0.56	0.16	mg/Kg	1	₩	6010B	Total/NA
Iron	15000		11	5.8	mg/Kg	1	ф.	6010B	Total/NA
Lead	32		0.28	0.13	mg/Kg	1	₩	6010B	Total/NA
Manganese	490		0.56	0.081	mg/Kg	1	₩	6010B	Total/NA
Nickel	11		0.56	0.16	mg/Kg	1	₩	6010B	Total/NA
Selenium	0.99		0.56	0.33	mg/Kg	1	₩	6010B	Total/NA
Vanadium	28		0.28	0.066	mg/Kg	1	₩	6010B	Total/NA
Zinc	48		1.1	0.49	mg/Kg	1	₽	6010B	Total/NA
Barium	0.71		0.50	0.050	mg/L	1		6010B	TCLP
Copper	0.011	J	0.025	0.010	mg/L	1		6010B	TCLP
Manganese	0.048		0.025	0.010	mg/L	1		6010B	TCLP
Nickel	0.013	J	0.025	0.010	mg/L	1		6010B	TCLP
Zinc	0.074	J	0.50	0.020	mg/L	1		6010B	TCLP
Mercury	0.035		0.019	0.0064	mg/Kg	1	Ф	7471B	Total/NA
pH	5.7		0.20	0.20	SU	1		9045D	Total/NA

Client Sample ID: 3160-62-6 (0-1.5')

Lab Sample ID: 500-136651-12

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzo[a]anthracene	0.022	J	0.039	0.0053	mg/Kg	1	₩	8270D	Total/NA
Benzo[a]pyrene	0.029	J	0.039	0.0076	mg/Kg	1	₩	8270D	Total/NA
Benzo[b]fluoranthene	0.031	J	0.039	0.0085	mg/Kg	1	₩	8270D	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Chicago

Page 11 of 145

8

3

11

12

13

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-62-6 (0-1.5') (Continued) Lab Sample ID: 500-136651-12

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chrysene	0.024	J	0.039	0.011	mg/Kg		₩.	8270D	Total/NA
Fluoranthene	0.031	J	0.039	0.0073	mg/Kg	1	₩	8270D	Total/NA
2-Methylnaphthalene	0.026	J	0.080	0.0073	mg/Kg	1	₩	8270D	Total/NA
Naphthalene	0.0075	J	0.039	0.0061	mg/Kg	1	₩	8270D	Total/NA
Phenanthrene	0.054		0.039	0.0055	mg/Kg	1	₩	8270D	Total/NA
Pyrene	0.031	J	0.039	0.0078	mg/Kg	1	₩	8270D	Total/NA
Arsenic	7.2		0.59	0.20	mg/Kg	1	₩	6010B	Total/NA
Barium	120		0.59	0.068	mg/Kg	1	₩	6010B	Total/NA
Beryllium	0.47		0.24	0.055	mg/Kg	1	₩	6010B	Total/NA
Cadmium	0.048	JB	0.12	0.021	mg/Kg	1	₩	6010B	Total/NA
Chromium	14		0.59	0.29	mg/Kg	1	₩	6010B	Total/NA
Cobalt	7.9		0.30	0.078	mg/Kg	1	₩	6010B	Total/NA
Copper	9.8		0.59	0.17	mg/Kg	1		6010B	Total/NA
Iron	15000		12	6.2	mg/Kg	1	₩	6010B	Total/NA
Lead	31		0.30	0.14	mg/Kg	1	₩	6010B	Total/NA
Manganese	720		0.59	0.086	mg/Kg	1	₩	6010B	Total/NA
Nickel	9.4		0.59	0.17	mg/Kg	1	₩	6010B	Total/NA
Selenium	1.1		0.59	0.35	mg/Kg	1	₩	6010B	Total/NA
Vanadium	27		0.30	0.070	mg/Kg	1	₩	6010B	Total/NA
Zinc	40		1.2	0.52	mg/Kg	1	₩	6010B	Total/NA
Barium	0.64		0.50	0.050	mg/L	1		6010B	TCLP
Copper	0.012	J	0.025	0.010	mg/L	1		6010B	TCLP
Iron	0.39	J	0.40	0.20	mg/L	1		6010B	TCLP
Manganese	0.037		0.025	0.010	mg/L	1		6010B	TCLP
Zinc	0.071	J	0.50	0.020	mg/L	1		6010B	TCLP
Mercury	0.20		0.020	0.0067	mg/Kg	1	#	7471B	Total/NA
рН	6.0		0.20	0.20	SU	1		9045D	Total/NA

Client Sample ID: 3160-62-5 (0-1.5')

Lab Sample ID: 500-136651-13

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Anthracene	0.0075	J	0.042	0.0070	mg/Kg		₩	8270D	Total/NA
Benzo[a]anthracene	0.025	J	0.042	0.0057	mg/Kg	1	₩	8270D	Total/NA
Benzo[a]pyrene	0.035	J	0.042	0.0082	mg/Kg	1	₩	8270D	Total/NA
Benzo[b]fluoranthene	0.035	J	0.042	0.0091	mg/Kg	1	₩	8270D	Total/NA
Benzo[g,h,i]perylene	0.014	J	0.042	0.014	mg/Kg	1	₩	8270D	Total/NA
Benzo[k]fluoranthene	0.013	J	0.042	0.012	mg/Kg	1	₩	8270D	Total/NA
Chrysene	0.028	J	0.042	0.011	mg/Kg	1	ψ	8270D	Total/NA
Fluoranthene	0.048		0.042	0.0078	mg/Kg	1	₩	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	0.012	J	0.042	0.011	mg/Kg	1	₩	8270D	Total/NA
2-Methylnaphthalene	0.018	J	0.085	0.0078	mg/Kg	1	Φ.	8270D	Total/NA
Naphthalene	0.0070	J	0.042	0.0065	mg/Kg	1	₩	8270D	Total/NA
Phenanthrene	0.052		0.042	0.0059	mg/Kg	1	₩	8270D	Total/NA
Pyrene	0.039	J	0.042	0.0084	mg/Kg	1	₩.	8270D	Total/NA
Arsenic	5.4		0.52	0.18	mg/Kg	1	₩	6010B	Total/NA
Barium	89		0.52	0.059	mg/Kg	1	₩	6010B	Total/NA
Beryllium	0.44		0.21	0.048	mg/Kg	1	₩	6010B	Total/NA
Chromium	12		0.52	0.26	mg/Kg	1	₩	6010B	Total/NA
Cobalt	8.4		0.26	0.068	mg/Kg	1	₩	6010B	Total/NA
Copper	7.6		0.52	0.14	mg/Kg	1	₩.	6010B	Total/NA

This Detection Summary does not include radiochemical test results.

5

7

9

10

12

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-62-5 (0-1.5') (Continued)

Lab Sample ID: 500-136651-13

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Iron	11000		10	5.4	mg/Kg		₩	6010B	Total/NA
Lead	19		0.26	0.12	mg/Kg	1	₩	6010B	Total/NA
Manganese	670		0.52	0.075	mg/Kg	1	ф.	6010B	Total/NA
Nickel	7.4		0.52	0.15	mg/Kg	1	₩	6010B	Total/NA
Selenium	0.61		0.52	0.30	mg/Kg	1	₩	6010B	Total/NA
Vanadium	22		0.26	0.061	mg/Kg	1	ф.	6010B	Total/NA
Zinc	28		1.0	0.45	mg/Kg	1	₩	6010B	Total/NA
Barium	0.43	J	0.50	0.050	mg/L	1		6010B	TCLP
Copper	0.011	J	0.025	0.010	mg/L	1		6010B	TCLP
Iron	0.28	J	0.40	0.20	mg/L	1		6010B	TCLP
Manganese	0.033		0.025	0.010	mg/L	1		6010B	TCLP
Zinc	0.041	J	0.50	0.020	mg/L	1		6010B	TCLP
Mercury	0.032		0.019	0.0062	mg/Kg	1	₩	7471B	Total/NA
pH	6.9		0.20	0.20	SU	1		9045D	Total/NA

Client Sample ID: 3160-62-4 (0-1.5')

Lab Sample ID: 500-136651-14

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac		Method	Prep Type
Benzo[a]anthracene	0.011	J	0.039	0.0053	mg/Kg	1	₩	8270D	Total/NA
Benzo[a]pyrene	0.019	J	0.039	0.0076	mg/Kg	1	₩	8270D	Total/NA
Benzo[b]fluoranthene	0.010	J	0.039	0.0085	mg/Kg	1	₩	8270D	Total/NA
Chrysene	0.011	J	0.039	0.011	mg/Kg	1	₩	8270D	Total/NA
Fluoranthene	0.012	J	0.039	0.0073	mg/Kg	1	₩	8270D	Total/NA
2-Methylnaphthalene	0.012	J	0.080	0.0073	mg/Kg	1	₽	8270D	Total/NA
Phenanthrene	0.026	J	0.039	0.0055	mg/Kg	1	₩	8270D	Total/NA
Pyrene	0.014	J	0.039	0.0079	mg/Kg	1	₩	8270D	Total/NA
Arsenic	3.8		0.51	0.17	mg/Kg	1	₩	6010B	Total/NA
Barium	97		0.51	0.058	mg/Kg	1	Ď.	6010B	Total/NA
Beryllium	0.47		0.20	0.048	mg/Kg	1	₩	6010B	Total/NA
Cadmium	0.058	JB	0.10	0.018	mg/Kg	1	₽	6010B	Total/NA
Chromium	12		0.51	0.25	mg/Kg	1	₩	6010B	Total/NA
Cobalt	4.5		0.26	0.067	mg/Kg	1	₽	6010B	Total/NA
Copper	9.2		0.51	0.14	mg/Kg	1	₽	6010B	Total/NA
Iron	10000		10	5.3	mg/Kg	1	₽	6010B	Total/NA
Lead	21		0.26	0.12	mg/Kg	1	₽	6010B	Total/NA
Manganese	250		0.51	0.074	mg/Kg	1	₩	6010B	Total/NA
Nickel	9.6		0.51	0.15	mg/Kg	1	₩.	6010B	Total/NA
Selenium	0.66		0.51	0.30	mg/Kg	1	₽	6010B	Total/NA
Vanadium	21		0.26	0.060	mg/Kg	1	₩	6010B	Total/NA
Zinc	36		1.0	0.45	mg/Kg	1	₩	6010B	Total/NA
Barium	0.51		0.50	0.050	mg/L	1		6010B	TCLP
Copper	0.012	J	0.025	0.010	mg/L	1		6010B	TCLP
Iron	0.88		0.40	0.20	mg/L	1		6010B	TCLP
Manganese	0.033		0.025	0.010	-	1		6010B	TCLP
Zinc	0.051	J	0.50	0.020	-	1		6010B	TCLP
Mercury	0.026		0.018	0.0060	mg/Kg	1	₽	7471B	Total/NA
pH	7.6		0.20	0.20		1		9045D	Total/NA

Client Sample ID: 3160-62-3 (0-1.5')

Lab Sample ID: 500-136651-15

This Detection Summary does not include radiochemical test results.

TestAmerica Chicago

Page 13 of 145

4

£

Q

9

11

12

14

11/14/2017

Lab Sample ID: 500-136651-15

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-62-3 (0-1.5') (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzo[a]anthracene	0.0068	J	0.038	0.0052	mg/Kg		₩	8270D	Total/NA
Benzo[a]pyrene	0.018	J	0.038	0.0074	mg/Kg	1	₩	8270D	Total/NA
Fluoranthene	0.0085	J	0.038	0.0071	mg/Kg	1	₩	8270D	Total/NA
Phenanthrene	0.012	J	0.038	0.0053	mg/Kg	1	₩	8270D	Total/NA
Pyrene	0.0086	J	0.038	0.0076	mg/Kg	1	₩	8270D	Total/NA
Arsenic	5.1		0.53	0.18	mg/Kg	1	₩	6010B	Total/NA
Barium	58		0.53	0.060	mg/Kg	1	₩	6010B	Total/NA
Beryllium	0.37		0.21	0.049	mg/Kg	1	₩	6010B	Total/NA
Chromium	12		0.53	0.26	mg/Kg	1	₩	6010B	Total/NA
Cobalt	4.9		0.26	0.069	mg/Kg	1	₽	6010B	Total/NA
Copper	5.9		0.53	0.15	mg/Kg	1	₩	6010B	Total/NA
Iron	12000		11	5.5	mg/Kg	1	₩	6010B	Total/NA
Lead	15		0.26	0.12	mg/Kg	1	Þ	6010B	Total/NA
Manganese	370		0.53	0.077	mg/Kg	1	₩	6010B	Total/NA
Nickel	6.6		0.53	0.15	mg/Kg	1	₩	6010B	Total/NA
Selenium	1.0		0.53	0.31	mg/Kg	1	¢	6010B	Total/NA
Vanadium	23		0.26	0.063	mg/Kg	1	₩	6010B	Total/NA
Zinc	26		1.1	0.47	mg/Kg	1	₩	6010B	Total/NA
Barium	0.42	J	0.50	0.050	mg/L	1		6010B	TCLP
Copper	0.016	J	0.025	0.010	mg/L	1		6010B	TCLP
Manganese	0.10		0.025	0.010	mg/L	1		6010B	TCLP
Nickel	0.011	J	0.025	0.010	mg/L	1		6010B	TCLP
Zinc	0.060	J	0.50	0.020	mg/L	1		6010B	TCLP
Mercury	0.027		0.018	0.0060	mg/Kg	1	₩	7471B	Total/NA
pH	5.5		0.20	0.20	SU	1		9045D	Total/NA

Client Sample ID: 3160-62-2 (0-1.5')

Client Sample ID: 3160	ient Sample ID: 3160-62-2 (0-1.5')							le ID: 50	0-136651-16
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzo[a]anthracene	0.031	J	0.036	0.0049	mg/Kg	1	夺	8270D	Total/NA
Benzo[a]pyrene	0.040		0.036	0.0071	mg/Kg	1	₩	8270D	Total/NA
Benzo[b]fluoranthene	0.053		0.036	0.0079	mg/Kg	1	₩	8270D	Total/NA
Benzo[g,h,i]perylene	0.012	J	0.036	0.012	mg/Kg	1	₩	8270D	Total/NA
Benzo[k]fluoranthene	0.019	J	0.036	0.011	mg/Kg	1	₩	8270D	Total/NA
Chrysene	0.047		0.036	0.0099	mg/Kg	1	₩	8270D	Total/NA
Fluoranthene	0.038		0.036	0.0068	mg/Kg	1	₩	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	0.011	J	0.036	0.0094	mg/Kg	1	₩	8270D	Total/NA
2-Methylnaphthalene	0.018	J	0.074	0.0067	mg/Kg	1	₩	8270D	Total/NA
Naphthalene	0.0080	J	0.036	0.0056	mg/Kg	1	₩	8270D	Total/NA
Phenanthrene	0.046		0.036	0.0051	mg/Kg	1	₩	8270D	Total/NA
Pyrene	0.040		0.036	0.0072	mg/Kg	1	₩	8270D	Total/NA
Antimony	0.24	J	1.1	0.21	mg/Kg	1	₩	6010B	Total/NA
Arsenic	3.8		0.55	0.19	mg/Kg	1	₩	6010B	Total/NA
Barium	29		0.55	0.062	mg/Kg	1	₩	6010B	Total/NA
Beryllium	0.29		0.22	0.051	mg/Kg	1	₩	6010B	Total/NA
Cadmium	0.61	В	0.11	0.020	mg/Kg	1	☼	6010B	Total/NA
Chromium	9.2		0.55	0.27	mg/Kg	1	₩	6010B	Total/NA
Cobalt	2.5		0.27	0.072	mg/Kg	1	₩.	6010B	Total/NA
Copper	14		0.55	0.15	mg/Kg	1	₩	6010B	Total/NA
Iron	9700		11			1	₽	6010B	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Chicago

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-62-2 (0-1.5') (Continued)

Lab Sample ID: 500-136651-16

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Lead	210		0.27	0.13	mg/Kg		₩	6010B	Total/NA
Manganese	170		0.55	0.079	mg/Kg	1	₩	6010B	Total/NA
Nickel	9.7		0.55	0.16	mg/Kg	1	₩	6010B	Total/NA
Selenium	0.45	J	0.55	0.32	mg/Kg	1	₩	6010B	Total/NA
Vanadium	9.8		0.27	0.065	mg/Kg	1	₩	6010B	Total/NA
Zinc	75		1.1	0.48	mg/Kg	1	₩	6010B	Total/NA
Barium	0.45	J	0.50	0.050	mg/L	1		6010B	TCLP
Cadmium	0.0028	J	0.0050	0.0020	mg/L	1		6010B	TCLP
Copper	0.019	J	0.025	0.010	mg/L	1		6010B	TCLP
Iron	0.29	J	0.40	0.20	mg/L	1		6010B	TCLP
Manganese	0.17		0.025	0.010	mg/L	1		6010B	TCLP
Nickel	0.012	J	0.025	0.010	mg/L	1		6010B	TCLP
Zinc	0.052	J	0.50	0.020	mg/L	1		6010B	TCLP
Manganese	0.019	J	0.025	0.010	mg/L	1		6010B	SPLP East
Mercury	0.037		0.017	0.0058	mg/Kg	1	₽	7471B	Total/NA
pH	6.7		0.20	0.20	SU	1		9045D	Total/NA

Client Sample ID: 3160-62-1 (0-1.5')

Lab Sample ID: 500-136651-17

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Anthracene	0.033	J	0.037	0.0063	mg/Kg	1	₩	8270D	Total/NA
Benzo[a]anthracene	0.088		0.037	0.0051	mg/Kg	1	₩	8270D	Total/NA
Benzo[a]pyrene	0.086		0.037	0.0073	mg/Kg	1	₽	8270D	Total/NA
Benzo[b]fluoranthene	0.090		0.037	0.0081	mg/Kg	1	₩	8270D	Total/NA
Benzo[g,h,i]perylene	0.058		0.037	0.012	mg/Kg	1	₽	8270D	Total/NA
Benzo[k]fluoranthene	0.044		0.037	0.011	mg/Kg	1	₩	8270D	Total/NA
Chrysene	0.11		0.037	0.010	mg/Kg	1	₩	8270D	Total/NA
Dibenzofuran	0.069	J	0.19	0.044	mg/Kg	1	₩	8270D	Total/NA
Fluoranthene	0.11		0.037	0.0070	mg/Kg	1	₩	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	0.035	J	0.037	0.0097	mg/Kg	1	₩.	8270D	Total/NA
2-Methylnaphthalene	0.12		0.076	0.0069	mg/Kg	1	₩	8270D	Total/NA
Naphthalene	0.049		0.037	0.0058	mg/Kg	1	₩	8270D	Total/NA
Phenanthrene	0.24		0.037	0.0052	mg/Kg	1		8270D	Total/NA
Pyrene	0.15		0.037	0.0075	mg/Kg	1	₩	8270D	Total/NA
Arsenic	7.0		0.47	0.16	mg/Kg	1	₩	6010B	Total/NA
Barium	77		0.47	0.054	mg/Kg	1	₩.	6010B	Total/NA
Beryllium	0.53		0.19	0.044	mg/Kg	1	₩	6010B	Total/NA
Cadmium	0.18	В	0.095	0.017	mg/Kg	1	₩	6010B	Total/NA
Chromium	12		0.47	0.23	mg/Kg	1	ф	6010B	Total/NA
Cobalt	8.3		0.24	0.062	mg/Kg	1	₩	6010B	Total/NA
Copper	11		0.47	0.13	mg/Kg	1	₩	6010B	Total/NA
Iron	15000		9.5	4.9	mg/Kg	1	₩	6010B	Total/NA
Lead	86		0.24	0.11	mg/Kg	1	₩	6010B	Total/NA
Manganese	900		0.47	0.069	mg/Kg	1	₩	6010B	Total/NA
Nickel	11		0.47	0.14	mg/Kg	1	₩.	6010B	Total/NA
Selenium	0.81		0.47	0.28	mg/Kg	1	₩	6010B	Total/NA
Silver	0.080	J	0.24	0.061	mg/Kg	1	₩	6010B	Total/NA
Vanadium	24		0.24	0.056	mg/Kg	1	₩.	6010B	Total/NA
Zinc	55		0.95	0.42	mg/Kg	1	₩	6010B	Total/NA
Barium	0.72		0.50	0.050	mg/L	1		6010B	TCLP

This Detection Summary does not include radiochemical test results.

TestAmerica Chicago

11/14/2017

Page 15 of 145

5

7

9

10

12

1

Detection Summary

RL

0.0050

0.025

0.40

0.025

0.025

0.018

0.20

0.0059 mg/Kg

0.20 SU

0.50

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Analyte

Cadmium

Manganese

Copper

Iron

Nickel

Mercury

Zinc

рΗ

TestAmerica Job ID: 500-136651-1

Lab Sample ID: 500-136651-17

2

Client Sample ID: 3160-62-1 (0-1.5') (Continued)

Result Qualifier

0.0026 J

0.018 J

0.20 J

0.010 J

0.057 J

8.6

0.035

0.031

		ab Gaiii	P.O .D.	700 100001 11
MDL	Unit	Dil Fac D	Method	Prep Type
0.0020	mg/L	1	6010B	TCLP
0.010	mg/L	1	6010B	TCLP
0.20	mg/L	1	6010B	TCLP
0.010	mg/L	1	6010B	TCLP
0.010	mg/L	1	6010B	TCLP
0.020	mg/L	1	6010B	TCLP

1 🌣 7471B

9045D

4

4

6

Total/NA Total/NA

10

11

13

1/

This Detection Summary does not include radiochemical test results.

Sample Summary

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136651-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
500-136651-1	3160-55-1 (0-3)	Solid	11/01/17 08:05	11/02/17 09:00
500-136651-2	3160-55-2 (0-3)	Solid	11/01/17 08:15	11/02/17 09:00
500-136651-3	3160-56-1 (0-1.5')	Solid	11/01/17 08:25	11/02/17 09:00
500-136651-4	3160-56-2 (0-1.5')	Solid	11/01/17 08:35	11/02/17 09:00
500-136651-5	3160-64-1 (0-1.5')	Solid	11/01/17 08:50	11/02/17 09:00
500-136651-6	3160-64-2 (0-1.5')	Solid	11/01/17 09:00	11/02/17 09:00
500-136651-7	3160-64-3 (0-1.5')	Solid	11/01/17 09:10	11/02/17 09:00
500-136651-8	3160-62-10 (0-1.5')	Solid	11/01/17 09:20	11/02/17 09:00
500-136651-9	3160-62-9 (0-1.5')	Solid	11/01/17 09:30	11/02/17 09:00
500-136651-10	3160-62-8 (0-1.5')	Solid	11/01/17 09:40	11/02/17 09:00
500-136651-11	3160-62-7 (0-1.5')	Solid	11/01/17 09:50	11/02/17 09:00
500-136651-12	3160-62-6 (0-1.5')	Solid	11/01/17 10:00	11/02/17 09:00
500-136651-13	3160-62-5 (0-1.5')	Solid	11/01/17 10:10	11/02/17 09:00
500-136651-14	3160-62-4 (0-1.5')	Solid	11/01/17 10:20	11/02/17 09:00
500-136651-15	3160-62-3 (0-1.5')	Solid	11/01/17 11:30	11/02/17 09:00
500-136651-16	3160-62-2 (0-1.5')	Solid	11/01/17 11:40	11/02/17 09:00
500-136651-17	3160-62-1 (0-1.5')	Solid	11/01/17 11:50	11/02/17 09:00

Δ

6

9

10

40

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-55-1 (0-3)

Date Collected: 11/01/17 08:05 Date Received: 11/02/17 09:00

Lab Sample ID: 500-136651-1 **Matrix: Solid**

Percent Solids: 80.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	<0.018		0.018	0.0080	mg/Kg	<u> </u>	11/02/17 18:18	11/08/17 12:51	1
Benzene	<0.0018		0.0018	0.00047	mg/Kg	₩	11/02/17 18:18	11/08/17 12:51	1
Bromodichloromethane	<0.0018		0.0018	0.00037	mg/Kg	₩	11/02/17 18:18	11/08/17 12:51	1
Bromoform	<0.0018		0.0018	0.00053	mg/Kg	φ.	11/02/17 18:18	11/08/17 12:51	1
Bromomethane	<0.0046		0.0046	0.0017	mg/Kg	₩	11/02/17 18:18	11/08/17 12:51	1
2-Butanone (MEK)	<0.0046		0.0046	0.0020	mg/Kg	₩	11/02/17 18:18	11/08/17 12:51	1
Carbon disulfide	<0.0046		0.0046	0.00095	mg/Kg	₽	11/02/17 18:18	11/08/17 12:51	1
Carbon tetrachloride	<0.0018		0.0018	0.00053	mg/Kg	₩	11/02/17 18:18	11/08/17 12:51	1
Chlorobenzene	<0.0018		0.0018	0.00067	mg/Kg	₩	11/02/17 18:18	11/08/17 12:51	1
Chloroethane	<0.0046		0.0046	0.0014	mg/Kg	₩.	11/02/17 18:18	11/08/17 12:51	1
Chloroform	<0.0018		0.0018	0.00063	mg/Kg	₩	11/02/17 18:18	11/08/17 12:51	1
Chloromethane	<0.0046		0.0046	0.0018	mg/Kg	₩	11/02/17 18:18	11/08/17 12:51	1
cis-1,2-Dichloroethene	<0.0018		0.0018	0.00051	mg/Kg	₽	11/02/17 18:18	11/08/17 12:51	1
cis-1,3-Dichloropropene	<0.0018		0.0018	0.00055	mg/Kg	☼	11/02/17 18:18	11/08/17 12:51	1
Dibromochloromethane	<0.0018		0.0018	0.00060	mg/Kg	☼	11/02/17 18:18	11/08/17 12:51	1
1,1-Dichloroethane	<0.0018		0.0018	0.00063	mg/Kg	₩.	11/02/17 18:18	11/08/17 12:51	1
1,2-Dichloroethane	<0.0046		0.0046	0.0014	mg/Kg	₩	11/02/17 18:18	11/08/17 12:51	1
1,1-Dichloroethene	<0.0018		0.0018	0.00063	mg/Kg	₩	11/02/17 18:18	11/08/17 12:51	1
1,2-Dichloropropane	<0.0018		0.0018	0.00047	mg/Kg		11/02/17 18:18	11/08/17 12:51	1
1,3-Dichloropropene, Total	<0.0018		0.0018	0.00064	mg/Kg	₩	11/02/17 18:18	11/08/17 12:51	1
Ethylbenzene	<0.0018		0.0018	0.00087	mg/Kg	₩	11/02/17 18:18	11/08/17 12:51	1
2-Hexanone	<0.0046		0.0046	0.0014	mg/Kg	.	11/02/17 18:18	11/08/17 12:51	1
Methylene Chloride	<0.0046		0.0046	0.0018	mg/Kg	₩	11/02/17 18:18	11/08/17 12:51	1
4-Methyl-2-pentanone (MIBK)	<0.0046		0.0046	0.0014	mg/Kg	₩	11/02/17 18:18	11/08/17 12:51	1
Methyl tert-butyl ether	<0.0018		0.0018	0.00054	mg/Kg		11/02/17 18:18	11/08/17 12:51	1
Styrene	<0.0018		0.0018	0.00055	mg/Kg	₩	11/02/17 18:18	11/08/17 12:51	1
1,1,2,2-Tetrachloroethane	<0.0018		0.0018	0.00058	mg/Kg	₩	11/02/17 18:18	11/08/17 12:51	1
Tetrachloroethene	<0.0018		0.0018	0.00062	mg/Kg	Φ.	11/02/17 18:18	11/08/17 12:51	1
Toluene	<0.0018		0.0018	0.00046	mg/Kg	₩	11/02/17 18:18	11/08/17 12:51	1
trans-1,2-Dichloroethene	<0.0018		0.0018	0.00081	mg/Kg	₩	11/02/17 18:18	11/08/17 12:51	1
trans-1,3-Dichloropropene	<0.0018		0.0018	0.00064	mg/Kg		11/02/17 18:18	11/08/17 12:51	1
1,1,1-Trichloroethane	<0.0018		0.0018	0.00061	mg/Kg	₩	11/02/17 18:18	11/08/17 12:51	1
1,1,2-Trichloroethane	<0.0018		0.0018	0.00078	mg/Kg	₩	11/02/17 18:18	11/08/17 12:51	1
Trichloroethene	<0.0018		0.0018	0.00062		₩	11/02/17 18:18	11/08/17 12:51	1
Vinyl acetate	<0.0046		0.0046	0.0016		₩	11/02/17 18:18	11/08/17 12:51	1
Vinyl chloride	<0.0018		0.0018	0.00081		₩	11/02/17 18:18	11/08/17 12:51	1
Xylenes, Total	<0.0037		0.0037	0.00058	mg/Kg		11/02/17 18:18	11/08/17 12:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	90		75 - 131				11/02/17 18:18	11/08/17 12:51	
Dibromofluoromethane	102		75 - 126				11/02/17 18:18	11/08/17 12:51	1
1,2-Dichloroethane-d4 (Surr)	96		70 - 134				11/02/17 18:18	11/08/17 12:51	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	90		75 - 131	11/02/17 18:18	11/08/17 12:51	1
Dibromofluoromethane	102		75 - 126	11/02/17 18:18	11/08/17 12:51	1
1,2-Dichloroethane-d4 (Surr)	96		70 - 134	11/02/17 18:18	11/08/17 12:51	1
Toluene-d8 (Surr)	94		75 - 124	11/02/17 18:18	11/08/17 12:51	1

Method: 8270D - Semivol	atile Organic Compounds (GC/MS)						
Analyte	Result Qualifier	ŘL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	<0.040	0.040	0.0073	mg/Kg	\	11/08/17 17:13	11/11/17 05:00	1
Acenaphthylene	<0.040	0.040	0.0053	mg/Kg	₩	11/08/17 17:13	11/11/17 05:00	1
Anthracene	<0.040	0.040	0.0067	mg/Kg	₩	11/08/17 17:13	11/11/17 05:00	1
Benzo[a]anthracene	<0.040	0.040	0.0054	mg/Kg	₽	11/08/17 17:13	11/11/17 05:00	1

TestAmerica Chicago

11/14/2017

Page 18 of 145

Client Sample Results

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136651-1

Client Sample ID: 3160-55-1 (0-3)

Lab Sample ID: 500-136651-1

Date Collected: 11/01/17 08:05

Date Received: 11/02/17 09:00

Matrix: Solid
Percent Solids: 80.1

Method: 8270D - Semivolatile Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
<u> </u>	0.036		0.040		mg/Kg	— =	11/08/17 17:13	11/11/17 05:00	Diria
Benzo[a]pyrene Benzo[b]fluoranthene	0.037		0.040	0.0076	0 0			11/11/17 05:00	
Benzo[g,h,i]perylene	0.037		0.040		mg/Kg			11/11/17 05:00	
Benzo[k]fluoranthene	<0.040	3	0.040		mg/Kg			11/11/17 05:00	
Bis(2-chloroethoxy)methane	<0.040		0.040	0.012				11/11/17 05:00	
			0.20		mg/Kg	· · · · · · · · · · · · · · · · · · ·		11/11/17 05:00	
Bis(2-chloroethyl)ether	<0.20 <0.20		0.20			☆		11/11/17 05:00	
Bis(2-ethylhexyl) phthalate									
4-Bromophenyl phenyl ether	<0.20		0.20		mg/Kg			11/11/17 05:00	
Butyl benzyl phthalate	<0.20		0.20	0.077	0 0	₩		11/11/17 05:00	
Carbazole	<0.20		0.20		mg/Kg	Ψ.		11/11/17 05:00	
4-Chloroaniline	<0.81		0.81		mg/Kg	<u>.</u> .		11/11/17 05:00	
4-Chloro-3-methylphenol	<0.40		0.40		mg/Kg	*		11/11/17 05:00	
2-Chloronaphthalene	<0.20		0.20		mg/Kg	.;;		11/11/17 05:00	
2-Chlorophenol	<0.20		0.20		mg/Kg	.		11/11/17 05:00	
4-Chlorophenyl phenyl ether	<0.20		0.20		mg/Kg	₽		11/11/17 05:00	
Chrysene	<0.040		0.040		mg/Kg	₽		11/11/17 05:00	
Dibenz(a,h)anthracene	<0.040		0.040	0.0078		₩	11/08/17 17:13	11/11/17 05:00	
Dibenzofuran	<0.20		0.20	0.047	mg/Kg	₩	11/08/17 17:13	11/11/17 05:00	
1,2-Dichlorobenzene	<0.20		0.20	0.048	mg/Kg	₩	11/08/17 17:13	11/11/17 05:00	
1,3-Dichlorobenzene	<0.20		0.20	0.045	mg/Kg	₩	11/08/17 17:13	11/11/17 05:00	
1,4-Dichlorobenzene	<0.20		0.20	0.052	mg/Kg	₩	11/08/17 17:13	11/11/17 05:00	
3,3'-Dichlorobenzidine	<0.20		0.20	0.057	mg/Kg	₩	11/08/17 17:13	11/11/17 05:00	
2,4-Dichlorophenol	<0.40		0.40	0.096	mg/Kg	☼	11/08/17 17:13	11/11/17 05:00	
Diethyl phthalate	<0.20		0.20	0.068	mg/Kg	φ.	11/08/17 17:13	11/11/17 05:00	
2,4-Dimethylphenol	<0.40		0.40	0.15	mg/Kg	☼	11/08/17 17:13	11/11/17 05:00	
Dimethyl phthalate	<0.20		0.20	0.053	mg/Kg	☼	11/08/17 17:13	11/11/17 05:00	
Di-n-butyl phthalate	<0.20		0.20	0.062	mg/Kg	₩.	11/08/17 17:13	11/11/17 05:00	
4,6-Dinitro-2-methylphenol	<0.81		0.81	0.32	mg/Kg	₩	11/08/17 17:13	11/11/17 05:00	
2,4-Dinitrophenol	<0.81		0.81	0.71	mg/Kg	₩	11/08/17 17:13	11/11/17 05:00	
2,4-Dinitrotoluene	<0.20		0.20		mg/Kg		11/08/17 17:13	11/11/17 05:00	
2,6-Dinitrotoluene	<0.20		0.20	0.079	mg/Kg	₩	11/08/17 17:13	11/11/17 05:00	
Di-n-octyl phthalate	<0.20		0.20	0.066	mg/Kg	₩	11/08/17 17:13	11/11/17 05:00	
Fluoranthene	<0.040		0.040	0.0075			11/08/17 17:13	11/11/17 05:00	
Fluorene	<0.040		0.040	0.0057	mg/Kg	₩		11/11/17 05:00	
Hexachlorobenzene	<0.081		0.081	0.0094		₩	11/08/17 17:13	11/11/17 05:00	
Hexachlorobutadiene	<0.20		0.20		mg/Kg			11/11/17 05:00	
Hexachlorocyclopentadiene	<0.81		0.81		mg/Kg	₩		11/11/17 05:00	
Hexachloroethane	<0.20		0.20		mg/Kg	₩		11/11/17 05:00	
Indeno[1,2,3-cd]pyrene	<0.040		0.040		mg/Kg			11/11/17 05:00	
Isophorone	<0.20		0.20		mg/Kg	₽		11/11/17 05:00	
2-Methylnaphthalene	<0.081		0.081	0.0074		₽		11/11/17 05:00	
						· · · · · · · · · · · · · · · · · · ·		11/11/17 05:00	
2-Methylphenol	<0.20		0.20		mg/Kg	₩			
3 & 4 Methylphenol	<0.20		0.20		mg/Kg			11/11/17 05:00	
Naphthalene	<0.040		0.040	0.0062		¥.		11/11/17 05:00	
2-Nitroaniline	<0.20		0.20		mg/Kg	φ. **		11/11/17 05:00	
3-Nitroaniline	<0.40		0.40		mg/Kg	*		11/11/17 05:00	
4-Nitroaniline	<0.40		0.40		mg/Kg	<u>.</u> .		11/11/17 05:00	
Nitrobenzene	< 0.040		0.040	0.010	mg/Kg	₩	11/08/17 17:13	11/11/17 05:00	

TestAmerica Chicago

11/14/2017

Page 19 of 145

2

3

6

0

11

12

Client Sample Results

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-55-1 (0-3)

Date Collected: 11/01/17 08:05

Date Received: 11/02/17 09:00

TestAmerica Job ID: 500-136651-1

Lab Sample ID: 500-136651-1

Matrix: Solid Percent Solids: 80.1

Method: 8270D - Semivola Analyte	_	Qualifier	ŔĹ	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.81		0.81	0.38	mg/Kg	<u> </u>	11/08/17 17:13	11/11/17 05:00	1
N-Nitrosodi-n-propylamine	<0.081		0.081	0.049	mg/Kg	₩.	11/08/17 17:13	11/11/17 05:00	1
N-Nitrosodiphenylamine	<0.20		0.20	0.048	mg/Kg	☼	11/08/17 17:13	11/11/17 05:00	1
2,2'-oxybis[1-chloropropane]	<0.20		0.20	0.047	mg/Kg	₩	11/08/17 17:13	11/11/17 05:00	1
Pentachlorophenol	<0.81		0.81	0.65	mg/Kg	₩	11/08/17 17:13	11/11/17 05:00	1
Phenanthrene	<0.040		0.040	0.0056	mg/Kg	☼	11/08/17 17:13	11/11/17 05:00	1
Phenol	<0.20		0.20	0.090	mg/Kg	₩	11/08/17 17:13	11/11/17 05:00	1
Pyrene	0.013	J	0.040	0.0080	mg/Kg	₩.	11/08/17 17:13	11/11/17 05:00	1
1,2,4-Trichlorobenzene	<0.20		0.20	0.044	mg/Kg	☼	11/08/17 17:13	11/11/17 05:00	1
2,4,5-Trichlorophenol	<0.40		0.40	0.092	mg/Kg	₩	11/08/17 17:13	11/11/17 05:00	1
2,4,6-Trichlorophenol	<0.40		0.40	0.14	mg/Kg	₩	11/08/17 17:13	11/11/17 05:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	66		44 - 121				11/08/17 17:13	11/11/17 05:00	1
2-Fluorophenol	79		46 - 133				11/08/17 17:13	11/11/17 05:00	1
Nitrobenzene-d5	68		41 - 120				11/08/17 17:13	11/11/17 05:00	1
Phenol-d5	72		46 - 125				11/08/17 17:13	11/11/17 05:00	1
Terphenyl-d14	93		35 - 160				11/08/17 17:13	11/11/17 05:00	1
2,4,6-Tribromophenol	63		25 - 139				11/08/17 17:13	11/11/17 05:00	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	<0.0021		0.0021	0.00086	mg/Kg	₩	11/08/17 07:22	11/08/17 22:14	1
alpha-BHC	<0.0021		0.0021	0.00052	mg/Kg	₩	11/08/17 07:22	11/08/17 22:14	1
alpha-Chlordane	<0.0021		0.0021	0.0010	mg/Kg	☼	11/08/17 07:22	11/08/17 22:14	1
beta-BHC	<0.0021		0.0021	0.00064	mg/Kg	φ.	11/08/17 07:22	11/08/17 22:14	1
4,4'-DDD	<0.0021		0.0021	0.00041	mg/Kg	☼	11/08/17 07:22	11/08/17 22:14	1
4,4'-DDE	<0.0021		0.0021	0.00034	mg/Kg	☼	11/08/17 07:22	11/08/17 22:14	1
4,4'-DDT	<0.0021		0.0021	0.0011	mg/Kg	φ.	11/08/17 07:22	11/08/17 22:14	1
delta-BHC	<0.0021		0.0021	0.00065	mg/Kg	☼	11/08/17 07:22	11/08/17 22:14	1
Dieldrin	<0.0021		0.0021	0.00028	mg/Kg	☼	11/08/17 07:22	11/08/17 22:14	1
Endosulfan I	<0.0021		0.0021	0.00090	mg/Kg	☼	11/08/17 07:22	11/08/17 22:14	1
Endosulfan II	<0.0021		0.0021	0.00033	mg/Kg	☼	11/08/17 07:22	11/08/17 22:14	1
Endosulfan sulfate	<0.0021		0.0021	0.00038	mg/Kg	☼	11/08/17 07:22	11/08/17 22:14	1
Endrin	<0.0021		0.0021	0.00029	mg/Kg	☼	11/08/17 07:22	11/08/17 22:14	1
Endrin aldehyde	<0.0021		0.0021	0.00035	mg/Kg	☼	11/08/17 07:22	11/08/17 22:14	1
Endrin ketone	<0.0021		0.0021	0.00047	mg/Kg	☼	11/08/17 07:22	11/08/17 22:14	1
gamma-BHC (Lindane)	<0.0021		0.0021	0.00045	mg/Kg		11/08/17 07:22	11/08/17 22:14	1
gamma-Chlordane	<0.0021		0.0021	0.00054	mg/Kg	☼	11/08/17 07:22	11/08/17 22:14	1
Heptachlor	<0.0021		0.0021	0.00087	mg/Kg	☼	11/08/17 07:22	11/08/17 22:14	1
Heptachlor epoxide	<0.0021		0.0021	0.00073	mg/Kg	☼	11/08/17 07:22	11/08/17 22:14	1
Methoxychlor	<0.010		0.010	0.00040	mg/Kg	☼	11/08/17 07:22	11/08/17 22:14	1
Toxaphene	<0.021		0.021	0.0087	mg/Kg	₩	11/08/17 07:22	11/08/17 22:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	94		33 - 148				11/08/17 07:22	11/08/17 22:14	1
Tetrachloro-m-xylene	89		30 - 121				11/08/17 07:22	11/08/17 22:14	1

11/14/2017

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-55-1 (0-3)

Date Collected: 11/01/17 08:05

Date Received: 11/02/17 09:00

TestAmerica Job ID: 500-136651-1

Lab Sample ID: 500-136651-1

Matrix: Solid

Percent Solids: 80.1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dicamba	<0.41	0.41	0.085	mg/Kg	<u> </u>	11/08/17 22:08	11/10/17 04:42	10
Dichlorprop	<0.41	0.41	0.11	mg/Kg	₩	11/08/17 22:08	11/10/17 04:42	10
2,4-D	<0.41	0.41	0.12	mg/Kg	₩	11/08/17 22:08	11/10/17 04:42	10
Silvex (2,4,5-TP)	<0.41	0.41	0.10	mg/Kg	ф	11/08/17 22:08	11/10/17 04:42	10
2,4,5-T	<0.41	0.41	0.10	mg/Kg	☼	11/08/17 22:08	11/10/17 04:42	10
2,4-DB	<0.41	0.41	0.12	mg/Kg	☼	11/08/17 22:08	11/10/17 04:42	10

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac DCAA 25 - 120 <u>11/08/17 22:08</u> <u>11/10/17 04:42</u> 47

Method: 6010B - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<5.4		5.4		mg/Kg	\	11/03/17 07:41		5
Arsenic	8.2	F1	2.7	0.92	mg/Kg	₩	11/03/17 07:41	11/05/17 22:40	5
Barium	100	F1 F2	2.7	0.31	mg/Kg	☼	11/03/17 07:41	11/05/17 22:40	5
Beryllium	1.0	J	1.1	0.25	mg/Kg		11/03/17 07:41	11/05/17 22:40	5
Cadmium	0.14	J	0.54	0.097	mg/Kg	☼	11/03/17 07:41	11/05/17 22:40	5
Chromium	17		0.54	0.27	mg/Kg	☼	11/03/17 07:41	11/03/17 16:22	1
Cobalt	9.4		0.27	0.070	mg/Kg	₽	11/03/17 07:41	11/03/17 16:22	1
Copper	11	F1	0.54	0.15	mg/Kg	☼	11/03/17 07:41	11/03/17 16:22	1
Iron	25000		54	28	mg/Kg	☼	11/03/17 07:41	11/05/17 22:40	5
Lead	14	F2 F1	0.27	0.12	mg/Kg	₽	11/03/17 07:41	11/03/17 16:22	1
Manganese	600	F2	2.7	0.39	mg/Kg	☼	11/03/17 07:41	11/05/17 22:40	5
Nickel	19		0.54	0.16	mg/Kg	☼	11/03/17 07:41	11/03/17 16:22	1
Selenium	<2.7	F1	2.7	1.6	mg/Kg	₽	11/03/17 07:41	11/05/17 22:40	5
Silver	<0.27	F1	0.27	0.069	mg/Kg	☼	11/03/17 07:41	11/03/17 16:22	1
Thallium	<0.54	F1	0.54	0.27	mg/Kg	₽	11/03/17 07:41	11/03/17 16:22	1
Vanadium	28		0.27	0.063	mg/Kg	₽	11/03/17 07:41	11/03/17 16:22	1
Zinc	54	F1	1.1	0.47	mg/Kg	☼	11/03/17 07:41	11/03/17 16:22	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/06/17 11:00	11/07/17 13:32	1
Barium	0.51		0.50	0.050	mg/L		11/06/17 11:00	11/07/17 13:32	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/06/17 11:00	11/07/17 13:32	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/06/17 11:00	11/07/17 13:32	1
Chromium	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 13:32	1
Cobalt	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 13:32	1
Copper	0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 13:32	1
Iron	0.42		0.40	0.20	mg/L		11/06/17 11:00	11/07/17 13:32	1
Lead	<0.0075		0.0075	0.0075	mg/L		11/06/17 11:00	11/07/17 13:32	1
Manganese	0.12		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 13:32	1
Nickel	0.023	J	0.025	0.010	mg/L		11/06/17 11:00	11/07/17 13:32	1
Selenium	<0.050		0.050	0.020	mg/L		11/06/17 11:00	11/07/17 13:32	1
Silver	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 13:32	1
Vanadium	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 13:32	1
Zinc	0.048	J	0.50	0.020	mg/L		11/06/17 11:00	11/07/17 13:32	1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-55-1 (0-3)

Date Collected: 11/01/17 08:05

Date Received: 11/02/17 09:00

General Chemistry

Analyte

рН

TestAmerica Job ID: 500-136651-1

Prepared

Lab Sample ID: 500-136651-1

Matrix: Solid

Analyzed

11/08/17 17:14

Percent Solids: 80.1

Method: 6020A - Metals (IC	•					_			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060		0.0060	0.0060	mg/L		11/06/17 11:00	11/07/17 15:41	1
Thallium	<0.0020		0.0020	0.0020	mg/L		11/06/17 11:00	11/07/17 15:41	1
Method: 7470A - TCLP Mei	rcury - TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/06/17 14:30	11/07/17 09:16	1
Method: 7471B - Mercury (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.019	J	0.021	0.0069	mg/Kg	₩	11/03/17 15:15	11/06/17 11:21	1

RL

0.20

MDL Unit

0.20 SU

Result Qualifier

5.2

4.0

Dil Fac

13

2

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-55-2 (0-3)

Lab Sample ID: 500-136651-2

Date Collected: 11/01/17 08:15

Date Received: 11/02/17 09:00

Matrix: Solid
Percent Solids: 81.9

Method: 8260B - Volatile O Analyte	Result Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Acetone	0.024	0.017	0.0076	mg/Kg	\	11/02/17 18:18	11/08/17 13:41	1
Benzene	<0.0017	0.0017	0.00045	mg/Kg	₩	11/02/17 18:18	11/08/17 13:41	1
Bromodichloromethane	<0.0017	0.0017	0.00036	mg/Kg	₩	11/02/17 18:18	11/08/17 13:41	1
Bromoform	<0.0017	0.0017	0.00051	mg/Kg	₽	11/02/17 18:18	11/08/17 13:41	1
Bromomethane	<0.0044	0.0044	0.0017	mg/Kg	₩	11/02/17 18:18	11/08/17 13:41	1
2-Butanone (MEK)	<0.0044	0.0044	0.0019	mg/Kg	₩	11/02/17 18:18	11/08/17 13:41	1
Carbon disulfide	<0.0044	0.0044	0.00091	mg/Kg	\$	11/02/17 18:18	11/08/17 13:41	1
Carbon tetrachloride	<0.0017	0.0017	0.00051	mg/Kg	₩	11/02/17 18:18	11/08/17 13:41	1
Chlorobenzene	<0.0017	0.0017	0.00064	mg/Kg	₩	11/02/17 18:18	11/08/17 13:41	1
Chloroethane	<0.0044	0.0044	0.0013	mg/Kg	₩	11/02/17 18:18	11/08/17 13:41	1
Chloroform	<0.0017	0.0017	0.00061	mg/Kg	☼	11/02/17 18:18	11/08/17 13:41	1
Chloromethane	<0.0044	0.0044	0.0018	mg/Kg	☼	11/02/17 18:18	11/08/17 13:41	1
cis-1,2-Dichloroethene	<0.0017	0.0017	0.00049	mg/Kg		11/02/17 18:18	11/08/17 13:41	1
cis-1,3-Dichloropropene	<0.0017	0.0017	0.00053	mg/Kg	≎	11/02/17 18:18	11/08/17 13:41	1
Dibromochloromethane	<0.0017	0.0017	0.00057	mg/Kg	☼	11/02/17 18:18	11/08/17 13:41	1
1,1-Dichloroethane	<0.0017	0.0017	0.00060	mg/Kg	₩	11/02/17 18:18	11/08/17 13:41	1
1,2-Dichloroethane	<0.0044	0.0044	0.0014	mg/Kg	₩	11/02/17 18:18	11/08/17 13:41	1
1,1-Dichloroethene	<0.0017	0.0017	0.00060	mg/Kg	₩	11/02/17 18:18	11/08/17 13:41	1
1,2-Dichloropropane	<0.0017	0.0017	0.00045	mg/Kg	₩	11/02/17 18:18	11/08/17 13:41	1
1,3-Dichloropropene, Total	<0.0017	0.0017	0.00061	mg/Kg	₩	11/02/17 18:18	11/08/17 13:41	1
Ethylbenzene	<0.0017	0.0017	0.00084	mg/Kg	₩	11/02/17 18:18	11/08/17 13:41	1
2-Hexanone	<0.0044	0.0044	0.0014	mg/Kg		11/02/17 18:18	11/08/17 13:41	1
Methylene Chloride	<0.0044	0.0044	0.0017	mg/Kg	₩	11/02/17 18:18	11/08/17 13:41	1
4-Methyl-2-pentanone (MIBK)	<0.0044	0.0044	0.0013	mg/Kg	₩	11/02/17 18:18	11/08/17 13:41	1
Methyl tert-butyl ether	<0.0017	0.0017	0.00051	mg/Kg		11/02/17 18:18	11/08/17 13:41	1
Styrene	<0.0017	0.0017	0.00053	mg/Kg	₩	11/02/17 18:18	11/08/17 13:41	1
1,1,2,2-Tetrachloroethane	<0.0017	0.0017	0.00056		₩	11/02/17 18:18	11/08/17 13:41	1
Tetrachloroethene	<0.0017	0.0017	0.00059			11/02/17 18:18	11/08/17 13:41	1
Toluene	<0.0017	0.0017	0.00044		₩	11/02/17 18:18	11/08/17 13:41	1
trans-1,2-Dichloroethene	<0.0017	0.0017	0.00077		₩	11/02/17 18:18	11/08/17 13:41	1
trans-1,3-Dichloropropene	<0.0017	0.0017	0.00061	mg/Kg		11/02/17 18:18	11/08/17 13:41	1
1,1,1-Trichloroethane	<0.0017	0.0017	0.00059	mg/Kg	₩	11/02/17 18:18	11/08/17 13:41	1
1,1,2-Trichloroethane	<0.0017	0.0017	0.00075		₩	11/02/17 18:18	11/08/17 13:41	1
Trichloroethene	<0.0017	0.0017	0.00059	mg/Kg	· · · · · · · · · · · · · · · · · · ·	11/02/17 18:18	11/08/17 13:41	1
Vinyl acetate	<0.0044	0.0044	0.0015	0 0	₩	11/02/17 18:18	11/08/17 13:41	1
Vinyl chloride	<0.0017	0.0017	0.00077	mg/Kg	☼	11/02/17 18:18	11/08/17 13:41	1
Xylenes, Total	<0.0035	0.0035	0.00056			11/02/17 18:18	11/08/17 13:41	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	92	75 - 131				11/02/17 18:18	11/08/17 13:41	1
Dibromofluoromethane	97	75 - 126				11/02/17 18:18	11/08/17 13:41	1
1,2-Dichloroethane-d4 (Surr)	94	70 - 134				11/02/17 18:18	11/08/17 13:41	1
Toluene-d8 (Surr)	97	75 - 124				11/02/17 18:18	11/08/17 13:41	1

Method: 8270D - Semivolatile Organic Compounds (GC/MS)										
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Acenaphthene	<0.038	0.038	0.0069	mg/Kg	\	11/08/17 17:13	11/09/17 12:58	1		
Acenaphthylene	<0.038	0.038	0.0051	mg/Kg	₩	11/08/17 17:13	11/09/17 12:58	1		
Anthracene	<0.038	0.038	0.0064	mg/Kg	₩	11/08/17 17:13	11/09/17 12:58	1		
Benzo[a]anthracene	0.0075 J	0.038	0.0052	mg/Kg	*	11/08/17 17:13	11/09/17 12:58	1		

TestAmerica Chicago

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028 TestAmerica Job ID: 500-136651-1

Client Sample ID: 3160-55-2 (0-3)

Lab Sample ID: 500-136651-2

Date Collected: 11/01/17 08:15

Date Received: 11/02/17 09:00

Matrix: Solid
Percent Solids: 81.9

Analyte	e Organic Co Result	Qualifier	ŔĹ	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzo[a]pyrene	0.018		0.038	0.0074	mg/Kg	<u></u>	11/08/17 17:13	11/09/17 12:58	
Benzo[b]fluoranthene	<0.038	F1	0.038	0.0083	mg/Kg	☼	11/08/17 17:13	11/09/17 12:58	
Benzo[g,h,i]perylene	<0.038	F1	0.038	0.012	mg/Kg		11/08/17 17:13	11/09/17 12:58	
Benzo[k]fluoranthene	<0.038	F1	0.038	0.011	mg/Kg	☼	11/08/17 17:13	11/09/17 12:58	
Bis(2-chloroethoxy)methane	<0.19		0.19	0.039	mg/Kg	☼	11/08/17 17:13	11/09/17 12:58	
Bis(2-chloroethyl)ether	<0.19		0.19	0.058	mg/Kg		11/08/17 17:13	11/09/17 12:58	
Bis(2-ethylhexyl) phthalate	<0.19	F1	0.19	0.070	mg/Kg	₩	11/08/17 17:13	11/09/17 12:58	
4-Bromophenyl phenyl ether	<0.19		0.19	0.051	mg/Kg	☼	11/08/17 17:13	11/09/17 12:58	
Butyl benzyl phthalate	<0.19	F1	0.19	0.073	mg/Kg		11/08/17 17:13	11/09/17 12:58	
Carbazole	<0.19		0.19		mg/Kg	☼	11/08/17 17:13	11/09/17 12:58	
4-Chloroaniline	<0.77		0.77		mg/Kg	☼	11/08/17 17:13	11/09/17 12:58	
4-Chloro-3-methylphenol	<0.38		0.38		mg/Kg			11/09/17 12:58	
2-Chloronaphthalene	<0.19		0.19		mg/Kg	₩		11/09/17 12:58	
2-Chlorophenol	<0.19		0.19		mg/Kg	☼		11/09/17 12:58	
4-Chlorophenyl phenyl ether	<0.19		0.19		mg/Kg			11/09/17 12:58	
Chrysene	<0.038		0.038		mg/Kg	₩		11/09/17 12:58	
Dibenz(a,h)anthracene	<0.038	F1	0.038	0.0074		₩		11/09/17 12:58	
Dibenzofuran	<0.19		0.19		mg/Kg			11/09/17 12:58	
1,2-Dichlorobenzene	<0.19		0.19		mg/Kg	₩		11/09/17 12:58	
1,3-Dichlorobenzene	<0.19		0.19		mg/Kg	₩		11/09/17 12:58	
1,4-Dichlorobenzene	<0.19		0.19		mg/Kg	 ☆.		11/09/17 12:58	
3,3'-Dichlorobenzidine	<0.19	Eo	0.19		mg/Kg	☼		11/09/17 12:58	
,		Г				~ ☆			
2,4-Dichlorophenol	<0.38		0.38		mg/Kg	.		11/09/17 12:58	
Diethyl phthalate	<0.19		0.19		mg/Kg	<i>~</i>		11/09/17 12:58	
2,4-Dimethylphenol	<0.38		0.38		mg/Kg			11/09/17 12:58	
Dimethyl phthalate	<0.19		0.19		mg/Kg	% .		11/09/17 12:58	
Di-n-butyl phthalate	<0.19		0.19		mg/Kg	☼		11/09/17 12:58	
4,6-Dinitro-2-methylphenol	<0.77	- 4	0.77	0.31	mg/Kg	₩		11/09/17 12:58	
2,4-Dinitrophenol	<0.77	F1	0.77		mg/Kg	J.		11/09/17 12:58	
2,4-Dinitrotoluene	<0.19		0.19	0.061	mg/Kg	Ψ.		11/09/17 12:58	
2,6-Dinitrotoluene	<0.19		0.19		mg/Kg	☼		11/09/17 12:58	
Di-n-octyl phthalate	<0.19		0.19		mg/Kg	<u>.</u>		11/09/17 12:58	
Fluoranthene	0.013	J	0.038	0.0071	mg/Kg			11/09/17 12:58	
Fluorene	<0.038		0.038	0.0054	0 0	.		11/09/17 12:58	
Hexachlorobenzene	<0.077		0.077	0.0089		, .		11/09/17 12:58	
Hexachlorobutadiene	<0.19		0.19		mg/Kg	*		11/09/17 12:58	
Hexachlorocyclopentadiene	<0.77		0.77		mg/Kg	.		11/09/17 12:58	
Hexachloroethane	<0.19		0.19		mg/Kg	☼		11/09/17 12:58	
Indeno[1,2,3-cd]pyrene	<0.038	F1	0.038		mg/Kg	☼		11/09/17 12:58	
Isophorone	<0.19		0.19	0.043	mg/Kg	₩	11/08/17 17:13	11/09/17 12:58	
2-Methylnaphthalene	0.0080	J	0.077	0.0071		₩	11/08/17 17:13	11/09/17 12:58	
2-Methylphenol	<0.19	F1 F2	0.19		mg/Kg	₽	11/08/17 17:13	11/09/17 12:58	
3 & 4 Methylphenol	<0.19		0.19	0.064	mg/Kg	₩	11/08/17 17:13	11/09/17 12:58	
Naphthalene	<0.038		0.038	0.0059	mg/Kg	₩	11/08/17 17:13	11/09/17 12:58	
2-Nitroaniline	<0.19		0.19	0.052	mg/Kg	₽	11/08/17 17:13	11/09/17 12:58	
3-Nitroaniline	<0.38		0.38	0.12	mg/Kg	☼	11/08/17 17:13	11/09/17 12:58	
4-Nitroaniline	<0.38		0.38	0.16	mg/Kg	☼	11/08/17 17:13	11/09/17 12:58	
Nitrobenzene	<0.038		0.038	0.0096	mg/Kg		11/08/17 17:13	11/09/17 12:58	
2-Nitrophenol	<0.38		0.38		mg/Kg	₩	11/08/17 17:13	11/09/17 12:58	

TestAmerica Chicago

11/14/2017

3

5

7

10

12

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-55-2 (0-3)

Date Collected: 11/01/17 08:15

Date Received: 11/02/17 09:00

Terphenyl-d14

2,4,6-Tribromophenol

TestAmerica Job ID: 500-136651-1

Lab Sample ID: 500-136651-2

11/08/17 17:13 11/09/17 12:58

11/08/17 17:13 11/09/17 12:58

Matrix: Solid

Percent Solids: 81.9

Method: 8270D - Semivola	tile Organic Co	mpounds	(GC/MS) (Cd	ontinued)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.77		0.77	0.37	mg/Kg	<u></u>	11/08/17 17:13	11/09/17 12:58	1
N-Nitrosodi-n-propylamine	<0.077		0.077	0.047	mg/Kg		11/08/17 17:13	11/09/17 12:58	1
N-Nitrosodiphenylamine	<0.19		0.19	0.045	mg/Kg	₩	11/08/17 17:13	11/09/17 12:58	1
2,2'-oxybis[1-chloropropane]	<0.19		0.19	0.045	mg/Kg	₩	11/08/17 17:13	11/09/17 12:58	1
Pentachlorophenol	<0.77		0.77	0.62	mg/Kg	₩	11/08/17 17:13	11/09/17 12:58	1
Phenanthrene	0.014	J	0.038	0.0054	mg/Kg	₩	11/08/17 17:13	11/09/17 12:58	1
Phenol	<0.19		0.19	0.085	mg/Kg	≎	11/08/17 17:13	11/09/17 12:58	1
Pyrene	0.015	J	0.038	0.0076	mg/Kg	₩	11/08/17 17:13	11/09/17 12:58	1
1,2,4-Trichlorobenzene	<0.19		0.19	0.041	mg/Kg	₩	11/08/17 17:13	11/09/17 12:58	1
2,4,5-Trichlorophenol	<0.38		0.38	0.088	mg/Kg	₩	11/08/17 17:13	11/09/17 12:58	1
2,4,6-Trichlorophenol	<0.38		0.38	0.13	mg/Kg	₩	11/08/17 17:13	11/09/17 12:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	72		44 - 121				11/08/17 17:13	11/09/17 12:58	1
2-Fluorophenol	79		46 - 133				11/08/17 17:13	11/09/17 12:58	1
Nitrobenzene-d5	67		41 - 120				11/08/17 17:13	11/09/17 12:58	1
Phenol-d5	85		46 - 125				11/08/17 17:13	11/09/17 12:58	1

35 - 160

25 - 139

86

85

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	<0.0020	0.0020	0.00081	mg/Kg	<u> </u>	11/08/17 07:22	11/08/17 22:35	1
alpha-BHC	<0.0020	0.0020	0.00049	mg/Kg	₩	11/08/17 07:22	11/08/17 22:35	1
alpha-Chlordane	<0.0020	0.0020	0.00098	mg/Kg	₩	11/08/17 07:22	11/08/17 22:35	1
beta-BHC	<0.0020	0.0020	0.00060	mg/Kg	₩	11/08/17 07:22	11/08/17 22:35	1
4,4'-DDD	<0.0020	0.0020	0.00039	mg/Kg	₩	11/08/17 07:22	11/08/17 22:35	1
4,4'-DDE	<0.0020	0.0020	0.00032	mg/Kg	₩	11/08/17 07:22	11/08/17 22:35	1
4,4'-DDT	<0.0020	0.0020	0.0010	mg/Kg	ф	11/08/17 07:22	11/08/17 22:35	1
delta-BHC	<0.0020	0.0020	0.00061	mg/Kg	₩	11/08/17 07:22	11/08/17 22:35	1
Dieldrin	<0.0020	0.0020	0.00027	mg/Kg	₩	11/08/17 07:22	11/08/17 22:35	1
Endosulfan I	<0.0020	0.0020	0.00085	mg/Kg	₩.	11/08/17 07:22	11/08/17 22:35	1
Endosulfan II	<0.0020	0.0020	0.00032	mg/Kg	₩	11/08/17 07:22	11/08/17 22:35	1
Endosulfan sulfate	<0.0020	0.0020	0.00035	mg/Kg	₩	11/08/17 07:22	11/08/17 22:35	1
Endrin	<0.0020	0.0020	0.00027	mg/Kg	₽	11/08/17 07:22	11/08/17 22:35	1
Endrin aldehyde	<0.0020	0.0020	0.00033	mg/Kg	₩	11/08/17 07:22	11/08/17 22:35	1
Endrin ketone	<0.0020	0.0020	0.00044	mg/Kg	₩	11/08/17 07:22	11/08/17 22:35	1
gamma-BHC (Lindane)	<0.0020	0.0020	0.00042	mg/Kg		11/08/17 07:22	11/08/17 22:35	1
gamma-Chlordane	<0.0020	0.0020	0.00051	mg/Kg	₩	11/08/17 07:22	11/08/17 22:35	1
Heptachlor	<0.0020	0.0020	0.00082	mg/Kg	₩	11/08/17 07:22	11/08/17 22:35	1
Heptachlor epoxide	<0.0020	0.0020	0.00069	mg/Kg	φ.	11/08/17 07:22	11/08/17 22:35	1
Methoxychlor	<0.0097	0.0097	0.00038	mg/Kg	₩	11/08/17 07:22	11/08/17 22:35	1
Toxaphene	<0.019	0.019	0.0082	mg/Kg	₩	11/08/17 07:22	11/08/17 22:35	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	82	33 - 148				11/08/17 07:22	11/08/17 22:35	1
Tetrachloro-m-xylene	75	30 - 121				11/08/17 07:22	11/08/17 22:35	1

TestAmerica Chicago

11/14/2017

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-55-2 (0-3)

Date Collected: 11/01/17 08:15

Date Received: 11/02/17 09:00

TestAmerica Job ID: 500-136651-1

Lab Sample ID: 500-136651-2

Matrix: Solid

Percent Solids: 81.9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dicamba	<0.40		0.40	0.083	mg/Kg	<u> </u>	11/08/17 22:08	11/10/17 05:06	10
Dichlorprop	<0.40		0.40	0.11	mg/Kg	☼	11/08/17 22:08	11/10/17 05:06	10
2,4-D	<0.40		0.40	0.11	mg/Kg	☼	11/08/17 22:08	11/10/17 05:06	10
Silvex (2,4,5-TP)	<0.40		0.40	0.10	mg/Kg	₩	11/08/17 22:08	11/10/17 05:06	10
2,4,5-T	<0.40		0.40	0.098	mg/Kg	☼	11/08/17 22:08	11/10/17 05:06	10
2,4-DB	<0.40		0.40	0.12	mg/Kg	₩	11/08/17 22:08	11/10/17 05:06	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCAA	50		25 - 120				11/08/17 22:08	11/10/17 05:06	10

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<1.1	1.1	0.22	mg/Kg	₩	11/03/17 07:41	11/05/17 23:00	1
Arsenic	10	0.55	0.19	mg/Kg	☼	11/03/17 07:41	11/03/17 16:42	1
Barium	92	0.55	0.063	mg/Kg	₩	11/03/17 07:41	11/03/17 16:42	1
Beryllium	0.56	0.22	0.052	mg/Kg	₩	11/03/17 07:41	11/03/17 16:42	1
Cadmium	<0.11	0.11	0.020	mg/Kg	₩	11/03/17 07:41	11/03/17 16:42	1
Chromium	22	0.55	0.27	mg/Kg	☼	11/03/17 07:41	11/03/17 16:42	1
Cobalt	7.1	0.28	0.072	mg/Kg	\$	11/03/17 07:41	11/03/17 16:42	1
Copper	17	0.55	0.15	mg/Kg	☼	11/03/17 07:41	11/03/17 16:42	1
Iron	23000	11	5.7	mg/Kg	☼	11/03/17 07:41	11/03/17 16:42	1
Lead	21	0.28	0.13	mg/Kg	₽	11/03/17 07:41	11/03/17 16:42	1
Manganese	410	0.55	0.080	mg/Kg	☼	11/03/17 07:41	11/03/17 16:42	1
Nickel	14	0.55	0.16	mg/Kg	☼	11/03/17 07:41	11/03/17 16:42	1
Selenium	1.1	0.55	0.33	mg/Kg	₩	11/03/17 07:41	11/05/17 23:00	1
Silver	<0.28	0.28	0.071	mg/Kg	☼	11/03/17 07:41	11/03/17 16:42	1
Thallium	<0.55	0.55	0.28	mg/Kg	☼	11/03/17 07:41	11/03/17 16:42	1
Vanadium	43	0.28	0.065	mg/Kg	₩	11/03/17 07:41	11/03/17 16:42	1
Zinc	58	1.1	0.49	mg/Kg	₩	11/03/17 07:41	11/03/17 16:42	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/06/17 11:00	11/07/17 11:43	1
Barium	0.48	J	0.50	0.050	mg/L		11/06/17 11:00	11/07/17 11:43	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/06/17 11:00	11/07/17 11:43	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/06/17 11:00	11/07/17 11:43	1
Chromium	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 11:43	1
Cobalt	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 11:43	1
Copper	0.014	J	0.025	0.010	mg/L		11/06/17 11:00	11/07/17 11:43	1
Iron	0.42		0.40	0.20	mg/L		11/06/17 11:00	11/07/17 11:43	1
Lead	<0.0075		0.0075	0.0075	mg/L		11/06/17 11:00	11/07/17 11:43	1
Manganese	0.021	J	0.025	0.010	mg/L		11/06/17 11:00	11/07/17 11:43	1
Nickel	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 11:43	1
Selenium	<0.050		0.050	0.020	mg/L		11/06/17 11:00	11/07/17 11:43	1
Silver	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 11:43	1
Vanadium	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 11:43	1
Zinc	0.049	J	0.50	0.020	mg/L		11/06/17 11:00	11/07/17 11:43	1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136651-1

Lab Sample ID: 500-136651-2

Client Sample ID: 3160-55-2 (0-3)

Date Collected: 11/01/17 08:15 Date Received: 11/02/17 09:00

Matrix: Solid

Percent Solids: 81.9

Method: 6020A - Metals (IC Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060		0.0060	0.0060	mg/L		11/06/17 11:00	11/07/17 15:46	1
Thallium	<0.0020		0.0020	0.0020	mg/L		11/06/17 11:00	11/07/17 15:46	1
_ Method: 7470A - TCLP Mei	rcury - TCLP								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/06/17 14:30	11/07/17 09:21	1
_ Method: 7471B - Mercury ((CVAA)								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.038		0.020	0.0067	mg/Kg	\	11/03/17 15:15	11/06/17 11:23	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	8.0		0.20	0.20	SII			11/08/17 17:14	

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Lab Sample ID: 500-136651-3

Client Sample ID: 3160-56-1 (0-1.5') Date Collected: 11/01/17 08:25 **Matrix: Solid** Date Received: 11/02/17 09:00 Percent Solids: 87.4

Analyte	Result Quali	fier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	<0.016	0.016	0.0071	mg/Kg	<u></u>	11/02/17 18:18	11/08/17 14:07	1
Benzene	<0.0016	0.0016	0.00042	mg/Kg	☼	11/02/17 18:18	11/08/17 14:07	1
Bromodichloromethane	<0.0016	0.0016	0.00033	mg/Kg	₩	11/02/17 18:18	11/08/17 14:07	1
Bromoform	<0.0016	0.0016	0.00048	mg/Kg		11/02/17 18:18	11/08/17 14:07	1
Bromomethane	<0.0041	0.0041	0.0015	mg/Kg	☼	11/02/17 18:18	11/08/17 14:07	1
2-Butanone (MEK)	<0.0041	0.0041	0.0018	mg/Kg	₩	11/02/17 18:18	11/08/17 14:07	1
Carbon disulfide	<0.0041	0.0041	0.00085	mg/Kg		11/02/17 18:18	11/08/17 14:07	1
Carbon tetrachloride	<0.0016	0.0016	0.00047	mg/Kg	☼	11/02/17 18:18	11/08/17 14:07	1
Chlorobenzene	<0.0016	0.0016	0.00060	mg/Kg	☼	11/02/17 18:18	11/08/17 14:07	1
Chloroethane	<0.0041	0.0041	0.0012	mg/Kg		11/02/17 18:18	11/08/17 14:07	1
Chloroform	<0.0016	0.0016	0.00057	mg/Kg	☼	11/02/17 18:18	11/08/17 14:07	1
Chloromethane	<0.0041	0.0041	0.0016	mg/Kg	☼	11/02/17 18:18	11/08/17 14:07	1
cis-1,2-Dichloroethene	<0.0016	0.0016	0.00046	mg/Kg		11/02/17 18:18	11/08/17 14:07	1
cis-1,3-Dichloropropene	<0.0016	0.0016	0.00049	mg/Kg	₩	11/02/17 18:18	11/08/17 14:07	1
Dibromochloromethane	<0.0016	0.0016	0.00053	mg/Kg	☼	11/02/17 18:18	11/08/17 14:07	1
1,1-Dichloroethane	<0.0016	0.0016	0.00056	mg/Kg	₩.	11/02/17 18:18	11/08/17 14:07	1
1,2-Dichloroethane	<0.0041	0.0041	0.0013	mg/Kg	☼	11/02/17 18:18	11/08/17 14:07	1
1,1-Dichloroethene	<0.0016	0.0016	0.00056	mg/Kg	₩	11/02/17 18:18	11/08/17 14:07	1
1,2-Dichloropropane	<0.0016	0.0016	0.00042	mg/Kg	· · · · · · · · · · · · · · · · · · ·	11/02/17 18:18	11/08/17 14:07	1
1,3-Dichloropropene, Total	<0.0016	0.0016	0.00057	mg/Kg	₩	11/02/17 18:18	11/08/17 14:07	1
Ethylbenzene	<0.0016	0.0016	0.00078	mg/Kg	₩	11/02/17 18:18	11/08/17 14:07	1
2-Hexanone	<0.0041	0.0041		mg/Kg	· · · · · · · · · · · · · · · · · · ·	11/02/17 18:18	11/08/17 14:07	1
Methylene Chloride	<0.0041	0.0041	0.0016		☼	11/02/17 18:18	11/08/17 14:07	1
4-Methyl-2-pentanone (MIBK)	<0.0041	0.0041		mg/Kg	₩	11/02/17 18:18	11/08/17 14:07	1
Methyl tert-butyl ether	<0.0016	0.0016	0.00048			11/02/17 18:18	11/08/17 14:07	1
Styrene	<0.0016	0.0016	0.00049		₩	11/02/17 18:18	11/08/17 14:07	1
1,1,2,2-Tetrachloroethane	<0.0016	0.0016	0.00052	mg/Kg	₩	11/02/17 18:18	11/08/17 14:07	1
Tetrachloroethene	<0.0016	0.0016	0.00056		· · · · · · · · · · · · · · · · · · ·	11/02/17 18:18	11/08/17 14:07	1
Toluene	<0.0016	0.0016	0.00041		☼	11/02/17 18:18	11/08/17 14:07	1
trans-1,2-Dichloroethene	<0.0016	0.0016	0.00072		☼	11/02/17 18:18	11/08/17 14:07	1
trans-1,3-Dichloropropene	<0.0016	0.0016	0.00057		· · · · · · · · · · · · · · · · · · ·	11/02/17 18:18	11/08/17 14:07	1
1,1,1-Trichloroethane	<0.0016	0.0016	0.00055		☼	11/02/17 18:18	11/08/17 14:07	1
1,1,2-Trichloroethane	<0.0016	0.0016	0.00070		₩		11/08/17 14:07	1
Trichloroethene	<0.0016	0.0016	0.00055		· · · · · · · · · · · · · · · · · · ·	11/02/17 18:18	11/08/17 14:07	1
Vinyl acetate	<0.0041	0.0041	0.0014		₩	11/02/17 18:18	11/08/17 14:07	1
Vinyl chloride	<0.0016	0.0016	0.00072		₩	11/02/17 18:18	11/08/17 14:07	1
Xylenes, Total	<0.0033	0.0033	0.00052			11/02/17 18:18		1
Surrogate	%Recovery Quali	fier Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91	75 - 131				11/02/17 18:18	11/08/17 14:07	1
Dibromofluoromethane	100	75 - 126				11/02/17 18:18	11/08/17 14:07	1
1,2-Dichloroethane-d4 (Surr)	99	70 - 134				11/02/17 18:18	11/08/17 14:07	1
Toluene-d8 (Surr)	96	75 - 124				11/02/17 18:18	11/08/17 14:07	1

Method: 8270D - Semivol	atile Organic Compounds (G	C/MS)						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	<0.036	0.036	0.0065	mg/Kg	\	11/08/17 17:13	11/11/17 05:28	•
Acenaphthylene	<0.036	0.036	0.0047	mg/Kg	₩	11/08/17 17:13	11/11/17 05:28	1
A41	0.0004	0.000	0.0000	m ~ /1/ ~	244	44/00/47 47:40	44/44/47 05:00	

Anthracene 0.036 0.0060 mg/Kg 11/08/17 17:13 11/11/17 05:28 0.0084 J 11/08/17 17:13 11/11/17 05:28 Benzo[a]anthracene 0.030 J 0.036 0.0048 mg/Kg

TestAmerica Chicago

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136651-1

Client Sample ID: 3160-56-1 (0-1.5')

Lab Sample ID: 500-136651-3

Date Collected: 11/01/17 08:25

Date Received: 11/02/17 09:00

Matrix: Solid
Percent Solids: 87.4

Method: 8270D - Semivolatile Analyte		Qualifier	RL	MDL	•	D	Prepared	Analyzed	Dil Fa
Benzo[a]pyrene	0.058		0.036	0.0070		— =		11/11/17 05:28	
Benzo[b]fluoranthene	0.071		0.036	0.0078		₩		11/11/17 05:28	
Benzo[g,h,i]perylene	0.047		0.036		mg/Kg			11/11/17 05:28	
Benzo[k]fluoranthene	0.014		0.036		mg/Kg	₩		11/11/17 05:28	
Bis(2-chloroethoxy)methane	<0.18	3	0.18		mg/Kg			11/11/17 05:28	
Bis(2-chloroethyl)ether	<0.18		0.18		mg/Kg			11/11/17 05:28	
Bis(2-ethylhexyl) phthalate	<0.18		0.18		mg/Kg			11/11/17 05:28	
	<0.18		0.18					11/11/17 05:28	
4-Bromophenyl phenyl ether					mg/Kg	.			
Butyl benzyl phthalate	<0.18		0.18		mg/Kg	₩		11/11/17 05:28	
Carbazole	<0.18		0.18		mg/Kg			11/11/17 05:28	
4-Chloroaniline	<0.73		0.73		mg/Kg			11/11/17 05:28	
4-Chloro-3-methylphenol	<0.36		0.36		mg/Kg			11/11/17 05:28	
2-Chloronaphthalene	<0.18		0.18		mg/Kg	ψ.		11/11/17 05:28	
2-Chlorophenol	<0.18		0.18		mg/Kg	::::::::::::::::::::::::::::::::::::::		11/11/17 05:28	
4-Chlorophenyl phenyl ether	<0.18		0.18		mg/Kg	*		11/11/17 05:28	
Chrysene	0.040		0.036	0.0098	0 0	*		11/11/17 05:28	
Dibenz(a,h)anthracene	<0.036		0.036	0.0070				11/11/17 05:28	
Dibenzofuran	0.059	J	0.18		mg/Kg	₩	11/08/17 17:13	11/11/17 05:28	
1,2-Dichlorobenzene	<0.18		0.18	0.043	mg/Kg	₩	11/08/17 17:13	11/11/17 05:28	
1,3-Dichlorobenzene	<0.18		0.18	0.040	mg/Kg	₩	11/08/17 17:13	11/11/17 05:28	
1,4-Dichlorobenzene	<0.18		0.18	0.046	mg/Kg	₩	11/08/17 17:13	11/11/17 05:28	
3,3'-Dichlorobenzidine	<0.18		0.18	0.050	mg/Kg	₩	11/08/17 17:13	11/11/17 05:28	
2,4-Dichlorophenol	< 0.36		0.36	0.085	mg/Kg	₩	11/08/17 17:13	11/11/17 05:28	
Diethyl phthalate	<0.18		0.18	0.061	mg/Kg	₽	11/08/17 17:13	11/11/17 05:28	
2,4-Dimethylphenol	< 0.36		0.36	0.14	mg/Kg	₩	11/08/17 17:13	11/11/17 05:28	
Dimethyl phthalate	<0.18		0.18	0.047	mg/Kg	₩	11/08/17 17:13	11/11/17 05:28	
Di-n-butyl phthalate	<0.18		0.18	0.055	mg/Kg	₩.	11/08/17 17:13	11/11/17 05:28	
4,6-Dinitro-2-methylphenol	< 0.73		0.73	0.29	mg/Kg	₩	11/08/17 17:13	11/11/17 05:28	
2,4-Dinitrophenol	<0.73		0.73	0.63	mg/Kg	₩	11/08/17 17:13	11/11/17 05:28	
2,4-Dinitrotoluene	<0.18		0.18	0.057	mg/Kg		11/08/17 17:13	11/11/17 05:28	
2,6-Dinitrotoluene	<0.18		0.18	0.071	mg/Kg	₩	11/08/17 17:13	11/11/17 05:28	
Di-n-octyl phthalate	<0.18		0.18	0.059	mg/Kg	₩	11/08/17 17:13	11/11/17 05:28	
Fluoranthene	0.049		0.036	0.0067				11/11/17 05:28	
Fluorene	<0.036		0.036	0.0051	mg/Kg	₩		11/11/17 05:28	
Hexachlorobenzene	< 0.073		0.073	0.0083		₩	11/08/17 17:13	11/11/17 05:28	
Hexachlorobutadiene	<0.18		0.18		mg/Kg	 \$		11/11/17 05:28	
Hexachlorocyclopentadiene	<0.73		0.73		mg/Kg	₩		11/11/17 05:28	
Hexachloroethane	<0.18		0.18		mg/Kg	₩		11/11/17 05:28	
Indeno[1,2,3-cd]pyrene	0.042		0.036	0.0093				11/11/17 05:28	
Isophorone	<0.18		0.18		mg/Kg	₽		11/11/17 05:28	
•	0.040		0.10	0.0066				11/11/17 05:28	
2-Methylnaphthalene		J				*		11/11/17 05:28	
2-Methylphenol	<0.18		0.18		mg/Kg	₽			
3 & 4 Methylphenol	<0.18		0.18		mg/Kg	₩		11/11/17 05:28 11/11/17 05:28	
Naphthalene	0.023	J	0.036	0.0055					
2-Nitroaniline	<0.18		0.18		mg/Kg	₽		11/11/17 05:28	
3-Nitroaniline	<0.36		0.36		mg/Kg	₽		11/11/17 05:28	
4-Nitroaniline	<0.36		0.36		mg/Kg	J.		11/11/17 05:28	
Nitrobenzene	< 0.036		0.036	0.0090	mg/Kg	₽	11/08/17 17:13	11/11/17 05:28	

TestAmerica Chicago

3

5

7

9

12

13

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/01/17 08:25 Date Received: 11/02/17 09:00

Client Sample ID: 3160-56-1 (0-1.5')

TestAmerica Job ID: 500-136651-1

Lab Sample ID: 500-136651-3

Matrix: Solid	
Percent Solids: 87.4	

Method: 8270D - Semivolate	tile Organic Co	mpounds	(GC/MS) (Cd	ontinued)				
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.73		0.73	0.34	mg/Kg	<u></u>	11/08/17 17:13	11/11/17 05:28	1
N-Nitrosodi-n-propylamine	<0.073		0.073	0.044	mg/Kg	φ.	11/08/17 17:13	11/11/17 05:28	1
N-Nitrosodiphenylamine	<0.18		0.18	0.042	mg/Kg	☼	11/08/17 17:13	11/11/17 05:28	1
2,2'-oxybis[1-chloropropane]	<0.18		0.18	0.042	mg/Kg	☼	11/08/17 17:13	11/11/17 05:28	1
Pentachlorophenol	<0.73		0.73	0.58	mg/Kg	₽	11/08/17 17:13	11/11/17 05:28	1
Phenanthrene	0.093		0.036	0.0050	mg/Kg	☼	11/08/17 17:13	11/11/17 05:28	1
Phenol	<0.18		0.18	0.080	mg/Kg	☼	11/08/17 17:13	11/11/17 05:28	1
Pyrene	0.051		0.036	0.0071	mg/Kg	₽	11/08/17 17:13	11/11/17 05:28	1
1,2,4-Trichlorobenzene	<0.18		0.18	0.039	mg/Kg	☼	11/08/17 17:13	11/11/17 05:28	1
2,4,5-Trichlorophenol	<0.36		0.36	0.082	mg/Kg	₽	11/08/17 17:13	11/11/17 05:28	1
2,4,6-Trichlorophenol	<0.36		0.36	0.12	mg/Kg	☼	11/08/17 17:13	11/11/17 05:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	75		44 - 121				11/08/17 17:13	11/11/17 05:28	1
2-Fluorophenol	83		46 - 133				11/08/17 17:13	11/11/17 05:28	1
Nitrobenzene-d5	70		41 - 120				11/08/17 17:13	11/11/17 05:28	1
Phenol-d5	86		46 - 125				11/08/17 17:13	11/11/17 05:28	1
Terphenyl-d14	102		35 - 160				11/08/17 17:13	11/11/17 05:28	1
2,4,6-Tribromophenol	71		25 - 139				11/08/17 17:13	11/11/17 05:28	1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	<0.019	0.019	0.0075	mg/Kg	<u> </u>	11/08/17 07:22	11/08/17 22:55	10
alpha-BHC	<0.019	0.019	0.0046	mg/Kg	₩	11/08/17 07:22	11/08/17 22:55	10
alpha-Chlordane	<0.019	0.019	0.0092	mg/Kg	₩	11/08/17 07:22	11/08/17 22:55	10
beta-BHC	<0.019	0.019	0.0056	mg/Kg		11/08/17 07:22	11/08/17 22:55	10
4,4'-DDD	<0.019	0.019	0.0036	mg/Kg	₩	11/08/17 07:22	11/08/17 22:55	10
4,4'-DDE	<0.019	0.019	0.0030	mg/Kg	₩	11/08/17 07:22	11/08/17 22:55	10
4,4'-DDT	<0.019	0.019	0.0096	mg/Kg		11/08/17 07:22	11/08/17 22:55	10
delta-BHC	<0.019	0.019	0.0057	mg/Kg	₩	11/08/17 07:22	11/08/17 22:55	10
Dieldrin	<0.019	0.019	0.0025	mg/Kg	₩	11/08/17 07:22	11/08/17 22:55	10
Endosulfan I	<0.019	0.019	0.0080	mg/Kg	₽	11/08/17 07:22	11/08/17 22:55	10
Endosulfan II	<0.019	0.019	0.0029	mg/Kg	₩	11/08/17 07:22	11/08/17 22:55	10
Endosulfan sulfate	<0.019	0.019	0.0033	mg/Kg	₩	11/08/17 07:22	11/08/17 22:55	10
Endrin	<0.019	0.019	0.0025	mg/Kg	₽	11/08/17 07:22	11/08/17 22:55	10
Endrin aldehyde	<0.019	0.019	0.0031	mg/Kg	₩	11/08/17 07:22	11/08/17 22:55	10
Endrin ketone	<0.019	0.019	0.0041	mg/Kg	₩	11/08/17 07:22	11/08/17 22:55	10
gamma-BHC (Lindane)	<0.019	0.019	0.0039	mg/Kg	₩	11/08/17 07:22	11/08/17 22:55	10
gamma-Chlordane	<0.019	0.019	0.0048	mg/Kg	₩	11/08/17 07:22	11/08/17 22:55	10
Heptachlor	<0.019	0.019	0.0076	mg/Kg	₩	11/08/17 07:22	11/08/17 22:55	10
Heptachlor epoxide	<0.019	0.019	0.0065	mg/Kg	₩	11/08/17 07:22	11/08/17 22:55	10
Methoxychlor	<0.090	0.090	0.0035	mg/Kg	₩	11/08/17 07:22	11/08/17 22:55	10
Toxaphene	<0.18	0.18	0.077	mg/Kg	≎	11/08/17 07:22	11/08/17 22:55	10
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	87	33 - 148				11/08/17 07:22	11/08/17 22:55	10
Tetrachloro-m-xylene	97	30 - 121				11/08/17 07:22	11/08/17 22:55	10

TestAmerica Chicago

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/01/17 08:25

Date Received: 11/02/17 09:00

Analyte

Dicamba

2,4-D

2,4,5-T

2,4-DB

Dichlorprop

Silvex (2,4,5-TP)

Method: 8151A - Herbicides (GC)

Client Sample ID: 3160-56-1 (0-1.5')

TestAmerica Job ID: 500-136651-1

Lab Sample ID: 500-136651-3

Matrix: Solid

Percent Solids: 87.4

	<u>'</u>	r crociii Goila	3. 07.4
D	Prepared	Analyzed	Dil Fac
₩	11/08/17 22:08	11/10/17 05:31	10
₩	11/08/17 22:08	11/10/17 05:31	10
₩	11/08/17 22:08	11/10/17 05:31	10
₩.	11/08/17 22:08	11/10/17 05:31	10

11/08/17 22:08 11/10/17 05:31

11/08/17 22:08 11/10/17 05:31

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac DCAA 25 - 120 11/08/17 22:08 11/10/17 05:31 48

RL

0.37

0.37

0.37

0.37

0.37

0.37

Result Qualifier

< 0.37

<0.37

< 0.37

< 0.37

< 0.37

< 0.37

MDL Unit

0.077 mg/Kg

0.10 mg/Kg

0.10 mg/Kg

0.095 mg/Kg

0.090 mg/Kg

0.11 mg/Kg

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.22	J	1.1	0.21	mg/Kg	<u> </u>	11/03/17 07:41	11/05/17 23:04	1
Arsenic	6.3		0.54	0.18	mg/Kg	☼	11/03/17 07:41	11/03/17 16:46	1
Barium	95		0.54	0.061	mg/Kg	☼	11/03/17 07:41	11/03/17 16:46	1
Beryllium	0.54		0.22	0.050	mg/Kg	₽	11/03/17 07:41	11/03/17 16:46	1
Cadmium	0.21	В	0.11	0.019	mg/Kg	☼	11/03/17 07:41	11/03/17 16:46	1
Chromium	14		0.54	0.27	mg/Kg	☼	11/03/17 07:41	11/03/17 16:46	1
Cobalt	8.8		0.27	0.071	mg/Kg	₩.	11/03/17 07:41	11/03/17 16:46	1
Copper	12		0.54	0.15	mg/Kg	☼	11/03/17 07:41	11/03/17 16:46	1
Iron	14000		11	5.6	mg/Kg	☼	11/03/17 07:41	11/03/17 16:46	1
Lead	210		0.27	0.12	mg/Kg	₽	11/03/17 07:41	11/03/17 16:46	1
Manganese	720		0.54	0.078	mg/Kg	☼	11/03/17 07:41	11/03/17 16:46	1
Nickel	14		0.54	0.16	mg/Kg	☼	11/03/17 07:41	11/03/17 16:46	1
Selenium	0.42	J	0.54	0.32	mg/Kg	₽	11/03/17 07:41	11/05/17 23:04	1
Silver	0.11	J	0.27	0.069	mg/Kg	☼	11/03/17 07:41	11/03/17 16:46	1
Thallium	<0.54		0.54	0.27	mg/Kg	☼	11/03/17 07:41	11/03/17 16:46	1
Vanadium	22		0.27	0.064	mg/Kg		11/03/17 07:41	11/03/17 16:46	1
Zinc	67		1.1	0.47	mg/Kg	₩	11/03/17 07:41	11/03/17 16:46	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/06/17 11:00	11/07/17 11:47	1
Barium	1.0		0.50	0.050	mg/L		11/06/17 11:00	11/07/17 11:47	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/06/17 11:00	11/07/17 11:47	1
Cadmium	0.0025	J	0.0050	0.0020	mg/L		11/06/17 11:00	11/07/17 11:47	1
Chromium	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 11:47	1
Cobalt	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 11:47	1
Copper	0.016	J	0.025	0.010	mg/L		11/06/17 11:00	11/07/17 11:47	1
Iron	<0.40		0.40	0.20	mg/L		11/06/17 11:00	11/07/17 11:47	1
Lead	<0.0075		0.0075	0.0075	mg/L		11/06/17 11:00	11/07/17 11:47	1
Manganese	0.53		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 11:47	1
Nickel	0.012	J	0.025	0.010	mg/L		11/06/17 11:00	11/07/17 11:47	1
Selenium	<0.050		0.050	0.020	mg/L		11/06/17 11:00	11/07/17 11:47	1
Silver	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 11:47	1
Vanadium	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 11:47	1
Zinc	0.053	J	0.50	0.020	mg/L		11/06/17 11:00	11/07/17 11:47	1

10

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/01/17 08:25

Date Received: 11/02/17 09:00

Client Sample ID: 3160-56-1 (0-1.5')

TestAmerica Job ID: 500-136651-1

Percent Solids: 87.4

Lab Sample ID: 500-136651-3 **Matrix: Solid**

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Manganese	0.010	J	0.025	0.010	mg/L		11/06/17 11:29	11/08/17 21:57	•
Method: 6020A - Meta	Is (ICP/MS) - TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Antimony	<0.0060		0.0060	0.0060	mg/L		11/06/17 11:00	11/07/17 15:50	
Thallium	<0.0020		0.0020	0.0020	mg/L		11/06/17 11:00	11/07/17 15:50	
Analyte	Result	Qualifier	RL 0.00020	MDL 0.00020		_ D	Prepared 11/06/17 14:30	Analyzed 11/07/17 09:22	Dil Fa
	SU UUUZU		0.00020	0.00020	mg/L		11/06/17 14.30	11/07/17 09.22	
									,
Method: 7471B - Merc	ury (CVAA)	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Method: 7471B - Merc Analyte Mercury	ury (CVAA)	Qualifier	RL 0.018			— D	Prepared 11/03/17 15:15	Analyzed 11/06/17 11:26	Dil Fac
Method: 7471B - Merc Analyte Mercury	ury (CVAA) Result	Qualifier		MDL			<u> </u>		Dil Fac
Method: 7471B - Merc Analyte	ury (CVAA) Result 0.029	Qualifier Qualifier		MDL 0.0060	mg/Kg		<u> </u>		Dil Fac

TestAmerica Job ID: 500-136651-1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Lab Sample ID: 500-136651-4

Client Sample ID: 3160-56-2 (0-1.5') Date Collected: 11/01/17 08:35 **Matrix: Solid** Date Received: 11/02/17 09:00 Percent Solids: 82.4

Analyte	Result Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Acetone	0.030	0.019	0.0084	mg/Kg	<u>₩</u>	11/02/17 18:18	11/08/17 14:32	1
Benzene	<0.0019	0.0019	0.00049	mg/Kg	₩	11/02/17 18:18	11/08/17 14:32	1
Bromodichloromethane	<0.0019	0.0019	0.00039	mg/Kg	₩	11/02/17 18:18	11/08/17 14:32	1
Bromoform	<0.0019	0.0019	0.00056	mg/Kg	₩	11/02/17 18:18	11/08/17 14:32	1
Bromomethane	<0.0048	0.0048	0.0018	mg/Kg	₩	11/02/17 18:18	11/08/17 14:32	1
2-Butanone (MEK)	<0.0048	0.0048	0.0021	mg/Kg	₩	11/02/17 18:18	11/08/17 14:32	1
Carbon disulfide	<0.0048	0.0048	0.0010	mg/Kg	₩	11/02/17 18:18	11/08/17 14:32	1
Carbon tetrachloride	<0.0019	0.0019	0.00056	mg/Kg	☼	11/02/17 18:18	11/08/17 14:32	1
Chlorobenzene	<0.0019	0.0019	0.00071	mg/Kg	☼	11/02/17 18:18	11/08/17 14:32	1
Chloroethane	<0.0048	0.0048	0.0014	mg/Kg	₽	11/02/17 18:18	11/08/17 14:32	1
Chloroform	<0.0019	0.0019	0.00067	mg/Kg	₩	11/02/17 18:18	11/08/17 14:32	1
Chloromethane	<0.0048	0.0048	0.0019	mg/Kg	₩	11/02/17 18:18	11/08/17 14:32	1
cis-1,2-Dichloroethene	<0.0019	0.0019	0.00054	mg/Kg	₽	11/02/17 18:18	11/08/17 14:32	1
cis-1,3-Dichloropropene	<0.0019	0.0019	0.00058	mg/Kg	₩	11/02/17 18:18	11/08/17 14:32	1
Dibromochloromethane	<0.0019	0.0019	0.00063	mg/Kg	₩	11/02/17 18:18	11/08/17 14:32	1
1,1-Dichloroethane	<0.0019	0.0019	0.00066	mg/Kg	₩	11/02/17 18:18	11/08/17 14:32	1
1,2-Dichloroethane	<0.0048	0.0048	0.0015	mg/Kg	₩	11/02/17 18:18	11/08/17 14:32	1
1,1-Dichloroethene	<0.0019	0.0019	0.00066	mg/Kg	₩	11/02/17 18:18	11/08/17 14:32	1
1,2-Dichloropropane	<0.0019	0.0019	0.00050	mg/Kg	₩	11/02/17 18:18	11/08/17 14:32	1
1,3-Dichloropropene, Total	<0.0019	0.0019	0.00068	mg/Kg	☼	11/02/17 18:18	11/08/17 14:32	1
Ethylbenzene	<0.0019	0.0019	0.00092	mg/Kg	☼	11/02/17 18:18	11/08/17 14:32	1
2-Hexanone	<0.0048	0.0048	0.0015	mg/Kg		11/02/17 18:18	11/08/17 14:32	1
Methylene Chloride	<0.0048	0.0048	0.0019	mg/Kg	₩	11/02/17 18:18	11/08/17 14:32	1
4-Methyl-2-pentanone (MIBK)	<0.0048	0.0048	0.0014	mg/Kg	☼	11/02/17 18:18	11/08/17 14:32	1
Methyl tert-butyl ether	<0.0019	0.0019	0.00057	mg/Kg		11/02/17 18:18	11/08/17 14:32	1
Styrene	<0.0019	0.0019	0.00058	mg/Kg	₩	11/02/17 18:18	11/08/17 14:32	1
1,1,2,2-Tetrachloroethane	<0.0019	0.0019	0.00062	mg/Kg	☼	11/02/17 18:18	11/08/17 14:32	1
Tetrachloroethene	<0.0019	0.0019	0.00066	mg/Kg	₩	11/02/17 18:18	11/08/17 14:32	1
Toluene	<0.0019	0.0019	0.00049	mg/Kg	₩	11/02/17 18:18	11/08/17 14:32	1
trans-1,2-Dichloroethene	<0.0019	0.0019	0.00085	mg/Kg	☼	11/02/17 18:18	11/08/17 14:32	1
trans-1,3-Dichloropropene	<0.0019	0.0019	0.00068	mg/Kg	₩	11/02/17 18:18	11/08/17 14:32	1
1,1,1-Trichloroethane	<0.0019	0.0019	0.00065	mg/Kg	☼	11/02/17 18:18	11/08/17 14:32	1
1,1,2-Trichloroethane	<0.0019	0.0019	0.00083	mg/Kg	₩	11/02/17 18:18	11/08/17 14:32	1
Trichloroethene	<0.0019	0.0019	0.00065	mg/Kg	φ.	11/02/17 18:18	11/08/17 14:32	1
Vinyl acetate	<0.0048	0.0048	0.0017	mg/Kg	₩	11/02/17 18:18	11/08/17 14:32	1
Vinyl chloride	<0.0019	0.0019	0.00085	mg/Kg	₩	11/02/17 18:18	11/08/17 14:32	1
Xylenes, Total	<0.0039	0.0039	0.00062	mg/Kg	Φ.	11/02/17 18:18	11/08/17 14:32	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	93	75 - 131				11/02/17 18:18	11/08/17 14:32	1
Dibromofluoromethane	99	75 - 126				11/02/17 18:18	11/08/17 14:32	1
1,2-Dichloroethane-d4 (Surr)	93	70 - 134				11/02/17 18:18	11/08/17 14:32	1
Toluene-d8 (Surr)	99	75 - 124				11/02/17 18:18	11/08/17 14:32	1

Method: 8270D - Semivolatile Organic Compounds (GC/MS)								
Analyte	Result Qualifier	RL	MDL Unit	[Prepared	Analyzed	Dil Fac	
Acenaphthene	<0.039	0.039	0.0071 mg/Kg	3	11/08/17 17:13	11/09/17 18:12	1	
Acenaphthylene	<0.039	0.039	0.0052 mg/Kg	3	11/08/17 17:13	11/09/17 18:12	1	
Anthracene	0.019 J	0.039	0.0066 mg/Kg	3	11/08/17 17:13	11/09/17 18:12	1	
Benzo[a]anthracene	0.063	0.039	0.0053 mg/Kg	3	11/08/17 17:13	11/09/17 18:12	1	

TestAmerica Chicago

Page 33 of 145

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/01/17 08:35

Date Received: 11/02/17 09:00

Client Sample ID: 3160-56-2 (0-1.5')

TestAmerica Job ID: 500-136651-1

Lab Sample ID: 500-136651-4

Percent Solids: 82.4

Matrix: Solid

Method: 8270D - Semivolatile Analyte	•	Qualifier	RL	MDL	•	D	Prepared	Analyzed	Dil Fac
Benzo[a]pyrene	0.072		0.039	0.0077	mg/Kg	<u> </u>	11/08/17 17:13	11/09/17 18:12	1
Benzo[b]fluoranthene	0.092		0.039	0.0086	mg/Kg	☼	11/08/17 17:13	11/09/17 18:12	1
Benzo[g,h,i]perylene	0.026	J	0.039	0.013	mg/Kg		11/08/17 17:13	11/09/17 18:12	1
Benzo[k]fluoranthene	0.029	J	0.039	0.012	mg/Kg	☼	11/08/17 17:13	11/09/17 18:12	1
Bis(2-chloroethoxy)methane	<0.20		0.20	0.040	mg/Kg	☼	11/08/17 17:13	11/09/17 18:12	1
Bis(2-chloroethyl)ether	<0.20		0.20	0.059	mg/Kg		11/08/17 17:13	11/09/17 18:12	1
Bis(2-ethylhexyl) phthalate	<0.20		0.20	0.073	mg/Kg	☼	11/08/17 17:13	11/09/17 18:12	1
4-Bromophenyl phenyl ether	<0.20		0.20	0.052	mg/Kg	☼	11/08/17 17:13	11/09/17 18:12	1
Butyl benzyl phthalate	<0.20		0.20	0.076	mg/Kg	φ.	11/08/17 17:13	11/09/17 18:12	1
Carbazole	<0.20		0.20	0.099	mg/Kg	☼	11/08/17 17:13	11/09/17 18:12	1
4-Chloroaniline	<0.80		0.80	0.19	mg/Kg	☼	11/08/17 17:13	11/09/17 18:12	1
4-Chloro-3-methylphenol	<0.39		0.39	0.13	mg/Kg		11/08/17 17:13	11/09/17 18:12	1
2-Chloronaphthalene	<0.20		0.20	0.044	mg/Kg	☼	11/08/17 17:13	11/09/17 18:12	1
2-Chlorophenol	<0.20		0.20	0.068	mg/Kg	☼	11/08/17 17:13	11/09/17 18:12	1
4-Chlorophenyl phenyl ether	<0.20		0.20	0.046	mg/Kg		11/08/17 17:13	11/09/17 18:12	1
Chrysene	0.083		0.039	0.011	mg/Kg	☼	11/08/17 17:13	11/09/17 18:12	1
Dibenz(a,h)anthracene	< 0.039		0.039	0.0077	mg/Kg	☼	11/08/17 17:13	11/09/17 18:12	1
Dibenzofuran	0.049	J	0.20	0.046	mg/Kg	· · · · · · · · · · · · · · · · · · ·	11/08/17 17:13	11/09/17 18:12	1
1,2-Dichlorobenzene	<0.20		0.20	0.047		₩	11/08/17 17:13	11/09/17 18:12	1
1,3-Dichlorobenzene	<0.20		0.20	0.045	mg/Kg	☼	11/08/17 17:13	11/09/17 18:12	1
1,4-Dichlorobenzene	<0.20		0.20	0.051		· · · · · · · · · · · · · · · · · · ·	11/08/17 17:13	11/09/17 18:12	1
3,3'-Dichlorobenzidine	<0.20		0.20	0.056	mg/Kg	₩	11/08/17 17:13	11/09/17 18:12	1
2,4-Dichlorophenol	<0.39		0.39	0.094		☼	11/08/17 17:13	11/09/17 18:12	1
Diethyl phthalate	<0.20		0.20	0.067	mg/Kg		11/08/17 17:13	11/09/17 18:12	1
2,4-Dimethylphenol	<0.39		0.39	0.15	mg/Kg	₩	11/08/17 17:13	11/09/17 18:12	1
Dimethyl phthalate	<0.20		0.20		mg/Kg	☼	11/08/17 17:13	11/09/17 18:12	1
Di-n-butyl phthalate	<0.20		0.20	0.060	mg/Kg	· · · · · · · · · · · · · · · · · · ·	11/08/17 17:13	11/09/17 18:12	1
4,6-Dinitro-2-methylphenol	<0.80		0.80	0.32	mg/Kg	☼	11/08/17 17:13	11/09/17 18:12	1
2,4-Dinitrophenol	<0.80		0.80	0.70	mg/Kg	☼	11/08/17 17:13	11/09/17 18:12	1
2,4-Dinitrotoluene	<0.20		0.20	0.063	mg/Kg	· · · · · · · · · · · · · · · · · · ·	11/08/17 17:13	11/09/17 18:12	1
2,6-Dinitrotoluene	<0.20		0.20		mg/Kg	☼	11/08/17 17:13	11/09/17 18:12	1
Di-n-octyl phthalate	<0.20		0.20		mg/Kg	☼	11/08/17 17:13	11/09/17 18:12	1
Fluoranthene	0.090		0.039	0.0074		·		11/09/17 18:12	1
Fluorene	<0.039		0.039	0.0056	0 0	₩		11/09/17 18:12	1
Hexachlorobenzene	<0.080		0.080	0.0092		₩	11/08/17 17:13	11/09/17 18:12	1
Hexachlorobutadiene	<0.20		0.20		mg/Kg	· · · · · · · · · · · · · · · · · · ·	11/08/17 17:13	11/09/17 18:12	1
Hexachlorocyclopentadiene	<0.80		0.80		mg/Kg	₩		11/09/17 18:12	1
Hexachloroethane	<0.20		0.20		mg/Kg	₩		11/09/17 18:12	1
Indeno[1,2,3-cd]pyrene	0.018	3	0.039		mg/Kg	· · · · · · · · · · · · · · · · · · ·		11/09/17 18:12	· · · · · · · · · · · · · · · · · · ·
Isophorone	<0.20		0.20		mg/Kg	₩		11/09/17 18:12	1
2-Methylnaphthalene	0.11		0.080	0.0073		₩		11/09/17 18:12	1
2-Methylphenol	<0.20		0.20		mg/Kg	· · · · · · · · · · · · · · · · · · ·		11/09/17 18:12	
3 & 4 Methylphenol	<0.20		0.20		mg/Kg	₽		11/09/17 18:12	1
Naphthalene	0.071		0.039	0.0061		₽		11/09/17 18:12	1
2-Nitroaniline	<0.20		0.20		mg/Kg	· · · · · · · · · · · · · · · · · · ·		11/09/17 18:12	
3-Nitroaniline	<0.39		0.20		mg/Kg	т Ф		11/09/17 18:12	1
4-Nitroaniline	<0.39		0.39		mg/Kg	т Ф		11/09/17 18:12	1
Nitrobenzene	<0.039		0.039	0.0099	mg/Kg	· · · · · · · .		11/09/17 18:12	
THEODOILECTIC	~0.038		0.000	0.0033	1119/11/9	. 15	11/00/11 11.13	11/00/11 10.12	

TestAmerica Chicago

11/14/2017

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136651-1

Lab Sample ID: 500-136651-4

Matrix: Solid

Percent Solids: 82.4

Client Sample	ID: 3160-56-2 ((0-1.5')
---------------	-----------------	----------

Date Collected: 11/01/17 08:35 Date Received: 11/02/17 09:00

Tetrachloro-m-xylene

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.80		0.80	0.38	mg/Kg	<u> </u>	11/08/17 17:13	11/09/17 18:12	1
N-Nitrosodi-n-propylamine	<0.080		0.080	0.049	mg/Kg	₽	11/08/17 17:13	11/09/17 18:12	1
N-Nitrosodiphenylamine	<0.20		0.20	0.047	mg/Kg	☼	11/08/17 17:13	11/09/17 18:12	1
2,2'-oxybis[1-chloropropane]	<0.20		0.20	0.046	mg/Kg	☼	11/08/17 17:13	11/09/17 18:12	1
Pentachlorophenol	<0.80		0.80	0.64	mg/Kg	₽	11/08/17 17:13	11/09/17 18:12	1
Phenanthrene	0.16		0.039	0.0055	mg/Kg	☼	11/08/17 17:13	11/09/17 18:12	1
Phenol	<0.20		0.20	0.088	mg/Kg	☼	11/08/17 17:13	11/09/17 18:12	1
Pyrene	0.12		0.039	0.0079	mg/Kg	₽	11/08/17 17:13	11/09/17 18:12	1
1,2,4-Trichlorobenzene	<0.20		0.20	0.043	mg/Kg	☼	11/08/17 17:13	11/09/17 18:12	1
2,4,5-Trichlorophenol	<0.39		0.39	0.091	mg/Kg	☼	11/08/17 17:13	11/09/17 18:12	1
2,4,6-Trichlorophenol	<0.39		0.39	0.14	mg/Kg	☼	11/08/17 17:13	11/09/17 18:12	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	66		44 - 121				11/08/17 17:13	11/09/17 18:12	1
2-Fluorophenol	63		46 - 133				11/08/17 17:13	11/09/17 18:12	1
Nitrobenzene-d5	52		41 - 120				11/08/17 17:13	11/09/17 18:12	1
Phenol-d5	71		46 - 125				11/08/17 17:13	11/09/17 18:12	1
Terphenyl-d14	78		35 - 160				11/08/17 17:13	11/09/17 18:12	1
2,4,6-Tribromophenol	74		25 - 139				11/08/17 17:13	11/09/17 18:12	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	<0.020		0.020	0.0082	mg/Kg	<u> </u>	11/08/17 07:22	11/08/17 23:15	10
alpha-BHC	<0.020		0.020	0.0050	mg/Kg	₩	11/08/17 07:22	11/08/17 23:15	10
alpha-Chlordane	<0.020		0.020	0.010	mg/Kg	☼	11/08/17 07:22	11/08/17 23:15	10
beta-BHC	<0.020		0.020	0.0061	mg/Kg	φ.	11/08/17 07:22	11/08/17 23:15	10
4,4'-DDD	<0.020		0.020	0.0039	mg/Kg	☼	11/08/17 07:22	11/08/17 23:15	10
4,4'-DDE	<0.020		0.020	0.0033	mg/Kg	☼	11/08/17 07:22	11/08/17 23:15	10
4,4'-DDT	<0.020		0.020	0.010	mg/Kg	₩.	11/08/17 07:22	11/08/17 23:15	10
delta-BHC	<0.020		0.020	0.0062	mg/Kg	☼	11/08/17 07:22	11/08/17 23:15	10
Dieldrin	<0.020		0.020	0.0027	mg/Kg	₩	11/08/17 07:22	11/08/17 23:15	10
Endosulfan I	<0.020		0.020	0.0086	mg/Kg	₩.	11/08/17 07:22	11/08/17 23:15	10
Endosulfan II	<0.020		0.020	0.0032	mg/Kg	☼	11/08/17 07:22	11/08/17 23:15	10
Endosulfan sulfate	<0.020		0.020	0.0036	mg/Kg	☼	11/08/17 07:22	11/08/17 23:15	10
Endrin	<0.020		0.020	0.0027	mg/Kg	₩.	11/08/17 07:22	11/08/17 23:15	10
Endrin aldehyde	<0.020		0.020	0.0033	mg/Kg	☼	11/08/17 07:22	11/08/17 23:15	10
Endrin ketone	<0.020		0.020	0.0045	mg/Kg	☼	11/08/17 07:22	11/08/17 23:15	10
gamma-BHC (Lindane)	<0.020		0.020	0.0043	mg/Kg	₩.	11/08/17 07:22	11/08/17 23:15	10
gamma-Chlordane	<0.020		0.020	0.0052	mg/Kg	☼	11/08/17 07:22	11/08/17 23:15	10
Heptachlor	<0.020		0.020	0.0083	mg/Kg	☼	11/08/17 07:22	11/08/17 23:15	10
Heptachlor epoxide	<0.020		0.020	0.0070	mg/Kg	₩	11/08/17 07:22	11/08/17 23:15	10
Methoxychlor	<0.098		0.098	0.0038	mg/Kg	☼	11/08/17 07:22	11/08/17 23:15	10
Toxaphene	<0.20		0.20	0.083	mg/Kg	₩	11/08/17 07:22	11/08/17 23:15	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	87		33 - 148				11/08/17 07:22	11/08/17 23:15	10

11/08/17 07:22 11/08/17 23:15

30 - 121

92

TestAmerica Chicago

11/14/2017

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/01/17 08:35

Date Received: 11/02/17 09:00

Client Sample ID: 3160-56-2 (0-1.5')

TestAmerica Job ID: 500-136651-1

Lab Sample ID: 500-136651-4

Matrix: Solid

Percent Solids: 82.4

Method: 8151A - Herbio	cides (GC)							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dicamba	<0.40	0.40	0.083	mg/Kg	<u> </u>	11/08/17 22:08	11/10/17 05:55	10
Dichlorprop	<0.40	0.40	0.11	mg/Kg	☼	11/08/17 22:08	11/10/17 05:55	10
2,4-D	<0.40	0.40	0.11	mg/Kg	☼	11/08/17 22:08	11/10/17 05:55	10
Silvex (2,4,5-TP)	<0.40	0.40	0.10	mg/Kg	₽	11/08/17 22:08	11/10/17 05:55	10
2,4,5-T	<0.40	0.40	0.097	mg/Kg	☼	11/08/17 22:08	11/10/17 05:55	10
2,4-DB	<0.40	0.40	0.12	mg/Kg	≎	11/08/17 22:08	11/10/17 05:55	10
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCAA	43	25 - 120				11/08/17 22:08	11/10/17 05:55	10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<1.0		1.0	0.20	mg/Kg	<u> </u>	11/03/17 07:41	11/05/17 23:08	1
Arsenic	9.2		0.51	0.17	mg/Kg	☼	11/03/17 07:41	11/03/17 16:50	1
Barium	120		0.51	0.058	mg/Kg	☼	11/03/17 07:41	11/03/17 16:50	1
Beryllium	0.60		0.20	0.047	mg/Kg		11/03/17 07:41	11/03/17 16:50	1
Cadmium	0.44	В	0.10	0.018	mg/Kg	☼	11/03/17 07:41	11/03/17 16:50	1
Chromium	35		0.51	0.25	mg/Kg	☼	11/03/17 07:41	11/03/17 16:50	1
Cobalt	10		0.25	0.066	mg/Kg		11/03/17 07:41	11/03/17 16:50	1
Copper	19		0.51	0.14	mg/Kg	☼	11/03/17 07:41	11/03/17 16:50	1
Iron	16000		10	5.3	mg/Kg	☼	11/03/17 07:41	11/03/17 16:50	1
Lead	270		0.25	0.12	mg/Kg	₩.	11/03/17 07:41	11/03/17 16:50	1
Manganese	980		0.51	0.073	mg/Kg	☼	11/03/17 07:41	11/05/17 23:08	1
Nickel	13		0.51	0.15	mg/Kg	☼	11/03/17 07:41	11/03/17 16:50	1
Selenium	1.0		0.51	0.30	mg/Kg	₩	11/03/17 07:41	11/05/17 23:08	1
Silver	0.15	J	0.25	0.065	mg/Kg	☼	11/03/17 07:41	11/03/17 16:50	1
Thallium	<0.51		0.51	0.25	mg/Kg	☼	11/03/17 07:41	11/03/17 16:50	1
Vanadium	26		0.25	0.060	mg/Kg	₩	11/03/17 07:41	11/03/17 16:50	1
Zinc	100		1.0	0.44	mg/Kg	☼	11/03/17 07:41	11/03/17 16:50	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/06/17 11:00	11/07/17 11:51	1
Barium	0.76		0.50	0.050	mg/L		11/06/17 11:00	11/07/17 11:51	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/06/17 11:00	11/07/17 11:51	1
Cadmium	0.0029	J	0.0050	0.0020	mg/L		11/06/17 11:00	11/07/17 11:51	1
Chromium	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 11:51	1
Cobalt	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 11:51	1
Copper	0.017	J	0.025	0.010	mg/L		11/06/17 11:00	11/07/17 11:51	1
Iron	0.27	J	0.40	0.20	mg/L		11/06/17 11:00	11/07/17 11:51	1
Lead	<0.0075		0.0075	0.0075	mg/L		11/06/17 11:00	11/07/17 11:51	1
Manganese	0.042		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 11:51	1
Nickel	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 11:51	1
Selenium	<0.050		0.050	0.020	mg/L		11/06/17 11:00	11/07/17 11:51	1
Silver	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 11:51	1
Vanadium	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 11:51	1
Zinc	0.093	J	0.50	0.020	mg/L		11/06/17 11:00	11/07/17 11:51	1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136651-1

3

Client Sample ID: 3160-56-2 (0-1.5')

Date Collected: 11/01/17 08:35 Date Received: 11/02/17 09:00 Lab Sample ID: 500-136651-4 Matrix: Solid

Percent Solids: 82.4

Method: 6020A - Metals (I Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
		Qualifier					<u> </u>		Dil I ac
Antimony	<0.0060		0.0060	0.0060	mg/L		11/06/17 11:00	11/07/17 15:55	1
Thallium	<0.0020		0.0020	0.0020	mg/L		11/06/17 11:00	11/07/17 15:55	1
Method: 7470A - TCLP Me	ercury - TCLP								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/06/17 14:30	11/07/17 09:27	1
Method: 7471B - Mercury	(CVAA)								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.041		0.020	0.0065	mg/Kg	\	11/03/17 15:15	11/06/17 11:28	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	8.3		0.20	0.20	SU			11/08/17 17:14	

3

7

40

11

13

2

6

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-64-1 (0-1.5')

Lab Sample ID: 500-136651-5

Date Collected: 11/01/17 08:50 Date Received: 11/02/17 09:00

Analyte

Acenaphthene

Anthracene

Acenaphthylene

Benzo[a]anthracene

Matrix: Solid Percent Solids: 79.0

Method: 8260B - Volatile Organic Compounds (GC/MS) RL **MDL** Unit Dil Fac Analyte Result Qualifier D Prepared Analyzed 77 Acetone <0.021 0.021 0.0092 mg/Kg 11/02/17 18:18 11/08/17 14:57 Benzene <0.0021 0.0021 0.00054 mg/Kg 11/02/17 18:18 11/08/17 14:57 Bromodichloromethane < 0.0021 0.0021 0.00043 mg/Kg 11/02/17 18:18 11/08/17 14:57 0.00062 mg/Kg Bromoform < 0.0021 0.0021 11/02/17 18:18 11/08/17 14:57 Bromomethane < 0.0053 0.0053 0.0020 mg/Kg 11/02/17 18:18 11/08/17 14:57 2-Butanone (MEK) < 0.0053 0.0053 0.0024 mg/Kg 11/02/17 18:18 11/08/17 14:57 Carbon disulfide < 0.0053 0.0053 0.0011 mg/Kg 11/02/17 18:18 11/08/17 14:57 Carbon tetrachloride <0.0021 0.0021 0.00062 mg/Kg 11/02/17 18:18 11/08/17 14:57 Chlorobenzene 0.0021 0.00078 mg/Kg 11/02/17 18:18 11/08/17 14:57 < 0.0021 Chloroethane < 0.0053 0.0053 0.0016 mg/Kg 11/02/17 18:18 11/08/17 14:57 Chloroform 0.00074 mg/Kg 11/02/17 18:18 <0.0021 0.0021 11/08/17 14:57 0.0053 0.0021 Chloromethane < 0.0053 mg/Kg 11/02/17 18:18 11/08/17 14:57 cis-1,2-Dichloroethene < 0.0021 0.0021 0.00059 mg/Kg 11/02/17 18:18 11/08/17 14:57 0.00064 11/02/17 18:18 11/08/17 14:57 cis-1,3-Dichloropropene <0.0021 0.0021 mg/Kg 11/02/17 18:18 11/08/17 14:57 Dibromochloromethane < 0.0021 0.0021 0.00069 mg/Kg 1.1-Dichloroethane < 0.0021 0.0021 0.00073 mg/Kg 11/02/17 18:18 11/08/17 14:57 0.0053 11/02/17 18:18 11/08/17 14:57 1.2-Dichloroethane < 0.0053 0.0017 mg/Kg 1,1-Dichloroethene <0.0021 0.0021 0.00073 mg/Kg 11/02/17 18:18 11/08/17 14:57 0.0021 0.00055 mg/Kg 11/02/17 18:18 11/08/17 14:57 1,2-Dichloropropane < 0.0021 1,3-Dichloropropene, Total <0.0021 0.0021 0.00074 mg/Kg 11/02/17 18:18 11/08/17 14:57 Ethylbenzene <0.0021 0.0021 0.0010 mg/Kg 11/02/17 18:18 11/08/17 14:57 0.0017 mg/Kg 11/02/17 18:18 11/08/17 14:57 2-Hexanone < 0.0053 0.0053 Methylene Chloride < 0.0053 0.0053 0.0021 ma/Ka 11/02/17 18:18 11/08/17 14:57 4-Methyl-2-pentanone (MIBK) < 0.0053 0.0053 0.0016 mg/Kg 11/02/17 18:18 11/08/17 14:57 Methyl tert-butyl ether < 0.0021 0.0021 0.00062 mg/Kg 11/02/17 18:18 11/08/17 14:57 Styrene 0.0021 11/02/17 18:18 11/08/17 14:57 <0.0021 0.00064 mg/Kg 1,1,2,2-Tetrachloroethane < 0.0021 0.0021 0.00068 mg/Kg 11/02/17 18:18 11/08/17 14:57 Tetrachloroethene 0.0021 0.00072 mg/Kg 11/02/17 18:18 11/08/17 14:57 < 0.0021 Toluene <0.0021 0.0021 0.00054 mg/Kg 11/02/17 18:18 11/08/17 14:57 trans-1,2-Dichloroethene 0.0021 < 0.0021 0.00094 mg/Kg 11/02/17 18:18 11/08/17 14:57 trans-1,3-Dichloropropene < 0.0021 0.0021 0.00074 mg/Kg 11/02/17 18:18 11/08/17 14:57 1.1.1-Trichloroethane < 0.0021 0.0021 0.00071 mg/Kg 11/02/17 18:18 11/08/17 14:57 1,1,2-Trichloroethane <0.0021 0.0021 0.00091 mg/Kg 11/02/17 18:18 11/08/17 14:57 Trichloroethene < 0.0021 0.0021 0.00072 mg/Kg 11/02/17 18:18 11/08/17 14:57 Vinyl acetate 0.0053 0.0018 mg/Kg 11/02/17 18:18 11/08/17 14:57 < 0.0053 Vinyl chloride <0.0021 0.0021 0.00094 mg/Kg 11/02/17 18:18 11/08/17 14:57 11/02/17 18:18 11/08/17 14:57 Xylenes, Total < 0.0042 0.0042 0.00068 mg/Kg Qualifier Limits Dil Fac Surrogate %Recovery Prepared Analyzed 4-Bromofluorobenzene (Surr) 93 75 - 131 11/02/17 18:18 11/08/17 14:57 Dibromofluoromethane 102 75 - 126 11/02/17 18:18 11/08/17 14:57 1,2-Dichloroethane-d4 (Surr) 95 70 - 13411/02/17 18:18 11/08/17 14:57 Toluene-d8 (Surr) 100 75 - 124 11/02/17 18:18 11/08/17 14:57 Method: 8270D - Semivolatile Organic Compounds (GC/MS)

TestAmerica Chicago

Analyzed

11/11/17 05:55

11/08/17 17:13 11/11/17 05:55

11/08/17 17:13 11/11/17 05:55

11/08/17 17:13 11/11/17 05:55

RI

0.041

0.041

0.041

0.041

MDL Unit

0.0055 mg/Kg

0.0056 mg/Kg

mg/Kg

mg/Kg

0.0075

0.0070

D

Prepared

11/08/17 17:13

Result Qualifier

0.035 J

0.0088 J

0.13

1.1

Dil Fac

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/01/17 08:50

Date Received: 11/02/17 09:00

3-Nitroaniline

4-Nitroaniline

Nitrobenzene

2-Nitrophenol

Client Sample ID: 3160-64-1 (0-1.5')

TestAmerica Job ID: 500-136651-1

Lab Sample ID: 500-136651-5

Matrix: Solid

Percent Solids: 79.0

Analyte	Result Qualifier	RL -	MDL		D	Prepared	Analyzed	Dil Fac
Benzo[a]pyrene	0.85	0.041	0.0081		<u> </u>	11/08/17 17:13	11/11/17 05:55	1
Benzo[b]fluoranthene	1.3	0.041	0.0090		#	11/08/17 17:13	11/11/17 05:55	1
Benzo[g,h,i]perylene	0.30	0.041	0.013	mg/Kg	₩	11/08/17 17:13	11/11/17 05:55	1
Benzo[k]fluoranthene	0.48	0.041	0.012	mg/Kg	₩	11/08/17 17:13	11/11/17 05:55	1
Bis(2-chloroethoxy)methane	<0.21	0.21	0.043	mg/Kg	₩	11/08/17 17:13	11/11/17 05:55	1
Bis(2-chloroethyl)ether	<0.21	0.21	0.063	mg/Kg	₩	11/08/17 17:13	11/11/17 05:55	1
Bis(2-ethylhexyl) phthalate	<0.21	0.21	0.076	mg/Kg	₩	11/08/17 17:13	11/11/17 05:55	1
4-Bromophenyl phenyl ether	<0.21	0.21	0.055	mg/Kg	☼	11/08/17 17:13	11/11/17 05:55	1
Butyl benzyl phthalate	<0.21	0.21	0.079	mg/Kg	₩	11/08/17 17:13	11/11/17 05:55	1
Carbazole	0.15 J	0.21	0.10	mg/Kg	☼	11/08/17 17:13	11/11/17 05:55	1
4-Chloroaniline	<0.84	0.84	0.20	mg/Kg	₩	11/08/17 17:13	11/11/17 05:55	1
4-Chloro-3-methylphenol	<0.41	0.41	0.14	mg/Kg		11/08/17 17:13	11/11/17 05:55	1
2-Chloronaphthalene	<0.21	0.21		mg/Kg	₩	11/08/17 17:13	11/11/17 05:55	1
2-Chlorophenol	<0.21	0.21			☼	11/08/17 17:13	11/11/17 05:55	1
4-Chlorophenyl phenyl ether	<0.21	0.21		mg/Kg		11/08/17 17:13	11/11/17 05:55	1
Chrysene	1.4	0.041		mg/Kg	₽	11/08/17 17:13	11/11/17 05:55	1
Dibenz(a,h)anthracene	0.17	0.041	0.0081		☆		11/11/17 05:55	1
Dibenzofuran	0.061 J	0.21		mg/Kg			11/11/17 05:55	· · · · · · · · · · · · · · · · · · ·
1,2-Dichlorobenzene	<0.21	0.21		mg/Kg	₩		11/11/17 05:55	
1,3-Dichlorobenzene	<0.21	0.21		mg/Kg	₩		11/11/17 05:55	1
1.4-Dichlorobenzene	<0.21	0.21		mg/Kg			11/11/17 05:55	· · · · · · · · · · · · · · · · · · ·
3,3'-Dichlorobenzidine	<0.21	0.21		mg/Kg	.∵		11/11/17 05:55	1
•	<0.41	0.21		mg/Kg			11/11/17 05:55	
2,4-Dichlorophenol	<0.21	0.41	0.099		· · · · · · ☆·		11/11/17 05:55	1 1
Diethyl phthalate	<0.41	0.21		mg/Kg	~ ☆		11/11/17 05:55	
2,4-Dimethylphenol				mg/Kg				1
Dimethyl phthalate	<0.21	0.21		mg/Kg	φ		11/11/17 05:55	1
Di-n-butyl phthalate	<0.21	0.21		mg/Kg			11/11/17 05:55	1
4,6-Dinitro-2-methylphenol	<0.84	0.84		mg/Kg	₩		11/11/17 05:55	1
2,4-Dinitrophenol	<0.84	0.84		mg/Kg			11/11/17 05:55	
2,4-Dinitrotoluene	<0.21	0.21		mg/Kg	ψ.		11/11/17 05:55	1
2,6-Dinitrotoluene	<0.21	0.21		mg/Kg	ψ.		11/11/17 05:55	1
Di-n-octyl phthalate	<0.21	0.21		mg/Kg	<u></u> .		11/11/17 05:55	1
Fluoranthene	1.5	0.041	0.0077		*		11/11/17 05:55	1
Fluorene	0.026 J	0.041	0.0059		*		11/11/17 05:55	1
Hexachlorobenzene	<0.084	0.084	0.0097				11/11/17 05:55	1
Hexachlorobutadiene	<0.21	0.21	0.066	mg/Kg	₩	11/08/17 17:13	11/11/17 05:55	1
Hexachlorocyclopentadiene	<0.84	0.84		mg/Kg	₩	11/08/17 17:13	11/11/17 05:55	1
Hexachloroethane	<0.21	0.21		mg/Kg	₩	11/08/17 17:13	11/11/17 05:55	1
Indeno[1,2,3-cd]pyrene	0.33	0.041	0.011	mg/Kg	≎	11/08/17 17:13	11/11/17 05:55	1
Isophorone	<0.21	0.21	0.047	mg/Kg	₽	11/08/17 17:13	11/11/17 05:55	1
2-Methylnaphthalene	0.11	0.084	0.0077	0 0	₩	11/08/17 17:13	11/11/17 05:55	1
2-Methylphenol	<0.21	0.21	0.067	mg/Kg		11/08/17 17:13	11/11/17 05:55	1
3 & 4 Methylphenol	<0.21	0.21	0.070	mg/Kg	₩	11/08/17 17:13	11/11/17 05:55	1
Naphthalene	0.052	0.041	0.0064	mg/Kg	₩	11/08/17 17:13	11/11/17 05:55	1
2-Nitroaniline	<0.21	0.21	0.056	mg/Kg		11/08/17 17:13	11/11/17 05:55	1
	-0.44	0.44			**	44/00/47 47 40	4444470555	

TestAmerica Chicago

11/14/2017

☼ 11/08/17 17:13 11/11/17 05:55

* 11/08/17 17:13 11/11/17 05:55

☼ 11/08/17 17:13 11/11/17 05:55

0.41

0.41

0.041

0.41

0.13 mg/Kg 0.17 mg/Kg

0.010 mg/Kg

0.099 mg/Kg

< 0.41

< 0.41

< 0.041

< 0.41

3

0

10

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Received: 11/02/17 09:00

TestAmerica Job ID: 500-136651-1

Client Sample ID: 3160-64-1 (0-1.5')

Lab Sample ID: 500-136651-5 Date Collected: 11/01/17 08:50 **Matrix: Solid**

Percent Solids: 79.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.84		0.84	0.40	mg/Kg	<u> </u>	11/08/17 17:13	11/11/17 05:55	1
N-Nitrosodi-n-propylamine	<0.084		0.084	0.051	mg/Kg	φ.	11/08/17 17:13	11/11/17 05:55	1
N-Nitrosodiphenylamine	<0.21		0.21	0.049	mg/Kg	☼	11/08/17 17:13	11/11/17 05:55	1
2,2'-oxybis[1-chloropropane]	<0.21		0.21	0.048	mg/Kg	₩	11/08/17 17:13	11/11/17 05:55	1
Pentachlorophenol	<0.84		0.84	0.67	mg/Kg	₩	11/08/17 17:13	11/11/17 05:55	1
Phenanthrene	0.84		0.041	0.0058	mg/Kg	☼	11/08/17 17:13	11/11/17 05:55	1
Phenol	<0.21		0.21	0.093	mg/Kg	☼	11/08/17 17:13	11/11/17 05:55	1
Pyrene	1.4		0.041	0.0083	mg/Kg	☼	11/08/17 17:13	11/11/17 05:55	1
1,2,4-Trichlorobenzene	<0.21		0.21	0.045	mg/Kg	₩	11/08/17 17:13	11/11/17 05:55	1
2,4,5-Trichlorophenol	<0.41		0.41	0.095	mg/Kg	☼	11/08/17 17:13	11/11/17 05:55	1
2,4,6-Trichlorophenol	<0.41		0.41	0.14	mg/Kg	₩	11/08/17 17:13	11/11/17 05:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	72		44 - 121				11/08/17 17:13	11/11/17 05:55	1
2-Fluorophenol	77		46 - 133				11/08/17 17:13	11/11/17 05:55	1
Nitrobenzene-d5	68		41 - 120				11/08/17 17:13	11/11/17 05:55	1
Phenol-d5	75		46 - 125				11/08/17 17:13	11/11/17 05:55	1
Terphenyl-d14	90		35 - 160				11/08/17 17:13	11/11/17 05:55	1
2,4,6-Tribromophenol	68		25 - 139				11/08/17 17:13	11/11/17 05:55	1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	<0.021	0.021	0.0073	mg/Kg	<u> </u>	11/08/17 07:22	11/09/17 12:57	1
PCB-1221	<0.021	0.021	0.0091	mg/Kg	☼	11/08/17 07:22	11/09/17 12:57	1
PCB-1232	<0.021	0.021	0.0090	mg/Kg	☼	11/08/17 07:22	11/09/17 12:57	1
PCB-1242	<0.021	0.021	0.0068	mg/Kg	₩	11/08/17 07:22	11/09/17 12:57	1
PCB-1248	<0.021	0.021	0.0082	mg/Kg	☼	11/08/17 07:22	11/09/17 12:57	1
PCB-1254	<0.021	0.021	0.0045	mg/Kg	☼	11/08/17 07:22	11/09/17 12:57	1
PCB-1260	0.020 J	0.021	0.010	mg/Kg	₽	11/08/17 07:22	11/09/17 12:57	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	96		49 - 129	11/08/17 07:22	11/09/17 12:57	1
DCB Decachlorobiphenyl	89		37 - 121	11/08/17 07:22	11/09/17 12:57	1

Analyte	Result Qu	ualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.24 J		1.2	0.24	mg/Kg	<u> </u>	11/03/17 07:41	11/05/17 23:24	1
Arsenic	5 .8		0.61	0.21	mg/Kg	₩	11/03/17 07:41	11/03/17 17:03	1
Barium	67		0.61	0.069	mg/Kg	₩	11/03/17 07:41	11/03/17 17:03	1
Beryllium	0.45		0.24	0.057	mg/Kg	₩	11/03/17 07:41	11/03/17 17:03	1
Cadmium	0.37 B		0.12	0.022	mg/Kg	₩	11/03/17 07:41	11/03/17 17:03	1
Chromium	13		0.61	0.30	mg/Kg	☼	11/03/17 07:41	11/03/17 17:03	1
Cobalt	5.3		0.30	0.079	mg/Kg	₽	11/03/17 07:41	11/03/17 17:03	1
Copper	18		0.61	0.17	mg/Kg	₩	11/03/17 07:41	11/03/17 17:03	1
Iron	12000		12	6.3	mg/Kg	☼	11/03/17 07:41	11/03/17 17:03	1
Lead	160		0.30	0.14	mg/Kg	₽	11/03/17 07:41	11/03/17 17:03	1
Manganese	270		0.61	0.088	mg/Kg	≎	11/03/17 07:41	11/03/17 17:03	1
Nickel	11		0.61	0.18	mg/Kg	☼	11/03/17 07:41	11/03/17 17:03	1
Selenium	<0.61		0.61	0.36	mg/Kg	ф	11/03/17 07:41	11/05/17 23:24	1
Silver	< 0.30		0.30	0.078	mg/Kg	₩	11/03/17 07:41	11/03/17 17:03	1

TestAmerica Chicago

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/01/17 08:50

Date Received: 11/02/17 09:00

Client Sample ID: 3160-64-1 (0-1.5')

Method: 7470A - TCLP Mercury - TCLP

Method: 7471B - Mercury (CVAA)

Analyte

Mercury

Analyte

Mercury

Analyte

pН

General Chemistry

TestAmerica Job ID: 500-136651-1

Lab Sample ID: 500-136651-5 **Matrix: Solid**

Percent Solids: 79.0

Method: 6010B - Metals (ICAnalyte) Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Thallium	<0.61		0.61	0.30	mg/Kg	<u>₩</u>	11/03/17 07:41	11/03/17 17:03	1
Vanadium	21		0.30	0.071	mg/Kg		11/03/17 07:41	11/03/17 17:03	1
Zinc	73		1.2	0.53	mg/Kg	₽	11/03/17 07:41	11/03/17 17:03	1
_ Method: 6010B - Metals (IC	CP) - TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/06/17 11:00	11/07/17 11:55	1
Barium	0.76		0.50	0.050	mg/L		11/06/17 11:00	11/07/17 11:55	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/06/17 11:00	11/07/17 11:55	1
Cadmium	0.0028	J	0.0050	0.0020	mg/L		11/06/17 11:00	11/07/17 11:55	1
Chromium	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 11:55	1
Cobalt	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 11:55	1
Copper	0.014	J	0.025	0.010	mg/L		11/06/17 11:00	11/07/17 11:55	1
Iron	0.34	J	0.40	0.20	mg/L		11/06/17 11:00	11/07/17 11:55	1
Lead	0.022		0.0075	0.0075	mg/L		11/06/17 11:00	11/07/17 11:55	1
Manganese	0.097		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 11:55	1
Nickel	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 11:55	1
Selenium	<0.050		0.050	0.020	mg/L		11/06/17 11:00	11/07/17 11:55	1
Silver	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 11:55	1
Vanadium	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 11:55	1
Zinc	0.072	J	0.50	0.020	mg/L		11/06/17 11:00	11/07/17 11:55	1
_ Method: 6010B - SPLP Me	tals - SPLP Eas	st							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	0.14		0.0075	0.0075	mg/L		11/06/17 11:29	11/08/17 22:01	1
Method: 6020A - Metals (IC	CP/MS) - TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060		0.0060	0.0060	mg/L		11/06/17 11:00	11/07/17 16:00	1
Thallium	<0.0020		0.0020	0.0020	mg/L		11/06/17 11:00	11/07/17 16:00	1

RL

RL

RL

0.20

0.021

0.00020

Result Qualifier

Result Qualifier

Result Qualifier

<0.00020

0.041

8.1

MDL Unit

MDL Unit

0.0069 mg/Kg

MDL Unit

0.20 SU

0.00020 mg/L

Prepared

Prepared

Prepared

₩

D

11/06/17 14:30 11/07/17 09:28

11/03/17 15:15 11/06/17 11:30

Analyzed

Analyzed

Analyzed

11/08/17 17:14

Dil Fac

Dil Fac

Dil Fac

11/14/2017

2

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-64-2 (0-1.5')

Date Collected: 11/01/17 09:00 Date Received: 11/02/17 09:00 Lab Sample ID: 500-136651-6

Matrix: Solid Percent Solids: 80.5

<0.024 <0.0024 <0.0024 <0.0060 <0.0060 <0.0062 <0.0024 <0.0060 <0.0024 <0.0060 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024		0.024 0.0024 0.0024 0.0024 0.0060 0.0060 0.0060 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024	0.00061 0.00049 0.00070 0.0023 0.0027 0.0012 0.00070 0.00089 0.0018 0.00067 0.00072 0.00079 0.00082 0.0019 0.00083	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		11/02/17 18:18 11/02/17 18:18	11/08/17 15:22 11/08/17 15:22	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
<0.0024 <0.0060 <0.0060 <0.0064 <0.0024 <0.0060 <0.0024 <0.0060 <0.0024 <0.0060 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024		0.0024 0.0024 0.0060 0.0060 0.0060 0.0024 0.0024 0.0060 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024	0.00049 0.00070 0.0023 0.0027 0.0012 0.00070 0.00083 0.0024 0.00067 0.00072 0.00079 0.00082 0.0019 0.00083	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		11/02/17 18:18 11/02/17 18:18	11/08/17 15:22 11/08/17 15:22	
<0.0024 <0.0060 <0.0060 <0.0024 <0.0024 <0.0060 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024		0.0024 0.0060 0.0060 0.0060 0.0024 0.0024 0.0060 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024	0.00070 0.0023 0.0027 0.0012 0.00070 0.00089 0.0018 0.00083 0.0024 0.00067 0.00072 0.00079 0.00082 0.0019 0.00083	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		11/02/17 18:18 11/02/17 18:18	11/08/17 15:22 11/08/17 15:22	
<0.0060 <0.0060 <0.0024 <0.0024 <0.0060 <0.0024 <0.0060 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024		0.0060 0.0060 0.0060 0.0024 0.0024 0.0060 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024	0.0023 0.0027 0.0012 0.00070 0.00089 0.0018 0.00083 0.0024 0.00067 0.00072 0.00079 0.00082 0.0019 0.00083	mg/Kg		11/02/17 18:18 11/02/17 18:18 11/02/17 18:18 11/02/17 18:18 11/02/17 18:18 11/02/17 18:18 11/02/17 18:18 11/02/17 18:18 11/02/17 18:18 11/02/17 18:18	11/08/17 15:22 11/08/17 15:22	
<0.0060 <0.0024 <0.0024 <0.0024 <0.0060 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024		0.0060 0.0060 0.0024 0.0024 0.0060 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024	0.0027 0.0012 0.00070 0.00089 0.0018 0.00083 0.0024 0.00067 0.00072 0.00079 0.00082 0.0019 0.00083	mg/Kg		11/02/17 18:18 11/02/17 18:18 11/02/17 18:18 11/02/17 18:18 11/02/17 18:18 11/02/17 18:18 11/02/17 18:18 11/02/17 18:18 11/02/17 18:18 11/02/17 18:18	11/08/17 15:22 11/08/17 15:22 11/08/17 15:22 11/08/17 15:22 11/08/17 15:22 11/08/17 15:22 11/08/17 15:22 11/08/17 15:22 11/08/17 15:22 11/08/17 15:22	
<0.0060 <0.0024 <0.0024 <0.0060 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024		0.0060 0.0024 0.0024 0.0060 0.0024 0.0060 0.0024 0.0024 0.0024 0.0024 0.0060 0.0024	0.0012 0.00070 0.00089 0.0018 0.0024 0.00067 0.00072 0.00079 0.00082 0.0019 0.00083	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	11/02/17 18:18 11/02/17 18:18 11/02/17 18:18 11/02/17 18:18 11/02/17 18:18 11/02/17 18:18 11/02/17 18:18 11/02/17 18:18 11/02/17 18:18	11/08/17 15:22 11/08/17 15:22 11/08/17 15:22 11/08/17 15:22 11/08/17 15:22 11/08/17 15:22 11/08/17 15:22 11/08/17 15:22 11/08/17 15:22	
<0.0024 <0.0024 <0.0060 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024		0.0024 0.0024 0.0060 0.0024 0.0060 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024	0.00070 0.00089 0.0018 0.0024 0.00067 0.00072 0.00079 0.00082 0.0019 0.00083	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	***************************************	11/02/17 18:18 11/02/17 18:18 11/02/17 18:18 11/02/17 18:18 11/02/17 18:18 11/02/17 18:18 11/02/17 18:18 11/02/17 18:18	11/08/17 15:22 11/08/17 15:22 11/08/17 15:22 11/08/17 15:22 11/08/17 15:22 11/08/17 15:22 11/08/17 15:22 11/08/17 15:22	
<0.0024 <0.0060 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0060 <0.0024 <0.0024 <0.0024 <0.0024		0.0024 0.0060 0.0024 0.0060 0.0024 0.0024 0.0024 0.0024 0.0060 0.0024	0.00089 0.0018 0.00083 0.0024 0.00067 0.00072 0.00079 0.00082 0.0019 0.00083	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	11/02/17 18:18 11/02/17 18:18 11/02/17 18:18 11/02/17 18:18 11/02/17 18:18 11/02/17 18:18 11/02/17 18:18	11/08/17 15:22 11/08/17 15:22 11/08/17 15:22 11/08/17 15:22 11/08/17 15:22 11/08/17 15:22 11/08/17 15:22 11/08/17 15:22	
<0.0060 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024		0.0060 0.0024 0.0060 0.0024 0.0024 0.0024 0.0024 0.0060 0.0024	0.0018 0.00083 0.0024 0.00067 0.00072 0.00079 0.00082 0.0019 0.00083	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	* * * * * * * * * * * * * * * * * * * *	11/02/17 18:18 11/02/17 18:18 11/02/17 18:18 11/02/17 18:18 11/02/17 18:18 11/02/17 18:18	11/08/17 15:22 11/08/17 15:22 11/08/17 15:22 11/08/17 15:22 11/08/17 15:22 11/08/17 15:22 11/08/17 15:22	
<0.0024 <0.0060 <0.0024 <0.0024 <0.0024 <0.0060 <0.0024 <0.0024 <0.0024 <0.0024		0.0024 0.0060 0.0024 0.0024 0.0024 0.0024 0.0060 0.0024 0.0024	0.00083 0.0024 0.00067 0.00072 0.00079 0.00082 0.0019 0.00083	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	\$ \$ \$ \$ \$	11/02/17 18:18 11/02/17 18:18 11/02/17 18:18 11/02/17 18:18 11/02/17 18:18	11/08/17 15:22 11/08/17 15:22 11/08/17 15:22 11/08/17 15:22 11/08/17 15:22 11/08/17 15:22	
<0.0060 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024		0.0060 0.0024 0.0024 0.0024 0.0024 0.0060 0.0024 0.0024	0.0024 0.00067 0.00072 0.00079 0.00082 0.0019 0.00083	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	\$ \$ \$ \$	11/02/17 18:18 11/02/17 18:18 11/02/17 18:18 11/02/17 18:18 11/02/17 18:18	11/08/17 15:22 11/08/17 15:22 11/08/17 15:22 11/08/17 15:22 11/08/17 15:22	
<0.0024 <0.0024 <0.0024 <0.0060 <0.0024 <0.0024 <0.0024 <0.0024		0.0024 0.0024 0.0024 0.0024 0.0060 0.0024 0.0024	0.00067 0.00072 0.00079 0.00082 0.0019 0.00083 0.00062	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	\$ \$ \$	11/02/17 18:18 11/02/17 18:18 11/02/17 18:18 11/02/17 18:18	11/08/17 15:22 11/08/17 15:22 11/08/17 15:22 11/08/17 15:22	
<0.0024 <0.0024 <0.0024 <0.0060 <0.0024 <0.0024 <0.0024		0.0024 0.0024 0.0024 0.0060 0.0024 0.0024	0.00072 0.00079 0.00082 0.0019 0.00083 0.00062	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	\$ \$ \$	11/02/17 18:18 11/02/17 18:18 11/02/17 18:18	11/08/17 15:22 11/08/17 15:22 11/08/17 15:22	
<0.0024 <0.0024 <0.0060 <0.0024 <0.0024 <0.0024 <0.0024		0.0024 0.0024 0.0060 0.0024 0.0024	0.00079 0.00082 0.0019 0.00083 0.00062	mg/Kg mg/Kg mg/Kg mg/Kg	\$ \$ \$	11/02/17 18:18 11/02/17 18:18	11/08/17 15:22 11/08/17 15:22	
<0.0024 <0.0060 <0.0024 <0.0024 <0.0024 <0.0024		0.0024 0.0060 0.0024 0.0024	0.00082 0.0019 0.00083 0.00062	mg/Kg mg/Kg mg/Kg	\$	11/02/17 18:18	11/08/17 15:22	
<0.0060 <0.0024 <0.0024 <0.0024 <0.0024		0.0060 0.0024 0.0024	0.0019 0.00083 0.00062	mg/Kg mg/Kg	₽			
<0.0024 <0.0024 <0.0024 <0.0024		0.0024 0.0024	0.00083 0.00062	mg/Kg		11/02/17 18:18	11/08/17 15:22	
<0.0024 <0.0024 <0.0024		0.0024	0.00062		₽			
<0.0024 <0.0024				ma/Ka		11/02/17 18:18	11/08/17 15:22	
<0.0024		0.0024			₽	11/02/17 18:18	11/08/17 15:22	
			0.00084	mg/Kg	☼	11/02/17 18:18	11/08/17 15:22	
~0.00c0		0.0024	0.0011	mg/Kg	☼	11/02/17 18:18	11/08/17 15:22	
<0.0060		0.0060	0.0019	mg/Kg		11/02/17 18:18	11/08/17 15:22	
<0.0060		0.0060	0.0024	mg/Kg	☼	11/02/17 18:18	11/08/17 15:22	
<0.0060		0.0060	0.0018	mg/Kg	☼	11/02/17 18:18	11/08/17 15:22	
<0.0024		0.0024	0.00070	mg/Kg	φ.	11/02/17 18:18	11/08/17 15:22	
<0.0024		0.0024	0.00073	mg/Kg	☼	11/02/17 18:18	11/08/17 15:22	
<0.0024		0.0024	0.00077	mg/Kg	☼	11/02/17 18:18	11/08/17 15:22	
<0.0024		0.0024	0.00082	mg/Kg	φ.	11/02/17 18:18	11/08/17 15:22	
<0.0024		0.0024	0.00061	mg/Kg	☼	11/02/17 18:18	11/08/17 15:22	
<0.0024		0.0024	0.0011	mg/Kg	☼	11/02/17 18:18	11/08/17 15:22	
<0.0024		0.0024	0.00084	mg/Kg		11/02/17 18:18	11/08/17 15:22	
<0.0024		0.0024	0.00081	mg/Kg	☼	11/02/17 18:18	11/08/17 15:22	
<0.0024		0.0024	0.0010	mg/Kg	₩	11/02/17 18:18	11/08/17 15:22	
<0.0024		0.0024	0.00081	mg/Kg		11/02/17 18:18	11/08/17 15:22	
<0.0060		0.0060	0.0021	mg/Kg	₩	11/02/17 18:18	11/08/17 15:22	
<0.0024		0.0024	0.0011	mg/Kg	₩	11/02/17 18:18	11/08/17 15:22	
<0.0048		0.0048	0.00077	mg/Kg	\$	11/02/17 18:18	11/08/17 15:22	
Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
88		75 - 131				11/02/17 18:18	11/08/17 15:22	
99		75 - 126				11/02/17 18:18	11/08/17 15:22	
93		70 - 134				11/02/17 18:18	11/08/17 15:22	
	<0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0060 <0.0024 <0.0048 Recovery 88 99 93	<0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0060 <0.0024 <0.0048 Recovery Qualifier 88 99	<0.0024	<0.0024	<0.0024	<0.0024	<0.0024	<0.0024

 * 11/08/17 17:13 11/09/17 16:28
 1

 * 11/08/17 17:13 11/09/17 16:28
 1

Analyzed

Prepared

 \$\overline{\pi}\$
 \overline{11/08/17 17:13}
 \overline{11/09/17 16:28}

11/08/17 17:13 11/09/17 16:28

RL

0.040

0.040

0.040

0.040

MDL Unit

0.0072 mg/Kg

0.0053 mg/Kg

0.0067 mg/Kg

0.0054 mg/Kg

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Result Qualifier

<0.040

<0.040

0.0079 J

0.021 J

Analyte

Acenaphthene

Anthracene

Acenaphthylene

Benzo[a]anthracene

Dil Fac

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136651-1

Client Sample ID: 3160-64-2 (0-1.5')

Lab Sample ID: 500-136651-6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzo[a]pyrene	0.029	J -	0.040	0.0077	mg/Kg	<u> </u>	11/08/17 17:13	11/09/17 16:28	
Benzo[b]fluoranthene	0.030		0.040	0.0086	mg/Kg	₩	11/08/17 17:13	11/09/17 16:28	
Benzo[g,h,i]perylene	<0.040		0.040	0.013	mg/Kg		11/08/17 17:13	11/09/17 16:28	
Benzo[k]fluoranthene	<0.040		0.040		mg/Kg	₽	11/08/17 17:13	11/09/17 16:28	
Bis(2-chloroethoxy)methane	<0.20		0.20	0.041	mg/Kg	₽	11/08/17 17:13	11/09/17 16:28	
Bis(2-chloroethyl)ether	<0.20		0.20	0.060	mg/Kg		11/08/17 17:13	11/09/17 16:28	
Bis(2-ethylhexyl) phthalate	<0.20		0.20	0.073	mg/Kg	₽	11/08/17 17:13	11/09/17 16:28	
4-Bromophenyl phenyl ether	<0.20		0.20	0.053	mg/Kg	₩	11/08/17 17:13	11/09/17 16:28	
Butyl benzyl phthalate	<0.20		0.20		mg/Kg	.	11/08/17 17:13	11/09/17 16:28	
Carbazole	<0.20		0.20		mg/Kg	₩	11/08/17 17:13	11/09/17 16:28	
4-Chloroaniline	<0.80		0.80		mg/Kg	₩	11/08/17 17:13	11/09/17 16:28	
4-Chloro-3-methylphenol	<0.40		0.40		mg/Kg	 \$		11/09/17 16:28	
2-Chloronaphthalene	<0.20		0.20		mg/Kg	₩		11/09/17 16:28	
2-Chlorophenol	<0.20		0.20		mg/Kg	₽		11/09/17 16:28	
4-Chlorophenyl phenyl ether	<0.20		0.20		mg/Kg	φ.		11/09/17 16:28	
Chrysene	0.025	1	0.20	0.047	mg/Kg	т Ф		11/09/17 16:28	
Dibenz(a,h)anthracene	<0.040	3	0.040	0.0077		т Ф		11/09/17 16:28	
Dibenzofuran	<0.20		0.20		mg/Kg			11/09/17 16:28	
	<0.20		0.20		mg/Kg	₽		11/09/17 16:28	
1,2-Dichlorobenzene					0 0	₩		11/09/17 16:28	
1,3-Dichlorobenzene	<0.20		0.20		mg/Kg				
1,4-Dichlorobenzene	<0.20		0.20		mg/Kg	☆		11/09/17 16:28	
3,3'-Dichlorobenzidine	<0.20		0.20		mg/Kg	☆		11/09/17 16:28	
2,4-Dichlorophenol	<0.40		0.40		mg/Kg	<u>.</u> .		11/09/17 16:28	
Diethyl phthalate	<0.20		0.20		mg/Kg	\		11/09/17 16:28	
2,4-Dimethylphenol	<0.40		0.40		mg/Kg	*		11/09/17 16:28	
Dimethyl phthalate	<0.20		0.20		mg/Kg			11/09/17 16:28	
Di-n-butyl phthalate	<0.20		0.20		mg/Kg	*		11/09/17 16:28	
4,6-Dinitro-2-methylphenol	<0.80		0.80		mg/Kg	.		11/09/17 16:28	
2,4-Dinitrophenol	<0.80		0.80		mg/Kg			11/09/17 16:28	
2,4-Dinitrotoluene	<0.20		0.20		mg/Kg	₩		11/09/17 16:28	
2,6-Dinitrotoluene	<0.20		0.20		mg/Kg	₩	11/08/17 17:13	11/09/17 16:28	
Di-n-octyl phthalate	<0.20		0.20	0.065	mg/Kg	₩	11/08/17 17:13	11/09/17 16:28	
Fluoranthene	0.026	J	0.040	0.0074	mg/Kg	₩	11/08/17 17:13	11/09/17 16:28	
Fluorene	<0.040		0.040	0.0056	0 0	₩	11/08/17 17:13	11/09/17 16:28	
Hexachlorobenzene	<0.080		0.080	0.0092	mg/Kg	₩	11/08/17 17:13	11/09/17 16:28	
Hexachlorobutadiene	<0.20		0.20	0.063	mg/Kg	₩	11/08/17 17:13	11/09/17 16:28	
Hexachlorocyclopentadiene	<0.80		0.80	0.23	mg/Kg	₩	11/08/17 17:13	11/09/17 16:28	
Hexachloroethane	<0.20		0.20	0.061	mg/Kg	₩	11/08/17 17:13	11/09/17 16:28	
Indeno[1,2,3-cd]pyrene	<0.040		0.040	0.010	mg/Kg	₩.	11/08/17 17:13	11/09/17 16:28	
Isophorone	<0.20		0.20	0.045	mg/Kg	☼	11/08/17 17:13	11/09/17 16:28	
2-Methylnaphthalene	0.021	J	0.080	0.0073	mg/Kg	₩	11/08/17 17:13	11/09/17 16:28	
2-Methylphenol	<0.20		0.20		mg/Kg	.	11/08/17 17:13	11/09/17 16:28	
3 & 4 Methylphenol	<0.20		0.20		mg/Kg	₩	11/08/17 17:13	11/09/17 16:28	
Naphthalene	0.0082	J	0.040	0.0061		₩		11/09/17 16:28	
2-Nitroaniline	<0.20	. .	0.20		mg/Kg			11/09/17 16:28	
3-Nitroaniline	<0.40		0.40		mg/Kg	☼		11/09/17 16:28	
4-Nitroaniline	<0.40		0.40		mg/Kg	☼		11/09/17 16:28	
Nitrobenzene	<0.040		0.040		mg/Kg	. .		11/09/17 16:28	
2-Nitrophenol	<0.40		0.040		mg/Kg	₽		11/09/17 16:28	

TestAmerica Chicago

2

3

5

7

9

11

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/01/17 09:00

Client Sample ID: 3160-64-2 (0-1.5')

TestAmerica Job ID: 500-136651-1

Lab Sample ID: 500-136651-6

Matrix: Solid Percent Solids: 80.5

Date Received: 11/02/17 09:00
Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.80		0.80	0.38	mg/Kg	<u> </u>	11/08/17 17:13	11/09/17 16:28	1
N-Nitrosodi-n-propylamine	<0.080		0.080	0.049	mg/Kg	₽	11/08/17 17:13	11/09/17 16:28	1
N-Nitrosodiphenylamine	<0.20		0.20	0.047	mg/Kg	☼	11/08/17 17:13	11/09/17 16:28	1
2,2'-oxybis[1-chloropropane]	<0.20		0.20	0.046	mg/Kg	☼	11/08/17 17:13	11/09/17 16:28	1
Pentachlorophenol	<0.80		0.80	0.64	mg/Kg	₽	11/08/17 17:13	11/09/17 16:28	1
Phenanthrene	0.044		0.040	0.0056	mg/Kg	☼	11/08/17 17:13	11/09/17 16:28	1
Phenol	<0.20		0.20	0.089	mg/Kg	₩	11/08/17 17:13	11/09/17 16:28	1
Pyrene	0.032	J	0.040	0.0079	mg/Kg	₽	11/08/17 17:13	11/09/17 16:28	1
1,2,4-Trichlorobenzene	<0.20		0.20	0.043	mg/Kg	☼	11/08/17 17:13	11/09/17 16:28	1
2,4,5-Trichlorophenol	<0.40		0.40	0.091	mg/Kg	☼	11/08/17 17:13	11/09/17 16:28	1
2,4,6-Trichlorophenol	<0.40		0.40	0.14	mg/Kg	\$	11/08/17 17:13	11/09/17 16:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery Qual	lifier Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	69	44 - 121	11/08/17 17:13	11/09/17 16:28	1
2-Fluorophenol	72	46 - 133	11/08/17 17:13	11/09/17 16:28	1
Nitrobenzene-d5	59	41 - 120	11/08/17 17:13	11/09/17 16:28	1
Phenol-d5	78	46 - 125	11/08/17 17:13	11/09/17 16:28	1
Terphenyl-d14	88	35 - 160	11/08/17 17:13	11/09/17 16:28	1
2,4,6-Tribromophenol	91	25 - 139	11/08/17 17:13	11/09/17 16:28	1

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	<0.021	0.021	0.0073	mg/Kg	₩	11/08/17 07:22	11/09/17 13:13	1
PCB-1221	<0.021	0.021	0.0090	mg/Kg	₩	11/08/17 07:22	11/09/17 13:13	1
PCB-1232	<0.021	0.021	0.0089	mg/Kg	☼	11/08/17 07:22	11/09/17 13:13	1
PCB-1242	<0.021	0.021	0.0067	mg/Kg	φ.	11/08/17 07:22	11/09/17 13:13	1
PCB-1248	<0.021	0.021	0.0081	mg/Kg	☼	11/08/17 07:22	11/09/17 13:13	1
PCB-1254	<0.021	0.021	0.0044	mg/Kg	₩	11/08/17 07:22	11/09/17 13:13	1
PCB-1260	0.021	0.021	0.010	mg/Kg		11/08/17 07:22	11/09/17 13:13	1

Surrogate	%Recovery 0	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	95		49 - 129	11/08/17 07:22	11/09/17 13:13	1
DCB Decachlorobiphenyl	88		37 - 121	11/08/17 07:22	11/09/17 13:13	1

Method: 6010B - Metals (ICP) Analyte	Result Quali	fier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<1.2	1.2	0.24	mg/Kg	<u></u>	11/03/17 07:41	11/05/17 23:28	1
Arsenic	4.2	0.61	0.21	mg/Kg	☼	11/03/17 07:41	11/03/17 17:07	1
Barium	59	0.61	0.070	mg/Kg	₩	11/03/17 07:41	11/03/17 17:07	1
Beryllium	0.43	0.24	0.057	mg/Kg	*	11/03/17 07:41	11/03/17 17:07	1
Cadmium	<0.12	0.12	0.022	mg/Kg	☼	11/03/17 07:41	11/03/17 17:07	1
Chromium	11	0.61	0.30	mg/Kg	☼	11/03/17 07:41	11/03/17 17:07	1
Cobalt	3.7	0.31	0.080	mg/Kg	₩	11/03/17 07:41	11/03/17 17:07	1
Copper	9.3	0.61	0.17	mg/Kg	☼	11/03/17 07:41	11/03/17 17:07	1
Iron	9200	12	6.3	mg/Kg	☼	11/03/17 07:41	11/03/17 17:07	1
Lead	17	0.31	0.14	mg/Kg		11/03/17 07:41	11/03/17 17:07	1
Manganese	390	0.61	0.088	mg/Kg	☼	11/03/17 07:41	11/03/17 17:07	1
Nickel	6.2	0.61	0.18	mg/Kg	☼	11/03/17 07:41	11/03/17 17:07	1
Selenium	0.60 J	0.61	0.36	mg/Kg		11/03/17 07:41	11/05/17 23:28	1
Silver	<0.31	0.31	0.079	mg/Kg	≎	11/03/17 07:41	11/03/17 17:07	1

Page 44 of 145

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/01/17 09:00

Date Received: 11/02/17 09:00

Client Sample ID: 3160-64-2 (0-1.5')

TestAmerica Job ID: 500-136651-1

2

Lab Sample ID: 500-136651-6

Matrix: Solid

Percent Solids: 80.5

4

6

8

11

Method: 6010B - Metals (I Analyte	, ,) Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Thallium	<0.61		0.61	0.30	mg/Kg	— \	11/03/17 07:41	11/03/17 17:07	1
Vanadium	22		0.31		mg/Kg	 ☆	11/03/17 07:41	11/03/17 17:07	1
Zinc	31		1.2	0.54	mg/Kg	₽	11/03/17 07:41	11/03/17 17:07	1
- Method: 6010B - Metals (I	CP) - TCLP								
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/06/17 11:00	11/07/17 12:08	1
Barium	0.46	J	0.50	0.050	mg/L		11/06/17 11:00	11/07/17 12:08	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/06/17 11:00	11/07/17 12:08	1
Cadmium	0.0021	J	0.0050	0.0020	mg/L		11/06/17 11:00	11/07/17 12:08	1
Chromium	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 12:08	1
Cobalt	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 12:08	1
Copper	0.023	J	0.025	0.010	mg/L		11/06/17 11:00	11/07/17 12:08	1
Iron	0.82		0.40	0.20	mg/L		11/06/17 11:00	11/07/17 12:08	1
Lead	< 0.0075		0.0075	0.0075	mg/L		11/06/17 11:00	11/07/17 12:08	1
Manganese	0.093		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 12:08	1
Nickel	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 12:08	1
Selenium	<0.050		0.050	0.020	mg/L		11/06/17 11:00	11/07/17 12:08	1
Silver	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 12:08	1
Vanadium	< 0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 12:08	1
Zinc	0.11	J	0.50	0.020	mg/L		11/06/17 11:00	11/07/17 12:08	1
- Method: 6020A - Metals (I	CP/MS) - TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060		0.0060	0.0060	mg/L		11/06/17 11:00	11/07/17 16:04	1
Thallium -	<0.0020		0.0020	0.0020	mg/L		11/06/17 11:00	11/07/17 16:04	1
Method: 7470A - TCLP Me	ercury - TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/06/17 14:30	11/07/17 09:29	1
Method: 7471B - Mercury									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.074		0.019	0.0063	mg/Kg		11/03/17 15:15	11/06/17 11:33	1
General Chemistry									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
pH	7.1		0.20	0.20	SU			11/08/17 17:14	1

TestAmerica Job ID: 500-136651-1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Acenaphthene

Anthracene

Acenaphthylene

Benzo[a]anthracene

Client Sample ID: 3160-64-3 (0-1.5')

Lab Sample ID: 500-136651-7 Date Collected: 11/01/17 09:10 **Matrix: Solid** Date Received: 11/02/17 09:00 Percent Solids: 83.6

Method: 8260B - Volatile O Analyte		Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	<0.019	0.019	0.0083	mg/Kg	₩	11/02/17 18:18	11/08/17 15:47	
Benzene	<0.0019	0.0019	0.00049	mg/Kg	☼	11/02/17 18:18	11/08/17 15:47	•
Bromodichloromethane	<0.0019	0.0019	0.00039	mg/Kg	☼	11/02/17 18:18	11/08/17 15:47	•
Bromoform	<0.0019	0.0019	0.00056	mg/Kg	≎	11/02/17 18:18	11/08/17 15:47	1
Bromomethane	<0.0048	0.0048	0.0018	mg/Kg	≎	11/02/17 18:18	11/08/17 15:47	
2-Butanone (MEK)	<0.0048	0.0048	0.0021	mg/Kg	☼	11/02/17 18:18	11/08/17 15:47	1
Carbon disulfide	<0.0048	0.0048	0.00099	mg/Kg	φ.	11/02/17 18:18	11/08/17 15:47	1
Carbon tetrachloride	< 0.0019	0.0019	0.00055	mg/Kg	₽	11/02/17 18:18	11/08/17 15:47	
Chlorobenzene	< 0.0019	0.0019	0.00071	mg/Kg	₽	11/02/17 18:18	11/08/17 15:47	1
Chloroethane	<0.0048	0.0048	0.0014	mg/Kg	₽	11/02/17 18:18	11/08/17 15:47	1
Chloroform	<0.0019	0.0019	0.00066	mg/Kg	₩	11/02/17 18:18	11/08/17 15:47	1
Chloromethane	<0.0048	0.0048	0.0019	mg/Kg	₽	11/02/17 18:18	11/08/17 15:47	1
cis-1,2-Dichloroethene	<0.0019	0.0019	0.00053	mg/Kg	₽	11/02/17 18:18	11/08/17 15:47	1
cis-1,3-Dichloropropene	<0.0019	0.0019	0.00058	mg/Kg	₩	11/02/17 18:18	11/08/17 15:47	1
Dibromochloromethane	< 0.0019	0.0019	0.00063	mg/Kg	☼	11/02/17 18:18	11/08/17 15:47	1
1,1-Dichloroethane	<0.0019	0.0019	0.00066	mg/Kg		11/02/17 18:18	11/08/17 15:47	1
1,2-Dichloroethane	<0.0048	0.0048	0.0015	mg/Kg	☼	11/02/17 18:18	11/08/17 15:47	1
1,1-Dichloroethene	< 0.0019	0.0019	0.00066	mg/Kg	≎	11/02/17 18:18	11/08/17 15:47	1
1,2-Dichloropropane	<0.0019	0.0019	0.00049	mg/Kg		11/02/17 18:18	11/08/17 15:47	1
1,3-Dichloropropene, Total	< 0.0019	0.0019	0.00067	mg/Kg	₩	11/02/17 18:18	11/08/17 15:47	1
Ethylbenzene	< 0.0019	0.0019	0.00092	mg/Kg	≎	11/02/17 18:18	11/08/17 15:47	1
2-Hexanone	<0.0048	0.0048	0.0015	mg/Kg		11/02/17 18:18	11/08/17 15:47	1
Methylene Chloride	<0.0048	0.0048	0.0019	mg/Kg	₽	11/02/17 18:18	11/08/17 15:47	1
4-Methyl-2-pentanone (MIBK)	<0.0048	0.0048	0.0014	mg/Kg	≎	11/02/17 18:18	11/08/17 15:47	1
Methyl tert-butyl ether	<0.0019	0.0019	0.00056	mg/Kg	₽	11/02/17 18:18	11/08/17 15:47	1
Styrene	< 0.0019	0.0019	0.00058	mg/Kg	≎	11/02/17 18:18	11/08/17 15:47	1
1,1,2,2-Tetrachloroethane	< 0.0019	0.0019	0.00061	mg/Kg	₽	11/02/17 18:18	11/08/17 15:47	1
Tetrachloroethene	<0.0019	0.0019	0.00065	mg/Kg	₽	11/02/17 18:18	11/08/17 15:47	1
Toluene	< 0.0019	0.0019	0.00048	mg/Kg	≎	11/02/17 18:18	11/08/17 15:47	1
trans-1,2-Dichloroethene	< 0.0019	0.0019	0.00085	mg/Kg	₽	11/02/17 18:18	11/08/17 15:47	1
trans-1,3-Dichloropropene	<0.0019	0.0019	0.00067	mg/Kg		11/02/17 18:18	11/08/17 15:47	1
1,1,1-Trichloroethane	< 0.0019	0.0019	0.00064	mg/Kg	₽	11/02/17 18:18	11/08/17 15:47	1
1,1,2-Trichloroethane	< 0.0019	0.0019	0.00082	mg/Kg	₩	11/02/17 18:18	11/08/17 15:47	1
Trichloroethene	<0.0019	0.0019	0.00065	mg/Kg		11/02/17 18:18	11/08/17 15:47	1
Vinyl acetate	<0.0048	0.0048	0.0017	mg/Kg	₩	11/02/17 18:18	11/08/17 15:47	1
Vinyl chloride	< 0.0019	0.0019	0.00085		☼	11/02/17 18:18	11/08/17 15:47	1
Xylenes, Total	<0.0038	0.0038	0.00061			11/02/17 18:18		1
Surrogate	%Recovery	Qualifier Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	90	75 - 131				11/02/17 18:18	11/08/17 15:47	
Dibromofluoromethane	100	75 - 126				11/02/17 18:18	11/08/17 15:47	1
1,2-Dichloroethane-d4 (Surr)	94	70 - 134				11/02/17 18:18	11/08/17 15:47	
Toluene-d8 (Surr)	97	75 - 124				11/02/17 18:18	11/08/17 15:47	1
Method: 8270D - Semivolat Analyte		mpounds (GC/MS) Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acananhthana		0.000	0.0060			11/00/17 17:12	•	

TestAmerica Chicago

☼ 11/08/17 17:13 11/09/17 16:54

☼ 11/08/17 17:13 11/09/17 16:54

11/08/17 17:13 11/09/17 16:54

Page 46 of 145

0.038

0.038

0.038

0.038

0.0069 mg/Kg

0.0051 mg/Kg

0.0064 mg/Kg

0.0052 mg/Kg

<0.038

<0.038

0.055

0.034 J

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028 TestAmerica Job ID: 500-136651-1

Client Sample ID: 3160-64-3 (0-1.5')

Lab Sample ID: 500-136651-7

Date Collected: 11/01/17 09:10

Matrix: Solid

Date Received: 11/02/17 09:00

Percent Solids: 83.6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzo[a]pyrene	0.054		0.038	0.0074	mg/Kg	<u> </u>	11/08/17 17:13	11/09/17 16:54	
Benzo[b]fluoranthene	0.069		0.038	0.0083	mg/Kg	₩	11/08/17 17:13	11/09/17 16:54	
Benzo[g,h,i]perylene	0.023	J	0.038	0.012	mg/Kg	φ.	11/08/17 17:13	11/09/17 16:54	
Benzo[k]fluoranthene	0.019	J	0.038	0.011	mg/Kg	₩	11/08/17 17:13	11/09/17 16:54	
Bis(2-chloroethoxy)methane	<0.19		0.19	0.039	mg/Kg	₩	11/08/17 17:13	11/09/17 16:54	
Bis(2-chloroethyl)ether	<0.19		0.19	0.057	mg/Kg		11/08/17 17:13	11/09/17 16:54	
Bis(2-ethylhexyl) phthalate	<0.19		0.19	0.070	mg/Kg	₩	11/08/17 17:13	11/09/17 16:54	
4-Bromophenyl phenyl ether	<0.19		0.19	0.051	mg/Kg	₩	11/08/17 17:13	11/09/17 16:54	
Butyl benzyl phthalate	<0.19		0.19	0.073	mg/Kg		11/08/17 17:13	11/09/17 16:54	
Carbazole	<0.19		0.19		mg/Kg	₽	11/08/17 17:13	11/09/17 16:54	
4-Chloroaniline	<0.77		0.77		mg/Kg	₩	11/08/17 17:13	11/09/17 16:54	
4-Chloro-3-methylphenol	<0.38		0.38		mg/Kg	 ☆	11/08/17 17:13	11/09/17 16:54	
2-Chloronaphthalene	<0.19		0.19		mg/Kg	₩	11/08/17 17:13	11/09/17 16:54	
2-Chlorophenol	<0.19		0.19		mg/Kg	₩		11/09/17 16:54	
4-Chlorophenyl phenyl ether	<0.19		0.19		mg/Kg	.		11/09/17 16:54	
Chrysene	0.064		0.038		mg/Kg	₽		11/09/17 16:54	
Dibenz(a,h)anthracene	<0.038		0.038	0.0074		₩		11/09/17 16:54	
Dibenzofuran	0.047		0.19		mg/Kg			11/09/17 16:54	
1.2-Dichlorobenzene	<0.19		0.19		mg/Kg	₽		11/09/17 16:54	
1,3-Dichlorobenzene	<0.19		0.19		mg/Kg	₩		11/09/17 16:54	
1,4-Dichlorobenzene	<0.19		0.19		mg/Kg			11/09/17 16:54	
3,3'-Dichlorobenzidine	<0.19		0.19		mg/Kg	₩		11/09/17 16:54	
2,4-Dichlorophenol	<0.38		0.38		mg/Kg	₩		11/09/17 16:54	
Diethyl phthalate	<0.19		0.19		mg/Kg			11/09/17 16:54	
2,4-Dimethylphenol	<0.38		0.38		mg/Kg	#		11/09/17 16:54	
Dimethyl phthalate	<0.19		0.19	0.050	mg/Kg	₩		11/09/17 16:54	
Di-n-butyl phthalate	<0.19		0.19		mg/Kg			11/09/17 16:54	
4,6-Dinitro-2-methylphenol	<0.77		0.77	0.030	mg/Kg	₩		11/09/17 16:54	
2,4-Dinitrophenol	<0.77		0.77	0.51	mg/Kg	.;;		11/09/17 16:54	
2,4-Dinitrotoluene	<0.19		0.19	0.061				11/09/17 16:54	
2,6-Dinitrotoluene	<0.19		0.19		mg/Kg			11/09/17 16:54	
Di-n-octyl phthalate	<0.19		0.19		mg/Kg	₩.		11/09/17 16:54	
Fluoranthene	0.077		0.19	0.003		.		11/09/17 16:54	
Fluoranthene Fluorene	<0.038		0.038	0.0071				11/09/17 16:54	
Hexachlorobenzene	<0.036		0.038	0.0034	0 0		11/08/17 17:13		
						· · · · · .			
Hexachlorobutadiene	<0.19		0.19		mg/Kg	₽	11/08/17 17:13		
Hexachlorocyclopentadiene	<0.77		0.77		mg/Kg		11/08/17 17:13		
Hexachloroethane	<0.19		0.19		mg/Kg			11/09/17 16:54	
Indeno[1,2,3-cd]pyrene	0.018	J	0.038	0.0099		₩	11/08/17 17:13 11/08/17 17:13		
Isophorone	<0.19		0.19		mg/Kg	☆			
2-Methylnaphthalene	0.087		0.077	0.0071			11/08/17 17:13		
2-Methylphenol	<0.19		0.19		mg/Kg	☆	11/08/17 17:13		
3 & 4 Methylphenol	<0.19		0.19		mg/Kg	☆	11/08/17 17:13		
Naphthalene	0.034	J	0.038	0.0059			11/08/17 17:13		
2-Nitroaniline	<0.19		0.19		mg/Kg		11/08/17 17:13		
3-Nitroaniline	<0.38		0.38		mg/Kg	☆	11/08/17 17:13		
4-Nitroaniline	<0.38		0.38		mg/Kg	<u>.</u>	11/08/17 17:13		
Nitrobenzene	< 0.038		0.038	0 0000	mg/Kg	₩	11/00/17 17:10	11/09/17 16:54	

TestAmerica Chicago

5

9

11

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/01/17 09:10

Client Sample ID: 3160-64-3 (0-1.5')

TestAmerica Job ID: 500-136651-1

Lab Sample ID: 500-136651-7

Matrix: Solid Percent Solids: 83.6

Date Received: 11/02/17 09:00		

Analyte	Result Qualifie	er RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.77	0.77	0.36	mg/Kg	<u> </u>	11/08/17 17:13	11/09/17 16:54	1
N-Nitrosodi-n-propylamine	<0.077	0.077	0.047	mg/Kg	φ.	11/08/17 17:13	11/09/17 16:54	1
N-Nitrosodiphenylamine	<0.19	0.19	0.045	mg/Kg	☼	11/08/17 17:13	11/09/17 16:54	1
2,2'-oxybis[1-chloropropane]	<0.19	0.19	0.044	mg/Kg	☼	11/08/17 17:13	11/09/17 16:54	1
Pentachlorophenol	<0.77	0.77	0.62	mg/Kg	₽	11/08/17 17:13	11/09/17 16:54	1
Phenanthrene	0.20	0.038	0.0053	mg/Kg	☼	11/08/17 17:13	11/09/17 16:54	1
Phenol	<0.19	0.19	0.085	mg/Kg	☼	11/08/17 17:13	11/09/17 16:54	1
Pyrene	0.085	0.038	0.0076	mg/Kg	₽	11/08/17 17:13	11/09/17 16:54	1
1,2,4-Trichlorobenzene	<0.19	0.19	0.041	mg/Kg	☼	11/08/17 17:13	11/09/17 16:54	1
2,4,5-Trichlorophenol	<0.38	0.38	0.087	mg/Kg	☼	11/08/17 17:13	11/09/17 16:54	1
2,4,6-Trichlorophenol	<0.38	0.38	0.13	mg/Kg	₩	11/08/17 17:13	11/09/17 16:54	1
Surrogate	%Recovery Qualifie	er Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery C	Qualifier Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	62	44 - 121	11/08/17 17:13	11/09/17 16:54	1
2-Fluorophenol	63	46 - 133	11/08/17 17:13	11/09/17 16:54	1
Nitrobenzene-d5	55	41 - 120	11/08/17 17:13	11/09/17 16:54	1
Phenol-d5	71	46 - 125	11/08/17 17:13	11/09/17 16:54	1
Terphenyl-d14	82	35 - 160	11/08/17 17:13	11/09/17 16:54	1
2,4,6-Tribromophenol	72	25 - 139	11/08/17 17:13	11/09/17 16:54	1

Method: 8082A	- Polychlorinated	l Biphenyls	(PCBs) by	Gas Chromatography
---------------	-------------------	-------------	-----------	--------------------

Ana	lyte Resi	It Qua	alifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCE	3-1016 <0.00	20	0.020	0.0069	mg/Kg	<u> </u>	11/08/17 07:22	11/09/17 13:28	1
PCE	3-1221 <0.03	:0	0.020	0.0086	mg/Kg	₩	11/08/17 07:22	11/09/17 13:28	1
PCE	3-1232 <0.00	:0	0.020	0.0085	mg/Kg	☆	11/08/17 07:22	11/09/17 13:28	1
PCE	3-1242 <0.0	20	0.020	0.0064	mg/Kg	₩.	11/08/17 07:22	11/09/17 13:28	1
PCE	3-1248 <0.00	:0	0.020	0.0077	mg/Kg	₩	11/08/17 07:22	11/09/17 13:28	1
PCE	3-1254 <0.0	:0	0.020	0.0042	mg/Kg	☆	11/08/17 07:22	11/09/17 13:28	1
PČE	3-1260 <0.0	.0	0.020	0.0096	mg/Kg	φ.	11/08/17 07:22	11/09/17 13:28	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	94		49 - 129	11/08/17 07:22	11/09/17 13:28	1
DCB Decachlorobiphenyl	81		37 - 121	11/08/17 07:22	11/09/17 13:28	1

Method:	: 6010B - I	Metals ((ICP)
---------	-------------	----------	-------

Method: 6010B - Metals	(ICP)							
Analyte	Result Qualifie	r RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<1.1	1.1	0.22	mg/Kg	₩	11/03/17 07:41	11/05/17 23:32	1
Arsenic	6.0	0.57	0.20	mg/Kg	₩	11/03/17 07:41	11/03/17 17:11	1
Barium	110	0.57	0.065	mg/Kg	₩	11/03/17 07:41	11/03/17 17:11	1
Beryllium	0.65	0.23	0.054	mg/Kg	₽	11/03/17 07:41	11/03/17 17:11	1
Cadmium	0.30 B	0.11	0.021	mg/Kg	₩	11/03/17 07:41	11/03/17 17:11	1
Chromium	12	0.57	0.28	mg/Kg	☼	11/03/17 07:41	11/03/17 17:11	1
Cobalt	9.1	0.29	0.075	mg/Kg	φ.	11/03/17 07:41	11/03/17 17:11	1
Copper	34	0.57	0.16	mg/Kg	₩	11/03/17 07:41	11/03/17 17:11	1
Iron	13000	11	6.0	mg/Kg	☼	11/03/17 07:41	11/03/17 17:11	1
Lead	110	0.29	0.13	mg/Kg	φ.	11/03/17 07:41	11/03/17 17:11	1
Manganese	300	0.57	0.083	mg/Kg	₩	11/03/17 07:41	11/03/17 17:11	1
Nickel	18	0.57	0.17	mg/Kg	☼	11/03/17 07:41	11/03/17 17:11	1
Selenium	0.90	0.57	0.34	mg/Kg	₩.	11/03/17 07:41	11/05/17 23:32	1
Silver	<0.29	0.29	0.074	mg/Kg	≎	11/03/17 07:41	11/03/17 17:11	1

TestAmerica Chicago

11/14/2017

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/01/17 09:10

Date Received: 11/02/17 09:00

рН

Client Sample ID: 3160-64-3 (0-1.5')

TestAmerica Job ID: 500-136651-1

3

Lab Sample ID: 500-136651-7

Matrix: Solid
Percent Solids: 83.6

Method: 6010B - Metals Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Thallium	<0.57		0.57	0.29	mg/Kg	<u></u>	11/03/17 07:41	11/03/17 17:11	1
Vanadium	19		0.29	0.068	mg/Kg		11/03/17 07:41	11/03/17 17:11	1
Zinc	91		1.1	0.50	mg/Kg	₽	11/03/17 07:41	11/03/17 17:11	1
Method: 6010B - Metals	(ICP) - TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/06/17 11:00	11/07/17 12:12	1
Barium	1.4		0.50	0.050	mg/L		11/06/17 11:00	11/07/17 12:12	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/06/17 11:00	11/07/17 12:12	1
Cadmium	0.0035	J	0.0050	0.0020	mg/L		11/06/17 11:00	11/07/17 12:12	1
Chromium	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 12:12	1
Cobalt	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 12:12	1
Copper	0.013	J	0.025	0.010	mg/L		11/06/17 11:00	11/07/17 12:12	1
Iron	<0.40		0.40	0.20	mg/L		11/06/17 11:00	11/07/17 12:12	1
Lead	< 0.0075		0.0075	0.0075	mg/L		11/06/17 11:00	11/07/17 12:12	1
Manganese	0.41		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 12:12	1
Nickel	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 12:12	1
Selenium	<0.050		0.050	0.020	mg/L		11/06/17 11:00	11/07/17 12:12	1
Silver	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 12:12	1
Vanadium	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 12:12	1
Zinc	0.047	J	0.50	0.020	mg/L		11/06/17 11:00	11/07/17 12:12	1
Method: 6010B - Metals	(ICP) - SPLP East	t							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Manganese	0.093		0.025	0.010	mg/L		11/06/17 11:29	11/08/17 22:13	1
Method: 6020A - Metals	(ICP/MS) - TCLP								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060		0.0060	0.0060	mg/L		11/06/17 11:00	11/07/17 16:09	1
Thallium	<0.0020		0.0020	0.0020	mg/L		11/06/17 11:00	11/07/17 16:09	1
Method: 7470A - TCLP N	lercury - TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/06/17 14:30	11/07/17 09:31	1
Method: 7471B - Mercury	y (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.041		0.019	0.0064	mg/Kg	<u>∓</u>	11/03/17 15:15	11/06/17 11:35	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

11/08/17 17:14

0.20

8.2

0.20 SU

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Lab Sample ID: 500-136651-8

Client Sample ID: 3160-62-10 (0-1.5') Date Collected: 11/01/17 09:20 **Matrix: Solid** Date Received: 11/02/17 09:00 Percent Solids: 79.6

Analyte	Result Qu			Unit	D	Prepared	Analyzed	Dil Fac
Acetone	<0.020	0.020	0.0086	mg/Kg		11/02/17 18:18	11/08/17 16:12	1
Benzene	<0.0020	0.0020	0.00050	mg/Kg	₩	11/02/17 18:18	11/08/17 16:12	1
Bromodichloromethane	<0.0020	0.0020	0.00040	mg/Kg	☼	11/02/17 18:18	11/08/17 16:12	1
Bromoform	<0.0020	0.0020	0.00057	mg/Kg	₩	11/02/17 18:18	11/08/17 16:12	1
Bromomethane	< 0.0049	0.0049	0.0019	mg/Kg	₩	11/02/17 18:18	11/08/17 16:12	1
2-Butanone (MEK)	<0.0049	0.0049	0.0022	mg/Kg	₩	11/02/17 18:18	11/08/17 16:12	1
Carbon disulfide	<0.0049	0.0049	0.0010	mg/Kg	₽	11/02/17 18:18	11/08/17 16:12	1
Carbon tetrachloride	<0.0020	0.0020	0.00057	mg/Kg	☼	11/02/17 18:18	11/08/17 16:12	1
Chlorobenzene	<0.0020	0.0020	0.00072	mg/Kg	☼	11/02/17 18:18	11/08/17 16:12	1
Chloroethane	<0.0049	0.0049	0.0015	mg/Kg	₩	11/02/17 18:18	11/08/17 16:12	1
Chloroform	<0.0020	0.0020	0.00068	mg/Kg	₩	11/02/17 18:18	11/08/17 16:12	1
Chloromethane	< 0.0049	0.0049	0.0020	mg/Kg	₩	11/02/17 18:18	11/08/17 16:12	1
cis-1,2-Dichloroethene	<0.0020	0.0020	0.00055	mg/Kg	₽	11/02/17 18:18	11/08/17 16:12	1
cis-1,3-Dichloropropene	<0.0020	0.0020	0.00059	mg/Kg	☼	11/02/17 18:18	11/08/17 16:12	1
Dibromochloromethane	<0.0020	0.0020	0.00064	mg/Kg	☼	11/02/17 18:18	11/08/17 16:12	1
1,1-Dichloroethane	<0.0020	0.0020	0.00067	mg/Kg		11/02/17 18:18	11/08/17 16:12	1
1,2-Dichloroethane	< 0.0049	0.0049	0.0015	mg/Kg	☼	11/02/17 18:18	11/08/17 16:12	1
1,1-Dichloroethene	<0.0020	0.0020	0.00068	mg/Kg	☼	11/02/17 18:18	11/08/17 16:12	1
1,2-Dichloropropane	<0.0020	0.0020	0.00051	mg/Kg	₽	11/02/17 18:18	11/08/17 16:12	1
1,3-Dichloropropene, Total	<0.0020	0.0020	0.00069	mg/Kg	☼	11/02/17 18:18	11/08/17 16:12	1
Ethylbenzene	<0.0020	0.0020	0.00094	mg/Kg	☼	11/02/17 18:18	11/08/17 16:12	1
2-Hexanone	<0.0049	0.0049	0.0015	mg/Kg		11/02/17 18:18	11/08/17 16:12	1
Methylene Chloride	< 0.0049	0.0049	0.0019	mg/Kg	₩	11/02/17 18:18	11/08/17 16:12	1
4-Methyl-2-pentanone (MIBK)	< 0.0049	0.0049	0.0015	mg/Kg	☼	11/02/17 18:18	11/08/17 16:12	1
Methyl tert-butyl ether	<0.0020	0.0020	0.00058	mg/Kg	₽	11/02/17 18:18	11/08/17 16:12	1
Styrene	<0.0020	0.0020	0.00059	mg/Kg	☼	11/02/17 18:18	11/08/17 16:12	1
1,1,2,2-Tetrachloroethane	<0.0020	0.0020	0.00063	mg/Kg	☼	11/02/17 18:18	11/08/17 16:12	1
Tetrachloroethene	<0.0020	0.0020	0.00067	mg/Kg		11/02/17 18:18	11/08/17 16:12	1
Toluene	<0.0020	0.0020	0.00050	mg/Kg	₩	11/02/17 18:18	11/08/17 16:12	1
trans-1,2-Dichloroethene	<0.0020	0.0020	0.00087	mg/Kg	☼	11/02/17 18:18	11/08/17 16:12	1
trans-1,3-Dichloropropene	<0.0020	0.0020	0.00069	mg/Kg	ф.	11/02/17 18:18	11/08/17 16:12	1
1,1,1-Trichloroethane	<0.0020	0.0020	0.00066	mg/Kg	₩	11/02/17 18:18	11/08/17 16:12	1
1,1,2-Trichloroethane	<0.0020	0.0020	0.00084		☼	11/02/17 18:18	11/08/17 16:12	1
Trichloroethene	<0.0020	0.0020	0.00066			11/02/17 18:18	11/08/17 16:12	1
Vinyl acetate	<0.0049	0.0049	0.0017		☼	11/02/17 18:18	11/08/17 16:12	1
Vinyl chloride	<0.0020	0.0020	0.00087		☼	11/02/17 18:18	11/08/17 16:12	1
Xylenes, Total	<0.0039	0.0039	0.00063		φ.	11/02/17 18:18	11/08/17 16:12	1
Surrogate	%Recovery Qu	ualifier Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91	75 - 131				11/02/17 18:18	11/08/17 16:12	1
Dibromofluoromethane	103	75 - 126				11/02/17 18:18	11/08/17 16:12	1
1,2-Dichloroethane-d4 (Surr)	96	70 - 134					11/08/17 16:12	1
Toluene-d8 (Surr)	100	75 - 124				11/02/17 18:18	11/08/17 16:12	1

Method: 8270D - Semivolatile Organic Compounds (GC/MS)										
Analyte	Result Qualif	fier RL	MDL I	Unit	D	Prepared	Analyzed	Dil Fac		
Acenaphthene	<0.040	0.040	0.0073 r	mg/Kg	<u></u>	11/08/17 17:13	11/09/17 17:20	1		
Acenaphthylene	<0.040	0.040	0.0054 r	mg/Kg	₩	11/08/17 17:13	11/09/17 17:20	1		
Anthracene	0.013 J	0.040	0.0068 r	mg/Kg	₩	11/08/17 17:13	11/09/17 17:20	1		
Benzo[a]anthracene	0.030 J	0.040	0.0055 r	mg/Kg	₩	11/08/17 17:13	11/09/17 17:20	1		

TestAmerica Chicago

Page 50 of 145

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136651-1

Client Sample ID: 3160-62-10 (0-1.5')

Lab Sample ID: 500-136651-8

Method: 8270D - Semivolatilo Analyte		Qualifier	RL	MDL	•	D	Prepared	Analyzed	Dil Fa
Benzo[a]pyrene	0.031		0.040		mg/Kg	— =		11/09/17 17:20	
Benzo[b]fluoranthene	0.031		0.040	0.0088	0 0	₩		11/09/17 17:20	
Benzo[g,h,i]perylene	<0.040		0.040		mg/Kg			11/09/17 17:20	
Benzo[k]fluoranthene	<0.040		0.040		mg/Kg	₩		11/09/17 17:20	
Bis(2-chloroethoxy)methane	<0.20		0.20		mg/Kg			11/09/17 17:20	
Bis(2-chloroethyl)ether	<0.20		0.20		mg/Kg			11/09/17 17:20	
Bis(2-ethylhexyl) phthalate	<0.20		0.20		mg/Kg			11/09/17 17:20	
	<0.20		0.20					11/09/17 17:20	
4-Bromophenyl phenyl ether					mg/Kg	.			
Butyl benzyl phthalate	<0.20		0.20		mg/Kg	₩		11/09/17 17:20	
Carbazole	<0.20		0.20		mg/Kg			11/09/17 17:20	
4-Chloroaniline	<0.82		0.82		mg/Kg			11/09/17 17:20	
4-Chloro-3-methylphenol	<0.40		0.40		mg/Kg			11/09/17 17:20	
2-Chloronaphthalene	<0.20		0.20		mg/Kg	ψ.		11/09/17 17:20	
2-Chlorophenol	<0.20		0.20		mg/Kg	J.		11/09/17 17:20	
4-Chlorophenyl phenyl ether	<0.20		0.20		mg/Kg	₩.		11/09/17 17:20	
Chrysene	0.031	J	0.040		mg/Kg	*		11/09/17 17:20	
Dibenz(a,h)anthracene	<0.040		0.040		mg/Kg			11/09/17 17:20	
Dibenzofuran	<0.20		0.20		mg/Kg	₩	11/08/17 17:13	11/09/17 17:20	
1,2-Dichlorobenzene	<0.20		0.20		mg/Kg	₩	11/08/17 17:13	11/09/17 17:20	
1,3-Dichlorobenzene	<0.20		0.20	0.046	mg/Kg	₩	11/08/17 17:13	11/09/17 17:20	
1,4-Dichlorobenzene	<0.20		0.20	0.052	mg/Kg	₩	11/08/17 17:13	11/09/17 17:20	
3,3'-Dichlorobenzidine	<0.20		0.20	0.057	mg/Kg	₩	11/08/17 17:13	11/09/17 17:20	
2,4-Dichlorophenol	<0.40		0.40	0.097	mg/Kg	₩	11/08/17 17:13	11/09/17 17:20	
Diethyl phthalate	<0.20		0.20	0.069	mg/Kg	₩	11/08/17 17:13	11/09/17 17:20	
2,4-Dimethylphenol	<0.40		0.40	0.15	mg/Kg	₩	11/08/17 17:13	11/09/17 17:20	
Dimethyl phthalate	<0.20		0.20	0.053	mg/Kg	₩	11/08/17 17:13	11/09/17 17:20	
Di-n-butyl phthalate	<0.20		0.20	0.062	mg/Kg	ф.	11/08/17 17:13	11/09/17 17:20	
4,6-Dinitro-2-methylphenol	<0.82		0.82	0.33	mg/Kg	₩	11/08/17 17:13	11/09/17 17:20	
2,4-Dinitrophenol	<0.82		0.82	0.72	mg/Kg	☼	11/08/17 17:13	11/09/17 17:20	
2,4-Dinitrotoluene	<0.20		0.20	0.065	mg/Kg	Φ.	11/08/17 17:13	11/09/17 17:20	
2,6-Dinitrotoluene	<0.20		0.20	0.080	mg/Kg	₩	11/08/17 17:13	11/09/17 17:20	
Di-n-octyl phthalate	<0.20		0.20	0.066	mg/Kg	₩	11/08/17 17:13	11/09/17 17:20	
Fluoranthene	0.034		0.040	0.0076		 ☆	11/08/17 17:13	11/09/17 17:20	
Fluorene	<0.040		0.040	0.0057		₩	11/08/17 17:13	11/09/17 17:20	
Hexachlorobenzene	<0.082		0.082	0.0094		₩	11/08/17 17:13	11/09/17 17:20	
Hexachlorobutadiene	<0.20		0.20	0.064	mg/Kg		11/08/17 17:13	11/09/17 17:20	
Hexachlorocyclopentadiene	<0.82		0.82		mg/Kg	₩		11/09/17 17:20	
Hexachloroethane	<0.20		0.20		mg/Kg	₩		11/09/17 17:20	
Indeno[1,2,3-cd]pyrene	<0.040		0.040		mg/Kg			11/09/17 17:20	
Isophorone	<0.20		0.20		mg/Kg	₽		11/09/17 17:20	
2-Methylnaphthalene	0.064	1	0.082	0.0075		₩		11/09/17 17:20	
2-Methylphenol	<0.20		0.20		mg/Kg			11/09/17 17:20	
3 & 4 Methylphenol	<0.20		0.20		mg/Kg	₩		11/09/17 17:20	
• •			0.20			₽		11/09/17 17:20	
Naphthalene	0.030	.		0.0063					
2-Nitroaniline	<0.20		0.20		mg/Kg	Φ n		11/09/17 17:20	
3-Nitroaniline	<0.40		0.40		mg/Kg	ф ж		11/09/17 17:20	
4-Nitroaniline	<0.40		0.40		mg/Kg			11/09/17 17:20	
Nitrobenzene	<0.040		0.040	0.010	mg/Kg	₽	11/08/17 17:13	11/09/17 17:20	

TestAmerica Chicago

2

3

5

7

9 10

11 12

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-62-10 (0-1.5')

TestAmerica Job ID: 500-136651-1

Lab Sample ID: 500-136651-8

Matrix: Solid Percent Solids: 79.6

Date Received: 11/02/17 09:00

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Welliou. 02/00 - Sellivolalii	e Organic Compounds (GC/WIS) (CC	munueu)				
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.82	0.82	0.39	mg/Kg	<u> </u>	11/08/17 17:13	11/09/17 17:20	1
N-Nitrosodi-n-propylamine	<0.082	0.082	0.050	mg/Kg	φ.	11/08/17 17:13	11/09/17 17:20	1
N-Nitrosodiphenylamine	<0.20	0.20	0.048	mg/Kg	₩	11/08/17 17:13	11/09/17 17:20	1
2,2'-oxybis[1-chloropropane]	<0.20	0.20	0.047	mg/Kg	☼	11/08/17 17:13	11/09/17 17:20	1
Pentachlorophenol	<0.82	0.82	0.65	mg/Kg	₽	11/08/17 17:13	11/09/17 17:20	1
Phenanthrene	0.098	0.040	0.0057	mg/Kg	☼	11/08/17 17:13	11/09/17 17:20	1
Phenol	<0.20	0.20	0.090	mg/Kg	☼	11/08/17 17:13	11/09/17 17:20	1
Pyrene	0.041	0.040	0.0081	mg/Kg	₽	11/08/17 17:13	11/09/17 17:20	1
1,2,4-Trichlorobenzene	<0.20	0.20	0.044	mg/Kg	☼	11/08/17 17:13	11/09/17 17:20	1
2,4,5-Trichlorophenol	<0.40	0.40	0.093	mg/Kg	₩	11/08/17 17:13	11/09/17 17:20	1
2,4,6-Trichlorophenol	<0.40	0.40	0.14	mg/Kg	₽	11/08/17 17:13	11/09/17 17:20	1

Surrogate	%Recovery Q	ualifier Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	49	44 - 121	11/08/17 17:13	11/09/17 17:20	1
2-Fluorophenol	46	46 - 133	11/08/17 17:13	11/09/17 17:20	1
Nitrobenzene-d5	41	41 - 120	11/08/17 17:13	11/09/17 17:20	1
Phenol-d5	52	46 - 125	11/08/17 17:13	11/09/17 17:20	1
Terphenyl-d14	60	35 - 160	11/08/17 17:13	11/09/17 17:20	1
2,4,6-Tribromophenol	62	25 - 139	11/08/17 17:13	11/09/17 17:20	1

Method: 6010B - Meta	Is (ICP)
Analyte	
Antimony	
A Committee of the Comm	

Analyte	· /	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<1.1		1.1	0.21	mg/Kg	<u>₩</u>	11/03/17 07:41	11/05/17 23:36	1
Arsenic	6.4		0.54	0.19	mg/Kg	₩	11/03/17 07:41	11/03/17 17:15	1
Barium	85		0.54	0.062	mg/Kg	☼	11/03/17 07:41	11/03/17 17:15	1
Beryllium	0.52		0.22	0.051	mg/Kg	₩.	11/03/17 07:41	11/03/17 17:15	1
Cadmium	<0.11		0.11	0.020	mg/Kg	₩	11/03/17 07:41	11/03/17 17:15	1
Chromium	13		0.54	0.27	mg/Kg	☼	11/03/17 07:41	11/03/17 17:15	1
Cobalt	6.5		0.27	0.071	mg/Kg	φ.	11/03/17 07:41	11/03/17 17:15	1
Copper	12		0.54	0.15	mg/Kg	₩	11/03/17 07:41	11/03/17 17:15	1
Iron	14000		11	5.7	mg/Kg	☼	11/03/17 07:41	11/03/17 17:15	1
Lead	22		0.27	0.13	mg/Kg	₩.	11/03/17 07:41	11/03/17 17:15	1
Manganese	640		0.54	0.079	mg/Kg	☼	11/03/17 07:41	11/03/17 17:15	1
Nickel	7.1		0.54	0.16	mg/Kg	☼	11/03/17 07:41	11/03/17 17:15	1
Selenium	0.90		0.54	0.32	mg/Kg	₩.	11/03/17 07:41	11/05/17 23:36	1
Silver	<0.27		0.27	0.070	mg/Kg	☼	11/03/17 07:41	11/03/17 17:15	1
Thallium	<0.54		0.54	0.27	mg/Kg	☼	11/03/17 07:41	11/03/17 17:15	1
Vanadium	29		0.27	0.064	mg/Kg	₩.	11/03/17 07:41	11/03/17 17:15	1
Zinc	32		1.1	0.48	mg/Kg	₩	11/03/17 07:41	11/03/17 17:15	1

Method:	6010B ·	- Metals	(ICP)	- TCLP

Method: 6010B - Metals Analyte	· /	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/06/17 11:00	11/07/17 12:16	1
Barium	0.38	J	0.50	0.050	mg/L		11/06/17 11:00	11/07/17 12:16	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/06/17 11:00	11/07/17 12:16	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/06/17 11:00	11/07/17 12:16	1
Chromium	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 12:16	1
Cobalt	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 12:16	1
Copper	0.012	J	0.025	0.010	mg/L		11/06/17 11:00	11/07/17 12:16	1
Iron	0.60		0.40	0.20	mg/L		11/06/17 11:00	11/07/17 12:16	1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Received: 11/02/17 09:00

TestAmerica Job ID: 500-136651-1

Client Sample ID: 3160-62-10 (0-1.5')

Lab Sample ID: 500-136651-8 Date Collected: 11/01/17 09:20 **Matrix: Solid**

Percent Solids: 79.6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	<0.0075		0.0075	0.0075	mg/L		11/06/17 11:00	11/07/17 12:16	1
Manganese	0.14		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 12:16	1
Nickel	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 12:16	1
Selenium	<0.050		0.050	0.020	mg/L		11/06/17 11:00	11/07/17 12:16	1
Silver	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 12:16	1
Vanadium	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 12:16	1
Zinc	0.075	J	0.50	0.020	mg/L		11/06/17 11:00	11/07/17 12:16	1
Method: 6020A - Metals	s (ICP/MS) - TCLP								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060		0.0060	0.0060	mg/L		11/06/17 11:00	11/07/17 16:14	1
Thallium	<0.0020		0.0020	0.0020	mg/L		11/06/17 11:00	11/07/17 16:14	1
Method: 7470A - TCLP	Mercury - TCLP								
Analyte	_	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/06/17 14:30	11/07/17 09:32	1
Method: 7471B - Mercu	ıry (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.021		0.019	0.0064	mg/Kg	<u>∓</u>	11/03/17 15:15	11/06/17 11:37	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	5.5		0.20	0.20	SU			11/08/17 17:14	

2

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-62-9 (0-1.5')

Lab Sample ID: 500-136651-9

Date Collected: 11/01/17 09:30 Date Received: 11/02/17 09:00

Matrix: Solid Percent Solids: 77.6

	Qualifier	RL			D	Prepared	Analyzed	Dil Fac
<0.018		0.018	0.0079	mg/Kg		11/02/17 18:18	11/08/17 16:37	1
<0.0018		0.0018	0.00046	mg/Kg	₩	11/02/17 18:18	11/08/17 16:37	1
<0.0018		0.0018	0.00037	mg/Kg	☼	11/02/17 18:18	11/08/17 16:37	1
<0.0018		0.0018	0.00053	mg/Kg	₩	11/02/17 18:18	11/08/17 16:37	1
< 0.0045		0.0045	0.0017	mg/Kg	☼	11/02/17 18:18	11/08/17 16:37	1
<0.0045		0.0045	0.0020	mg/Kg	☼	11/02/17 18:18	11/08/17 16:37	1
<0.0045		0.0045	0.00094	mg/Kg	₩	11/02/17 18:18	11/08/17 16:37	1
<0.0018		0.0018	0.00052	mg/Kg	☼	11/02/17 18:18	11/08/17 16:37	1
<0.0018		0.0018	0.00067	mg/Kg	₩	11/02/17 18:18	11/08/17 16:37	1
<0.0045		0.0045	0.0013	mg/Kg	₽	11/02/17 18:18	11/08/17 16:37	1
<0.0018		0.0018	0.00063	mg/Kg	☼	11/02/17 18:18	11/08/17 16:37	1
<0.0045		0.0045	0.0018	mg/Kg	₩	11/02/17 18:18	11/08/17 16:37	1
<0.0018		0.0018	0.00051	mg/Kg	₽	11/02/17 18:18	11/08/17 16:37	1
<0.0018		0.0018	0.00054	mg/Kg	☼	11/02/17 18:18	11/08/17 16:37	1
<0.0018		0.0018	0.00059	mg/Kg	☼	11/02/17 18:18	11/08/17 16:37	1
<0.0018		0.0018	0.00062	mg/Kg		11/02/17 18:18	11/08/17 16:37	1
< 0.0045		0.0045	0.0014	mg/Kg	☼	11/02/17 18:18	11/08/17 16:37	1
<0.0018		0.0018	0.00062	mg/Kg	☼	11/02/17 18:18	11/08/17 16:37	1
<0.0018		0.0018	0.00047	mg/Kg	₽	11/02/17 18:18	11/08/17 16:37	1
<0.0018		0.0018	0.00063	mg/Kg	₩	11/02/17 18:18	11/08/17 16:37	1
<0.0018		0.0018	0.00086	mg/Kg	₩	11/02/17 18:18	11/08/17 16:37	1
<0.0045		0.0045	0.0014	mg/Kg	ф.	11/02/17 18:18	11/08/17 16:37	1
<0.0045		0.0045	0.0018	mg/Kg	₩	11/02/17 18:18	11/08/17 16:37	1
<0.0045		0.0045	0.0013	mg/Kg	₩	11/02/17 18:18	11/08/17 16:37	1
<0.0018		0.0018	0.00053	mg/Kg	₩	11/02/17 18:18	11/08/17 16:37	1
<0.0018		0.0018	0.00055	mg/Kg	₩	11/02/17 18:18	11/08/17 16:37	1
<0.0018		0.0018	0.00058	mg/Kg	₩	11/02/17 18:18	11/08/17 16:37	1
<0.0018		0.0018	0.00062	mg/Kg	\$	11/02/17 18:18	11/08/17 16:37	1
<0.0018		0.0018	0.00046	mg/Kg	₩	11/02/17 18:18	11/08/17 16:37	1
<0.0018		0.0018	0.00080	mg/Kg	☼	11/02/17 18:18	11/08/17 16:37	1
<0.0018		0.0018	0.00063	mg/Kg	ф.	11/02/17 18:18	11/08/17 16:37	1
<0.0018		0.0018	0.00061	mg/Kg	₩	11/02/17 18:18	11/08/17 16:37	1
<0.0018		0.0018			☼	11/02/17 18:18	11/08/17 16:37	1
<0.0018		0.0018				11/02/17 18:18	11/08/17 16:37	1
< 0.0045		0.0045			₩	11/02/17 18:18	11/08/17 16:37	1
<0.0018		0.0018			☼	11/02/17 18:18	11/08/17 16:37	1
<0.0036		0.0036			φ.			1
%Recovery G	Qualifier	Limits				Prepared	Analyzed	Dil Fac
90		75 - 131				11/02/17 18:18	11/08/17 16:37	1
100		75 - 126				11/02/17 18:18	11/08/17 16:37	1
88		70 - 134				11/02/17 18:18	11/08/17 16:37	1
	<0.018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0045 <0.0045 <0.0045 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018	<0.0018 <0.0018 <0.0018 <0.0045 <0.0045 <0.0045 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.0018 <0.001	<0.018	<0.018	<0.018	<0.018	Co.018	Co.018

Method: 8270D - Semivolatile Organic Compounds (GC/MS)									
Analyte	Result Qualifier	RL	MDL Unit		Prepared	Analyzed	Dil Fac		
Acenaphthene	<0.041	0.041	0.0074 mg/Kg	3	11/13/17 18:14	11/14/17 11:57	1		
Acenaphthylene	<0.041	0.041	0.0054 mg/Kg	3	11/13/17 18:14	11/14/17 11:57	1		
Anthracene	<0.041	0.041	0.0069 mg/Kg	3	11/13/17 18:14	11/14/17 11:57	1		
Benzo[a]anthracene	0.0099 J	0.041	0.0055 mg/Kg		11/13/17 18:14	11/14/17 11:57	1		

TestAmerica Chicago

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136651-1

Client Sample ID: 3160-62-9 (0-1.5')

Lab Sample ID: 500-136651-9

Method: 8270D - Semivolat					•	-	Duemanad	A mal:!	DUE
Analyte		Qualifier	RL -	MDL		— ×	Prepared	Analyzed	Dil Fac
Benzo[a]pyrene	0.022	J	0.041	0.0080		<u>₩</u>	11/13/17 18:14		1
Benzo[b]fluoranthene	<0.041		0.041	0.0089				11/14/17 11:57	
Benzo[g,h,i]perylene	<0.041		0.041		mg/Kg	☆		11/14/17 11:57	1
Benzo[k]fluoranthene	<0.041		0.041		mg/Kg	☆		11/14/17 11:57	1
Bis(2-chloroethoxy)methane	<0.21		0.21		mg/Kg	<u>.</u> .		11/14/17 11:57	
Bis(2-chloroethyl)ether	<0.21		0.21		mg/Kg	1,2		11/14/17 11:57	1
Bis(2-ethylhexyl) phthalate	<0.21		0.21		mg/Kg	₩.		11/14/17 11:57	1
4-Bromophenyl phenyl ether	<0.21		0.21		mg/Kg			11/14/17 11:57	1
Butyl benzyl phthalate	<0.21		0.21		mg/Kg	*		11/14/17 11:57	1
Carbazole	<0.21		0.21		mg/Kg	₩	11/13/17 18:14	11/14/17 11:57	1
4-Chloroaniline	<0.83		0.83	0.19	mg/Kg		11/13/17 18:14	11/14/17 11:57	1
4-Chloro-3-methylphenol	<0.41		0.41	0.14	mg/Kg	₩	11/13/17 18:14	11/14/17 11:57	1
2-Chloronaphthalene	<0.21		0.21	0.045	mg/Kg	≎	11/13/17 18:14	11/14/17 11:57	1
2-Chlorophenol	<0.21		0.21		mg/Kg	≎	11/13/17 18:14	11/14/17 11:57	1
4-Chlorophenyl phenyl ether	<0.21		0.21	0.048	mg/Kg	₽	11/13/17 18:14	11/14/17 11:57	1
Chrysene	0.012	J	0.041	0.011	mg/Kg	₩	11/13/17 18:14	11/14/17 11:57	1
Dibenz(a,h)anthracene	<0.041		0.041	0.0079	mg/Kg	₩	11/13/17 18:14	11/14/17 11:57	1
Dibenzofuran	<0.21		0.21	0.048	mg/Kg	₽	11/13/17 18:14	11/14/17 11:57	1
1,2-Dichlorobenzene	<0.21		0.21	0.049	mg/Kg	₩	11/13/17 18:14	11/14/17 11:57	1
1,3-Dichlorobenzene	<0.21		0.21	0.046	mg/Kg	₩	11/13/17 18:14	11/14/17 11:57	1
1,4-Dichlorobenzene	<0.21		0.21	0.053	mg/Kg	\$	11/13/17 18:14	11/14/17 11:57	1
3,3'-Dichlorobenzidine	<0.21		0.21	0.058	mg/Kg	₩	11/13/17 18:14	11/14/17 11:57	1
2,4-Dichlorophenol	<0.41		0.41	0.098	mg/Kg	≎	11/13/17 18:14	11/14/17 11:57	1
Diethyl phthalate	<0.21		0.21	0.070	mg/Kg	☆	11/13/17 18:14	11/14/17 11:57	1
2,4-Dimethylphenol	<0.41		0.41	0.16	mg/Kg	≎	11/13/17 18:14	11/14/17 11:57	1
Dimethyl phthalate	<0.21		0.21	0.054	mg/Kg	₽	11/13/17 18:14	11/14/17 11:57	1
Di-n-butyl phthalate	<0.21		0.21	0.063	mg/Kg	ф.	11/13/17 18:14	11/14/17 11:57	1
4,6-Dinitro-2-methylphenol	<0.83		0.83		mg/Kg	₩	11/13/17 18:14	11/14/17 11:57	1
2,4-Dinitrophenol	<0.83		0.83	0.72	mg/Kg	₩	11/13/17 18:14	11/14/17 11:57	
2,4-Dinitrotoluene	<0.21		0.21		mg/Kg		11/13/17 18:14	11/14/17 11:57	1
2,6-Dinitrotoluene	<0.21		0.21		mg/Kg	≎	11/13/17 18:14	11/14/17 11:57	1
Di-n-octyl phthalate	<0.21		0.21		mg/Kg	≎	11/13/17 18:14	11/14/17 11:57	1
Fluoranthene	0.014		0.041	0.0076		· · · · · · · · · · · · · · · · · · ·	11/13/17 18:14	11/14/17 11:57	1
Fluorene	<0.041		0.041	0.0058		₩		11/14/17 11:57	1
Hexachlorobenzene	<0.083		0.083	0.0095	0 0	₩		11/14/17 11:57	
Hexachlorobutadiene	<0.21		0.21		mg/Kg	· · · · · · · · · · · · · · · · · · ·	11/13/17 18:14		
Hexachlorocyclopentadiene	<0.83		0.83		mg/Kg	₩		11/14/17 11:57	1
Hexachloroethane	<0.21		0.21		mg/Kg		11/13/17 18:14		1
Indeno[1,2,3-cd]pyrene	<0.041		0.041		mg/Kg			11/14/17 11:57	· · · · · · · · · · · · · · · · · · ·
Isophorone	<0.21		0.21		mg/Kg	₩		11/14/17 11:57	1
•			0.083	0.0076		т Ф		11/14/17 11:57	1
2-Methylnaphthalene 2-Methylphenol	0.016		0.083		mg/Kg	· · · · · · · · · · · · · · · · · · ·		11/14/17 11:57	
, ,	<0.21 <0.21		0.21			☆		11/14/17 11:57	,
3 & 4 Methylphenol					mg/Kg				
Naphthalene	<0.041		0.041	0.0063		 		11/14/17 11:57	1
2-Nitroaniline	<0.21		0.21		mg/Kg	₩ ₩		11/14/17 11:57	•
3-Nitroaniline	<0.41		0.41		mg/Kg	₩ ₩		11/14/17 11:57	•
4-Nitroaniline	<0.41		0.41		mg/Kg			11/14/17 11:57	1
Nitrobenzene	<0.041		0.041		mg/Kg	ψ.		11/14/17 11:57	1
2-Nitrophenol	<0.41		0.41	0.097	mg/Kg	₩	11/13/17 18:14	11/14/17 11:57	

TestAmerica Chicago

2

3

5

7

9

11

13

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-62-9 (0-1.5')

TestAmerica Job ID: 500-136651-1

Lab Sample ID: 500-136651-9

Matrix: Solid Percent Solids: 77.6

Date Collected: 11/01/17 09:30 Date Received: 11/02/17 09:00

Method: 8270D - Semivola Analyte	_	Qualifier	RL	MDL	•	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.83		0.83		mg/Kg	<u>-</u>	11/13/17 18:14		1
N-Nitrosodi-n-propylamine	<0.083		0.083		mg/Kg		11/13/17 18:14	11/14/17 11:57	1
N-Nitrosodiphenylamine	<0.21		0.21		mg/Kg	₽	11/13/17 18:14	11/14/17 11:57	1
2,2'-oxybis[1-chloropropane]	<0.21		0.21	0.048	mg/Kg	≎	11/13/17 18:14	11/14/17 11:57	1
Pentachlorophenol	<0.83		0.83	0.66	mg/Kg	φ.	11/13/17 18:14	11/14/17 11:57	1
Phenanthrene	0.023	J	0.041	0.0057	mg/Kg	≎	11/13/17 18:14	11/14/17 11:57	1
Phenol	<0.21		0.21	0.091	mg/Kg	≎	11/13/17 18:14	11/14/17 11:57	1
Pyrene	0.015	J	0.041	0.0082	mg/Kg	φ.	11/13/17 18:14	11/14/17 11:57	1
1,2,4-Trichlorobenzene	<0.21		0.21	0.044	mg/Kg	☼	11/13/17 18:14	11/14/17 11:57	1
2,4,5-Trichlorophenol	<0.41		0.41	0.094	mg/Kg	≎	11/13/17 18:14	11/14/17 11:57	1
2,4,6-Trichlorophenol	<0.41		0.41	0.14	mg/Kg		11/13/17 18:14	11/14/17 11:57	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	72		44 - 121				11/13/17 18:14	11/14/17 11:57	1
2-Fluorophenol	77		46 - 133				11/13/17 18:14	11/14/17 11:57	1
Nitrobenzene-d5	66		41 - 120				11/13/17 18:14	11/14/17 11:57	1
Phenol-d5	76		46 - 125				11/13/17 18:14	11/14/17 11:57	1
Terphenyl-d14	67		35 - 160				11/13/17 18:14	11/14/17 11:57	1
2,4,6-Tribromophenol	73		25 - 139				11/13/17 18:14	11/14/17 11:57	1

Method: 6010B - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<1.2		1.2	0.24	mg/Kg	<u></u>	11/03/17 07:41	11/05/17 23:40	1
Arsenic	5.0		0.62	0.21	mg/Kg	₩	11/03/17 07:41	11/03/17 17:19	1
Barium	86		0.62	0.071	mg/Kg	₩	11/03/17 07:41	11/03/17 17:19	1
Beryllium	0.49		0.25	0.058	mg/Kg		11/03/17 07:41	11/03/17 17:19	1
Cadmium	0.038	JB	0.12	0.022	mg/Kg	☼	11/03/17 07:41	11/03/17 17:19	1
Chromium	14		0.62	0.31	mg/Kg	₩	11/03/17 07:41	11/03/17 17:19	1
Cobalt	6.3		0.31	0.081	mg/Kg		11/03/17 07:41	11/03/17 17:19	1
Copper	8.8		0.62	0.17	mg/Kg	₩	11/03/17 07:41	11/03/17 17:19	1
Iron	12000		12	6.5	mg/Kg	₩	11/03/17 07:41	11/03/17 17:19	1
Lead	22		0.31	0.14	mg/Kg		11/03/17 07:41	11/03/17 17:19	1
Manganese	300		0.62	0.090	mg/Kg	₩	11/03/17 07:41	11/03/17 17:19	1
Nickel	12		0.62	0.18	mg/Kg	₩	11/03/17 07:41	11/03/17 17:19	1
Selenium	0.96		0.62	0.37	mg/Kg		11/03/17 07:41	11/05/17 23:40	1
Silver	<0.31		0.31	0.080	mg/Kg	₩	11/03/17 07:41	11/03/17 17:19	1
Thallium	<0.62		0.62	0.31	mg/Kg	₩	11/03/17 07:41	11/03/17 17:19	1
Vanadium	23		0.31	0.073	mg/Kg		11/03/17 07:41	11/03/17 17:19	1
Zinc	38		1.2	0.55	mg/Kg	≎	11/03/17 07:41	11/03/17 17:19	1

Analyte	Result Q	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050	0.050	0.010	mg/L		11/06/17 11:00	11/07/17 12:21	1
Barium	0.56	0.50	0.050	mg/L		11/06/17 11:00	11/07/17 12:21	1
Beryllium	<0.0040	0.0040	0.0040	mg/L		11/06/17 11:00	11/07/17 12:21	1
Cadmium	<0.0050	0.0050	0.0020	mg/L		11/06/17 11:00	11/07/17 12:21	1
Chromium	<0.025	0.025	0.010	mg/L		11/06/17 11:00	11/07/17 12:21	1
Cobalt	<0.025	0.025	0.010	mg/L		11/06/17 11:00	11/07/17 12:21	1
Copper	0.014 J	0.025	0.010	mg/L		11/06/17 11:00	11/07/17 12:21	1
Iron	0.58	0.40	0.20	mg/L		11/06/17 11:00	11/07/17 12:21	1

TestAmerica Chicago

Page 56 of 145

6/17 11:00	11/07/17 12:21	1
6/17 11:00	11/07/17 12:21	1
6/17 11:00	11/07/17 12:21	1
6/17 11:00	11/07/17 12:21	1
6/17 11:00	11/07/17 12:21	1
6/17 11:00	11/07/17 12:21	1
6/17 11:00	11/07/17 12:21	1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136651-1

Lab Sample ID: 500-136651-9

Client Sample ID: 3160-62-9 (0-1.5')

Date Collected: 11/01/17 09:30

Date Received: 11/02/17 09:00

Pe

Matrix: Solid Percent Solids: 77.6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	<0.0075		0.0075	0.0075	mg/L		11/06/17 11:00	11/07/17 12:21	1
Manganese	0.035		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 12:21	1
Nickel	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 12:21	1
Selenium	<0.050		0.050	0.020	mg/L		11/06/17 11:00	11/07/17 12:21	1
Silver	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 12:21	1
Vanadium	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 12:21	1
Zinc	0.049	J	0.50	0.020	mg/L		11/06/17 11:00	11/07/17 12:21	1
Method: 6020A - Metal	s (ICP/MS) - TCLP								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060		0.0060	0.0060	mg/L		11/06/17 11:00	11/07/17 16:28	1
Thallium	<0.0020		0.0020	0.0020	mg/L		11/06/17 11:00	11/07/17 16:28	1
Method: 7470A - TCLP	Mercury - TCLP								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/06/17 14:30	11/07/17 09:34	1
Method: 7471B - Mercu	ıry (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.021		0.021	0.0070	mg/Kg	<u> </u>	11/03/17 15:15	11/06/17 11:39	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	6.0		0.20	0.20	SU			11/08/17 17:14	

TestAmerica Job ID: 500-136651-1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-62-8 (0-1.5')

Date Collected: 11/01/17 09:40 Date Received: 11/02/17 09:00

Lab Sample ID: 500-136651-10

Matrix: Solid Percent Solids: 82.4

Analyte	Result Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Acetone	<0.019	0.019	0.0081	mg/Kg	₩	11/02/17 18:18	11/08/17 17:03	1
Benzene	<0.0019	0.0019	0.00047	mg/Kg	₩	11/02/17 18:18	11/08/17 17:03	1
Bromodichloromethane	<0.0019	0.0019	0.00038	mg/Kg	☼	11/02/17 18:18	11/08/17 17:03	1
Bromoform	<0.0019	0.0019	0.00054	mg/Kg	φ.	11/02/17 18:18	11/08/17 17:03	1
Bromomethane	<0.0046	0.0046	0.0018	mg/Kg	☼	11/02/17 18:18	11/08/17 17:03	1
2-Butanone (MEK)	<0.0046	0.0046	0.0021	mg/Kg	₩	11/02/17 18:18	11/08/17 17:03	1
Carbon disulfide	<0.0046	0.0046	0.00096	mg/Kg	φ.	11/02/17 18:18	11/08/17 17:03	1
Carbon tetrachloride	<0.0019	0.0019	0.00054	mg/Kg	☼	11/02/17 18:18	11/08/17 17:03	1
Chlorobenzene	<0.0019	0.0019	0.00068	mg/Kg	₩	11/02/17 18:18	11/08/17 17:03	1
Chloroethane	<0.0046	0.0046	0.0014	mg/Kg	₩	11/02/17 18:18	11/08/17 17:03	1
Chloroform	<0.0019	0.0019	0.00064	mg/Kg	☼	11/02/17 18:18	11/08/17 17:03	1
Chloromethane	<0.0046	0.0046	0.0019	mg/Kg	☼	11/02/17 18:18	11/08/17 17:03	1
cis-1,2-Dichloroethene	<0.0019	0.0019	0.00052	mg/Kg	₩	11/02/17 18:18	11/08/17 17:03	1
cis-1,3-Dichloropropene	<0.0019	0.0019	0.00056	mg/Kg	☼	11/02/17 18:18	11/08/17 17:03	1
Dibromochloromethane	<0.0019	0.0019	0.00061	mg/Kg	☼	11/02/17 18:18	11/08/17 17:03	1
1,1-Dichloroethane	<0.0019	0.0019	0.00063	mg/Kg	₩.	11/02/17 18:18	11/08/17 17:03	1
1,2-Dichloroethane	<0.0046	0.0046	0.0014	mg/Kg	☼	11/02/17 18:18	11/08/17 17:03	1
1,1-Dichloroethene	<0.0019	0.0019	0.00064	mg/Kg	₩	11/02/17 18:18	11/08/17 17:03	1
1,2-Dichloropropane	<0.0019	0.0019	0.00048	mg/Kg		11/02/17 18:18	11/08/17 17:03	1
1,3-Dichloropropene, Total	<0.0019	0.0019	0.00065	mg/Kg	₩	11/02/17 18:18	11/08/17 17:03	1
Ethylbenzene	<0.0019	0.0019	0.00089	mg/Kg	₩	11/02/17 18:18	11/08/17 17:03	1
2-Hexanone	<0.0046	0.0046	0.0014	mg/Kg	ф.	11/02/17 18:18	11/08/17 17:03	1
Methylene Chloride	<0.0046	0.0046	0.0018	mg/Kg	₩	11/02/17 18:18	11/08/17 17:03	1
4-Methyl-2-pentanone (MIBK)	<0.0046	0.0046	0.0014	mg/Kg	₩	11/02/17 18:18	11/08/17 17:03	1
Methyl tert-butyl ether	<0.0019	0.0019	0.00054	mg/Kg	₩.	11/02/17 18:18	11/08/17 17:03	1
Styrene	<0.0019	0.0019	0.00056	mg/Kg	₩	11/02/17 18:18	11/08/17 17:03	1
1,1,2,2-Tetrachloroethane	<0.0019	0.0019	0.00059	mg/Kg	₩	11/02/17 18:18	11/08/17 17:03	1
Tetrachloroethene	<0.0019	0.0019	0.00063	mg/Kg		11/02/17 18:18	11/08/17 17:03	1
Toluene	<0.0019	0.0019	0.00047	mg/Kg	₩	11/02/17 18:18	11/08/17 17:03	1
trans-1,2-Dichloroethene	<0.0019	0.0019	0.00082	mg/Kg	₩	11/02/17 18:18	11/08/17 17:03	1
trans-1,3-Dichloropropene	<0.0019	0.0019	0.00065	mg/Kg	₩	11/02/17 18:18	11/08/17 17:03	1
1,1,1-Trichloroethane	<0.0019	0.0019	0.00062	mg/Kg	₩	11/02/17 18:18	11/08/17 17:03	1
1,1,2-Trichloroethane	<0.0019	0.0019	0.00080	mg/Kg	₩	11/02/17 18:18	11/08/17 17:03	1
Trichloroethene	<0.0019	0.0019	0.00063	mg/Kg		11/02/17 18:18	11/08/17 17:03	1
Vinyl acetate	<0.0046	0.0046		mg/Kg	₽	11/02/17 18:18	11/08/17 17:03	1
Vinyl chloride	<0.0019	0.0019	0.00082	0 0	₽	11/02/17 18:18	11/08/17 17:03	1
Xylenes, Total	<0.0037	0.0037	0.00059				11/08/17 17:03	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	93	75 - 131				11/02/17 18:18	11/08/17 17:03	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	93		75 - 131	11/02/17 18:18	11/08/17 17:03	1
Dibromofluoromethane	100		75 - 126	11/02/17 18:18	11/08/17 17:03	1
1,2-Dichloroethane-d4 (Surr)	96		70 - 134	11/02/17 18:18	11/08/17 17:03	1
Toluene-d8 (Surr)	97		75 - 124	11/02/17 18:18	11/08/17 17:03	1

Method: 8270D - Semivolatile Organic Compounds (GC/MS)									
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Acenaphthene	<0.038	0.038	0.0069	mg/Kg	₩	11/08/17 17:13	11/09/17 13:51	1	
Acenaphthylene	<0.038	0.038	0.0050	mg/Kg	≎	11/08/17 17:13	11/09/17 13:51	1	
Anthracene	<0.038	0.038	0.0064	mg/Kg	≎	11/08/17 17:13	11/09/17 13:51	1	
Benzo[a]anthracene	0.011 J	0.038	0.0051	mg/Kg	₩	11/08/17 17:13	11/09/17 13:51	1	

TestAmerica Chicago

Page 58 of 145

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136651-1

Client Sample ID: 3160-62-8 (0-1.5')

Lab Sample ID: 500-136651-10

Date Collected: 11/01/17 09:40

Matrix: Solid

Date Received: 11/02/17 09:00

Percent Solids: 82.4

Method: 8270D - Semivolatil Analyte		Qualifier	ŔĹ	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzo[a]pyrene	0.022	J -	0.038	0.0074	mg/Kg	<u></u>	11/08/17 17:13	11/09/17 13:51	
Benzo[b]fluoranthene	0.018	J	0.038	0.0082	mg/Kg	☼	11/08/17 17:13	11/09/17 13:51	
Benzo[g,h,i]perylene	<0.038		0.038	0.012	mg/Kg		11/08/17 17:13	11/09/17 13:51	
Benzo[k]fluoranthene	<0.038		0.038	0.011	mg/Kg	₩	11/08/17 17:13	11/09/17 13:51	
Bis(2-chloroethoxy)methane	<0.19		0.19	0.039	mg/Kg	₩	11/08/17 17:13	11/09/17 13:51	
Bis(2-chloroethyl)ether	<0.19		0.19	0.057	mg/Kg	☆-	11/08/17 17:13	11/09/17 13:51	
Bis(2-ethylhexyl) phthalate	<0.19		0.19	0.070	mg/Kg	₩	11/08/17 17:13	11/09/17 13:51	
4-Bromophenyl phenyl ether	<0.19		0.19	0.050	mg/Kg	☼	11/08/17 17:13	11/09/17 13:51	
Butyl benzyl phthalate	<0.19		0.19	0.073	mg/Kg		11/08/17 17:13	11/09/17 13:51	
Carbazole	<0.19		0.19		mg/Kg	☼	11/08/17 17:13	11/09/17 13:51	
4-Chloroaniline	<0.77		0.77		mg/Kg	☼	11/08/17 17:13	11/09/17 13:51	
4-Chloro-3-methylphenol	<0.38		0.38		mg/Kg			11/09/17 13:51	
2-Chloronaphthalene	<0.19		0.19		mg/Kg	₩		11/09/17 13:51	
2-Chlorophenol	<0.19		0.19		mg/Kg	☆		11/09/17 13:51	
4-Chlorophenyl phenyl ether	<0.19		0.19		mg/Kg			11/09/17 13:51	
Chrysene	0.012	a .	0.038		mg/Kg	☼		11/09/17 13:51	
Dibenz(a,h)anthracene	<0.038		0.038	0.0074		☆		11/09/17 13:51	
Dibenzofuran	<0.19		0.19		mg/Kg			11/09/17 13:51	
1,2-Dichlorobenzene	<0.19		0.19		mg/Kg	₽		11/09/17 13:51	
1,3-Dichlorobenzene	<0.19		0.19		mg/Kg	₩		11/09/17 13:51	
1,4-Dichlorobenzene	<0.19		0.19		mg/Kg			11/09/17 13:51	
3.3'-Dichlorobenzidine	<0.19		0.19		mg/Kg			11/09/17 13:51	
-,-	<0.19		0.19			☆		11/09/17 13:51	
2,4-Dichlorophenol	<0.19		0.36		mg/Kg	.		11/09/17 13:51	
Diethyl phthalate					mg/Kg	*			
2,4-Dimethylphenol	<0.38		0.38		mg/Kg	₩		11/09/17 13:51	
Dimethyl phthalate	<0.19		0.19		mg/Kg	.		11/09/17 13:51	
Di-n-butyl phthalate	<0.19		0.19		mg/Kg			11/09/17 13:51	
4,6-Dinitro-2-methylphenol	<0.77		0.77	0.31	mg/Kg	₩		11/09/17 13:51	
2,4-Dinitrophenol	<0.77		0.77		mg/Kg			11/09/17 13:51	
2,4-Dinitrotoluene	<0.19		0.19	0.061	mg/Kg	☆		11/09/17 13:51	
2,6-Dinitrotoluene	<0.19		0.19		mg/Kg	☆		11/09/17 13:51	
Di-n-octyl phthalate	<0.19		0.19		mg/Kg	J.		11/09/17 13:51	
Fluoranthene	<0.038		0.038	0.0071	0 0			11/09/17 13:51	
Fluorene	<0.038		0.038	0.0054	0 0	ά. Έ		11/09/17 13:51	
Hexachlorobenzene	<0.077		0.077	0.0088				11/09/17 13:51	
Hexachlorobutadiene	<0.19		0.19		mg/Kg			11/09/17 13:51	
Hexachlorocyclopentadiene	<0.77		0.77		mg/Kg	:D		11/09/17 13:51	
Hexachloroethane	<0.19		0.19		mg/Kg	p		11/09/17 13:51	
Indeno[1,2,3-cd]pyrene	<0.038		0.038	0.0099		æ		11/09/17 13:51	
Isophorone	<0.19		0.19		mg/Kg	☼		11/09/17 13:51	
2-Methylnaphthalene	0.0085	J	0.077	0.0070		#		11/09/17 13:51	
2-Methylphenol	<0.19		0.19		mg/Kg	₽		11/09/17 13:51	
3 & 4 Methylphenol	<0.19		0.19		mg/Kg	☼		11/09/17 13:51	
Naphthalene	<0.038		0.038	0.0059	mg/Kg	₩	11/08/17 17:13	11/09/17 13:51	
2-Nitroaniline	<0.19		0.19		mg/Kg	⊅	11/08/17 17:13	11/09/17 13:51	
3-Nitroaniline	<0.38		0.38	0.12	mg/Kg	₩	11/08/17 17:13	11/09/17 13:51	
4-Nitroaniline	<0.38		0.38	0.16	mg/Kg	☼	11/08/17 17:13	11/09/17 13:51	
Nitrobenzene	<0.038		0.038	0.0095	mg/Kg	₽	11/08/17 17:13	11/09/17 13:51	
2-Nitrophenol	<0.38		0.38	0.090	mg/Kg	₽	11/08/17 17:13	11/09/17 13:51	

TestAmerica Chicago

11/14/2017

_

3

5

7

9

11

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/01/17 09:40

Date Received: 11/02/17 09:00

Client Sample ID: 3160-62-8 (0-1.5')

TestAmerica Job ID: 500-136651-1

Lab Sample ID: 500-136651-10

Matrix: Solid

Percent Solids: 82.4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.77		0.77	0.36	mg/Kg	<u> </u>	11/08/17 17:13	11/09/17 13:51	1
N-Nitrosodi-n-propylamine	<0.077		0.077	0.047	mg/Kg	₽	11/08/17 17:13	11/09/17 13:51	1
N-Nitrosodiphenylamine	<0.19		0.19	0.045	mg/Kg	☼	11/08/17 17:13	11/09/17 13:51	1
2,2'-oxybis[1-chloropropane]	<0.19		0.19	0.044	mg/Kg	☼	11/08/17 17:13	11/09/17 13:51	1
Pentachlorophenol	<0.77		0.77	0.61	mg/Kg	₽	11/08/17 17:13	11/09/17 13:51	1
Phenanthrene	0.017	J	0.038	0.0053	mg/Kg	☼	11/08/17 17:13	11/09/17 13:51	1
Phenol	<0.19		0.19	0.085	mg/Kg	☼	11/08/17 17:13	11/09/17 13:51	1
Pyrene	0.013	J	0.038	0.0076	mg/Kg	₩	11/08/17 17:13	11/09/17 13:51	1
1,2,4-Trichlorobenzene	<0.19		0.19	0.041	mg/Kg	☼	11/08/17 17:13	11/09/17 13:51	1
2,4,5-Trichlorophenol	<0.38		0.38	0.087	mg/Kg	☼	11/08/17 17:13	11/09/17 13:51	1
2,4,6-Trichlorophenol	<0.38		0.38	0.13	mg/Kg		11/08/17 17:13	11/09/17 13:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	69		44 - 121				11/08/17 17:13	11/09/17 13:51	1
2-Fluorophenol	77		46 - 133				11/08/17 17:13	11/09/17 13:51	1
Nitrobenzene-d5	61		41 - 120				11/08/17 17:13	11/09/17 13:51	1
Phenol-d5	80		46 - 125				11/08/17 17:13	11/09/17 13:51	1
Terphenyl-d14	81		35 - 160				11/08/17 17:13	11/09/17 13:51	1
2,4,6-Tribromophenol	90		25 - 139				11/08/17 17:13	11/09/17 13:51	1

Method: 6010B - Metals (ICP) Analyte	Result	Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<1.2		1.2		mg/Kg	— =	11/03/17 07:41	11/05/17 23:44	1
Arsenic	9.9		0.60		mg/Kg	≎	11/03/17 07:41	11/03/17 17:23	1
Barium	92		0.60	0.068	mg/Kg	≎	11/03/17 07:41	11/03/17 17:23	1
Beryllium	0.59		0.24	0.056	mg/Kg		11/03/17 07:41	11/03/17 17:23	1
Cadmium	<0.12		0.12	0.022	mg/Kg	≎	11/03/17 07:41	11/03/17 17:23	1
Chromium	16		0.60	0.30	mg/Kg	≎	11/03/17 07:41	11/03/17 17:23	1
Cobalt	7.7		0.30	0.078	mg/Kg	ф.	11/03/17 07:41	11/03/17 17:23	1
Copper	8.0		0.60	0.17	mg/Kg	≎	11/03/17 07:41	11/03/17 17:23	1
Iron	18000		12	6.2	mg/Kg	☼	11/03/17 07:41	11/03/17 17:23	1
Lead	25		0.30	0.14	mg/Kg	₽	11/03/17 07:41	11/03/17 17:23	1
Manganese	670		0.60	0.087	mg/Kg	☼	11/03/17 07:41	11/03/17 17:23	1
Nickel	9.0		0.60	0.17	mg/Kg	₽	11/03/17 07:41	11/03/17 17:23	1
Selenium	1.4		0.60	0.35	mg/Kg	₽	11/03/17 07:41	11/05/17 23:44	1
Silver	< 0.30		0.30	0.077	mg/Kg	☼	11/03/17 07:41	11/03/17 17:23	1
Thallium	<0.60		0.60	0.30	mg/Kg	₽	11/03/17 07:41	11/03/17 17:23	1
Vanadium	37		0.30	0.071	mg/Kg	\$	11/03/17 07:41	11/03/17 17:23	1
Zinc	32		1.2	0.53	mg/Kg	☼	11/03/17 07:41	11/03/17 17:23	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/06/17 11:00	11/07/17 12:25	1
Barium	0.42	J	0.50	0.050	mg/L		11/06/17 11:00	11/07/17 12:25	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/06/17 11:00	11/07/17 12:25	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/06/17 11:00	11/07/17 12:25	1
Chromium	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 12:25	1
Cobalt	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 12:25	1
Copper	0.013	J	0.025	0.010	mg/L		11/06/17 11:00	11/07/17 12:25	1
Iron	<0.40		0.40	0.20	mg/L		11/06/17 11:00	11/07/17 12:25	1

Page 60 of 145

TestAmerica Chicago

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Received: 11/02/17 09:00

рН

TestAmerica Job ID: 500-136651-1

0

Client Sample ID: 3160-62-8 (0-1.5')
Date Collected: 11/01/17 09:40

Lab Sample ID: 500-136651-10

Matrix: Solid

Percent Solids: 82.4

Method: 6010B - Metals (ICP) - To Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	<0.0075		0.0075	0.0075	mg/L		11/06/17 11:00	11/07/17 12:25	1
Manganese	0.21		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 12:25	•
Nickel	0.016	J	0.025	0.010	mg/L		11/06/17 11:00	11/07/17 12:25	•
Selenium	< 0.050		0.050	0.020	mg/L		11/06/17 11:00	11/07/17 12:25	•
Silver	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 12:25	• • • • • • • • • •
Vanadium	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 12:25	•
Zinc	0.056	J	0.50	0.020	mg/L		11/06/17 11:00	11/07/17 12:25	,
Method: 6010B - Metals (ICP) - S	PLP East	t							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Manganese	0.053		0.025	0.010	mg/L		11/06/17 11:29	11/08/17 22:17	
Method: 6020A - Metals (ICP/MS)	- TCLP								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060		0.0060	0.0060	mg/L		11/06/17 11:00	11/07/17 16:32	
Thallium	<0.0020		0.0020	0.0020	mg/L		11/06/17 11:00	11/07/17 16:32	
Method: 7470A - TCLP Mercury -	TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/06/17 14:30	11/07/17 09:35	
Method: 7471B - Mercury (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.019	J	0.020	0.0065	mg/Kg		11/03/17 15:15	11/06/17 11:53	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

0.20

5.2

0.20 SU

11/08/17 17:14

TestAmerica Job ID: 500-136651-1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-62-7 (0-1.5')

Lab Sample ID: 500-136651-11 Date Collected: 11/01/17 09:50 **Matrix: Solid** Date Received: 11/02/17 09:00 Percent Solids: 84.3

Analyte	Result Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Acetone	<0.020	0.020	0.0085	mg/Kg	<u>∓</u>	11/02/17 18:18	11/08/17 17:28	1
Benzene	<0.0020	0.0020	0.00050	mg/Kg	₩	11/02/17 18:18	11/08/17 17:28	1
Bromodichloromethane	<0.0020	0.0020	0.00040	mg/Kg	☼	11/02/17 18:18	11/08/17 17:28	•
Bromoform	<0.0020	0.0020	0.00057	mg/Kg	₩	11/02/17 18:18	11/08/17 17:28	1
Bromomethane	<0.0049	0.0049	0.0018	mg/Kg	₩	11/02/17 18:18	11/08/17 17:28	1
2-Butanone (MEK)	<0.0049	0.0049	0.0022	mg/Kg	₩	11/02/17 18:18	11/08/17 17:28	1
Carbon disulfide	<0.0049	0.0049	0.0010	mg/Kg	₽	11/02/17 18:18	11/08/17 17:28	1
Carbon tetrachloride	<0.0020	0.0020	0.00057	mg/Kg	☼	11/02/17 18:18	11/08/17 17:28	1
Chlorobenzene	<0.0020	0.0020	0.00072	mg/Kg	☼	11/02/17 18:18	11/08/17 17:28	1
Chloroethane	<0.0049	0.0049	0.0014	mg/Kg	₩	11/02/17 18:18	11/08/17 17:28	1
Chloroform	<0.0020	0.0020	0.00068	mg/Kg	☼	11/02/17 18:18	11/08/17 17:28	1
Chloromethane	<0.0049	0.0049	0.0020	mg/Kg	☼	11/02/17 18:18	11/08/17 17:28	1
cis-1,2-Dichloroethene	<0.0020	0.0020	0.00055	mg/Kg	₽	11/02/17 18:18	11/08/17 17:28	1
cis-1,3-Dichloropropene	<0.0020	0.0020	0.00059	mg/Kg	₩	11/02/17 18:18	11/08/17 17:28	1
Dibromochloromethane	<0.0020	0.0020	0.00064	mg/Kg	₩	11/02/17 18:18	11/08/17 17:28	1
1,1-Dichloroethane	<0.0020	0.0020	0.00067	mg/Kg	\$	11/02/17 18:18	11/08/17 17:28	1
1,2-Dichloroethane	<0.0049	0.0049	0.0015	mg/Kg	₩	11/02/17 18:18	11/08/17 17:28	1
1,1-Dichloroethene	<0.0020	0.0020	0.00067	mg/Kg	≎	11/02/17 18:18	11/08/17 17:28	1
1,2-Dichloropropane	<0.0020	0.0020	0.00051	mg/Kg		11/02/17 18:18	11/08/17 17:28	1
1,3-Dichloropropene, Total	<0.0020	0.0020	0.00069	mg/Kg	☼	11/02/17 18:18	11/08/17 17:28	1
Ethylbenzene	<0.0020	0.0020	0.00093	mg/Kg	☼	11/02/17 18:18	11/08/17 17:28	1
2-Hexanone	<0.0049	0.0049	0.0015	mg/Kg		11/02/17 18:18	11/08/17 17:28	1
Methylene Chloride	<0.0049	0.0049	0.0019	mg/Kg	☼	11/02/17 18:18	11/08/17 17:28	1
4-Methyl-2-pentanone (MIBK)	<0.0049	0.0049	0.0014	mg/Kg	☼	11/02/17 18:18	11/08/17 17:28	1
Methyl tert-butyl ether	<0.0020	0.0020	0.00057	mg/Kg	₩	11/02/17 18:18	11/08/17 17:28	1
Styrene	<0.0020	0.0020	0.00059	mg/Kg	☼	11/02/17 18:18	11/08/17 17:28	1
1,1,2,2-Tetrachloroethane	<0.0020	0.0020	0.00062	mg/Kg	≎	11/02/17 18:18	11/08/17 17:28	1
Tetrachloroethene	<0.0020	0.0020	0.00067	mg/Kg		11/02/17 18:18	11/08/17 17:28	1
Toluene	<0.0020	0.0020	0.00049	mg/Kg	☼	11/02/17 18:18	11/08/17 17:28	1
trans-1,2-Dichloroethene	<0.0020	0.0020	0.00087	mg/Kg	☼	11/02/17 18:18	11/08/17 17:28	1
trans-1,3-Dichloropropene	<0.0020	0.0020	0.00069	mg/Kg	₩	11/02/17 18:18	11/08/17 17:28	1
1,1,1-Trichloroethane	<0.0020	0.0020	0.00066	mg/Kg	☼	11/02/17 18:18	11/08/17 17:28	1
1,1,2-Trichloroethane	<0.0020	0.0020	0.00084	mg/Kg	₩	11/02/17 18:18	11/08/17 17:28	1
Trichloroethene	<0.0020	0.0020	0.00066	mg/Kg	₩	11/02/17 18:18	11/08/17 17:28	1
Vinyl acetate	<0.0049	0.0049	0.0017	mg/Kg	₩	11/02/17 18:18	11/08/17 17:28	1
Vinyl chloride	<0.0020	0.0020	0.00086	mg/Kg	₩	11/02/17 18:18	11/08/17 17:28	1
Xylenes, Total	<0.0039	0.0039	0.00063	mg/Kg		11/02/17 18:18	11/08/17 17:28	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	93	75 - 131				11/02/17 18:18	11/08/17 17:28	1
Dibromofluoromethane	103	75 - 126				11/02/17 18:18	11/08/17 17:28	1
1,2-Dichloroethane-d4 (Surr)	99	70 - 134				11/02/17 18:18	11/08/17 17:28	1
Toluene-d8 (Surr)	98	75 - 124				11/02/17 18:18	11/08/17 17:28	1

Method: 8270D - Semivolatile Organic Compounds (GC/MS)									
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Acenaphthene	<0.038	0.038	0.0069	mg/Kg	<u> </u>	11/08/17 17:13	11/09/17 15:35	1	
Acenaphthylene	<0.038	0.038	0.0051	mg/Kg	☼	11/08/17 17:13	11/09/17 15:35	1	
Anthracene	<0.038	0.038	0.0064	mg/Kg	☼	11/08/17 17:13	11/09/17 15:35	1	
Benzo[a]anthracene	0.015 J	0.038	0.0052	mg/Kg	\$	11/08/17 17:13	11/09/17 15:35	1	

TestAmerica Chicago

Page 62 of 145

11/14/2017

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136651-1

Client Sample ID: 3160-62-7 (0-1.5')

Lab Sample ID: 500-136651-11

Date Collected: 11/01/17 09:50

Matrix: Solid

Date Received: 11/02/17 09:00

Percent Solids: 84.3

Method: 8270D - Semivolati Analyte		Qualifier	ŔĹ	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]pyrene	0.023	J -	0.038	0.0075	mg/Kg	<u></u>		11/09/17 15:35	1
Benzo[b]fluoranthene	0.017	J	0.038	0.0083	mg/Kg	₩	11/08/17 17:13	11/09/17 15:35	1
Benzo[g,h,i]perylene	<0.038		0.038		mg/Kg		11/08/17 17:13	11/09/17 15:35	
Benzo[k]fluoranthene	<0.038		0.038		mg/Kg	₩	11/08/17 17:13	11/09/17 15:35	1
Bis(2-chloroethoxy)methane	<0.19		0.19		mg/Kg	₩	11/08/17 17:13	11/09/17 15:35	1
Bis(2-chloroethyl)ether	<0.19		0.19		mg/Kg		11/08/17 17:13	11/09/17 15:35	
Bis(2-ethylhexyl) phthalate	<0.19		0.19		mg/Kg	₩		11/09/17 15:35	1
4-Bromophenyl phenyl ether	<0.19		0.19	0.051		₩		11/09/17 15:35	1
Butyl benzyl phthalate	<0.19		0.19		mg/Kg			11/09/17 15:35	
Carbazole	<0.19		0.19		mg/Kg	₩		11/09/17 15:35	
4-Chloroaniline	<0.78		0.78		mg/Kg	₩		11/09/17 15:35	1
4-Chloro-3-methylphenol	<0.38		0.38		mg/Kg			11/09/17 15:35	
2-Chloronaphthalene	<0.19		0.19		mg/Kg	₩		11/09/17 15:35	
2-Chlorophenol	<0.19		0.19		mg/Kg	₩		11/09/17 15:35	1
4-Chlorophenyl phenyl ether	<0.19		0.19		mg/Kg			11/09/17 15:35	
Chrysene	0.016	1	0.038	0.011	mg/Kg	₩		11/09/17 15:35	1
Dibenz(a,h)anthracene	<0.038	3	0.038	0.0075	0 0	₩		11/09/17 15:35	
Dibenzofuran	<0.19		0.030		mg/Kg	· · · · · · · · · · · · · · · · · · ·		11/09/17 15:35	
1,2-Dichlorobenzene	<0.19		0.19		mg/Kg			11/09/17 15:35	
1,3-Dichlorobenzene	<0.19		0.19			~ ☆		11/09/17 15:35	
			0.19		mg/Kg	· · · · · · · · · · · · · · · · · · ·			
1,4-Dichlorobenzene	<0.19				mg/Kg	₩		11/09/17 15:35	•
3,3'-Dichlorobenzidine	<0.19		0.19		mg/Kg			11/09/17 15:35	
2,4-Dichlorophenol	<0.38		0.38		mg/Kg	% .		11/09/17 15:35	1
Diethyl phthalate	<0.19		0.19		mg/Kg	₩		11/09/17 15:35	
2,4-Dimethylphenol	<0.38		0.38		mg/Kg	*		11/09/17 15:35	
Dimethyl phthalate	<0.19		0.19		mg/Kg			11/09/17 15:35	
Di-n-butyl phthalate	<0.19		0.19		mg/Kg	Ψ.		11/09/17 15:35	_
4,6-Dinitro-2-methylphenol	<0.78		0.78		mg/Kg	₩.		11/09/17 15:35	•
2,4-Dinitrophenol	<0.78		0.78		mg/Kg	::::::::::::::::::::::::::::::::::::::		11/09/17 15:35	
2,4-Dinitrotoluene	<0.19		0.19		mg/Kg	:		11/09/17 15:35	•
2,6-Dinitrotoluene	<0.19		0.19		mg/Kg	:		11/09/17 15:35	•
Di-n-octyl phthalate	<0.19		0.19		mg/Kg			11/09/17 15:35	
Fluoranthene	0.018	J	0.038	0.0072		☼	11/08/17 17:13	11/09/17 15:35	•
Fluorene	<0.038		0.038	0.0054		☼	11/08/17 17:13	11/09/17 15:35	•
Hexachlorobenzene	<0.078		0.078	0.0089		₩	11/08/17 17:13	11/09/17 15:35	•
Hexachlorobutadiene	<0.19		0.19	0.061	mg/Kg	₽	11/08/17 17:13	11/09/17 15:35	
Hexachlorocyclopentadiene	<0.78		0.78	0.22	mg/Kg	₩	11/08/17 17:13	11/09/17 15:35	•
Hexachloroethane	<0.19		0.19	0.059	mg/Kg	₩	11/08/17 17:13	11/09/17 15:35	•
Indeno[1,2,3-cd]pyrene	<0.038		0.038	0.010	mg/Kg	₩	11/08/17 17:13	11/09/17 15:35	1
Isophorone	<0.19		0.19	0.043	mg/Kg	₩	11/08/17 17:13	11/09/17 15:35	1
2-Methylnaphthalene	0.012	J	0.078	0.0071	mg/Kg	☼	11/08/17 17:13	11/09/17 15:35	1
2-Methylphenol	<0.19		0.19	0.062	mg/Kg	₩.	11/08/17 17:13	11/09/17 15:35	• • • • • • • • • • • • • • • • • • • •
3 & 4 Methylphenol	<0.19		0.19	0.064	mg/Kg	₩	11/08/17 17:13	11/09/17 15:35	
Naphthalene	<0.038		0.038	0.0059		☼	11/08/17 17:13	11/09/17 15:35	
2-Nitroaniline	<0.19		0.19		mg/Kg		11/08/17 17:13	11/09/17 15:35	• • • • • • • •
3-Nitroaniline	<0.38		0.38		mg/Kg	₩	11/08/17 17:13	11/09/17 15:35	
4-Nitroaniline	<0.38		0.38		mg/Kg	₩		11/09/17 15:35	1
Nitrobenzene	<0.038		0.038	0.0096				11/09/17 15:35	1
2-Nitrophenol	<0.38		0.38	0.091		₩		11/09/17 15:35	

TestAmerica Chicago

2

3

6

8

10

12

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/01/17 09:50

Date Received: 11/02/17 09:00

Client Sample ID: 3160-62-7 (0-1.5')

TestAmerica Job ID: 500-136651-1

Lab Sample ID: 500-136651-11

Matrix: Solid Percent Solids: 84.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.78		0.78	0.37	mg/Kg	<u> </u>	11/08/17 17:13	11/09/17 15:35	1
N-Nitrosodi-n-propylamine	<0.078		0.078	0.047	mg/Kg		11/08/17 17:13	11/09/17 15:35	1
N-Nitrosodiphenylamine	<0.19		0.19	0.046	mg/Kg	₩	11/08/17 17:13	11/09/17 15:35	1
2,2'-oxybis[1-chloropropane]	<0.19		0.19	0.045	mg/Kg	₩	11/08/17 17:13	11/09/17 15:35	1
Pentachlorophenol	<0.78		0.78	0.62	mg/Kg	₽	11/08/17 17:13	11/09/17 15:35	1
Phenanthrene	0.036	J	0.038	0.0054	mg/Kg	☼	11/08/17 17:13	11/09/17 15:35	1
Phenol	<0.19		0.19	0.086	mg/Kg	₩	11/08/17 17:13	11/09/17 15:35	1
Pyrene	0.024	J	0.038	0.0077	mg/Kg	₩	11/08/17 17:13	11/09/17 15:35	1
1,2,4-Trichlorobenzene	<0.19		0.19	0.042	mg/Kg	☼	11/08/17 17:13	11/09/17 15:35	1
2,4,5-Trichlorophenol	<0.38		0.38	0.088	mg/Kg	☼	11/08/17 17:13	11/09/17 15:35	1
2,4,6-Trichlorophenol	<0.38		0.38	0.13	mg/Kg		11/08/17 17:13	11/09/17 15:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	78		44 - 121				11/08/17 17:13	11/09/17 15:35	1
2-Fluorophenol	80		46 - 133				11/08/17 17:13	11/09/17 15:35	1
Nitrobenzene-d5	69		41 - 120				11/08/17 17:13	11/09/17 15:35	1
Phenol-d5	89		46 - 125				11/08/17 17:13	11/09/17 15:35	1
Terphenyl-d14	84		35 - 160				11/08/17 17:13	11/09/17 15:35	1
2,4,6-Tribromophenol	96		25 - 139				11/08/17 17:13	11/09/17 15:35	1

Method: 6010B - Metals (ICP) Analyte	Result	Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<1.1		1.1		mg/Kg	— -	11/03/17 07:41	11/05/17 23:48	1
Arsenic	6.0		0.56		mg/Kg	☼	11/03/17 07:41	11/03/17 17:26	1
Barium	100		0.56		mg/Kg	₽	11/03/17 07:41	11/03/17 17:26	1
Beryllium	0.61		0.22	0.052	mg/Kg		11/03/17 07:41	11/03/17 17:26	1
Cadmium	0.035	JB	0.11	0.020	mg/Kg	₩	11/03/17 07:41	11/03/17 17:26	1
Chromium	15		0.56	0.28	mg/Kg	₩	11/03/17 07:41	11/03/17 17:26	1
Cobalt	6.8		0.28	0.073	mg/Kg		11/03/17 07:41	11/03/17 17:26	1
Copper	9.9		0.56	0.16	mg/Kg	₩	11/03/17 07:41	11/03/17 17:26	1
Iron	15000		11	5.8	mg/Kg	☼	11/03/17 07:41	11/03/17 17:26	1
Lead	32		0.28	0.13	mg/Kg	₩	11/03/17 07:41	11/03/17 17:26	1
Manganese	490		0.56	0.081	mg/Kg	☼	11/03/17 07:41	11/03/17 17:26	1
Nickel	11		0.56	0.16	mg/Kg	₩	11/03/17 07:41	11/03/17 17:26	1
Selenium	0.99		0.56	0.33	mg/Kg	₩	11/03/17 07:41	11/05/17 23:48	1
Silver	<0.28		0.28	0.072	mg/Kg	☼	11/03/17 07:41	11/03/17 17:26	1
Thallium	<0.56		0.56	0.28	mg/Kg	₩	11/03/17 07:41	11/03/17 17:26	1
Vanadium	28		0.28	0.066	mg/Kg	₩.	11/03/17 07:41	11/03/17 17:26	1
Zinc	48		1.1	0.49	mg/Kg	₩	11/03/17 07:41	11/03/17 17:26	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/06/17 11:00	11/07/17 12:29	1
Barium	0.71		0.50	0.050	mg/L		11/06/17 11:00	11/07/17 12:29	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/06/17 11:00	11/07/17 12:29	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/06/17 11:00	11/07/17 12:29	1
Chromium	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 12:29	1
Cobalt	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 12:29	1
Copper	0.011	J	0.025	0.010	mg/L		11/06/17 11:00	11/07/17 12:29	1
Iron	<0.40		0.40	0.20	mg/L		11/06/17 11:00	11/07/17 12:29	1

Page 64 of 145

TestAmerica Chicago

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/01/17 09:50

Date Received: 11/02/17 09:00

TestAmerica Job ID: 500-136651-1

3

Client Sample ID: 3160-62-7 (0-1.5')

Lab Sample ID: 500-136651-11

Matrix: Solid

Percent Solids: 84.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	<0.0075		0.0075	0.0075	mg/L		11/06/17 11:00	11/07/17 12:29	1
Manganese	0.048		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 12:29	1
Nickel	0.013	J	0.025	0.010	mg/L		11/06/17 11:00	11/07/17 12:29	1
Selenium	<0.050		0.050	0.020	mg/L		11/06/17 11:00	11/07/17 12:29	1
Silver	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 12:29	1
Vanadium	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 12:29	1
Zinc	0.074	J	0.50	0.020	mg/L		11/06/17 11:00	11/07/17 12:29	1
Method: 6020A - Metals	(ICP/MS) - TCLP								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060		0.0060	0.0060	mg/L		11/06/17 11:00	11/07/17 16:37	1
Thallium	<0.0020		0.0020	0.0020	mg/L		11/06/17 11:00	11/07/17 16:37	1
Method: 7470A - TCLP	Mercury - TCLP								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/06/17 14:30	11/07/17 09:37	1
Method: 7471B - Mercu	rv (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.035		0.019	0.0064	mg/Kg	- -	11/03/17 15:15	11/06/17 11:55	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	5.7		0.20	0.20	SU			11/08/17 17:14	

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-62-6 (0-1.5')

Lab Sample ID: 500-136651-12

Date Collected: 11/01/17 10:00 Matrix: Solid
Date Received: 11/02/17 09:00 Percent Solids: 81.4

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	<0.018	0.018	0.0080	mg/Kg	<u>₩</u>	11/02/17 18:18	11/08/17 17:53	1
Benzene	<0.0018	0.0018	0.00047	mg/Kg	₩	11/02/17 18:18	11/08/17 17:53	1
Bromodichloromethane	<0.0018	0.0018	0.00038	mg/Kg	☼	11/02/17 18:18	11/08/17 17:53	1
Bromoform	<0.0018	0.0018	0.00054	mg/Kg	₩	11/02/17 18:18	11/08/17 17:53	1
Bromomethane	<0.0046	0.0046	0.0017	mg/Kg	₩	11/02/17 18:18	11/08/17 17:53	1
2-Butanone (MEK)	<0.0046	0.0046	0.0020	mg/Kg	₩	11/02/17 18:18	11/08/17 17:53	1
Carbon disulfide	<0.0046	0.0046	0.00096	mg/Kg	₩	11/02/17 18:18	11/08/17 17:53	1
Carbon tetrachloride	<0.0018	0.0018	0.00053	mg/Kg	₩	11/02/17 18:18	11/08/17 17:53	1
Chlorobenzene	<0.0018	0.0018	0.00068	mg/Kg	☼	11/02/17 18:18	11/08/17 17:53	1
Chloroethane	<0.0046	0.0046	0.0014	mg/Kg	₽	11/02/17 18:18	11/08/17 17:53	1
Chloroform	<0.0018	0.0018	0.00064	mg/Kg	₩	11/02/17 18:18	11/08/17 17:53	1
Chloromethane	<0.0046	0.0046	0.0019	mg/Kg	₩	11/02/17 18:18	11/08/17 17:53	1
cis-1,2-Dichloroethene	<0.0018	0.0018	0.00052	mg/Kg	₽	11/02/17 18:18	11/08/17 17:53	1
cis-1,3-Dichloropropene	<0.0018	0.0018	0.00056	mg/Kg	₩	11/02/17 18:18	11/08/17 17:53	1
Dibromochloromethane	<0.0018	0.0018	0.00060	mg/Kg	₩	11/02/17 18:18	11/08/17 17:53	1
1,1-Dichloroethane	<0.0018	0.0018	0.00063	mg/Kg	₩	11/02/17 18:18	11/08/17 17:53	1
1,2-Dichloroethane	<0.0046	0.0046	0.0014	mg/Kg	₩	11/02/17 18:18	11/08/17 17:53	1
1,1-Dichloroethene	<0.0018	0.0018	0.00063	mg/Kg	☼	11/02/17 18:18	11/08/17 17:53	1
1,2-Dichloropropane	<0.0018	0.0018	0.00048	mg/Kg	₩	11/02/17 18:18	11/08/17 17:53	1
1,3-Dichloropropene, Total	<0.0018	0.0018	0.00065	mg/Kg	₩	11/02/17 18:18	11/08/17 17:53	1
Ethylbenzene	<0.0018	0.0018	0.00088	mg/Kg	☼	11/02/17 18:18	11/08/17 17:53	1
2-Hexanone	<0.0046	0.0046	0.0014	mg/Kg	ф	11/02/17 18:18	11/08/17 17:53	1
Methylene Chloride	<0.0046	0.0046	0.0018	mg/Kg	₩	11/02/17 18:18	11/08/17 17:53	1
4-Methyl-2-pentanone (MIBK)	<0.0046	0.0046	0.0014	mg/Kg	₩	11/02/17 18:18	11/08/17 17:53	1
Methyl tert-butyl ether	<0.0018	0.0018	0.00054	mg/Kg	₩	11/02/17 18:18	11/08/17 17:53	1
Styrene	<0.0018	0.0018	0.00056	mg/Kg	₩	11/02/17 18:18	11/08/17 17:53	1
1,1,2,2-Tetrachloroethane	<0.0018	0.0018	0.00059	mg/Kg	☼	11/02/17 18:18	11/08/17 17:53	1
Tetrachloroethene	<0.0018	0.0018	0.00063	mg/Kg		11/02/17 18:18	11/08/17 17:53	1
Toluene	<0.0018	0.0018	0.00047	mg/Kg	☼	11/02/17 18:18	11/08/17 17:53	1
trans-1,2-Dichloroethene	<0.0018	0.0018	0.00082	mg/Kg	☼	11/02/17 18:18	11/08/17 17:53	1
trans-1,3-Dichloropropene	<0.0018	0.0018	0.00065	mg/Kg	₩	11/02/17 18:18	11/08/17 17:53	1
1,1,1-Trichloroethane	<0.0018	0.0018	0.00062	mg/Kg	☼	11/02/17 18:18	11/08/17 17:53	1
1,1,2-Trichloroethane	<0.0018	0.0018	0.00079	mg/Kg	₩	11/02/17 18:18	11/08/17 17:53	1
Trichloroethene	<0.0018	0.0018	0.00062	mg/Kg	φ.	11/02/17 18:18	11/08/17 17:53	1
Vinyl acetate	<0.0046	0.0046	0.0016	mg/Kg	₩	11/02/17 18:18	11/08/17 17:53	1
Vinyl chloride	<0.0018	0.0018	0.00082	mg/Kg	₩	11/02/17 18:18	11/08/17 17:53	1
Xylenes, Total	<0.0037	0.0037	0.00059	mg/Kg	\$	11/02/17 18:18	11/08/17 17:53	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	90	75 - 131				11/02/17 18:18	11/08/17 17:53	1
Dibromofluoromethane	101	75 - 126				11/02/17 18:18	11/08/17 17:53	1
1,2-Dichloroethane-d4 (Surr)	97	70 - 134				11/02/17 18:18	11/08/17 17:53	1
Toluene-d8 (Surr)	96	75 - 124				11/02/17 18:18	11/08/17 17:53	1

Method: 8270D - Semivola	tile Organic Compounds (GC/MS)						
Analyte	Result Qualifier	ŘL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	<0.039	0.039	0.0071	mg/Kg		11/08/17 17:13	11/09/17 16:02	1
Acenaphthylene	<0.039	0.039	0.0052	mg/Kg	₩	11/08/17 17:13	11/09/17 16:02	1
Anthracene	<0.039	0.039	0.0066	mg/Kg	₩	11/08/17 17:13	11/09/17 16:02	1
Benzo[a]anthracene	0.022 J	0.039	0.0053	mg/Kg		11/08/17 17:13	11/09/17 16:02	1

TestAmerica Chicago

Page 66 of 145

2

3

5

7

a

10

12

15

14

11/14/2017

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/01/17 10:00

Date Received: 11/02/17 09:00

Client Sample ID: 3160-62-6 (0-1.5')

TestAmerica Job ID: 500-136651-1

Lab Sample ID: 500-136651-12

Matrix: Solid

Percent Solids: 81.4

Method: 8270D - Semivolatil Analyte	_	Qualifier	RL	MDL	•	D	Prepared	Analyzed	Dil Fa
<u> </u>	0.029		0.039	0.0076		— ~		11/09/17 16:02	Dillia
Benzo[a]pyrene Benzo[b]fluoranthene	0.029		0.039	0.0076		 \$		11/09/17 16:02	
Benzo[g,h,i]perylene	<0.039		0.039		mg/Kg			11/09/17 16:02	
Benzo[k]fluoranthene	<0.039		0.039		mg/Kg	₽		11/09/17 16:02	
Bis(2-chloroethoxy)methane	<0.20		0.039		mg/Kg			11/09/17 16:02	
	<0.20		0.20		mg/Kg			11/09/17 16:02	
Bis(2-chloroethyl)ether	<0.20		0.20			~ ☆		11/09/17 16:02	
Bis(2-ethylhexyl) phthalate					mg/Kg				
4-Bromophenyl phenyl ether	<0.20		0.20		mg/Kg	¥		11/09/17 16:02	
Butyl benzyl phthalate	<0.20		0.20		mg/Kg	☆		11/09/17 16:02	
Carbazole	<0.20		0.20		mg/Kg			11/09/17 16:02	
4-Chloroaniline	<0.80		0.80		mg/Kg			11/09/17 16:02	
4-Chloro-3-methylphenol	<0.39		0.39		mg/Kg	₩		11/09/17 16:02	
2-Chloronaphthalene	<0.20		0.20		mg/Kg	*		11/09/17 16:02	
2-Chlorophenol	<0.20		0.20		mg/Kg			11/09/17 16:02	
4-Chlorophenyl phenyl ether	<0.20		0.20		mg/Kg	₽		11/09/17 16:02	
Chrysene	0.024	J	0.039		mg/Kg	₽		11/09/17 16:02	
Dibenz(a,h)anthracene	<0.039		0.039	0.0076		#	11/08/17 17:13	11/09/17 16:02	
Dibenzofuran	<0.20		0.20	0.046	mg/Kg	₽	11/08/17 17:13	11/09/17 16:02	
1,2-Dichlorobenzene	<0.20		0.20	0.047	mg/Kg	☼	11/08/17 17:13	11/09/17 16:02	
1,3-Dichlorobenzene	<0.20		0.20	0.044	mg/Kg	☼	11/08/17 17:13	11/09/17 16:02	
1,4-Dichlorobenzene	<0.20		0.20	0.051	mg/Kg	₽	11/08/17 17:13	11/09/17 16:02	
3,3'-Dichlorobenzidine	<0.20		0.20	0.055	mg/Kg	☼	11/08/17 17:13	11/09/17 16:02	
2,4-Dichlorophenol	< 0.39		0.39	0.094	mg/Kg	☼	11/08/17 17:13	11/09/17 16:02	
Diethyl phthalate	<0.20		0.20	0.067	mg/Kg		11/08/17 17:13	11/09/17 16:02	
2,4-Dimethylphenol	<0.39		0.39	0.15	mg/Kg	☼	11/08/17 17:13	11/09/17 16:02	
Dimethyl phthalate	<0.20		0.20	0.052	mg/Kg	☼	11/08/17 17:13	11/09/17 16:02	
Di-n-butyl phthalate	<0.20		0.20	0.060	mg/Kg		11/08/17 17:13	11/09/17 16:02	
4,6-Dinitro-2-methylphenol	<0.80		0.80		mg/Kg	☼	11/08/17 17:13	11/09/17 16:02	
2,4-Dinitrophenol	<0.80		0.80		mg/Kg	₩		11/09/17 16:02	
2,4-Dinitrotoluene	<0.20		0.20		mg/Kg	ф.		11/09/17 16:02	
2,6-Dinitrotoluene	<0.20		0.20		mg/Kg	☼		11/09/17 16:02	
Di-n-octyl phthalate	<0.20		0.20		mg/Kg	☼		11/09/17 16:02	
Fluoranthene	0.031		0.039	0.0073				11/09/17 16:02	
Fluorene	<0.039	•	0.039		mg/Kg	₩		11/09/17 16:02	
Hexachlorobenzene	<0.080		0.080	0.0091	0 0	₩		11/09/17 16:02	
Hexachlorobutadiene	<0.20		0.20		mg/Kg			11/09/17 16:02	
Hexachlorocyclopentadiene	<0.80		0.20		mg/Kg	₽		11/09/17 16:02	
Hexachloroethane	<0.20		0.80		mg/Kg	☼		11/09/17 16:02	
	<0.039		0.20					11/09/17 16:02	
Indeno[1,2,3-cd]pyrene					mg/Kg				
Isophorone	<0.20		0.20		mg/Kg	φ. ×		11/09/17 16:02	
2-Methylnaphthalene	0.026	J 	0.080	0.0073	0 0	· · · · · · · · · · · · · · · · · · ·		11/09/17 16:02	
2-Methylphenol	<0.20		0.20		mg/Kg	₩ **		11/09/17 16:02	
3 & 4 Methylphenol	<0.20	_	0.20		mg/Kg	₩		11/09/17 16:02	
Naphthalene	0.0075	. J	0.039	0.0061		T.		11/09/17 16:02	
2-Nitroaniline	<0.20		0.20		mg/Kg	₩.		11/09/17 16:02	
3-Nitroaniline	<0.39		0.39		mg/Kg	*		11/09/17 16:02	
4-Nitroaniline	<0.39		0.39		mg/Kg	₩		11/09/17 16:02	
Nitrobenzene	<0.039		0.039	0.0098		₩	11/08/17 17:13	11/09/17 16:02	
2-Nitrophenol	< 0.39		0.39	0.093	mg/Kg	₩	11/08/17 17:13	11/09/17 16:02	

TestAmerica Chicago

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/01/17 10:00

Client Sample ID: 3160-62-6 (0-1.5')

TestAmerica Job ID: 500-136651-1

Lab Sample ID: 500-136651-12

Matrix: Solid Percent Solids: 81.4

Date Received: 11/02/17 09:00

Method: 8270D - Semivolat	ile Organic Compounds	s (GC/MS) (Co	ontinued)				
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.80	0.80	0.38	mg/Kg	<u> </u>	11/08/17 17:13	11/09/17 16:02	1
N-Nitrosodi-n-propylamine	<0.080	0.080	0.048	mg/Kg	ф.	11/08/17 17:13	11/09/17 16:02	1
N-Nitrosodiphenylamine	<0.20	0.20	0.047	mg/Kg	₩	11/08/17 17:13	11/09/17 16:02	1
2,2'-oxybis[1-chloropropane]	<0.20	0.20	0.046	mg/Kg	₽	11/08/17 17:13	11/09/17 16:02	1
Pentachlorophenol	<0.80	0.80	0.63	mg/Kg		11/08/17 17:13	11/09/17 16:02	1
Phenanthrene	0.054	0.039	0.0055	mg/Kg	₽	11/08/17 17:13	11/09/17 16:02	1
Phenol	<0.20	0.20	0.088	mg/Kg	₽	11/08/17 17:13	11/09/17 16:02	1
Pyrene	0.031 J	0.039	0.0078	mg/Kg	\$	11/08/17 17:13	11/09/17 16:02	1
1,2,4-Trichlorobenzene	<0.20	0.20	0.043	mg/Kg	₽	11/08/17 17:13	11/09/17 16:02	1
2,4,5-Trichlorophenol	<0.39	0.39	0.090	mg/Kg	₩	11/08/17 17:13	11/09/17 16:02	1
2,4,6-Trichlorophenol	<0.39	0.39	0.14	mg/Kg	₽	11/08/17 17:13	11/09/17 16:02	1

Surrogate	%Recovery G	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	73		44 - 121	11/08/17 17:13	11/09/17 16:02	1
2-Fluorophenol	72		46 - 133	11/08/17 17:13	11/09/17 16:02	1
Nitrobenzene-d5	64		41 - 120	11/08/17 17:13	11/09/17 16:02	1
Phenol-d5	86		46 - 125	11/08/17 17:13	11/09/17 16:02	1
Terphenyl-d14	88		35 - 160	11/08/17 17:13	11/09/17 16:02	1
2,4,6-Tribromophenol	94		25 - 139	11/08/17 17:13	11/09/17 16:02	1

Method: 6010B - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<1.2		1.2	0.23	mg/Kg	<u></u>	11/03/17 07:41	11/05/17 23:51	1
Arsenic	7.2		0.59		mg/Kg	☼	11/03/17 07:41	11/03/17 17:30	1
Barium	120		0.59	0.068	mg/Kg	☼	11/03/17 07:41	11/03/17 17:30	1
Beryllium	0.47		0.24	0.055	mg/Kg	φ.	11/03/17 07:41	11/03/17 17:30	1
Cadmium	0.048	JB	0.12	0.021	mg/Kg	☼	11/03/17 07:41	11/03/17 17:30	1
Chromium	14		0.59	0.29	mg/Kg	≎	11/03/17 07:41	11/03/17 17:30	1
Cobalt	7.9		0.30	0.078	mg/Kg	φ.	11/03/17 07:41	11/03/17 17:30	1
Copper	9.8		0.59	0.17	mg/Kg	☼	11/03/17 07:41	11/03/17 17:30	1
Iron	15000		12	6.2	mg/Kg	☼	11/03/17 07:41	11/03/17 17:30	1
Lead	31		0.30	0.14	mg/Kg	₽	11/03/17 07:41	11/03/17 17:30	1
Manganese	720		0.59	0.086	mg/Kg	☼	11/03/17 07:41	11/03/17 17:30	1
Nickel	9.4		0.59	0.17	mg/Kg	☼	11/03/17 07:41	11/03/17 17:30	1
Selenium	1.1		0.59	0.35	mg/Kg	₽	11/03/17 07:41	11/05/17 23:51	1
Silver	< 0.30		0.30	0.076	mg/Kg	☼	11/03/17 07:41	11/03/17 17:30	1
Thallium	<0.59		0.59	0.30	mg/Kg	☼	11/03/17 07:41	11/03/17 17:30	1
Vanadium	27		0.30	0.070	mg/Kg	₽	11/03/17 07:41	11/03/17 17:30	1
Zinc	40		1.2	0.52	mg/Kg	₩	11/03/17 07:41	11/03/17 17:30	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/06/17 11:00	11/07/17 12:40	1
Barium	0.64		0.50	0.050	mg/L		11/06/17 11:00	11/07/17 12:40	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/06/17 11:00	11/07/17 12:40	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/06/17 11:00	11/07/17 12:40	1
Chromium	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 12:40	1
Cobalt	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 12:40	1
Copper	0.012	J	0.025	0.010	mg/L		11/06/17 11:00	11/07/17 12:40	1
Iron	0.39	J	0.40	0.20	mg/L		11/06/17 11:00	11/07/17 12:40	1

Page 68 of 145

TestAmerica Chicago

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Received: 11/02/17 09:00

рН

TestAmerica Job ID: 500-136651-1

Client Sample ID: 3160-62-6 (0-1.5') Lab Sample ID: 500-136651-12 Date Collected: 11/01/17 10:00

Matrix: Solid

Percent Solids: 81.4

11/08/17 17:14

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	<0.0075		0.0075	0.0075	mg/L		11/06/17 11:00	11/07/17 12:40	1
Manganese	0.037		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 12:40	1
Nickel	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 12:40	1
Selenium	<0.050		0.050	0.020	mg/L		11/06/17 11:00	11/07/17 12:40	1
Silver	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 12:40	1
Vanadium	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 12:40	1
Zinc	0.071	J	0.50	0.020	mg/L		11/06/17 11:00	11/07/17 12:40	1
_ Method: 6020A - Metals (ICP/MS) - TCLP								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060		0.0060	0.0060	mg/L		11/06/17 11:00	11/07/17 16:41	1
Thallium -	<0.0020		0.0020	0.0020	mg/L		11/06/17 11:00	11/07/17 16:41	1
- Method: 7470A - TCLP M	ercury - TCLP								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/06/17 14:30	11/07/17 09:38	1
- Method: 7471B - Mercury	(CVAA)								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.20		0.020	0.0067	mg/Kg		11/03/17 15:15	11/06/17 11:57	1
- General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

0.20

6.0

0.20 SU

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Lab Sample ID: 500-136651-13

Client Sample ID: 3160-62-5 (0-1.5') Date Collected: 11/01/17 10:10 **Matrix: Solid** Date Received: 11/02/17 09:00 Percent Solids: 78.2

Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	<0.019		0.019	0.0083	mg/Kg	<u></u>	11/02/17 18:18	11/08/17 18:18	1
Benzene	<0.0019		0.0019	0.00049		₩	11/02/17 18:18	11/08/17 18:18	1
Bromodichloromethane	< 0.0019		0.0019	0.00039		₩	11/02/17 18:18	11/08/17 18:18	1
Bromoform	<0.0019		0.0019	0.00056	mg/Kg	₩.	11/02/17 18:18	11/08/17 18:18	1
Bromomethane	<0.0048		0.0048	0.0018	mg/Kg	₩	11/02/17 18:18	11/08/17 18:18	1
2-Butanone (MEK)	<0.0048		0.0048	0.0021	mg/Kg	₩	11/02/17 18:18	11/08/17 18:18	1
Carbon disulfide	<0.0048		0.0048	0.00099	mg/Kg		11/02/17 18:18	11/08/17 18:18	1
Carbon tetrachloride	<0.0019		0.0019	0.00055	mg/Kg	₩	11/02/17 18:18	11/08/17 18:18	1
Chlorobenzene	< 0.0019		0.0019	0.00070	mg/Kg	₩	11/02/17 18:18	11/08/17 18:18	1
Chloroethane	<0.0048		0.0048	0.0014	mg/Kg	₩	11/02/17 18:18	11/08/17 18:18	1
Chloroform	<0.0019		0.0019	0.00066	mg/Kg	₩	11/02/17 18:18	11/08/17 18:18	1
Chloromethane	<0.0048		0.0048	0.0019	mg/Kg	₩	11/02/17 18:18	11/08/17 18:18	1
cis-1,2-Dichloroethene	<0.0019		0.0019	0.00053	mg/Kg	₩.	11/02/17 18:18	11/08/17 18:18	1
cis-1,3-Dichloropropene	< 0.0019		0.0019	0.00057	mg/Kg	₩	11/02/17 18:18	11/08/17 18:18	1
Dibromochloromethane	<0.0019		0.0019	0.00062	mg/Kg	₩	11/02/17 18:18	11/08/17 18:18	1
1,1-Dichloroethane	<0.0019		0.0019	0.00065	mg/Kg		11/02/17 18:18	11/08/17 18:18	1
1,2-Dichloroethane	<0.0048		0.0048	0.0015	mg/Kg	₩	11/02/17 18:18	11/08/17 18:18	1
1,1-Dichloroethene	< 0.0019		0.0019	0.00066	mg/Kg	₩	11/02/17 18:18	11/08/17 18:18	1
1,2-Dichloropropane	<0.0019		0.0019	0.00049	mg/Kg	₩.	11/02/17 18:18	11/08/17 18:18	1
1,3-Dichloropropene, Total	< 0.0019		0.0019	0.00067	mg/Kg	₩	11/02/17 18:18	11/08/17 18:18	1
Ethylbenzene	<0.0019		0.0019	0.00091	mg/Kg	₩	11/02/17 18:18	11/08/17 18:18	1
2-Hexanone	<0.0048		0.0048	0.0015	mg/Kg	φ.	11/02/17 18:18	11/08/17 18:18	1
Methylene Chloride	<0.0048		0.0048	0.0019	mg/Kg	₩	11/02/17 18:18	11/08/17 18:18	1
4-Methyl-2-pentanone (MIBK)	<0.0048		0.0048	0.0014	mg/Kg	₩	11/02/17 18:18	11/08/17 18:18	1
Methyl tert-butyl ether	<0.0019		0.0019	0.00056	mg/Kg	₩	11/02/17 18:18	11/08/17 18:18	1
Styrene	<0.0019		0.0019	0.00058	mg/Kg	₩	11/02/17 18:18	11/08/17 18:18	1
1,1,2,2-Tetrachloroethane	<0.0019		0.0019	0.00061	mg/Kg	₩	11/02/17 18:18	11/08/17 18:18	1
Tetrachloroethene	<0.0019		0.0019	0.00065	mg/Kg		11/02/17 18:18	11/08/17 18:18	1
Toluene	<0.0019		0.0019	0.00048	mg/Kg	₩	11/02/17 18:18	11/08/17 18:18	1
trans-1,2-Dichloroethene	<0.0019		0.0019	0.00084	mg/Kg	₩	11/02/17 18:18	11/08/17 18:18	1
trans-1,3-Dichloropropene	<0.0019		0.0019	0.00067	mg/Kg	₩.	11/02/17 18:18	11/08/17 18:18	1
1,1,1-Trichloroethane	<0.0019		0.0019	0.00064		₩	11/02/17 18:18	11/08/17 18:18	1
1,1,2-Trichloroethane	<0.0019		0.0019	0.00082		₩	11/02/17 18:18	11/08/17 18:18	1
Trichloroethene	<0.0019		0.0019	0.00064		₩	11/02/17 18:18	11/08/17 18:18	1
Vinyl acetate	<0.0048		0.0048	0.0017		₩	11/02/17 18:18	11/08/17 18:18	1
Vinyl chloride	<0.0019		0.0019	0.00084	mg/Kg	₩	11/02/17 18:18	11/08/17 18:18	1
Xylenes, Total	<0.0038		0.0038	0.00061		ф.		11/08/17 18:18	1
Surrogate	%Recovery G	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	92		75 - 131				11/02/17 18:18	11/08/17 18:18	1
Dibromofluoromethane	100		75 - 126				11/02/17 18:18	11/08/17 18:18	1
1,2-Dichloroethane-d4 (Surr)	94		70 - 134				11/02/17 18:18	11/08/17 18:18	1

Method: 8270D - Semivol	atile Organic Compounds (GC/MS)						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	<0.042	0.042	0.0076	mg/Kg	₩	11/13/17 18:14	11/14/17 12:23	1
Acenaphthylene	<0.042	0.042	0.0056	mg/Kg	☼	11/13/17 18:14	11/14/17 12:23	1
Anthracene	0.0075 J	0.042	0.0070	mg/Kg	≎	11/13/17 18:14	11/14/17 12:23	1
Benzo[a]anthracene	0.025 J	0.042	0.0057	mg/Kg	₽	11/13/17 18:14	11/14/17 12:23	1

TestAmerica Chicago

Page 70 of 145

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/01/17 10:10

Date Received: 11/02/17 09:00

Client Sample ID: 3160-62-5 (0-1.5')

TestAmerica Job ID: 500-136651-1

Lab Sample ID: 500-136651-13

Matrix: Solid
Percent Solids: 78.2

Method: 8270D - Semivolatil Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzo[a]pyrene	0.035	J -	0.042	0.0082	mg/Kg	<u></u>	11/13/17 18:14	11/14/17 12:23	
Benzo[b]fluoranthene	0.035	J	0.042	0.0091	mg/Kg	☼	11/13/17 18:14	11/14/17 12:23	
Benzo[g,h,i]perylene	0.014		0.042		mg/Kg		11/13/17 18:14	11/14/17 12:23	
Benzo[k]fluoranthene	0.013	J	0.042		mg/Kg	₽	11/13/17 18:14	11/14/17 12:23	
Bis(2-chloroethoxy)methane	<0.21		0.21	0.043	mg/Kg	₽	11/13/17 18:14	11/14/17 12:23	
Bis(2-chloroethyl)ether	<0.21		0.21		mg/Kg		11/13/17 18:14	11/14/17 12:23	
Bis(2-ethylhexyl) phthalate	<0.21		0.21	0.077	mg/Kg	₽	11/13/17 18:14	11/14/17 12:23	
4-Bromophenyl phenyl ether	<0.21		0.21	0.056	mg/Kg	☼	11/13/17 18:14	11/14/17 12:23	
Butyl benzyl phthalate	<0.21		0.21	0.080	mg/Kg		11/13/17 18:14	11/14/17 12:23	
Carbazole	<0.21		0.21		mg/Kg	☼	11/13/17 18:14	11/14/17 12:23	
4-Chloroaniline	<0.85		0.85		mg/Kg	☼	11/13/17 18:14	11/14/17 12:23	
4-Chloro-3-methylphenol	<0.42		0.42		mg/Kg	· · · · · · · · · · · · · · · · · · ·	11/13/17 18:14	11/14/17 12:23	
2-Chloronaphthalene	<0.21		0.21		mg/Kg	₽		11/14/17 12:23	
2-Chlorophenol	<0.21		0.21		mg/Kg	₽		11/14/17 12:23	
4-Chlorophenyl phenyl ether	<0.21		0.21		mg/Kg			11/14/17 12:23	
Chrysene	0.028	J	0.042	0.011		☆		11/14/17 12:23	
Dibenz(a,h)anthracene	<0.042		0.042	0.0081		☼		11/14/17 12:23	
Dibenzofuran	<0.21		0.21		mg/Kg			11/14/17 12:23	
1.2-Dichlorobenzene	<0.21		0.21		mg/Kg	☼		11/14/17 12:23	
1,3-Dichlorobenzene	<0.21		0.21	0.047		₽		11/14/17 12:23	
1,4-Dichlorobenzene	<0.21		0.21		mg/Kg			11/14/17 12:23	
3,3'-Dichlorobenzidine	<0.21		0.21		mg/Kg	₽		11/14/17 12:23	
2,4-Dichlorophenol	<0.42		0.42		mg/Kg	☆		11/14/17 12:23	
Diethyl phthalate	<0.21		0.42	0.10				11/14/17 12:23	
2,4-Dimethylphenol	<0.42		0.42		mg/Kg	₩		11/14/17 12:23	
Dimethyl phthalate	<0.42		0.42		mg/Kg			11/14/17 12:23	
Di-n-butyl phthalate	<0.21		0.21		mg/Kg			11/14/17 12:23	
4,6-Dinitro-2-methylphenol	<0.85		0.85	0.004		т ф		11/14/17 12:23	
2,4-Dinitrophenol	<0.85		0.85		mg/Kg			11/14/17 12:23	
2,4-Dinitrotoluene	<0.21		0.83	0.067				11/14/17 12:23	
2,6-Dinitrotoluene	<0.21		0.21		mg/Kg	~ ☆		11/14/17 12:23	
·	<0.21		0.21			Ť Ť		11/14/17 12:23	
Di-n-octyl phthalate					mg/Kg	· · · · · · · · · · · · · · · · · · ·			
Fluoranthene	0.048		0.042	0.0078		₩		11/14/17 12:23	
Fluorene	<0.042		0.042	0.0059 0.0098		≎		11/14/17 12:23	
Hexachlorobenzene	<0.085		0.085					11/14/17 12:23	
Hexachlorobutadiene	<0.21		0.21		mg/Kg	☆		11/14/17 12:23	
Hexachlorocyclopentadiene	<0.85		0.85		mg/Kg	₩		11/14/17 12:23	
Hexachloroethane	<0.21		0.21		mg/Kg			11/14/17 12:23	
Indeno[1,2,3-cd]pyrene	0.012	J	0.042		mg/Kg	Ψ.		11/14/17 12:23	
Isophorone	<0.21		0.21		mg/Kg	₩.		11/14/17 12:23	
2-Methylnaphthalene	0.018	J 	0.085	0.0078		<u>.</u> .		11/14/17 12:23	
2-Methylphenol	<0.21		0.21		mg/Kg			11/14/17 12:23	
3 & 4 Methylphenol	<0.21	_	0.21		mg/Kg			11/14/17 12:23	
Naphthalene	0.0070	J	0.042	0.0065				11/14/17 12:23	
2-Nitroaniline	<0.21		0.21		mg/Kg	₽		11/14/17 12:23	
3-Nitroaniline	<0.42		0.42		mg/Kg	*		11/14/17 12:23	
4-Nitroaniline	<0.42		0.42		mg/Kg			11/14/17 12:23	
Nitrobenzene	<0.042		0.042		mg/Kg	₽		11/14/17 12:23	
2-Nitrophenol	< 0.42		0.42	0.10	mg/Kg	₩	11/13/17 18:14	11/14/17 12:23	

TestAmerica Chicago

4

6

8

10

12

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/01/17 10:10

Client Sample ID: 3160-62-5 (0-1.5')

TestAmerica Job ID: 500-136651-1

Lab Sample ID: 500-136651-13

Matrix: Solid Percent Solids: 78.2

Date Received: 11/02/17 09:00 Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Analyte	Result Qualifier	RL	MDL	•	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.85	0.85	0.40	mg/Kg	<u> </u>	11/13/17 18:14	11/14/17 12:23	1
N-Nitrosodi-n-propylamine	<0.085	0.085	0.052	mg/Kg	φ.	11/13/17 18:14	11/14/17 12:23	1
N-Nitrosodiphenylamine	<0.21	0.21	0.050	mg/Kg	₩	11/13/17 18:14	11/14/17 12:23	1
2,2'-oxybis[1-chloropropane]	<0.21	0.21	0.049	mg/Kg	₩	11/13/17 18:14	11/14/17 12:23	1
Pentachlorophenol	<0.85	0.85	0.68	mg/Kg	₩	11/13/17 18:14	11/14/17 12:23	1
Phenanthrene	0.052	0.042	0.0059	mg/Kg	₩	11/13/17 18:14	11/14/17 12:23	1
Phenol	<0.21	0.21	0.094	mg/Kg	₩	11/13/17 18:14	11/14/17 12:23	1
Pyrene	0.039 J	0.042	0.0084	mg/Kg	₩	11/13/17 18:14	11/14/17 12:23	1
1,2,4-Trichlorobenzene	<0.21	0.21	0.045	mg/Kg	₩	11/13/17 18:14	11/14/17 12:23	1
2,4,5-Trichlorophenol	<0.42	0.42	0.096	mg/Kg	₩	11/13/17 18:14	11/14/17 12:23	1
2,4,6-Trichlorophenol	<0.42	0.42	0.14	mg/Kg	₩.	11/13/17 18:14	11/14/17 12:23	1

Surrogate	%Recovery Quality	ïer Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	74	44 - 121	11/13/17 18:14	11/14/17 12:23	1
2-Fluorophenol	81	46 - 133	11/13/17 18:14	11/14/17 12:23	1
Nitrobenzene-d5	69	41 - 120	11/13/17 18:14	11/14/17 12:23	1
Phenol-d5	79	46 - 125	11/13/17 18:14	11/14/17 12:23	1
Terphenyl-d14	70	35 - 160	11/13/17 18:14	11/14/17 12:23	1
2,4,6-Tribromophenol	73	25 - 139	11/13/17 18:14	11/14/17 12:23	1

Method: 6010B - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<1.0		1.0	0.20	mg/Kg	₩	11/03/17 07:41	11/05/17 23:55	1
Arsenic	5.4		0.52	0.18	mg/Kg	☼	11/03/17 07:41	11/03/17 17:34	1
Barium	89		0.52	0.059	mg/Kg	☼	11/03/17 07:41	11/03/17 17:34	1
Beryllium	0.44		0.21	0.048	mg/Kg	\$	11/03/17 07:41	11/03/17 17:34	1
Cadmium	<0.10		0.10	0.019	mg/Kg	☼	11/03/17 07:41	11/03/17 17:34	1
Chromium	12		0.52	0.26	mg/Kg	☼	11/03/17 07:41	11/03/17 17:34	1
Cobalt	8.4		0.26	0.068	mg/Kg	φ.	11/03/17 07:41	11/03/17 17:34	1
Copper	7.6		0.52	0.14	mg/Kg	☼	11/03/17 07:41	11/03/17 17:34	1
Iron	11000		10	5.4	mg/Kg	☼	11/03/17 07:41	11/03/17 17:34	1
Lead	19		0.26	0.12	mg/Kg	₽	11/03/17 07:41	11/03/17 17:34	1
Manganese	670		0.52	0.075	mg/Kg	☼	11/03/17 07:41	11/03/17 17:34	1
Nickel	7.4		0.52	0.15	mg/Kg	☼	11/03/17 07:41	11/03/17 17:34	1
Selenium	0.61		0.52	0.30	mg/Kg	₽	11/03/17 07:41	11/05/17 23:55	1
Silver	<0.26		0.26	0.067	mg/Kg	☼	11/03/17 07:41	11/03/17 17:34	1
Thallium	<0.52		0.52	0.26	mg/Kg	☼	11/03/17 07:41	11/03/17 17:34	1
Vanadium	22		0.26	0.061	mg/Kg	\$	11/03/17 07:41	11/03/17 17:34	1
Zinc	28		1.0	0.45	mg/Kg	₩	11/03/17 07:41	11/03/17 17:34	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/06/17 11:00	11/07/17 12:44	1
Barium	0.43	J	0.50	0.050	mg/L		11/06/17 11:00	11/07/17 12:44	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/06/17 11:00	11/07/17 12:44	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/06/17 11:00	11/07/17 12:44	1
Chromium	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 12:44	1
Cobalt	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 12:44	1
Copper	0.011	J	0.025	0.010	mg/L		11/06/17 11:00	11/07/17 12:44	1
Iron	0.28	J	0.40	0.20	mg/L		11/06/17 11:00	11/07/17 12:44	1

Page 72 of 145

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Received: 11/02/17 09:00

TestAmerica Job ID: 500-136651-1

Client Sample ID: 3160-62-5 (0-1.5') Lab Sample ID: 500-136651-13 Date Collected: 11/01/17 10:10

Matrix: Solid

Percent Solids: 78.2

Analyte	Is (ICP) - TCLP (Co	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	<0.0075	Qualifier	0.0075	0.0075			11/06/17 11:00	11/07/17 12:44	DII FAC
									ا
Manganese	0.033		0.025	0.010	J		11/06/17 11:00	11/07/17 12:44	1
Nickel	<0.025		0.025	0.010	J		11/06/17 11:00	11/07/17 12:44	1
Selenium	<0.050		0.050	0.020			11/06/17 11:00	11/07/17 12:44	1
Silver	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 12:44	1
Vanadium	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 12:44	1
Zinc	0.041	J	0.50	0.020	mg/L		11/06/17 11:00	11/07/17 12:44	1
Method: 6020A - Metal	Is (ICP/MS) - TCLP								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060		0.0060	0.0060	mg/L		11/06/17 11:00	11/07/17 16:46	1
Thallium	<0.0020		0.0020	0.0020	mg/L		11/06/17 11:00	11/07/17 16:46	1
Method: 7470A - TCLF	Mercury - TCLP								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/06/17 14:30	11/07/17 09:40	1
Method: 7471B - Merc	urv (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.032		0.019	0.0062	mg/Kg	- -	11/03/17 15:15	11/06/17 12:00	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	6.9		0.20	0.20	SU			11/08/17 17:14	

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-62-4 (0-1.5')
Date Collected: 11/01/17 10:20

Lab Sample ID: 500-136651-14 Matrix: Solid

Date Received: 11/02/17 09:00

Analyte

Acenaphthene

Anthracene

Acenaphthylene

Benzo[a]anthracene

Percent Solids: 80.1

Analyte	Result (Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Acetone	<0.019	0.019	0.0083	mg/Kg		11/02/17 18:18	11/08/17 18:43	
Benzene	<0.0019	0.0019	0.00049	mg/Kg	≎	11/02/17 18:18	11/08/17 18:43	
Bromodichloromethane	<0.0019	0.0019	0.00039	mg/Kg	☼	11/02/17 18:18	11/08/17 18:43	
Bromoform	<0.0019	0.0019	0.00056	mg/Kg	\$	11/02/17 18:18	11/08/17 18:43	
Bromomethane	<0.0048	0.0048	0.0018	mg/Kg	☼	11/02/17 18:18	11/08/17 18:43	
2-Butanone (MEK)	<0.0048	0.0048	0.0021	mg/Kg	☼	11/02/17 18:18	11/08/17 18:43	
Carbon disulfide	<0.0048	0.0048	0.0010	mg/Kg		11/02/17 18:18	11/08/17 18:43	
Carbon tetrachloride	<0.0019	0.0019	0.00056	mg/Kg	☼	11/02/17 18:18	11/08/17 18:43	
Chlorobenzene	< 0.0019	0.0019	0.00071	mg/Kg	☼	11/02/17 18:18	11/08/17 18:43	
Chloroethane	<0.0048	0.0048	0.0014	mg/Kg	\$	11/02/17 18:18	11/08/17 18:43	
Chloroform	<0.0019	0.0019	0.00066	mg/Kg	₩	11/02/17 18:18	11/08/17 18:43	
Chloromethane	<0.0048	0.0048	0.0019	mg/Kg	₩	11/02/17 18:18	11/08/17 18:43	
cis-1,2-Dichloroethene	<0.0019	0.0019	0.00054	mg/Kg		11/02/17 18:18	11/08/17 18:43	• • • • • • • •
cis-1,3-Dichloropropene	<0.0019	0.0019	0.00058		₽	11/02/17 18:18	11/08/17 18:43	
Dibromochloromethane	<0.0019	0.0019	0.00063	mg/Kg	₽	11/02/17 18:18	11/08/17 18:43	
1,1-Dichloroethane	<0.0019	0.0019	0.00066			11/02/17 18:18	11/08/17 18:43	
1,2-Dichloroethane	<0.0048	0.0048	0.0015		₩	11/02/17 18:18	11/08/17 18:43	
1,1-Dichloroethene	<0.0019	0.0019	0.00066		₩	11/02/17 18:18	11/08/17 18:43	
1,2-Dichloropropane	<0.0019	0.0019	0.00050			11/02/17 18:18	11/08/17 18:43	· · · · · .
1,3-Dichloropropene, Total	<0.0019	0.0019	0.00067		₩	11/02/17 18:18	11/08/17 18:43	
Ethylbenzene	<0.0019	0.0019	0.00092	ma/Ka	₩	11/02/17 18:18	11/08/17 18:43	
2-Hexanone	<0.0048	0.0048		mg/Kg	· · · · · · · · · · · · · · · · · · ·		11/08/17 18:43	· · · · · · .
Methylene Chloride	<0.0048	0.0048		mg/Kg	₽	11/02/17 18:18	11/08/17 18:43	
4-Methyl-2-pentanone (MIBK)	<0.0048	0.0048		mg/Kg	₽		11/08/17 18:43	
Methyl tert-butyl ether	<0.0019	0.0019	0.00056				11/08/17 18:43	
Styrene	<0.0019	0.0019	0.00058		₩		11/08/17 18:43	
1,1,2,2-Tetrachloroethane	<0.0019	0.0019	0.00061		₽		11/08/17 18:43	
Tetrachloroethene	<0.0019	0.0019	0.00065	0 0			11/08/17 18:43	
Toluene	<0.0019	0.0019	0.00048		₽		11/08/17 18:43	
trans-1,2-Dichloroethene	<0.0019	0.0019	0.00085		₽		11/08/17 18:43	
trans-1,3-Dichloropropene	<0.0019	0.0019	0.00067				11/08/17 18:43	
1,1,1-Trichloroethane	<0.0019	0.0019	0.00064		₽		11/08/17 18:43	
1,1,2-Trichloroethane	<0.0019	0.0019	0.00082		≎		11/08/17 18:43	
Trichloroethene	<0.0019	0.0019	0.00065				11/08/17 18:43	
Vinyl acetate	<0.0048	0.0048		mg/Kg	₩		11/08/17 18:43	
Vinyl chloride	<0.0040	0.0019	0.00085	0 0	₽		11/08/17 18:43	
Xylenes, Total	<0.0038	0.0038	0.00061			11/02/17 18:18		· · · · · · .
Surrogate	%Recovery	Qualifier Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	90	75 - 131				11/02/17 18:18	11/08/17 18:43	-
Dibromofluoromethane	101	75 - 126				11/02/17 18:18	11/08/17 18:43	
1,2-Dichloroethane-d4 (Surr)	97	70 - 134				11/02/17 18:18	11/08/17 18:43	
Toluene-d8 (Surr)	96	75 - 124				11/02/17 18:18	11/08/17 18:43	

TestAmerica Chicago

Analyzed

Prepared

 \$\overline{\pi}\$
 \overline{11/08/17 17:13}
 \overline{11/09/17 14:43}

11/08/17 17:13 11/09/17 14:43

☼ 11/08/17 17:13 11/09/17 14:43

* 11/08/17 17:13 11/09/17 14:43

RL

0.039

0.039

0.039

0.039

MDL Unit

0.0071 mg/Kg

0.0052 mg/Kg

0.0066 mg/Kg

0.0053 mg/Kg

Result Qualifier

<0.039

<0.039

<0.039

0.011 J

Dil Fac

3

5

6

0

10

12

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/01/17 10:20

Date Received: 11/02/17 09:00

Nitrobenzene

2-Nitrophenol

Client Sample ID: 3160-62-4 (0-1.5')

TestAmerica Job ID: 500-136651-1

Lab Sample ID: 500-136651-14

Matrix: Solid

Percent Solids: 80.1

Method: 8270D - Semivolatil Analyte		Qualifier	ŔĹ	MDL		D	Prepared	Analyzed	Dil Fac
<u> </u>	0.019		0.039	0.0076		— ¤		11/09/17 14:43	- DII Fac
Benzo[a]pyrene Benzo[b]fluoranthene	0.019		0.039	0.0076		.;;		11/09/17 14:43	1
Benzo[g,h,i]perylene	<0.039		0.039		mg/Kg			11/09/17 14:43	· · · · · · · · · · · · · · · · · · ·
Benzo[k]fluoranthene	<0.039		0.039		mg/Kg	₩		11/09/17 14:43	1
Bis(2-chloroethoxy)methane	<0.20		0.039		mg/Kg			11/09/17 14:43	1
Bis(2-chloroethyl)ether	<0.20		0.20		mg/Kg			11/09/17 14:43	
Bis(2-ethylhexyl) phthalate	<0.20		0.20		mg/Kg			11/09/17 14:43	1
4-Bromophenyl phenyl ether	<0.20		0.20		mg/Kg			11/09/17 14:43	1
Butyl benzyl phthalate	<0.20		0.20		mg/Kg	· · · · · · · .		11/09/17 14:43	
Carbazole	<0.20		0.20		mg/Kg			11/09/17 14:43	1
4-Chloroaniline	<0.80		0.80		mg/Kg	☼		11/09/17 14:43	1
4-Chloro-3-methylphenol	<0.39		0.39		mg/Kg	· · · · · · .		11/09/17 14:43	ا
* *			0.39			☼			1
2-Chloronaphthalene	<0.20 <0.20		0.20		mg/Kg mg/Kg	☆		11/09/17 14:43 11/09/17 14:43	1
2-Chlorophenol 4-Chlorophenyl phenyl ether	<0.20		0.20		mg/Kg mg/Kg	· · · · · · · · · · · · · · · · · · ·		11/09/17 14:43	۱
						₩			1
Chrysene	0.011	J	0.039		mg/Kg	₩		11/09/17 14:43	1
Dibenz(a,h)anthracene	<0.039		0.039	0.0076				11/09/17 14:43	1
Dibenzofuran	<0.20		0.20		mg/Kg	☆		11/09/17 14:43	1
1,2-Dichlorobenzene	<0.20		0.20		mg/Kg	☆		11/09/17 14:43	1
1,3-Dichlorobenzene	<0.20		0.20		mg/Kg	· · · · ·		11/09/17 14:43	1
1,4-Dichlorobenzene	<0.20		0.20		mg/Kg	☆		11/09/17 14:43	1
3,3'-Dichlorobenzidine	<0.20		0.20		mg/Kg	ψ.		11/09/17 14:43	1
2,4-Dichlorophenol	<0.39		0.39		mg/Kg	<u>.</u> .		11/09/17 14:43	
Diethyl phthalate	<0.20		0.20		mg/Kg	₩.		11/09/17 14:43	1
2,4-Dimethylphenol	<0.39		0.39		mg/Kg	ψ.		11/09/17 14:43	1
Dimethyl phthalate	<0.20		0.20		mg/Kg	<u>.</u> .		11/09/17 14:43	1
Di-n-butyl phthalate	<0.20		0.20		mg/Kg	₩.		11/09/17 14:43	1
4,6-Dinitro-2-methylphenol	<0.80		0.80		mg/Kg	₩		11/09/17 14:43	1
2,4-Dinitrophenol	<0.80		0.80		mg/Kg			11/09/17 14:43	1
2,4-Dinitrotoluene	<0.20		0.20		mg/Kg	*		11/09/17 14:43	1
2,6-Dinitrotoluene	<0.20		0.20		mg/Kg	*		11/09/17 14:43	1
Di-n-octyl phthalate	<0.20		0.20		mg/Kg			11/09/17 14:43	1
Fluoranthene	0.012	J	0.039	0.0073		*		11/09/17 14:43	1
Fluorene	<0.039		0.039	0.0056	0 0	₩		11/09/17 14:43	1
Hexachlorobenzene	<0.080		0.080	0.0092	mg/Kg	#		11/09/17 14:43	1
Hexachlorobutadiene	<0.20		0.20		mg/Kg	₩		11/09/17 14:43	1
Hexachlorocyclopentadiene	<0.80		0.80	0.23	mg/Kg	₩	11/08/17 17:13	11/09/17 14:43	1
Hexachloroethane	<0.20		0.20	0.060	mg/Kg	₩	11/08/17 17:13	11/09/17 14:43	1
Indeno[1,2,3-cd]pyrene	<0.039		0.039	0.010	mg/Kg	₩	11/08/17 17:13	11/09/17 14:43	1
Isophorone	<0.20		0.20	0.044	mg/Kg	₩	11/08/17 17:13	11/09/17 14:43	1
2-Methylnaphthalene	0.012	J	0.080	0.0073	mg/Kg	₩	11/08/17 17:13	11/09/17 14:43	1
2-Methylphenol	<0.20		0.20	0.063	mg/Kg	₽	11/08/17 17:13	11/09/17 14:43	1
3 & 4 Methylphenol	<0.20		0.20	0.066	mg/Kg	☼	11/08/17 17:13	11/09/17 14:43	1
Naphthalene	< 0.039		0.039	0.0061	mg/Kg	☼	11/08/17 17:13	11/09/17 14:43	1
2-Nitroaniline	<0.20		0.20	0.053	mg/Kg	₽	11/08/17 17:13	11/09/17 14:43	1
3-Nitroaniline	< 0.39		0.39	0.12	mg/Kg	☼	11/08/17 17:13	11/09/17 14:43	1
4-Nitroaniline	<0.39		0.39	0.17	mg/Kg	₩	11/08/17 17:13	11/09/17 14:43	1

TestAmerica Chicago

11/08/17 17:13 11/09/17 14:43

11/08/17 17:13 11/09/17 14:43

Page 75 of 145

0.039

0.39

< 0.039

< 0.39

0.0099 mg/Kg

0.093 mg/Kg

11/14/2017

3

5

7

9

11

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/01/17 10:20

Date Received: 11/02/17 09:00

Client Sample ID: 3160-62-4 (0-1.5')

TestAmerica Job ID: 500-136651-1

Lab Sample ID: 500-136651-14

. Matrix: Solid

Percent Solids: 80.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.80		0.80	0.38	mg/Kg	<u> </u>	11/08/17 17:13	11/09/17 14:43	1
N-Nitrosodi-n-propylamine	<0.080		0.080	0.048	mg/Kg	φ.	11/08/17 17:13	11/09/17 14:43	1
N-Nitrosodiphenylamine	<0.20		0.20	0.047	mg/Kg	☼	11/08/17 17:13	11/09/17 14:43	1
2,2'-oxybis[1-chloropropane]	<0.20		0.20	0.046	mg/Kg	☼	11/08/17 17:13	11/09/17 14:43	1
Pentachlorophenol	<0.80		0.80	0.63	mg/Kg	₽	11/08/17 17:13	11/09/17 14:43	1
Phenanthrene	0.026	J	0.039	0.0055	mg/Kg	☼	11/08/17 17:13	11/09/17 14:43	1
Phenol	<0.20		0.20	0.088	mg/Kg	☼	11/08/17 17:13	11/09/17 14:43	1
Pyrene	0.014	J	0.039	0.0079	mg/Kg	₩	11/08/17 17:13	11/09/17 14:43	1
1,2,4-Trichlorobenzene	<0.20		0.20	0.043	mg/Kg	☼	11/08/17 17:13	11/09/17 14:43	1
2,4,5-Trichlorophenol	<0.39		0.39	0.090	mg/Kg	☼	11/08/17 17:13	11/09/17 14:43	1
2,4,6-Trichlorophenol	<0.39		0.39	0.14	mg/Kg		11/08/17 17:13	11/09/17 14:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	67		44 - 121				11/08/17 17:13	11/09/17 14:43	1
2-Fluorophenol	66		46 - 133				11/08/17 17:13	11/09/17 14:43	1
Nitrobenzene-d5	59		41 - 120				11/08/17 17:13	11/09/17 14:43	1
Phenol-d5	77		46 - 125				11/08/17 17:13	11/09/17 14:43	1
Terphenyl-d14	83		35 - 160				11/08/17 17:13	11/09/17 14:43	1
2,4,6-Tribromophenol	80		25 - 139				11/08/17 17:13	11/09/17 14:43	1

Method: 6010B - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<1.0		1.0	0.20	mg/Kg	<u></u> ₩	11/03/17 07:41	11/05/17 23:59	1
Arsenic	3.8		0.51	0.17	mg/Kg	☼	11/03/17 07:41	11/03/17 17:38	1
Barium	97		0.51	0.058	mg/Kg	☼	11/03/17 07:41	11/03/17 17:38	1
Beryllium	0.47		0.20	0.048	mg/Kg	₽	11/03/17 07:41	11/03/17 17:38	1
Cadmium	0.058	JB	0.10	0.018	mg/Kg	₽	11/03/17 07:41	11/03/17 17:38	1
Chromium	12		0.51	0.25	mg/Kg	☼	11/03/17 07:41	11/03/17 17:38	1
Cobalt	4.5		0.26	0.067	mg/Kg	₽	11/03/17 07:41	11/03/17 17:38	1
Copper	9.2		0.51	0.14	mg/Kg	☼	11/03/17 07:41	11/03/17 17:38	1
Iron	10000		10	5.3	mg/Kg	☼	11/03/17 07:41	11/03/17 17:38	1
Lead	21		0.26	0.12	mg/Kg	₽	11/03/17 07:41	11/03/17 17:38	1
Manganese	250		0.51	0.074	mg/Kg	☼	11/03/17 07:41	11/03/17 17:38	1
Nickel	9.6		0.51	0.15	mg/Kg	☼	11/03/17 07:41	11/03/17 17:38	1
Selenium	0.66		0.51	0.30	mg/Kg	₽	11/03/17 07:41	11/05/17 23:59	1
Silver	<0.26		0.26	0.066	mg/Kg	☼	11/03/17 07:41	11/03/17 17:38	1
Thallium	<0.51		0.51	0.26	mg/Kg	☼	11/03/17 07:41	11/03/17 17:38	1
Vanadium	21		0.26	0.060	mg/Kg	₽	11/03/17 07:41	11/03/17 17:38	1
Zinc	36		1.0	0.45	mg/Kg	₩	11/03/17 07:41	11/03/17 17:38	1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050	0.050	0.010	mg/L		11/06/17 11:00	11/07/17 12:49	1
Barium	0.51	0.50	0.050	mg/L		11/06/17 11:00	11/07/17 12:49	1
Beryllium	<0.0040	0.0040	0.0040	mg/L		11/06/17 11:00	11/07/17 12:49	1
Cadmium	<0.0050	0.0050	0.0020	mg/L		11/06/17 11:00	11/07/17 12:49	1
Chromium	<0.025	0.025	0.010	mg/L		11/06/17 11:00	11/07/17 12:49	1
Cobalt	<0.025	0.025	0.010	mg/L		11/06/17 11:00	11/07/17 12:49	1
Copper	0.012 J	0.025	0.010	mg/L		11/06/17 11:00	11/07/17 12:49	1
Iron	0.88	0.40	0.20	mg/L		11/06/17 11:00	11/07/17 12:49	1

TestAmerica Chicago

Page 76 of 145

11/14/2017

3

7

0

10

12

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136651-1

Client Sample ID: 3160-62-4 (0-1.5') Lab Sample ID: 500-136651-14 Date Collected: 11/01/17 10:20 Matrix: Solid

Date Concetta: 11701717 10:20	matrix. Cona
Date Received: 11/02/17 09:00	Percent Solids: 80.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	<0.0075		0.0075	0.0075	mg/L		11/06/17 11:00	11/07/17 12:49	1
Manganese	0.033		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 12:49	1
Nickel	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 12:49	1
Selenium	<0.050		0.050	0.020	mg/L		11/06/17 11:00	11/07/17 12:49	1
Silver	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 12:49	1
Vanadium	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 12:49	1
Zinc	0.051	J	0.50	0.020	mg/L		11/06/17 11:00	11/07/17 12:49	1
Method: 6020A - Metals	(ICP/MS) - TCLP								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060		0.0060	0.0060	mg/L		11/06/17 11:00	11/07/17 16:51	1
Thallium	<0.0020		0.0020	0.0020	mg/L		11/06/17 11:00	11/07/17 16:51	1
Method: 7470A - TCLP I	Mercury - TCLP								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/06/17 14:30	11/07/17 09:44	1
Method: 7471B - Mercu	ry (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.026		0.018	0.0060	mg/Kg	<u>∓</u>	11/03/17 15:15	11/06/17 12:02	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.6		0.20	0.20	SU			11/08/17 17:14	1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Anthracene

Benzo[a]anthracene

Lab Sample ID: 500-136651-15

Client Sample ID: 3160-62-3 (0-1.5') Date Collected: 11/01/17 11:30 **Matrix: Solid** Date Received: 11/02/17 09:00 Percent Solids: 85.2

Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Acetone	<0.019		0.019	0.0082	mg/Kg	₩	11/02/17 18:18	11/08/17 19:08	1
Benzene	<0.0019		0.0019	0.00048	mg/Kg	₩	11/02/17 18:18	11/08/17 19:08	1
Bromodichloromethane	<0.0019		0.0019	0.00038	mg/Kg	☼	11/02/17 18:18	11/08/17 19:08	1
Bromoform	<0.0019		0.0019	0.00055	mg/Kg		11/02/17 18:18	11/08/17 19:08	1
Bromomethane	<0.0047		0.0047	0.0018	mg/Kg	₩	11/02/17 18:18	11/08/17 19:08	1
2-Butanone (MEK)	<0.0047		0.0047	0.0021	mg/Kg	☼	11/02/17 18:18	11/08/17 19:08	1
Carbon disulfide	<0.0047		0.0047	0.00097	mg/Kg	φ.	11/02/17 18:18	11/08/17 19:08	1
Carbon tetrachloride	<0.0019		0.0019	0.00054	mg/Kg	₩	11/02/17 18:18	11/08/17 19:08	1
Chlorobenzene	<0.0019		0.0019	0.00069	mg/Kg	₩	11/02/17 18:18	11/08/17 19:08	1
Chloroethane	<0.0047		0.0047	0.0014	mg/Kg	₽	11/02/17 18:18	11/08/17 19:08	1
Chloroform	< 0.0019		0.0019	0.00065	mg/Kg	☼	11/02/17 18:18	11/08/17 19:08	1
Chloromethane	<0.0047		0.0047	0.0019	mg/Kg	☼	11/02/17 18:18	11/08/17 19:08	1
cis-1,2-Dichloroethene	<0.0019		0.0019	0.00052	mg/Kg	₽	11/02/17 18:18	11/08/17 19:08	1
cis-1,3-Dichloropropene	< 0.0019		0.0019	0.00057	mg/Kg	☼	11/02/17 18:18	11/08/17 19:08	1
Dibromochloromethane	< 0.0019		0.0019	0.00061	mg/Kg	☼	11/02/17 18:18	11/08/17 19:08	1
1,1-Dichloroethane	<0.0019		0.0019	0.00064	mg/Kg	₩.	11/02/17 18:18	11/08/17 19:08	1
1,2-Dichloroethane	<0.0047		0.0047	0.0015	mg/Kg	₩	11/02/17 18:18	11/08/17 19:08	1
1,1-Dichloroethene	< 0.0019		0.0019	0.00064	mg/Kg	₩	11/02/17 18:18	11/08/17 19:08	1
1,2-Dichloropropane	<0.0019		0.0019	0.00048	mg/Kg	₩.	11/02/17 18:18	11/08/17 19:08	1
1,3-Dichloropropene, Total	< 0.0019		0.0019	0.00066	mg/Kg	₩	11/02/17 18:18	11/08/17 19:08	1
Ethylbenzene	<0.0019		0.0019	0.00090	mg/Kg	₩	11/02/17 18:18	11/08/17 19:08	1
2-Hexanone	<0.0047		0.0047	0.0015	mg/Kg		11/02/17 18:18	11/08/17 19:08	1
Methylene Chloride	<0.0047		0.0047	0.0018	mg/Kg	₩	11/02/17 18:18	11/08/17 19:08	1
4-Methyl-2-pentanone (MIBK)	<0.0047		0.0047	0.0014	mg/Kg	☼	11/02/17 18:18	11/08/17 19:08	1
Methyl tert-butyl ether	<0.0019		0.0019	0.00055	mg/Kg	₩.	11/02/17 18:18	11/08/17 19:08	1
Styrene	< 0.0019		0.0019	0.00057	mg/Kg	☼	11/02/17 18:18	11/08/17 19:08	1
1,1,2,2-Tetrachloroethane	<0.0019		0.0019	0.00060	mg/Kg	☼	11/02/17 18:18	11/08/17 19:08	1
Tetrachloroethene	<0.0019		0.0019	0.00064	mg/Kg	₩.	11/02/17 18:18	11/08/17 19:08	1
Toluene	< 0.0019		0.0019	0.00047	mg/Kg	☼	11/02/17 18:18	11/08/17 19:08	1
trans-1,2-Dichloroethene	<0.0019		0.0019	0.00083	mg/Kg	☼	11/02/17 18:18	11/08/17 19:08	1
trans-1,3-Dichloropropene	<0.0019		0.0019	0.00066	mg/Kg	₽	11/02/17 18:18	11/08/17 19:08	1
1,1,1-Trichloroethane	< 0.0019		0.0019	0.00063	mg/Kg	☼	11/02/17 18:18	11/08/17 19:08	1
1,1,2-Trichloroethane	< 0.0019		0.0019	0.00080	mg/Kg	₩	11/02/17 18:18	11/08/17 19:08	1
Trichloroethene	<0.0019		0.0019	0.00063	mg/Kg		11/02/17 18:18	11/08/17 19:08	1
Vinyl acetate	<0.0047		0.0047	0.0016	mg/Kg	₩	11/02/17 18:18	11/08/17 19:08	1
Vinyl chloride	< 0.0019		0.0019	0.00083	mg/Kg	₩	11/02/17 18:18	11/08/17 19:08	1
Xylenes, Total	<0.0037		0.0037	0.00060		\$	11/02/17 18:18	11/08/17 19:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	88		75 - 131				11/02/17 18:18	11/08/17 19:08	1
Dibromofluoromethane	102		75 - 126				11/02/17 18:18	11/08/17 19:08	1
1,2-Dichloroethane-d4 (Surr)	96		70 - 134				11/02/17 18:18	11/08/17 19:08	1
Toluene-d8 (Surr)	97		75 124				11/02/17 18:18	11/08/17 19:08	

Toluene-d8 (Surr)	97	75 - 124			11/02/17 18:18	11/08/17 19:08	1
Method: 8270D - Semivolatil	e Organic Compounds ((GC/MS)					
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	<0.038	0.038	0.0069 mg/Kg	\	11/08/17 17:13	11/09/17 15:09	1
Acenaphthylene	<0.038	0.038	0.0050 mg/Kg	☼	11/08/17 17:13	11/09/17 15:09	1

0.038

0.038

0.0064 mg/Kg

0.0052 mg/Kg

<0.038

0.0068 J

TestAmerica Chicago

11/08/17 17:13 11/09/17 15:09

* 11/08/17 17:13 11/09/17 15:09

Page 78 of 145

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136651-1

Lab Sample ID: 500-136651-15

Client Sample ID: 3160-62-3 (0-1.5') Date Collected: 11/01/17 11:30 **Matrix: Solid** Date Received: 11/02/17 09:00 Percent Solids: 85.2

Method: 8270D - Semivolatile	Organic Compounds (GC/MS) (Cd	ntinued))				
Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Benzo[a]pyrene	0.018 J	0.038	0.0074	mg/Kg	<u> </u>	11/08/17 17:13	11/09/17 15:09	1
Benzo[b]fluoranthene	<0.038	0.038	0.0083	mg/Kg	☼	11/08/17 17:13	11/09/17 15:09	1
Benzo[g,h,i]perylene	<0.038	0.038	0.012	mg/Kg	₽	11/08/17 17:13	11/09/17 15:09	1
Benzo[k]fluoranthene	<0.038	0.038	0.011	mg/Kg	☼	11/08/17 17:13	11/09/17 15:09	1
Bis(2-chloroethoxy)methane	<0.19	0.19	0.039	mg/Kg	☼	11/08/17 17:13	11/09/17 15:09	1
Bis(2-chloroethyl)ether	<0.19	0.19	0.057	mg/Kg	*	11/08/17 17:13	11/09/17 15:09	1
Bis(2-ethylhexyl) phthalate	<0.19	0.19	0.070	mg/Kg	☼	11/08/17 17:13	11/09/17 15:09	1
4-Bromophenyl phenyl ether	<0.19	0.19	0.050	mg/Kg	₩	11/08/17 17:13	11/09/17 15:09	1
Butyl benzyl phthalate	<0.19	0.19	0.073	mg/Kg		11/08/17 17:13	11/09/17 15:09	1
Carbazole	<0.19	0.19	0.096	mg/Kg	☼	11/08/17 17:13	11/09/17 15:09	1
4-Chloroaniline	<0.77	0.77	0.18	mg/Kg	☼	11/08/17 17:13	11/09/17 15:09	1
4-Chloro-3-methylphenol	<0.38	0.38		mg/Kg	· · · · · · · · · · · · · · · · · · ·	11/08/17 17:13	11/09/17 15:09	1
2-Chloronaphthalene	<0.19	0.19		mg/Kg	☼	11/08/17 17:13	11/09/17 15:09	1
2-Chlorophenol	<0.19	0.19		mg/Kg	☼	11/08/17 17:13	11/09/17 15:09	1
4-Chlorophenyl phenyl ether	<0.19	0.19		mg/Kg	φ.	11/08/17 17:13	11/09/17 15:09	1
Chrysene	<0.038	0.038		mg/Kg	₩		11/09/17 15:09	1
Dibenz(a,h)anthracene	<0.038	0.038	0.0074		₩		11/09/17 15:09	1
Dibenzofuran	<0.19	0.19		mg/Kg	· · · · · · · · · · · · · · · · · · ·		11/09/17 15:09	1
1,2-Dichlorobenzene	<0.19	0.19		mg/Kg	☆		11/09/17 15:09	1
1,3-Dichlorobenzene	<0.19	0.19		mg/Kg	☆		11/09/17 15:09	1
1,4-Dichlorobenzene	<0.19	0.19		mg/Kg			11/09/17 15:09	
3,3'-Dichlorobenzidine	<0.19	0.19		mg/Kg	₽		11/09/17 15:09	
2,4-Dichlorophenol	<0.38	0.38		mg/Kg	₽		11/09/17 15:09	
Diethyl phthalate	<0.19	0.19		mg/Kg			11/09/17 15:09	· · · · · · · · · · · · · · · · · · ·
2,4-Dimethylphenol	<0.38	0.13		mg/Kg	₩		11/09/17 15:09	1
Dimethyl phthalate	<0.19	0.19		mg/Kg	₽		11/09/17 15:09	1
Di-n-butyl phthalate	<0.19	0.19		mg/Kg			11/09/17 15:09	
4,6-Dinitro-2-methylphenol	<0.77	0.19		mg/Kg	₩		11/09/17 15:09	1
2,4-Dinitrophenol	<0.77	0.77		mg/Kg			11/09/17 15:09	1
2,4-Dinitrotoluene	<0.19	0.17		mg/Kg			11/09/17 15:09	
	<0.19	0.19		mg/Kg	~ ⇔		11/09/17 15:09	
2,6-Dinitrotoluene				0 0	<i>~</i>		11/09/17 15:09	1
Di-n-octyl phthalate	<0.19	0.19		mg/Kg	· · · · · · · · · · · · · · · · · · ·			
Fluoranthene	0.0085 J	0.038	0.0071	0 0			11/09/17 15:09	1
Fluorene	<0.038	0.038	0.0054	0 0	₩		11/09/17 15:09	1
Hexachlorobenzene	<0.077	0.077	0.0089		<u>.</u>		11/09/17 15:09	
Hexachlorobutadiene	<0.19	0.19		mg/Kg	1,7		11/09/17 15:09	1
Hexachlorocyclopentadiene	<0.77	0.77		mg/Kg	φ.		11/09/17 15:09	1
Hexachloroethane	<0.19	0.19		mg/Kg			11/09/17 15:09	
Indeno[1,2,3-cd]pyrene	<0.038	0.038	0.0099		.		11/09/17 15:09	1
Isophorone	<0.19	0.19		mg/Kg	.;.		11/09/17 15:09	1
2-Methylnaphthalene	<0.077	0.077	0.0070		, .		11/09/17 15:09	1
2-Methylphenol	<0.19	0.19		mg/Kg	₽.		11/09/17 15:09	1
3 & 4 Methylphenol	<0.19	0.19		mg/Kg	₽		11/09/17 15:09	1
Naphthalene	<0.038	0.038	0.0059	mg/Kg	#		11/09/17 15:09	1
2-Nitroaniline	<0.19	0.19	0.052	mg/Kg	₽	11/08/17 17:13	11/09/17 15:09	1
3-Nitroaniline	<0.38	0.38	0.12	mg/Kg	☼	11/08/17 17:13	11/09/17 15:09	1
4-Nitroaniline	<0.38	0.38	0.16	mg/Kg	₩	11/08/17 17:13	11/09/17 15:09	1
Nitrobenzene	<0.038	0.038	0.0096	mg/Kg	₽	11/08/17 17:13	11/09/17 15:09	1
2-Nitrophenol	<0.38	0.38	0.091	mg/Kg	≎	11/08/17 17:13	11/09/17 15:09	1

TestAmerica Chicago

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/01/17 11:30

Date Received: 11/02/17 09:00

Client Sample ID: 3160-62-3 (0-1.5')

TestAmerica Job ID: 500-136651-1

Lab Sample ID: 500-136651-15

Matrix: Solid Percent Solids: 85.2

Method: 8270D - Semivolat Analyte	•	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.77		0.77	0.36	mg/Kg	<u> </u>	11/08/17 17:13	11/09/17 15:09	1
N-Nitrosodi-n-propylamine	<0.077		0.077	0.047	mg/Kg	φ.	11/08/17 17:13	11/09/17 15:09	1
N-Nitrosodiphenylamine	<0.19		0.19	0.045	mg/Kg	☼	11/08/17 17:13	11/09/17 15:09	1
2,2'-oxybis[1-chloropropane]	<0.19		0.19	0.044	mg/Kg	☼	11/08/17 17:13	11/09/17 15:09	1
Pentachlorophenol	<0.77		0.77	0.61	mg/Kg	₽	11/08/17 17:13	11/09/17 15:09	1
Phenanthrene	0.012	J	0.038	0.0053	mg/Kg	☼	11/08/17 17:13	11/09/17 15:09	1
Phenol	<0.19		0.19	0.085	mg/Kg	≎	11/08/17 17:13	11/09/17 15:09	1
Pyrene	0.0086	J	0.038	0.0076	mg/Kg	₽	11/08/17 17:13	11/09/17 15:09	1
1,2,4-Trichlorobenzene	<0.19		0.19	0.041	mg/Kg	≎	11/08/17 17:13	11/09/17 15:09	1
2,4,5-Trichlorophenol	<0.38		0.38	0.087	mg/Kg	☼	11/08/17 17:13	11/09/17 15:09	1
2,4,6-Trichlorophenol	<0.38		0.38	0.13	mg/Kg	₩	11/08/17 17:13	11/09/17 15:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	72		44 - 121				11/08/17 17:13	11/09/17 15:09	1
2-Fluorophenol	75		46 - 133				11/08/17 17:13	11/09/17 15:09	1
Nitrobenzene-d5	64		41 - 120				11/08/17 17:13	11/09/17 15:09	1
Phenol-d5	86		46 - 125				11/08/17 17:13	11/09/17 15:09	1
Terphenyl-d14	79		35 - 160				11/08/17 17:13	11/09/17 15:09	1
2,4,6-Tribromophenol	89		25 - 139				11/08/17 17:13	11/09/17 15:09	1

Method: 6010B - Metals (ICP)
Analyte
A 1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<1.1	1.1	0.21	mg/Kg	<u> </u>	11/03/17 07:41	11/06/17 00:11	1
Arsenic	5.1	0.53	0.18	mg/Kg	≎	11/03/17 07:41	11/03/17 17:51	1
Barium	58	0.53	0.060	mg/Kg	₽	11/03/17 07:41	11/03/17 17:51	1
Beryllium	0.37	0.21	0.049	mg/Kg	₽	11/03/17 07:41	11/03/17 17:51	1
Cadmium	<0.11	0.11	0.019	mg/Kg	≎	11/03/17 07:41	11/03/17 17:51	1
Chromium	12	0.53	0.26	mg/Kg	₽	11/03/17 07:41	11/03/17 17:51	1
Cobalt	4.9	0.26	0.069	mg/Kg	\$	11/03/17 07:41	11/03/17 17:51	1
Copper	5.9	0.53	0.15	mg/Kg	₽	11/03/17 07:41	11/03/17 17:51	1
Iron	12000	11	5.5	mg/Kg	≎	11/03/17 07:41	11/03/17 17:51	1
Lead	15	0.26	0.12	mg/Kg	₽	11/03/17 07:41	11/03/17 17:51	1
Manganese	370	0.53	0.077	mg/Kg	≎	11/03/17 07:41	11/03/17 17:51	1
Nickel	6.6	0.53	0.15	mg/Kg	≎	11/03/17 07:41	11/03/17 17:51	1
Selenium	1.0	0.53	0.31	mg/Kg	₽	11/03/17 07:41	11/06/17 00:11	1
Silver	<0.26	0.26	0.068	mg/Kg	₽	11/03/17 07:41	11/03/17 17:51	1
Thallium	<0.53	0.53	0.26	mg/Kg	≎	11/03/17 07:41	11/03/17 17:51	1
Vanadium	23	0.26	0.063	mg/Kg	₽	11/03/17 07:41	11/03/17 17:51	1
Zinc	26	1.1	0.47	mg/Kg	₽	11/03/17 07:41	11/03/17 17:51	1

55/17 17.51	'
nalyzed	Dil Fac
07/17 13:08	1
07/17 13:08	1

Method: 6010B - Metals (ICP)	TCLP								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/06/17 11:00	11/07/17 13:08	1
Barium	0.42	J	0.50	0.050	mg/L		11/06/17 11:00	11/07/17 13:08	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/06/17 11:00	11/07/17 13:08	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/06/17 11:00	11/07/17 13:08	1
Chromium	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 13:08	1
Cobalt	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 13:08	1
Copper	0.016	J	0.025	0.010	mg/L		11/06/17 11:00	11/07/17 13:08	1
Iron	<0.40		0.40	0.20	mg/L		11/06/17 11:00	11/07/17 13:08	1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/01/17 11:30

Date Received: 11/02/17 09:00

Client Sample ID: 3160-62-3 (0-1.5')

TestAmerica Job ID: 500-136651-1

Lab Sample ID: 500-136651-15

Matrix: Solid

		Percent Solid	s: 85.2
D	Prepared	Analyzed	Dil Fac
	11/06/17 11:00	11/07/17 13:08	1
	11/06/17 11:00	11/07/17 13:08	1
	11/06/17 11:00	11/07/17 13:08	1
	11/06/17 11:00	11/07/17 13:08	1

Method: 6010B - Metals (ICP) Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	<0.0075		0.0075	0.0075	mg/L		11/06/17 11:00	11/07/17 13:08	1
Manganese	0.10		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 13:08	1
Nickel	0.011	J	0.025	0.010	mg/L		11/06/17 11:00	11/07/17 13:08	1
Selenium	< 0.050		0.050	0.020	mg/L		11/06/17 11:00	11/07/17 13:08	1
Silver	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 13:08	1
Vanadium	< 0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 13:08	1
Zinc	0.060	J	0.50	0.020	mg/L		11/06/17 11:00	11/07/17 13:08	1
Method: 6020A - Metals (ICP/I	MS) - TCLP								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060		0.0060	0.0060	mg/L		11/06/17 11:00	11/07/17 16:55	1
Thallium	<0.0020		0.0020	0.0020	mg/L		11/06/17 11:00	11/07/17 16:55	1
Method: 7470A - TCLP Mercu	ry - TCLP								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/06/17 14:30	11/07/17 09:45	1
Method: 7471B - Mercury (CV	AA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.027		0.018	0.0060	mg/Kg		11/03/17 15:15	11/06/17 12:04	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	5.5		0.20	0.20	SU			11/08/17 17:14	1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Lab Sample ID: 500-136651-16

Client Sample ID: 3160-62-2 (0-1.5') Date Collected: 11/01/17 11:40 **Matrix: Solid** Date Received: 11/02/17 09:00 Percent Solids: 90.7

Method: 8260B - Volatile O Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	<0.015	0.015	0.0067	mg/Kg	<u>∓</u>	11/02/17 18:18	11/08/17 19:33	1
Benzene	<0.0015	0.0015	0.00039	mg/Kg	₩	11/02/17 18:18	11/08/17 19:33	1
Bromodichloromethane	<0.0015	0.0015	0.00031	mg/Kg	☼	11/02/17 18:18	11/08/17 19:33	1
Bromoform	<0.0015	0.0015	0.00045	mg/Kg	₩	11/02/17 18:18	11/08/17 19:33	1
Bromomethane	<0.0038	0.0038	0.0015	mg/Kg	₩	11/02/17 18:18	11/08/17 19:33	1
2-Butanone (MEK)	<0.0038	0.0038	0.0017	mg/Kg	₩	11/02/17 18:18	11/08/17 19:33	1
Carbon disulfide	<0.0038	0.0038	0.00080	mg/Kg	₩	11/02/17 18:18	11/08/17 19:33	1
Carbon tetrachloride	<0.0015	0.0015	0.00045	mg/Kg	₩	11/02/17 18:18	11/08/17 19:33	1
Chlorobenzene	<0.0015	0.0015	0.00057	mg/Kg	₩	11/02/17 18:18	11/08/17 19:33	1
Chloroethane	<0.0038	0.0038	0.0011	mg/Kg	₩.	11/02/17 18:18	11/08/17 19:33	1
Chloroform	<0.0015	0.0015	0.00053	mg/Kg	☼	11/02/17 18:18	11/08/17 19:33	1
Chloromethane	<0.0038	0.0038	0.0015	mg/Kg	₩	11/02/17 18:18	11/08/17 19:33	1
cis-1,2-Dichloroethene	<0.0015	0.0015	0.00043	mg/Kg	₩.	11/02/17 18:18	11/08/17 19:33	1
cis-1,3-Dichloropropene	<0.0015	0.0015	0.00046	mg/Kg	₩	11/02/17 18:18	11/08/17 19:33	1
Dibromochloromethane	<0.0015	0.0015	0.00050	mg/Kg	₩	11/02/17 18:18	11/08/17 19:33	1
1,1-Dichloroethane	<0.0015	0.0015	0.00053	mg/Kg		11/02/17 18:18	11/08/17 19:33	1
1,2-Dichloroethane	<0.0038	0.0038	0.0012	mg/Kg	☼	11/02/17 18:18	11/08/17 19:33	1
1,1-Dichloroethene	<0.0015	0.0015	0.00053	mg/Kg	₩	11/02/17 18:18	11/08/17 19:33	1
1,2-Dichloropropane	<0.0015	0.0015	0.00040	mg/Kg		11/02/17 18:18	11/08/17 19:33	1
1,3-Dichloropropene, Total	<0.0015	0.0015	0.00054	mg/Kg	☼	11/02/17 18:18	11/08/17 19:33	1
Ethylbenzene	<0.0015	0.0015	0.00073	mg/Kg	☼	11/02/17 18:18	11/08/17 19:33	1
2-Hexanone	<0.0038	0.0038	0.0012	mg/Kg		11/02/17 18:18	11/08/17 19:33	1
Methylene Chloride	<0.0038	0.0038	0.0015	mg/Kg	☼	11/02/17 18:18	11/08/17 19:33	1
4-Methyl-2-pentanone (MIBK)	<0.0038	0.0038	0.0011	mg/Kg	☼	11/02/17 18:18	11/08/17 19:33	1
Methyl tert-butyl ether	<0.0015	0.0015	0.00045	mg/Kg		11/02/17 18:18	11/08/17 19:33	1
Styrene	<0.0015	0.0015	0.00046	mg/Kg	₩	11/02/17 18:18	11/08/17 19:33	1
1,1,2,2-Tetrachloroethane	<0.0015	0.0015	0.00049	mg/Kg	☼	11/02/17 18:18	11/08/17 19:33	1
Tetrachloroethene	<0.0015	0.0015	0.00052	mg/Kg		11/02/17 18:18	11/08/17 19:33	1
Toluene	<0.0015	0.0015	0.00039	mg/Kg	₩	11/02/17 18:18	11/08/17 19:33	1
trans-1,2-Dichloroethene	<0.0015	0.0015	0.00068	mg/Kg	₩	11/02/17 18:18	11/08/17 19:33	1
trans-1,3-Dichloropropene	<0.0015	0.0015	0.00054	mg/Kg		11/02/17 18:18	11/08/17 19:33	1
1,1,1-Trichloroethane	<0.0015	0.0015	0.00052	mg/Kg	≎	11/02/17 18:18	11/08/17 19:33	1
1,1,2-Trichloroethane	<0.0015	0.0015	0.00066	mg/Kg	₩	11/02/17 18:18	11/08/17 19:33	1
Trichloroethene	<0.0015	0.0015	0.00052	mg/Kg		11/02/17 18:18	11/08/17 19:33	1
Vinyl acetate	<0.0038	0.0038	0.0013	mg/Kg	≎	11/02/17 18:18	11/08/17 19:33	1
Vinyl chloride	<0.0015	0.0015	0.00068		₩	11/02/17 18:18	11/08/17 19:33	1
Xylenes, Total	<0.0031	0.0031	0.00049	mg/Kg	φ.	11/02/17 18:18	11/08/17 19:33	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91	75 - 131				11/02/17 18:18	11/08/17 19:33	

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91		75 - 131	11/02/17 18:18	11/08/17 19:33	1
Dibromofluoromethane	101		75 - 126	11/02/17 18:18	11/08/17 19:33	1
1,2-Dichloroethane-d4 (Surr)	97		70 - 134	11/02/17 18:18	11/08/17 19:33	1
Toluene-d8 (Surr)	98		75 - 124	11/02/17 18:18	11/08/17 19:33	1

Method: 8270D	- Semivolatile	Organic	Com	pound	s (GC/MS)	
		_				

Mictiliou. OE1 OD - Ocillitola	ine organie compounds (
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	<0.036	0.036	0.0066	mg/Kg	\	11/08/17 17:13	11/09/17 17:46	1
Acenaphthylene	<0.036	0.036	0.0048	mg/Kg	₩	11/08/17 17:13	11/09/17 17:46	1
Anthracene	<0.036	0.036	0.0061	mg/Kg	₩	11/08/17 17:13	11/09/17 17:46	1
Benzo[a]anthracene	0.031 J	0.036	0.0049	mg/Kg	☼	11/08/17 17:13	11/09/17 17:46	1

TestAmerica Chicago

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Received: 11/02/17 09:00

Nitrobenzene

2-Nitrophenol

TestAmerica Job ID: 500-136651-1

Lab Sample ID: 500-136651-16

Matrix: Solid Percent Solids: 90.7

Client Sample ID: 3160-62-2 (0-1.5') Date Collected: 11/01/17 11:40

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued) MDL Unit Analyte Result Qualifier RL D Prepared Analyzed Dil Fac 0.036 0.0071 mg/Kg 11/08/17 17:13 11/09/17 17:46 Benzo[a]pyrene 0.040 0.036 0.0079 mg/Kg 11/08/17 17:13 11/09/17 17:46 0.053 Benzo[b]fluoranthene à Benzo[g,h,i]perylene 0.012 J 0.036 0.012 mg/Kg 11/08/17 17:13 11/09/17 17:46 Benzo[k]fluoranthene 0.036 0.011 mg/Kg 11/08/17 17:13 11/09/17 17:46 0.019 11/08/17 17:13 1 Bis(2-chloroethoxy)methane <0.18 0.18 0.037 mg/Kg 11/09/17 17:46 Bis(2-chloroethyl)ether < 0.18 0.18 0.055 ma/Ka 11/08/17 17:13 11/09/17 17:46 11/08/17 17:13 11/09/17 17:46 Bis(2-ethylhexyl) phthalate < 0.18 0.18 0.067 mg/Kg 4-Bromophenyl phenyl ether <0.18 0.18 0.048 mg/Kg 11/08/17 17:13 11/09/17 17:46 11/08/17 17:13 11/09/17 17:46 Butyl benzyl phthalate < 0.18 0.18 0.069 mg/Kg Carbazole 0.091 11/08/17 17:13 11/09/17 17:46 < 0.18 0.18 mg/Kg 4-Chloroaniline < 0.74 0.74 0.17 mg/Kg 11/08/17 17:13 11/09/17 17:46 4-Chloro-3-methylphenol < 0.36 0.36 0.12 11/08/17 17:13 11/09/17 17:46 mg/Kg 2-Chloronaphthalene 0.040 mg/Kg 11/08/17 17:13 11/09/17 17:46 1 < 0.18 0.18 ₩ 2-Chlorophenol < 0.18 0.18 0.062 mg/Kg 11/08/17 17:13 11/09/17 17:46 4-Chlorophenyl phenyl ether < 0.18 0.18 0.043 mg/Kg 11/08/17 17:13 11/09/17 17:46 0.036 0.0099 mg/Kg 11/08/17 17:13 11/09/17 17:46 Chrysene 0.047 Dibenz(a,h)anthracene < 0.036 0.036 0.0070 mg/Kg 11/08/17 17:13 11/09/17 17:46 Dibenzofuran <0.18 0.18 0.043 mg/Kg 11/08/17 17:13 11/09/17 17:46 1.2-Dichlorobenzene <0.18 0.18 0.044 mg/Kg 11/08/17 17:13 11/09/17 17:46 1,3-Dichlorobenzene < 0.18 0.041 mg/Kg 11/08/17 17:13 11/09/17 17:46 0.18 1,4-Dichlorobenzene < 0.18 0.18 0.047 mg/Kg 11/08/17 17:13 11/09/17 17:46 11/08/17 17:13 11/09/17 17:46 3,3'-Dichlorobenzidine <0.18 0.18 0.051 mg/Kg 0.36 11/08/17 17:13 2,4-Dichlorophenol < 0.36 0.087 mg/Kg 11/09/17 17:46 Diethyl phthalate < 0.18 0.062 mg/Kg 11/08/17 17:13 11/09/17 17:46 0.18 2,4-Dimethylphenol < 0.36 0.36 0.14 mg/Kg 11/08/17 17:13 11/09/17 17:46 11/08/17 17:13 11/09/17 17:46 Dimethyl phthalate <0.18 0.18 0.048 mg/Kg Di-n-butyl phthalate < 0.18 0.18 0.056 mg/Kg 11/08/17 17:13 11/09/17 17:46 4,6-Dinitro-2-methylphenol 11/09/17 17:46 < 0.74 0.740.29 mg/Kg 11/08/17 17:13 2,4-Dinitrophenol < 0.74 0.74 0.64 mg/Kg 11/08/17 17:13 11/09/17 17:46 2,4-Dinitrotoluene < 0.18 0.18 0.058 mg/Kg 11/08/17 17:13 11/09/17 17:46 2,6-Dinitrotoluene <0.18 0.18 0.072 mg/Kg 11/08/17 17:13 11/09/17 17:46 Di-n-octyl phthalate <0.18 0.18 0.059 mg/Kg 11/08/17 17:13 11/09/17 17:46 0.036 0.0068 mg/Kg 11/08/17 17:13 11/09/17 17:46 **Fluoranthene** 0.038 Fluorene < 0.036 0.036 0.0051 mg/Kg 11/08/17 17:13 11/09/17 17:46 Hexachlorobenzene < 0.074 0.074 0.0084 11/08/17 17:13 11/09/17 17:46 mg/Kg Hexachlorobutadiene 0.057 11/08/17 17:13 11/09/17 17:46 < 0.18 0.18 mg/Kg Hexachlorocyclopentadiene 11/08/17 17:13 11/09/17 17:46 < 0.74 0.74 0.21 mg/Kg Hexachloroethane 0.055 11/08/17 17:13 11/09/17 17:46 < 0.18 0.18 mg/Kg Indeno[1,2,3-cd]pyrene 0.011 0.036 0.0094 mg/Kg 11/08/17 17:13 11/09/17 17:46 Isophorone <0.18 0.18 0.041 mg/Kg 11/08/17 17:13 11/09/17 17:46 0.074 11/08/17 17:13 0.0067 mg/Kg 11/09/17 17:46 2-Methylnaphthalene 0.018 J 2-Methylphenol <0.18 0.18 0.058 mg/Kg 11/08/17 17:13 11/09/17 17:46 3 & 4 Methylphenol <0.18 0.18 0.061 mg/Kg 11/08/17 17:13 11/09/17 17:46 0.036 0.0056 **Naphthalene** 0.0080 mg/Kg 11/08/17 17:13 11/09/17 17:46 2-Nitroaniline < 0.18 0.18 0.049 mg/Kg 11/08/17 17:13 11/09/17 17:46 ₩ 3-Nitroaniline < 0.36 0.36 0.11 mg/Kg 11/08/17 17:13 11/09/17 17:46 4-Nitroaniline < 0.36 0.36 0.15 mg/Kg 11/08/17 17:13 11/09/17 17:46

TestAmerica Chicago

11/14/2017

11/08/17 17:13 11/09/17 17:46

11/08/17 17:13 11/09/17 17:46

0.036

0.36

0.0091 mg/Kg

0.086 mg/Kg

< 0.036

< 0.36

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/01/17 11:40

Date Received: 11/02/17 09:00

Client Sample ID: 3160-62-2 (0-1.5')

TestAmerica Job ID: 500-136651-1

Lab Sample ID: 500-136651-16

Matrix: Solid

Percent Solids: 90.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.74		0.74	0.35	mg/Kg	<u> </u>	11/08/17 17:13	11/09/17 17:46	1
N-Nitrosodi-n-propylamine	<0.074		0.074	0.045	mg/Kg	φ.	11/08/17 17:13	11/09/17 17:46	1
N-Nitrosodiphenylamine	<0.18		0.18	0.043	mg/Kg	☼	11/08/17 17:13	11/09/17 17:46	1
2,2'-oxybis[1-chloropropane]	<0.18		0.18	0.042	mg/Kg	☼	11/08/17 17:13	11/09/17 17:46	1
Pentachlorophenol	<0.74		0.74	0.58	mg/Kg	₽	11/08/17 17:13	11/09/17 17:46	1
Phenanthrene	0.046		0.036	0.0051	mg/Kg	☼	11/08/17 17:13	11/09/17 17:46	1
Phenol	<0.18		0.18	0.081	mg/Kg	☼	11/08/17 17:13	11/09/17 17:46	1
Pyrene	0.040		0.036	0.0072	mg/Kg	₽	11/08/17 17:13	11/09/17 17:46	1
1,2,4-Trichlorobenzene	<0.18		0.18	0.039	mg/Kg	☼	11/08/17 17:13	11/09/17 17:46	1
2,4,5-Trichlorophenol	<0.36		0.36	0.083	mg/Kg	☼	11/08/17 17:13	11/09/17 17:46	1
2,4,6-Trichlorophenol	<0.36		0.36	0.13	mg/Kg	₩	11/08/17 17:13	11/09/17 17:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	60		44 - 121				11/08/17 17:13	11/09/17 17:46	1
2-Fluorophenol	58		46 - 133				11/08/17 17:13	11/09/17 17:46	1
Nitrobenzene-d5	50		41 - 120				11/08/17 17:13	11/09/17 17:46	1
Phenol-d5	70		46 - 125				11/08/17 17:13	11/09/17 17:46	1
Terphenyl-d14	80		35 - 160				11/08/17 17:13	11/09/17 17:46	1
2,4,6-Tribromophenol	78		25 - 139				11/08/17 17:13	11/09/17 17:46	1

Method: 6010B - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.24		1.1			— -	11/03/17 07:41	11/06/17 00:15	1
Arsenic	3.8		0.55		mg/Kg	₩	11/03/17 07:41	11/03/17 17:55	1
Barium	29		0.55		mg/Kg	₩	11/03/17 07:41	11/03/17 17:55	1
Beryllium	0.29		0.22	0.051	mg/Kg	₩.	11/03/17 07:41	11/03/17 17:55	1
Cadmium	0.61	В	0.11	0.020	mg/Kg	₩	11/03/17 07:41	11/03/17 17:55	1
Chromium	9.2		0.55	0.27	mg/Kg	₩	11/03/17 07:41	11/03/17 17:55	1
Cobalt	2.5		0.27	0.072	mg/Kg		11/03/17 07:41	11/03/17 17:55	1
Copper	14		0.55	0.15	mg/Kg	₩	11/03/17 07:41	11/03/17 17:55	1
Iron	9700		11	5.7	mg/Kg	₩	11/03/17 07:41	11/03/17 17:55	1
Lead	210		0.27	0.13	mg/Kg		11/03/17 07:41	11/03/17 17:55	1
Manganese	170		0.55	0.079	mg/Kg	₩	11/03/17 07:41	11/03/17 17:55	1
Nickel	9.7		0.55	0.16	mg/Kg	☼	11/03/17 07:41	11/03/17 17:55	1
Selenium	0.45	J	0.55	0.32	mg/Kg	₽	11/03/17 07:41	11/06/17 00:15	1
Silver	<0.27		0.27	0.071	mg/Kg	☼	11/03/17 07:41	11/03/17 17:55	1
Thallium	<0.55		0.55	0.27	mg/Kg	☼	11/03/17 07:41	11/03/17 17:55	1
Vanadium	9.8		0.27	0.065	mg/Kg	₩.	11/03/17 07:41	11/03/17 17:55	1
Zinc	75		1.1	0.48	mg/Kg	☼	11/03/17 07:41	11/03/17 17:55	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/06/17 11:00	11/07/17 13:12	1
Barium	0.45	J	0.50	0.050	mg/L		11/06/17 11:00	11/07/17 13:12	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/06/17 11:00	11/07/17 13:12	1
Cadmium	0.0028	J	0.0050	0.0020	mg/L		11/06/17 11:00	11/07/17 13:12	1
Chromium	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 13:12	1
Cobalt	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 13:12	1
Copper	0.019	J	0.025	0.010	mg/L		11/06/17 11:00	11/07/17 13:12	1
Iron	0.29	J	0.40	0.20	mg/L		11/06/17 11:00	11/07/17 13:12	1

TestAmerica Chicago

Page 84 of 145

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/01/17 11:40

Date Received: 11/02/17 09:00

рН

Client Sample ID: 3160-62-2 (0-1.5')

TestAmerica Job ID: 500-136651-1

6

Lab Sample ID: 500-136651-16

Matrix: Solid Percent Solids: 90.7

4

Method: 6010B - Metals (IC	P) - TCLP (Coi	ntinued)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	<0.0075		0.0075	0.0075	mg/L		11/06/17 11:00	11/07/17 13:12	1
Manganese	0.17		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 13:12	1
Nickel	0.012	J	0.025	0.010	mg/L		11/06/17 11:00	11/07/17 13:12	1
Selenium	<0.050		0.050	0.020	mg/L		11/06/17 11:00	11/07/17 13:12	1
Silver	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 13:12	1
Vanadium	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 13:12	1
Zinc	0.052	J	0.50	0.020	mg/L		11/06/17 11:00	11/07/17 13:12	1
Method: 6010B - Metals (IC	P) - SPLP East	t							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Manganese	0.019	J	0.025	0.010	mg/L		11/06/17 11:29	11/08/17 22:21	1
Method: 6020A - Metals (IC	P/MS) - TCLP								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060		0.0060	0.0060	mg/L		11/06/17 11:00	11/07/17 17:00	1
Thallium	<0.0020		0.0020	0.0020	mg/L		11/06/17 11:00	11/07/17 17:00	1
Method: 7470A - TCLP Mer	cury - TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/06/17 14:30	11/07/17 09:47	1
Method: 7471B - Mercury (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.037		0.017	0.0058	mg/Kg		11/03/17 15:15	11/06/17 12:07	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

0.20

6.7

0.20 SU

11/08/17 17:14

TestAmerica Job ID: 500-136651-1

Client Sample ID: 3160-62-1 (0-1.5')

Date Collected: 11/01/17 11:50 Date Received: 11/02/17 09:00

Lab Sample ID: 500-136651-17

Matrix: Solid Percent Solids: 85.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	<0.018		0.018	0.0076	mg/Kg	<u></u>	11/02/17 18:18	11/08/17 19:59	1
Benzene	<0.0018		0.0018	0.00045	mg/Kg	☼	11/02/17 18:18	11/08/17 19:59	1
Bromodichloromethane	<0.0018		0.0018	0.00036	mg/Kg	₩	11/02/17 18:18	11/08/17 19:59	1
Bromoform	<0.0018		0.0018	0.00051	mg/Kg	☆	11/02/17 18:18	11/08/17 19:59	1
Bromomethane	<0.0044		0.0044	0.0017	mg/Kg	₩	11/02/17 18:18	11/08/17 19:59	1
2-Butanone (MEK)	<0.0044		0.0044	0.0019	mg/Kg	₩	11/02/17 18:18	11/08/17 19:59	1
Carbon disulfide	<0.0044		0.0044	0.00091	mg/Kg	.	11/02/17 18:18	11/08/17 19:59	1
Carbon tetrachloride	<0.0018		0.0018	0.00051	mg/Kg	≎	11/02/17 18:18	11/08/17 19:59	1
Chlorobenzene	<0.0018		0.0018	0.00065	mg/Kg	≎	11/02/17 18:18	11/08/17 19:59	1
Chloroethane	<0.0044		0.0044	0.0013	mg/Kg	₽	11/02/17 18:18	11/08/17 19:59	1
Chloroform	<0.0018		0.0018	0.00061	mg/Kg	≎	11/02/17 18:18	11/08/17 19:59	1
Chloromethane	<0.0044		0.0044	0.0018	mg/Kg	₩	11/02/17 18:18	11/08/17 19:59	1
cis-1,2-Dichloroethene	<0.0018		0.0018	0.00049	mg/Kg	₽	11/02/17 18:18	11/08/17 19:59	1
cis-1,3-Dichloropropene	<0.0018		0.0018	0.00053	mg/Kg	☼	11/02/17 18:18	11/08/17 19:59	1
Dibromochloromethane	<0.0018		0.0018	0.00057	mg/Kg	☼	11/02/17 18:18	11/08/17 19:59	1
1,1-Dichloroethane	<0.0018		0.0018	0.00060	mg/Kg	≎	11/02/17 18:18	11/08/17 19:59	1
1,2-Dichloroethane	<0.0044		0.0044	0.0014	mg/Kg	₩	11/02/17 18:18	11/08/17 19:59	1
1,1-Dichloroethene	<0.0018		0.0018	0.00060	mg/Kg	☼	11/02/17 18:18	11/08/17 19:59	1
1,2-Dichloropropane	<0.0018		0.0018	0.00045	mg/Kg	₽	11/02/17 18:18	11/08/17 19:59	1
1,3-Dichloropropene, Total	<0.0018		0.0018	0.00062	mg/Kg	₩	11/02/17 18:18	11/08/17 19:59	1
Ethylbenzene	<0.0018		0.0018	0.00084	mg/Kg	₩	11/02/17 18:18	11/08/17 19:59	1
2-Hexanone	<0.0044		0.0044	0.0014	mg/Kg	₽	11/02/17 18:18	11/08/17 19:59	1
Methylene Chloride	<0.0044		0.0044	0.0017	mg/Kg	₩	11/02/17 18:18	11/08/17 19:59	1
4-Methyl-2-pentanone (MIBK)	<0.0044		0.0044	0.0013	mg/Kg	₩	11/02/17 18:18	11/08/17 19:59	1
Methyl tert-butyl ether	<0.0018		0.0018	0.00052	mg/Kg	₽	11/02/17 18:18	11/08/17 19:59	1
Styrene	<0.0018		0.0018	0.00053	mg/Kg	₩	11/02/17 18:18	11/08/17 19:59	1
1,1,2,2-Tetrachloroethane	<0.0018		0.0018	0.00056		₽	11/02/17 18:18	11/08/17 19:59	1
Tetrachloroethene	<0.0018		0.0018	0.00060	mg/Kg	₩	11/02/17 18:18	11/08/17 19:59	1
Toluene	<0.0018		0.0018	0.00044		₽	11/02/17 18:18	11/08/17 19:59	1
trans-1,2-Dichloroethene	<0.0018		0.0018	0.00078		₩	11/02/17 18:18	11/08/17 19:59	1
trans-1,3-Dichloropropene	<0.0018		0.0018	0.00062	mg/Kg	₩	11/02/17 18:18	11/08/17 19:59	1
1,1,1-Trichloroethane	<0.0018		0.0018	0.00059	mg/Kg	≎	11/02/17 18:18	11/08/17 19:59	1
1,1,2-Trichloroethane	<0.0018		0.0018	0.00075	0 0	₽	11/02/17 18:18	11/08/17 19:59	1
Trichloroethene	<0.0018		0.0018	0.00059	mg/Kg	₩	11/02/17 18:18	11/08/17 19:59	1
Vinyl acetate	<0.0044		0.0044	0.0015	mg/Kg	₩	11/02/17 18:18	11/08/17 19:59	1
Vinyl chloride	<0.0018		0.0018	0.00078	mg/Kg	₽	11/02/17 18:18	11/08/17 19:59	1
Xylenes, Total	<0.0035		0.0035	0.00056	mg/Kg	\$	11/02/17 18:18	11/08/17 19:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	92		75 - 131				11/02/17 18:18	11/08/17 19:59	1
Dibromofluoromethane	98		75 - 126				11/02/17 18:18	11/08/17 19:59	1
1,2-Dichloroethane-d4 (Surr)	99		70 - 134				11/02/17 18:18	11/08/17 19:59	1
Toluene-d8 (Surr)	95		75 - 124				11/02/17 18:18	11/08/17 19:59	1

Method: 8270D - Semivola	tile Organic Compounds (GC/MS)						
Analyte	Result Qualifier	ŘL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	<0.037	0.037	0.0067	mg/Kg	\	11/08/17 17:13	11/13/17 15:12	1
Acenaphthylene	<0.037	0.037	0.0050	mg/Kg	₩	11/08/17 17:13	11/13/17 15:12	1
Anthracene	0.033 J	0.037	0.0063	mg/Kg	₩	11/08/17 17:13	11/13/17 15:12	1
Benzo[a]anthracene	0.088	0.037	0.0051	mg/Kg	\$	11/08/17 17:13	11/13/17 15:12	1

TestAmerica Chicago

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/01/17 11:50

Date Received: 11/02/17 09:00

Client Sample ID: 3160-62-1 (0-1.5')

TestAmerica Job ID: 500-136651-1

Lab Sample ID: 500-136651-17

Matrix: Solid
Percent Solids: 85.0

Method: 8270D - Semivolatil Analyte	Result Qualifier	RL	MDL	•	D	Prepared	Analyzed	Dil Fa
Benzo[a]pyrene	0.086	0.037	0.0073	mg/Kg	<u> </u>	11/08/17 17:13	11/13/17 15:12	
Benzo[b]fluoranthene	0.090	0.037	0.0081		₩	11/08/17 17:13	11/13/17 15:12	
Benzo[g,h,i]perylene	0.058	0.037	0.012	mg/Kg		11/08/17 17:13	11/13/17 15:12	
Benzo[k]fluoranthene	0.044	0.037	0.011		☼	11/08/17 17:13	11/13/17 15:12	
Bis(2-chloroethoxy)methane	<0.19	0.19	0.038	mg/Kg	☼	11/08/17 17:13	11/13/17 15:12	
Bis(2-chloroethyl)ether	<0.19	0.19		mg/Kg		11/08/17 17:13	11/13/17 15:12	
Bis(2-ethylhexyl) phthalate	<0.19	0.19		mg/Kg	₩	11/08/17 17:13	11/13/17 15:12	
4-Bromophenyl phenyl ether	<0.19	0.19		mg/Kg	☼		11/13/17 15:12	
Butyl benzyl phthalate	<0.19	0.19		mg/Kg			11/13/17 15:12	
Carbazole	<0.19	0.19	0.094		☼	11/08/17 17:13	11/13/17 15:12	
4-Chloroaniline	<0.76	0.76		mg/Kg	☼		11/13/17 15:12	
4-Chloro-3-methylphenol	<0.37	0.37		mg/Kg			11/13/17 15:12	
2-Chloronaphthalene	<0.19	0.19	0.041		☼		11/13/17 15:12	
2-Chlorophenol	<0.19	0.19	0.064		☼		11/13/17 15:12	
4-Chlorophenyl phenyl ether	<0.19	0.19		mg/Kg			11/13/17 15:12	
Chrysene	0.11	0.037	0.010		₽			
Dibenz(a,h)anthracene	<0.037	0.037	0.0073	0 0	₽		11/13/17 15:12	
Dibenzofuran	0.069 J	0.19		mg/Kg			11/13/17 15:12	
1,2-Dichlorobenzene	<0.19	0.19		mg/Kg	₽		11/13/17 15:12	
1,3-Dichlorobenzene	<0.19	0.19		mg/Kg	₩		11/13/17 15:12	
1,4-Dichlorobenzene	<0.19	0.19		mg/Kg			11/13/17 15:12	
3,3'-Dichlorobenzidine	<0.19	0.19		mg/Kg	т ф		11/13/17 15:12	
,	<0.19	0.19			~ \$			
2,4-Dichlorophenol			0.089		· · · · · · · · · · · · · · · · · · ·		11/13/17 15:12	
Diethyl phthalate	<0.19	0.19		mg/Kg	₩		11/13/17 15:12	
2,4-Dimethylphenol	<0.37	0.37	0.14	0 0	₩		11/13/17 15:12	
Dimethyl phthalate	<0.19	0.19	0.049	mg/Kg	· · · · · · · · · · · · · · · · · · ·		11/13/17 15:12	
Di-n-butyl phthalate	<0.19	0.19	0.057	0 0			11/13/17 15:12	
4,6-Dinitro-2-methylphenol	<0.76	0.76	0.30	mg/Kg	₩		11/13/17 15:12	
2,4-Dinitrophenol	<0.76	0.76	0.66					
2,4-Dinitrotoluene	<0.19	0.19		mg/Kg	*		11/13/17 15:12	
2,6-Dinitrotoluene	<0.19	0.19		mg/Kg	☆		11/13/17 15:12	
Di-n-octyl phthalate	<0.19	0.19		mg/Kg	14. 		11/13/17 15:12	
Fluoranthene	0.11	0.037	0.0070				11/13/17 15:12	
Fluorene	<0.037	0.037	0.0053	0 0			11/13/17 15:12	
Hexachlorobenzene	<0.076	0.076	0.0087		<u>.</u> .		11/13/17 15:12	
Hexachlorobutadiene	<0.19	0.19		mg/Kg	₩.		11/13/17 15:12	
Hexachlorocyclopentadiene	<0.76	0.76		mg/Kg	:D		11/13/17 15:12	
Hexachloroethane	<0.19	0.19		mg/Kg			11/13/17 15:12	
Indeno[1,2,3-cd]pyrene	0.035 J	0.037	0.0097		₽		11/13/17 15:12	
Isophorone	<0.19	0.19		mg/Kg	☼		11/13/17 15:12	
2-Methylnaphthalene	0.12	0.076	0.0069				11/13/17 15:12	
2-Methylphenol	<0.19	0.19		mg/Kg	₽		11/13/17 15:12	
3 & 4 Methylphenol	<0.19	0.19		mg/Kg	☼		11/13/17 15:12	
Naphthalene	0.049	0.037	0.0058		₩	11/08/17 17:13	11/13/17 15:12	
2-Nitroaniline	<0.19	0.19		mg/Kg	₽	11/08/17 17:13	11/13/17 15:12	
3-Nitroaniline	<0.37	0.37	0.12	mg/Kg	₩	11/08/17 17:13	11/13/17 15:12	
4-Nitroaniline	<0.37	0.37	0.16	mg/Kg	☼	11/08/17 17:13	11/13/17 15:12	
Nitrobenzene	<0.037	0.037	0.0094	mg/Kg	₽	11/08/17 17:13	11/13/17 15:12	
2-Nitrophenol	<0.37	0.37	0.089	mg/Kg	☼	11/08/17 17:13	11/13/17 15:12	

TestAmerica Chicago

3

4

6

8

10

12

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/01/17 11:50

Date Received: 11/02/17 09:00

Client Sample ID: 3160-62-1 (0-1.5')

TestAmerica Job ID: 500-136651-1

Lab Sample ID: 500-136651-17

Matrix: Solid Percent Solids: 85.0

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.76	0.76	0.36	mg/Kg	<u> </u>	11/08/17 17:13	11/13/17 15:12	1
N-Nitrosodi-n-propylamine	<0.076	0.076	0.046	mg/Kg	φ.	11/08/17 17:13	11/13/17 15:12	1
N-Nitrosodiphenylamine	<0.19	0.19	0.044	mg/Kg	₩	11/08/17 17:13	11/13/17 15:12	1
2,2'-oxybis[1-chloropropane]	<0.19	0.19	0.044	mg/Kg	₩	11/08/17 17:13	11/13/17 15:12	1
Pentachlorophenol	<0.76	0.76	0.60	mg/Kg	₩	11/08/17 17:13	11/13/17 15:12	1
Phenanthrene	0.24	0.037	0.0052	mg/Kg	₩	11/08/17 17:13	11/13/17 15:12	1
Phenol	<0.19	0.19	0.083	mg/Kg	₩	11/08/17 17:13	11/13/17 15:12	1
Pyrene	0.15	0.037	0.0075	mg/Kg	₩	11/08/17 17:13	11/13/17 15:12	1
1,2,4-Trichlorobenzene	<0.19	0.19	0.040	mg/Kg	₩	11/08/17 17:13	11/13/17 15:12	1
2,4,5-Trichlorophenol	<0.37	0.37	0.086	mg/Kg	₩	11/08/17 17:13	11/13/17 15:12	1
2,4,6-Trichlorophenol	<0.37	0.37	0.13	mg/Kg	₽	11/08/17 17:13	11/13/17 15:12	1

Surrogate	%Recovery Quar	lifier Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	75	44 - 121	11/08/17 17:13	11/13/17 15:12	1
2-Fluorophenol	77	46 - 133	11/08/17 17:13	11/13/17 15:12	1
Nitrobenzene-d5	67	41 - 120	11/08/17 17:13	11/13/17 15:12	1
Phenol-d5	71	46 - 125	11/08/17 17:13	11/13/17 15:12	1
Terphenyl-d14	88	35 - 160	11/08/17 17:13	11/13/17 15:12	1
2,4,6-Tribromophenol	62	25 - 139	11/08/17 17:13	11/13/17 15:12	1

Method: 6010B - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.95		0.95	0.18	mg/Kg	<u></u>	11/03/17 07:41	11/06/17 00:19	1
Arsenic	7.0		0.47	0.16	mg/Kg	☼	11/03/17 07:41	11/03/17 17:59	1
Barium	77		0.47	0.054	mg/Kg	≎	11/03/17 07:41	11/03/17 17:59	1
Beryllium	0.53		0.19	0.044	mg/Kg	₽	11/03/17 07:41	11/03/17 17:59	1
Cadmium	0.18	В	0.095	0.017	mg/Kg	☼	11/03/17 07:41	11/03/17 17:59	1
Chromium	12		0.47	0.23	mg/Kg	☼	11/03/17 07:41	11/03/17 17:59	1
Cobalt	8.3		0.24	0.062	mg/Kg	₽	11/03/17 07:41	11/03/17 17:59	1
Copper	11		0.47	0.13	mg/Kg	☼	11/03/17 07:41	11/03/17 17:59	1
Iron	15000		9.5	4.9	mg/Kg	☼	11/03/17 07:41	11/03/17 17:59	1
Lead	86		0.24	0.11	mg/Kg	₽	11/03/17 07:41	11/03/17 17:59	1
Manganese	900		0.47	0.069	mg/Kg	☼	11/03/17 07:41	11/03/17 17:59	1
Nickel	11		0.47	0.14	mg/Kg	☼	11/03/17 07:41	11/03/17 17:59	1
Selenium	0.81		0.47	0.28	mg/Kg	₽	11/03/17 07:41	11/06/17 00:19	1
Silver	0.080	J	0.24	0.061	mg/Kg	☼	11/03/17 07:41	11/03/17 17:59	1
Thallium	<0.47		0.47	0.24	mg/Kg	₽	11/03/17 07:41	11/03/17 17:59	1
Vanadium	24		0.24	0.056	mg/Kg	₽	11/03/17 07:41	11/03/17 17:59	1
Zinc	55		0.95	0.42	mg/Kg	☼	11/03/17 07:41	11/03/17 17:59	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/06/17 11:00	11/07/17 13:16	1
Barium	0.72		0.50	0.050	mg/L		11/06/17 11:00	11/07/17 13:16	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/06/17 11:00	11/07/17 13:16	1
Cadmium	0.0026	J	0.0050	0.0020	mg/L		11/06/17 11:00	11/07/17 13:16	1
Chromium	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 13:16	1
Cobalt	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 13:16	1
Copper	0.018	J	0.025	0.010	mg/L		11/06/17 11:00	11/07/17 13:16	1
Iron	0.20	J	0.40	0.20	mg/L		11/06/17 11:00	11/07/17 13:16	1

TestAmerica Chicago

Page 88 of 145

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/01/17 11:50

Date Received: 11/02/17 09:00

Client Sample ID: 3160-62-1 (0-1.5')

TestAmerica Job ID: 500-136651-1

Lab Sample ID: 500-136651-17

Matrix: Solid

Percent Solids: 85.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	<0.0075		0.0075	0.0075	mg/L		11/06/17 11:00	11/07/17 13:16	1
Manganese	0.031		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 13:16	1
Nickel	0.010	J	0.025	0.010	mg/L		11/06/17 11:00	11/07/17 13:16	1
Selenium	<0.050		0.050	0.020	mg/L		11/06/17 11:00	11/07/17 13:16	1
Silver	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 13:16	1
Vanadium	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 13:16	1
Zinc	0.057	J	0.50	0.020	mg/L		11/06/17 11:00	11/07/17 13:16	1
Method: 6020A - Metals	(ICP/MS) - TCLP								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060		0.0060	0.0060	mg/L		11/06/17 11:00	11/07/17 17:14	1
Thallium	<0.0020		0.0020	0.0020	mg/L		11/06/17 11:00	11/07/17 17:14	1
Method: 7470A - TCLP	Mercury - TCLP								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/06/17 14:30	11/07/17 09:48	1
Method: 7471B - Mercu	ry (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.035		0.018	0.0059	mg/Kg	\	11/03/17 15:15	11/06/17 12:09	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	8.6		0.20	0.20	SU			11/08/17 17:14	1

Definitions/Glossary

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Qualifier Description

TestAmerica Job ID: 500-136651-1

Qualifiers

GC/MS Semi VOA

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
F1	MS and/or MSD Recovery is outside acceptance limits.
F2	MS/MSD RPD exceeds control limits
X	Surrogate is outside control limits

GC Semi VOA

Qualifier

J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.						
Metals							
Qualifier	Qualifier Description						
F1	MS and/or MSD Recovery is outside acceptance limits.						
F2	MS/MSD RPD exceeds control limits						
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.						
F5	Duplicate RPD exceeds limit, and one or both sample results are less than 5 times RL. The data are considered valid because the absolute difference is less than the RL.						
F3	Duplicate RPD exceeds the control limit						
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.						
В	Compound was found in the blank and sample.						

These commonly used abbreviations may or may not be present in this report.

Glossary

Abbreviation

¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Page 90 of 145

TestAmerica Job ID: 500-136651-1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

GC/MS VOA

Prep Batch: 408513

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
500-136651-1	3160-55-1 (0-3)	Total/NA	Solid	5035	_
500-136651-2	3160-55-2 (0-3)	Total/NA	Solid	5035	
500-136651-3	3160-56-1 (0-1.5')	Total/NA	Solid	5035	
500-136651-4	3160-56-2 (0-1.5')	Total/NA	Solid	5035	
500-136651-5	3160-64-1 (0-1.5')	Total/NA	Solid	5035	
500-136651-6	3160-64-2 (0-1.5')	Total/NA	Solid	5035	
500-136651-7	3160-64-3 (0-1.5')	Total/NA	Solid	5035	
500-136651-8	3160-62-10 (0-1.5')	Total/NA	Solid	5035	
500-136651-9	3160-62-9 (0-1.5')	Total/NA	Solid	5035	
500-136651-10	3160-62-8 (0-1.5')	Total/NA	Solid	5035	
500-136651-11	3160-62-7 (0-1.5')	Total/NA	Solid	5035	
500-136651-12	3160-62-6 (0-1.5')	Total/NA	Solid	5035	
500-136651-13	3160-62-5 (0-1.5')	Total/NA	Solid	5035	
500-136651-14	3160-62-4 (0-1.5')	Total/NA	Solid	5035	
500-136651-15	3160-62-3 (0-1.5')	Total/NA	Solid	5035	
500-136651-16	3160-62-2 (0-1.5')	Total/NA	Solid	5035	
500-136651-17	3160-62-1 (0-1.5')	Total/NA	Solid	5035	

Analysis Batch: 408943

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136651-1	3160-55-1 (0-3)	Total/NA	Solid	8260B	408513
500-136651-2	3160-55-2 (0-3)	Total/NA	Solid	8260B	408513
500-136651-3	3160-56-1 (0-1.5')	Total/NA	Solid	8260B	408513
500-136651-4	3160-56-2 (0-1.5')	Total/NA	Solid	8260B	408513
500-136651-5	3160-64-1 (0-1.5')	Total/NA	Solid	8260B	408513
500-136651-6	3160-64-2 (0-1.5')	Total/NA	Solid	8260B	408513
500-136651-7	3160-64-3 (0-1.5')	Total/NA	Solid	8260B	408513
500-136651-8	3160-62-10 (0-1.5')	Total/NA	Solid	8260B	408513
500-136651-9	3160-62-9 (0-1.5')	Total/NA	Solid	8260B	408513
500-136651-10	3160-62-8 (0-1.5')	Total/NA	Solid	8260B	408513
500-136651-11	3160-62-7 (0-1.5')	Total/NA	Solid	8260B	408513
500-136651-12	3160-62-6 (0-1.5')	Total/NA	Solid	8260B	408513
500-136651-13	3160-62-5 (0-1.5')	Total/NA	Solid	8260B	408513
500-136651-14	3160-62-4 (0-1.5')	Total/NA	Solid	8260B	408513
500-136651-15	3160-62-3 (0-1.5')	Total/NA	Solid	8260B	408513
500-136651-16	3160-62-2 (0-1.5')	Total/NA	Solid	8260B	408513
500-136651-17	3160-62-1 (0-1.5')	Total/NA	Solid	8260B	408513
MB 500-408943/7	Method Blank	Total/NA	Solid	8260B	
LCS 500-408943/4	Lab Control Sample	Total/NA	Solid	8260B	
LCSD 500-408943/5	Lab Control Sample Dup	Total/NA	Solid	8260B	

GC/MS Semi VOA

Prep Batch: 409105

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136651-1	3160-55-1 (0-3)	Total/NA	Solid	3541	
500-136651-2	3160-55-2 (0-3)	Total/NA	Solid	3541	
500-136651-3	3160-56-1 (0-1.5')	Total/NA	Solid	3541	
500-136651-4	3160-56-2 (0-1.5')	Total/NA	Solid	3541	
500-136651-5	3160-64-1 (0-1.5')	Total/NA	Solid	3541	

TestAmerica Chicago

Page 91 of 145

3

4

6

8

11

. .

TestAmerica Job ID: 500-136651-1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

GC/MS Semi VOA (Continued)

Prep Batch: 409105 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136651-6	3160-64-2 (0-1.5')	Total/NA	Solid	3541	
500-136651-7	3160-64-3 (0-1.5')	Total/NA	Solid	3541	
500-136651-8	3160-62-10 (0-1.5')	Total/NA	Solid	3541	
500-136651-10	3160-62-8 (0-1.5')	Total/NA	Solid	3541	
500-136651-11	3160-62-7 (0-1.5')	Total/NA	Solid	3541	
500-136651-12	3160-62-6 (0-1.5')	Total/NA	Solid	3541	
500-136651-14	3160-62-4 (0-1.5')	Total/NA	Solid	3541	
500-136651-15	3160-62-3 (0-1.5')	Total/NA	Solid	3541	
500-136651-16	3160-62-2 (0-1.5')	Total/NA	Solid	3541	
500-136651-17	3160-62-1 (0-1.5')	Total/NA	Solid	3541	
MB 500-409105/1-A	Method Blank	Total/NA	Solid	3541	
LCS 500-409105/2-A	Lab Control Sample	Total/NA	Solid	3541	
500-136651-2 MS	3160-55-2 (0-3)	Total/NA	Solid	3541	
500-136651-2 MSD	3160-55-2 (0-3)	Total/NA	Solid	3541	

Analysis Batch: 409157

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136651-2	3160-55-2 (0-3)	Total/NA	Solid	8270D	409105
500-136651-4	3160-56-2 (0-1.5')	Total/NA	Solid	8270D	409105
500-136651-6	3160-64-2 (0-1.5')	Total/NA	Solid	8270D	409105
500-136651-7	3160-64-3 (0-1.5')	Total/NA	Solid	8270D	409105
500-136651-8	3160-62-10 (0-1.5')	Total/NA	Solid	8270D	409105
500-136651-10	3160-62-8 (0-1.5')	Total/NA	Solid	8270D	409105
500-136651-11	3160-62-7 (0-1.5')	Total/NA	Solid	8270D	409105
500-136651-12	3160-62-6 (0-1.5')	Total/NA	Solid	8270D	409105
500-136651-14	3160-62-4 (0-1.5')	Total/NA	Solid	8270D	409105
500-136651-15	3160-62-3 (0-1.5')	Total/NA	Solid	8270D	409105
500-136651-16	3160-62-2 (0-1.5')	Total/NA	Solid	8270D	409105
MB 500-409105/1-A	Method Blank	Total/NA	Solid	8270D	409105
LCS 500-409105/2-A	Lab Control Sample	Total/NA	Solid	8270D	409105
500-136651-2 MS	3160-55-2 (0-3)	Total/NA	Solid	8270D	409105
500-136651-2 MSD	3160-55-2 (0-3)	Total/NA	Solid	8270D	409105

Analysis Batch: 409487

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136651-1	3160-55-1 (0-3)	Total/NA	Solid	8270D	409105
500-136651-3	3160-56-1 (0-1.5')	Total/NA	Solid	8270D	409105
500-136651-5	3160-64-1 (0-1.5')	Total/NA	Solid	8270D	409105

Analysis Batch: 409657

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136651-17	3160-62-1 (0-1.5')	Total/NA	Solid	8270D	409105

Prep Batch: 409783

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136651-9	3160-62-9 (0-1.5')	Total/NA	Solid	3541	
500-136651-13	3160-62-5 (0-1.5')	Total/NA	Solid	3541	
MB 500-409783/1-A	Method Blank	Total/NA	Solid	3541	
LCS 500-409783/2-A	Lab Control Sample	Total/NA	Solid	3541	

TestAmerica Chicago

Page 92 of 145

QC Association Summary

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136651-1

GC/MS Semi VOA (Continued)

Analysis Batch: 409829

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136651-9	3160-62-9 (0-1.5')	Total/NA	Solid	8270D	409783
500-136651-13	3160-62-5 (0-1.5')	Total/NA	Solid	8270D	409783
MB 500-409783/1-A	Method Blank	Total/NA	Solid	8270D	409783
LCS 500-409783/2-A	Lab Control Sample	Total/NA	Solid	8270D	409783

GC Semi VOA

Prep Batch: 408939

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136651-1	3160-55-1 (0-3)	Total/NA	Solid	3541	_
500-136651-2	3160-55-2 (0-3)	Total/NA	Solid	3541	
500-136651-3	3160-56-1 (0-1.5')	Total/NA	Solid	3541	
500-136651-4	3160-56-2 (0-1.5')	Total/NA	Solid	3541	
500-136651-5	3160-64-1 (0-1.5')	Total/NA	Solid	3541	
500-136651-6	3160-64-2 (0-1.5')	Total/NA	Solid	3541	
500-136651-7	3160-64-3 (0-1.5')	Total/NA	Solid	3541	
MB 500-408939/1-A	Method Blank	Total/NA	Solid	3541	
LCS 500-408939/2-A	Lab Control Sample	Total/NA	Solid	3541	
LCS 500-408939/3-A	Lab Control Sample	Total/NA	Solid	3541	

Analysis Batch: 409021

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136651-1	3160-55-1 (0-3)	Total/NA	Solid	8151A	409129
500-136651-2	3160-55-2 (0-3)	Total/NA	Solid	8151A	409129
500-136651-3	3160-56-1 (0-1.5')	Total/NA	Solid	8151A	409129
500-136651-4	3160-56-2 (0-1.5')	Total/NA	Solid	8151A	409129
MB 500-409129/1-A	Method Blank	Total/NA	Solid	8151A	409129
LCS 500-409129/2-A	Lab Control Sample	Total/NA	Solid	8151A	409129

Analysis Batch: 409066

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136651-1	3160-55-1 (0-3)	Total/NA	Solid	8081B	408939
500-136651-2	3160-55-2 (0-3)	Total/NA	Solid	8081B	408939
500-136651-3	3160-56-1 (0-1.5')	Total/NA	Solid	8081B	408939
500-136651-4	3160-56-2 (0-1.5')	Total/NA	Solid	8081B	408939
MB 500-408939/1-A	Method Blank	Total/NA	Solid	8081B	408939
LCS 500-408939/2-A	Lab Control Sample	Total/NA	Solid	8081B	408939

Prep Batch: 409129

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136651-1	3160-55-1 (0-3)	Total/NA	Solid	8151A	
500-136651-2	3160-55-2 (0-3)	Total/NA	Solid	8151A	
500-136651-3	3160-56-1 (0-1.5')	Total/NA	Solid	8151A	
500-136651-4	3160-56-2 (0-1.5')	Total/NA	Solid	8151A	
MB 500-409129/1-A	Method Blank	Total/NA	Solid	8151A	
LCS 500-409129/2-A	Lab Control Sample	Total/NA	Solid	8151A	

Analysis Batch: 409181

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136651-5	3160-64-1 (0-1.5')	Total/NA	Solid	8082A	408939

TestAmerica Chicago

Page 93 of 145

QC Association Summary

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136651-1

GC Semi VOA (Continued)

Analysis Batch: 409181 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136651-6	3160-64-2 (0-1.5')	Total/NA	Solid	8082A	408939
500-136651-7	3160-64-3 (0-1.5')	Total/NA	Solid	8082A	408939
MB 500-408939/1-A	Method Blank	Total/NA	Solid	8082A	408939
LCS 500-408939/3-A	Lab Control Sample	Total/NA	Solid	8082A	408939

Metals

Prep Batch: 408293

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136651-1	3160-55-1 (0-3)	Total/NA	Solid	3050B	
500-136651-2	3160-55-2 (0-3)	Total/NA	Solid	3050B	
500-136651-3	3160-56-1 (0-1.5')	Total/NA	Solid	3050B	
500-136651-4	3160-56-2 (0-1.5')	Total/NA	Solid	3050B	
500-136651-5	3160-64-1 (0-1.5')	Total/NA	Solid	3050B	
500-136651-6	3160-64-2 (0-1.5')	Total/NA	Solid	3050B	
500-136651-7	3160-64-3 (0-1.5')	Total/NA	Solid	3050B	
500-136651-8	3160-62-10 (0-1.5')	Total/NA	Solid	3050B	
500-136651-9	3160-62-9 (0-1.5')	Total/NA	Solid	3050B	
500-136651-10	3160-62-8 (0-1.5')	Total/NA	Solid	3050B	
500-136651-11	3160-62-7 (0-1.5')	Total/NA	Solid	3050B	
500-136651-12	3160-62-6 (0-1.5')	Total/NA	Solid	3050B	
500-136651-13	3160-62-5 (0-1.5')	Total/NA	Solid	3050B	
500-136651-14	3160-62-4 (0-1.5')	Total/NA	Solid	3050B	
500-136651-15	3160-62-3 (0-1.5')	Total/NA	Solid	3050B	
500-136651-16	3160-62-2 (0-1.5')	Total/NA	Solid	3050B	
500-136651-17	3160-62-1 (0-1.5')	Total/NA	Solid	3050B	
MB 500-408293/1-A	Method Blank	Total/NA	Solid	3050B	
LCS 500-408293/2-A	Lab Control Sample	Total/NA	Solid	3050B	
500-136651-1 MS	3160-55-1 (0-3)	Total/NA	Solid	3050B	
500-136651-1 MSD	3160-55-1 (0-3)	Total/NA	Solid	3050B	
500-136651-1 DU	3160-55-1 (0-3)	Total/NA	Solid	3050B	

Leach Batch: 408390

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136651-3	3160-56-1 (0-1.5')	SPLP East	Solid	1312	
500-136651-5	3160-64-1 (0-1.5')	SPLP East	Solid	1312	
500-136651-7	3160-64-3 (0-1.5')	SPLP East	Solid	1312	
500-136651-10	3160-62-8 (0-1.5')	SPLP East	Solid	1312	
500-136651-16	3160-62-2 (0-1.5')	SPLP East	Solid	1312	
LB 500-408390/1-B	Method Blank	SPLP East	Solid	1312	

Leach Batch: 408395

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136651-1	3160-55-1 (0-3)	TCLP	Solid	1311	
500-136651-2	3160-55-2 (0-3)	TCLP	Solid	1311	
500-136651-3	3160-56-1 (0-1.5')	TCLP	Solid	1311	
500-136651-4	3160-56-2 (0-1.5')	TCLP	Solid	1311	
500-136651-5	3160-64-1 (0-1.5')	TCLP	Solid	1311	
500-136651-6	3160-64-2 (0-1.5')	TCLP	Solid	1311	
500-136651-7	3160-64-3 (0-1.5')	TCLP	Solid	1311	

TestAmerica Chicago

Page 94 of 145

3

4

6

0

46

11

13

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Metals (Continued)

Leach Batch: 408395 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136651-8	3160-62-10 (0-1.5')	TCLP	Solid	1311	_
500-136651-9	3160-62-9 (0-1.5')	TCLP	Solid	1311	
500-136651-10	3160-62-8 (0-1.5')	TCLP	Solid	1311	
500-136651-11	3160-62-7 (0-1.5')	TCLP	Solid	1311	
500-136651-12	3160-62-6 (0-1.5')	TCLP	Solid	1311	
500-136651-13	3160-62-5 (0-1.5')	TCLP	Solid	1311	
500-136651-14	3160-62-4 (0-1.5')	TCLP	Solid	1311	
500-136651-15	3160-62-3 (0-1.5')	TCLP	Solid	1311	
500-136651-16	3160-62-2 (0-1.5')	TCLP	Solid	1311	
500-136651-17	3160-62-1 (0-1.5')	TCLP	Solid	1311	
LB 500-408395/1-B	Method Blank	TCLP	Solid	1311	
LB 500-408395/1-C	Method Blank	TCLP	Solid	1311	
500-136651-1 MS	3160-55-1 (0-3)	TCLP	Solid	1311	
500-136651-17 MS	3160-62-1 (0-1.5')	TCLP	Solid	1311	
500-136651-1 DU	3160-55-1 (0-3)	TCLP	Solid	1311	
500-136651-17 DU	3160-62-1 (0-1.5')	TCLP	Solid	1311	

Prep Batch: 408396

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136651-1	3160-55-1 (0-3)	Total/NA	Solid	7471B	-
500-136651-2	3160-55-2 (0-3)	Total/NA	Solid	7471B	
500-136651-3	3160-56-1 (0-1.5')	Total/NA	Solid	7471B	
500-136651-4	3160-56-2 (0-1.5')	Total/NA	Solid	7471B	
500-136651-5	3160-64-1 (0-1.5')	Total/NA	Solid	7471B	
500-136651-6	3160-64-2 (0-1.5')	Total/NA	Solid	7471B	
500-136651-7	3160-64-3 (0-1.5')	Total/NA	Solid	7471B	
500-136651-8	3160-62-10 (0-1.5')	Total/NA	Solid	7471B	
500-136651-9	3160-62-9 (0-1.5')	Total/NA	Solid	7471B	
500-136651-10	3160-62-8 (0-1.5')	Total/NA	Solid	7471B	
500-136651-11	3160-62-7 (0-1.5')	Total/NA	Solid	7471B	
500-136651-12	3160-62-6 (0-1.5')	Total/NA	Solid	7471B	
500-136651-13	3160-62-5 (0-1.5')	Total/NA	Solid	7471B	
500-136651-14	3160-62-4 (0-1.5')	Total/NA	Solid	7471B	
500-136651-15	3160-62-3 (0-1.5')	Total/NA	Solid	7471B	
500-136651-16	3160-62-2 (0-1.5')	Total/NA	Solid	7471B	
500-136651-17	3160-62-1 (0-1.5')	Total/NA	Solid	7471B	
MB 500-408396/12-A	Method Blank	Total/NA	Solid	7471B	
LCS 500-408396/13-A	Lab Control Sample	Total/NA	Solid	7471B	
500-136651-9 MS	3160-62-9 (0-1.5')	Total/NA	Solid	7471B	
500-136651-9 MSD	3160-62-9 (0-1.5')	Total/NA	Solid	7471B	
500-136651-9 DU	3160-62-9 (0-1.5')	Total/NA	Solid	7471B	

Analysis Batch: 408472

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136651-1	3160-55-1 (0-3)	Total/NA	Solid	6010B	408293
500-136651-2	3160-55-2 (0-3)	Total/NA	Solid	6010B	408293
500-136651-3	3160-56-1 (0-1.5')	Total/NA	Solid	6010B	408293
500-136651-4	3160-56-2 (0-1.5')	Total/NA	Solid	6010B	408293
500-136651-5	3160-64-1 (0-1.5')	Total/NA	Solid	6010B	408293
500-136651-6	3160-64-2 (0-1.5')	Total/NA	Solid	6010B	408293
500-136651-7	3160-64-3 (0-1.5')	Total/NA	Solid	6010B	408293

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Metals (Continued)

Analysis Batch: 408472 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136651-8	3160-62-10 (0-1.5')	Total/NA	Solid	6010B	408293
500-136651-9	3160-62-9 (0-1.5')	Total/NA	Solid	6010B	408293
500-136651-10	3160-62-8 (0-1.5')	Total/NA	Solid	6010B	408293
500-136651-11	3160-62-7 (0-1.5')	Total/NA	Solid	6010B	408293
500-136651-12	3160-62-6 (0-1.5')	Total/NA	Solid	6010B	408293
500-136651-13	3160-62-5 (0-1.5')	Total/NA	Solid	6010B	408293
500-136651-14	3160-62-4 (0-1.5')	Total/NA	Solid	6010B	408293
500-136651-15	3160-62-3 (0-1.5')	Total/NA	Solid	6010B	408293
500-136651-16	3160-62-2 (0-1.5')	Total/NA	Solid	6010B	408293
500-136651-17	3160-62-1 (0-1.5')	Total/NA	Solid	6010B	408293
MB 500-408293/1-A	Method Blank	Total/NA	Solid	6010B	408293
LCS 500-408293/2-A	Lab Control Sample	Total/NA	Solid	6010B	408293
500-136651-1 MS	3160-55-1 (0-3)	Total/NA	Solid	6010B	408293
500-136651-1 MSD	3160-55-1 (0-3)	Total/NA	Solid	6010B	408293
500-136651-1 DU	3160-55-1 (0-3)	Total/NA	Solid	6010B	408293

Analysis Batch: 408545

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136651-1	3160-55-1 (0-3)	Total/NA	Solid	6010B	408293
500-136651-2	3160-55-2 (0-3)	Total/NA	Solid	6010B	408293
500-136651-3	3160-56-1 (0-1.5')	Total/NA	Solid	6010B	408293
500-136651-4	3160-56-2 (0-1.5')	Total/NA	Solid	6010B	408293
500-136651-5	3160-64-1 (0-1.5')	Total/NA	Solid	6010B	408293
500-136651-6	3160-64-2 (0-1.5')	Total/NA	Solid	6010B	408293
500-136651-7	3160-64-3 (0-1.5')	Total/NA	Solid	6010B	408293
500-136651-8	3160-62-10 (0-1.5')	Total/NA	Solid	6010B	408293
500-136651-9	3160-62-9 (0-1.5')	Total/NA	Solid	6010B	408293
500-136651-10	3160-62-8 (0-1.5')	Total/NA	Solid	6010B	408293
500-136651-11	3160-62-7 (0-1.5')	Total/NA	Solid	6010B	408293
500-136651-12	3160-62-6 (0-1.5')	Total/NA	Solid	6010B	408293
500-136651-13	3160-62-5 (0-1.5')	Total/NA	Solid	6010B	408293
500-136651-14	3160-62-4 (0-1.5')	Total/NA	Solid	6010B	408293
500-136651-15	3160-62-3 (0-1.5')	Total/NA	Solid	6010B	408293
500-136651-16	3160-62-2 (0-1.5')	Total/NA	Solid	6010B	408293
500-136651-17	3160-62-1 (0-1.5')	Total/NA	Solid	6010B	408293
MB 500-408293/1-A	Method Blank	Total/NA	Solid	6010B	408293
LCS 500-408293/2-A	Lab Control Sample	Total/NA	Solid	6010B	408293
500-136651-1 MS	3160-55-1 (0-3)	Total/NA	Solid	6010B	408293
500-136651-1 MSD	3160-55-1 (0-3)	Total/NA	Solid	6010B	408293
500-136651-1 DU	3160-55-1 (0-3)	Total/NA	Solid	6010B	408293

Prep Batch: 408611

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136651-3	3160-56-1 (0-1.5')	SPLP East	Solid	3010A	408390
500-136651-5	3160-64-1 (0-1.5')	SPLP East	Solid	3010A	408390
500-136651-7	3160-64-3 (0-1.5')	SPLP East	Solid	3010A	408390
500-136651-10	3160-62-8 (0-1.5')	SPLP East	Solid	3010A	408390
500-136651-16	3160-62-2 (0-1.5')	SPLP East	Solid	3010A	408390
LB 500-408390/1-B	Method Blank	SPLP East	Solid	3010A	408390
LCS 500-408611/2-A	Lab Control Sample	Total/NA	Solid	3010A	

Page 96 of 145

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Metals (Continued)

Prep Batch: 408617

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136651-1	3160-55-1 (0-3)	TCLP	Solid	3010A	408395
500-136651-2	3160-55-2 (0-3)	TCLP	Solid	3010A	408395
500-136651-3	3160-56-1 (0-1.5')	TCLP	Solid	3010A	408395
500-136651-4	3160-56-2 (0-1.5')	TCLP	Solid	3010A	408395
500-136651-5	3160-64-1 (0-1.5')	TCLP	Solid	3010A	408395
500-136651-6	3160-64-2 (0-1.5')	TCLP	Solid	3010A	408395
500-136651-7	3160-64-3 (0-1.5')	TCLP	Solid	3010A	408395
500-136651-8	3160-62-10 (0-1.5')	TCLP	Solid	3010A	408395
500-136651-9	3160-62-9 (0-1.5')	TCLP	Solid	3010A	408395
500-136651-10	3160-62-8 (0-1.5')	TCLP	Solid	3010A	408395
500-136651-11	3160-62-7 (0-1.5')	TCLP	Solid	3010A	408395
500-136651-12	3160-62-6 (0-1.5')	TCLP	Solid	3010A	408395
500-136651-13	3160-62-5 (0-1.5')	TCLP	Solid	3010A	408395
500-136651-14	3160-62-4 (0-1.5')	TCLP	Solid	3010A	408395
500-136651-15	3160-62-3 (0-1.5')	TCLP	Solid	3010A	408395
500-136651-16	3160-62-2 (0-1.5')	TCLP	Solid	3010A	408395
500-136651-17	3160-62-1 (0-1.5')	TCLP	Solid	3010A	408395
LB 500-408395/1-B	Method Blank	TCLP	Solid	3010A	408395
LCS 500-408617/2-A	Lab Control Sample	Total/NA	Solid	3010A	
500-136651-17 MS	3160-62-1 (0-1.5')	TCLP	Solid	3010A	408395
500-136651-17 DU	3160-62-1 (0-1.5')	TCLP	Solid	3010A	408395

Analysis Batch: 408625

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136651-1	3160-55-1 (0-3)	Total/NA	Solid	7471B	408396
500-136651-2	3160-55-2 (0-3)	Total/NA	Solid	7471B	408396
500-136651-3	3160-56-1 (0-1.5')	Total/NA	Solid	7471B	408396
500-136651-4	3160-56-2 (0-1.5')	Total/NA	Solid	7471B	408396
500-136651-5	3160-64-1 (0-1.5')	Total/NA	Solid	7471B	408396
500-136651-6	3160-64-2 (0-1.5')	Total/NA	Solid	7471B	408396
500-136651-7	3160-64-3 (0-1.5')	Total/NA	Solid	7471B	408396
500-136651-8	3160-62-10 (0-1.5')	Total/NA	Solid	7471B	408396
500-136651-9	3160-62-9 (0-1.5')	Total/NA	Solid	7471B	408396
500-136651-10	3160-62-8 (0-1.5')	Total/NA	Solid	7471B	408396
500-136651-11	3160-62-7 (0-1.5')	Total/NA	Solid	7471B	408396
500-136651-12	3160-62-6 (0-1.5')	Total/NA	Solid	7471B	408396
500-136651-13	3160-62-5 (0-1.5')	Total/NA	Solid	7471B	408396
500-136651-14	3160-62-4 (0-1.5')	Total/NA	Solid	7471B	408396
500-136651-15	3160-62-3 (0-1.5')	Total/NA	Solid	7471B	408396
500-136651-16	3160-62-2 (0-1.5')	Total/NA	Solid	7471B	408396
500-136651-17	3160-62-1 (0-1.5')	Total/NA	Solid	7471B	408396
MB 500-408396/12-A	Method Blank	Total/NA	Solid	7471B	408396
LCS 500-408396/13-A	Lab Control Sample	Total/NA	Solid	7471B	408396
500-136651-9 MS	3160-62-9 (0-1.5')	Total/NA	Solid	7471B	408396
500-136651-9 MSD	3160-62-9 (0-1.5')	Total/NA	Solid	7471B	408396
500-136651-9 DU	3160-62-9 (0-1.5')	Total/NA	Solid	7471B	408396

Prep Batch: 408635

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136651-1	3160-55-1 (0-3)	TCLP	Solid	7470A	408395
500-136651-2	3160-55-2 (0-3)	TCLP	Solid	7470A	408395

TestAmerica Chicago

5

8

10

111

13

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Metals (Continued)

Prep Batch: 408635 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136651-3	3160-56-1 (0-1.5')	TCLP	Solid	7470A	408395
500-136651-4	3160-56-2 (0-1.5')	TCLP	Solid	7470A	408395
500-136651-5	3160-64-1 (0-1.5')	TCLP	Solid	7470A	408395
500-136651-6	3160-64-2 (0-1.5')	TCLP	Solid	7470A	408395
500-136651-7	3160-64-3 (0-1.5')	TCLP	Solid	7470A	408395
500-136651-8	3160-62-10 (0-1.5')	TCLP	Solid	7470A	408395
500-136651-9	3160-62-9 (0-1.5')	TCLP	Solid	7470A	408395
500-136651-10	3160-62-8 (0-1.5')	TCLP	Solid	7470A	408395
500-136651-11	3160-62-7 (0-1.5')	TCLP	Solid	7470A	408395
500-136651-12	3160-62-6 (0-1.5')	TCLP	Solid	7470A	408395
500-136651-13	3160-62-5 (0-1.5')	TCLP	Solid	7470A	408395
500-136651-14	3160-62-4 (0-1.5')	TCLP	Solid	7470A	408395
500-136651-15	3160-62-3 (0-1.5')	TCLP	Solid	7470A	408395
500-136651-16	3160-62-2 (0-1.5')	TCLP	Solid	7470A	408395
500-136651-17	3160-62-1 (0-1.5')	TCLP	Solid	7470A	408395
LB 500-408395/1-C	Method Blank	TCLP	Solid	7470A	408395
MB 500-408635/12-A	Method Blank	Total/NA	Solid	7470A	
LCS 500-408635/13-A	Lab Control Sample	Total/NA	Solid	7470A	
500-136651-1 MS	3160-55-1 (0-3)	TCLP	Solid	7470A	408395
500-136651-1 DU	3160-55-1 (0-3)	TCLP	Solid	7470A	408395

Analysis Batch: 408771

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136651-1	3160-55-1 (0-3)	TCLP	Solid	7470A	408635
500-136651-2	3160-55-2 (0-3)	TCLP	Solid	7470A	408635
500-136651-3	3160-56-1 (0-1.5')	TCLP	Solid	7470A	408635
500-136651-4	3160-56-2 (0-1.5')	TCLP	Solid	7470A	408635
500-136651-5	3160-64-1 (0-1.5')	TCLP	Solid	7470A	408635
500-136651-6	3160-64-2 (0-1.5')	TCLP	Solid	7470A	408635
500-136651-7	3160-64-3 (0-1.5')	TCLP	Solid	7470A	408635
500-136651-8	3160-62-10 (0-1.5')	TCLP	Solid	7470A	408635
500-136651-9	3160-62-9 (0-1.5')	TCLP	Solid	7470A	408635
500-136651-10	3160-62-8 (0-1.5')	TCLP	Solid	7470A	408635
500-136651-11	3160-62-7 (0-1.5')	TCLP	Solid	7470A	408635
500-136651-12	3160-62-6 (0-1.5')	TCLP	Solid	7470A	408635
500-136651-13	3160-62-5 (0-1.5')	TCLP	Solid	7470A	408635
500-136651-14	3160-62-4 (0-1.5')	TCLP	Solid	7470A	408635
500-136651-15	3160-62-3 (0-1.5')	TCLP	Solid	7470A	408635
500-136651-16	3160-62-2 (0-1.5')	TCLP	Solid	7470A	408635
500-136651-17	3160-62-1 (0-1.5')	TCLP	Solid	7470A	408635
LB 500-408395/1-C	Method Blank	TCLP	Solid	7470A	408635
MB 500-408635/12-A	Method Blank	Total/NA	Solid	7470A	408635
LCS 500-408635/13-A	Lab Control Sample	Total/NA	Solid	7470A	408635
500-136651-1 MS	3160-55-1 (0-3)	TCLP	Solid	7470A	408635
500-136651-1 DU	3160-55-1 (0-3)	TCLP	Solid	7470A	408635

Analysis Batch: 408949

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136651-1	3160-55-1 (0-3)	TCLP	Solid	6010B	408617
500-136651-2	3160-55-2 (0-3)	TCLP	Solid	6010B	408617
500-136651-3	3160-56-1 (0-1.5')	TCLP	Solid	6010B	408617

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Metals (Continued)

Analysis Batch: 408949 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136651-4	3160-56-2 (0-1.5')	TCLP	Solid	6010B	408617
500-136651-5	3160-64-1 (0-1.5')	TCLP	Solid	6010B	408617
500-136651-6	3160-64-2 (0-1.5')	TCLP	Solid	6010B	408617
500-136651-7	3160-64-3 (0-1.5')	TCLP	Solid	6010B	408617
500-136651-8	3160-62-10 (0-1.5')	TCLP	Solid	6010B	408617
500-136651-9	3160-62-9 (0-1.5')	TCLP	Solid	6010B	408617
500-136651-10	3160-62-8 (0-1.5')	TCLP	Solid	6010B	408617
500-136651-11	3160-62-7 (0-1.5')	TCLP	Solid	6010B	408617
500-136651-12	3160-62-6 (0-1.5')	TCLP	Solid	6010B	408617
500-136651-13	3160-62-5 (0-1.5')	TCLP	Solid	6010B	408617
500-136651-14	3160-62-4 (0-1.5')	TCLP	Solid	6010B	408617
500-136651-15	3160-62-3 (0-1.5')	TCLP	Solid	6010B	408617
500-136651-16	3160-62-2 (0-1.5')	TCLP	Solid	6010B	408617
500-136651-17	3160-62-1 (0-1.5')	TCLP	Solid	6010B	408617
LB 500-408395/1-B	Method Blank	TCLP	Solid	6010B	408617
LCS 500-408617/2-A	Lab Control Sample	Total/NA	Solid	6010B	408617
500-136651-17 MS	3160-62-1 (0-1.5')	TCLP	Solid	6010B	408617
500-136651-17 DU	3160-62-1 (0-1.5')	TCLP	Solid	6010B	408617

Analysis Batch: 408965

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136651-1	3160-55-1 (0-3)	TCLP	Solid	6020A	408617
500-136651-2	3160-55-2 (0-3)	TCLP	Solid	6020A	408617
500-136651-3	3160-56-1 (0-1.5')	TCLP	Solid	6020A	408617
500-136651-4	3160-56-2 (0-1.5')	TCLP	Solid	6020A	408617
500-136651-5	3160-64-1 (0-1.5')	TCLP	Solid	6020A	408617
500-136651-6	3160-64-2 (0-1.5')	TCLP	Solid	6020A	408617
500-136651-7	3160-64-3 (0-1.5')	TCLP	Solid	6020A	408617
500-136651-8	3160-62-10 (0-1.5')	TCLP	Solid	6020A	408617
500-136651-9	3160-62-9 (0-1.5')	TCLP	Solid	6020A	408617
500-136651-10	3160-62-8 (0-1.5')	TCLP	Solid	6020A	408617
500-136651-11	3160-62-7 (0-1.5')	TCLP	Solid	6020A	408617
500-136651-12	3160-62-6 (0-1.5')	TCLP	Solid	6020A	408617
500-136651-13	3160-62-5 (0-1.5')	TCLP	Solid	6020A	408617
500-136651-14	3160-62-4 (0-1.5')	TCLP	Solid	6020A	408617
500-136651-15	3160-62-3 (0-1.5')	TCLP	Solid	6020A	408617
500-136651-16	3160-62-2 (0-1.5')	TCLP	Solid	6020A	408617
500-136651-17	3160-62-1 (0-1.5')	TCLP	Solid	6020A	408617
LB 500-408395/1-B	Method Blank	TCLP	Solid	6020A	408617
LCS 500-408617/2-A	Lab Control Sample	Total/NA	Solid	6020A	408617
500-136651-17 MS	3160-62-1 (0-1.5')	TCLP	Solid	6020A	408617
500-136651-17 DU	3160-62-1 (0-1.5')	TCLP	Solid	6020A	408617

Analysis Batch: 409155

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136651-3	3160-56-1 (0-1.5')	SPLP East	Solid	6010B	408611
500-136651-5	3160-64-1 (0-1.5')	SPLP East	Solid	6010B	408611
500-136651-7	3160-64-3 (0-1.5')	SPLP East	Solid	6010B	408611
500-136651-10	3160-62-8 (0-1.5')	SPLP East	Solid	6010B	408611
500-136651-16	3160-62-2 (0-1.5')	SPLP East	Solid	6010B	408611
LB 500-408390/1-B	Method Blank	SPLP East	Solid	6010B	408611

QC Association Summary

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136651-1

Metals (Continued)

Analysis Batch: 409155 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 500-408611/2-A	Lab Control Sample	Total/NA	Solid	6010B	408611

General Chemistry

Analysis Batch: 408249

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136651-1	3160-55-1 (0-3)	Total/NA	Solid	Moisture	
500-136651-2	3160-55-2 (0-3)	Total/NA	Solid	Moisture	
500-136651-3	3160-56-1 (0-1.5')	Total/NA	Solid	Moisture	
500-136651-4	3160-56-2 (0-1.5')	Total/NA	Solid	Moisture	
500-136651-5	3160-64-1 (0-1.5')	Total/NA	Solid	Moisture	
500-136651-6	3160-64-2 (0-1.5')	Total/NA	Solid	Moisture	
500-136651-7	3160-64-3 (0-1.5')	Total/NA	Solid	Moisture	
500-136651-8	3160-62-10 (0-1.5')	Total/NA	Solid	Moisture	
500-136651-9	3160-62-9 (0-1.5')	Total/NA	Solid	Moisture	
500-136651-10	3160-62-8 (0-1.5')	Total/NA	Solid	Moisture	
500-136651-11	3160-62-7 (0-1.5')	Total/NA	Solid	Moisture	
500-136651-12	3160-62-6 (0-1.5')	Total/NA	Solid	Moisture	
500-136651-13	3160-62-5 (0-1.5')	Total/NA	Solid	Moisture	
500-136651-14	3160-62-4 (0-1.5')	Total/NA	Solid	Moisture	
500-136651-15	3160-62-3 (0-1.5')	Total/NA	Solid	Moisture	
500-136651-16	3160-62-2 (0-1.5')	Total/NA	Solid	Moisture	
500-136651-17	3160-62-1 (0-1.5')	Total/NA	Solid	Moisture	
500-136651-12 DU	3160-62-6 (0-1.5')	Total/NA	Solid	Moisture	

Analysis Batch: 409062

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
500-136651-1	3160-55-1 (0-3)	Total/NA	Solid	9045D	_
500-136651-2	3160-55-2 (0-3)	Total/NA	Solid	9045D	
500-136651-3	3160-56-1 (0-1.5')	Total/NA	Solid	9045D	
500-136651-4	3160-56-2 (0-1.5')	Total/NA	Solid	9045D	
500-136651-5	3160-64-1 (0-1.5')	Total/NA	Solid	9045D	
500-136651-6	3160-64-2 (0-1.5')	Total/NA	Solid	9045D	
500-136651-7	3160-64-3 (0-1.5')	Total/NA	Solid	9045D	
500-136651-8	3160-62-10 (0-1.5')	Total/NA	Solid	9045D	
500-136651-9	3160-62-9 (0-1.5')	Total/NA	Solid	9045D	
500-136651-10	3160-62-8 (0-1.5')	Total/NA	Solid	9045D	
500-136651-11	3160-62-7 (0-1.5')	Total/NA	Solid	9045D	
500-136651-12	3160-62-6 (0-1.5')	Total/NA	Solid	9045D	
500-136651-13	3160-62-5 (0-1.5')	Total/NA	Solid	9045D	
500-136651-14	3160-62-4 (0-1.5')	Total/NA	Solid	9045D	
500-136651-15	3160-62-3 (0-1.5')	Total/NA	Solid	9045D	
500-136651-16	3160-62-2 (0-1.5')	Total/NA	Solid	9045D	
500-136651-17	3160-62-1 (0-1.5')	Total/NA	Solid	9045D	
500-136651-1 DU	3160-55-1 (0-3)	Total/NA	Solid	9045D	

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Solid Prep Type: Total/NA

		DED		ercent Surre	_
		BFB	DBFM	12DCE	TOL
Lab Sample ID	Client Sample ID	(75-131)	(75-126)	(70-134)	(75-124)
500-136651-1	3160-55-1 (0-3)	90	102	96	94
500-136651-2	3160-55-2 (0-3)	92	97	94	97
500-136651-3	3160-56-1 (0-1.5')	91	100	99	96
500-136651-4	3160-56-2 (0-1.5')	93	99	93	99
500-136651-5	3160-64-1 (0-1.5')	93	102	95	100
500-136651-6	3160-64-2 (0-1.5')	88	99	93	98
500-136651-7	3160-64-3 (0-1.5')	90	100	94	97
500-136651-8	3160-62-10 (0-1.5')	91	103	96	100
500-136651-9	3160-62-9 (0-1.5')	90	100	88	100
500-136651-10	3160-62-8 (0-1.5')	93	100	96	97
500-136651-11	3160-62-7 (0-1.5')	93	103	99	98
500-136651-12	3160-62-6 (0-1.5')	90	101	97	96
500-136651-13	3160-62-5 (0-1.5')	92	100	94	97
500-136651-14	3160-62-4 (0-1.5')	90	101	97	96
500-136651-15	3160-62-3 (0-1.5')	88	102	96	97
500-136651-16	3160-62-2 (0-1.5')	91	101	97	98
500-136651-17	3160-62-1 (0-1.5')	92	98	99	95
LCS 500-408943/4	Lab Control Sample	92	99	85	100
LCSD 500-408943/5	Lab Control Sample Dup	93	97	88	98
MB 500-408943/7	Method Blank	92	96	91	96

Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane

12DCE = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Solid Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco	very (Acce _l	otance Lir
		FBP	2FP	NBZ	PHL	TPH	TBP
Lab Sample ID	Client Sample ID	(44-121)	(46-133)	(41-120)	(46-125)	(35-160)	(25-139)
500-136651-1	3160-55-1 (0-3)	66	79	68	72	93	63
500-136651-2	3160-55-2 (0-3)	72	79	67	85	86	85
500-136651-2 MS	3160-55-2 (0-3)	67	74	66	82	102	74
500-136651-2 MSD	3160-55-2 (0-3)	72	85	75	84	111	82
500-136651-3	3160-56-1 (0-1.5')	75	83	70	86	102	71
500-136651-4	3160-56-2 (0-1.5')	66	63	52	71	78	74
500-136651-5	3160-64-1 (0-1.5')	72	77	68	75	90	68
500-136651-6	3160-64-2 (0-1.5')	69	72	59	78	88	91
500-136651-7	3160-64-3 (0-1.5')	62	63	55	71	82	72
500-136651-8	3160-62-10 (0-1.5')	49	46	41	52	60	62
500-136651-9	3160-62-9 (0-1.5')	72	77	66	76	67	73
500-136651-10	3160-62-8 (0-1.5')	69	77	61	80	81	90
500-136651-11	3160-62-7 (0-1.5')	78	80	69	89	84	96
500-136651-12	3160-62-6 (0-1.5')	73	72	64	86	88	94
500-136651-13	3160-62-5 (0-1.5')	74	81	69	79	70	73
500-136651-14	3160-62-4 (0-1.5')	67	66	59	77	83	80

Page 101 of 145

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Matrix: Solid Prep Type: Total/NA

			Pe	ercent Surro	ogate Reco	very (Accep	tance Limit
		FBP	2FP	NBZ	PHL	TPH	TBP
ab Sample ID	Client Sample ID	(44-121)	(46-133)	(41-120)	(46-125)	(35-160)	(25-139)
00-136651-15	3160-62-3 (0-1.5')	72	75	64	86	79	89
00-136651-16	3160-62-2 (0-1.5')	60	58	50	70	80	78
0-136651-17	3160-62-1 (0-1.5')	75	77	67	71	88	62
S 500-409105/2-A	Lab Control Sample	47	46	37 X	59	87	90
S 500-409783/2-A	Lab Control Sample	77	87	72	88	77	84
3 500-409105/1-A	Method Blank	56	51	43	61	87	86
B 500-409783/1-A	Method Blank	78	85	65	85	74	73

Surrogate Legend

FBP = 2-Fluorobiphenyl

2FP = 2-Fluorophenol

NBZ = Nitrobenzene-d5

PHL = Phenol-d5

TPH = Terphenyl-d14

TBP = 2,4,6-Tribromophenol

Method: 8081B - Organochlorine Pesticides (GC)

Matrix: Solid Prep Type: Total/NA

		DCB1	TCX1	Surrogate Recovery (Acceptance Limits)
Lab Sample ID	Client Sample ID	(33-148)	(30-121)	
500-136651-1	3160-55-1 (0-3)	94	89	
500-136651-2	3160-55-2 (0-3)	82	75	
500-136651-3	3160-56-1 (0-1.5')	87	97	
500-136651-4	3160-56-2 (0-1.5')	87	92	
LCS 500-408939/2-A	Lab Control Sample	84	84	
MB 500-408939/1-A	Method Blank	83	79	

DCB = DCB Decachlorobiphenyl

TCX = Tetrachloro-m-xylene

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Matrix: Solid Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)					
		TCX2	DCB2				
Lab Sample ID	Client Sample ID	(49-129)	(37-121)				
500-136651-5	3160-64-1 (0-1.5')	96	89				
500-136651-6	3160-64-2 (0-1.5')	95	88				
500-136651-7	3160-64-3 (0-1.5')	94	81				
LCS 500-408939/3-A	Lab Control Sample	109	108				
MB 500-408939/1-A	Method Blank	114	115				

Surrogate Legend

TCX = Tetrachloro-m-xylene

DCB = DCB Decachlorobiphenyl

TestAmerica Chicago

11/14/2017

2

5

7

ŏ

10

11

13

Surrogate Summary

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136651-1

Method: 8151A - Herbicides (GC)

Matrix: Solid Prep Type: Total/NA

_			Percent Surrogate Recovery (Acceptance Limits)
		DCPA2	
Lab Sample ID	Client Sample ID	(25-120)	
500-136651-1	3160-55-1 (0-3)	47	
500-136651-2	3160-55-2 (0-3)	50	
500-136651-3	3160-56-1 (0-1.5')	48	
500-136651-4	3160-56-2 (0-1.5')	43	
LCS 500-409129/2-A	Lab Control Sample	55	
MB 500-409129/1-A	Method Blank	50	
Surrogate Legend			
DCPA = DCAA			

4

6

0

9

10

12

13

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 500-408943/7 Client Sample ID: Method Blank **Matrix: Solid Prep Type: Total/NA**

Analysis Batch: 408943

Analyse	•	MB	MB							
Benzene	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromodichloromethane	Acetone	<0.020		0.020	0.0087	mg/Kg			11/08/17 11:10	1
Bromoform <0.0020 0.0020 0.0058 mg/Kg 11/08/17 11:10 1 Bromomethane <0.0050	Benzene	<0.0020		0.0020	0.00051	mg/Kg			11/08/17 11:10	1
Bromomethane	Bromodichloromethane	<0.0020		0.0020	0.00041	mg/Kg			11/08/17 11:10	1
2-Butanone (MEK)	Bromoform	<0.0020		0.0020	0.00058	mg/Kg			11/08/17 11:10	1
Carbon disulfide < 0.0050 0.0050 0.0010 mg/Kg 11/08/17 11:10 1 Carbon tetrachloride < 0.0020	Bromomethane	<0.0050		0.0050	0.0019	mg/Kg			11/08/17 11:10	1
Carbon tetrachloride <0.0020 0.0020 0.00054 mg/Kg 11/08/17 11:10 1 Chlorobenzene <0.0020	2-Butanone (MEK)	<0.0050		0.0050	0.0022	mg/Kg			11/08/17 11:10	1
Chlorobenzene <0.0020 0.0020 0.00074 mg/Kg 11/08/17 11:10 1 Chlorochtane <0.0050	Carbon disulfide	<0.0050		0.0050	0.0010	mg/Kg			11/08/17 11:10	1
Chloroethane <0.0050 0.0050 0.0015 mg/Kg 11/08/17 11:10 1 Chloroform <0.0020	Carbon tetrachloride	<0.0020		0.0020	0.00058	mg/Kg			11/08/17 11:10	1
Chloroform < 0.0020 0.0020 0.0069 mg/Kg 11/08/17 11:10 1 Chloromethane < 0.0050	Chlorobenzene	<0.0020		0.0020	0.00074	mg/Kg			11/08/17 11:10	1
Chloromethane <0.0050 0.0050 0.0020 mg/Kg 11/08/17 11:10 1 cis-1,2-Dichloroethene <0.0020	Chloroethane	<0.0050		0.0050	0.0015	mg/Kg			11/08/17 11:10	1
cis-1,2-Dichloroethene <0.0020 0.0020 0.0006 mg/kg 11/08/17 11:10 1 cis-1,3-Dichloropropene <0.0020 0.0020 0.0020 0.0006 mg/kg 11/08/17 11:10 1 Dibromochloromethane <0.0020 0.0020 0.00069 mg/kg 11/08/17 11:10 1 1,1-Dichloroethane <0.0020 0.0020 0.0069 mg/kg 11/08/17 11:10 1 1,2-Dichloroethane <0.0020 0.0020 0.0069 mg/kg 11/08/17 11:10 1 1,1-Dichloroethane <0.0020 0.0020 0.0069 mg/kg 11/08/17 11:10 1 1,2-Dichloropropane <0.0020 0.0020 0.0069 mg/kg 11/08/17 11:10 1 1,3-Dichloropropane <0.0020 0.0020 0.0007 mg/kg 11/08/17 11:10 1 1,2-Dichloropropane <0.0020 0.0020 0.00096 mg/kg 11/08/17 11:10 1 1,2-Dichloropropane <0.0020 0.0020 0.00096 mg/kg 11/08/17 11:10 <th< td=""><td>Chloroform</td><td><0.0020</td><td></td><td>0.0020</td><td>0.00069</td><td>mg/Kg</td><td></td><td></td><td>11/08/17 11:10</td><td>1</td></th<>	Chloroform	<0.0020		0.0020	0.00069	mg/Kg			11/08/17 11:10	1
cis-1,3-Dichloropropene <0.0020 0.0020 0.0006b mg/Kg 11/08/17 11:10 1 Dibromochloromethane <0.0020	Chloromethane	<0.0050		0.0050	0.0020	mg/Kg			11/08/17 11:10	1
Dibromochloromethane <0.0020 0.0020 0.00065 mg/Kg 11/08/17 11:10 1 1,1-Dichloroethane <0.0020	cis-1,2-Dichloroethene	<0.0020		0.0020	0.00056	mg/Kg			11/08/17 11:10	1
1,1-Dichloroethane <0.0020	cis-1,3-Dichloropropene	<0.0020		0.0020	0.00060	mg/Kg			11/08/17 11:10	1
1,2-Dichloroethane <0.0050	Dibromochloromethane	<0.0020		0.0020	0.00065	mg/Kg			11/08/17 11:10	1
1,1-Dichloroethene <0.0020	1,1-Dichloroethane	<0.0020		0.0020	0.00069	mg/Kg			11/08/17 11:10	1
1,2-Dichloropropane <0.0020	1,2-Dichloroethane	< 0.0050		0.0050	0.0016	mg/Kg			11/08/17 11:10	1
1,3-Dichloropropene, Total <0.0020	1,1-Dichloroethene	<0.0020		0.0020	0.00069	mg/Kg			11/08/17 11:10	1
Ethylbenzene <0.0020 0.0020 0.00096 mg/Kg 11/08/17 11:10 1 2-Hexanone <0.0050	1,2-Dichloropropane	<0.0020		0.0020	0.00052	mg/Kg			11/08/17 11:10	1
2-Hexanone <0.0050	1,3-Dichloropropene, Total	<0.0020		0.0020	0.00070	mg/Kg			11/08/17 11:10	1
Methylene Chloride <0.0050 0.0050 0.0020 mg/Kg 11/08/17 11:10 1 4-Methyl-2-pentanone (MIBK) <0.0050	Ethylbenzene	<0.0020		0.0020	0.00096	mg/Kg			11/08/17 11:10	1
4-Methyl-2-pentanone (MIBK) <0.0050	2-Hexanone	<0.0050		0.0050	0.0016	mg/Kg			11/08/17 11:10	1
Methyl tert-butyl ether <0.0020 0.0020 0.00059 mg/Kg 11/08/17 11:10 1 Styrene <0.0020	Methylene Chloride	<0.0050		0.0050	0.0020	mg/Kg			11/08/17 11:10	1
Styrene <0.0020 0.0020 0.0060 mg/Kg 11/08/17 11:10 1 1,1,2,2-Tetrachloroethane <0.0020	4-Methyl-2-pentanone (MIBK)	<0.0050		0.0050	0.0015	mg/Kg			11/08/17 11:10	1
1,1,2,2-Tetrachloroethane <0.0020	Methyl tert-butyl ether	<0.0020		0.0020	0.00059	mg/Kg			11/08/17 11:10	1
Tetrachloroethene <0.0020 0.0020 0.00088 mg/Kg 11/08/17 11:10 1 Toluene <0.0020	Styrene	<0.0020		0.0020	0.00060	mg/Kg			11/08/17 11:10	1
Toluene <0.0020 0.0020 0.00051 mg/Kg 11/08/17 11:10 1 trans-1,2-Dichloroethene <0.0020	1,1,2,2-Tetrachloroethane	<0.0020		0.0020	0.00064	mg/Kg			11/08/17 11:10	1
Toluene <0.0020 0.0020 0.00051 mg/Kg 11/08/17 11:10 1 trans-1,2-Dichloroethene <0.0020	Tetrachloroethene	<0.0020		0.0020	0.00068	mg/Kg			11/08/17 11:10	1
trans-1,2-Dichloroethene <0.0020	Toluene	<0.0020		0.0020					11/08/17 11:10	1
1,1,1-Trichloroethane <0.0020	trans-1,2-Dichloroethene	<0.0020		0.0020					11/08/17 11:10	1
1,1,2-Trichloroethane <0.0020	trans-1,3-Dichloropropene	<0.0020		0.0020	0.00070	mg/Kg			11/08/17 11:10	1
1,1,2-Trichloroethane <0.0020	1,1,1-Trichloroethane	<0.0020		0.0020	0.00067	mg/Kg			11/08/17 11:10	1
Trichloroethene <0.0020 0.0020 0.0068 mg/Kg 11/08/17 11:10 1 Vinyl acetate <0.0050	1,1,2-Trichloroethane	<0.0020		0.0020					11/08/17 11:10	1
Vinyl acetate <0.0050 0.0050 0.0017 mg/Kg 11/08/17 11:10 1 Vinyl chloride <0.0020	Trichloroethene	<0.0020		0.0020					11/08/17 11:10	1
	Vinyl acetate	<0.0050		0.0050					11/08/17 11:10	1
	Vinyl chloride	<0.0020		0.0020	0.00089	mg/Kg			11/08/17 11:10	1
	Xylenes, Total	<0.0040		0.0040					11/08/17 11:10	1

	MB MI	В			
Surrogate	%Recovery Qu	ualifier Limits	Prepared	l Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	92	75 - 131	-	11/08/17 11:10	1
Dibromofluoromethane	96	75 - 126		11/08/17 11:10	1
1,2-Dichloroethane-d4 (Surr)	91	70 - 134		11/08/17 11:10	1
Toluene-d8 (Surr)	96	75 - 124		11/08/17 11:10	1

TestAmerica Job ID: 500-136651-1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 500-408943/4

Matrix: Solid

Analysis Batch: 408943

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS L	_CS		%Rec.
Analyte	Added	Result (Qualifier Unit	D %Rec	Limits
Acetone	0.0500	0.0375	mg/Kg	75	40 - 150
Benzene	0.0500	0.0483	mg/Kg	97	70 - 125
Bromodichloromethane	0.0500	0.0504	mg/Kg	101	67 - 129
Bromoform	0.0500	0.0463	mg/Kg	93	68 - 136
Bromomethane	0.0500	0.0435	mg/Kg	87	70 - 130
2-Butanone (MEK)	0.0500	0.0335	mg/Kg	67	47 - 138
Carbon disulfide	0.0500	0.0515	mg/Kg	103	70 - 129
Carbon tetrachloride	0.0500	0.0484	mg/Kg	97	75 - 125
Chlorobenzene	0.0500	0.0478	mg/Kg	96	50 - 150
Chloroethane	0.0500	0.0412	mg/Kg	82	75 - 125
Chloroform	0.0500	0.0471	mg/Kg	94	57 ₋ 135
Chloromethane	0.0500	0.0419	mg/Kg	84	70 - 125
cis-1,2-Dichloroethene	0.0500	0.0487	mg/Kg	97	70 - 125
cis-1,3-Dichloropropene	0.0500	0.0517	mg/Kg	103	70 - 125
Dibromochloromethane	0.0500	0.0496	mg/Kg	99	69 - 125
1,1-Dichloroethane	0.0500	0.0460	mg/Kg	92	70 - 125
1,2-Dichloroethane	0.0500	0.0439	mg/Kg	88	70 - 130
1,1-Dichloroethene	0.0500	0.0489	mg/Kg	98	70 - 120
1,2-Dichloropropane	0.0500	0.0489	mg/Kg	98	70 - 125
Ethylbenzene	0.0500	0.0476	mg/Kg	95	61 - 136
2-Hexanone	0.0500	0.0413	mg/Kg	83	48 - 146
Methylene Chloride	0.0500	0.0474	mg/Kg	95	70 - 126
4-Methyl-2-pentanone (MIBK)	0.0500	0.0418	mg/Kg	84	50 - 148
Methyl tert-butyl ether	0.0500	0.0499	mg/Kg	100	50 - 140
Styrene	0.0500	0.0489	mg/Kg	98	70 - 125
1,1,2,2-Tetrachloroethane	0.0500	0.0540	mg/Kg	108	70 - 122
Tetrachloroethene	0.0500	0.0500	mg/Kg	100	70 - 124
Toluene	0.0500	0.0489	mg/Kg	98	70 - 125
trans-1,2-Dichloroethene	0.0500	0.0474	mg/Kg	95	70 - 125
trans-1,3-Dichloropropene	0.0500	0.0485	mg/Kg	97	70 - 125
1,1,1-Trichloroethane	0.0500	0.0485	mg/Kg	97	70 - 128
1,1,2-Trichloroethane	0.0500	0.0485	mg/Kg	97	70 - 125
Trichloroethene	0.0500	0.0491	mg/Kg	98	70 - 125
Vinyl acetate	0.0500	0.0451	mg/Kg	90	40 - 153
Vinyl chloride	0.0500	0.0441	mg/Kg	88	70 - 125
Xylenes, Total	0.100	0.0944	mg/Kg	94	53 - 147

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	92		75 - 131
Dibromofluoromethane	99		75 ₋ 126
1,2-Dichloroethane-d4 (Surr)	85		70 - 134
Toluene-d8 (Surr)	100		75 - 124

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

4

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 500-408943/5

Matrix: Solid

Analysis Batch: 408943

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

-	Spike	LCSD				%Rec.		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acetone	0.0500	0.0443		mg/Kg		89	40 - 150	17	30
Benzene	0.0500	0.0473		mg/Kg		95	70 - 125	2	30
Bromodichloromethane	0.0500	0.0500		mg/Kg		100	67 - 129	1	30
Bromoform	0.0500	0.0497		mg/Kg		99	68 - 136	7	30
Bromomethane	0.0500	0.0402		mg/Kg		80	70 - 130	8	30
2-Butanone (MEK)	0.0500	0.0431		mg/Kg		86	47 - 138	25	30
Carbon disulfide	0.0500	0.0485		mg/Kg		97	70 - 129	6	30
Carbon tetrachloride	0.0500	0.0462		mg/Kg		92	75 - 125	5	30
Chlorobenzene	0.0500	0.0470		mg/Kg		94	50 - 150	2	30
Chloroethane	0.0500	0.0380		mg/Kg		76	75 - 125	8	30
Chloroform	0.0500	0.0453		mg/Kg		91	57 ₋ 135	4	30
Chloromethane	0.0500	0.0398		mg/Kg		80	70 - 125	5	30
cis-1,2-Dichloroethene	0.0500	0.0482		mg/Kg		96	70 - 125	1	30
cis-1,3-Dichloropropene	0.0500	0.0508		mg/Kg		102	70 - 125	2	30
Dibromochloromethane	0.0500	0.0507		mg/Kg		101	69 - 125	2	30
1,1-Dichloroethane	0.0500	0.0441		mg/Kg		88	70 - 125	4	30
1,2-Dichloroethane	0.0500	0.0445		mg/Kg		89	70 - 130	1	30
1,1-Dichloroethene	0.0500	0.0465		mg/Kg		93	70 - 120	5	30
1,2-Dichloropropane	0.0500	0.0480		mg/Kg		96	70 - 125	2	30
Ethylbenzene	0.0500	0.0467		mg/Kg		93	61 - 136	2	30
2-Hexanone	0.0500	0.0489		mg/Kg		98	48 - 146	17	30
Methylene Chloride	0.0500	0.0471		mg/Kg		94	70 - 126	1	30
4-Methyl-2-pentanone (MIBK)	0.0500	0.0486		mg/Kg		97	50 ₋ 148	15	30
Methyl tert-butyl ether	0.0500	0.0511		mg/Kg		102	50 - 140	2	30
Styrene	0.0500	0.0476		mg/Kg		95	70 - 125	3	30
1,1,2,2-Tetrachloroethane	0.0500	0.0547		mg/Kg		109	70 - 122	1	30
Tetrachloroethene	0.0500	0.0480		mg/Kg		96	70 - 124	4	30
Toluene	0.0500	0.0471		mg/Kg		94	70 - 125	4	30
trans-1,2-Dichloroethene	0.0500	0.0464		mg/Kg		93	70 - 125	2	30
trans-1,3-Dichloropropene	0.0500	0.0501		mg/Kg		100	70 - 125	3	30
1,1,1-Trichloroethane	0.0500	0.0470		mg/Kg		94	70 - 128	3	30
1,1,2-Trichloroethane	0.0500	0.0504		mg/Kg		101	70 - 125	4	30
Trichloroethene	0.0500	0.0479		mg/Kg		96	70 - 125	3	30
Vinyl acetate	0.0500	0.0493		mg/Kg		99	40 - 153	9	30
Vinyl chloride	0.0500	0.0421		mg/Kg		84	70 - 125	5	30
Xylenes, Total	0.100	0.0920		mg/Kg		92	53 - 147	3	30

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	93		75 - 131
Dibromofluoromethane	97		75 - 126
1,2-Dichloroethane-d4 (Surr)	88		70 - 134
Toluene-d8 (Surr)	98		75 - 124

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

estAmenca 300 iD. 300-13003 i- i

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 500-409105/1-A	Client Sample ID: Method Blank
Matrix: Solid	Prep Type: Total/NA
Analysis Batch: 409157	Prep Batch: 409105

Analysis Batch: 409157								Prep Batch:	
Analysis Batch: 403137	МВ	MB						r rep batch.	403103
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	<0.033		0.033	0.0060	mg/Kg		11/08/17 17:13	11/09/17 11:40	1
Acenaphthylene	<0.033		0.033	0.0044	mg/Kg		11/08/17 17:13	11/09/17 11:40	1
Anthracene	< 0.033		0.033	0.0056	mg/Kg		11/08/17 17:13	11/09/17 11:40	1
Benzo[a]anthracene	<0.033		0.033	0.0045	mg/Kg		11/08/17 17:13	11/09/17 11:40	1
Benzo[a]pyrene	< 0.033		0.033	0.0064	mg/Kg		11/08/17 17:13	11/09/17 11:40	1
Benzo[b]fluoranthene	< 0.033		0.033	0.0072			11/08/17 17:13	11/09/17 11:40	1
Benzo[g,h,i]perylene	<0.033		0.033	0.011	mg/Kg		11/08/17 17:13	11/09/17 11:40	1
Benzo[k]fluoranthene	< 0.033		0.033	0.0098			11/08/17 17:13	11/09/17 11:40	1
Bis(2-chloroethoxy)methane	<0.17		0.17		mg/Kg		11/08/17 17:13	11/09/17 11:40	1
Bis(2-chloroethyl)ether	<0.17		0.17		mg/Kg		11/08/17 17:13	11/09/17 11:40	1
Bis(2-ethylhexyl) phthalate	<0.17		0.17		mg/Kg		11/08/17 17:13	11/09/17 11:40	1
4-Bromophenyl phenyl ether	<0.17		0.17		mg/Kg			11/09/17 11:40	1
Butyl benzyl phthalate	<0.17		0.17		mg/Kg		11/08/17 17:13	11/09/17 11:40	1
Carbazole	<0.17		0.17		mg/Kg			11/09/17 11:40	1
4-Chloroaniline	<0.67		0.67		mg/Kg			11/09/17 11:40	1
4-Chloro-3-methylphenol	<0.33		0.33		mg/Kg		11/08/17 17:13	11/09/17 11:40	1
2-Chloronaphthalene	<0.17		0.17		mg/Kg			11/09/17 11:40	1
2-Chlorophenol	<0.17		0.17		mg/Kg		11/08/17 17:13	11/09/17 11:40	1
4-Chlorophenyl phenyl ether	<0.17		0.17		mg/Kg			11/09/17 11:40	· · · · · · · · · · · · · · · · · · ·
Chrysene	<0.033		0.033	0.0091				11/09/17 11:40	1
Dibenz(a,h)anthracene	<0.033		0.033	0.0064				11/09/17 11:40	1
Dibenzofuran	<0.17		0.17		mg/Kg			11/09/17 11:40	· · · · · · · · · · · · · · · · · · ·
1,2-Dichlorobenzene	<0.17		0.17		mg/Kg			11/09/17 11:40	1
1,3-Dichlorobenzene	<0.17		0.17		mg/Kg			11/09/17 11:40	1
1,4-Dichlorobenzene	<0.17		0.17		mg/Kg			11/09/17 11:40	· · · · · · · · · · · · · · · · · · ·
3,3'-Dichlorobenzidine	<0.17		0.17		mg/Kg			11/09/17 11:40	1
2,4-Dichlorophenol	<0.33		0.33		mg/Kg			11/09/17 11:40	1
Diethyl phthalate	<0.17		0.17		mg/Kg			11/09/17 11:40	· · · · · · · · · · · · · · · · · · ·
2,4-Dimethylphenol	<0.33		0.33		mg/Kg			11/09/17 11:40	1
Dimethyl phthalate	<0.17		0.33		mg/Kg			11/09/17 11:40	1
Di-n-butyl phthalate	<0.17		0.17		mg/Kg			11/09/17 11:40	· · · · · · · · · · · · · · · · · · ·
4,6-Dinitro-2-methylphenol	<0.17		0.17		mg/Kg			11/09/17 11:40	1
2,4-Dinitrophenol	<0.67		0.67		mg/Kg			11/09/17 11:40	1
2,4-Dinitrotoluene	<0.07		0.07		mg/Kg			11/09/17 11:40	1
2,6-Dinitrotoluene	<0.17		0.17		mg/Kg			11/09/17 11:40	1
·			0.17						
Di-n-octyl phthalate	<0.17				mg/Kg			11/09/17 11:40	1
Fluoranthene Fluorene	< 0.033		0.033	0.0062				11/09/17 11:40	1
	<0.033		0.033	0.0047				11/09/17 11:40	1
Hexachlorobenzene	<0.067		0.067	0.0077				11/09/17 11:40	1
Hexachlorobutadiene	<0.17		0.17		mg/Kg			11/09/17 11:40	1
Hexachlorocyclopentadiene	<0.67		0.67		mg/Kg			11/09/17 11:40	1
Hexachloroethane	<0.17		0.17		mg/Kg			11/09/17 11:40	1
Indeno[1,2,3-cd]pyrene	< 0.033		0.033	0.0086				11/09/17 11:40	1
Isophorone	<0.17		0.17		mg/Kg			11/09/17 11:40	1
2-Methylnaphthalene	<0.067		0.067	0.0061				11/09/17 11:40	1
2-Methylphenol	<0.17		0.17		mg/Kg			11/09/17 11:40	1
3 & 4 Methylphenol	<0.17		0.17		mg/Kg			11/09/17 11:40	1
Naphthalene	<0.033		0.033	0.0051	mg/Kg		11/08/17 17:13	11/09/17 11:40	1

TestAmerica Chicago

Page 107 of 145

4

6

8

10

12

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 500-409105/1-A

Matrix: Solid

Analysis Batch: 409157

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 409105

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Nitroaniline	<0.17		0.17	0.045	mg/Kg		11/08/17 17:13	11/09/17 11:40	1
3-Nitroaniline	<0.33		0.33	0.10	mg/Kg		11/08/17 17:13	11/09/17 11:40	1
4-Nitroaniline	< 0.33		0.33	0.14	mg/Kg		11/08/17 17:13	11/09/17 11:40	1
Nitrobenzene	<0.033		0.033	0.0083	mg/Kg		11/08/17 17:13	11/09/17 11:40	1
2-Nitrophenol	<0.33		0.33	0.079	mg/Kg		11/08/17 17:13	11/09/17 11:40	1
4-Nitrophenol	<0.67		0.67	0.32	mg/Kg		11/08/17 17:13	11/09/17 11:40	1
N-Nitrosodi-n-propylamine	<0.067		0.067	0.041	mg/Kg		11/08/17 17:13	11/09/17 11:40	1
N-Nitrosodiphenylamine	<0.17		0.17	0.039	mg/Kg		11/08/17 17:13	11/09/17 11:40	1
2,2'-oxybis[1-chloropropane]	<0.17		0.17	0.039	mg/Kg		11/08/17 17:13	11/09/17 11:40	1
Pentachlorophenol	<0.67		0.67	0.53	mg/Kg		11/08/17 17:13	11/09/17 11:40	1
Phenanthrene	<0.033		0.033	0.0046	mg/Kg		11/08/17 17:13	11/09/17 11:40	1
Phenol	<0.17		0.17	0.074	mg/Kg		11/08/17 17:13	11/09/17 11:40	1
Pyrene	<0.033		0.033	0.0066	mg/Kg		11/08/17 17:13	11/09/17 11:40	1
1,2,4-Trichlorobenzene	<0.17		0.17	0.036	mg/Kg		11/08/17 17:13	11/09/17 11:40	1
2,4,5-Trichlorophenol	<0.33		0.33	0.076	mg/Kg		11/08/17 17:13	11/09/17 11:40	1
2,4,6-Trichlorophenol	<0.33		0.33	0.11	mg/Kg		11/08/17 17:13	11/09/17 11:40	1

MR MR

	IVID	IVID					
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac	
2-Fluorobiphenyl	56		44 - 121	11/08/17 17:13	11/09/17 11:40	1	
2-Fluorophenol	51		46 - 133	11/08/17 17:13	11/09/17 11:40	1	
Nitrobenzene-d5	43		41 - 120	11/08/17 17:13	11/09/17 11:40	1	
Phenol-d5	61		46 - 125	11/08/17 17:13	11/09/17 11:40	1	
Terphenyl-d14	87		35 - 160	11/08/17 17:13	11/09/17 11:40	1	
2 4 6-Tribromophenol	86		25 - 139	11/08/17 17:13	11/09/17 11:40	1	

Lab Sample ID: LCS 500-409105/2-A

Matrix: Solid

Client Sample ID	: Lab Control Sample
	Prep Type: Total/NA
	Prep Batch: 409105

Analysis Batch: 409157	Spike	LCS	LCS				Prep Batch: 409105 %Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Acenaphthene	1.33	1.04		mg/Kg		78	58 - 110
Acenaphthylene	1.33	1.09		mg/Kg		82	60 - 110
Anthracene	1.33	1.17		mg/Kg		88	63 - 110
Benzo[a]anthracene	1.33	1.20		mg/Kg		90	63 - 110
Benzo[a]pyrene	1.33	1.16		mg/Kg		87	61 - 120
Benzo[b]fluoranthene	1.33	1.17		mg/Kg		88	62 - 120
Benzo[g,h,i]perylene	1.33	1.21		mg/Kg		91	64 - 120
Benzo[k]fluoranthene	1.33	1.12		mg/Kg		84	65 - 120
Bis(2-chloroethoxy)methane	1.33	1.13		mg/Kg		85	60 - 112
Bis(2-chloroethyl)ether	1.33	1.11		mg/Kg		83	55 - 111
Bis(2-ethylhexyl) phthalate	1.33	1.37		mg/Kg		103	63 - 118
4-Bromophenyl phenyl ether	1.33	1.16		mg/Kg		87	63 - 110
Butyl benzyl phthalate	1.33	1.30		mg/Kg		97	61 - 116
Carbazole	1.33	1.36		mg/Kg		102	59 - 158
4-Chloroaniline	1.33	1.06		mg/Kg		79	30 - 150
4-Chloro-3-methylphenol	1.33	1.19		mg/Kg		89	61 - 114
2-Chloronaphthalene	1.33	1.13		mg/Kg		84	64 - 110
2-Chlorophenol	1.33	1.14		mg/Kg		86	64 - 110

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 500-409105/2-A			Client Sample ID: Lab Control Sample
Matrix: Solid			Prep Type: Total/NA
Analysis Batch: 409157			Prep Batch: 409105
	Snike	LCS LCS	%Rec.

Analysis Batch: 409157	Spike	LCS	LCS			Prep Type: Total/NA Prep Batch: 409105 %Rec.
Analyte	Added	Result	Qualifier	Unit	D %Rec	Limits
4-Chlorophenyl phenyl ether	1.33	1.12		mg/Kg	84	63 - 110
Chrysene	1.33	1.15		mg/Kg	86	63 - 120
Dibenz(a,h)anthracene	1.33	1.28		mg/Kg	96	64 - 119
Dibenzofuran	1.33	1.13		mg/Kg	84	64 - 110
1,2-Dichlorobenzene	1.33	1.03		mg/Kg	77	62 - 110
1,3-Dichlorobenzene	1.33	1.00		mg/Kg	75	60 - 110
1,4-Dichlorobenzene	1.33	0.982		mg/Kg	74	61 - 110
3,3'-Dichlorobenzidine	1.33	1.20		mg/Kg	90	49 - 112
2,4-Dichlorophenol	1.33	1.16		mg/Kg	87	58 - 120
Diethyl phthalate	1.33	1.13		mg/Kg	85	58 ₋ 120
2,4-Dimethylphenol	1.33	1.23		mg/Kg	92	60 - 110
Dimethyl phthalate	1.33	1.14		mg/Kg	86	64 - 110
Di-n-butyl phthalate	1.33	1.21		mg/Kg	91	65 - 120
4,6-Dinitro-2-methylphenol	2.67	1.11		mg/Kg	42	10 - 110
2,4-Dinitrophenol	2.67	0.682		mg/Kg	26	10 - 100
2,4-Dinitrotoluene	1.33	1.23		mg/Kg	92	62 - 117
2,6-Dinitrotoluene	1.33	1.17		mg/Kg	88	67 ₋ 120
Di-n-octyl phthalate	1.33	1.30		mg/Kg	97	63 - 119
Fluoranthene	1.33	1.10		mg/Kg	82	62 - 120
Fluorene	1.33	1.11		mg/Kg	83	62 - 120
Hexachlorobenzene	1.33	1.12		mg/Kg	84	55 - 117
Hexachlorobutadiene	1.33	1.02		mg/Kg	76	56 - 120
Hexachlorocyclopentadiene	1.33	0.929		mg/Kg	70	10 - 106
Hexachloroethane	1.33	1.02		mg/Kg	77	61 - 110
Indeno[1,2,3-cd]pyrene	1.33	1.28		mg/Kg	96	57 - 127
Isophorone	1.33	1.06		mg/Kg	79	55 - 110
2-Methylnaphthalene	1.33	1.11		mg/Kg	83	62 - 110
2-Methylphenol	1.33	1.11		mg/Kg	83	60 - 120
3 & 4 Methylphenol	1.33	1.05		mg/Kg	79	57 - 120
Naphthalene	1.33	1.06		mg/Kg	80	63 - 110
2-Nitroaniline	1.33	1.18		mg/Kg	88	57 - 124
3-Nitroaniline	1.33	1.26		mg/Kg	94	40 - 122
4-Nitroaniline	1.33	1.67		mg/Kg	125	60 - 160
Nitrobenzene	1.33	1.07		mg/Kg	81	60 - 116
2-Nitrophenol	1.33	1.21		mg/Kg	91	60 - 120
4-Nitrophenol	2.67	1.85		mg/Kg	70	30 - 122
N-Nitrosodi-n-propylamine	1.33	1.13		mg/Kg	85	56 - 118
N-Nitrosodiphenylamine	1.33	1.13		mg/Kg	89	65 - 112
	1.33	1.18				40 - 124
2,2'-oxybis[1-chloropropane] Pentachlorophenol	2.67	1.16		mg/Kg	89 70	40 - 124 13 - 112
Phenanthrene	1.33	1.14		mg/Kg		62 - 120
Phenol	1.33	1.14		mg/Kg	86 82	56 - 122
				mg/Kg	82	
Pyrene	1.33	1.19		mg/Kg	89	63 - 120
1,2,4-Trichlorobenzene	1.33	1.05		mg/Kg	79	62 - 110
2,4,5-Trichlorophenol	1.33	1.13		mg/Kg	84	50 - 120
2,4,6-Trichlorophenol	1.33	1.09		mg/Kg	82	57 - 120

TestAmerica Chicago

4

5

7

9

10

12

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 500-409105/2-A

Matrix: Solid

Analysis Batch: 409157

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 409105

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	47		44 - 121
2-Fluorophenol	46		46 - 133
Nitrobenzene-d5	37	Χ	41 - 120
Phenol-d5	59		46 - 125
Terphenyl-d14	87		35 - 160
2,4,6-Tribromophenol	90		25 - 139

< 0.38

< 0.19

<0.19

<0.19

<0.038 F1

<0.038

< 0.19

< 0.19

< 0.19

< 0.19

< 0.38

< 0.19

< 0.38

<0.19

< 0.19

< 0.77

< 0.19

< 0.19

< 0.19

<0.77 F1

<0.19 F2

Lab Sample ID: 500-136651-2 MS

Matrix: Solid

Analysis Batch: 409157

4-Chloro-3-methylphenol

4-Chlorophenyl phenyl ether

2-Chloronaphthalene

Dibenz(a,h)anthracene

1.2-Dichlorobenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

2,4-Dichlorophenol

2,4-Dimethylphenol

Dimethyl phthalate

Di-n-butyl phthalate

2,4-Dinitrophenol

2.4-Dinitrotoluene

2,6-Dinitrotoluene

Di-n-octyl phthalate

4,6-Dinitro-2-methylphenol

Diethyl phthalate

3,3'-Dichlorobenzidine

2-Chlorophenol

Chrysene

Dibenzofuran

Client Sampl	e ID:	3160-	55-2	(0-3)
	Prep	Type:	Tota	I/NA

Prep Batch: 409105

Analysis Batch. 403137	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Acenaphthene	<0.038		1.55	1.13		mg/Kg	<u> </u>	73	58 - 110
Acenaphthylene	<0.038		1.55	1.20		mg/Kg	☼	77	60 - 110
Anthracene	<0.038		1.55	1.28		mg/Kg	₩	83	63 - 110
Benzo[a]anthracene	0.0075	J	1.55	1.34		mg/Kg		86	63 - 110
Benzo[a]pyrene	0.018	J	1.55	1.33		mg/Kg	☼	85	61 - 120
Benzo[b]fluoranthene	<0.038	F1	1.55	1.63		mg/Kg	☼	105	62 - 120
Benzo[g,h,i]perylene	<0.038	F1	1.55	0.636	F1	mg/Kg		41	64 - 120
Benzo[k]fluoranthene	<0.038	F1	1.55	1.71		mg/Kg	☼	110	65 - 120
Bis(2-chloroethoxy)methane	<0.19		1.55	1.25		mg/Kg	☼	81	60 - 112
Bis(2-chloroethyl)ether	<0.19		1.55	1.25		mg/Kg		80	55 - 111
Bis(2-ethylhexyl) phthalate	<0.19	F1	1.55	1.88	F1	mg/Kg	☼	121	63 - 118
4-Bromophenyl phenyl ether	<0.19		1.55	1.27		mg/Kg	☼	82	63 - 110
Butyl benzyl phthalate	<0.19	F1	1.55	1.76		mg/Kg	₩.	113	61 - 116
Carbazole	<0.19		1.55	1.54		mg/Kg	☼	99	59 ₋ 158
4-Chloroaniline	<0.77		1.55	0.976		mg/Kg	☼	63	30 - 150

1.55

1.55

1.55

1.55

1.55

1.55

1.55

1.55

1.55

1.55

1.55

1.55

1.55

1.55

1.55

1.55

3.10

3.10

1.55

1.55

1.55

1.28

1.18

1.21

1.16

1.32

1.22

1.03

0.969

1.01

1.31

1.13

1.30

1.16

1.29

0.491 J

1.20

1.20

1.41

<0.78 F1

0.791

0.838 F1

mg/Kg

₩

☼

₩

. .

Ö

₩

₩

Ö

. ₩

₩

☼

. ₩

₩

₩

₩

₩

₩

₩

₩

₩

82

76

78

75

85

54

79

66

63

65

51

85

73

84

75

83

16

0

78

78

91

61 - 114

64 - 110

64 - 110

63 - 110

63 - 120

64 - 119

64 - 110

62 - 110

60 - 110

61 - 110

49 - 112

58 - 120

58 - 120

60 - 110

64 - 110

65 - 120

10 - 110

10 - 100

62 - 117

67 - 120

63 - 119

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Lab Sample ID: 500-136651-2 MS

Matrix: Solid

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Client Sample ID: 3160-55-2 (0-3)

Prep Type: Total/NA

Pren Batch: 409105

Analysis Patch: 400457									Drop Botoby 400404
Analysis Batch: 409157	Sample	Sample	Spike	MS	MS				Prep Batch: 409105 %Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Fluoranthene	0.013	J	1.55	1.34		mg/Kg	\	86	62 - 120
Fluorene	<0.038		1.55	1.19		mg/Kg	₩.	77	62 - 120
Hexachlorobenzene	< 0.077		1.55	1.27		mg/Kg	☼	82	55 ₋ 117
Hexachlorobutadiene	<0.19		1.55	1.13		mg/Kg	₩.	73	56 - 120
Hexachlorocyclopentadiene	<0.77	F1	1.55	<0.78	F1	mg/Kg	☼	0	10 - 106
Hexachloroethane	<0.19	F1	1.55	0.896	F1	mg/Kg	₩	58	61 - 110
Indeno[1,2,3-cd]pyrene	<0.038	F1	1.55	0.803	F1	mg/Kg	₩	52	57 ₋ 127
Isophorone	<0.19		1.55	1.15		mg/Kg	☼	74	55 ₋ 110
2-Methylnaphthalene	0.0080	J	1.55	1.26		mg/Kg	₩	81	62 - 110
2-Methylphenol	<0.19	F1 F2	1.55	1.21		mg/Kg	₩.	78	60 - 120
3 & 4 Methylphenol	<0.19		1.55	1.33		mg/Kg	☼	86	57 - 120
Naphthalene	<0.038		1.55	1.12		mg/Kg	₩	73	63 - 110
2-Nitroaniline	<0.19		1.55	1.24		mg/Kg	₩	80	57 ₋ 124
3-Nitroaniline	<0.38		1.55	1.34		mg/Kg	₩	87	40 - 122
4-Nitroaniline	<0.38		1.55	1.86		mg/Kg	☼	120	60 - 160
Nitrobenzene	<0.038		1.55	1.17		mg/Kg	₩	75	60 - 116
2-Nitrophenol	<0.38		1.55	1.35		mg/Kg	₩	87	60 - 120
4-Nitrophenol	<0.77		3.10	2.30		mg/Kg	☼	74	30 - 122
N-Nitrosodi-n-propylamine	<0.077		1.55	1.25		mg/Kg	₩.	81	56 - 118
N-Nitrosodiphenylamine	<0.19		1.55	1.24		mg/Kg	₩	80	65 - 112
2,2'-oxybis[1-chloropropane]	<0.19		1.55	1.19		mg/Kg	☼	77	40 - 124
Pentachlorophenol	<0.77		3.10	1.69		mg/Kg	₩	55	13 - 112
Phenanthrene	0.014	J	1.55	1.42		mg/Kg	≎	91	62 - 120
Phenol	<0.19		1.55	1.28		mg/Kg	☼	82	56 - 122
Pyrene	0.015	J	1.55	1.58		mg/Kg		101	63 - 120
1,2,4-Trichlorobenzene	<0.19		1.55	1.09		mg/Kg	☼	70	62 - 110
2,4,5-Trichlorophenol	<0.38		1.55	1.23		mg/Kg	☼	79	50 - 120

1.55

Limits

25 - 139

1.29

mg/Kg

MS	MS
%Recovery	Qualifier
 67	

< 0.38

74

2-Fluorobiphenyl 44 - 121 2-Fluorophenol 74 46 - 133 Nitrobenzene-d5 66 41 - 120 Phenol-d5 82 46 - 125 Terphenyl-d14 102 35 - 160

Lab Sample ID: 500-136651-2 MSD

Matrix: Solid

2,4,6-Tribromophenol

2,4,6-Trichlorophenol

Surrogate

Analysis Batch: 409157

Client Sample	ID: 3160-55-2	(0-3)
---------------	---------------	-------

57 - 120

Prep Type: Total/NA Prep Batch: 409105

	•	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
A	nalyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
A	cenaphthene	<0.038		1.56	1.26		mg/Kg	₩	81	58 - 110	11	30
A	cenaphthylene	<0.038		1.56	1.34		mg/Kg	₩	85	60 - 110	11	30
Aı	nthracene	<0.038		1.56	1.43		mg/Kg	₩	91	63 - 110	11	30
В	enzo[a]anthracene	0.0075	j	1.56	1.48		mg/Kg	₩.	94	63 - 110	10	30
В	enzo[a]pyrene	0.018	J	1.56	1.48		mg/Kg	₩	93	61 - 120	11	30
В	enzo[b]fluoranthene	<0.038	F1	1.56	1.90	F1	mg/Kg	₩	122	62 - 120	15	30

TestAmerica Chicago

Page 111 of 145

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 500-136651-2 MSD	
Matrix: Solid	

Analysis Batch: 409157

4-Nitroaniline

Nitrobenzene

2-Nitrophenol

4-Nitrophenol

Client Sample ID: 3160-55-2 (0-3) **Prep Type: Total/NA**

Prep Batch: 409105 %Rec.

Analysis Balcii. 409157	Sample	Sample	Spike	MSD	MSD				%Rec.	RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzo[g,h,i]perylene	<0.038	F1	1.56	0.657	F1	mg/Kg	-	42	64 - 120	3	30
Benzo[k]fluoranthene	<0.038	F1	1.56	1.97	F1	mg/Kg	₩	126	65 - 120	14	30
Bis(2-chloroethoxy)methane	<0.19		1.56	1.40		mg/Kg	₩	90	60 - 112	11	30
Bis(2-chloroethyl)ether	<0.19		1.56	1.39		mg/Kg	₩.	89	55 - 111	11	30
Bis(2-ethylhexyl) phthalate	<0.19	F1	1.56	2.19	F1	mg/Kg	₩	140	63 - 118	15	30
4-Bromophenyl phenyl ether	<0.19		1.56	1.39		mg/Kg	₩	89	63 - 110	8	30
Butyl benzyl phthalate	<0.19	F1	1.56	1.94	F1	mg/Kg	₩.	124	61 - 116	10	30
Carbazole	<0.19		1.56	1.71		mg/Kg	₩	109	59 ₋ 158	10	30
4-Chloroaniline	<0.77		1.56	1.05		mg/Kg	₩	67	30 - 150	8	30
4-Chloro-3-methylphenol	<0.38		1.56	1.51		mg/Kg	₩.	96	61 - 114	16	30
2-Chloronaphthalene	<0.19		1.56	1.35		mg/Kg	₩	86	64 - 110	13	30
2-Chlorophenol	<0.19		1.56	1.39		mg/Kg	₩	89	64 - 110	14	30
4-Chlorophenyl phenyl ether	<0.19		1.56	1.39		mg/Kg	₩.	89	63 - 110	18	30
Chrysene	<0.038		1.56	1.47		mg/Kg	₩	94	63 - 120	10	30
Dibenz(a,h)anthracene	<0.038	F1	1.56	0.935	F1	mg/Kg	₩	60	64 - 119	11	30
Dibenzofuran	<0.19		1.56	1.37		mg/Kg	 -	88	64 - 110	12	30
1,2-Dichlorobenzene	<0.19		1.56	1.12		mg/Kg	₩	72	62 - 110	8	30
1,3-Dichlorobenzene	<0.19		1.56	1.06		mg/Kg	₩	68	60 - 110	9	30
1,4-Dichlorobenzene	<0.19		1.56	1.07		mg/Kg		69	61 - 110	6	30
3,3'-Dichlorobenzidine	<0.19	F2	1.56	1.15	F2	mg/Kg	₩	74	49 - 112	37	30
2,4-Dichlorophenol	<0.38		1.56	1.50		mg/Kg	₩	96	58 - 120	13	30
Diethyl phthalate	<0.19		1.56	1.29		mg/Kg		83	58 - 120	13	30
2,4-Dimethylphenol	<0.38		1.56	1.15		mg/Kg	₩	73	60 - 110	12	30
Dimethyl phthalate	<0.19		1.56	1.41		mg/Kg	₩	91	64 - 110	20	30
Di-n-butyl phthalate	<0.19		1.56	1.48		mg/Kg		95	65 - 120	14	30
4,6-Dinitro-2-methylphenol	<0.77		3.12	0.419	J	mg/Kg	₩	13	10 - 110	16	30
2,4-Dinitrophenol	<0.77	F1	3.12	<0.78		mg/Kg	₩	0	10 - 100	NC	30
2,4-Dinitrotoluene	<0.19		1.56	1.42		mg/Kg		91	62 - 117	17	30
2,6-Dinitrotoluene	<0.19		1.56	1.42		mg/Kg	₩	91	67 ₋ 120	17	30
Di-n-octyl phthalate	<0.19		1.56	1.67		mg/Kg	₩	107	63 - 119	17	30
Fluoranthene	0.013	j	1.56	1.47		mg/Kg		93	62 - 120	9	30
Fluorene	<0.038		1.56	1.38		mg/Kg	₩	88	62 - 120	14	30
Hexachlorobenzene	<0.077		1.56	1.48		mg/Kg	₩	95	55 - 117	16	30
Hexachlorobutadiene	<0.19		1.56	1.12		mg/Kg		72	56 - 120	1	30
Hexachlorocyclopentadiene	<0.77	F1	1.56	<0.78	F1	mg/Kg	₩	0	10 - 106	NC	30
Hexachloroethane	<0.19		1.56	0.963		mg/Kg	₩	62	61 - 110	7	30
Indeno[1,2,3-cd]pyrene	<0.038		1.56	0.892		mg/Kg		57	57 - 127	10	30
Isophorone	<0.19		1.56	1.30		mg/Kg	₩	83	55 - 110	12	30
2-Methylnaphthalene	0.0080	J	1.56	1.36		mg/Kg	₩	87	62 - 110	8	30
2-Methylphenol		F1 F2	1.56		F1 F2	mg/Kg		129	60 - 120	50	30
3 & 4 Methylphenol	<0.19		1.56	1.47	2	mg/Kg	₩	94	57 - 120	10	30
Naphthalene	<0.038		1.56	1.27		mg/Kg	₩	81	63 - 110	12	30
2-Nitroaniline	<0.19					mg/Kg	 \$	94	57 - 124	17	30
3-Nitroaniline	<0.19		1.56 1.56	1.47 1.65		mg/Kg	≎	106	40 - 122	20	30
J-INILUALIIIIIIE	~U.36		1.00	1.05		my/Ny	~	100	40 - 122	20	30

TestAmerica Chicago

2.01

1.29

1.50

1.96

mg/Kg

mg/Kg

mg/Kg

mg/Kg

129

83

96

63

₩

☼

60 - 160

60 - 116

60 - 120

30 - 122

1.56

1.56

1.56

3.12

< 0.38

<0.038

<0.38

< 0.77

8

10

11

16

30

30

30

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab	Sa	mp	le	ID:	500	-13	665	1-2	MSD	

Matrix: Solid

Analysis Batch: 409157

Client Sample ID: 3160-55-2 (0-3)

Prep Type: Total/NA Prep Batch: 409105

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
N-Nitrosodi-n-propylamine	<0.077		1.56	1.40		mg/Kg	-	89	56 - 118	11	30
N-Nitrosodiphenylamine	<0.19		1.56	1.43		mg/Kg	₩	91	65 - 112	14	30
2,2'-oxybis[1-chloropropane]	<0.19		1.56	1.37		mg/Kg	₩	88	40 - 124	14	30
Pentachlorophenol	<0.77		3.12	1.64		mg/Kg	₩	52	13 - 112	3	30
Phenanthrene	0.014	J	1.56	1.53		mg/Kg	₩	97	62 - 120	7	30
Phenol	<0.19		1.56	1.45		mg/Kg	₩	93	56 - 122	13	30
Pyrene	0.015	J	1.56	1.75		mg/Kg	₩.	111	63 - 120	10	30
1,2,4-Trichlorobenzene	<0.19		1.56	1.21		mg/Kg	☆	78	62 - 110	11	30
2,4,5-Trichlorophenol	<0.38		1.56	1.42		mg/Kg	₩	91	50 - 120	15	30
2,4,6-Trichlorophenol	<0.38		1.56	1.40		mg/Kg	₩	90	57 - 120	9	30

MSD MSD

Surrogate	%Recovery	Qualifier	Limits		
2-Fluorobiphenyl	72		44 - 121		
2-Fluorophenol	85		46 - 133		
Nitrobenzene-d5	75		41 - 120		
Phenol-d5	84		46 - 125		
Terphenyl-d14	111		35 - 160		
2,4,6-Tribromophenol	82		25 - 139		

Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Solid

Lab Sample ID: MB 500-409783/1-A

Analysis Batch: 409829								Prep Batch:	409783
	MB								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	<0.033		0.033	0.0060	mg/Kg		11/13/17 18:14	11/14/17 11:33	1
Acenaphthylene	<0.033		0.033	0.0044	mg/Kg		11/13/17 18:14	11/14/17 11:33	1
Anthracene	<0.033		0.033	0.0056	mg/Kg		11/13/17 18:14	11/14/17 11:33	1
Benzo[a]anthracene	<0.033		0.033	0.0045	mg/Kg		11/13/17 18:14	11/14/17 11:33	1
Benzo[a]pyrene	<0.033		0.033	0.0064	mg/Kg		11/13/17 18:14	11/14/17 11:33	1
Benzo[b]fluoranthene	<0.033		0.033	0.0072	mg/Kg		11/13/17 18:14	11/14/17 11:33	1
Benzo[g,h,i]perylene	<0.033		0.033	0.011	mg/Kg		11/13/17 18:14	11/14/17 11:33	1
Benzo[k]fluoranthene	<0.033		0.033	0.0098	mg/Kg		11/13/17 18:14	11/14/17 11:33	1
Bis(2-chloroethoxy)methane	<0.17		0.17	0.034	mg/Kg		11/13/17 18:14	11/14/17 11:33	1
Bis(2-chloroethyl)ether	<0.17		0.17	0.050	mg/Kg		11/13/17 18:14	11/14/17 11:33	1
Bis(2-ethylhexyl) phthalate	<0.17		0.17	0.061	mg/Kg		11/13/17 18:14	11/14/17 11:33	1
4-Bromophenyl phenyl ether	<0.17		0.17	0.044	mg/Kg		11/13/17 18:14	11/14/17 11:33	1
Butyl benzyl phthalate	<0.17		0.17	0.063	mg/Kg		11/13/17 18:14	11/14/17 11:33	1
Carbazole	<0.17		0.17	0.083	mg/Kg		11/13/17 18:14	11/14/17 11:33	1
4-Chloroaniline	<0.67		0.67	0.16	mg/Kg		11/13/17 18:14	11/14/17 11:33	1
4-Chloro-3-methylphenol	<0.33		0.33	0.11	mg/Kg		11/13/17 18:14	11/14/17 11:33	1
2-Chloronaphthalene	<0.17		0.17	0.037	mg/Kg		11/13/17 18:14	11/14/17 11:33	1
2-Chlorophenol	<0.17		0.17	0.057	mg/Kg		11/13/17 18:14	11/14/17 11:33	1
4-Chlorophenyl phenyl ether	<0.17		0.17	0.039	mg/Kg		11/13/17 18:14	11/14/17 11:33	1
Chrysene	< 0.033		0.033	0.0091	mg/Kg		11/13/17 18:14	11/14/17 11:33	1
Dibenz(a,h)anthracene	< 0.033		0.033	0.0064	mg/Kg		11/13/17 18:14	11/14/17 11:33	1
Dibenzofuran	<0.17		0.17	0.039	mg/Kg		11/13/17 18:14	11/14/17 11:33	1
1,2-Dichlorobenzene	<0.17		0.17	0.040	mg/Kg		11/13/17 18:14	11/14/17 11:33	1
1,3-Dichlorobenzene	<0.17		0.17		mg/Kg		11/13/17 18:14	11/14/17 11:33	1

TestAmerica Chicago

Page 113 of 145

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 500-409783/1-A

Matrix: Solid

Analysis Batch: 409829

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 409783

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	<0.17		0.17	0.043	mg/Kg		11/13/17 18:14	11/14/17 11:33	1
3,3'-Dichlorobenzidine	<0.17		0.17	0.047	mg/Kg		11/13/17 18:14	11/14/17 11:33	1
2,4-Dichlorophenol	<0.33		0.33	0.079	mg/Kg		11/13/17 18:14	11/14/17 11:33	1
Diethyl phthalate	<0.17		0.17	0.056	mg/Kg		11/13/17 18:14	11/14/17 11:33	1
2,4-Dimethylphenol	<0.33		0.33	0.13	mg/Kg		11/13/17 18:14	11/14/17 11:33	1
Dimethyl phthalate	<0.17		0.17	0.043	mg/Kg		11/13/17 18:14	11/14/17 11:33	1
Di-n-butyl phthalate	<0.17		0.17	0.051	mg/Kg		11/13/17 18:14	11/14/17 11:33	1
4,6-Dinitro-2-methylphenol	<0.67		0.67	0.27	mg/Kg		11/13/17 18:14	11/14/17 11:33	1
2,4-Dinitrophenol	<0.67		0.67	0.59	mg/Kg		11/13/17 18:14	11/14/17 11:33	1
2,4-Dinitrotoluene	<0.17		0.17	0.053	mg/Kg		11/13/17 18:14	11/14/17 11:33	1
2,6-Dinitrotoluene	<0.17		0.17	0.065	mg/Kg		11/13/17 18:14	11/14/17 11:33	1
Di-n-octyl phthalate	<0.17		0.17	0.054	mg/Kg		11/13/17 18:14	11/14/17 11:33	1
Fluoranthene	<0.033		0.033	0.0062	mg/Kg		11/13/17 18:14	11/14/17 11:33	1
Fluorene	< 0.033		0.033	0.0047	mg/Kg		11/13/17 18:14	11/14/17 11:33	1
Hexachlorobenzene	<0.067		0.067	0.0077	mg/Kg		11/13/17 18:14	11/14/17 11:33	1
Hexachlorobutadiene	<0.17		0.17	0.052	mg/Kg		11/13/17 18:14	11/14/17 11:33	1
Hexachlorocyclopentadiene	<0.67		0.67	0.19	mg/Kg		11/13/17 18:14	11/14/17 11:33	1
Hexachloroethane	<0.17		0.17	0.051	mg/Kg		11/13/17 18:14	11/14/17 11:33	1
Indeno[1,2,3-cd]pyrene	<0.033		0.033	0.0086	mg/Kg		11/13/17 18:14	11/14/17 11:33	1
Isophorone	<0.17		0.17	0.037	mg/Kg		11/13/17 18:14	11/14/17 11:33	1
2-Methylnaphthalene	< 0.067		0.067	0.0061	mg/Kg		11/13/17 18:14	11/14/17 11:33	1
2-Methylphenol	<0.17		0.17	0.053	mg/Kg		11/13/17 18:14	11/14/17 11:33	1
3 & 4 Methylphenol	<0.17		0.17	0.055	mg/Kg		11/13/17 18:14	11/14/17 11:33	1
Naphthalene	<0.033		0.033	0.0051	mg/Kg		11/13/17 18:14	11/14/17 11:33	1
2-Nitroaniline	<0.17		0.17	0.045	mg/Kg		11/13/17 18:14	11/14/17 11:33	1
3-Nitroaniline	<0.33		0.33	0.10	mg/Kg		11/13/17 18:14	11/14/17 11:33	1
4-Nitroaniline	<0.33		0.33	0.14	mg/Kg		11/13/17 18:14	11/14/17 11:33	1
Nitrobenzene	<0.033		0.033	0.0083	mg/Kg		11/13/17 18:14	11/14/17 11:33	1
2-Nitrophenol	<0.33		0.33	0.079	mg/Kg		11/13/17 18:14	11/14/17 11:33	1
4-Nitrophenol	<0.67		0.67	0.32	mg/Kg		11/13/17 18:14	11/14/17 11:33	1
N-Nitrosodi-n-propylamine	<0.067		0.067	0.041	mg/Kg		11/13/17 18:14	11/14/17 11:33	1
N-Nitrosodiphenylamine	<0.17		0.17	0.039	mg/Kg		11/13/17 18:14	11/14/17 11:33	1
2,2'-oxybis[1-chloropropane]	<0.17		0.17	0.039	mg/Kg		11/13/17 18:14	11/14/17 11:33	1
Pentachlorophenol	<0.67		0.67	0.53	mg/Kg		11/13/17 18:14	11/14/17 11:33	1
Phenanthrene	<0.033		0.033	0.0046	mg/Kg		11/13/17 18:14	11/14/17 11:33	1
Phenol	<0.17		0.17	0.074	mg/Kg		11/13/17 18:14	11/14/17 11:33	1
Pyrene	<0.033		0.033	0.0066	mg/Kg		11/13/17 18:14	11/14/17 11:33	1
1,2,4-Trichlorobenzene	<0.17		0.17	0.036	mg/Kg		11/13/17 18:14	11/14/17 11:33	1
2,4,5-Trichlorophenol	<0.33		0.33	0.076	mg/Kg		11/13/17 18:14	11/14/17 11:33	1
2,4,6-Trichlorophenol	<0.33		0.33	0.11	mg/Kg		11/13/17 18:14	11/14/17 11:33	1

	МВ	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	78		44 - 121	11/13/17 18:14	11/14/17 11:33	1
2-Fluorophenol	85		46 - 133	11/13/17 18:14	11/14/17 11:33	1
Nitrobenzene-d5	65		41 - 120	11/13/17 18:14	11/14/17 11:33	1
Phenol-d5	85		46 - 125	11/13/17 18:14	11/14/17 11:33	1
Terphenyl-d14	74		35 - 160	11/13/17 18:14	11/14/17 11:33	1
2,4,6-Tribromophenol	73		25 - 139	11/13/17 18:14	11/14/17 11:33	1

TestAmerica Chicago

Page 114 of 145

11/14/2017

QC Sample Results

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028 TestAmerica Job ID: 500-136651-1

Lab Sample ID: LCS 500-409783/2-A

Matrix: Solid

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 409783

			LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Acenaphthene	1.33	0.990		mg/Kg		74	58 - 110
Acenaphthylene	1.33	1.04		mg/Kg		78	60 - 110
Anthracene	1.33	1.08		mg/Kg		81	63 - 110
Benzo[a]anthracene	1.33	1.05		mg/Kg		79	63 - 110
Benzo[a]pyrene	1.33	1.10		mg/Kg		82	61 - 120
Benzo[b]fluoranthene	1.33	1.18		mg/Kg		89	62 - 120
Benzo[g,h,i]perylene	1.33	1.13		mg/Kg		85	64 - 120
Benzo[k]fluoranthene	1.33	1.15		mg/Kg		86	65 - 120
Bis(2-chloroethoxy)methane	1.33	1.08		mg/Kg		81	60 - 112
Bis(2-chloroethyl)ether	1.33	1.10		mg/Kg		83	55 - 111
Bis(2-ethylhexyl) phthalate	1.33	1.25		mg/Kg		94	63 - 118
4-Bromophenyl phenyl ether	1.33	1.11		mg/Kg		83	63 ₋ 110
Butyl benzyl phthalate	1.33	1.19		mg/Kg		89	61 - 116
Carbazole	1.33	1.27		mg/Kg		95	59 ₋ 158
4-Chloroaniline	1.33	1.13		mg/Kg		85	30 - 150
4-Chloro-3-methylphenol	1.33	1.09		mg/Kg		82	61 - 114
2-Chloronaphthalene	1.33	1.05		mg/Kg		78	64 - 110
2-Chlorophenol	1.33	1.09		mg/Kg		82	64 - 110
4-Chlorophenyl phenyl ether	1.33	1.05		mg/Kg		79	63 - 110
Chrysene	1.33	1.05		mg/Kg		79	63 - 120
Dibenz(a,h)anthracene	1.33	1.20		mg/Kg		90	64 - 119
Dibenzofuran	1.33	1.04				78	64 - 110
				mg/Kg			
1,2-Dichlorobenzene	1.33	1.06		mg/Kg		79	62 - 110
1,3-Dichlorobenzene	1.33	1.03		mg/Kg		77	60 - 110
1,4-Dichlorobenzene	1.33	1.04		mg/Kg		78	61 - 110
3,3'-Dichlorobenzidine	1.33	1.07		mg/Kg		80	49 - 112
2,4-Dichlorophenol	1.33	1.09		mg/Kg		82	58 - 120
Diethyl phthalate	1.33	1.04		mg/Kg		78	58 ₋ 120
2,4-Dimethylphenol	1.33	1.11		mg/Kg		83	60 - 110
Dimethyl phthalate	1.33	1.07		mg/Kg		80	64 - 110
Di-n-butyl phthalate	1.33	1.16		mg/Kg		87	65 - 120
4,6-Dinitro-2-methylphenol	2.67	0.825		mg/Kg		31	10 - 110
2,4-Dinitrophenol	2.67	<0.67		mg/Kg		15	10 - 100
2,4-Dinitrotoluene	1.33	1.16		mg/Kg		87	62 - 117
2,6-Dinitrotoluene	1.33	1.10		mg/Kg		83	67 - 120
Di-n-octyl phthalate	1.33	1.28		mg/Kg		96	63 - 119
Fluoranthene	1.33	1.02		mg/Kg		76	62 - 120
Fluorene	1.33	1.06		mg/Kg		80	62 - 120
Hexachlorobenzene	1.33	1.07		mg/Kg		80	55 - 117
Hexachlorobutadiene	1.33	0.978		mg/Kg		73	56 - 120
Hexachlorocyclopentadiene	1.33	0.533	J	mg/Kg		40	10 - 106
Hexachloroethane	1.33	1.04		mg/Kg		78	61 - 110
Indeno[1,2,3-cd]pyrene	1.33	1.20		mg/Kg		90	57 - 127
Isophorone	1.33	0.990		mg/Kg		74	55 - 110
2-Methylnaphthalene	1.33	1.07		mg/Kg		80	62 - 110
2-Methylphenol	1.33	1.12		mg/Kg		84	60 - 120
3 & 4 Methylphenol	1.33	1.06		mg/Kg		80	57 ₋ 120
Naphthalene	1.33	1.05		mg/Kg		79	63 - 110
2-Nitroaniline	1.33	1.07		mg/Kg		80	57 - 124
3-Nitroaniline	1.33	1.15		mg/Kg		86	40 - 122

TestAmerica Chicago

Page 115 of 145

9

3

5

7

9

10

12

13

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 500-409783/2-A

Matrix: Solid

Analysis Batch: 409829

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 409783

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
4-Nitroaniline	1.33	1.56		mg/Kg		117	60 - 160	
Nitrobenzene	1.33	1.04		mg/Kg		78	60 - 116	
2-Nitrophenol	1.33	1.16		mg/Kg		87	60 - 120	
4-Nitrophenol	2.67	1.77		mg/Kg		66	30 - 122	
N-Nitrosodi-n-propylamine	1.33	1.08		mg/Kg		81	56 - 118	
N-Nitrosodiphenylamine	1.33	1.13		mg/Kg		85	65 - 112	
2,2'-oxybis[1-chloropropane]	1.33	1.18		mg/Kg		89	40 - 124	
Pentachlorophenol	2.67	1.28		mg/Kg		48	13 - 112	
Phenanthrene	1.33	1.08		mg/Kg		81	62 - 120	
Phenol	1.33	1.12		mg/Kg		84	56 - 122	
Pyrene	1.33	1.04		mg/Kg		78	63 - 120	
1,2,4-Trichlorobenzene	1.33	1.04		mg/Kg		78	62 - 110	
2,4,5-Trichlorophenol	1.33	1.10		mg/Kg		82	50 - 120	
2,4,6-Trichlorophenol	1.33	1.04		mg/Kg		78	57 ₋ 120	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	77		44 - 121
2-Fluorophenol	87		46 - 133
Nitrobenzene-d5	72		41 - 120
Phenol-d5	88		46 - 125
Terphenyl-d14	77		35 - 160
2,4,6-Tribromophenol	84		25 - 139

Method: 8081B - Organochlorine Pesticides (GC)

Lab Sample ID: MB 500-408939/1-A

Matrix: Solid

Analysis Batch: 409066

Client Sample ID: Method Blank Prep Type: Total/NA **Prep Batch: 408939**

	MB	MB						•	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	<0.0017		0.0017	0.00069	mg/Kg		11/08/17 07:22	11/08/17 20:52	1
alpha-BHC	<0.0017		0.0017	0.00042	mg/Kg		11/08/17 07:22	11/08/17 20:52	1
alpha-Chlordane	<0.0017		0.0017	0.00085	mg/Kg		11/08/17 07:22	11/08/17 20:52	1
beta-BHC	<0.0017		0.0017	0.00052	mg/Kg		11/08/17 07:22	11/08/17 20:52	1
4,4'-DDD	<0.0017		0.0017	0.00033	mg/Kg		11/08/17 07:22	11/08/17 20:52	1
4,4'-DDE	<0.0017		0.0017	0.00028	mg/Kg		11/08/17 07:22	11/08/17 20:52	1
4,4'-DDT	<0.0017		0.0017	0.00088	mg/Kg		11/08/17 07:22	11/08/17 20:52	1
delta-BHC	<0.0017		0.0017	0.00053	mg/Kg		11/08/17 07:22	11/08/17 20:52	1
Dieldrin	<0.0017		0.0017	0.00023	mg/Kg		11/08/17 07:22	11/08/17 20:52	1
Endosulfan I	<0.0017		0.0017	0.00073	mg/Kg		11/08/17 07:22	11/08/17 20:52	1
Endosulfan II	<0.0017		0.0017	0.00027	mg/Kg		11/08/17 07:22	11/08/17 20:52	1
Endosulfan sulfate	<0.0017		0.0017	0.00031	mg/Kg		11/08/17 07:22	11/08/17 20:52	1
Endrin	<0.0017		0.0017	0.00023	mg/Kg		11/08/17 07:22	11/08/17 20:52	1
Endrin aldehyde	<0.0017		0.0017	0.00028	mg/Kg		11/08/17 07:22	11/08/17 20:52	1
Endrin ketone	<0.0017		0.0017	0.00038	mg/Kg		11/08/17 07:22	11/08/17 20:52	1
gamma-BHC (Lindane)	<0.0017		0.0017	0.00036	mg/Kg		11/08/17 07:22	11/08/17 20:52	1
gamma-Chlordane	<0.0017		0.0017	0.00044	mg/Kg		11/08/17 07:22	11/08/17 20:52	1
Heptachlor	<0.0017		0.0017	0.00070	mg/Kg		11/08/17 07:22	11/08/17 20:52	1

TestAmerica Chicago

Page 116 of 145

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Method: 8081B - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: MB 500-408939/1-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA Prep Batch: 408939 **Analysis Batch: 409066**

	IVID IV	VID						
Analyte	Result C	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Heptachlor epoxide	<0.0017	0.0017	0.00059	mg/Kg		11/08/17 07:22	11/08/17 20:52	1
Methoxychlor	<0.0083	0.0083	0.00032	mg/Kg		11/08/17 07:22	11/08/17 20:52	1
Toxaphene	<0.017	0.017	0.0070	mg/Kg		11/08/17 07:22	11/08/17 20:52	1

MB MB Surrogate Qualifier Limits Prepared Analyzed Dil Fac %Recovery DCB Decachlorobiphenyl 83 33 - 148 11/08/17 07:22 11/08/17 20:52 79 30 - 121 11/08/17 07:22 11/08/17 20:52 Tetrachloro-m-xylene

Lab Sample ID: LCS 500-408939/2-A

Analysis Batch: 409066

Methoxychlor

Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Total/NA **Prep Batch: 408939**

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Aldrin 0.0133 0.0108 mg/Kg 81 52 - 122 alpha-BHC 0.0133 0.0113 mg/Kg 84 50 - 123alpha-Chlordane 0.0133 0.0105 mg/Kg 78 52 - 129 0.0133 0.0125 44 - 140 beta-BHC mg/Kg 4,4'-DDD 0.0133 0.0114 mg/Kg 86 47 - 137 4,4'-DDE 0.0133 0.0107 mg/Kg 80 50 - 130 4,4'-DDT 0.0133 0.0109 mg/Kg 82 46 - 143 delta-BHC 0.0133 0.0127 96 57 - 125 mg/Kg Dieldrin 0.0133 0.0108 81 51 - 133 mg/Kg Endosulfan I 0.0133 0.00822 mg/Kg 62 30 - 120 Endosulfan II 0.0133 0.00942 71 30 - 120 mg/Kg Endosulfan sulfate 104 42 - 150 0.0133 0.0138 mg/Kg Endrin 0.0133 0.0119 mg/Kg 89 43 - 144 Endrin aldehyde 0.0133 0.0114 mg/Kg 85 39 - 131 Endrin ketone 0.0133 0.0111 mg/Kg 84 51 - 135 83 50 - 122 gamma-BHC (Lindane) 0.0133 0.0111 mg/Kg gamma-Chlordane 0.0133 0.0101 76 52 - 132 mg/Kg 85 53 - 129 Heptachlor 0.0133 0.0113 mg/Kg Heptachlor epoxide 0.0133 0.0108 81 50 - 139 mg/Kg

LCS LCS Limits Surrogate %Recovery Qualifier DCB Decachlorobiphenyl 84 33 - 148 Tetrachloro-m-xylene 84 30 - 121

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Lab Sample ID: MB 500-408939/1-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA

0.0133

Analysis Batch: 409181 Prep Batch: 408939 MR MR

0.0102

mg/Kg

77

45 - 144

		141.0							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	<0.017		0.017	0.0059	mg/Kg		11/08/17 07:22	11/09/17 10:25	1
PCB-1221	<0.017		0.017	0.0073	mg/Kg		11/08/17 07:22	11/09/17 10:25	1

TestAmerica Chicago

Page 117 of 145

10

11/14/2017

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Lab Sample ID: MB 500-408939/1-A

Matrix: Solid

Analysis Batch: 409181

Client Sample ID: Method Blank
Prep Type: Total/NA

Prep Batch: 408939

	MR MR							
Analyte	Result Qualifi	ier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1232	<0.017	0.017	0.0073	mg/Kg		11/08/17 07:22	11/09/17 10:25	1
PCB-1242	<0.017	0.017	0.0055	mg/Kg		11/08/17 07:22	11/09/17 10:25	1
PCB-1248	<0.017	0.017	0.0066	mg/Kg		11/08/17 07:22	11/09/17 10:25	1
PCB-1254	<0.017	0.017	0.0036	mg/Kg		11/08/17 07:22	11/09/17 10:25	1
PCB-1260	<0.017	0.017	0.0082	mg/Kg		11/08/17 07:22	11/09/17 10:25	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	114		49 - 129	11/08/17 07:22	11/09/17 10:25	1
DCB Decachlorobiphenyl	115		37 - 121	11/08/17 07:22	11/09/17 10:25	1

LCS LCS

Lab Sample ID: LCS 500-408939/3-A

Matrix: Solid

Analysis Batch: 409181

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Type: Total/NA Prep Batch: 408939

%Rec. Limits

Analyte Added Result Qualifier Unit D %Rec PCB-1016 0.167 0.177 57 - 120 mg/Kg 106 PCB-1260 0.167 0.176 mq/Kq 106 61 - 125

Spike

LCS LCS

Surrogate	%Recovery Qualifier	Limits
Tetrachloro-m-xylene	109	49 - 129
DCB Decachlorobiphenyl	108	37 - 121

Method: 8151A - Herbicides (GC)

Lab Sample ID: MB 500-409129/1-A

Matrix: Solid

Analysis Batch: 409021

Client	Sample	e ID: I	Method	Rlank
CHELL	Januar	י ועו ס	Menioa	Dialin

Prep Type: Total/NA

10

10

10

Prep Batch: 409129

MB MB Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dicamba <0.33 0.33 0.069 mg/Kg 11/08/17 22:08 11/10/17 02:41 10 Dichlorprop < 0.33 0.33 0.090 mg/Kg 11/08/17 22:08 11/10/17 02:41 10 < 0.33 0.33 0.094 mg/Kg 11/08/17 22:08 11/10/17 02:41 10 2,4-D

MB MB

Lab Sample ID: LCS 500-409129/2-A

Matrix: Solid

Analysis Batch: 409021

Client Sample ID: Lab Control Sample
Prep Type: Total/NA
Prep Batch: 409129
%Rec.

		Бріке	LUS	LUS				%Rec.	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
Dicamba	· 	1.33	0.790		mg/Kg		59	25 - 110	
Dichlorprop		1.34	0.771		mg/Kg		58	25 - 110	
2,4-D		1.33	0.618		mg/Kg		46	20 - 115	

TestAmerica Chicago

Page 118 of 145

9

A

F

6

8

10

1 1

13

14

11/14/2017

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Method: 8151A - Herbicides (GC) (Continued)

Lab Sample ID: LCS 500-409129/2-A

Matrix: Solid

Analysis Batch: 409021

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 409129

	Spike	LUS	LUS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Silvex (2,4,5-TP)	1.34	0.784		mg/Kg		59	29 - 115	
2,4,5-T	1.33	0.848		mg/Kg		64	25 - 115	
2,4-DB	1.33	0.897		mg/Kg		67	20 - 120	

LCS LCS

Surrogate %Recovery Qualifier Limits DCAA 55 25 - 120

Method: 6010B - Metals (ICP)

Lab Sample ID: MB 500-408293/1-A

Matrix: Solid

Analysis Batch: 408472

Client Sample ID: Method Blank **Prep Type: Total/NA**

Prep Batch: 408293

								•	
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<1.0		1.0	0.34	mg/Kg		11/03/17 07:41	11/03/17 16:14	1
Barium	<1.0		1.0	0.11	mg/Kg		11/03/17 07:41	11/03/17 16:14	1
Beryllium	<0.40		0.40	0.093	mg/Kg		11/03/17 07:41	11/03/17 16:14	1
Cadmium	0.0379	J	0.20	0.036	mg/Kg		11/03/17 07:41	11/03/17 16:14	1
Chromium	<1.0		1.0	0.50	mg/Kg		11/03/17 07:41	11/03/17 16:14	1
Cobalt	<0.50		0.50	0.13	mg/Kg		11/03/17 07:41	11/03/17 16:14	1
Copper	<1.0		1.0	0.28	mg/Kg		11/03/17 07:41	11/03/17 16:14	1
Iron	<20		20	10	mg/Kg		11/03/17 07:41	11/03/17 16:14	1
Lead	<0.50		0.50	0.23	mg/Kg		11/03/17 07:41	11/03/17 16:14	1
Manganese	<1.0		1.0	0.15	mg/Kg		11/03/17 07:41	11/03/17 16:14	1
Nickel	<1.0		1.0	0.29	mg/Kg		11/03/17 07:41	11/03/17 16:14	1
Silver	<0.50		0.50	0.13	mg/Kg		11/03/17 07:41	11/03/17 16:14	1
Thallium	<1.0		1.0	0.50	mg/Kg		11/03/17 07:41	11/03/17 16:14	1
Vanadium	<0.50		0.50	0.12	mg/Kg		11/03/17 07:41	11/03/17 16:14	1
Zinc	<2.0		2.0	0.88	mg/Kg		11/03/17 07:41	11/03/17 16:14	1

Lab Sample ID: MB 500-408293/1-A

Matrix: Solid

Analysis Batch: 408545

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 408293

	мв мв							
Analyte	Result Qualifie	er RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<2.0	2.0	0.39	mg/Kg		11/03/17 07:41	11/05/17 22:24	1
Selenium	<1.0	1.0	0.59	mg/Kg		11/03/17 07:41	11/05/17 22:24	1

Lab Sample ID: LCS 500-408293/2-A

Matrix: Solid

Analysis Batch: 408472

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 408293

, , , , , , , , , , , , , , , , , , , ,	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	10.0	9.07		mg/Kg		91	80 - 120	
Barium	200	183		mg/Kg		91	80 - 120	
Beryllium	5.00	4.82		mg/Kg		96	80 - 120	
Cadmium	5.00	4.53		mg/Kg		91	80 - 120	
Chromium	20.0	20.7		mg/Kg		104	80 - 120	

TestAmerica Chicago

Page 119 of 145

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: LCS 500-408293/2-A				Cli	ent Sa	mple ID	: Lab Control Sample
Matrix: Solid							Prep Type: Total/NA
Analysis Batch: 408472							Prep Batch: 408293
	Spike	LCS	LCS				%Rec.
Analyte	bebb∆	Result	Qualifier	Unit	D	%Rec	Limits

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Cobalt	50.0	48.1		mg/Kg		96	80 - 120	
Copper	25.0	25.1		mg/Kg		100	80 - 120	
Iron	100	112		mg/Kg		112	80 - 120	
Lead	10.0	9.53		mg/Kg		95	80 - 120	
Manganese	50.0	48.8		mg/Kg		98	80 - 120	
Nickel	50.0	47.5		mg/Kg		95	80 - 120	
Silver	5.00	4.88		mg/Kg		98	80 - 120	
Thallium	10.0	9.01		mg/Kg		90	80 - 120	
Vanadium	50.0	50.2		mg/Kg		100	80 - 120	
Zinc	50.0	51.8		mg/Kg		104	80 - 120	

Lab Sample ID: LCS 500-408293/2-A **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Solid Analysis Batch: 408545

Spike LCS LCS %Rec. Added Analyte Result Qualifier Unit D %Rec Limits

Antimony 50.0 47.7 mg/Kg 95 80 - 120 Selenium 10.0 8.67 mg/Kg 87 80 - 120

Lab Sample ID: 500-136651-1 MS Client Sample ID: 3160-55-1 (0-3) **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 408472

Prep Batch: 408293 Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier %Rec Limits Unit D ☼ Chromium 17 11.8 30.8 118 75 - 125 mg/Kg ₩ Cobalt 9.4 29.4 35.8 mg/Kg 90 75 - 125 11 F1 14.7 27.1 ₩ 108 75 - 125 Copper mg/Kg ₩ Lead 14 F2 F1 5.89 16.1 F1 mg/Kg 30 75 - 125 ₩ 75 - 125 Nickel 19 29.4 46.1 mg/Kg 91 ₩ Silver <0.27 F1 2.94 1.99 F1 mg/Kg 68 75 - 125 Thallium <0.54 F1 5.89 4.71 mg/Kg ₩ 80 75 - 125 Ö Vanadium 29.4 55.1 92 75 - 125 28 mg/Kg

Lab Sample ID: 500-136651-1 MS Client Sample ID: 3160-55-1 (0-3)

91.6 F1

mg/Kg

127

75 - 125

29.4

54 F1

Matrix: Solid

Zinc

Analysis Batch: 408545 **Prep Batch: 408293**

	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Antimony	<5.4	F1	29.4	4.57	J F1	mg/Kg	<u> </u>	16	75 - 125
Arsenic	8.2	F1	5.89	14.0		mg/Kg	☼	98	75 - 125
Barium	100	F1 F2	118	381	F1	mg/Kg	₩	237	75 - 125
Beryllium	1.0	J	2.94	3.81		mg/Kg	₩	95	75 - 125
Cadmium	0.14	J	2.94	3.12		mg/Kg	₩	101	75 - 125
Iron	25000		58.9	27100	4	mg/Kg	₩	2936	75 - 125
Manganese	600	F2	29.4	294	4	mg/Kg	₩.	-1055	75 - 125
Selenium	<2.7	F1	5.89	7.52	F1	mg/Kg	☼	128	75 - 125

TestAmerica Chicago

Prep Type: Total/NA

Prep Batch: 408293

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: 500-136651-1 MSD Client Sample ID: 3160-55-1 (0-3) **Matrix: Solid Prep Type: Total/NA Analysis Batch: 408472 Prep Batch: 408293** Sample Sample Spike MSD MSD %Rec. **RPD** Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Limit ₩ Chromium 17 11.2 29.7 114 75 - 125 4 20 mg/Kg Cobalt 27.9 33.3 ₩ 86 20 9.4 mg/Kg 75 - 125 7 ☼ 11 F1 28.9 F1 mg/Kg 127 75 - 125 6 20 Copper 13.9 ₩ 117 20 Lead 14 F2 F1 5.58 20.8 F2 mg/Kg 75 - 12526 ☼ Nickel 19 27.9 41.7 mg/Kg 81 75 - 125 10 20 Silver <0.27 F1 2.79 2.13 mg/Kg ď÷ 77 75 - 125 7 20 Thallium <0.54 F1 74 75 - 125 20 5.58 4.14 F1 mg/Kg 13 ₩ Vanadium 28 27.9 55.6 mg/Kg 99 75 - 125 1 20 Zinc 54 F1 27.9 133 20 91.3 F1 mg/Kg 75 - 125 0

Lab Sample ID: 500-136651-1 MSD Client Sample ID: 3160-55-1 (0-3) **Prep Type: Total/NA**

Matrix: Solid

Analysis Batch: 408545									Prep Ba	atch: 40)8293
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Antimony	<5.4	F1	27.9	4.79	J F1	mg/Kg	₩	17	75 - 125	5	20
Arsenic	8.2	F1	5.58	16.9	F1	mg/Kg	☼	156	75 - 125	19	20
Barium	100	F1 F2	112	218	F2	mg/Kg	☼	105	75 - 125	54	20
Beryllium	1.0	J	2.79	3.46		mg/Kg	₩	88	75 - 125	9	20
Cadmium	0.14	J	2.79	2.80		mg/Kg	₩	95	75 - 125	11	20
Iron	25000		55.8	30200	4	mg/Kg	☼	8632	75 - 125	11	20
Manganese	600	F2	27.9	383	4 F2	mg/Kg	₩.	-795	75 - 125	26	20
Selenium	<2.7	F1	5.58	7.13	F1	mg/Kg	☼	128	75 - 125	5	20

Lab Sample ID: 500-136651-1 DU Client Sample ID: 3160-55-1 (0-3) **Matrix: Solid Prep Type: Total/NA**

alvaia Bataby 409472

Sample							
Campic	Sample	DU	DU				RPD
Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
17		16.1		mg/Kg	-		20
9.4		6.36	F3	mg/Kg	₩	39	20
11	F1	12.5		mg/Kg	₩	11	20
14	F2 F1	11.1	F3	mg/Kg	₩	25	20
19		16.7		mg/Kg	₩	14	20
<0.27	F1	<0.29		mg/Kg	₩	NC	20
<0.54	F1	<0.58		mg/Kg	₩	NC	20
28		23.0		mg/Kg	₩	19	20
54	F1	54.8		mg/Kg	₩	0.8	20
	Result 17 9.4 11 14 19 <0.27 <0.54 28	Result Qualifier 17 9.4 11 F1 14 F2 F1 19 <0.27 F1 <0.54 F1 28	Result Qualifier Result 17 16.1 9.4 6.36 11 F1 12.5 14 F2 F1 11.1 19 16.7 <0.27	Result Qualifier Result Qualifier 17 16.1 9.4 6.36 F3 11 F1 12.5 14 F2 F1 11.1 F3 19 16.7 <0.27 F1	Result Qualifier Result Qualifier Unit 17 16.1 mg/Kg 9.4 6.36 F3 mg/Kg 11 F1 12.5 mg/Kg 14 F2 F1 11.1 F3 mg/Kg 19 16.7 mg/Kg <0.27	Result Qualifier Result Qualifier Unit D mg/Kg D mg/Kg 9.4 6.36 F3 mg/Kg □ 11 F1 12.5 mg/Kg □ 14 F2 F1 11.1 F3 mg/Kg □ 19 16.7 mg/Kg □ □ <0.27 F1	Result Qualifier Result Qualifier Unit D RPD 17 16.1 mg/Kg □ 5 9.4 6.36 F3 mg/Kg □ 39 11 F1 12.5 mg/Kg □ 11 14 F2 F1 11.1 F3 mg/Kg □ 25 19 16.7 mg/Kg □ 14 <0.27

Lab Sample ID: 500-136651-1 DU Client Sample ID: 3160-55-1 (0-3)

Matrix: Solid Analysis Ratch: 408545

Analysis batch: 400040							Prep Batch: 40	00293
	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Antimony	<5.4	F1	<5.8		mg/Kg	- -	NC	20
Arsenic	8.2	F1	7.38		mg/Kg	≎	11	20
Barium	100	F1 F2	103		mg/Kg	☼	1	20
Beryllium	1.0	J	0.694	J F5	mg/Kg		36	20
Cadmium	0.14	J	<0.58		mg/Kg	≎	NC	20

TestAmerica Chicago

Prep Type: Total/NA

Page 121 of 145

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: 500-136651-1 DU

Matrix: Solid

Analysis Batch: 408545

Analysis Batch: 409155

Client Sample ID: 3160-55-1 (0-3) **Prep Type: Total/NA**

Prep Batch: 408293

	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Iron	25000		21300		mg/Kg	*		20
Manganese	600	F2	222	F3	mg/Kg	\$	92	20
Selenium	<2.7	F1	2.71	J	mg/Kg	₩	NC	20

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 408611

LCS LCS Spike %Rec. Added Result Qualifier Analyte Unit D %Rec Limits 80 - 120 Lead 0.100 0.0912 mg/L 91 Manganese 0.500 0.473 mg/L 95 80 - 120

Spike

LCS LCS

Lab Sample ID: LCS 500-408617/2-A

Lab Sample ID: LCS 500-408611/2-A

Matrix: Solid

Matrix: Solid

Analysis Batch: 408949

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 408617

%Rec.

Analyte	Added	Result Qualifier	Unit	D %Rec	Limits	
Arsenic	0.100	0.0969	mg/L	97	80 - 120	
Barium	0.500	0.524	mg/L	105	80 - 120	
Beryllium	0.0500	0.0476	mg/L	95	80 - 120	
Cadmium	0.0500	0.0498	mg/L	100	80 - 120	
Chromium	0.200	0.202	mg/L	101	80 - 120	
Cobalt	0.500	0.492	mg/L	98	80 - 120	
Copper	0.250	0.279	mg/L	112	80 - 120	
Iron	1.00	1.17	mg/L	117	80 - 120	
Lead	0.100	0.0887	mg/L	89	80 - 120	
Manganese	0.500	0.487	mg/L	97	80 - 120	
Nickel	0.500	0.494	mg/L	99	80 - 120	
Selenium	0.100	0.0913	mg/L	91	80 - 120	
Silver	0.0500	0.0475	mg/L	95	80 - 120	
Vanadium	0.500	0.496	mg/L	99	80 - 120	
Zinc	0.500	0.469 J	mg/L	94	80 - 120	

Lab Sample ID: LB 500-408395/1-B

Matrix: Solid

Analysis Batch: 408949

Client Sample ID: Method Blank **Prep Type: TCLP Prep Batch: 408617**

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/06/17 11:00	11/07/17 11:31	1
Barium	< 0.50		0.50	0.050	mg/L		11/06/17 11:00	11/07/17 11:31	1
Beryllium	<0.0040	(0.0040	0.0040	mg/L		11/06/17 11:00	11/07/17 11:31	1
Cadmium	<0.0050	(0.0050	0.0020	mg/L		11/06/17 11:00	11/07/17 11:31	1
Chromium	< 0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 11:31	1
Cobalt	< 0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 11:31	1
Copper	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 11:31	1
Iron	<0.40		0.40	0.20	mg/L		11/06/17 11:00	11/07/17 11:31	1
Lead	<0.0075	(0.0075	0.0075	mg/L		11/06/17 11:00	11/07/17 11:31	1
Manganese	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 11:31	1
Nickel	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 11:31	1

LB LB

TestAmerica Chicago

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: LB 500-408395/1-B

Matrix: Solid

Analysis Batch: 408949

Client Sample ID: Method Blank **Prep Type: TCLP**

Prep Batch: 408617

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Selenium	<0.050		0.050	0.020	mg/L		11/06/17 11:00	11/07/17 11:31	1
Silver	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 11:31	1
Vanadium	<0.025		0.025	0.010	mg/L		11/06/17 11:00	11/07/17 11:31	1
Zinc	<0.50		0.50	0.020	mg/L		11/06/17 11:00	11/07/17 11:31	1
<u></u>									

LB LB

Lab Sample ID: 500-136651-17 MS

Matrix: Solid

Client Sample ID: 3160-62-1 (0-1.5')

Prep Type: TCLP

Analysis Batch: 408949	Sample	Sample	Spike	MS	MS				Prep Batch: 40861 %Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Arsenic	<0.050		0.100	0.117		mg/L		117	50 - 150
Barium	0.72		0.500	1.20		mg/L		96	50 - 150
Beryllium	<0.0040		0.0500	0.0505		mg/L		101	50 ₋ 150
Cadmium	0.0026	J	0.0500	0.0613		mg/L		117	50 - 150
Chromium	<0.025		0.200	0.191		mg/L		95	50 ₋ 150
Cobalt	<0.025		0.500	0.523		mg/L		105	50 - 150
Copper	0.018	J	0.250	0.329		mg/L		124	50 - 150
Iron	0.20	J	1.00	1.17		mg/L		97	50 - 150
Lead	< 0.0075		0.100	0.0991		mg/L		99	50 ₋ 150
Manganese	0.031		0.500	0.501		mg/L		94	50 - 150
Nickel	0.010	J	0.500	0.519		mg/L		102	50 ₋ 150
Selenium	< 0.050		0.100	0.112		mg/L		112	50 - 150
Silver	<0.025		0.0500	0.0593		mg/L		119	50 - 150
Vanadium	< 0.025		0.500	0.487		mg/L		97	50 - 150
Zinc	0.057	J	0.500	0.548		mg/L		98	50 - 150

Lab Sample ID: 500-136651-17 DU

Matrix: Solid

Analysis Ratch: 408949

Client Sample ID: 3160-62-1 (0-1.5')

Prep Type: TCLP Pren Batch: 408617

Analysis batch: 400949							Prep Batch: 40	1001
	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Arsenic	<0.050		<0.050		mg/L		NC	20
Barium	0.72		0.709		mg/L		1	20
Beryllium	<0.0040		<0.0040		mg/L		NC	20
Cadmium	0.0026	J	0.00232	J	mg/L		9	20
Chromium	<0.025		<0.025		mg/L		NC	20
Cobalt	<0.025		<0.025		mg/L		NC	20
Copper	0.018	J	0.0179	J	mg/L		0.4	20
Iron	0.20	J	<0.40		mg/L		NC	20
Lead	<0.0075		<0.0075		mg/L		NC	20
Manganese	0.031		0.0300		mg/L		2	20
Nickel	0.010	J	<0.025		mg/L		NC	20
Selenium	<0.050		<0.050		mg/L		NC	20
Silver	<0.025		<0.025		mg/L		NC	20
Vanadium	<0.025		<0.025		mg/L		NC	20
Zinc	0.057	J	0.0532	J	mg/L		6	20

10

11/14/2017

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank

Client Sample ID: 3160-62-1 (0-1.5')

Client Sample ID: 3160-62-1 (0-1.5')

Client Sample ID: Method Blank

Prep Type: TCLP

Prep Type: TCLP

Prep Batch: 408617

Client: AMEC Foster Wheeler E & I, Inc

Project/Site: IDOT - Benton - WO 028

Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: LB 500-408390/1-B

Matrix: Solid

Analysis Batch: 409155

Client Sample ID: Method Blank Prep Type: SPLP East

Prep Batch: 408611

LB LB

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Lead	<0.0075	0.0075	0.0075 mg/L		11/06/17 11:29	11/08/17 21:49	1
Manganese	<0.025	0.025	0.010 mg/L		11/06/17 11:29	11/08/17 21:49	1

Method: 6020A - Metals (ICP/MS)

Lab Sample ID: LCS 500-408617/2-A

Matrix: Solid

Analyte **Antimony** Thallium

Analysis Bato

I						•	Prep Type: Total/NA
tch: 408965							Prep Batch: 408617
	Spike	LCS	LCS				%Rec.
	Added	Result	Qualifier	Unit	D	%Rec	Limits
	0.500	0.470		mg/L		94	80 - 120
	0.100	0.101		mg/L		101	80 - 120

Lab Sample ID: LB 500-408395/1-B

Matrix: Solid

Analysis Batch: 408965

LB LB

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060	0.0060	0.0060	mg/L		11/06/17 11:00	11/07/17 15:32	1
Thallium	<0.0020	0.0020	0.0020	mg/L		11/06/17 11:00	11/07/17 15:32	1

Lab Sample ID: 500-136651-17 MS

Matrix: Solid

	Analysis Batch: 408965	Sample	Sample	Spike	MS	MS				Prep Ba %Rec.	itch: 408617
	Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
l	Antimony	<0.0060		0.500	0.468		mg/L		94	50 - 150	
	Thallium	<0.0020		0.100	0.106		mg/L		106	50 - 150	

Lab Sample ID: 500-136651-17 DU

Matrix: Solid							Prep Type:	TCLP
Analysis Batch: 408965							Prep Batch: 4	08617
-	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Antimony	<0.0060		 <0.0060	-	mg/L		 NC	20
Thallium	< 0.0020		< 0.0020		mg/L		NC	20

Method: 7470A - TCLP Mercury

Lab Sample ID: MB 500-408635/12-A

Matrix: Solid

Analysis Batch: 408771

MR MR

	IVID	IAID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/06/17 14:30	11/07/17 09:11	1

TestAmerica Chicago

Prep Type: Total/NA

Prep Batch: 408635

Prep Batch: 408635

Prep Type: TCLP

Prep Batch: 408635

Client: AMEC Foster Wheeler E & I, Inc

Project/Site: IDOT - Benton - WO 028

Method: 7470A - TCLP Mercury (Continued)

Lab Sample ID: LCS 500-408635/13-A **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Solid Analysis Batch: 408771

Prep Batch: 408635 Spike LCS LCS %Rec.

Analyte Added Result Qualifier Unit D %Rec Limits 0.00200 80 - 120 0.00229 mg/L 114 Mercury

Lab Sample ID: LB 500-408395/1-C **Client Sample ID: Method Blank Prep Type: TCLP**

Matrix: Solid

Analysis Batch: 408771

LB LB

Analyte Result Qualifier RL **MDL** Unit Analyzed Dil Fac Prepared Mercury < 0.00020 0.00020 0.00020 mg/L 11/06/17 14:30 11/07/17 09:14

Lab Sample ID: 500-136651-1 MS Client Sample ID: 3160-55-1 (0-3)

Matrix: Solid

Analysis Batch: 408771

Sample Sample Spike MS MS %Rec. Result Qualifier Result Qualifier Added Limits Analyte Unit D %Rec Mercury < 0.00020 0.00100 0.00109 mg/L 109 50 - 150

Lab Sample ID: 500-136651-1 DU Client Sample ID: 3160-55-1 (0-3)

Matrix: Solid

Prep Type: TCLP Analysis Batch: 408771 Prep Batch: 408635 DU DU RPD Sample Sample Analyte Result Qualifier Result Qualifier Unit **RPD** Limit Mercury < 0.00020 < 0.00020 NC 20 mg/L

Method: 7471B - Mercury (CVAA)

Lab Sample ID: MB 500-408396/12-A Client Sample ID: Method Blank

Matrix: Solid

Analysis Batch: 408625

Analyte Result Qualifier RL **MDL** Unit Prepared Dil Fac Analyzed 0.017 11/03/17 15:15 11/06/17 11:12 Mercury <0.017 0.0056 mg/Kg

MR MR

Lab Sample ID: LCS 500-408396/13-A

Matrix: Solid

Analysis Batch: 408625

Spike LCS LCS %Rec. Added Result Qualifier Analyte Unit D %Rec Limits

0.167 94 Mercury 0.157 mg/Kg 80 - 120

Lab Sample ID: 500-136651-9 MS

Matrix: Solid

Analysis Batch: 408625 Prep Batch: 408396 Sample Sample Spike MS MS %Rec. Added Analyte Result Qualifier Result Qualifier Unit D %Rec Limits Mercury 0.021 0.100 0.106 mg/Kg ₩ 85 75 - 125

TestAmerica Chicago

10

Prep Type: Total/NA

Prep Batch: 408396

Client Sample ID: Lab Control Sample

Prep Type: Total/NA **Prep Batch: 408396**

Client Sample ID: 3160-62-9 (0-1.5')

Prep Type: Total/NA

QC Sample Results

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028 TestAmerica Job ID: 500-136651-1

3

Method: 7471B - Mercury (CVAA) (Continued)

Lab Sample ID: 500-13665 ^a Matrix: Solid	1-9 MSD					(Client Sample ID: 3160-62-9 (0-1.5 Prep Type: Total/N					
Analysis Batch: 408625	Sample	Sample	Spike	MSD	MSD				Prep Ba			
Analyte	•	Qualifier	Added	_	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Mercury	0.021		0.104	0.111		mg/Kg		87	75 - 125	4	20	

l	_				0 0			
	Lab Sample ID: 500-136651-9 DU					Client Sam	ple ID: 3160-62-9 (0)-1.5')
	Matrix: Solid						Prep Type: Tot	al/NA
	Analysis Batch: 408625						Prep Batch: 40	08396
	Sam	ple Sample	DU	DU				RPD
	Analyte Re	ult Qualifier	Result	Qualifier	Unit	D	RPD	Limit
	Mercury 0.	021	0.0287	F5	mg/Kg	₩		20
	-							

Method: 9045D	- pH							
Lab Sample ID: 50 Matrix: Solid Analysis Batch: 4						Client Samp	ole ID: 3160-55-1 Prep Type: Tot	• •
, , .		Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
На	5.2		5.21		SU		0.2	

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-55-1 (0-3) Lab Sample ID: 500-136651-1 Date Collected: 11/01/17 08:05

Matrix: Solid

Date Received: 11/02/17 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			408395	11/03/17 13:52	JLC	TAL CHI
TCLP	Prep	3010A			408617	11/06/17 11:00	PFK	TAL CHI
TCLP	Analysis	6010B		1	408949	11/07/17 13:32	PJ1	TAL CHI
TCLP	Leach	1311			408395	11/03/17 13:52	JLC	TAL CHI
TCLP	Prep	3010A			408617	11/06/17 11:00	PFK	TAL CHI
TCLP	Analysis	6020A		1	408965	11/07/17 15:41	FXG	TAL CHI
TCLP	Leach	1311			408395	11/03/17 13:52	JLC	TAL CHI
TCLP	Prep	7470A			408635	11/06/17 14:30	EEN	TAL CHI
TCLP	Analysis	7470A		1	408771	11/07/17 09:16	EEN	TAL CHI
Total/NA	Analysis	9045D		1	` ,	1/08/17 17:14 1/08/17 15:05	SMO	TAL CHI
Total/NA	Analysis	Moisture		1	408249	11/02/17 15:52	LWN	TAL CHI

Client Sample ID: 3160-55-1 (0-3)

Date Collected: 11/01/17 08:05 Date Received: 11/02/17 09:00

Lab Sample ID: 500-136651-1 **Matrix: Solid**

Percent Solids: 80.1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			408513	11/02/17 18:18	WRE	TAL CH
Total/NA	Analysis	8260B		1	408943	11/08/17 12:51	DJD	TAL CH
Total/NA	Prep	3541			409105	11/08/17 17:13	JP1	TAL CH
Total/NA	Analysis	8270D		1	409487	11/11/17 05:00	WDS	TAL CH
Total/NA	Prep	3541			408939	11/08/17 07:22	STW	TAL CH
Total/NA	Analysis	8081B		1	409066	11/08/17 22:14	PJG	TAL CH
Total/NA	Prep	8151A			409129	11/08/17 22:08	NRJ	TAL CH
Total/NA	Analysis	8151A		10	409021	11/10/17 04:42	JBJ	TAL CH
Total/NA	Prep	3050B			408293	11/03/17 07:41	JEF	TAL CH
Total/NA	Analysis	6010B		1	408472	11/03/17 16:22	KML	TAL CH
Total/NA	Prep	3050B			408293	11/03/17 07:41	JEF	TAL CH
Total/NA	Analysis	6010B		5	408545	11/05/17 22:40	PJ1	TAL CH
Total/NA	Prep	7471B			408396	11/03/17 15:15	EEN	TAL CH
Total/NA	Analysis	7471B		1	408625	11/06/17 11:21	EEN	TAL CH

Client Sample ID: 3160-55-2 (0-3)

Date Collected: 11/01/17 08:15

Date Received: 11/02/17 09:00

Lab Sample ID: 500-136651-2

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			408395	11/03/17 13:52	JLC	TAL CHI
TCLP	Prep	3010A			408617	11/06/17 11:00	PFK	TAL CHI
TCLP	Analysis	6010B		1	408949	11/07/17 11:43	PJ1	TAL CHI
TCLP	Leach	1311			408395	11/03/17 13:52	JLC	TAL CHI
TCLP	Prep	3010A			408617	11/06/17 11:00	PFK	TAL CHI

TestAmerica Chicago

Page 127 of 145

Lab Sample ID: 500-136651-2

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-55-2 (0-3)

Date Collected: 11/01/17 08:15 **Matrix: Solid**

Date Received: 11/02/17 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Analysis	6020A			408965	11/07/17 15:46	FXG	TAL CHI
TCLP	Leach	1311			408395	11/03/17 13:52	JLC	TAL CHI
TCLP	Prep	7470A			408635	11/06/17 14:30	EEN	TAL CHI
TCLP	Analysis	7470A		1	408771	11/07/17 09:21	EEN	TAL CHI
Total/NA	Analysis	9045D		1	,	1/08/17 17:14 1/08/17 15:05	SMO	TAL CHI
Total/NA	Analysis	Moisture		1	408249	11/02/17 15:52	LWN	TAL CHI

Client Sample ID: 3160-55-2 (0-3) Lab Sample ID: 500-136651-2

Date Collected: 11/01/17 08:15 Matrix: Solid

Date Received: 11/02/17 09:00 Percent Solids: 81.9

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			408513	11/02/17 18:18	WRE	TAL CHI
Total/NA	Analysis	8260B		1	408943	11/08/17 13:41	DJD	TAL CHI
Total/NA	Prep	3541			409105	11/08/17 17:13	JP1	TAL CHI
Total/NA	Analysis	8270D		1	409157	11/09/17 12:58	AJD	TAL CHI
Total/NA	Prep	3541			408939	11/08/17 07:22	STW	TAL CHI
Total/NA	Analysis	8081B		1	409066	11/08/17 22:35	PJG	TAL CHI
Total/NA	Prep	8151A			409129	11/08/17 22:08	NRJ	TAL CHI
Total/NA	Analysis	8151A		10	409021	11/10/17 05:06	JBJ	TAL CHI
Total/NA	Prep	3050B			408293	11/03/17 07:41	JEF	TAL CHI
Total/NA	Analysis	6010B		1	408472	11/03/17 16:42	KML	TAL CHI
Total/NA	Prep	3050B			408293	11/03/17 07:41	JEF	TAL CHI
Total/NA	Analysis	6010B		1	408545	11/05/17 23:00	PJ1	TAL CHI
Total/NA	Prep	7471B			408396	11/03/17 15:15	EEN	TAL CHI
Total/NA	Analysis	7471B		1	408625	11/06/17 11:23	EEN	TAL CHI

Lab Sample ID: 500-136651-3 Client Sample ID: 3160-56-1 (0-1.5')

Date Collected: 11/01/17 08:25 **Matrix: Solid** Date Received: 11/02/17 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
SPLP East	Leach	1312			408390	11/03/17 13:52	JLC	TAL CHI
SPLP East	Prep	3010A			408611	11/06/17 11:29	PFK	TAL CHI
SPLP East	Analysis	6010B		1	409155	11/08/17 21:57	PJ1	TAL CHI
TCLP	Leach	1311			408395	11/03/17 13:52	JLC	TAL CHI
TCLP	Prep	3010A			408617	11/06/17 11:00	PFK	TAL CHI
TCLP	Analysis	6010B		1	408949	11/07/17 11:47	PJ1	TAL CHI
TCLP	Leach	1311			408395	11/03/17 13:52	JLC	TAL CHI
TCLP	Prep	3010A			408617	11/06/17 11:00	PFK	TAL CHI
TCLP	Analysis	6020A		1	408965	11/07/17 15:50	FXG	TAL CHI
TCLP	Leach	1311			408395	11/03/17 13:52	JLC	TAL CHI

Page 128 of 145

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Received: 11/02/17 09:00

Client Sample ID: 3160-56-1 (0-1.5')

Lab Sample ID: 500-136651-3 Date Collected: 11/01/17 08:25 **Matrix: Solid**

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Prep	7470A	_		408635	11/06/17 14:30	EEN	TAL CHI
TCLP	Analysis	7470A		1	408771	11/07/17 09:22	EEN	TAL CHI
Total/NA	Analysis	9045D		1	` ,	1/08/17 17:14 1/08/17 15:05	SMO	TAL CHI
Total/NA	Analysis	Moisture		1	408249	11/02/17 15:52	LWN	TAL CHI

Client Sample ID: 3160-56-1 (0-1.5') Lab Sample ID: 500-136651-3

Date Collected: 11/01/17 08:25 Matrix: Solid Date Received: 11/02/17 09:00 Percent Solids: 87.4

Dilution Batch Batch Batch **Prepared Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab Total/NA Prep 5035 408513 11/02/17 18:18 WRE TAL CHI Total/NA 8260B 408943 11/08/17 14:07 DJD Analysis TAL CHI 1 Total/NA Prep 3541 409105 11/08/17 17:13 JP1 TAL CHI Total/NA 8270D TAL CHI Analysis 409487 11/11/17 05:28 WDS 1 Total/NA Prep 3541 408939 11/08/17 07:22 STW TAL CHI Total/NA 8081B 409066 TAL CHI Analysis 10 11/08/17 22:55 PJG Total/NA TAL CHI Prep 8151A 409129 11/08/17 22:08 NRJ Total/NA TAL CHI Analysis 8151A 10 409021 11/10/17 05:31 JBJ Total/NA Prep 3050B 408293 11/03/17 07:41 JEF TAL CHI 6010B 408472 11/03/17 16:46 KML TAL CHI Total/NA Analysis 1 Total/NA Prep 3050B 408293 11/03/17 07:41 JEF TAL CHI Total/NA Analysis 6010B 408545 11/05/17 23:04 PJ1 TAL CHI Total/NA Prep 7471B 408396 11/03/17 15:15 EEN TAL CHI Total/NA 7471B 408625 11/06/17 11:26 EEN TAL CHI Analysis 1

Client Sample ID: 3160-56-2 (0-1.5') Lab Sample ID: 500-136651-4

Date Collected: 11/01/17 08:35 **Matrix: Solid** Date Received: 11/02/17 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			408395	11/03/17 13:52	JLC	TAL CHI
TCLP	Prep	3010A			408617	11/06/17 11:00	PFK	TAL CHI
TCLP	Analysis	6010B		1	408949	11/07/17 11:51	PJ1	TAL CHI
TCLP	Leach	1311			408395	11/03/17 13:52	JLC	TAL CHI
TCLP	Prep	3010A			408617	11/06/17 11:00	PFK	TAL CH
TCLP	Analysis	6020A		1	408965	11/07/17 15:55	FXG	TAL CH
TCLP	Leach	1311			408395	11/03/17 13:52	JLC	TAL CHI
TCLP	Prep	7470A			408635	11/06/17 14:30	EEN	TAL CHI
TCLP	Analysis	7470A		1	408771	11/07/17 09:27	EEN	TAL CHI
Total/NA	Analysis	9045D		1	409062		SMO	TAL CH
					(Start) 1	1/08/17 17:14		
					(End) 1	1/08/17 15:05		

Lab Chronicle

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028 TestAmerica Job ID: 500-136651-1

1-4

Client Sample ID: 3160-56-2 (0-1.5')

Client Sample ID: 3160-56-2 (0-1.5')

Date Collected: 11/01/17 08:35 Date Received: 11/02/17 09:00

Date Collected: 11/01/17 08:35

Date Received: 11/02/17 09:00

Lab Sample ID: 500-136651-4

Matrix: Solid

Prepared Batch Batch Dilution Batch Method or Analyzed Analyst **Prep Type** Type Run **Factor** Number Lab TAL CHI Total/NA Analysis Moisture 408249 11/02/17 15:52 LWN

Lab Sample ID: 500-136651-4

Matrix: Solid

Percent Solids: 82.4

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			408513	11/02/17 18:18	WRE	TAL CH
Total/NA	Analysis	8260B		1	408943	11/08/17 14:32	DJD	TAL CH
Total/NA	Prep	3541			409105	11/08/17 17:13	JP1	TAL CH
Total/NA	Analysis	8270D		1	409157	11/09/17 18:12	AJD	TAL CH
Total/NA	Prep	3541			408939	11/08/17 07:22	STW	TAL CH
Total/NA	Analysis	8081B		10	409066	11/08/17 23:15	PJG	TAL CH
Total/NA	Prep	8151A			409129	11/08/17 22:08	NRJ	TAL CH
Total/NA	Analysis	8151A		10	409021	11/10/17 05:55	JBJ	TAL CH
Total/NA	Prep	3050B			408293	11/03/17 07:41	JEF	TAL CH
Total/NA	Analysis	6010B		1	408472	11/03/17 16:50	KML	TAL CH
Total/NA	Prep	3050B			408293	11/03/17 07:41	JEF	TAL CH
Total/NA	Analysis	6010B		1	408545	11/05/17 23:08	PJ1	TAL CH
Total/NA	Prep	7471B			408396	11/03/17 15:15	EEN	TAL CH
Total/NA	Analysis	7471B		1	408625	11/06/17 11:28	EEN	TAL CH

Client Sample ID: 3160-64-1 (0-1.5')

Lab Sample ID: 500-136651-5

Date Collected: 11/01/17 08:50 Matrix: Solid

Date Received: 11/02/17 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
SPLP East	Leach	1312			408390	11/03/17 13:52	JLC	TAL CHI
SPLP East	Prep	3010A			408611	11/06/17 11:29	PFK	TAL CHI
SPLP East	Analysis	6010B		1	409155	11/08/17 22:01	PJ1	TAL CHI
TCLP	Leach	1311			408395	11/03/17 13:52	JLC	TAL CHI
TCLP	Prep	3010A			408617	11/06/17 11:00	PFK	TAL CHI
TCLP	Analysis	6010B		1	408949	11/07/17 11:55	PJ1	TAL CHI
TCLP	Leach	1311			408395	11/03/17 13:52	JLC	TAL CHI
TCLP	Prep	3010A			408617	11/06/17 11:00	PFK	TAL CHI
TCLP	Analysis	6020A		1	408965	11/07/17 16:00	FXG	TAL CHI
TCLP	Leach	1311			408395	11/03/17 13:52	JLC	TAL CHI
TCLP	Prep	7470A			408635	11/06/17 14:30	EEN	TAL CHI
TCLP	Analysis	7470A		1	408771	11/07/17 09:28	EEN	TAL CHI
Total/NA	Analysis	9045D		1	409062		SMO	TAL CHI
					(Start) 1	1/08/17 17:14		
					(End) 1	1/08/17 15:05		
Total/NA	Analysis	Moisture		1	408249	11/02/17 15:52	LWN	TAL CHI

TestAmerica Chicago

4

7

9

11

12

1/

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-64-1 (0-1.5')

Date Collected: 11/01/17 08:50 Date Received: 11/02/17 09:00

Lab Sample ID: 500-136651-5

Matrix: Solid Percent Solids: 79.0

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			408513	11/02/17 18:18	WRE	TAL CHI
Total/NA	Analysis	8260B		1	408943	11/08/17 14:57	DJD	TAL CHI
Total/NA	Prep	3541			409105	11/08/17 17:13	JP1	TAL CHI
Total/NA	Analysis	8270D		1	409487	11/11/17 05:55	WDS	TAL CHI
Total/NA	Prep	3541			408939	11/08/17 07:22	STW	TAL CHI
Total/NA	Analysis	8082A		1	409181	11/09/17 12:57	BJH	TAL CHI
Total/NA	Prep	3050B			408293	11/03/17 07:41	JEF	TAL CHI
Total/NA	Analysis	6010B		1	408472	11/03/17 17:03	KML	TAL CHI
Total/NA	Prep	3050B			408293	11/03/17 07:41	JEF	TAL CHI
Total/NA	Analysis	6010B		1	408545	11/05/17 23:24	PJ1	TAL CHI
Total/NA	Prep	7471B			408396	11/03/17 15:15	EEN	TAL CHI
Total/NA	Analysis	7471B		1	408625	11/06/17 11:30	EEN	TAL CHI

Lab Sample ID: 500-136651-6 Client Sample ID: 3160-64-2 (0-1.5')

Date Collected: 11/01/17 09:00 Date Received: 11/02/17 09:00

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			408395	11/03/17 13:52	JLC	TAL CHI
TCLP	Prep	3010A			408617	11/06/17 11:00	PFK	TAL CHI
TCLP	Analysis	6010B		1	408949	11/07/17 12:08	PJ1	TAL CHI
TCLP	Leach	1311			408395	11/03/17 13:52	JLC	TAL CHI
TCLP	Prep	3010A			408617	11/06/17 11:00	PFK	TAL CHI
TCLP	Analysis	6020A		1	408965	11/07/17 16:04	FXG	TAL CHI
TCLP	Leach	1311			408395	11/03/17 13:52	JLC	TAL CHI
TCLP	Prep	7470A			408635	11/06/17 14:30	EEN	TAL CHI
TCLP	Analysis	7470A		1	408771	11/07/17 09:29	EEN	TAL CHI
Total/NA	Analysis	9045D		1	409062		SMO	TAL CHI
	•				(Start) 1	1/08/17 17:14		
					(End) 1	1/08/17 15:05		
Total/NA	Analysis	Moisture		1	408249	11/02/17 15:52	LWN	TAL CHI

Client Sample ID: 3160-64-2 (0-1.5') Lab Sample ID: 500-136651-6

Date Collected: 11/01/17 09:00 **Matrix: Solid** Date Received: 11/02/17 09:00 Percent Solids: 80.5

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			408513	11/02/17 18:18	WRE	TAL CHI
Total/NA	Analysis	8260B		1	408943	11/08/17 15:22	DJD	TAL CHI
Total/NA	Prep	3541			409105	11/08/17 17:13	JP1	TAL CHI
Total/NA	Analysis	8270D		1	409157	11/09/17 16:28	AJD	TAL CHI
Total/NA	Prep	3541			408939	11/08/17 07:22	STW	TAL CHI
Total/NA	Analysis	8082A		1	409181	11/09/17 13:13	BJH	TAL CHI
Total/NA	Prep	3050B			408293	11/03/17 07:41	JEF	TAL CHI

TestAmerica Chicago

Page 131 of 145

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-64-2 (0-1.5')

Date Collected: 11/01/17 09:00 Date Received: 11/02/17 09:00

Lab Sample ID: 500-136651-6

Matrix: Solid Percent Solids: 80.5

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	6010B			408472	11/03/17 17:07	KML	TAL CHI
Total/NA	Prep	3050B			408293	11/03/17 07:41	JEF	TAL CHI
Total/NA	Analysis	6010B		1	408545	11/05/17 23:28	PJ1	TAL CHI
Total/NA	Prep	7471B			408396	11/03/17 15:15	EEN	TAL CHI
Total/NA	Analysis	7471B		1	408625	11/06/17 11:33	EEN	TAL CHI

Client Sample ID: 3160-64-3 (0-1.5') Lab Sample ID: 500-136651-7

Date Collected: 11/01/17 09:10

Date Received: 11/02/17 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
SPLP East	Leach	1312			408390	11/03/17 13:52	JLC	TAL CHI
SPLP East	Prep	3010A			408611	11/06/17 11:29	PFK	TAL CH
SPLP East	Analysis	6010B		1	409155	11/08/17 22:13	PJ1	TAL CH
TCLP	Leach	1311			408395	11/03/17 13:52	JLC	TAL CH
TCLP	Prep	3010A			408617	11/06/17 11:00	PFK	TAL CH
TCLP	Analysis	6010B		1	408949	11/07/17 12:12	PJ1	TAL CH
TCLP	Leach	1311			408395	11/03/17 13:52	JLC	TAL CH
TCLP	Prep	3010A			408617	11/06/17 11:00	PFK	TAL CH
TCLP	Analysis	6020A		1	408965	11/07/17 16:09	FXG	TAL CH
TCLP	Leach	1311			408395	11/03/17 13:52	JLC	TAL CH
TCLP	Prep	7470A			408635	11/06/17 14:30	EEN	TAL CH
TCLP	Analysis	7470A		1	408771	11/07/17 09:31	EEN	TAL CH
Total/NA	Analysis	9045D		1	409062		SMO	TAL CH
					(Start) 1	11/08/17 17:14		
					(End) 1	11/08/17 15:05		
Total/NA	Analysis	Moisture		1	408249	11/02/17 15:52	LWN	TAL CHI

Client Sample ID: 3160-64-3 (0-1.5') Lab Sample ID: 500-136651-7

Date Collected: 11/01/17 09:10 **Matrix: Solid** Date Received: 11/02/17 09:00 Percent Solids: 83.6

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			408513	11/02/17 18:18	WRE	TAL CHI
Total/NA	Analysis	8260B		1	408943	11/08/17 15:47	DJD	TAL CHI
Total/NA	Prep	3541			409105	11/08/17 17:13	JP1	TAL CHI
Total/NA	Analysis	8270D		1	409157	11/09/17 16:54	AJD	TAL CHI
Total/NA	Prep	3541			408939	11/08/17 07:22	STW	TAL CHI
Total/NA	Analysis	8082A		1	409181	11/09/17 13:28	BJH	TAL CHI
Total/NA	Prep	3050B			408293	11/03/17 07:41	JEF	TAL CHI
Total/NA	Analysis	6010B		1	408472	11/03/17 17:11	KML	TAL CHI
Total/NA	Prep	3050B			408293	11/03/17 07:41	JEF	TAL CHI
Total/NA	Analysis	6010B		1	408545	11/05/17 23:32	PJ1	TAL CHI
Total/NA	Prep	7471B			408396	11/03/17 15:15	EEN	TAL CHI

Page 132 of 145

Lab Sample ID: 500-136651-7

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-64-3 (0-1.5')

Date Collected: 11/01/17 09:10

Date Received: 11/02/17 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	7471B		1	408625	11/06/17 11:35	EEN	TAL CHI

Client Sample ID: 3160-62-10 (0-1.5') Lab Sample ID: 500-136651-8

Date Collected: 11/01/17 09:20

Date Received: 11/02/17 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			408395	11/03/17 13:52	JLC	TAL CHI
TCLP	Prep	3010A			408617	11/06/17 11:00	PFK	TAL CHI
TCLP	Analysis	6010B		1	408949	11/07/17 12:16	PJ1	TAL CHI
TCLP	Leach	1311			408395	11/03/17 13:52	JLC	TAL CHI
TCLP	Prep	3010A			408617	11/06/17 11:00	PFK	TAL CHI
TCLP	Analysis	6020A		1	408965	11/07/17 16:14	FXG	TAL CHI
TCLP	Leach	1311			408395	11/03/17 13:52	JLC	TAL CHI
TCLP	Prep	7470A			408635	11/06/17 14:30	EEN	TAL CHI
TCLP	Analysis	7470A		1	408771	11/07/17 09:32	EEN	TAL CHI
Total/NA	Analysis	9045D		1	409062		SMO	TAL CHI
					(Start) 1	1/08/17 17:14		
					(End) 1	1/08/17 15:05		
Total/NA	Analysis	Moisture		1	408249	11/02/17 15:52	LWN	TAL CHI

Client Sample ID: 3160-62-10 (0-1.5') Lab Sample ID: 500-136651-8

Date Collected: 11/01/17 09:20 Date Received: 11/02/17 09:00

Matrix: Solid Percent Solids: 79.6

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	5035	<u></u>		408513	11/02/17 18:18		TAL CHI
Total/NA	Analysis	8260B		1	408943	11/08/17 16:12	DJD	TAL CHI
Total/NA	Prep	3541			409105	11/08/17 17:13	JP1	TAL CHI
Total/NA	Analysis	8270D		1	409157	11/09/17 17:20	AJD	TAL CHI
Total/NA	Prep	3050B			408293	11/03/17 07:41	JEF	TAL CHI
Total/NA	Analysis	6010B		1	408472	11/03/17 17:15	KML	TAL CHI
Total/NA	Prep	3050B			408293	11/03/17 07:41	JEF	TAL CHI
Total/NA	Analysis	6010B		1	408545	11/05/17 23:36	PJ1	TAL CHI
Total/NA	Prep	7471B			408396	11/03/17 15:15	EEN	TAL CHI
Total/NA	Analysis	7471B		1	408625	11/06/17 11:37	EEN	TAL CHI

Client Sample ID: 3160-62-9 (0-1.5')

Date Collected: 11/01/17 09:30

Date Received: 11/02/17 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			408395	11/03/17 13:52	JLC	TAL CHI

TestAmerica Chicago

Lab Sample ID: 500-136651-9

Page 133 of 145

Matrix: Solid

Matrix: Solid

Percent Solids: 83.6

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-62-9 (0-1.5')

Date Collected: 11/01/17 09:30 Date Received: 11/02/17 09:00

Lab Sample ID: 500-136651-9

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Prep	3010A			408617	11/06/17 11:00	PFK	TAL CHI
TCLP	Analysis	6010B		1	408949	11/07/17 12:21	PJ1	TAL CHI
TCLP	Leach	1311			408395	11/03/17 13:52	JLC	TAL CHI
TCLP	Prep	3010A			408617	11/06/17 11:00	PFK	TAL CHI
TCLP	Analysis	6020A		1	408965	11/07/17 16:28	FXG	TAL CHI
TCLP	Leach	1311			408395	11/03/17 13:52	JLC	TAL CHI
TCLP	Prep	7470A			408635	11/06/17 14:30	EEN	TAL CHI
TCLP	Analysis	7470A		1	408771	11/07/17 09:34	EEN	TAL CHI
Total/NA	Analysis	9045D		1	409062		SMO	TAL CHI
					(Start) 1	11/08/17 17:14		
					(End) 1	11/08/17 15:05		
Total/NA	Analysis	Moisture		1	408249	11/02/17 15:52	LWN	TAL CHI

Client Sample ID: 3160-62-9 (0-1.5') Lab Sample ID: 500-136651-9

Date Collected: 11/01/17 09:30 **Matrix: Solid** Date Received: 11/02/17 09:00 Percent Solids: 77.6

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			408513	11/02/17 18:18	WRE	TAL CH
Total/NA	Analysis	8260B		1	408943	11/08/17 16:37	DJD	TAL CH
Total/NA	Prep	3541			409783	11/13/17 18:14	NRJ	TAL CH
Total/NA	Analysis	8270D		1	409829	11/14/17 11:57	WDS	TAL CH
Total/NA	Prep	3050B			408293	11/03/17 07:41	JEF	TAL CH
Total/NA	Analysis	6010B		1	408472	11/03/17 17:19	KML	TAL CH
Total/NA	Prep	3050B			408293	11/03/17 07:41	JEF	TAL CH
Total/NA	Analysis	6010B		1	408545	11/05/17 23:40	PJ1	TAL CH
Total/NA	Prep	7471B			408396	11/03/17 15:15	EEN	TAL CH
Total/NA	Analysis	7471B		1	408625	11/06/17 11:39	EEN	TAL CH

Client Sample ID: 3160-62-8 (0-1.5') Lab Sample ID: 500-136651-10 Date Collected: 11/01/17 09:40

Date Received: 11/02/17 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
SPLP East	Leach	1312			408390	11/03/17 13:52	JLC	TAL CHI
SPLP East	Prep	3010A			408611	11/06/17 11:29	PFK	TAL CHI
SPLP East	Analysis	6010B		1	409155	11/08/17 22:17	PJ1	TAL CHI
TCLP	Leach	1311			408395	11/03/17 13:52	JLC	TAL CHI
TCLP	Prep	3010A			408617	11/06/17 11:00	PFK	TAL CHI
TCLP	Analysis	6010B		1	408949	11/07/17 12:25	PJ1	TAL CHI
TCLP	Leach	1311			408395	11/03/17 13:52	JLC	TAL CHI
TCLP	Prep	3010A			408617	11/06/17 11:00	PFK	TAL CHI
TCLP	Analysis	6020A		1	408965	11/07/17 16:32	FXG	TAL CHI
TCLP	Leach	1311			408395	11/03/17 13:52	JLC	TAL CHI

TestAmerica Chicago

Page 134 of 145

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-62-8 (0-1.5')

Lab Sample ID: 500-136651-10 Date Collected: 11/01/17 09:40 **Matrix: Solid**

Date Received: 11/02/17 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Prep	7470A			408635	11/06/17 14:30	EEN	TAL CHI
TCLP	Analysis	7470A		1	408771	11/07/17 09:35	EEN	TAL CHI
Total/NA	Analysis	9045D		1	409062		SMO	TAL CHI
					(Start) 1	1/08/17 17:14		
					(End) 1	1/08/17 15:05		
Total/NA	Analysis	Moisture		1	408249	11/02/17 15:52	LWN	TAL CHI

Lab Sample ID: 500-136651-10 Client Sample ID: 3160-62-8 (0-1.5')

Date Collected: 11/01/17 09:40 **Matrix: Solid**

Date Received: 11/02/17 09:00 Percent Solids: 82.4

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			408513	11/02/17 18:18	WRE	TAL CHI
Total/NA	Analysis	8260B		1	408943	11/08/17 17:03	DJD	TAL CHI
Total/NA	Prep	3541			409105	11/08/17 17:13	JP1	TAL CHI
Total/NA	Analysis	8270D		1	409157	11/09/17 13:51	AJD	TAL CHI
Total/NA	Prep	3050B			408293	11/03/17 07:41	JEF	TAL CHI
Total/NA	Analysis	6010B		1	408472	11/03/17 17:23	KML	TAL CHI
Total/NA	Prep	3050B			408293	11/03/17 07:41	JEF	TAL CHI
Total/NA	Analysis	6010B		1	408545	11/05/17 23:44	PJ1	TAL CHI
Total/NA	Prep	7471B			408396	11/03/17 15:15	EEN	TAL CHI
Total/NA	Analysis	7471B		1	408625	11/06/17 11:53	EEN	TAL CHI

Client Sample ID: 3160-62-7 (0-1.5') Lab Sample ID: 500-136651-11

Date Collected: 11/01/17 09:50 **Matrix: Solid** Date Received: 11/02/17 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			408395	11/03/17 13:52	JLC	TAL CHI
TCLP	Prep	3010A			408617	11/06/17 11:00	PFK	TAL CHI
TCLP	Analysis	6010B		1	408949	11/07/17 12:29	PJ1	TAL CHI
TCLP	Leach	1311			408395	11/03/17 13:52	JLC	TAL CHI
TCLP	Prep	3010A			408617	11/06/17 11:00	PFK	TAL CHI
TCLP	Analysis	6020A		1	408965	11/07/17 16:37	FXG	TAL CHI
TCLP	Leach	1311			408395	11/03/17 13:52	JLC	TAL CHI
TCLP	Prep	7470A			408635	11/06/17 14:30	EEN	TAL CHI
TCLP	Analysis	7470A		1	408771	11/07/17 09:37	EEN	TAL CHI
Total/NA	Analysis	9045D		1	409062		SMO	TAL CHI
					(Start)	11/08/17 17:14		
					(End)	11/08/17 15:05		
Total/NA	Analysis	Moisture		1	408249	11/02/17 15:52	LWN	TAL CHI

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-62-7 (0-1.5')

Date Collected: 11/01/17 09:50 Date Received: 11/02/17 09:00

Lab Sample ID: 500-136651-11

Matrix: Solid Percent Solids: 84.3

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			408513	11/02/17 18:18	WRE	TAL CHI
Total/NA	Analysis	8260B		1	408943	11/08/17 17:28	DJD	TAL CHI
Total/NA	Prep	3541			409105	11/08/17 17:13	JP1	TAL CHI
Total/NA	Analysis	8270D		1	409157	11/09/17 15:35	AJD	TAL CHI
Total/NA	Prep	3050B			408293	11/03/17 07:41	JEF	TAL CHI
Total/NA	Analysis	6010B		1	408472	11/03/17 17:26	KML	TAL CHI
Total/NA	Prep	3050B			408293	11/03/17 07:41	JEF	TAL CHI
Total/NA	Analysis	6010B		1	408545	11/05/17 23:48	PJ1	TAL CHI
Total/NA	Prep	7471B			408396	11/03/17 15:15	EEN	TAL CHI
Total/NA	Analysis	7471B		1	408625	11/06/17 11:55	EEN	TAL CHI

Client Sample ID: 3160-62-6 (0-1.5') Lab Sample ID: 500-136651-12

Date Collected: 11/01/17 10:00

Date Received: 11/02/17 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			408395	11/03/17 13:52	JLC	TAL CH
TCLP	Prep	3010A			408617	11/06/17 11:00	PFK	TAL CH
TCLP	Analysis	6010B		1	408949	11/07/17 12:40	PJ1	TAL CH
TCLP	Leach	1311			408395	11/03/17 13:52	JLC	TAL CH
TCLP	Prep	3010A			408617	11/06/17 11:00	PFK	TAL CH
TCLP	Analysis	6020A		1	408965	11/07/17 16:41	FXG	TAL CH
TCLP	Leach	1311			408395	11/03/17 13:52	JLC	TAL CH
TCLP	Prep	7470A			408635	11/06/17 14:30	EEN	TAL CH
TCLP	Analysis	7470A		1	408771	11/07/17 09:38	EEN	TAL CH
Total/NA	Analysis	9045D		1	409062		SMO	TAL CH
					(Start) 1	1/08/17 17:14		
					(End) 1	1/08/17 15:05		
Total/NA	Analysis	Moisture		1	408249	11/02/17 15:52	LWN	TAL CH

Client Sample ID: 3160-62-6 (0-1.5') Lab Sample ID: 500-136651-12

Date Collected: 11/01/17 10:00 Date Received: 11/02/17 09:00

Matrix: Solid Percent Solids: 81.4

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			408513	11/02/17 18:18	WRE	TAL CHI
Total/NA	Analysis	8260B		1	408943	11/08/17 17:53	DJD	TAL CHI
Total/NA	Prep	3541			409105	11/08/17 17:13	JP1	TAL CHI
Total/NA	Analysis	8270D		1	409157	11/09/17 16:02	AJD	TAL CHI
Total/NA	Prep	3050B			408293	11/03/17 07:41	JEF	TAL CHI
Total/NA	Analysis	6010B		1	408472	11/03/17 17:30	KML	TAL CHI
Total/NA	Prep	3050B			408293	11/03/17 07:41	JEF	TAL CHI
Total/NA	Analysis	6010B		1	408545	11/05/17 23:51	PJ1	TAL CHI
Total/NA	Prep	7471B			408396	11/03/17 15:15	EEN	TAL CHI

Page 136 of 145

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-62-6 (0-1.5')

Date Collected: 11/01/17 10:00 Date Received: 11/02/17 09:00

Lab Sample ID: 500-136651-12

Matrix: Solid Percent Solids: 81.4

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	7471B		1	408625	11/06/17 11:57	EEN	TAL CHI

Lab Sample ID: 500-136651-13 Client Sample ID: 3160-62-5 (0-1.5')

Date Collected: 11/01/17 10:10 Date Received: 11/02/17 09:00

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			408395	11/03/17 13:52	JLC	TAL CHI
TCLP	Prep	3010A			408617	11/06/17 11:00	PFK	TAL CHI
TCLP	Analysis	6010B		1	408949	11/07/17 12:44	PJ1	TAL CHI
TCLP	Leach	1311			408395	11/03/17 13:52	JLC	TAL CHI
TCLP	Prep	3010A			408617	11/06/17 11:00	PFK	TAL CHI
TCLP	Analysis	6020A		1	408965	11/07/17 16:46	FXG	TAL CHI
TCLP	Leach	1311			408395	11/03/17 13:52	JLC	TAL CHI
TCLP	Prep	7470A			408635	11/06/17 14:30	EEN	TAL CHI
TCLP	Analysis	7470A		1	408771	11/07/17 09:40	EEN	TAL CHI
Total/NA	Analysis	9045D		1	409062		SMO	TAL CHI
					(Start) 1	11/08/17 17:14		
					(End) 1	11/08/17 15:05		
Total/NA	Analysis	Moisture		1	408249	11/02/17 15:52	LWN	TAL CHI

Client Sample ID: 3160-62-5 (0-1.5') Lab Sample ID: 500-136651-13

Date Collected: 11/01/17 10:10 Date Received: 11/02/17 09:00

Matrix: Solid Percent Solids: 78.2

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			408513	11/02/17 18:18	WRE	TAL CHI
Total/NA	Analysis	8260B		1	408943	11/08/17 18:18	DJD	TAL CHI
Total/NA	Prep	3541			409783	11/13/17 18:14	NRJ	TAL CHI
Total/NA	Analysis	8270D		1	409829	11/14/17 12:23	WDS	TAL CHI
Total/NA	Prep	3050B			408293	11/03/17 07:41	JEF	TAL CHI
Total/NA	Analysis	6010B		1	408472	11/03/17 17:34	KML	TAL CHI
Total/NA	Prep	3050B			408293	11/03/17 07:41	JEF	TAL CHI
Total/NA	Analysis	6010B		1	408545	11/05/17 23:55	PJ1	TAL CHI
Total/NA	Prep	7471B			408396	11/03/17 15:15	EEN	TAL CHI
Total/NA	Analysis	7471B		1	408625	11/06/17 12:00	EEN	TAL CHI

Client Sample ID: 3160-62-4 (0-1.5') Lab Sample ID: 500-136651-14

Date Collected: 11/01/17 10:20 Date Received: 11/02/17 09:00

Batch Batch Dilution Batch **Prepared** Prep Type Type Method Run **Factor** Number or Analyzed Analyst Lab TCLP 1311 Leach 408395 11/03/17 13:52 JLC TAL CHI

TestAmerica Chicago

Page 137 of 145

Lab Sample ID: 500-136651-14

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-62-4 (0-1.5')

Date Collected: 11/01/17 10:20 Matrix: Solid

Date Received: 11/02/17 09:00

Dran Tura	Batch	Batch	Dum	Dilution	Batch	Prepared	Amelyet	l ab
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Prep	3010A			408617	11/06/17 11:00	PFK	TAL CHI
TCLP	Analysis	6010B		1	408949	11/07/17 12:49	PJ1	TAL CHI
TCLP	Leach	1311			408395	11/03/17 13:52	JLC	TAL CHI
TCLP	Prep	3010A			408617	11/06/17 11:00	PFK	TAL CHI
TCLP	Analysis	6020A		1	408965	11/07/17 16:51	FXG	TAL CHI
TCLP	Leach	1311			408395	11/03/17 13:52	JLC	TAL CHI
TCLP	Prep	7470A			408635	11/06/17 14:30	EEN	TAL CHI
TCLP	Analysis	7470A		1	408771	11/07/17 09:44	EEN	TAL CHI
Total/NA	Analysis	9045D		1	409062		SMO	TAL CHI
					(Start) 1	11/08/17 17:14		
					(End) 1	11/08/17 15:05		
Total/NA	Analysis	Moisture		1	408249	11/02/17 15:52	LWN	TAL CHI

Client Sample ID: 3160-62-4 (0-1.5') Lab Sample ID: 500-136651-14

Date Collected: 11/01/17 10:20 **Matrix: Solid** Date Received: 11/02/17 09:00 Percent Solids: 80.1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			408513	11/02/17 18:18	WRE	TAL CH
Total/NA	Analysis	8260B		1	408943	11/08/17 18:43	DJD	TAL CH
Total/NA	Prep	3541			409105	11/08/17 17:13	JP1	TAL CH
Total/NA	Analysis	8270D		1	409157	11/09/17 14:43	AJD	TAL CH
Total/NA	Prep	3050B			408293	11/03/17 07:41	JEF	TAL CH
Total/NA	Analysis	6010B		1	408472	11/03/17 17:38	KML	TAL CH
Total/NA	Prep	3050B			408293	11/03/17 07:41	JEF	TAL CH
Total/NA	Analysis	6010B		1	408545	11/05/17 23:59	PJ1	TAL CH
Total/NA	Prep	7471B			408396	11/03/17 15:15	EEN	TAL CH
Total/NA	Analysis	7471B		1	408625	11/06/17 12:02	EEN	TAL CH

Client Sample ID: 3160-62-3 (0-1.5') Lab Sample ID: 500-136651-15

Date Collected: 11/01/17 11:30

Date Received: 11/02/17 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			408395	11/03/17 13:52	JLC	TAL CHI
TCLP	Prep	3010A			408617	11/06/17 11:00	PFK	TAL CHI
TCLP	Analysis	6010B		1	408949	11/07/17 13:08	PJ1	TAL CHI
TCLP	Leach	1311			408395	11/03/17 13:52	JLC	TAL CHI
TCLP	Prep	3010A			408617	11/06/17 11:00	PFK	TAL CHI
TCLP	Analysis	6020A		1	408965	11/07/17 16:55	FXG	TAL CHI
TCLP	Leach	1311			408395	11/03/17 13:52	JLC	TAL CHI
TCLP	Prep	7470A			408635	11/06/17 14:30	EEN	TAL CHI
TCLP	Analysis	7470A		1	408771	11/07/17 09:45	EEN	TAL CHI

TestAmerica Chicago

Page 138 of 145

Lab Sample ID: 500-136651-15

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-62-3 (0-1.5')

Date Collected: 11/01/17 11:30 **Matrix: Solid**

Date Received: 11/02/17 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9045D			409062		SMO	TAL CHI
					(Start) 1	1/08/17 17:14		
					(End) 1	1/08/17 15:05		
Total/NA	Analysis	Moisture		1	408249	11/02/17 15:52	LWN	TAL CHI

Lab Sample ID: 500-136651-15 Client Sample ID: 3160-62-3 (0-1.5')

Date Collected: 11/01/17 11:30 **Matrix: Solid** Date Received: 11/02/17 09:00 Percent Solids: 85.2

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			408513	11/02/17 18:18	WRE	TAL CHI
Total/NA	Analysis	8260B		1	408943	11/08/17 19:08	DJD	TAL CHI
Total/NA	Prep	3541			409105	11/08/17 17:13	JP1	TAL CHI
Total/NA	Analysis	8270D		1	409157	11/09/17 15:09	AJD	TAL CHI
Total/NA	Prep	3050B			408293	11/03/17 07:41	JEF	TAL CHI
Total/NA	Analysis	6010B		1	408472	11/03/17 17:51	KML	TAL CHI
Total/NA	Prep	3050B			408293	11/03/17 07:41	JEF	TAL CHI
Total/NA	Analysis	6010B		1	408545	11/06/17 00:11	PJ1	TAL CHI
Total/NA	Prep	7471B			408396	11/03/17 15:15	EEN	TAL CHI
Total/NA	Analysis	7471B		1	408625	11/06/17 12:04	EEN	TAL CHI

Client Sample ID: 3160-62-2 (0-1.5') Lab Sample ID: 500-136651-16

Date Collected: 11/01/17 11:40 **Matrix: Solid** Date Received: 11/02/17 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
SPLP East	Leach	1312			408390	11/03/17 13:52	JLC	TAL CHI
SPLP East	Prep	3010A			408611	11/06/17 11:29	PFK	TAL CHI
SPLP East	Analysis	6010B		1	409155	11/08/17 22:21	PJ1	TAL CHI
TCLP	Leach	1311			408395	11/03/17 13:52	JLC	TAL CHI
TCLP	Prep	3010A			408617	11/06/17 11:00	PFK	TAL CHI
TCLP	Analysis	6010B		1	408949	11/07/17 13:12	PJ1	TAL CHI
ГCLР	Leach	1311			408395	11/03/17 13:52	JLC	TAL CHI
TCLP	Prep	3010A			408617	11/06/17 11:00	PFK	TAL CHI
TCLP	Analysis	6020A		1	408965	11/07/17 17:00	FXG	TAL CHI
TCLP	Leach	1311			408395	11/03/17 13:52	JLC	TAL CHI
TCLP	Prep	7470A			408635	11/06/17 14:30	EEN	TAL CHI
TCLP	Analysis	7470A		1	408771	11/07/17 09:47	EEN	TAL CHI
Total/NA	Analysis	9045D		1	409062		SMO	TAL CHI
					(Start) 1	1/08/17 17:14		
					(End) 1	1/08/17 15:05		
Total/NA	Analysis	Moisture		1	408249	11/02/17 15:52	LWN	TAL CHI

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/01/17 11:40

Date Received: 11/02/17 09:00

Client Sample ID: 3160-62-2 (0-1.5')

Lab Sample ID: 500-136651-16

Matrix: Solid Percent Solids: 90.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			408513	11/02/17 18:18	WRE	TAL CHI
Total/NA	Analysis	8260B		1	408943	11/08/17 19:33	DJD	TAL CHI
Total/NA	Prep	3541			409105	11/08/17 17:13	JP1	TAL CHI
Total/NA	Analysis	8270D		1	409157	11/09/17 17:46	AJD	TAL CHI
Total/NA	Prep	3050B			408293	11/03/17 07:41	JEF	TAL CHI
Total/NA	Analysis	6010B		1	408472	11/03/17 17:55	KML	TAL CHI
Total/NA	Prep	3050B			408293	11/03/17 07:41	JEF	TAL CHI
Total/NA	Analysis	6010B		1	408545	11/06/17 00:15	PJ1	TAL CHI
Total/NA	Prep	7471B			408396	11/03/17 15:15	EEN	TAL CHI
Total/NA	Analysis	7471B		1	408625	11/06/17 12:07	EEN	TAL CHI

Client Sample ID: 3160-62-1 (0-1.5') Lab Sample ID: 500-136651-17

Date Collected: 11/01/17 11:50 **Matrix: Solid**

Date Received: 11/02/17 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			408395	11/03/17 13:52	JLC	TAL CH
TCLP	Prep	3010A			408617	11/06/17 11:00	PFK	TAL CH
TCLP	Analysis	6010B		1	408949	11/07/17 13:16	PJ1	TAL CH
TCLP	Leach	1311			408395	11/03/17 13:52	JLC	TAL CH
TCLP	Prep	3010A			408617	11/06/17 11:00	PFK	TAL CH
TCLP	Analysis	6020A		1	408965	11/07/17 17:14	FXG	TAL CH
TCLP	Leach	1311			408395	11/03/17 13:52	JLC	TAL CH
TCLP	Prep	7470A			408635	11/06/17 14:30	EEN	TAL CH
TCLP	Analysis	7470A		1	408771	11/07/17 09:48	EEN	TAL CH
Total/NA	Analysis	9045D		1	409062		SMO	TAL CH
					(Start) 1	1/08/17 17:14		
					(End) 1	1/08/17 15:05		
Total/NA	Analysis	Moisture		1	408249	11/02/17 15:52	LWN	TAL CH

Client Sample ID: 3160-62-1 (0-1.5') Lab Sample ID: 500-136651-17

Date Collected: 11/01/17 11:50 **Matrix: Solid** Date Received: 11/02/17 09:00 Percent Solids: 85.0

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			408513	11/02/17 18:18	WRE	TAL CHI
Total/NA	Analysis	8260B		1	408943	11/08/17 19:59	DJD	TAL CHI
Total/NA	Prep	3541			409105	11/08/17 17:13	JP1	TAL CHI
Total/NA	Analysis	8270D		1	409657	11/13/17 15:12	WDS	TAL CHI
Total/NA	Prep	3050B			408293	11/03/17 07:41	JEF	TAL CHI
Total/NA	Analysis	6010B		1	408472	11/03/17 17:59	KML	TAL CHI
Total/NA	Prep	3050B			408293	11/03/17 07:41	JEF	TAL CHI
Total/NA	Analysis	6010B		1	408545	11/06/17 00:19	PJ1	TAL CHI
Total/NA	Prep	7471B			408396	11/03/17 15:15	EEN	TAL CHI

TestAmerica Chicago

Page 140 of 145

Lab Chronicle

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/01/17 11:50

Client Sample ID: 3160-62-1 (0-1.5')

TestAmerica Job ID: 500-136651-1

Lab Sample ID: 500-136651-17

. Matrix: Solid

Date Received: 11/02/17 09:00 Percent Solids: 85.0

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	7471B		1	408625	11/06/17 12:09	EEN	TAL CHI

Laboratory References:

TAL CHI = TestAmerica Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

5

9

11

112

Accreditation/Certification Summary

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136651-1

Laboratory: TestAmerica Chicago

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Program		EPA Region	Identification Number	Expiration Date	
Illinois	NELAP		5	04-30-18		
The following analyte:	s are included in this repo	rt, but accreditation/	certification is not offer	ered by the governing author	ority:	
Analysis Method	Prep Method	Matrix	Analyte	е		
6020A	3010A	Solid	Antimo	imony		
6020A	3010A	Solid	Thalliu	m		
8260B	5035	Solid	1,3-Dio	chloropropene, Total		
9045D		Solid	pН			
Moisture		Solid	Percer	nt Moisture		
Moisture		Solid	Percer	nt Solids		

9

4

4

5

_

8

10

11

13

12

TestAmerica

WO 28

mcwally

3160-55-1 3160-55-2 3160-56-1

3160-56-2 3160-64-1 3160-64-2

3160-64-3

3160-62-10

3160-6209

3160-6208

THE LEADER IN ENVIRONMENTAL

Amectur WOOD

Sample ID

Project Name IDOT

Project Location/State

MS/MSD Lab ID

BE-ston

Sampler

2417 Bond Street, University Park, IL 60 Phone: 708.534.5200 Fax: 708.534

0-1,51

0-1

0930

0940

6 2

					•								
	Report To	(opti	ional)		Bill To		(optional)		1	Chain of Custody Record			
CU	1 '	irry	Dix	0~	Contact:	JA	mE						
	Company: _A			300	Company:		.,.			L	ab Job #:	500-13665	
144	Address: 42	32 B	RAND.		Address:							• ,	
	Address: FE	BRIA	FL	61614	Address:					(Chain of Cus	tody Number:	
-6-7	Phone: گر				Phone:					F	age	of	
500-136651 COC	B 309-	692-4	1422		Fax:					7	omporaturo	°C of Cooler: 1, 9, 45	
Client Project #	E-Mail:	15 "		 _	PO#/Refere	ence#			 _l.		emperature	7 (
31601504	049	Preservativ	re									Preservative Key 1. HCL, Cool to 4°	
ナレ		Paramete	r				46.5		5	\$.,	2. H2SO4, Cool to 4° 3. HNO3, Cool to 4° 4. NaOH, Cool to 4°	
Lab Project # 500/389	78					73	metals Metal	:	4,0	HERB		5. NaOH/Zn, Cool to 4° 6. NaHSO4 7. Cool to 4°	
Lab PM Dick WE	2,644		<u>ئ</u> ئ	200	ιΩ	7 2		Į	9			8. None 9. Other	
	Sampling Date Time	# of Containers Matrix	Ø	> >	SC.	78787	ter p	Hd	8	PEST		Comments	
0-3) 11/	1 8805	6 5		×		X	×	*	×	X		HOLD SPLP	
(0=3) 11/	2180 1	65	X	×		χ	X		入	X		based on tel	
0-1,51) 11/	1 0825	65	×	λ		X	χ	X	λ	χ		RESULTS,	
0-1,51) 11	1, 0835		X	×		X	X	Х	X	Ϋ́X			
0-1.51) 11	/1 0850	65	χ	X	X	×	х	X	X	/ `		SEE DIXON	
0-1,51)	1 0900	6 3	X	$\frac{1}{x}$	X	Á	χ	X	, X			Email RE:	
0-1.51 1	1, 0910	65	X	~	×	~	×	×	۲,			18 memis	

X

							•		
Turnaround Time Req	uired (Business Days)	D.S	Sample Disposa						
Requested Due Date	ays 5 Days 7 Days	10 Days 15 Days	Other Return to	Client	Disposal by Lab Archive for	Months (A fee may	pe assessed if samples	are retained longer than 1	month)
Reinquished By	Company Am Ecfw W	V400 1//1	Time	Received By	whether The Ut.	T //2/17	10900	Lab Courier	
Relinquiched By	Company	Date		Received By	Company	Date	Time	Shipped	Fed X
Relinquished By	Company	Date	Time F	Received By	Company	Date	Time	Hand Delivered	
WW – Wastewater W – Water S – Soil SL – Sludge MS – Miscellaneous OL – Oil A – Air	Matrix Key SE – Sediment SO – Soll L – Leachate Wi – Wipe DW – Drinking Water O – Other	Client Comments			Lab Comr	ments:			

L111+

THE LEADER IN ENVIRONMENTAL TESTING

0 - Other

A – Air

2417 Bond Street, University Park, IL 60484 Phone: 708.534.5200 Fax: 708.534.5211

(optional)	(optional)				
Report To	Bill To				
Contact: TERRY DIXON	Contact: 5 7 7 4				
Company: Amelow NOOD	Company:				
Address: 4232 BRANDywine	Address:				
Address: Suitz A PROVIA IL	Address:				
Phone: 61614	Phone:				
309-692-4422	Fax:				

Chain	of	Custody	Record
-------	----	---------	--------

Lab Job #: <u>500</u> -	136651
	,

Chain of Custody Number:	

Page .	2	of	
--------	---	----	--

19115

E-Mail:								PO#/Reference#					Temperature °C of Cooler: 177 40			
Client		for wood	Client Project #	004	9	Preservat	ve									Preservative Key 1. HCL, Cool to 4°
	ot Name	_	IL	R+		Paramet	er				165 865			Q.		2. H2SO4, Cool to 4° 3. HNO3, Cool to 4° 4. NaOH, Cool to 4°
Project 3	t Locatio	n/State のペッエレ	Lab Project #	898	 }					4	neth		5	HEES		5. NaOH/Zn, Cool to 4° 6. NaHSO4
Samp	ler O ===	mcwally	Lab PM Q 1 C K				_ ပ	ى 9	82	7 7	00	I	prio			7. Cool to 4° 8. None 9. Other
Lab ID	MS/MSD	Sample ID		Sam	npling Time	# of Containers	9	7	20	TOTA	1202	I	800	PESS	:	
\overline{ll}		3/60-62-7(0	0-1,5')	n/i	0950	ر نها کے نها		X		λ	×	×	X			SEE PASE
2		3160-62-6	0-1,51)	11/1	1000	6 5	<u>`</u>	X		×	X	*	X,			notes
<u> 13</u>		3160-62-51	0-1.51	n/r	1010	6.	r 🗴	À		X	×	×	X			
14		3160-62-4 (11/1	1020	6 5	X	χ		×	×	X	X			
121314151617		3160-62-3	(0-1,5-1)	whi	1130	6 5	· X	X		X	Х	X	X			
16		3160-62-2	(0-1,51)	$n I_1$	1140	6 5	- X	X		Х	х	X	X			
"		3160-62-11	0-1,51	11/1	1150	را و		X		X	X	V	X			
•												-0				

Turnaround Time Req	uired (Business Days)		、シンプ Sample Dis	posal					
	uired (Business Days) Days 5 Days 7 Days 	10 Days 15 Days	Other	urn to Client	Archive for	or Months (A fee may b	oe assessed if samples	are retained longer than	1 month)
Religioushed By	Company Amec w	000 1/1/17	1600	Received	islatto TA -1	CHT 1/12/17	Time 900	Lab Courier	
Relinquished By	Company	Date	Time	Received By	Company	Date	Time	Shipped	Fedix
Relinquished By	Company	Date	Time	Received By	Company	Date	Time	Hand Delivered	1
	Matrix Key	Client Comments			Lab	Comments:			
WW - Wastewater	SE – Sediment					Son, morno.			
W - Water	SO – Soil								
S - Soil	L - Leachate								
SL – Sludge	WI – Wipe				İ				
MS - Miscellaneous	DW - Drinking Water								
OL Oil	0 – Other								

Page 144 of 145

TAL-4124510/(1249/2017

Login Sample Receipt Checklist

Client: AMEC Foster Wheeler E & I, Inc Job Number: 500-136651-1

Login Number: 136651 List Source: TestAmerica Chicago

List Number: 1

Creator: Scott. Sherri L

Creator: Scott, Sherri L		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	1.9,4.5
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

6

4

11

40

14

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Chicago 2417 Bond Street University Park, IL 60484 Tel: (708)534-5200

TestAmerica Job ID: 500-136756-1

Client Project/Site: IDOT - Benton - WO 028

For:

AMEC Foster Wheeler E & I, Inc 4232 Brandywine Drive Suite A Peoria, Illinois 61614

Attn: Mr. Terry Dixon

RILL WhyM

Authorized for release by: 11/15/2017 11:56:02 AM

Richard Wright, Senior Project Manager (708)534-5200

richard.wright@testamericainc.com

..... LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Detection Summary	4
Sample Summary	21
	22
Definitions	124
QC Association	125
Surrogate Summary	139
QC Sample Results	141
Chronicle	169
Certification Summary	190
Chain of Custody	191
Receipt Checklists	195

3

4

6

0

9

11

10

14

Case Narrative

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028 TestAmerica Job ID: 500-136756-1

Job ID: 500-136756-1

Laboratory: TestAmerica Chicago

Narrative

Job Narrative 500-136756-1

Receipt

The samples were received on 11/3/2017~8:50~AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 4 coolers at receipt time were 1.1° C, 2.4° C, 2.6° C and 3.8° C.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

GC/MS Semi VOA

Method(s) 8270D: The following matrix spike/matrix spike duplicate (MS/MSD) recovered at 0% for one or more analytes. Data has been qualified and reported. (500-136756-F-1-L MS) and (500-136756-F-1-M MSD)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

Α

5

A

7

8

9

11

12

10

114

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-51-3 (0-1.5')

Lab Sample ID: 500-136756-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzo[a]anthracene	0.016	J	0.038	0.0051	mg/Kg	1	苺	8270D	Total/NA
Benzo[a]pyrene	0.043		0.038	0.0073	mg/Kg	1	₩	8270D	Total/NA
Benzo[b]fluoranthene	0.049		0.038	0.0082	mg/Kg	1	₩	8270D	Total/NA
Benzo[g,h,i]perylene	0.043		0.038	0.012	mg/Kg	1	₩.	8270D	Total/NA
Chrysene	0.019	J	0.038	0.010	mg/Kg	1	₩	8270D	Total/NA
Dibenz(a,h)anthracene	0.039		0.038	0.0073	mg/Kg	1	₩	8270D	Total/NA
Fluoranthene	0.024	J	0.038	0.0070	mg/Kg	1	₩.	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	0.038		0.038	0.0098	mg/Kg	1	₩	8270D	Total/NA
2-Methylnaphthalene	0.022	J	0.077	0.0070	mg/Kg	1	₩	8270D	Total/NA
Naphthalene	0.0097	J	0.038	0.0058	mg/Kg	1	₩.	8270D	Total/NA
Phenanthrene	0.038		0.038	0.0053	mg/Kg	1	₩	8270D	Total/NA
Pyrene	0.029	J	0.038	0.0075	mg/Kg	1	₩	8270D	Total/NA
Antimony	0.43	JF1	1.1	0.22	mg/Kg	1		6010B	Total/NA
Arsenic	6.8	F1	0.56	0.19	mg/Kg	1	₩	6010B	Total/NA
Barium	89	F1	0.56	0.064	mg/Kg	1	₩	6010B	Total/NA
Beryllium	0.49		0.22	0.052	mg/Kg	1	₩	6010B	Total/NA
Cadmium	0.24		0.11	0.020	mg/Kg	1	₩	6010B	Total/NA
Chromium	15	F1	0.56	0.28	mg/Kg	1	₩	6010B	Total/NA
Cobalt	5.2		0.28	0.073	mg/Kg	1	₩	6010B	Total/NA
Copper	14		0.56	0.16	mg/Kg	1	₩	6010B	Total/NA
Iron	16000		11	5.8	mg/Kg	1	₩	6010B	Total/NA
Lead	99		0.28	0.13	mg/Kg	1	₩	6010B	Total/NA
Manganese	200	F2	0.56	0.081	mg/Kg	1	₩	6010B	Total/NA
Nickel	11		0.56	0.16	mg/Kg	1	₩	6010B	Total/NA
Selenium	0.49	J F1	0.56	0.33	mg/Kg	1	₩	6010B	Total/NA
Vanadium	22		0.28	0.066	mg/Kg	1	₩	6010B	Total/NA
Zinc	66	F1	1.1	0.49	mg/Kg	1	₩	6010B	Total/NA
Barium	0.70		0.50	0.050	mg/L	1		6010B	TCLP
Iron	0.33	J	0.40	0.20	mg/L	1		6010B	TCLP
Manganese	0.031		0.025	0.010	mg/L	1		6010B	TCLP
Mercury	0.016	J	0.018	0.0061	mg/Kg	1	*	7471B	Total/NA
pH	8.5		0.20	0.20	SU	1		9045D	Total/NA

Client Sample ID: 3160-51-2 (0-1.5')

Lab Sample ID: 500-136756-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Anthracene	0.031	J	0.038	0.0065	mg/Kg	1	₩	8270D	Total/NA
Benzo[a]anthracene	0.098		0.038	0.0052	mg/Kg	1	₩	8270D	Total/NA
Benzo[a]pyrene	0.13		0.038	0.0075	mg/Kg	1	₩	8270D	Total/NA
Benzo[b]fluoranthene	0.15		0.038	0.0083	mg/Kg	1	₩.	8270D	Total/NA
Benzo[g,h,i]perylene	0.10		0.038	0.012	mg/Kg	1	₩	8270D	Total/NA
Benzo[k]fluoranthene	0.038		0.038	0.011	mg/Kg	1	₩	8270D	Total/NA
Chrysene	0.12		0.038	0.011	mg/Kg	1	₩.	8270D	Total/NA
Dibenz(a,h)anthracene	0.050		0.038	0.0075	mg/Kg	1	₩	8270D	Total/NA
Dibenzofuran	0.073	J	0.19	0.045	mg/Kg	1	₩	8270D	Total/NA
Fluoranthene	0.14		0.038	0.0072	mg/Kg	1	₩.	8270D	Total/NA
Fluorene	0.0059	J	0.038	0.0054	mg/Kg	1	₩	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	0.079		0.038	0.010	mg/Kg	1	₩	8270D	Total/NA
2-Methylnaphthalene	0.14		0.078	0.0071	mg/Kg	1	ф	8270D	Total/NA
Naphthalene	0.063		0.038	0.0060	mg/Kg	1	₩	8270D	Total/NA

This Detection Summary does not include radiochemical test results.

Page 4 of 195

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-51-2 (0-1.5') (Continued)

Lab Sample ID: 500-136756-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Phenanthrene	0.25		0.038	0.0054	mg/Kg	1	₩	8270D	Total/NA
Pyrene	0.20		0.038	0.0077	mg/Kg	1	₩	8270D	Total/NA
Arsenic	6.4		0.56	0.19	mg/Kg	1	₩	6010B	Total/NA
Barium	82		0.56	0.064	mg/Kg	1	₩	6010B	Total/NA
Beryllium	0.68		0.22	0.052	mg/Kg	1	₩	6010B	Total/NA
Cadmium	0.45		0.11	0.020	mg/Kg	1	₩	6010B	Total/NA
Chromium	21		0.56	0.28	mg/Kg	1	₩	6010B	Total/NA
Cobalt	8.6		0.28	0.073	mg/Kg	1	₩	6010B	Total/NA
Copper	15		0.56	0.16	mg/Kg	1	₩	6010B	Total/NA
Iron	17000		11	5.8	mg/Kg	1	₩	6010B	Total/NA
Lead	290		0.28	0.13	mg/Kg	1	₩	6010B	Total/NA
Manganese	360		0.56	0.081	mg/Kg	1	₩	6010B	Total/NA
Nickel	14		0.56	0.16	mg/Kg	1	₩	6010B	Total/NA
Selenium	0.63		0.56	0.33	mg/Kg	1	₩	6010B	Total/NA
Vanadium	20		0.28	0.066	mg/Kg	1	₩	6010B	Total/NA
Zinc	110		1.1	0.49	mg/Kg	1	₩	6010B	Total/NA
Barium	0.85		0.50	0.050	mg/L	1		6010B	TCLP
Iron	0.20	J	0.40	0.20	mg/L	1		6010B	TCLP
Manganese	0.022	J	0.025	0.010	mg/L	1		6010B	TCLP
Zinc	0.049	J	0.50	0.020	mg/L	1		6010B	TCLP
Mercury	0.023		0.019	0.0062	mg/Kg	1	₩	7471B	Total/NA
pH	8.9		0.20	0.20	SU	1		9045D	Total/NA

Client Sample ID: 3160-51-1 (0-1.5')

Lab Sample ID: 500-136756-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Anthracene	0.025	J	0.041	0.0069	mg/Kg	1	₩	8270D	Total/NA
Benzo[a]anthracene	0.049		0.041	0.0056	mg/Kg	1	₽	8270D	Total/NA
Benzo[a]pyrene	0.066		0.041	0.0080	mg/Kg	1	₩	8270D	Total/NA
Benzo[b]fluoranthene	0.073		0.041	0.0089	mg/Kg	1	₩	8270D	Total/NA
Benzo[g,h,i]perylene	0.054		0.041	0.013	mg/Kg	1	₩	8270D	Total/NA
Benzo[k]fluoranthene	0.015	J	0.041	0.012	mg/Kg	1	₩	8270D	Total/NA
Chrysene	0.053		0.041	0.011	mg/Kg	1	Ď.	8270D	Total/NA
Dibenzofuran	0.054	J	0.21	0.048	mg/Kg	1	₩	8270D	Total/NA
Fluoranthene	0.060		0.041	0.0077	mg/Kg	1	₩	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	0.046		0.041	0.011	mg/Kg	1	₽	8270D	Total/NA
2-Methylnaphthalene	0.099		0.083	0.0076	mg/Kg	1	₩	8270D	Total/NA
Naphthalene	0.044		0.041	0.0063	mg/Kg	1	₩	8270D	Total/NA
Phenanthrene	0.17		0.041	0.0058	mg/Kg	1	ψ	8270D	Total/NA
Pyrene	0.068		0.041	0.0082	mg/Kg	1	₩	8270D	Total/NA
Arsenic	7.3		0.62	0.21	mg/Kg	1	☼	6010B	Total/NA
Barium	88		0.62	0.071	mg/Kg	1	₩	6010B	Total/NA
Beryllium	0.52		0.25	0.058	mg/Kg	1	₩	6010B	Total/NA
Cadmium	0.29		0.12	0.022	mg/Kg	1	₩	6010B	Total/NA
Chromium	15		0.62	0.31	mg/Kg	1	ψ	6010B	Total/NA
Cobalt	7.7		0.31	0.081	mg/Kg	1	₩	6010B	Total/NA
Copper	16		0.62	0.17	mg/Kg	1	₽	6010B	Total/NA
Iron	16000		12	6.5	mg/Kg	1	ψ	6010B	Total/NA
Lead	69		0.31	0.14	mg/Kg	1	₽	6010B	Total/NA
Manganese	340		0.62		mg/Kg	1	₩	6010B	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Chicago

Page 5 of 195

3

7

9

10

12

13

М

- 4 A --- - --- Ola : - - - --

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-51-1 (0-1.5') (Continued)

Lab Sample ID: 500-136756-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Nickel	13		0.62	0.18	mg/Kg		₩	6010B	Total/NA
Selenium	0.59	J	0.62	0.37	mg/Kg	1	₩	6010B	Total/NA
Vanadium	24		0.31	0.073	mg/Kg	1	₩	6010B	Total/NA
Zinc	78		1.2	0.55	mg/Kg	1	₩	6010B	Total/NA
Barium	0.37	J	0.50	0.050	mg/L	1		6010B	TCLP
Iron	3.5		0.40	0.20	mg/L	1		6010B	TCLP
Lead	0.011		0.0075	0.0075	mg/L	1		6010B	TCLP
Manganese	0.040		0.025	0.010	mg/L	1		6010B	TCLP
Zinc	0.061	J	0.50	0.020	mg/L	1		6010B	TCLP
Lead	0.21		0.0075	0.0075	mg/L	1		6010B	SPLP East
Mercury	0.035		0.019	0.0062	mg/Kg	1	₩	7471B	Total/NA
pН	7.8		0.20	0.20	SU	1		9045D	Total/NA

Client Sample ID: 3160-36-11 (0-3')

Lab Sample ID: 500-136756-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	5.9		0.59	0.20	mg/Kg	1	苺	6010B	Total/NA
Barium	35		0.59	0.068	mg/Kg	1	₩	6010B	Total/NA
Beryllium	0.44		0.24	0.056	mg/Kg	1	₩	6010B	Total/NA
Cadmium	0.023	J	0.12	0.021	mg/Kg	1	₩	6010B	Total/NA
Chromium	17		0.59	0.29	mg/Kg	1	₩	6010B	Total/NA
Cobalt	3.4		0.30	0.078	mg/Kg	1	₩	6010B	Total/NA
Copper	10		0.59	0.17	mg/Kg	1	Þ	6010B	Total/NA
Iron	19000		12	6.2	mg/Kg	1	₩	6010B	Total/NA
Lead	12		0.30	0.14	mg/Kg	1	₩	6010B	Total/NA
Manganese	84		0.59	0.086	mg/Kg	1	₩	6010B	Total/NA
Nickel	7.3		0.59	0.17	mg/Kg	1	₩	6010B	Total/NA
Selenium	0.52	J	0.59	0.35	mg/Kg	1	₩	6010B	Total/NA
Vanadium	29		0.30	0.070	mg/Kg	1	₩	6010B	Total/NA
Zinc	27		1.2	0.52	mg/Kg	1	₩	6010B	Total/NA
Barium	0.21	J	0.50	0.050	mg/L	1		6010B	TCLP
Copper	0.011	J	0.025	0.010	mg/L	1		6010B	TCLP
Iron	0.20	J	0.40	0.20	mg/L	1		6010B	TCLP
Manganese	0.054		0.025	0.010	mg/L	1		6010B	TCLP
Zinc	0.030	J	0.50	0.020	mg/L	1		6010B	TCLP
Mercury	0.016	J	0.019	0.0064	mg/Kg	1	₩	7471B	Total/NA
рН	5.3		0.20	0.20	SU	1		9045D	Total/NA

Client Sample ID: 3160-36-10 (0-3')

Lab Sample ID: 500-136756-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzo[a]anthracene	0.0059	J	0.039	0.0053	mg/Kg		₩	8270D	Total/NA
Benzo[a]pyrene	0.032	J	0.039	0.0077	mg/Kg	1	₩	8270D	Total/NA
Benzo[g,h,i]perylene	0.032	J	0.039	0.013	mg/Kg	1	₩	8270D	Total/NA
2-Methylnaphthalene	0.010	J	0.080	0.0073	mg/Kg	1	₩	8270D	Total/NA
Phenanthrene	0.018	J	0.039	0.0055	mg/Kg	1	₩	8270D	Total/NA
Arsenic	6.7		0.55	0.19	mg/Kg	1	₩	6010B	Total/NA
Barium	120		0.55	0.063	mg/Kg	1	₩	6010B	Total/NA
Beryllium	0.45		0.22	0.052	mg/Kg	1	₩	6010B	Total/NA
Cadmium	0.12		0.11	0.020	mg/Kg	1	₩	6010B	Total/NA

This Detection Summary does not include radiochemical test results.

Page 6 of 195

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Lab Sample ID: 500-136756-5

Client Sample ID: 3160-36-10 (0-3') (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chromium			0.55	0.27	mg/Kg		₩	6010B	Total/NA
Cobalt	5.5		0.28	0.073	mg/Kg	1	₩.	6010B	Total/NA
Copper	17		0.55	0.16	mg/Kg	1	₩	6010B	Total/NA
Iron	19000		11	5.8	mg/Kg	1	₽	6010B	Total/NA
Lead	27		0.28	0.13	mg/Kg	1	₩	6010B	Total/NA
Manganese	220		0.55	0.080	mg/Kg	1	₩	6010B	Total/NA
Nickel	12		0.55	0.16	mg/Kg	1	₩.	6010B	Total/NA
Selenium	0.39	J	0.55	0.33	mg/Kg	1	₩	6010B	Total/NA
Vanadium	23		0.28	0.065	mg/Kg	1	₩	6010B	Total/NA
Zinc	66		1.1	0.49	mg/Kg	1	₩.	6010B	Total/NA
Barium	0.34	J	0.50	0.050	mg/L	1		6010B	TCLP
Copper	0.042		0.025	0.010	mg/L	1		6010B	TCLP
Iron	0.65		0.40	0.20	mg/L	1		6010B	TCLP
Manganese	0.041		0.025	0.010	mg/L	1		6010B	TCLP
Zinc	0.086	J	0.50	0.020	mg/L	1		6010B	TCLP
Mercury	0.011	J	0.018	0.0058	mg/Kg	1	₩	7471B	Total/NA
рН	6.6		0.20	0.20	SU	1		9045D	Total/NA

Client Sample ID: 3160-36-9 (0-3')

Lab Sample ID: 500-136756-6

	campio 121 c 100 cc c (c c)						100700		
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acenaphthene	0.010	J	0.038	0.0069	mg/Kg	1	₩	8270D	Total/NA
Acenaphthylene	0.0090	J	0.038	0.0051	mg/Kg	1	₩	8270D	Total/NA
Anthracene	0.051		0.038	0.0064	mg/Kg	1	₩	8270D	Total/NA
Benzo[a]anthracene	0.15		0.038	0.0052	mg/Kg	1	Ţ.	8270D	Total/NA
Benzo[a]pyrene	0.17		0.038	0.0074	mg/Kg	1	₩	8270D	Total/NA
Benzo[b]fluoranthene	0.21		0.038	0.0083	mg/Kg	1	₩	8270D	Total/NA
Benzo[g,h,i]perylene	0.11		0.038	0.012	mg/Kg	1	Ť.	8270D	Total/NA
Benzo[k]fluoranthene	0.069		0.038	0.011	mg/Kg	1	₩	8270D	Total/NA
Chrysene	0.18		0.038	0.010	mg/Kg	1	₩	8270D	Total/NA
Dibenz(a,h)anthracene	0.054		0.038	0.0074	mg/Kg	1	₽	8270D	Total/NA
Dibenzofuran	0.15	J	0.19	0.045	mg/Kg	1	₩	8270D	Total/NA
Fluoranthene	0.24		0.038	0.0071	mg/Kg	1	₩	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	0.095		0.038	0.0099	mg/Kg	1	Ď.	8270D	Total/NA
2-Methylnaphthalene	0.26		0.077	0.0070	mg/Kg	1	₩	8270D	Total/NA
Naphthalene	0.11		0.038	0.0059	mg/Kg	1	₩	8270D	Total/NA
Phenanthrene	0.44		0.038	0.0053	mg/Kg	1	ψ	8270D	Total/NA
Pyrene	0.22		0.038	0.0076	mg/Kg	1	₩	8270D	Total/NA
Arsenic	10		0.55	0.19	mg/Kg	1	₩	6010B	Total/NA
Barium	91		0.55	0.063	mg/Kg	1	ψ	6010B	Total/NA
Beryllium	0.63		0.22	0.052	mg/Kg	1	₩	6010B	Total/NA
Cadmium	0.82		0.11	0.020	mg/Kg	1	₩	6010B	Total/NA
Chromium	18		0.55	0.27	mg/Kg	1	ψ	6010B	Total/NA
Cobalt	7.5		0.28	0.073	mg/Kg	1	☼	6010B	Total/NA
Copper	25		0.55	0.16	mg/Kg	1	₩	6010B	Total/NA
Iron	18000		11	5.8	mg/Kg	1	₽	6010B	Total/NA
Lead	250		0.28	0.13	mg/Kg	1	₽	6010B	Total/NA
Manganese	410		0.55	0.080	mg/Kg	1	₽	6010B	Total/NA
Nickel	14		0.55	0.16	mg/Kg	1	₩.	6010B	Total/NA
Selenium	1.0		0.55	0.33	mg/Kg	1	₽	6010B	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Chicago

11/15/2017

Page 7 of 195

8

3

11

12

1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Lab Sample ID: 500-136756-6

Client Sample ID: 3160-36-9 (0-3') (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Vanadium	21	-	0.28	0.065	mg/Kg	1	₩	6010B	Total/NA
Zinc	180		1.1	0.49	mg/Kg	1	₩	6010B	Total/NA
Barium	0.47	J	0.50	0.050	mg/L	1		6010B	TCLP
Cadmium	0.0036	J	0.0050	0.0020	mg/L	1		6010B	TCLP
Copper	0.040		0.025	0.010	mg/L	1		6010B	TCLP
Iron	0.30	J	0.40	0.20	mg/L	1		6010B	TCLP
Lead	0.019		0.0075	0.0075	mg/L	1		6010B	TCLP
Manganese	0.038		0.025	0.010	mg/L	1		6010B	TCLP
Zinc	1.4		0.50	0.020	mg/L	1		6010B	TCLP
Lead	0.40		0.0075	0.0075	mg/L	1		6010B	SPLP East
Mercury	0.039		0.018	0.0059	mg/Kg	1	ψ	7471B	Total/NA
рН	8.7		0.20	0.20	SU	1		9045D	Total/NA

Client Sample ID: 3160-36-8 (0-3')

Lab Sample ID: 500-136756-7

Analyte		Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Anthracene	0.013	J	0.039	0.0065	mg/Kg	1	₩	8270D	Total/NA
Benzo[a]anthracene	0.042		0.039	0.0052	mg/Kg	1	₩	8270D	Total/NA
Benzo[a]pyrene	0.064		0.039	0.0075	mg/Kg	1	₩	8270D	Total/NA
Benzo[b]fluoranthene	0.076		0.039	0.0084	mg/Kg	1	₩	8270D	Total/NA
Benzo[g,h,i]perylene	0.049		0.039	0.013	mg/Kg	1	₩	8270D	Total/NA
Benzo[k]fluoranthene	0.017	J	0.039	0.011	mg/Kg	1	₩	8270D	Total/NA
Chrysene	0.048		0.039	0.011	mg/Kg	1	₩	8270D	Total/NA
Fluoranthene	0.063		0.039	0.0072	mg/Kg	1	₩	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	0.046		0.039	0.010	mg/Kg	1	₩	8270D	Total/NA
2-Methylnaphthalene	0.058	J	0.078	0.0071	mg/Kg	1	₽	8270D	Total/NA
Naphthalene	0.026	J	0.039	0.0060	mg/Kg	1	₩	8270D	Total/NA
Phenanthrene	0.097		0.039	0.0054	mg/Kg	1	₩	8270D	Total/NA
Pyrene	0.069		0.039	0.0077	mg/Kg	1	₩.	8270D	Total/NA
Arsenic	8.1		0.56	0.19	mg/Kg	1	₩	6010B	Total/NA
Barium	300		0.56	0.063	mg/Kg	1	₩	6010B	Total/NA
Beryllium	0.74		0.22	0.052	mg/Kg	1	₩	6010B	Total/NA
Cadmium	0.55		0.11	0.020	mg/Kg	1	₩	6010B	Total/NA
Chromium	11		0.56	0.28	mg/Kg	1	₩	6010B	Total/NA
Cobalt	27		0.28	0.073	mg/Kg	1	₩.	6010B	Total/NA
Copper	12		0.56	0.16	mg/Kg	1	₩	6010B	Total/NA
Iron	19000		11	5.8	mg/Kg	1	₩	6010B	Total/NA
Lead	47		0.28	0.13	mg/Kg	1	Ď.	6010B	Total/NA
Manganese	3700		5.6	0.81	mg/Kg	10	₩	6010B	Total/NA
Nickel	21		0.56	0.16	mg/Kg	1	₩	6010B	Total/NA
Selenium	1.2		0.56	0.33	mg/Kg	1	₩	6010B	Total/NA
Thallium	1.1		0.56	0.28	mg/Kg	1	₩	6010B	Total/NA
Vanadium	19		0.28	0.066	mg/Kg	1	₩	6010B	Total/NA
Zinc	60		1.1	0.49	mg/Kg	1	₩	6010B	Total/NA
Barium	0.61		0.50	0.050		1		6010B	TCLP
Copper	0.012	J	0.025			1		6010B	TCLP
Iron	0.37	J	0.40			1		6010B	TCLP
Manganese	0.011	J	0.025	0.010	-	1		6010B	TCLP
Zinc	0.045	J	0.50	0.020	-	1		6010B	TCLP
Mercury	0.037		0.019		mg/Kg	1		7471B	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Chicago

11/15/2017

Page 8 of 195

5

7

9

12

IJ

L

Detection Summary

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028 TestAmerica Job ID: 500-136756-1

3

Lab Sample ID: 500-136756-7

 Analyte
 Result
 Qualifier
 RL
 MDL
 Unit
 Dil Fac
 D
 Method
 Prep Type

 pH
 7.9
 0.20
 0.20
 SU
 1
 9045D
 Total/NA

4

Client Sample ID: 3160-36-7 (0-3')

Client Sample ID: 3160-36-8 (0-3') (Continued)

Lab Sample ID: 500-136756-8

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	0.036		0.020	0.0085	mg/Kg	1	₩	8260B	Total/NA
Arsenic	7.9		0.61	0.21	mg/Kg	1	₩	6010B	Total/NA
Barium	51		0.61	0.069	mg/Kg	1	₩	6010B	Total/NA
Beryllium	0.53		0.24	0.057	mg/Kg	1	₽	6010B	Total/NA
Cadmium	0.024	J	0.12	0.022	mg/Kg	1	₩	6010B	Total/NA
Chromium	18		0.61	0.30	mg/Kg	1	₩	6010B	Total/NA
Cobalt	4.7		0.30	0.079	mg/Kg	1	₩	6010B	Total/NA
Copper	14		0.61	0.17	mg/Kg	1	₩	6010B	Total/NA
Iron	20000		12	6.3	mg/Kg	1	₩	6010B	Total/NA
Lead	14		0.30	0.14	mg/Kg	1	₩	6010B	Total/NA
Manganese	140		0.61	0.088	mg/Kg	1	₩	6010B	Total/NA
Nickel	12		0.61	0.18	mg/Kg	1	₩	6010B	Total/NA
Selenium	0.63		0.61	0.36	mg/Kg	1	₩.	6010B	Total/NA
Vanadium	31		0.30	0.072	mg/Kg	1	₩	6010B	Total/NA
Zinc	53		1.2	0.53	mg/Kg	1	₩	6010B	Total/NA
Barium	0.21	J	0.50	0.050	mg/L	1		6010B	TCLP
Cobalt	0.011	J	0.025	0.010	mg/L	1		6010B	TCLP
Iron	0.71		0.40	0.20	mg/L	1		6010B	TCLP
Manganese	0.23		0.025	0.010	mg/L	1		6010B	TCLP
Nickel	0.024	J	0.025	0.010	mg/L	1		6010B	TCLP
Zinc	0.039	J	0.50	0.020	mg/L	1		6010B	TCLP
Manganese	0.26		0.025	0.010	mg/L	1		6010B	SPLP East
Mercury	0.011	J	0.020	0.0065	mg/Kg	1	₩	7471B	Total/NA
На	4.8		0.20	0.20	SU	1		9045D	Total/NA

Client Sample ID: 3160-36-6 (0-3')

Lab Sample ID: 500-136756-9

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	8.5		0.55	0.19	mg/Kg		₩	6010B	Total/NA
Barium	52		0.55	0.063	mg/Kg	1	₩	6010B	Total/NA
Beryllium	0.52		0.22	0.051	mg/Kg	1	₩	6010B	Total/NA
Chromium	18		0.55	0.27	mg/Kg	1	₩	6010B	Total/NA
Cobalt	5.0		0.27	0.072	mg/Kg	1	₩	6010B	Total/NA
Copper	14		0.55	0.15	mg/Kg	1	₩	6010B	Total/NA
Iron	22000		11	5.7	mg/Kg	1	Ċ.	6010B	Total/NA
Lead	13		0.27	0.13	mg/Kg	1	₩	6010B	Total/NA
Manganese	120		0.55	0.080	mg/Kg	1	₩	6010B	Total/NA
Nickel	12		0.55	0.16	mg/Kg	1	Ϋ́	6010B	Total/NA
Selenium	0.93		0.55	0.32	mg/Kg	1	₽	6010B	Total/NA
Vanadium	31		0.27	0.065	mg/Kg	1	₩	6010B	Total/NA
Zinc	53		1.1	0.48	mg/Kg	1	Д	6010B	Total/NA
Barium	0.22	J	0.50	0.050	mg/L	1		6010B	TCLP
Cobalt	0.013	J	0.025	0.010	mg/L	1		6010B	TCLP
Copper	0.024	J	0.025	0.010	mg/L	1		6010B	TCLP
Iron	0.98		0.40	0.20	mg/L	1		6010B	TCLP

This Detection Summary does not include radiochemical test results.

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-36-6 (0-3') (Continued)

Lab Sample ID: 500-136756-9

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Manganese	0.21	0.025	0.010	mg/L	1	_	6010B	TCLP
Nickel	0.028	0.025	0.010	mg/L	1		6010B	TCLP
Zinc	0.080 J	0.50	0.020	mg/L	1		6010B	TCLP
Manganese	0.078	0.025	0.010	mg/L	1		6010B	SPLP East
Mercury	0.043	0.019	0.0063	mg/Kg	1	₽	7471B	Total/NA
pН	4.3	0.20	0.20	SU	1		9045D	Total/NA

5

Client Sample ID: 3160-36-5 (0-3')

Lab Sample ID: 500-136756-10

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	7.2		0.61	0.21	mg/Kg		₩	6010B	Total/NA
Barium	120		0.61	0.070	mg/Kg	1	₩	6010B	Total/NA
Beryllium	0.51		0.25	0.057	mg/Kg	1	₩	6010B	Total/NA
Cadmium	0.074	J	0.12	0.022	mg/Kg	1	₽	6010B	Total/NA
Chromium	17		0.61	0.30	mg/Kg	1	₩	6010B	Total/NA
Cobalt	6.5		0.31	0.080	mg/Kg	1	₩	6010B	Total/NA
Copper	15		0.61	0.17	mg/Kg	1	₩	6010B	Total/NA
Iron	19000		12	6.4	mg/Kg	1	₩	6010B	Total/NA
Lead	13		0.31	0.14	mg/Kg	1	₩	6010B	Total/NA
Manganese	150		0.61	0.089	mg/Kg	1	₩	6010B	Total/NA
Nickel	16		0.61	0.18	mg/Kg	1	₩	6010B	Total/NA
Selenium	0.62		0.61	0.36	mg/Kg	1	₩	6010B	Total/NA
Vanadium	30		0.31	0.072	mg/Kg	1	₽	6010B	Total/NA
Zinc	76		1.2	0.54	mg/Kg	1	₩	6010B	Total/NA
Barium	0.40	J	0.50	0.050	mg/L	1		6010B	TCLP
Cadmium	0.0025	J	0.0050	0.0020	mg/L	1		6010B	TCLP
Cobalt	0.017	J	0.025	0.010	mg/L	1		6010B	TCLP
Copper	0.014	J	0.025	0.010	mg/L	1		6010B	TCLP
Iron	0.68		0.40	0.20	mg/L	1		6010B	TCLP
Manganese	0.28		0.025	0.010	mg/L	1		6010B	TCLP
Nickel	0.029		0.025	0.010	mg/L	1		6010B	TCLP
Zinc	0.53		0.50	0.020	mg/L	1		6010B	TCLP
Manganese	0.073		0.025	0.010	mg/L	1		6010B	SPLP East
Mercury	0.016	J	0.019	0.0062	mg/Kg	1	₩	7471B	Total/NA
pH	4.6		0.20	0.20		1		9045D	Total/NA

13

14

Client Sample ID: 3160-36-4 (0-3')

Lab Sample ID: 500-136756-11

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Antimony	0.38	J	1.2	0.23	mg/Kg	1	₩	6010B	Total/NA
Arsenic	9.3		0.60	0.21	mg/Kg	1	₩	6010B	Total/NA
Barium	100		0.60	0.069	mg/Kg	1	☼	6010B	Total/NA
Beryllium	0.46		0.24	0.056	mg/Kg	1	₩	6010B	Total/NA
Chromium	16		0.60	0.30	mg/Kg	1	☼	6010B	Total/NA
Cobalt	8.1		0.30	0.079	mg/Kg	1	₩	6010B	Total/NA
Copper	10		0.60	0.17	mg/Kg	1	₽	6010B	Total/NA
Iron	19000		12	6.3	mg/Kg	1	₩	6010B	Total/NA
Lead	23		0.30	0.14	mg/Kg	1	☼	6010B	Total/NA
Manganese	820		0.60	0.088	mg/Kg	1	₩	6010B	Total/NA
Nickel	10		0.60	0.18	mg/Kg	1	₩	6010B	Total/NA

This Detection Summary does not include radiochemical test results.

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Lab Sample ID: 500-136756-11

Client Sample ID: 3160-36-4 (0-3') (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Selenium	0.92		0.60	0.36	mg/Kg	1	₩	6010B	Total/NA
Vanadium	33		0.30	0.071	mg/Kg	1	₩	6010B	Total/NA
Zinc	40		1.2	0.53	mg/Kg	1	₩	6010B	Total/NA
Barium	0.45	J	0.50	0.050	mg/L	1		6010B	TCLP
Iron	0.29	J	0.40	0.20	mg/L	1		6010B	TCLP
Manganese	0.15		0.025	0.010	mg/L	1		6010B	TCLP
Nickel	0.022	J	0.025	0.010	mg/L	1		6010B	TCLP
Zinc	0.034	J	0.50	0.020	mg/L	1		6010B	TCLP
Mercury	0.034		0.021	0.0070	mg/Kg	1	₩	7471B	Total/NA
рН	4.6		0.20	0.20	SU	1		9045D	Total/NA

Client Sample ID: 3160-36-3 (0-3')

Client Sample ID: 316	0-36-3 (0-3')					Lab Sa	mp	ole ID: 50	0-136756-12
- Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	0.028		0.018	0.0080	mg/Kg	1	☼	8260B	Total/NA
Arsenic	6.6		0.55	0.19	mg/Kg	1	₩	6010B	Total/NA
Barium	49		0.55	0.063	mg/Kg	1	₩	6010B	Total/NA
Beryllium	0.32		0.22	0.051	mg/Kg	1	æ	6010B	Total/NA
Chromium	12		0.55	0.27	mg/Kg	1	☼	6010B	Total/NA
Cobalt	3.2		0.28	0.072	mg/Kg	1	₽	6010B	Total/NA
Copper	7.4		0.55	0.15	mg/Kg	1	± ± ±	6010B	Total/NA
Iron	14000		11	5.7	mg/Kg	1	☼	6010B	Total/NA
Lead	13		0.28	0.13	mg/Kg	1	☼	6010B	Total/NA
Manganese	140		0.55	0.080	mg/Kg	1	₩.	6010B	Total/NA
Nickel	6.8		0.55	0.16	mg/Kg	1	☼	6010B	Total/NA
Vanadium	24		0.28	0.065	mg/Kg	1	☼	6010B	Total/NA
Zinc	29		1.1	0.48	mg/Kg	1	т ф	6010B	Total/NA
Barium	0.29	J	0.50	0.050		1		6010B	TCLP
Iron	0.45		0.40		mg/L	1		6010B	TCLP
Manganese	0.38		0.025	0.010	mg/L	1		6010B	TCLP
Nickel	0.021	J	0.025	0.010	_	1		6010B	TCLP
Zinc	0.025	J	0.50	0.020	mg/L	1		6010B	TCLP
Manganese	0.084		0.025	0.010	mg/L	1		6010B	SPLP East
Mercury	0.025		0.019	0.0064	_	1	₽	7471B	Total/NA
pH	4.6		0.20	0.20		1		9045D	Total/NA

Client Sample ID: 3160-36-2 (0-3')

Client Sample ID: 3160	ent Sample ID: 3160-36-2 (0-3')								Lab Sample ID: 500-136756-13				
_ Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type				
Benzo[a]anthracene	0.0068	J	0.040	0.0054	mg/Kg	1	₩	8270D	Total/NA				
Fluoranthene	0.0088	J	0.040	0.0074	mg/Kg	1	₩	8270D	Total/NA				
Phenanthrene	0.014	J	0.040	0.0056	mg/Kg	1	₩	8270D	Total/NA				
Pyrene	0.0095	J	0.040	0.0079	mg/Kg	1	₩.	8270D	Total/NA				
Arsenic	8.8		0.57	0.19	mg/Kg	1	₩	6010B	Total/NA				
Barium	90		0.57	0.065	mg/Kg	1	₩	6010B	Total/NA				
Beryllium	0.53		0.23	0.053	mg/Kg	1	₩	6010B	Total/NA				
Chromium	16		0.57	0.28	mg/Kg	1	₩	6010B	Total/NA				
Cobalt	8.7		0.28	0.074	mg/Kg	1	₩	6010B	Total/NA				
Copper	13		0.57	0.16	mg/Kg	1	₩	6010B	Total/NA				
Iron	20000		11	5.9	mg/Kg	1	₩	6010B	Total/NA				

This Detection Summary does not include radiochemical test results.

TestAmerica Chicago

11/15/2017

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

9

Client Sample ID: 3160-36-2 (0-3') (Continued)

Lab Sample ID: 500-136756-13

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Lead	18		0.28	0.13	mg/Kg		₩	6010B	Total/NA
Manganese	430		0.57	0.082	mg/Kg	1	₩	6010B	Total/NA
Nickel	13		0.57	0.17	mg/Kg	1	₩	6010B	Total/NA
Vanadium	27		0.28	0.067	mg/Kg	1	₩	6010B	Total/NA
Zinc	47		1.1	0.50	mg/Kg	1	Д	6010B	Total/NA
Barium	0.52		0.50	0.050	mg/L	1		6010B	TCLP
Manganese	0.24		0.025	0.010	mg/L	1		6010B	TCLP
Nickel	0.014	J	0.025	0.010	mg/L	1		6010B	TCLP
Zinc	0.036	J	0.50	0.020	mg/L	1		6010B	TCLP
Manganese	0.049		0.025	0.010	mg/L	1		6010B	SPLP East
Mercury	0.041		0.018	0.0061	mg/Kg	1	Д	7471B	Total/NA
pH	5.0		0.20	0.20	SU	1		9045D	Total/NA

Client Sample ID: 3160-36-1 (0-3')

Lab Sample ID: 500-136756-14

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Anthracene	0.0085	J	0.042	0.0071	mg/Kg		₩	8270D	Total/NA
Benzo[a]anthracene	0.012	J	0.042	0.0057	mg/Kg	1	₩	8270D	Total/NA
Benzo[a]pyrene	0.019	J	0.042	0.0082	mg/Kg	1	₩	8270D	Total/NA
Benzo[b]fluoranthene	0.016	J	0.042	0.0091	mg/Kg	1	₩	8270D	Total/NA
Benzo[g,h,i]perylene	0.017	J	0.042	0.014	mg/Kg	1	₩	8270D	Total/NA
Chrysene	0.014	J	0.042	0.012	mg/Kg	1	₩	8270D	Total/NA
Fluoranthene	0.025	J	0.042	0.0079	mg/Kg	1	₩	8270D	Total/NA
Phenanthrene	0.026	J	0.042	0.0059	mg/Kg	1	₩	8270D	Total/NA
Pyrene	0.049		0.042	0.0084	mg/Kg	1	₩	8270D	Total/NA
Antimony	0.29	J	1.1	0.21	mg/Kg	1	₽	6010B	Total/NA
Arsenic	7.0		0.53	0.18	mg/Kg	1	₩	6010B	Total/NA
Barium	110		0.53	0.060	mg/Kg	1	₩	6010B	Total/NA
Beryllium	0.53		0.21	0.049	mg/Kg	1	₽	6010B	Total/NA
Cadmium	0.066	J	0.11	0.019	mg/Kg	1	₩	6010B	Total/NA
Chromium	12		0.53	0.26	mg/Kg	1	₩	6010B	Total/NA
Cobalt	14		0.26	0.069	mg/Kg	1	₩	6010B	Total/NA
Copper	9.5		0.53	0.15	mg/Kg	1	₩	6010B	Total/NA
Iron	15000		11	5.5	mg/Kg	1	₩	6010B	Total/NA
Lead	33		0.26	0.12	mg/Kg	1	₩	6010B	Total/NA
Manganese	910		0.53	0.077	mg/Kg	1	₩	6010B	Total/NA
Nickel	9.8		0.53	0.15	mg/Kg	1	₩	6010B	Total/NA
Selenium	0.45	J	0.53	0.31	mg/Kg	1	\	6010B	Total/NA
Vanadium	25		0.26	0.062	mg/Kg	1	₩	6010B	Total/NA
Zinc	50		1.1	0.46	mg/Kg	1	₩	6010B	Total/NA
Barium	0.30	J	0.50	0.050	mg/L	1		6010B	TCLP
Iron	0.45		0.40	0.20	mg/L	1		6010B	TCLP
Manganese	0.023	J	0.025	0.010	mg/L	1		6010B	TCLP
Mercury	0.040		0.019	0.0065	mg/Kg	1	₩	7471B	Total/NA
pH	7.0		0.20	0.20	SU	1		9045D	Total/NA

Client Sample ID: 3160-21-10 (0-2.5')

Lab Sample ID: 500-136756-15

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Acetone	0.043	0.017	0.0073 mg/Kg	1 ≅ 8260B	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Chicago

11/15/2017

O

<u>'</u>

9

11

12

14

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-21-10 (0-2.5') (Continued)

Lab Sample ID: 500-136756-15

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac		Method	Prep Type
Anthracene	0.025	J	0.040	0.0067	mg/Kg	1	₩	8270D	Total/NA
Benzo[a]anthracene	0.047		0.040	0.0054	mg/Kg	1	₩	8270D	Total/NA
Benzo[a]pyrene	0.060		0.040	0.0078	mg/Kg	1	₩	8270D	Total/NA
Benzo[b]fluoranthene	0.065		0.040	0.0087	mg/Kg	1	₩	8270D	Total/NA
Benzo[g,h,i]perylene	0.048		0.040	0.013	mg/Kg	1	₩	8270D	Total/NA
Benzo[k]fluoranthene	0.013	J	0.040	0.012	mg/Kg	1	₩	8270D	Total/NA
Chrysene	0.046		0.040	0.011	mg/Kg	1	₩	8270D	Total/NA
Dibenz(a,h)anthracene	0.042		0.040	0.0078	mg/Kg	1	₩	8270D	Total/NA
Dibenzofuran	0.063	J	0.20	0.047	mg/Kg	1	₩	8270D	Total/NA
Fluoranthene	0.060		0.040	0.0075	mg/Kg	1	₩	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	0.043		0.040	0.010	mg/Kg	1	₩	8270D	Total/NA
2-Methylnaphthalene	0.13		0.081	0.0074	mg/Kg	1	₩	8270D	Total/NA
Naphthalene	0.059		0.040	0.0062	mg/Kg	1	₩	8270D	Total/NA
Phenanthrene	0.19		0.040	0.0056	mg/Kg	1	₩	8270D	Total/NA
Pyrene	0.066		0.040	0.0080	mg/Kg	1	₩.	8270D	Total/NA
Arsenic	8.4		0.61	0.21	mg/Kg	1	₩	6010B	Total/NA
Barium	79		0.61	0.069	mg/Kg	1	₩	6010B	Total/NA
Beryllium	0.61		0.24	0.057	mg/Kg	1		6010B	Total/NA
Cadmium	0.19		0.12	0.022	mg/Kg	1	₩	6010B	Total/NA
Chromium	16		0.61	0.30	mg/Kg	1	₩	6010B	Total/NA
Cobalt	9.0		0.30	0.080		1	ф	6010B	Total/NA
Copper	19		0.61	0.17	mg/Kg	1	₩	6010B	Total/NA
Iron	19000		12	6.3	mg/Kg	1	₩	6010B	Total/NA
Lead	45		0.30		mg/Kg	1		6010B	Total/NA
Manganese	480		0.61		mg/Kg	1	₩	6010B	Total/NA
Nickel	14		0.61		mg/Kg	1	₩	6010B	Total/NA
Selenium	0.38	J	0.61		mg/Kg	1		6010B	Total/NA
Vanadium	28		0.30		mg/Kg	1	₩	6010B	Total/NA
Zinc	81		1.2	0.53		1	₩	6010B	Total/NA
Barium	0.38	J	0.50	0.050		1		6010B	TCLP
Iron	0.25		0.40	0.20	J	1		6010B	TCLP
Manganese	0.096		0.025	0.010	•	1		6010B	TCLP
Zinc	0.047		0.50	0.020		1		6010B	TCLP
Mercury	0.026		0.019	0.0065	-	1	₩	7471B	Total/NA
pH	7.6		0.20	0.20		1		9045D	Total/NA

Client Sample ID: 3160-21-9 (0-2.5')

Lab Sample ID: 500-136756-16

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	0.059		0.017	0.0074	mg/Kg		☼	8260B	Total/NA
Anthracene	0.013	J	0.038	0.0064	mg/Kg	1	₩	8270D	Total/NA
Benzo[a]anthracene	0.026	J	0.038	0.0051	mg/Kg	1	₩	8270D	Total/NA
Benzo[a]pyrene	0.045		0.038	0.0074	mg/Kg	1	₩	8270D	Total/NA
Benzo[b]fluoranthene	0.047		0.038	0.0083	mg/Kg	1	₩	8270D	Total/NA
Benzo[g,h,i]perylene	0.038		0.038	0.012	mg/Kg	1	₩	8270D	Total/NA
Chrysene	0.024	J	0.038	0.010	mg/Kg	1	₽	8270D	Total/NA
Fluoranthene	0.030	J	0.038	0.0071	mg/Kg	1	₩	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	0.034	J	0.038	0.0099	mg/Kg	1	₩	8270D	Total/NA
2-Methylnaphthalene	0.071	J	0.077	0.0070	mg/Kg	1	₽	8270D	Total/NA
Naphthalene	0.033	J	0.038	0.0059	mg/Kg	1	₩	8270D	Total/NA

This Detection Summary does not include radiochemical test results.

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Lab Sample ID: 500-136756-16

Client Sample ID: 3160-21-9 (0-2.5') (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Phenanthrene	0.099		0.038	0.0053	mg/Kg	1	₩	8270D	Total/NA
Pyrene	0.034	J	0.038	0.0076	mg/Kg	1	₩	8270D	Total/NA
Antimony	0.26	J	1.0	0.20	mg/Kg	1	₩	6010B	Total/NA
Arsenic	7.4		0.51	0.18	mg/Kg	1	₩	6010B	Total/NA
Barium	200		0.51	0.058	mg/Kg	1	₩	6010B	Total/NA
Beryllium	0.58		0.21	0.048	mg/Kg	1	₩	6010B	Total/NA
Cadmium	0.15		0.10	0.018	mg/Kg	1	₩	6010B	Total/NA
Chromium	14		0.51	0.25	mg/Kg	1	₩	6010B	Total/NA
Cobalt	11		0.26	0.067	mg/Kg	1	₩	6010B	Total/NA
Copper	14		0.51	0.14	mg/Kg	1	₩	6010B	Total/NA
Iron	18000		10	5.3	mg/Kg	1	₩	6010B	Total/NA
Lead	45		0.26	0.12	mg/Kg	1	₩	6010B	Total/NA
Manganese	540		0.51	0.074	mg/Kg	1	₩	6010B	Total/NA
Nickel	12		0.51	0.15	mg/Kg	1	₩	6010B	Total/NA
Selenium	0.41	J	0.51	0.30	mg/Kg	1	₩	6010B	Total/NA
Vanadium	23		0.26	0.061	mg/Kg	1	₩	6010B	Total/NA
Zinc	60		1.0	0.45	mg/Kg	1	₩	6010B	Total/NA
Barium	0.39	J	0.50	0.050	mg/L	1		6010B	TCLP
Iron	0.61		0.40	0.20	mg/L	1		6010B	TCLP
Manganese	0.018	J	0.025	0.010	mg/L	1		6010B	TCLP
Mercury	0.030		0.019	0.0065	mg/Kg	1	₩	7471B	Total/NA
pH	7.9		0.20	0.20	SU	1		9045D	Total/NA

Client Sample ID: 3160-21-8 (0-2.5')

Lab Sample ID: 500-136756-17

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	0.044		0.017	0.0075	mg/Kg	1	☼	8260B	Total/NA
Benzo[a]anthracene	0.0058	J	0.039	0.0053	mg/Kg	1	₩	8270D	Total/NA
Phenanthrene	0.0082	J	0.039	0.0055	mg/Kg	1	₩	8270D	Total/NA
Pyrene	0.0081	J	0.039	0.0078	mg/Kg	1	Ċ.	8270D	Total/NA
Arsenic	7.2		0.57	0.19	mg/Kg	1	₩	6010B	Total/NA
Barium	110		0.57	0.065	mg/Kg	1	₩	6010B	Total/NA
Beryllium	0.83		0.23	0.053	mg/Kg	1	Ϋ́	6010B	Total/NA
Chromium	18		0.57	0.28	mg/Kg	1	₽	6010B	Total/NA
Cobalt	19		0.28	0.075	mg/Kg	1	₽	6010B	Total/NA
Copper	11		0.57	0.16	mg/Kg	1	₩.	6010B	Total/NA
Iron	22000		11	5.9	mg/Kg	1	₽	6010B	Total/NA
Lead	24		0.28	0.13	mg/Kg	1	₽	6010B	Total/NA
Manganese	460		0.57	0.083	mg/Kg	1	₩.	6010B	Total/NA
Nickel	16		0.57	0.17	mg/Kg	1	₽	6010B	Total/NA
Vanadium	24		0.28	0.067	mg/Kg	1	₽	6010B	Total/NA
Zinc	47		1.1	0.50	mg/Kg	1	₩.	6010B	Total/NA
Barium	0.72		0.50	0.050	mg/L	1		6010B	TCLP
Iron	0.74		0.40	0.20	mg/L	1		6010B	TCLP
Manganese	0.055		0.025	0.010	mg/L	1		6010B	TCLP
Nickel	0.020	J	0.025	0.010	-	1		6010B	TCLP
Zinc	0.024	J	0.50	0.020	mg/L	1		6010B	TCLP
Mercury	0.013	J	0.020		mg/Kg	1	т. ф	7471B	Total/NA
Hq	6.4		0.20	0.20		1		9045D	Total/NA

This Detection Summary does not include radiochemical test results.

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-21-7 (0-2.5')

Lab Sample ID: 500-136756-18

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Anthracene	0.015	J	0.041	0.0069	mg/Kg		₩	8270D	Total/NA
Benzo[a]anthracene	0.032	J	0.041	0.0056	mg/Kg	1	₽	8270D	Total/NA
Benzo[a]pyrene	0.053		0.041	0.0080	mg/Kg	1	₽	8270D	Total/NA
Benzo[b]fluoranthene	0.061		0.041	0.0090	mg/Kg	1	₩	8270D	Total/NA
Benzo[g,h,i]perylene	0.047		0.041	0.013	mg/Kg	1	₩	8270D	Total/NA
Benzo[k]fluoranthene	0.014	J	0.041	0.012	mg/Kg	1	₩	8270D	Total/NA
Chrysene	0.031	J	0.041	0.011	mg/Kg	1	₩	8270D	Total/NA
Dibenz(a,h)anthracene	0.043		0.041	0.0080	mg/Kg	1	₩	8270D	Total/NA
Fluoranthene	0.049		0.041	0.0077	mg/Kg	1	₩	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	0.044		0.041	0.011	mg/Kg	1	¢	8270D	Total/NA
2-Methylnaphthalene	0.055	J	0.084	0.0076	mg/Kg	1	☼	8270D	Total/NA
Naphthalene	0.026	J	0.041	0.0064	mg/Kg	1	₩	8270D	Total/NA
Phenanthrene	0.094		0.041	0.0058	mg/Kg	1	ψ	8270D	Total/NA
Pyrene	0.050		0.041	0.0082	mg/Kg	1	₩	8270D	Total/NA
Arsenic	7.0		0.50	0.17	mg/Kg	1	₩	6010B	Total/NA
Barium	130		0.50	0.057	mg/Kg	1	₩.	6010B	Total/NA
Beryllium	0.57		0.20	0.047	mg/Kg	1	₩	6010B	Total/NA
Chromium	13		0.50	0.25	mg/Kg	1	₩	6010B	Total/NA
Cobalt	9.9		0.25	0.066	mg/Kg	1	₩.	6010B	Total/NA
Copper	12		0.50	0.14	mg/Kg	1	₩	6010B	Total/NA
Iron	17000		10	5.2	mg/Kg	1	₩	6010B	Total/NA
Lead	21		0.25	0.12	mg/Kg	1	₩.	6010B	Total/NA
Manganese	540		0.50	0.073	mg/Kg	1	₩	6010B	Total/NA
Nickel	12		0.50	0.15	mg/Kg	1	☼	6010B	Total/NA
Selenium	0.30	J	0.50	0.30	mg/Kg	1	₩.	6010B	Total/NA
Vanadium	23		0.25	0.059	mg/Kg	1	₩	6010B	Total/NA
Zinc	45		1.0	0.44	mg/Kg	1	☼	6010B	Total/NA
Barium	0.50		0.50	0.050	mg/L	1		6010B	TCLP
Iron	0.35	J	0.40	0.20	mg/L	1		6010B	TCLP
Manganese	0.035		0.025	0.010	mg/L	1		6010B	TCLP
Mercury	0.025		0.020	0.0066	mg/Kg	1	₽	7471B	Total/NA
рН	7.6		0.20	0.20	SU	1		9045D	Total/NA

Client Sample ID: 3160-21-6 (0-2.5')

Lab Sample ID: 500-	126756_10

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	0.041		0.020	0.0089	mg/Kg		₩	8260B	Total/NA
Arsenic	11		0.54	0.18	mg/Kg	1	₩	6010B	Total/NA
Barium	74		0.54	0.061	mg/Kg	1	₩	6010B	Total/NA
Beryllium	0.61		0.21	0.050	mg/Kg	1	₩.	6010B	Total/NA
Chromium	20		0.54	0.27	mg/Kg	1	₩	6010B	Total/NA
Cobalt	5.9		0.27	0.070	mg/Kg	1	₩	6010B	Total/NA
Copper	16		0.54	0.15	mg/Kg	1	₩	6010B	Total/NA
Iron	28000		11	5.6	mg/Kg	1	₩	6010B	Total/NA
Lead	19		0.27	0.12	mg/Kg	1	₩	6010B	Total/NA
Manganese	250		0.54	0.078	mg/Kg	1	₽	6010B	Total/NA
Nickel	14		0.54	0.16	mg/Kg	1	₩	6010B	Total/NA
Vanadium	35		0.27	0.063	mg/Kg	1	₩	6010B	Total/NA
Zinc	55		1.1	0.47	mg/Kg	1	₩	6010B	Total/NA
Barium	0.39	J	0.50	0.050	mg/L	1		6010B	TCLP

This Detection Summary does not include radiochemical test results.

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-21-6 (0-2.5') (Continued)

Lab Sample ID: 500-136756-19

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Copper	0.041		0.025	0.010	mg/L	1	_	6010B	TCLP
Manganese	0.035		0.025	0.010	mg/L	1		6010B	TCLP
Nickel	0.012	J	0.025	0.010	mg/L	1		6010B	TCLP
Zinc	0.042	J	0.50	0.020	mg/L	1		6010B	TCLP
Mercury	0.025		0.018	0.0061	mg/Kg	1	₽	7471B	Total/NA
рН	5.5		0.20	0.20	SU	1		9045D	Total/NA

Client Sample ID: 3160-21-5 (0-2.5')

Lab Sample ID: 500-136756-20

 Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzo[a]anthracene	0.0071	J	0.041	0.0055	mg/Kg		₩	8270D	Total/NA
Fluoranthene	0.0082	J	0.041	0.0076	mg/Kg	1	₩	8270D	Total/NA
2-Methylnaphthalene	0.016	J	0.082	0.0075	mg/Kg	1	₩	8270D	Total/NA
Phenanthrene	0.021	J	0.041	0.0057	mg/Kg	1	₩	8270D	Total/NA
Pyrene	0.0093	J	0.041	0.0081	mg/Kg	1	₩	8270D	Total/NA
Arsenic	9.5		0.57	0.19	mg/Kg	1	₩	6010B	Total/NA
Barium	98		0.57	0.065	mg/Kg	1	₩	6010B	Total/NA
Beryllium	0.73		0.23	0.053	mg/Kg	1	₩	6010B	Total/NA
Cadmium	0.18		0.11	0.020	mg/Kg	1	₩	6010B	Total/NA
Chromium	16		0.57	0.28	mg/Kg	1	₩	6010B	Total/NA
Cobalt	7.9		0.28	0.075	mg/Kg	1	₩	6010B	Total/NA
Copper	15		0.57	0.16	mg/Kg	1	₩	6010B	Total/NA
Iron	20000		11	5.9	mg/Kg	1	₩	6010B	Total/NA
Lead	60		0.28	0.13	mg/Kg	1	₩	6010B	Total/NA
Manganese	440		0.57	0.083	mg/Kg	1	₩	6010B	Total/NA
Nickel	15		0.57	0.17	mg/Kg	1	₩	6010B	Total/NA
Selenium	0.40	J	0.57	0.33	mg/Kg	1	₩	6010B	Total/NA
Vanadium	27		0.28	0.067	mg/Kg	1	₩	6010B	Total/NA
Zinc	66		1.1	0.50	mg/Kg	1	₩	6010B	Total/NA
Barium	0.34	J	0.50	0.050	mg/L	1		6010B	TCLP
Copper	0.019	J	0.025	0.010	mg/L	1		6010B	TCLP
Iron	0.87		0.40	0.20	mg/L	1		6010B	TCLP
Manganese	0.027		0.025	0.010	mg/L	1		6010B	TCLP
Zinc	0.046	J	0.50	0.020	mg/L	1		6010B	TCLP
Mercury	0.034		0.021	0.0070	mg/Kg	1	₩	7471B	Total/NA
pH	7.8		0.20	0.20	SU	1		9045D	Total/NA

Client Sample ID: 3160-21-4 (0-2.5')

Lab Sample ID: 500-136756-21

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	0.023		0.020	0.0088	mg/Kg	1	₩	8260B	Total/NA
Anthracene	0.013	J	0.044	0.0074	mg/Kg	1	₩	8270D	Total/NA
Benzo[a]anthracene	0.037	J	0.044	0.0060	mg/Kg	1	₩	8270D	Total/NA
Benzo[a]pyrene	0.051		0.044	0.0086	mg/Kg	1	₩	8270D	Total/NA
Benzo[b]fluoranthene	0.074		0.044	0.0096	mg/Kg	1	₩	8270D	Total/NA
Benzo[g,h,i]perylene	0.040	J	0.044	0.014	mg/Kg	1	₩	8270D	Total/NA
Benzo[k]fluoranthene	0.030	J	0.044	0.013	mg/Kg	1	₩	8270D	Total/NA
Chrysene	0.058		0.044	0.012	mg/Kg	1	₩	8270D	Total/NA
Fluoranthene	0.082		0.044	0.0082	mg/Kg	1	₩	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	0.025	J	0.044	0.011	mg/Kg	1	₩.	8270D	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Chicago

Page 16 of 195

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Lab Sample ID: 500-136756-21

Client Sample ID: 3160-21-4 (0-2.5') (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
2-Methylnaphthalene	0.044	J	0.089	0.0081	mg/Kg	1	夺	8270D	Total/NA
Naphthalene	0.023	J	0.044	0.0068	mg/Kg	1	₩	8270D	Total/NA
Phenanthrene	0.083		0.044	0.0062	mg/Kg	1	Ċ.	8270D	Total/NA
Pyrene	0.075		0.044	0.0088	mg/Kg	1	₩	8270D	Total/NA
Antimony	0.49	J F1	1.3	0.25	mg/Kg	1	☆	6010B	Total/NA
Arsenic	7.6		0.63	0.22	mg/Kg	1	ф	6010B	Total/NA
Barium	88		0.63	0.072	mg/Kg	1	₩	6010B	Total/NA
Beryllium	0.47		0.25	0.059	mg/Kg	1	₩	6010B	Total/NA
Cadmium	0.25	В	0.13	0.023	mg/Kg	1	₽	6010B	Total/NA
Chromium	16		0.63	0.31	mg/Kg	1	₩	6010B	Total/NA
Cobalt	6.0		0.32	0.083	mg/Kg	1	₩	6010B	Total/NA
Copper	21		0.63	0.18	mg/Kg	1	₩	6010B	Total/NA
Iron	18000		13	6.6	mg/Kg	1	₩	6010B	Total/NA
Lead	30		0.32	0.15	mg/Kg	1	₩	6010B	Total/NA
Manganese	220	F2	0.63	0.092	mg/Kg	1	¢	6010B	Total/NA
Nickel	14		0.63	0.18	mg/Kg	1	₩	6010B	Total/NA
Vanadium	27		0.32	0.075	mg/Kg	1	₩	6010B	Total/NA
Zinc	97	F1	1.3	0.56	mg/Kg	1	₩	6010B	Total/NA
Barium	0.49	J	0.50	0.050	mg/L	1		6010B	TCLP
Cadmium	0.0026	J	0.0050	0.0020	mg/L	1		6010B	TCLP
Manganese	0.29		0.025	0.010	mg/L	1		6010B	TCLP
Zinc	0.084	J	0.50	0.020	mg/L	1		6010B	TCLP
Manganese	0.056		0.025	0.010	mg/L	1		6010B	SPLP East
Mercury	0.019	J	0.020	0.0067	mg/Kg	1	₽	7471B	Total/NA
pH	8.0		0.20	0.20	SU	1		9045D	Total/NA

Client Sample ID: 3160-21-3 (0-2 5')

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzo[a]pyrene	0.015	J	0.037	0.0073	mg/Kg	1	₩	8270D	Total/NA
Phenanthrene	0.014	J	0.037	0.0053	mg/Kg	1	₩	8270D	Total/NA
Antimony	0.35	J	1.0	0.20	mg/Kg	1	₩	6010B	Total/NA
Arsenic	8.7		0.52	0.18	mg/Kg	1	₩	6010B	Total/NA
Barium	74		0.52	0.059	mg/Kg	1	₩	6010B	Total/NA
Beryllium	0.60		0.21	0.048	mg/Kg	1	₩	6010B	Total/NA
Chromium	24		0.52	0.26	mg/Kg	1	₩	6010B	Total/NA
Cobalt	7.0		0.26	0.068	mg/Kg	1	₩	6010B	Total/NA
Copper	11		0.52	0.15	mg/Kg	1	₩	6010B	Total/NA
Iron	22000		10	5.4	mg/Kg	1	₩	6010B	Total/NA
Lead	13		0.26	0.12	mg/Kg	1	₩	6010B	Total/NA
Manganese	310		0.52	0.075	mg/Kg	1	₩	6010B	Total/NA
Nickel	11		0.52	0.15	mg/Kg	1	₩	6010B	Total/NA
Vanadium	26		0.26	0.061	mg/Kg	1	₩	6010B	Total/NA
Zinc	36		1.0	0.46	mg/Kg	1	₩	6010B	Total/NA
Barium	0.47	J	0.50	0.050	mg/L	1		6010B	TCLP
Iron	0.24	J	0.40	0.20	mg/L	1		6010B	TCLP
Manganese	0.029		0.025	0.010	mg/L	1		6010B	TCLP
Mercury	0.037		0.018	0.0058	mg/Kg	1	*	7471B	Total/NA
рН	7.0		0.20	0.20	SU	1		9045D	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Chicago

Lab Sample ID: 500-136756-22

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Lab Sample ID: 500-136756-23

Client Sample ID: 3160-21-2 (0-2.5')

- Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	0.036		0.019	0.0083	mg/Kg	1	苺	8260B	Total/NA
Anthracene	0.036	J	0.038	0.0064	mg/Kg	1	₩	8270D	Total/NA
Benzo[a]anthracene	0.063		0.038	0.0051	mg/Kg	1	₩	8270D	Total/NA
Benzo[a]pyrene	0.050		0.038	0.0074	mg/Kg	1	₩.	8270D	Total/NA
Benzo[b]fluoranthene	0.059		0.038	0.0082	mg/Kg	1	₩	8270D	Total/NA
Benzo[g,h,i]perylene	0.015	J	0.038	0.012	mg/Kg	1	₩	8270D	Total/NA
Benzo[k]fluoranthene	0.016	J	0.038	0.011	mg/Kg	1	₩	8270D	Total/NA
Chrysene	0.060		0.038	0.010	mg/Kg	1	₩	8270D	Total/NA
Dibenzofuran	0.096	J	0.19	0.045	mg/Kg	1	₩	8270D	Total/NA
Fluoranthene	0.065		0.038	0.0071	mg/Kg	1	₩	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	0.013	J	0.038	0.0099	mg/Kg	1	₩	8270D	Total/NA
2-Methylnaphthalene	0.18		0.077	0.0070	mg/Kg	1	₩	8270D	Total/NA
Naphthalene	0.081		0.038	0.0059	mg/Kg	1	₩.	8270D	Total/NA
Phenanthrene	0.25		0.038	0.0053	mg/Kg	1	₩	8270D	Total/NA
Pyrene	0.075		0.038	0.0076	mg/Kg	1	₩	8270D	Total/NA
Antimony	0.32	J	1.1	0.22	mg/Kg	1		6010B	Total/NA
Arsenic	9.6		0.56	0.19	mg/Kg	1	₽	6010B	Total/NA
Barium	220		0.56	0.064		1	₩	6010B	Total/NA
Beryllium	0.72		0.22	0.053		1		6010B	Total/NA
Cadmium	0.24	В	0.11	0.020	mg/Kg	1	₽	6010B	Total/NA
Chromium	11		0.56	0.28	mg/Kg	1	₽	6010B	Total/NA
Cobalt	17		0.28	0.074		1		6010B	Total/NA
Copper	15		0.56	0.16	mg/Kg	1	₽	6010B	Total/NA
Iron	16000		11	5.8	mg/Kg	1	₽	6010B	Total/NA
Lead	55		0.28	0.13	mg/Kg	1		6010B	Total/NA
Manganese	3200		2.8	0.41	mg/Kg	5	₩	6010B	Total/NA
Nickel	15		0.56	0.16	mg/Kg	1	₽	6010B	Total/NA
Selenium	0.71		0.56	0.33	mg/Kg	1		6010B	Total/NA
Silver	0.23	J	0.28		mg/Kg	1	₩	6010B	Total/NA
Thallium	0.30	J	0.56	0.28	mg/Kg	1	₩	6010B	Total/NA
Vanadium	25		0.28	0.066		1	₩.	6010B	Total/NA
Zinc	66		1.1	0.49	mg/Kg	1	₩	6010B	Total/NA
Barium	0.50		0.50	0.050	mg/L	1		6010B	TCLP
Iron	0.23	J	0.40	0.20	mg/L	1		6010B	TCLP
Manganese	0.085		0.025	0.010	mg/L	1		6010B	TCLP
Zinc	0.058	J	0.50	0.020	-	1		6010B	TCLP
Mercury	0.033		0.018	0.0059	-			7471B	Total/NA
pH	8.2		0.20	0.20		1		9045D	Total/NA

Client Sample ID: 3160-21-1 (0-2.5')

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	0.025		0.018	0.0078	mg/Kg		₩	8260B	Total/NA
Phenanthrene	0.017	J	0.039	0.0054	mg/Kg	1	₩	8270D	Total/NA
Antimony	0.24	J	1.1	0.22	mg/Kg	1	₩	6010B	Total/NA
Arsenic	7.6		0.56	0.19	mg/Kg	1	₩	6010B	Total/NA
Barium	67		0.56	0.064	mg/Kg	1	₩	6010B	Total/NA
Beryllium	0.49		0.22	0.052	mg/Kg	1	₩	6010B	Total/NA
Cadmium	0.069	JB	0.11	0.020	mg/Kg	1	₩	6010B	Total/NA
Chromium	13		0.56	0.28	mg/Kg	1	₩	6010B	Total/NA

This Detection Summary does not include radiochemical test results.

Page 18 of 195

Lab Sample ID: 500-136756-24

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Lab Sample ID: 500-136756-24

Client Sample ID: 3160-21-1 (0-2.5') (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Cobalt	7.7		0.28	0.073	mg/Kg	1	₩	6010B	Total/NA
Copper	12		0.56	0.16	mg/Kg	1	₽	6010B	Total/NA
Iron	17000		11	5.8	mg/Kg	1	₩	6010B	Total/NA
Lead	21		0.28	0.13	mg/Kg	1	₽	6010B	Total/NA
Manganese	370		0.56	0.081	mg/Kg	1	₽	6010B	Total/NA
Nickel	12		0.56	0.16	mg/Kg	1	₩	6010B	Total/NA
Vanadium	25		0.28	0.066	mg/Kg	1	₽	6010B	Total/NA
Zinc	53		1.1	0.49	mg/Kg	1	₽	6010B	Total/NA
Barium	0.32	J	0.50	0.050	mg/L	1		6010B	TCLP
Copper	0.011	J	0.025	0.010	mg/L	1		6010B	TCLP
Iron	0.24	J	0.40	0.20	mg/L	1		6010B	TCLP
Manganese	0.014	J	0.025	0.010	mg/L	1		6010B	TCLP
Mercury	0.038		0.021	0.0069	mg/Kg	1	₽	7471B	Total/NA
pH	8.3		0.20	0.20	SU	1		9045D	Total/NA

Client Sample ID: 3160-5-3 (0-1.2')

Client Sample ID: 3160-5-3 (0-1.2')						Lab Sample ID: 500-136756-25				
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type	
Arsenic	5.1		0.57	0.19	mg/Kg	1	₩	6010B	Total/NA	
Barium	94		0.57	0.065	mg/Kg	1	₩	6010B	Total/NA	
Beryllium	0.48		0.23	0.053	mg/Kg	1	₩	6010B	Total/NA	
Cadmium	0.19	В	0.11	0.020	mg/Kg	1	₩	6010B	Total/NA	
Chromium	10		0.57	0.28	mg/Kg	1	₩	6010B	Total/NA	
Cobalt	7.0		0.28	0.074	mg/Kg	1	₩	6010B	Total/NA	
Copper	12		0.57	0.16	mg/Kg	1	₩	6010B	Total/NA	
Iron	13000		11	5.9	mg/Kg	1	₩	6010B	Total/NA	
Lead	73		0.28	0.13	mg/Kg	1	₩	6010B	Total/NA	
Manganese	270		0.57	0.082	mg/Kg	1	₩.	6010B	Total/NA	
Nickel	11		0.57	0.16	mg/Kg	1	₩	6010B	Total/NA	
Selenium	0.38	J	0.57	0.33	mg/Kg	1	₩	6010B	Total/NA	
Vanadium	17		0.28	0.067	mg/Kg	1	Ф	6010B	Total/NA	
Zinc	58		1.1	0.50	mg/Kg	1	₩	6010B	Total/NA	
Barium	0.97		0.50	0.050	mg/L	1		6010B	TCLP	
Manganese	0.089		0.025	0.010	mg/L	1		6010B	TCLP	
Zinc	0.031	J	0.50	0.020	mg/L	1		6010B	TCLP	
Mercury	0.028		0.019	0.0064	mg/Kg	1	₩	7471B	Total/NA	
рН	8.0		0.20	0.20		1		9045D	Total/NA	

Client Sample ID: 3160-5-2 (0-1.2')

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	4.7	0.59	0.20	mg/Kg		₩	6010B	Total/NA
Barium	42	0.59	0.067	mg/Kg	1	₩	6010B	Total/NA
Beryllium	0.43	0.23	0.055	mg/Kg	1	☆	6010B	Total/NA
Cadmium	0.043 JB	0.12	0.021	mg/Kg	1	₩	6010B	Total/NA
Chromium	9.7	0.59	0.29	mg/Kg	1	₩	6010B	Total/NA
Cobalt	5.7	0.29	0.077	mg/Kg	1	₩	6010B	Total/NA
Copper	8.3	0.59	0.16	mg/Kg	1	₽	6010B	Total/NA
Iron	20000	12	6.1	mg/Kg	1	☆	6010B	Total/NA
Lead	43	0.29	0.14	mg/Kg	1	₩	6010B	Total/NA

This Detection Summary does not include radiochemical test results.

Lab Sample ID: 500-136756-26

TestAmerica Job ID: 500-136756-1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Lab Sample ID: 500-136756-26

Client Sample ID: 3160-5-2 (0-1.2') (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Manganese	110		0.59	0.085	mg/Kg		₩	6010B	Total/NA
Nickel	8.3		0.59	0.17	mg/Kg	1	₩	6010B	Total/NA
Vanadium	16		0.29	0.069	mg/Kg	1	₩	6010B	Total/NA
Zinc	48		1.2	0.51	mg/Kg	1	₩	6010B	Total/NA
Barium	0.27	J	0.50	0.050	mg/L	1		6010B	TCLP
Copper	0.010	J	0.025	0.010	mg/L	1		6010B	TCLP
Iron	0.31	J	0.40	0.20	mg/L	1		6010B	TCLP
Manganese	0.038		0.025	0.010	mg/L	1		6010B	TCLP
Zinc	0.020	J	0.50	0.020	mg/L	1		6010B	TCLP
Mercury	0.020		0.019	0.0063	mg/Kg	1	₩.	7471B	Total/NA
pН	6.1		0.20	0.20	SU	1		9045D	Total/NA

Client Sample ID: 3160-5-1 (0-1.2')

Client Sample ID: 3	160-5-1 (0-1.2')					Lab Sa	mp	ole ID: 50	0-136756-27
- Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Antimony	0.27	J	1.0	0.20	mg/Kg		₩	6010B	Total/NA
Arsenic	13		0.52	0.18	mg/Kg	1	₩	6010B	Total/NA
Barium	83		0.52	0.059	mg/Kg	1	₩	6010B	Total/NA
Beryllium	0.60		0.21	0.048	mg/Kg	1	₩	6010B	Total/NA
Cadmium	0.22	В	0.10	0.019	mg/Kg	1	₩	6010B	Total/NA
Chromium	13		0.52	0.26	mg/Kg	1	₩	6010B	Total/NA
Cobalt	8.6		0.26	0.068	mg/Kg	1	₩.	6010B	Total/NA
Copper	12		0.52	0.14	mg/Kg	1	₩	6010B	Total/NA
Iron	16000		10	5.4	mg/Kg	1	₽	6010B	Total/NA
Lead	110		0.26	0.12	mg/Kg	1	₩.	6010B	Total/NA
Manganese	310		0.52	0.075	mg/Kg	1	₩	6010B	Total/NA
Nickel	17		0.52	0.15	mg/Kg	1	₽	6010B	Total/NA
Vanadium	20		0.26	0.061	mg/Kg	1	Ф	6010B	Total/NA
Zinc	75		1.0	0.45	mg/Kg	1	₩	6010B	Total/NA
Barium	1.2		0.50	0.050		1		6010B	TCLP
Copper	0.017	J	0.025	0.010	mg/L	1		6010B	TCLP
Manganese	0.089		0.025	0.010	mg/L	1		6010B	TCLP
Zinc	0.040	J	0.50	0.020	mg/L	1		6010B	TCLP
Mercury	0.037		0.018	0.0059	mg/Kg	1	₩	7471B	Total/NA
pH	8.6		0.20	0.20		1		9045D	Total/NA

This Detection Summary does not include radiochemical test results.

11/15/2017

Sample Summary

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136756-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
500-136756-1	3160-51-3 (0-1.5')	Solid	11/02/17 08:05 1	1/03/17 08:50
500-136756-2	3160-51-2 (0-1.5')	Solid	11/02/17 08:15 1	1/03/17 08:50
500-136756-3	3160-51-1 (0-1.5')	Solid	11/02/17 08:25 1	1/03/17 08:50
500-136756-4	3160-36-11 (0-3')	Solid	11/02/17 08:35 1	1/03/17 08:50
500-136756-5	3160-36-10 (0-3')	Solid	11/02/17 08:45 1	1/03/17 08:50
500-136756-6	3160-36-9 (0-3')	Solid	11/02/17 08:55 1	1/03/17 08:50
500-136756-7	3160-36-8 (0-3')	Solid	11/02/17 09:05 1	1/03/17 08:50
500-136756-8	3160-36-7 (0-3')	Solid	11/02/17 09:20 1	1/03/17 08:50
500-136756-9	3160-36-6 (0-3')	Solid	11/02/17 09:30 1	1/03/17 08:50
500-136756-10	3160-36-5 (0-3')	Solid	11/02/17 09:40 1	1/03/17 08:50
500-136756-11	3160-36-4 (0-3')	Solid	11/02/17 10:10 1	1/03/17 08:50
500-136756-12	3160-36-3 (0-3')	Solid	11/02/17 10:20 1	1/03/17 08:50
500-136756-13	3160-36-2 (0-3')	Solid	11/02/17 10:30 1	11/03/17 08:50
500-136756-14	3160-36-1 (0-3')	Solid	11/02/17 10:40 1	1/03/17 08:50
500-136756-15	3160-21-10 (0-2.5')	Solid	11/02/17 11:00 1	1/03/17 08:50
500-136756-16	3160-21-9 (0-2.5')	Solid	11/02/17 11:10 1	11/03/17 08:50
500-136756-17	3160-21-8 (0-2.5')	Solid	11/02/17 12:15 1	1/03/17 08:50
500-136756-18	3160-21-7 (0-2.5')	Solid	11/02/17 12:25 1	11/03/17 08:50
500-136756-19	3160-21-6 (0-2.5')	Solid	11/02/17 12:35 1	1/03/17 08:50
500-136756-20	3160-21-5 (0-2.5')	Solid	11/02/17 12:45 1	11/03/17 08:50
500-136756-21	3160-21-4 (0-2.5')	Solid	11/02/17 12:55 1	1/03/17 08:50
500-136756-22	3160-21-3 (0-2.5')	Solid	11/02/17 13:15 1	1/03/17 08:50
500-136756-23	3160-21-2 (0-2.5')	Solid	11/02/17 13:25 1	1/03/17 08:50
500-136756-24	3160-21-1 (0-2.5')	Solid	11/02/17 13:40 1	1/03/17 08:50
500-136756-25	3160-5-3 (0-1.2')	Solid	11/02/17 14:00 1	1/03/17 08:50
500-136756-26	3160-5-2 (0-1.2')	Solid	11/02/17 14:15 1	11/03/17 08:50
500-136756-27	3160-5-1 (0-1.2')	Solid	11/02/17 14:30 1	1/03/17 08:5

3

-

7

8

9

10

12

13

TestAmerica Job ID: 500-136756-1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-51-3 (0-1.5')

Date Collected: 11/02/17 08:05 Date Received: 11/03/17 08:50

Toluene-d8 (Surr)

Lab Sample ID: 500-136756-1

Matrix: Solid
Percent Solids: 82.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	<0.018		0.018	0.0080	mg/Kg	₩	11/03/17 18:20	11/08/17 12:26	1
Benzene	<0.0018		0.0018	0.00047	mg/Kg	☼	11/03/17 18:20	11/08/17 12:26	1
Bromodichloromethane	<0.0018		0.0018	0.00037	mg/Kg	☼	11/03/17 18:20	11/08/17 12:26	1
Bromoform	<0.0018		0.0018	0.00054	mg/Kg	φ.	11/03/17 18:20	11/08/17 12:26	1
Bromomethane	<0.0046		0.0046	0.0017	mg/Kg	☼	11/03/17 18:20	11/08/17 12:26	1
2-Butanone (MEK)	<0.0046		0.0046	0.0020	mg/Kg	☼	11/03/17 18:20	11/08/17 12:26	1
Carbon disulfide	<0.0046		0.0046	0.00095	mg/Kg	₽	11/03/17 18:20	11/08/17 12:26	1
Carbon tetrachloride	<0.0018		0.0018	0.00053	mg/Kg	☼	11/03/17 18:20	11/08/17 12:26	1
Chlorobenzene	<0.0018		0.0018	0.00068	mg/Kg	☼	11/03/17 18:20	11/08/17 12:26	1
Chloroethane	<0.0046		0.0046	0.0014	mg/Kg	₽	11/03/17 18:20	11/08/17 12:26	1
Chloroform	<0.0018		0.0018	0.00064	mg/Kg	☼	11/03/17 18:20	11/08/17 12:26	1
Chloromethane	<0.0046		0.0046	0.0018	mg/Kg	☼	11/03/17 18:20	11/08/17 12:26	1
cis-1,2-Dichloroethene	<0.0018		0.0018	0.00051	mg/Kg		11/03/17 18:20	11/08/17 12:26	1
cis-1,3-Dichloropropene	<0.0018		0.0018	0.00055	mg/Kg	☼	11/03/17 18:20	11/08/17 12:26	1
Dibromochloromethane	<0.0018		0.0018	0.00060	mg/Kg	☼	11/03/17 18:20	11/08/17 12:26	1
1,1-Dichloroethane	<0.0018		0.0018	0.00063	mg/Kg	₽	11/03/17 18:20	11/08/17 12:26	1
1,2-Dichloroethane	<0.0046		0.0046	0.0014	mg/Kg	☼	11/03/17 18:20	11/08/17 12:26	1
1,1-Dichloroethene	<0.0018		0.0018	0.00063	mg/Kg	☼	11/03/17 18:20	11/08/17 12:26	1
1,2-Dichloropropane	<0.0018		0.0018	0.00047	mg/Kg	₽	11/03/17 18:20	11/08/17 12:26	1
1,3-Dichloropropene, Total	<0.0018		0.0018	0.00064	mg/Kg	☼	11/03/17 18:20	11/08/17 12:26	1
Ethylbenzene	<0.0018		0.0018	0.00088	mg/Kg	☼	11/03/17 18:20	11/08/17 12:26	1
2-Hexanone	<0.0046		0.0046	0.0014	mg/Kg	₽	11/03/17 18:20	11/08/17 12:26	1
Methylene Chloride	<0.0046		0.0046	0.0018	mg/Kg	☼	11/03/17 18:20	11/08/17 12:26	1
4-Methyl-2-pentanone (MIBK)	<0.0046		0.0046	0.0014	mg/Kg	☼	11/03/17 18:20	11/08/17 12:26	1
Methyl tert-butyl ether	<0.0018		0.0018	0.00054	mg/Kg	₽	11/03/17 18:20	11/08/17 12:26	1
Styrene	<0.0018		0.0018	0.00055	mg/Kg	☼	11/03/17 18:20	11/08/17 12:26	1
1,1,2,2-Tetrachloroethane	<0.0018		0.0018	0.00059	mg/Kg	☼	11/03/17 18:20	11/08/17 12:26	1
Tetrachloroethene	<0.0018		0.0018	0.00062	mg/Kg	₽	11/03/17 18:20	11/08/17 12:26	1
Toluene	<0.0018		0.0018	0.00046	mg/Kg	☼	11/03/17 18:20	11/08/17 12:26	1
trans-1,2-Dichloroethene	<0.0018		0.0018	0.00081	mg/Kg	☼	11/03/17 18:20	11/08/17 12:26	1
trans-1,3-Dichloropropene	<0.0018		0.0018	0.00064	mg/Kg	₽	11/03/17 18:20	11/08/17 12:26	1
1,1,1-Trichloroethane	<0.0018		0.0018	0.00061	mg/Kg	☼	11/03/17 18:20	11/08/17 12:26	1
1,1,2-Trichloroethane	<0.0018		0.0018	0.00079	mg/Kg	☼	11/03/17 18:20	11/08/17 12:26	1
Trichloroethene	<0.0018		0.0018	0.00062	mg/Kg		11/03/17 18:20	11/08/17 12:26	1
Vinyl acetate	<0.0046		0.0046	0.0016	mg/Kg	☼	11/03/17 18:20	11/08/17 12:26	1
Vinyl chloride	<0.0018		0.0018	0.00081	mg/Kg	☼	11/03/17 18:20	11/08/17 12:26	1
Xylenes, Total	<0.0037		0.0037	0.00059	mg/Kg		11/03/17 18:20	11/08/17 12:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	89		75 - 131				11/03/17 18:20	11/08/17 12:26	1
Dibromofluoromethane	105		75 - 126				11/03/17 18:20	11/08/17 12:26	1
1,2-Dichloroethane-d4 (Surr)	114		70 - 134				11/03/17 18:20	11/08/17 12:26	1

Method: 8270D - Semivola	tile Organic Compounds (GC/MS)						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	<0.038	0.038	0.0068	mg/Kg	<u> </u>	11/10/17 07:22	11/10/17 20:42	1
Acenaphthylene	<0.038	0.038	0.0050	mg/Kg	☼	11/10/17 07:22	11/10/17 20:42	1
Anthracene	<0.038	0.038	0.0063	mg/Kg	☼	11/10/17 07:22	11/10/17 20:42	1
Benzo[a]anthracene	0.016 J	0.038	0.0051	mg/Kg	₽	11/10/17 07:22	11/10/17 20:42	1

75 - 124

TestAmerica Chicago

11/03/17 18:20 11/08/17 12:26

Page 22 of 195

11/15/2017

4

9

11

13

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136756-1

Client Sample ID: 3160-51-3 (0-1.5')

Lab Sample ID: 500-136756-1

Date Collected: 11/02/17 08:05

Date Received: 11/03/17 08:50

Matrix: Solid
Percent Solids: 82.7

Method: 8270D - Semivolatil Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
	0.043	Qualifier	0.038	0.0073		— ¤		11/10/17 20:42	- ОП Га
Benzo[a]pyrene Benzo[b]fluoranthene	0.049		0.038	0.0073		т Ф		11/10/17 20:42	
	0.043		0.038		mg/Kg	.		11/10/17 20:42	
Benzo[g,h,i]perylene	<0.038		0.038			₽		11/10/17 20:42	
Benzo[k]fluoranthene	<0.038		0.036		mg/Kg	~ ☆			
Bis(2-chloroethoxy)methane				0.039				11/10/17 20:42	
Bis(2-chloroethyl)ether	<0.19	FI	0.19		mg/Kg			11/10/17 20:42	
Bis(2-ethylhexyl) phthalate	<0.19		0.19	0.069	mg/Kg	☆		11/10/17 20:42	
4-Bromophenyl phenyl ether	<0.19		0.19			J.		11/10/17 20:42	
Butyl benzyl phthalate	<0.19		0.19		mg/Kg	₩		11/10/17 20:42	
Carbazole	<0.19		0.19		mg/Kg	*		11/10/17 20:42	
4-Chloroaniline	<0.77		0.77		mg/Kg	::::::::::::::::::::::::::::::::::::::		11/10/17 20:42	
4-Chloro-3-methylphenol	<0.38		0.38		mg/Kg	÷.		11/10/17 20:42	
2-Chloronaphthalene	<0.19		0.19		mg/Kg	₩	11/10/17 07:22	11/10/17 20:42	
2-Chlorophenol	<0.19		0.19	0.065	mg/Kg	₩	11/10/17 07:22	11/10/17 20:42	
4-Chlorophenyl phenyl ether	<0.19		0.19	0.044	mg/Kg	₽	11/10/17 07:22	11/10/17 20:42	
Chrysene	0.019	J	0.038	0.010	mg/Kg	₩	11/10/17 07:22	11/10/17 20:42	
Dibenz(a,h)anthracene	0.039		0.038	0.0073	mg/Kg	₩	11/10/17 07:22	11/10/17 20:42	
Dibenzofuran	<0.19		0.19	0.044	mg/Kg	₽	11/10/17 07:22	11/10/17 20:42	
1,2-Dichlorobenzene	<0.19		0.19	0.045	mg/Kg	₩	11/10/17 07:22	11/10/17 20:42	
1,3-Dichlorobenzene	<0.19		0.19	0.043	mg/Kg	₩	11/10/17 07:22	11/10/17 20:42	
1,4-Dichlorobenzene	<0.19		0.19	0.049	mg/Kg		11/10/17 07:22	11/10/17 20:42	
3,3'-Dichlorobenzidine	<0.19		0.19		mg/Kg	₩	11/10/17 07:22	11/10/17 20:42	
2,4-Dichlorophenol	<0.38		0.38	0.090	mg/Kg	₩	11/10/17 07:22	11/10/17 20:42	
Diethyl phthalate	<0.19		0.19	0.064	mg/Kg		11/10/17 07:22	11/10/17 20:42	
2,4-Dimethylphenol	<0.38		0.38		mg/Kg	₩	11/10/17 07:22	11/10/17 20:42	
Dimethyl phthalate	<0.19		0.19	0.050	mg/Kg	₩	11/10/17 07:22	11/10/17 20:42	
Di-n-butyl phthalate	<0.19		0.19		mg/Kg			11/10/17 20:42	
4,6-Dinitro-2-methylphenol	<0.77		0.77		mg/Kg	₩	11/10/17 07:22	11/10/17 20:42	
2,4-Dinitrophenol	<0.77		0.77		mg/Kg	₩		11/10/17 20:42	
2,4-Dinitrotoluene	<0.19		0.19		mg/Kg	 \$		11/10/17 20:42	
2,6-Dinitrotoluene	<0.19		0.19		mg/Kg	₩		11/10/17 20:42	
Di-n-octyl phthalate	<0.19		0.19		mg/Kg	₩		11/10/17 20:42	
Fluoranthene	0.024		0.038	0.0070	mg/Kg			11/10/17 20:42	
Fluorene	<0.038	3	0.038	0.0070	mg/Kg	₩		11/10/17 20:42	
Hexachlorobenzene	<0.037		0.030	0.0033		.;;		11/10/17 20:42	
Hexachlorobutadiene	<0.19		0.19					11/10/17 20:42	
	<0.19	⊏1	0.19		mg/Kg mg/Kg	т Ф		11/10/17 20:42	
Hexachlorocyclopentadiene		ГІ						11/10/17 20:42	
Hexachloroethane	<0.19		0.19		mg/Kg				
Indeno[1,2,3-cd]pyrene	0.038		0.038	0.0098		☆		11/10/17 20:42	
Isophorone	<0.19		0.19		mg/Kg	₩ ₩		11/10/17 20:42	
2-Methylnaphthalene	0.022	J	0.077	0.0070	0 0	14.		11/10/17 20:42	
2-Methylphenol	<0.19		0.19		mg/Kg	☆		11/10/17 20:42	
3 & 4 Methylphenol	<0.19	_	0.19		mg/Kg	φ.		11/10/17 20:42	
Naphthalene	0.0097	J	0.038	0.0058		::::::::::::::::::::::::::::::::::::::		11/10/17 20:42	
2-Nitroaniline	<0.19		0.19		mg/Kg	₩		11/10/17 20:42	
3-Nitroaniline	<0.38		0.38	0.12	mg/Kg	₩		11/10/17 20:42	
4-Nitroaniline	<0.38		0.38	0.16	mg/Kg	₩	11/10/17 07:22	11/10/17 20:42	
Nitrobenzene	<0.038		0.038	0.0095	mg/Kg	₩	11/10/17 07:22	11/10/17 20:42	
2-Nitrophenol	< 0.38		0.38	0.090	mg/Kg	₩	11/10/17 07:22	11/10/17 20:42	

TestAmerica Chicago

11/15/2017

Page 23 of 195

2

3

7

9

11

13

Н

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-51-3 (0-1.5')

TestAmerica Job ID: 500-136756-1

Lab Sample ID: 500-136756-1

Matrix: Solid

Date Collected: 11/02/17 08:05 Date Received: 11/03/17 08:50 Percent Solids: 82.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.77		0.77	0.36	mg/Kg	<u>₩</u>	11/10/17 07:22	11/10/17 20:42	1
N-Nitrosodi-n-propylamine	<0.077		0.077	0.046	mg/Kg	₩.	11/10/17 07:22	11/10/17 20:42	1
N-Nitrosodiphenylamine	<0.19		0.19	0.045	mg/Kg	☼	11/10/17 07:22	11/10/17 20:42	1
2,2'-oxybis[1-chloropropane]	<0.19		0.19	0.044	mg/Kg	₩	11/10/17 07:22	11/10/17 20:42	1
Pentachlorophenol	<0.77		0.77	0.61	mg/Kg	₩	11/10/17 07:22	11/10/17 20:42	1
Phenanthrene	0.038		0.038	0.0053	mg/Kg	☼	11/10/17 07:22	11/10/17 20:42	1
Phenol	<0.19		0.19	0.084	mg/Kg	☼	11/10/17 07:22	11/10/17 20:42	1
Pyrene	0.029	J	0.038	0.0075	mg/Kg	₽	11/10/17 07:22	11/10/17 20:42	1
1,2,4-Trichlorobenzene	<0.19		0.19	0.041	mg/Kg	☼	11/10/17 07:22	11/10/17 20:42	1
2,4,5-Trichlorophenol	<0.38		0.38	0.087	mg/Kg	₩	11/10/17 07:22	11/10/17 20:42	1
2,4,6-Trichlorophenol	<0.38		0.38	0.13	mg/Kg	\$	11/10/17 07:22	11/10/17 20:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	84		44 - 121				11/10/17 07:22	11/10/17 20:42	1
2-Fluorophenol	96		46 - 133				11/10/17 07:22	11/10/17 20:42	1
Nitrobenzene-d5	86		41 - 120				11/10/17 07:22	11/10/17 20:42	1
Phenol-d5	97		46 - 125				11/10/17 07:22	11/10/17 20:42	1
Terphenyl-d14	98		35 - 160				11/10/17 07:22	11/10/17 20:42	1
2,4,6-Tribromophenol	67		25 - 139				11/10/17 07:22	11/10/17 20:42	1

Method: 6010B - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.43	J F1	1.1	0.22	mg/Kg	<u></u>	11/07/17 08:10		1
Arsenic	6.8	F1	0.56	0.19	mg/Kg	₩	11/07/17 08:10	11/07/17 19:15	1
Barium	89	F1	0.56	0.064	mg/Kg	₩	11/07/17 08:10	11/07/17 19:15	1
Beryllium	0.49		0.22	0.052	mg/Kg		11/07/17 08:10	11/07/17 19:15	1
Cadmium	0.24		0.11	0.020	mg/Kg	☼	11/07/17 08:10	11/07/17 19:15	1
Chromium	15	F1	0.56	0.28	mg/Kg	₩	11/07/17 08:10	11/07/17 19:15	1
Cobalt	5.2		0.28	0.073	mg/Kg		11/07/17 08:10	11/07/17 19:15	1
Copper	14		0.56	0.16	mg/Kg	₩	11/07/17 08:10	11/07/17 19:15	1
Iron	16000		11	5.8	mg/Kg	₩	11/07/17 08:10	11/07/17 19:15	1
Lead	99		0.28	0.13	mg/Kg		11/07/17 08:10	11/07/17 19:15	1
Manganese	200	F2	0.56	0.081	mg/Kg	₩	11/07/17 08:10	11/07/17 19:15	1
Nickel	11		0.56	0.16	mg/Kg	₩	11/07/17 08:10	11/07/17 19:15	1
Selenium	0.49	J F1	0.56	0.33	mg/Kg		11/07/17 08:10	11/07/17 19:15	1
Silver	<0.28	F1	0.28	0.072	mg/Kg	₩	11/07/17 08:10	11/07/17 19:15	1
Thallium	<0.56	F1	0.56	0.28	mg/Kg	₩	11/07/17 08:10	11/07/17 19:15	1
Vanadium	22		0.28	0.066	mg/Kg		11/07/17 08:10	11/07/17 19:15	1
Zinc	66	F1	1.1	0.49	mg/Kg	₩	11/07/17 08:10	11/07/17 19:15	1

Analyte	Result Qua	ıalifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050	0.050	0.010	mg/L		11/08/17 08:50	11/08/17 16:40	1
Barium	0.70	0.50	0.050	mg/L		11/08/17 08:50	11/08/17 16:40	1
Beryllium	<0.0040	0.0040	0.0040	mg/L		11/08/17 08:50	11/08/17 16:40	1
Cadmium	<0.0050	0.0050	0.0020	mg/L		11/08/17 08:50	11/08/17 16:40	1
Chromium	<0.025	0.025	0.010	mg/L		11/08/17 08:50	11/08/17 16:40	1
Cobalt	<0.025	0.025	0.010	mg/L		11/08/17 08:50	11/08/17 16:40	1
Copper	<0.025	0.025	0.010	mg/L		11/08/17 08:50	11/08/17 16:40	1
Iron	0.33 J	0.40	0.20	mg/L		11/08/17 08:50	11/08/17 16:40	1

Page 24 of 195

TestAmerica Chicago

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/02/17 08:05 Date Received: 11/03/17 08:50

рН

Client Sample ID: 3160-51-3 (0-1.5')

TestAmerica Job ID: 500-136756-1

Lab Sample ID: 500-136756-1

Matrix: Solid	
Percent Solids: 82.7	
·	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	<0.0075		0.0075	0.0075	mg/L		11/08/17 08:50	11/08/17 16:40	1
Manganese	0.031		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 16:40	1
Nickel	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 16:40	1
Selenium	<0.050		0.050	0.020	mg/L		11/08/17 08:50	11/08/17 16:40	1
Silver	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 16:40	1
Vanadium	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 16:40	1
Zinc	<0.50		0.50	0.020	mg/L		11/08/17 08:50	11/08/17 16:40	1
Method: 6020A - Metals	(ICP/MS) - TCLP								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060		0.0060	0.0060	mg/L		11/08/17 08:50	11/10/17 10:32	1
Thallium _	<0.0020		0.0020	0.0020	mg/L		11/08/17 08:50	11/10/17 10:32	1
- Method: 7470A - TCLP N	lercury - TCLP								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/08/17 13:40	11/09/17 09:19	1
- Method: 7471B - Mercury	y (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.016	J	0.018	0.0061	mg/Kg	<u> </u>	11/07/17 13:20	11/08/17 10:25	1
- General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

0.20

8.5

0.20 SU

11/12/17 16:06

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-51-2 (0-1.5')

Date Collected: 11/02/17 08:15 Date Received: 11/03/17 08:50

Toluene-d8 (Surr)

Lab Sample ID: 500-136756-2

Matrix: Solid
Percent Solids: 85.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Acetone	<0.016		0.016	0.0069	mg/Kg	₩	11/03/17 18:20	11/08/17 12:51	
Benzene	<0.0016		0.0016	0.00041	mg/Kg	☼	11/03/17 18:20	11/08/17 12:51	
Bromodichloromethane	<0.0016		0.0016	0.00032	mg/Kg	☼	11/03/17 18:20	11/08/17 12:51	
Bromoform	<0.0016		0.0016	0.00046	mg/Kg	\$	11/03/17 18:20	11/08/17 12:51	
Bromomethane	<0.0040		0.0040	0.0015	mg/Kg	≎	11/03/17 18:20	11/08/17 12:51	
2-Butanone (MEK)	<0.0040		0.0040	0.0018	mg/Kg	☼	11/03/17 18:20	11/08/17 12:51	
Carbon disulfide	<0.0040		0.0040	0.00083	mg/Kg	φ.	11/03/17 18:20	11/08/17 12:51	
Carbon tetrachloride	<0.0016		0.0016	0.00046	mg/Kg	₽	11/03/17 18:20	11/08/17 12:51	
Chlorobenzene	<0.0016		0.0016	0.00059	mg/Kg	₽	11/03/17 18:20	11/08/17 12:51	
Chloroethane	<0.0040		0.0040	0.0012	mg/Kg	₽	11/03/17 18:20	11/08/17 12:51	
Chloroform	<0.0016		0.0016	0.00055	mg/Kg	☼	11/03/17 18:20	11/08/17 12:51	
Chloromethane	<0.0040		0.0040	0.0016	mg/Kg	₩	11/03/17 18:20	11/08/17 12:51	
cis-1,2-Dichloroethene	<0.0016		0.0016	0.00045	mg/Kg	\$	11/03/17 18:20	11/08/17 12:51	
cis-1,3-Dichloropropene	<0.0016		0.0016	0.00048	mg/Kg	☼	11/03/17 18:20	11/08/17 12:51	
Dibromochloromethane	<0.0016		0.0016	0.00052	mg/Kg	☼	11/03/17 18:20	11/08/17 12:51	
1,1-Dichloroethane	<0.0016		0.0016	0.00055	mg/Kg	₽	11/03/17 18:20	11/08/17 12:51	
1,2-Dichloroethane	<0.0040		0.0040	0.0012	mg/Kg	☼	11/03/17 18:20	11/08/17 12:51	
1,1-Dichloroethene	<0.0016		0.0016	0.00055	mg/Kg	☼	11/03/17 18:20	11/08/17 12:51	
1,2-Dichloropropane	<0.0016		0.0016	0.00041	mg/Kg	₽	11/03/17 18:20	11/08/17 12:51	
1,3-Dichloropropene, Total	<0.0016		0.0016	0.00056	mg/Kg	☼	11/03/17 18:20	11/08/17 12:51	
Ethylbenzene	<0.0016		0.0016	0.00076	mg/Kg	☼	11/03/17 18:20	11/08/17 12:51	
2-Hexanone	<0.0040		0.0040	0.0012	mg/Kg	₽	11/03/17 18:20	11/08/17 12:51	
Methylene Chloride	<0.0040		0.0040	0.0016	mg/Kg	☼	11/03/17 18:20	11/08/17 12:51	
4-Methyl-2-pentanone (MIBK)	<0.0040		0.0040	0.0012	mg/Kg	☼	11/03/17 18:20	11/08/17 12:51	
Methyl tert-butyl ether	<0.0016		0.0016	0.00047	mg/Kg	₽	11/03/17 18:20	11/08/17 12:51	
Styrene	<0.0016		0.0016	0.00048	mg/Kg	☼	11/03/17 18:20	11/08/17 12:51	
1,1,2,2-Tetrachloroethane	<0.0016		0.0016	0.00051	mg/Kg	☼	11/03/17 18:20	11/08/17 12:51	
Tetrachloroethene	<0.0016		0.0016	0.00054	mg/Kg	φ.	11/03/17 18:20	11/08/17 12:51	
Toluene	<0.0016		0.0016	0.00040	mg/Kg	☼	11/03/17 18:20	11/08/17 12:51	
trans-1,2-Dichloroethene	<0.0016		0.0016	0.00071	mg/Kg	☼	11/03/17 18:20	11/08/17 12:51	
trans-1,3-Dichloropropene	<0.0016		0.0016	0.00056	mg/Kg	₽	11/03/17 18:20	11/08/17 12:51	
1,1,1-Trichloroethane	<0.0016		0.0016	0.00053	mg/Kg	☼	11/03/17 18:20	11/08/17 12:51	
1,1,2-Trichloroethane	<0.0016		0.0016	0.00068	mg/Kg	≎	11/03/17 18:20	11/08/17 12:51	
Trichloroethene	<0.0016		0.0016	0.00054	mg/Kg		11/03/17 18:20	11/08/17 12:51	
Vinyl acetate	<0.0040		0.0040	0.0014	mg/Kg	≎	11/03/17 18:20	11/08/17 12:51	
Vinyl chloride	<0.0016		0.0016	0.00070	mg/Kg	≎	11/03/17 18:20	11/08/17 12:51	
Xylenes, Total	<0.0032		0.0032	0.00051	mg/Kg		11/03/17 18:20	11/08/17 12:51	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	88		75 - 131				11/03/17 18:20	11/08/17 12:51	-
Dibromofluoromethane	106		75 - 126				11/03/17 18:20	11/08/17 12:51	
1,2-Dichloroethane-d4 (Surr)	112		70 - 134				11/03/17 18:20	11/08/17 12:51	

Method: 8270D - Semivo	latile Organic Compounds (ic Compounds (GC/MS)						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	<0.038	0.038	0.0070	mg/Kg	₩	11/10/17 07:22	11/10/17 22:32	1
Acenaphthylene	<0.038	0.038	0.0051	mg/Kg	≎	11/10/17 07:22	11/10/17 22:32	1
Anthracene	0.031 J	0.038	0.0065	mg/Kg	≎	11/10/17 07:22	11/10/17 22:32	1
Benzo[a]anthracene	0.098	0.038	0.0052	mg/Kg	≎	11/10/17 07:22	11/10/17 22:32	1

75 - 124

TestAmerica Chicago

11/03/17 18:20 11/08/17 12:51

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136756-1

Client Sample ID: 3160-51-2 (0-1.5')

Lab Sample ID: 500-136756-2

Date Collected: 11/02/17 08:15

Date Received: 11/03/17 08:50

Matrix: Solid
Percent Solids: 85.1

Analyte	e Organic Compoun Result Qualifier		MDL		D	Prepared	Analyzed	Dil Fa
		0.038			— =		11/10/17 22:32	- ОП Га
Benzo[a]pyrene	0.13	0.038		0 0	₩		11/10/17 22:32	
Benzo[b]fluoranthene	0.15		0.0083		· · · · · · · · · · · · · · · · · · ·			
Benzo[g,h,i]perylene	0.10	0.038		mg/Kg			11/10/17 22:32	
Benzo[k]fluoranthene	0.038	0.038		mg/Kg	☆		11/10/17 22:32	
Bis(2-chloroethoxy)methane	<0.19	0.19	0.039	0 0	· · · · · ·		11/10/17 22:32	
Bis(2-chloroethyl)ether	<0.19	0.19		mg/Kg	*		11/10/17 22:32	
Bis(2-ethylhexyl) phthalate	<0.19	0.19	0.071	mg/Kg	₩.		11/10/17 22:32	
4-Bromophenyl phenyl ether	<0.19	0.19	0.051				11/10/17 22:32	
Butyl benzyl phthalate	<0.19	0.19		mg/Kg	*		11/10/17 22:32	
Carbazole	<0.19	0.19	0.097	0 0	:		11/10/17 22:32	
4-Chloroaniline	<0.78	0.78		mg/Kg			11/10/17 22:32	
4-Chloro-3-methylphenol	<0.38	0.38	0.13	mg/Kg	☼	11/10/17 07:22	11/10/17 22:32	
2-Chloronaphthalene	<0.19	0.19	0.043	mg/Kg	₩	11/10/17 07:22	11/10/17 22:32	
2-Chlorophenol	<0.19	0.19	0.066	mg/Kg	₩	11/10/17 07:22	11/10/17 22:32	
4-Chlorophenyl phenyl ether	<0.19	0.19	0.045	mg/Kg	₽	11/10/17 07:22	11/10/17 22:32	
Chrysene	0.12	0.038	0.011	mg/Kg	₩	11/10/17 07:22	11/10/17 22:32	
Dibenz(a,h)anthracene	0.050	0.038	0.0075	mg/Kg	₩	11/10/17 07:22	11/10/17 22:32	
Dibenzofuran	0.073 J	0.19	0.045	mg/Kg	₽	11/10/17 07:22	11/10/17 22:32	
1,2-Dichlorobenzene	<0.19	0.19	0.046	mg/Kg	₩	11/10/17 07:22	11/10/17 22:32	
1,3-Dichlorobenzene	<0.19	0.19	0.044	mg/Kg	☼	11/10/17 07:22	11/10/17 22:32	
1,4-Dichlorobenzene	<0.19	0.19	0.050	mg/Kg		11/10/17 07:22	11/10/17 22:32	
3,3'-Dichlorobenzidine	<0.19	0.19	0.054	mg/Kg	₩	11/10/17 07:22	11/10/17 22:32	
2,4-Dichlorophenol	<0.38	0.38		mg/Kg	₩	11/10/17 07:22	11/10/17 22:32	
Diethyl phthalate	<0.19	0.19		mg/Kg		11/10/17 07:22	11/10/17 22:32	
2,4-Dimethylphenol	<0.38	0.38		mg/Kg	₩	11/10/17 07:22	11/10/17 22:32	
Dimethyl phthalate	<0.19	0.19		mg/Kg	₩	11/10/17 07:22	11/10/17 22:32	
Di-n-butyl phthalate	<0.19	0.19		mg/Kg			11/10/17 22:32	
4,6-Dinitro-2-methylphenol	<0.78	0.78		mg/Kg	₩		11/10/17 22:32	
2,4-Dinitrophenol	<0.78	0.78		mg/Kg	₩		11/10/17 22:32	
2,4-Dinitrotoluene	<0.19	0.19		mg/Kg			11/10/17 22:32	
2,6-Dinitrotoluene	<0.19	0.19		mg/Kg	₩		11/10/17 22:32	
Di-n-octyl phthalate	<0.19	0.19		mg/Kg	₩		11/10/17 22:32	
Fluoranthene	0.14	0.038	0.0072		· · · · · · · · · · · · · · · · · · ·		11/10/17 22:32	
Fluorene		0.038	0.0072				11/10/17 22:32	
Hexachlorobenzene	0.0059 J <0.078	0.038	0.0054	5 5	~ ☆		11/10/17 22:32	
Hexachlorobutadiene	<0.19	0.19		mg/Kg	φ. 		11/10/17 22:32	
Hexachlorocyclopentadiene	<0.78	0.78		mg/Kg	₽		11/10/17 22:32	
Hexachloroethane	<0.19	0.19		mg/Kg			11/10/17 22:32	
Indeno[1,2,3-cd]pyrene	0.079	0.038		mg/Kg	Ψ.		11/10/17 22:32	
Isophorone	<0.19	0.19		mg/Kg	φ.		11/10/17 22:32	
2-Methylnaphthalene	0.14	0.078	0.0071		: <u>-</u>		11/10/17 22:32	
2-Methylphenol	<0.19	0.19		mg/Kg	Ψ.		11/10/17 22:32	
3 & 4 Methylphenol	<0.19	0.19		mg/Kg	₩.		11/10/17 22:32	
Naphthalene	0.063	0.038	0.0060				11/10/17 22:32	
2-Nitroaniline	<0.19	0.19		mg/Kg	₩		11/10/17 22:32	
3-Nitroaniline	<0.38	0.38	0.12	mg/Kg	₩		11/10/17 22:32	
4-Nitroaniline	<0.38	0.38		mg/Kg	₩	11/10/17 07:22	11/10/17 22:32	
Nitrobenzene	<0.038	0.038	0.0097	mg/Kg	₩	11/10/17 07:22	11/10/17 22:32	
2-Nitrophenol	<0.38	0.38	0.091	mg/Kg	₩	11/10/17 07:22	11/10/17 22:32	

TestAmerica Chicago

2

3

5

b

8

10

12

. .

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/02/17 08:15

Client Sample ID: 3160-51-2 (0-1.5')

TestAmerica Job ID: 500-136756-1

Lab Sample ID: 500-136756-2

Matrix: Solid Percent Solids: 85.1

Date Received: 11/03/17 08:50 Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Method: 82/0D - Semivolatii	le Organic Compounds (GC/MS) (CC	ntinuea)				
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.78	0.78	0.37	mg/Kg	<u></u>	11/10/17 07:22	11/10/17 22:32	1
N-Nitrosodi-n-propylamine	<0.078	0.078	0.047	mg/Kg	φ.	11/10/17 07:22	11/10/17 22:32	1
N-Nitrosodiphenylamine	<0.19	0.19	0.046	mg/Kg	₽	11/10/17 07:22	11/10/17 22:32	1
2,2'-oxybis[1-chloropropane]	<0.19	0.19	0.045	mg/Kg	☼	11/10/17 07:22	11/10/17 22:32	1
Pentachlorophenol	<0.78	0.78	0.62	mg/Kg	₽	11/10/17 07:22	11/10/17 22:32	1
Phenanthrene	0.25	0.038	0.0054	mg/Kg	☼	11/10/17 07:22	11/10/17 22:32	1
Phenol	<0.19	0.19	0.086	mg/Kg	☼	11/10/17 07:22	11/10/17 22:32	1
Pyrene	0.20	0.038	0.0077	mg/Kg	₽	11/10/17 07:22	11/10/17 22:32	1
1,2,4-Trichlorobenzene	<0.19	0.19	0.042	mg/Kg	☼	11/10/17 07:22	11/10/17 22:32	1
2,4,5-Trichlorophenol	<0.38	0.38	0.088	mg/Kg	☼	11/10/17 07:22	11/10/17 22:32	1
2,4,6-Trichlorophenol	<0.38	0.38	0.13	mg/Kg	₽	11/10/17 07:22	11/10/17 22:32	1

Surrogate	%Recovery Q	ualifier Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	95	44 - 121	11/10/17 07:22	11/10/17 22:32	1
2-Fluorophenol	102	46 - 133	11/10/17 07:22	11/10/17 22:32	1
Nitrobenzene-d5	90	41 - 120	11/10/17 07:22	11/10/17 22:32	1
Phenol-d5	107	46 - 125	11/10/17 07:22	11/10/17 22:32	1
Terphenyl-d14	99	35 - 160	11/10/17 07:22	11/10/17 22:32	1
2,4,6-Tribromophenol	79	25 - 139	11/10/17 07:22	11/10/17 22:32	1

Me	ethod:	6010B	- Metals	(ICP)
-				

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<1.1		1.1	0.22	mg/Kg	<u> </u>	11/07/17 08:10	11/07/17 19:43	1
Arsenic	6.4		0.56	0.19	mg/Kg	☼	11/07/17 08:10	11/07/17 19:43	1
Barium	82		0.56	0.064	mg/Kg	☼	11/07/17 08:10	11/07/17 19:43	1
Beryllium	0.68		0.22	0.052	mg/Kg	₩.	11/07/17 08:10	11/07/17 19:43	1
Cadmium	0.45		0.11	0.020	mg/Kg	☼	11/07/17 08:10	11/07/17 19:43	1
Chromium	21		0.56	0.28	mg/Kg	₩	11/07/17 08:10	11/07/17 19:43	1
Cobalt	8.6		0.28	0.073	mg/Kg	₩.	11/07/17 08:10	11/07/17 19:43	1
Copper	15		0.56	0.16	mg/Kg	☼	11/07/17 08:10	11/07/17 19:43	1
Iron	17000		11	5.8	mg/Kg	₩	11/07/17 08:10	11/07/17 19:43	1
Lead	290		0.28	0.13	mg/Kg	₩	11/07/17 08:10	11/07/17 19:43	1
Manganese	360		0.56	0.081	mg/Kg	₩	11/07/17 08:10	11/07/17 19:43	1
Nickel	14		0.56	0.16	mg/Kg	₩	11/07/17 08:10	11/07/17 19:43	1
Selenium	0.63		0.56	0.33	mg/Kg	₩	11/07/17 08:10	11/07/17 19:43	1
Silver	<0.28		0.28	0.072	mg/Kg	₩	11/07/17 08:10	11/07/17 19:43	1
Thallium	<0.56		0.56	0.28	mg/Kg	☼	11/07/17 08:10	11/07/17 19:43	1
Vanadium	20		0.28	0.066	mg/Kg	₩	11/07/17 08:10	11/07/17 19:43	1
Zinc	110		1.1	0.49	mg/Kg	₩	11/07/17 08:10	11/07/17 19:43	1

motification of the motation (for)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/08/17 08:50	11/08/17 16:44	1
Barium	0.85		0.50	0.050	mg/L		11/08/17 08:50	11/08/17 16:44	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/08/17 08:50	11/08/17 16:44	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/08/17 08:50	11/08/17 16:44	1
Chromium	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 16:44	1
Cobalt	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 16:44	1
Copper	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 16:44	1
Iron	0.20	J	0.40	0.20	mg/L		11/08/17 08:50	11/08/17 16:44	1

Page 28 of 195

TestAmerica Chicago

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/02/17 08:15

Date Received: 11/03/17 08:50

Client Sample ID: 3160-51-2 (0-1.5')

TestAmerica Job ID: 500-136756-1

Lab Sample ID: 500-136756-2

Matrix: Solid

Percent Solids: 85.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	<0.0075		0.0075	0.0075	mg/L		11/08/17 08:50	11/08/17 16:44	1
Manganese	0.022	J	0.025	0.010	mg/L		11/08/17 08:50	11/08/17 16:44	1
Nickel	< 0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 16:44	1
Selenium	<0.050		0.050	0.020	mg/L		11/08/17 08:50	11/08/17 16:44	1
Silver	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 16:44	1
Vanadium	< 0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 16:44	1
Zinc	0.049	J	0.50	0.020	mg/L		11/08/17 08:50	11/08/17 16:44	1
Method: 6020A - Metals (IC	P/MS) - TCLP								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060		0.0060	0.0060	mg/L		11/08/17 08:50	11/10/17 10:36	
Thallium	<0.0020		0.0020	0.0020	mg/L		11/08/17 08:50	11/10/17 10:36	1
Method: 7470A - TCLP Mei	cury - TCLP								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/08/17 13:40	11/09/17 10:02	1
Method: 7471B - Mercury (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.023		0.019	0.0062	mg/Kg	<u>∓</u>	11/07/17 13:20	11/08/17 10:27	
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	8.9		0.20	0.20	SU			11/12/17 16:39	

TestAmerica Job ID: 500-136756-1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-51-1 (0-1.5')

Lab Sample ID: 500-136756-3 Date Collected: 11/02/17 08:25 **Matrix: Solid** Date Received: 11/03/17 08:50 Percent Solids: 79.3

Analyte	Result Quali	ifier RL	MDL		D	Prepared	Analyzed	Dil Fac
Acetone	<0.019	0.019	0.0084	mg/Kg	<u> </u>	11/03/17 18:20	11/08/17 13:16	1
Benzene	<0.0019	0.0019	0.00049	mg/Kg	₩	11/03/17 18:20	11/08/17 13:16	1
Bromodichloromethane	<0.0019	0.0019	0.00039	mg/Kg	₩	11/03/17 18:20	11/08/17 13:16	1
Bromoform	<0.0019	0.0019	0.00056	mg/Kg	₽	11/03/17 18:20	11/08/17 13:16	1
Bromomethane	<0.0048	0.0048	0.0018	mg/Kg	₩	11/03/17 18:20	11/08/17 13:16	1
2-Butanone (MEK)	<0.0048	0.0048	0.0021	mg/Kg	₩	11/03/17 18:20	11/08/17 13:16	1
Carbon disulfide	<0.0048	0.0048	0.0010	mg/Kg	.	11/03/17 18:20	11/08/17 13:16	1
Carbon tetrachloride	<0.0019	0.0019	0.00056	mg/Kg	₩	11/03/17 18:20	11/08/17 13:16	1
Chlorobenzene	<0.0019	0.0019	0.00071	mg/Kg	₩	11/03/17 18:20	11/08/17 13:16	1
Chloroethane	<0.0048	0.0048	0.0014	mg/Kg	₩	11/03/17 18:20	11/08/17 13:16	1
Chloroform	<0.0019	0.0019	0.00067	mg/Kg	₩	11/03/17 18:20	11/08/17 13:16	1
Chloromethane	<0.0048	0.0048	0.0019	mg/Kg	₩	11/03/17 18:20	11/08/17 13:16	1
cis-1,2-Dichloroethene	<0.0019	0.0019	0.00054	mg/Kg	₩	11/03/17 18:20	11/08/17 13:16	1
cis-1,3-Dichloropropene	<0.0019	0.0019	0.00058	mg/Kg	₩	11/03/17 18:20	11/08/17 13:16	1
Dibromochloromethane	<0.0019	0.0019	0.00063	mg/Kg	₩	11/03/17 18:20	11/08/17 13:16	1
1,1-Dichloroethane	<0.0019	0.0019	0.00066	mg/Kg	₩	11/03/17 18:20	11/08/17 13:16	1
1,2-Dichloroethane	<0.0048	0.0048	0.0015	mg/Kg	₩	11/03/17 18:20	11/08/17 13:16	1
1,1-Dichloroethene	<0.0019	0.0019	0.00066	mg/Kg	₩	11/03/17 18:20	11/08/17 13:16	1
1,2-Dichloropropane	<0.0019	0.0019	0.00050	mg/Kg		11/03/17 18:20	11/08/17 13:16	1
1,3-Dichloropropene, Total	< 0.0019	0.0019	0.00068	mg/Kg	₩	11/03/17 18:20	11/08/17 13:16	1
Ethylbenzene	< 0.0019	0.0019	0.00092	mg/Kg	₩	11/03/17 18:20	11/08/17 13:16	1
2-Hexanone	<0.0048	0.0048	0.0015	mg/Kg		11/03/17 18:20	11/08/17 13:16	1
Methylene Chloride	<0.0048	0.0048	0.0019	mg/Kg	₩	11/03/17 18:20	11/08/17 13:16	1
4-Methyl-2-pentanone (MIBK)	<0.0048	0.0048	0.0014	mg/Kg	₩	11/03/17 18:20	11/08/17 13:16	1
Methyl tert-butyl ether	<0.0019	0.0019	0.00057	mg/Kg		11/03/17 18:20	11/08/17 13:16	1
Styrene	< 0.0019	0.0019	0.00058	mg/Kg	₩	11/03/17 18:20	11/08/17 13:16	1
1,1,2,2-Tetrachloroethane	< 0.0019	0.0019	0.00062	mg/Kg	₩	11/03/17 18:20	11/08/17 13:16	1
Tetrachloroethene	<0.0019	0.0019	0.00066	mg/Kg		11/03/17 18:20	11/08/17 13:16	1
Toluene	< 0.0019	0.0019	0.00049	mg/Kg	₩	11/03/17 18:20	11/08/17 13:16	1
trans-1,2-Dichloroethene	< 0.0019	0.0019	0.00086	mg/Kg	₩	11/03/17 18:20	11/08/17 13:16	1
trans-1,3-Dichloropropene	<0.0019	0.0019	0.00068	mg/Kg		11/03/17 18:20	11/08/17 13:16	1
1,1,1-Trichloroethane	< 0.0019	0.0019	0.00065	mg/Kg	₩	11/03/17 18:20	11/08/17 13:16	1
1,1,2-Trichloroethane	< 0.0019	0.0019	0.00083	mg/Kg	₩	11/03/17 18:20	11/08/17 13:16	1
Trichloroethene	<0.0019	0.0019	0.00065	mg/Kg	φ.	11/03/17 18:20	11/08/17 13:16	1
Vinyl acetate	<0.0048	0.0048	0.0017	mg/Kg	₩	11/03/17 18:20	11/08/17 13:16	1
Vinyl chloride	<0.0019	0.0019	0.00085	mg/Kg	₩	11/03/17 18:20	11/08/17 13:16	1
Xylenes, Total	<0.0039	0.0039	0.00062	mg/Kg	\$	11/03/17 18:20	11/08/17 13:16	1
Surrogate	%Recovery Quali	ifier Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91	75 - 131				11/03/17 18:20	11/08/17 13:16	1
Dibromofluoromethane	106	75 - 126				11/03/17 18:20	11/08/17 13:16	1
1,2-Dichloroethane-d4 (Surr)	112	70 - 134				11/03/17 18:20	11/08/17 13:16	1
Toluene-d8 (Surr)	94	75 - 124				11/03/17 18:20	11/08/17 13:16	1

Method: 8270D - Semivola	atile Organic Compounds (GC/MS)						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	<0.041	0.041	0.0074	mg/Kg	\	11/10/17 07:22	11/10/17 23:00	1
Acenaphthylene	<0.041	0.041	0.0054	mg/Kg	≎	11/10/17 07:22	11/10/17 23:00	1
Anthracene	0.025 J	0.041	0.0069	mg/Kg	≎	11/10/17 07:22	11/10/17 23:00	1
Benzo[a]anthracene	0.049	0.041	0.0056	mg/Kg	₽	11/10/17 07:22	11/10/17 23:00	1

TestAmerica Chicago

Page 30 of 195

11/15/2017

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028 TestAmerica Job ID: 500-136756-1

Client Sample ID: 3160-51-1 (0-1.5')

Lab Sample ID: 500-136756-3

Date Collected: 11/02/17 08:25

Date Received: 11/03/17 08:50

Matrix: Solid
Percent Solids: 79.3

Method: 8270D - Semivolatil Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
		Qualifier	0.041	0.0080		— =		11/10/17 23:00	- ОП Га
Benzo[a]pyrene	0.066		0.041		mg/Kg	₩		11/10/17 23:00	
Benzo[b]fluoranthene	0.073			0.0089		· · · · · · · · · · · · · · · · · · ·			
Benzo[g,h,i]perylene	0.054		0.041		mg/Kg			11/10/17 23:00	
Benzo[k]fluoranthene	0.015	J	0.041		mg/Kg	☆		11/10/17 23:00	
Bis(2-chloroethoxy)methane	<0.21		0.21		mg/Kg			11/10/17 23:00	
Bis(2-chloroethyl)ether	<0.21		0.21		mg/Kg	*		11/10/17 23:00	
Bis(2-ethylhexyl) phthalate	<0.21		0.21		mg/Kg	Ψ.		11/10/17 23:00	
4-Bromophenyl phenyl ether	<0.21		0.21		mg/Kg			11/10/17 23:00	
Butyl benzyl phthalate	<0.21		0.21	0.079	mg/Kg	:		11/10/17 23:00	
Carbazole	<0.21		0.21		mg/Kg	₽		11/10/17 23:00	
4-Chloroaniline	<0.83		0.83		mg/Kg			11/10/17 23:00	
4-Chloro-3-methylphenol	<0.41		0.41	0.14	mg/Kg	₩	11/10/17 07:22	11/10/17 23:00	
2-Chloronaphthalene	<0.21		0.21	0.046	mg/Kg	₩	11/10/17 07:22	11/10/17 23:00	
2-Chlorophenol	<0.21		0.21	0.070	mg/Kg	₩	11/10/17 07:22	11/10/17 23:00	
4-Chlorophenyl phenyl ether	<0.21		0.21	0.048	mg/Kg	₩	11/10/17 07:22	11/10/17 23:00	
Chrysene	0.053		0.041	0.011	mg/Kg	₩	11/10/17 07:22	11/10/17 23:00	
Dibenz(a,h)anthracene	<0.041		0.041	0.0080	mg/Kg	₩	11/10/17 07:22	11/10/17 23:00	
Dibenzofuran	0.054	J	0.21	0.048	mg/Kg	₩	11/10/17 07:22	11/10/17 23:00	
1,2-Dichlorobenzene	<0.21		0.21	0.049	mg/Kg	☼	11/10/17 07:22	11/10/17 23:00	
1,3-Dichlorobenzene	<0.21		0.21	0.046	mg/Kg	₩	11/10/17 07:22	11/10/17 23:00	
1,4-Dichlorobenzene	<0.21		0.21	0.053	mg/Kg	₩.	11/10/17 07:22	11/10/17 23:00	
3,3'-Dichlorobenzidine	<0.21		0.21		mg/Kg	₩	11/10/17 07:22	11/10/17 23:00	
2,4-Dichlorophenol	<0.41		0.41	0.098		₩	11/10/17 07:22	11/10/17 23:00	
Diethyl phthalate	<0.21		0.21	0.070	mg/Kg		11/10/17 07:22	11/10/17 23:00	
2,4-Dimethylphenol	<0.41		0.41		mg/Kg	₩	11/10/17 07:22	11/10/17 23:00	
Dimethyl phthalate	<0.21		0.21		mg/Kg	₩	11/10/17 07:22	11/10/17 23:00	
Di-n-butyl phthalate	<0.21		0.21		mg/Kg			11/10/17 23:00	
4,6-Dinitro-2-methylphenol	<0.83		0.83		mg/Kg	₩		11/10/17 23:00	
2,4-Dinitrophenol	<0.83		0.83		mg/Kg	₩		11/10/17 23:00	
2,4-Dinitrotoluene	<0.21		0.21		mg/Kg			11/10/17 23:00	
2,6-Dinitrotoluene	<0.21		0.21	0.081		₩		11/10/17 23:00	
Di-n-octyl phthalate	<0.21		0.21		mg/Kg	₩		11/10/17 23:00	
Fluoranthene	0.060		0.041	0.007	mg/Kg	· · · · · · · · · · · · · · · · · · ·		11/10/17 23:00	
	<0.041		0.041	0.0077				11/10/17 23:00	
Fluorene Hexachlorobenzene	<0.041		0.041	0.0056	mg/Kg	~ ☆		11/10/17 23:00	
Hexachlorobutadiene	<0.21		0.21		mg/Kg	φ. **		11/10/17 23:00	
Hexachlorocyclopentadiene	<0.83		0.83		mg/Kg	₽		11/10/17 23:00	
Hexachloroethane	<0.21		0.21		mg/Kg	% .		11/10/17 23:00	
Indeno[1,2,3-cd]pyrene	0.046		0.041		mg/Kg	Ψ.		11/10/17 23:00	
Isophorone	<0.21		0.21		mg/Kg	φ.		11/10/17 23:00	
2-Methylnaphthalene	0.099		0.083	0.0076		: <u>-</u>		11/10/17 23:00	
2-Methylphenol	<0.21		0.21		mg/Kg	₩.		11/10/17 23:00	
3 & 4 Methylphenol	<0.21		0.21		mg/Kg	₩.		11/10/17 23:00	
Naphthalene	0.044		0.041	0.0063		.		11/10/17 23:00	
2-Nitroaniline	<0.21		0.21	0.056	mg/Kg	₩	11/10/17 07:22	11/10/17 23:00	
3-Nitroaniline	<0.41		0.41		mg/Kg	₩		11/10/17 23:00	
4-Nitroaniline	<0.41		0.41		mg/Kg	₩	11/10/17 07:22	11/10/17 23:00	
Nitrobenzene	<0.041		0.041	0.010	mg/Kg	₽	11/10/17 07:22	11/10/17 23:00	
2-Nitrophenol	<0.41		0.41	0.098	mg/Kg	≎	11/10/17 07:22	11/10/17 23:00	

TestAmerica Chicago

2

3

5

7

9

10

12

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/02/17 08:25

Date Received: 11/03/17 08:50

Client Sample ID: 3160-51-1 (0-1.5')

TestAmerica Job ID: 500-136756-1

Lab Sample ID: 500-136756-3

Matrix: Solid

Percent Solids: 79.3

Method: 8270D - Semivola	tile Organic Co	mpounds	(GC/MS) (Cd	ntinued)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.83		0.83	0.39	mg/Kg	₩	11/10/17 07:22	11/10/17 23:00	1
N-Nitrosodi-n-propylamine	<0.083		0.083	0.050	mg/Kg	₽	11/10/17 07:22	11/10/17 23:00	1
N-Nitrosodiphenylamine	<0.21		0.21	0.049	mg/Kg	₩	11/10/17 07:22	11/10/17 23:00	1
2,2'-oxybis[1-chloropropane]	<0.21		0.21	0.048	mg/Kg	₩	11/10/17 07:22	11/10/17 23:00	1
Pentachlorophenol	<0.83		0.83	0.66	mg/Kg	₽	11/10/17 07:22	11/10/17 23:00	1
Phenanthrene	0.17		0.041	0.0058	mg/Kg	₩	11/10/17 07:22	11/10/17 23:00	1
Phenol	<0.21		0.21	0.092	mg/Kg	₩	11/10/17 07:22	11/10/17 23:00	1
Pyrene	0.068		0.041	0.0082	mg/Kg	₩	11/10/17 07:22	11/10/17 23:00	1
1,2,4-Trichlorobenzene	<0.21		0.21	0.044	mg/Kg	₩	11/10/17 07:22	11/10/17 23:00	1
2,4,5-Trichlorophenol	<0.41		0.41	0.094	mg/Kg	₩	11/10/17 07:22	11/10/17 23:00	1
2,4,6-Trichlorophenol	<0.41		0.41	0.14	mg/Kg	☆	11/10/17 07:22	11/10/17 23:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	84		44 - 121				11/10/17 07:22	11/10/17 23:00	1
2-Fluorophenol	97		46 - 133				11/10/17 07:22	11/10/17 23:00	1
Nitrobenzene-d5	81		41 - 120				11/10/17 07:22	11/10/17 23:00	1
Phenol-d5	94		46 - 125				11/10/17 07:22	11/10/17 23:00	1
Terphenyl-d14	99		35 - 160				11/10/17 07:22	11/10/17 23:00	1
2,4,6-Tribromophenol	71		25 - 139				11/10/17 07:22	11/10/17 23:00	1

Method: 6010B - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<1.2		1.2	0.24	mg/Kg	<u></u>	11/07/17 08:10		1
Arsenic	7.3		0.62	0.21	mg/Kg	₩	11/07/17 08:10	11/07/17 19:47	1
Barium	88		0.62	0.071	mg/Kg	₩	11/07/17 08:10	11/07/17 19:47	1
Beryllium	0.52		0.25	0.058	mg/Kg		11/07/17 08:10	11/07/17 19:47	1
Cadmium	0.29		0.12	0.022	mg/Kg	☼	11/07/17 08:10	11/07/17 19:47	1
Chromium	15		0.62	0.31	mg/Kg	₩	11/07/17 08:10	11/07/17 19:47	1
Cobalt	7.7		0.31	0.081	mg/Kg		11/07/17 08:10	11/07/17 19:47	1
Copper	16		0.62	0.17	mg/Kg	₩	11/07/17 08:10	11/07/17 19:47	1
Iron	16000		12	6.5	mg/Kg	₩	11/07/17 08:10	11/07/17 19:47	1
Lead	69		0.31	0.14	mg/Kg		11/07/17 08:10	11/07/17 19:47	1
Manganese	340		0.62	0.090	mg/Kg	₩	11/07/17 08:10	11/07/17 19:47	1
Nickel	13		0.62	0.18	mg/Kg	₩	11/07/17 08:10	11/07/17 19:47	1
Selenium	0.59	J	0.62	0.37	mg/Kg		11/07/17 08:10	11/07/17 19:47	1
Silver	< 0.31		0.31	0.080	mg/Kg	₩	11/07/17 08:10	11/07/17 19:47	1
Thallium	< 0.62		0.62	0.31	mg/Kg	₩	11/07/17 08:10	11/07/17 19:47	1
Vanadium	24		0.31	0.073	mg/Kg		11/07/17 08:10	11/07/17 19:47	1
Zinc	78		1.2		mg/Kg	₩	11/07/17 08:10	11/07/17 19:47	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/08/17 08:50	11/08/17 16:49	1
Barium	0.37	J	0.50	0.050	mg/L		11/08/17 08:50	11/08/17 16:49	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/08/17 08:50	11/08/17 16:49	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/08/17 08:50	11/08/17 16:49	1
Chromium	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 16:49	1
Cobalt	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 16:49	1
Copper	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 16:49	1
Iron	3.5		0.40	0.20	mg/L		11/08/17 08:50	11/08/17 16:49	1

Page 32 of 195

TestAmerica Chicago

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/02/17 08:25

Date Received: 11/03/17 08:50

Client Sample ID: 3160-51-1 (0-1.5')

TestAmerica Job ID: 500-136756-1

Lab Sample ID: 500-136756-3

Matrix: Solid

Percent Solids: 79.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	0.011		0.0075	0.0075	mg/L		11/08/17 08:50	11/08/17 16:49	1
Manganese	0.040		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 16:49	1
Nickel	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 16:49	1
Selenium	<0.050		0.050	0.020	mg/L		11/08/17 08:50	11/08/17 16:49	1
Silver	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 16:49	1
Vanadium	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 16:49	1
Zinc	0.061	J	0.50	0.020	mg/L		11/08/17 08:50	11/08/17 16:49	1
- Method: 6010B - SPLP Metals - SF	LP Eas	i t							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	0.21		0.0075	0.0075	mg/L		11/08/17 14:37	11/09/17 20:32	1
- Method: 6020A - Metals (ICP/MS) -	TCLP								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060		0.0060	0.0060	mg/L		11/08/17 08:50	11/10/17 10:40	1
Thallium	<0.0020		0.0020	0.0020	mg/L		11/08/17 08:50	11/10/17 10:40	1
- Method: 7470A - TCLP Mercury - 1	CLP								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/08/17 13:40	11/09/17 10:03	1
Method: 7471B - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.035		0.019	0.0062	mg/Kg	<u> </u>	11/07/17 13:20	11/08/17 10:29	1
General Chemistry									
	Posult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	Result	Qualifici	114	IVIDE	Oint		i icpaica	Allulyzou	Dii i uc

TestAmerica Job ID: 500-136756-1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-36-11 (0-3')

Date Collected: 11/02/17 08:35 Date Received: 11/03/17 08:50 Lab Sample ID: 500-136756-4

Matrix: Solid
Percent Solids: 80.6

Method: 8260B - Volatile O Analyte	Result Q		MDL		D	Prepared	Analyzed	Dil Fac
Acetone	<0.017	0.017	0.0075	mg/Kg		11/03/17 18:20	11/08/17 13:42	1
Benzene	< 0.0017	0.0017	0.00044		₩	11/03/17 18:20	11/08/17 13:42	1
Bromodichloromethane	< 0.0017	0.0017	0.00035	mg/Kg	☼	11/03/17 18:20	11/08/17 13:42	1
Bromoform	<0.0017	0.0017	0.00050	mg/Kg	₩	11/03/17 18:20	11/08/17 13:42	1
Bromomethane	< 0.0043	0.0043	0.0016	mg/Kg	₩	11/03/17 18:20	11/08/17 13:42	1
2-Butanone (MEK)	< 0.0043	0.0043	0.0019	mg/Kg	≎	11/03/17 18:20	11/08/17 13:42	1
Carbon disulfide	<0.0043	0.0043	0.00089	mg/Kg	≎	11/03/17 18:20	11/08/17 13:42	1
Carbon tetrachloride	< 0.0017	0.0017	0.00050	mg/Kg	≎	11/03/17 18:20	11/08/17 13:42	1
Chlorobenzene	<0.0017	0.0017	0.00063	mg/Kg	₽	11/03/17 18:20	11/08/17 13:42	1
Chloroethane	<0.0043	0.0043	0.0013	mg/Kg	₽	11/03/17 18:20	11/08/17 13:42	1
Chloroform	<0.0017	0.0017	0.00059	mg/Kg	₽	11/03/17 18:20	11/08/17 13:42	1
Chloromethane	< 0.0043	0.0043	0.0017	mg/Kg	₽	11/03/17 18:20	11/08/17 13:42	1
cis-1,2-Dichloroethene	<0.0017	0.0017	0.00048	mg/Kg	₽	11/03/17 18:20	11/08/17 13:42	1
cis-1,3-Dichloropropene	<0.0017	0.0017	0.00052	mg/Kg	₽	11/03/17 18:20	11/08/17 13:42	1
Dibromochloromethane	<0.0017	0.0017	0.00056	mg/Kg	₽	11/03/17 18:20	11/08/17 13:42	1
1,1-Dichloroethane	<0.0017	0.0017	0.00059	mg/Kg	₩.	11/03/17 18:20	11/08/17 13:42	1
1,2-Dichloroethane	< 0.0043	0.0043	0.0013	mg/Kg	₩	11/03/17 18:20	11/08/17 13:42	1
1,1-Dichloroethene	<0.0017	0.0017	0.00059	mg/Kg	☼	11/03/17 18:20	11/08/17 13:42	1
1,2-Dichloropropane	<0.0017	0.0017	0.00044	mg/Kg	₩.	11/03/17 18:20	11/08/17 13:42	1
1,3-Dichloropropene, Total	<0.0017	0.0017	0.00060	mg/Kg	₩	11/03/17 18:20	11/08/17 13:42	1
Ethylbenzene	< 0.0017	0.0017	0.00082	mg/Kg	☼	11/03/17 18:20	11/08/17 13:42	1
2-Hexanone	<0.0043	0.0043	0.0013	mg/Kg	\$	11/03/17 18:20	11/08/17 13:42	1
Methylene Chloride	< 0.0043	0.0043	0.0017	mg/Kg	☼	11/03/17 18:20	11/08/17 13:42	1
4-Methyl-2-pentanone (MIBK)	< 0.0043	0.0043	0.0013	mg/Kg	₽	11/03/17 18:20	11/08/17 13:42	1
Methyl tert-butyl ether	<0.0017	0.0017	0.00050	mg/Kg	\$	11/03/17 18:20	11/08/17 13:42	1
Styrene	<0.0017	0.0017	0.00052	mg/Kg	₽	11/03/17 18:20	11/08/17 13:42	1
1,1,2,2-Tetrachloroethane	<0.0017	0.0017	0.00055	mg/Kg	₽	11/03/17 18:20	11/08/17 13:42	1
Tetrachloroethene	<0.0017	0.0017	0.00058	mg/Kg	\$	11/03/17 18:20	11/08/17 13:42	1
Toluene	<0.0017	0.0017	0.00043	mg/Kg	₩	11/03/17 18:20	11/08/17 13:42	1
trans-1,2-Dichloroethene	< 0.0017	0.0017	0.00076	mg/Kg	☼	11/03/17 18:20	11/08/17 13:42	1
trans-1,3-Dichloropropene	<0.0017	0.0017	0.00060	mg/Kg		11/03/17 18:20	11/08/17 13:42	1
1,1,1-Trichloroethane	< 0.0017	0.0017	0.00057	mg/Kg	≎	11/03/17 18:20	11/08/17 13:42	1
1,1,2-Trichloroethane	<0.0017	0.0017	0.00073	mg/Kg	☼	11/03/17 18:20	11/08/17 13:42	1
Trichloroethene	<0.0017	0.0017	0.00058	mg/Kg		11/03/17 18:20	11/08/17 13:42	1
Vinyl acetate	< 0.0043	0.0043	0.0015		₽	11/03/17 18:20	11/08/17 13:42	1
Vinyl chloride	<0.0017	0.0017	0.00076	mg/Kg	₽	11/03/17 18:20	11/08/17 13:42	1
Xylenes, Total	<0.0034	0.0034	0.00055	mg/Kg	\$	11/03/17 18:20	11/08/17 13:42	1
Surrogate	%Recovery Q	ualifier Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	96	75 - 131				11/03/17 18:20	11/08/17 13:42	1
Dibromoflyoromethane	105	75 126				11/03/17 18:20	11/08/17 13:42	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	96		75 - 131	11/03/17 18:20	11/08/17 13:42	1
Dibromofluoromethane	105		75 - 126	11/03/17 18:20	11/08/17 13:42	1
1,2-Dichloroethane-d4 (Surr)	112		70 - 134	11/03/17 18:20	11/08/17 13:42	1
Toluene-d8 (Surr)	94		75 - 124	11/03/17 18:20	11/08/17 13:42	1

Method: 8270D - Semivolatile Organic Compounds (GC/MS)								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	<0.041	0.041	0.0074	mg/Kg	₩	11/10/17 07:22	11/10/17 23:28	1
Acenaphthylene	<0.041	0.041	0.0054	mg/Kg	≎	11/10/17 07:22	11/10/17 23:28	1
Anthracene	<0.041	0.041	0.0069	mg/Kg	≎	11/10/17 07:22	11/10/17 23:28	1
Benzo[a]anthracene	<0.041	0.041	0.0055	mg/Kg	≎	11/10/17 07:22	11/10/17 23:28	1

TestAmerica Chicago

Page 34 of 195

11/15/2017

4

6

8

10

12

13

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028 TestAmerica Job ID: 500-136756-1

Lab Sample ID: 500-136756-4

Matrix: Solid

Percent Solids: 80.6

Client Sample	ID: 3160-36-11 ((0-3')
---------------	------------------	--------

Date Collected: 11/02/17 08:35 Date Received: 11/03/17 08:50

Method: 8270D - Semivolatil	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Benzo[a]pyrene	<0.041	0.041	0.0080		**		11/10/17 23:28	
Benzo[b]fluoranthene	<0.041	0.041	0.0089			11/10/17 07:22	11/10/17 23:28	
Benzo[g,h,i]perylene	<0.041	0.041		mg/Kg	☼	11/10/17 07:22	11/10/17 23:28	
Benzo[k]fluoranthene	<0.041	0.041	0.012	mg/Kg	☼	11/10/17 07:22	11/10/17 23:28	
Bis(2-chloroethoxy)methane	<0.21	0.21		mg/Kg	₩	11/10/17 07:22	11/10/17 23:28	
Bis(2-chloroethyl)ether	<0.21	0.21	0.062	mg/Kg	₽	11/10/17 07:22	11/10/17 23:28	
Bis(2-ethylhexyl) phthalate	<0.21	0.21	0.075	mg/Kg	☼	11/10/17 07:22	11/10/17 23:28	
4-Bromophenyl phenyl ether	<0.21	0.21	0.054	mg/Kg	☼	11/10/17 07:22	11/10/17 23:28	
Butyl benzyl phthalate	<0.21	0.21	0.078	mg/Kg	₽	11/10/17 07:22	11/10/17 23:28	
Carbazole	<0.21	0.21	0.10	mg/Kg	☼	11/10/17 07:22	11/10/17 23:28	
4-Chloroaniline	<0.83	0.83	0.19	mg/Kg	☼	11/10/17 07:22	11/10/17 23:28	
4-Chloro-3-methylphenol	<0.41	0.41	0.14	mg/Kg	φ.	11/10/17 07:22	11/10/17 23:28	
2-Chloronaphthalene	<0.21	0.21	0.046	mg/Kg	☼	11/10/17 07:22	11/10/17 23:28	
2-Chlorophenol	<0.21	0.21		mg/Kg	☆		11/10/17 23:28	
4-Chlorophenyl phenyl ether	<0.21	0.21		mg/Kg			11/10/17 23:28	
Chrysene	<0.041	0.041			₽		11/10/17 23:28	
Dibenz(a,h)anthracene	<0.041	0.041	0.0080	0 0	☆		11/10/17 23:28	
Dibenzofuran	<0.21	0.21		mg/Kg			11/10/17 23:28	
1,2-Dichlorobenzene	<0.21	0.21		mg/Kg	₩		11/10/17 23:28	
1,3-Dichlorobenzene	<0.21	0.21		mg/Kg	₩		11/10/17 23:28	
1,4-Dichlorobenzene	<0.21	0.21		mg/Kg			11/10/17 23:28	
3,3'-Dichlorobenzidine	<0.21	0.21		mg/Kg	т ф		11/10/17 23:28	
,				0 0	☆			
2,4-Dichlorophenol	<0.41	0.41		mg/Kg			11/10/17 23:28	
Diethyl phthalate	<0.21	0.21		mg/Kg	☆		11/10/17 23:28	
2,4-Dimethylphenol	<0.41	0.41		mg/Kg	☆		11/10/17 23:28	
Dimethyl phthalate	<0.21	0.21		mg/Kg	1		11/10/17 23:28	
Di-n-butyl phthalate	<0.21	0.21		mg/Kg	₩		11/10/17 23:28	
4,6-Dinitro-2-methylphenol	<0.83	0.83		mg/Kg	.;;		11/10/17 23:28	
2,4-Dinitrophenol	<0.83	0.83		mg/Kg			11/10/17 23:28	
2,4-Dinitrotoluene	<0.21	0.21		mg/Kg	₽	11/10/17 07:22	11/10/17 23:28	
2,6-Dinitrotoluene	<0.21	0.21	0.081	mg/Kg	☼	11/10/17 07:22	11/10/17 23:28	
Di-n-octyl phthalate	<0.21	0.21	0.067	mg/Kg	₩	11/10/17 07:22	11/10/17 23:28	
Fluoranthene	<0.041	0.041	0.0076	mg/Kg	₽	11/10/17 07:22	11/10/17 23:28	
Fluorene	<0.041	0.041	0.0058	mg/Kg	₩	11/10/17 07:22	11/10/17 23:28	
Hexachlorobenzene	<0.083	0.083	0.0096	mg/Kg	☼	11/10/17 07:22	11/10/17 23:28	
Hexachlorobutadiene	<0.21	0.21	0.065	mg/Kg	φ.	11/10/17 07:22	11/10/17 23:28	
Hexachlorocyclopentadiene	<0.83	0.83	0.24	mg/Kg	☼	11/10/17 07:22	11/10/17 23:28	
Hexachloroethane	<0.21	0.21	0.063	mg/Kg	☼	11/10/17 07:22	11/10/17 23:28	
Indeno[1,2,3-cd]pyrene	<0.041	0.041		mg/Kg	ф.	11/10/17 07:22	11/10/17 23:28	
Isophorone	<0.21	0.21		mg/Kg	☼	11/10/17 07:22	11/10/17 23:28	
2-Methylnaphthalene	<0.083	0.083	0.0076		☼	11/10/17 07:22	11/10/17 23:28	
2-Methylphenol	<0.21	0.21		mg/Kg		11/10/17 07:22	11/10/17 23:28	
3 & 4 Methylphenol	<0.21	0.21		mg/Kg	₽		11/10/17 23:28	
Naphthalene	<0.041	0.041	0.0063		₽		11/10/17 23:28	
2-Nitroaniline	<0.21	0.21		mg/Kg			11/10/17 23:28	
3-Nitroaniline	<0.41	0.41		mg/Kg	☼		11/10/17 23:28	
4-Nitroaniline	<0.41	0.41		mg/Kg	₩		11/10/17 23:28	
Nitrobenzene	<0.041	0.041		mg/Kg			11/10/17 23:28	
2-Nitrophenol	<0.41	0.041		mg/Kg	₩		11/10/17 23:28	

TestAmerica Chicago

_

6

9

10 4 a

12

1 /

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/02/17 08:35

Date Received: 11/03/17 08:50

Client Sample ID: 3160-36-11 (0-3')

TestAmerica Job ID: 500-136756-1

Lab Sample ID: 500-136756-4

Matrix: Solid

Percent Solids: 80.6

Method: 8270D - Semivola	tile Organic Co	mpounds	(GC/MS)	(Continued)				
Analyte	Result	Qualifier	RI	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.83		0.83	3 0.39	mg/Kg	₩	11/10/17 07:22	11/10/17 23:28	1
N-Nitrosodi-n-propylamine	<0.083		0.083	0.050	mg/Kg	φ.	11/10/17 07:22	11/10/17 23:28	1
N-Nitrosodiphenylamine	<0.21		0.21	0.049	mg/Kg	₽	11/10/17 07:22	11/10/17 23:28	1
2,2'-oxybis[1-chloropropane]	<0.21		0.21	1 0.048	mg/Kg	₽	11/10/17 07:22	11/10/17 23:28	1
Pentachlorophenol	<0.83		0.83	0.66	mg/Kg	₽	11/10/17 07:22	11/10/17 23:28	1
Phenanthrene	<0.041		0.04	0.0057	mg/Kg	₩	11/10/17 07:22	11/10/17 23:28	1
Phenol	<0.21		0.2	1 0.092	mg/Kg	₩	11/10/17 07:22	11/10/17 23:28	1
Pyrene	<0.041		0.04	0.0082	mg/Kg	₽	11/10/17 07:22	11/10/17 23:28	1
1,2,4-Trichlorobenzene	<0.21		0.2	0.044	mg/Kg	₩	11/10/17 07:22	11/10/17 23:28	1
2,4,5-Trichlorophenol	<0.41		0.41	0.094	mg/Kg	₩	11/10/17 07:22	11/10/17 23:28	1
2,4,6-Trichlorophenol	<0.41		0.4	0.14	mg/Kg	≎	11/10/17 07:22	11/10/17 23:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	85		44 - 121	_			11/10/17 07:22	11/10/17 23:28	1
2-Fluorophenol	100		46 - 133				11/10/17 07:22	11/10/17 23:28	1
Nitrobenzene-d5	87		41 - 120				11/10/17 07:22	11/10/17 23:28	1
Phenol-d5	97		46 - 125				11/10/17 07:22	11/10/17 23:28	1
Terphenyl-d14	99		35 - 160				11/10/17 07:22	11/10/17 23:28	1
2,4,6-Tribromophenol	60		25 - 139				11/10/17 07:22	11/10/17 23:28	1

Method: 6010B - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<1.2		1.2	0.23	mg/Kg	<u></u>	11/07/17 08:10	11/07/17 19:51	1
Arsenic	5.9		0.59	0.20	mg/Kg	≎	11/07/17 08:10	11/07/17 19:51	1
Barium	35		0.59	0.068	mg/Kg	≎	11/07/17 08:10	11/07/17 19:51	1
Beryllium	0.44		0.24	0.056	mg/Kg	₽	11/07/17 08:10	11/07/17 19:51	1
Cadmium	0.023	J	0.12	0.021	mg/Kg	☼	11/07/17 08:10	11/07/17 19:51	1
Chromium	17		0.59	0.29	mg/Kg	☼	11/07/17 08:10	11/07/17 19:51	1
Cobalt	3.4		0.30	0.078	mg/Kg	φ.	11/07/17 08:10	11/07/17 19:51	1
Copper	10		0.59	0.17	mg/Kg	≎	11/07/17 08:10	11/07/17 19:51	1
Iron	19000		12	6.2	mg/Kg	≎	11/07/17 08:10	11/07/17 19:51	1
Lead	12		0.30	0.14	mg/Kg	φ.	11/07/17 08:10	11/07/17 19:51	1
Manganese	84		0.59	0.086	mg/Kg	☼	11/07/17 08:10	11/07/17 19:51	1
Nickel	7.3		0.59	0.17	mg/Kg	☼	11/07/17 08:10	11/07/17 19:51	1
Selenium	0.52	J	0.59	0.35	mg/Kg	₽	11/07/17 08:10	11/07/17 19:51	1
Silver	< 0.30		0.30	0.077	mg/Kg	☼	11/07/17 08:10	11/07/17 19:51	1
Thallium	<0.59		0.59	0.30	mg/Kg	☼	11/07/17 08:10	11/07/17 19:51	1
Vanadium	29		0.30	0.070	mg/Kg		11/07/17 08:10	11/07/17 19:51	1
Zinc	27		1.2	0.52	mg/Kg	₩	11/07/17 08:10	11/07/17 19:51	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/08/17 08:50	11/08/17 16:53	1
Barium	0.21	J	0.50	0.050	mg/L		11/08/17 08:50	11/08/17 16:53	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/08/17 08:50	11/08/17 16:53	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/08/17 08:50	11/08/17 16:53	1
Chromium	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 16:53	1
Cobalt	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 16:53	1
Copper	0.011	J	0.025	0.010	mg/L		11/08/17 08:50	11/08/17 16:53	1
Iron	0.20	J	0.40	0.20	mg/L		11/08/17 08:50	11/08/17 16:53	1

Page 36 of 195

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Received: 11/03/17 08:50

TestAmerica Job ID: 500-136756-1

Client Sample ID: 3160-36-11 (0-3') Date Collected: 11/02/17 08:35

Lab Sample ID: 500-136756-4

Matrix: Solid

Percent Solids: 80.6

Method: 6010B - Metals (IC Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	<0.0075		0.0075	0.0075	mg/L		11/08/17 08:50	11/08/17 16:53	1
Manganese	0.054		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 16:53	1
Nickel	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 16:53	1
Selenium	<0.050		0.050	0.020	mg/L		11/08/17 08:50	11/08/17 16:53	1
Silver	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 16:53	1
Vanadium	< 0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 16:53	1
Zinc	0.030	J	0.50	0.020	mg/L		11/08/17 08:50	11/08/17 16:53	1
Method: 6020A - Metals (IC	P/MS) - TCLP								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060		0.0060	0.0060	mg/L		11/08/17 08:50	11/10/17 10:44	1
Thallium	<0.0020		0.0020	0.0020	mg/L		11/08/17 08:50	11/10/17 10:44	1
Method: 7470A - TCLP Mer	cury - TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/08/17 13:40	11/09/17 09:31	1
Method: 7471B - Mercury (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.016	J	0.019	0.0064	mg/Kg	\	11/07/17 13:20	11/08/17 10:31	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	5.3		0.20	0.20	SU			11/12/17 17:46	

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Analyte

Acenaphthene

Anthracene

Acenaphthylene

Benzo[a]anthracene

Lab Sample ID: 500-136756-5

Client Sample ID: 3160-36-10 (0-3') Date Collected: 11/02/17 08:45 **Matrix: Solid** Date Received: 11/03/17 08:50 Percent Solids: 82.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Acetone	<0.018		0.018	0.0078	mg/Kg	<u></u>	11/03/17 18:20	11/08/17 14:07	
Benzene	<0.0018		0.0018	0.00046	mg/Kg	☼	11/03/17 18:20	11/08/17 14:07	
Bromodichloromethane	<0.0018		0.0018	0.00037	mg/Kg	☼	11/03/17 18:20	11/08/17 14:07	
Bromoform	<0.0018		0.0018	0.00053	mg/Kg		11/03/17 18:20	11/08/17 14:07	
Bromomethane	< 0.0045		0.0045	0.0017	mg/Kg	☼	11/03/17 18:20	11/08/17 14:07	
2-Butanone (MEK)	<0.0045		0.0045	0.0020	mg/Kg	☼	11/03/17 18:20	11/08/17 14:07	
Carbon disulfide	<0.0045		0.0045	0.00094	mg/Kg		11/03/17 18:20	11/08/17 14:07	
Carbon tetrachloride	<0.0018		0.0018	0.00052	mg/Kg	☼	11/03/17 18:20	11/08/17 14:07	
Chlorobenzene	<0.0018		0.0018	0.00067	mg/Kg	☼	11/03/17 18:20	11/08/17 14:07	
Chloroethane	<0.0045		0.0045	0.0013	mg/Kg	₽	11/03/17 18:20	11/08/17 14:07	
Chloroform	<0.0018		0.0018	0.00063	mg/Kg	☼	11/03/17 18:20	11/08/17 14:07	
Chloromethane	<0.0045		0.0045	0.0018	mg/Kg	☼	11/03/17 18:20	11/08/17 14:07	
cis-1,2-Dichloroethene	<0.0018		0.0018	0.00050	mg/Kg	₽	11/03/17 18:20	11/08/17 14:07	· · · · · · · ·
cis-1,3-Dichloropropene	<0.0018		0.0018	0.00054	mg/Kg	☼	11/03/17 18:20	11/08/17 14:07	
Dibromochloromethane	<0.0018		0.0018	0.00059	mg/Kg	☼	11/03/17 18:20	11/08/17 14:07	
1,1-Dichloroethane	<0.0018		0.0018	0.00062	mg/Kg		11/03/17 18:20	11/08/17 14:07	
1,2-Dichloroethane	< 0.0045		0.0045	0.0014	mg/Kg	☼	11/03/17 18:20	11/08/17 14:07	
1,1-Dichloroethene	<0.0018		0.0018	0.00062	mg/Kg	☼	11/03/17 18:20	11/08/17 14:07	
1,2-Dichloropropane	<0.0018		0.0018	0.00047	mg/Kg	φ.	11/03/17 18:20	11/08/17 14:07	
1,3-Dichloropropene, Total	<0.0018		0.0018	0.00063	mg/Kg	☼	11/03/17 18:20	11/08/17 14:07	
Ethylbenzene	<0.0018		0.0018	0.00086	mg/Kg	₩	11/03/17 18:20	11/08/17 14:07	
2-Hexanone	<0.0045		0.0045	0.0014	mg/Kg		11/03/17 18:20	11/08/17 14:07	
Methylene Chloride	< 0.0045		0.0045	0.0018	mg/Kg	₩	11/03/17 18:20	11/08/17 14:07	
4-Methyl-2-pentanone (MIBK)	< 0.0045		0.0045	0.0013	mg/Kg	☼	11/03/17 18:20	11/08/17 14:07	
Methyl tert-butyl ether	<0.0018		0.0018	0.00053	mg/Kg	₽	11/03/17 18:20	11/08/17 14:07	
Styrene	<0.0018		0.0018	0.00054	mg/Kg	☼	11/03/17 18:20	11/08/17 14:07	
1,1,2,2-Tetrachloroethane	<0.0018		0.0018	0.00058	mg/Kg	☼	11/03/17 18:20	11/08/17 14:07	
Tetrachloroethene	<0.0018		0.0018	0.00061	mg/Kg	₽	11/03/17 18:20	11/08/17 14:07	
Toluene	<0.0018		0.0018	0.00046	mg/Kg	☼	11/03/17 18:20	11/08/17 14:07	
trans-1,2-Dichloroethene	<0.0018		0.0018	0.00080	mg/Kg	☼	11/03/17 18:20	11/08/17 14:07	
trans-1,3-Dichloropropene	<0.0018		0.0018	0.00063	mg/Kg		11/03/17 18:20	11/08/17 14:07	
1,1,1-Trichloroethane	<0.0018		0.0018	0.00060	mg/Kg	☼	11/03/17 18:20	11/08/17 14:07	
1,1,2-Trichloroethane	<0.0018		0.0018	0.00077	mg/Kg	☼	11/03/17 18:20	11/08/17 14:07	
Trichloroethene	<0.0018		0.0018	0.00061	mg/Kg		11/03/17 18:20	11/08/17 14:07	
Vinyl acetate	<0.0045		0.0045	0.0016	mg/Kg	₩	11/03/17 18:20	11/08/17 14:07	
Vinyl chloride	<0.0018		0.0018	0.00080	mg/Kg	☼	11/03/17 18:20	11/08/17 14:07	
Xylenes, Total	<0.0036		0.0036	0.00058	mg/Kg		11/03/17 18:20	11/08/17 14:07	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	91		75 - 131					11/08/17 14:07	
Dibromofluoromethane	86		75 - 126				11/03/17 18:20	11/08/17 14:07	
1,2-Dichloroethane-d4 (Surr)	106		70 - 134				11/03/17 18:20	11/08/17 14:07	
Toluene-d8 (Surr)	94		75 - 124				11/03/17 18:20	11/08/17 14:07	

TestAmerica Chicago

Analyzed

Prepared

☼ 11/10/17 07:22 11/10/17 23:56

☼ 11/10/17 07:22 11/10/17 23:56

11/10/17 07:22 11/10/17 23:56

RL

0.039

0.039

0.039

0.039

MDL Unit

0.0071 mg/Kg

0.0052 mg/Kg

0.0066 mg/Kg

0.0053 mg/Kg

Result Qualifier

<0.039

<0.039

<0.039

0.0059 J

Dil Fac

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136756-1

Lab Sample ID: 500-136756-5

Matrix: Solid

Percent Solids: 82.5

Date Collected: 11/02/17 08:45 Date Received: 11/03/17 08:50

Method: 8270D - Semivolatilo Analyte	_	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Benzo[a]pyrene	0.032		0.039	0.0077	mg/Kg	<u></u>	11/10/17 07:22	11/10/17 23:56	
Benzo[b]fluoranthene	< 0.039		0.039	0.0086	mg/Kg	₩	11/10/17 07:22	11/10/17 23:56	
Benzo[g,h,i]perylene	0.032	J	0.039	0.013	mg/Kg	₩	11/10/17 07:22	11/10/17 23:56	
Benzo[k]fluoranthene	< 0.039		0.039	0.012	mg/Kg	≎	11/10/17 07:22	11/10/17 23:56	
Bis(2-chloroethoxy)methane	<0.20		0.20	0.040	mg/Kg	☼	11/10/17 07:22	11/10/17 23:56	
Bis(2-chloroethyl)ether	<0.20		0.20	0.059	mg/Kg		11/10/17 07:22	11/10/17 23:56	
Bis(2-ethylhexyl) phthalate	<0.20		0.20	0.072	mg/Kg	☆	11/10/17 07:22	11/10/17 23:56	
4-Bromophenyl phenyl ether	<0.20		0.20		mg/Kg	☼	11/10/17 07:22	11/10/17 23:56	
Butyl benzyl phthalate	<0.20		0.20	0.075	mg/Kg	 ☆	11/10/17 07:22	11/10/17 23:56	
Carbazole	<0.20		0.20		mg/Kg	☆	11/10/17 07:22	11/10/17 23:56	
4-Chloroaniline	<0.80		0.80		mg/Kg	≎		11/10/17 23:56	
4-Chloro-3-methylphenol	<0.39		0.39		mg/Kg	 ☆		11/10/17 23:56	
2-Chloronaphthalene	<0.20		0.20		mg/Kg	₩		11/10/17 23:56	
2-Chlorophenol	<0.20		0.20		mg/Kg	₩		11/10/17 23:56	
4-Chlorophenyl phenyl ether	<0.20		0.20		mg/Kg			11/10/17 23:56	
Chrysene	<0.039		0.039		mg/Kg	⊅		11/10/17 23:56	
Dibenz(a,h)anthracene	<0.039		0.039	0.0077		₩		11/10/17 23:56	
Dibenzofuran	<0.20		0.20		mg/Kg			11/10/17 23:56	
1.2-Dichlorobenzene	<0.20		0.20		mg/Kg	₽		11/10/17 23:56	
1,3-Dichlorobenzene	<0.20		0.20		mg/Kg	☆		11/10/17 23:56	
	<0.20		0.20					11/10/17 23:56	
1,4-Dichlorobenzene	<0.20				mg/Kg	☆			
3,3'-Dichlorobenzidine			0.20		mg/Kg			11/10/17 23:56	
2,4-Dichlorophenol	<0.39		0.39		mg/Kg			11/10/17 23:56	
Diethyl phthalate	<0.20		0.20		mg/Kg	₩		11/10/17 23:56	
2,4-Dimethylphenol	<0.39		0.39		mg/Kg	☆		11/10/17 23:56	
Dimethyl phthalate	<0.20		0.20		mg/Kg	J.		11/10/17 23:56	
Di-n-butyl phthalate	<0.20		0.20		mg/Kg	₩.		11/10/17 23:56	
4,6-Dinitro-2-methylphenol	<0.80		0.80		mg/Kg			11/10/17 23:56	
2,4-Dinitrophenol	<0.80		0.80		mg/Kg			11/10/17 23:56	
2,4-Dinitrotoluene	<0.20		0.20		mg/Kg	*		11/10/17 23:56	
2,6-Dinitrotoluene	<0.20		0.20		mg/Kg	*		11/10/17 23:56	
Di-n-octyl phthalate	<0.20		0.20		mg/Kg	*	11/10/17 07:22	11/10/17 23:56	
Fluoranthene	< 0.039		0.039	0.0074		₩		11/10/17 23:56	
Fluorene	< 0.039		0.039	0.0056	mg/Kg	₩	11/10/17 07:22	11/10/17 23:56	
Hexachlorobenzene	<0.080		0.080	0.0092	mg/Kg	₩	11/10/17 07:22	11/10/17 23:56	
Hexachlorobutadiene	<0.20		0.20	0.062	mg/Kg	₩	11/10/17 07:22	11/10/17 23:56	
Hexachlorocyclopentadiene	<0.80		0.80	0.23	mg/Kg	₩	11/10/17 07:22	11/10/17 23:56	
Hexachloroethane	<0.20		0.20	0.060	mg/Kg	₩	11/10/17 07:22	11/10/17 23:56	
Indeno[1,2,3-cd]pyrene	<0.039		0.039	0.010	mg/Kg	₩	11/10/17 07:22	11/10/17 23:56	
Isophorone	<0.20		0.20	0.045	mg/Kg	₩	11/10/17 07:22	11/10/17 23:56	
2-Methylnaphthalene	0.010	J	0.080	0.0073	mg/Kg	₩	11/10/17 07:22	11/10/17 23:56	
2-Methylphenol	<0.20		0.20	0.064	mg/Kg	₩	11/10/17 07:22	11/10/17 23:56	
3 & 4 Methylphenol	<0.20		0.20	0.066	mg/Kg	≎	11/10/17 07:22	11/10/17 23:56	
Naphthalene	< 0.039		0.039	0.0061		≎	11/10/17 07:22	11/10/17 23:56	
2-Nitroaniline	<0.20		0.20		mg/Kg		11/10/17 07:22	11/10/17 23:56	
3-Nitroaniline	< 0.39		0.39		mg/Kg	☆	11/10/17 07:22	11/10/17 23:56	
4-Nitroaniline	< 0.39		0.39		mg/Kg	☆		11/10/17 23:56	
Nitrobenzene	<0.039		0.039	0.0099				11/10/17 23:56	
2-Nitrophenol	<0.39		0.39		mg/Kg	₩		11/10/17 23:56	

TestAmerica Chicago

2

6

0

10

12

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/02/17 08:45

Date Received: 11/03/17 08:50

Client Sample ID: 3160-36-10 (0-3')

TestAmerica Job ID: 500-136756-1

Lab Sample ID: 500-136756-5

Matrix: Solid

Percent Solids: 82.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.80		0.80	0.38	mg/Kg	<u> </u>	11/10/17 07:22	11/10/17 23:56	1
N-Nitrosodi-n-propylamine	<0.080		0.080	0.048	mg/Kg	φ.	11/10/17 07:22	11/10/17 23:56	1
N-Nitrosodiphenylamine	<0.20		0.20	0.047	mg/Kg	☼	11/10/17 07:22	11/10/17 23:56	1
2,2'-oxybis[1-chloropropane]	<0.20		0.20	0.046	mg/Kg	☼	11/10/17 07:22	11/10/17 23:56	1
Pentachlorophenol	<0.80		0.80	0.64	mg/Kg	₩	11/10/17 07:22	11/10/17 23:56	1
Phenanthrene	0.018	J	0.039	0.0055	mg/Kg	☼	11/10/17 07:22	11/10/17 23:56	1
Phenol	<0.20		0.20	0.088	mg/Kg	☼	11/10/17 07:22	11/10/17 23:56	1
Pyrene	<0.039		0.039	0.0079	mg/Kg	☼	11/10/17 07:22	11/10/17 23:56	1
1,2,4-Trichlorobenzene	<0.20		0.20	0.043	mg/Kg	☼	11/10/17 07:22	11/10/17 23:56	1
2,4,5-Trichlorophenol	<0.39		0.39	0.090	mg/Kg	☼	11/10/17 07:22	11/10/17 23:56	1
2,4,6-Trichlorophenol	<0.39		0.39	0.14	mg/Kg	₩	11/10/17 07:22	11/10/17 23:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	91		44 - 121				11/10/17 07:22	11/10/17 23:56	1
2-Fluorophenol	104		46 - 133				11/10/17 07:22	11/10/17 23:56	1
Nitrobenzene-d5	92		41 - 120				11/10/17 07:22	11/10/17 23:56	1
Phenol-d5	91		46 - 125				11/10/17 07:22	11/10/17 23:56	1
Terphenyl-d14	103		35 - 160				11/10/17 07:22	11/10/17 23:56	1
2,4,6-Tribromophenol	57		25 - 139				11/10/17 07:22	11/10/17 23:56	1

Method: 6010B - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<1.1		1.1	0.22	mg/Kg	<u></u>	11/07/17 08:10	11/07/17 19:55	1
Arsenic	6.7		0.55	0.19	mg/Kg	☼	11/07/17 08:10	11/07/17 19:55	1
Barium	120		0.55	0.063	mg/Kg	☼	11/07/17 08:10	11/07/17 19:55	1
Beryllium	0.45		0.22	0.052	mg/Kg	☼	11/07/17 08:10	11/07/17 19:55	1
Cadmium	0.12		0.11	0.020	mg/Kg	☼	11/07/17 08:10	11/07/17 19:55	1
Chromium	17		0.55	0.27	mg/Kg	☼	11/07/17 08:10	11/07/17 19:55	1
Cobalt	5.5		0.28	0.073	mg/Kg	☼	11/07/17 08:10	11/07/17 19:55	1
Copper	17		0.55	0.16	mg/Kg	☼	11/07/17 08:10	11/07/17 19:55	1
Iron	19000		11	5.8	mg/Kg	☼	11/07/17 08:10	11/07/17 19:55	1
Lead	27		0.28	0.13	mg/Kg	₽	11/07/17 08:10	11/07/17 19:55	1
Manganese	220		0.55	0.080	mg/Kg	☼	11/07/17 08:10	11/07/17 19:55	1
Nickel	12		0.55	0.16	mg/Kg	☼	11/07/17 08:10	11/07/17 19:55	1
Selenium	0.39	J	0.55	0.33	mg/Kg	₽	11/07/17 08:10	11/07/17 19:55	1
Silver	<0.28		0.28	0.072	mg/Kg	☼	11/07/17 08:10	11/07/17 19:55	1
Thallium	< 0.55		0.55	0.28	mg/Kg	☼	11/07/17 08:10	11/07/17 19:55	1
Vanadium	23		0.28	0.065	mg/Kg		11/07/17 08:10	11/07/17 19:55	1
Zinc	66		1.1	0.49	mg/Kg	☼	11/07/17 08:10	11/07/17 19:55	1

Method: 6010B - Meta Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/08/17 08:50	11/08/17 16:57	1
Barium	0.34	J	0.50	0.050	mg/L		11/08/17 08:50	11/08/17 16:57	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/08/17 08:50	11/08/17 16:57	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/08/17 08:50	11/08/17 16:57	1
Chromium	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 16:57	1
Cobalt	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 16:57	1
Copper	0.042		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 16:57	1
Iron	0.65		0.40	0.20	mg/L		11/08/17 08:50	11/08/17 16:57	1

TestAmerica Chicago

Page 40 of 195

6

9

11

12

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/02/17 08:45

Date Received: 11/03/17 08:50

Client Sample ID: 3160-36-10 (0-3')

TestAmerica Job ID: 500-136756-1

3

Lab Sample ID: 500-136756-5

Matrix: Solid

Percent Solids: 82.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	<0.0075		0.0075	0.0075	mg/L		11/08/17 08:50	11/08/17 16:57	1
Manganese	0.041		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 16:57	1
Nickel	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 16:57	1
Selenium	<0.050		0.050	0.020	mg/L		11/08/17 08:50	11/08/17 16:57	1
Silver	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 16:57	1
Vanadium	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 16:57	1
Zinc	0.086	J	0.50	0.020	mg/L		11/08/17 08:50	11/08/17 16:57	1
Method: 6020A - Metals	(ICP/MS) - TCLP								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060		0.0060	0.0060	mg/L		11/08/17 08:50	11/10/17 10:48	
Thallium	<0.0020		0.0020	0.0020	mg/L		11/08/17 08:50	11/10/17 10:48	•
Method: 7470A - TCLP N	Mercury - TCLP								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/08/17 13:40	11/09/17 09:33	1
Method: 7471B - Mercur	v (CVAA)								
Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	0.011	J	0.018	0.0058	mg/Kg	<u> </u>	11/07/17 13:20	11/08/17 10:34	
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	6.6		0.20	0.20	SU			11/12/17 18:20	

TestAmerica Job ID: 500-136756-1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Analyte

Acenaphthene

Anthracene

Acenaphthylene

Benzo[a]anthracene

Client Sample ID: 3160-36-9 (0-3')

Lab Sample ID: 500-136756-6

Date Collected: 11/02/17 08:55

Date Received: 11/03/17 08:50

Matrix: Solid
Percent Solids: 85.7

Analyte		Qualifier F		Unit	D	Prepared	Analyzed	Dil Fa
Acetone	<0.016	0.0	0.0071	mg/Kg		11/03/17 18:20	11/07/17 11:22	
Benzene	<0.0016	0.00	0.00042	mg/Kg	☼	11/03/17 18:20	11/07/17 11:22	
Bromodichloromethane	<0.0016	0.00	0.00033	mg/Kg	☼	11/03/17 18:20	11/07/17 11:22	
Bromoform	<0.0016	0.00	0.00048	mg/Kg	₩	11/03/17 18:20	11/07/17 11:22	
Bromomethane	<0.0041	0.004	11 0.0015	mg/Kg	☼	11/03/17 18:20	11/07/17 11:22	
2-Butanone (MEK)	<0.0041	0.004	11 0.0018	mg/Kg	₩	11/03/17 18:20	11/07/17 11:22	
Carbon disulfide	<0.0041	0.004	1 0.00085	mg/Kg	₽	11/03/17 18:20	11/07/17 11:22	
Carbon tetrachloride	<0.0016	0.00	0.00047	mg/Kg	₩	11/03/17 18:20	11/07/17 11:22	
Chlorobenzene	<0.0016	0.00	0.00060	mg/Kg	₩	11/03/17 18:20	11/07/17 11:22	
Chloroethane	<0.0041	0.004	1 0.0012	mg/Kg	₽	11/03/17 18:20	11/07/17 11:22	
Chloroform	<0.0016	0.00	0.00057	mg/Kg	₩	11/03/17 18:20	11/07/17 11:22	
Chloromethane	<0.0041	0.004	11 0.0016	mg/Kg	₩	11/03/17 18:20	11/07/17 11:22	
cis-1,2-Dichloroethene	<0.0016	0.00	0.00046	mg/Kg	₽	11/03/17 18:20	11/07/17 11:22	
cis-1,3-Dichloropropene	<0.0016	0.00	0.00049	mg/Kg	₽	11/03/17 18:20	11/07/17 11:22	
Dibromochloromethane	<0.0016	0.00	0.00054	mg/Kg	₽	11/03/17 18:20	11/07/17 11:22	
1,1-Dichloroethane	<0.0016	0.00	0.00056	mg/Kg	₽	11/03/17 18:20	11/07/17 11:22	
1,2-Dichloroethane	<0.0041	0.004	11 0.0013	mg/Kg	₩	11/03/17 18:20	11/07/17 11:22	
1,1-Dichloroethene	<0.0016	0.00	0.00056	mg/Kg	₩	11/03/17 18:20	11/07/17 11:22	
1,2-Dichloropropane	<0.0016	0.00	0.00042	mg/Kg		11/03/17 18:20	11/07/17 11:22	
1,3-Dichloropropene, Total	<0.0016	0.00	0.00057	mg/Kg	₩	11/03/17 18:20	11/07/17 11:22	
Ethylbenzene	< 0.0016	0.00	0.00078	mg/Kg	₩	11/03/17 18:20	11/07/17 11:22	
2-Hexanone	<0.0041	0.004	0.0013	mg/Kg		11/03/17 18:20	11/07/17 11:22	
Methylene Chloride	< 0.0041	0.004	11 0.0016	mg/Kg	☼	11/03/17 18:20	11/07/17 11:22	
4-Methyl-2-pentanone (MIBK)	< 0.0041	0.004	11 0.0012	mg/Kg	₩	11/03/17 18:20	11/07/17 11:22	
Methyl tert-butyl ether	<0.0016	0.00	0.00048	mg/Kg		11/03/17 18:20	11/07/17 11:22	
Styrene	<0.0016	0.00	0.00049	mg/Kg	₩	11/03/17 18:20	11/07/17 11:22	
1,1,2,2-Tetrachloroethane	< 0.0016	0.00	0.00052	mg/Kg	₩	11/03/17 18:20	11/07/17 11:22	
Tetrachloroethene	<0.0016	0.00	0.00056	mg/Kg		11/03/17 18:20	11/07/17 11:22	
Toluene	<0.0016	0.00	0.00041	mg/Kg	₩	11/03/17 18:20	11/07/17 11:22	
trans-1,2-Dichloroethene	<0.0016	0.00	0.00073	mg/Kg	₩	11/03/17 18:20	11/07/17 11:22	
trans-1,3-Dichloropropene	<0.0016	0.00	0.00057	mg/Kg		11/03/17 18:20	11/07/17 11:22	
1,1,1-Trichloroethane	<0.0016	0.00	0.00055	mg/Kg	₩	11/03/17 18:20	11/07/17 11:22	
1,1,2-Trichloroethane	< 0.0016	0.00	0.00070	mg/Kg	₩	11/03/17 18:20	11/07/17 11:22	
Trichloroethene	<0.0016	0.00	0.00055	mg/Kg		11/03/17 18:20	11/07/17 11:22	
Vinyl acetate	< 0.0041	0.004	11 0.0014	mg/Kg	≎	11/03/17 18:20	11/07/17 11:22	
Vinyl chloride	< 0.0016	0.00	0.00072	mg/Kg	≎	11/03/17 18:20	11/07/17 11:22	
Xylenes, Total	<0.0033	0.003			Φ.		11/07/17 11:22	
Surrogate	%Recovery					Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	90	75 - 13	1			11/03/17 18:20	11/07/17 11:22	
Dibromofluoromethane	107	75 - 120	6			11/03/17 18:20	11/07/17 11:22	
1,2-Dichloroethane-d4 (Surr)	108	70 - 13	1			11/03/17 18:20	11/07/17 11:22	
Toluene-d8 (Surr)	96	75 - 124	1			11/03/17 18:20	11/07/17 11:22	

TestAmerica Chicago

Analyzed

Prepared

☼ 11/10/17 07:22 11/11/17 00:23

☼ 11/10/17 07:22 11/11/17 00:23

* 11/10/17 07:22 11/11/17 00:23

Page 42 of 195

RL

0.038

0.038

0.038

0.038

MDL Unit

0.0069 mg/Kg

0.0051 mg/Kg

0.0064 mg/Kg

0.0052 mg/Kg

Result Qualifier

0.010 J

0.0090 J

0.051

0.15

2

3

5

7

9

12

13

М

Dil Fac

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/02/17 08:55

Date Received: 11/03/17 08:50

Nitrobenzene

2-Nitrophenol

Client Sample ID: 3160-36-9 (0-3')

TestAmerica Job ID: 500-136756-1

Lab Sample ID: 500-136756-6

Matrix: Solid

Percent Solids: 85.7

Method: 8270D - Semivolatil					•	_	Duemanad	A mal: : -!	DU Fr
Analyte	Result 0	Qualifier	RL	MDL		D 示	Prepared	Analyzed	Dil Fac
Benzo[a]pyrene	0.17		0.038	0.0074				11/11/17 00:23	1
Benzo[b]fluoranthene	0.21		0.038	0.0083				11/11/17 00:23	1
Benzo[g,h,i]perylene	0.11		0.038		mg/Kg	☆		11/11/17 00:23	1
Benzo[k]fluoranthene	0.069		0.038		mg/Kg	☆		11/11/17 00:23	1
Bis(2-chloroethoxy)methane	<0.19		0.19		mg/Kg			11/11/17 00:23	1
Bis(2-chloroethyl)ether	<0.19		0.19		mg/Kg	☆		11/11/17 00:23	1
Bis(2-ethylhexyl) phthalate	<0.19		0.19		mg/Kg	₩		11/11/17 00:23	1
4-Bromophenyl phenyl ether	<0.19		0.19		mg/Kg			11/11/17 00:23	1
Butyl benzyl phthalate	<0.19		0.19		mg/Kg	**		11/11/17 00:23	1
Carbazole	<0.19		0.19		mg/Kg	\$		11/11/17 00:23	1
4-Chloroaniline	<0.77		0.77		mg/Kg	::-:-:::::::::::::::::::::::::::::::::		11/11/17 00:23	1
4-Chloro-3-methylphenol	<0.38		0.38		mg/Kg	\$		11/11/17 00:23	1
2-Chloronaphthalene	<0.19		0.19		mg/Kg	.		11/11/17 00:23	1
2-Chlorophenol	<0.19		0.19		mg/Kg	::::::::::::::::::::::::::::::::::::::		11/11/17 00:23	1
4-Chlorophenyl phenyl ether	<0.19		0.19		mg/Kg	₩	11/10/17 07:22	11/11/17 00:23	1
Chrysene	0.18		0.038		mg/Kg	₩	11/10/17 07:22	11/11/17 00:23	1
Dibenz(a,h)anthracene	0.054		0.038	0.0074		*	11/10/17 07:22	11/11/17 00:23	1
Dibenzofuran	0.15	J	0.19	0.045	mg/Kg	₽	11/10/17 07:22	11/11/17 00:23	1
1,2-Dichlorobenzene	<0.19		0.19	0.046	mg/Kg	₩		11/11/17 00:23	1
1,3-Dichlorobenzene	<0.19		0.19	0.043	mg/Kg	₽	11/10/17 07:22	11/11/17 00:23	1
1,4-Dichlorobenzene	<0.19		0.19	0.049	mg/Kg	₽	11/10/17 07:22	11/11/17 00:23	1
3,3'-Dichlorobenzidine	<0.19		0.19	0.054	mg/Kg	₽	11/10/17 07:22	11/11/17 00:23	1
2,4-Dichlorophenol	<0.38		0.38	0.091	mg/Kg	☼	11/10/17 07:22	11/11/17 00:23	1
Diethyl phthalate	<0.19		0.19	0.065	mg/Kg	≎	11/10/17 07:22	11/11/17 00:23	1
2,4-Dimethylphenol	<0.38		0.38	0.15	mg/Kg	₩	11/10/17 07:22	11/11/17 00:23	1
Dimethyl phthalate	<0.19		0.19	0.050	mg/Kg	₩	11/10/17 07:22	11/11/17 00:23	1
Di-n-butyl phthalate	<0.19		0.19	0.058	mg/Kg	₩	11/10/17 07:22	11/11/17 00:23	1
4,6-Dinitro-2-methylphenol	<0.77		0.77	0.31	mg/Kg	₩	11/10/17 07:22	11/11/17 00:23	1
2,4-Dinitrophenol	<0.77		0.77	0.67	mg/Kg	₩	11/10/17 07:22	11/11/17 00:23	1
2,4-Dinitrotoluene	<0.19		0.19	0.061	mg/Kg	₽	11/10/17 07:22	11/11/17 00:23	1
2,6-Dinitrotoluene	<0.19		0.19	0.075	mg/Kg	☼	11/10/17 07:22	11/11/17 00:23	1
Di-n-octyl phthalate	<0.19		0.19	0.063	mg/Kg	☼	11/10/17 07:22	11/11/17 00:23	1
Fluoranthene	0.24		0.038	0.0071	mg/Kg		11/10/17 07:22	11/11/17 00:23	1
Fluorene	<0.038		0.038	0.0054	mg/Kg	₩	11/10/17 07:22	11/11/17 00:23	1
Hexachlorobenzene	< 0.077		0.077	0.0089	mg/Kg	₽	11/10/17 07:22	11/11/17 00:23	1
Hexachlorobutadiene	<0.19		0.19	0.060	mg/Kg		11/10/17 07:22	11/11/17 00:23	1
Hexachlorocyclopentadiene	<0.77		0.77	0.22	mg/Kg	₽	11/10/17 07:22	11/11/17 00:23	1
Hexachloroethane	<0.19		0.19	0.058	mg/Kg	₽	11/10/17 07:22	11/11/17 00:23	1
Indeno[1,2,3-cd]pyrene	0.095		0.038	0.0099	mg/Kg	ф.	11/10/17 07:22	11/11/17 00:23	1
Isophorone	<0.19		0.19		mg/Kg	₩	11/10/17 07:22	11/11/17 00:23	1
2-Methylnaphthalene	0.26		0.077	0.0070		☼	11/10/17 07:22	11/11/17 00:23	1
2-Methylphenol	<0.19		0.19	0.061	mg/Kg	· · · · · · · · · · · · · · · · · · ·	11/10/17 07:22	11/11/17 00:23	1
3 & 4 Methylphenol	<0.19		0.19		mg/Kg	₩		11/11/17 00:23	1
Naphthalene	0.11		0.038	0.0059		₩		11/11/17 00:23	1
2-Nitroaniline	<0.19		0.19		mg/Kg			11/11/17 00:23	· · · · · · · · · · · · · · · · · · ·
3-Nitroaniline	<0.38		0.13		mg/Kg	₩		11/11/17 00:23	1
4-Nitroaniline	<0.38		0.38		mg/Kg	₩		11/11/17 00:23	1
. The Curmino	÷0.00		0.00	0.10	,,,9,,,A				

TestAmerica Chicago

11/15/2017

11/10/17 07:22 11/11/17 00:23

☼ 11/10/17 07:22 11/11/17 00:23

Page 43 of 195

0.038

0.38

<0.038

< 0.38

0.0096 mg/Kg

0.091 mg/Kg

1

9

6

8

10

12

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/02/17 08:55

Date Received: 11/03/17 08:50

Client Sample ID: 3160-36-9 (0-3')

TestAmerica Job ID: 500-136756-1

Lab Sample ID: 500-136756-6

Matrix: Solid

Percent Solids: 85.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.77		0.77	0.36	mg/Kg	<u> </u>	11/10/17 07:22	11/11/17 00:23	1
N-Nitrosodi-n-propylamine	<0.077		0.077	0.047	mg/Kg	φ.	11/10/17 07:22	11/11/17 00:23	1
N-Nitrosodiphenylamine	<0.19		0.19	0.045	mg/Kg	☼	11/10/17 07:22	11/11/17 00:23	1
2,2'-oxybis[1-chloropropane]	<0.19		0.19	0.044	mg/Kg	☼	11/10/17 07:22	11/11/17 00:23	1
Pentachlorophenol	<0.77		0.77	0.61	mg/Kg	₽	11/10/17 07:22	11/11/17 00:23	1
Phenanthrene	0.44		0.038	0.0053	mg/Kg	☼	11/10/17 07:22	11/11/17 00:23	1
Phenol	<0.19		0.19	0.085	mg/Kg	☼	11/10/17 07:22	11/11/17 00:23	1
Pyrene	0.22		0.038	0.0076	mg/Kg	₽	11/10/17 07:22	11/11/17 00:23	1
1,2,4-Trichlorobenzene	<0.19		0.19	0.041	mg/Kg	☼	11/10/17 07:22	11/11/17 00:23	1
2,4,5-Trichlorophenol	<0.38		0.38	0.087	mg/Kg	☼	11/10/17 07:22	11/11/17 00:23	1
2,4,6-Trichlorophenol	<0.38		0.38	0.13	mg/Kg	☼	11/10/17 07:22	11/11/17 00:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	92		44 - 121				11/10/17 07:22	11/11/17 00:23	1
2-Fluorophenol	98		46 - 133				11/10/17 07:22	11/11/17 00:23	1
Nitrobenzene-d5	91		41 - 120				11/10/17 07:22	11/11/17 00:23	1
Phenol-d5	98		46 - 125				11/10/17 07:22	11/11/17 00:23	1
Terphenyl-d14	94		35 - 160				11/10/17 07:22	11/11/17 00:23	1
2,4,6-Tribromophenol	78		25 - 139				11/10/17 07:22	11/11/17 00:23	1

Method: 6010B - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<1.1		1.1	0.22	mg/Kg	<u></u>	11/07/17 08:10	11/07/17 19:59	1
Arsenic	10		0.55	0.19	mg/Kg	☼	11/07/17 08:10	11/07/17 19:59	1
Barium	91		0.55	0.063	mg/Kg	₩	11/07/17 08:10	11/07/17 19:59	1
Beryllium	0.63		0.22	0.052	mg/Kg		11/07/17 08:10	11/07/17 19:59	1
Cadmium	0.82		0.11	0.020	mg/Kg	☼	11/07/17 08:10	11/07/17 19:59	1
Chromium	18		0.55	0.27	mg/Kg	☼	11/07/17 08:10	11/07/17 19:59	1
Cobalt	7.5		0.28	0.073	mg/Kg		11/07/17 08:10	11/07/17 19:59	1
Copper	25		0.55	0.16	mg/Kg	☼	11/07/17 08:10	11/07/17 19:59	1
Iron	18000		11	5.8	mg/Kg	☼	11/07/17 08:10	11/07/17 19:59	1
Lead	250		0.28	0.13	mg/Kg	₽	11/07/17 08:10	11/07/17 19:59	1
Manganese	410		0.55	0.080	mg/Kg	☼	11/07/17 08:10	11/07/17 19:59	1
Nickel	14		0.55	0.16	mg/Kg	☼	11/07/17 08:10	11/07/17 19:59	1
Selenium	1.0		0.55	0.33	mg/Kg	₽	11/07/17 08:10	11/07/17 19:59	1
Silver	<0.28		0.28	0.071	mg/Kg	☼	11/07/17 08:10	11/07/17 19:59	1
Thallium	<0.55		0.55	0.28	mg/Kg	☼	11/07/17 08:10	11/07/17 19:59	1
Vanadium	21		0.28	0.065	mg/Kg	*	11/07/17 08:10	11/07/17 19:59	1
Zinc	180		1.1	0.49	mg/Kg	₩	11/07/17 08:10	11/07/17 19:59	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/08/17 08:50	11/08/17 17:01	1
Barium	0.47	J	0.50	0.050	mg/L		11/08/17 08:50	11/08/17 17:01	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/08/17 08:50	11/08/17 17:01	1
Cadmium	0.0036	J	0.0050	0.0020	mg/L		11/08/17 08:50	11/08/17 17:01	1
Chromium	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:01	1
Cobalt	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:01	1
Copper	0.040		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:01	1
Iron	0.30	J	0.40	0.20	mg/L		11/08/17 08:50	11/08/17 17:01	1

TestAmerica Chicago

Page 44 of 195

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/02/17 08:55

Date Received: 11/03/17 08:50

Client Sample ID: 3160-36-9 (0-3')

TestAmerica Job ID: 500-136756-1

Lab Sample ID: 500-136756-6

Matrix: Solid **Percent Solid**

ix. Goila	
ids: 85.7	

Mathadi (040D - Matala (10D) - TO	N. D. (C	-4!							
Method: 6010B - Metals (ICP) - TO Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lead	0.019		0.0075	0.0075	mg/L		11/08/17 08:50	11/08/17 17:01	
Manganese	0.038		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:01	
Nickel	< 0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:01	
Selenium	< 0.050		0.050	0.020	mg/L		11/08/17 08:50	11/08/17 17:01	
Silver	< 0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:01	
Vanadium	< 0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:01	
Zinc	1.4		0.50	0.020	mg/L		11/08/17 08:50	11/08/17 17:01	
Method: 6010B - SPLP Metals - S	PLP Fas	st .							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lead	0.40		0.0075	0.0075	mg/L		11/08/17 14:37	11/09/17 20:36	
Analyte Antimony	<0.0060	Qualifier	0.0060			D	Prepared 11/08/17 08:50	Analyzed 11/10/17 10:52	Dil Fa
Method: 6020A - Metals (ICP/MS) Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Thallium	<0.0020		0.0020	0.0020	mg/L		11/08/17 08:50	11/10/17 10:52	
Method: 7470A - TCLP Mercury - Analyte		Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil F
Mercury	<0.00020	Qualifier	0.00020	0.00020			11/08/17 13:40	11/09/17 09:37	ם וו כ
ivier cur y	\0.00020		0.00020	0.00020	IIIg/L		11/06/17 13.40	11/09/17 09.37	
Method: 7471B - Mercury (CVAA)									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Mercury	0.039		0.018	0.0059	mg/Kg	<u>∓</u>	11/07/17 13:20	11/08/17 10:36	
General Chemistry									
A I 4	Docult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Analyte pH	Kesuit	Qualifici	0.20	0.20		=		11/12/17 18:53	

2

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-36-8 (0-3')

Lab Sample ID: 500-136756-7

Date Collected: 11/02/17 09:05 Date Received: 11/03/17 08:50

Toluene-d8 (Surr)

Matrix: Solid Percent Solids: 84.1

Method: 8260B - Volatile O Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Acetone	<0.016		0.016	0.0070	mg/Kg		11/03/17 18:20	11/07/17 11:47	1
Benzene	<0.0016		0.0016	0.00041	mg/Kg	₩	11/03/17 18:20	11/07/17 11:47	1
Bromodichloromethane	<0.0016		0.0016	0.00033	mg/Kg	☼	11/03/17 18:20	11/07/17 11:47	1
Bromoform	<0.0016		0.0016	0.00047	mg/Kg	≎	11/03/17 18:20	11/07/17 11:47	1
Bromomethane	<0.0040		0.0040	0.0015	mg/Kg	☼	11/03/17 18:20	11/07/17 11:47	1
2-Butanone (MEK)	<0.0040		0.0040	0.0018	mg/Kg	₩	11/03/17 18:20	11/07/17 11:47	1
Carbon disulfide	<0.0040		0.0040	0.00084	mg/Kg	\$	11/03/17 18:20	11/07/17 11:47	1
Carbon tetrachloride	<0.0016		0.0016	0.00047	mg/Kg	₩	11/03/17 18:20	11/07/17 11:47	1
Chlorobenzene	<0.0016		0.0016	0.00059	mg/Kg	₩	11/03/17 18:20	11/07/17 11:47	1
Chloroethane	<0.0040		0.0040	0.0012	mg/Kg	₩	11/03/17 18:20	11/07/17 11:47	1
Chloroform	<0.0016		0.0016	0.00056	mg/Kg	₩	11/03/17 18:20	11/07/17 11:47	1
Chloromethane	<0.0040		0.0040	0.0016	mg/Kg	₩	11/03/17 18:20	11/07/17 11:47	1
cis-1,2-Dichloroethene	<0.0016		0.0016	0.00045	mg/Kg	₽	11/03/17 18:20	11/07/17 11:47	1
cis-1,3-Dichloropropene	< 0.0016		0.0016	0.00049	mg/Kg	☼	11/03/17 18:20	11/07/17 11:47	1
Dibromochloromethane	< 0.0016		0.0016	0.00053	mg/Kg	☼	11/03/17 18:20	11/07/17 11:47	1
1,1-Dichloroethane	<0.0016		0.0016	0.00055	mg/Kg		11/03/17 18:20	11/07/17 11:47	1
1,2-Dichloroethane	< 0.0040		0.0040	0.0013	mg/Kg	☼	11/03/17 18:20	11/07/17 11:47	1
1,1-Dichloroethene	< 0.0016		0.0016	0.00055	mg/Kg	☼	11/03/17 18:20	11/07/17 11:47	1
1,2-Dichloropropane	<0.0016		0.0016	0.00042	mg/Kg		11/03/17 18:20	11/07/17 11:47	1
1,3-Dichloropropene, Total	<0.0016		0.0016	0.00057	mg/Kg	☼	11/03/17 18:20	11/07/17 11:47	1
Ethylbenzene	<0.0016		0.0016	0.00077	mg/Kg	☼	11/03/17 18:20	11/07/17 11:47	1
2-Hexanone	<0.0040		0.0040	0.0013	mg/Kg		11/03/17 18:20	11/07/17 11:47	1
Methylene Chloride	<0.0040		0.0040	0.0016		₩	11/03/17 18:20	11/07/17 11:47	1
4-Methyl-2-pentanone (MIBK)	<0.0040		0.0040	0.0012	mg/Kg	☼	11/03/17 18:20	11/07/17 11:47	1
Methyl tert-butyl ether	<0.0016		0.0016	0.00047	mg/Kg		11/03/17 18:20	11/07/17 11:47	1
Styrene	<0.0016		0.0016	0.00049	mg/Kg	☼	11/03/17 18:20	11/07/17 11:47	1
1,1,2,2-Tetrachloroethane	<0.0016		0.0016	0.00051	mg/Kg	☼	11/03/17 18:20	11/07/17 11:47	1
Tetrachloroethene	<0.0016		0.0016	0.00055	mg/Kg	₩	11/03/17 18:20	11/07/17 11:47	1
Toluene	<0.0016		0.0016	0.00041	mg/Kg	☼	11/03/17 18:20	11/07/17 11:47	1
trans-1,2-Dichloroethene	<0.0016		0.0016	0.00071	mg/Kg	☼	11/03/17 18:20	11/07/17 11:47	1
trans-1,3-Dichloropropene	<0.0016		0.0016	0.00057	mg/Kg	ф.	11/03/17 18:20	11/07/17 11:47	1
1,1,1-Trichloroethane	<0.0016		0.0016	0.00054	mg/Kg	₩	11/03/17 18:20	11/07/17 11:47	1
1,1,2-Trichloroethane	<0.0016		0.0016	0.00069		☼	11/03/17 18:20	11/07/17 11:47	1
Trichloroethene	<0.0016		0.0016	0.00054	mg/Kg		11/03/17 18:20	11/07/17 11:47	1
Vinyl acetate	<0.0040		0.0040	0.0014		☼	11/03/17 18:20	11/07/17 11:47	1
Vinyl chloride	<0.0016		0.0016	0.00071	mg/Kg	☼	11/03/17 18:20	11/07/17 11:47	1
Xylenes, Total	<0.0032		0.0032	0.00052		φ.		11/07/17 11:47	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	87		75 - 131				11/03/17 18:20	11/07/17 11:47	1
Dibromofluoromethane	107		75 - 126				11/03/17 18:20	11/07/17 11:47	1
1.2-Dichloroethane-d4 (Surr)	111		70 ₋ 134				11/03/17 18:20	11/07/17 11:47	1

Method: 8270D - Semivolatile Organic Compounds (GC/MS)								
Analyte	Result Qualifier	RL	MDL Unit	0	Prepared	Analyzed	Dil Fac	
Acenaphthene	<0.039	0.039	0.0070 mg/Kg	30	11/10/17 07:22	11/11/17 00:51	1	
Acenaphthylene	<0.039	0.039	0.0051 mg/Kg	30	11/10/17 07:22	11/11/17 00:51	1	
Anthracene	0.013 J	0.039	0.0065 mg/Kg	÷	11/10/17 07:22	11/11/17 00:51	1	
Benzo[a]anthracene	0.042	0.039	0.0052 mg/Kg	÷	11/10/17 07:22	11/11/17 00:51	1	

75 - 124

TestAmerica Chicago

11/03/17 18:20 11/07/17 11:47

Page 46 of 195

11/15/2017

4

6

8

10

12

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028 TestAmerica Job ID: 500-136756-1

Client Sample ID: 3160-36-8 (0-3')

Lab Sample ID: 500-136756-7

Date Collected: 11/02/17 09:05

Matrix: Solid
Date Received: 11/03/17 08:50

Matrix: Solid
Percent Solids: 84.1

Method: 8270D - Semivolatil Analyte		Qualifier	ŔĹ	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzo[a]pyrene	0.064		0.039	0.0075	mg/Kg	<u></u>	11/10/17 07:22	11/11/17 00:51	
Benzo[b]fluoranthene	0.076		0.039	0.0084		₩	11/10/17 07:22	11/11/17 00:51	
Benzo[g,h,i]perylene	0.049		0.039	0.013	mg/Kg	 	11/10/17 07:22	11/11/17 00:51	
Benzo[k]fluoranthene	0.017	J	0.039	0.011	mg/Kg	☼		11/11/17 00:51	
Bis(2-chloroethoxy)methane	<0.20		0.20		mg/Kg	₩		11/11/17 00:51	
Bis(2-chloroethyl)ether	<0.20		0.20		mg/Kg	 \$		11/11/17 00:51	
Bis(2-ethylhexyl) phthalate	<0.20		0.20	0.071	mg/Kg	☆		11/11/17 00:51	
4-Bromophenyl phenyl ether	<0.20		0.20		mg/Kg	₩		11/11/17 00:51	
Butyl benzyl phthalate	<0.20		0.20		mg/Kg			11/11/17 00:51	
Carbazole	<0.20		0.20		mg/Kg	₩		11/11/17 00:51	
4-Chloroaniline	<0.78		0.20					11/11/17 00:51	
					mg/Kg	.			
4-Chloro-3-methylphenol	<0.39		0.39		mg/Kg			11/11/17 00:51	
2-Chloronaphthalene	<0.20		0.20		mg/Kg	☆		11/11/17 00:51	
2-Chlorophenol	<0.20		0.20		mg/Kg			11/11/17 00:51	
4-Chlorophenyl phenyl ether	<0.20		0.20		mg/Kg	₩		11/11/17 00:51	
Chrysene	0.048		0.039	0.011	mg/Kg			11/11/17 00:51	
Dibenz(a,h)anthracene	<0.039		0.039	0.0075				11/11/17 00:51	
Dibenzofuran	<0.20		0.20		mg/Kg	*		11/11/17 00:51	
1,2-Dichlorobenzene	<0.20		0.20		mg/Kg	₽		11/11/17 00:51	
1,3-Dichlorobenzene	<0.20		0.20	0.044	mg/Kg	₩		11/11/17 00:51	
1,4-Dichlorobenzene	<0.20		0.20	0.050	mg/Kg	₩	11/10/17 07:22	11/11/17 00:51	
3,3'-Dichlorobenzidine	<0.20		0.20	0.054	mg/Kg	₩	11/10/17 07:22	11/11/17 00:51	
2,4-Dichlorophenol	< 0.39		0.39	0.092	mg/Kg	₩	11/10/17 07:22	11/11/17 00:51	
Diethyl phthalate	<0.20		0.20	0.066	mg/Kg	₩	11/10/17 07:22	11/11/17 00:51	
2,4-Dimethylphenol	< 0.39		0.39	0.15	mg/Kg	₩	11/10/17 07:22	11/11/17 00:51	
Dimethyl phthalate	<0.20		0.20	0.051	mg/Kg	☼	11/10/17 07:22	11/11/17 00:51	
Di-n-butyl phthalate	<0.20		0.20	0.059	mg/Kg	φ.	11/10/17 07:22	11/11/17 00:51	
4,6-Dinitro-2-methylphenol	<0.78		0.78	0.31	mg/Kg	☼	11/10/17 07:22	11/11/17 00:51	
2,4-Dinitrophenol	<0.78		0.78	0.68	mg/Kg	☼	11/10/17 07:22	11/11/17 00:51	
2,4-Dinitrotoluene	<0.20		0.20	0.062	mg/Kg	φ.	11/10/17 07:22	11/11/17 00:51	
2,6-Dinitrotoluene	<0.20		0.20	0.076	mg/Kg	₩	11/10/17 07:22	11/11/17 00:51	
Di-n-octyl phthalate	<0.20		0.20	0.063	mg/Kg	☼	11/10/17 07:22	11/11/17 00:51	
Fluoranthene	0.063		0.039	0.0072			11/10/17 07:22	11/11/17 00:51	
Fluorene	< 0.039		0.039	0.0055	0 0	☼		11/11/17 00:51	
Hexachlorobenzene	<0.078		0.078	0.0090	0 0	☆		11/11/17 00:51	
Hexachlorobutadiene	<0.20		0.20		mg/Kg			11/11/17 00:51	
Hexachlorocyclopentadiene	<0.78		0.78		mg/Kg	☆		11/11/17 00:51	
Hexachloroethane	<0.20		0.20		mg/Kg	₩		11/11/17 00:51	
Indeno[1,2,3-cd]pyrene	0.046		0.039		mg/Kg			11/11/17 00:51	
Isophorone	<0.20		0.20		mg/Kg	₽		11/11/17 00:51	
•									
2-Methylnaphthalene	0.058	.	0.078	0.0071		.		11/11/17 00:51 11/11/17 00:51	
2-Methylphenol	<0.20				mg/Kg				
3 & 4 Methylphenol	<0.20		0.20		mg/Kg	☆		11/11/17 00:51	
Naphthalene	0.026	J	0.039	0.0060				11/11/17 00:51	
2-Nitroaniline	<0.20		0.20		mg/Kg	☆		11/11/17 00:51	
3-Nitroaniline	<0.39		0.39		mg/Kg			11/11/17 00:51	
4-Nitroaniline	<0.39		0.39		mg/Kg	, .		11/11/17 00:51	
Nitrobenzene	<0.039		0.039	0.0097		₩		11/11/17 00:51	
2-Nitrophenol	< 0.39		0.39	0.092	mg/Kg	☼	11/10/17 07:22	11/11/17 00:51	

TestAmerica Chicago

2

3

5

6

8

10

12

11/15/2017

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/02/17 09:05

Date Received: 11/03/17 08:50

Client Sample ID: 3160-36-8 (0-3')

TestAmerica Job ID: 500-136756-1

Lab Sample ID: 500-136756-7

Matrix: Solid

Percent Solids: 84.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.78		0.78	0.37	mg/Kg	<u> </u>	11/10/17 07:22	11/11/17 00:51	1
N-Nitrosodi-n-propylamine	<0.078		0.078	0.048	mg/Kg	φ.	11/10/17 07:22	11/11/17 00:51	1
N-Nitrosodiphenylamine	<0.20		0.20	0.046	mg/Kg	₩	11/10/17 07:22	11/11/17 00:51	1
2,2'-oxybis[1-chloropropane]	<0.20		0.20	0.045	mg/Kg	₩	11/10/17 07:22	11/11/17 00:51	1
Pentachlorophenol	<0.78		0.78	0.62	mg/Kg	₩	11/10/17 07:22	11/11/17 00:51	1
Phenanthrene	0.097		0.039	0.0054	mg/Kg	☼	11/10/17 07:22	11/11/17 00:51	1
Phenol	<0.20		0.20	0.086	mg/Kg	₩	11/10/17 07:22	11/11/17 00:51	1
Pyrene	0.069		0.039	0.0077	mg/Kg	₩	11/10/17 07:22	11/11/17 00:51	1
1,2,4-Trichlorobenzene	<0.20		0.20	0.042	mg/Kg	☼	11/10/17 07:22	11/11/17 00:51	1
2,4,5-Trichlorophenol	<0.39		0.39	0.089	mg/Kg	☼	11/10/17 07:22	11/11/17 00:51	1
2,4,6-Trichlorophenol	<0.39		0.39	0.13	mg/Kg	₩	11/10/17 07:22	11/11/17 00:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	80		44 - 121				11/10/17 07:22	11/11/17 00:51	1
2-Fluorophenol	92		46 - 133				11/10/17 07:22	11/11/17 00:51	1
Nitrobenzene-d5	81		41 - 120				11/10/17 07:22	11/11/17 00:51	1
Phenol-d5	90		46 - 125				11/10/17 07:22	11/11/17 00:51	1
Terphenyl-d14	94		35 - 160				11/10/17 07:22	11/11/17 00:51	1
2,4,6-Tribromophenol	61		25 - 139				11/10/17 07:22	11/11/17 00:51	1

Method: 6010B - Metals (ICP) Analyte	Rosult	Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<1.1		1.1		mg/Kg	— =	11/07/17 08:10		1
Arsenic	8.1		0.56		mg/Kg	₩	11/07/17 08:10		1
Barium	300		0.56		mg/Kg	₩	11/07/17 08:10		1
Beryllium	0.74		0.22		mg/Kg		11/07/17 08:10	11/07/17 20:03	1
Cadmium	0.55		0.11	0.020	mg/Kg	☼	11/07/17 08:10	11/07/17 20:03	1
Chromium	11		0.56	0.28	mg/Kg	₩	11/07/17 08:10	11/07/17 20:03	1
Cobalt	27		0.28	0.073	mg/Kg	ф.	11/07/17 08:10	11/07/17 20:03	1
Copper	12		0.56	0.16	mg/Kg	₩	11/07/17 08:10	11/07/17 20:03	1
Iron	19000		11		mg/Kg	₩	11/07/17 08:10	11/07/17 20:03	1
Lead	47		0.28	0.13	mg/Kg	₽	11/07/17 08:10	11/07/17 20:03	1
Manganese	3700		5.6	0.81	mg/Kg	☼	11/07/17 08:10	11/08/17 20:10	10
Nickel	21		0.56	0.16	mg/Kg	☼	11/07/17 08:10	11/07/17 20:03	1
Selenium	1.2		0.56	0.33	mg/Kg		11/07/17 08:10	11/07/17 20:03	1
Silver	<0.28		0.28	0.072	mg/Kg	₩	11/07/17 08:10	11/07/17 20:03	1
Thallium	1.1		0.56		mg/Kg	₩	11/07/17 08:10	11/07/17 20:03	1
Vanadium	19		0.28	0.066	mg/Kg	₩.	11/07/17 08:10	11/07/17 20:03	1
Zinc	60		1.1	0.49	mg/Kg	☼	11/07/17 08:10	11/07/17 20:03	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/08/17 08:50	11/08/17 17:05	1
Barium	0.61		0.50	0.050	mg/L		11/08/17 08:50	11/08/17 17:05	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/08/17 08:50	11/08/17 17:05	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/08/17 08:50	11/08/17 17:05	1
Chromium	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:05	1
Cobalt	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:05	1
Copper	0.012	J	0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:05	1
Iron	0.37	J	0.40	0.20	mg/L		11/08/17 08:50	11/08/17 17:05	1

TestAmerica Chicago

Page 48 of 195

11/15/2017

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136756-1

Client Sample ID: 3160-36-8 (0-3')

Date Collected: 11/02/17 09:05 Date Received: 11/03/17 08:50

Lab Sample ID: 500-136756-7 **Matrix: Solid**

Percent Solids: 84.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	<0.0075		0.0075	0.0075	mg/L		11/08/17 08:50	11/08/17 17:05	1
Manganese	0.011	J	0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:05	1
Nickel	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:05	1
Selenium	<0.050		0.050	0.020	mg/L		11/08/17 08:50	11/08/17 17:05	1
Silver	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:05	1
Vanadium	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:05	1
Zinc	0.045	J	0.50	0.020	mg/L		11/08/17 08:50	11/08/17 17:05	1
Method: 6020A - Metals ((ICP/MS) - TCLP								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060		0.0060	0.0060	mg/L		11/08/17 08:50	11/10/17 10:56	1
Thallium	<0.0020		0.0020	0.0020	mg/L		11/08/17 08:50	11/10/17 10:56	1
Method: 7470A - TCLP M	lercury - TCLP								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/08/17 13:40	11/09/17 09:39	1
Method: 7471B - Mercury	v (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.037		0.019	0.0064	mg/Kg	<u>∓</u>	11/07/17 13:20	11/08/17 10:43	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.9		0.20	0.20	SU			11/12/17 19:27	

TestAmerica Job ID: 500-136756-1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-36-7 (0-3')

Date Collected: 11/02/17 09:20 Date Received: 11/03/17 08:50 Lab Sample ID: 500-136756-8

Matrix: Solid
Percent Solids: 78.9

Method: 8260B - Volatile O Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	0.036		0.020	0.0085	mg/Kg	<u> </u>	11/03/17 18:20	11/07/17 12:13	1
Benzene	<0.0020		0.0020	0.00050	mg/Kg	≎	11/03/17 18:20	11/07/17 12:13	1
Bromodichloromethane	<0.0020		0.0020	0.00040	mg/Kg	₩	11/03/17 18:20	11/07/17 12:13	1
Bromoform	<0.0020		0.0020	0.00057	mg/Kg		11/03/17 18:20	11/07/17 12:13	1
Bromomethane	<0.0049		0.0049	0.0019	mg/Kg	₩	11/03/17 18:20	11/07/17 12:13	1
2-Butanone (MEK)	<0.0049		0.0049	0.0022	mg/Kg	₩	11/03/17 18:20	11/07/17 12:13	1
Carbon disulfide	<0.0049		0.0049	0.0010	mg/Kg	.	11/03/17 18:20	11/07/17 12:13	1
Carbon tetrachloride	<0.0020		0.0020	0.00057	mg/Kg	₩	11/03/17 18:20	11/07/17 12:13	1
Chlorobenzene	<0.0020		0.0020	0.00072	mg/Kg	₩	11/03/17 18:20	11/07/17 12:13	1
Chloroethane	<0.0049		0.0049	0.0015	mg/Kg	₽	11/03/17 18:20	11/07/17 12:13	1
Chloroform	<0.0020		0.0020	0.00068	mg/Kg	₩	11/03/17 18:20	11/07/17 12:13	1
Chloromethane	< 0.0049		0.0049	0.0020	mg/Kg	₩	11/03/17 18:20	11/07/17 12:13	1
cis-1,2-Dichloroethene	<0.0020		0.0020	0.00055	mg/Kg		11/03/17 18:20	11/07/17 12:13	1
cis-1,3-Dichloropropene	< 0.0020		0.0020	0.00059	mg/Kg	₩	11/03/17 18:20	11/07/17 12:13	1
Dibromochloromethane	< 0.0020		0.0020	0.00064	mg/Kg	₩	11/03/17 18:20	11/07/17 12:13	1
1,1-Dichloroethane	<0.0020		0.0020	0.00067	mg/Kg		11/03/17 18:20	11/07/17 12:13	1
1,2-Dichloroethane	< 0.0049		0.0049	0.0015	mg/Kg	₩	11/03/17 18:20	11/07/17 12:13	1
1,1-Dichloroethene	< 0.0020		0.0020	0.00068	mg/Kg	₽	11/03/17 18:20	11/07/17 12:13	1
1,2-Dichloropropane	<0.0020		0.0020	0.00051	mg/Kg		11/03/17 18:20	11/07/17 12:13	1
1,3-Dichloropropene, Total	< 0.0020		0.0020	0.00069	mg/Kg	₩	11/03/17 18:20	11/07/17 12:13	1
Ethylbenzene	<0.0020		0.0020	0.00094	mg/Kg	≎	11/03/17 18:20	11/07/17 12:13	1
2-Hexanone	<0.0049		0.0049	0.0015	mg/Kg		11/03/17 18:20	11/07/17 12:13	1
Methylene Chloride	< 0.0049		0.0049	0.0019	mg/Kg	≎	11/03/17 18:20	11/07/17 12:13	1
4-Methyl-2-pentanone (MIBK)	< 0.0049		0.0049	0.0015	mg/Kg	≎	11/03/17 18:20	11/07/17 12:13	1
Methyl tert-butyl ether	<0.0020		0.0020	0.00058	mg/Kg		11/03/17 18:20	11/07/17 12:13	1
Styrene	<0.0020		0.0020	0.00059	mg/Kg	≎	11/03/17 18:20	11/07/17 12:13	1
1,1,2,2-Tetrachloroethane	< 0.0020		0.0020	0.00063	mg/Kg	☼	11/03/17 18:20	11/07/17 12:13	1
Tetrachloroethene	<0.0020		0.0020	0.00067	mg/Kg		11/03/17 18:20	11/07/17 12:13	1
Toluene	<0.0020		0.0020	0.00050	mg/Kg	≎	11/03/17 18:20	11/07/17 12:13	1
trans-1,2-Dichloroethene	< 0.0020		0.0020	0.00087	mg/Kg	☼	11/03/17 18:20	11/07/17 12:13	1
trans-1,3-Dichloropropene	<0.0020		0.0020	0.00069	mg/Kg		11/03/17 18:20	11/07/17 12:13	1
1,1,1-Trichloroethane	< 0.0020		0.0020	0.00066	mg/Kg	☼	11/03/17 18:20	11/07/17 12:13	1
1,1,2-Trichloroethane	<0.0020		0.0020	0.00084	mg/Kg	₽	11/03/17 18:20	11/07/17 12:13	1
Trichloroethene	<0.0020		0.0020	0.00066	mg/Kg		11/03/17 18:20	11/07/17 12:13	1
Vinyl acetate	< 0.0049		0.0049	0.0017	mg/Kg	₽	11/03/17 18:20	11/07/17 12:13	1
Vinyl chloride	<0.0020		0.0020	0.00087	mg/Kg	₽	11/03/17 18:20	11/07/17 12:13	1
Xylenes, Total	<0.0039		0.0039	0.00063	mg/Kg	.	11/03/17 18:20	11/07/17 12:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	87		75 - 131				11/03/17 18:20	11/07/17 12:13	1
Dibromofluoromethane	104		75 - 126				11/03/17 18:20	11/07/17 12:13	1
1,2-Dichloroethane-d4 (Surr)	112		70 - 134				11/03/17 18:20	11/07/17 12:13	1
Toluene-d8 (Surr)	95		75 - 124				11/03/17 18:20	11/07/17 12:13	1

Method: 8270D - Semivolatile Organic Compounds (GC/MS)								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	<0.041	0.041	0.0074	mg/Kg	\	11/10/17 07:22	11/10/17 21:30	1
Acenaphthylene	<0.041	0.041	0.0054	mg/Kg	≎	11/10/17 07:22	11/10/17 21:30	1
Anthracene	<0.041	0.041	0.0068	mg/Kg	≎	11/10/17 07:22	11/10/17 21:30	1
Benzo[a]anthracene	<0.041	0.041	0.0055	mg/Kg	≎	11/10/17 07:22	11/10/17 21:30	1

TestAmerica Chicago

Page 50 of 195

11/15/2017

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136756-1

Client Sample ID: 3160-36-7 (0-3')

Lab Sample ID: 500-136756-8

Method: 8270D - Semivolatil Analyte	Result (MDL		D	Prepared	Analyzed	Dil Fa
•	- Result (0.041 O.041	0.0079	mg/Kg	— ~		11/10/17 21:30	- ОП Га
Benzo[a]pyrene Benzo[b]fluoranthene	<0.041	0.041	0.0079	0 0	~ ⇔		11/10/17 21:30	
	<0.041	0.041			· · · · · · · · · · · · · · · · · · ·		11/10/17 21:30	
Benzo[g,h,i]perylene				mg/Kg	~ ⇔			
Benzo[k]fluoranthene	<0.041 <0.21	0.041 0.21		mg/Kg mg/Kg	~ ☆		11/10/17 21:30	
Bis(2-chloroethoxy)methane					· · · · · · · · · · · · · · · · · · ·		11/10/17 21:30	
Bis(2-chloroethyl)ether	<0.21 <0.21	0.21 0.21		mg/Kg	~ ☆		11/10/17 21:30	
Bis(2-ethylhexyl) phthalate				mg/Kg			11/10/17 21:30	
4-Bromophenyl phenyl ether	<0.21	0.21		mg/Kg	.		11/10/17 21:30	
Butyl benzyl phthalate	<0.21	0.21		mg/Kg			11/10/17 21:30	
Carbazole	<0.21	0.21		mg/Kg	☆		11/10/17 21:30	
4-Chloroaniline	<0.83	0.83		mg/Kg	:		11/10/17 21:30	
4-Chloro-3-methylphenol	<0.41	0.41		mg/Kg			11/10/17 21:30	
2-Chloronaphthalene	<0.21	0.21		mg/Kg	.;.		11/10/17 21:30	
2-Chlorophenol	<0.21	0.21		mg/Kg	: ;		11/10/17 21:30	
4-Chlorophenyl phenyl ether	<0.21	0.21		mg/Kg	*		11/10/17 21:30	
Chrysene	<0.041	0.041		mg/Kg	*		11/10/17 21:30	
Dibenz(a,h)anthracene	<0.041	0.041	0.0079	mg/Kg			11/10/17 21:30	
Dibenzofuran	<0.21	0.21	0.048	mg/Kg	₩	11/10/17 07:22	11/10/17 21:30	
1,2-Dichlorobenzene	<0.21	0.21	0.049	0 0	₩	11/10/17 07:22	11/10/17 21:30	
1,3-Dichlorobenzene	<0.21	0.21	0.046	mg/Kg	₩	11/10/17 07:22	11/10/17 21:30	
1,4-Dichlorobenzene	<0.21	0.21	0.053	mg/Kg	₽	11/10/17 07:22	11/10/17 21:30	
3,3'-Dichlorobenzidine	<0.21	0.21	0.057	mg/Kg	₩	11/10/17 07:22	11/10/17 21:30	
2,4-Dichlorophenol	<0.41	0.41	0.097	mg/Kg	₩	11/10/17 07:22	11/10/17 21:30	
Diethyl phthalate	<0.21	0.21	0.069	mg/Kg	₩	11/10/17 07:22	11/10/17 21:30	
2,4-Dimethylphenol	<0.41	0.41	0.16	mg/Kg	☼	11/10/17 07:22	11/10/17 21:30	
Dimethyl phthalate	<0.21	0.21	0.054	mg/Kg	₩	11/10/17 07:22	11/10/17 21:30	
Di-n-butyl phthalate	<0.21	0.21	0.062	mg/Kg	φ.	11/10/17 07:22	11/10/17 21:30	
4,6-Dinitro-2-methylphenol	<0.83	0.83	0.33	mg/Kg	☼	11/10/17 07:22	11/10/17 21:30	
2,4-Dinitrophenol	<0.83	0.83	0.72	mg/Kg	₩	11/10/17 07:22	11/10/17 21:30	
2,4-Dinitrotoluene	<0.21	0.21	0.065	mg/Kg		11/10/17 07:22	11/10/17 21:30	
2,6-Dinitrotoluene	<0.21	0.21	0.081	mg/Kg	☼	11/10/17 07:22	11/10/17 21:30	
Di-n-octyl phthalate	<0.21	0.21		mg/Kg	☼	11/10/17 07:22	11/10/17 21:30	
Fluoranthene	<0.041	0.041	0.0076		· · · · · · · · · · · · · · · · · · ·	11/10/17 07:22	11/10/17 21:30	
Fluorene	<0.041	0.041	0.0058	mg/Kg	₩	11/10/17 07:22	11/10/17 21:30	
Hexachlorobenzene	<0.083	0.083	0.0095		₩	11/10/17 07:22	11/10/17 21:30	
Hexachlorobutadiene	<0.21	0.21		mg/Kg	· · · · · · · · · · · · · · · · · · ·		11/10/17 21:30	
Hexachlorocyclopentadiene	<0.83	0.83		mg/Kg	₩		11/10/17 21:30	
Hexachloroethane	<0.21	0.21		mg/Kg	₩		11/10/17 21:30	
Indeno[1,2,3-cd]pyrene	<0.041	0.041		mg/Kg	· · · · · · · · · · · · · · · · · · ·		11/10/17 21:30	
Isophorone	<0.21	0.21		mg/Kg	₽		11/10/17 21:30	
2-Methylnaphthalene	<0.083	0.083	0.0075		Ö		11/10/17 21:30	
2-Methylphenol	<0.21	0.21		mg/Kg			11/10/17 21:30	
3 & 4 Methylphenol	<0.21	0.21		mg/Kg	₽		11/10/17 21:30	
S & 4 Methylphenol Naphthalene	<0.041	0.21	0.0063		₩		11/10/17 21:30	
					· · · · · · · · · · · · · · · · · · ·		11/10/17 21:30	
2-Nitroaniline	<0.21	0.21		mg/Kg	74. 74.			
3-Nitroaniline	<0.41	0.41		mg/Kg	₩ ₩		11/10/17 21:30	
4-Nitroaniline	<0.41	0.41		mg/Kg			11/10/17 21:30	
Nitrobenzene	<0.041	0.041	0.010	mg/Kg	#	11/10/17 07:22	11/10/17 21:30	

TestAmerica Chicago

11/15/2017

4

6

0

11

13

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/02/17 09:20

Date Received: 11/03/17 08:50

Client Sample ID: 3160-36-7 (0-3')

TestAmerica Job ID: 500-136756-1

Lab Sample ID: 500-136756-8

Matrix: Solid

Percent Solids: 78.9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.83		0.83	0.39	mg/Kg	<u> </u>	11/10/17 07:22	11/10/17 21:30	1
N-Nitrosodi-n-propylamine	<0.083		0.083	0.050	mg/Kg	.	11/10/17 07:22	11/10/17 21:30	1
N-Nitrosodiphenylamine	<0.21		0.21	0.048	mg/Kg	₩	11/10/17 07:22	11/10/17 21:30	1
2,2'-oxybis[1-chloropropane]	<0.21		0.21	0.047	mg/Kg	₽	11/10/17 07:22	11/10/17 21:30	1
Pentachlorophenol	<0.83		0.83	0.66	mg/Kg	₽	11/10/17 07:22	11/10/17 21:30	1
Phenanthrene	<0.041		0.041	0.0057	mg/Kg	₩	11/10/17 07:22	11/10/17 21:30	1
Phenol	<0.21		0.21	0.091	mg/Kg	₩	11/10/17 07:22	11/10/17 21:30	1
Pyrene	<0.041		0.041	0.0081	mg/Kg	₽	11/10/17 07:22	11/10/17 21:30	1
1,2,4-Trichlorobenzene	<0.21		0.21	0.044	mg/Kg	₩	11/10/17 07:22	11/10/17 21:30	1
2,4,5-Trichlorophenol	<0.41		0.41	0.093	mg/Kg	☼	11/10/17 07:22	11/10/17 21:30	1
2,4,6-Trichlorophenol	<0.41		0.41	0.14	mg/Kg	₩	11/10/17 07:22	11/10/17 21:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl			44 - 121				11/10/17 07:22	11/10/17 21:30	1
2-Fluorophenol	88		46 - 133				11/10/17 07:22	11/10/17 21:30	1
Nitrobenzene-d5	88		41 - 120				11/10/17 07:22	11/10/17 21:30	1
Phenol-d5	86		46 - 125				11/10/17 07:22	11/10/17 21:30	1
Terphenyl-d14	90		35 - 160				11/10/17 07:22	11/10/17 21:30	1
2,4,6-Tribromophenol	80		25 - 139				11/10/17 07:22	11/10/17 21:30	1

Method: 6010B - Metals (ICP) Analyte	Result	Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<1.2		1.2		mg/Kg	— -	11/07/17 08:10		1
Arsenic	7.9		0.61		mg/Kg	₩	11/07/17 08:10		1
Barium	51		0.61		mg/Kg	☆	11/07/17 08:10		1
Beryllium	0.53		0.24	0.057			11/07/17 08:10	11/07/17 20:07	1
Cadmium	0.024	J	0.12	0.022	mg/Kg	₩	11/07/17 08:10	11/07/17 20:07	1
Chromium	18		0.61		mg/Kg	₩	11/07/17 08:10	11/07/17 20:07	1
Cobalt	4.7		0.30		mg/Kg	φ.	11/07/17 08:10	11/07/17 20:07	1
Copper	14		0.61	0.17	mg/Kg	₩	11/07/17 08:10	11/07/17 20:07	1
Iron	20000		12	6.3	mg/Kg	₩	11/07/17 08:10	11/07/17 20:07	1
Lead	14		0.30	0.14	mg/Kg	₩.	11/07/17 08:10	11/07/17 20:07	1
Manganese	140		0.61	0.088	mg/Kg	₩	11/07/17 08:10	11/07/17 20:07	1
Nickel	12		0.61	0.18	mg/Kg	☼	11/07/17 08:10	11/07/17 20:07	1
Selenium	0.63		0.61	0.36	mg/Kg	₽	11/07/17 08:10	11/07/17 20:07	1
Silver	< 0.30		0.30	0.078	mg/Kg	☼	11/07/17 08:10	11/07/17 20:07	1
Thallium	<0.61		0.61	0.30	mg/Kg	☼	11/07/17 08:10	11/07/17 20:07	1
Vanadium	31		0.30	0.072	mg/Kg	₩.	11/07/17 08:10	11/07/17 20:07	1
Zinc	53		1.2	0.53	mg/Kg	☼	11/07/17 08:10	11/07/17 20:07	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/08/17 08:50	11/08/17 17:09	1
Barium	0.21	J	0.50	0.050	mg/L		11/08/17 08:50	11/08/17 17:09	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/08/17 08:50	11/08/17 17:09	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/08/17 08:50	11/08/17 17:09	1
Chromium	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:09	1
Cobalt	0.011	J	0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:09	1
Copper	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:09	1
Iron	0.71		0.40	0.20	mg/L		11/08/17 08:50	11/08/17 17:09	1

TestAmerica Chicago

Page 52 of 195

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/02/17 09:20

Date Received: 11/03/17 08:50

рН

Client Sample ID: 3160-36-7 (0-3')

TestAmerica Job ID: 500-136756-1

Lab Sample ID: 500-136756-8

Matrix: Solid

Percent Solids: 78.9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	<0.0075		0.0075	0.0075	mg/L		11/08/17 08:50	11/08/17 17:09	1
Manganese	0.23		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:09	1
Nickel	0.024	J	0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:09	1
Selenium	<0.050		0.050	0.020	mg/L		11/08/17 08:50	11/08/17 17:09	1
Silver	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:09	1
Vanadium	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:09	1
Zinc	0.039	J	0.50	0.020	mg/L		11/08/17 08:50	11/08/17 17:09	1
- Method: 6010B - Meta	als (ICP) - SPLP Eas	t							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Manganese	0.26		0.025	0.010	mg/L		11/08/17 14:37	11/09/17 20:40	1
- Method: 6020A - Meta	als (ICP/MS) - TCLP								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060		0.0060	0.0060	mg/L		11/08/17 08:50	11/10/17 11:00	1
Thallium	<0.0020		0.0020	0.0020	mg/L		11/08/17 08:50	11/10/17 11:00	1
Method: 7470A - TCL	P Mercury - TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/08/17 13:40	11/09/17 09:40	1
Method: 7471B - Merc	cury (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.011	J	0.020	0.0065	mg/Kg	\	11/07/17 13:20	11/08/17 10:45	1
General Chemistry									

0.20

4.8

0.20 SU

11/12/17 20:00

2

3

5

8

9

11

12

13

14

ŭ

TestAmerica Job ID: 500-136756-1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-36-6 (0-3')

Date Collected: 11/02/17 09:30 Date Received: 11/03/17 08:50 Lab Sample ID: 500-136756-9

Matrix: Solid
Percent Solids: 82.7

Method: 8260B - Volatile On Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Acetone	<0.022	0.022	0.0094	mg/Kg	₩	11/03/17 18:20	11/07/17 12:38	1
Benzene	<0.0022	0.0022	0.00055	mg/Kg	☼	11/03/17 18:20	11/07/17 12:38	1
Bromodichloromethane	<0.0022	0.0022	0.00044	mg/Kg	₩	11/03/17 18:20	11/07/17 12:38	1
Bromoform	<0.0022	0.0022	0.00063	mg/Kg	≎	11/03/17 18:20	11/07/17 12:38	1
Bromomethane	<0.0054	0.0054	0.0020	mg/Kg	☼	11/03/17 18:20	11/07/17 12:38	1
2-Butanone (MEK)	<0.0054	0.0054	0.0024	mg/Kg	≎	11/03/17 18:20	11/07/17 12:38	1
Carbon disulfide	<0.0054	0.0054	0.0011	mg/Kg	≎	11/03/17 18:20	11/07/17 12:38	1
Carbon tetrachloride	<0.0022	0.0022	0.00063	mg/Kg	₩	11/03/17 18:20	11/07/17 12:38	1
Chlorobenzene	<0.0022	0.0022	0.00080	mg/Kg	≎	11/03/17 18:20	11/07/17 12:38	1
Chloroethane	<0.0054	0.0054	0.0016	mg/Kg	☆	11/03/17 18:20	11/07/17 12:38	1
Chloroform	<0.0022	0.0022	0.00075	mg/Kg	≎	11/03/17 18:20	11/07/17 12:38	1
Chloromethane	<0.0054	0.0054	0.0022	mg/Kg	₩	11/03/17 18:20	11/07/17 12:38	1
cis-1,2-Dichloroethene	<0.0022	0.0022	0.00061	mg/Kg	₽	11/03/17 18:20	11/07/17 12:38	1
cis-1,3-Dichloropropene	<0.0022	0.0022	0.00065	mg/Kg	≎	11/03/17 18:20	11/07/17 12:38	1
Dibromochloromethane	<0.0022	0.0022	0.00071	mg/Kg	≎	11/03/17 18:20	11/07/17 12:38	1
1,1-Dichloroethane	<0.0022	0.0022	0.00074	mg/Kg	₽	11/03/17 18:20	11/07/17 12:38	1
1,2-Dichloroethane	<0.0054	0.0054	0.0017	mg/Kg	☼	11/03/17 18:20	11/07/17 12:38	1
1,1-Dichloroethene	<0.0022	0.0022	0.00075	mg/Kg	☼	11/03/17 18:20	11/07/17 12:38	1
1,2-Dichloropropane	<0.0022	0.0022	0.00056	mg/Kg	₽	11/03/17 18:20	11/07/17 12:38	1
1,3-Dichloropropene, Total	<0.0022	0.0022	0.00076	mg/Kg	≎	11/03/17 18:20	11/07/17 12:38	1
Ethylbenzene	<0.0022	0.0022	0.0010	mg/Kg	≎	11/03/17 18:20	11/07/17 12:38	1
2-Hexanone	<0.0054	0.0054	0.0017	mg/Kg		11/03/17 18:20	11/07/17 12:38	1
Methylene Chloride	<0.0054	0.0054	0.0021	mg/Kg	≎	11/03/17 18:20	11/07/17 12:38	1
4-Methyl-2-pentanone (MIBK)	<0.0054	0.0054	0.0016	mg/Kg	☼	11/03/17 18:20	11/07/17 12:38	1
Methyl tert-butyl ether	<0.0022	0.0022	0.00064	mg/Kg	₽	11/03/17 18:20	11/07/17 12:38	1
Styrene	<0.0022	0.0022	0.00065	mg/Kg	☼	11/03/17 18:20	11/07/17 12:38	1
1,1,2,2-Tetrachloroethane	<0.0022	0.0022	0.00069	mg/Kg	☼	11/03/17 18:20	11/07/17 12:38	1
Tetrachloroethene	<0.0022	0.0022	0.00074	mg/Kg	₩	11/03/17 18:20	11/07/17 12:38	1
Toluene	<0.0022	0.0022	0.00055	mg/Kg	☼	11/03/17 18:20	11/07/17 12:38	1
trans-1,2-Dichloroethene	<0.0022	0.0022	0.00096	mg/Kg	☼	11/03/17 18:20	11/07/17 12:38	1
trans-1,3-Dichloropropene	<0.0022	0.0022	0.00076	mg/Kg	₩	11/03/17 18:20	11/07/17 12:38	1
1,1,1-Trichloroethane	<0.0022	0.0022	0.00073	mg/Kg	☼	11/03/17 18:20	11/07/17 12:38	1
1,1,2-Trichloroethane	<0.0022	0.0022	0.00093	mg/Kg	₩	11/03/17 18:20	11/07/17 12:38	1
Trichloroethene	<0.0022	0.0022	0.00073	mg/Kg	.	11/03/17 18:20	11/07/17 12:38	1
Vinyl acetate	<0.0054	0.0054	0.0019	mg/Kg	☼	11/03/17 18:20	11/07/17 12:38	1
Vinyl chloride	<0.0022	0.0022	0.00096	mg/Kg	☼	11/03/17 18:20	11/07/17 12:38	1
Xylenes, Total	<0.0043	0.0043	0.00069	mg/Kg		11/03/17 18:20	11/07/17 12:38	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier L	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	88	7	75 - 131	11/03/17 18:20	11/07/17 12:38	1
Dibromofluoromethane	110	7	75 - 126	11/03/17 18:20	11/07/17 12:38	1
1,2-Dichloroethane-d4 (Surr)	112	7	70 - 134	11/03/17 18:20	11/07/17 12:38	1
Toluene-d8 (Surr)	96	7	75 - 124	11/03/17 18:20	11/07/17 12:38	1

Method: 827	70D - Semivolatile Organic C	ompounds (GC/MS)						
Analyte	Result	t Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	<0.039	0.039	0.0071	mg/Kg	₩	11/10/17 07:22	11/10/17 21:54	1
Acenaphthylene	<0.039	0.039	0.0052	mg/Kg	₩	11/10/17 07:22	11/10/17 21:54	1
Anthracene	<0.039	0.039	0.0066	mg/Kg	₩	11/10/17 07:22	11/10/17 21:54	1
Benzo[a]anthrad	cene <0.039	0.039	0.0053	mg/Kg	₽	11/10/17 07:22	11/10/17 21:54	1

TestAmerica Chicago

Page 54 of 195

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/02/17 09:30

Client Sample ID: 3160-36-6 (0-3')

TestAmerica Job ID: 500-136756-1

Lab Sample ID: 500-136756-9

Matrix: Solid

Percent Solids: 82.7

Date Received: 11/03/17 08:50	

Method: 8270D - Semivolati Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]pyrene	<0.039		0.039	0.0076	mg/Kg	<u>∓</u>	11/10/17 07:22	11/10/17 21:54	1
Benzo[b]fluoranthene	<0.039		0.039	0.0085	mg/Kg	₩	11/10/17 07:22	11/10/17 21:54	1
Benzo[g,h,i]perylene	<0.039		0.039	0.013	mg/Kg	₩	11/10/17 07:22	11/10/17 21:54	1
Benzo[k]fluoranthene	<0.039		0.039	0.012	mg/Kg	₩	11/10/17 07:22	11/10/17 21:54	1
Bis(2-chloroethoxy)methane	<0.20		0.20	0.040	mg/Kg	₩	11/10/17 07:22	11/10/17 21:54	1
Bis(2-chloroethyl)ether	<0.20		0.20	0.059	mg/Kg	₽	11/10/17 07:22	11/10/17 21:54	1
Bis(2-ethylhexyl) phthalate	<0.20		0.20	0.072	mg/Kg	₩	11/10/17 07:22	11/10/17 21:54	1
4-Bromophenyl phenyl ether	<0.20		0.20	0.052	mg/Kg	₩	11/10/17 07:22	11/10/17 21:54	1
Butyl benzyl phthalate	<0.20		0.20	0.075	mg/Kg	ф.	11/10/17 07:22	11/10/17 21:54	1
Carbazole	<0.20		0.20	0.099	mg/Kg	☼	11/10/17 07:22	11/10/17 21:54	1
4-Chloroaniline	<0.80		0.80	0.19	mg/Kg	₩	11/10/17 07:22	11/10/17 21:54	1
4-Chloro-3-methylphenol	<0.39		0.39	0.13	mg/Kg		11/10/17 07:22	11/10/17 21:54	1
2-Chloronaphthalene	<0.20		0.20	0.044	mg/Kg	₩	11/10/17 07:22	11/10/17 21:54	1
2-Chlorophenol	<0.20		0.20	0.067	mg/Kg	₩	11/10/17 07:22	11/10/17 21:54	1
4-Chlorophenyl phenyl ether	<0.20		0.20	0.046	mg/Kg		11/10/17 07:22	11/10/17 21:54	1
Chrysene	<0.039		0.039	0.011	mg/Kg	₩	11/10/17 07:22	11/10/17 21:54	1
Dibenz(a,h)anthracene	< 0.039		0.039	0.0076	mg/Kg	₩	11/10/17 07:22	11/10/17 21:54	1
Dibenzofuran	<0.20		0.20	0.046	mg/Kg		11/10/17 07:22	11/10/17 21:54	1
1,2-Dichlorobenzene	<0.20		0.20		mg/Kg	₩	11/10/17 07:22	11/10/17 21:54	1
1,3-Dichlorobenzene	<0.20		0.20		mg/Kg	₽	11/10/17 07:22	11/10/17 21:54	1
1,4-Dichlorobenzene	<0.20		0.20		mg/Kg		11/10/17 07:22	11/10/17 21:54	1
3.3'-Dichlorobenzidine	<0.20		0.20		mg/Kg	₽	11/10/17 07:22	11/10/17 21:54	1
2,4-Dichlorophenol	<0.39		0.39		mg/Kg	₩		11/10/17 21:54	1
Diethyl phthalate	<0.20		0.20		mg/Kg			11/10/17 21:54	1
2,4-Dimethylphenol	<0.39		0.39		mg/Kg	₩		11/10/17 21:54	1
Dimethyl phthalate	<0.20		0.20		mg/Kg	₩		11/10/17 21:54	1
Di-n-butyl phthalate	<0.20		0.20		mg/Kg			11/10/17 21:54	· · · · · · · · · · · · · · · · · · ·
4,6-Dinitro-2-methylphenol	<0.80		0.80		mg/Kg	₩		11/10/17 21:54	1
2,4-Dinitrophenol	<0.80		0.80		mg/Kg	₩		11/10/17 21:54	1
2,4-Dinitrotoluene	<0.20		0.20		mg/Kg			11/10/17 21:54	
2,6-Dinitrotoluene	<0.20		0.20		mg/Kg	☼		11/10/17 21:54	1
Di-n-octyl phthalate	<0.20		0.20		mg/Kg	₩		11/10/17 21:54	1
Fluoranthene	< 0.039		0.039	0.0073				11/10/17 21:54	
Fluorene	<0.039		0.039	0.0075	0 0	☼		11/10/17 21:54	1
Hexachlorobenzene	<0.080		0.080	0.0092		₩		11/10/17 21:54	1
Hexachlorobutadiene	<0.20		0.20		mg/Kg			11/10/17 21:54	
Hexachlorocyclopentadiene	<0.80		0.80		mg/Kg	₩		11/10/17 21:54	1
Hexachloroethane	<0.20		0.20		mg/Kg	☼		11/10/17 21:54	1
Indeno[1,2,3-cd]pyrene	<0.039		0.039		mg/Kg			11/10/17 21:54	
Isophorone	<0.20		0.20		mg/Kg	₽		11/10/17 21:54	1
2-Methylnaphthalene	<0.080		0.080	0.0073		≎		11/10/17 21:54	1
2-Methylphenol	<0.20		0.000		mg/Kg			11/10/17 21:54	
3 & 4 Methylphenol	<0.20		0.20		mg/Kg	≎		11/10/17 21:54	1
Naphthalene	<0.039		0.20	0.0061	0 0	Ť Ť		11/10/17 21:54	
2-Nitroaniline	<0.039		0.039					11/10/17 21:54	1
					mg/Kg	₩			1
3-Nitroaniline	<0.39		0.39		mg/Kg			11/10/17 21:54 11/10/17 21:54	1
4-Nitroaniline	<0.39		0.39		mg/Kg	.;;			
Nitrobenzene	< 0.039		0.039	0.0099	mg/ r .g	₽	11/10/1/ 07:22	11/10/17 21:54	1

4

6

8

10

. . 12

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/02/17 09:30

Date Received: 11/03/17 08:50

Client Sample ID: 3160-36-6 (0-3')

TestAmerica Job ID: 500-136756-1

Lab Sample ID: 500-136756-9

Matrix: Solid

Percent Solids: 82.7

Method: 8270D - Semivolate	tile Organic Co	mpounds	(GC/MS) (Cd	ontinued)				
Analyte		Qualifier	ŔĹ		Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.80		0.80	0.38	mg/Kg	<u> </u>	11/10/17 07:22	11/10/17 21:54	1
N-Nitrosodi-n-propylamine	<0.080		0.080	0.048	mg/Kg	.	11/10/17 07:22	11/10/17 21:54	1
N-Nitrosodiphenylamine	<0.20		0.20	0.047	mg/Kg	₩	11/10/17 07:22	11/10/17 21:54	1
2,2'-oxybis[1-chloropropane]	<0.20		0.20	0.046	mg/Kg	₩	11/10/17 07:22	11/10/17 21:54	1
Pentachlorophenol	<0.80		0.80	0.63	mg/Kg	₩	11/10/17 07:22	11/10/17 21:54	1
Phenanthrene	<0.039		0.039	0.0055	mg/Kg	₩	11/10/17 07:22	11/10/17 21:54	1
Phenol	<0.20		0.20	0.088	mg/Kg	₩	11/10/17 07:22	11/10/17 21:54	1
Pyrene	<0.039		0.039	0.0078	mg/Kg	₩	11/10/17 07:22	11/10/17 21:54	1
1,2,4-Trichlorobenzene	<0.20		0.20	0.043	mg/Kg	₩	11/10/17 07:22	11/10/17 21:54	1
2,4,5-Trichlorophenol	<0.39		0.39	0.090	mg/Kg	₩	11/10/17 07:22	11/10/17 21:54	1
2,4,6-Trichlorophenol	<0.39		0.39	0.14	mg/Kg	₩	11/10/17 07:22	11/10/17 21:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	99		44 - 121				11/10/17 07:22	11/10/17 21:54	1
2-Fluorophenol	86		46 - 133				11/10/17 07:22	11/10/17 21:54	1
Nitrobenzene-d5	76		41 - 120				11/10/17 07:22	11/10/17 21:54	1
Phenol-d5	83		46 - 125				11/10/17 07:22	11/10/17 21:54	1
Terphenyl-d14	88		35 - 160				11/10/17 07:22	11/10/17 21:54	1
2,4,6-Tribromophenol	85		25 - 139				11/10/17 07:22	11/10/17 21:54	1

Method: 6010B - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<1.1		1.1			— -	11/07/17 08:10		1
Arsenic	8.5		0.55		mg/Kg	₩	11/07/17 08:10	11/07/17 20:11	1
Barium	52		0.55		mg/Kg	₩	11/07/17 08:10	11/07/17 20:11	1
Beryllium	0.52		0.22	0.051	mg/Kg	₩.	11/07/17 08:10	11/07/17 20:11	1
Cadmium	<0.11		0.11	0.020	mg/Kg	₩	11/07/17 08:10	11/07/17 20:11	1
Chromium	18		0.55	0.27	mg/Kg	₩	11/07/17 08:10	11/07/17 20:11	1
Cobalt	5.0		0.27	0.072	mg/Kg		11/07/17 08:10	11/07/17 20:11	1
Copper	14		0.55	0.15	mg/Kg	₩	11/07/17 08:10	11/07/17 20:11	1
Iron	22000		11	5.7	mg/Kg	☼	11/07/17 08:10	11/07/17 20:11	1
Lead	13		0.27	0.13	mg/Kg	₩.	11/07/17 08:10	11/07/17 20:11	1
Manganese	120		0.55	0.080	mg/Kg	☼	11/07/17 08:10	11/07/17 20:11	1
Nickel	12		0.55	0.16	mg/Kg	☼	11/07/17 08:10	11/07/17 20:11	1
Selenium	0.93		0.55	0.32	mg/Kg	₩	11/07/17 08:10	11/07/17 20:11	1
Silver	<0.27		0.27	0.071	mg/Kg	☼	11/07/17 08:10	11/07/17 20:11	1
Thallium	<0.55		0.55	0.27	mg/Kg	☼	11/07/17 08:10	11/07/17 20:11	1
Vanadium	31		0.27	0.065	mg/Kg	₩	11/07/17 08:10	11/07/17 20:11	1
Zinc	53		1.1	0.48	mg/Kg	☼	11/07/17 08:10	11/07/17 20:11	1

Method: 6010B - Metal	s (ICP) - TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/08/17 08:50	11/08/17 17:21	1
Barium	0.22	J	0.50	0.050	mg/L		11/08/17 08:50	11/08/17 17:21	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/08/17 08:50	11/08/17 17:21	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/08/17 08:50	11/08/17 17:21	1
Chromium	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:21	1
Cobalt	0.013	J	0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:21	1
Copper	0.024	J	0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:21	1
Iron	0.98		0.40	0.20	mg/L		11/08/17 08:50	11/08/17 17:21	1

TestAmerica Chicago

Page 56 of 195

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/02/17 09:30

Date Received: 11/03/17 08:50

рН

Client Sample ID: 3160-36-6 (0-3')

TestAmerica Job ID: 500-136756-1

Lab Sample ID: 500-136756-9

Matrix: Solid Percent Solids: 82.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	<0.0075		0.0075	0.0075	mg/L		11/08/17 08:50	11/08/17 17:21	1
Manganese	0.21		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:21	1
Nickel	0.028		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:21	1
Selenium	< 0.050		0.050	0.020	mg/L		11/08/17 08:50	11/08/17 17:21	1
Silver	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:21	1
Vanadium	< 0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:21	1
Zinc	0.080	J	0.50	0.020	mg/L		11/08/17 08:50	11/08/17 17:21	1
Method: 6010B - Metals (ICP)	- SPLP Eas	t							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Manganese	0.078		0.025	0.010	mg/L		11/08/17 14:37	11/09/17 20:44	1
Method: 6020A - Metals (ICP/	MS) - TOLD								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060		0.0060	0.0060	mg/L		11/08/17 08:50	11/09/17 15:17	1
Thallium	<0.0020		0.0020	0.0020	mg/L		11/08/17 08:50	11/09/17 15:17	1
Method: 7470A - TCLP Mercu	ırv - TCLP								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/08/17 13:40	11/09/17 09:42	1
Method: 7471B - Mercury (CV	/AA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.043		0.019	0.0063	mg/Kg		11/07/17 13:20	11/08/17 10:54	1
General Chemistry									
Analyte	Dogulf	Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac

0.20

4.3

0.20 SU

11/12/17 21:07

TestAmerica Job ID: 500-136756-1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-36-5 (0-3')

Date Collected: 11/02/17 09:40 Date Received: 11/03/17 08:50 Lab Sample ID: 500-136756-10

Matrix: Solid Percent Solids: 81.2

Analyte	Result Qualif	fier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	<0.021	0.021	0.0089	mg/Kg	<u> </u>	11/03/17 18:20	11/07/17 13:03	1
Benzene	<0.0021	0.0021	0.00052	mg/Kg	≎	11/03/17 18:20	11/07/17 13:03	1
Bromodichloromethane	<0.0021	0.0021	0.00042	mg/Kg	₽	11/03/17 18:20	11/07/17 13:03	1
Bromoform	<0.0021	0.0021	0.00060	mg/Kg	₽	11/03/17 18:20	11/07/17 13:03	1
Bromomethane	<0.0051	0.0051	0.0019	mg/Kg	≎	11/03/17 18:20	11/07/17 13:03	1
2-Butanone (MEK)	<0.0051	0.0051	0.0023	mg/Kg	₽	11/03/17 18:20	11/07/17 13:03	1
Carbon disulfide	<0.0051	0.0051	0.0011	mg/Kg	\$	11/03/17 18:20	11/07/17 13:03	1
Carbon tetrachloride	<0.0021	0.0021	0.00060	mg/Kg	₽	11/03/17 18:20	11/07/17 13:03	1
Chlorobenzene	<0.0021	0.0021	0.00076	mg/Kg	₽	11/03/17 18:20	11/07/17 13:03	1
Chloroethane	<0.0051	0.0051	0.0015	mg/Kg	₩	11/03/17 18:20	11/07/17 13:03	1
Chloroform	<0.0021	0.0021	0.00071	mg/Kg	₽	11/03/17 18:20	11/07/17 13:03	1
Chloromethane	<0.0051	0.0051	0.0021	mg/Kg	₽	11/03/17 18:20	11/07/17 13:03	1
cis-1,2-Dichloroethene	<0.0021	0.0021	0.00057	mg/Kg	₩	11/03/17 18:20	11/07/17 13:03	1
cis-1,3-Dichloropropene	<0.0021	0.0021	0.00062	mg/Kg	₩	11/03/17 18:20	11/07/17 13:03	1
Dibromochloromethane	<0.0021	0.0021	0.00067	mg/Kg	₩	11/03/17 18:20	11/07/17 13:03	1
1,1-Dichloroethane	<0.0021	0.0021	0.00070	mg/Kg		11/03/17 18:20	11/07/17 13:03	1
1,2-Dichloroethane	<0.0051	0.0051	0.0016	mg/Kg	☼	11/03/17 18:20	11/07/17 13:03	1
1,1-Dichloroethene	<0.0021	0.0021	0.00071	mg/Kg	☼	11/03/17 18:20	11/07/17 13:03	1
1,2-Dichloropropane	<0.0021	0.0021	0.00053	mg/Kg		11/03/17 18:20	11/07/17 13:03	1
1,3-Dichloropropene, Total	<0.0021	0.0021	0.00072	mg/Kg	☼	11/03/17 18:20	11/07/17 13:03	1
Ethylbenzene	<0.0021	0.0021	0.00098	mg/Kg	☼	11/03/17 18:20	11/07/17 13:03	1
2-Hexanone	<0.0051	0.0051	0.0016	mg/Kg	\$	11/03/17 18:20	11/07/17 13:03	1
Methylene Chloride	<0.0051	0.0051	0.0020	mg/Kg	☼	11/03/17 18:20	11/07/17 13:03	1
4-Methyl-2-pentanone (MIBK)	<0.0051	0.0051	0.0015	mg/Kg	☼	11/03/17 18:20	11/07/17 13:03	1
Methyl tert-butyl ether	<0.0021	0.0021	0.00060	mg/Kg	\$	11/03/17 18:20	11/07/17 13:03	1
Styrene	<0.0021	0.0021	0.00062	mg/Kg	☼	11/03/17 18:20	11/07/17 13:03	1
1,1,2,2-Tetrachloroethane	<0.0021	0.0021	0.00066	mg/Kg	☼	11/03/17 18:20	11/07/17 13:03	1
Tetrachloroethene	<0.0021	0.0021	0.00070	mg/Kg	\$	11/03/17 18:20	11/07/17 13:03	1
Toluene	<0.0021	0.0021	0.00052	mg/Kg	≎	11/03/17 18:20	11/07/17 13:03	1
trans-1,2-Dichloroethene	<0.0021	0.0021	0.00091	mg/Kg	☼	11/03/17 18:20	11/07/17 13:03	1
trans-1,3-Dichloropropene	<0.0021	0.0021	0.00072	mg/Kg	\$	11/03/17 18:20	11/07/17 13:03	1
1,1,1-Trichloroethane	<0.0021	0.0021	0.00069	mg/Kg	☼	11/03/17 18:20	11/07/17 13:03	1
1,1,2-Trichloroethane	<0.0021	0.0021	0.00088	mg/Kg	≎	11/03/17 18:20	11/07/17 13:03	1
Trichloroethene	<0.0021	0.0021	0.00069	mg/Kg		11/03/17 18:20	11/07/17 13:03	1
Vinyl acetate	<0.0051	0.0051	0.0018		₽	11/03/17 18:20	11/07/17 13:03	1
Vinyl chloride	<0.0021	0.0021	0.00091		₽	11/03/17 18:20	11/07/17 13:03	1
Xylenes, Total	<0.0041	0.0041	0.00066		₽	11/03/17 18:20	11/07/17 13:03	1
Surrogate	%Recovery Quality	fier Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95	75 - 131	11/03/17 18:20	11/07/17 13:03	1
Dibromofluoromethane	108	75 - 126	11/03/17 18:20	11/07/17 13:03	1
1,2-Dichloroethane-d4 (Surr)	109	70 - 134	11/03/17 18:20	11/07/17 13:03	1
Toluene-d8 (Surr)	95	75 - 124	11/03/17 18:20	11/07/17 13:03	1

Method: 8270D - Semivol	atile Organic Compounds (GC/MS)						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	<0.040	0.040	0.0073	mg/Kg	\	11/10/17 07:22	11/10/17 22:18	1
Acenaphthylene	<0.040	0.040	0.0054	mg/Kg	☼	11/10/17 07:22	11/10/17 22:18	1
Anthracene	<0.040	0.040	0.0068	mg/Kg	₩	11/10/17 07:22	11/10/17 22:18	1
Benzolalanthracene	<0.040	0.040	0.0055	ma/Ka	₽	11/10/17 07:22	11/10/17 22:18	1

TestAmerica Chicago

Page 58 of 195

G

<u>ی</u>

5

8

46

11

13

14

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/02/17 09:40

Date Received: 11/03/17 08:50

Nitrobenzene

2-Nitrophenol

Client Sample ID: 3160-36-5 (0-3')

TestAmerica Job ID: 500-136756-1

Lab Sample ID: 500-136756-10

. Matrix: Solid

Percent Solids: 81.2

Method: 8270D - Semivolatil Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]pyrene	<0.040		0.040	0.0079	mg/Kg	<u></u>		11/10/17 22:18	1
Benzo[b]fluoranthene	<0.040		0.040	0.0088		₩	11/10/17 07:22	11/10/17 22:18	1
Benzo[g,h,i]perylene	<0.040		0.040	0.013	mg/Kg		11/10/17 07:22	11/10/17 22:18	1
Benzo[k]fluoranthene	<0.040		0.040		mg/Kg	₩	11/10/17 07:22	11/10/17 22:18	1
Bis(2-chloroethoxy)methane	<0.20		0.20		mg/Kg	₩	11/10/17 07:22	11/10/17 22:18	1
Bis(2-chloroethyl)ether	<0.20		0.20		mg/Kg		11/10/17 07:22	11/10/17 22:18	1
Bis(2-ethylhexyl) phthalate	<0.20		0.20		mg/Kg	₩	11/10/17 07:22	11/10/17 22:18	1
4-Bromophenyl phenyl ether	<0.20		0.20		mg/Kg	₩	11/10/17 07:22	11/10/17 22:18	1
Butyl benzyl phthalate	<0.20		0.20		mg/Kg		11/10/17 07:22	11/10/17 22:18	1
Carbazole	<0.20		0.20		mg/Kg	₩	11/10/17 07:22	11/10/17 22:18	1
4-Chloroaniline	<0.82		0.82		mg/Kg	₩	11/10/17 07:22	11/10/17 22:18	1
4-Chloro-3-methylphenol	<0.40		0.40		mg/Kg		11/10/17 07:22	11/10/17 22:18	1
2-Chloronaphthalene	<0.20		0.20		mg/Kg	₩	11/10/17 07:22	11/10/17 22:18	1
2-Chlorophenol	<0.20		0.20		mg/Kg	₽		11/10/17 22:18	1
4-Chlorophenyl phenyl ether	<0.20		0.20		mg/Kg	_ф .		11/10/17 22:18	1
Chrysene	<0.040		0.040	0.011		₩	11/10/17 07:22	11/10/17 22:18	1
Dibenz(a,h)anthracene	<0.040		0.040	0.0078	0 0	₩	11/10/17 07:22	11/10/17 22:18	1
Dibenzofuran	<0.20		0.20		mg/Kg		11/10/17 07:22	11/10/17 22:18	1
1,2-Dichlorobenzene	<0.20		0.20		mg/Kg	≎		11/10/17 22:18	1
1,3-Dichlorobenzene	<0.20		0.20		mg/Kg	≎	11/10/17 07:22	11/10/17 22:18	1
1,4-Dichlorobenzene	<0.20		0.20		mg/Kg		11/10/17 07:22	11/10/17 22:18	1
3,3'-Dichlorobenzidine	<0.20		0.20		mg/Kg	₩	11/10/17 07:22	11/10/17 22:18	1
2,4-Dichlorophenol	<0.40		0.40		mg/Kg	₩	11/10/17 07:22	11/10/17 22:18	1
Diethyl phthalate	<0.20		0.20		mg/Kg			11/10/17 22:18	1
2,4-Dimethylphenol	<0.40		0.40		mg/Kg	≎	11/10/17 07:22	11/10/17 22:18	1
Dimethyl phthalate	<0.20		0.20		mg/Kg	₩	11/10/17 07:22	11/10/17 22:18	1
Di-n-butyl phthalate	<0.20		0.20	0.062	mg/Kg	.	11/10/17 07:22	11/10/17 22:18	1
4,6-Dinitro-2-methylphenol	<0.82		0.82		mg/Kg	₩	11/10/17 07:22	11/10/17 22:18	1
2,4-Dinitrophenol	<0.82		0.82	0.71		₩	11/10/17 07:22	11/10/17 22:18	1
2,4-Dinitrotoluene	<0.20		0.20	0.065	mg/Kg		11/10/17 07:22	11/10/17 22:18	1
2,6-Dinitrotoluene	<0.20		0.20		mg/Kg	₩	11/10/17 07:22	11/10/17 22:18	1
Di-n-octyl phthalate	<0.20		0.20		mg/Kg	₩	11/10/17 07:22	11/10/17 22:18	1
Fluoranthene	<0.040		0.040	0.0075		Ф	11/10/17 07:22	11/10/17 22:18	1
Fluorene	<0.040		0.040	0.0057	mg/Kg	₩	11/10/17 07:22	11/10/17 22:18	1
Hexachlorobenzene	<0.082		0.082	0.0094		₩	11/10/17 07:22	11/10/17 22:18	1
Hexachlorobutadiene	<0.20		0.20		mg/Kg		11/10/17 07:22	11/10/17 22:18	1
Hexachlorocyclopentadiene	<0.82		0.82		mg/Kg	₽	11/10/17 07:22	11/10/17 22:18	1
Hexachloroethane	<0.20		0.20		mg/Kg	₩	11/10/17 07:22	11/10/17 22:18	1
Indeno[1,2,3-cd]pyrene	<0.040		0.040		mg/Kg		11/10/17 07:22	11/10/17 22:18	
Isophorone	<0.20		0.20		mg/Kg	₩	11/10/17 07:22	11/10/17 22:18	
2-Methylnaphthalene	<0.082		0.082	0.0075		☼	11/10/17 07:22		
2-Methylphenol	<0.20		0.20		mg/Kg	· · · · · · · · · · · · · · · · · · ·	11/10/17 07:22	11/10/17 22:18	
3 & 4 Methylphenol	<0.20		0.20		mg/Kg	₩	11/10/17 07:22		
Naphthalene	<0.040		0.040	0.0062		₩	11/10/17 07:22		
2-Nitroaniline	<0.20		0.20		mg/Kg		11/10/17 07:22		1
3-Nitroaniline	<0.40		0.40		mg/Kg	₽	11/10/17 07:22		1
4-Nitroaniline	<0.40		0.40		mg/Kg	≎	11/10/17 07:22		1

TestAmerica Chicago

* 11/10/17 07:22 11/10/17 22:18

☼ 11/10/17 07:22 11/10/17 22:18

Page 59 of 195

0.040

0.40

0.010 mg/Kg

0.096 mg/Kg

< 0.040

< 0.40

2

5

3

8

10

12

. .

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/02/17 09:40

Date Received: 11/03/17 08:50

Client Sample ID: 3160-36-5 (0-3')

TestAmerica Job ID: 500-136756-1

Lab Sample ID: 500-136756-10

Matrix: Solid

Percent Solids: 81.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.82		0.82	0.39	mg/Kg	<u> </u>	11/10/17 07:22	11/10/17 22:18	1
N-Nitrosodi-n-propylamine	<0.082		0.082	0.050	mg/Kg	₽	11/10/17 07:22	11/10/17 22:18	1
N-Nitrosodiphenylamine	<0.20		0.20	0.048	mg/Kg	☼	11/10/17 07:22	11/10/17 22:18	1
2,2'-oxybis[1-chloropropane]	<0.20		0.20	0.047	mg/Kg	☼	11/10/17 07:22	11/10/17 22:18	1
Pentachlorophenol	<0.82		0.82	0.65	mg/Kg	₽	11/10/17 07:22	11/10/17 22:18	1
Phenanthrene	<0.040		0.040	0.0057	mg/Kg	☼	11/10/17 07:22	11/10/17 22:18	1
Phenol	<0.20		0.20	0.090	mg/Kg	☼	11/10/17 07:22	11/10/17 22:18	1
Pyrene	<0.040		0.040	0.0081	mg/Kg	₽	11/10/17 07:22	11/10/17 22:18	1
1,2,4-Trichlorobenzene	<0.20		0.20	0.044	mg/Kg	☼	11/10/17 07:22	11/10/17 22:18	1
2,4,5-Trichlorophenol	<0.40		0.40	0.093	mg/Kg	☼	11/10/17 07:22	11/10/17 22:18	1
2,4,6-Trichlorophenol	<0.40		0.40	0.14	mg/Kg	₩	11/10/17 07:22	11/10/17 22:18	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	83		44 - 121				11/10/17 07:22	11/10/17 22:18	1
2-Fluorophenol	91		46 - 133				11/10/17 07:22	11/10/17 22:18	1
Nitrobenzene-d5	67		41 - 120				11/10/17 07:22	11/10/17 22:18	1
Phenol-d5	88		46 - 125				11/10/17 07:22	11/10/17 22:18	1
Terphenyl-d14	91		35 - 160				11/10/17 07:22	11/10/17 22:18	1
2,4,6-Tribromophenol	84		25 - 139				11/10/17 07:22	11/10/17 22:18	1

Method: 6010B - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<1.2		1.2	0.24	mg/Kg	<u>₩</u>	11/07/17 08:10	11/07/17 20:15	1
Arsenic	7.2		0.61	0.21	mg/Kg	₩	11/07/17 08:10	11/07/17 20:15	1
Barium	120		0.61	0.070	mg/Kg	₩	11/07/17 08:10	11/07/17 20:15	1
Beryllium	0.51		0.25	0.057	mg/Kg		11/07/17 08:10	11/07/17 20:15	1
Cadmium	0.074	J	0.12	0.022	mg/Kg	☼	11/07/17 08:10	11/07/17 20:15	1
Chromium	17		0.61	0.30	mg/Kg	☼	11/07/17 08:10	11/07/17 20:15	1
Cobalt	6.5		0.31	0.080	mg/Kg		11/07/17 08:10	11/07/17 20:15	1
Copper	15		0.61	0.17	mg/Kg	☼	11/07/17 08:10	11/07/17 20:15	1
Iron	19000		12	6.4	mg/Kg	☼	11/07/17 08:10	11/07/17 20:15	1
Lead	13		0.31	0.14	mg/Kg	₽	11/07/17 08:10	11/07/17 20:15	1
Manganese	150		0.61	0.089	mg/Kg	☼	11/07/17 08:10	11/07/17 20:15	1
Nickel	16		0.61	0.18	mg/Kg	☼	11/07/17 08:10	11/07/17 20:15	1
Selenium	0.62		0.61	0.36	mg/Kg	₽	11/07/17 08:10	11/07/17 20:15	1
Silver	< 0.31		0.31	0.079	mg/Kg	☼	11/07/17 08:10	11/07/17 20:15	1
Thallium	<0.61		0.61	0.31	mg/Kg	☼	11/07/17 08:10	11/07/17 20:15	1
Vanadium	30		0.31	0.072	mg/Kg	₩.	11/07/17 08:10	11/07/17 20:15	1
Zinc	76		1.2	0.54	mg/Kg	☼	11/07/17 08:10	11/07/17 20:15	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/08/17 08:50	11/08/17 17:25	1
Barium	0.40	J	0.50	0.050	mg/L		11/08/17 08:50	11/08/17 17:25	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/08/17 08:50	11/08/17 17:25	1
Cadmium	0.0025	J	0.0050	0.0020	mg/L		11/08/17 08:50	11/08/17 17:25	1
Chromium	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:25	1
Cobalt	0.017	J	0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:25	1
Copper	0.014	J	0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:25	1
Iron	0.68		0.40	0.20	mg/L		11/08/17 08:50	11/08/17 17:25	1

TestAmerica Chicago

Page 60 of 195

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/02/17 09:40

Date Received: 11/03/17 08:50

Analyte

рН

Client Sample ID: 3160-36-5 (0-3')

TestAmerica Job ID: 500-136756-1

Lab Sample ID: 500-136756-10

Matrix: Solid Percent Solids: 81.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	<0.0075		0.0075	0.0075	mg/L		11/08/17 08:50	11/08/17 17:25	1
Manganese	0.28		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:25	1
Nickel	0.029		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:25	1
Selenium	<0.050		0.050	0.020	mg/L		11/08/17 08:50	11/08/17 17:25	1
Silver	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:25	1
Vanadium	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:25	1
Zinc	0.53		0.50	0.020	mg/L		11/08/17 08:50	11/08/17 17:25	1
Method: 6010B - Metals (ICP) - SPLP Eas	t							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Manganese	0.073		0.025	0.010	mg/L		11/08/17 14:37	11/09/17 20:48	1
_ Method: 6020A - Metals (ICP/MS) - TCLP								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060		0.0060	0.0060	mg/L		11/08/17 08:50	11/09/17 15:20	1
Thallium	<0.0020		0.0020	0.0020	mg/L		11/08/17 08:50	11/09/17 15:20	1
Method: 7470A - TCLP M	ercury - TCLP								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
· ······· , · · ·	Nesuit								DII Fac
	<0.00020		0.00020	0.00020	mg/L		11/08/17 13:40	11/09/17 09:43	1 1
Mercury	<0.00020		0.00020	0.00020	mg/L		11/08/17 13:40	11/09/17 09:43	1
Mercury Method: 7471B - Mercury	<0.00020 / (CVAA)	Qualifier	0.00020 RL		mg/L Unit	— – D	11/08/17 13:40 Prepared	11/09/17 09:43 Analyzed	1 Dil Fac
	<0.00020 / (CVAA)	Qualifier		MDL	J				1
Mercury Method: 7471B - Mercury Analyte	<0.00020 / (CVAA) Result	Qualifier	RL	MDL	Unit	_	Prepared	Analyzed	1 Dil Fac

RL

0.20

MDL Unit

0.20 SU

Prepared

D

Analyzed

11/12/17 21:40

Dil Fac

Result Qualifier

4.6

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Lab Sample ID: 500-136756-11

Client Sample ID: 3160-36-4 (0-3') Date Collected: 11/02/17 10:10 **Matrix: Solid** Date Received: 11/03/17 08:50 Percent Solids: 78.1

Method: 8260B - Volatile O Analyte	Result Qua		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	<0.020	0.020	0.0086	mg/Kg	<u> </u>	11/03/17 18:20	11/07/17 13:28	1
Benzene	<0.0020	0.0020	0.00050		₩	11/03/17 18:20	11/07/17 13:28	1
Bromodichloromethane	<0.0020	0.0020	0.00040	mg/Kg	₩	11/03/17 18:20	11/07/17 13:28	1
Bromoform	<0.0020	0.0020	0.00058	mg/Kg	₩.	11/03/17 18:20	11/07/17 13:28	1
Bromomethane	< 0.0049	0.0049	0.0019	mg/Kg	₩	11/03/17 18:20	11/07/17 13:28	1
2-Butanone (MEK)	< 0.0049	0.0049	0.0022	mg/Kg	₩	11/03/17 18:20	11/07/17 13:28	1
Carbon disulfide	<0.0049	0.0049	0.0010	mg/Kg		11/03/17 18:20	11/07/17 13:28	1
Carbon tetrachloride	<0.0020	0.0020	0.00057	mg/Kg	₩	11/03/17 18:20	11/07/17 13:28	1
Chlorobenzene	<0.0020	0.0020	0.00073	mg/Kg	₩	11/03/17 18:20	11/07/17 13:28	1
Chloroethane	<0.0049	0.0049	0.0015	mg/Kg	₩	11/03/17 18:20	11/07/17 13:28	1
Chloroform	<0.0020	0.0020	0.00069	mg/Kg	₩	11/03/17 18:20	11/07/17 13:28	1
Chloromethane	< 0.0049	0.0049	0.0020	mg/Kg	₩	11/03/17 18:20	11/07/17 13:28	1
cis-1,2-Dichloroethene	<0.0020	0.0020	0.00055	mg/Kg	₩	11/03/17 18:20	11/07/17 13:28	1
cis-1,3-Dichloropropene	<0.0020	0.0020	0.00060	mg/Kg	₩	11/03/17 18:20	11/07/17 13:28	1
Dibromochloromethane	<0.0020	0.0020	0.00065	mg/Kg	₩	11/03/17 18:20	11/07/17 13:28	1
1,1-Dichloroethane	<0.0020	0.0020	0.00068	mg/Kg	₩	11/03/17 18:20	11/07/17 13:28	1
1,2-Dichloroethane	< 0.0049	0.0049	0.0015	mg/Kg	₩	11/03/17 18:20	11/07/17 13:28	1
1,1-Dichloroethene	<0.0020	0.0020	0.00068	mg/Kg	₩	11/03/17 18:20	11/07/17 13:28	1
1,2-Dichloropropane	<0.0020	0.0020	0.00051	mg/Kg	₩.	11/03/17 18:20	11/07/17 13:28	1
1,3-Dichloropropene, Total	<0.0020	0.0020	0.00069	mg/Kg	₩	11/03/17 18:20	11/07/17 13:28	1
Ethylbenzene	<0.0020	0.0020	0.00095	mg/Kg	₩	11/03/17 18:20	11/07/17 13:28	1
2-Hexanone	<0.0049	0.0049	0.0015	mg/Kg		11/03/17 18:20	11/07/17 13:28	1
Methylene Chloride	< 0.0049	0.0049	0.0019	mg/Kg	₩	11/03/17 18:20	11/07/17 13:28	1
4-Methyl-2-pentanone (MIBK)	< 0.0049	0.0049	0.0015	mg/Kg	₩	11/03/17 18:20	11/07/17 13:28	1
Methyl tert-butyl ether	<0.0020	0.0020	0.00058			11/03/17 18:20	11/07/17 13:28	1
Styrene	<0.0020	0.0020	0.00060	mg/Kg	₩	11/03/17 18:20	11/07/17 13:28	1
1,1,2,2-Tetrachloroethane	<0.0020	0.0020	0.00063	mg/Kg	₩	11/03/17 18:20	11/07/17 13:28	1
Tetrachloroethene	<0.0020	0.0020	0.00067	mg/Kg	₩	11/03/17 18:20	11/07/17 13:28	1
Toluene	<0.0020	0.0020	0.00050		₩	11/03/17 18:20	11/07/17 13:28	1
trans-1,2-Dichloroethene	<0.0020	0.0020	0.00088	mg/Kg	₩	11/03/17 18:20	11/07/17 13:28	1
trans-1,3-Dichloropropene	<0.0020	0.0020	0.00069	mg/Kg	₩.	11/03/17 18:20	11/07/17 13:28	1
1,1,1-Trichloroethane	<0.0020	0.0020	0.00066	mg/Kg	₩	11/03/17 18:20	11/07/17 13:28	1
1,1,2-Trichloroethane	<0.0020	0.0020	0.00085	mg/Kg	₩	11/03/17 18:20	11/07/17 13:28	1
Trichloroethene	<0.0020	0.0020	0.00067	mg/Kg		11/03/17 18:20	11/07/17 13:28	1
Vinyl acetate	<0.0049	0.0049	0.0017		₩	11/03/17 18:20	11/07/17 13:28	1
Vinyl chloride	<0.0020	0.0020	0.00088	mg/Kg	₩	11/03/17 18:20	11/07/17 13:28	1
Xylenes, Total	<0.0040	0.0040	0.00063		ф.	11/03/17 18:20		1
Surrogate	%Recovery Qua	alifier Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	89	75 - 131				11/03/17 18:20	11/07/17 13:28	1
Dibromofluoromethane	102	75 - 126				11/03/17 18:20	11/07/17 13:28	1
1,2-Dichloroethane-d4 (Surr)	97	70 - 134				11/03/17 18:20	11/07/17 13:28	1
Toluene-d8 (Surr)	88	75 - 124				11/03/17 18:20	11/07/17 13:28	1

l	Method: 8270D - Semivolatile	e Organic Compounds (G	iC/MS)					
l	Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
	Acenaphthene	<0.042	0.042	0.0076 mg/Kg	<u> </u>	11/10/17 07:22	11/10/17 23:32	1
	Acenaphthylene	<0.042	0.042	0.0056 mg/Kg	₩	11/10/17 07:22	11/10/17 23:32	1
	Anthracene	<0.042	0.042	0.0071 mg/Kg	₩	11/10/17 07:22	11/10/17 23:32	1
ı	Benzo[a]anthracene	<0.042	0.042	0.0057 mg/Kg	₩.	11/10/17 07:22	11/10/17 23:32	1

TestAmerica Chicago

Page 62 of 195

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136756-1

Lab Sample ID: 500-136756-11

Matrix: Solid

Client Sample ID: 3160-36-4 (0-3')

Date Collected: 11/02/17 10:10 Date Received: 11/03/17 08:50 Percent Solids: 78.1

Method: 8270D - Semivolatil Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Benzo[a]pyrene	<0.042	0.042	0.0082		— -		11/10/17 23:32	
Benzo[b]fluoranthene	<0.042	0.042	0.0092		₩		11/10/17 23:32	
Benzo[g,h,i]perylene	<0.042	0.042		mg/Kg			11/10/17 23:32	
Benzo[k]fluoranthene	<0.042	0.042		mg/Kg	₩		11/10/17 23:32	
Bis(2-chloroethoxy)methane	<0.21	0.21		mg/Kg	₩		11/10/17 23:32	
Bis(2-chloroethyl)ether	<0.21	0.21		mg/Kg			11/10/17 23:32	
Bis(2-ethylhexyl) phthalate	<0.21	0.21		mg/Kg	₩		11/10/17 23:32	
4-Bromophenyl phenyl ether	<0.21	0.21		mg/Kg	₩		11/10/17 23:32	
Butyl benzyl phthalate	<0.21	0.21		mg/Kg			11/10/17 23:32	
Carbazole	<0.21	0.21		mg/Kg	₩		11/10/17 23:32	
4-Chloroaniline	<0.86	0.86		mg/Kg	₩		11/10/17 23:32	
4-Chloro-3-methylphenol	<0.42	0.42		mg/Kg			11/10/17 23:32	
2-Chloronaphthalene	<0.21	0.42		mg/Kg	₩		11/10/17 23:32	
2-Chlorophenol	<0.21	0.21		mg/Kg			11/10/17 23:32	
4-Chlorophenyl phenyl ether	<0.21	0.21		mg/Kg	· · · · · · · · · · · · · · · · · · ·		11/10/17 23:32	
Chrysene	<0.042	0.21		mg/Kg	₩		11/10/17 23:32	
Dibenz(a,h)anthracene	<0.042	0.042	0.012	0 0	~ -75-		11/10/17 23:32	
Dibenzofuran					· · · · · · · · · · · · · · · · · · ·			
	<0.21	0.21 0.21		mg/Kg	**		11/10/17 23:32	
1,2-Dichlorobenzene	<0.21 <0.21	0.21		mg/Kg	*		11/10/17 23:32	
1,3-Dichlorobenzene				mg/Kg			11/10/17 23:32	
1,4-Dichlorobenzene	<0.21	0.21		mg/Kg	☆		11/10/17 23:32	
3,3'-Dichlorobenzidine	<0.21	0.21		mg/Kg	₩		11/10/17 23:32	
2,4-Dichlorophenol	<0.42	0.42		mg/Kg	· · · · · ·		11/10/17 23:32	
Diethyl phthalate	<0.21	0.21		mg/Kg	Ψ.		11/10/17 23:32	
2,4-Dimethylphenol	<0.42	0.42		mg/Kg	Ψ.		11/10/17 23:32	
Dimethyl phthalate	<0.21	0.21		mg/Kg	<u>.</u>		11/10/17 23:32	
Di-n-butyl phthalate	<0.21	0.21		mg/Kg	*		11/10/17 23:32	
4,6-Dinitro-2-methylphenol	<0.86	0.86		mg/Kg	*		11/10/17 23:32	
2,4-Dinitrophenol	<0.86	0.86		mg/Kg			11/10/17 23:32	
2,4-Dinitrotoluene	<0.21	0.21		mg/Kg	₽		11/10/17 23:32	
2,6-Dinitrotoluene	<0.21	0.21		mg/Kg	₽		11/10/17 23:32	
Di-n-octyl phthalate	<0.21	0.21		mg/Kg	₩	11/10/17 07:22	11/10/17 23:32	
Fluoranthene	<0.042	0.042	0.0079		☼		11/10/17 23:32	
Fluorene	<0.042	0.042	0.0060		☼		11/10/17 23:32	
Hexachlorobenzene	<0.086	0.086	0.0099	mg/Kg	₩	11/10/17 07:22	11/10/17 23:32	
Hexachlorobutadiene	<0.21	0.21		mg/Kg	₽	11/10/17 07:22	11/10/17 23:32	
Hexachlorocyclopentadiene	<0.86	0.86	0.24	mg/Kg	₩	11/10/17 07:22	11/10/17 23:32	
Hexachloroethane	<0.21	0.21	0.065	mg/Kg	₩	11/10/17 07:22	11/10/17 23:32	
Indeno[1,2,3-cd]pyrene	<0.042	0.042	0.011	mg/Kg	₽	11/10/17 07:22	11/10/17 23:32	
Isophorone	<0.21	0.21	0.048	mg/Kg	₩	11/10/17 07:22	11/10/17 23:32	
2-Methylnaphthalene	<0.086	0.086	0.0078	mg/Kg	₩	11/10/17 07:22	11/10/17 23:32	
2-Methylphenol	<0.21	0.21	0.068	mg/Kg		11/10/17 07:22	11/10/17 23:32	
3 & 4 Methylphenol	<0.21	0.21	0.071	mg/Kg	☼	11/10/17 07:22	11/10/17 23:32	
Naphthalene	<0.042	0.042	0.0065	mg/Kg	☼	11/10/17 07:22	11/10/17 23:32	
2-Nitroaniline	<0.21	0.21	0.057	mg/Kg		11/10/17 07:22	11/10/17 23:32	
3-Nitroaniline	<0.42	0.42		mg/Kg	₽	11/10/17 07:22	11/10/17 23:32	
4-Nitroaniline	<0.42	0.42		mg/Kg	₽	11/10/17 07:22	11/10/17 23:32	
Nitrobenzene	<0.042	0.042		mg/Kg	₩	11/10/17 07:22	11/10/17 23:32	
2-Nitrophenol	<0.42	0.42		mg/Kg	⇔		11/10/17 23:32	

TestAmerica Chicago

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/02/17 10:10

Date Received: 11/03/17 08:50

Client Sample ID: 3160-36-4 (0-3')

TestAmerica Job ID: 500-136756-1

Lab Sample ID: 500-136756-11

Matrix: Solid

Percent Solids: 78.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.86		0.86	0.40	mg/Kg	<u></u>	11/10/17 07:22	11/10/17 23:32	1
N-Nitrosodi-n-propylamine	<0.086		0.086	0.052	mg/Kg	.	11/10/17 07:22	11/10/17 23:32	1
N-Nitrosodiphenylamine	<0.21		0.21	0.050	mg/Kg	☼	11/10/17 07:22	11/10/17 23:32	1
2,2'-oxybis[1-chloropropane]	<0.21		0.21	0.049	mg/Kg	☼	11/10/17 07:22	11/10/17 23:32	1
Pentachlorophenol	<0.86		0.86	0.68	mg/Kg	₽	11/10/17 07:22	11/10/17 23:32	1
Phenanthrene	<0.042		0.042	0.0059	mg/Kg	☼	11/10/17 07:22	11/10/17 23:32	1
Phenol	<0.21		0.21	0.094	mg/Kg	☼	11/10/17 07:22	11/10/17 23:32	1
Pyrene	<0.042		0.042	0.0084	mg/Kg	☼	11/10/17 07:22	11/10/17 23:32	1
1,2,4-Trichlorobenzene	<0.21		0.21	0.046	mg/Kg	☼	11/10/17 07:22	11/10/17 23:32	1
2,4,5-Trichlorophenol	<0.42		0.42	0.097	mg/Kg	☼	11/10/17 07:22	11/10/17 23:32	1
2,4,6-Trichlorophenol	<0.42		0.42	0.15	mg/Kg		11/10/17 07:22	11/10/17 23:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	84		44 - 121				11/10/17 07:22	11/10/17 23:32	1
2-Fluorophenol	106		46 - 133				11/10/17 07:22	11/10/17 23:32	1
Nitrobenzene-d5	80		41 - 120				11/10/17 07:22	11/10/17 23:32	1
Phenol-d5	89		46 - 125				11/10/17 07:22	11/10/17 23:32	1
Terphenyl-d14	96		35 - 160				11/10/17 07:22	11/10/17 23:32	1
2,4,6-Tribromophenol	88		25 - 139				11/10/17 07:22	11/10/17 23:32	1

Method: 6010B - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.38	J	1.2	0.23	mg/Kg	<u> </u>	11/07/17 08:10	11/08/17 20:14	1
Arsenic	9.3		0.60	0.21	mg/Kg	☼	11/07/17 08:10	11/08/17 20:14	1
Barium	100		0.60	0.069	mg/Kg	☼	11/07/17 08:10	11/08/17 20:14	1
Beryllium	0.46		0.24	0.056	mg/Kg	₽	11/07/17 08:10	11/08/17 20:14	1
Cadmium	<0.12		0.12	0.022	mg/Kg	₽	11/07/17 08:10	11/08/17 20:14	1
Chromium	16		0.60	0.30	mg/Kg	☼	11/07/17 08:10	11/08/17 20:14	1
Cobalt	8.1		0.30	0.079	mg/Kg	₽	11/07/17 08:10	11/08/17 20:14	1
Copper	10		0.60	0.17	mg/Kg	☼	11/07/17 08:10	11/08/17 20:14	1
Iron	19000		12	6.3	mg/Kg	☼	11/07/17 08:10	11/08/17 20:14	1
Lead	23		0.30	0.14	mg/Kg	₽	11/07/17 08:10	11/08/17 20:14	1
Manganese	820		0.60	0.088	mg/Kg	☼	11/07/17 08:10	11/08/17 20:14	1
Nickel	10		0.60	0.18	mg/Kg	☼	11/07/17 08:10	11/08/17 20:14	1
Selenium	0.92		0.60	0.36	mg/Kg	₽	11/07/17 08:10	11/08/17 20:14	1
Silver	< 0.30		0.30	0.078	mg/Kg	☼	11/07/17 08:10	11/08/17 20:14	1
Thallium	<0.60		0.60	0.30	mg/Kg	₽	11/07/17 08:10	11/08/17 20:14	1
Vanadium	33		0.30	0.071	mg/Kg	₽	11/07/17 08:10	11/08/17 20:14	1
Zinc	40		1.2	0.53	mg/Kg	☼	11/07/17 08:10	11/08/17 20:14	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/08/17 08:50	11/08/17 17:29	1
Barium	0.45	J	0.50	0.050	mg/L		11/08/17 08:50	11/08/17 17:29	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/08/17 08:50	11/08/17 17:29	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/08/17 08:50	11/08/17 17:29	1
Chromium	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:29	1
Cobalt	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:29	1
Copper	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:29	1
Iron	0.29	J	0.40	0.20	mg/L		11/08/17 08:50	11/08/17 17:29	1

TestAmerica Chicago

Page 64 of 195

11/15/2017

2

5

5

8

10

12

13

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Received: 11/03/17 08:50

рН

TestAmerica Job ID: 500-136756-1

3

Client Sample ID: 3160-36-4 (0-3')

Date Collected: 11/02/17 10:10

Lab Sample ID: 500-136756-11

Matrix: Solid

Percent Solids: 78.1

11/12/17 22:14

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	<0.0075		0.0075	0.0075	mg/L		11/08/17 08:50	11/08/17 17:29	1
Manganese	0.15		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:29	1
Nickel	0.022	J	0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:29	1
Selenium	<0.050		0.050	0.020	mg/L		11/08/17 08:50	11/08/17 17:29	1
Silver	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:29	1
Vanadium	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:29	1
Zinc	0.034	J	0.50	0.020	mg/L		11/08/17 08:50	11/08/17 17:29	1
_ Method: 6020A - Metals (ICP/MS) - TCLP								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060		0.0060	0.0060	mg/L		11/08/17 08:50	11/09/17 15:24	1
Thallium _	<0.0020		0.0020	0.0020	mg/L		11/08/17 08:50	11/09/17 15:24	1
_ Method: 7470A - TCLP M	ercury - TCLP								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/08/17 13:40	11/09/17 09:44	1
- Method: 7471B - Mercury	(CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.034		0.021	0.0070	mg/Kg	- \$	11/07/17 13:20	11/08/17 10:59	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

0.20

4.6

0.20 SU

TestAmerica Job ID: 500-136756-1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-36-3 (0-3')

Lab Sample ID: 500-136756-12

Date Collected: 11/02/17 10:20 Matrix: Solid
Date Received: 11/03/17 08:50 Percent Solids: 81.7

Analyte	Result C	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Acetone	0.028		0.018	0.0080	mg/Kg	₩	11/03/17 18:20	11/07/17 13:54	1
Benzene	<0.0018		0.0018	0.00047		≎	11/03/17 18:20	11/07/17 13:54	1
Bromodichloromethane	<0.0018		0.0018	0.00037	mg/Kg	₩	11/03/17 18:20	11/07/17 13:54	1
Bromoform	<0.0018		0.0018	0.00053	mg/Kg	₩	11/03/17 18:20	11/07/17 13:54	1
Bromomethane	<0.0046		0.0046	0.0017	mg/Kg	₩	11/03/17 18:20	11/07/17 13:54	1
2-Butanone (MEK)	<0.0046		0.0046	0.0020	mg/Kg	₩	11/03/17 18:20	11/07/17 13:54	1
Carbon disulfide	<0.0046		0.0046	0.00095	mg/Kg	☼	11/03/17 18:20	11/07/17 13:54	1
Carbon tetrachloride	<0.0018		0.0018	0.00053	mg/Kg	₩	11/03/17 18:20	11/07/17 13:54	1
Chlorobenzene	<0.0018		0.0018	0.00068	mg/Kg	₩	11/03/17 18:20	11/07/17 13:54	1
Chloroethane	<0.0046		0.0046	0.0014	mg/Kg	₽	11/03/17 18:20	11/07/17 13:54	1
Chloroform	<0.0018		0.0018	0.00064	mg/Kg	₩	11/03/17 18:20	11/07/17 13:54	1
Chloromethane	<0.0046		0.0046	0.0018	mg/Kg	₩	11/03/17 18:20	11/07/17 13:54	1
cis-1,2-Dichloroethene	<0.0018		0.0018	0.00051	mg/Kg	₩.	11/03/17 18:20	11/07/17 13:54	1
cis-1,3-Dichloropropene	<0.0018		0.0018	0.00055	mg/Kg	₩	11/03/17 18:20	11/07/17 13:54	1
Dibromochloromethane	<0.0018		0.0018	0.00060	mg/Kg	₩	11/03/17 18:20	11/07/17 13:54	1
1,1-Dichloroethane	<0.0018		0.0018	0.00063	mg/Kg		11/03/17 18:20	11/07/17 13:54	1
1,2-Dichloroethane	<0.0046		0.0046	0.0014	mg/Kg	₩	11/03/17 18:20	11/07/17 13:54	1
1,1-Dichloroethene	<0.0018		0.0018	0.00063	mg/Kg	☼	11/03/17 18:20	11/07/17 13:54	1
1,2-Dichloropropane	<0.0018		0.0018	0.00047	mg/Kg		11/03/17 18:20	11/07/17 13:54	1
1,3-Dichloropropene, Total	<0.0018		0.0018	0.00064	mg/Kg	☼	11/03/17 18:20	11/07/17 13:54	1
Ethylbenzene	<0.0018		0.0018	0.00088	mg/Kg	₩	11/03/17 18:20	11/07/17 13:54	1
2-Hexanone	<0.0046		0.0046	0.0014	mg/Kg		11/03/17 18:20	11/07/17 13:54	1
Methylene Chloride	<0.0046		0.0046	0.0018	mg/Kg	₩	11/03/17 18:20	11/07/17 13:54	1
4-Methyl-2-pentanone (MIBK)	<0.0046		0.0046	0.0014	mg/Kg	≎	11/03/17 18:20	11/07/17 13:54	1
Methyl tert-butyl ether	<0.0018		0.0018	0.00054	mg/Kg		11/03/17 18:20	11/07/17 13:54	1
Styrene	<0.0018		0.0018	0.00055	mg/Kg	₩	11/03/17 18:20	11/07/17 13:54	1
1,1,2,2-Tetrachloroethane	<0.0018		0.0018	0.00059	mg/Kg	₩	11/03/17 18:20	11/07/17 13:54	1
Tetrachloroethene	<0.0018		0.0018	0.00062	mg/Kg	 ф	11/03/17 18:20	11/07/17 13:54	1
Toluene	<0.0018		0.0018	0.00046	mg/Kg	₩	11/03/17 18:20	11/07/17 13:54	1
trans-1,2-Dichloroethene	<0.0018		0.0018	0.00081	mg/Kg	₩	11/03/17 18:20	11/07/17 13:54	1
trans-1,3-Dichloropropene	<0.0018		0.0018	0.00064			11/03/17 18:20	11/07/17 13:54	1
1,1,1-Trichloroethane	<0.0018		0.0018	0.00061	mg/Kg	₽	11/03/17 18:20	11/07/17 13:54	1
1,1,2-Trichloroethane	<0.0018		0.0018	0.00079	mg/Kg	₩	11/03/17 18:20	11/07/17 13:54	1
Trichloroethene	<0.0018		0.0018	0.00062		· · · · · · · · · · · · · · · · · · ·	11/03/17 18:20	11/07/17 13:54	1
Vinyl acetate	<0.0046		0.0046	0.0016		₩	11/03/17 18:20	11/07/17 13:54	1
Vinyl chloride	<0.0018		0.0018	0.00081		₩	11/03/17 18:20	11/07/17 13:54	1
Xylenes, Total	<0.0037		0.0037	0.00059		ф.	11/03/17 18:20		1
Surrogate	%Recovery 0	Qualifier L	imits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	89		5 - 131				11/03/17 18:20	11/07/17 13:54	1
Dibromofluoromethane	94	7	5 - 126				11/03/17 18:20	11/07/17 13:54	1
1,2-Dichloroethane-d4 (Surr)	102		0 - 134				11/03/17 18:20	11/07/17 13:54	1
Toluene-d8 (Surr)	95	7	5 - 124				11/03/17 18:20	11/07/17 13:54	1

Method: 8270D - Semivo								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	<0.039	0.039	0.0070	mg/Kg	<u> </u>	11/10/17 07:22	11/10/17 23:56	1
Acenaphthylene	<0.039	0.039	0.0052	mg/Kg	☼	11/10/17 07:22	11/10/17 23:56	1
Anthracene	<0.039	0.039	0.0065	mg/Kg	☼	11/10/17 07:22	11/10/17 23:56	1
Benzo[a]anthracene	<0.039	0.039	0.0053	mg/Kg	₽	11/10/17 07:22	11/10/17 23:56	1

TestAmerica Chicago

Page 66 of 195

2

3

5

8

10

12

13

М

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136756-1

Lab Sample ID: 500-136756-12

Client Sample ID: 3160-36-3 (0-3') Date Collected: 11/02/17 10:20 **Matrix: Solid** Date Received: 11/03/17 08:50 Percent Solids: 81.7

Method: 8270D - Semivolatil Analyte	_	Qualifier RI	•	Unit	D	Prepared	Analyzed	Dil Fa
Benzo[a]pyrene	- <0.039	0.039			— ğ		11/10/17 23:56	Diria
Benzo[b]fluoranthene	< 0.039	0.039			₽		11/10/17 23:56	
Benzo[g,h,i]perylene	<0.039	0.039		mg/Kg	 \$		11/10/17 23:56	
Benzo[k]fluoranthene	<0.039	0.03		mg/Kg	₽		11/10/17 23:56	
Bis(2-chloroethoxy)methane	<0.20	0.20		mg/Kg	₽		11/10/17 23:56	
Bis(2-chloroethyl)ether	<0.20	0.20		mg/Kg	 \$		11/10/17 23:56	
Bis(2-ethylhexyl) phthalate	<0.20	0.20		mg/Kg	₽		11/10/17 23:56	
	<0.20	0.20		mg/Kg	₽		11/10/17 23:56	
4-Bromophenyl phenyl ether							11/10/17 23:56	
Butyl benzyl phthalate	<0.20	0.20		mg/Kg	₩			
Carbazole	<0.20	0.20		mg/Kg			11/10/17 23:56	
4-Chloroaniline	<0.79	0.79		mg/Kg			11/10/17 23:56	
4-Chloro-3-methylphenol	<0.39	0.39		mg/Kg	₩		11/10/17 23:56	
2-Chloronaphthalene	<0.20	0.20		mg/Kg	ψ. 		11/10/17 23:56	
2-Chlorophenol	<0.20	0.20		mg/Kg			11/10/17 23:56	
4-Chlorophenyl phenyl ether	<0.20	0.20		mg/Kg	₩.		11/10/17 23:56	
Chrysene	<0.039	0.039		mg/Kg	☆		11/10/17 23:56	
Dibenz(a,h)anthracene	<0.039	0.039					11/10/17 23:56	
Dibenzofuran	<0.20	0.20		mg/Kg	☼	11/10/17 07:22	11/10/17 23:56	
1,2-Dichlorobenzene	<0.20	0.20		mg/Kg	☼	11/10/17 07:22	11/10/17 23:56	
1,3-Dichlorobenzene	<0.20	0.20	0.044	mg/Kg	₩	11/10/17 07:22	11/10/17 23:56	
1,4-Dichlorobenzene	<0.20	0.20	0.050	mg/Kg	₽	11/10/17 07:22	11/10/17 23:56	
3,3'-Dichlorobenzidine	<0.20	0.20	0.055	mg/Kg	₩	11/10/17 07:22	11/10/17 23:56	
2,4-Dichlorophenol	< 0.39	0.39	0.093	mg/Kg	₩	11/10/17 07:22	11/10/17 23:56	
Diethyl phthalate	<0.20	0.20	0.066	mg/Kg	₽	11/10/17 07:22	11/10/17 23:56	
2,4-Dimethylphenol	< 0.39	0.39	0.15	mg/Kg	₩	11/10/17 07:22	11/10/17 23:56	
Dimethyl phthalate	<0.20	0.20	0.051	mg/Kg	≎	11/10/17 07:22	11/10/17 23:56	
Di-n-butyl phthalate	<0.20	0.20	0.060	mg/Kg	φ.	11/10/17 07:22	11/10/17 23:56	
4,6-Dinitro-2-methylphenol	< 0.79	0.79	0.31	mg/Kg	☼	11/10/17 07:22	11/10/17 23:56	
2,4-Dinitrophenol	< 0.79	0.79	0.69	mg/Kg	₩	11/10/17 07:22	11/10/17 23:56	
2,4-Dinitrotoluene	<0.20	0.20	0.062	mg/Kg		11/10/17 07:22	11/10/17 23:56	
2,6-Dinitrotoluene	<0.20	0.20	0.077	mg/Kg	☼	11/10/17 07:22	11/10/17 23:56	
Di-n-octyl phthalate	<0.20	0.20	0.064	mg/Kg	₩	11/10/17 07:22	11/10/17 23:56	
Fluoranthene	<0.039	0.039			 \$	11/10/17 07:22	11/10/17 23:56	
Fluorene	< 0.039	0.039			₩	11/10/17 07:22	11/10/17 23:56	
Hexachlorobenzene	< 0.079	0.079			₽	11/10/17 07:22	11/10/17 23:56	
Hexachlorobutadiene	<0.20	0.20		mg/Kg		11/10/17 07:22	11/10/17 23:56	
Hexachlorocyclopentadiene	<0.79	0.79		mg/Kg	₩		11/10/17 23:56	
Hexachloroethane	<0.20	0.20		mg/Kg	≎		11/10/17 23:56	
Indeno[1,2,3-cd]pyrene	<0.039	0.039		mg/Kg	 \$		11/10/17 23:56	
Isophorone	<0.20	0.20		mg/Kg	₩		11/10/17 23:56	
2-Methylnaphthalene	< 0.079	0.079			₩		11/10/17 23:56	
2-Methylphenol	<0.20	0.20		mg/Kg			11/10/17 23:56	
3 & 4 Methylphenol	<0.20	0.20		mg/Kg	₽		11/10/17 23:56	
• •	<0.039	0.03			₩		11/10/17 23:56	
Naphthalene								
2-Nitroaniline	<0.20	0.20		mg/Kg	Ţ.		11/10/17 23:56	
3-Nitroaniline	<0.39	0.39		mg/Kg	₩ ₩		11/10/17 23:56	
4-Nitroaniline	<0.39	0.39		mg/Kg			11/10/17 23:56	
Nitrobenzene	< 0.039	0.039	0.0098	mg/Kg	#	11/10/17 07:22	11/10/17 23:56	

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/02/17 10:20

Date Received: 11/03/17 08:50

Client Sample ID: 3160-36-3 (0-3')

TestAmerica Job ID: 500-136756-1

Lab Sample ID: 500-136756-12

Matrix: Solid

Percent Solids: 81.7

Method: 8270D - Semivolat	ile Organic Co	mpounds	(GC/MS) (Cd	ntinued)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.79		0.79	0.37	mg/Kg	₩	11/10/17 07:22	11/10/17 23:56	1
N-Nitrosodi-n-propylamine	<0.079		0.079	0.048	mg/Kg	\$	11/10/17 07:22	11/10/17 23:56	1
N-Nitrosodiphenylamine	<0.20		0.20	0.046	mg/Kg	₩	11/10/17 07:22	11/10/17 23:56	1
2,2'-oxybis[1-chloropropane]	<0.20		0.20	0.045	mg/Kg	₩	11/10/17 07:22	11/10/17 23:56	1
Pentachlorophenol	<0.79		0.79	0.63	mg/Kg	₩	11/10/17 07:22	11/10/17 23:56	1
Phenanthrene	<0.039		0.039	0.0055	mg/Kg	₩	11/10/17 07:22	11/10/17 23:56	1
Phenol	<0.20		0.20	0.087	mg/Kg	₩	11/10/17 07:22	11/10/17 23:56	1
Pyrene	<0.039		0.039	0.0078	mg/Kg	₩	11/10/17 07:22	11/10/17 23:56	1
1,2,4-Trichlorobenzene	<0.20		0.20	0.042	mg/Kg	₩	11/10/17 07:22	11/10/17 23:56	1
2,4,5-Trichlorophenol	<0.39		0.39	0.089	mg/Kg	₩	11/10/17 07:22	11/10/17 23:56	1
2,4,6-Trichlorophenol	<0.39		0.39	0.13	mg/Kg	₩	11/10/17 07:22	11/10/17 23:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	81		44 - 121				11/10/17 07:22	11/10/17 23:56	1
2-Fluorophenol	103		46 - 133				11/10/17 07:22	11/10/17 23:56	1
Nitrobenzene-d5	79		41 - 120				11/10/17 07:22	11/10/17 23:56	1
Phenol-d5	89		46 - 125				11/10/17 07:22	11/10/17 23:56	1
Terphenyl-d14	94		35 - 160				11/10/17 07:22	11/10/17 23:56	1
2,4,6-Tribromophenol	82		25 - 139				11/10/17 07:22	11/10/17 23:56	1

Method: 6010B - Metals (ICP) Analyte	Pocult	Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
		Qualifier				— =	<u> </u>		Dil Fac
Antimony	<1.1		1.1		mg/Kg	74	11/07/17 08:10		1
Arsenic	6.6		0.55	0.19	mg/Kg	₩	11/07/17 08:10	11/08/17 20:26	1
Barium	49		0.55	0.063	mg/Kg	₩	11/07/17 08:10	11/08/17 20:26	1
Beryllium	0.32		0.22	0.051	mg/Kg	₽	11/07/17 08:10	11/08/17 20:26	1
Cadmium	<0.11		0.11	0.020	mg/Kg	₩	11/07/17 08:10	11/08/17 20:26	1
Chromium	12		0.55	0.27	mg/Kg	☼	11/07/17 08:10	11/08/17 20:26	1
Cobalt	3.2		0.28	0.072	mg/Kg	φ.	11/07/17 08:10	11/08/17 20:26	1
Copper	7.4		0.55	0.15	mg/Kg	☼	11/07/17 08:10	11/08/17 20:26	1
Iron	14000		11	5.7	mg/Kg	₩	11/07/17 08:10	11/08/17 20:26	1
Lead	13		0.28	0.13	mg/Kg	₩.	11/07/17 08:10	11/08/17 20:26	1
Manganese	140		0.55	0.080	mg/Kg	☼	11/07/17 08:10	11/08/17 20:26	1
Nickel	6.8		0.55	0.16	mg/Kg	☼	11/07/17 08:10	11/08/17 20:26	1
Selenium	<0.55		0.55	0.32	mg/Kg	₽	11/07/17 08:10	11/08/17 20:26	1
Silver	<0.28		0.28	0.071	mg/Kg	☼	11/07/17 08:10	11/08/17 20:26	1
Thallium	<0.55		0.55	0.27	mg/Kg	₩	11/07/17 08:10	11/08/17 20:26	1
Vanadium	24		0.28	0.065	mg/Kg	₩.	11/07/17 08:10	11/08/17 20:26	1
Zinc	29		1.1	0.48	mg/Kg	₩	11/07/17 08:10	11/08/17 20:26	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/08/17 08:50	11/08/17 17:33	1
Barium	0.29	J	0.50	0.050	mg/L		11/08/17 08:50	11/08/17 17:33	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/08/17 08:50	11/08/17 17:33	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/08/17 08:50	11/08/17 17:33	1
Chromium	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:33	1
Cobalt	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:33	1
Copper	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:33	1
Iron	0.45		0.40	0.20	mg/L		11/08/17 08:50	11/08/17 17:33	1

Page 68 of 195

TestAmerica Chicago

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/02/17 10:20

Date Received: 11/03/17 08:50

Client Sample ID: 3160-36-3 (0-3')

TestAmerica Job ID: 500-136756-1

Lab Sample ID: 500-136756-12

Matrix: Solid

Percent Solids: 81.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	<0.0075		0.0075	0.0075	mg/L		11/08/17 08:50	11/08/17 17:33	1
Manganese	0.38		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:33	1
Nickel	0.021	J	0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:33	1
Selenium	<0.050		0.050	0.020	mg/L		11/08/17 08:50	11/08/17 17:33	1
Silver	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:33	1
Vanadium	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:33	1
Zinc	0.025	J	0.50	0.020	mg/L		11/08/17 08:50	11/08/17 17:33	1
- Method: 6010B - Meta	ıls (ICP) - SPLP Eas	t							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Manganese	0.084		0.025	0.010	mg/L		11/08/17 14:37	11/09/17 21:00	1
Method: 6020A - Meta Analyte Antimony		Qualifier	RL 0.0060	MDL 0.0060	Unit mg/L	D	Prepared 11/08/17 08:50	Analyzed 11/09/17 15:27	Dil Fac
		Qualifier				D			Dil Fac
Thallium	<0.0020		0.0020	0.0000	m a /I		11/08/17 08:50	4.4.00.447.45.07	
			0.0020	0.0020	mg/L		11/06/17 06.50	11/09/17 15:27	1
Method: 7470A - TCLF	_	Qualifier	RL	0.0020	J	D			·
Analyte	_	Qualifier		MDL	Unit	D	Prepared 11/08/17 13:40	Analyzed 11/09/17 09:46	Dil Fac
	Result <0.00020	Qualifier Qualifier	RL		Unit mg/L	D	Prepared 11/08/17 13:40 Prepared	Analyzed	Dil Fac
Analyte Mercury Method: 7471B - Merc	Result <0.00020		RL 0.00020	MDL 0.00020	Unit mg/L	_ =	Prepared 11/08/17 13:40	Analyzed 11/09/17 09:46	Dil Fac
Analyte Mercury Method: 7471B - Merc Analyte Mercury General Chemistry	Result	Qualifier	RL 0.00020	MDL 0.0064	Unit mg/L Unit mg/Kg		Prepared 11/08/17 13:40 Prepared 11/07/17 13:20	Analyzed 11/09/17 09:46 Analyzed 11/08/17 11:01	Dil Fac
Analyte Mercury Method: 7471B - Merc Analyte Mercury	Result			MDL 0.00020	Unit mg/L Unit mg/Kg	D	Prepared 11/08/17 13:40 Prepared	Analyzed 11/09/17 09:46 Analyzed	Dil Fac Dil Fac Dil Fac

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-36-2 (0-3')

Lab Sample ID: 500-136756-13

Date Collected: 11/02/17 10:30 Date Received: 11/03/17 08:50

Matrix: Solid

Percent Solids: 81.5

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Acetone	<0.019		0.019	0.0081	mg/Kg	<u> </u>	11/03/17 18:20	11/07/17 14:18	
Benzene	<0.0019		0.0019	0.00048	mg/Kg	☼	11/03/17 18:20	11/07/17 14:18	
Bromodichloromethane	<0.0019		0.0019	0.00038	mg/Kg	₩	11/03/17 18:20	11/07/17 14:18	
Bromoform	<0.0019		0.0019	0.00054	mg/Kg	₩	11/03/17 18:20	11/07/17 14:18	
Bromomethane	<0.0047		0.0047	0.0018	mg/Kg	☼	11/03/17 18:20	11/07/17 14:18	
2-Butanone (MEK)	<0.0047		0.0047	0.0021	mg/Kg	≎	11/03/17 18:20	11/07/17 14:18	
Carbon disulfide	<0.0047		0.0047	0.00097	mg/Kg	₩	11/03/17 18:20	11/07/17 14:18	
Carbon tetrachloride	<0.0019		0.0019	0.00054	mg/Kg	₩	11/03/17 18:20	11/07/17 14:18	
Chlorobenzene	<0.0019		0.0019	0.00069	mg/Kg	₩	11/03/17 18:20	11/07/17 14:18	
Chloroethane	<0.0047		0.0047	0.0014	mg/Kg	₩.	11/03/17 18:20	11/07/17 14:18	
Chloroform	<0.0019		0.0019	0.00065	mg/Kg	₩	11/03/17 18:20	11/07/17 14:18	
Chloromethane	< 0.0047		0.0047	0.0019	mg/Kg	₩	11/03/17 18:20	11/07/17 14:18	
cis-1,2-Dichloroethene	<0.0019		0.0019	0.00052	mg/Kg		11/03/17 18:20	11/07/17 14:18	
cis-1,3-Dichloropropene	<0.0019		0.0019	0.00056	mg/Kg	☼	11/03/17 18:20	11/07/17 14:18	
Dibromochloromethane	< 0.0019		0.0019	0.00061	mg/Kg	☼	11/03/17 18:20	11/07/17 14:18	
1,1-Dichloroethane	<0.0019		0.0019	0.00064	mg/Kg	ф.	11/03/17 18:20	11/07/17 14:18	
1,2-Dichloroethane	<0.0047		0.0047	0.0015		≎	11/03/17 18:20	11/07/17 14:18	
1,1-Dichloroethene	< 0.0019		0.0019	0.00064	mg/Kg	₩	11/03/17 18:20	11/07/17 14:18	
1,2-Dichloropropane	<0.0019		0.0019	0.00048	mg/Kg		11/03/17 18:20	11/07/17 14:18	
1,3-Dichloropropene, Total	< 0.0019		0.0019	0.00065	mg/Kg	≎	11/03/17 18:20	11/07/17 14:18	
Ethylbenzene	< 0.0019		0.0019	0.00089	mg/Kg	₩	11/03/17 18:20	11/07/17 14:18	
2-Hexanone	<0.0047		0.0047	0.0015	mg/Kg		11/03/17 18:20	11/07/17 14:18	
Methylene Chloride	<0.0047		0.0047	0.0018		₽	11/03/17 18:20	11/07/17 14:18	
4-Methyl-2-pentanone (MIBK)	< 0.0047		0.0047	0.0014	mg/Kg	₩	11/03/17 18:20	11/07/17 14:18	
Methyl tert-butyl ether	<0.0019		0.0019	0.00055		ф.	11/03/17 18:20	11/07/17 14:18	
Styrene	<0.0019		0.0019	0.00056		₽	11/03/17 18:20	11/07/17 14:18	
1,1,2,2-Tetrachloroethane	<0.0019		0.0019	0.00060		₽	11/03/17 18:20	11/07/17 14:18	
Tetrachloroethene	<0.0019		0.0019	0.00063			11/03/17 18:20	11/07/17 14:18	
Toluene	<0.0019		0.0019	0.00047		₩	11/03/17 18:20	11/07/17 14:18	
trans-1,2-Dichloroethene	<0.0019		0.0019	0.00083		₩	11/03/17 18:20	11/07/17 14:18	
trans-1,3-Dichloropropene	<0.0019		0.0019	0.00065			11/03/17 18:20	11/07/17 14:18	
1,1,1-Trichloroethane	<0.0019		0.0019	0.00063		₩	11/03/17 18:20	11/07/17 14:18	
1,1,2-Trichloroethane	<0.0019		0.0019	0.00080		₩	11/03/17 18:20	11/07/17 14:18	
Trichloroethene	<0.0019		0.0019	0.00063	0 0	· · · · · · · · · · · · · · · · · · ·		11/07/17 14:18	
Vinyl acetate	<0.0047		0.0047	0.0016		₩	11/03/17 18:20	11/07/17 14:18	
Vinyl chloride	<0.0019		0.0019	0.00082	0 0	₩		11/07/17 14:18	
Xylenes, Total	<0.0037		0.0037	0.00060		ф.		11/07/17 14:18	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	89		75 - 131				11/03/17 18:20	11/07/17 14:18	
Dibromofluoromethane	95		75 - 126				11/03/17 18:20	11/07/17 14:18	
1,2-Dichloroethane-d4 (Surr)	103		70 - 134					11/07/17 14:18	
Toluene-d8 (Surr)	96		75 - 124				11/03/17 18:20	11/07/17 14:18	

Method: 82/0D - Semivolati	ie Organic Compounds (G	JC/MS)						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	<0.040	0.040	0.0072	mg/Kg	₩	11/10/17 07:22	11/11/17 00:20	1
Acenaphthylene	<0.040	0.040	0.0053	mg/Kg	₩	11/10/17 07:22	11/11/17 00:20	1

<0.040 0.040 0.0067 mg/Kg ☼ 11/10/17 07:22 11/11/17 00:20 Anthracene 0.0054 mg/Kg * 11/10/17 07:22 11/11/17 00:20 Benzo[a]anthracene 0.0068 J 0.040

TestAmerica Chicago

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136756-1

Client Sample ID: 3160-36-2 (0-3')

Lab Sample ID: 500-136756-13

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzo[a]pyrene	<0.040		0.040	0.0077	mg/Kg	<u></u>	11/10/17 07:22	11/11/17 00:20	
Benzo[b]fluoranthene	<0.040		0.040	0.0086	mg/Kg	☼	11/10/17 07:22	11/11/17 00:20	
Benzo[g,h,i]perylene	<0.040		0.040	0.013	mg/Kg		11/10/17 07:22	11/11/17 00:20	
Benzo[k]fluoranthene	<0.040		0.040		mg/Kg	₩	11/10/17 07:22	11/11/17 00:20	
Bis(2-chloroethoxy)methane	<0.20		0.20	0.041	mg/Kg	₩	11/10/17 07:22	11/11/17 00:20	
Bis(2-chloroethyl)ether	<0.20		0.20	0.060	mg/Kg		11/10/17 07:22	11/11/17 00:20	
Bis(2-ethylhexyl) phthalate	<0.20		0.20	0.073	mg/Kg	☼	11/10/17 07:22	11/11/17 00:20	
4-Bromophenyl phenyl ether	<0.20		0.20	0.053	mg/Kg	☼	11/10/17 07:22	11/11/17 00:20	
Butyl benzyl phthalate	<0.20		0.20		mg/Kg	· · · · · · · · · · · · · · · · · · ·	11/10/17 07:22	11/11/17 00:20	
Carbazole	<0.20		0.20		mg/Kg	☼	11/10/17 07:22	11/11/17 00:20	
4-Chloroaniline	<0.80		0.80		mg/Kg	☼	11/10/17 07:22	11/11/17 00:20	
4-Chloro-3-methylphenol	<0.40		0.40		mg/Kg	 \$		11/11/17 00:20	
2-Chloronaphthalene	<0.20		0.20		mg/Kg	☆		11/11/17 00:20	
2-Chlorophenol	<0.20		0.20		mg/Kg	₩		11/11/17 00:20	
4-Chlorophenyl phenyl ether	<0.20		0.20		mg/Kg			11/11/17 00:20	
Chrysene	<0.040		0.20	0.047	mg/Kg			11/11/17 00:20	
Dibenz(a,h)anthracene	<0.040		0.040	0.0077				11/11/17 00:20	
Dibenzofuran	<0.20		0.20		mg/Kg			11/11/17 00:20	
	<0.20		0.20		mg/Kg	≎		11/11/17 00:20	
1,2-Dichlorobenzene					0 0	*			
1,3-Dichlorobenzene	<0.20		0.20		mg/Kg			11/11/17 00:20 11/11/17 00:20	
1,4-Dichlorobenzene	<0.20		0.20		mg/Kg	₩			
3,3'-Dichlorobenzidine	<0.20		0.20		mg/Kg	φ.		11/11/17 00:20	
2,4-Dichlorophenol	<0.40		0.40		mg/Kg	<u>.</u> .		11/11/17 00:20	
Diethyl phthalate	<0.20		0.20		mg/Kg	:D		11/11/17 00:20	
2,4-Dimethylphenol	<0.40		0.40		mg/Kg			11/11/17 00:20	
Dimethyl phthalate	<0.20		0.20		mg/Kg			11/11/17 00:20	
Di-n-butyl phthalate	<0.20		0.20		mg/Kg	☆		11/11/17 00:20	
4,6-Dinitro-2-methylphenol	<0.80		0.80		mg/Kg	: *		11/11/17 00:20	
2,4-Dinitrophenol	<0.80		0.80		mg/Kg			11/11/17 00:20	
2,4-Dinitrotoluene	<0.20		0.20		mg/Kg	☼	11/10/17 07:22	11/11/17 00:20	
2,6-Dinitrotoluene	<0.20		0.20	0.078	mg/Kg	₩	11/10/17 07:22	11/11/17 00:20	
Di-n-octyl phthalate	<0.20		0.20	0.065	mg/Kg	₩	11/10/17 07:22	11/11/17 00:20	
Fluoranthene	0.0088	J	0.040	0.0074	mg/Kg	₩	11/10/17 07:22	11/11/17 00:20	
Fluorene	<0.040		0.040	0.0056	mg/Kg	₩	11/10/17 07:22	11/11/17 00:20	
Hexachlorobenzene	<0.080		0.080	0.0093	mg/Kg	₩	11/10/17 07:22	11/11/17 00:20	
Hexachlorobutadiene	<0.20		0.20	0.063	mg/Kg	₽	11/10/17 07:22	11/11/17 00:20	
Hexachlorocyclopentadiene	<0.80		0.80	0.23	mg/Kg	☼	11/10/17 07:22	11/11/17 00:20	
Hexachloroethane	<0.20		0.20	0.061	mg/Kg	☼	11/10/17 07:22	11/11/17 00:20	
Indeno[1,2,3-cd]pyrene	<0.040		0.040	0.010	mg/Kg		11/10/17 07:22	11/11/17 00:20	
Isophorone	<0.20		0.20	0.045	mg/Kg	☼	11/10/17 07:22	11/11/17 00:20	
2-Methylnaphthalene	<0.080		0.080	0.0073	mg/Kg	₩	11/10/17 07:22	11/11/17 00:20	
2-Methylphenol	<0.20		0.20		mg/Kg		11/10/17 07:22	11/11/17 00:20	
3 & 4 Methylphenol	<0.20		0.20		mg/Kg	₽		11/11/17 00:20	
Naphthalene	<0.040		0.040	0.0061		☼		11/11/17 00:20	
2-Nitroaniline	<0.20		0.20		mg/Kg			11/11/17 00:20	
3-Nitroaniline	<0.40		0.40		mg/Kg	☼		11/11/17 00:20	
4-Nitroaniline	<0.40		0.40		mg/Kg	₩		11/11/17 00:20	
Nitrobenzene	<0.040		0.040		mg/Kg			11/11/17 00:20	
2-Nitrophenol	<0.40		0.40	0.010		≎		11/11/17 00:20	

TestAmerica Chicago

4

6

8

10

12

13

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/02/17 10:30

Date Received: 11/03/17 08:50

Client Sample ID: 3160-36-2 (0-3')

TestAmerica Job ID: 500-136756-1

Lab Sample ID: 500-136756-13

Matrix: Solid Percent Solids: 81.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.80		0.80	0.38	mg/Kg	<u> </u>	11/10/17 07:22	11/11/17 00:20	1
N-Nitrosodi-n-propylamine	<0.080		0.080	0.049	mg/Kg	₽	11/10/17 07:22	11/11/17 00:20	1
N-Nitrosodiphenylamine	<0.20		0.20	0.047	mg/Kg	☼	11/10/17 07:22	11/11/17 00:20	1
2,2'-oxybis[1-chloropropane]	<0.20		0.20	0.046	mg/Kg	☼	11/10/17 07:22	11/11/17 00:20	1
Pentachlorophenol	<0.80		0.80	0.64	mg/Kg	₽	11/10/17 07:22	11/11/17 00:20	1
Phenanthrene	0.014	J	0.040	0.0056	mg/Kg	☼	11/10/17 07:22	11/11/17 00:20	1
Phenol	<0.20		0.20	0.089	mg/Kg	☼	11/10/17 07:22	11/11/17 00:20	1
Pyrene	0.0095	J	0.040	0.0079	mg/Kg	₽	11/10/17 07:22	11/11/17 00:20	1
1,2,4-Trichlorobenzene	<0.20		0.20	0.043	mg/Kg	☼	11/10/17 07:22	11/11/17 00:20	1
2,4,5-Trichlorophenol	<0.40		0.40	0.091	mg/Kg	☼	11/10/17 07:22	11/11/17 00:20	1
2,4,6-Trichlorophenol	<0.40		0.40	0.14	mg/Kg	₩	11/10/17 07:22	11/11/17 00:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	79		44 - 121				11/10/17 07:22	11/11/17 00:20	1
2-Fluorophenol	74		46 - 133				11/10/17 07:22	11/11/17 00:20	1
Nitrobenzene-d5	96		41 - 120				11/10/17 07:22	11/11/17 00:20	1
Phenol-d5	89		46 - 125				11/10/17 07:22	11/11/17 00:20	1
Terphenyl-d14	89		35 - 160				11/10/17 07:22	11/11/17 00:20	1
2,4,6-Tribromophenol	84		25 - 139				11/10/17 07:22	11/11/17 00:20	1

Method: 6010B - Metals (ICP) Analyte	Pocult	Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<1.1	- Qualifier	1.1			— =	11/07/17 08:10		DII Fac
•					mg/Kg				!
Arsenic	8.8		0.57	0.19	mg/Kg	₽	11/07/17 08:10	11/08/17 20:30	1
Barium	90		0.57	0.065	mg/Kg	₩	11/07/17 08:10	11/08/17 20:30	1
Beryllium	0.53		0.23	0.053	mg/Kg	₩	11/07/17 08:10	11/08/17 20:30	1
Cadmium	<0.11		0.11	0.020	mg/Kg	₩	11/07/17 08:10	11/08/17 20:30	1
Chromium	16		0.57	0.28	mg/Kg	☼	11/07/17 08:10	11/08/17 20:30	1
Cobalt	8.7		0.28	0.074	mg/Kg	φ.	11/07/17 08:10	11/08/17 20:30	1
Copper	13		0.57	0.16	mg/Kg	☼	11/07/17 08:10	11/08/17 20:30	1
Iron	20000		11	5.9	mg/Kg	₩	11/07/17 08:10	11/08/17 20:30	1
Lead	18		0.28	0.13	mg/Kg	₽	11/07/17 08:10	11/08/17 20:30	1
Manganese	430		0.57	0.082	mg/Kg	☼	11/07/17 08:10	11/08/17 20:30	1
Nickel	13		0.57	0.17	mg/Kg	☼	11/07/17 08:10	11/08/17 20:30	1
Selenium	<0.57		0.57	0.33	mg/Kg	₩	11/07/17 08:10	11/08/17 20:30	1
Silver	<0.28		0.28	0.073	mg/Kg	☼	11/07/17 08:10	11/08/17 20:30	1
Thallium	<0.57		0.57	0.28	mg/Kg	☼	11/07/17 08:10	11/08/17 20:30	1
Vanadium	27		0.28	0.067	mg/Kg	₩	11/07/17 08:10	11/08/17 20:30	1
Zinc	47		1.1	0.50	mg/Kg	₽	11/07/17 08:10	11/08/17 20:30	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/08/17 08:50	11/08/17 17:37	1
Barium	0.52		0.50	0.050	mg/L		11/08/17 08:50	11/08/17 17:37	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/08/17 08:50	11/08/17 17:37	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/08/17 08:50	11/08/17 17:37	1
Chromium	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:37	1
Cobalt	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:37	1
Copper	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:37	1
Iron	<0.40		0.40	0.20	mg/L		11/08/17 08:50	11/08/17 17:37	1

TestAmerica Chicago

Page 72 of 195

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136756-1

Lab Sample ID: 500-136756-13

Client Sample ID: 3160-36-2 (0-3') Date Collected: 11/02/17 10:30 **Matrix: Solid** Date Received: 11/03/17 08:50

Percent Solids: 81.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	<0.0075		0.0075	0.0075	mg/L		11/08/17 08:50	11/08/17 17:37	1
Manganese	0.24		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:37	1
Nickel	0.014	J	0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:37	1
Selenium	<0.050		0.050	0.020	mg/L		11/08/17 08:50	11/08/17 17:37	•
Silver	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:37	•
Vanadium	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:37	•
Zinc	0.036	J	0.50	0.020	mg/L		11/08/17 08:50	11/08/17 17:37	,
Method: 6010B - Metal	s (ICP) - SPLP East	t							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Manganese	0.049		0.025	0.010	mg/L		11/08/17 14:37	11/09/17 21:04	-
Method: 6020A - Metal	s (ICP/MS) - TCLP								
Method: 6020A - Metal Analyte Antimony Thallium		Qualifier	RL 0.0060 0.0020	MDL 0.0060 0.0020	U	<u>D</u>	Prepared 11/08/17 08:50 11/08/17 08:50	Analyzed 11/09/17 15:30 11/09/17 15:30	Dil Fa
Analyte Antimony	Result <0.0060 <0.0020	Qualifier	0.0060	0.0060	mg/L	<u>D</u>	11/08/17 08:50	11/09/17 15:30	Dil Fa
Analyte Antimony Thallium	Result <0.0060 <0.0020	Qualifier Qualifier	0.0060	0.0060 0.0020	mg/L	<u>D</u>	11/08/17 08:50	11/09/17 15:30	
Analyte Antimony Thallium Method: 7470A - TCLP	Result <0.0060 <0.0020		0.0060 0.0020	0.0060 0.0020	mg/L mg/L Unit	_ =	11/08/17 08:50 11/08/17 08:50	11/09/17 15:30 11/09/17 15:30	Dil Fac
Analyte Antimony Thallium Method: 7470A - TCLP Analyte	Result <0.0060 <0.0020		0.0060 0.0020 RL	0.0060 0.0020 MDL	mg/L mg/L Unit	_ =	11/08/17 08:50 11/08/17 08:50 Prepared	11/09/17 15:30 11/09/17 15:30 Analyzed	
Analyte Antimony Thallium Method: 7470A - TCLP Analyte Mercury	Result <0.0060 <0.0020 Mercury - TCLP Result <0.00020 ury (CVAA)		0.0060 0.0020 RL	0.0060 0.0020 MDL 0.00020	mg/L mg/L Unit		11/08/17 08:50 11/08/17 08:50 Prepared	11/09/17 15:30 11/09/17 15:30 Analyzed	
Analyte Antimony Thallium Method: 7470A - TCLP Analyte Mercury Method: 7471B - Mercur	Result <0.0060 <0.0020 Mercury - TCLP Result <0.00020 ury (CVAA)	Qualifier	0.0060 0.0020 RL 0.00020	0.0060 0.0020 MDL 0.00020	mg/L mg/L Unit mg/L Unit		11/08/17 08:50 11/08/17 08:50 Prepared 11/08/17 13:40	11/09/17 15:30 11/09/17 15:30 Analyzed 11/09/17 09:47	Dil Fa
Analyte Antimony Thallium Method: 7470A - TCLP Analyte Mercury Method: 7471B - Mercu	Result <0.0060 <0.0020 Mercury - TCLP Result <0.00020 Liry (CVAA) Result	Qualifier	0.0060 0.0020 RL 0.00020	0.0060 0.0020 MDL 0.00020	mg/L mg/L Unit mg/L Unit		11/08/17 08:50 11/08/17 08:50 Prepared 11/08/17 13:40 Prepared	11/09/17 15:30 11/09/17 15:30 Analyzed 11/09/17 09:47 Analyzed	Dil Fa
Analyte Antimony Thallium Method: 7470A - TCLP Analyte Mercury Method: 7471B - Mercur Analyte Mercury	Result <0.0060 <0.0020 Mercury - TCLP Result <0.00020 Liry (CVAA) Result 0.041	Qualifier	0.0060 0.0020 RL 0.00020	0.0060 0.0020 MDL 0.00020	mg/L mg/L Unit mg/L Unit mg/Kg		11/08/17 08:50 11/08/17 08:50 Prepared 11/08/17 13:40 Prepared	11/09/17 15:30 11/09/17 15:30 Analyzed 11/09/17 09:47 Analyzed	Dil Fa

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Lab Sample ID: 500-136756-14

Client Sample ID: 3160-36-1 (0-3') Date Collected: 11/02/17 10:40 **Matrix: Solid** Date Received: 11/03/17 08:50 Percen

nt Solid	s: 76.4	
		E
lyzed	Dil Fac	Э
7 14.43		

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Acetone	<0.021		0.021	0.0091	mg/Kg	<u> </u>	11/03/17 18:20	11/07/17 14:43	
Benzene	<0.0021		0.0021	0.00053	mg/Kg	₩	11/03/17 18:20	11/07/17 14:43	
Bromodichloromethane	<0.0021		0.0021	0.00043	mg/Kg	₩	11/03/17 18:20	11/07/17 14:43	
Bromoform	<0.0021		0.0021	0.00061	mg/Kg	₩	11/03/17 18:20	11/07/17 14:43	
Bromomethane	< 0.0052		0.0052	0.0020	mg/Kg	☆	11/03/17 18:20	11/07/17 14:43	
2-Butanone (MEK)	<0.0052		0.0052	0.0023	mg/Kg	₩	11/03/17 18:20	11/07/17 14:43	
Carbon disulfide	<0.0052		0.0052	0.0011	mg/Kg	₩	11/03/17 18:20	11/07/17 14:43	
Carbon tetrachloride	<0.0021		0.0021	0.00061	mg/Kg	≎	11/03/17 18:20	11/07/17 14:43	
Chlorobenzene	<0.0021		0.0021	0.00077	mg/Kg	≎	11/03/17 18:20	11/07/17 14:43	
Chloroethane	<0.0052		0.0052	0.0016	mg/Kg	₽	11/03/17 18:20	11/07/17 14:43	
Chloroform	<0.0021		0.0021	0.00073	mg/Kg	≎	11/03/17 18:20	11/07/17 14:43	
Chloromethane	< 0.0052		0.0052	0.0021	mg/Kg	≎	11/03/17 18:20	11/07/17 14:43	
cis-1,2-Dichloroethene	<0.0021		0.0021	0.00059	mg/Kg	₽	11/03/17 18:20	11/07/17 14:43	
cis-1,3-Dichloropropene	<0.0021		0.0021	0.00063	mg/Kg	≎	11/03/17 18:20	11/07/17 14:43	
Dibromochloromethane	<0.0021		0.0021	0.00069	mg/Kg	≎	11/03/17 18:20	11/07/17 14:43	
1,1-Dichloroethane	<0.0021		0.0021	0.00072	mg/Kg	₩	11/03/17 18:20	11/07/17 14:43	
1,2-Dichloroethane	<0.0052		0.0052	0.0016	mg/Kg	☆	11/03/17 18:20	11/07/17 14:43	
1,1-Dichloroethene	<0.0021		0.0021	0.00072	mg/Kg	☆	11/03/17 18:20	11/07/17 14:43	
1,2-Dichloropropane	<0.0021		0.0021	0.00054	mg/Kg	₩	11/03/17 18:20	11/07/17 14:43	
1,3-Dichloropropene, Total	<0.0021		0.0021	0.00074	mg/Kg	≎	11/03/17 18:20	11/07/17 14:43	
Ethylbenzene	<0.0021		0.0021	0.0010	mg/Kg	☆	11/03/17 18:20	11/07/17 14:43	
2-Hexanone	<0.0052		0.0052	0.0016	mg/Kg	☆	11/03/17 18:20	11/07/17 14:43	
Methylene Chloride	<0.0052		0.0052	0.0021	mg/Kg	☆	11/03/17 18:20	11/07/17 14:43	
4-Methyl-2-pentanone (MIBK)	<0.0052		0.0052	0.0016	mg/Kg	≎	11/03/17 18:20	11/07/17 14:43	
Methyl tert-butyl ether	<0.0021		0.0021	0.00062	mg/Kg	₽	11/03/17 18:20	11/07/17 14:43	
Styrene	<0.0021		0.0021	0.00063	mg/Kg	≎	11/03/17 18:20	11/07/17 14:43	
1,1,2,2-Tetrachloroethane	<0.0021		0.0021	0.00067	mg/Kg	≎	11/03/17 18:20	11/07/17 14:43	
Tetrachloroethene	<0.0021		0.0021	0.00071	mg/Kg	₽	11/03/17 18:20	11/07/17 14:43	
Toluene	<0.0021		0.0021	0.00053	mg/Kg	☆	11/03/17 18:20	11/07/17 14:43	
trans-1,2-Dichloroethene	<0.0021		0.0021	0.00093	mg/Kg	☆	11/03/17 18:20	11/07/17 14:43	
trans-1,3-Dichloropropene	<0.0021		0.0021	0.00074	mg/Kg	☼	11/03/17 18:20	11/07/17 14:43	
1,1,1-Trichloroethane	<0.0021		0.0021	0.00070	mg/Kg	☼	11/03/17 18:20	11/07/17 14:43	
1,1,2-Trichloroethane	<0.0021		0.0021	0.00090	mg/Kg	₩	11/03/17 18:20	11/07/17 14:43	
Trichloroethene	<0.0021		0.0021	0.00071	mg/Kg	☆	11/03/17 18:20	11/07/17 14:43	
Vinyl acetate	<0.0052		0.0052	0.0018	mg/Kg	₩	11/03/17 18:20	11/07/17 14:43	
Vinyl chloride	<0.0021		0.0021	0.00093	mg/Kg	₩	11/03/17 18:20	11/07/17 14:43	
Xylenes, Total	<0.0042		0.0042	0.00067			11/03/17 18:20	11/07/17 14:43	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)			75 - 131				11/03/17 18:20	11/07/17 14:43	
Dibromofluoromethane	108		75 - 126				11/03/17 18:20	11/07/17 14:43	
1,2-Dichloroethane-d4 (Surr)	112		70 - 134				11/03/17 18:20	11/07/17 14:43	

	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	4-Bromofluorobenzene (Surr)	88		75 - 131	11/03/17 18:20	11/07/17 14:43	1
	Dibromofluoromethane	108		75 - 126	11/03/17 18:20	11/07/17 14:43	1
	1,2-Dichloroethane-d4 (Surr)	112		70 - 134	11/03/17 18:20	11/07/17 14:43	1
١	Toluene-d8 (Surr)	96		75 - 124	11/03/17 18:20	11/07/17 14:43	1

Method: 8270D - Semivola	lethod: 8270D - Semivolatile Organic Compounds (GC/MS)											
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac				
Acenaphthene	<0.042	0.042	0.0076	mg/Kg	\	11/10/17 07:22	11/11/17 00:45	1				
Acenaphthylene	<0.042	0.042	0.0056	mg/Kg	₩	11/10/17 07:22	11/11/17 00:45	1				
Anthracene	0.0085 J	0.042	0.0071	mg/Kg	☆	11/10/17 07:22	11/11/17 00:45	1				
Benzo[a]anthracene	0.012 J	0.042	0.0057	mg/Kg	₽	11/10/17 07:22	11/11/17 00:45	1				

TestAmerica Chicago

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/02/17 10:40

Date Received: 11/03/17 08:50

Client Sample ID: 3160-36-1 (0-3')

TestAmerica Job ID: 500-136756-1

Lab Sample ID: 500-136756-14

Matrix: Solid

Percent Solids: 76.4

Method: 8270D - Semivolatil Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
	0.019		0.042	0.0082		— =		11/11/17 00:45	- Біі Га
Benzo[a]pyrene	0.019		0.042	0.0082				11/11/17 00:45	
Benzo[b]fluoranthene	0.017		0.042			· · · · · · · · · · · · · · · · · · ·		11/11/17 00:45	
Benzo[g,h,i]perylene	<0.042	J	0.042		mg/Kg	☆		11/11/17 00:45	
Benzo[k]fluoranthene	<0.042		0.042		mg/Kg mg/Kg	☆			
Bis(2-chloroethoxy)methane						· · · · · · · · · · · · · · · · · · ·		11/11/17 00:45	
Bis(2-chloroethyl)ether	< 0.21		0.21		mg/Kg			11/11/17 00:45	
Bis(2-ethylhexyl) phthalate	<0.21		0.21	0.077	0 0	₩		11/11/17 00:45	
4-Bromophenyl phenyl ether	<0.21		0.21		mg/Kg	<u>.</u> .		11/11/17 00:45	
Butyl benzyl phthalate	<0.21		0.21	0.081	0 0	₩.		11/11/17 00:45	
Carbazole	<0.21		0.21	0.11	0 0	*		11/11/17 00:45	
4-Chloroaniline	<0.85		0.85		mg/Kg	.		11/11/17 00:45	
4-Chloro-3-methylphenol	<0.42		0.42		mg/Kg	₽	11/10/17 07:22	11/11/17 00:45	
2-Chloronaphthalene	<0.21		0.21		mg/Kg	☼	11/10/17 07:22	11/11/17 00:45	
2-Chlorophenol	<0.21		0.21	0.072	mg/Kg	₩	11/10/17 07:22	11/11/17 00:45	
4-Chlorophenyl phenyl ether	<0.21		0.21	0.049	mg/Kg	₽	11/10/17 07:22	11/11/17 00:45	
Chrysene	0.014	J	0.042	0.012	mg/Kg	₩	11/10/17 07:22	11/11/17 00:45	
Dibenz(a,h)anthracene	<0.042		0.042	0.0082	mg/Kg	₩	11/10/17 07:22	11/11/17 00:45	
Dibenzofuran	<0.21		0.21	0.050	mg/Kg	₽	11/10/17 07:22	11/11/17 00:45	
1,2-Dichlorobenzene	<0.21		0.21	0.051	mg/Kg	☼	11/10/17 07:22	11/11/17 00:45	
1,3-Dichlorobenzene	<0.21		0.21	0.048	mg/Kg	☼	11/10/17 07:22	11/11/17 00:45	
1,4-Dichlorobenzene	<0.21		0.21	0.054	mg/Kg	₽	11/10/17 07:22	11/11/17 00:45	
3,3'-Dichlorobenzidine	<0.21		0.21	0.059	mg/Kg	₩	11/10/17 07:22	11/11/17 00:45	
2,4-Dichlorophenol	<0.42		0.42	0.10	mg/Kg	₩	11/10/17 07:22	11/11/17 00:45	
Diethyl phthalate	<0.21		0.21		mg/Kg	₩.	11/10/17 07:22	11/11/17 00:45	
2,4-Dimethylphenol	<0.42		0.42		mg/Kg	₩	11/10/17 07:22	11/11/17 00:45	
Dimethyl phthalate	<0.21		0.21		mg/Kg	₩	11/10/17 07:22	11/11/17 00:45	
Di-n-butyl phthalate	<0.21		0.21		mg/Kg			11/11/17 00:45	
4,6-Dinitro-2-methylphenol	<0.85		0.85		mg/Kg	₩	11/10/17 07:22	11/11/17 00:45	
2,4-Dinitrophenol	<0.85		0.85		mg/Kg	₩		11/11/17 00:45	
2,4-Dinitrotoluene	<0.21		0.21		mg/Kg			11/11/17 00:45	
2,6-Dinitrotoluene	<0.21		0.21	0.083		₩		11/11/17 00:45	
Di-n-octyl phthalate	<0.21		0.21	0.069	mg/Kg	₩		11/11/17 00:45	
Fluoranthene	0.025		0.042	0.0079	mg/Kg			11/11/17 00:45	
Fluorene	<0.042	3	0.042	0.0079	mg/Kg			11/11/17 00:45	
Hexachlorobenzene	<0.042		0.042	0.0008	0 0			11/11/17 00:45	
Hexachlorobutadiene	<0.21		0.21					11/11/17 00:45	
	<0.21		0.21		mg/Kg mg/Kg	☆		11/11/17 00:45	
Hexachlorocyclopentadiene Hexachloroethane									
	< 0.21		0.21		mg/Kg	,		11/11/17 00:45	
Indeno[1,2,3-cd]pyrene	<0.042		0.042		mg/Kg	₩		11/11/17 00:45	
Isophorone	<0.21		0.21		mg/Kg	₩		11/11/17 00:45	
2-Methylnaphthalene	<0.085		0.085	0.0078		147		11/11/17 00:45	
2-Methylphenol	<0.21		0.21		mg/Kg	₩		11/11/17 00:45	
3 & 4 Methylphenol	<0.21		0.21		mg/Kg	φ.		11/11/17 00:45	
Naphthalene	<0.042		0.042	0.0065		T.		11/11/17 00:45	
2-Nitroaniline	<0.21		0.21		mg/Kg	*		11/11/17 00:45	
3-Nitroaniline	<0.42		0.42		mg/Kg	☼		11/11/17 00:45	
4-Nitroaniline	<0.42		0.42		mg/Kg	₩		11/11/17 00:45	
Nitrobenzene	<0.042		0.042		mg/Kg	₽	11/10/17 07:22	11/11/17 00:45	
2-Nitrophenol	< 0.42		0.42	0.10	mg/Kg	☆	11/10/17 07:22	11/11/17 00:45	

TestAmerica Chicago

Page 75 of 195

11/15/2017

2

3

5

9

11

13

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/02/17 10:40

Date Received: 11/03/17 08:50

Client Sample ID: 3160-36-1 (0-3')

TestAmerica Job ID: 500-136756-1

Lab Sample ID: 500-136756-14

Matrix: Solid

Percent Solids: 76.4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.85		0.85	0.40	mg/Kg	<u> </u>	11/10/17 07:22	11/11/17 00:45	1
N-Nitrosodi-n-propylamine	<0.085		0.085	0.052	mg/Kg	₽	11/10/17 07:22	11/11/17 00:45	1
N-Nitrosodiphenylamine	<0.21		0.21	0.050	mg/Kg	☼	11/10/17 07:22	11/11/17 00:45	1
2,2'-oxybis[1-chloropropane]	<0.21		0.21	0.049	mg/Kg	☼	11/10/17 07:22	11/11/17 00:45	1
Pentachlorophenol	<0.85		0.85	0.68	mg/Kg	₽	11/10/17 07:22	11/11/17 00:45	1
Phenanthrene	0.026	J	0.042	0.0059	mg/Kg	☼	11/10/17 07:22	11/11/17 00:45	1
Phenol	<0.21		0.21	0.094	mg/Kg	☼	11/10/17 07:22	11/11/17 00:45	1
Pyrene	0.049		0.042	0.0084	mg/Kg	₽	11/10/17 07:22	11/11/17 00:45	1
1,2,4-Trichlorobenzene	<0.21		0.21	0.046	mg/Kg	☼	11/10/17 07:22	11/11/17 00:45	1
2,4,5-Trichlorophenol	<0.42		0.42	0.097	mg/Kg	☼	11/10/17 07:22	11/11/17 00:45	1
2,4,6-Trichlorophenol	<0.42		0.42	0.15	mg/Kg	₩	11/10/17 07:22	11/11/17 00:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	79		44 - 121				11/10/17 07:22	11/11/17 00:45	1
2-Fluorophenol	75		46 - 133				11/10/17 07:22	11/11/17 00:45	1
Nitrobenzene-d5	93		41 - 120				11/10/17 07:22	11/11/17 00:45	1
Phenol-d5	90		46 - 125				11/10/17 07:22	11/11/17 00:45	1
Terphenyl-d14	90		35 - 160				11/10/17 07:22	11/11/17 00:45	1
2,4,6-Tribromophenol	72		25 - 139				11/10/17 07:22	11/11/17 00:45	1

Method: 6010B - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.29	J	1.1	0.21	mg/Kg	<u> </u>	11/07/17 08:10	11/08/17 20:34	1
Arsenic	7.0		0.53	0.18	mg/Kg	☼	11/07/17 08:10	11/08/17 20:34	1
Barium	110		0.53	0.060	mg/Kg	☼	11/07/17 08:10	11/08/17 20:34	1
Beryllium	0.53		0.21	0.049	mg/Kg	₽	11/07/17 08:10	11/08/17 20:34	1
Cadmium	0.066	J	0.11	0.019	mg/Kg	☼	11/07/17 08:10	11/08/17 20:34	1
Chromium	12		0.53	0.26	mg/Kg	☼	11/07/17 08:10	11/08/17 20:34	1
Cobalt	14		0.26	0.069	mg/Kg	₽	11/07/17 08:10	11/08/17 20:34	1
Copper	9.5		0.53	0.15	mg/Kg	☼	11/07/17 08:10	11/08/17 20:34	1
Iron	15000		11	5.5	mg/Kg	₽	11/07/17 08:10	11/08/17 20:34	1
Lead	33		0.26	0.12	mg/Kg	₽	11/07/17 08:10	11/08/17 20:34	1
Manganese	910		0.53	0.077	mg/Kg	☼	11/07/17 08:10	11/08/17 20:34	1
Nickel	9.8		0.53	0.15	mg/Kg	☼	11/07/17 08:10	11/08/17 20:34	1
Selenium	0.45	J	0.53	0.31	mg/Kg	₽	11/07/17 08:10	11/08/17 20:34	1
Silver	<0.26		0.26	0.068	mg/Kg	☼	11/07/17 08:10	11/08/17 20:34	1
Thallium	<0.53		0.53	0.26	mg/Kg	₽	11/07/17 08:10	11/08/17 20:34	1
Vanadium	25		0.26	0.062	mg/Kg	₽	11/07/17 08:10	11/08/17 20:34	1
Zinc	50		1.1	0.46	mg/Kg	₩	11/07/17 08:10	11/08/17 20:34	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/08/17 08:50	11/08/17 17:41	1
Barium	0.30	J	0.50	0.050	mg/L		11/08/17 08:50	11/08/17 17:41	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/08/17 08:50	11/08/17 17:41	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/08/17 08:50	11/08/17 17:41	1
Chromium	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:41	1
Cobalt	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:41	1
Copper	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:41	1
Iron	0.45		0.40	0.20	mg/L		11/08/17 08:50	11/08/17 17:41	1

TestAmerica Chicago

Page 76 of 195

2

5

R

10

12

1 1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/02/17 10:40

Date Received: 11/03/17 08:50

Client Sample ID: 3160-36-1 (0-3')

TestAmerica Job ID: 500-136756-1

3

Lab Sample ID: 500-136756-14

Matrix: Solid

Percent Solids: 76.4

Method: 6010B - Metals (Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	<0.0075		0.0075	0.0075	mg/L		11/08/17 08:50	11/08/17 17:41	1
Manganese	0.023	J	0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:41	1
Nickel	< 0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:41	1
Selenium	< 0.050		0.050	0.020	mg/L		11/08/17 08:50	11/08/17 17:41	1
Silver	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:41	1
Vanadium	< 0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:41	1
Zinc	<0.50		0.50	0.020	mg/L		11/08/17 08:50	11/08/17 17:41	1
Method: 6020A - Metals (ICP/MS) - TCLP								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060		0.0060	0.0060	mg/L		11/08/17 08:50	11/09/17 15:34	1
Thallium	<0.0020		0.0020	0.0020	mg/L		11/08/17 08:50	11/09/17 15:34	1
Method: 7470A - TCLP M	ercury - TCLP								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/08/17 13:40	11/09/17 09:49	1
- Method: 7471B - Mercury	(CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.040		0.019	0.0065	mg/Kg	\	11/07/17 13:20	11/08/17 11:11	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Н	7.0		0.20	0.20	SU			11/12/17 23:54	1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Lab Sample ID: 500-136756-15

Client Sample ID: 3160-21-10 (0-2.5') Date Collected: 11/02/17 11:00 **Matrix: Solid** Date Received: 11/03/17 08:50 Percent Solids: 79.0

Analyte	rganic Compounds Result Qualit	fier RL	MDL		D	Prepared	Analyzed	Dil Fac
Acetone	0.043	0.017	0.0073	mg/Kg	<u> </u>	11/03/17 18:20	11/07/17 15:08	1
Benzene	<0.0017	0.0017	0.00043	mg/Kg	☼	11/03/17 18:20	11/07/17 15:08	1
Bromodichloromethane	<0.0017	0.0017	0.00034	mg/Kg	☼	11/03/17 18:20	11/07/17 15:08	1
Bromoform	<0.0017	0.0017	0.00049	mg/Kg	☼	11/03/17 18:20	11/07/17 15:08	1
Bromomethane	<0.0042	0.0042	0.0016	mg/Kg	☼	11/03/17 18:20	11/07/17 15:08	1
2-Butanone (MEK)	<0.0042	0.0042	0.0019	mg/Kg	☼	11/03/17 18:20	11/07/17 15:08	1
Carbon disulfide	<0.0042	0.0042	0.00087	mg/Kg	₩.	11/03/17 18:20	11/07/17 15:08	1
Carbon tetrachloride	<0.0017	0.0017	0.00048	mg/Kg	☼	11/03/17 18:20	11/07/17 15:08	1
Chlorobenzene	<0.0017	0.0017	0.00062	mg/Kg	☼	11/03/17 18:20	11/07/17 15:08	1
Chloroethane	<0.0042	0.0042	0.0012	mg/Kg	₽	11/03/17 18:20	11/07/17 15:08	1
Chloroform	<0.0017	0.0017	0.00058	mg/Kg	☼	11/03/17 18:20	11/07/17 15:08	1
Chloromethane	<0.0042	0.0042	0.0017	mg/Kg	☼	11/03/17 18:20	11/07/17 15:08	1
cis-1,2-Dichloroethene	<0.0017	0.0017	0.00047	mg/Kg	₽	11/03/17 18:20	11/07/17 15:08	1
cis-1,3-Dichloropropene	<0.0017	0.0017	0.00050	mg/Kg	☼	11/03/17 18:20	11/07/17 15:08	1
Dibromochloromethane	<0.0017	0.0017	0.00055	mg/Kg	☼	11/03/17 18:20	11/07/17 15:08	1
1,1-Dichloroethane	<0.0017	0.0017	0.00057	mg/Kg	₩	11/03/17 18:20	11/07/17 15:08	1
1,2-Dichloroethane	<0.0042	0.0042	0.0013	mg/Kg	☼	11/03/17 18:20	11/07/17 15:08	1
1,1-Dichloroethene	<0.0017	0.0017	0.00058	mg/Kg	☼	11/03/17 18:20	11/07/17 15:08	1
1,2-Dichloropropane	<0.0017	0.0017	0.00043	mg/Kg	.	11/03/17 18:20	11/07/17 15:08	1
1,3-Dichloropropene, Total	<0.0017	0.0017	0.00059	mg/Kg	☼	11/03/17 18:20	11/07/17 15:08	1
Ethylbenzene	<0.0017	0.0017	0.00080	mg/Kg	☼	11/03/17 18:20	11/07/17 15:08	1
2-Hexanone	<0.0042	0.0042	0.0013	mg/Kg		11/03/17 18:20	11/07/17 15:08	1
Methylene Chloride	<0.0042	0.0042	0.0016	mg/Kg	☼	11/03/17 18:20	11/07/17 15:08	1
4-Methyl-2-pentanone (MIBK)	<0.0042	0.0042	0.0012	mg/Kg	☼	11/03/17 18:20	11/07/17 15:08	1
Methyl tert-butyl ether	<0.0017	0.0017	0.00049	mg/Kg	₽	11/03/17 18:20	11/07/17 15:08	1
Styrene	<0.0017	0.0017	0.00050	mg/Kg	☼	11/03/17 18:20	11/07/17 15:08	1
1,1,2,2-Tetrachloroethane	<0.0017	0.0017	0.00053	mg/Kg	☼	11/03/17 18:20	11/07/17 15:08	1
Tetrachloroethene	<0.0017	0.0017	0.00057	mg/Kg	₽	11/03/17 18:20	11/07/17 15:08	1
Toluene	<0.0017	0.0017	0.00042	mg/Kg	☼	11/03/17 18:20	11/07/17 15:08	1
trans-1,2-Dichloroethene	<0.0017	0.0017	0.00074	mg/Kg	☼	11/03/17 18:20	11/07/17 15:08	1
trans-1,3-Dichloropropene	<0.0017	0.0017	0.00059	mg/Kg	₽	11/03/17 18:20	11/07/17 15:08	1
1,1,1-Trichloroethane	<0.0017	0.0017	0.00056	mg/Kg	☼	11/03/17 18:20	11/07/17 15:08	1
1,1,2-Trichloroethane	<0.0017	0.0017	0.00072	mg/Kg	☼	11/03/17 18:20	11/07/17 15:08	1
Trichloroethene	<0.0017	0.0017	0.00057	mg/Kg		11/03/17 18:20	11/07/17 15:08	1
Vinyl acetate	<0.0042	0.0042	0.0015	mg/Kg	☼	11/03/17 18:20	11/07/17 15:08	1
Vinyl chloride	<0.0017	0.0017	0.00074	mg/Kg	☼	11/03/17 18:20	11/07/17 15:08	1
Xylenes, Total	<0.0033	0.0033	0.00053			11/03/17 18:20	11/07/17 15:08	1
Surrogate	%Recovery Quality	fier Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91	75 - 131				11/03/17 18:20	11/07/17 15:08	1
Dibromofluoromethane	88	75 - 126				11/03/17 18:20	11/07/17 15:08	1
1,2-Dichloroethane-d4 (Surr)	107	70 - 134				11/03/17 18:20	11/07/17 15:08	1

Method: 8270D - Semivola	ethod: 8270D - Semivolatile Organic Compounds (GC/MS)											
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac				
Acenaphthene	<0.040	0.040	0.0072	mg/Kg	<u></u>	11/10/17 07:22	11/11/17 01:19	1				
Acenaphthylene	<0.040	0.040	0.0053	mg/Kg	₽	11/10/17 07:22	11/11/17 01:19	1				
Anthracene	0.025 J	0.040	0.0067	mg/Kg	₽	11/10/17 07:22	11/11/17 01:19	1				
Benzo[a]anthracene	0.047	0.040	0.0054	mg/Kg		11/10/17 07:22	11/11/17 01:19	1				

TestAmerica Chicago

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/02/17 11:00

Date Received: 11/03/17 08:50

TestAmerica Job ID: 500-136756-1

Lab Sample ID: 500-136756-15

Percent Solids: 79.0

Client Sample ID: 3160-21-10 (0-2.5') **Matrix: Solid**

Analyte	e Organic Cor Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzo[a]pyrene	0.060		0.040	0.0078	mg/Kg	<u></u>	11/10/17 07:22	11/11/17 01:19	
Benzo[b]fluoranthene	0.065		0.040	0.0087	mg/Kg	☼	11/10/17 07:22	11/11/17 01:19	
Benzo[g,h,i]perylene	0.048		0.040	0.013	mg/Kg	φ.	11/10/17 07:22	11/11/17 01:19	
Benzo[k]fluoranthene	0.013	J	0.040	0.012	mg/Kg	☼	11/10/17 07:22	11/11/17 01:19	
Bis(2-chloroethoxy)methane	<0.20		0.20	0.041	mg/Kg	☼	11/10/17 07:22	11/11/17 01:19	
Bis(2-chloroethyl)ether	<0.20		0.20	0.060	mg/Kg	₩.	11/10/17 07:22	11/11/17 01:19	
Bis(2-ethylhexyl) phthalate	<0.20		0.20	0.074	mg/Kg	☼	11/10/17 07:22	11/11/17 01:19	
4-Bromophenyl phenyl ether	<0.20		0.20	0.053	mg/Kg	₩	11/10/17 07:22	11/11/17 01:19	
Butyl benzyl phthalate	<0.20		0.20	0.077	mg/Kg		11/10/17 07:22	11/11/17 01:19	
Carbazole	<0.20		0.20		mg/Kg	₩	11/10/17 07:22	11/11/17 01:19	
4-Chloroaniline	<0.81		0.81		mg/Kg	☼	11/10/17 07:22	11/11/17 01:19	
4-Chloro-3-methylphenol	<0.40		0.40		mg/Kg	.	11/10/17 07:22	11/11/17 01:19	
2-Chloronaphthalene	<0.20		0.20		mg/Kg	☼	11/10/17 07:22	11/11/17 01:19	
2-Chlorophenol	<0.20		0.20		mg/Kg	☼		11/11/17 01:19	
4-Chlorophenyl phenyl ether	<0.20		0.20		mg/Kg			11/11/17 01:19	
Chrysene	0.046		0.040	0.011	mg/Kg	☆		11/11/17 01:19	
Dibenz(a,h)anthracene	0.042		0.040	0.0078		☆		11/11/17 01:19	
Dibenzofuran	0.063	 J	0.20		mg/Kg			11/11/17 01:19	
1,2-Dichlorobenzene	<0.20		0.20		mg/Kg	☼		11/11/17 01:19	
1,3-Dichlorobenzene	<0.20		0.20		mg/Kg	₩		11/11/17 01:19	
1,4-Dichlorobenzene	<0.20		0.20		mg/Kg			11/11/17 01:19	
3.3'-Dichlorobenzidine	<0.20		0.20		mg/Kg	₩		11/11/17 01:19	
2,4-Dichlorophenol	<0.40		0.40		mg/Kg	₩		11/11/17 01:19	
	<0.20		0.40					11/11/17 01:19	
Diethyl phthalate					mg/Kg	*			
2,4-Dimethylphenol	<0.40		0.40		mg/Kg	₩		11/11/17 01:19	
Dimethyl phthalate	<0.20		0.20		mg/Kg	.		11/11/17 01:19	
Di-n-butyl phthalate	<0.20		0.20		mg/Kg			11/11/17 01:19	
4,6-Dinitro-2-methylphenol	<0.81		0.81		mg/Kg	₩		11/11/17 01:19	
2,4-Dinitrophenol	<0.81		0.81	0.71	mg/Kg			11/11/17 01:19	
2,4-Dinitrotoluene	<0.20		0.20		mg/Kg	☆		11/11/17 01:19	
2,6-Dinitrotoluene	<0.20		0.20		mg/Kg	☆		11/11/17 01:19	
Di-n-octyl phthalate	<0.20		0.20		mg/Kg	<u>.</u>		11/11/17 01:19	
Fluoranthene	0.060		0.040	0.0075	0 0			11/11/17 01:19	
Fluorene	<0.040		0.040	0.0057	0 0	:D		11/11/17 01:19	
Hexachlorobenzene	<0.081		0.081	0.0093				11/11/17 01:19	
Hexachlorobutadiene	<0.20		0.20		mg/Kg	*		11/11/17 01:19	
Hexachlorocyclopentadiene	<0.81		0.81		mg/Kg	: D		11/11/17 01:19	
Hexachloroethane	<0.20		0.20		mg/Kg			11/11/17 01:19	
Indeno[1,2,3-cd]pyrene	0.043		0.040		mg/Kg	☼		11/11/17 01:19	
sophorone	<0.20		0.20	0.045	mg/Kg	₩	11/10/17 07:22	11/11/17 01:19	
2-Methylnaphthalene	0.13		0.081	0.0074	mg/Kg	₩	11/10/17 07:22	11/11/17 01:19	
2-Methylphenol	<0.20		0.20		mg/Kg	\$	11/10/17 07:22	11/11/17 01:19	
3 & 4 Methylphenol	<0.20		0.20	0.067	mg/Kg	₩	11/10/17 07:22	11/11/17 01:19	
Naphthalene	0.059		0.040	0.0062	mg/Kg	₩	11/10/17 07:22	11/11/17 01:19	
2-Nitroaniline	<0.20		0.20	0.054	mg/Kg	\$	11/10/17 07:22	11/11/17 01:19	
3-Nitroaniline	<0.40		0.40	0.12	mg/Kg	☼	11/10/17 07:22	11/11/17 01:19	
4-Nitroaniline	<0.40		0.40	0.17	mg/Kg	☼	11/10/17 07:22	11/11/17 01:19	
Nitrobenzene	<0.040		0.040	0.010	mg/Kg		11/10/17 07:22	11/11/17 01:19	
2-Nitrophenol	<0.40		0.40		mg/Kg	₩	11/10/17 07:22	11/11/17 01:19	

TestAmerica Chicago

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028 TestAmerica Job ID: 500-136756-1

Lab Sample ID: 500-136756-15

Matrix: Solid Percent Solids: 79.0

Client Sample ID:	3160-21-10 ($(0-2.5^{\circ})$
-------------------	--------------	-------------------

Date Collected: 11/02/17 11:00 Date Received: 11/03/17 08:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.81		0.81	0.38	mg/Kg	<u> </u>	11/10/17 07:22	11/11/17 01:19	1
N-Nitrosodi-n-propylamine	<0.081		0.081	0.049	mg/Kg	φ.	11/10/17 07:22	11/11/17 01:19	1
N-Nitrosodiphenylamine	<0.20		0.20	0.048	mg/Kg	☼	11/10/17 07:22	11/11/17 01:19	1
2,2'-oxybis[1-chloropropane]	<0.20		0.20	0.047	mg/Kg	☼	11/10/17 07:22	11/11/17 01:19	1
Pentachlorophenol	<0.81		0.81	0.65	mg/Kg	₽	11/10/17 07:22	11/11/17 01:19	1
Phenanthrene	0.19		0.040	0.0056	mg/Kg	☼	11/10/17 07:22	11/11/17 01:19	1
Phenol	<0.20		0.20	0.089	mg/Kg	☼	11/10/17 07:22	11/11/17 01:19	1
Pyrene	0.066		0.040	0.0080	mg/Kg	₩	11/10/17 07:22	11/11/17 01:19	1
1,2,4-Trichlorobenzene	<0.20		0.20	0.043	mg/Kg	☼	11/10/17 07:22	11/11/17 01:19	1
2,4,5-Trichlorophenol	<0.40		0.40	0.092	mg/Kg	☼	11/10/17 07:22	11/11/17 01:19	1
2,4,6-Trichlorophenol	<0.40		0.40	0.14	mg/Kg	₩	11/10/17 07:22	11/11/17 01:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	92		44 - 121				11/10/17 07:22	11/11/17 01:19	1
2-Fluorophenol	104		46 - 133				11/10/17 07:22	11/11/17 01:19	1
Nitrobenzene-d5	94		41 - 120				11/10/17 07:22	11/11/17 01:19	1
Phenol-d5	100		46 - 125				11/10/17 07:22	11/11/17 01:19	1
Terphenyl-d14	97		35 - 160				11/10/17 07:22	11/11/17 01:19	1
2,4,6-Tribromophenol	65		25 - 139				11/10/17 07:22	11/11/17 01:19	1

Method: 6010B - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<1.2		1.2	0.24	mg/Kg	<u> </u>	11/07/17 08:10	11/08/17 20:38	1
Arsenic	8.4		0.61	0.21	mg/Kg	☼	11/07/17 08:10	11/08/17 20:38	1
Barium	79		0.61	0.069	mg/Kg	☼	11/07/17 08:10	11/08/17 20:38	1
Beryllium	0.61		0.24	0.057	mg/Kg	*	11/07/17 08:10	11/08/17 20:38	1
Cadmium	0.19		0.12	0.022	mg/Kg	₩	11/07/17 08:10	11/08/17 20:38	1
Chromium	16		0.61	0.30	mg/Kg	₩	11/07/17 08:10	11/08/17 20:38	1
Cobalt	9.0		0.30	0.080	mg/Kg		11/07/17 08:10	11/08/17 20:38	1
Copper	19		0.61	0.17	mg/Kg	☼	11/07/17 08:10	11/08/17 20:38	1
Iron	19000		12	6.3	mg/Kg	☼	11/07/17 08:10	11/08/17 20:38	1
Lead	45		0.30	0.14	mg/Kg		11/07/17 08:10	11/08/17 20:38	1
Manganese	480		0.61	0.088	mg/Kg	☼	11/07/17 08:10	11/08/17 20:38	1
Nickel	14		0.61	0.18	mg/Kg	☼	11/07/17 08:10	11/08/17 20:38	1
Selenium	0.38	J	0.61	0.36	mg/Kg		11/07/17 08:10	11/08/17 20:38	1
Silver	< 0.30		0.30	0.078	mg/Kg	☼	11/07/17 08:10	11/08/17 20:38	1
Thallium	<0.61		0.61	0.30	mg/Kg	₩	11/07/17 08:10	11/08/17 20:38	1
Vanadium	28		0.30	0.072	mg/Kg	₽	11/07/17 08:10	11/08/17 20:38	1
Zinc	81		1.2	0.53	mg/Kg	₩	11/07/17 08:10	11/08/17 20:38	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/08/17 08:50	11/08/17 17:45	1
Barium	0.38	J	0.50	0.050	mg/L		11/08/17 08:50	11/08/17 17:45	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/08/17 08:50	11/08/17 17:45	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/08/17 08:50	11/08/17 17:45	1
Chromium	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:45	1
Cobalt	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:45	1
Copper	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:45	1
Iron	0.25	J	0.40	0.20	mg/L		11/08/17 08:50	11/08/17 17:45	1

TestAmerica Chicago

Page 80 of 195

2

3

5

0

10

11

13

14

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Received: 11/03/17 08:50

TestAmerica Job ID: 500-136756-1

3

Client Sample ID: 3160-21-10 (0-2.5')
Date Collected: 11/02/17 11:00

Lab Sample ID: 500-136756-15

Matrix: Solid

Percent Solids: 79.0

	(ICP) - TCLP (Coi	•							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	<0.0075		0.0075	0.0075	mg/L		11/08/17 08:50	11/08/17 17:45	1
Manganese	0.096		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:45	1
Nickel	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:45	1
Selenium	< 0.050		0.050	0.020	mg/L		11/08/17 08:50	11/08/17 17:45	1
Silver	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:45	1
Vanadium	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:45	1
Zinc	0.047	J	0.50	0.020	mg/L		11/08/17 08:50	11/08/17 17:45	1
Method: 6020A - Metals	(ICP/MS) - TCLP								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060		0.0060	0.0060	mg/L		11/08/17 08:50	11/09/17 15:37	1
Thallium	<0.0020		0.0020	0.0020	mg/L		11/08/17 08:50	11/09/17 15:37	1
Method: 7470A - TCLP	Mercury - TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/08/17 13:40	11/09/17 09:50	1
Method: 7471B - Mercu	ry (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.026		0.019	0.0065	mg/Kg	<u> </u>	11/07/17 13:20	11/08/17 11:13	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.6		0.20	0.20	SU			11/13/17 00:27	

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136756-1

Client Sample ID: 3160-21-9 (0-2.5')

Date Collected: 11/02/17 11:10 Date Received: 11/03/17 08:50 Lab Sample ID: 500-136756-16

Matrix: Solid
Percent Solids: 84.2

Method: 8260B - Volatile O Analyte	Result Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Acetone	0.059	0.017	0.0074	mg/Kg	₩	11/03/17 18:20	11/08/17 14:32	1
Benzene	<0.0017	0.0017	0.00043	mg/Kg	☼	11/03/17 18:20	11/08/17 14:32	1
Bromodichloromethane	<0.0017	0.0017	0.00034	mg/Kg	₩	11/03/17 18:20	11/08/17 14:32	1
Bromoform	<0.0017	0.0017	0.00049	mg/Kg	\$	11/03/17 18:20	11/08/17 14:32	1
Bromomethane	<0.0042	0.0042	0.0016	mg/Kg	☼	11/03/17 18:20	11/08/17 14:32	1
2-Butanone (MEK)	<0.0042	0.0042	0.0019	mg/Kg	₩	11/03/17 18:20	11/08/17 14:32	1
Carbon disulfide	<0.0042	0.0042	0.00088	mg/Kg	\$	11/03/17 18:20	11/08/17 14:32	1
Carbon tetrachloride	<0.0017	0.0017	0.00049	mg/Kg	₩	11/03/17 18:20	11/08/17 14:32	1
Chlorobenzene	<0.0017	0.0017	0.00062	mg/Kg	₩	11/03/17 18:20	11/08/17 14:32	1
Chloroethane	<0.0042	0.0042	0.0013	mg/Kg	₽	11/03/17 18:20	11/08/17 14:32	1
Chloroform	<0.0017	0.0017	0.00059	mg/Kg	☼	11/03/17 18:20	11/08/17 14:32	1
Chloromethane	<0.0042	0.0042	0.0017	mg/Kg	☼	11/03/17 18:20	11/08/17 14:32	1
cis-1,2-Dichloroethene	<0.0017	0.0017	0.00047	mg/Kg	₽	11/03/17 18:20	11/08/17 14:32	1
cis-1,3-Dichloropropene	<0.0017	0.0017	0.00051	mg/Kg	☼	11/03/17 18:20	11/08/17 14:32	1
Dibromochloromethane	<0.0017	0.0017	0.00055	mg/Kg	☼	11/03/17 18:20	11/08/17 14:32	1
1,1-Dichloroethane	<0.0017	0.0017	0.00058	mg/Kg		11/03/17 18:20	11/08/17 14:32	1
1,2-Dichloroethane	< 0.0042	0.0042	0.0013	mg/Kg	☼	11/03/17 18:20	11/08/17 14:32	1
1,1-Dichloroethene	<0.0017	0.0017	0.00058	mg/Kg	☼	11/03/17 18:20	11/08/17 14:32	1
1,2-Dichloropropane	<0.0017	0.0017	0.00044	mg/Kg		11/03/17 18:20	11/08/17 14:32	1
1,3-Dichloropropene, Total	<0.0017	0.0017	0.00059	mg/Kg	☼	11/03/17 18:20	11/08/17 14:32	1
Ethylbenzene	<0.0017	0.0017	0.00081	mg/Kg	☼	11/03/17 18:20	11/08/17 14:32	1
2-Hexanone	<0.0042	0.0042	0.0013	mg/Kg		11/03/17 18:20	11/08/17 14:32	1
Methylene Chloride	<0.0042	0.0042	0.0017	mg/Kg	☼	11/03/17 18:20	11/08/17 14:32	1
4-Methyl-2-pentanone (MIBK)	<0.0042	0.0042	0.0013	mg/Kg	₩	11/03/17 18:20	11/08/17 14:32	1
Methyl tert-butyl ether	<0.0017	0.0017	0.00050	mg/Kg	₽	11/03/17 18:20	11/08/17 14:32	1
Styrene	<0.0017	0.0017	0.00051	mg/Kg	☼	11/03/17 18:20	11/08/17 14:32	1
1,1,2,2-Tetrachloroethane	<0.0017	0.0017	0.00054	mg/Kg	☼	11/03/17 18:20	11/08/17 14:32	1
Tetrachloroethene	<0.0017	0.0017	0.00058	mg/Kg		11/03/17 18:20	11/08/17 14:32	1
Toluene	<0.0017	0.0017	0.00043	mg/Kg	₩	11/03/17 18:20	11/08/17 14:32	1
trans-1,2-Dichloroethene	<0.0017	0.0017	0.00075	mg/Kg	☼	11/03/17 18:20	11/08/17 14:32	1
trans-1,3-Dichloropropene	<0.0017	0.0017	0.00059	mg/Kg	₽	11/03/17 18:20	11/08/17 14:32	1
1,1,1-Trichloroethane	<0.0017	0.0017	0.00057	mg/Kg	☼	11/03/17 18:20	11/08/17 14:32	1
1,1,2-Trichloroethane	<0.0017	0.0017	0.00072	mg/Kg	₩	11/03/17 18:20	11/08/17 14:32	1
Trichloroethene	<0.0017	0.0017	0.00057			11/03/17 18:20	11/08/17 14:32	1
Vinyl acetate	<0.0042	0.0042	0.0015		☼	11/03/17 18:20	11/08/17 14:32	1
Vinyl chloride	<0.0017	0.0017	0.00075	mg/Kg	☼	11/03/17 18:20	11/08/17 14:32	1
Xylenes, Total	<0.0034	0.0034	0.00054	mg/Kg	φ.	11/03/17 18:20	11/08/17 14:32	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	89	75 - 131				11/03/17 18:20	11/08/17 14:32	1
Dibromofluoromethane	97	75 - 126				11/03/17 18:20	11/08/17 14:32	1
1,2-Dichloroethane-d4 (Surr)	108	70 - 134				11/03/17 18:20	11/08/17 14:32	1
Toluene-d8 (Surr)	95	75 - 124				11/03/17 18:20	11/08/17 14:32	1

Method: 8270D - Semivolatile Organic Compounds (GC/MS)								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	<0.038	0.038	0.0069	mg/Kg	₩	11/10/17 07:22	11/11/17 01:46	1
Acenaphthylene	<0.038	0.038	0.0050	mg/Kg	☼	11/10/17 07:22	11/11/17 01:46	1
Anthracene	0.013 J	0.038	0.0064	mg/Kg	☼	11/10/17 07:22	11/11/17 01:46	1
Benzo[a]anthracene	0.026 J	0.038	0.0051	mg/Kg	☼	11/10/17 07:22	11/11/17 01:46	1

TestAmerica Chicago

Page 82 of 195

11/15/2017

4

6

8

46

11

13

14

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/02/17 11:10

Date Received: 11/03/17 08:50

Client Sample ID: 3160-21-9 (0-2.5')

TestAmerica Job ID: 500-136756-1

Lab Sample ID: 500-136756-16

Matrix: Solid

Percent Solids: 84.2

Method: 8270D - Semivolatil Analyte	e Organic Compounds Result Qualifier	RL	MDL MDL		D	Prepared	Analyzed	Dil Fa
	0.045 Qualifier	0.038	0.0074		— =		11/11/17 01:46	- ОП Га
Benzo[a]pyrene Benzo[b]fluoranthene	0.045	0.038	0.0074		т ф		11/11/17 01:46	
		0.038					11/11/17 01:46	
Benzo[g,h,i]perylene	0.038 <0.038	0.038		mg/Kg	~ ☆		11/11/17 01:46	
Benzo[k]fluoranthene	<0.036 <0.19	0.036		mg/Kg	₩			
Bis(2-chloroethoxy)methane			0.039		· · · · · · · · · · · · · · · · · · ·		11/11/17 01:46 11/11/17 01:46	
Bis(2-chloroethyl)ether	<0.19	0.19 0.19		mg/Kg	₩			
Bis(2-ethylhexyl) phthalate	<0.19		0.070	mg/Kg			11/11/17 01:46	
4-Bromophenyl phenyl ether	<0.19	0.19					11/11/17 01:46	
Butyl benzyl phthalate	<0.19	0.19		mg/Kg	☆		11/11/17 01:46	
Carbazole	<0.19	0.19		mg/Kg			11/11/17 01:46	
4-Chloroaniline	<0.77	0.77		mg/Kg	:		11/11/17 01:46	
4-Chloro-3-methylphenol	<0.38	0.38		mg/Kg	₩		11/11/17 01:46	
2-Chloronaphthalene	<0.19	0.19		mg/Kg	.;;		11/11/17 01:46	
2-Chlorophenol	<0.19	0.19		mg/Kg	::::::::::::::::::::::::::::::::::::::		11/11/17 01:46	
4-Chlorophenyl phenyl ether	<0.19	0.19		mg/Kg	₽		11/11/17 01:46	
Chrysene	0.024 J	0.038		mg/Kg	₽		11/11/17 01:46	
Dibenz(a,h)anthracene	<0.038	0.038	0.0074	mg/Kg		11/10/17 07:22	11/11/17 01:46	
Dibenzofuran	<0.19	0.19	0.045	mg/Kg	₽	11/10/17 07:22	11/11/17 01:46	
1,2-Dichlorobenzene	<0.19	0.19	0.046	mg/Kg	☼	11/10/17 07:22	11/11/17 01:46	
1,3-Dichlorobenzene	<0.19	0.19	0.043	mg/Kg	₩	11/10/17 07:22	11/11/17 01:46	
1,4-Dichlorobenzene	<0.19	0.19	0.049	mg/Kg	₽	11/10/17 07:22	11/11/17 01:46	
3,3'-Dichlorobenzidine	<0.19	0.19	0.054	mg/Kg	☼	11/10/17 07:22	11/11/17 01:46	
2,4-Dichlorophenol	<0.38	0.38	0.091	mg/Kg	☼	11/10/17 07:22	11/11/17 01:46	
Diethyl phthalate	<0.19	0.19	0.065	mg/Kg	φ.	11/10/17 07:22	11/11/17 01:46	
2,4-Dimethylphenol	<0.38	0.38	0.15	mg/Kg	☼	11/10/17 07:22	11/11/17 01:46	
Dimethyl phthalate	<0.19	0.19	0.050	mg/Kg	☼	11/10/17 07:22	11/11/17 01:46	
Di-n-butyl phthalate	<0.19	0.19	0.058	mg/Kg	₽	11/10/17 07:22	11/11/17 01:46	
4,6-Dinitro-2-methylphenol	<0.77	0.77	0.31	mg/Kg	☼	11/10/17 07:22	11/11/17 01:46	
2,4-Dinitrophenol	<0.77	0.77	0.67	mg/Kg	☼	11/10/17 07:22	11/11/17 01:46	
2,4-Dinitrotoluene	<0.19	0.19	0.061	mg/Kg		11/10/17 07:22	11/11/17 01:46	
2,6-Dinitrotoluene	<0.19	0.19		mg/Kg	☼	11/10/17 07:22	11/11/17 01:46	
Di-n-octyl phthalate	<0.19	0.19		mg/Kg	☼	11/10/17 07:22	11/11/17 01:46	
Fluoranthene	0.030 J	0.038	0.0071			11/10/17 07:22	11/11/17 01:46	
Fluorene	<0.038	0.038	0.0054	mg/Kg	₩		11/11/17 01:46	
Hexachlorobenzene	<0.077	0.077	0.0089		☆		11/11/17 01:46	
Hexachlorobutadiene	<0.19	0.19		mg/Kg			11/11/17 01:46	
Hexachlorocyclopentadiene	<0.77	0.77		mg/Kg	☼		11/11/17 01:46	
Hexachloroethane	<0.19	0.19		mg/Kg	☼		11/11/17 01:46	
Indeno[1,2,3-cd]pyrene	0.034 J	0.038	0.0099		· · · · · · · · · · · · · · · · · · ·		11/11/17 01:46	
Isophorone	<0.19	0.19		mg/Kg	₽		11/11/17 01:46	
•	0.071 J	0.19	0.0070		Ť Ť		11/11/17 01:46	
2-Methylnaphthalene 2-Methylphenol				mg/Kg			11/11/17 01:46	
• •	<0.19	0.19			₩			
3 & 4 Methylphenol	<0.19	0.19		mg/Kg			11/11/17 01:46	
Naphthalene	0.033 J	0.038	0.0059		¥.		11/11/17 01:46	
2-Nitroaniline	<0.19	0.19		mg/Kg	;; ;;		11/11/17 01:46	
3-Nitroaniline	<0.38	0.38		mg/Kg	₩		11/11/17 01:46	
4-Nitroaniline	<0.38	0.38		mg/Kg			11/11/17 01:46	
Nitrobenzene	<0.038	0.038	0.0095		*		11/11/17 01:46	
2-Nitrophenol	<0.38	0.38	0.090	mg/Kg	☼	11/10/17 07:22	11/11/17 01:46	

TestAmerica Chicago

Page 83 of 195

11/15/2017

5

5

0

46

11

13

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/02/17 11:10

Date Received: 11/03/17 08:50

Client Sample ID: 3160-21-9 (0-2.5')

TestAmerica Job ID: 500-136756-1

Lab Sample ID: 500-136756-16

Percent Solids: 84.2

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.77		0.77	0.36	mg/Kg	<u> </u>	11/10/17 07:22	11/11/17 01:46	1
N-Nitrosodi-n-propylamine	<0.077		0.077	0.047	mg/Kg	₽	11/10/17 07:22	11/11/17 01:46	1
N-Nitrosodiphenylamine	<0.19		0.19	0.045	mg/Kg	☼	11/10/17 07:22	11/11/17 01:46	1
2,2'-oxybis[1-chloropropane]	<0.19		0.19	0.044	mg/Kg	☼	11/10/17 07:22	11/11/17 01:46	1
Pentachlorophenol	<0.77		0.77	0.61	mg/Kg	₽	11/10/17 07:22	11/11/17 01:46	1
Phenanthrene	0.099		0.038	0.0053	mg/Kg	☼	11/10/17 07:22	11/11/17 01:46	1
Phenol	<0.19		0.19	0.085	mg/Kg	☼	11/10/17 07:22	11/11/17 01:46	1
Pyrene	0.034	J	0.038	0.0076	mg/Kg	☼	11/10/17 07:22	11/11/17 01:46	1
1,2,4-Trichlorobenzene	<0.19		0.19	0.041	mg/Kg	☼	11/10/17 07:22	11/11/17 01:46	1
2,4,5-Trichlorophenol	<0.38		0.38	0.087	mg/Kg	☼	11/10/17 07:22	11/11/17 01:46	1
2,4,6-Trichlorophenol	<0.38		0.38	0.13	mg/Kg		11/10/17 07:22	11/11/17 01:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	83		44 - 121				11/10/17 07:22	11/11/17 01:46	1
2-Fluorophenol	95		46 - 133				11/10/17 07:22	11/11/17 01:46	1
Nitrobenzene-d5	85		41 - 120				11/10/17 07:22	11/11/17 01:46	1
Phenol-d5	92		46 - 125				11/10/17 07:22	11/11/17 01:46	1
Terphenyl-d14	91		35 - 160				11/10/17 07:22	11/11/17 01:46	1
2.4.6-Tribromophenol	59		25 - 139				11/10/17 07:22	11/11/17 01:46	1

Method: 6010B - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.26		1.0			\	11/07/17 08:10		1
Arsenic	7.4		0.51	0.18	mg/Kg	₩	11/07/17 08:10	11/08/17 20:42	1
Barium	200		0.51		mg/Kg	₩	11/07/17 08:10	11/08/17 20:42	1
Beryllium	0.58		0.21	0.048	mg/Kg	φ.	11/07/17 08:10	11/08/17 20:42	1
Cadmium	0.15		0.10	0.018	mg/Kg	₩	11/07/17 08:10	11/08/17 20:42	1
Chromium	14		0.51	0.25	mg/Kg	₩	11/07/17 08:10	11/08/17 20:42	1
Cobalt	11		0.26	0.067	mg/Kg	ф.	11/07/17 08:10	11/08/17 20:42	1
Copper	14		0.51	0.14	mg/Kg	₩	11/07/17 08:10	11/08/17 20:42	1
Iron	18000		10		mg/Kg	₩	11/07/17 08:10	11/08/17 20:42	1
Lead	45		0.26	0.12	mg/Kg	₩.	11/07/17 08:10	11/08/17 20:42	1
Manganese	540		0.51	0.074	mg/Kg	₩	11/07/17 08:10	11/08/17 20:42	1
Nickel	12		0.51	0.15	mg/Kg	₩	11/07/17 08:10	11/08/17 20:42	1
Selenium	0.41	J	0.51	0.30	mg/Kg	₩.	11/07/17 08:10	11/08/17 20:42	1
Silver	<0.26		0.26	0.066	mg/Kg	₩	11/07/17 08:10	11/08/17 20:42	1
Thallium	<0.51		0.51		mg/Kg	₩	11/07/17 08:10	11/08/17 20:42	1
Vanadium	23		0.26	0.061	mg/Kg	₩.	11/07/17 08:10	11/08/17 20:42	1
Zinc	60		1.0	0.45	mg/Kg	₩	11/07/17 08:10	11/08/17 20:42	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/08/17 08:50	11/08/17 17:49	1
Barium	0.39	J	0.50	0.050	mg/L		11/08/17 08:50	11/08/17 17:49	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/08/17 08:50	11/08/17 17:49	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/08/17 08:50	11/08/17 17:49	1
Chromium	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:49	1
Cobalt	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:49	1
Copper	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:49	1
Iron	0.61		0.40	0.20	mg/L		11/08/17 08:50	11/08/17 17:49	1

TestAmerica Chicago

11/15/2017

Page 84 of 195

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Received: 11/03/17 08:50

TestAmerica Job ID: 500-136756-1

3

Client Sample ID: 3160-21-9 (0-2.5')
Date Collected: 11/02/17 11:10

Lab Sample ID: 500-136756-16

Matrix: Solid

Percent Solids: 84.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	<0.0075		0.0075	0.0075	mg/L		11/08/17 08:50	11/08/17 17:49	1
Manganese	0.018	J	0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:49	1
Nickel	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:49	1
Selenium	<0.050		0.050	0.020	mg/L		11/08/17 08:50	11/08/17 17:49	1
Silver	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:49	1
Vanadium	< 0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:49	1
Zinc	<0.50		0.50	0.020	mg/L		11/08/17 08:50	11/08/17 17:49	1
Method: 6020A - Metals (I	CP/MS) - TCLP								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060		0.0060	0.0060	mg/L		11/08/17 08:50	11/09/17 15:41	1
Thallium	<0.0020		0.0020	0.0020	mg/L		11/08/17 08:50	11/09/17 15:41	1
Method: 7470A - TCLP Me	ercury - TCLP								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/08/17 13:40	11/09/17 09:55	1
Method: 7471B - Mercury	(CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.030		0.019	0.0065	mg/Kg	<u>∓</u>	11/07/17 13:20	11/08/17 11:15	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
рН	7.9		0.20	0.20	SII			11/13/17 01:01	

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Lab Sample ID: 500-136756-17

Client Sample ID: 3160-21-8 (0-2.5') Date Collected: 11/02/17 12:15 **Matrix: Solid** Date Received: 11/03/17 08:50 Percent Solids: 81.4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	0.044		0.017	0.0075	mg/Kg	₩	11/03/17 18:20	11/07/17 15:59	1
Benzene	< 0.0017		0.0017	0.00044	mg/Kg	₩	11/03/17 18:20	11/07/17 15:59	1
Bromodichloromethane	< 0.0017		0.0017	0.00035	mg/Kg	☼	11/03/17 18:20	11/07/17 15:59	1
Bromoform	<0.0017		0.0017	0.00050	mg/Kg	₽	11/03/17 18:20	11/07/17 15:59	1
Bromomethane	< 0.0043		0.0043	0.0016	mg/Kg	₩	11/03/17 18:20	11/07/17 15:59	1
2-Butanone (MEK)	< 0.0043		0.0043	0.0019	mg/Kg	₩	11/03/17 18:20	11/07/17 15:59	1
Carbon disulfide	<0.0043		0.0043	0.00089	mg/Kg	₽	11/03/17 18:20	11/07/17 15:59	1
Carbon tetrachloride	< 0.0017		0.0017	0.00050	mg/Kg	☼	11/03/17 18:20	11/07/17 15:59	1
Chlorobenzene	< 0.0017		0.0017	0.00063	mg/Kg	☼	11/03/17 18:20	11/07/17 15:59	1
Chloroethane	<0.0043		0.0043	0.0013	mg/Kg	₽	11/03/17 18:20	11/07/17 15:59	1
Chloroform	< 0.0017		0.0017	0.00060	mg/Kg	☼	11/03/17 18:20	11/07/17 15:59	1
Chloromethane	< 0.0043		0.0043	0.0017	mg/Kg	☼	11/03/17 18:20	11/07/17 15:59	1
cis-1,2-Dichloroethene	<0.0017		0.0017	0.00048	mg/Kg	φ.	11/03/17 18:20	11/07/17 15:59	1
cis-1,3-Dichloropropene	< 0.0017		0.0017	0.00052	mg/Kg	☼	11/03/17 18:20	11/07/17 15:59	1
Dibromochloromethane	< 0.0017		0.0017	0.00056	mg/Kg	☼	11/03/17 18:20	11/07/17 15:59	1
1,1-Dichloroethane	<0.0017		0.0017	0.00059	mg/Kg	₩.	11/03/17 18:20	11/07/17 15:59	1
1,2-Dichloroethane	< 0.0043		0.0043	0.0013	mg/Kg	☼	11/03/17 18:20	11/07/17 15:59	1
1,1-Dichloroethene	< 0.0017		0.0017	0.00059	mg/Kg	₩	11/03/17 18:20	11/07/17 15:59	1
1,2-Dichloropropane	<0.0017		0.0017	0.00044			11/03/17 18:20	11/07/17 15:59	1
1,3-Dichloropropene, Total	<0.0017		0.0017	0.00060	mg/Kg	₩	11/03/17 18:20	11/07/17 15:59	1
Ethylbenzene	< 0.0017		0.0017	0.00082		☼	11/03/17 18:20	11/07/17 15:59	1
2-Hexanone	<0.0043		0.0043	0.0013		· · · · · · · .	11/03/17 18:20	11/07/17 15:59	1
Methylene Chloride	< 0.0043		0.0043	0.0017		☼	11/03/17 18:20	11/07/17 15:59	1
4-Methyl-2-pentanone (MIBK)	<0.0043		0.0043	0.0013		☼		11/07/17 15:59	1
Methyl tert-butyl ether	<0.0017		0.0017	0.00050			11/03/17 18:20	11/07/17 15:59	1
Styrene	< 0.0017		0.0017	0.00052		☼	11/03/17 18:20	11/07/17 15:59	1
1,1,2,2-Tetrachloroethane	<0.0017		0.0017	0.00055	0 0	☼		11/07/17 15:59	1
Tetrachloroethene	<0.0017		0.0017	0.00059			11/03/17 18:20	11/07/17 15:59	1
Toluene	< 0.0017		0.0017	0.00043	0 0	☼	11/03/17 18:20	11/07/17 15:59	1
trans-1,2-Dichloroethene	< 0.0017		0.0017	0.00076	0 0	☼	11/03/17 18:20	11/07/17 15:59	1
trans-1,3-Dichloropropene	<0.0017		0.0017	0.00060			11/03/17 18:20	11/07/17 15:59	1
1,1,1-Trichloroethane	<0.0017		0.0017	0.00058	0 0	☼	11/03/17 18:20	11/07/17 15:59	1
1,1,2-Trichloroethane	<0.0017		0.0017	0.00074	0 0	☼	11/03/17 18:20	11/07/17 15:59	1
Trichloroethene	<0.0017		0.0017	0.00058				11/07/17 15:59	1
Vinyl acetate	<0.0043		0.0043	0.0015		☆		11/07/17 15:59	1
Vinyl chloride	<0.0017		0.0017	0.00076	0 0	☆	11/03/17 18:20		1
Xylenes, Total	<0.0034		0.0034	0.00055		.	11/03/17 18:20		1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	90		75 - 131				11/03/17 18:20	11/07/17 15:59	1
Dibromofluoromethane	106		75 - 126				11/03/17 18:20	11/07/17 15:59	1
1,2-Dichloroethane-d4 (Surr)	103		70 - 134					11/07/17 15:59	1

Method: 8270D - Semivola	tile Organic Compounds (GC/MS)						
Analyte	Result Qualifier	ŔL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	<0.039	0.039	0.0071	mg/Kg	₩	11/10/17 07:22	11/11/17 01:09	1
Acenaphthylene	<0.039	0.039	0.0052	mg/Kg	☆	11/10/17 07:22	11/11/17 01:09	1
Anthracene	<0.039	0.039	0.0066	mg/Kg	☆	11/10/17 07:22	11/11/17 01:09	1
Renzo[a]anthracene	0.0058 .1	0.039	0.0053	ma/Ka		11/10/17 07:22	11/11/17 01:09	1

TestAmerica Chicago

Page 86 of 195

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136756-1

Client Sample ID: 3160-21-8 (0-2.5')

Lab Sample ID: 500-136756-17

Date Collected: 11/02/17 12:15

Date Received: 11/03/17 08:50

Matrix: Solid
Percent Solids: 81.4

Method: 8270D - Semivolatil Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Benzo[a]pyrene	- Kesuit (<u> </u>	0.039		mg/Kg	— ¤		11/11/17 01:09	— ПП Га
Benzo[b]fluoranthene	<0.039		0.039	0.0076	0 0	☼		11/11/17 01:09	
Benzo[g,h,i]perylene	<0.039		0.039		mg/Kg			11/11/17 01:09	
	<0.039		0.039			☆		11/11/17 01:09	
Benzo[k]fluoranthene	<0.039	,	0.039		mg/Kg	~ ☆			
Bis(2-chloroethoxy)methane					0 0			11/11/17 01:09	
Bis(2-chloroethyl)ether	<0.20 <0.20		0.20 0.20		mg/Kg	₩		11/11/17 01:09 11/11/17 01:09	
Bis(2-ethylhexyl) phthalate					mg/Kg				
4-Bromophenyl phenyl ether	<0.20		0.20		mg/Kg	* 		11/11/17 01:09	
Butyl benzyl phthalate	<0.20		0.20		mg/Kg	☆		11/11/17 01:09	
Carbazole	<0.20		0.20		mg/Kg	☆		11/11/17 01:09	
4-Chloroaniline	<0.79		0.79		mg/Kg	-		11/11/17 01:09	
4-Chloro-3-methylphenol	<0.39		0.39		mg/Kg	₩.		11/11/17 01:09	
2-Chloronaphthalene	<0.20		0.20		mg/Kg	ά. Έ		11/11/17 01:09	
2-Chlorophenol	<0.20		0.20		mg/Kg	::::::::::::::::::::::::::::::::::::::		11/11/17 01:09	
4-Chlorophenyl phenyl ether	<0.20		0.20		mg/Kg	*		11/11/17 01:09	
Chrysene	<0.039		0.039		mg/Kg	*		11/11/17 01:09	
Dibenz(a,h)anthracene	<0.039		0.039	0.0076				11/11/17 01:09	
Dibenzofuran	<0.20		0.20	0.046	mg/Kg	☼	11/10/17 07:22	11/11/17 01:09	
1,2-Dichlorobenzene	<0.20		0.20		mg/Kg	≎	11/10/17 07:22	11/11/17 01:09	
1,3-Dichlorobenzene	<0.20		0.20	0.044	mg/Kg	₩	11/10/17 07:22	11/11/17 01:09	
1,4-Dichlorobenzene	<0.20		0.20	0.050	mg/Kg	₩	11/10/17 07:22	11/11/17 01:09	
3,3'-Dichlorobenzidine	<0.20		0.20	0.055	mg/Kg	₩	11/10/17 07:22	11/11/17 01:09	
2,4-Dichlorophenol	<0.39		0.39	0.093	mg/Kg	₩	11/10/17 07:22	11/11/17 01:09	
Diethyl phthalate	<0.20		0.20	0.067	mg/Kg	₩	11/10/17 07:22	11/11/17 01:09	
2,4-Dimethylphenol	< 0.39		0.39	0.15	mg/Kg	₩	11/10/17 07:22	11/11/17 01:09	
Dimethyl phthalate	<0.20		0.20	0.051	mg/Kg	₩	11/10/17 07:22	11/11/17 01:09	
Di-n-butyl phthalate	<0.20		0.20	0.060	mg/Kg	ф.	11/10/17 07:22	11/11/17 01:09	
4,6-Dinitro-2-methylphenol	< 0.79		0.79	0.32	mg/Kg	₩	11/10/17 07:22	11/11/17 01:09	
2,4-Dinitrophenol	< 0.79		0.79	0.69	mg/Kg	☼	11/10/17 07:22	11/11/17 01:09	
2,4-Dinitrotoluene	<0.20		0.20	0.062	mg/Kg		11/10/17 07:22	11/11/17 01:09	
2,6-Dinitrotoluene	<0.20		0.20	0.077	mg/Kg	₩	11/10/17 07:22	11/11/17 01:09	
Di-n-octyl phthalate	<0.20		0.20	0.064	mg/Kg	₩	11/10/17 07:22	11/11/17 01:09	
Fluoranthene	<0.039		0.039				11/10/17 07:22	11/11/17 01:09	
Fluorene	< 0.039		0.039		mg/Kg	☼	11/10/17 07:22	11/11/17 01:09	
Hexachlorobenzene	< 0.079		0.079	0.0091		₩	11/10/17 07:22	11/11/17 01:09	
Hexachlorobutadiene	<0.20		0.20		mg/Kg		11/10/17 07:22	11/11/17 01:09	
Hexachlorocyclopentadiene	<0.79		0.79		mg/Kg	₽		11/11/17 01:09	
Hexachloroethane	<0.20		0.20		mg/Kg	₩		11/11/17 01:09	
Indeno[1,2,3-cd]pyrene	< 0.039		0.039		mg/Kg			11/11/17 01:09	
Isophorone	<0.20		0.20		mg/Kg	₩		11/11/17 01:09	
2-Methylnaphthalene	< 0.079		0.079	0.0072		₩.		11/11/17 01:09	
2-Methylphenol	<0.20		0.20		mg/Kg	ф		11/11/17 01:09	
3 & 4 Methylphenol	<0.20		0.20		mg/Kg	₽		11/11/17 01:09	
Naphthalene	<0.039		0.20	0.0060		≎		11/11/17 01:09	
						~~~~~~ <del>~</del> ~			
2-Nitroaniline	<0.20		0.20		mg/Kg	**		11/11/17 01:09	
3-Nitroaniline	<0.39		0.39		mg/Kg	₩		11/11/17 01:09	
4-Nitroaniline	<0.39		0.39		mg/Kg	¥.		11/11/17 01:09	
Nitrobenzene	<0.039		0.039	0.0098	mg/Kg mg/Kg	₽	11/10/17 07:22	11/11/17 01:09	

TestAmerica Chicago

3

5

7

9

11

13

| 4

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/02/17 12:15

Date Received: 11/03/17 08:50

Client Sample ID: 3160-21-8 (0-2.5')

TestAmerica Job ID: 500-136756-1

Lab Sample ID: 500-136756-17

Matrix: Solid

Percent Solids: 81.4

Method: 8270D - Semivolation	tile Organic Co	mpounds	(GC/MS) (Cd	ontinued	)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.79		0.79	0.37	mg/Kg	₩	11/10/17 07:22	11/11/17 01:09	1
N-Nitrosodi-n-propylamine	<0.079		0.079	0.048	mg/Kg	<b>\$</b>	11/10/17 07:22	11/11/17 01:09	1
N-Nitrosodiphenylamine	<0.20		0.20	0.046	mg/Kg	₩	11/10/17 07:22	11/11/17 01:09	1
2,2'-oxybis[1-chloropropane]	<0.20		0.20	0.046	mg/Kg	₩	11/10/17 07:22	11/11/17 01:09	1
Pentachlorophenol	<0.79		0.79	0.63	mg/Kg	₩	11/10/17 07:22	11/11/17 01:09	1
Phenanthrene	0.0082	J	0.039	0.0055	mg/Kg	₩	11/10/17 07:22	11/11/17 01:09	1
Phenol	<0.20		0.20	0.087	mg/Kg	₩	11/10/17 07:22	11/11/17 01:09	1
Pyrene	0.0081	J	0.039	0.0078	mg/Kg	₩	11/10/17 07:22	11/11/17 01:09	1
1,2,4-Trichlorobenzene	<0.20		0.20	0.042	mg/Kg	₩	11/10/17 07:22	11/11/17 01:09	1
2,4,5-Trichlorophenol	<0.39		0.39	0.090	mg/Kg	₩	11/10/17 07:22	11/11/17 01:09	1
2,4,6-Trichlorophenol	<0.39		0.39	0.13	mg/Kg	₩	11/10/17 07:22	11/11/17 01:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	83		44 - 121				11/10/17 07:22	11/11/17 01:09	1
2-Fluorophenol	93		46 - 133				11/10/17 07:22	11/11/17 01:09	1
Nitrobenzene-d5	82		41 - 120				11/10/17 07:22	11/11/17 01:09	1
Phenol-d5	92		46 - 125				11/10/17 07:22	11/11/17 01:09	1
Terphenyl-d14	92		35 - 160				11/10/17 07:22	11/11/17 01:09	1
2,4,6-Tribromophenol	77		25 - 139				11/10/17 07:22	11/11/17 01:09	1

Method: 6010B - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<1.1		1.1	0.22	mg/Kg	<u> </u>	11/07/17 08:10	11/08/17 20:46	1
Arsenic	7.2		0.57	0.19	mg/Kg	☼	11/07/17 08:10	11/08/17 20:46	1
Barium	110		0.57	0.065	mg/Kg	☼	11/07/17 08:10	11/08/17 20:46	1
Beryllium	0.83		0.23	0.053	mg/Kg	₩	11/07/17 08:10	11/08/17 20:46	1
Cadmium	<0.11		0.11	0.021	mg/Kg	☼	11/07/17 08:10	11/08/17 20:46	1
Chromium	18		0.57	0.28	mg/Kg	☼	11/07/17 08:10	11/08/17 20:46	1
Cobalt	19		0.28	0.075	mg/Kg		11/07/17 08:10	11/08/17 20:46	1
Copper	11		0.57	0.16	mg/Kg	☼	11/07/17 08:10	11/08/17 20:46	1
Iron	22000		11	5.9	mg/Kg	☼	11/07/17 08:10	11/08/17 20:46	1
Lead	24		0.28	0.13	mg/Kg	₽	11/07/17 08:10	11/08/17 20:46	1
Manganese	460		0.57	0.083	mg/Kg	☼	11/07/17 08:10	11/08/17 20:46	1
Nickel	16		0.57	0.17	mg/Kg	☼	11/07/17 08:10	11/08/17 20:46	1
Selenium	<0.57		0.57	0.34	mg/Kg	₽	11/07/17 08:10	11/08/17 20:46	1
Silver	<0.28		0.28	0.074	mg/Kg	☼	11/07/17 08:10	11/08/17 20:46	1
Thallium	<0.57		0.57	0.28	mg/Kg	☼	11/07/17 08:10	11/08/17 20:46	1
Vanadium	24		0.28	0.067	mg/Kg		11/07/17 08:10	11/08/17 20:46	1
Zinc	47		1.1	0.50	mg/Kg	₩	11/07/17 08:10	11/08/17 20:46	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/08/17 08:50	11/08/17 17:53	1
Barium	0.72		0.50	0.050	mg/L		11/08/17 08:50	11/08/17 17:53	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/08/17 08:50	11/08/17 17:53	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/08/17 08:50	11/08/17 17:53	1
Chromium	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:53	1
Cobalt	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:53	1
Copper	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:53	1
Iron	0.74		0.40	0.20	mg/L		11/08/17 08:50	11/08/17 17:53	1

TestAmerica Chicago

Page 88 of 195

11/15/2017

2

5

9

11

13

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Received: 11/03/17 08:50

рН

TestAmerica Job ID: 500-136756-1

Client Sample ID: 3160-21-8 (0-2.5') Lab Sample ID: 500-136756-17 Date Collected: 11/02/17 12:15

**Matrix: Solid** 

Percent Solids: 81.4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	<0.0075		0.0075	0.0075	mg/L		11/08/17 08:50	11/08/17 17:53	1
Manganese	0.055		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:53	1
Nickel	0.020	J	0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:53	1
Selenium	<0.050		0.050	0.020	mg/L		11/08/17 08:50	11/08/17 17:53	1
Silver	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:53	1
Vanadium	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:53	1
Zinc	0.024	J	0.50	0.020	mg/L		11/08/17 08:50	11/08/17 17:53	1
_ Method: 6020A - Metals (I	CP/MS) - TCLP								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060		0.0060	0.0060	mg/L		11/08/17 08:50	11/09/17 15:44	1
Thallium -	<0.0020		0.0020	0.0020	mg/L		11/08/17 08:50	11/09/17 15:44	1
- Method: 7470A - TCLP Me	ercury - TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/08/17 13:40	11/09/17 09:56	1
- Method: 7471B - Mercury	(CVAA)								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.013	J	0.020	0.0066	mg/Kg	<u> </u>	11/07/17 13:20	11/08/17 11:18	1
- General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

0.20

6.4

0.20 SU

11/13/17 01:34

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Acenaphthene

**Anthracene** 

Acenaphthylene

Benzo[a]anthracene

Lab Sample ID: 500-136756-18

Client Sample ID: 3160-21-7 (0-2.5') Date Collected: 11/02/17 12:25 **Matrix: Solid** Date Received: 11/03/17 08:50

Percent Solids: 79.9

Method: 8260B - Volatile O Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Acetone	<0.019		0.019	0.0081	mg/Kg	<u>₩</u>	11/03/17 18:20	11/07/17 16:23	
Benzene	< 0.0019		0.0019	0.00048	mg/Kg	☼	11/03/17 18:20	11/07/17 16:23	
Bromodichloromethane	< 0.0019		0.0019	0.00038	mg/Kg	≎	11/03/17 18:20	11/07/17 16:23	
Bromoform	<0.0019		0.0019	0.00054	mg/Kg	 ф	11/03/17 18:20	11/07/17 16:23	
Bromomethane	<0.0047		0.0047	0.0018		₩	11/03/17 18:20	11/07/17 16:23	
2-Butanone (MEK)	<0.0047		0.0047	0.0021		₩	11/03/17 18:20	11/07/17 16:23	
Carbon disulfide	<0.0047		0.0047	0.00097		· · · · · · · · · · · · · · · · · · ·	11/03/17 18:20	11/07/17 16:23	
Carbon tetrachloride	<0.0019		0.0019	0.00054		₩	11/03/17 18:20	11/07/17 16:23	
Chlorobenzene	<0.0019		0.0019	0.00069		₩	11/03/17 18:20	11/07/17 16:23	
Chloroethane	<0.0047		0.0047	0.0014				11/07/17 16:23	
Chloroform	<0.0019		0.0019	0.00065		₩		11/07/17 16:23	
Chloromethane	<0.0047		0.0047	0.0019		₩		11/07/17 16:23	
cis-1,2-Dichloroethene	<0.0019		0.0019	0.00052				11/07/17 16:23	
cis-1,3-Dichloropropene	<0.0019		0.0019	0.00056		₩		11/07/17 16:23	
Dibromochloromethane	<0.0019		0.0019	0.00061	0 0	₩		11/07/17 16:23	
1.1-Dichloroethane	<0.0019		0.0019	0.00064				11/07/17 16:23	
1,2-Dichloroethane	<0.0047		0.0047	0.0015	0 0	₩		11/07/17 16:23	
1,1-Dichloroethene	<0.0019		0.0019	0.00064		₩		11/07/17 16:23	
1,2-Dichloropropane	<0.0019		0.0019	0.00048		 ☆		11/07/17 16:23	
1,3-Dichloropropene, Total	<0.0019		0.0019	0.00046		₩		11/07/17 16:23	
Ethylbenzene	<0.0019		0.0019	0.00089		☼		11/07/17 16:23	
2-Hexanone	<0.0019		0.0019	0.0005	0 0	· · · · · · · · · · · · · · · · · · ·		11/07/17 16:23	
Methylene Chloride	<0.0047		0.0047			₩		11/07/17 16:23	
4-Methyl-2-pentanone (MIBK)	<0.0047		0.0047	0.0018	0 0	≎		11/07/17 16:23	
Methyl tert-butyl ether	<0.0047		0.0047	0.00014				11/07/17 16:23	
· ·						≎			
Styrene	<0.0019		0.0019	0.00056		₩		11/07/17 16:23	
1,1,2,2-Tetrachloroethane	<0.0019		0.0019	0.00060				11/07/17 16:23	
Tetrachloroethene	<0.0019		0.0019	0.00063	0 0	₩		11/07/17 16:23	
Toluene	<0.0019		0.0019	0.00047	0 0	₩		11/07/17 16:23	
trans-1,2-Dichloroethene	<0.0019		0.0019	0.00083		· · · · · · 🌣		11/07/17 16:23	
trans-1,3-Dichloropropene	<0.0019		0.0019	0.00065				11/07/17 16:23	
1,1,1-Trichloroethane	<0.0019		0.0019	0.00063		₩.		11/07/17 16:23	
1,1,2-Trichloroethane	<0.0019		0.0019	0.00080		· · · · · ·		11/07/17 16:23	
Trichloroethene	<0.0019		0.0019	0.00063		₩		11/07/17 16:23	
Vinyl acetate	<0.0047		0.0047	0.0016		<b>*</b>		11/07/17 16:23	
Vinyl chloride	<0.0019		0.0019	0.00082				11/07/17 16:23	
Xylenes, Total	<0.0037		0.0037	0.00060	mg/Kg	₽	11/03/17 18:20	11/07/17 16:23	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	89		75 - 131				11/03/17 18:20	11/07/17 16:23	
Dibromofluoromethane	104		75 - 126				11/03/17 18:20	11/07/17 16:23	
1,2-Dichloroethane-d4 (Surr)	98		70 - 134				11/03/17 18:20	11/07/17 16:23	
Toluene-d8 (Surr)	97		75 - 124				11/03/17 18:20	11/07/17 16:23	
: Method: 8270D - Semivolat	tile Organic Co	mpounds (	(GC/MS)						
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa

TestAmerica Chicago

☼ 11/10/17 07:22 11/11/17 02:14

☼ 11/10/17 07:22 11/11/17 02:14

11/10/17 07:22 11/11/17 02:14

0.041

0.041

0.041

0.041

0.0075 mg/Kg

0.0055 mg/Kg

0.0069 mg/Kg

0.0056 mg/Kg

<0.041

<0.041

0.015 J

0.032 J

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/02/17 12:25

Date Received: 11/03/17 08:50

Client Sample ID: 3160-21-7 (0-2.5')

TestAmerica Job ID: 500-136756-1

Lab Sample ID: 500-136756-18

Matrix: Solid Percent Solids: 79.9

Method: 8270D - Semivolatil	Result Qualifie	er RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzo[a]pyrene	0.053	0.041	0.0080		₩.		11/11/17 02:14	
Benzo[b]fluoranthene	0.061	0.041	0.0090	mg/Kg	<b>.</b>	11/10/17 07:22	11/11/17 02:14	
Benzo[g,h,i]perylene	0.047	0.041	0.013	mg/Kg	≎	11/10/17 07:22	11/11/17 02:14	
Benzo[k]fluoranthene	0.014 J	0.041	0.012	mg/Kg	≎	11/10/17 07:22	11/11/17 02:14	
Bis(2-chloroethoxy)methane	<0.21	0.21		mg/Kg	₽	11/10/17 07:22	11/11/17 02:14	
Bis(2-chloroethyl)ether	<0.21	0.21	0.062	mg/Kg	₽	11/10/17 07:22	11/11/17 02:14	
Bis(2-ethylhexyl) phthalate	<0.21	0.21	0.076	mg/Kg	₽	11/10/17 07:22	11/11/17 02:14	
4-Bromophenyl phenyl ether	<0.21	0.21	0.055	mg/Kg	☼	11/10/17 07:22	11/11/17 02:14	
Butyl benzyl phthalate	<0.21	0.21	0.079	mg/Kg	₽	11/10/17 07:22	11/11/17 02:14	
Carbazole	<0.21	0.21	0.10	mg/Kg	≎	11/10/17 07:22	11/11/17 02:14	
4-Chloroaniline	<0.84	0.84	0.19	mg/Kg	₽	11/10/17 07:22	11/11/17 02:14	
4-Chloro-3-methylphenol	<0.41	0.41	0.14	mg/Kg	φ.	11/10/17 07:22	11/11/17 02:14	
2-Chloronaphthalene	<0.21	0.21	0.046	mg/Kg	₽	11/10/17 07:22	11/11/17 02:14	
2-Chlorophenol	<0.21	0.21	0.071	mg/Kg	☼	11/10/17 07:22	11/11/17 02:14	
4-Chlorophenyl phenyl ether	<0.21	0.21	0.048	mg/Kg	\$	11/10/17 07:22	11/11/17 02:14	
Chrysene	0.031 J	0.041	0.011	mg/Kg	≎	11/10/17 07:22	11/11/17 02:14	
Dibenz(a,h)anthracene	0.043	0.041	0.0080		₽	11/10/17 07:22	11/11/17 02:14	
Dibenzofuran	<0.21	0.21	0.049	mg/Kg	ф.	11/10/17 07:22	11/11/17 02:14	
1,2-Dichlorobenzene	<0.21	0.21	0.050		☼	11/10/17 07:22	11/11/17 02:14	
1,3-Dichlorobenzene	<0.21	0.21	0.047	mg/Kg	≎	11/10/17 07:22	11/11/17 02:14	
1.4-Dichlorobenzene	<0.21	0.21		mg/Kg	· · · · · · · · · · · · · · · · · · ·	11/10/17 07:22	11/11/17 02:14	
3,3'-Dichlorobenzidine	<0.21	0.21		mg/Kg	₽	11/10/17 07:22	11/11/17 02:14	
2,4-Dichlorophenol	<0.41	0.41	0.099		₽		11/11/17 02:14	
Diethyl phthalate	<0.21	0.21		mg/Kg			11/11/17 02:14	
2,4-Dimethylphenol	<0.41	0.41		mg/Kg	₩		11/11/17 02:14	
Dimethyl phthalate	<0.21	0.21		mg/Kg	₩		11/11/17 02:14	
Di-n-butyl phthalate	<0.21	0.21		mg/Kg			11/11/17 02:14	
4,6-Dinitro-2-methylphenol	<0.84	0.84		mg/Kg	₽		11/11/17 02:14	
2,4-Dinitrophenol	<0.84	0.84		mg/Kg	₽		11/11/17 02:14	
2,4-Dinitrotoluene	<0.21	0.21		mg/Kg			11/11/17 02:14	
2,6-Dinitrotoluene	<0.21	0.21		mg/Kg	₽		11/11/17 02:14	
Di-n-octyl phthalate	<0.21	0.21		mg/Kg	₽		11/11/17 02:14	
Fluoranthene	0.049	0.041	0.0077				11/11/17 02:14	
Fluorene	<0.049	0.041	0.0077				11/11/17 02:14	
Hexachlorobenzene	<0.084	0.084	0.0096		₽		11/11/17 02:14	
Hexachlorobutadiene					· · · · · · ·		11/11/17 02:14	
Hexachlorocyclopentadiene	<0.21 <0.84	0.21 0.84		mg/Kg mg/Kg	₽		11/11/17 02:14	
Hexachloroethane	<0.21	0.84		mg/Kg	т Ф		11/11/17 02:14	
					· · · · · · · · .			
Indeno[1,2,3-cd]pyrene	<b>0.044</b> <0.21	0.041 0.21		mg/Kg mg/Kg	₩		11/11/17 02:14 11/11/17 02:14	
Isophorone								
2-Methylnaphthalene	0.055 J	0.084		mg/Kg			11/11/17 02:14	
2-Methylphenol	<0.21	0.21		mg/Kg	₩ **		11/11/17 02:14	
3 & 4 Methylphenol	<0.21	0.21		mg/Kg	<b>☆</b>		11/11/17 02:14	
Naphthalene	0.026 J	0.041	0.0064		<del></del> .		11/11/17 02:14	
2-Nitroaniline	<0.21	0.21		mg/Kg	₽		11/11/17 02:14	
3-Nitroaniline	<0.41	0.41		mg/Kg	₩		11/11/17 02:14	
4-Nitroaniline	<0.41	0.41		mg/Kg			11/11/17 02:14	
Nitrobenzene	<0.041	0.041		mg/Kg	₽.		11/11/17 02:14	
2-Nitrophenol	<0.41	0.41	0.098	mg/Kg	₽	11/10/17 07:22	11/11/17 02:14	

TestAmerica Chicago

Page 91 of 195

11/15/2017

_

5

8

10

12

. .

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/02/17 12:25

Date Received: 11/03/17 08:50

Client Sample ID: 3160-21-7 (0-2.5')

TestAmerica Job ID: 500-136756-1

Lab Sample ID: 500-136756-18

**Matrix: Solid** Percent Solids: 79.9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.84		0.84	0.39	mg/Kg	<u> </u>	11/10/17 07:22	11/11/17 02:14	1
N-Nitrosodi-n-propylamine	<0.084		0.084	0.051	mg/Kg		11/10/17 07:22	11/11/17 02:14	1
N-Nitrosodiphenylamine	<0.21		0.21	0.049	mg/Kg	☼	11/10/17 07:22	11/11/17 02:14	1
2,2'-oxybis[1-chloropropane]	<0.21		0.21	0.048	mg/Kg	☼	11/10/17 07:22	11/11/17 02:14	1
Pentachlorophenol	<0.84		0.84	0.67	mg/Kg	₩	11/10/17 07:22	11/11/17 02:14	1
Phenanthrene	0.094		0.041	0.0058	mg/Kg	₩	11/10/17 07:22	11/11/17 02:14	1
Phenol	<0.21		0.21	0.092	mg/Kg	☼	11/10/17 07:22	11/11/17 02:14	1
Pyrene	0.050		0.041	0.0082	mg/Kg	₽	11/10/17 07:22	11/11/17 02:14	1
1,2,4-Trichlorobenzene	<0.21		0.21	0.045	mg/Kg	☼	11/10/17 07:22	11/11/17 02:14	1
2,4,5-Trichlorophenol	<0.41		0.41	0.095	mg/Kg	☼	11/10/17 07:22	11/11/17 02:14	1
2,4,6-Trichlorophenol	<0.41		0.41	0.14	mg/Kg	☼	11/10/17 07:22	11/11/17 02:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	89		44 - 121				11/10/17 07:22	11/11/17 02:14	1
2-Fluorophenol	100		46 - 133				11/10/17 07:22	11/11/17 02:14	1
Nitrobenzene-d5	92		41 - 120				11/10/17 07:22	11/11/17 02:14	1
Phenol-d5	98		46 - 125				11/10/17 07:22	11/11/17 02:14	1
Terphenyl-d14	92		35 - 160				11/10/17 07:22	11/11/17 02:14	1
2,4,6-Tribromophenol	62		25 - 139				11/10/17 07:22	11/11/17 02:14	1

Method: 6010B - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<1.0		1.0	0.20	mg/Kg	<u></u>	11/07/17 08:10	11/08/17 20:50	1
Arsenic	7.0		0.50	0.17	mg/Kg	☼	11/07/17 08:10	11/08/17 20:50	1
Barium	130		0.50	0.057	mg/Kg	₩	11/07/17 08:10	11/08/17 20:50	1
Beryllium	0.57		0.20	0.047	mg/Kg	₩.	11/07/17 08:10	11/08/17 20:50	1
Cadmium	<0.10		0.10	0.018	mg/Kg	₩	11/07/17 08:10	11/08/17 20:50	1
Chromium	13		0.50	0.25	mg/Kg	₩	11/07/17 08:10	11/08/17 20:50	1
Cobalt	9.9		0.25	0.066	mg/Kg		11/07/17 08:10	11/08/17 20:50	1
Copper	12		0.50	0.14	mg/Kg	₩	11/07/17 08:10	11/08/17 20:50	1
Iron	17000		10	5.2	mg/Kg	₩	11/07/17 08:10	11/08/17 20:50	1
Lead	21		0.25	0.12	mg/Kg		11/07/17 08:10	11/08/17 20:50	1
Manganese	540		0.50	0.073	mg/Kg	₩	11/07/17 08:10	11/08/17 20:50	1
Nickel	12		0.50	0.15	mg/Kg	₩	11/07/17 08:10	11/08/17 20:50	1
Selenium	0.30	J	0.50	0.30	mg/Kg	φ.	11/07/17 08:10	11/08/17 20:50	1
Silver	< 0.25		0.25	0.065	mg/Kg	₩	11/07/17 08:10	11/08/17 20:50	1
Thallium	< 0.50		0.50	0.25	mg/Kg	₩	11/07/17 08:10	11/08/17 20:50	1
Vanadium	23		0.25	0.059	mg/Kg	ф.	11/07/17 08:10	11/08/17 20:50	1
Zinc	45		1.0		mg/Kg	₩	11/07/17 08:10	11/08/17 20:50	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/08/17 08:50	11/08/17 17:57	1
Barium	0.50		0.50	0.050	mg/L		11/08/17 08:50	11/08/17 17:57	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/08/17 08:50	11/08/17 17:57	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/08/17 08:50	11/08/17 17:57	1
Chromium	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:57	1
Cobalt	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:57	1
Copper	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:57	1
Iron	0.35	J	0.40	0.20	mg/L		11/08/17 08:50	11/08/17 17:57	1

Page 92 of 195

TestAmerica Chicago

11/15/2017

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/02/17 12:25

Date Received: 11/03/17 08:50

Client Sample ID: 3160-21-7 (0-2.5')

TestAmerica Job ID: 500-136756-1

Lab Sample ID: 500-136756-18

**Matrix: Solid** 

Percent Solids: 79.9

Method: 6010B - Metals (IC Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	<0.0075		0.0075	0.0075	mg/L		11/08/17 08:50	11/08/17 17:57	1
Manganese	0.035		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:57	1
Nickel	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:57	1
Selenium	<0.050		0.050	0.020	mg/L		11/08/17 08:50	11/08/17 17:57	1
Silver	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:57	1
Vanadium	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 17:57	1
Zinc	<0.50		0.50	0.020	mg/L		11/08/17 08:50	11/08/17 17:57	1
Method: 6020A - Metals (IC	P/MS) - TCLP								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060		0.0060	0.0060	mg/L		11/08/17 08:50	11/09/17 15:48	1
Thallium -	<0.0020		0.0020	0.0020	mg/L		11/08/17 08:50	11/09/17 15:48	1
- Method: 7470A - TCLP Mer	cury - TCLP								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/08/17 13:40	11/09/17 09:58	1
- Method: 7471B - Mercury (	CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.025		0.020	0.0066	mg/Kg	<del>-</del> <del>-</del>	11/07/17 13:20	11/08/17 11:20	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.6		0.20	0.20	SU			11/13/17 02:08	1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Lab Sample ID: 500-136756-19

Client Sample ID: 3160-21-6 (0-2.5') Date Collected: 11/02/17 12:35 Matrix: Solid

Method: 8260B - Volatile O	rganic Compounds (	GC/MS)						
Analyte	Result Qualifie	•		Unit	D	Prepared	Analyzed	Dil Fac
Acetone	0.041	0.020	0.0089	mg/Kg	<u> </u>	11/03/17 18:20	11/07/17 16:48	1
Benzene	<0.0020	0.0020	0.00052	mg/Kg	₩	11/03/17 18:20	11/07/17 16:48	1
Bromodichloromethane	<0.0020	0.0020	0.00042	mg/Kg	₩	11/03/17 18:20	11/07/17 16:48	1
Bromoform	<0.0020	0.0020	0.00060	mg/Kg	₩	11/03/17 18:20	11/07/17 16:48	1
Bromomethane	<0.0051	0.0051	0.0019	mg/Kg	₩	11/03/17 18:20	11/07/17 16:48	1
2-Butanone (MEK)	<0.0051	0.0051	0.0023	mg/Kg	₩	11/03/17 18:20	11/07/17 16:48	
Carbon disulfide	<0.0051	0.0051	0.0011	mg/Kg	ф	11/03/17 18:20	11/07/17 16:48	
Carbon tetrachloride	<0.0020	0.0020	0.00059	mg/Kg	₩	11/03/17 18:20	11/07/17 16:48	•
Chlorobenzene	<0.0020	0.0020	0.00076	mg/Kg	₩	11/03/17 18:20	11/07/17 16:48	1
Chloroethane	<0.0051	0.0051	0.0015	mg/Kg	₽	11/03/17 18:20	11/07/17 16:48	1
Chloroform	<0.0020	0.0020	0.00071	mg/Kg	₩	11/03/17 18:20	11/07/17 16:48	1
Chloromethane	<0.0051	0.0051	0.0021	mg/Kg	₩	11/03/17 18:20	11/07/17 16:48	1
cis-1,2-Dichloroethene	<0.0020	0.0020	0.00057	mg/Kg		11/03/17 18:20	11/07/17 16:48	1
cis-1,3-Dichloropropene	<0.0020	0.0020	0.00062	mg/Kg	₩	11/03/17 18:20	11/07/17 16:48	
Dibromochloromethane	<0.0020	0.0020	0.00067	mg/Kg	₩	11/03/17 18:20	11/07/17 16:48	
I,1-Dichloroethane	<0.0020	0.0020	0.00070	mg/Kg		11/03/17 18:20	11/07/17 16:48	• • • • • • • • •
,2-Dichloroethane	<0.0051	0.0051	0.0016	mg/Kg	₩	11/03/17 18:20	11/07/17 16:48	
I,1-Dichloroethene	<0.0020	0.0020	0.00070	mg/Kg	₩	11/03/17 18:20	11/07/17 16:48	
1,2-Dichloropropane	<0.0020	0.0020	0.00053	mg/Kg	₩	11/03/17 18:20	11/07/17 16:48	
1,3-Dichloropropene, Total	<0.0020	0.0020	0.00072		₩	11/03/17 18:20	11/07/17 16:48	
Ethylbenzene	<0.0020	0.0020	0.00098	mg/Kg	₩	11/03/17 18:20	11/07/17 16:48	
2-Hexanone	<0.0051	0.0051	0.0016			11/03/17 18:20	11/07/17 16:48	
Methylene Chloride	<0.0051	0.0051	0.0020		₩	11/03/17 18:20	11/07/17 16:48	
4-Methyl-2-pentanone (MIBK)	<0.0051	0.0051	0.0015	mg/Kg	₩	11/03/17 18:20	11/07/17 16:48	
Methyl tert-butyl ether	<0.0020	0.0020	0.00060	mg/Kg	 ☆	11/03/17 18:20	11/07/17 16:48	· · · · · · .
Styrene	<0.0020	0.0020	0.00062	mg/Kg	₩	11/03/17 18:20	11/07/17 16:48	
1,1,2,2-Tetrachloroethane	<0.0020	0.0020	0.00065		₩		11/07/17 16:48	
Tetrachloroethene	<0.0020	0.0020	0.00070	mg/Kg		11/03/17 18:20	11/07/17 16:48	,
Toluene	<0.0020	0.0020	0.00052	0 0	₩	11/03/17 18:20	11/07/17 16:48	
rans-1,2-Dichloroethene	<0.0020	0.0020	0.00091	0 0	₩		11/07/17 16:48	
rans-1,3-Dichloropropene	<0.0020	0.0020	0.00072				11/07/17 16:48	
1,1,1-Trichloroethane	<0.0020	0.0020	0.00069		₩	11/03/17 18:20	11/07/17 16:48	
I.1.2-Trichloroethane	<0.0020	0.0020	0.00088		₩		11/07/17 16:48	
Frichloroethene	<0.0020	0.0020	0.00069				11/07/17 16:48	
/inyl acetate	<0.0051	0.0051	0.0018	0 0	₩		11/07/17 16:48	
/inyl chloride	<0.0020	0.0020	0.00091	0 0	₩		11/07/17 16:48	
Xylenes, Total	<0.0041	0.0041	0.00066				11/07/17 16:48	
Surrogate	%Recovery Qualifie	er Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	86	75 - 131				11/03/17 18:20	11/07/17 16:48	

Surrogate	%Recovery G	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	86		75 - 131	11/03/17 18:20	11/07/17 16:48	1
Dibromofluoromethane	106		75 - 126	11/03/17 18:20	11/07/17 16:48	1
1,2-Dichloroethane-d4 (Surr)	101		70 - 134	11/03/17 18:20	11/07/17 16:48	1
Toluene-d8 (Surr)	96		75 - 124	11/03/17 18:20	11/07/17 16:48	1

Method: 8270D - Semivolatile Organic Compounds (GC/MS)									
Analyte	Result Qualifier	ŘL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Acenaphthene	<0.041	0.041	0.0074	mg/Kg	<del>\</del>	11/10/17 07:22	11/11/17 01:34	1	
Acenaphthylene	<0.041	0.041	0.0054	mg/Kg	₩	11/10/17 07:22	11/11/17 01:34	1	
Anthracene	<0.041	0.041	0.0069	mg/Kg	₩	11/10/17 07:22	11/11/17 01:34	1	
Benzolalanthracene	<0.041	0.041	0.0056	ma/Ka		11/10/17 07:22	11/11/17 01:34	1	

TestAmerica Chicago

Page 94 of 195

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

2-Nitrophenol

TestAmerica Job ID: 500-136756-1

Client Sample ID: 3160-21-6 (0-2.5')

Lab Sample ID: 500-136756-19

Date Collected: 11/02/17 12:35

Matrix: Solid

Date Received: 11/03/17 08:50

Percent Solids: 79.3

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued) MDL Unit Analyte Result Qualifier RL D Prepared Analyzed Dil Fac Benzo[a]pyrene <0.041 0.041 0.0080 mg/Kg 11/10/17 07:22 11/11/17 01:34 Benzo[b]fluoranthene < 0.041 0.041 0.0089 mg/Kg 11/10/17 07:22 11/11/17 01:34 à Benzo[g,h,i]perylene < 0.041 0.041 0.013 mg/Kg 11/10/17 07:22 11/11/17 01:34 Benzo[k]fluoranthene < 0.041 0.041 0.012 mg/Kg 11/10/17 07:22 11/11/17 01:34 Bis(2-chloroethoxy)methane 11/10/17 07:22 11/11/17 01:34 1 < 0.21 0.21 0.042 mg/Kg Bis(2-chloroethyl)ether < 0.21 0.21 0.062 mg/Kg 11/10/17 07:22 11/11/17 01:34 Bis(2-ethylhexyl) phthalate < 0.21 0.21 0.075 mg/Kg 11/10/17 07:22 11/11/17 01:34 4-Bromophenyl phenyl ether <0.21 0.21 0.054 mg/Kg 11/10/17 07:22 11/11/17 01:34 Butyl benzyl phthalate < 0.21 0.21 0.079 mg/Kg 11/10/17 07:22 11/11/17 01:34 11/10/17 07:22 Carbazole < 0.21 0.21 0.10 mg/Kg 11/11/17 01:34 4-Chloroaniline < 0.83 0.83 0.19 mg/Kg 11/10/17 07:22 11/11/17 01:34 4-Chloro-3-methylphenol < 0.41 0.41 0.14 11/10/17 07:22 11/11/17 01:34 mg/Kg 2-Chloronaphthalene 0.21 11/10/17 07:22 11/11/17 01:34 1 < 0.21 0.046 mg/Kg 2-Chlorophenol < 0.21 0.21 0.070 mg/Kg 11/10/17 07:22 11/11/17 01:34 4-Chlorophenyl phenyl ether < 0.21 0.21 0.048 mg/Kg 11/10/17 07:22 11/11/17 01:34 Chrysene <0.041 0.041 0.011 mg/Kg 11/10/17 07:22 11/11/17 01:34 Dibenz(a,h)anthracene < 0.041 0.041 0.0080 11/10/17 07:22 11/11/17 01:34 mg/Kg Dibenzofuran < 0.21 0.21 0.048 mg/Kg 11/10/17 07:22 11/11/17 01:34 1,2-Dichlorobenzene <0.21 0.21 0.049 mg/Kg 11/10/17 07:22 11/11/17 01:34 1,3-Dichlorobenzene 0.21 0.046 mg/Kg 11/10/17 07:22 11/11/17 01:34 < 0.21 11/10/17 07:22 11/11/17 01:34 1,4-Dichlorobenzene < 0.21 0.21 0.053 mg/Kg 0.21 11/10/17 07:22 11/11/17 01:34 3,3'-Dichlorobenzidine < 0.21 0.058 mg/Kg 11/10/17 07:22 11/11/17 01:34 2,4-Dichlorophenol < 0.41 0.41 0.098 mg/Kg 0.070 mg/Kg 11/10/17 07:22 11/11/17 01:34 Diethyl phthalate < 0.21 0.21 2,4-Dimethylphenol < 0.41 0.41 0.16 mg/Kg 11/10/17 07:22 11/11/17 01:34 Dimethyl phthalate < 0.21 0.21 0.054 mg/Kg 11/10/17 07:22 11/11/17 01:34 Di-n-butyl phthalate < 0.21 0.21 0.063 mg/Kg 11/10/17 07:22 11/11/17 01:34 4,6-Dinitro-2-methylphenol 11/10/17 07:22 11/11/17 01:34 < 0.83 0.83 0.33 mg/Kg 2,4-Dinitrophenol < 0.83 0.83 0.73 mg/Kg 11/10/17 07:22 11/11/17 01:34 2,4-Dinitrotoluene < 0.21 0.21 0.066 mg/Kg 11/10/17 07:22 11/11/17 01:34 2,6-Dinitrotoluene <0.21 0.21 0.081 mg/Kg 11/10/17 07:22 11/11/17 01:34 Di-n-octyl phthalate <0.21 0.21 0.067 mg/Kg 11/10/17 07:22 11/11/17 01:34 Fluoranthene 0.041 11/10/17 07:22 11/11/17 01:34 < 0.041 0.0077 mg/Kg Fluorene < 0.041 0.041 0.0058 mg/Kg 11/10/17 07:22 11/11/17 01:34 Hexachlorobenzene < 0.083 0.083 0.0096 11/10/17 07:22 11/11/17 01:34 mg/Kg Hexachlorobutadiene 0.065 11/10/17 07:22 11/11/17 01:34 < 0.21 0.21 mg/Kg Hexachlorocyclopentadiene 0.83 11/10/17 07:22 11/11/17 01:34 < 0.83 0.24 mg/Kg Hexachloroethane 0.063 11/10/17 07:22 11/11/17 01:34 < 0.21 0.21 mg/Kg 0.041 11/10/17 07:22 11/11/17 01:34 Indeno[1,2,3-cd]pyrene < 0.041 0.011 mg/Kg Isophorone < 0.21 0.21 0.046 mg/Kg 11/10/17 07:22 11/11/17 01:34 0.083 11/10/17 07:22 11/11/17 01:34 2-Methylnaphthalene < 0.083 0.0076 mg/Kg 2-Methylphenol < 0.21 0.21 0.066 mg/Kg 11/10/17 07:22 11/11/17 01:34 3 & 4 Methylphenol <0.21 0.21 0.069 11/10/17 07:22 11/11/17 01:34 mg/Kg 0.041 Naphthalene < 0.041 0.0063 mg/Kg 11/10/17 07:22 11/11/17 01:34 2-Nitroaniline < 0.21 0.21 0.056 mg/Kg 11/10/17 07:22 11/11/17 01:34 ₩ 3-Nitroaniline < 0.41 0.41 0.13 mg/Kg 11/10/17 07:22 11/11/17 01:34 4-Nitroaniline < 0.41 0.41 0.17 mg/Kg 11/10/17 07:22 11/11/17 01:34 Nitrobenzene < 0.041 0.041 0.010 mg/Kg 11/10/17 07:22 11/11/17 01:34

TestAmerica Chicago

11/10/17 07:22 11/11/17 01:34

0.41

0.098 mg/Kg

< 0.41

11/15/2017

2

3

5 6

0

9 10

12

13

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/02/17 12:35

Date Received: 11/03/17 08:50

Client Sample ID: 3160-21-6 (0-2.5')

TestAmerica Job ID: 500-136756-1

Lab Sample ID: 500-136756-19

**Matrix: Solid** 

Percent Solids: 79.3

Method: 8270D - Semivola Analyte	_	mpounds Qualifier	(GC/MS) (Co		) Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.83	<u> </u>	0.83	0.39	mg/Kg	<u></u>	11/10/17 07:22	11/11/17 01:34	1
N-Nitrosodi-n-propylamine	<0.083		0.083	0.050	mg/Kg	ф.	11/10/17 07:22	11/11/17 01:34	1
N-Nitrosodiphenylamine	<0.21		0.21	0.049	mg/Kg	☼	11/10/17 07:22	11/11/17 01:34	1
2,2'-oxybis[1-chloropropane]	<0.21		0.21	0.048	mg/Kg	≎	11/10/17 07:22	11/11/17 01:34	1
Pentachlorophenol	<0.83		0.83	0.66	mg/Kg	φ.	11/10/17 07:22	11/11/17 01:34	1
Phenanthrene	<0.041		0.041	0.0058	mg/Kg	☼	11/10/17 07:22	11/11/17 01:34	1
Phenol	<0.21		0.21	0.092	mg/Kg	≎	11/10/17 07:22	11/11/17 01:34	1
Pyrene	<0.041		0.041	0.0082	mg/Kg	φ.	11/10/17 07:22	11/11/17 01:34	1
1,2,4-Trichlorobenzene	<0.21		0.21	0.044	mg/Kg	≎	11/10/17 07:22	11/11/17 01:34	1
2,4,5-Trichlorophenol	<0.41		0.41	0.094	mg/Kg	☼	11/10/17 07:22	11/11/17 01:34	1
2,4,6-Trichlorophenol	<0.41		0.41	0.14	mg/Kg	₩	11/10/17 07:22	11/11/17 01:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	87		44 - 121				11/10/17 07:22	11/11/17 01:34	1
2-Fluorophenol	96		46 - 133				11/10/17 07:22	11/11/17 01:34	1
Nitrobenzene-d5	85		41 - 120				11/10/17 07:22	11/11/17 01:34	1
Phenol-d5	95		46 - 125				11/10/17 07:22	11/11/17 01:34	1
Terphenyl-d14	92		35 - 160				11/10/17 07:22	11/11/17 01:34	1
2,4,6-Tribromophenol	80		25 - 139				11/10/17 07:22	11/11/17 01:34	1

Method: 6010B - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<1.1		1.1		mg/Kg	— <del>-</del>	11/07/17 08:10		1
Arsenic	11		0.54	0.18	mg/Kg	₩	11/07/17 08:10	11/08/17 20:54	1
Barium	74		0.54		mg/Kg	₩	11/07/17 08:10	11/08/17 20:54	1
Beryllium	0.61		0.21	0.050	mg/Kg	₩.	11/07/17 08:10	11/08/17 20:54	1
Cadmium	<0.11		0.11	0.019	mg/Kg	₩	11/07/17 08:10	11/08/17 20:54	1
Chromium	20		0.54	0.27	mg/Kg	₩	11/07/17 08:10	11/08/17 20:54	1
Cobalt	5.9		0.27	0.070	mg/Kg		11/07/17 08:10	11/08/17 20:54	1
Copper	16		0.54	0.15	mg/Kg	₩	11/07/17 08:10	11/08/17 20:54	1
Iron	28000		11		mg/Kg	₩	11/07/17 08:10	11/08/17 20:54	1
Lead	19		0.27	0.12	mg/Kg	₩.	11/07/17 08:10	11/08/17 20:54	1
Manganese	250		0.54	0.078	mg/Kg	₩	11/07/17 08:10	11/08/17 20:54	1
Nickel	14		0.54	0.16	mg/Kg	₩	11/07/17 08:10	11/08/17 20:54	1
Selenium	<0.54		0.54	0.32	mg/Kg		11/07/17 08:10	11/08/17 20:54	1
Silver	<0.27		0.27	0.069	mg/Kg	₩	11/07/17 08:10	11/08/17 20:54	1
Thallium	< 0.54		0.54	0.27	mg/Kg	₩	11/07/17 08:10	11/08/17 20:54	1
Vanadium	35		0.27	0.063	mg/Kg		11/07/17 08:10	11/08/17 20:54	1
Zinc	55		1.1	0.47	mg/Kg	₩	11/07/17 08:10	11/08/17 20:54	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/08/17 08:50	11/08/17 18:09	1
Barium	0.39	J	0.50	0.050	mg/L		11/08/17 08:50	11/08/17 18:09	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/08/17 08:50	11/08/17 18:09	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/08/17 08:50	11/08/17 18:09	1
Chromium	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 18:09	1
Cobalt	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 18:09	1
Copper	0.041		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 18:09	1
Iron	<0.40		0.40	0.20	mg/L		11/08/17 08:50	11/08/17 18:09	1

Page 96 of 195

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Received: 11/03/17 08:50

рН

TestAmerica Job ID: 500-136756-1

3

Client Sample ID: 3160-21-6 (0-2.5')
Date Collected: 11/02/17 12:35

Lab Sample ID: 500-136756-19

Matrix: Solid

Percent Solids: 79.3

11/13/17 02:41

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	<0.0075		0.0075	0.0075	mg/L		11/08/17 08:50	11/08/17 18:09	1
Manganese	0.035		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 18:09	1
Nickel	0.012	J	0.025	0.010	mg/L		11/08/17 08:50	11/08/17 18:09	1
Selenium	< 0.050		0.050	0.020	mg/L		11/08/17 08:50	11/08/17 18:09	1
Silver	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 18:09	1
Vanadium	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 18:09	1
Zinc	0.042	J	0.50	0.020	mg/L		11/08/17 08:50	11/08/17 18:09	1
- Method: 6020A - Metals (	ICP/MS) - TCLP								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060		0.0060	0.0060	mg/L		11/08/17 08:50	11/09/17 16:01	1
Thallium -	<0.0020		0.0020	0.0020	mg/L		11/08/17 08:50	11/09/17 16:01	1
- Method: 7470A - TCLP M	ercury - TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/08/17 13:40	11/09/17 09:59	1
- Method: 7471B - Mercury	(CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.025		0.018	0.0061	mg/Kg	<del>\</del>	11/07/17 13:20	11/08/17 11:22	1
- General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

0.20

5.5

0.20 SU

TestAmerica Job ID: 500-136756-1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Analyte

Acenaphthene

Anthracene

Acenaphthylene

Benzo[a]anthracene

Client Sample ID: 3160-21-5 (0-2.5')

Lab Sample ID: 500-136756-20 Date Collected: 11/02/17 12:45 **Matrix: Solid** Date Received: 11/03/17 08:50 Percent Solids: 78.1

Analyte	Result (	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Acetone	<0.019		0.019	0.0082	mg/Kg	<u>₩</u>	11/03/17 18:20	11/07/17 17:13	1
Benzene	<0.0019		0.0019	0.00048	mg/Kg	₩	11/03/17 18:20	11/07/17 17:13	1
Bromodichloromethane	<0.0019		0.0019	0.00039	mg/Kg	₩	11/03/17 18:20	11/07/17 17:13	1
Bromoform	<0.0019		0.0019	0.00055	mg/Kg	₩	11/03/17 18:20	11/07/17 17:13	1
Bromomethane	<0.0047		0.0047	0.0018	mg/Kg	₩	11/03/17 18:20	11/07/17 17:13	1
2-Butanone (MEK)	<0.0047		0.0047	0.0021		₩	11/03/17 18:20	11/07/17 17:13	1
Carbon disulfide	<0.0047		0.0047	0.00098	mg/Kg	☆	11/03/17 18:20	11/07/17 17:13	1
Carbon tetrachloride	<0.0019		0.0019	0.00055	mg/Kg	₩	11/03/17 18:20	11/07/17 17:13	1
Chlorobenzene	<0.0019		0.0019	0.00070	mg/Kg	☆	11/03/17 18:20	11/07/17 17:13	1
Chloroethane	<0.0047		0.0047	0.0014	mg/Kg	₽	11/03/17 18:20	11/07/17 17:13	1
Chloroform	<0.0019		0.0019	0.00066	mg/Kg	☼	11/03/17 18:20	11/07/17 17:13	1
Chloromethane	<0.0047		0.0047	0.0019	mg/Kg	₩	11/03/17 18:20	11/07/17 17:13	1
cis-1,2-Dichloroethene	<0.0019		0.0019	0.00053	mg/Kg	≎	11/03/17 18:20	11/07/17 17:13	1
cis-1,3-Dichloropropene	<0.0019		0.0019	0.00057	mg/Kg	₩	11/03/17 18:20	11/07/17 17:13	1
Dibromochloromethane	<0.0019		0.0019	0.00062	mg/Kg	≎	11/03/17 18:20	11/07/17 17:13	1
1,1-Dichloroethane	<0.0019		0.0019	0.00065	mg/Kg	₩	11/03/17 18:20	11/07/17 17:13	1
1,2-Dichloroethane	<0.0047		0.0047	0.0015	mg/Kg	☆	11/03/17 18:20	11/07/17 17:13	1
1,1-Dichloroethene	<0.0019		0.0019	0.00065	mg/Kg	☼	11/03/17 18:20	11/07/17 17:13	1
1,2-Dichloropropane	<0.0019		0.0019	0.00049	mg/Kg	☼	11/03/17 18:20	11/07/17 17:13	1
1,3-Dichloropropene, Total	<0.0019		0.0019	0.00066	mg/Kg	☼	11/03/17 18:20	11/07/17 17:13	1
Ethylbenzene	< 0.0019		0.0019	0.00091	mg/Kg	₩	11/03/17 18:20	11/07/17 17:13	1
2-Hexanone	<0.0047		0.0047	0.0015	mg/Kg		11/03/17 18:20	11/07/17 17:13	1
Methylene Chloride	< 0.0047		0.0047	0.0019	mg/Kg	₩	11/03/17 18:20	11/07/17 17:13	1
4-Methyl-2-pentanone (MIBK)	< 0.0047		0.0047	0.0014	mg/Kg	₩	11/03/17 18:20	11/07/17 17:13	1
Methyl tert-butyl ether	<0.0019		0.0019	0.00056	mg/Kg		11/03/17 18:20	11/07/17 17:13	1
Styrene	< 0.0019		0.0019	0.00057	mg/Kg	₩	11/03/17 18:20	11/07/17 17:13	1
1,1,2,2-Tetrachloroethane	<0.0019		0.0019	0.00060	mg/Kg	☼	11/03/17 18:20	11/07/17 17:13	1
Tetrachloroethene	<0.0019		0.0019	0.00064	mg/Kg	\$	11/03/17 18:20	11/07/17 17:13	1
Toluene	< 0.0019		0.0019	0.00048	mg/Kg	₩	11/03/17 18:20	11/07/17 17:13	1
trans-1,2-Dichloroethene	<0.0019		0.0019	0.00084	mg/Kg	☼	11/03/17 18:20	11/07/17 17:13	1
trans-1,3-Dichloropropene	<0.0019		0.0019	0.00066	mg/Kg	\$	11/03/17 18:20	11/07/17 17:13	1
1,1,1-Trichloroethane	<0.0019		0.0019	0.00064	mg/Kg	☼	11/03/17 18:20	11/07/17 17:13	1
1,1,2-Trichloroethane	< 0.0019		0.0019	0.00081	mg/Kg	≎	11/03/17 18:20	11/07/17 17:13	1
Trichloroethene	<0.0019		0.0019	0.00064	mg/Kg	☆	11/03/17 18:20	11/07/17 17:13	1
Vinyl acetate	< 0.0047		0.0047	0.0016	mg/Kg	₽	11/03/17 18:20	11/07/17 17:13	1
Vinyl chloride	< 0.0019		0.0019	0.00084	mg/Kg	₽	11/03/17 18:20	11/07/17 17:13	1
Xylenes, Total	<0.0038		0.0038	0.00061			11/03/17 18:20		1
Surrogate	%Recovery (	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	90		75 - 131				11/03/17 18:20	11/07/17 17:13	1
Dibromofluoromethane	82		75 - 126				11/03/17 18:20	11/07/17 17:13	1
1,2-Dichloroethane-d4 (Surr)	89		70 - 134				11/03/17 18:20	11/07/17 17:13	1
Toluene-d8 (Surr)	96		75 - 124				11/03/17 18:20	11/07/17 17:13	1

TestAmerica Chicago

Analyzed

Prepared

☼ 11/10/17 07:22 11/11/17 01:58

☼ 11/10/17 07:22 11/11/17 01:58

11/10/17 07:22 11/11/17 01:58

Page 98 of 195

RL

0.041

0.041

0.041

0.041

MDL Unit

0.0073 mg/Kg

0.0054 mg/Kg

0.0068 mg/Kg

0.0055 mg/Kg

Result Qualifier

<0.041

<0.041

< 0.041

0.0071 J

11/15/2017

Dil Fac

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/02/17 12:45

Date Received: 11/03/17 08:50

Client Sample ID: 3160-21-5 (0-2.5')

TestAmerica Job ID: 500-136756-1

Lab Sample ID: 500-136756-20

**Matrix: Solid** 

Percent Solids: 78.1

Method: 8270D - Semivolatile (	Organic Compounds	(GC/MS) (Co	ntinued)	
Analyte	Result Qualifier	RL	MDL U	ı
Benzo[a]pyrene	<0.041	0.041	0.0079 m	ıί

Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Benzo[a]pyrene	<0.041	0.041	0.0079	mg/Kg	<u> </u>	11/10/17 07:22	11/11/17 01:58	1
Benzo[b]fluoranthene	<0.041	0.041	0.0088	mg/Kg	₩	11/10/17 07:22	11/11/17 01:58	1
Benzo[g,h,i]perylene	<0.041	0.041	0.013	mg/Kg	₩	11/10/17 07:22	11/11/17 01:58	1
Benzo[k]fluoranthene	<0.041	0.041	0.012	mg/Kg	₩	11/10/17 07:22	11/11/17 01:58	1
Bis(2-chloroethoxy)methane	<0.21	0.21	0.042	mg/Kg	☼	11/10/17 07:22	11/11/17 01:58	1
Bis(2-chloroethyl)ether	<0.21	0.21	0.061	mg/Kg	₽	11/10/17 07:22	11/11/17 01:58	1
Bis(2-ethylhexyl) phthalate	<0.21	0.21	0.075	mg/Kg	₩	11/10/17 07:22	11/11/17 01:58	1
4-Bromophenyl phenyl ether	<0.21	0.21	0.054	mg/Kg	₩	11/10/17 07:22	11/11/17 01:58	1
Butyl benzyl phthalate	<0.21	0.21	0.078	mg/Kg		11/10/17 07:22	11/11/17 01:58	1
Carbazole	<0.21	0.21	0.10	mg/Kg	₩	11/10/17 07:22	11/11/17 01:58	1
4-Chloroaniline	<0.82	0.82	0.19	mg/Kg	₩	11/10/17 07:22	11/11/17 01:58	1
4-Chloro-3-methylphenol	<0.41	0.41	0.14	mg/Kg	φ.	11/10/17 07:22	11/11/17 01:58	1
2-Chloronaphthalene	<0.21	0.21	0.045	mg/Kg	₩	11/10/17 07:22	11/11/17 01:58	1
2-Chlorophenol	<0.21	0.21	0.070	mg/Kg	₩	11/10/17 07:22	11/11/17 01:58	1
4-Chlorophenyl phenyl ether	<0.21	0.21		mg/Kg		11/10/17 07:22	11/11/17 01:58	1
Chrysene	<0.041	0.041		mg/Kg	₩	11/10/17 07:22	11/11/17 01:58	1
Dibenz(a,h)anthracene	<0.041	0.041	0.0079		₩	11/10/17 07:22	11/11/17 01:58	1
Dibenzofuran	<0.21	0.21		mg/Kg		11/10/17 07:22	11/11/17 01:58	1
1,2-Dichlorobenzene	<0.21	0.21		mg/Kg	₩	11/10/17 07:22	11/11/17 01:58	1
1,3-Dichlorobenzene	<0.21	0.21		mg/Kg	₽		11/11/17 01:58	1
1,4-Dichlorobenzene	<0.21	0.21		mg/Kg			11/11/17 01:58	1
3,3'-Dichlorobenzidine	<0.21	0.21		mg/Kg	₽		11/11/17 01:58	1
2,4-Dichlorophenol	<0.41	0.41		mg/Kg	₩		11/11/17 01:58	1
Diethyl phthalate	<0.21	0.21		mg/Kg			11/11/17 01:58	· · · · · · · · 1
2,4-Dimethylphenol	<0.41	0.41		mg/Kg	₩		11/11/17 01:58	1
Dimethyl phthalate	<0.21	0.21		mg/Kg	₩		11/11/17 01:58	1
Di-n-butyl phthalate	<0.21	0.21		mg/Kg			11/11/17 01:58	
4,6-Dinitro-2-methylphenol	<0.82	0.82		mg/Kg	₩		11/11/17 01:58	1
2,4-Dinitrophenol	<0.82	0.82		mg/Kg	₩		11/11/17 01:58	1
2,4-Dinitrotoluene	<0.21	0.21		mg/Kg			11/11/17 01:58	
2,6-Dinitrotoluene	<0.21	0.21		mg/Kg	₽		11/11/17 01:58	1
Di-n-octyl phthalate	<0.21	0.21		mg/Kg	₩		11/11/17 01:58	1
	0.0082 J	0.041	0.0076			11/10/17 07:22		1
Fluoranthene Fluorene	<0.041	0.041	0.0076	0 0	т Ф		11/11/17 01:58	1
Hexachlorobenzene	<0.082	0.041	0.0057		Ϋ́	11/10/17 07:22		1
	<0.21	0.082		mg/Kg	· · · · · · · · · · · · · · · · · · ·	11/10/17 07:22		י 1
Hexachlorobutadiene	<0.82	0.21		mg/Kg	Ϋ́		11/11/17 01:58	1
Hexachlorocyclopentadiene					☆			1
Hexachloroethane	<0.21	0.21		mg/Kg		11/10/17 07:22		۱
Indeno[1,2,3-cd]pyrene	<0.041	0.041		mg/Kg	<b>₽</b>	11/10/17 07:22	11/11/17 01:58	1
Isophorone	<0.21	0.21		mg/Kg	<b>☆</b>			1
2-Methylnaphthalene	0.016 J	0.082	0.0075		<del></del> .		11/11/17 01:58	1
2-Methylphenol	<0.21	0.21		mg/Kg	<b>₽</b>		11/11/17 01:58	1
3 & 4 Methylphenol	<0.21	0.21		mg/Kg	Ţ.		11/11/17 01:58	1
Naphthalene	<0.041	0.041	0.0063				11/11/17 01:58	1 
2-Nitroaniline	<0.21	0.21		mg/Kg	<b>₽</b>		11/11/17 01:58	1
3-Nitroaniline	<0.41	0.41		mg/Kg	<b>₽</b>		11/11/17 01:58	1
4-Nitroaniline	<0.41	0.41		mg/Kg			11/11/17 01:58	
Nitrobenzene	<0.041	0.041		mg/Kg	<b>*</b>		11/11/17 01:58	1
2-Nitrophenol	<0.41	0.41	0.097	mg/Kg	☼	11/10/17 07:22	11/11/17 01:58	1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/02/17 12:45

Date Received: 11/03/17 08:50

Client Sample ID: 3160-21-5 (0-2.5')

TestAmerica Job ID: 500-136756-1

Lab Sample ID: 500-136756-20

Matrix: Solid

Matrix: Solid Percent Solids: 78.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.82		0.82	0.39	mg/Kg	<u> </u>	11/10/17 07:22	11/11/17 01:58	1
N-Nitrosodi-n-propylamine	<0.082		0.082	0.050	mg/Kg	φ.	11/10/17 07:22	11/11/17 01:58	1
N-Nitrosodiphenylamine	<0.21		0.21	0.048	mg/Kg	₩	11/10/17 07:22	11/11/17 01:58	1
2,2'-oxybis[1-chloropropane]	<0.21		0.21	0.047	mg/Kg	₩	11/10/17 07:22	11/11/17 01:58	1
Pentachlorophenol	<0.82		0.82	0.66	mg/Kg	₩	11/10/17 07:22	11/11/17 01:58	1
Phenanthrene	0.021	J	0.041	0.0057	mg/Kg	₩	11/10/17 07:22	11/11/17 01:58	1
Phenol	<0.21		0.21	0.091	mg/Kg	₩	11/10/17 07:22	11/11/17 01:58	1
Pyrene	0.0093	J	0.041	0.0081	mg/Kg		11/10/17 07:22	11/11/17 01:58	1
1,2,4-Trichlorobenzene	<0.21		0.21	0.044	mg/Kg	₩	11/10/17 07:22	11/11/17 01:58	1
2,4,5-Trichlorophenol	<0.41		0.41	0.093	mg/Kg	₩	11/10/17 07:22	11/11/17 01:58	1
2,4,6-Trichlorophenol	<0.41		0.41	0.14	mg/Kg	₽	11/10/17 07:22	11/11/17 01:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl			44 - 121				11/10/17 07:22	11/11/17 01:58	1
2-Fluorophenol	63		46 - 133				11/10/17 07:22	11/11/17 01:58	1
Nitrobenzene-d5	58		41 - 120				11/10/17 07:22	11/11/17 01:58	1
Phenol-d5	64		46 - 125				11/10/17 07:22	11/11/17 01:58	1
Terphenyl-d14	66		35 - 160				11/10/17 07:22	11/11/17 01:58	1
2,4,6-Tribromophenol	46		25 - 139				11/10/17 07:22	11/11/17 01:58	1

Method: 6010B - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<1.1		1.1	0.22	mg/Kg	<u> </u>	11/07/17 08:10	11/08/17 20:57	1
Arsenic	9.5		0.57	0.19	mg/Kg	₩	11/07/17 08:10	11/08/17 20:57	1
Barium	98		0.57	0.065	mg/Kg	☼	11/07/17 08:10	11/08/17 20:57	1
Beryllium	0.73		0.23	0.053	mg/Kg	₩.	11/07/17 08:10	11/08/17 20:57	1
Cadmium	0.18		0.11	0.020	mg/Kg	☼	11/07/17 08:10	11/08/17 20:57	1
Chromium	16		0.57	0.28	mg/Kg	☼	11/07/17 08:10	11/08/17 20:57	1
Cobalt	7.9		0.28	0.075	mg/Kg	₩.	11/07/17 08:10	11/08/17 20:57	1
Copper	15		0.57	0.16	mg/Kg	☼	11/07/17 08:10	11/08/17 20:57	1
Iron	20000		11	5.9	mg/Kg	☼	11/07/17 08:10	11/08/17 20:57	1
Lead	60		0.28	0.13	mg/Kg	₩	11/07/17 08:10	11/08/17 20:57	1
Manganese	440		0.57	0.083	mg/Kg	☼	11/07/17 08:10	11/08/17 20:57	1
Nickel	15		0.57	0.17	mg/Kg	☼	11/07/17 08:10	11/08/17 20:57	1
Selenium	0.40	J	0.57	0.33	mg/Kg	₩	11/07/17 08:10	11/08/17 20:57	1
Silver	<0.28		0.28	0.073	mg/Kg	☼	11/07/17 08:10	11/08/17 20:57	1
Thallium	<0.57		0.57	0.28	mg/Kg	₩	11/07/17 08:10	11/08/17 20:57	1
Vanadium	27		0.28	0.067	mg/Kg	₩.	11/07/17 08:10	11/08/17 20:57	1
Zinc	66		1.1	0.50	mg/Kg	☼	11/07/17 08:10	11/08/17 20:57	1

Method: 6010B - Meta Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/08/17 08:50	11/08/17 18:13	1
Barium	0.34	J	0.50	0.050	mg/L		11/08/17 08:50	11/08/17 18:13	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/08/17 08:50	11/08/17 18:13	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/08/17 08:50	11/08/17 18:13	1
Chromium	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 18:13	1
Cobalt	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 18:13	1
Copper	0.019	J	0.025	0.010	mg/L		11/08/17 08:50	11/08/17 18:13	1
Iron	0.87		0.40	0.20	mg/L		11/08/17 08:50	11/08/17 18:13	1

TestAmerica Chicago

Page 100 of 195

2

4

6

8

10

12

13

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Received: 11/03/17 08:50

рН

TestAmerica Job ID: 500-136756-1

Client Sample ID: 3160-21-5 (0-2.5') Lab Sample ID: 500-136756-20 Date Collected: 11/02/17 12:45

**Matrix: Solid** 

11/13/17 03:14

Percent Solids: 78.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	<0.0075		0.0075	0.0075	mg/L		11/08/17 08:50	11/08/17 18:13	1
Manganese	0.027		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 18:13	1
Nickel	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 18:13	1
Selenium	<0.050		0.050	0.020	mg/L		11/08/17 08:50	11/08/17 18:13	1
Silver	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 18:13	1
Vanadium	<0.025		0.025	0.010	mg/L		11/08/17 08:50	11/08/17 18:13	1
Zinc	0.046	J	0.50	0.020	mg/L		11/08/17 08:50	11/08/17 18:13	1
Method: 6020A - Metal	Is (ICP/MS) - TCLP								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060		0.0060	0.0060	mg/L		11/08/17 08:50	11/09/17 16:05	1
Thallium	<0.0020		0.0020	0.0020	mg/L		11/08/17 08:50	11/09/17 16:05	1
Method: 7470A - TCLP	Mercury - TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/08/17 13:40	11/09/17 10:01	1
- Method: 7471B - Merci	ury (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.034		0.021	0.0070	mg/Kg	<del>-</del> <del>\$</del>	11/07/17 13:20	11/08/17 11:24	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

0.20

7.8

0.20 SU

2

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-21-4 (0-2.5')

Date Collected: 11/02/17 12:55 Date Received: 11/03/17 08:50 Lab Sample ID: 500-136756-21

Matrix: Solid Percent Solids: 74.4

Method: 8260B - Volatile O Analyte	Result Qu		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	0.023	0.020	0.0088	mg/Kg	₩	11/03/17 18:20	11/07/17 17:38	1
Benzene	<0.0020	0.0020	0.00051	mg/Kg	₩	11/03/17 18:20	11/07/17 17:38	1
Bromodichloromethane	<0.0020	0.0020	0.00041	mg/Kg	₩	11/03/17 18:20	11/07/17 17:38	1
Bromoform	<0.0020	0.0020	0.00059	mg/Kg	₽	11/03/17 18:20	11/07/17 17:38	1
Bromomethane	<0.0050	0.0050	0.0019	mg/Kg	₩	11/03/17 18:20	11/07/17 17:38	1
2-Butanone (MEK)	<0.0050	0.0050	0.0022	mg/Kg	₩	11/03/17 18:20	11/07/17 17:38	1
Carbon disulfide	<0.0050	0.0050	0.0010	mg/Kg	₽	11/03/17 18:20	11/07/17 17:38	1
Carbon tetrachloride	<0.0020	0.0020	0.00058	mg/Kg	₩	11/03/17 18:20	11/07/17 17:38	1
Chlorobenzene	<0.0020	0.0020	0.00074	mg/Kg	₩	11/03/17 18:20	11/07/17 17:38	1
Chloroethane	<0.0050	0.0050	0.0015	mg/Kg	₩.	11/03/17 18:20	11/07/17 17:38	1
Chloroform	<0.0020	0.0020	0.00070	mg/Kg	₩	11/03/17 18:20	11/07/17 17:38	1
Chloromethane	< 0.0050	0.0050	0.0020	mg/Kg	₩	11/03/17 18:20	11/07/17 17:38	1
cis-1,2-Dichloroethene	<0.0020	0.0020	0.00056	mg/Kg	₩.	11/03/17 18:20	11/07/17 17:38	1
cis-1,3-Dichloropropene	<0.0020	0.0020	0.00061	mg/Kg	₩	11/03/17 18:20	11/07/17 17:38	1
Dibromochloromethane	<0.0020	0.0020	0.00066	mg/Kg	₩	11/03/17 18:20	11/07/17 17:38	1
1,1-Dichloroethane	<0.0020	0.0020	0.00069	mg/Kg	₽	11/03/17 18:20	11/07/17 17:38	1
1,2-Dichloroethane	< 0.0050	0.0050	0.0016	mg/Kg	☼	11/03/17 18:20	11/07/17 17:38	1
1,1-Dichloroethene	<0.0020	0.0020	0.00069	mg/Kg	₩	11/03/17 18:20	11/07/17 17:38	1
1,2-Dichloropropane	<0.0020	0.0020	0.00052	mg/Kg		11/03/17 18:20	11/07/17 17:38	1
1,3-Dichloropropene, Total	<0.0020	0.0020	0.00071	mg/Kg	☼	11/03/17 18:20	11/07/17 17:38	1
Ethylbenzene	<0.0020	0.0020	0.00097	mg/Kg	₩	11/03/17 18:20	11/07/17 17:38	1
2-Hexanone	<0.0050	0.0050	0.0016	mg/Kg		11/03/17 18:20	11/07/17 17:38	1
Methylene Chloride	< 0.0050	0.0050	0.0020	mg/Kg	₩	11/03/17 18:20	11/07/17 17:38	1
4-Methyl-2-pentanone (MIBK)	< 0.0050	0.0050	0.0015	mg/Kg	₩	11/03/17 18:20	11/07/17 17:38	1
Methyl tert-butyl ether	<0.0020	0.0020	0.00059	mg/Kg		11/03/17 18:20	11/07/17 17:38	1
Styrene	<0.0020	0.0020	0.00061	mg/Kg	₩	11/03/17 18:20	11/07/17 17:38	1
1,1,2,2-Tetrachloroethane	<0.0020	0.0020	0.00064	mg/Kg	☼	11/03/17 18:20	11/07/17 17:38	1
Tetrachloroethene	<0.0020	0.0020	0.00069	mg/Kg	\$	11/03/17 18:20	11/07/17 17:38	1
Toluene	<0.0020	0.0020	0.00051	mg/Kg	≎	11/03/17 18:20	11/07/17 17:38	1
trans-1,2-Dichloroethene	<0.0020	0.0020	0.00089	mg/Kg	≎	11/03/17 18:20	11/07/17 17:38	1
trans-1,3-Dichloropropene	<0.0020	0.0020	0.00071	mg/Kg	₩.	11/03/17 18:20	11/07/17 17:38	1
1,1,1-Trichloroethane	<0.0020	0.0020	0.00068	mg/Kg	₩	11/03/17 18:20	11/07/17 17:38	1
1,1,2-Trichloroethane	<0.0020	0.0020	0.00087	mg/Kg	☼	11/03/17 18:20	11/07/17 17:38	1
Trichloroethene	<0.0020	0.0020	0.00068	mg/Kg	φ.	11/03/17 18:20	11/07/17 17:38	1
Vinyl acetate	< 0.0050	0.0050	0.0018	mg/Kg	₩	11/03/17 18:20	11/07/17 17:38	1
Vinyl chloride	<0.0020	0.0020	0.00089	mg/Kg	₩	11/03/17 18:20	11/07/17 17:38	1
Xylenes, Total	<0.0040	0.0040	0.00065	mg/Kg	φ.	11/03/17 18:20	11/07/17 17:38	1
Surrogate	%Recovery Qu	ualifier Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	85	75 - 131				11/03/17 18:20	11/07/17 17:38	1
Dibromofluoromethane	105	75 - 126				11/03/17 18:20	11/07/17 17:38	1
1,2-Dichloroethane-d4 (Surr)	104	70 - 134				11/03/17 18:20	11/07/17 17:38	1
Toluene-d8 (Surr)	96	75 - 124				11/03/17 18:20	11/07/17 17:38	1

Method: 8270D - Semivolatile Organic Compounds (GC/MS)										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Acenaphthene	<0.044		0.044	0.0080	mg/Kg	₩	11/09/17 17:53	11/13/17 16:32	1
	Acenaphthylene	<0.044		0.044	0.0058	mg/Kg	₩	11/09/17 17:53	11/13/17 16:32	1
	Anthracene	0.013	J	0.044	0.0074	mg/Kg	≎	11/09/17 17:53	11/13/17 16:32	1
	Benzo[a]anthracene	0.037	J	0.044	0.0060	mg/Kg	₩.	11/09/17 17:53	11/13/17 16:32	1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/02/17 12:55

Date Received: 11/03/17 08:50

Client Sample ID: 3160-21-4 (0-2.5')

TestAmerica Job ID: 500-136756-1

Lab Sample ID: 500-136756-21

. Matrix: Solid

Percent Solids: 74.4

Method: 8270D - Semivolatile Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Benzo[a]pyrene	0.051		0.044	0.0086	mg/Kg	<u>₩</u>	11/09/17 17:53		
Benzo[b]fluoranthene	0.074		0.044	0.0096	mg/Kg	₩	11/09/17 17:53	11/13/17 16:32	
Benzo[g,h,i]perylene	0.040		0.044	0.014	mg/Kg		11/09/17 17:53	11/13/17 16:32	• • • • • • • •
Benzo[k]fluoranthene	0.030	J	0.044	0.013	mg/Kg	₩	11/09/17 17:53	11/13/17 16:32	
Bis(2-chloroethoxy)methane	<0.22		0.22	0.045	mg/Kg	₩	11/09/17 17:53	11/13/17 16:32	
Bis(2-chloroethyl)ether	<0.22		0.22	0.066	mg/Kg		11/09/17 17:53	11/13/17 16:32	
Bis(2-ethylhexyl) phthalate	<0.22		0.22	0.081		₩	11/09/17 17:53	11/13/17 16:32	
4-Bromophenyl phenyl ether	<0.22		0.22	0.058	mg/Kg	₩	11/09/17 17:53	11/13/17 16:32	
Butyl benzyl phthalate	<0.22		0.22	0.084	mg/Kg		11/09/17 17:53	11/13/17 16:32	
Carbazole	<0.22		0.22		mg/Kg	₩	11/09/17 17:53	11/13/17 16:32	
4-Chloroaniline	<0.89		0.89	0.21		₩	11/09/17 17:53	11/13/17 16:32	
4-Chloro-3-methylphenol	<0.44		0.44	0.15	mg/Kg	ф	11/09/17 17:53	11/13/17 16:32	
2-Chloronaphthalene	<0.22		0.22		mg/Kg	₩	11/09/17 17:53	11/13/17 16:32	
2-Chlorophenol	<0.22		0.22		mg/Kg	₩		11/13/17 16:32	
4-Chlorophenyl phenyl ether	<0.22		0.22		mg/Kg			11/13/17 16:32	
Chrysene	0.058		0.044		mg/Kg	₽		11/13/17 16:32	
Dibenz(a,h)anthracene	<0.044		0.044	0.0086	0 0	₽		11/13/17 16:32	
Dibenzofuran	<0.22		0.22		mg/Kg	ф		11/13/17 16:32	
1,2-Dichlorobenzene	<0.22		0.22		mg/Kg	₩		11/13/17 16:32	
1,3-Dichlorobenzene	<0.22		0.22		mg/Kg	₩		11/13/17 16:32	
1,4-Dichlorobenzene	<0.22		0.22		mg/Kg			11/13/17 16:32	,
3.3'-Dichlorobenzidine	<0.22		0.22		mg/Kg	₩		11/13/17 16:32	
2,4-Dichlorophenol	<0.44		0.44		mg/Kg	₩		11/13/17 16:32	
Diethyl phthalate	<0.22		0.22		mg/Kg			11/13/17 16:32	
2,4-Dimethylphenol	<0.44		0.44		mg/Kg	₩		11/13/17 16:32	
Dimethyl phthalate	<0.22		0.22		mg/Kg	₩		11/13/17 16:32	
Di-n-butyl phthalate	<0.22		0.22		mg/Kg			11/13/17 16:32	
4,6-Dinitro-2-methylphenol	<0.89		0.89		mg/Kg	₩		11/13/17 16:32	
2,4-Dinitrophenol	<0.89		0.89		mg/Kg	₩		11/13/17 16:32	
2,4-Dinitrotoluene	<0.22		0.22		mg/Kg			11/13/17 16:32	
2,6-Dinitrotoluene	<0.22		0.22		mg/Kg	₩		11/13/17 16:32	,
Di-n-octyl phthalate	<0.22		0.22		mg/Kg	₩.		11/13/17 16:32	,
			0.22	0.072				11/13/17 10:32	
<b>Fluoranthene</b> Fluorene	<b>0.082</b> < 0.044		0.044	0.0062	0 0	☼		11/13/17 16:32	
Hexachlorobenzene	<0.044		0.044		mg/Kg		11/09/17 17:53		
Hexachlorobutadiene						· · · · · · · · · · · · · · · · · · ·			
	<0.22 <0.89		0.22 0.89		mg/Kg	≎		11/13/17 16:32 11/13/17 16:32	,
Hexachlorocyclopentadiene			0.69		mg/Kg mg/Kg	₽			,
Hexachloroethane	<0.22					·····›››		11/13/17 16:32	
Indeno[1,2,3-cd]pyrene	0.025	J	0.044		mg/Kg	*		11/13/17 16:32	•
Isophorone	<0.22		0.22		mg/Kg	<b>☆</b>		11/13/17 16:32	,
2-Methylnaphthalene	0.044	J	0.089	0.0081		<del></del>		11/13/17 16:32	
2-Methylphenol	<0.22		0.22		mg/Kg	Ď n		11/13/17 16:32	,
3 & 4 Methylphenol	<0.22		0.22		mg/Kg	Ď n		11/13/17 16:32	,
Naphthalene	0.023	J	0.044	0.0068		<del>X</del> .		11/13/17 16:32	
2-Nitroaniline	<0.22		0.22		mg/Kg	₩		11/13/17 16:32	
3-Nitroaniline	<0.44		0.44		mg/Kg	<b>☆</b>		11/13/17 16:32	
4-Nitroaniline Nitrobenzene	<0.44 <0.044		0.44		mg/Kg mg/Kg	ф ф		11/13/17 16:32 11/13/17 16:32	
									•

TestAmerica Chicago

2

5

7

9

11

13

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/02/17 12:55

Date Received: 11/03/17 08:50

Client Sample ID: 3160-21-4 (0-2.5')

TestAmerica Job ID: 500-136756-1

Lab Sample ID: 500-136756-21

**Matrix: Solid** Percent Solids: 74.4

Method: 8270D - Semivolatile	<b>Organic Co</b>	mpounds	(GC/MS) (C	ontinued)	
Analyte	Result	Qualifier	RL	MDL	U
4 Mitaanhanal	-0.00		0.00	0.40	

Analyte	Result Qualifier	ŔĹ	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.89	0.89	0.42	mg/Kg	<u> </u>	11/09/17 17:53	11/13/17 16:32	1
N-Nitrosodi-n-propylamine	<0.089	0.089	0.054	mg/Kg		11/09/17 17:53	11/13/17 16:32	1
N-Nitrosodiphenylamine	<0.22	0.22	0.052	mg/Kg	☼	11/09/17 17:53	11/13/17 16:32	1
2,2'-oxybis[1-chloropropane]	<0.22	0.22	0.051	mg/Kg	☼	11/09/17 17:53	11/13/17 16:32	1
Pentachlorophenol	<0.89	0.89	0.71	mg/Kg	₽	11/09/17 17:53	11/13/17 16:32	1
Phenanthrene	0.083	0.044	0.0062	mg/Kg	₩	11/09/17 17:53	11/13/17 16:32	1
Phenol	<0.22	0.22	0.098	mg/Kg	☼	11/09/17 17:53	11/13/17 16:32	1
Pyrene	0.075	0.044	0.0088	mg/Kg	₽	11/09/17 17:53	11/13/17 16:32	1
1,2,4-Trichlorobenzene	<0.22	0.22	0.048	mg/Kg	☼	11/09/17 17:53	11/13/17 16:32	1
2,4,5-Trichlorophenol	<0.44	0.44	0.10	mg/Kg	☼	11/09/17 17:53	11/13/17 16:32	1
2,4,6-Trichlorophenol	<0.44	0.44	0.15	mg/Kg	₩	11/09/17 17:53	11/13/17 16:32	1

Surrogate	%Recovery	Qualifier Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	73	44 - 121	11/09/17 17:53	11/13/17 16:32	1
2-Fluorophenol	73	46 - 133	11/09/17 17:53	11/13/17 16:32	1
Nitrobenzene-d5	67	41 - 120	11/09/17 17:53	11/13/17 16:32	1
Phenol-d5	70	46 - 125	11/09/17 17:53	11/13/17 16:32	1
Terphenyl-d14	89	35 - 160	11/09/17 17:53	11/13/17 16:32	1
2,4,6-Tribromophenol	71	25 - 139	11/09/17 17:53	11/13/17 16:32	1

Me	ethod:	6010B	- Metals	(ICP)
-				

Analyte	,	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.49	J F1	1.3	0.25	mg/Kg	<u> </u>	11/08/17 07:33	11/09/17 02:58	1
Arsenic	7.6		0.63	0.22	mg/Kg	₩	11/08/17 07:33	11/09/17 02:58	1
Barium	88		0.63	0.072	mg/Kg	☼	11/08/17 07:33	11/09/17 02:58	1
Beryllium	0.47		0.25	0.059	mg/Kg	₩.	11/08/17 07:33	11/09/17 02:58	1
Cadmium	0.25	В	0.13	0.023	mg/Kg	₩	11/08/17 07:33	11/09/17 02:58	1
Chromium	16		0.63	0.31	mg/Kg	₩	11/08/17 07:33	11/09/17 02:58	1
Cobalt	6.0		0.32	0.083	mg/Kg	₩.	11/08/17 07:33	11/09/17 02:58	1
Copper	21		0.63	0.18	mg/Kg	₩	11/08/17 07:33	11/09/17 02:58	1
Iron	18000		13	6.6	mg/Kg	₩	11/08/17 07:33	11/09/17 02:58	1
Lead	30		0.32	0.15	mg/Kg	₩.	11/08/17 07:33	11/09/17 02:58	1
Manganese	220	F2	0.63	0.092	mg/Kg	₩	11/08/17 07:33	11/09/17 02:58	1
Nickel	14		0.63	0.18	mg/Kg	₩	11/08/17 07:33	11/09/17 02:58	1
Selenium	<0.63	F1	0.63	0.37	mg/Kg	₩.	11/08/17 07:33	11/09/17 02:58	1
Silver	<0.32		0.32	0.082	mg/Kg	₩	11/08/17 07:33	11/09/17 02:58	1
Thallium	<0.63		0.63	0.32	mg/Kg	₩	11/08/17 07:33	11/09/17 02:58	1
Vanadium	27		0.32	0.075	mg/Kg	₩.	11/08/17 07:33	11/09/17 02:58	1
Zinc	97	F1	1.3	0.56	mg/Kg	≎	11/08/17 07:33	11/09/17 02:58	1

Method: 6010B - Metals	(ICP	) - TCLP
------------------------	------	----------

motifical college motale (for )									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/08/17 09:26	11/08/17 18:38	1
Barium	0.49	J	0.50	0.050	mg/L		11/08/17 09:26	11/08/17 18:38	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/08/17 09:26	11/08/17 18:38	1
Cadmium	0.0026	J	0.0050	0.0020	mg/L		11/08/17 09:26	11/08/17 18:38	1
Chromium	<0.025		0.025	0.010	mg/L		11/08/17 09:26	11/08/17 18:38	1
Cobalt	<0.025		0.025	0.010	mg/L		11/08/17 09:26	11/08/17 18:38	1
Copper	<0.025		0.025	0.010	mg/L		11/08/17 09:26	11/08/17 18:38	1
Iron	<0.40		0.40	0.20	mg/L		11/08/17 09:26	11/08/17 18:38	1

Page 104 of 195

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/02/17 12:55

Date Received: 11/03/17 08:50

рН

Client Sample ID: 3160-21-4 (0-2.5')

TestAmerica Job ID: 500-136756-1

3

Lab Sample ID: 500-136756-21

Matrix: Solid

Percent Solids: 74.4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	<0.0075		0.0075	0.0075	mg/L		11/08/17 09:26	11/08/17 18:38	1
Manganese	0.29		0.025	0.010	mg/L		11/08/17 09:26	11/08/17 18:38	1
Nickel	<0.025		0.025	0.010	mg/L		11/08/17 09:26	11/08/17 18:38	1
Selenium	<0.050		0.050	0.020	mg/L		11/08/17 09:26	11/08/17 18:38	1
Silver	<0.025		0.025	0.010	mg/L		11/08/17 09:26	11/08/17 18:38	1
Vanadium	<0.025		0.025	0.010	mg/L		11/08/17 09:26	11/08/17 18:38	1
Zinc	0.084	J	0.50	0.020	mg/L		11/08/17 09:26	11/08/17 18:38	1
- Method: 6010B - Metal	s (ICP) - SPLP Eas	t							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Manganese	0.056		0.025	0.010	mg/L		11/10/17 14:43	11/11/17 18:28	1
- Method: 6020A - Metal	s (ICP/MS) - TCLP								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060		0.0060	0.0060	mg/L		11/08/17 09:26	11/09/17 16:25	1
Thallium	<0.0020		0.0020	0.0020	mg/L		11/08/17 09:26	11/09/17 16:25	1
Method: 7470A - TCLP	Mercury - TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/08/17 13:40	11/09/17 07:41	1
Method: 7471B - Merci	ury (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.019	J	0.020	0.0067	mg/Kg	<del></del>	11/07/17 13:20	11/08/17 11:31	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

0.20

8.0

0.20 SU

11/13/17 03:48

TestAmerica Job ID: 500-136756-1

Client Sample ID: 3160-21-3 (0-2.5')

Date Collected: 11/02/17 13:15 Date Received: 11/03/17 08:50

Toluene-d8 (Surr)

**Lab Sample ID: 500-136756-22** 

**Matrix: Solid** Percent Solids: 84.2

Analyte	rganic Compοι Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	<0.019		0.019	0.0081	mg/Kg	<u>₩</u>	11/03/17 18:20	11/07/17 18:03	1
Benzene	<0.0019		0.0019	0.00047	mg/Kg	₩	11/03/17 18:20	11/07/17 18:03	1
Bromodichloromethane	<0.0019		0.0019	0.00038	mg/Kg	₩	11/03/17 18:20	11/07/17 18:03	1
Bromoform	<0.0019		0.0019	0.00054	mg/Kg		11/03/17 18:20	11/07/17 18:03	1
Bromomethane	<0.0046		0.0046	0.0018	mg/Kg	☼	11/03/17 18:20	11/07/17 18:03	1
2-Butanone (MEK)	<0.0046		0.0046	0.0021	mg/Kg	☼	11/03/17 18:20	11/07/17 18:03	1
Carbon disulfide	<0.0046		0.0046	0.00096	mg/Kg		11/03/17 18:20	11/07/17 18:03	1
Carbon tetrachloride	<0.0019		0.0019	0.00054	mg/Kg	☼	11/03/17 18:20	11/07/17 18:03	1
Chlorobenzene	<0.0019		0.0019	0.00068	mg/Kg	☼	11/03/17 18:20	11/07/17 18:03	1
Chloroethane	<0.0046		0.0046	0.0014	mg/Kg		11/03/17 18:20	11/07/17 18:03	1
Chloroform	<0.0019		0.0019	0.00064	mg/Kg	☼	11/03/17 18:20	11/07/17 18:03	1
Chloromethane	<0.0046		0.0046	0.0019	mg/Kg	☼	11/03/17 18:20	11/07/17 18:03	1
cis-1,2-Dichloroethene	<0.0019		0.0019	0.00052	mg/Kg		11/03/17 18:20	11/07/17 18:03	1
cis-1,3-Dichloropropene	<0.0019		0.0019	0.00056	mg/Kg	☼	11/03/17 18:20	11/07/17 18:03	1
Dibromochloromethane	<0.0019		0.0019	0.00061	mg/Kg	₩	11/03/17 18:20	11/07/17 18:03	1
1,1-Dichloroethane	<0.0019		0.0019	0.00064	mg/Kg		11/03/17 18:20	11/07/17 18:03	1
1,2-Dichloroethane	<0.0046		0.0046	0.0014	mg/Kg	₩	11/03/17 18:20	11/07/17 18:03	1
1,1-Dichloroethene	<0.0019		0.0019	0.00064	mg/Kg	☼	11/03/17 18:20	11/07/17 18:03	1
1,2-Dichloropropane	<0.0019		0.0019	0.00048	mg/Kg		11/03/17 18:20	11/07/17 18:03	1
1,3-Dichloropropene, Total	< 0.0019		0.0019	0.00065	mg/Kg	☼	11/03/17 18:20	11/07/17 18:03	1
Ethylbenzene	< 0.0019		0.0019	0.00089	mg/Kg	☼	11/03/17 18:20	11/07/17 18:03	1
2-Hexanone	<0.0046		0.0046	0.0014	mg/Kg		11/03/17 18:20	11/07/17 18:03	1
Methylene Chloride	<0.0046		0.0046	0.0018	mg/Kg	☼	11/03/17 18:20	11/07/17 18:03	1
4-Methyl-2-pentanone (MIBK)	<0.0046		0.0046	0.0014	mg/Kg	₩	11/03/17 18:20	11/07/17 18:03	1
Methyl tert-butyl ether	<0.0019		0.0019	0.00054	mg/Kg		11/03/17 18:20	11/07/17 18:03	1
Styrene	< 0.0019		0.0019	0.00056	mg/Kg	☼	11/03/17 18:20	11/07/17 18:03	1
1,1,2,2-Tetrachloroethane	< 0.0019		0.0019	0.00059	mg/Kg	₩	11/03/17 18:20	11/07/17 18:03	1
Tetrachloroethene	<0.0019		0.0019	0.00063	mg/Kg		11/03/17 18:20	11/07/17 18:03	1
Toluene	< 0.0019		0.0019	0.00047	mg/Kg	☼	11/03/17 18:20	11/07/17 18:03	1
trans-1,2-Dichloroethene	< 0.0019		0.0019	0.00082	mg/Kg	☼	11/03/17 18:20	11/07/17 18:03	1
trans-1,3-Dichloropropene	<0.0019		0.0019	0.00065	mg/Kg		11/03/17 18:20	11/07/17 18:03	1
1,1,1-Trichloroethane	< 0.0019		0.0019	0.00062	mg/Kg	₩	11/03/17 18:20	11/07/17 18:03	1
1,1,2-Trichloroethane	< 0.0019		0.0019	0.00080	mg/Kg	₩	11/03/17 18:20	11/07/17 18:03	1
Trichloroethene	<0.0019		0.0019	0.00063	mg/Kg	ф.	11/03/17 18:20	11/07/17 18:03	1
Vinyl acetate	<0.0046		0.0046	0.0016		₩	11/03/17 18:20	11/07/17 18:03	1
Vinyl chloride	<0.0019		0.0019	0.00082	mg/Kg	₩	11/03/17 18:20	11/07/17 18:03	1
Xylenes, Total	<0.0037		0.0037	0.00059		φ.	11/03/17 18:20	11/07/17 18:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	88		75 - 131				11/03/17 18:20	11/07/17 18:03	1
Dibromofluoromethane	108		75 - 126				11/03/17 18:20	11/07/17 18:03	1
1,2-Dichloroethane-d4 (Surr)	110		70 - 134				11/03/17 18:20	11/07/17 18:03	1

Method: 8270D - Semivolatile Organic Compounds (GC/MS)										
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Acenaphthene	<0.037	0.037	0.0068	mg/Kg	☆	11/09/17 17:53	11/10/17 16:10	1		
Acenaphthylene	<0.037	0.037	0.0050	mg/Kg	≎	11/09/17 17:53	11/10/17 16:10	1		
Anthracene	<0.037	0.037	0.0063	mg/Kg	≎	11/09/17 17:53	11/10/17 16:10	1		
Benzo[a]anthracene	<0.037	0.037	0.0051	mg/Kg	₽	11/09/17 17:53	11/10/17 16:10	1		

75 - 124

95

TestAmerica Chicago

11/03/17 18:20 11/07/17 18:03

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/02/17 13:15

Client Sample ID: 3160-21-3 (0-2.5')

TestAmerica Job ID: 500-136756-1

Lab Sample ID: 500-136756-22

**Matrix: Solid** 

Method: 8270D - Semivolatil	e Organic Co	mpounds (	GC/MS) (Cd	ontinued	)				
Analyte	•	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]pyrene	0.015	J	0.037	0.0073	mg/Kg	₩	11/09/17 17:53	11/10/17 16:10	1
Benzo[b]fluoranthene	<0.037		0.037	0.0081	mg/Kg	₩	11/09/17 17:53	11/10/17 16:10	1
Benzo[g,h,i]perylene	<0.037		0.037	0.012	mg/Kg	₩	11/09/17 17:53	11/10/17 16:10	1
Benzo[k]fluoranthene	<0.037		0.037	0.011	mg/Kg	₩	11/09/17 17:53	11/10/17 16:10	1
Bis(2-chloroethoxy)methane	<0.19		0.19	0.038	mg/Kg	₩	11/09/17 17:53	11/10/17 16:10	1
Bis(2-chloroethyl)ether	<0.19		0.19	0.057	mg/Kg	₽	11/09/17 17:53	11/10/17 16:10	1
Bis(2-ethylhexyl) phthalate	<0.19		0.19	0.069	mg/Kg	₩	11/09/17 17:53	11/10/17 16:10	1
4-Bromophenyl phenyl ether	<0.19		0.19	0.050	mg/Kg	₩	11/09/17 17:53	11/10/17 16:10	1
Butyl benzyl phthalate	<0.19		0.19	0.072	mg/Kg	₩	11/09/17 17:53	11/10/17 16:10	1
Carbazole	<0.19		0.19	0.094	mg/Kg	₩	11/09/17 17:53	11/10/17 16:10	1
4-Chloroaniline	<0.76		0.76	0.18	mg/Kg	₩	11/09/17 17:53	11/10/17 16:10	1
4-Chloro-3-methylphenol	<0.37		0.37	0.13	mg/Kg	₽	11/09/17 17:53	11/10/17 16:10	1
2-Chloronaphthalene	<0.19		0.19	0.042	mg/Kg	₩	11/09/17 17:53	11/10/17 16:10	1
2-Chlorophenol	<0.19		0.19	0.064	mg/Kg	☼	11/09/17 17:53	11/10/17 16:10	1
4-Chlorophenyl phenyl ether	<0.19		0.19	0.044	mg/Kg	φ.	11/09/17 17:53	11/10/17 16:10	1
Chrysene	< 0.037		0.037	0.010	mg/Kg	₩	11/09/17 17:53	11/10/17 16:10	1
Dibenz(a,h)anthracene	< 0.037		0.037	0.0073	mg/Kg	₩	11/09/17 17:53	11/10/17 16:10	1
Dibenzofuran	<0.19		0.19	0.044	mg/Kg		11/09/17 17:53	11/10/17 16:10	1
1,2-Dichlorobenzene	<0.19		0.19	0.045	mg/Kg	₩	11/09/17 17:53	11/10/17 16:10	1
1,3-Dichlorobenzene	<0.19		0.19	0.042	mg/Kg	≎	11/09/17 17:53	11/10/17 16:10	1
1,4-Dichlorobenzene	<0.19		0.19	0.048	mg/Kg		11/09/17 17:53	11/10/17 16:10	1
3,3'-Dichlorobenzidine	<0.19		0.19	0.053	mg/Kg	₩	11/09/17 17:53	11/10/17 16:10	1
2,4-Dichlorophenol	<0.37		0.37	0.090	mg/Kg	₩	11/09/17 17:53	11/10/17 16:10	1
Diethyl phthalate	<0.19		0.19	0.064	mg/Kg		11/09/17 17:53	11/10/17 16:10	1
2,4-Dimethylphenol	<0.37		0.37		mg/Kg	₩	11/09/17 17:53	11/10/17 16:10	1
Dimethyl phthalate	<0.19		0.19	0.049	mg/Kg	₩	11/09/17 17:53	11/10/17 16:10	1
Di-n-butyl phthalate	<0.19		0.19	0.057	mg/Kg	<del>-</del>	11/09/17 17:53	11/10/17 16:10	1
4,6-Dinitro-2-methylphenol	<0.76		0.76	0.30		☼		11/10/17 16:10	1
2,4-Dinitrophenol	<0.76		0.76	0.66		₩	11/09/17 17:53	11/10/17 16:10	1
2,4-Dinitrotoluene	<0.19		0.19	0.060				11/10/17 16:10	1
2,6-Dinitrotoluene	<0.19		0.19		0 0	₩	11/09/17 17:53	11/10/17 16:10	1
Di-n-octyl phthalate	<0.19		0.19		mg/Kg	₩		11/10/17 16:10	1
Fluoranthene	<0.037		0.037			<del></del> -	11/09/17 17:53	11/10/17 16:10	1
Fluorene	<0.037		0.037	0.0053	5 5	≎		11/10/17 16:10	1
Hexachlorobenzene	<0.076		0.076	0.0087		≎		11/10/17 16:10	1
Hexachlorobutadiene	<0.19		0.19		mg/Kg			11/10/17 16:10	
Hexachlorocyclopentadiene	<0.76		0.76		mg/Kg	₩		11/10/17 16:10	1
Hexachloroethane	<0.19		0.19		mg/Kg	₩		11/10/17 16:10	1
Indeno[1,2,3-cd]pyrene	<0.037		0.037	0.0098				11/10/17 16:10	1
Isophorone	<0.19		0.19		mg/Kg	₩		11/10/17 16:10	1
2-Methylnaphthalene	<0.076		0.076	0.0069		₩		11/10/17 16:10	1
2-Methylphenol	<0.19		0.19		mg/Kg			11/10/17 16:10	1
3 & 4 Methylphenol	<0.19		0.19		mg/Kg	₽		11/10/17 16:10	1
Naphthalene	<0.037		0.13	0.0058		₽		11/10/17 16:10	1
2-Nitroaniline	<0.19		0.037		mg/Kg			11/10/17 16:10	 1
3-Nitroaniline	<0.19		0.19		mg/Kg	₽		11/10/17 16:10	1
4-Nitroaniline	<0.37		0.37		mg/Kg	₽		11/10/17 16:10	1
Nitrobenzene	<0.037		0.037	0.0094				11/10/17 16:10	
2-Nitrophenol	<0.37		0.037			₽		11/10/17 16:10	1
2-MINOPHENOI	<0.37		0.37	0.069	mg/Kg	*	11/09/1/ 1/.53	11/10/17 10.10	

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136756-1

Client Sample ID: 3160-21-3 (0-2.5') Lab Sample ID: 500-136756-22 Date Collected: 11/02/17 13:15

**Matrix: Solid** 

Percent Solids: 84.2

Date Received: 11/03/17 08:50
Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Analyte	Result Qualifier	ŔĹ	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.76	0.76	0.36	mg/Kg	<u> </u>	11/09/17 17:53	11/10/17 16:10	1
N-Nitrosodi-n-propylamine	<0.076	0.076	0.046	mg/Kg	φ.	11/09/17 17:53	11/10/17 16:10	1
N-Nitrosodiphenylamine	<0.19	0.19	0.044	mg/Kg	☼	11/09/17 17:53	11/10/17 16:10	1
2,2'-oxybis[1-chloropropane]	<0.19	0.19	0.044	mg/Kg	☼	11/09/17 17:53	11/10/17 16:10	1
Pentachlorophenol	<0.76	0.76	0.60	mg/Kg	₽	11/09/17 17:53	11/10/17 16:10	1
Phenanthrene	0.014 J	0.037	0.0053	mg/Kg	₩	11/09/17 17:53	11/10/17 16:10	1
Phenol	<0.19	0.19	0.084	mg/Kg	₩	11/09/17 17:53	11/10/17 16:10	1
Pyrene	<0.037	0.037	0.0075	mg/Kg	₩	11/09/17 17:53	11/10/17 16:10	1
1,2,4-Trichlorobenzene	<0.19	0.19	0.041	mg/Kg	₩	11/09/17 17:53	11/10/17 16:10	1
2,4,5-Trichlorophenol	<0.37	0.37	0.086	mg/Kg	₩	11/09/17 17:53	11/10/17 16:10	1
2,4,6-Trichlorophenol	<0.37	0.37	0.13	mg/Kg	₽	11/09/17 17:53	11/10/17 16:10	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	74	44 - 121	11/09/17 17:53	11/10/17 16:10	1
2-Fluorophenol	73	46 - 133	11/09/17 17:53	11/10/17 16:10	1
Nitrobenzene-d5	67	41 - 120	11/09/17 17:53	11/10/17 16:10	1
Phenol-d5	85	46 - 125	11/09/17 17:53	11/10/17 16:10	1
Terphenyl-d14	91	35 - 160	11/09/17 17:53	11/10/17 16:10	1
2,4,6-Tribromophenol	89	25 - 139	11/09/17 17:53	11/10/17 16:10	1

Me	thod:	6010B	- Metals	(ICP)

Method: 6010B - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.35	J	1.0	0.20	mg/Kg	<u> </u>	11/08/17 07:33	11/09/17 03:26	1
Arsenic	8.7		0.52	0.18	mg/Kg	☼	11/08/17 07:33	11/09/17 03:26	1
Barium	74		0.52	0.059	mg/Kg	₩	11/08/17 07:33	11/09/17 03:26	1
Beryllium	0.60		0.21	0.048	mg/Kg	φ.	11/08/17 07:33	11/09/17 03:26	1
Cadmium	<0.10		0.10	0.019	mg/Kg	☼	11/08/17 07:33	11/09/17 03:26	1
Chromium	24		0.52	0.26	mg/Kg	☼	11/08/17 07:33	11/09/17 03:26	1
Cobalt	7.0		0.26	0.068	mg/Kg	φ.	11/08/17 07:33	11/09/17 03:26	1
Copper	11		0.52	0.15	mg/Kg	₩	11/08/17 07:33	11/09/17 03:26	1
Iron	22000		10	5.4	mg/Kg	☼	11/08/17 07:33	11/09/17 03:26	1
Lead	13		0.26	0.12	mg/Kg	₩.	11/08/17 07:33	11/09/17 03:26	1
Manganese	310		0.52	0.075	mg/Kg	☼	11/08/17 07:33	11/09/17 03:26	1
Nickel	11		0.52	0.15	mg/Kg	☼	11/08/17 07:33	11/09/17 03:26	1
Selenium	<0.52		0.52	0.31	mg/Kg	₩.	11/08/17 07:33	11/09/17 03:26	1
Silver	<0.26		0.26	0.067	mg/Kg	☼	11/08/17 07:33	11/09/17 03:26	1
Thallium	<0.52		0.52	0.26	mg/Kg	₩	11/08/17 07:33	11/09/17 03:26	1
Vanadium	26		0.26	0.061	mg/Kg	₽	11/08/17 07:33	11/09/17 03:26	1
Zinc	36		1.0	0.46	mg/Kg	₩	11/08/17 07:33	11/09/17 03:26	1

Method:	6010B -	Metals	(ICP	) - TCL	.P
---------	---------	--------	------	---------	----

)							
Result Qualifie	r RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
<0.050	0.050	0.010	mg/L		11/08/17 09:26	11/08/17 18:42	1
0.47 J	0.50	0.050	mg/L		11/08/17 09:26	11/08/17 18:42	1
<0.0040	0.0040	0.0040	mg/L		11/08/17 09:26	11/08/17 18:42	1
<0.0050	0.0050	0.0020	mg/L		11/08/17 09:26	11/08/17 18:42	1
<0.025	0.025	0.010	mg/L		11/08/17 09:26	11/08/17 18:42	1
<0.025	0.025	0.010	mg/L		11/08/17 09:26	11/08/17 18:42	1
<0.025	0.025	0.010	mg/L		11/08/17 09:26	11/08/17 18:42	1
0.24 J	0.40	0.20	mg/L		11/08/17 09:26	11/08/17 18:42	1
	Result <0.050  0.47 J <0.0040 <0.0050 <0.025 <0.025 <0.025	Result         Qualifier         RL           <0.050	Result         Qualifier         RL         MDL           <0.050	Result         Qualifier         RL         MDL         Unit           <0.050	Result         Qualifier         RL         MDL         Unit         D           <0.050	Result         Qualifier         RL         MDL mg/L         Unit         D mg/L         Prepared           <0.050	Result         Qualifier         RL         MDL mg/L         Unit pmg/L         D may lead of the proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper prop

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/02/17 13:15

Date Received: 11/03/17 08:50

рН

Client Sample ID: 3160-21-3 (0-2.5')

TestAmerica Job ID: 500-136756-1

Lab Sample ID: 500-136756-22

**Matrix: Solid** 

Percent Solids: 84.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	<0.0075		0.0075	0.0075	mg/L		11/08/17 09:26	11/08/17 18:42	1
Manganese	0.029		0.025	0.010	mg/L		11/08/17 09:26	11/08/17 18:42	1
Nickel	<0.025		0.025	0.010	mg/L		11/08/17 09:26	11/08/17 18:42	1
Selenium	<0.050		0.050	0.020	mg/L		11/08/17 09:26	11/08/17 18:42	1
Silver	<0.025		0.025	0.010	mg/L		11/08/17 09:26	11/08/17 18:42	1
Vanadium	<0.025		0.025	0.010	mg/L		11/08/17 09:26	11/08/17 18:42	1
Zinc	<0.50		0.50	0.020	mg/L		11/08/17 09:26	11/08/17 18:42	1
- Method: 6020A - Metal	s (ICP/MS) - TCLP								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060		0.0060	0.0060	mg/L		11/08/17 09:26	11/09/17 16:29	1
Thallium	<0.0020		0.0020	0.0020	mg/L		11/08/17 09:26	11/09/17 16:29	1
Method: 7470A - TCLP	Mercury - TCLP								
Analyte	_	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/08/17 13:40	11/09/17 07:46	1
Method: 7471B - Merci	ury (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.037		0.018	0.0058	mg/Kg	<del>\</del>	11/07/17 13:20	11/08/17 11:38	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

0.20

7.0

0.20 SU

11/13/17 04:21

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-21-2 (0-2.5')

Date Collected: 11/02/17 13:25 Date Received: 11/03/17 08:50 Lab Sample ID: 500-136756-23

Matrix: Solid Percent Solids: 82.4

Method: 8260B - Volatile O Analyte	Result Qualifie	•	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	0.036	0.019	0.0083	mg/Kg	<u> </u>	11/03/17 18:20	11/07/17 18:29	1
Benzene	<0.0019	0.0019	0.00049	mg/Kg	☼	11/03/17 18:20	11/07/17 18:29	1
Bromodichloromethane	<0.0019	0.0019	0.00039	mg/Kg	≎	11/03/17 18:20	11/07/17 18:29	1
Bromoform	<0.0019	0.0019	0.00056	mg/Kg	☆	11/03/17 18:20	11/07/17 18:29	1
Bromomethane	<0.0048	0.0048	0.0018	mg/Kg	₩	11/03/17 18:20	11/07/17 18:29	1
2-Butanone (MEK)	<0.0048	0.0048	0.0021	mg/Kg	₩	11/03/17 18:20	11/07/17 18:29	1
Carbon disulfide	<0.0048	0.0048	0.0010	mg/Kg		11/03/17 18:20	11/07/17 18:29	1
Carbon tetrachloride	<0.0019	0.0019	0.00056	mg/Kg	☼	11/03/17 18:20	11/07/17 18:29	1
Chlorobenzene	<0.0019	0.0019	0.00071	mg/Kg	₩	11/03/17 18:20	11/07/17 18:29	1
Chloroethane	<0.0048	0.0048	0.0014	mg/Kg	₩.	11/03/17 18:20	11/07/17 18:29	1
Chloroform	<0.0019	0.0019	0.00066	mg/Kg	₩	11/03/17 18:20	11/07/17 18:29	1
Chloromethane	<0.0048	0.0048	0.0019	mg/Kg	₩	11/03/17 18:20	11/07/17 18:29	1
cis-1,2-Dichloroethene	<0.0019	0.0019	0.00054	mg/Kg		11/03/17 18:20	11/07/17 18:29	1
cis-1,3-Dichloropropene	<0.0019	0.0019	0.00058	mg/Kg	₩	11/03/17 18:20	11/07/17 18:29	1
Dibromochloromethane	<0.0019	0.0019	0.00063	mg/Kg	₩	11/03/17 18:20	11/07/17 18:29	1
1,1-Dichloroethane	<0.0019	0.0019	0.00066	mg/Kg		11/03/17 18:20	11/07/17 18:29	1
1,2-Dichloroethane	<0.0048	0.0048	0.0015	mg/Kg	☼	11/03/17 18:20	11/07/17 18:29	1
1,1-Dichloroethene	<0.0019	0.0019	0.00066	mg/Kg	₩	11/03/17 18:20	11/07/17 18:29	1
1,2-Dichloropropane	<0.0019	0.0019	0.00049	mg/Kg	₩	11/03/17 18:20	11/07/17 18:29	1
1,3-Dichloropropene, Total	<0.0019	0.0019	0.00067	mg/Kg	☼	11/03/17 18:20	11/07/17 18:29	1
Ethylbenzene	<0.0019	0.0019	0.00092	mg/Kg	₩	11/03/17 18:20	11/07/17 18:29	1
2-Hexanone	<0.0048	0.0048	0.0015	mg/Kg		11/03/17 18:20	11/07/17 18:29	1
Methylene Chloride	<0.0048	0.0048	0.0019	mg/Kg	≎	11/03/17 18:20	11/07/17 18:29	1
4-Methyl-2-pentanone (MIBK)	<0.0048	0.0048	0.0014	mg/Kg	₩	11/03/17 18:20	11/07/17 18:29	1
Methyl tert-butyl ether	<0.0019	0.0019	0.00056	mg/Kg		11/03/17 18:20	11/07/17 18:29	1
Styrene	<0.0019	0.0019	0.00058	mg/Kg	₩	11/03/17 18:20	11/07/17 18:29	1
1,1,2,2-Tetrachloroethane	<0.0019	0.0019	0.00061	mg/Kg	₩	11/03/17 18:20	11/07/17 18:29	1
Tetrachloroethene	<0.0019	0.0019	0.00065	mg/Kg	₩	11/03/17 18:20	11/07/17 18:29	1
Toluene	<0.0019	0.0019	0.00048	mg/Kg	☼	11/03/17 18:20	11/07/17 18:29	1
trans-1,2-Dichloroethene	<0.0019	0.0019	0.00085	mg/Kg	☼	11/03/17 18:20	11/07/17 18:29	1
trans-1,3-Dichloropropene	<0.0019	0.0019	0.00067	mg/Kg		11/03/17 18:20	11/07/17 18:29	1
1,1,1-Trichloroethane	<0.0019	0.0019	0.00064	mg/Kg	☼	11/03/17 18:20	11/07/17 18:29	1
1,1,2-Trichloroethane	<0.0019	0.0019	0.00082	mg/Kg	☼	11/03/17 18:20	11/07/17 18:29	1
Trichloroethene	<0.0019	0.0019	0.00065	mg/Kg	₩	11/03/17 18:20	11/07/17 18:29	1
Vinyl acetate	<0.0048	0.0048	0.0017	mg/Kg	≎	11/03/17 18:20	11/07/17 18:29	1
Vinyl chloride	<0.0019	0.0019	0.00085	mg/Kg	₩	11/03/17 18:20	11/07/17 18:29	1
Xylenes, Total	<0.0038	0.0038	0.00061	mg/Kg	<b></b>	11/03/17 18:20	11/07/17 18:29	1
Surrogate	%Recovery Qualifie	er Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	89	75 - 131				11/03/17 18:20	11/07/17 18:29	1
Dibromofluoromethane	107	75 - 126				11/03/17 18:20	11/07/17 18:29	1
1,2-Dichloroethane-d4 (Surr)	114	70 - 134				11/03/17 18:20	11/07/17 18:29	1
Toluene-d8 (Surr)	95	75 - 124				11/03/17 18:20	11/07/17 18:29	1

Method:	8270D - Semivola	tile Organic Co	mpounds (	(GC/MS)						
Analyte		Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthe	ne	<0.038		0.038	0.0068	mg/Kg	\$	11/09/17 17:53	11/10/17 19:40	1
Acenaphthy	lene	<0.038		0.038	0.0050	mg/Kg	≎	11/09/17 17:53	11/10/17 19:40	1
Anthracen	е	0.036	J	0.038	0.0064	mg/Kg	≎	11/09/17 17:53	11/10/17 19:40	1
Benzo[a]a	nthracene	0.063		0.038	0.0051	mg/Kg	₩	11/09/17 17:53	11/10/17 19:40	1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028 TestAmerica Job ID: 500-136756-1

Client Sample ID: 3160-21-2 (0-2.5')

Lab Sample ID: 500-136756-23

Date Collected: 11/02/17 13:25 Matrix: Solid
Date Received: 11/03/17 08:50 Percent Solids: 82.4

Method: 8270D - Semivolatil Analyte	•	Qualifier	ŔĹ	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzo[a]pyrene	0.050		0.038	0.0074	mg/Kg	<u></u>	11/09/17 17:53	11/10/17 19:40	
Benzo[b]fluoranthene	0.059		0.038	0.0082		₩	11/09/17 17:53	11/10/17 19:40	
Benzo[g,h,i]perylene	0.015	J	0.038		mg/Kg		11/09/17 17:53	11/10/17 19:40	
Benzo[k]fluoranthene	0.016		0.038	0.011		₩	11/09/17 17:53	11/10/17 19:40	
Bis(2-chloroethoxy)methane	<0.19		0.19	0.039	mg/Kg	₩	11/09/17 17:53	11/10/17 19:40	
Bis(2-chloroethyl)ether	<0.19		0.19		mg/Kg		11/09/17 17:53	11/10/17 19:40	
Bis(2-ethylhexyl) phthalate	<0.19		0.19		mg/Kg	₩		11/10/17 19:40	
4-Bromophenyl phenyl ether	<0.19		0.19		mg/Kg	₩			
Butyl benzyl phthalate	<0.19		0.19		mg/Kg			11/10/17 19:40	
Carbazole	<0.19		0.19		mg/Kg	₩		11/10/17 19:40	
4-Chloroaniline	<0.77		0.77		mg/Kg	₩	11/09/17 17:53		
4-Chloro-3-methylphenol	<0.38		0.38		mg/Kg			11/10/17 19:40	
2-Chloronaphthalene	<0.19		0.19		mg/Kg	₩	11/09/17 17:53	11/10/17 19:40	
2-Chlorophenol	<0.19		0.19		mg/Kg	₩		11/10/17 19:40	
4-Chlorophenyl phenyl ether	<0.19		0.19		mg/Kg	ф		11/10/17 19:40	
Chrysene	0.060		0.038			₩		11/10/17 19:40	
Dibenz(a,h)anthracene	<0.038		0.038	0.0074		₩			
Dibenzofuran	0.096		0.19		mg/Kg			11/10/17 19:40	
1.2-Dichlorobenzene	<0.19	•	0.19		mg/Kg	₩		11/10/17 19:40	
1,3-Dichlorobenzene	<0.19		0.19		mg/Kg	₩		11/10/17 19:40	
1,4-Dichlorobenzene	<0.19		0.19		mg/Kg			11/10/17 19:40	
3,3'-Dichlorobenzidine	<0.19		0.19		mg/Kg			11/10/17 19:40	
,	<0.19		0.19	0.090				11/10/17 19:40	
2,4-Dichlorophenol	<0.19		0.36			· · · · · · · · · · · · · · · · · · ·		11/10/17 19:40	
Diethyl phthalate	<0.19		0.19		mg/Kg	~ ☆		11/10/17 19:40	
2,4-Dimethylphenol	<0.19		0.36		mg/Kg	~ ☆			
Dimethyl phthalate	<0.19		0.19	0.050	mg/Kg mg/Kg	· · · · · · · · · · · · · · · · · · ·		11/10/17 19:40 11/10/17 19:40	
Di-n-butyl phthalate						≎			
4,6-Dinitro-2-methylphenol	<0.77		0.77	0.31	0 0	₩		11/10/17 19:40	
2,4-Dinitrophenol	<0.77		0.77	0.67	0 0	· · · · · · · · · · · · · · · · · · ·	11/09/17 17:53	11/10/17 19:40	
2,4-Dinitrotoluene	<0.19		0.19	0.061	0 0				
2,6-Dinitrotoluene	<0.19		0.19		mg/Kg	₽ **		11/10/17 19:40	
Di-n-octyl phthalate	<0.19		0.19		mg/Kg	· · · · · · · · · · · · · · · · · · ·		11/10/17 19:40	
Fluoranthene	0.065		0.038	0.0071		*		11/10/17 19:40	
Fluorene	<0.038		0.038	0.0054	0 0	₩		11/10/17 19:40	
Hexachlorobenzene	<0.077		0.077	0.0088		· · · · · ·		11/10/17 19:40	
Hexachlorobutadiene	<0.19		0.19		mg/Kg	*		11/10/17 19:40	
Hexachlorocyclopentadiene	<0.77		0.77		mg/Kg	₩.		11/10/17 19:40	
Hexachloroethane	<0.19		0.19		mg/Kg			11/10/17 19:40	
Indeno[1,2,3-cd]pyrene	0.013	J	0.038	0.0099		<del>\Q</del>		11/10/17 19:40	
Isophorone	<0.19		0.19		mg/Kg	<b>*</b>		11/10/17 19:40	
2-Methylnaphthalene	0.18		0.077	0.0070		<del>.</del>		11/10/17 19:40	
2-Methylphenol	<0.19		0.19		mg/Kg	<b>*</b>		11/10/17 19:40	
3 & 4 Methylphenol	<0.19		0.19		mg/Kg	₩.		11/10/17 19:40	
Naphthalene	0.081		0.038	0.0059		<b>\$</b>		11/10/17 19:40	
2-Nitroaniline	<0.19		0.19		mg/Kg	₩		11/10/17 19:40	
3-Nitroaniline	<0.38		0.38		mg/Kg	**		11/10/17 19:40	
4-Nitroaniline	<0.38		0.38		mg/Kg	₩	11/09/17 17:53	11/10/17 19:40	
Nitrobenzene	<0.038		0.038	0.0095		₽	11/09/17 17:53	11/10/17 19:40	
2-Nitrophenol	<0.38		0.38	0.090	mg/Kg	₩	11/09/17 17:53	11/10/17 19:40	

TestAmerica Chicago

_

3

5

7

9

12

4 4

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/02/17 13:25

Client Sample ID: 3160-21-2 (0-2.5')

TestAmerica Job ID: 500-136756-1

Lab Sample ID: 500-136756-23

**Matrix: Solid** Percent Solids: 82.4

Date Received: 11/03/17 08:50

Method: 8270D - Semivola	itile Organic Con	npounds (G	C/MS) (Co	ontinued	)				
Analyte	Result (	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.77		0.77	0.36	mg/Kg	<u> </u>	11/09/17 17:53	11/10/17 19:40	1
N-Nitrosodi-n-propylamine	<0.077		0.077	0.047	mg/Kg	≎	11/09/17 17:53	11/10/17 19:40	1
N-Nitrosodiphenylamine	<0.19		0.19	0.045	mg/Kg	₽	11/09/17 17:53	11/10/17 19:40	1
2,2'-oxybis[1-chloropropane]	<0.19		0.19	0.044	mg/Kg	₽	11/09/17 17:53	11/10/17 19:40	1
Pentachlorophenol	<0.77		0.77	0.61	mg/Kg	₽	11/09/17 17:53	11/10/17 19:40	1
Phenanthrene	0.25		0.038	0.0053	mg/Kg	₽	11/09/17 17:53	11/10/17 19:40	1
Phenol	<0.19		0.19	0.085	mg/Kg	₽	11/09/17 17:53	11/10/17 19:40	1
Pyrene	0.075		0.038	0.0076	mg/Kg	₽	11/09/17 17:53	11/10/17 19:40	1
1,2,4-Trichlorobenzene	<0.19		0.19	0.041	mg/Kg	₽	11/09/17 17:53	11/10/17 19:40	1
2,4,5-Trichlorophenol	<0.38		0.38	0.087	mg/Kg	₩	11/09/17 17:53	11/10/17 19:40	1
2,4,6-Trichlorophenol	<0.38		0.38	0.13	mg/Kg	.⇔	11/09/17 17:53	11/10/17 19:40	1

Surrogate	%Recovery Qu	ıalifier Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	81	44 - 121	11/09/17 17:53	11/10/17 19:40	1
2-Fluorophenol	73	46 - 133	11/09/17 17:53	11/10/17 19:40	1
Nitrobenzene-d5	76	41 - 120	11/09/17 17:53	11/10/17 19:40	1
Phenol-d5	83	46 - 125	11/09/17 17:53	11/10/17 19:40	1
Terphenyl-d14	85	35 - 160	11/09/17 17:53	11/10/17 19:40	1
2,4,6-Tribromophenol	62	25 - 139	11/09/17 17:53	11/10/17 19:40	1

Method: 6010B - Metals (ICP)	Danulé	Overligien.	DI.	MDI	11:4	_	Dunnanad	A malumad	D:: F
Analyte	Result	Qualifier	RL _		Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.32	J	1.1	0.22	mg/Kg	₩	11/08/17 07:33	11/09/17 03:30	1
Arsenic	9.6		0.56	0.19	mg/Kg	₩	11/08/17 07:33	11/09/17 03:30	1
Barium	220		0.56	0.064	mg/Kg	☼	11/08/17 07:33	11/09/17 03:30	1
Beryllium	0.72		0.22	0.053	mg/Kg	₽	11/08/17 07:33	11/09/17 03:30	1
Cadmium	0.24	В	0.11	0.020	mg/Kg	₩	11/08/17 07:33	11/09/17 03:30	1
Chromium	11		0.56	0.28	mg/Kg	☼	11/08/17 07:33	11/09/17 03:30	1
Cobalt	17		0.28	0.074	mg/Kg	φ.	11/08/17 07:33	11/09/17 03:30	1
Copper	15		0.56	0.16	mg/Kg	☼	11/08/17 07:33	11/09/17 03:30	1
Iron	16000		11	5.8	mg/Kg	☼	11/08/17 07:33	11/09/17 03:30	1
Lead	55		0.28	0.13	mg/Kg	₽	11/08/17 07:33	11/09/17 03:30	1
Manganese	3200		2.8	0.41	mg/Kg	☼	11/08/17 07:33	11/09/17 18:01	5
Nickel	15		0.56	0.16	mg/Kg	☼	11/08/17 07:33	11/09/17 03:30	1
Selenium	0.71		0.56	0.33	mg/Kg	₽	11/08/17 07:33	11/09/17 03:30	1
Silver	0.23	J	0.28	0.073	mg/Kg	☼	11/08/17 07:33	11/09/17 03:30	1
Thallium	0.30	J	0.56	0.28	mg/Kg	☼	11/08/17 07:33	11/09/17 03:30	1
Vanadium	25		0.28	0.066	mg/Kg	₩	11/08/17 07:33	11/09/17 03:30	1
Zinc	66		1.1	0.49	mg/Kg	₩	11/08/17 07:33	11/09/17 03:30	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/08/17 09:26	11/08/17 18:46	1
Barium	0.50		0.50	0.050	mg/L		11/08/17 09:26	11/08/17 18:46	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/08/17 09:26	11/08/17 18:46	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/08/17 09:26	11/08/17 18:46	1
Chromium	<0.025		0.025	0.010	mg/L		11/08/17 09:26	11/08/17 18:46	1
Cobalt	<0.025		0.025	0.010	mg/L		11/08/17 09:26	11/08/17 18:46	1
Copper	<0.025		0.025	0.010	mg/L		11/08/17 09:26	11/08/17 18:46	1
Iron	0.23	J	0.40	0.20	mg/L		11/08/17 09:26	11/08/17 18:46	1

Page 112 of 195

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Received: 11/03/17 08:50

TestAmerica Job ID: 500-136756-1

Client Sample ID: 3160-21-2 (0-2.5') Date Collected: 11/02/17 13:25

Lab Sample ID: 500-136756-23

**Matrix: Solid** Percent Solids: 82.4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	<0.0075		0.0075	0.0075	mg/L		11/08/17 09:26	11/08/17 18:46	1
Manganese	0.085		0.025	0.010	mg/L		11/08/17 09:26	11/08/17 18:46	1
Nickel	< 0.025		0.025	0.010	mg/L		11/08/17 09:26	11/08/17 18:46	1
Selenium	<0.050		0.050	0.020	mg/L		11/08/17 09:26	11/08/17 18:46	1
Silver	<0.025		0.025	0.010	mg/L		11/08/17 09:26	11/08/17 18:46	1
Vanadium	< 0.025		0.025	0.010	mg/L		11/08/17 09:26	11/08/17 18:46	1
Zinc	0.058	J	0.50	0.020	mg/L		11/08/17 09:26	11/08/17 18:46	•
Method: 6020A - Metals (IC	CP/MS) - TCLP								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060		0.0060	0.0060	mg/L		11/08/17 09:26	11/09/17 16:32	1
Thallium	<0.0020		0.0020	0.0020	mg/L		11/08/17 09:26	11/09/17 16:32	•
Method: 7470A - TCLP Me	rcury - TCLP								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/08/17 13:40	11/09/17 07:47	1
Method: 7471B - Mercury (	(CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.033		0.018	0.0059	mg/Kg	<del></del>	11/07/17 13:20	11/08/17 11:50	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	8.2		0.20	0.20	SU			11/13/17 04:55	

TestAmerica Job ID: 500-136756-1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-21-1 (0-2.5') Lab Sample ID: 500-136756-24

Date Collected: 11/02/17 13:40 **Matrix: Solid** Date Received: 11/03/17 08:50 Percent Solids: 80.8

Method: 8260B - Volatile O Analyte	Result Qua	•	MDL		D	Prepared	Analyzed	Dil Fac
Acetone	0.025	0.018	0.0078	mg/Kg	<u> </u>	11/03/17 18:20	11/07/17 18:53	1
Benzene	<0.0018	0.0018	0.00046	mg/Kg	☼	11/03/17 18:20	11/07/17 18:53	1
Bromodichloromethane	<0.0018	0.0018	0.00037	mg/Kg	≎	11/03/17 18:20	11/07/17 18:53	1
Bromoform	<0.0018	0.0018	0.00053	mg/Kg	₩	11/03/17 18:20	11/07/17 18:53	1
Bromomethane	<0.0045	0.0045	0.0017	mg/Kg	₩	11/03/17 18:20	11/07/17 18:53	1
2-Butanone (MEK)	<0.0045	0.0045	0.0020	mg/Kg	₩	11/03/17 18:20	11/07/17 18:53	1
Carbon disulfide	<0.0045	0.0045	0.00094	mg/Kg		11/03/17 18:20	11/07/17 18:53	1
Carbon tetrachloride	<0.0018	0.0018	0.00052	mg/Kg	☼	11/03/17 18:20	11/07/17 18:53	1
Chlorobenzene	<0.0018	0.0018	0.00066	mg/Kg	₩	11/03/17 18:20	11/07/17 18:53	1
Chloroethane	<0.0045	0.0045	0.0013	mg/Kg	₩.	11/03/17 18:20	11/07/17 18:53	1
Chloroform	<0.0018	0.0018	0.00063	mg/Kg	₩	11/03/17 18:20	11/07/17 18:53	1
Chloromethane	<0.0045	0.0045	0.0018	mg/Kg	₩	11/03/17 18:20	11/07/17 18:53	1
cis-1,2-Dichloroethene	<0.0018	0.0018	0.00050	mg/Kg		11/03/17 18:20	11/07/17 18:53	1
cis-1,3-Dichloropropene	<0.0018	0.0018	0.00054	mg/Kg	₩	11/03/17 18:20	11/07/17 18:53	1
Dibromochloromethane	<0.0018	0.0018	0.00059	mg/Kg	₩	11/03/17 18:20	11/07/17 18:53	1
1,1-Dichloroethane	<0.0018	0.0018	0.00062	mg/Kg	₩.	11/03/17 18:20	11/07/17 18:53	1
1,2-Dichloroethane	< 0.0045	0.0045	0.0014	mg/Kg	☼	11/03/17 18:20	11/07/17 18:53	1
1,1-Dichloroethene	<0.0018	0.0018	0.00062	mg/Kg	₩	11/03/17 18:20	11/07/17 18:53	1
1,2-Dichloropropane	<0.0018	0.0018	0.00047	mg/Kg		11/03/17 18:20	11/07/17 18:53	1
1,3-Dichloropropene, Total	<0.0018	0.0018	0.00063	mg/Kg	☼	11/03/17 18:20	11/07/17 18:53	1
Ethylbenzene	<0.0018	0.0018	0.00086	mg/Kg	₩	11/03/17 18:20	11/07/17 18:53	1
2-Hexanone	<0.0045	0.0045	0.0014	mg/Kg		11/03/17 18:20	11/07/17 18:53	1
Methylene Chloride	<0.0045	0.0045	0.0018	mg/Kg	₩	11/03/17 18:20	11/07/17 18:53	1
4-Methyl-2-pentanone (MIBK)	< 0.0045	0.0045	0.0013	mg/Kg	☼	11/03/17 18:20	11/07/17 18:53	1
Methyl tert-butyl ether	<0.0018	0.0018	0.00053	mg/Kg	₩	11/03/17 18:20	11/07/17 18:53	1
Styrene	<0.0018	0.0018	0.00054	mg/Kg	₩	11/03/17 18:20	11/07/17 18:53	1
1,1,2,2-Tetrachloroethane	<0.0018	0.0018	0.00058	mg/Kg	☼	11/03/17 18:20	11/07/17 18:53	1
Tetrachloroethene	<0.0018	0.0018	0.00061	mg/Kg	₩	11/03/17 18:20	11/07/17 18:53	1
Toluene	<0.0018	0.0018	0.00046	mg/Kg	☼	11/03/17 18:20	11/07/17 18:53	1
trans-1,2-Dichloroethene	<0.0018	0.0018	0.00080	mg/Kg	☼	11/03/17 18:20	11/07/17 18:53	1
trans-1,3-Dichloropropene	<0.0018	0.0018	0.00063	mg/Kg		11/03/17 18:20	11/07/17 18:53	1
1,1,1-Trichloroethane	<0.0018	0.0018	0.00060	mg/Kg	☼	11/03/17 18:20	11/07/17 18:53	1
1,1,2-Trichloroethane	<0.0018	0.0018	0.00077	mg/Kg	☼	11/03/17 18:20	11/07/17 18:53	1
Trichloroethene	<0.0018	0.0018	0.00061	mg/Kg	₩	11/03/17 18:20	11/07/17 18:53	1
Vinyl acetate	<0.0045	0.0045	0.0016	mg/Kg	₩	11/03/17 18:20	11/07/17 18:53	1
Vinyl chloride	<0.0018	0.0018	0.00080	mg/Kg	₩	11/03/17 18:20	11/07/17 18:53	1
Xylenes, Total	<0.0036	0.0036	0.00058	mg/Kg	<b></b>	11/03/17 18:20	11/07/17 18:53	1
Surrogate	%Recovery Qua	alifier Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	90	75 - 131				11/03/17 18:20	11/07/17 18:53	1
Dibromofluoromethane	95	75 - 126				11/03/17 18:20	11/07/17 18:53	1
1,2-Dichloroethane-d4 (Surr)	104	70 - 134				11/03/17 18:20	11/07/17 18:53	1
Toluene-d8 (Surr)	96	75 - 124				11/03/17 18:20	11/07/17 18:53	1

Metho	d: 8270D - Semivo	latile Organic Co	mpounds (	GC/MS)						
Analyte		Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaph	thene	<0.039	<del></del> -	0.039	0.0070	mg/Kg	<u> </u>	11/09/17 17:53	11/13/17 16:59	1
Acenaph	thylene	< 0.039		0.039	0.0051	mg/Kg	₽	11/09/17 17:53	11/13/17 16:59	1
Anthrace	ene	< 0.039		0.039	0.0065	mg/Kg	₽	11/09/17 17:53	11/13/17 16:59	1
Benzo[a]	anthracene	<0.039		0.039	0.0052	mg/Kg	₩	11/09/17 17:53	11/13/17 16:59	1

TestAmerica Chicago

Page 114 of 195

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/02/17 13:40

Date Received: 11/03/17 08:50

Client Sample ID: 3160-21-1 (0-2.5')

TestAmerica Job ID: 500-136756-1

Lab Sample ID: 500-136756-24

. Matrix: Solid

Percent Solids: 80.8

ı	I.			
	Method: 8270D - Se	emivolatile Organic Compounds (G	C/MS) (Con	tinued)
	Δnalvte	Result Qualifier	RI	MDI III

Method: 8270D - Semivolatil Analyte	_	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]pyrene	<0.039		0.039	0.0075	mg/Kg	<u> </u>	11/09/17 17:53	11/13/17 16:59	
Benzo[b]fluoranthene	< 0.039		0.039	0.0084	mg/Kg	≎	11/09/17 17:53	11/13/17 16:59	
Benzo[g,h,i]perylene	<0.039		0.039	0.013	mg/Kg	₽	11/09/17 17:53	11/13/17 16:59	
Benzo[k]fluoranthene	<0.039		0.039	0.011	mg/Kg	₩	11/09/17 17:53	11/13/17 16:59	
Bis(2-chloroethoxy)methane	<0.20		0.20	0.040	mg/Kg	≎	11/09/17 17:53	11/13/17 16:59	•
Bis(2-chloroethyl)ether	<0.20		0.20	0.058	mg/Kg	\$	11/09/17 17:53	11/13/17 16:59	
Bis(2-ethylhexyl) phthalate	<0.20		0.20	0.071	mg/Kg	₩	11/09/17 17:53	11/13/17 16:59	
4-Bromophenyl phenyl ether	<0.20		0.20	0.051	mg/Kg	≎	11/09/17 17:53	11/13/17 16:59	
Butyl benzyl phthalate	<0.20		0.20		mg/Kg	ф.	11/09/17 17:53	11/13/17 16:59	
Carbazole	<0.20		0.20	0.097	mg/Kg	₩	11/09/17 17:53	11/13/17 16:59	
4-Chloroaniline	<0.79		0.79	0.18	mg/Kg	₩	11/09/17 17:53	11/13/17 16:59	
4-Chloro-3-methylphenol	<0.39		0.39		mg/Kg		11/09/17 17:53	11/13/17 16:59	
2-Chloronaphthalene	<0.20		0.20		mg/Kg	≎		11/13/17 16:59	
2-Chlorophenol	<0.20		0.20		mg/Kg	≎		11/13/17 16:59	
4-Chlorophenyl phenyl ether	<0.20		0.20		mg/Kg			11/13/17 16:59	
Chrysene	<0.039		0.039		mg/Kg	₽		11/13/17 16:59	
Dibenz(a,h)anthracene	< 0.039		0.039	0.0075		₩		11/13/17 16:59	
Dibenzofuran	<0.20		0.20		mg/Kg			11/13/17 16:59	
1,2-Dichlorobenzene	<0.20		0.20		mg/Kg	₩		11/13/17 16:59	
1,3-Dichlorobenzene	<0.20		0.20		mg/Kg			11/13/17 16:59	
			0.20		mg/Kg	· · · · · · · .		11/13/17 16:59	
1,4-Dichlorobenzene 3,3'-Dichlorobenzidine	<0.20 <0.20		0.20		mg/Kg	☆		11/13/17 16:59	
,						~ ☆			
2,4-Dichlorophenol	<0.39		0.39		mg/Kg	· · · · · · · · · · · · · · · · · · ·		11/13/17 16:59	
Diethyl phthalate	<0.20		0.20		mg/Kg			11/13/17 16:59	•
2,4-Dimethylphenol	<0.39		0.39		mg/Kg	<b>☆</b>		11/13/17 16:59	
Dimethyl phthalate	<0.20		0.20		mg/Kg			11/13/17 16:59	
Di-n-butyl phthalate	<0.20		0.20		mg/Kg	ψ.		11/13/17 16:59	•
4,6-Dinitro-2-methylphenol	<0.79		0.79		mg/Kg	₩.		11/13/17 16:59	•
2,4-Dinitrophenol	<0.79		0.79		mg/Kg	- <del>;</del> ,		11/13/17 16:59	
2,4-Dinitrotoluene	<0.20		0.20		mg/Kg	:D:		11/13/17 16:59	ŕ
2,6-Dinitrotoluene	<0.20		0.20		mg/Kg	- <del>D</del> -		11/13/17 16:59	,
Di-n-octyl phthalate	<0.20		0.20		mg/Kg			11/13/17 16:59	
Fluoranthene	< 0.039		0.039	0.0072		₩	11/09/17 17:53	11/13/17 16:59	•
Fluorene	< 0.039		0.039	0.0055		₩	11/09/17 17:53	11/13/17 16:59	•
Hexachlorobenzene	<0.079		0.079	0.0090		₩	11/09/17 17:53	11/13/17 16:59	
Hexachlorobutadiene	<0.20		0.20	0.061	mg/Kg	≎	11/09/17 17:53	11/13/17 16:59	•
Hexachlorocyclopentadiene	< 0.79		0.79	0.22	mg/Kg	₽	11/09/17 17:53	11/13/17 16:59	•
Hexachloroethane	<0.20		0.20	0.059	mg/Kg	₩	11/09/17 17:53	11/13/17 16:59	•
Indeno[1,2,3-cd]pyrene	<0.039		0.039	0.010	mg/Kg	₩	11/09/17 17:53	11/13/17 16:59	,
Isophorone	<0.20		0.20	0.044	mg/Kg	₩	11/09/17 17:53	11/13/17 16:59	
2-Methylnaphthalene	< 0.079		0.079	0.0072	mg/Kg	☆	11/09/17 17:53	11/13/17 16:59	
2-Methylphenol	<0.20		0.20	0.063	mg/Kg		11/09/17 17:53	11/13/17 16:59	
3 & 4 Methylphenol	<0.20		0.20	0.065	mg/Kg	₩	11/09/17 17:53	11/13/17 16:59	
Naphthalene	< 0.039		0.039	0.0060		₩	11/09/17 17:53	11/13/17 16:59	
2-Nitroaniline	<0.20		0.20		mg/Kg		11/09/17 17:53	11/13/17 16:59	
3-Nitroaniline	<0.39		0.39		mg/Kg	₩		11/13/17 16:59	
4-Nitroaniline	<0.39		0.39		mg/Kg	₽		11/13/17 16:59	
Nitrobenzene	<0.039		0.039	0.0097				11/13/17 16:59	
	0.000		0.000	3.3001					

TestAmerica Chicago

2

6

0

10

12

. .

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/02/17 13:40

Date Received: 11/03/17 08:50

Client Sample ID: 3160-21-1 (0-2.5')

TestAmerica Job ID: 500-136756-1

Lab Sample ID: 500-136756-24

**Matrix: Solid** Percent Solids: 80.8

Method: 8270D - Semivolatile	<b>Organic Co</b>	mpounds	(GC/MS) (Conf	inued	)
Analyte	Result	Qualifier	RL	MDL	U
4-Nitrophenol	<0.79		0.79	0.37	m

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.79	0.79	0.37	mg/Kg	<u>₩</u>	11/09/17 17:53	11/13/17 16:59	1
N-Nitrosodi-n-propylamine	<0.079	0.079	0.048	mg/Kg	₩.	11/09/17 17:53	11/13/17 16:59	1
N-Nitrosodiphenylamine	<0.20	0.20	0.046	mg/Kg	☼	11/09/17 17:53	11/13/17 16:59	1
2,2'-oxybis[1-chloropropane]	<0.20	0.20	0.045	mg/Kg	☼	11/09/17 17:53	11/13/17 16:59	1
Pentachlorophenol	<0.79	0.79	0.63	mg/Kg	₽	11/09/17 17:53	11/13/17 16:59	1
Phenanthrene	0.017 J	0.039	0.0054	mg/Kg	☼	11/09/17 17:53	11/13/17 16:59	1
Phenol	<0.20	0.20	0.087	mg/Kg	☼	11/09/17 17:53	11/13/17 16:59	1
Pyrene	<0.039	0.039	0.0077	mg/Kg	₩	11/09/17 17:53	11/13/17 16:59	1
1,2,4-Trichlorobenzene	<0.20	0.20	0.042	mg/Kg	₩	11/09/17 17:53	11/13/17 16:59	1
2,4,5-Trichlorophenol	<0.39	0.39	0.089	mg/Kg	☼	11/09/17 17:53	11/13/17 16:59	1
2,4,6-Trichlorophenol	<0.39	0.39	0.13	mg/Kg	₩.	11/09/17 17:53	11/13/17 16:59	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	70	44 - 121	11/09/17 17:53	11/13/17 16:59	1
2-Fluorophenol	76	46 - 133	11/09/17 17:53	11/13/17 16:59	1
Nitrobenzene-d5	64	41 - 120	11/09/17 17:53	11/13/17 16:59	1
Phenol-d5	66	46 - 125	11/09/17 17:53	11/13/17 16:59	1
Terphenyl-d14	73	35 - 160	11/09/17 17:53	11/13/17 16:59	1
2,4,6-Tribromophenol	49	25 - 139	11/09/17 17:53	11/13/17 16:59	1

Method: 6010B - Metals (ICP) Analyte
Antimony

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.24 J	1.1	0.22	mg/Kg	<u> </u>	11/08/17 07:33	11/09/17 03:34	1
Arsenic	7.6	0.56	0.19	mg/Kg	☼	11/08/17 07:33	11/09/17 03:34	1
Barium	67	0.56	0.064	mg/Kg	₽	11/08/17 07:33	11/09/17 03:34	1
Beryllium	0.49	0.22	0.052	mg/Kg	₽	11/08/17 07:33	11/09/17 03:34	1
Cadmium	0.069 JB	0.11	0.020	mg/Kg	☼	11/08/17 07:33	11/09/17 03:34	1
Chromium	13	0.56	0.28	mg/Kg	☼	11/08/17 07:33	11/09/17 03:34	1
Cobalt	7.7	0.28	0.073	mg/Kg	φ.	11/08/17 07:33	11/09/17 03:34	1
Copper	12	0.56	0.16	mg/Kg	₽	11/08/17 07:33	11/09/17 03:34	1
Iron	17000	11	5.8	mg/Kg	₽	11/08/17 07:33	11/09/17 03:34	1
Lead	21	0.28	0.13	mg/Kg	₽	11/08/17 07:33	11/09/17 03:34	1
Manganese	370	0.56	0.081	mg/Kg	₽	11/08/17 07:33	11/09/17 03:34	1
Nickel	12	0.56	0.16	mg/Kg	☼	11/08/17 07:33	11/09/17 03:34	1
Selenium	<0.56	0.56	0.33	mg/Kg	₽	11/08/17 07:33	11/09/17 03:34	1
Silver	<0.28	0.28	0.072	mg/Kg	☼	11/08/17 07:33	11/09/17 03:34	1
Thallium	<0.56	0.56	0.28	mg/Kg	₽	11/08/17 07:33	11/09/17 03:34	1
Vanadium	25	0.28	0.066	mg/Kg	₽	11/08/17 07:33	11/09/17 03:34	1
Zinc	53	1.1	0.49	mg/Kg	☼	11/08/17 07:33	11/09/17 03:34	1

			(100)	
Method:	6010B	- Metals	(ICP)	- ICLP

Mictiliou. Ou lob - Mict	uis (101 / - 10L1								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/08/17 09:26	11/08/17 18:58	1
Barium	0.32	J	0.50	0.050	mg/L		11/08/17 09:26	11/08/17 18:58	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/08/17 09:26	11/08/17 18:58	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/08/17 09:26	11/08/17 18:58	1
Chromium	<0.025		0.025	0.010	mg/L		11/08/17 09:26	11/08/17 18:58	1
Cobalt	<0.025		0.025	0.010	mg/L		11/08/17 09:26	11/08/17 18:58	1
Copper	0.011	J	0.025	0.010	mg/L		11/08/17 09:26	11/08/17 18:58	1
Iron	0.24	J	0.40	0.20	mg/L		11/08/17 09:26	11/08/17 18:58	1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/02/17 13:40

Date Received: 11/03/17 08:50

Analyte

рН

Client Sample ID: 3160-21-1 (0-2.5')

TestAmerica Job ID: 500-136756-1

Lab Sample ID: 500-136756-24

**Matrix: Solid** Percent Solids: 80.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lead	<0.0075		0.0075	0.0075	mg/L		11/08/17 09:26	11/08/17 18:58	
Manganese	0.014	J	0.025	0.010	mg/L		11/08/17 09:26	11/08/17 18:58	
Nickel	<0.025		0.025	0.010	mg/L		11/08/17 09:26	11/08/17 18:58	
Selenium	<0.050		0.050	0.020	mg/L		11/08/17 09:26	11/08/17 18:58	
Silver	<0.025		0.025	0.010	mg/L		11/08/17 09:26	11/08/17 18:58	
Vanadium	<0.025		0.025	0.010	mg/L		11/08/17 09:26	11/08/17 18:58	
Zinc	<0.50		0.50	0.020	mg/L		11/08/17 09:26	11/08/17 18:58	
Method: 6020A - Metals	(ICP/MS) - TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Antimony	<0.0060		0.0060	0.0060	mg/L		11/08/17 09:26	11/09/17 16:43	-
Thallium	<0.0020		0.0020	0.0020	mg/L		11/08/17 09:26	11/09/17 16:43	•
Method: 7470A - TCLP I	Mercury - TCLP								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	<0.00020		0.00020	0.00020	mg/L		11/08/17 13:40	11/09/17 07:49	
Method: 7471B - Mercui	v (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	0.038		0.021	0.0069	mg/Kg	<u>₩</u>	11/07/17 13:20	11/08/17 11:53	

RL

0.20

MDL Unit

0.20 SU

D

Prepared

Analyzed

11/13/17 05:28

Dil Fac

Result Qualifier

8.3

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136756-1

Lab Sample ID: 500-136756-25

Client Sample ID: 3160-5-3 (0-1.2')

Date Collected: 11/02/17 14:00 Date Received: 11/03/17 08:50

**Matrix: Solid** 

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/08/17 09:26	11/08/17 19:02	1
Barium	0.97		0.50	0.050	mg/L		11/08/17 09:26	11/08/17 19:02	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/08/17 09:26	11/08/17 19:02	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/08/17 09:26	11/08/17 19:02	1
Chromium	<0.025		0.025	0.010	mg/L		11/08/17 09:26	11/08/17 19:02	1
Cobalt	<0.025		0.025	0.010	mg/L		11/08/17 09:26	11/08/17 19:02	1
Copper	<0.025		0.025	0.010	mg/L		11/08/17 09:26	11/08/17 19:02	1
Iron	<0.40		0.40	0.20	mg/L		11/08/17 09:26	11/08/17 19:02	1
Lead	< 0.0075		0.0075	0.0075	mg/L		11/08/17 09:26	11/08/17 19:02	1
Manganese	0.089		0.025	0.010	mg/L		11/08/17 09:26	11/08/17 19:02	1
Nickel	<0.025		0.025	0.010	mg/L		11/08/17 09:26	11/08/17 19:02	1
Selenium	< 0.050		0.050	0.020	mg/L		11/08/17 09:26	11/08/17 19:02	1
Silver	<0.025		0.025	0.010	mg/L		11/08/17 09:26	11/08/17 19:02	1
Vanadium	<0.025		0.025	0.010	mg/L		11/08/17 09:26	11/08/17 19:02	1
Zinc	0.031	J	0.50	0.020	mg/L		11/08/17 09:26	11/08/17 19:02	1
Method: 6020A - Metals (ICP/N	IS) - TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060		0.0060	0.0060	mg/L		11/08/17 09:26	11/09/17 16:46	1
Thallium	<0.0020		0.0020	0.0020	mg/L		11/08/17 09:26	11/09/17 16:46	1
Method: 7470A - TCLP Mercur	y - TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/08/17 13:40	11/09/17 07:56	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	8.0		0.20	0.20	SU			11/13/17 06:02	

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/02/17 14:00 Date Received: 11/03/17 08:50

Client Sample ID: 3160-5-3 (0-1.2')

TestAmerica Job ID: 500-136756-1

Lab Sample ID: 500-136756-25

•	Matrix: Solid
	Percent Solids: 79.6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<1.1		1.1	0.22	mg/Kg	₩	11/08/17 07:33	11/09/17 03:38	1
Arsenic	5.1		0.57	0.19	mg/Kg	₩	11/08/17 07:33	11/09/17 03:38	1
Barium	94		0.57	0.065	mg/Kg	₩	11/08/17 07:33	11/09/17 03:38	1
Beryllium	0.48		0.23	0.053	mg/Kg	₽	11/08/17 07:33	11/09/17 03:38	1
Cadmium	0.19	В	0.11	0.020	mg/Kg	₩	11/08/17 07:33	11/09/17 03:38	1
Chromium	10		0.57	0.28	mg/Kg	₩	11/08/17 07:33	11/09/17 03:38	1
Cobalt	7.0		0.28	0.074	mg/Kg	₽	11/08/17 07:33	11/09/17 03:38	1
Copper	12		0.57	0.16	mg/Kg	☼	11/08/17 07:33	11/09/17 03:38	1
Iron	13000		11	5.9	mg/Kg	₩	11/08/17 07:33	11/09/17 03:38	1
Lead	73		0.28	0.13	mg/Kg	₩.	11/08/17 07:33	11/09/17 03:38	1
Manganese	270		0.57	0.082	mg/Kg	☼	11/08/17 07:33	11/09/17 03:38	1
Nickel	11		0.57	0.16	mg/Kg	₩	11/08/17 07:33	11/09/17 03:38	1
Selenium	0.38	J	0.57	0.33	mg/Kg	₽	11/08/17 07:33	11/09/17 03:38	1
Silver	<0.28		0.28	0.073	mg/Kg	₩	11/08/17 07:33	11/09/17 03:38	1
Thallium	<0.57		0.57	0.28	mg/Kg	₩	11/08/17 07:33	11/09/17 03:38	1
Vanadium	17		0.28	0.067	mg/Kg	₩.	11/08/17 07:33	11/09/17 03:38	1
Zinc	58		1.1	0.50	mg/Kg	₩	11/08/17 07:33	11/09/17 03:38	1
Method: 7471B - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.028		0.019	0.0064	mg/Kg	<u>₩</u>	11/07/17 13:20	11/08/17 11:55	1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/02/17 14:15

Date Received: 11/03/17 08:50

Client Sample ID: 3160-5-2 (0-1.2')

TestAmerica Job ID: 500-136756-1

Lab Sample ID: 500-136756-26

**Matrix: Solid** 

15

│ Method: 6010B - Meta	ils (ICP) - TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/08/17 09:26	11/08/17 19:06	1
Barium	0.27	J	0.50	0.050	mg/L		11/08/17 09:26	11/08/17 19:06	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/08/17 09:26	11/08/17 19:06	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/08/17 09:26	11/08/17 19:06	1
Chromium	<0.025		0.025	0.010	mg/L		11/08/17 09:26	11/08/17 19:06	1
Cobalt	<0.025		0.025	0.010	mg/L		11/08/17 09:26	11/08/17 19:06	1
Copper	0.010	J	0.025	0.010	mg/L		11/08/17 09:26	11/08/17 19:06	1
Iron	0.31	J	0.40	0.20	mg/L		11/08/17 09:26	11/08/17 19:06	1
Lead	<0.0075		0.0075	0.0075	mg/L		11/08/17 09:26	11/08/17 19:06	1
Manganese	0.038		0.025	0.010	mg/L		11/08/17 09:26	11/08/17 19:06	1
Nickel	<0.025		0.025	0.010	mg/L		11/08/17 09:26	11/08/17 19:06	1
Selenium	<0.050		0.050	0.020	mg/L		11/08/17 09:26	11/08/17 19:06	1
Silver	<0.025		0.025	0.010	mg/L		11/08/17 09:26	11/08/17 19:06	1
Vanadium	<0.025		0.025	0.010	mg/L		11/08/17 09:26	11/08/17 19:06	1
Zinc	0.020	J.	0.50	0.020	ma/l		11/08/17 09:26	11/08/17 19:06	1

Method: 6020A - Metals (ICP/MS) - TCLP									
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Antimony	<0.0060	0.0060	0.0060	mg/L		11/08/17 09:26	11/09/17 16:49	1	
Thallium	<0.0020	0.0020	0.0020	mg/L		11/08/17 09:26	11/09/17 16:49	1	

Method: 7470A - TCLP Mercury - TCLP									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/08/17 13:40	11/09/17 07:57	1

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PΗ	6.1		0.20	0.20	SU			11/13/17 06:35	1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/02/17 14:15

Date Received: 11/03/17 08:50

Mercury

Client Sample ID: 3160-5-2 (0-1.2')

TestAmerica Job ID: 500-136756-1

Lab Sample ID: 500-136756-26

□ 11/07/17 13:20 11/08/17 11:57

**Matrix: Solid** 

Percent Solids: 81.2

Method: 6010B - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<1.2		1.2	0.23	mg/Kg	<u></u>	11/08/17 07:33	11/09/17 03:42	1
Arsenic	4.7		0.59	0.20	mg/Kg	₩	11/08/17 07:33	11/09/17 03:42	1
Barium	42		0.59	0.067	mg/Kg	₩	11/08/17 07:33	11/09/17 03:42	1
Beryllium	0.43		0.23	0.055	mg/Kg	₩.	11/08/17 07:33	11/09/17 03:42	1
Cadmium	0.043	J B	0.12	0.021	mg/Kg	₩	11/08/17 07:33	11/09/17 03:42	1
Chromium	9.7		0.59	0.29	mg/Kg	₩	11/08/17 07:33	11/09/17 03:42	1
Cobalt	5.7		0.29	0.077	mg/Kg		11/08/17 07:33	11/09/17 03:42	1
Copper	8.3		0.59	0.16	mg/Kg	₩	11/08/17 07:33	11/09/17 03:42	1
Iron	20000		12		mg/Kg	₩	11/08/17 07:33	11/09/17 03:42	1
Lead	43		0.29	0.14	mg/Kg		11/08/17 07:33	11/09/17 03:42	1
Manganese	110		0.59	0.085	mg/Kg	₩	11/08/17 07:33	11/09/17 03:42	1
Nickel	8.3		0.59		mg/Kg	₩	11/08/17 07:33	11/09/17 03:42	1
Selenium	<0.59		0.59		mg/Kg	₩	11/08/17 07:33	11/09/17 03:42	1
Silver	<0.29		0.29		mg/Kg	₩	11/08/17 07:33	11/09/17 03:42	1
Thallium	< 0.59		0.59	0.29		₩	11/08/17 07:33	11/09/17 03:42	1
Vanadium	16		0.29	0.069	mg/Kg	₩	11/08/17 07:33	11/09/17 03:42	1
Zinc	48		1.2	0.51	mg/Kg	₽	11/08/17 07:33	11/09/17 03:42	1
Method: 7471B - Mercury (CVAA	<b>A)</b>								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

0.019

0.0063 mg/Kg

0.020

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136756-1

Client Sample ID: 3160-5-1 (0-1.2')

Lab Sample ID: 500-136756-27 Date Collected: 11/02/17 14:30 **Matrix: Solid** 

Date Received: 11/03/17 08:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/08/17 09:26	11/08/17 19:10	1
Barium	1.2		0.50	0.050	mg/L		11/08/17 09:26	11/08/17 19:10	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/08/17 09:26	11/08/17 19:10	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/08/17 09:26	11/08/17 19:10	1
Chromium	<0.025		0.025	0.010	mg/L		11/08/17 09:26	11/08/17 19:10	1
Cobalt	<0.025		0.025	0.010	mg/L		11/08/17 09:26	11/08/17 19:10	1
Copper	0.017	J	0.025	0.010	mg/L		11/08/17 09:26	11/08/17 19:10	1
Iron	<0.40		0.40	0.20	mg/L		11/08/17 09:26	11/08/17 19:10	1
Lead	<0.0075		0.0075	0.0075	mg/L		11/08/17 09:26	11/08/17 19:10	1
Manganese	0.089		0.025	0.010	mg/L		11/08/17 09:26	11/08/17 19:10	1
Nickel	<0.025		0.025	0.010	mg/L		11/08/17 09:26	11/08/17 19:10	1
Selenium	<0.050		0.050	0.020	mg/L		11/08/17 09:26	11/08/17 19:10	1
Silver	<0.025		0.025	0.010	mg/L		11/08/17 09:26	11/08/17 19:10	1
Vanadium	<0.025		0.025	0.010	mg/L		11/08/17 09:26	11/08/17 19:10	1
Zinc	0.040	J	0.50	0.020	mg/L		11/08/17 09:26	11/08/17 19:10	1
- Method: 6020A - Metals (	ICP/MS) - TCLP								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060		0.0060	0.0060	mg/L		11/08/17 09:26	11/09/17 16:53	1
Thallium -	<0.0020		0.0020	0.0020	mg/L		11/08/17 09:26	11/09/17 16:53	1
- Method: 7470A - TCLP M	ercury - TCLP								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/08/17 13:40	11/09/17 07:59	1
- General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	8.6		0.20	0.20	SU			11/13/17 07:08	1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/02/17 14:30 Date Received: 11/03/17 08:50

Client Sample ID: 3160-5-1 (0-1.2')

TestAmerica Job ID: 500-136756-1

Percent Solids: 85.8

Lab	Samp	le ID:	500-136756-27
			Matrix: Solid

Method: 6010B - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.27	J	1.0	0.20	mg/Kg	<u> </u>	11/08/17 07:33	11/09/17 03:46	1
Arsenic	13		0.52	0.18	mg/Kg	☼	11/08/17 07:33	11/09/17 03:46	1
Barium	83		0.52	0.059	mg/Kg	₩	11/08/17 07:33	11/09/17 03:46	1
Beryllium	0.60		0.21	0.048	mg/Kg		11/08/17 07:33	11/09/17 03:46	1
Cadmium	0.22	В	0.10	0.019	mg/Kg	₩	11/08/17 07:33	11/09/17 03:46	1
Chromium	13		0.52	0.26	mg/Kg	₩	11/08/17 07:33	11/09/17 03:46	1
Cobalt	8.6		0.26	0.068	mg/Kg		11/08/17 07:33	11/09/17 03:46	1
Copper	12		0.52	0.14	mg/Kg	₩	11/08/17 07:33	11/09/17 03:46	1
Iron	16000		10	5.4	mg/Kg	₩	11/08/17 07:33	11/09/17 03:46	1
Lead	110		0.26		mg/Kg		11/08/17 07:33	11/09/17 03:46	1
Manganese	310		0.52		mg/Kg	₩	11/08/17 07:33	11/09/17 03:46	1
Nickel	17		0.52	0.15	mg/Kg	₩	11/08/17 07:33	11/09/17 03:46	1
Selenium	<0.52		0.52		mg/Kg		11/08/17 07:33	11/09/17 03:46	1
Silver	<0.26		0.26	0.067		₩	11/08/17 07:33	11/09/17 03:46	1
Thallium	<0.52		0.52	0.26	mg/Kg	₩	11/08/17 07:33	11/09/17 03:46	1
Vanadium	20		0.26	0.061	mg/Kg		11/08/17 07:33	11/09/17 03:46	1
Zinc	75		1.0	0.45	mg/Kg	₩	11/08/17 07:33	11/09/17 03:46	1
_ Method: 7471B - Mercury (CVAA	N)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.037		0.018	0.0059	mg/Kg	<u></u>	11/07/17 13:20	11/08/17 12:00	1

# **Definitions/Glossary**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136756-1

### **Qualifiers**

#### **GC/MS Semi VOA**

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
F1	MS and/or MSD Recovery is outside acceptance limits.

#### **Metals**

Qualifier	Qualifier Description
F1	MS and/or MSD Recovery is outside acceptance limits.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
F2	MS/MSD RPD exceeds control limits
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.
В	Compound was found in the blank and sample.
F5	Duplicate RPD exceeds limit, and one or both sample results are less than 5 times RL. The data are considered valid because the absolute difference is less than the RL.
F3	Duplicate RPD exceeds the control limit

### Glossary

**RER** 

RPD

TEF

**TEQ** 

RL

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control

TestAmerica Job ID: 500-136756-1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

## **GC/MS VOA**

### **Prep Batch: 408500**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136756-1	3160-51-3 (0-1.5')	Total/NA	Solid	5035	_
500-136756-2	3160-51-2 (0-1.5')	Total/NA	Solid	5035	
500-136756-3	3160-51-1 (0-1.5')	Total/NA	Solid	5035	
500-136756-4	3160-36-11 (0-3')	Total/NA	Solid	5035	
500-136756-5	3160-36-10 (0-3')	Total/NA	Solid	5035	
500-136756-6	3160-36-9 (0-3')	Total/NA	Solid	5035	
500-136756-7	3160-36-8 (0-3')	Total/NA	Solid	5035	
500-136756-8	3160-36-7 (0-3')	Total/NA	Solid	5035	
500-136756-9	3160-36-6 (0-3')	Total/NA	Solid	5035	
500-136756-10	3160-36-5 (0-3')	Total/NA	Solid	5035	
500-136756-11	3160-36-4 (0-3')	Total/NA	Solid	5035	
500-136756-12	3160-36-3 (0-3')	Total/NA	Solid	5035	
500-136756-13	3160-36-2 (0-3')	Total/NA	Solid	5035	
500-136756-14	3160-36-1 (0-3')	Total/NA	Solid	5035	
500-136756-15	3160-21-10 (0-2.5')	Total/NA	Solid	5035	
500-136756-16	3160-21-9 (0-2.5')	Total/NA	Solid	5035	
500-136756-17	3160-21-8 (0-2.5')	Total/NA	Solid	5035	
500-136756-18	3160-21-7 (0-2.5')	Total/NA	Solid	5035	
500-136756-19	3160-21-6 (0-2.5')	Total/NA	Solid	5035	
500-136756-20	3160-21-5 (0-2.5')	Total/NA	Solid	5035	
500-136756-21	3160-21-4 (0-2.5')	Total/NA	Solid	5035	
500-136756-22	3160-21-3 (0-2.5')	Total/NA	Solid	5035	
500-136756-23	3160-21-2 (0-2.5')	Total/NA	Solid	5035	
500-136756-24	3160-21-1 (0-2.5')	Total/NA	Solid	5035	

### Analysis Batch: 408744

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136756-6	3160-36-9 (0-3')	Total/NA	Solid	8260B	408500
500-136756-7	3160-36-8 (0-3')	Total/NA	Solid	8260B	408500
500-136756-8	3160-36-7 (0-3')	Total/NA	Solid	8260B	408500
500-136756-9	3160-36-6 (0-3')	Total/NA	Solid	8260B	408500
500-136756-10	3160-36-5 (0-3')	Total/NA	Solid	8260B	408500
500-136756-11	3160-36-4 (0-3')	Total/NA	Solid	8260B	408500
500-136756-12	3160-36-3 (0-3')	Total/NA	Solid	8260B	408500
500-136756-13	3160-36-2 (0-3')	Total/NA	Solid	8260B	408500
500-136756-14	3160-36-1 (0-3')	Total/NA	Solid	8260B	408500
500-136756-15	3160-21-10 (0-2.5')	Total/NA	Solid	8260B	408500
500-136756-17	3160-21-8 (0-2.5')	Total/NA	Solid	8260B	408500
500-136756-18	3160-21-7 (0-2.5')	Total/NA	Solid	8260B	408500
500-136756-19	3160-21-6 (0-2.5')	Total/NA	Solid	8260B	408500
500-136756-20	3160-21-5 (0-2.5')	Total/NA	Solid	8260B	408500
500-136756-21	3160-21-4 (0-2.5')	Total/NA	Solid	8260B	408500
500-136756-22	3160-21-3 (0-2.5')	Total/NA	Solid	8260B	408500
500-136756-23	3160-21-2 (0-2.5')	Total/NA	Solid	8260B	408500
500-136756-24	3160-21-1 (0-2.5')	Total/NA	Solid	8260B	408500
MB 500-408744/6	Method Blank	Total/NA	Solid	8260B	
LCS 500-408744/4	Lab Control Sample	Total/NA	Solid	8260B	
LCSD 500-408744/5	Lab Control Sample Dup	Total/NA	Solid	8260B	

Page 125 of 195

3

-

6

8

46

11

13

14

# **QC Association Summary**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136756-1

## **GC/MS VOA (Continued)**

### Analysis Batch: 408942

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136756-1	3160-51-3 (0-1.5')	Total/NA	Solid	8260B	408500
500-136756-2	3160-51-2 (0-1.5')	Total/NA	Solid	8260B	408500
500-136756-3	3160-51-1 (0-1.5')	Total/NA	Solid	8260B	408500
500-136756-4	3160-36-11 (0-3')	Total/NA	Solid	8260B	408500
500-136756-5	3160-36-10 (0-3')	Total/NA	Solid	8260B	408500
500-136756-16	3160-21-9 (0-2.5')	Total/NA	Solid	8260B	408500
MB 500-408942/7	Method Blank	Total/NA	Solid	8260B	
LCS 500-408942/4	Lab Control Sample	Total/NA	Solid	8260B	
LCSD 500-408942/5	Lab Control Sample Dup	Total/NA	Solid	8260B	

### GC/MS Semi VOA

### **Prep Batch: 409279**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136756-21	3160-21-4 (0-2.5')	Total/NA	Solid	3541	
500-136756-22	3160-21-3 (0-2.5')	Total/NA	Solid	3541	
500-136756-23	3160-21-2 (0-2.5')	Total/NA	Solid	3541	
500-136756-24	3160-21-1 (0-2.5')	Total/NA	Solid	3541	
MB 500-409279/1-A	Method Blank	Total/NA	Solid	3541	
LCS 500-409279/2-A	Lab Control Sample	Total/NA	Solid	3541	

#### **Prep Batch: 409340**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136756-1	3160-51-3 (0-1.5')	Total/NA	Solid	3541	
500-136756-2	3160-51-2 (0-1.5')	Total/NA	Solid	3541	
500-136756-3	3160-51-1 (0-1.5')	Total/NA	Solid	3541	
500-136756-4	3160-36-11 (0-3')	Total/NA	Solid	3541	
500-136756-5	3160-36-10 (0-3')	Total/NA	Solid	3541	
500-136756-6	3160-36-9 (0-3')	Total/NA	Solid	3541	
500-136756-7	3160-36-8 (0-3')	Total/NA	Solid	3541	
500-136756-8	3160-36-7 (0-3')	Total/NA	Solid	3541	
500-136756-9	3160-36-6 (0-3')	Total/NA	Solid	3541	
500-136756-10	3160-36-5 (0-3')	Total/NA	Solid	3541	
500-136756-11	3160-36-4 (0-3')	Total/NA	Solid	3541	
500-136756-12	3160-36-3 (0-3')	Total/NA	Solid	3541	
500-136756-13	3160-36-2 (0-3')	Total/NA	Solid	3541	
500-136756-14	3160-36-1 (0-3')	Total/NA	Solid	3541	
500-136756-15	3160-21-10 (0-2.5')	Total/NA	Solid	3541	
500-136756-16	3160-21-9 (0-2.5')	Total/NA	Solid	3541	
500-136756-17	3160-21-8 (0-2.5')	Total/NA	Solid	3541	
500-136756-18	3160-21-7 (0-2.5')	Total/NA	Solid	3541	
500-136756-19	3160-21-6 (0-2.5')	Total/NA	Solid	3541	
500-136756-20	3160-21-5 (0-2.5')	Total/NA	Solid	3541	
MB 500-409340/1-A	Method Blank	Total/NA	Solid	3541	
LCS 500-409340/2-A	Lab Control Sample	Total/NA	Solid	3541	
500-136756-1 MS	3160-51-3 (0-1.5')	Total/NA	Solid	3541	
500-136756-1 MSD	3160-51-3 (0-1.5')	Total/NA	Solid	3541	

TestAmerica Job ID: 500-136756-1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

# GC/MS Semi VOA (Continued)

#### Analysis Batch: 409355

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136756-22	3160-21-3 (0-2.5')	Total/NA	Solid	8270D	409279
500-136756-23	3160-21-2 (0-2.5')	Total/NA	Solid	8270D	409279
MB 500-409279/1-A	Method Blank	Total/NA	Solid	8270D	409279
LCS 500-409279/2-A	Lab Control Sample	Total/NA	Solid	8270D	409279

#### Analysis Batch: 409400

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136756-8	3160-36-7 (0-3')	Total/NA	Solid	8270D	409340
500-136756-9	3160-36-6 (0-3')	Total/NA	Solid	8270D	409340
500-136756-10	3160-36-5 (0-3')	Total/NA	Solid	8270D	409340
500-136756-11	3160-36-4 (0-3')	Total/NA	Solid	8270D	409340
500-136756-12	3160-36-3 (0-3')	Total/NA	Solid	8270D	409340
500-136756-13	3160-36-2 (0-3')	Total/NA	Solid	8270D	409340
500-136756-14	3160-36-1 (0-3')	Total/NA	Solid	8270D	409340
500-136756-17	3160-21-8 (0-2.5')	Total/NA	Solid	8270D	409340
500-136756-19	3160-21-6 (0-2.5')	Total/NA	Solid	8270D	409340
500-136756-20	3160-21-5 (0-2.5')	Total/NA	Solid	8270D	409340
MB 500-409340/1-A	Method Blank	Total/NA	Solid	8270D	409340
LCS 500-409340/2-A	Lab Control Sample	Total/NA	Solid	8270D	409340

### Analysis Batch: 409487

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136756-1	3160-51-3 (0-1.5')	Total/NA	Solid	8270D	409340
500-136756-2	3160-51-2 (0-1.5')	Total/NA	Solid	8270D	409340
500-136756-3	3160-51-1 (0-1.5')	Total/NA	Solid	8270D	409340
500-136756-4	3160-36-11 (0-3')	Total/NA	Solid	8270D	409340
500-136756-5	3160-36-10 (0-3')	Total/NA	Solid	8270D	409340
500-136756-6	3160-36-9 (0-3')	Total/NA	Solid	8270D	409340
500-136756-7	3160-36-8 (0-3')	Total/NA	Solid	8270D	409340
500-136756-15	3160-21-10 (0-2.5')	Total/NA	Solid	8270D	409340
500-136756-16	3160-21-9 (0-2.5')	Total/NA	Solid	8270D	409340
500-136756-18	3160-21-7 (0-2.5')	Total/NA	Solid	8270D	409340
500-136756-1 MS	3160-51-3 (0-1.5')	Total/NA	Solid	8270D	409340
500-136756-1 MSD	3160-51-3 (0-1.5')	Total/NA	Solid	8270D	409340

#### **Analysis Batch: 409657**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136756-21	3160-21-4 (0-2.5')	Total/NA	Solid	8270D	409279
500-136756-24	3160-21-1 (0-2.5')	Total/NA	Solid	8270D	409279

#### Metals

### **Prep Batch: 408751**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136756-1	3160-51-3 (0-1.5')	Total/NA	Solid	3050B	
500-136756-2	3160-51-2 (0-1.5')	Total/NA	Solid	3050B	
500-136756-3	3160-51-1 (0-1.5')	Total/NA	Solid	3050B	
500-136756-4	3160-36-11 (0-3')	Total/NA	Solid	3050B	
500-136756-5	3160-36-10 (0-3')	Total/NA	Solid	3050B	
500-136756-6	3160-36-9 (0-3')	Total/NA	Solid	3050B	

TestAmerica Chicago

Page 127 of 195

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

# **Metals (Continued)**

### Prep Batch: 408751 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136756-7	3160-36-8 (0-3')	Total/NA	Solid	3050B	
500-136756-8	3160-36-7 (0-3')	Total/NA	Solid	3050B	
500-136756-9	3160-36-6 (0-3')	Total/NA	Solid	3050B	
500-136756-10	3160-36-5 (0-3')	Total/NA	Solid	3050B	
500-136756-11	3160-36-4 (0-3')	Total/NA	Solid	3050B	
500-136756-12	3160-36-3 (0-3')	Total/NA	Solid	3050B	
500-136756-13	3160-36-2 (0-3')	Total/NA	Solid	3050B	
500-136756-14	3160-36-1 (0-3')	Total/NA	Solid	3050B	
500-136756-15	3160-21-10 (0-2.5')	Total/NA	Solid	3050B	
500-136756-16	3160-21-9 (0-2.5')	Total/NA	Solid	3050B	
500-136756-17	3160-21-8 (0-2.5')	Total/NA	Solid	3050B	
500-136756-18	3160-21-7 (0-2.5')	Total/NA	Solid	3050B	
500-136756-19	3160-21-6 (0-2.5')	Total/NA	Solid	3050B	
500-136756-20	3160-21-5 (0-2.5')	Total/NA	Solid	3050B	
MB 500-408751/1-A	Method Blank	Total/NA	Solid	3050B	
LCS 500-408751/2-A	Lab Control Sample	Total/NA	Solid	3050B	
500-136756-1 MS	3160-51-3 (0-1.5')	Total/NA	Solid	3050B	
500-136756-1 MSD	3160-51-3 (0-1.5')	Total/NA	Solid	3050B	
500-136756-1 DU	3160-51-3 (0-1.5')	Total/NA	Solid	3050B	

### **Prep Batch: 408789**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
500-136756-1	3160-51-3 (0-1.5')	Total/NA	Solid	7471B	
500-136756-2	3160-51-2 (0-1.5')	Total/NA	Solid	7471B	
500-136756-3	3160-51-1 (0-1.5')	Total/NA	Solid	7471B	
500-136756-4	3160-36-11 (0-3')	Total/NA	Solid	7471B	
500-136756-5	3160-36-10 (0-3')	Total/NA	Solid	7471B	
500-136756-6	3160-36-9 (0-3')	Total/NA	Solid	7471B	
500-136756-7	3160-36-8 (0-3')	Total/NA	Solid	7471B	
500-136756-8	3160-36-7 (0-3')	Total/NA	Solid	7471B	
500-136756-9	3160-36-6 (0-3')	Total/NA	Solid	7471B	
500-136756-10	3160-36-5 (0-3')	Total/NA	Solid	7471B	
500-136756-11	3160-36-4 (0-3')	Total/NA	Solid	7471B	
500-136756-12	3160-36-3 (0-3')	Total/NA	Solid	7471B	
500-136756-13	3160-36-2 (0-3')	Total/NA	Solid	7471B	
500-136756-14	3160-36-1 (0-3')	Total/NA	Solid	7471B	
500-136756-15	3160-21-10 (0-2.5')	Total/NA	Solid	7471B	
500-136756-16	3160-21-9 (0-2.5')	Total/NA	Solid	7471B	
500-136756-17	3160-21-8 (0-2.5')	Total/NA	Solid	7471B	
500-136756-18	3160-21-7 (0-2.5')	Total/NA	Solid	7471B	
500-136756-19	3160-21-6 (0-2.5')	Total/NA	Solid	7471B	
500-136756-20	3160-21-5 (0-2.5')	Total/NA	Solid	7471B	
MB 500-408789/35-A	Method Blank	Total/NA	Solid	7471B	
LCS 500-408789/36-A	Lab Control Sample	Total/NA	Solid	7471B	
500-136756-8 MS	3160-36-7 (0-3')	Total/NA	Solid	7471B	
500-136756-8 MSD	3160-36-7 (0-3')	Total/NA	Solid	7471B	
500-136756-8 DU	3160-36-7 (0-3')	Total/NA	Solid	7471B	

### **Prep Batch: 408790**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136756-21	3160-21-4 (0-2.5')	Total/NA	Solid	7471B	

TestAmerica Chicago

Page 128 of 195

2

7

10

11

13

14

11/15/2017

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

**Metals (Continued)** 

### Prep Batch: 408790 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136756-22	3160-21-3 (0-2.5')	Total/NA	Solid	7471B	
500-136756-23	3160-21-2 (0-2.5')	Total/NA	Solid	7471B	
500-136756-24	3160-21-1 (0-2.5')	Total/NA	Solid	7471B	
500-136756-25	3160-5-3 (0-1.2')	Total/NA	Solid	7471B	
500-136756-26	3160-5-2 (0-1.2')	Total/NA	Solid	7471B	
500-136756-27	3160-5-1 (0-1.2')	Total/NA	Solid	7471B	
MB 500-408790/12-A	Method Blank	Total/NA	Solid	7471B	
LCS 500-408790/13-A	Lab Control Sample	Total/NA	Solid	7471B	
500-136756-22 MS	3160-21-3 (0-2.5')	Total/NA	Solid	7471B	
500-136756-22 MSD	3160-21-3 (0-2.5')	Total/NA	Solid	7471B	
500-136756-22 DU	3160-21-3 (0-2.5')	Total/NA	Solid	7471B	

#### Leach Batch: 408821

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136756-1	3160-51-3 (0-1.5')	TCLP	Solid	1311	
500-136756-2	3160-51-2 (0-1.5')	TCLP	Solid	1311	
500-136756-3	3160-51-1 (0-1.5')	TCLP	Solid	1311	
500-136756-4	3160-36-11 (0-3')	TCLP	Solid	1311	
500-136756-5	3160-36-10 (0-3')	TCLP	Solid	1311	
500-136756-6	3160-36-9 (0-3')	TCLP	Solid	1311	
500-136756-7	3160-36-8 (0-3')	TCLP	Solid	1311	
500-136756-8	3160-36-7 (0-3')	TCLP	Solid	1311	
500-136756-9	3160-36-6 (0-3')	TCLP	Solid	1311	
500-136756-10	3160-36-5 (0-3')	TCLP	Solid	1311	
500-136756-11	3160-36-4 (0-3')	TCLP	Solid	1311	
500-136756-12	3160-36-3 (0-3')	TCLP	Solid	1311	
500-136756-13	3160-36-2 (0-3')	TCLP	Solid	1311	
500-136756-14	3160-36-1 (0-3')	TCLP	Solid	1311	
500-136756-15	3160-21-10 (0-2.5')	TCLP	Solid	1311	
500-136756-16	3160-21-9 (0-2.5')	TCLP	Solid	1311	
500-136756-17	3160-21-8 (0-2.5')	TCLP	Solid	1311	
500-136756-18	3160-21-7 (0-2.5')	TCLP	Solid	1311	
500-136756-19	3160-21-6 (0-2.5')	TCLP	Solid	1311	
500-136756-20	3160-21-5 (0-2.5')	TCLP	Solid	1311	
LB 500-408821/1-B	Method Blank	TCLP	Solid	1311	
LB 500-408821/1-C	Method Blank	TCLP	Solid	1311	
500-136756-3 MS	3160-51-1 (0-1.5')	TCLP	Solid	1311	
500-136756-20 MS	3160-21-5 (0-2.5')	TCLP	Solid	1311	
500-136756-3 DU	3160-51-1 (0-1.5')	TCLP	Solid	1311	
500-136756-20 DU	3160-21-5 (0-2.5')	TCLP	Solid	1311	

## Leach Batch: 408822

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136756-21	3160-21-4 (0-2.5')	TCLP	Solid	1311	
500-136756-22	3160-21-3 (0-2.5')	TCLP	Solid	1311	
500-136756-23	3160-21-2 (0-2.5')	TCLP	Solid	1311	
500-136756-24	3160-21-1 (0-2.5')	TCLP	Solid	1311	
500-136756-25	3160-5-3 (0-1.2')	TCLP	Solid	1311	
500-136756-26	3160-5-2 (0-1.2')	TCLP	Solid	1311	
500-136756-27	3160-5-1 (0-1.2')	TCLP	Solid	1311	
LB 500-408822/1-B	Method Blank	TCLP	Solid	1311	

TestAmerica Chicago

11/15/2017

Page 129 of 195

6

6

8

9

11

4 4

_ _ _

# **QC Association Summary**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136756-1

# **Metals (Continued)**

### Leach Batch: 408822 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LB 500-408822/1-C	Method Blank	TCLP	Solid	1311	
500-136756-21 MS	3160-21-4 (0-2.5')	TCLP	Solid	1311	
500-136756-21 DU	3160-21-4 (0-2.5')	TCLP	Solid	1311	

### Leach Batch: 408829

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136756-3	3160-51-1 (0-1.5')	SPLP East	Solid	1312	
500-136756-6	3160-36-9 (0-3')	SPLP East	Solid	1312	
500-136756-8	3160-36-7 (0-3')	SPLP East	Solid	1312	
500-136756-9	3160-36-6 (0-3')	SPLP East	Solid	1312	
500-136756-10	3160-36-5 (0-3')	SPLP East	Solid	1312	
500-136756-12	3160-36-3 (0-3')	SPLP East	Solid	1312	
500-136756-13	3160-36-2 (0-3')	SPLP East	Solid	1312	
LB 500-408829/1-B	Method Blank	SPLP East	Solid	1312	

### Leach Batch: 408832

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136756-21	3160-21-4 (0-2.5')	SPLP East	Solid	1312	
LB 500-408832/1-C	Method Blank	SPLP East	Solid	1312	

### **Prep Batch: 408945**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136756-21	3160-21-4 (0-2.5')	Total/NA	Solid	3050B	_
500-136756-22	3160-21-3 (0-2.5')	Total/NA	Solid	3050B	
500-136756-23	3160-21-2 (0-2.5')	Total/NA	Solid	3050B	
500-136756-24	3160-21-1 (0-2.5')	Total/NA	Solid	3050B	
500-136756-25	3160-5-3 (0-1.2')	Total/NA	Solid	3050B	
500-136756-26	3160-5-2 (0-1.2')	Total/NA	Solid	3050B	
500-136756-27	3160-5-1 (0-1.2')	Total/NA	Solid	3050B	
MB 500-408945/1-A	Method Blank	Total/NA	Solid	3050B	
LCS 500-408945/2-A	Lab Control Sample	Total/NA	Solid	3050B	
500-136756-21 MS	3160-21-4 (0-2.5')	Total/NA	Solid	3050B	
500-136756-21 MSD	3160-21-4 (0-2.5')	Total/NA	Solid	3050B	
500-136756-21 DU	3160-21-4 (0-2.5')	Total/NA	Solid	3050B	

### **Analysis Batch: 408958**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136756-1	3160-51-3 (0-1.5')	Total/NA	Solid	6010B	408751
500-136756-2	3160-51-2 (0-1.5')	Total/NA	Solid	6010B	408751
500-136756-3	3160-51-1 (0-1.5')	Total/NA	Solid	6010B	408751
500-136756-4	3160-36-11 (0-3')	Total/NA	Solid	6010B	408751
500-136756-5	3160-36-10 (0-3')	Total/NA	Solid	6010B	408751
500-136756-6	3160-36-9 (0-3')	Total/NA	Solid	6010B	408751
500-136756-7	3160-36-8 (0-3')	Total/NA	Solid	6010B	408751
500-136756-8	3160-36-7 (0-3')	Total/NA	Solid	6010B	408751
500-136756-9	3160-36-6 (0-3')	Total/NA	Solid	6010B	408751
500-136756-10	3160-36-5 (0-3')	Total/NA	Solid	6010B	408751
MB 500-408751/1-A	Method Blank	Total/NA	Solid	6010B	408751
LCS 500-408751/2-A	Lab Control Sample	Total/NA	Solid	6010B	408751
500-136756-1 MS	3160-51-3 (0-1.5')	Total/NA	Solid	6010B	408751
500-136756-1 MSD	3160-51-3 (0-1.5')	Total/NA	Solid	6010B	408751

TestAmerica Chicago

11/15/2017

3

4

**O** 

g

10

12

13

# **QC Association Summary**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136756-1

# **Metals (Continued)**

### **Analysis Batch: 408958 (Continued)**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136756-1 DU	3160-51-3 (0-1.5')	Total/NA	Solid	6010B	408751

### Prep Batch: 408963

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136756-1	3160-51-3 (0-1.5')	TCLP	Solid	3010A	408821
500-136756-2	3160-51-2 (0-1.5')	TCLP	Solid	3010A	408821
500-136756-3	3160-51-1 (0-1.5')	TCLP	Solid	3010A	408821
500-136756-4	3160-36-11 (0-3')	TCLP	Solid	3010A	408821
500-136756-5	3160-36-10 (0-3')	TCLP	Solid	3010A	408821
500-136756-6	3160-36-9 (0-3')	TCLP	Solid	3010A	408821
500-136756-7	3160-36-8 (0-3')	TCLP	Solid	3010A	408821
500-136756-8	3160-36-7 (0-3')	TCLP	Solid	3010A	408821
500-136756-9	3160-36-6 (0-3')	TCLP	Solid	3010A	408821
500-136756-10	3160-36-5 (0-3')	TCLP	Solid	3010A	408821
500-136756-11	3160-36-4 (0-3')	TCLP	Solid	3010A	408821
500-136756-12	3160-36-3 (0-3')	TCLP	Solid	3010A	408821
500-136756-13	3160-36-2 (0-3')	TCLP	Solid	3010A	408821
500-136756-14	3160-36-1 (0-3')	TCLP	Solid	3010A	408821
500-136756-15	3160-21-10 (0-2.5')	TCLP	Solid	3010A	408821
500-136756-16	3160-21-9 (0-2.5')	TCLP	Solid	3010A	408821
500-136756-17	3160-21-8 (0-2.5')	TCLP	Solid	3010A	408821
500-136756-18	3160-21-7 (0-2.5')	TCLP	Solid	3010A	408821
500-136756-19	3160-21-6 (0-2.5')	TCLP	Solid	3010A	408821
500-136756-20	3160-21-5 (0-2.5')	TCLP	Solid	3010A	408821
LB 500-408821/1-B	Method Blank	TCLP	Solid	3010A	408821
LCS 500-408963/2-A	Lab Control Sample	Total/NA	Solid	3010A	
500-136756-20 MS	3160-21-5 (0-2.5')	TCLP	Solid	3010A	408821
500-136756-20 DU	3160-21-5 (0-2.5')	TCLP	Solid	3010A	408821

### **Prep Batch: 408973**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136756-21	3160-21-4 (0-2.5')	TCLP	Solid	3010A	408822
500-136756-22	3160-21-3 (0-2.5')	TCLP	Solid	3010A	408822
500-136756-23	3160-21-2 (0-2.5')	TCLP	Solid	3010A	408822
500-136756-24	3160-21-1 (0-2.5')	TCLP	Solid	3010A	408822
500-136756-25	3160-5-3 (0-1.2')	TCLP	Solid	3010A	408822
500-136756-26	3160-5-2 (0-1.2')	TCLP	Solid	3010A	408822
500-136756-27	3160-5-1 (0-1.2')	TCLP	Solid	3010A	408822
LB 500-408822/1-B	Method Blank	TCLP	Solid	3010A	408822
LCS 500-408973/2-A	Lab Control Sample	Total/NA	Solid	3010A	

## **Prep Batch: 409004**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136756-1	3160-51-3 (0-1.5')	TCLP	Solid	7470A	408821
500-136756-2	3160-51-2 (0-1.5')	TCLP	Solid	7470A	408821
500-136756-3	3160-51-1 (0-1.5')	TCLP	Solid	7470A	408821
500-136756-4	3160-36-11 (0-3')	TCLP	Solid	7470A	408821
500-136756-5	3160-36-10 (0-3')	TCLP	Solid	7470A	408821
500-136756-6	3160-36-9 (0-3')	TCLP	Solid	7470A	408821
500-136756-7	3160-36-8 (0-3')	TCLP	Solid	7470A	408821
500-136756-8	3160-36-7 (0-3')	TCLP	Solid	7470A	408821

TestAmerica Chicago

Page 131 of 195

3

4

6

8

3

11

12

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

# **Metals (Continued)**

### Prep Batch: 409004 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136756-9	3160-36-6 (0-3')	TCLP	Solid	7470A	408821
500-136756-10	3160-36-5 (0-3')	TCLP	Solid	7470A	408821
500-136756-11	3160-36-4 (0-3')	TCLP	Solid	7470A	408821
500-136756-12	3160-36-3 (0-3')	TCLP	Solid	7470A	408821
500-136756-13	3160-36-2 (0-3')	TCLP	Solid	7470A	408821
500-136756-14	3160-36-1 (0-3')	TCLP	Solid	7470A	408821
500-136756-15	3160-21-10 (0-2.5')	TCLP	Solid	7470A	408821
500-136756-16	3160-21-9 (0-2.5')	TCLP	Solid	7470A	408821
500-136756-17	3160-21-8 (0-2.5')	TCLP	Solid	7470A	408821
500-136756-18	3160-21-7 (0-2.5')	TCLP	Solid	7470A	408821
500-136756-19	3160-21-6 (0-2.5')	TCLP	Solid	7470A	408821
500-136756-20	3160-21-5 (0-2.5')	TCLP	Solid	7470A	408821
LB 500-408821/1-C	Method Blank	TCLP	Solid	7470A	408821
MB 500-409004/12-A	Method Blank	Total/NA	Solid	7470A	
LCS 500-409004/13-A	Lab Control Sample	Total/NA	Solid	7470A	
500-136756-3 MS	3160-51-1 (0-1.5')	TCLP	Solid	7470A	408821
500-136756-3 DU	3160-51-1 (0-1.5')	TCLP	Solid	7470A	408821

### **Prep Batch: 409005**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136756-21	3160-21-4 (0-2.5')	TCLP	Solid	7470A	408822
500-136756-22	3160-21-3 (0-2.5')	TCLP	Solid	7470A	408822
500-136756-23	3160-21-2 (0-2.5')	TCLP	Solid	7470A	408822
500-136756-24	3160-21-1 (0-2.5')	TCLP	Solid	7470A	408822
500-136756-25	3160-5-3 (0-1.2')	TCLP	Solid	7470A	408822
500-136756-26	3160-5-2 (0-1.2')	TCLP	Solid	7470A	408822
500-136756-27	3160-5-1 (0-1.2')	TCLP	Solid	7470A	408822
LB 500-408822/1-C	Method Blank	TCLP	Solid	7470A	408822
MB 500-409005/12-A	Method Blank	Total/NA	Solid	7470A	
LCS 500-409005/13-A	Lab Control Sample	Total/NA	Solid	7470A	
500-136756-21 MS	3160-21-4 (0-2.5')	TCLP	Solid	7470A	408822
500-136756-21 DU	3160-21-4 (0-2.5')	TCLP	Solid	7470A	408822

### Analysis Batch: 409010

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136756-1	3160-51-3 (0-1.5')	Total/NA	Solid	7471B	408789
500-136756-2	3160-51-2 (0-1.5')	Total/NA	Solid	7471B	408789
500-136756-3	3160-51-1 (0-1.5')	Total/NA	Solid	7471B	408789
500-136756-4	3160-36-11 (0-3')	Total/NA	Solid	7471B	408789
500-136756-5	3160-36-10 (0-3')	Total/NA	Solid	7471B	408789
500-136756-6	3160-36-9 (0-3')	Total/NA	Solid	7471B	408789
500-136756-7	3160-36-8 (0-3')	Total/NA	Solid	7471B	408789
500-136756-8	3160-36-7 (0-3')	Total/NA	Solid	7471B	408789
500-136756-9	3160-36-6 (0-3')	Total/NA	Solid	7471B	408789
500-136756-10	3160-36-5 (0-3')	Total/NA	Solid	7471B	408789
500-136756-11	3160-36-4 (0-3')	Total/NA	Solid	7471B	408789
500-136756-12	3160-36-3 (0-3')	Total/NA	Solid	7471B	408789
500-136756-13	3160-36-2 (0-3')	Total/NA	Solid	7471B	408789
500-136756-14	3160-36-1 (0-3')	Total/NA	Solid	7471B	408789
500-136756-15	3160-21-10 (0-2.5')	Total/NA	Solid	7471B	408789
500-136756-16	3160-21-9 (0-2.5')	Total/NA	Solid	7471B	408789

TestAmerica Chicago

TestAmerica Job ID: 500-136756-1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

# **Metals (Continued)**

### **Analysis Batch: 409010 (Continued)**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136756-17	3160-21-8 (0-2.5')	Total/NA	Solid	7471B	408789
500-136756-18	3160-21-7 (0-2.5')	Total/NA	Solid	7471B	408789
500-136756-19	3160-21-6 (0-2.5')	Total/NA	Solid	7471B	408789
500-136756-20	3160-21-5 (0-2.5')	Total/NA	Solid	7471B	408789
500-136756-21	3160-21-4 (0-2.5')	Total/NA	Solid	7471B	408790
500-136756-22	3160-21-3 (0-2.5')	Total/NA	Solid	7471B	408790
500-136756-23	3160-21-2 (0-2.5')	Total/NA	Solid	7471B	408790
500-136756-24	3160-21-1 (0-2.5')	Total/NA	Solid	7471B	408790
500-136756-25	3160-5-3 (0-1.2')	Total/NA	Solid	7471B	408790
500-136756-26	3160-5-2 (0-1.2')	Total/NA	Solid	7471B	408790
500-136756-27	3160-5-1 (0-1.2')	Total/NA	Solid	7471B	408790
MB 500-408789/35-A	Method Blank	Total/NA	Solid	7471B	408789
MB 500-408790/12-A	Method Blank	Total/NA	Solid	7471B	408790
LCS 500-408789/36-A	Lab Control Sample	Total/NA	Solid	7471B	408789
LCS 500-408790/13-A	Lab Control Sample	Total/NA	Solid	7471B	408790
500-136756-8 MS	3160-36-7 (0-3')	Total/NA	Solid	7471B	408789
500-136756-8 MSD	3160-36-7 (0-3')	Total/NA	Solid	7471B	408789
500-136756-22 MS	3160-21-3 (0-2.5')	Total/NA	Solid	7471B	408790
500-136756-22 MSD	3160-21-3 (0-2.5')	Total/NA	Solid	7471B	408790
500-136756-8 DU	3160-36-7 (0-3')	Total/NA	Solid	7471B	408789
500-136756-22 DU	3160-21-3 (0-2.5')	Total/NA	Solid	7471B	408790

### **Prep Batch: 409049**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136756-3	3160-51-1 (0-1.5')	SPLP East	Solid	3010A	408829
500-136756-6	3160-36-9 (0-3')	SPLP East	Solid	3010A	408829
500-136756-8	3160-36-7 (0-3')	SPLP East	Solid	3010A	408829
500-136756-9	3160-36-6 (0-3')	SPLP East	Solid	3010A	408829
500-136756-10	3160-36-5 (0-3')	SPLP East	Solid	3010A	408829
500-136756-12	3160-36-3 (0-3')	SPLP East	Solid	3010A	408829
500-136756-13	3160-36-2 (0-3')	SPLP East	Solid	3010A	408829
LB 500-408829/1-B	Method Blank	SPLP East	Solid	3010A	408829
LCS 500-409049/2-A	Lab Control Sample	Total/NA	Solid	3010A	

### **Analysis Batch: 409155**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136756-1	3160-51-3 (0-1.5')	TCLP	Solid	6010B	408963
500-136756-2	3160-51-2 (0-1.5')	TCLP	Solid	6010B	408963
500-136756-3	3160-51-1 (0-1.5')	TCLP	Solid	6010B	408963
500-136756-4	3160-36-11 (0-3')	TCLP	Solid	6010B	408963
500-136756-5	3160-36-10 (0-3')	TCLP	Solid	6010B	408963
500-136756-6	3160-36-9 (0-3')	TCLP	Solid	6010B	408963
500-136756-7	3160-36-8 (0-3')	TCLP	Solid	6010B	408963
500-136756-8	3160-36-7 (0-3')	TCLP	Solid	6010B	408963
500-136756-9	3160-36-6 (0-3')	TCLP	Solid	6010B	408963
500-136756-10	3160-36-5 (0-3')	TCLP	Solid	6010B	408963
500-136756-11	3160-36-4 (0-3')	TCLP	Solid	6010B	408963
500-136756-12	3160-36-3 (0-3')	TCLP	Solid	6010B	408963
500-136756-13	3160-36-2 (0-3')	TCLP	Solid	6010B	408963
500-136756-14	3160-36-1 (0-3')	TCLP	Solid	6010B	408963
500-136756-15	3160-21-10 (0-2.5')	TCLP	Solid	6010B	408963

TestAmerica Chicago

Page 133 of 195 11/15/2017

9

4

6

8

46

11

12

13

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

# **Metals (Continued)**

### **Analysis Batch: 409155 (Continued)**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136756-16	3160-21-9 (0-2.5')	TCLP	Solid	6010B	408963
500-136756-17	3160-21-8 (0-2.5')	TCLP	Solid	6010B	408963
500-136756-18	3160-21-7 (0-2.5')	TCLP	Solid	6010B	408963
500-136756-19	3160-21-6 (0-2.5')	TCLP	Solid	6010B	408963
500-136756-20	3160-21-5 (0-2.5')	TCLP	Solid	6010B	408963
500-136756-21	3160-21-4 (0-2.5')	TCLP	Solid	6010B	408973
500-136756-22	3160-21-3 (0-2.5')	TCLP	Solid	6010B	408973
500-136756-23	3160-21-2 (0-2.5')	TCLP	Solid	6010B	408973
500-136756-24	3160-21-1 (0-2.5')	TCLP	Solid	6010B	408973
500-136756-25	3160-5-3 (0-1.2')	TCLP	Solid	6010B	408973
500-136756-26	3160-5-2 (0-1.2')	TCLP	Solid	6010B	408973
500-136756-27	3160-5-1 (0-1.2')	TCLP	Solid	6010B	408973
LB 500-408821/1-B	Method Blank	TCLP	Solid	6010B	408963
LB 500-408822/1-B	Method Blank	TCLP	Solid	6010B	408973
LCS 500-408963/2-A	Lab Control Sample	Total/NA	Solid	6010B	408963
LCS 500-408973/2-A	Lab Control Sample	Total/NA	Solid	6010B	408973
500-136756-20 MS	3160-21-5 (0-2.5')	TCLP	Solid	6010B	408963
500-136756-20 DU	3160-21-5 (0-2.5')	TCLP	Solid	6010B	408963

### Analysis Batch: 409164

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136756-7	3160-36-8 (0-3')	Total/NA	Solid	6010B	408751
500-136756-11	3160-36-4 (0-3')	Total/NA	Solid	6010B	408751
500-136756-12	3160-36-3 (0-3')	Total/NA	Solid	6010B	408751
500-136756-13	3160-36-2 (0-3')	Total/NA	Solid	6010B	408751
500-136756-14	3160-36-1 (0-3')	Total/NA	Solid	6010B	408751
500-136756-15	3160-21-10 (0-2.5')	Total/NA	Solid	6010B	408751
500-136756-16	3160-21-9 (0-2.5')	Total/NA	Solid	6010B	408751
500-136756-17	3160-21-8 (0-2.5')	Total/NA	Solid	6010B	408751
500-136756-18	3160-21-7 (0-2.5')	Total/NA	Solid	6010B	408751
500-136756-19	3160-21-6 (0-2.5')	Total/NA	Solid	6010B	408751
500-136756-20	3160-21-5 (0-2.5')	Total/NA	Solid	6010B	408751

### Analysis Batch: 409165

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136756-21	3160-21-4 (0-2.5')	Total/NA	Solid	6010B	408945
500-136756-22	3160-21-3 (0-2.5')	Total/NA	Solid	6010B	408945
500-136756-23	3160-21-2 (0-2.5')	Total/NA	Solid	6010B	408945
500-136756-24	3160-21-1 (0-2.5')	Total/NA	Solid	6010B	408945
500-136756-25	3160-5-3 (0-1.2')	Total/NA	Solid	6010B	408945
500-136756-26	3160-5-2 (0-1.2')	Total/NA	Solid	6010B	408945
500-136756-27	3160-5-1 (0-1.2')	Total/NA	Solid	6010B	408945
MB 500-408945/1-A	Method Blank	Total/NA	Solid	6010B	408945
LCS 500-408945/2-A	Lab Control Sample	Total/NA	Solid	6010B	408945
500-136756-21 MS	3160-21-4 (0-2.5')	Total/NA	Solid	6010B	408945
500-136756-21 MSD	3160-21-4 (0-2.5')	Total/NA	Solid	6010B	408945
500-136756-21 DU	3160-21-4 (0-2.5')	Total/NA	Solid	6010B	408945

### **Analysis Batch: 409195**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136756-1	3160-51-3 (0-1.5')	TCLP	Solid	7470A	409004

TestAmerica Chicago

11/15/2017

Page 134 of 195

3

7

ŏ

10

15

13

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

# **Metals (Continued)**

## **Analysis Batch: 409195 (Continued)**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136756-2	3160-51-2 (0-1.5')	TCLP	Solid	7470A	409004
500-136756-3	3160-51-1 (0-1.5')	TCLP	Solid	7470A	409004
500-136756-4	3160-36-11 (0-3')	TCLP	Solid	7470A	409004
500-136756-5	3160-36-10 (0-3')	TCLP	Solid	7470A	409004
500-136756-6	3160-36-9 (0-3')	TCLP	Solid	7470A	409004
500-136756-7	3160-36-8 (0-3')	TCLP	Solid	7470A	409004
500-136756-8	3160-36-7 (0-3')	TCLP	Solid	7470A	409004
500-136756-9	3160-36-6 (0-3')	TCLP	Solid	7470A	409004
500-136756-10	3160-36-5 (0-3')	TCLP	Solid	7470A	409004
500-136756-11	3160-36-4 (0-3')	TCLP	Solid	7470A	409004
500-136756-12	3160-36-3 (0-3')	TCLP	Solid	7470A	409004
500-136756-13	3160-36-2 (0-3')	TCLP	Solid	7470A	409004
500-136756-14	3160-36-1 (0-3')	TCLP	Solid	7470A	409004
500-136756-15	3160-21-10 (0-2.5')	TCLP	Solid	7470A	409004
500-136756-16	3160-21-9 (0-2.5')	TCLP	Solid	7470A	409004
500-136756-17	3160-21-8 (0-2.5')	TCLP	Solid	7470A	409004
500-136756-18	3160-21-7 (0-2.5')	TCLP	Solid	7470A	409004
500-136756-19	3160-21-6 (0-2.5')	TCLP	Solid	7470A	409004
500-136756-20	3160-21-5 (0-2.5')	TCLP	Solid	7470A	409004
500-136756-21	3160-21-4 (0-2.5')	TCLP	Solid	7470A	409005
500-136756-22	3160-21-3 (0-2.5')	TCLP	Solid	7470A	409005
500-136756-23	3160-21-2 (0-2.5')	TCLP	Solid	7470A	409005
500-136756-24	3160-21-1 (0-2.5')	TCLP	Solid	7470A	409005
500-136756-25	3160-5-3 (0-1.2')	TCLP	Solid	7470A	409005
500-136756-26	3160-5-2 (0-1.2')	TCLP	Solid	7470A	409005
500-136756-27	3160-5-1 (0-1.2')	TCLP	Solid	7470A	409005
LB 500-408821/1-C	Method Blank	TCLP	Solid	7470A	409004
LB 500-408822/1-C	Method Blank	TCLP	Solid	7470A	409005
MB 500-409004/12-A	Method Blank	Total/NA	Solid	7470A	409004
MB 500-409005/12-A	Method Blank	Total/NA	Solid	7470A	409005
LCS 500-409004/13-A	Lab Control Sample	Total/NA	Solid	7470A	409004
LCS 500-409005/13-A	Lab Control Sample	Total/NA	Solid	7470A	409005
500-136756-3 MS	3160-51-1 (0-1.5')	TCLP	Solid	7470A	409004
500-136756-21 MS	3160-21-4 (0-2.5')	TCLP	Solid	7470A	409005
500-136756-3 DU	3160-51-1 (0-1.5')	TCLP	Solid	7470A	409004
500-136756-21 DU	3160-21-4 (0-2.5')	TCLP	Solid	7470A	409005

### **Analysis Batch: 409318**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136756-3	3160-51-1 (0-1.5')	SPLP East	Solid	6010B	409049
500-136756-6	3160-36-9 (0-3')	SPLP East	Solid	6010B	409049
500-136756-8	3160-36-7 (0-3')	SPLP East	Solid	6010B	409049
500-136756-9	3160-36-6 (0-3')	SPLP East	Solid	6010B	409049
500-136756-10	3160-36-5 (0-3')	SPLP East	Solid	6010B	409049
500-136756-12	3160-36-3 (0-3')	SPLP East	Solid	6010B	409049
500-136756-13	3160-36-2 (0-3')	SPLP East	Solid	6010B	409049
500-136756-23	3160-21-2 (0-2.5')	Total/NA	Solid	6010B	408945
LB 500-408829/1-B	Method Blank	SPLP East	Solid	6010B	409049
LCS 500-409049/2-A	Lab Control Sample	Total/NA	Solid	6010B	409049

TestAmerica Chicago

Page 135 of 195

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

# **Metals (Continued)**

### Analysis Batch: 409365

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136756-9	3160-36-6 (0-3')	TCLP	Solid	6020A	408963
500-136756-10	3160-36-5 (0-3')	TCLP	Solid	6020A	408963
500-136756-11	3160-36-4 (0-3')	TCLP	Solid	6020A	408963
500-136756-12	3160-36-3 (0-3')	TCLP	Solid	6020A	408963
500-136756-13	3160-36-2 (0-3')	TCLP	Solid	6020A	408963
500-136756-14	3160-36-1 (0-3')	TCLP	Solid	6020A	408963
500-136756-15	3160-21-10 (0-2.5')	TCLP	Solid	6020A	408963
500-136756-16	3160-21-9 (0-2.5')	TCLP	Solid	6020A	408963
500-136756-17	3160-21-8 (0-2.5')	TCLP	Solid	6020A	408963
500-136756-18	3160-21-7 (0-2.5')	TCLP	Solid	6020A	408963
500-136756-19	3160-21-6 (0-2.5')	TCLP	Solid	6020A	408963
500-136756-20	3160-21-5 (0-2.5')	TCLP	Solid	6020A	408963
500-136756-21	3160-21-4 (0-2.5')	TCLP	Solid	6020A	408973
500-136756-22	3160-21-3 (0-2.5')	TCLP	Solid	6020A	408973
500-136756-23	3160-21-2 (0-2.5')	TCLP	Solid	6020A	408973
500-136756-24	3160-21-1 (0-2.5')	TCLP	Solid	6020A	408973
500-136756-25	3160-5-3 (0-1.2')	TCLP	Solid	6020A	408973
500-136756-26	3160-5-2 (0-1.2')	TCLP	Solid	6020A	408973
500-136756-27	3160-5-1 (0-1.2')	TCLP	Solid	6020A	408973
LB 500-408822/1-B	Method Blank	TCLP	Solid	6020A	408973
LCS 500-408973/2-A	Lab Control Sample	Total/NA	Solid	6020A	408973
500-136756-20 MS	3160-21-5 (0-2.5')	TCLP	Solid	6020A	408963
500-136756-20 DU	3160-21-5 (0-2.5')	TCLP	Solid	6020A	408963

### **Prep Batch: 409447**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136756-21	3160-21-4 (0-2.5')	SPLP East	Solid	3010A	408832
LB 500-408832/1-C	Method Blank	SPLP East	Solid	3010A	408832
LCS 500-409447/2-A	Lab Control Sample	Total/NA	Solid	3010A	

### Analysis Batch: 409604

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136756-21	3160-21-4 (0-2.5')	SPLP East	Solid	6010B	409447
LB 500-408832/1-C	Method Blank	SPLP East	Solid	6010B	409447
LCS 500-409447/2-A	Lab Control Sample	Total/NA	Solid	6010B	409447

### **Analysis Batch: 409646**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136756-1	3160-51-3 (0-1.5')	TCLP	Solid	6020A	408963
500-136756-2	3160-51-2 (0-1.5')	TCLP	Solid	6020A	408963
500-136756-3	3160-51-1 (0-1.5')	TCLP	Solid	6020A	408963
500-136756-4	3160-36-11 (0-3')	TCLP	Solid	6020A	408963
500-136756-5	3160-36-10 (0-3')	TCLP	Solid	6020A	408963
500-136756-6	3160-36-9 (0-3')	TCLP	Solid	6020A	408963
500-136756-7	3160-36-8 (0-3')	TCLP	Solid	6020A	408963
500-136756-8	3160-36-7 (0-3')	TCLP	Solid	6020A	408963
LB 500-408821/1-B	Method Blank	TCLP	Solid	6020A	408963
LCS 500-408963/2-A	Lab Control Sample	Total/NA	Solid	6020A	408963

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

# **General Chemistry**

## Analysis Batch: 408681

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
500-136756-1	3160-51-3 (0-1.5')	Total/NA	Solid	Moisture	_
500-136756-2	3160-51-2 (0-1.5')	Total/NA	Solid	Moisture	
500-136756-3	3160-51-1 (0-1.5')	Total/NA	Solid	Moisture	
500-136756-4	3160-36-11 (0-3')	Total/NA	Solid	Moisture	
500-136756-5	3160-36-10 (0-3')	Total/NA	Solid	Moisture	
500-136756-6	3160-36-9 (0-3')	Total/NA	Solid	Moisture	
500-136756-7	3160-36-8 (0-3')	Total/NA	Solid	Moisture	
500-136756-8	3160-36-7 (0-3')	Total/NA	Solid	Moisture	
500-136756-9	3160-36-6 (0-3')	Total/NA	Solid	Moisture	
500-136756-10	3160-36-5 (0-3')	Total/NA	Solid	Moisture	
500-136756-11	3160-36-4 (0-3')	Total/NA	Solid	Moisture	
500-136756-12	3160-36-3 (0-3')	Total/NA	Solid	Moisture	
500-136756-13	3160-36-2 (0-3')	Total/NA	Solid	Moisture	
500-136756-14	3160-36-1 (0-3')	Total/NA	Solid	Moisture	
500-136756-15	3160-21-10 (0-2.5')	Total/NA	Solid	Moisture	
500-136756-16	3160-21-9 (0-2.5')	Total/NA	Solid	Moisture	
500-136756-17	3160-21-8 (0-2.5')	Total/NA	Solid	Moisture	
500-136756-18	3160-21-7 (0-2.5')	Total/NA	Solid	Moisture	
500-136756-19	3160-21-6 (0-2.5')	Total/NA	Solid	Moisture	
500-136756-20	3160-21-5 (0-2.5')	Total/NA	Solid	Moisture	
500-136756-9 DU	3160-36-6 (0-3')	Total/NA	Solid	Moisture	

### **Analysis Batch: 408752**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136756-21	3160-21-4 (0-2.5')	Total/NA	Solid	Moisture	
500-136756-22	3160-21-3 (0-2.5')	Total/NA	Solid	Moisture	
500-136756-23	3160-21-2 (0-2.5')	Total/NA	Solid	Moisture	
500-136756-24	3160-21-1 (0-2.5')	Total/NA	Solid	Moisture	
500-136756-25	3160-5-3 (0-1.2')	Total/NA	Solid	Moisture	
500-136756-26	3160-5-2 (0-1.2')	Total/NA	Solid	Moisture	
500-136756-27	3160-5-1 (0-1.2')	Total/NA	Solid	Moisture	
500-136756-21 DU	3160-21-4 (0-2.5')	Total/NA	Solid	Moisture	

### Analysis Batch: 409641

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136756-1	3160-51-3 (0-1.5')	Total/NA	Solid	9045D	_
500-136756-2	3160-51-2 (0-1.5')	Total/NA	Solid	9045D	
500-136756-3	3160-51-1 (0-1.5')	Total/NA	Solid	9045D	
500-136756-4	3160-36-11 (0-3')	Total/NA	Solid	9045D	
500-136756-5	3160-36-10 (0-3')	Total/NA	Solid	9045D	
500-136756-6	3160-36-9 (0-3')	Total/NA	Solid	9045D	
500-136756-7	3160-36-8 (0-3')	Total/NA	Solid	9045D	
500-136756-8	3160-36-7 (0-3')	Total/NA	Solid	9045D	
500-136756-9	3160-36-6 (0-3')	Total/NA	Solid	9045D	
500-136756-10	3160-36-5 (0-3')	Total/NA	Solid	9045D	
500-136756-11	3160-36-4 (0-3')	Total/NA	Solid	9045D	
500-136756-12	3160-36-3 (0-3')	Total/NA	Solid	9045D	
500-136756-13	3160-36-2 (0-3')	Total/NA	Solid	9045D	
500-136756-14	3160-36-1 (0-3')	Total/NA	Solid	9045D	
500-136756-15	3160-21-10 (0-2.5')	Total/NA	Solid	9045D	
500-136756-16	3160-21-9 (0-2.5')	Total/NA	Solid	9045D	

TestAmerica Chicago

Page 137 of 195

3

6

8

10

12

13

# **QC Association Summary**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028 TestAmerica Job ID: 500-136756-1

# **General Chemistry (Continued)**

## **Analysis Batch: 409641 (Continued)**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136756-17	3160-21-8 (0-2.5')	Total/NA	Solid	9045D	
500-136756-18	3160-21-7 (0-2.5')	Total/NA	Solid	9045D	
500-136756-19	3160-21-6 (0-2.5')	Total/NA	Solid	9045D	
500-136756-20	3160-21-5 (0-2.5')	Total/NA	Solid	9045D	
500-136756-21	3160-21-4 (0-2.5')	Total/NA	Solid	9045D	
500-136756-22	3160-21-3 (0-2.5')	Total/NA	Solid	9045D	
500-136756-23	3160-21-2 (0-2.5')	Total/NA	Solid	9045D	
500-136756-24	3160-21-1 (0-2.5')	Total/NA	Solid	9045D	
500-136756-25	3160-5-3 (0-1.2')	Total/NA	Solid	9045D	
500-136756-26	3160-5-2 (0-1.2')	Total/NA	Solid	9045D	
500-136756-27	3160-5-1 (0-1.2')	Total/NA	Solid	9045D	
500-136756-8 DU	3160-36-7 (0-3')	Total/NA	Solid	9045D	
500-136756-27 DU	3160-5-1 (0-1.2')	Total/NA	Solid	9045D	

2

3

4

5

6

R

0

10

13

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Solid Prep Type: Total/NA

			Pe	rcent Surre	ogate Recov	very (Acce
		BFB	DBFM	12DCE	TOL	
Lab Sample ID	Client Sample ID	(75-131)	(75-126)	(70-134)	(75-124)	
500-136756-1	3160-51-3 (0-1.5')	89	105	114	95	
00-136756-2	3160-51-2 (0-1.5')	88	106	112	94	
500-136756-3	3160-51-1 (0-1.5')	91	106	112	94	
00-136756-4	3160-36-11 (0-3')	96	105	112	94	
00-136756-5	3160-36-10 (0-3')	91	86	106	94	
00-136756-6	3160-36-9 (0-3')	90	107	108	96	
00-136756-7	3160-36-8 (0-3')	87	107	111	94	
00-136756-8	3160-36-7 (0-3')	87	104	112	95	
00-136756-9	3160-36-6 (0-3')	88	110	112	96	
00-136756-10	3160-36-5 (0-3')	95	108	109	95	
0-136756-11	3160-36-4 (0-3')	89	102	97	88	
00-136756-12	3160-36-3 (0-3')	89	94	102	95	
00-136756-13	3160-36-2 (0-3')	89	95	103	96	
00-136756-14	3160-36-1 (0-3')	88	108	112	96	
0-136756-15	3160-21-10 (0-2.5')	91	88	107	95	
0-136756-16	3160-21-9 (0-2.5')	89	97	108	95	
0-136756-17	3160-21-8 (0-2.5')	90	106	103	95	
0-136756-18	3160-21-7 (0-2.5')	89	104	98	97	
00-136756-19	3160-21-6 (0-2.5')	86	106	101	96	
0-136756-20	3160-21-5 (0-2.5')	90	82	89	96	
0-136756-21	3160-21-4 (0-2.5')	85	105	104	96	
00-136756-22	3160-21-3 (0-2.5')	88	108	110	95	
0-136756-23	3160-21-2 (0-2.5')	89	107	114	95	
00-136756-24	3160-21-1 (0-2.5')	90	95	104	96	
CS 500-408744/4	Lab Control Sample	90	97	91	98	
CS 500-408942/4	Lab Control Sample	85	100	104	97	
CSD 500-408744/5	Lab Control Sample Dup	89	91	92	99	
CSD 500-408942/5	Lab Control Sample Dup	90	96	92	110	
1B 500-408744/6	Method Blank	87	124	106	95	
/IB 500-408942/7	Method Blank	88	100	100	96	

#### Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane

12DCE = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

## Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Solid Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits						
		FBP	2FP	NBZ	PHL	TPH	TBP		
Lab Sample ID	Client Sample ID	(44-121)	(46-133)	(41-120)	(46-125)	(35-160)	(25-139)		
500-136756-1	3160-51-3 (0-1.5')	84	96	86	97	98	67		
500-136756-1 MS	3160-51-3 (0-1.5')	85	105	83	107	96	77		
500-136756-1 MSD	3160-51-3 (0-1.5')	81	105	82	114	95	74		
500-136756-2	3160-51-2 (0-1.5')	95	102	90	107	99	79		
500-136756-3	3160-51-1 (0-1.5')	84	97	81	94	99	71		
500-136756-4	3160-36-11 (0-3')	85	100	87	97	99	60		

TestAmerica Chicago

Page 139 of 195

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Matrix: Solid Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco	very (Acce	otance Limits)	
		FBP	2FP	NBZ	PHL	TPH	TBP	
Lab Sample ID	Client Sample ID	(44-121)	(46-133)	(41-120)	(46-125)	(35-160)	(25-139)	
500-136756-5	3160-36-10 (0-3')	91	104	92	91	103	57	
500-136756-6	3160-36-9 (0-3')	92	98	91	98	94	78	
500-136756-7	3160-36-8 (0-3')	80	92	81	90	94	61	
500-136756-8	3160-36-7 (0-3')	78	88	88	86	90	80	
500-136756-9	3160-36-6 (0-3')	99	86	76	83	88	85	
500-136756-10	3160-36-5 (0-3')	83	91	67	88	91	84	
500-136756-11	3160-36-4 (0-3')	84	106	80	89	96	88	
500-136756-12	3160-36-3 (0-3')	81	103	79	89	94	82	
500-136756-13	3160-36-2 (0-3')	79	74	96	89	89	84	
500-136756-14	3160-36-1 (0-3')	79	75	93	90	90	72	
500-136756-15	3160-21-10 (0-2.5')	92	104	94	100	97	65	
500-136756-16	3160-21-9 (0-2.5')	83	95	85	92	91	59	
500-136756-17	3160-21-8 (0-2.5')	83	93	82	92	92	77	
500-136756-18	3160-21-7 (0-2.5')	89	100	92	98	92	62	
500-136756-19	3160-21-6 (0-2.5')	87	96	85	95	92	80	
500-136756-20	3160-21-5 (0-2.5')	59	63	58	64	66	46	
500-136756-21	3160-21-4 (0-2.5')	73	73	67	70	89	71	
500-136756-22	3160-21-3 (0-2.5')	74	73	67	85	91	89	
500-136756-23	3160-21-2 (0-2.5')	81	73	76	83	85	62	
500-136756-24	3160-21-1 (0-2.5')	70	76	64	66	73	49	
LCS 500-409279/2-A	Lab Control Sample	89	90	88	91	93	96	
LCS 500-409340/2-A	Lab Control Sample	86	90	82	91	84	91	
MB 500-409279/1-A	Method Blank	82	76	74	81	84	39	
MB 500-409340/1-A	Method Blank	84	91	80	89	88	78	

#### **Surrogate Legend**

FBP = 2-Fluorobiphenyl

2FP = 2-Fluorophenol

NBZ = Nitrobenzene-d5

PHL = Phenol-d5

TPH = Terphenyl-d14

TBP = 2,4,6-Tribromophenol

Page 140 of 195

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

## Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 500-408744/6 Client Sample ID: Method Blank **Matrix: Solid Prep Type: Total/NA** 

Analysis Batch: 408744

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	<0.020		0.020	0.0087	mg/Kg			11/07/17 10:57	1
Benzene	<0.0020		0.0020	0.00051	mg/Kg			11/07/17 10:57	1
Bromodichloromethane	<0.0020		0.0020	0.00041	mg/Kg			11/07/17 10:57	1
Bromoform	<0.0020		0.0020	0.00058	mg/Kg			11/07/17 10:57	1
Bromomethane	<0.0050		0.0050	0.0019	mg/Kg			11/07/17 10:57	1
2-Butanone (MEK)	<0.0050		0.0050	0.0022	mg/Kg			11/07/17 10:57	1
Carbon disulfide	<0.0050		0.0050	0.0010	mg/Kg			11/07/17 10:57	1
Carbon tetrachloride	<0.0020		0.0020	0.00058	mg/Kg			11/07/17 10:57	1
Chlorobenzene	<0.0020		0.0020	0.00074	mg/Kg			11/07/17 10:57	1
Chloroethane	<0.0050		0.0050	0.0015	mg/Kg			11/07/17 10:57	1
Chloroform	<0.0020		0.0020	0.00069	mg/Kg			11/07/17 10:57	1
Chloromethane	<0.0050		0.0050	0.0020	mg/Kg			11/07/17 10:57	1
cis-1,2-Dichloroethene	<0.0020		0.0020	0.00056	mg/Kg			11/07/17 10:57	1
cis-1,3-Dichloropropene	<0.0020		0.0020	0.00060	mg/Kg			11/07/17 10:57	1
Dibromochloromethane	<0.0020		0.0020	0.00065	mg/Kg			11/07/17 10:57	1
1,1-Dichloroethane	<0.0020		0.0020	0.00069	mg/Kg			11/07/17 10:57	1
1,2-Dichloroethane	<0.0050		0.0050	0.0016	mg/Kg			11/07/17 10:57	1
1,1-Dichloroethene	<0.0020		0.0020	0.00069	mg/Kg			11/07/17 10:57	1
1,2-Dichloropropane	<0.0020		0.0020	0.00052	mg/Kg			11/07/17 10:57	1
1,3-Dichloropropene, Total	<0.0020		0.0020	0.00070	mg/Kg			11/07/17 10:57	1
Ethylbenzene	<0.0020		0.0020	0.00096	mg/Kg			11/07/17 10:57	1
2-Hexanone	<0.0050		0.0050	0.0016	mg/Kg			11/07/17 10:57	1
Methylene Chloride	<0.0050		0.0050	0.0020	mg/Kg			11/07/17 10:57	1
4-Methyl-2-pentanone (MIBK)	<0.0050		0.0050	0.0015	mg/Kg			11/07/17 10:57	1
Methyl tert-butyl ether	<0.0020		0.0020	0.00059	mg/Kg			11/07/17 10:57	1
Styrene	<0.0020		0.0020	0.00060	mg/Kg			11/07/17 10:57	1
1,1,2,2-Tetrachloroethane	<0.0020		0.0020	0.00064	mg/Kg			11/07/17 10:57	1
Tetrachloroethene	<0.0020		0.0020	0.00068	mg/Kg			11/07/17 10:57	1
Toluene	<0.0020		0.0020	0.00051	mg/Kg			11/07/17 10:57	1
trans-1,2-Dichloroethene	<0.0020		0.0020	0.00089	mg/Kg			11/07/17 10:57	1
trans-1,3-Dichloropropene	<0.0020		0.0020	0.00070	mg/Kg			11/07/17 10:57	1
1,1,1-Trichloroethane	<0.0020		0.0020	0.00067	mg/Kg			11/07/17 10:57	1
1,1,2-Trichloroethane	<0.0020		0.0020	0.00086	mg/Kg			11/07/17 10:57	1
Trichloroethene	<0.0020		0.0020	0.00068	mg/Kg			11/07/17 10:57	1
Vinyl acetate	<0.0050		0.0050	0.0017	mg/Kg			11/07/17 10:57	1
Vinyl chloride	<0.0020		0.0020	0.00089	mg/Kg			11/07/17 10:57	1
Xylenes, Total	<0.0040		0.0040	0.00064	ma/Ka			11/07/17 10:57	1

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	87		75 - 131		11/07/17 10:57	1
Dibromofluoromethane	124		75 - 126		11/07/17 10:57	1
1,2-Dichloroethane-d4 (Surr)	106		70 - 134		11/07/17 10:57	1
Toluene-d8 (Surr)	95		75 - 124		11/07/17 10:57	1

TestAmerica Job ID: 500-136756-1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

# Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 500-408744/4

**Matrix: Solid** 

Analysis Batch: 408744

**Client Sample ID: Lab Control Sample Prep Type: Total/NA** 

	Spike	LCS L			%Rec.
Analyte	Added	Result C		D %Rec	Limits
Acetone	0.0500	0.0474	mg/Kg	95	40 - 150
Benzene	0.0500	0.0503	mg/Kg	101	70 - 125
Bromodichloromethane	0.0500	0.0489	mg/Kg	98	67 - 129
Bromoform	0.0500	0.0488	mg/Kg	98	68 - 136
Bromomethane	0.0500	0.0502	mg/Kg	100	70 - 130
2-Butanone (MEK)	0.0500	0.0262	mg/Kg	52	47 - 138
Carbon disulfide	0.0500	0.0518	mg/Kg	104	70 - 129
Carbon tetrachloride	0.0500	0.0521	mg/Kg	104	75 - 125
Chlorobenzene	0.0500	0.0500	mg/Kg	100	50 - 150
Chloroethane	0.0500	0.0474	mg/Kg	95	75 - 125
Chloroform	0.0500	0.0473	mg/Kg	95	57 - 135
Chloromethane	0.0500	0.0435	mg/Kg	87	70 - 125
cis-1,2-Dichloroethene	0.0500	0.0409	mg/Kg	82	70 - 125
cis-1,3-Dichloropropene	0.0500	0.0500	mg/Kg	100	70 - 125
Dibromochloromethane	0.0500	0.0514	mg/Kg	103	69 - 125
1,1-Dichloroethane	0.0500	0.0460	mg/Kg	92	70 - 125
1,2-Dichloroethane	0.0500	0.0521	mg/Kg	104	70 - 130
1,1-Dichloroethene	0.0500	0.0540	mg/Kg	108	70 - 120
1,2-Dichloropropane	0.0500	0.0507	mg/Kg	101	70 - 125
Ethylbenzene	0.0500	0.0502	mg/Kg	100	61 - 136
2-Hexanone	0.0500	0.0332	mg/Kg	66	48 - 146
Methylene Chloride	0.0500	0.0477	mg/Kg	95	70 - 126
4-Methyl-2-pentanone (MIBK)	0.0500	0.0342	mg/Kg	68	50 - 148
Methyl tert-butyl ether	0.0500	0.0444	mg/Kg	89	50 - 140
Styrene	0.0500	0.0512	mg/Kg	102	70 - 125
1,1,2,2-Tetrachloroethane	0.0500	0.0477	mg/Kg	95	70 - 122
Tetrachloroethene	0.0500	0.0504	mg/Kg	101	70 - 124
Toluene	0.0500	0.0499	mg/Kg	100	70 - 125
trans-1,2-Dichloroethene	0.0500	0.0472	mg/Kg	94	70 - 125
trans-1,3-Dichloropropene	0.0500	0.0477	mg/Kg	95	70 - 125
1,1,1-Trichloroethane	0.0500	0.0508	mg/Kg	102	70 - 128
1,1,2-Trichloroethane	0.0500	0.0495	mg/Kg	99	70 - 125
Trichloroethene	0.0500	0.0508	mg/Kg	102	70 - 125
Vinyl acetate	0.0500	0.0437	mg/Kg	87	40 - 153
Vinyl chloride	0.0500	0.0452	mg/Kg	90	70 - 125
Xylenes, Total	0.100	0.100	mg/Kg	100	53 - 147

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	90		75 - 131
Dibromofluoromethane	97		75 - 126
1,2-Dichloroethane-d4 (Surr)	91		70 - 134
Toluene-d8 (Surr)	98		75 124

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

# Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 500-408744/5

**Matrix: Solid** 

Analysis Batch: 408744

**Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA** 

-	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acetone	0.0500	0.0556		mg/Kg		111	40 - 150	16	30
Benzene	0.0500	0.0506		mg/Kg		101	70 - 125	1	30
Bromodichloromethane	0.0500	0.0495		mg/Kg		99	67 - 129	1	30
Bromoform	0.0500	0.0492		mg/Kg		98	68 - 136	1	30
Bromomethane	0.0500	0.0443		mg/Kg		89	70 - 130	13	30
2-Butanone (MEK)	0.0500	0.0290		mg/Kg		58	47 - 138	10	30
Carbon disulfide	0.0500	0.0516		mg/Kg		103	70 - 129	1	30
Carbon tetrachloride	0.0500	0.0516		mg/Kg		103	75 - 125	1	30
Chlorobenzene	0.0500	0.0501		mg/Kg		100	50 - 150	0	30
Chloroethane	0.0500	0.0458		mg/Kg		92	75 - 125	3	30
Chloroform	0.0500	0.0426		mg/Kg		85	57 ₋ 135	10	30
Chloromethane	0.0500	0.0443		mg/Kg		89	70 - 125	2	30
cis-1,2-Dichloroethene	0.0500	0.0392		mg/Kg		78	70 - 125	4	30
cis-1,3-Dichloropropene	0.0500	0.0491		mg/Kg		98	70 - 125	2	30
Dibromochloromethane	0.0500	0.0514		mg/Kg		103	69 - 125	0	30
1,1-Dichloroethane	0.0500	0.0483		mg/Kg		97	70 - 125	5	30
1,2-Dichloroethane	0.0500	0.0526		mg/Kg		105	70 - 130	1	30
1,1-Dichloroethene	0.0500	0.0532		mg/Kg		106	70 - 120	1	30
1,2-Dichloropropane	0.0500	0.0494		mg/Kg		99	70 - 125	3	30
Ethylbenzene	0.0500	0.0496		mg/Kg		99	61 - 136	1	30
2-Hexanone	0.0500	0.0373		mg/Kg		75	48 - 146	12	30
Methylene Chloride	0.0500	0.0487		mg/Kg		97	70 - 126	2	30
4-Methyl-2-pentanone (MIBK)	0.0500	0.0381		mg/Kg		76	50 - 148	11	30
Methyl tert-butyl ether	0.0500	0.0446		mg/Kg		89	50 - 140	0	30
Styrene	0.0500	0.0507		mg/Kg		101	70 - 125	1	30
1,1,2,2-Tetrachloroethane	0.0500	0.0472		mg/Kg		94	70 - 122	1	30
Tetrachloroethene	0.0500	0.0496		mg/Kg		99	70 - 124	2	30
Toluene	0.0500	0.0491		mg/Kg		98	70 - 125	2	30
trans-1,2-Dichloroethene	0.0500	0.0462		mg/Kg		92	70 - 125	2	30
trans-1,3-Dichloropropene	0.0500	0.0479		mg/Kg		96	70 - 125	0	30
1,1,1-Trichloroethane	0.0500	0.0494		mg/Kg		99	70 - 128	3	30
1,1,2-Trichloroethane	0.0500	0.0491		mg/Kg		98	70 - 125	1	30
Trichloroethene	0.0500	0.0517		mg/Kg		103	70 - 125	2	30
Vinyl acetate	0.0500	0.0427		mg/Kg		85	40 - 153	2	30
Vinyl chloride	0.0500	0.0456		mg/Kg		91	70 - 125	1	30
Xylenes, Total	0.100	0.0999		mg/Kg		100	53 - 147	1	30

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	89		75 - 131
Dibromofluoromethane	91		75 - 126
1,2-Dichloroethane-d4 (Surr)	92		70 - 134
Toluene-d8 (Surr)	99		75 - 124

11/08/17 11:07

11/08/17 11:07

11/08/17 11:07

11/08/17 11:07

11/08/17 11:07

11/08/17 11:07

11/08/17 11:07 11/08/17 11:07

11/08/17 11:07

11/08/17 11:07

11/08/17 11:07

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

# Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

< 0.0020

< 0.0020

< 0.0020

<0.0020

<0.0020

< 0.0020

< 0.0020

< 0.0020

< 0.0020

100

96

Lab Sample ID: MB 500-408942/7 **Client Sample ID: Method Blank** 

Styrene

Toluene

1,1,2,2-Tetrachloroethane

trans-1,2-Dichloroethene

1,1,1-Trichloroethane

1,1,2-Trichloroethane

Trichloroethene

trans-1,3-Dichloropropene

1,2-Dichloroethane-d4 (Surr)

Toluene-d8 (Surr)

Tetrachloroethene

Matrix: Solid Analysis Batch: 408942								Prep Type: To	otal/NA
•	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	<0.020		0.020	0.0087	mg/Kg			11/08/17 11:07	1
Benzene	<0.0020		0.0020	0.00051	mg/Kg			11/08/17 11:07	1
Bromodichloromethane	<0.0020		0.0020	0.00041	mg/Kg			11/08/17 11:07	1
Bromoform	<0.0020		0.0020	0.00058	mg/Kg			11/08/17 11:07	1
Bromomethane	< 0.0050		0.0050	0.0019	mg/Kg			11/08/17 11:07	1
2-Butanone (MEK)	< 0.0050		0.0050	0.0022	mg/Kg			11/08/17 11:07	1
Carbon disulfide	<0.0050		0.0050	0.0010	mg/Kg			11/08/17 11:07	1
Carbon tetrachloride	<0.0020		0.0020	0.00058	mg/Kg			11/08/17 11:07	1
Chlorobenzene	<0.0020		0.0020	0.00074	mg/Kg			11/08/17 11:07	1
Chloroethane	<0.0050		0.0050	0.0015	mg/Kg			11/08/17 11:07	1
Chloroform	<0.0020		0.0020	0.00069	mg/Kg			11/08/17 11:07	1
Chloromethane	< 0.0050		0.0050	0.0020	mg/Kg			11/08/17 11:07	1
cis-1,2-Dichloroethene	<0.0020		0.0020	0.00056	mg/Kg			11/08/17 11:07	1

	cis-1,3-Dichloropropene	<0.0020	0.0020	0.00060	mg/Kg	11/08/17 11:07
	Dibromochloromethane	<0.0020	0.0020	0.00065	mg/Kg	11/08/17 11:07
ĺ	1,1-Dichloroethane	<0.0020	0.0020	0.00069	mg/Kg	11/08/17 11:07
	1,2-Dichloroethane	<0.0050	0.0050	0.0016	mg/Kg	11/08/17 11:07
	1,1-Dichloroethene	<0.0020	0.0020	0.00069	mg/Kg	11/08/17 11:07
ĺ	1,2-Dichloropropane	<0.0020	0.0020	0.00052	mg/Kg	11/08/17 11:07
	1,3-Dichloropropene, Total	<0.0020	0.0020	0.00070	mg/Kg	11/08/17 11:07
	Ethylbenzene	<0.0020	0.0020	0.00096	mg/Kg	11/08/17 11:07
	2-Hexanone	<0.0050	0.0050	0.0016	mg/Kg	11/08/17 11:07
	Methylene Chloride	<0.0050	0.0050	0.0020	mg/Kg	11/08/17 11:07
	4-Methyl-2-pentanone (MIBK)	<0.0050	0.0050	0.0015	mg/Kg	11/08/17 11:07
	Methyl tert-butyl ether	<0.0020	0.0020	0.00059	mg/Kg	11/08/17 11:07

0.0020

0.0020

0.0020

0.0020

0.0020

0.0020

0.0020

0.0020

0.0020

0.00060 mg/Kg

0.00064 mg/Kg

0.00068 mg/Kg

0.00051 mg/Kg

0.00089 mg/Kg

0.00070 mg/Kg

0.00067 mg/Kg

0.00086 mg/Kg

0.00068 mg/Kg

Vinyl acetate	<0.0050		0.0050	0.0017 mg/Kg		11/08/17 11:07	1
Vinyl chloride	<0.0020		0.0020	0.00089 mg/Kg		11/08/17 11:07	1
Xylenes, Total	<0.0040		0.0040	0.00064 mg/Kg		11/08/17 11:07	1
	МВ	МВ					
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	88		75 - 131		-	11/08/17 11:07	1
Dibromofluoromethane	100		75 - 126			11/08/17 11:07	1

70 - 134

75 - 124

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

## Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 500-408942/4

**Matrix: Solid** 

Analysis Batch: 408942

**Client Sample ID: Lab Control Sample Prep Type: Total/NA** 

	Spike	LCS	LCS		%Rec.
Analyte	Added	Result	Qualifier Unit	D %Rec	Limits
Acetone	0.0500	0.0590	mg/Kg		40 - 150
Benzene	0.0500	0.0491	mg/Kg	98	70 - 125
Bromodichloromethane	0.0500	0.0524	mg/Kg	105	67 - 129
Bromoform	0.0500	0.0557	mg/Kg	111	68 - 136
Bromomethane	0.0500	0.0463	mg/Kg	93	70 - 130
2-Butanone (MEK)	0.0500	0.0438	mg/Kg	88	47 - 138
Carbon disulfide	0.0500	0.0483	mg/Kg	97	70 - 129
Carbon tetrachloride	0.0500	0.0573	mg/Kg	115	75 - 125
Chlorobenzene	0.0500	0.0496	mg/Kg	99	50 - 150
Chloroethane	0.0500	0.0473	mg/Kg	95	75 - 125
Chloroform	0.0500	0.0525	mg/Kg	105	57 ₋ 135
Chloromethane	0.0500	0.0402	mg/Kg	80	70 - 125
cis-1,2-Dichloroethene	0.0500	0.0500	mg/Kg	100	70 - 125
cis-1,3-Dichloropropene	0.0500	0.0495	mg/Kg	99	70 - 125
Dibromochloromethane	0.0500	0.0547	mg/Kg	109	69 - 125
1,1-Dichloroethane	0.0500	0.0499	mg/Kg	100	70 - 125
1,2-Dichloroethane	0.0500	0.0586	mg/Kg	117	70 - 130
1,1-Dichloroethene	0.0500	0.0527	mg/Kg	105	70 - 120
1,2-Dichloropropane	0.0500	0.0494	mg/Kg	99	70 - 125
Ethylbenzene	0.0500	0.0480	mg/Kg	96	61 - 136
2-Hexanone	0.0500	0.0384	mg/Kg	77	48 - 146
Methylene Chloride	0.0500	0.0468	mg/Kg	94	70 - 126
4-Methyl-2-pentanone (MIBK)	0.0500	0.0382	mg/Kg	76	50 - 148
Methyl tert-butyl ether	0.0500	0.0543	mg/Kg	109	50 - 140
Styrene	0.0500	0.0503	mg/Kg	101	70 - 125
1,1,2,2-Tetrachloroethane	0.0500	0.0464	mg/Kg	93	70 - 122
Tetrachloroethene	0.0500	0.0511	mg/Kg	102	70 - 124
Toluene	0.0500	0.0479	mg/Kg	96	70 - 125
trans-1,2-Dichloroethene	0.0500	0.0500	mg/Kg	100	70 - 125
trans-1,3-Dichloropropene	0.0500	0.0516	mg/Kg	103	70 - 125
1,1,1-Trichloroethane	0.0500	0.0557	mg/Kg	111	70 - 128
1,1,2-Trichloroethane	0.0500	0.0511	mg/Kg	102	70 - 125
Trichloroethene	0.0500	0.0506	mg/Kg	101	70 - 125
Vinyl acetate	0.0500	0.0518	mg/Kg	104	40 - 153
Vinyl chloride	0.0500	0.0425	mg/Kg	85	70 - 125
Xylenes, Total	0.100	0.0998	mg/Kg	100	53 - 147

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	85		75 - 131
Dibromofluoromethane	100		75 - 126
1,2-Dichloroethane-d4 (Surr)	104		70 - 134
Toluene-d8 (Surr)	97		75 - 124

Page 145 of 195

Spike

TestAmerica Job ID: 500-136756-1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

## Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 500-408942/5

**Matrix: Solid** 

Ethylbenzene

Methylene Chloride

Methyl tert-butyl ether

Tetrachloroethene

1,1,2,2-Tetrachloroethane

trans-1,2-Dichloroethene

1,1,1-Trichloroethane

trans-1,3-Dichloropropene

4-Methyl-2-pentanone (MIBK)

2-Hexanone

Styrene

Toluene

Analysis Batch: 408942

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

%Rec.

Analyte	Added	Result Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acetone	0.0500	0.0497	mg/Kg		99	40 - 150	17	30
Benzene	0.0500	0.0504	mg/Kg		101	70 - 125	3	30
Bromodichloromethane	0.0500	0.0497	mg/Kg		99	67 - 129	5	30
Bromoform	0.0500	0.0537	mg/Kg		107	68 - 136	4	30
Bromomethane	0.0500	0.0385	mg/Kg		77	70 - 130	18	30
2-Butanone (MEK)	0.0500	0.0400	mg/Kg		80	47 - 138	9	30
Carbon disulfide	0.0500	0.0430	mg/Kg		86	70 - 129	12	30
Carbon tetrachloride	0.0500	0.0516	mg/Kg		103	75 - 125	10	30
Chlorobenzene	0.0500	0.0430	mg/Kg		86	50 - 150	14	30
Chloroethane	0.0500	0.0462	mg/Kg		92	75 - 125	2	30
Chloroform	0.0500	0.0501	mg/Kg		100	57 - 135	5	30
Chloromethane	0.0500	0.0439	mg/Kg		88	70 - 125	9	30
cis-1,2-Dichloroethene	0.0500	0.0501	mg/Kg		100	70 - 125	0	30
cis-1,3-Dichloropropene	0.0500	0.0546	mg/Kg		109	70 - 125	10	30
Dibromochloromethane	0.0500	0.0517	mg/Kg		103	69 - 125	6	30
1,1-Dichloroethane	0.0500	0.0442	mg/Kg		88	70 - 125	12	30
1,2-Dichloroethane	0.0500	0.0522	mg/Kg		104	70 - 130	12	30
1,1-Dichloroethene	0.0500	0.0505	mg/Kg		101	70 - 120	4	30
1,2-Dichloropropane	0.0500	0.0511	mg/Kg		102	70 - 125	3	30

0.0449

0.0374

0.0397

0.0548

0.0504

LCSD LCSD

0.0500 0.0429 86 70 - 126 30 mg/Kg 9 0.0500 0.0414 mg/Kg 83 50 - 148 30 0.0500 0.0400 80 50 - 140 30 30 mg/Kg 0.0500 0.0506 mg/Kg 101 70 - 12530 0.0500 0.0465 mg/Kg 93 70 - 122 0 30 0.0500 0.0526 mg/Kg 105 70 - 124 3 30 0.0500 0.0558 mg/Kg 112 70 - 125 15 30

90

75

79

110

101

61 - 136

48 - 146

70 - 125

70 - 125

70 - 128

7

3

23

6

10

7

1

19

9

0

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg 1,1,2-Trichloroethane 0.0500 0.0550 70 - 125 mg/Kg 110 Trichloroethene 0.0500 0.0513 mg/Kg 103 70 - 125 Vinyl acetate 0.0500 0.0429 mg/Kg 86 40 - 153 Vinyl chloride 0.0500 0.0467 93 70 - 125 mg/Kg Xylenes, Total 0.100 0.0997 mg/Kg 100 53 - 147

0.0500

0.0500

0.0500

0.0500

0.0500

LCSD LCSD %Recovery Qualifier Limits Surrogate 4-Bromofluorobenzene (Surr) 90 75 - 131 Dibromofluoromethane 96 75 - 126 92 70 - 134 1,2-Dichloroethane-d4 (Surr) 75 - 124 Toluene-d8 (Surr) 110

RPD

30

30

30

30

30

30

30

30

30

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

2

# Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 500-409279/1-A

Matrix: Solid

Analysis Batch: 409355

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 409279

Analysis Batch: 409355								Prep Batch:	
Analysis Butch: 400000	МВ	MB						Trep Baten.	403273
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	<0.033		0.033	0.0060	mg/Kg		11/09/17 17:53	11/10/17 14:52	1
Acenaphthylene	<0.033		0.033	0.0044	mg/Kg		11/09/17 17:53	11/10/17 14:52	1
Anthracene	<0.033		0.033	0.0056	mg/Kg		11/09/17 17:53	11/10/17 14:52	1
Benzo[a]anthracene	<0.033		0.033	0.0045	mg/Kg		11/09/17 17:53	11/10/17 14:52	1
Benzo[a]pyrene	<0.033		0.033	0.0064	mg/Kg		11/09/17 17:53	11/10/17 14:52	1
Benzo[b]fluoranthene	<0.033		0.033	0.0072	mg/Kg		11/09/17 17:53	11/10/17 14:52	1
Benzo[g,h,i]perylene	<0.033		0.033	0.011	mg/Kg		11/09/17 17:53	11/10/17 14:52	1
Benzo[k]fluoranthene	<0.033		0.033	0.0098	mg/Kg		11/09/17 17:53	11/10/17 14:52	1
Bis(2-chloroethoxy)methane	<0.17		0.17	0.034	mg/Kg		11/09/17 17:53	11/10/17 14:52	1
Bis(2-chloroethyl)ether	<0.17		0.17	0.050	mg/Kg		11/09/17 17:53	11/10/17 14:52	1
Bis(2-ethylhexyl) phthalate	<0.17		0.17	0.061	mg/Kg		11/09/17 17:53	11/10/17 14:52	1
4-Bromophenyl phenyl ether	<0.17		0.17	0.044	mg/Kg		11/09/17 17:53	11/10/17 14:52	1
Butyl benzyl phthalate	<0.17		0.17	0.063	mg/Kg		11/09/17 17:53	11/10/17 14:52	1
Carbazole	<0.17		0.17	0.083	mg/Kg		11/09/17 17:53	11/10/17 14:52	1
4-Chloroaniline	<0.67		0.67	0.16	mg/Kg		11/09/17 17:53	11/10/17 14:52	1
4-Chloro-3-methylphenol	<0.33		0.33	0.11	mg/Kg		11/09/17 17:53	11/10/17 14:52	1
2-Chloronaphthalene	<0.17		0.17	0.037	mg/Kg		11/09/17 17:53	11/10/17 14:52	1
2-Chlorophenol	<0.17		0.17	0.057	mg/Kg		11/09/17 17:53	11/10/17 14:52	1
4-Chlorophenyl phenyl ether	<0.17		0.17		mg/Kg		11/09/17 17:53	11/10/17 14:52	1
Chrysene	< 0.033		0.033	0.0091			11/09/17 17:53	11/10/17 14:52	1
Dibenz(a,h)anthracene	< 0.033		0.033	0.0064			11/09/17 17:53	11/10/17 14:52	1
Dibenzofuran	<0.17		0.17	0.039	mg/Kg		11/09/17 17:53	11/10/17 14:52	1
1,2-Dichlorobenzene	<0.17		0.17	0.040	mg/Kg		11/09/17 17:53	11/10/17 14:52	1
1,3-Dichlorobenzene	<0.17		0.17	0.037	mg/Kg		11/09/17 17:53	11/10/17 14:52	1
1,4-Dichlorobenzene	<0.17		0.17		mg/Kg		11/09/17 17:53	11/10/17 14:52	1
3,3'-Dichlorobenzidine	<0.17		0.17	0.047	mg/Kg		11/09/17 17:53	11/10/17 14:52	1
2,4-Dichlorophenol	<0.33		0.33		mg/Kg		11/09/17 17:53	11/10/17 14:52	1
Diethyl phthalate	<0.17		0.17		mg/Kg		11/09/17 17:53	11/10/17 14:52	1
2,4-Dimethylphenol	<0.33		0.33		mg/Kg		11/09/17 17:53	11/10/17 14:52	1
Dimethyl phthalate	<0.17		0.17		mg/Kg		11/09/17 17:53	11/10/17 14:52	1
Di-n-butyl phthalate	<0.17		0.17		mg/Kg		11/09/17 17:53	11/10/17 14:52	1
4,6-Dinitro-2-methylphenol	<0.67		0.67		mg/Kg		11/09/17 17:53	11/10/17 14:52	1
2,4-Dinitrophenol	<0.67		0.67		mg/Kg		11/09/17 17:53	11/10/17 14:52	1
2,4-Dinitrotoluene	<0.17		0.17		mg/Kg		11/09/17 17:53	11/10/17 14:52	1
2,6-Dinitrotoluene	<0.17		0.17		mg/Kg		11/09/17 17:53	11/10/17 14:52	1
Di-n-octyl phthalate	<0.17		0.17	0.054	mg/Kg		11/09/17 17:53	11/10/17 14:52	1
Fluoranthene	<0.033		0.033	0.0062	mg/Kg		11/09/17 17:53	11/10/17 14:52	1
Fluorene	<0.033		0.033	0.0047			11/09/17 17:53	11/10/17 14:52	1
Hexachlorobenzene	<0.067		0.067	0.0077			11/09/17 17:53	11/10/17 14:52	1
Hexachlorobutadiene	<0.17		0.17		mg/Kg		11/09/17 17:53	11/10/17 14:52	1
Hexachlorocyclopentadiene	<0.67		0.67		mg/Kg		11/09/17 17:53	11/10/17 14:52	1
Hexachloroethane	<0.17		0.17		mg/Kg		11/09/17 17:53	11/10/17 14:52	1
Indeno[1,2,3-cd]pyrene	<0.033		0.033	0.0086				11/10/17 14:52	1
Isophorone	<0.17		0.17		mg/Kg			11/10/17 14:52	1
2-Methylnaphthalene	<0.067		0.067	0.0061				11/10/17 14:52	1
2-Methylphenol	<0.17		0.17		mg/Kg			11/10/17 14:52	1
3 & 4 Methylphenol	<0.17		0.17		mg/Kg			11/10/17 14:52	1
Naphthalene	<0.033		0.033	0.0051				11/10/17 14:52	1

TestAmerica Chicago

11/15/2017

9

77

12

13

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

# Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 500-409279/1-A

**Matrix: Solid** 

Analysis Batch: 409355

**Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 409279** 

	MB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Nitroaniline	<0.17		0.17	0.045	mg/Kg		11/09/17 17:53	11/10/17 14:52	1
3-Nitroaniline	<0.33		0.33	0.10	mg/Kg		11/09/17 17:53	11/10/17 14:52	1
4-Nitroaniline	<0.33		0.33	0.14	mg/Kg		11/09/17 17:53	11/10/17 14:52	1
Nitrobenzene	<0.033		0.033	0.0083	mg/Kg		11/09/17 17:53	11/10/17 14:52	1
2-Nitrophenol	<0.33		0.33	0.079	mg/Kg		11/09/17 17:53	11/10/17 14:52	1
4-Nitrophenol	<0.67		0.67	0.32	mg/Kg		11/09/17 17:53	11/10/17 14:52	1
N-Nitrosodi-n-propylamine	<0.067		0.067	0.041	mg/Kg		11/09/17 17:53	11/10/17 14:52	1
N-Nitrosodiphenylamine	<0.17		0.17	0.039	mg/Kg		11/09/17 17:53	11/10/17 14:52	1
2,2'-oxybis[1-chloropropane]	<0.17		0.17	0.039	mg/Kg		11/09/17 17:53	11/10/17 14:52	1
Pentachlorophenol	<0.67		0.67	0.53	mg/Kg		11/09/17 17:53	11/10/17 14:52	1
Phenanthrene	<0.033		0.033	0.0046	mg/Kg		11/09/17 17:53	11/10/17 14:52	1
Phenol	<0.17		0.17	0.074	mg/Kg		11/09/17 17:53	11/10/17 14:52	1
Pyrene	<0.033		0.033	0.0066	mg/Kg		11/09/17 17:53	11/10/17 14:52	1
1,2,4-Trichlorobenzene	<0.17		0.17	0.036	mg/Kg		11/09/17 17:53	11/10/17 14:52	1
2,4,5-Trichlorophenol	<0.33		0.33	0.076	mg/Kg		11/09/17 17:53	11/10/17 14:52	1
2,4,6-Trichlorophenol	<0.33		0.33	0.11	mg/Kg		11/09/17 17:53	11/10/17 14:52	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	82	44 - 121	11/09/17 17:53	11/10/17 14:52	1
2-Fluorophenol	76	46 - 133	11/09/17 17:53	11/10/17 14:52	1
Nitrobenzene-d5	74	41 - 120	11/09/17 17:53	11/10/17 14:52	1
Phenol-d5	81	46 - 125	11/09/17 17:53	11/10/17 14:52	1
Terphenyl-d14	84	35 - 160	11/09/17 17:53	11/10/17 14:52	1
2,4,6-Tribromophenol	39	25 - 139	11/09/17 17:53	11/10/17 14:52	1

Lab Sample ID: LCS 500-409279/2-A

**Matrix: Solid** 

Analysis Ratch: 400255

**Client Sample ID: Lab Control Sample Prep Type: Total/NA** 

Analysis Batch: 409355	Spike	LCS	LCS				Prep Batch: 409279 %Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Acenaphthene	1.33	1.14		mg/Kg		85	58 - 110
Acenaphthylene	1.33	1.16		mg/Kg		87	60 - 110
Anthracene	1.33	1.09		mg/Kg		82	63 - 110
Benzo[a]anthracene	1.33	1.27		mg/Kg		95	63 - 110
Benzo[a]pyrene	1.33	1.15		mg/Kg		86	61 - 120
Benzo[b]fluoranthene	1.33	1.26		mg/Kg		94	62 - 120
Benzo[g,h,i]perylene	1.33	1.22		mg/Kg		91	64 - 120
Benzo[k]fluoranthene	1.33	1.24		mg/Kg		93	65 - 120
Bis(2-chloroethoxy)methane	1.33	1.12		mg/Kg		84	60 - 112
Bis(2-chloroethyl)ether	1.33	1.14		mg/Kg		86	55 - 111
Bis(2-ethylhexyl) phthalate	1.33	1.40		mg/Kg		105	63 - 118
4-Bromophenyl phenyl ether	1.33	1.21		mg/Kg		91	63 - 110
Butyl benzyl phthalate	1.33	1.32		mg/Kg		99	61 - 116
Carbazole	1.33	1.32		mg/Kg		99	59 - 158
4-Chloroaniline	1.33	0.918		mg/Kg		69	30 - 150
4-Chloro-3-methylphenol	1.33	1.21		mg/Kg		91	61 - 114
2-Chloronaphthalene	1.33	1.15		mg/Kg		87	64 - 110
2-Chlorophenol	1.33	1.15		mg/Kg		86	64 - 110

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

# Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 500-409279/2-A Matrix: Solid Analysis Batch: 409355				Clier	it Sai	mple ID	: Lab Control Sample Prep Type: Total/NA Prep Batch: 409279
Analysis Batch. 400000	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
4-Chlorophenyl phenyl ether	1.33	1.16		mg/Kg		87	63 - 110
Chrysene	1.33	1.14		mg/Kg		86	63 - 120
Dibenz(a,h)anthracene	1.33	1.29		mg/Kg		97	64 - 119
Dibenzofuran	1.33	1.15		mg/Kg		87	64 - 110
1,2-Dichlorobenzene	1.33	1.10		mg/Kg		83	62 - 110
1,3-Dichlorobenzene	1.33	1.07		mg/Kg		80	60 - 110
1,4-Dichlorobenzene	1.33	1.09		mg/Kg		81	61 - 110
3,3'-Dichlorobenzidine	1.33	1.16		mg/Kg		87	49 - 112
2,4-Dichlorophenol	1.33	1.22		mg/Kg		91	58 - 120
Diethyl phthalate	1.33	1.18		mg/Kg		88	58 - 120
2,4-Dimethylphenol	1.33	1.34		mg/Kg		101	60 - 110
Dimethyl phthalate	1.33	1.19		mg/Kg		90	64 - 110
Di-n-butyl phthalate	1.33	1.22		mg/Kg		92	65 - 120
4,6-Dinitro-2-methylphenol	2.67	1.44		mg/Kg		54	10 - 110
2,4-Dinitrophenol	2.67	1.13		mg/Kg		43	10 - 110
2,4-Dinitrotoluene	1.33	1.23		mg/Kg		92	62 - 117
2,6-Dinitrotoluene	1.33	1.15		mg/Kg		87	67 - 120
Di-n-octyl phthalate	1.33	1.13		mg/Kg		99	63 - 119
Fluoranthene	1.33	1.21		mg/Kg		91	62 - 120
Fluorene	1.33	1.18				88	62 - 120
				mg/Kg			
Hexachlorobenzene	1.33	1.18		mg/Kg		89	55 - 117
Hexachlorobutadiene	1.33 1.33	1.09 0.807		mg/Kg		82 61	56 ₋ 120 10 ₋ 106
Hexachlorocyclopentadiene				mg/Kg			
Hexachloroethane	1.33	1.11		mg/Kg		83	61 - 110
Indeno[1,2,3-cd]pyrene	1.33	1.30		mg/Kg		97	57 ₋ 127
Isophorone	1.33	1.08		mg/Kg		81	55 - 110
2-Methylnaphthalene	1.33	1.18		mg/Kg		89	62 - 110
2-Methylphenol	1.33	1.34		mg/Kg		100	60 - 120
3 & 4 Methylphenol	1.33	1.15		mg/Kg		87	57 - 120
Naphthalene	1.33	1.15		mg/Kg		86	63 - 110
2-Nitroaniline	1.33	1.19		mg/Kg		89	57 - 124
3-Nitroaniline	1.33	1.26		mg/Kg		95	40 - 122
4-Nitroaniline	1.33	1.73		mg/Kg		130	60 - 160
Nitrobenzene	1.33	1.11		mg/Kg		83	60 - 116
2-Nitrophenol	1.33	1.26		mg/Kg		95	60 - 120
4-Nitrophenol	2.67	1.96		mg/Kg		74	30 - 122
N-Nitrosodi-n-propylamine	1.33	1.18		mg/Kg		89	56 - 118
N-Nitrosodiphenylamine	1.33	1.23		mg/Kg		92	65 - 112
2,2'-oxybis[1-chloropropane]	1.33	1.14		mg/Kg		85	40 - 124
Pentachlorophenol	2.67	1.86		mg/Kg		70	13 - 112
Phenanthrene	1.33	1.35		mg/Kg		102	62 - 120
Phenol	1.33	1.12		mg/Kg		84	56 - 122
Pyrene	1.33	1.14		mg/Kg		86	63 - 120
1,2,4-Trichlorobenzene	1.33	1.14		mg/Kg		86	62 - 110
2,4,5-Trichlorophenol	1.33	1.09		mg/Kg		82	50 - 120
2,4,6-Trichlorophenol	1.33	1.24		mg/Kg		93	57 - 120

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

2

## Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 500-409279/2-A

**Matrix: Solid** 

Analysis Batch: 409355

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 409279

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	89		44 - 121
2-Fluorophenol	90		46 - 133
Nitrobenzene-d5	88		41 - 120
Phenol-d5	91		46 - 125
Terphenyl-d14	93		35 - 160
2,4,6-Tribromophenol	96		25 - 139

Client Sample ID: Method Blank

Prep Type: Total/NA

**Prep Batch: 409340** 

MB MB

Lab Sample ID: MB 500-409340/1-A

Matrix: Solid

**Analysis Batch: 409400** 

Analyte         Result         Qualifier         RL         MDL unit         D mg/Kg         Prepared         Analyze           Acenaphthene         <0.033         0.033         0.0060         mg/Kg         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22 <th>9:03     1       9:03     1       9:03     1       9:03     1       9:03     1       9:03     1       9:03     1       9:03     1       9:03     1       9:03     1       9:03     1       9:03     1</th>	9:03     1       9:03     1       9:03     1       9:03     1       9:03     1       9:03     1       9:03     1       9:03     1       9:03     1       9:03     1       9:03     1       9:03     1
Acenaphthylene         <0.033         0.033         0.0044         mg/Kg         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17	9:03 1 9:03 1 9:03 1 9:03 1 9:03 1 9:03 1 9:03 1
Anthracene         <0.033         0.033         0.0056 mg/Kg         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22 <t< td=""><td>9:03 1 9:03 1 9:03 1 9:03 1 9:03 1 9:03 1 9:03 1</td></t<>	9:03 1 9:03 1 9:03 1 9:03 1 9:03 1 9:03 1 9:03 1
Benzo[a]anthracene         <0.033	9:03 1 9:03 1 9:03 1 9:03 1 9:03 1 9:03 1
Benzo[a]pyrene         <0.033	9:03 1 9:03 1 9:03 1 9:03 1 9:03 1
Benzo[b]fluoranthene         <0.033	9:03 1 9:03 1 9:03 1 9:03 1
Benzo[g,h,i]perylene         <0.033	9:03 1 9:03 1 9:03 1
Benzo[k]fluoranthene         <0.033         0.033         0.098 mg/Kg         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22         11/10/17 07:22	9:03 1 9:03 1
Bis(2-chloroethoxy)methane       <0.17	9:03 1
Bis(2-chloroethyl)ether       <0.17	
Bis(2-ethylhexyl) phthalate       <0.17	0.00
4-Bromophenyl ether <0.17 0.17 0.044 mg/Kg 11/10/17 07:22 11/10/17 1	9:03 1
. , , ,	9:03 1
	9:03 1
Butyl benzyl phthalate <0.17 0.063 mg/Kg 11/10/17 07:22 11/10/17 1	9:03 1
Carbazole <0.17 0.083 mg/Kg 11/10/17 07:22 11/10/17 1	9:03 1
4-Chloroaniline <0.67 0.67 0.16 mg/Kg 11/10/17 07:22 11/10/17 1	9:03 1
4-Chloro-3-methylphenol <0.33 0.11 mg/Kg 11/10/17 07:22 11/10/17 1	9:03 1
2-Chloronaphthalene <0.17 0.037 mg/Kg 11/10/17 07:22 11/10/17 1	9:03 1
2-Chlorophenol <0.17 0.057 mg/Kg 11/10/17 07:22 11/10/17 1	9:03 1
4-Chlorophenyl phenyl ether <0.17 0.17 0.039 mg/Kg 11/10/17 07:22 11/10/17 1	9:03 1
Chrysene <0.033 0.0091 mg/Kg 11/10/17 07:22 11/10/17 1	9:03 1
Dibenz(a,h)anthracene <0.033 0.0064 mg/Kg 11/10/17 07:22 11/10/17 1	9:03 1
Dibenzofuran <0.17 0.17 0.039 mg/Kg 11/10/17 07:22 11/10/17 1	9:03 1
1,2-Dichlorobenzene <0.17 0.040 mg/Kg 11/10/17 07:22 11/10/17 1	9:03 1
1,3-Dichlorobenzene <0.17 0.037 mg/Kg 11/10/17 07:22 11/10/17 1	9:03 1
1,4-Dichlorobenzene <0.17 0.17 0.043 mg/Kg 11/10/17 07:22 11/10/17 1	9:03 1
3,3'-Dichlorobenzidine <0.17 0.047 mg/Kg 11/10/17 07:22 11/10/17 1	9:03 1
2,4-Dichlorophenol <0.33 0.079 mg/Kg 11/10/17 07:22 11/10/17 1	9:03 1
Diethyl phthalate <0.17 0.056 mg/Kg 11/10/17 07:22 11/10/17 1	9:03 1
2,4-Dimethylphenol <0.33 0.13 mg/Kg 11/10/17 07:22 11/10/17 1	9:03 1
Dimethyl phthalate <0.17 0.043 mg/Kg 11/10/17 07:22 11/10/17 1	9:03 1
Di-n-butyl phthalate <0.17 0.051 mg/Kg 11/10/17 07:22 11/10/17 1	9:03 1
4,6-Dinitro-2-methylphenol <0.67 0.67 0.27 mg/Kg 11/10/17 07:22 11/10/17 1	9:03 1
2,4-Dinitrophenol <0.67 0.69 mg/Kg 11/10/17 07:22 11/10/17 1	9:03 1
2,4-Dinitrotoluene <0.17 0.053 mg/Kg 11/10/17 07:22 11/10/17 1	9:03 1
2,6-Dinitrotoluene <0.17 0.065 mg/Kg 11/10/17 07:22 11/10/17 1	9:03 1
Di-n-octyl phthalate <0.17 0.054 mg/Kg 11/10/17 07:22 11/10/17 1	9:03 1

TestAmerica Chicago

Page 150 of 195

11/15/2017

3

4

6

1

9

10 11

12

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

# Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 500-409340/1-A

**Matrix: Solid** 

Analysis Batch: 409400

**Client Sample ID: Method Blank** 

**Prep Type: Total/NA Prep Batch: 409340** ac 1

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Fluoranthene	<0.033		0.033	0.0062	mg/Kg		11/10/17 07:22	11/10/17 19:03	
Fluorene	<0.033		0.033	0.0047	mg/Kg		11/10/17 07:22	11/10/17 19:03	
Hexachlorobenzene	<0.067		0.067	0.0077	mg/Kg		11/10/17 07:22	11/10/17 19:03	
Hexachlorobutadiene	<0.17		0.17	0.052	mg/Kg		11/10/17 07:22	11/10/17 19:03	
Hexachlorocyclopentadiene	<0.67		0.67	0.19	mg/Kg		11/10/17 07:22	11/10/17 19:03	
Hexachloroethane	<0.17		0.17	0.051	mg/Kg		11/10/17 07:22	11/10/17 19:03	
Indeno[1,2,3-cd]pyrene	<0.033		0.033	0.0086	mg/Kg		11/10/17 07:22	11/10/17 19:03	
Isophorone	<0.17		0.17	0.037	mg/Kg		11/10/17 07:22	11/10/17 19:03	
2-Methylnaphthalene	<0.067		0.067	0.0061	mg/Kg		11/10/17 07:22	11/10/17 19:03	
2-Methylphenol	<0.17		0.17	0.053	mg/Kg		11/10/17 07:22	11/10/17 19:03	
3 & 4 Methylphenol	<0.17		0.17	0.055	mg/Kg		11/10/17 07:22	11/10/17 19:03	
Naphthalene	<0.033		0.033	0.0051	mg/Kg		11/10/17 07:22	11/10/17 19:03	
2-Nitroaniline	<0.17		0.17	0.045	mg/Kg		11/10/17 07:22	11/10/17 19:03	
3-Nitroaniline	<0.33		0.33	0.10	mg/Kg		11/10/17 07:22	11/10/17 19:03	
4-Nitroaniline	<0.33		0.33	0.14	mg/Kg		11/10/17 07:22	11/10/17 19:03	
Nitrobenzene	<0.033		0.033	0.0083	mg/Kg		11/10/17 07:22	11/10/17 19:03	
2-Nitrophenol	<0.33		0.33	0.079	mg/Kg		11/10/17 07:22	11/10/17 19:03	
4-Nitrophenol	<0.67		0.67	0.32	mg/Kg		11/10/17 07:22	11/10/17 19:03	
N-Nitrosodi-n-propylamine	<0.067		0.067	0.041	mg/Kg		11/10/17 07:22	11/10/17 19:03	
N-Nitrosodiphenylamine	<0.17		0.17	0.039	mg/Kg		11/10/17 07:22	11/10/17 19:03	
2,2'-oxybis[1-chloropropane]	<0.17		0.17	0.039	mg/Kg		11/10/17 07:22	11/10/17 19:03	
Pentachlorophenol	<0.67		0.67	0.53	mg/Kg		11/10/17 07:22	11/10/17 19:03	
Phenanthrene	<0.033		0.033	0.0046	mg/Kg		11/10/17 07:22	11/10/17 19:03	
Phenol	<0.17		0.17	0.074	mg/Kg		11/10/17 07:22	11/10/17 19:03	
Pyrene	<0.033		0.033	0.0066	mg/Kg		11/10/17 07:22	11/10/17 19:03	
1,2,4-Trichlorobenzene	<0.17		0.17	0.036	mg/Kg		11/10/17 07:22	11/10/17 19:03	
2,4,5-Trichlorophenol	<0.33		0.33	0.076	mg/Kg		11/10/17 07:22	11/10/17 19:03	
2,4,6-Trichlorophenol	<0.33		0.33	0.11	mg/Kg		11/10/17 07:22	11/10/17 19:03	

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	84		44 - 121	11/10/17 07:22	11/10/17 19:03	1
2-Fluorophenol	91		46 - 133	11/10/17 07:22	11/10/17 19:03	1
Nitrobenzene-d5	80		41 - 120	11/10/17 07:22	11/10/17 19:03	1
Phenol-d5	89		46 - 125	11/10/17 07:22	11/10/17 19:03	1
Terphenyl-d14	88		35 - 160	11/10/17 07:22	11/10/17 19:03	1
2,4,6-Tribromophenol	78		25 - 139	11/10/17 07:22	11/10/17 19:03	1

Lab Sample ID: LCS 500-409340/2-A

**Matrix: Solid** 

Analysis Batch: 409400

**Client Sample ID: Lab Control Sample Prep Type: Total/NA** Prep Batch: 409340

•	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Acenaphthene	1.33	1.07		mg/Kg		80	58 - 110
Acenaphthylene	1.33	1.04		mg/Kg		78	60 - 110
Anthracene	1.33	1.10		mg/Kg		82	63 - 110
Benzo[a]anthracene	1.33	1.03		mg/Kg		78	63 - 110
Benzo[a]pyrene	1.33	1.14		mg/Kg		85	61 - 120
Benzo[b]fluoranthene	1.33	1.12		mg/Kg		84	62 - 120

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

# Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 500-409340/2-A Matrix: Solid				Clie	nt Sample ID:	Lab Control Sample Prep Type: Total/NA		
Analysis Batch: 409400	Spike	LCS	LCS			Prep Batch: 409340 %Rec.		
Analyte	Added		Qualifier	Unit	D %Rec	Limits		
Benzo[g,h,i]perylene	1.33	1.13		mg/Kg		64 - 120		
Benzo[k]fluoranthene	1.33	1.11		mg/Kg	84	65 - 120		
Bis(2-chloroethoxy)methane	1.33	1.08		mg/Kg	81	60 - 112		
Bis(2-chloroethyl)ether	1.33	1.05		mg/Kg	79	55 - 111		
Bis(2-ethylhexyl) phthalate	1.33	1.06		mg/Kg	79	63 - 118		
4-Bromophenyl phenyl ether	1.33	1.11		mg/Kg	84	63 - 110		
Butyl benzyl phthalate	1.33	1.29		mg/Kg	97	61 - 116		
Carbazole	1.33	1.17		mg/Kg	87	59 - 158		
4-Chloroaniline	1.33	1.06		mg/Kg	79	30 - 150		
4-Chloro-3-methylphenol	1.33	1.08		mg/Kg	81	61 - 114		
2-Chloronaphthalene	1.33	1.08		mg/Kg	81	64 - 110		
2-Chlorophenol	1.33	1.09		mg/Kg	82	64 - 110		
4-Chlorophenyl phenyl ether	1.33	1.10		mg/Kg	83	63 - 110		
Chrysene	1.33	1.02		mg/Kg	77	63 - 120		
Dibenz(a,h)anthracene	1.33	1.17		mg/Kg	87	64 - 119		
Dibenzofuran	1.33	1.10		mg/Kg	82	64 - 110		
1,2-Dichlorobenzene	1.33	1.06		mg/Kg	79	62 - 110		
1,3-Dichlorobenzene	1.33	1.03		mg/Kg	77	60 - 110		
1.4-Dichlorobenzene	1.33	1.02		mg/Kg	76	61 - 110		
3,3'-Dichlorobenzidine	1.33	0.927		mg/Kg	70	49 - 112		
2,4-Dichlorophenol	1.33	1.12		mg/Kg	84	58 - 120		
Diethyl phthalate	1.33	1.10		mg/Kg	82	58 - 120		
2,4-Dimethylphenol	1.33	1.11		mg/Kg	83	60 - 110		
Dimethyl phthalate	1.33	1.10		mg/Kg	82	64 - 110		
Di-n-butyl phthalate	1.33	1.12		mg/Kg	84	65 - 120		
4,6-Dinitro-2-methylphenol	2.67	1.55		mg/Kg	58	10 - 110		
2,4-Dinitrophenol	2.67	1.23		mg/Kg	46	10 - 100		
2,4-Dinitrotoluene	1.33	1.14		mg/Kg	85	62 - 117		
2,6-Dinitrotoluene	1.33	1.15		mg/Kg	87	67 - 120		
Di-n-octyl phthalate	1.33	1.13		mg/Kg	85	63 - 119		
Fluoranthene	1.33	1.13		mg/Kg	84	62 - 120		
Fluorene	1.33	1.10		mg/Kg	82	62 - 120		
Hexachlorobenzene	1.33	1.13		mg/Kg	85	55 - 117		
Hexachlorobutadiene	1.33	1.04		mg/Kg	78	56 - 120		
Hexachlorocyclopentadiene	1.33	0.998		mg/Kg	75	10 - 106		
Hexachloroethane	1.33	1.01		mg/Kg	76	61 - 110		
Indeno[1,2,3-cd]pyrene	1.33	1.15		mg/Kg	86	57 - 127		
Isophorone	1.33	1.02		mg/Kg	77	55 - 110		
2-Methylnaphthalene	1.33	1.09		mg/Kg	82	62 - 110		
2-Methylphenol	1.33	1.12		mg/Kg	84	60 - 120		
3 & 4 Methylphenol	1.33	1.12		mg/Kg	84	57 - 120		
Naphthalene	1.33	1.08		mg/Kg	81	63 - 110		
2-Nitroaniline	1.33	1.08		mg/Kg	81	57 - 124		
3-Nitroaniline	1.33	0.944		mg/Kg	71	40 - 122		
4-Nitroaniline	1.33	1.41		mg/Kg	106	60 - 160		
Nitrobenzene	1.33	1.11		mg/Kg	83	60 - 116		
2-Nitrophenol	1.33	1.12		mg/Kg	84	60 - 120		
4-Nitrophenol	2.67	2.21		mg/Kg	83	30 - 122		

TestAmerica Chicago

11/15/2017

Page 152 of 195

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

# Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

LCS LCS

%Recovery Qualifier

86

90

82

91

84

91

Lab Sample ID: LCS 500-409340/2-A **Matrix: Solid** 

Analysis Batch: 409400

**Client Sample ID: Lab Control Sample Prep Type: Total/NA** 

**Prep Batch: 409340** 

	Spike	LUS	LUS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
N-Nitrosodi-n-propylamine	1.33	1.08		mg/Kg		81	56 - 118	
N-Nitrosodiphenylamine	1.33	1.12		mg/Kg		84	65 - 112	
2,2'-oxybis[1-chloropropane]	1.33	1.08		mg/Kg		81	40 - 124	
Pentachlorophenol	2.67	2.18		mg/Kg		82	13 - 112	
Phenanthrene	1.33	1.09		mg/Kg		82	62 - 120	
Phenol	1.33	1.13		mg/Kg		85	56 - 122	
Pyrene	1.33	1.08		mg/Kg		81	63 - 120	
1,2,4-Trichlorobenzene	1.33	1.08		mg/Kg		81	62 - 110	
2,4,5-Trichlorophenol	1.33	1.14		mg/Kg		86	50 - 120	
2,4,6-Trichlorophenol	1.33	1.11		mg/Kg		83	57 - 120	

Limits 44 - 121

46 - 133

41 - 120

46 - 125

35 - 160

25 - 139

Lab Sample ID: 500-136756-1 MS

**Matrix: Solid** 

Surrogate

Phenol-d5

2-Fluorobiphenyl

2-Fluorophenol

Terphenyl-d14

2,4,6-Tribromophenol

Nitrobenzene-d5

Analysis Batch: 409487

Client Sample ID: 3160-51-3 (0-1.5') **Prep Type: Total/NA** 

**Prep Batch: 409340** 

7 maryolo Batom 400407	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Acenaphthene	<0.038		1.52	1.32		mg/Kg	<u>₩</u>	87	58 - 110
Acenaphthylene	<0.038		1.52	1.38		mg/Kg	☼	90	60 - 110
Anthracene	<0.038		1.52	1.56		mg/Kg	₩	103	63 - 110
Benzo[a]anthracene	0.016	J	1.52	1.60		mg/Kg	₩.	104	63 - 110
Benzo[a]pyrene	0.043		1.52	1.55		mg/Kg	☼	99	61 - 120
Benzo[b]fluoranthene	0.049		1.52	1.52		mg/Kg	₩	96	62 _ 120
Benzo[g,h,i]perylene	0.043		1.52	1.59		mg/Kg		102	64 - 120
Benzo[k]fluoranthene	<0.038		1.52	1.56		mg/Kg	☼	102	65 - 120
Bis(2-chloroethoxy)methane	<0.19		1.52	1.34		mg/Kg	₩	88	60 - 112
Bis(2-chloroethyl)ether	<0.19	F1	1.52	2.03	F1	mg/Kg		133	55 - 111
Bis(2-ethylhexyl) phthalate	<0.19		1.52	1.79		mg/Kg	☼	117	63 - 118
4-Bromophenyl phenyl ether	<0.19		1.52	1.48		mg/Kg	₩	97	63 - 110
Butyl benzyl phthalate	<0.19		1.52	1.71		mg/Kg	₩.	112	61 - 116
Carbazole	<0.19		1.52	1.54		mg/Kg	₩	101	59 - 158
4-Chloroaniline	<0.77		1.52	1.31		mg/Kg	☼	86	30 - 150
4-Chloro-3-methylphenol	<0.38		1.52	1.48		mg/Kg		97	61 - 114
2-Chloronaphthalene	<0.19		1.52	1.37		mg/Kg	☼	90	64 - 110
2-Chlorophenol	<0.19		1.52	1.50		mg/Kg	☼	98	64 - 110
4-Chlorophenyl phenyl ether	<0.19		1.52	1.41		mg/Kg	₩.	92	63 - 110
Chrysene	0.019	J	1.52	1.49		mg/Kg	☼	96	63 - 120
Dibenz(a,h)anthracene	0.039		1.52	1.54		mg/Kg	₩	99	64 - 119
Dibenzofuran	<0.19		1.52	1.41		mg/Kg		92	64 - 110
1,2-Dichlorobenzene	<0.19		1.52	1.22		mg/Kg	☼	80	62 _ 110
1,3-Dichlorobenzene	<0.19		1.52	1.14		mg/Kg	₩	75	60 - 110

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 500-136756-1 MS

Matrix: Solid

Analysis Batch: 409487

Client Sample ID: 3160-51-3 (0-1.5') **Prep Type: Total/NA Prep Batch: 409340** 

Analysis	•	Sample	Spike		MS	1114		0/ <b>D</b> = =	%Rec.	
Analyte  1,4-Dichlorobenzene	<0.19	Qualifier	Added	1.13	Qualifier	Unit mg/Kg	_ D <u>∓</u>	%Rec 74	Limits 61 - 110	
3,3'-Dichlorobenzidine	<0.19		1.52	0.796			· · · · · · · · · · · · · · · · · · ·	52	49 - 112	
'	<0.19		1.52	1.32		mg/Kg mg/Kg	≎	32 87	49 - 112 58 - 120	
2,4-Dichlorophenol							· · · · · · · · · · · · · · · · · · ·			
Diethyl phthalate	<0.19		1.52	1.57		mg/Kg	₩	103	58 ₋ 120	
2,4-Dimethylphenol	<0.38		1.52	1.34		mg/Kg	₩	88	60 - 110	
Dimethyl phthalate	<0.19		1.52	1.50		mg/Kg	· · · · · · · · · · · · · · · · · · ·	99	64 - 110	
Di-n-butyl phthalate	<0.19		1.52	1.64		mg/Kg		108	65 - 120	
4,6-Dinitro-2-methylphenol	<0.77		3.05	1.84		mg/Kg	≎	60	10 - 110	
2,4-Dinitrophenol	<0.77		3.05	1.67		mg/Kg		55	10 - 100	
2,4-Dinitrotoluene	<0.19		1.52	1.45		mg/Kg	\$	95	62 - 117	
2,6-Dinitrotoluene	<0.19		1.52	1.48		mg/Kg	₩	97	67 - 120	
Di-n-octyl phthalate	<0.19		1.52	1.73		mg/Kg	<b>☆</b>	114	63 - 119	
Fluoranthene	0.024	J	1.52	1.60		mg/Kg	Ď.	104	62 - 120	
Fluorene	<0.038		1.52	1.47		mg/Kg	₩	96	62 - 120	
Hexachlorobenzene	<0.077		1.52	1.42		mg/Kg	<b>☆</b>	93	55 - 117	
Hexachlorobutadiene	<0.19		1.52	1.05		mg/Kg	₩	69	56 - 120	
Hexachlorocyclopentadiene	<0.77	F1	1.52	<0.77	F1	mg/Kg	₩	0	10 - 106	
Hexachloroethane	<0.19		1.52	1.16		mg/Kg	₩	76	61 - 110	
Indeno[1,2,3-cd]pyrene	0.038		1.52	1.61		mg/Kg	₩	103	57 - 127	
Isophorone	<0.19		1.52	1.30		mg/Kg	₩	85	55 - 110	
2-Methylnaphthalene	0.022	J	1.52	1.30		mg/Kg	☼	84	62 - 110	
2-Methylphenol	<0.19		1.52	1.62		mg/Kg	₩	107	60 - 120	
3 & 4 Methylphenol	<0.19		1.52	1.62		mg/Kg	₩	106	57 - 120	
Naphthalene	0.0097	J	1.52	1.27		mg/Kg	₩	83	63 - 110	
2-Nitroaniline	<0.19		1.52	1.72		mg/Kg	₩.	113	57 - 124	
3-Nitroaniline	<0.38		1.52	1.43		mg/Kg	☼	94	40 - 122	
4-Nitroaniline	<0.38		1.52	1.79		mg/Kg	☼	117	60 - 160	
Nitrobenzene	<0.038		1.52	1.34		mg/Kg	₩	88	60 - 116	
2-Nitrophenol	<0.38		1.52	1.31		mg/Kg	₩	86	60 - 120	
4-Nitrophenol	<0.77		3.05	2.36		mg/Kg	₩	77	30 - 122	
N-Nitrosodi-n-propylamine	<0.077		1.52	1.57		mg/Kg	₽	103	56 - 118	
N-Nitrosodiphenylamine	<0.19		1.52	1.60		mg/Kg	₩	105	65 - 112	
2,2'-oxybis[1-chloropropane]	<0.19		1.52	1.70		mg/Kg	☼	112	40 - 124	
Pentachlorophenol	<0.77		3.05	1.25		mg/Kg	₩.	41	13 - 112	
Phenanthrene	0.038		1.52	1.59		mg/Kg	☼	102	62 - 120	
Phenol	<0.19		1.52	1.79		mg/Kg	☼	117	56 - 122	
Pyrene	0.029	J	1.52	1.54		mg/Kg		99	63 - 120	
1,2,4-Trichlorobenzene	<0.19		1.52	1.20		mg/Kg	₩	79	62 - 110	
2,4,5-Trichlorophenol	<0.38		1.52	1.33		mg/Kg	₩	87	50 - 120	
2,4,6-Trichlorophenol	<0.38		1.52	1.30		mg/Kg		85	57 - 120	
, , , , , , , , , , , , , , , , , , , ,			-			3 3			-	

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	85		44 - 121
2-Fluorophenol	105		46 - 133
Nitrobenzene-d5	83		41 - 120
Phenol-d5	107		46 - 125
Terphenyl-d14	96		35 - 160
2,4,6-Tribromophenol	77		25 - 139

# **QC Sample Results**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Lab Sample ID: 500-136756-1 MSD

**Matrix: Solid** 

Hexachloroethane

Isophorone

2-Methylphenol

Naphthalene

2-Nitroaniline

3-Nitroaniline

Indeno[1,2,3-cd]pyrene

2-Methylnaphthalene

3 & 4 Methylphenol

< 0.19

0.038

< 0.19

< 0.19

< 0.19

< 0.19

<0.38

0.0097 J

0.022 J

TestAmerica Job ID: 500-136756-1

Client Sample ID: 3160-51-3 (0-1.5')

Prep Type: Total/NA
Prep Batch: 409340

4

6

8

10

12

Analysis Batch: 409487	Sample	Sample	Spike	MSD	MSD				Prep Ba %Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acenaphthene	<0.038		1.52	1.29		mg/Kg	<u> </u>	85	58 - 110	2	30
Acenaphthylene	<0.038		1.52	1.38		mg/Kg	₩	90	60 - 110	0	30
Anthracene	<0.038		1.52	1.55		mg/Kg	₩	102	63 - 110	1	30
Benzo[a]anthracene	0.016	J	1.52	1.55		mg/Kg	₩.	101	63 - 110	3	30
Benzo[a]pyrene	0.043		1.52	1.51		mg/Kg	₩	96	61 - 120	3	30
Benzo[b]fluoranthene	0.049		1.52	1.45		mg/Kg	₩	92	62 - 120	4	30
Benzo[g,h,i]perylene	0.043		1.52	1.49		mg/Kg	₩.	95	64 - 120	7	30
Benzo[k]fluoranthene	<0.038		1.52	1.52		mg/Kg	₩	100	65 - 120	2	30
Bis(2-chloroethoxy)methane	<0.19		1.52	1.39		mg/Kg	₩	91	60 - 112	4	30
Bis(2-chloroethyl)ether	<0.19	F1	1.52	1.50		mg/Kg	₩	99	55 - 111	30	30
Bis(2-ethylhexyl) phthalate	<0.19		1.52	1.73		mg/Kg	₩	114	63 - 118	3	30
4-Bromophenyl phenyl ether	<0.19		1.52	1.47		mg/Kg	₩	96	63 - 110	1	30
Butyl benzyl phthalate	<0.19		1.52	1.67		mg/Kg	₩.	109	61 - 116	2	30
Carbazole	<0.19		1.52	1.50		mg/Kg	₩	99	59 ₋ 158	3	30
4-Chloroaniline	<0.77		1.52	1.36		mg/Kg	☼	89	30 - 150	4	30
4-Chloro-3-methylphenol	<0.38		1.52	1.48		mg/Kg	₩.	97	61 - 114	0	30
2-Chloronaphthalene	<0.19		1.52	1.33		mg/Kg	☼	87	64 - 110	3	30
2-Chlorophenol	<0.19		1.52	1.52		mg/Kg	₩	100	64 - 110	2	30
4-Chlorophenyl phenyl ether	<0.19		1.52	1.40		mg/Kg	₩.	92	63 - 110	0	30
Chrysene	0.019	J	1.52	1.43		mg/Kg	₩	93	63 - 120	4	30
Dibenz(a,h)anthracene	0.039		1.52	1.45		mg/Kg	₩	93	64 - 119	6	30
Dibenzofuran	<0.19		1.52	1.39		mg/Kg	₩.	91	64 - 110	1	30
1,2-Dichlorobenzene	<0.19		1.52	1.21		mg/Kg	₩	80	62 - 110	1	30
1,3-Dichlorobenzene	<0.19		1.52	1.17		mg/Kg	₩	76	60 - 110	3	30
1,4-Dichlorobenzene	<0.19		1.52	1.20		mg/Kg	₩	78	61 - 110	6	30
3,3'-Dichlorobenzidine	<0.19		1.52	0.918		mg/Kg	₩	60	49 - 112	14	30
2,4-Dichlorophenol	<0.38		1.52	1.37		mg/Kg	☼	90	58 ₋ 120	4	30
Diethyl phthalate	<0.19		1.52	1.54		mg/Kg	₩.	101	58 - 120	2	30
2,4-Dimethylphenol	<0.38		1.52	1.35		mg/Kg	☼	89	60 - 110	1	30
Dimethyl phthalate	<0.19		1.52	1.49		mg/Kg	₩	98	64 - 110	1	30
Di-n-butyl phthalate	<0.19		1.52	1.61		mg/Kg		106	65 - 120	2	30
4,6-Dinitro-2-methylphenol	<0.77		3.05	1.39		mg/Kg	₩	46	10 - 110	28	30
2,4-Dinitrophenol	<0.77		3.05	1.40		mg/Kg	₩	46	10 - 100	18	30
2,4-Dinitrotoluene	<0.19		1.52	1.44		mg/Kg	₩.	94	62 - 117	1	30
2,6-Dinitrotoluene	<0.19		1.52	1.45		mg/Kg	₩	95	67 - 120	2	30
Di-n-octyl phthalate	<0.19		1.52	1.60		mg/Kg	₩	105	63 - 119	8	30
Fluoranthene	0.024	J	1.52	1.54		mg/Kg		99	62 - 120	4	30
Fluorene	<0.038		1.52	1.48		mg/Kg	₩	97	62 - 120	1	30
Hexachlorobenzene	<0.077		1.52	1.39		mg/Kg	₩	91	55 ₋ 117	2	30
Hexachlorobutadiene	<0.19		1.52	1.02		mg/Kg	₩.	67	56 - 120	3	30
Hexachlorocyclopentadiene	<0.77	F1	1.52	<0.77	F1	mg/Kg	₩	0	10 - 106	NC	30
										_	

77

98

88

86

120

109

84

109

91

₩

₩

₩

₽

₩

₩

Ţ

☼

61 - 110

57 - 127

55 - 110

62 - 110

60 - 120

57 - 120

63 - 110

57 - 124

40 - 122

1.52

1.52

1.52

1.52

1.52

1.52

1.52

1.52

1.52

1.18

1.53

1.34

1.33

1.83

1.66

1.29

1.66

1.39

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

30

30

30

30

30

30

30

30

30

2

5

3

2

12

2

2

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 500-136756-1 MSD

**Matrix: Solid** 

Analysis Batch: 409487

Client Sample ID: 3160-51-3 (0-1.5')

**Prep Type: Total/NA Prep Batch: 409340** 

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
4-Nitroaniline	<0.38		1.52	1.78		mg/Kg	<u></u>	117	60 - 160	1	30
Nitrobenzene	<0.038		1.52	1.35		mg/Kg	₩.	89	60 - 116	1	30
2-Nitrophenol	<0.38		1.52	1.37		mg/Kg	☼	90	60 - 120	5	30
4-Nitrophenol	<0.77		3.05	2.27		mg/Kg	₩	74	30 - 122	4	30
N-Nitrosodi-n-propylamine	<0.077		1.52	1.57		mg/Kg	₩.	103	56 - 118	0	30
N-Nitrosodiphenylamine	<0.19		1.52	1.55		mg/Kg	₩	102	65 - 112	3	30
2,2'-oxybis[1-chloropropane]	<0.19		1.52	1.71		mg/Kg	₩	112	40 - 124	1	30
Pentachlorophenol	<0.77		3.05	1.17		mg/Kg	₩	38	13 - 112	7	30
Phenanthrene	0.038		1.52	1.52		mg/Kg	☼	97	62 - 120	4	30
Phenol	<0.19		1.52	1.76		mg/Kg	☼	116	56 - 122	1	30
Pyrene	0.029	J	1.52	1.52		mg/Kg	₩	98	63 - 120	1	30
1,2,4-Trichlorobenzene	<0.19		1.52	1.23		mg/Kg	₩	81	62 - 110	3	30
2,4,5-Trichlorophenol	<0.38		1.52	1.29		mg/Kg	₩	85	50 - 120	3	30
2,4,6-Trichlorophenol	<0.38		1.52	1.25		mg/Kg	₩	82	57 - 120	4	30

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	81		44 - 121
2-Fluorophenol	105		46 - 133
Nitrobenzene-d5	82		41 - 120
Phenol-d5	114		46 - 125
Terphenyl-d14	95		35 - 160
2,4,6-Tribromophenol	74		25 - 139

Method: 6010B - Metals (ICP)

Lab Sample ID: MB 500-408751/1-A

**Matrix: Solid** 

**Analysis Batch: 408958** 

**Client Sample ID: Method Blank** Prep Type: Total/NA **Prep Batch: 408751** 

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<2.0		2.0	0.39	mg/Kg		11/07/17 08:10	11/07/17 19:07	1
Arsenic	<1.0		1.0	0.34	mg/Kg		11/07/17 08:10	11/07/17 19:07	1
Barium	<1.0		1.0	0.11	mg/Kg		11/07/17 08:10	11/07/17 19:07	1
Beryllium	<0.40		0.40	0.093	mg/Kg		11/07/17 08:10	11/07/17 19:07	1
Cadmium	<0.20		0.20	0.036	mg/Kg		11/07/17 08:10	11/07/17 19:07	1
Chromium	<1.0		1.0	0.50	mg/Kg		11/07/17 08:10	11/07/17 19:07	1
Cobalt	<0.50		0.50	0.13	mg/Kg		11/07/17 08:10	11/07/17 19:07	1
Copper	<1.0		1.0	0.28	mg/Kg		11/07/17 08:10	11/07/17 19:07	1
Iron	<20		20	10	mg/Kg		11/07/17 08:10	11/07/17 19:07	1
Lead	<0.50		0.50	0.23	mg/Kg		11/07/17 08:10	11/07/17 19:07	1
Manganese	<1.0		1.0	0.15	mg/Kg		11/07/17 08:10	11/07/17 19:07	1
Nickel	<1.0		1.0	0.29	mg/Kg		11/07/17 08:10	11/07/17 19:07	1
Selenium	<1.0		1.0	0.59	mg/Kg		11/07/17 08:10	11/07/17 19:07	1
Silver	<0.50		0.50	0.13	mg/Kg		11/07/17 08:10	11/07/17 19:07	1
Thallium	<1.0		1.0	0.50	mg/Kg		11/07/17 08:10	11/07/17 19:07	1
Vanadium	<0.50		0.50	0.12	mg/Kg		11/07/17 08:10	11/07/17 19:07	1
Zinc	<2.0		2.0	0.88	mg/Kg		11/07/17 08:10	11/07/17 19:07	1

TestAmerica Chicago

Page 156 of 195

11/15/2017

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

## Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: LCS 500-408751/2-A	Client Sample ID: Lab Control Sampl						
Matrix: Solid							Prep Type: Total/NA
Analysis Batch: 408958							<b>Prep Batch: 408751</b>
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Antimony	50.0	46.4		mg/Kg		93	80 - 120
Arsenic	10.0	9.09		mg/Kg		91	80 - 120
Barium	200	193		mg/Kg		97	80 - 120
Beryllium	5.00	4.70		mg/Kg		94	80 - 120
Cadmium	5.00	4.84		mg/Kg		97	80 - 120
Chromium	20.0	19.4		mg/Kg		97	80 - 120
Cobalt	50.0	47.9		mg/Kg		96	80 - 120
Copper	25.0	24.6		mg/Kg		98	80 - 120
Iron	100	101		mg/Kg		101	80 - 120
Lead	10.0	9.02		mg/Kg		90	80 - 120
Manganese	50.0	47.1		mg/Kg		94	80 - 120
Nickel	50.0	47.9		mg/Kg		96	80 - 120
Selenium	10.0	9.11		mg/Kg		91	80 - 120
Silver	5.00	4.69		mg/Kg		94	80 - 120
Thallium	10.0	8.81		mg/Kg		88	80 - 120
Vanadium	50.0	48.4		mg/Kg		97	80 - 120
Zinc	50.0	47.2		mg/Kg		94	80 - 120

Lab Sample ID: 500-136756-1 MS

Matrix: Solid

Client Sample ID: 3160-51-3 (0-1.5') **Prep Type: Total/NA** 

Client Sample ID: 3160-51-3 (0-1.5')

Analysis Batch: 408958	Sample	Sample	Spike	Me	MS				Prep Batch: 408751 %Rec.
Analyta	•	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits
Analyte						Unit			
Antimony	0.43	J F1	27.2	4.81		mg/Kg	₩	16	75 - 125
Arsenic	6.8	F1	5.43	10.3	F1	mg/Kg	₩	64	75 ₋ 125
Barium	89	F1	109	167	F1	mg/Kg	₩	72	75 - 125
Beryllium	0.49		2.72	2.65		mg/Kg	₩	80	75 - 125
Cadmium	0.24		2.72	2.28		mg/Kg	₩	75	75 - 125
Chromium	15	F1	10.9	27.9		mg/Kg	₩	120	75 - 125
Cobalt	5.2		27.2	31.1		mg/Kg	₽	95	75 - 125
Copper	14		13.6	25.5		mg/Kg	₩	84	75 - 125
Iron	16000		54.3	17300	4	mg/Kg	₩	2864	75 - 125
Lead	99		5.43	67.7	4	mg/Kg	₩	-581	75 - 125
Manganese	200	F2	27.2	150	4	mg/Kg	₩	-187	75 - 125
Nickel	11		27.2	37.3		mg/Kg	₩	99	75 - 125
Selenium	0.49	J F1	5.43	3.93	F1	mg/Kg	₩	63	75 - 125
Silver	<0.28	F1	2.72	1.96	F1	mg/Kg	₩	72	75 - 125
Thallium	<0.56	F1	5.43	3.85	F1	mg/Kg	₩	71	75 - 125
Vanadium	22		27.2	50.2		mg/Kg		103	75 - 125
Zinc	66	F1	27.2	86.1	F1	mg/Kg	☼	73	75 - 125

Lab Sample ID: 500-136756-1 MSD

Matrix: Solid Analysis Batch: 408958									Prep Typ		
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Antimony	0.43	J F1	29.1	5.68	F1	mg/Kg	<u> </u>	18	75 - 125	16	20
Arsenic	6.8	F1	5.81	11.4		mg/Kg	₩	79	75 - 125	10	20

TestAmerica Chicago

Page 157 of 195

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: 500-136756-1 MSD

**Matrix: Solid** 

**Analysis Batch: 408958** 

Client Sample ID: 3160-51-3 (0-1.5')

Prep Type: Total/NA Prep Batch: 408751

7 maryoro Datom 100000	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Barium	89	F1	116	187		mg/Kg	<del>\</del>	84	75 - 125	11	20
Beryllium	0.49		2.91	2.95		mg/Kg	₩	85	75 - 125	11	20
Cadmium	0.24		2.91	2.68		mg/Kg	₩	84	75 - 125	16	20
Chromium	15	F1	11.6	29.6	F1	mg/Kg	₩	126	75 - 125	6	20
Cobalt	5.2		29.1	32.9		mg/Kg	<del>.</del>	95	75 - 125	6	20
Copper	14		14.5	29.9		mg/Kg	₩	109	75 - 125	16	20
Iron	16000		58.1	17500	4	mg/Kg	₩	2937	75 - 125	1	20
Lead	99		5.81	76.1	4	mg/Kg	₩.	-397	75 - 125	12	20
Manganese	200	F2	29.1	204	4 F2	mg/Kg	₩	11	75 - 125	31	20
Nickel	11		29.1	39.8		mg/Kg	₩	101	75 - 125	6	20
Selenium	0.49	J F1	5.81	4.42	F1	mg/Kg	₩.	68	75 - 125	12	20
Silver	<0.28	F1	2.91	2.30		mg/Kg	₩	79	75 - 125	16	20
Thallium	<0.56	F1	5.81	4.40		mg/Kg	₩	76	75 - 125	13	20
Vanadium	22		29.1	52.0		mg/Kg	₩.	102	75 - 125	3	20
Zinc	66	F1	29.1	95.6		mg/Kg	₩	101	75 - 125	10	20

Lab Sample ID: 500-136756-1 DU

**Matrix: Solid** 

**Analysis Batch: 408958** 

Client Sample ID: 3160-51-3 (0-1.5')

Prep Type: Total/NA Prep Batch: 408751

DU DU Sample Sample **RPD** Result Qualifier Result Qualifier RPD **Analyte** Unit D Limit ₩ Antimony 0.43 JF1 <1.1 mg/Kg NC 20 ₩ 6.8 F1 20 Arsenic 6.11 mg/Kg 11 Ö Barium 89 84.5 mg/Kg 6 20 Beryllium 0.555 20 0.49 mg/Kg 13 ά Cadmium 0.24 0.231 mg/Kg 5 20 Chromium 20 20 15 18.2 mg/Kg ğ Cobalt 5.2 4.86 mg/Kg 7 20 Copper 13.8 2 20 14 mg/Kg Iron 16000 15700 mg/Kg 0.3 20 mg/Kg Lead 99 88.9 11 20 ₩ Manganese 200 F2 180 mg/Kg 11 20 Nickel 11 10.5 mg/Kg 0 20 Selenium 0.49 JF1 0.464 J mg/Kg 5 20 Silver ₿ <0.28 F1 < 0.29 mg/Kg NC 20 NC Thallium <0.56 F1 <0.57 20 mg/Kg 74 Vanadium 22 22.6 2 20 mg/Kg

Lab Sample ID: MB 500-408945/1-A

66 F1

**Matrix: Solid** 

Zinc

**Analysis Batch: 409165** 

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 408945

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<2.0		2.0	0.39	mg/Kg		11/08/17 07:33	11/09/17 02:50	1
Arsenic	<1.0		1.0	0.34	mg/Kg		11/08/17 07:33	11/09/17 02:50	1
Barium	<1.0		1.0	0.11	mg/Kg		11/08/17 07:33	11/09/17 02:50	1
Beryllium	<0.40		0.40	0.093	mg/Kg		11/08/17 07:33	11/09/17 02:50	1
Cadmium	0.0497	J	0.20	0.036	mg/Kg		11/08/17 07:33	11/09/17 02:50	1
					5 5				

68.7

mg/Kg

TestAmerica Chicago

Page 158 of 195

3

6

8

10

13

14

11/15/2017

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

## Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: MB 500-408945/1-A

Matrix: Solid

Analysis Batch: 409165

**Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 408945** 

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium	<1.0		1.0	0.50	mg/Kg		11/08/17 07:33	11/09/17 02:50	1
Cobalt	<0.50		0.50	0.13	mg/Kg		11/08/17 07:33	11/09/17 02:50	1
Copper	<1.0		1.0	0.28	mg/Kg		11/08/17 07:33	11/09/17 02:50	1
Iron	<20		20	10	mg/Kg		11/08/17 07:33	11/09/17 02:50	1
Lead	<0.50		0.50	0.23	mg/Kg		11/08/17 07:33	11/09/17 02:50	1
Manganese	<1.0		1.0	0.15	mg/Kg		11/08/17 07:33	11/09/17 02:50	1
Nickel	<1.0		1.0	0.29	mg/Kg		11/08/17 07:33	11/09/17 02:50	1
Selenium	<1.0		1.0	0.59	mg/Kg		11/08/17 07:33	11/09/17 02:50	1
Silver	<0.50		0.50	0.13	mg/Kg		11/08/17 07:33	11/09/17 02:50	1
Thallium	<1.0		1.0	0.50	mg/Kg		11/08/17 07:33	11/09/17 02:50	1
Vanadium	<0.50		0.50	0.12	mg/Kg		11/08/17 07:33	11/09/17 02:50	1
Zinc	<2.0		2.0	0.88	mg/Kg		11/08/17 07:33	11/09/17 02:50	1

Lab Sample ID: LCS 500-408945/2-A

**Matrix: Solid** 

**Client Sample ID: Lab Control Sample** Prep Type: Total/NA Pren Ratch: 408945

Analysis Batch: 409165	Spike	LCS	LCS				Prep Batch: 408945 %Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Antimony	50.0	46.9		mg/Kg		94	80 - 120
Arsenic	10.0	9.48		mg/Kg		95	80 - 120
Barium	200	194		mg/Kg		97	80 - 120
Beryllium	5.00	4.70		mg/Kg		94	80 - 120
Cadmium	5.00	4.79		mg/Kg		96	80 - 120
Chromium	20.0	18.9		mg/Kg		95	80 - 120
Cobalt	50.0	47.4		mg/Kg		95	80 - 120
Copper	25.0	24.7		mg/Kg		99	80 - 120
Iron	100	98.3		mg/Kg		98	80 - 120
Lead	10.0	9.20		mg/Kg		92	80 - 120
Manganese	50.0	47.3		mg/Kg		95	80 - 120
Nickel	50.0	47.5		mg/Kg		95	80 - 120
Selenium	10.0	8.30		mg/Kg		83	80 - 120
Silver	5.00	4.75		mg/Kg		95	80 - 120
Thallium	10.0	9.01		mg/Kg		90	80 - 120
Vanadium	50.0	48.5		mg/Kg		97	80 - 120
Zinc	50.0	45.5		mg/Kg		91	80 - 120

Lab Sample ID: 500-136756-21 MS

Matrix: Solid

Analysis Batch: 409165

Client Sample ID: 3160-21-4 (0-2.5') **Prep Type: Total/NA Prep Batch: 408945** 

	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Antimony	0.49	J F1	29.3	4.74	F1	mg/Kg	<u></u>	15	75 - 125
Arsenic	7.6		5.86	12.5		mg/Kg	₩	85	75 - 125
Barium	88		117	229		mg/Kg	₩	120	75 - 125
Beryllium	0.47		2.93	2.85		mg/Kg	₩.	81	75 - 125
Cadmium	0.25	В	2.93	2.50		mg/Kg	☼	77	75 - 125
Chromium	16		11.7	27.3		mg/Kg	₩	95	75 - 125
Cobalt	6.0		29.3	35.7		mg/Kg	₩.	101	75 - 125
Copper	21		14.6	35.4		mg/Kg	☼	98	75 - 125

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: 500-136756-21 MS

**Matrix: Solid** 

**Analysis Batch: 409165** 

Client Sample ID: 3160-21-4 (0-2.5')

**Prep Type: Total/NA Prep Batch: 408945** 

Analysis Daten. 403103	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Iron	18000		58.6	19900	4	mg/Kg	₩	2387	75 - 125
Lead	30		5.86	48.8	4	mg/Kg	₽	321	75 ₋ 125
Manganese	220	F2	29.3	610	4	mg/Kg	☼	1330	75 - 125
Nickel	14		29.3	43.2		mg/Kg	₩	100	75 - 125
Selenium	<0.63	F1	5.86	4.24	F1	mg/Kg		72	75 - 125
Silver	< 0.32		2.93	2.33		mg/Kg	₩	80	75 - 125
Thallium	< 0.63		5.86	4.95		mg/Kg	₩	85	75 - 125
Vanadium	27		29.3	55.4		mg/Kg	₩	96	75 - 125
Zinc	97	F1	29.3	114	F1	mg/Kg	☼	55	75 - 125

Lab Sample ID: 500-136756-21 MSD

**Matrix: Solid** 

Analysis Ratch: 409165

Client Sample ID: 3160-21-4 (0-2.5')

**Prep Type: Total/NA** 

Analysis Batch: 409165	Sample	Sample	Spike	MSD	MSD				Prep Ba	atcn: 40	08945 RPD
Analyte	Result	•	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Antimony	0.49	J F1	30.6	5.03	F1	mg/Kg	<del>-</del>	15	75 - 125	6	20
Arsenic	7.6		6.12	12.7		mg/Kg	₩	83	75 - 125	1	20
Barium	88		122	211		mg/Kg	₩	101	75 - 125	8	20
Beryllium	0.47		3.06	2.95		mg/Kg		81	75 - 125	3	20
Cadmium	0.25	В	3.06	2.57		mg/Kg	☼	76	75 - 125	3	20
Chromium	16		12.2	27.9		mg/Kg	☼	96	75 - 125	2	20
Cobalt	6.0		30.6	36.1		mg/Kg		98	75 - 125	1	20
Copper	21		15.3	33.2		mg/Kg	☼	80	75 - 125	6	20
Iron	18000		61.2	19800	4	mg/Kg	☼	2117	75 - 125	1	20
Lead	30		6.12	45.7	4	mg/Kg		256	75 - 125	7	20
Manganese	220	F2	30.6	450	4 F2	mg/Kg	☼	751	75 - 125	30	20
Nickel	14		30.6	43.2		mg/Kg	☼	96	75 - 125	0	20
Selenium	<0.63	F1	6.12	4.53	F1	mg/Kg		74	75 - 125	7	20
Silver	< 0.32		3.06	2.40		mg/Kg	☼	78	75 - 125	3	20
Thallium	< 0.63		6.12	4.98		mg/Kg	₩	81	75 - 125	1	20
Vanadium	27		30.6	58.8		mg/Kg		103	75 - 125	6	20
Zinc	97	F1	30.6	111	F1	mg/Kg	₩	43	75 - 125	3	20

Lab Sample ID: 500-136756-21 DU

**Matrix: Solid** 

Analysis Batch: 409165

Client Sample ID: 3160-21-4 (0-2.5') Prep Type: Total/NA

**Prep Batch: 408945** 

Allalysis Dalcil. 403103							Fieb Datcii. 4	00343
-	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Antimony	0.49	J F1	0.471	J	mg/Kg	₩ ===	3	20
Arsenic	7.6		7.14		mg/Kg	₽	6	20
Barium	88		93.3		mg/Kg	☼	6	20
Beryllium	0.47		0.481		mg/Kg	\$	2	20
Cadmium	0.25	В	0.203	F5	mg/Kg	₽	22	20
Chromium	16		16.0		mg/Kg	≎	1	20
Cobalt	6.0		6.54		mg/Kg	₽	8	20
Copper	21		22.0		mg/Kg	≎	5	20
Iron	18000		17900		mg/Kg	☼	3	20
Lead	30		42.7	F3	mg/Kg	\$	35	20
Manganese	220	F2	275	F3	mg/Kg	☼	22	20

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

## Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: 500-136756-21 DU Client Sample ID: 3160-21-4 (0-2.5') **Matrix: Solid Prep Type: Total/NA** 

**Analysis Batch: 409165 Prep Batch: 408945** 

	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Nickel	14	<del></del>	14.5		mg/Kg	<del>*</del> <del>*</del> <del>*</del> *	4	20
Selenium	<0.63	F1	<0.64		mg/Kg	₩	NC	20
Silver	<0.32		<0.32		mg/Kg	₩.	NC	20
Thallium	< 0.63		<0.64		mg/Kg	₩	NC	20
Vanadium	27		26.5		mg/Kg	₩	2	20
Zinc	97	F1	89.2		mg/Kg	<b>⇔</b>	9	20

Lab Sample ID: LCS 500-408963/2-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA

**Analysis Batch: 409155** 

**Prep Batch: 408963** Spike LCS LCS %Rec. Added Result Qualifier **Analyte** Unit D %Rec Limits Arsenic 0.100 0.0992 mg/L 99 80 - 120 Barium 0.500 80 - 120 0.539 108 mg/L Beryllium 0.0500 0.0529 mg/L 106 80 - 120 Cadmium 0.0500 0.0529 106 mg/L 80 - 120 Chromium 0.200 0.213 mg/L 107 80 - 120 Cobalt 0.500 0.531 106 80 - 120 mg/L Copper 0.250 0.271 mg/L 109 80 - 120 Iron 1.00 1.13 mg/L 113 80 - 120 Lead 0.100 104 0.104 mg/L 80 - 120 Manganese 0.500 0.526 mg/L 105 80 - 120 Nickel 0.500 0.527 mg/L 105 80 - 120 Selenium 0.100 0.105 mg/L 105 80 - 120 Silver 0.0500 102 80 - 120 0.0511 mg/L Vanadium 0.500 0.527 mg/L 105 80 - 120 Zinc 0.500 103 80 - 120 0.516 mg/L

Lab Sample ID: LCS 500-408973/2-A

**Matrix: Solid** 

Analysis Batch: 409155

Client Sample ID	: Lab	Contro	I Sample
	Dror	Type:	Total/NA

Prep Type: Total/NA **Prep Batch: 408973** 

Analysis Batch. 409133	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Arsenic	0.100	0.0951	-	mg/L		95	80 - 120
Barium	0.500	0.523		mg/L		105	80 - 120
Beryllium	0.0500	0.0508		mg/L		102	80 - 120
Cadmium	0.0500	0.0505		mg/L		101	80 - 120
Chromium	0.200	0.205		mg/L		103	80 - 120
Cobalt	0.500	0.505		mg/L		101	80 - 120
Copper	0.250	0.266		mg/L		106	80 - 120
Iron	1.00	1.07		mg/L		107	80 - 120
Lead	0.100	0.0951		mg/L		95	80 - 120
Manganese	0.500	0.504		mg/L		101	80 - 120
Nickel	0.500	0.499		mg/L		100	80 - 120
Selenium	0.100	0.101		mg/L		101	80 - 120
Silver	0.0500	0.0496		mg/L		99	80 - 120
Vanadium	0.500	0.513		mg/L		103	80 - 120
Zinc	0.500	0.489	J	mg/L		98	80 - 120

TestAmerica Chicago

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Lab Sample ID: LCS 500-409049/2-A

Lab Sample ID: LCS 500-409447/2-A

**Matrix: Solid** 

**Matrix: Solid** 

Analyte

Zinc

Manganese

**Analysis Batch: 409318** 

Analysis Batch: 409604

Method: 6010B - Metals (ICP) (Continued)

**Client Sample ID: Lab Control Sample** Prep Type: Total/NA

**Prep Batch: 409049** 

Spike LCS LCS %Rec. Added Result Qualifier Unit D %Rec Limits **Analyte** Lead 0.100 0.0873 mg/L 80 - 120 87 0.500 0.433 87 80 - 120 Manganese mg/L

**Client Sample ID: Lab Control Sample** 

Prep Type: Total/NA Prep Batch: 409447

11/08/17 08:50 11/08/17 16:32

LCS LCS Spike %Rec. Added Result Qualifier Unit %Rec Limits mg/L 0.500 0.510 102 80 - 120

Lab Sample ID: LB 500-408821/1-B Client Sample ID: Method Blank **Prep Type: TCLP Matrix: Solid Analysis Batch: 409155 Prep Batch: 408963** 

LB LB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Arsenic <0.050 0.050 0.010 mg/L 11/08/17 08:50 11/08/17 16:32 Barium 0.050 mg/L 11/08/17 08:50 11/08/17 16:32 < 0.50 0.50 11/08/17 08:50 11/08/17 16:32 Beryllium < 0.0040 0.0040 0.0040 mg/L Cadmium < 0.0050 0.0050 0.0020 mg/L 11/08/17 08:50 11/08/17 16:32 Chromium 0.010 mg/L 11/08/17 08:50 11/08/17 16:32 < 0.025 0.025 Cobalt 0.025 0.010 mg/L 11/08/17 08:50 11/08/17 16:32 < 0.025 0.025 0.010 mg/L 11/08/17 08:50 11/08/17 16:32 Copper < 0.025 Iron < 0.40 0.40 0.20 mg/L 11/08/17 08:50 11/08/17 16:32 Lead <0.0075 0.0075 0.0075 mg/L 11/08/17 08:50 11/08/17 16:32 0.010 mg/L 11/08/17 08:50 11/08/17 16:32 Manganese < 0.025 0.025 Nickel < 0.025 0.025 0.010 mg/L 11/08/17 08:50 11/08/17 16:32 Selenium 0.020 mg/L 11/08/17 08:50 11/08/17 16:32 0.0204 J 0.050 Silver 0.010 mg/L 11/08/17 08:50 11/08/17 16:32 < 0.025 0.025 Vanadium 0.010 mg/L < 0.025 0.025 11/08/17 08:50 11/08/17 16:32

Lab Sample ID: 500-136756-20 MS Client Sample ID: 3160-21-5 (0-2.5')

0.50

0.020 mg/L

**Matrix: Solid Prep Type: TCLP Analysis Batch: 409155 Prep Batch: 408963** 

< 0.50

	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Arsenic	<0.050		0.100	0.108		mg/L		108	50 - 150
Barium	0.34	J	0.500	0.816		mg/L		96	50 - 150
Beryllium	<0.0040		0.0500	0.0527		mg/L		105	50 - 150
Cadmium	<0.0050		0.0500	0.0578		mg/L		116	50 - 150
Chromium	<0.025		0.200	0.198		mg/L		99	50 - 150
Cobalt	<0.025		0.500	0.519		mg/L		104	50 - 150
Copper	0.019	J	0.250	0.298		mg/L		112	50 - 150
Iron	0.87		1.00	1.60		mg/L		73	50 - 150
Lead	< 0.0075		0.100	0.0946		mg/L		95	50 - 150
Manganese	0.027		0.500	0.503		mg/L		95	50 - 150
Nickel	<0.025		0.500	0.509		mg/L		102	50 - 150
Selenium	<0.050		0.100	0.113		mg/L		113	50 - 150
Silver	<0.025		0.0500	0.0598		mg/L		120	50 - 150

TestAmerica Chicago

**Client Sample ID: Method Blank** 

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: 500-136756-20 MS Client Sample ID: 3160-21-5 (0-2.5') **Prep Type: TCLP** 

**Matrix: Solid** 

Analysis Batch: 409155 **Prep Batch: 408963** MS MS Sample Sample Spike %Rec. Analyte Result Qualifier Added Result Qualifier Limits Unit D %Rec Vanadium < 0.025 0.500 0.498 mg/L 100 50 - 150 Zinc 0.046 J 0.500 0.566 mg/L 104 50 - 150

Lab Sample ID: 500-136756-20 DU Client Sample ID: 3160-21-5 (0-2.5')

**Matrix: Solid Prep Type: TCLP Analysis Batch: 409155 Prep Batch: 408963** 

Analyte	Samnla	Sample	DII	DU			i iep Bateii. 40	RPD
	•	Qualifier		Qualifier	Unit	D	RPD	Limit
Arsenic	<0.050	<del>Qualifier</del>	<0.050	Qualifici	mg/L			20
Barium	0.34	J	0.330	J	mg/L		1	20
Beryllium	<0.0040		<0.0040		mg/L		NC	20
Cadmium	<0.0050		<0.0050		mg/L		NC	20
Chromium	<0.025		< 0.025		mg/L		NC	20
Cobalt	<0.025		<0.025		mg/L		NC	20
Copper	0.019	J	0.0180	J	mg/L		5	20
Iron	0.87		0.883		mg/L		1	20
Lead	< 0.0075		<0.0075		mg/L		NC	20
Manganese	0.027		0.0261		mg/L		4	20
Nickel	<0.025		<0.025		mg/L		NC	20
Selenium	<0.050		<0.050		mg/L		NC	20
Silver	<0.025		<0.025		mg/L		NC	20
Vanadium	<0.025		<0.025		mg/L		NC	20
Zinc	0.046	J	0.0487	J	mg/L		5	20

Lab Sample ID: LB 500-408822/1-B

**Matrix: Solid** 

**Prep Type: TCLP** Analysis Batch: 409155 **Prep Batch: 408973** 

•	LB	LB						-	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/08/17 09:26	11/08/17 18:30	1
Barium	<0.50		0.50	0.050	mg/L		11/08/17 09:26	11/08/17 18:30	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/08/17 09:26	11/08/17 18:30	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/08/17 09:26	11/08/17 18:30	1
Chromium	<0.025		0.025	0.010	mg/L		11/08/17 09:26	11/08/17 18:30	1
Cobalt	<0.025		0.025	0.010	mg/L		11/08/17 09:26	11/08/17 18:30	1
Copper	<0.025		0.025	0.010	mg/L		11/08/17 09:26	11/08/17 18:30	1
Iron	<0.40		0.40	0.20	mg/L		11/08/17 09:26	11/08/17 18:30	1
Lead	<0.0075		0.0075	0.0075	mg/L		11/08/17 09:26	11/08/17 18:30	1
Manganese	<0.025		0.025	0.010	mg/L		11/08/17 09:26	11/08/17 18:30	1
Nickel	<0.025		0.025	0.010	mg/L		11/08/17 09:26	11/08/17 18:30	1
Selenium	<0.050		0.050	0.020	mg/L		11/08/17 09:26	11/08/17 18:30	1
Silver	<0.025		0.025	0.010	mg/L		11/08/17 09:26	11/08/17 18:30	1
Vanadium	<0.025		0.025	0.010	mg/L		11/08/17 09:26	11/08/17 18:30	1
Zinc	<0.50		0.50	0.020	mg/L		11/08/17 09:26	11/08/17 18:30	1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

### Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: LB 500-408829/1-B	Client Sample ID: Method Blank
Matrix: Solid	Prep Type: SPLP East
Analysis Batch: 409318	Prep Batch: 409049
LB LB	

Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	<0.0075		0.0075	0.0075	mg/L		11/08/17 14:37	11/09/17 20:24	1
Manganese	<0.025		0.025	0.010	mg/L		11/08/17 14:37	11/09/17 20:24	1

Lab Sample ID: LB 500-408832/1-C **Client Sample ID: Method Blank Matrix: Solid Prep Type: SPLP East** Analysis Batch: 409604 **Prep Batch: 409447** LB LB

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Manganese	<0.025	0.025	0.010 mg/L		11/10/17 14:43	11/11/17 18:24	1

### Method: 6020A - Metals (ICP/MS)

Matrix: Solid

Thallium

Lab Sample ID: LCS 500-408963/2-A Matrix: Solid Analysis Batch: 409646	Spike	LCS	LCS	Clie	ent Sar	mple ID	Prep Type: To Prep Batch:  %Rec.	otal/NA
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Antimony	0.500	0.508		mg/L		102	80 - 120	
Thallium	0 100	0 108		ma/l		108	80 - 120	

Lab Sample ID: LCS 500-408973/2-A				Cli	ent Sai	mple ID	: Lab Control Sample
Matrix: Solid							Prep Type: Total/NA
Analysis Batch: 409365							Prep Batch: 408973
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Antimony	0.500	0.496		mg/L		99	80 - 120

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Antimony	0.500	0.496		mg/L		99	80 - 120
Thallium	0.100	0.109		mg/L		109	80 - 120
 Lab Sample ID: LB 500-408821/1-B					Clie	ent Sam	ple ID: Method Blank

Analysis Batch: 409646								Prep Batch: 4	408963
-	LB	LB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060		0.0060	0.0060	mg/L		11/08/17 08:50	11/10/17 10:23	1
Thallium	< 0.0020		0.0020	0.0020	mg/L		11/08/17 08:50	11/10/17 10:23	1

Lab Sample ID: 500-136756 Matrix: Solid Analysis Batch: 409365		Sample	Spike	MS	MS		Client	Sample	Prep Type: TCLP Prep Batch: 408963 %Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Antimony	<0.0060		0.500	0.486		mg/L		97	50 - 150

0.111

mg/L

0.100

<0.0020

TestAmerica Chicago

111 50 - 150

**Prep Type: TCLP** 

11/15/2017

10

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136756-1

Method: 6020A - Metals (ICP/MS) (Continued)

Lab Sample ID: 500-136756-20 DU Client Sample ID: 3160-21-5 (0-2.5') **Prep Type: TCLP** 

**Matrix: Solid** Analysis Batch: 409365

**Prep Batch: 408963 RPD** D RPD Limit

Sample Sample Result Qualifier Result Qualifier Unit Analyte **Antimony** <0.0060 mg/L NC 20 <0.0060 Thallium <0.0020 <0.0020 mg/L NC 20

DU DU

Lab Sample ID: LB 500-408822/1-B Client Sample ID: Method Blank

**Matrix: Solid** 

**Analysis Batch: 409365** LB LB **Prep Type: TCLP** 

**Prep Batch: 408973** 

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac **Antimony** <0.0060 0.0060 0.0060 mg/L 11/08/17 09:26 11/09/17 16:18 Thallium < 0.0020 0.0020 0.0020 mg/L 11/08/17 09:26 11/09/17 16:18

Method: 7470A - TCLP Mercury

Lab Sample ID: MB 500-409004/12-A **Client Sample ID: Method Blank Matrix: Solid** Prep Type: Total/NA Prep Batch: 409004

**Analysis Batch: 409195** 

MB MB

MB MB

**MDL** Unit Analyte Result Qualifier RL Prepared Analyzed Dil Fac <0.00020 0.00020 0.00020 mg/L 11/08/17 13:40 11/09/17 09:15 Mercury

Lab Sample ID: LCS 500-409004/13-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA Analysis Batch: 409195 Prep Batch: 409004 LCS LCS Spike %Rec.

Analyte Added Result Qualifier Unit %Rec Limits Mercury 0.00200 0.00224 mg/L 112 80 - 120

Lab Sample ID: MB 500-409005/12-A Client Sample ID: Method Blank

**Matrix: Solid** 

**Analysis Batch: 409195** 

Prep Type: Total/NA

**Prep Batch: 409005** 

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed 0.00020 11/08/17 13:40 11/09/17 07:37 < 0.00020 0.00020 mg/L Mercury

Lab Sample ID: LCS 500-409005/13-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 409195

**Prep Batch: 409005** 

Spike LCS LCS %Rec. Added Result Qualifier Unit %Rec Limits

Analyte Mercury 0.00200 0.00218 mg/L 109 80 - 120

Lab Sample ID: LB 500-408821/1-C Client Sample ID: Method Blank **Matrix: Solid Prep Type: TCLP** 

**Analysis Batch: 409195** Prep Batch: 409004

LB LB

RI **MDL** Unit **Analyte** Result Qualifier Prepared Analyzed Dil Fac Mercury <0.00020 0.00020 0.00020 mg/L 11/08/17 13:40 11/09/17 09:18

TestAmerica Job ID: 500-136756-1

**Method: 7470A - TCLP Mercury (Continued)** 

Lab Sample ID: 500-136756-3 MS Client Sample ID: 3160-51-1 (0-1.5') **Prep Type: TCLP** 

**Matrix: Solid** 

**Analysis Batch: 409195** Sample Sample Spike MS MS

Prep Batch: 409004 %Rec.

Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits 50 - 150 <0.00020 0.00100 0.00105 mg/L 105 Mercury

Lab Sample ID: 500-136756-3 DU Client Sample ID: 3160-51-1 (0-1.5') **Matrix: Solid Prep Type: TCLP** Analysis Batch: 409195 **Prep Batch: 409004** 

Sample Sample DU DU **RPD** Result Qualifier **RPD** Limit Analyte Result Qualifier Unit D

Mercury < 0.00020 <0.00020 mg/L NC 20

Lab Sample ID: LB 500-408822/1-C Client Sample ID: Method Blank

**Matrix: Solid Prep Type: TCLP** Analysis Batch: 409195 **Prep Batch: 409005** LB LB

Result Qualifier RL **MDL** Unit Analyte Prepared Analyzed Dil Fac Mercury <0.00020 0.00020 0.00020 mg/L 11/08/17 13:40 11/09/17 07:40

Client Sample ID: 3160-21-4 (0-2.5') Lab Sample ID: 500-136756-21 MS

**Matrix: Solid Prep Type: TCLP Analysis Batch: 409195** Prep Batch: 409005 Sample Sample Spike MS MS %Rec.

Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Mercury <0.00020 0.00100 0.00114 114 50 - 150 mg/L

Lab Sample ID: 500-136756-21 DU Client Sample ID: 3160-21-4 (0-2.5')

**Matrix: Solid Prep Type: TCLP Analysis Batch: 409195** Prep Batch: 409005 DU DU RPD

Sample Sample Analyte Result Qualifier Result Qualifier Unit Limit <0.00020 <0.00020 NC Mercury mg/L 20

Method: 7471B - Mercury (CVAA)

Lab Sample ID: MB 500-408789/35-A **Client Sample ID: Method Blank Matrix: Solid** Prep Type: Total/NA

**Analysis Batch: 409010 Prep Batch: 408789** MB MB

Result Qualifier RL **MDL** Unit Analyte Prepared Analyzed Dil Fac 0.0056 mg/Kg 11/07/17 13:20 11/08/17 10:20 0.017 Mercury < 0.017

Lab Sample ID: LCS 500-408789/36-A **Client Sample ID: Lab Control Sample** 

**Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 409010** Prep Batch: 408789 LCS LCS Spike %Rec.

Analyte Added Result Qualifier Unit D %Rec Limits Mercury 0.167 0.173 mg/Kg 103 80 - 120

2

TestAmerica Job ID: 500-136756-1

75 - 125

Client Sample ID: Method Blank

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Lab Sample ID: MB 500-408790/12-A

Mercury

Method: 7471B - Mercury (CVAA) (Continued)

0.011 J

Lab Sample ID: 500-136756	-8 MS						Clier	nt Samp	ole ID: 3160-36-7 (0-3')
Matrix: Solid									Prep Type: Total/NA
Analysis Batch: 409010									<b>Prep Batch: 408789</b>
-	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits

0.0896

Lab Sample ID: 500-136756- Matrix: Solid Analysis Batch: 409010		Sample	Spike	MSD	MSD		Clier	nt Samp	Prep Ba Prep Ba %Rec.	pe: Tot	al/NA
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Mercury	0.011	J	0.0979	0.0947		mg/Kg	<u> </u>	85	75 - 125	6	20

0.0995

Lab Sample ID: 500-136756 Matrix: Solid Analysis Batch: 409010	i-8 DU		Client Sample ID: 3160-36-7 (0 Prep Type: Total Prep Batch: 408							àl/NÁ
•	Sample	Sample	DU	DU						RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D			RPD	Limit
Mercury	0.011	J	 0.0129	J	mg/Kg	₩			14	20

Matrix: Solid								Prep Type: To	otal/NA
Analysis Batch: 409010								Prep Batch:	408790
-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.017		0.017	0.0056	mg/Kg		11/07/17 13:20	11/08/17 11:26	1

١	Lab Sample ID: LCS 500-408790/13-A		Client Sample ID: Lab Control Sam						ol Sample
	Matrix: Solid							Prep Type	: Total/NA
	Analysis Batch: 409010							Prep Bato	h: 408790
		Spike	LCS	LCS				%Rec.	
	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Į	Mercury	0.167	0.166		mg/Kg		99	80 - 120	

Lab Sample ID: 500-136756	-22 IVIS						Cilent	Sampie	316U-7	21-3 (0-2.5)
Matrix: Solid									Prep Typ	e: Total/NA
Analysis Batch: 409010									Prep Bat	tch: 408790
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Mercury	0.037		0.0900	0.109		mg/Kg	₩	80	75 - 125	

Lab Sample ID: 500-136756	5-22 MSD						Client	Sample	: ID: 3160-	·21-3 (€	J-2.5')	
Matrix: Solid									Prep Typ	e: Tot	al/NA	
Analysis Batch: 409010									Prep Ba	itch: 40	<b>08790</b>	
-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Mercury	0.037		0.0897	0.104		mg/Kg	<del></del>	75	75 - 125	5	20	

Lab Sample ID: 500- Matrix: Solid	Lab Sample ID: 500-136756-22 DU Matrix: Solid				C	lient Sam	ple ID: 3160-21-3 ( Prep Type: To	•
Analysis Batch: 409	010						Prep Batch: 4	08790
		Sample	DU	DU			•	RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Mercury	0.037		0.0330		ma/Ka	<del>-</del> <del>-</del>		20

## **QC Sample Results**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028 TestAmerica Job ID: 500-136756-1

Method: 9045D - pH

Lab Sample ID: 500-136756-8 DU

Matrix: Solid

Prep Type: Total/NA

Analysis Batch: 409641

	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
pH	4.8		 4.78		SU		0.2	

Lab Sample ID: 500-136756-27 DU

Matrix: Solid

Client Sample ID: 3160-5-1 (0-1.2')

Prep Type: Total/NA

Analysis Batch: 409641

 Sample Analyte
 Sample Result pH
 DU DU
 RPD
 RPD
 RPD
 RPD
 RPD
 Limit pH
 D
 RPD
 Limit pH
 RPD
 RPD
 Limit pH
 RPD
 RPD
 Limit pH
 RPD
 5

10

12

13

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-51-3 (0-1.5') Lab Sample ID: 500-136756-1

Date Collected: 11/02/17 08:05 **Matrix: Solid** Date Received: 11/03/17 08:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			408821	11/07/17 14:20	SAH	TAL CHI
TCLP	Prep	3010A			408963	11/08/17 08:50	JEF	TAL CHI
TCLP	Analysis	6010B		1	409155	11/08/17 16:40	PJ1	TAL CHI
TCLP	Leach	1311			408821	11/07/17 14:20	SAH	TAL CHI
TCLP	Prep	3010A			408963	11/08/17 08:50	JEF	TAL CHI
TCLP	Analysis	6020A		1	409646	11/10/17 10:32	FXG	TAL CHI
TCLP	Leach	1311			408821	11/07/17 14:20	SAH	TAL CHI
TCLP	Prep	7470A			409004	11/08/17 13:40	EEN	TAL CHI
TCLP	Analysis	7470A		1	409195	11/09/17 09:19	EEN	TAL CHI
Total/NA	Analysis	9045D		1	409641		SMO	TAL CHI
					(Start) 1	1/12/17 16:06		
					(End) 1	1/12/17 16:39		
Total/NA	Analysis	Moisture		1	408681	11/06/17 17:14	PFK	TAL CHI

Lab Sample ID: 500-136756-1 Client Sample ID: 3160-51-3 (0-1.5')

Date Collected: 11/02/17 08:05 **Matrix: Solid** Date Received: 11/03/17 08:50 Percent Solids: 82.7

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			408500	11/03/17 18:20	WRE	TAL CHI
Total/NA	Analysis	8260B		1	408942	11/08/17 12:26	DJD	TAL CHI
Total/NA	Prep	3541			409340	11/10/17 07:22	STW	TAL CHI
Total/NA	Analysis	8270D		1	409487	11/10/17 20:42	WDS	TAL CHI
Total/NA	Prep	3050B			408751	11/07/17 08:10	JEF	TAL CHI
Total/NA	Analysis	6010B		1	408958	11/07/17 19:15	PJ1	TAL CHI
Total/NA	Prep	7471B			408789	11/07/17 13:20	EEN	TAL CHI
Total/NA	Analysis	7471B		1	409010	11/08/17 10:25	EEN	TAL CHI

Client Sample ID: 3160-51-2 (0-1.5') Lab Sample ID: 500-136756-2

Date Collected: 11/02/17 08:15 **Matrix: Solid** Date Received: 11/03/17 08:50

<del>_</del>	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			408821	11/07/17 14:20	SAH	TAL CHI
TCLP	Prep	3010A			408963	11/08/17 08:50	JEF	TAL CHI
TCLP	Analysis	6010B		1	409155	11/08/17 16:44	PJ1	TAL CHI
TCLP	Leach	1311			408821	11/07/17 14:20	SAH	TAL CHI
TCLP	Prep	3010A			408963	11/08/17 08:50	JEF	TAL CHI
TCLP	Analysis	6020A		1	409646	11/10/17 10:36	FXG	TAL CHI
TCLP	Leach	1311			408821	11/07/17 14:20	SAH	TAL CHI
TCLP	Prep	7470A			409004	11/08/17 13:40	EEN	TAL CHI
TCLP	Analysis	7470A		1	409195	11/09/17 10:02	EEN	TAL CHI

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-51-2 (0-1.5')

Date Collected: 11/02/17 08:15 Date Received: 11/03/17 08:50

Lab Sample ID: 500-136756-2

**Matrix: Solid** 

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9045D			409641		SMO	TAL CHI
					(Start) 1	1/12/17 16:39		
					(End) 1	1/12/17 17:13		
Total/NA	Analysis	Moisture		1	408681	11/06/17 17:14	PFK	TAL CHI

Client Sample ID: 3160-51-2 (0-1.5') Lab Sample ID: 500-136756-2

Date Collected: 11/02/17 08:15 **Matrix: Solid** Date Received: 11/03/17 08:50 Percent Solids: 85.1

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			408500	11/03/17 18:20	WRE	TAL CHI
Total/NA	Analysis	8260B		1	408942	11/08/17 12:51	DJD	TAL CHI
Total/NA	Prep	3541			409340	11/10/17 07:22	STW	TAL CHI
Total/NA	Analysis	8270D		1	409487	11/10/17 22:32	WDS	TAL CHI
Total/NA	Prep	3050B			408751	11/07/17 08:10	JEF	TAL CHI
Total/NA	Analysis	6010B		1	408958	11/07/17 19:43	PJ1	TAL CHI
Total/NA	Prep	7471B			408789	11/07/17 13:20	EEN	TAL CHI
Total/NA	Analysis	7471B		1	409010	11/08/17 10:27	EEN	TAL CHI

Client Sample ID: 3160-51-1 (0-1.5') Lab Sample ID: 500-136756-3

Date Collected: 11/02/17 08:25 **Matrix: Solid** 

Date Received: 11/03/17 08:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
SPLP East	Leach	1312			408829	11/07/17 14:20	SAH	TAL CHI
SPLP East	Prep	3010A			409049	11/08/17 14:37	BDE	TAL CH
SPLP East	Analysis	6010B		1	409318	11/09/17 20:32	PJ1	TAL CH
TCLP	Leach	1311			408821	11/07/17 14:20	SAH	TAL CH
TCLP	Prep	3010A			408963	11/08/17 08:50	JEF	TAL CH
TCLP	Analysis	6010B		1	409155	11/08/17 16:49	PJ1	TAL CH
TCLP	Leach	1311			408821	11/07/17 14:20	SAH	TAL CH
TCLP	Prep	3010A			408963	11/08/17 08:50	JEF	TAL CH
TCLP	Analysis	6020A		1	409646	11/10/17 10:40	FXG	TAL CH
TCLP	Leach	1311			408821	11/07/17 14:20	SAH	TAL CH
TCLP	Prep	7470A			409004	11/08/17 13:40	EEN	TAL CH
TCLP	Analysis	7470A		1	409195	11/09/17 10:03	EEN	TAL CH
Total/NA	Analysis	9045D		1	409641		SMO	TAL CH
					(Start) 1	1/12/17 17:13		
					(End) 1	1/12/17 17:46		
Total/NA	Analysis	Moisture		1	408681	11/06/17 17:14	PFK	TAL CHI

Lab Sample ID: 500-136756-3

**Matrix: Solid** Percent Solids: 79.3

Client Sample ID: 3160-51-1 (0-1.5')
Date Collected: 11/02/17 08:25
Date Received: 11/03/17 08:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035	<del></del>		408500	11/03/17 18:20	WRE	TAL CHI
Total/NA	Analysis	8260B		1	408942	11/08/17 13:16	DJD	TAL CHI
Total/NA	Prep	3541			409340	11/10/17 07:22	STW	TAL CHI
Total/NA	Analysis	8270D		1	409487	11/10/17 23:00	WDS	TAL CHI
Total/NA	Prep	3050B			408751	11/07/17 08:10	JEF	TAL CHI
Total/NA	Analysis	6010B		1	408958	11/07/17 19:47	PJ1	TAL CHI
Total/NA	Prep	7471B			408789	11/07/17 13:20	EEN	TAL CHI
Total/NA	Analysis	7471B		1	409010	11/08/17 10:29	EEN	TAL CHI

Lab Sample ID: 500-136756-4 Client Sample ID: 3160-36-11 (0-3')

Date Collected: 11/02/17 08:35 **Matrix: Solid** 

Date Received: 11/03/17 08:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			408821	11/07/17 14:20	SAH	TAL CH
TCLP	Prep	3010A			408963	11/08/17 08:50	JEF	TAL CH
TCLP	Analysis	6010B		1	409155	11/08/17 16:53	PJ1	TAL CH
TCLP	Leach	1311			408821	11/07/17 14:20	SAH	TAL CH
TCLP	Prep	3010A			408963	11/08/17 08:50	JEF	TAL CH
TCLP	Analysis	6020A		1	409646	11/10/17 10:44	FXG	TAL CH
TCLP	Leach	1311			408821	11/07/17 14:20	SAH	TAL CH
TCLP	Prep	7470A			409004	11/08/17 13:40	EEN	TAL CH
TCLP	Analysis	7470A		1	409195	11/09/17 09:31	EEN	TAL CH
Total/NA	Analysis	9045D		1	409641		SMO	TAL CH
					(Start) 1	1/12/17 17:46		
					(End) 1	1/12/17 18:20		
Total/NA	Analysis	Moisture		1	408681	11/06/17 17:14	PFK	TAL CH

Client Sample ID: 3160-36-11 (0-3')

Lab Sample ID: 500-136756-4 Date Collected: 11/02/17 08:35 **Matrix: Solid** Date Received: 11/03/17 08:50 Percent Solids: 80.6

Dilution Batch **Batch** Batch Prepared Туре Method Run Factor Number or Analyzed **Prep Type** Analyst Lab Total/NA 5035 408500 11/03/17 18:20 WRE TAL CHI Prep Total/NA 8260B 408942 11/08/17 13:42 DJD TAL CHI Analysis 1 TAL CHI Total/NA Prep 3541 409340 11/10/17 07:22 STW Total/NA 8270D 409487 11/10/17 23:28 WDS TAL CHI Analysis 1 Total/NA 3050B TAL CHI Prep 408751 11/07/17 08:10 JEF Total/NA 6010B TAL CHI Analysis 1 408958 11/07/17 19:51 PJ1 Total/NA Prep 7471B 408789 11/07/17 13:20 EEN TAL CHI TAL CHI Total/NA Analysis 7471B 409010 11/08/17 10:31 EEN

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-36-10 (0-3') Lab Sample ID: 500-136756-5 **Matrix: Solid** 

Date Collected: 11/02/17 08:45 Date Received: 11/03/17 08:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			408821	11/07/17 14:20	SAH	TAL CHI
TCLP	Prep	3010A			408963	11/08/17 08:50	JEF	TAL CHI
TCLP	Analysis	6010B		1	409155	11/08/17 16:57	PJ1	TAL CHI
TCLP	Leach	1311			408821	11/07/17 14:20	SAH	TAL CHI
TCLP	Prep	3010A			408963	11/08/17 08:50	JEF	TAL CHI
TCLP	Analysis	6020A		1	409646	11/10/17 10:48	FXG	TAL CHI
TCLP	Leach	1311			408821	11/07/17 14:20	SAH	TAL CHI
TCLP	Prep	7470A			409004	11/08/17 13:40	EEN	TAL CHI
TCLP	Analysis	7470A		1	409195	11/09/17 09:33	EEN	TAL CHI
Total/NA	Analysis	9045D		1	409641		SMO	TAL CHI
					(Start) 1	1/12/17 18:20		
					(End) 1	1/12/17 18:53		
Total/NA	Analysis	Moisture		1	408681	11/06/17 17:14	PFK	TAL CHI

Lab Sample ID: 500-136756-5 Client Sample ID: 3160-36-10 (0-3')

Date Collected: 11/02/17 08:45 **Matrix: Solid** Date Received: 11/03/17 08:50 Percent Solids: 82.5

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			408500	11/03/17 18:20	WRE	TAL CHI
Total/NA	Analysis	8260B		1	408942	11/08/17 14:07	DJD	TAL CHI
Total/NA	Prep	3541			409340	11/10/17 07:22	STW	TAL CHI
Total/NA	Analysis	8270D		1	409487	11/10/17 23:56	WDS	TAL CHI
Total/NA	Prep	3050B			408751	11/07/17 08:10	JEF	TAL CHI
Total/NA	Analysis	6010B		1	408958	11/07/17 19:55	PJ1	TAL CHI
Total/NA	Prep	7471B			408789	11/07/17 13:20	EEN	TAL CHI
Total/NA	Analysis	7471B		1	409010	11/08/17 10:34	EEN	TAL CHI

Client Sample ID: 3160-36-9 (0-3') Lab Sample ID: 500-136756-6

Date Collected: 11/02/17 08:55 **Matrix: Solid** Date Received: 11/03/17 08:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
SPLP East	Leach	1312			408829	11/07/17 14:20	SAH	TAL CHI
SPLP East	Prep	3010A			409049	11/08/17 14:37	BDE	TAL CHI
SPLP East	Analysis	6010B		1	409318	11/09/17 20:36	PJ1	TAL CHI
TCLP	Leach	1311			408821	11/07/17 14:20	SAH	TAL CHI
TCLP	Prep	3010A			408963	11/08/17 08:50	JEF	TAL CHI
TCLP	Analysis	6010B		1	409155	11/08/17 17:01	PJ1	TAL CHI
TCLP	Leach	1311			408821	11/07/17 14:20	SAH	TAL CHI
TCLP	Prep	3010A			408963	11/08/17 08:50	JEF	TAL CHI
TCLP	Analysis	6020A		1	409646	11/10/17 10:52	FXG	TAL CHI
TCLP	Leach	1311			408821	11/07/17 14:20	SAH	TAL CHI
TCLP	Prep	7470A			409004	11/08/17 13:40	EEN	TAL CHI

Page 172 of 195

Lab Sample ID: 500-136756-6

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-36-9 (0-3')

Date Collected: 11/02/17 08:55 **Matrix: Solid** 

Date Received: 11/03/17 08:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Analysis	7470A			409195	11/09/17 09:37	EEN	TAL CHI
Total/NA	Analysis	9045D		1	409641		SMO	TAL CHI
					(Start) 1	1/12/17 18:53		
					(End) 1	1/12/17 19:27		
Total/NA	Analysis	Moisture		1	408681	11/06/17 17:14	PFK	TAL CHI

Lab Sample ID: 500-136756-6 Client Sample ID: 3160-36-9 (0-3')

Date Collected: 11/02/17 08:55 **Matrix: Solid** 

Date Received: 11/03/17 08:50 Percent Solids: 85.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			408500	11/03/17 18:20	WRE	TAL CHI
Total/NA	Analysis	8260B		1	408744	11/07/17 11:22	DJD	TAL CHI
Total/NA	Prep	3541			409340	11/10/17 07:22	STW	TAL CHI
Total/NA	Analysis	8270D		1	409487	11/11/17 00:23	WDS	TAL CHI
Total/NA	Prep	3050B			408751	11/07/17 08:10	JEF	TAL CHI
Total/NA	Analysis	6010B		1	408958	11/07/17 19:59	PJ1	TAL CHI
Total/NA	Prep	7471B			408789	11/07/17 13:20	EEN	TAL CHI
Total/NA	Analysis	7471B		1	409010	11/08/17 10:36	EEN	TAL CHI

Lab Sample ID: 500-136756-7 Client Sample ID: 3160-36-8 (0-3')

Date Collected: 11/02/17 09:05 **Matrix: Solid** Date Received: 11/03/17 08:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			408821	11/07/17 14:20	SAH	TAL CHI
TCLP	Prep	3010A			408963	11/08/17 08:50	JEF	TAL CHI
TCLP	Analysis	6010B		1	409155	11/08/17 17:05	PJ1	TAL CHI
TCLP	Leach	1311			408821	11/07/17 14:20	SAH	TAL CHI
TCLP	Prep	3010A			408963	11/08/17 08:50	JEF	TAL CHI
TCLP	Analysis	6020A		1	409646	11/10/17 10:56	FXG	TAL CHI
TCLP	Leach	1311			408821	11/07/17 14:20	SAH	TAL CHI
TCLP	Prep	7470A			409004	11/08/17 13:40	EEN	TAL CHI
TCLP	Analysis	7470A		1	409195	11/09/17 09:39	EEN	TAL CHI
Total/NA	Analysis	9045D		1	409641		SMO	TAL CHI
					(Start) 1	11/12/17 19:27		
					(End) 1	11/12/17 20:00		
Total/NA	Analysis	Moisture		1	408681	11/06/17 17:14	PFK	TAL CHI

Client Sample ID: 3160-36-8 (0-3')

Date Collected: 11/02/17 09:05 Date Received: 11/03/17 08:50 Lab Sample ID: 500-136756-7

Matrix: Solid Percent Solids: 84.1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			408500	11/03/17 18:20	WRE	TAL CHI
Total/NA	Analysis	8260B		1	408744	11/07/17 11:47	DJD	TAL CHI
Total/NA	Prep	3541			409340	11/10/17 07:22	STW	TAL CHI
Total/NA	Analysis	8270D		1	409487	11/11/17 00:51	WDS	TAL CHI
Total/NA	Prep	3050B			408751	11/07/17 08:10	JEF	TAL CHI
Total/NA	Analysis	6010B		10	409164	11/08/17 20:10	PJ1	TAL CHI
Total/NA	Prep	3050B			408751	11/07/17 08:10	JEF	TAL CHI
Total/NA	Analysis	6010B		1	408958	11/07/17 20:03	PJ1	TAL CHI
Total/NA	Prep	7471B			408789	11/07/17 13:20	EEN	TAL CHI
Total/NA	Analysis	7471B		1	409010	11/08/17 10:43	EEN	TAL CHI

Client Sample ID: 3160-36-7 (0-3')

Lab Sample ID: 500-136756-8

Date Collected: 11/02/17 09:20 Date Received: 11/03/17 08:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
SPLP East	Leach	1312			408829	11/07/17 14:20	SAH	TAL CH
SPLP East	Prep	3010A			409049	11/08/17 14:37	BDE	TAL CH
SPLP East	Analysis	6010B		1	409318	11/09/17 20:40	PJ1	TAL CH
TCLP	Leach	1311			408821	11/07/17 14:20	SAH	TAL CH
TCLP	Prep	3010A			408963	11/08/17 08:50	JEF	TAL CH
TCLP	Analysis	6010B		1	409155	11/08/17 17:09	PJ1	TAL CH
TCLP	Leach	1311			408821	11/07/17 14:20	SAH	TAL CH
TCLP	Prep	3010A			408963	11/08/17 08:50	JEF	TAL CH
TCLP	Analysis	6020A		1	409646	11/10/17 11:00	FXG	TAL CH
TCLP	Leach	1311			408821	11/07/17 14:20	SAH	TAL CH
TCLP	Prep	7470A			409004	11/08/17 13:40	EEN	TAL CH
TCLP	Analysis	7470A		1	409195	11/09/17 09:40	EEN	TAL CH
Total/NA	Analysis	9045D		1	409641		SMO	TAL CH
					(Start) 1	1/12/17 20:00		
					(End) 1	1/12/17 20:33		
Total/NA	Analysis	Moisture		1	408681	11/06/17 17:14	PFK	TAL CH

Client Sample ID: 3160-36-7 (0-3')

Lab Sample ID: 500-136756-8

 Date Collected: 11/02/17 09:20
 Matrix: Solid

 Date Received: 11/03/17 08:50
 Percent Solids: 78.9

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			408500	11/03/17 18:20	WRE	TAL CHI
Total/NA	Analysis	8260B		1	408744	11/07/17 12:13	DJD	TAL CHI
Total/NA	Prep	3541			409340	11/10/17 07:22	STW	TAL CHI
Total/NA	Analysis	8270D		1	409400	11/10/17 21:30	WDS	TAL CHI
Total/NA	Prep	3050B			408751	11/07/17 08:10	JEF	TAL CHI
Total/NA	Analysis	6010B		1	408958	11/07/17 20:07	PJ1	TAL CHI

TestAmerica Chicago

Page 174 of 195

G

4

5

9

11

14

**Matrix: Solid** 

### **Lab Chronicle**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-36-7 (0-3')

Client Sample ID: 3160-36-6 (0-3')

Date Collected: 11/02/17 09:20

Date Received: 11/03/17 08:50

TestAmerica Job ID: 500-136756-1

Lab Sample ID: 500-136756-8

**Matrix: Solid** Percent Solids: 78.9

Batch Batch Dilution Batch **Prepared** Method Number **Prep Type** Type Run **Factor** or Analyzed Analyst Lab TAL CHI Total/NA Prep 7471B 408789 11/07/17 13:20 EEN Total/NA Analysis 7471B 409010 11/08/17 10:45 EEN TAL CHI 1

Lab Sample ID: 500-136756-9

**Matrix: Solid** 

Date Collected: 11/02/17 09:30 Date Received: 11/03/17 08:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
SPLP East	Leach	1312			408829	11/07/17 14:20	SAH	TAL CHI
SPLP East	Prep	3010A			409049	11/08/17 14:37	BDE	TAL CHI
SPLP East	Analysis	6010B		1	409318	11/09/17 20:44	PJ1	TAL CHI
TCLP	Leach	1311			408821	11/07/17 14:20	SAH	TAL CHI
TCLP	Prep	3010A			408963	11/08/17 08:50	JEF	TAL CHI
TCLP	Analysis	6010B		1	409155	11/08/17 17:21	PJ1	TAL CHI
TCLP	Leach	1311			408821	11/07/17 14:20	SAH	TAL CHI
TCLP	Prep	3010A			408963	11/08/17 08:50	JEF	TAL CHI
TCLP	Analysis	6020A		1	409365	11/09/17 15:17	FXG	TAL CHI
TCLP	Leach	1311			408821	11/07/17 14:20	SAH	TAL CHI
TCLP	Prep	7470A			409004	11/08/17 13:40	EEN	TAL CHI
TCLP	Analysis	7470A		1	409195	11/09/17 09:42	EEN	TAL CHI
Total/NA	Analysis	9045D		1	409641		SMO	TAL CHI
					(Start)	11/12/17 21:07		
					(End)	11/12/17 21:40		
Total/NA	Analysis	Moisture		1	408681	11/06/17 17:14	PFK	TAL CHI

Client Sample ID: 3160-36-6 (0-3')

Analysis

7471B

Date Received: 11/03/17 08:50

Total/NA

Lab Sample ID: 500-136756-9 Date Collected: 11/02/17 09:30 **Matrix: Solid** 

Percent Solids: 82.7

Batch Batch Dilution Batch **Prepared** Method **Prep Type** Type Run **Factor** Number or Analyzed Analyst Lab Total/NA 5035 11/03/17 18:20 WRE TAL CHI Prep 408500 Total/NA 8260B 408744 Analysis 1 11/07/17 12:38 DJD TAL CHI Total/NA Prep 3541 409340 11/10/17 07:22 STW TAL CHI Total/NA Analysis 8270D 1 409400 11/10/17 21:54 WDS TAL CHI Total/NA 3050B TAL CHI Prep 408751 11/07/17 08:10 JEF Total/NA Analysis 6010B 1 408958 11/07/17 20:11 PJ1 TAL CHI Total/NA 7471B 408789 11/07/17 13:20 EEN TAL CHI Prep

TestAmerica Chicago

TAL CHI

Page 175 of 195

1

409010 11/08/17 10:54 EEN

TAL CHI

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Analysis

Moisture

Client Sample ID: 3160-36-5 (0-3') Lab Sample ID: 500-136756-10

Date Collected: 11/02/17 09:40 **Matrix: Solid** Date Received: 11/03/17 08:50

Batch Dilution Batch Batch **Prepared Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab **SPLP East** Leach 1312 408829 11/07/17 14:20 SAH TAL CHI SPLP East 3010A 409049 11/08/17 14:37 BDE Prep TAL CHI SPLP East Analysis 6010B 409318 11/09/17 20:48 PJ1 TAL CHI 1 **TCLP** Leach 1311 408821 11/07/17 14:20 SAH TAL CHI **TCLP** Prep 3010A 408963 11/08/17 08:50 JEF TAL CHI TAL CHI **TCLP** 6010B Analysis 1 409155 11/08/17 17:25 PJ1 **TCLP** Leach 1311 408821 11/07/17 14:20 SAH TAL CHI TAL CHI **TCLP** Prep 3010A 408963 11/08/17 08:50 JEF **TCLP** Analysis 6020A 1 409365 11/09/17 15:20 FXG TAL CHI **TCLP** TAL CHI Leach 1311 408821 11/07/17 14:20 SAH **TCLP** Prep 7470A 409004 11/08/17 13:40 EEN TAL CHI **TCLP** TAL CHI Analysis 7470A 409195 11/09/17 09:43 EEN 1 Total/NA Analysis 9045D 409641 TAL CHI (Start) 11/12/17 21:40 (End) 11/12/17 22:14

Client Sample ID: 3160-36-5 (0-3') Lab Sample ID: 500-136756-10

1

408681 11/06/17 17:14 PFK

Date Collected: 11/02/17 09:40 **Matrix: Solid** Date Received: 11/03/17 08:50 Percent Solids: 81.2

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			408500	11/03/17 18:20	WRE	TAL CHI
Total/NA	Analysis	8260B		1	408744	11/07/17 13:03	DJD	TAL CHI
Total/NA	Prep	3541			409340	11/10/17 07:22	STW	TAL CHI
Total/NA	Analysis	8270D		1	409400	11/10/17 22:18	WDS	TAL CHI
Total/NA	Prep	3050B			408751	11/07/17 08:10	JEF	TAL CHI
Total/NA	Analysis	6010B		1	408958	11/07/17 20:15	PJ1	TAL CHI
Total/NA	Prep	7471B			408789	11/07/17 13:20	EEN	TAL CHI
Total/NA	Analysis	7471B		1	409010	11/08/17 10:56	EEN	TAL CHI

Client Sample ID: 3160-36-4 (0-3') Lab Sample ID: 500-136756-11

Date Collected: 11/02/17 10:10 Date Received: 11/03/17 08:50

Total/NA

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			408821	11/07/17 14:20	SAH	TAL CHI
TCLP	Prep	3010A			408963	11/08/17 08:50	JEF	TAL CHI
TCLP	Analysis	6010B		1	409155	11/08/17 17:29	PJ1	TAL CHI
TCLP	Leach	1311			408821	11/07/17 14:20	SAH	TAL CHI
TCLP	Prep	3010A			408963	11/08/17 08:50	JEF	TAL CHI
TCLP	Analysis	6020A		1	409365	11/09/17 15:24	FXG	TAL CHI
TCLP	Leach	1311			408821	11/07/17 14:20	SAH	TAL CHI
TCLP	Prep	7470A			409004	11/08/17 13:40	EEN	TAL CHI

TestAmerica Chicago

Page 176 of 195

Matrix: Solid

11/15/2017

Lab Sample ID: 500-136756-11

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-36-4 (0-3')

Date Collected: 11/02/17 10:10 **Matrix: Solid** 

Date Received: 11/03/17 08:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Analysis	7470A		1	409195	11/09/17 09:44	EEN	TAL CHI
Total/NA	Analysis	9045D		1	409641		SMO	TAL CHI
					(Start) 1	11/12/17 22:14		
					(End) 1	11/12/17 22:47		
Total/NA	Analysis	Moisture		1	408681	11/06/17 17:14	PFK	TAL CHI

Client Sample ID: 3160-36-4 (0-3') Lab Sample ID: 500-136756-11

Date Collected: 11/02/17 10:10 Matrix: Solid

Date Received: 11/03/17 08:50 Percent Solids: 78.1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			408500	11/03/17 18:20	WRE	TAL CHI
Total/NA	Analysis	8260B		1	408744	11/07/17 13:28	DJD	TAL CHI
Total/NA	Prep	3541			409340	11/10/17 07:22	STW	TAL CHI
Total/NA	Analysis	8270D		1	409400	11/10/17 23:32	WDS	TAL CHI
Total/NA	Prep	3050B			408751	11/07/17 08:10	JEF	TAL CHI
Total/NA	Analysis	6010B		1	409164	11/08/17 20:14	PJ1	TAL CHI
Total/NA	Prep	7471B			408789	11/07/17 13:20	EEN	TAL CHI
Total/NA	Analysis	7471B		1	409010	11/08/17 10:59	EEN	TAL CHI

Client Sample ID: 3160-36-3 (0-3') Lab Sample ID: 500-136756-12

Date Collected: 11/02/17 10:20 **Matrix: Solid** Date Received: 11/03/17 08:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
SPLP East	Leach	1312			408829	11/07/17 14:20	SAH	TAL CHI
SPLP East	Prep	3010A			409049	11/08/17 14:37	BDE	TAL CHI
SPLP East	Analysis	6010B		1	409318	11/09/17 21:00	PJ1	TAL CHI
TCLP	Leach	1311			408821	11/07/17 14:20	SAH	TAL CHI
TCLP	Prep	3010A			408963	11/08/17 08:50	JEF	TAL CHI
TCLP	Analysis	6010B		1	409155	11/08/17 17:33	PJ1	TAL CHI
TCLP	Leach	1311			408821	11/07/17 14:20	SAH	TAL CHI
TCLP	Prep	3010A			408963	11/08/17 08:50	JEF	TAL CHI
TCLP	Analysis	6020A		1	409365	11/09/17 15:27	FXG	TAL CHI
TCLP	Leach	1311			408821	11/07/17 14:20	SAH	TAL CHI
TCLP	Prep	7470A			409004	11/08/17 13:40	EEN	TAL CHI
TCLP	Analysis	7470A		1	409195	11/09/17 09:46	EEN	TAL CHI
Total/NA	Analysis	9045D		1	409641		SMO	TAL CHI
					(Start) 1	1/12/17 22:47		
					(End) 1	1/12/17 23:20		
Total/NA	Analysis	Moisture		1	408681	11/06/17 17:14	PFK	TAL CHI

2

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-36-3 (0-3')

Date Collected: 11/02/17 10:20 Date Received: 11/03/17 08:50 Lab Sample ID: 500-136756-12

Matrix: Solid
Percent Solids: 81.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035	<del></del>		408500	11/03/17 18:20	WRE	TAL CHI
Total/NA	Analysis	8260B		1	408744	11/07/17 13:54	DJD	TAL CHI
Total/NA	Prep	3541			409340	11/10/17 07:22	STW	TAL CHI
Total/NA	Analysis	8270D		1	409400	11/10/17 23:56	WDS	TAL CHI
Total/NA	Prep	3050B			408751	11/07/17 08:10	JEF	TAL CHI
Total/NA	Analysis	6010B		1	409164	11/08/17 20:26	PJ1	TAL CHI
Total/NA	Prep	7471B			408789	11/07/17 13:20	EEN	TAL CHI
Total/NA	Analysis	7471B		1	409010	11/08/17 11:01	EEN	TAL CHI

Client Sample ID: 3160-36-2 (0-3')

Lab Sample ID: 500-136756-13

Date Collected: 11/02/17 10:30 Matrix: Solid

Date Received: 11/03/17 08:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
SPLP East	Leach	1312			408829	11/07/17 14:20	SAH	TAL CH
SPLP East	Prep	3010A			409049	11/08/17 14:37	BDE	TAL CH
SPLP East	Analysis	6010B		1	409318	11/09/17 21:04	PJ1	TAL CH
TCLP	Leach	1311			408821	11/07/17 14:20	SAH	TAL CH
TCLP	Prep	3010A			408963	11/08/17 08:50	JEF	TAL CH
TCLP	Analysis	6010B		1	409155	11/08/17 17:37	PJ1	TAL CH
TCLP	Leach	1311			408821	11/07/17 14:20	SAH	TAL CH
TCLP	Prep	3010A			408963	11/08/17 08:50	JEF	TAL CH
TCLP	Analysis	6020A		1	409365	11/09/17 15:30	FXG	TAL CH
TCLP	Leach	1311			408821	11/07/17 14:20	SAH	TAL CH
TCLP	Prep	7470A			409004	11/08/17 13:40	EEN	TAL CH
TCLP	Analysis	7470A		1	409195	11/09/17 09:47	EEN	TAL CH
Total/NA	Analysis	9045D		1	409641		SMO	TAL CH
					(Start) 1	1/12/17 23:20		
					(End) 1	1/12/17 23:54		
Total/NA	Analysis	Moisture		1	408681	11/06/17 17:14	PFK	TAL CH

Client Sample ID: 3160-36-2 (0-3')

Lab Sample ID: 500-136756-13

Date Collected: 11/02/17 10:30 Matrix: Solid
Date Received: 11/03/17 08:50 Percent Solids: 81.5

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			408500	11/03/17 18:20	WRE	TAL CHI
Total/NA	Analysis	8260B		1	408744	11/07/17 14:18	DJD	TAL CHI
Total/NA	Prep	3541			409340	11/10/17 07:22	STW	TAL CHI
Total/NA	Analysis	8270D		1	409400	11/11/17 00:20	WDS	TAL CHI
Total/NA	Prep	3050B			408751	11/07/17 08:10	JEF	TAL CHI
Total/NA	Analysis	6010B		1	409164	11/08/17 20:30	PJ1	TAL CHI
Total/NA	Prep	7471B			408789	11/07/17 13:20	EEN	TAL CHI
Total/NA	Analysis	7471B		1	409010	11/08/17 11:04	EEN	TAL CHI

Lab Sample ID: 500-136756-14

Client Sample ID: 3160-36-1 (0-3') Date Collected: 11/02/17 10:40 **Matrix: Solid** 

Date Received: 11/03/17 08:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311	<del></del>		408821	11/07/17 14:20	SAH	TAL CHI
TCLP	Prep	3010A			408963	11/08/17 08:50	JEF	TAL CHI
TCLP	Analysis	6010B		1	409155	11/08/17 17:41	PJ1	TAL CHI
TCLP	Leach	1311			408821	11/07/17 14:20	SAH	TAL CHI
TCLP	Prep	3010A			408963	11/08/17 08:50	JEF	TAL CHI
TCLP	Analysis	6020A		1	409365	11/09/17 15:34	FXG	TAL CHI
TCLP	Leach	1311			408821	11/07/17 14:20	SAH	TAL CHI
TCLP	Prep	7470A			409004	11/08/17 13:40	EEN	TAL CHI
TCLP	Analysis	7470A		1	409195	11/09/17 09:49	EEN	TAL CHI
Total/NA	Analysis	9045D		1	409641		SMO	TAL CHI
					(Start) 1	1/12/17 23:54		
					(End) 1	1/13/17 00:27		
Total/NA	Analysis	Moisture		1	408681	11/06/17 17:14	PFK	TAL CHI

Client Sample ID: 3160-36-1 (0-3')

Lab Sample ID: 500-136756-14 Date Collected: 11/02/17 10:40 **Matrix: Solid** 

Date Received: 11/03/17 08:50 Percent Solids: 76.4

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			408500	11/03/17 18:20	WRE	TAL CHI
Total/NA	Analysis	8260B		1	408744	11/07/17 14:43	DJD	TAL CHI
Total/NA	Prep	3541			409340	11/10/17 07:22	STW	TAL CHI
Total/NA	Analysis	8270D		1	409400	11/11/17 00:45	WDS	TAL CHI
Total/NA	Prep	3050B			408751	11/07/17 08:10	JEF	TAL CHI
Total/NA	Analysis	6010B		1	409164	11/08/17 20:34	PJ1	TAL CHI
Total/NA	Prep	7471B			408789	11/07/17 13:20	EEN	TAL CHI
Total/NA	Analysis	7471B		1	409010	11/08/17 11:11	EEN	TAL CHI

Client Sample ID: 3160-21-10 (0-2.5') Lab Sample ID: 500-136756-15

Date Collected: 11/02/17 11:00 **Matrix: Solid** Date Received: 11/03/17 08:50

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			408821	11/07/17 14:20	SAH	TAL CHI
TCLP	Prep	3010A			408963	11/08/17 08:50	JEF	TAL CHI
TCLP	Analysis	6010B		1	409155	11/08/17 17:45	PJ1	TAL CHI
TCLP	Leach	1311			408821	11/07/17 14:20	SAH	TAL CHI
TCLP	Prep	3010A			408963	11/08/17 08:50	JEF	TAL CHI
TCLP	Analysis	6020A		1	409365	11/09/17 15:37	FXG	TAL CHI
TCLP	Leach	1311			408821	11/07/17 14:20	SAH	TAL CHI
TCLP	Prep	7470A			409004	11/08/17 13:40	EEN	TAL CHI
TCLP	Analysis	7470A		1	409195	11/09/17 09:50	EEN	TAL CHI

Lab Sample ID: 500-136756-15

TestAmerica Job ID: 500-136756-1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-21-10 (0-2.5')

Date Collected: 11/02/17 11:00 **Matrix: Solid** Date Received: 11/03/17 08:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9045D			409641		SMO	TAL CHI
					(Start) 1	1/13/17 00:27		
					(End) 1	1/13/17 01:01		
Total/NA	Analysis	Moisture		1	408681	11/06/17 17:14	PFK	TAL CHI

Client Sample ID: 3160-21-10 (0-2.5') Lab Sample ID: 500-136756-15

Date Collected: 11/02/17 11:00 **Matrix: Solid** Date Received: 11/03/17 08:50 Percent Solids: 79.0

Dilution Batch Batch Batch Prepared Method **Prep Type** Type Run **Factor** Number or Analyzed Analyst Lab Prep Total/NA 5035 408500 11/03/17 18:20 WRE TAL CHI Total/NA 8260B TAL CHI Analysis 408744 11/07/17 15:08 DJD 1 Total/NA Prep 3541 409340 11/10/17 07:22 STW TAL CHI Total/NA 8270D 409487 11/11/17 01:19 WDS TAL CHI Analysis 1 Total/NA Prep 3050B 408751 11/07/17 08:10 JEF TAL CHI Total/NA 6010B 409164 11/08/17 20:38 PJ1 TAL CHI Analysis 1 Total/NA Prep 7471B 408789 11/07/17 13:20 EEN TAL CHI 409010 11/08/17 11:13 EEN TAL CHI Total/NA Analysis 7471B 1

Client Sample ID: 3160-21-9 (0-2.5') Lab Sample ID: 500-136756-16

Date Collected: 11/02/17 11:10 **Matrix: Solid** 

Date Received: 11/03/17 08:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			408821	11/07/17 14:20	SAH	TAL CHI
TCLP	Prep	3010A			408963	11/08/17 08:50	JEF	TAL CHI
TCLP	Analysis	6010B		1	409155	11/08/17 17:49	PJ1	TAL CHI
TCLP	Leach	1311			408821	11/07/17 14:20	SAH	TAL CHI
TCLP	Prep	3010A			408963	11/08/17 08:50	JEF	TAL CHI
TCLP	Analysis	6020A		1	409365	11/09/17 15:41	FXG	TAL CHI
TCLP	Leach	1311			408821	11/07/17 14:20	SAH	TAL CHI
TCLP	Prep	7470A			409004	11/08/17 13:40	EEN	TAL CHI
TCLP	Analysis	7470A		1	409195	11/09/17 09:55	EEN	TAL CHI
Total/NA	Analysis	9045D		1	409641		SMO	TAL CHI
					(Start) 1	11/13/17 01:01		
					(End) 1	11/13/17 01:34		
Total/NA	Analysis	Moisture		1	408681	11/06/17 17:14	PFK	TAL CHI

Client Sample ID: 3160-21-9 (0-2.5')

Date Collected: 11/02/17 11:10

Date Received: 11/03/17 08:50

Lab Sample ID: 500-136756-16

**Matrix: Solid** 

Percent Solids: 84.2

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			408500	11/03/17 18:20	WRE	TAL CHI
Total/NA	Analysis	8260B		1	408942	11/08/17 14:32	DJD	TAL CHI
Total/NA	Prep	3541			409340	11/10/17 07:22	STW	TAL CHI
Total/NA	Analysis	8270D		1	409487	11/11/17 01:46	WDS	TAL CHI
Total/NA	Prep	3050B			408751	11/07/17 08:10	JEF	TAL CHI
Total/NA	Analysis	6010B		1	409164	11/08/17 20:42	PJ1	TAL CHI
Total/NA	Prep	7471B			408789	11/07/17 13:20	EEN	TAL CHI
Total/NA	Analysis	7471B		1	409010	11/08/17 11:15	EEN	TAL CHI

Client Sample ID: 3160-21-8 (0-2.5') Lab Sample ID: 500-136756-17

Date Collected: 11/02/17 12:15 Matrix: Solid

Date Received: 11/03/17 08:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			408821	11/07/17 14:20	SAH	TAL CH
TCLP	Prep	3010A			408963	11/08/17 08:50	JEF	TAL CH
TCLP	Analysis	6010B		1	409155	11/08/17 17:53	PJ1	TAL CH
TCLP	Leach	1311			408821	11/07/17 14:20	SAH	TAL CH
TCLP	Prep	3010A			408963	11/08/17 08:50	JEF	TAL CH
TCLP	Analysis	6020A		1	409365	11/09/17 15:44	FXG	TAL CH
TCLP	Leach	1311			408821	11/07/17 14:20	SAH	TAL CH
TCLP	Prep	7470A			409004	11/08/17 13:40	EEN	TAL CH
TCLP	Analysis	7470A		1	409195	11/09/17 09:56	EEN	TAL CH
Total/NA	Analysis	9045D		1	409641		SMO	TAL CH
					(Start) 1	1/13/17 01:34		
					(End) 1	1/13/17 02:08		
Total/NA	Analysis	Moisture		1	408681	11/06/17 17:14	PFK	TAL CH

Client Sample ID: 3160-21-8 (0-2.5') Lab Sample ID: 500-136756-17

Date Collected: 11/02/17 12:15 Date Received: 11/03/17 08:50 Percent Solids: 81.4

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			408500	11/03/17 18:20	WRE	TAL CHI
Total/NA	Analysis	8260B		1	408744	11/07/17 15:59	DJD	TAL CHI
Total/NA	Prep	3541			409340	11/10/17 07:22	STW	TAL CHI
Total/NA	Analysis	8270D		1	409400	11/11/17 01:09	WDS	TAL CHI
Total/NA	Prep	3050B			408751	11/07/17 08:10	JEF	TAL CHI
Total/NA	Analysis	6010B		1	409164	11/08/17 20:46	PJ1	TAL CHI
Total/NA	Prep	7471B			408789	11/07/17 13:20	EEN	TAL CHI
Total/NA	Analysis	7471B		1	409010	11/08/17 11:18	EEN	TAL CHI

**Matrix: Solid** 

Lab Sample ID: 500-136756-18

Client Sample ID: 3160-21-7 (0-2.5') Date Collected: 11/02/17 12:25 Matrix: Solid Date Received: 11/03/17 08:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			408821	11/07/17 14:20	SAH	TAL CHI
TCLP	Prep	3010A			408963	11/08/17 08:50	JEF	TAL CHI
TCLP	Analysis	6010B		1	409155	11/08/17 17:57	PJ1	TAL CHI
TCLP	Leach	1311			408821	11/07/17 14:20	SAH	TAL CHI
TCLP	Prep	3010A			408963	11/08/17 08:50	JEF	TAL CHI
TCLP	Analysis	6020A		1	409365	11/09/17 15:48	FXG	TAL CHI
TCLP	Leach	1311			408821	11/07/17 14:20	SAH	TAL CHI
TCLP	Prep	7470A			409004	11/08/17 13:40	EEN	TAL CHI
TCLP	Analysis	7470A		1	409195	11/09/17 09:58	EEN	TAL CHI
Total/NA	Analysis	9045D		1	409641		SMO	TAL CHI
					(Start)	11/13/17 02:08		
					(End)	11/13/17 02:41		
Total/NA	Analysis	Moisture		1	408681	11/06/17 17:14	PFK	TAL CHI

Client Sample ID: 3160-21-7 (0-2.5')

Lab Sample ID: 500-136756-18 Date Collected: 11/02/17 12:25 **Matrix: Solid** 

Date Received: 11/03/17 08:50 Percent Solids: 79.9

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			408500	11/03/17 18:20	WRE	TAL CHI
Total/NA	Analysis	8260B		1	408744	11/07/17 16:23	DJD	TAL CHI
Total/NA	Prep	3541			409340	11/10/17 07:22	STW	TAL CHI
Total/NA	Analysis	8270D		1	409487	11/11/17 02:14	WDS	TAL CHI
Total/NA	Prep	3050B			408751	11/07/17 08:10	JEF	TAL CHI
Total/NA	Analysis	6010B		1	409164	11/08/17 20:50	PJ1	TAL CHI
Total/NA	Prep	7471B			408789	11/07/17 13:20	EEN	TAL CHI
Total/NA	Analysis	7471B		1	409010	11/08/17 11:20	EEN	TAL CHI

Client Sample ID: 3160-21-6 (0-2.5') Lab Sample ID: 500-136756-19

Date Collected: 11/02/17 12:35 **Matrix: Solid** Date Received: 11/03/17 08:50

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			408821	11/07/17 14:20	SAH	TAL CHI
TCLP	Prep	3010A			408963	11/08/17 08:50	JEF	TAL CHI
TCLP	Analysis	6010B		1	409155	11/08/17 18:09	PJ1	TAL CHI
TCLP	Leach	1311			408821	11/07/17 14:20	SAH	TAL CHI
TCLP	Prep	3010A			408963	11/08/17 08:50	JEF	TAL CHI
TCLP	Analysis	6020A		1	409365	11/09/17 16:01	FXG	TAL CHI
TCLP	Leach	1311			408821	11/07/17 14:20	SAH	TAL CHI
TCLP	Prep	7470A			409004	11/08/17 13:40	EEN	TAL CHI
TCLP	Analysis	7470A		1	409195	11/09/17 09:59	EEN	TAL CHI

2

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-21-6 (0-2.5')

Date Collected: 11/02/17 12:35 Date Received: 11/03/17 08:50 Lab Sample ID: 500-136756-19

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9045D			409641		SMO	TAL CHI
					(Start) 1	1/13/17 02:41		
					(End) 1	1/13/17 03:14		
Total/NA	Analysis	Moisture		1	408681	11/06/17 17:14	PFK	TAL CHI

Client Sample ID: 3160-21-6 (0-2.5')

Lab Sample ID: 500-136756-19

Date Collected: 11/02/17 12:35

Date Received: 11/03/17 08:50

Matrix: Solid
Percent Solids: 79.3

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			408500	11/03/17 18:20	WRE	TAL CHI
Total/NA	Analysis	8260B		1	408744	11/07/17 16:48	DJD	TAL CHI
Total/NA	Prep	3541			409340	11/10/17 07:22	STW	TAL CHI
Total/NA	Analysis	8270D		1	409400	11/11/17 01:34	WDS	TAL CHI
Total/NA	Prep	3050B			408751	11/07/17 08:10	JEF	TAL CHI
Total/NA	Analysis	6010B		1	409164	11/08/17 20:54	PJ1	TAL CHI
Total/NA	Prep	7471B			408789	11/07/17 13:20	EEN	TAL CHI
Total/NA	Analysis	7471B		1	409010	11/08/17 11:22	EEN	TAL CHI

Client Sample ID: 3160-21-5 (0-2.5')

Lab Sample ID: 500-136756-20

Date Collected: 11/02/17 12:45 Matrix: Solid

Date Received: 11/03/17 08:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			408821	11/07/17 14:20	SAH	TAL CHI
TCLP	Prep	3010A			408963	11/08/17 08:50	JEF	TAL CHI
TCLP	Analysis	6010B		1	409155	11/08/17 18:13	PJ1	TAL CHI
TCLP	Leach	1311			408821	11/07/17 14:20	SAH	TAL CHI
TCLP	Prep	3010A			408963	11/08/17 08:50	JEF	TAL CHI
TCLP	Analysis	6020A		1	409365	11/09/17 16:05	FXG	TAL CHI
TCLP	Leach	1311			408821	11/07/17 14:20	SAH	TAL CHI
TCLP	Prep	7470A			409004	11/08/17 13:40	EEN	TAL CHI
TCLP	Analysis	7470A		1	409195	11/09/17 10:01	EEN	TAL CHI
Total/NA	Analysis	9045D		1	409641		SMO	TAL CHI
					(Start) 1	11/13/17 03:14		
					(End) 1	11/13/17 03:48		
Total/NA	Analysis	Moisture		1	408681	11/06/17 17:14	PFK	TAL CHI

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-21-5 (0-2.5')

Date Collected: 11/02/17 12:45 Date Received: 11/03/17 08:50

Lab Sample ID: 500-136756-20

**Matrix: Solid** Percent Solids: 78.1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			408500	11/03/17 18:20	WRE	TAL CHI
Total/NA	Analysis	8260B		1	408744	11/07/17 17:13	DJD	TAL CHI
Total/NA	Prep	3541			409340	11/10/17 07:22	STW	TAL CHI
Total/NA	Analysis	8270D		1	409400	11/11/17 01:58	WDS	TAL CHI
Total/NA	Prep	3050B			408751	11/07/17 08:10	JEF	TAL CHI
Total/NA	Analysis	6010B		1	409164	11/08/17 20:57	PJ1	TAL CHI
Total/NA	Prep	7471B			408789	11/07/17 13:20	EEN	TAL CHI
Total/NA	Analysis	7471B		1	409010	11/08/17 11:24	EEN	TAL CHI

Client Sample ID: 3160-21-4 (0-2.5') Lab Sample ID: 500-136756-21 Matrix: Solid

Date Collected: 11/02/17 12:55

Date Received: 11/03/17 08:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
SPLP East	Leach	1312			408832	11/07/17 14:20	SAH	TAL CH
SPLP East	Prep	3010A			409447	11/10/17 14:43	BDE	TAL CH
SPLP East	Analysis	6010B		1	409604	11/11/17 18:28	PJ1	TAL CH
TCLP	Leach	1311			408822	11/07/17 14:20	SAH	TAL CH
TCLP	Prep	3010A			408973	11/08/17 09:26	JEF	TAL CH
TCLP	Analysis	6010B		1	409155	11/08/17 18:38	PJ1	TAL CH
TCLP	Leach	1311			408822	11/07/17 14:20	SAH	TAL CH
TCLP	Prep	3010A			408973	11/08/17 09:26	JEF	TAL CH
TCLP	Analysis	6020A		1	409365	11/09/17 16:25	FXG	TAL CH
TCLP	Leach	1311			408822	11/07/17 14:20	SAH	TAL CH
TCLP	Prep	7470A			409005	11/08/17 13:40	EEN	TAL CH
TCLP	Analysis	7470A		1	409195	11/09/17 07:41	EEN	TAL CH
Total/NA	Analysis	9045D		1	409641		SMO	TAL CH
					(Start) 1	11/13/17 03:48		
					(End) 1	11/13/17 04:21		
Total/NA	Analysis	Moisture		1	408752	11/07/17 08:17	PFK	TAL CH

Client Sample ID: 3160-21-4 (0-2.5') Lab Sample ID: 500-136756-21

Date Collected: 11/02/17 12:55 **Matrix: Solid** Date Received: 11/03/17 08:50 Percent Solids: 74.4

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			408500	11/03/17 18:20	WRE	TAL CHI
Total/NA	Analysis	8260B		1	408744	11/07/17 17:38	DJD	TAL CHI
Total/NA	Prep	3541			409279	11/09/17 17:53	JP1	TAL CHI
Total/NA	Analysis	8270D		1	409657	11/13/17 16:32	WDS	TAL CHI
Total/NA	Prep	3050B			408945	11/08/17 07:33	JEF	TAL CHI
Total/NA	Analysis	6010B		1	409165	11/09/17 02:58	PJ1	TAL CHI
Total/NA	Prep	7471B			408790	11/07/17 13:20	EEN	TAL CHI
Total/NA	Analysis	7471B		1	409010	11/08/17 11:31	EEN	TAL CHI

Page 184 of 195

Lab Sample ID: 500-136756-22

**Matrix: Solid** 

Client Sample ID: 3160-21-3 (0-2.5')

Date Collected: 11/02/17 13:15 Date Received: 11/03/17 08:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			408822	11/07/17 14:20	SAH	TAL CHI
TCLP	Prep	3010A			408973	11/08/17 09:26	JEF	TAL CHI
TCLP	Analysis	6010B		1	409155	11/08/17 18:42	PJ1	TAL CHI
TCLP	Leach	1311			408822	11/07/17 14:20	SAH	TAL CHI
TCLP	Prep	3010A			408973	11/08/17 09:26	JEF	TAL CHI
TCLP	Analysis	6020A		1	409365	11/09/17 16:29	FXG	TAL CHI
TCLP	Leach	1311			408822	11/07/17 14:20	SAH	TAL CHI
TCLP	Prep	7470A			409005	11/08/17 13:40	EEN	TAL CHI
TCLP	Analysis	7470A		1	409195	11/09/17 07:46	EEN	TAL CHI
Total/NA	Analysis	9045D		1	409641	1/12/17 04:21	SMO	TAL CHI
					` ,	1/13/17 04:21 1/13/17 04:55		
Total/NA	Analysis	Moisture		1	408752	11/07/17 08:17	PFK	TAL CHI

Client Sample ID: 3160-21-3 (0-2.5')

Date Collected: 11/02/17 13:15 Date Received: 11/03/17 08:50

Lab Sample ID: 500-136756-22

Matrix: Solid Percent Solids: 84.2

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			408500	11/03/17 18:20	WRE	TAL CHI
Total/NA	Analysis	8260B		1	408744	11/07/17 18:03	DJD	TAL CH
Total/NA	Prep	3541			409279	11/09/17 17:53	JP1	TAL CH
Total/NA	Analysis	8270D		1	409355	11/10/17 16:10	GES	TAL CH
Total/NA	Prep	3050B			408945	11/08/17 07:33	JEF	TAL CH
Total/NA	Analysis	6010B		1	409165	11/09/17 03:26	PJ1	TAL CH
Total/NA	Prep	7471B			408790	11/07/17 13:20	EEN	TAL CH
Total/NA	Analysis	7471B		1	409010	11/08/17 11:38	EEN	TAL CH

Client Sample ID: 3160-21-2 (0-2.5')	Lab Sample ID: 500-136756-23
Date Collected: 11/02/17 13:25	Matrix: Solid
Date Received: 11/03/17 08:50	

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			408822	11/07/17 14:20	SAH	TAL CHI
TCLP	Prep	3010A			408973	11/08/17 09:26	JEF	TAL CHI
TCLP	Analysis	6010B		1	409155	11/08/17 18:46	PJ1	TAL CHI
TCLP	Leach	1311			408822	11/07/17 14:20	SAH	TAL CHI
TCLP	Prep	3010A			408973	11/08/17 09:26	JEF	TAL CHI
TCLP	Analysis	6020A		1	409365	11/09/17 16:32	FXG	TAL CHI
TCLP	Leach	1311			408822	11/07/17 14:20	SAH	TAL CHI
TCLP	Prep	7470A			409005	11/08/17 13:40	EEN	TAL CHI
TCLP	Analysis	7470A		1	409195	11/09/17 07:47	EEN	TAL CHI

Client Sample ID: 3160-21-2 (0-2.5') Lab Sample ID: 500-136756-23

Date Collected: 11/02/17 13:25 Matrix: Solid Date Received: 11/03/17 08:50

Batch Batch Dilution Batch Prepared Method **Prep Type** Type Run **Factor** Number or Analyzed Analyst Lab Total/NA Analysis 9045D 409641 SMO TAL CHI (Start) 11/13/17 04:55 (End) 11/13/17 05:28 Total/NA Analysis Moisture 408752 11/07/17 08:17 PFK TAL CHI

Client Sample ID: 3160-21-2 (0-2.5') Lab Sample ID: 500-136756-23

Date Collected: 11/02/17 13:25 **Matrix: Solid** Date Received: 11/03/17 08:50 Percent Solids: 82.4

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			408500	11/03/17 18:20	WRE	TAL CHI
Total/NA	Analysis	8260B		1	408744	11/07/17 18:29	DJD	TAL CHI
Total/NA	Prep	3541			409279	11/09/17 17:53	JP1	TAL CHI
Total/NA	Analysis	8270D		1	409355	11/10/17 19:40	GES	TAL CHI
Total/NA	Prep	3050B			408945	11/08/17 07:33	JEF	TAL CHI
Total/NA	Analysis	6010B		1	409165	11/09/17 03:30	PJ1	TAL CHI
Total/NA	Prep	3050B			408945	11/08/17 07:33	JEF	TAL CHI
Total/NA	Analysis	6010B		5	409318	11/09/17 18:01	PJ1	TAL CHI
Total/NA	Prep	7471B			408790	11/07/17 13:20	EEN	TAL CHI
Total/NA	Analysis	7471B		1	409010	11/08/17 11:50	EEN	TAL CHI

Lab Sample ID: 500-136756-24 Client Sample ID: 3160-21-1 (0-2.5')

Date Collected: 11/02/17 13:40 **Matrix: Solid** Date Received: 11/03/17 08:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			408822	11/07/17 14:20	SAH	TAL CHI
TCLP	Prep	3010A			408973	11/08/17 09:26	JEF	TAL CHI
TCLP	Analysis	6010B		1	409155	11/08/17 18:58	PJ1	TAL CHI
TCLP	Leach	1311			408822	11/07/17 14:20	SAH	TAL CHI
TCLP	Prep	3010A			408973	11/08/17 09:26	JEF	TAL CHI
TCLP	Analysis	6020A		1	409365	11/09/17 16:43	FXG	TAL CHI
TCLP	Leach	1311			408822	11/07/17 14:20	SAH	TAL CHI
TCLP	Prep	7470A			409005	11/08/17 13:40	EEN	TAL CHI
TCLP	Analysis	7470A		1	409195	11/09/17 07:49	EEN	TAL CHI
Total/NA	Analysis	9045D		1	409641		SMO	TAL CHI
					(Start) 1	1/13/17 05:28		
					(End) 1	1/13/17 06:02		
Total/NA	Analysis	Moisture		1	408752	11/07/17 08:17	PFK	TAL CHI

Date Collected: 11/02/17 13:40

Date Received: 11/03/17 08:50

Client Sample ID: 3160-21-1 (0-2.5')

Lab Sample ID: 500-136756-24

**Matrix: Solid Percent Solids: 80.8** 

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			408500	11/03/17 18:20	WRE	TAL CHI
Total/NA	Analysis	8260B		1	408744	11/07/17 18:53	DJD	TAL CHI
Total/NA	Prep	3541			409279	11/09/17 17:53	JP1	TAL CHI
Total/NA	Analysis	8270D		1	409657	11/13/17 16:59	WDS	TAL CHI
Total/NA	Prep	3050B			408945	11/08/17 07:33	JEF	TAL CHI
Total/NA	Analysis	6010B		1	409165	11/09/17 03:34	PJ1	TAL CHI
Total/NA	Prep	7471B			408790	11/07/17 13:20	EEN	TAL CHI
Total/NA	Analysis	7471B		1	409010	11/08/17 11:53	EEN	TAL CHI

Client Sample ID: 3160-5-3 (0-1.2') Lab Sample ID: 500-136756-25

Date Collected: 11/02/17 14:00 Matrix: Solid

Date Received: 11/03/17 08:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			408822	11/07/17 14:20	SAH	TAL CH
TCLP	Prep	3010A			408973	11/08/17 09:26	JEF	TAL CH
TCLP	Analysis	6010B		1	409155	11/08/17 19:02	PJ1	TAL CH
TCLP	Leach	1311			408822	11/07/17 14:20	SAH	TAL CH
TCLP	Prep	3010A			408973	11/08/17 09:26	JEF	TAL CH
TCLP	Analysis	6020A		1	409365	11/09/17 16:46	FXG	TAL CH
TCLP	Leach	1311			408822	11/07/17 14:20	SAH	TAL CH
TCLP	Prep	7470A			409005	11/08/17 13:40	EEN	TAL CH
TCLP	Analysis	7470A		1	409195	11/09/17 07:56	EEN	TAL CH
Total/NA	Analysis	9045D		1	409641		SMO	TAL CH
					(Start) 1	11/13/17 06:02		
					(End) 1	11/13/17 06:35		
Total/NA	Analysis	Moisture		1	408752	11/07/17 08:17	PFK	TAL CH

Client Sample ID: 3160-5-3 (0-1.2') Lab Sample ID: 500-136756-25

Date Collected: 11/02/17 14:00 **Matrix: Solid** Date Received: 11/03/17 08:50 Percent Solids: 79.6

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			408945	11/08/17 07:33	JEF	TAL CHI
Total/NA	Analysis	6010B		1	409165	11/09/17 03:38	PJ1	TAL CHI
Total/NA	Prep	7471B			408790	11/07/17 13:20	EEN	TAL CHI
Total/NA	Analysis	7471B		1	409010	11/08/17 11:55	EEN	TAL CHI

Client Sample ID: 3160-5-2 (0-1.2') Lab Sample ID: 500-136756-26

Date Collected: 11/02/17 14:15 Matrix: Solid

Date Received: 11/03/17 08:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			408822	11/07/17 14:20	SAH	TAL CHI
TCLP	Prep	3010A			408973	11/08/17 09:26	JEF	TAL CHI
TCLP	Analysis	6010B		1	409155	11/08/17 19:06	PJ1	TAL CHI
TCLP	Leach	1311			408822	11/07/17 14:20	SAH	TAL CHI
TCLP	Prep	3010A			408973	11/08/17 09:26	JEF	TAL CHI
TCLP	Analysis	6020A		1	409365	11/09/17 16:49	FXG	TAL CHI
TCLP	Leach	1311			408822	11/07/17 14:20	SAH	TAL CHI
TCLP	Prep	7470A			409005	11/08/17 13:40	EEN	TAL CHI
TCLP	Analysis	7470A		1	409195	11/09/17 07:57	EEN	TAL CHI
Total/NA	Analysis	9045D		1	409641		SMO	TAL CHI
					(Start) 1	11/13/17 06:35		
					(End) 1	11/13/17 07:08		
Total/NA	Analysis	Moisture		1	408752	11/07/17 08:17	PFK	TAL CHI

Client Sample ID: 3160-5-2 (0-1.2')

Lab Sample ID: 500-136756-26 Date Collected: 11/02/17 14:15 **Matrix: Solid** 

Date Received: 11/03/17 08:50 Percent Solids: 81.2

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			408945	11/08/17 07:33	JEF	TAL CHI
Total/NA	Analysis	6010B		1	409165	11/09/17 03:42	PJ1	TAL CHI
Total/NA	Prep	7471B			408790	11/07/17 13:20	EEN	TAL CHI
Total/NA	Analysis	7471B		1	409010	11/08/17 11:57	EEN	TAL CHI

Lab Sample ID: 500-136756-27 Client Sample ID: 3160-5-1 (0-1.2')

Date Collected: 11/02/17 14:30 **Matrix: Solid** 

Date Received: 11/03/17 08:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			408822	11/07/17 14:20	SAH	TAL CHI
TCLP	Prep	3010A			408973	11/08/17 09:26	JEF	TAL CHI
TCLP	Analysis	6010B		1	409155	11/08/17 19:10	PJ1	TAL CHI
TCLP	Leach	1311			408822	11/07/17 14:20	SAH	TAL CHI
TCLP	Prep	3010A			408973	11/08/17 09:26	JEF	TAL CHI
TCLP	Analysis	6020A		1	409365	11/09/17 16:53	FXG	TAL CHI
TCLP	Leach	1311			408822	11/07/17 14:20	SAH	TAL CHI
TCLP	Prep	7470A			409005	11/08/17 13:40	EEN	TAL CHI
TCLP	Analysis	7470A		1	409195	11/09/17 07:59	EEN	TAL CHI
Total/NA	Analysis	9045D		1	409641		SMO	TAL CHI
					(Start)	11/13/17 07:08		
					(End)	11/13/17 07:42		
Total/NA	Analysis	Moisture		1	408752	11/07/17 08:17	PFK	TAL CHI

### Lab Chronicle

1

408790 11/07/17 13:20 EEN

409010 11/08/17 12:00 EEN

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Collected: 11/02/17 14:30

Client Sample ID: 3160-5-1 (0-1.2')

Prep

Analysis

TestAmerica Job ID: 500-136756-1

Lab Sample ID: 500-136756-27

TAL CHI

TAL CHI

Matrix: Solid

Percent Solids: 85.8

Date Receive	d: 11/03/17 0	8:50						Per
Γ	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			408945	11/08/17 07:33	JEF	TAL CHI
Total/NA	Analysis	6010B		1	409165	11/09/17 03:46	PJ1	TAL CHI
	Prep Type Total/NA	Batch           Prep Type         Type           Total/NA         Prep	Prep Type         Type         Method           Total/NA         Prep         3050B	Batch         Batch           Prep Type         Type         Method         Run           Total/NA         Prep         3050B	Batch         Batch         Dilution           Prep Type         Type         Method         Run         Factor           Total/NA         Prep         3050B	Batch         Batch         Dilution         Batch           Prep Type         Type         Method         Run         Factor         Number           Total/NA         Prep         3050B         408945	Prep TypeTypeMethodRunFactorNumberor AnalyzedTotal/NAPrep3050B40894511/08/17 07:33	Prep Type         Type         Method         Run         Factor         Number         or Analyzed         Analyst           Total/NA         Prep         3050B         408945         11/08/17 07:33         JEF

### **Laboratory References:**

Total/NA

Total/NA

TAL CHI = TestAmerica Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

7471B

7471B

-5

6

0

0

10

11

13

### **Accreditation/Certification Summary**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136756-1

## Laboratory: TestAmerica Chicago

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Program		EPA Region	<b>Identification Number</b>	<b>Expiration Date</b>	
Ilinois	NELAP		5	100201	04-30-18	
The following analytes	s are included in this repo	ort, but accreditation/	certification is not off	ered by the governing auth	ority:	
Analysis Method	Prep Method	Matrix	Analyt	е		
6020A	3010A	Solid	Antimo	ony		
6020A	3010A	Solid	Thalliu	ım		
8260B	5035	Solid	1,3-Di	chloropropene, Total		
9045D		Solid	рН			
Moisture		Solid	Percer	nt Moisture		
Moisture		Solid	Percer	nt Solids		

- 0

5

7

10

12

13

# <u>TestAmerica</u>

### THE LEADER IN ENVIRONMENTAL TESTING

2417 Bond Street, University Park, IL 60484 Phone: 708.534.5200 Fax: 708.534.5211

(optional)	(optional)
Report To  Contact: TERRY DIX ON	Bill To Contact: SAM Z
Company: Amec R. WOOD Address: 4722 BRANDy WITE	Company: Address:
Address: Just A PESAIA aL	Address:Phone:
E-Mail:	Fax:
L IVIGII,	TOWN Television

# **Chain of Custody Record**

Lab Job #: 500 / 36756

Chain of Custody Number:

	•	•		-
	1		11	
Page	- 1	of	4	
raye	k	U		

Temperature °C of Cooler: (1.1)(2.4)(2.6)(3.8)

	E-1	viali,			PO#/Hetere	ence#		_			<u> </u>
Client Ambe-fw	Client Project #	Preservativ	e								Preservative Key  1. HCL, Cool to 4°
Project Name TOAL WO28	·	Paramete	r				25.5			HEAD	2. H2SO4, Cool to 4° 3. HNO3, Cool to 4° 4. NaOH, Cool to 4°
Project Location/State BENTON IL Sampler Ton MENALLY	Lab Project # 13898	•					36		45	ž	5. NaOH/Zn, Cool to 4° 6. NaHSO4 7. Cool to 4°
	Lab PM DICK WRIG		ر د	ر	Ø	44 2	20	7.	0 0	163	8. None 9. Other
DI Samble ID	Sa Date	Matrix Matrix	Ö	のとの	PCB	f ž	7 CC	49	200	3	Comments
1 3260-51-31	0-1.5' 11/2	080 6 5		メ		ス	X	メ	X		HOLD SPLP
3 3160-51-27	0-1,51)/11/2	0815 6 5	X	X		x	オ	×	X		BASED ON TELF
2 3160-51-2 (	(01.5') n/2	0825 6 5	X	X		X	λ	X	X		RESULTS
											SEE DIXON
											EMAU RE:
											18 memis
			<u> </u>								Lid.+
Turnaround Time Required (Business Days)  1 Day 2 Days 5 Days 7 Day 2 Days 5 Days 7 Day	/s10 Days 15 Days	Other Sample Dis	posal urn to Client	Disp	∧ oosal by Lab	Archi	ve for	Months	(A fee may h	assassad if sample	es are retained longer than 1 month)

rumaround mine neq	ulieu (Dusiliess Days)	<i>V</i>	C Sample Disposition	JSai	_ /				
1 Day 2 D Requested Due Date	Days 5 Days 7 Days		Retur	n to Client	Disposal by Lab Archiv	e for Months (A fee	may be assessed if samples	are retained longer tha	an 1 month)
Reginquished By	Company Amec fw	Date Wa 00 11-2-17	Time 1700	Received By	Company T	Date // / 0 3	7 Time 0850	Lab Courier	
Relinquished By	Company	Date	Time	Received By	Company	Date /	Time	Shipped	
Relinquished By	Company	Date	Time	Received By	Company	Date	Time	Hand Delivered	
	Matrix Key	Client Comments			La	b Comments:			
WW - Wastewater	SE - Sediment								
W - Water	SO - Soil				ļ				
S - Soil	L – Leachate								
SL - Sludge	WI - Wipe	i							
MS - Miscellaneous	DW - Drinking Water								
OL - Oil	O – Other								
A – Air									

# **TestAmerica**

### THE LEADER IN ENVIRONMENTAL TESTING

2417 Bond Street, University Park, IL 60484 Phone: 708.534.5200 Fax: 708.534.5211

(optional)	(optional)
Report To	Bill To
Contact: TERRY DIXON	Contact: SAM &
Company: mechy wood	Company:
Address:	Address:
Address:	Address:
Phone:	Phone:
Fax:	Fax:
E-Mail:	PO#/Reference#

# **Chain of Custody Record**

Lab Job#: 500-136756 Chain of Custody Number: Page 2 of 4

E-Mail:				PO#/Refere	ence#					Temperature °C	C of Cooler:
Client Project # 3)60150049	Preservative				·						Preservative Key  1. HCL, Cool to 4°
Project Name TOO+ WO 2 %	Parameter					4265 1465			_		2. H2SO4, Cool to 4° 3. HNO3, Cool to 4° 4. NaOH, Cool to 4°
Project Location/State BEntonial Lab Project # 50013898					3			ids	HERE		5. NaOH/Zn, Cool to 4° 6. NaHSO4
Sampler Tem marally bick writh.		ى	J	20	122	2 2	I	Je 2	X		7. Cool to 4° 8. None 9. Other
Sampling  Sampling  Date Time	# of Containers Matrix	0 7	75	PC	2 2	1226 9121		9	132		
Sample ID   Date   Time	€ 5	χ	X		X	x 7		~	<u>C</u>		SEE ps 1
6 3160-36-9 (0-31) 11/2 0845	6 5 6 5	X	X		<u>X</u>	X	X	X			SEE PS 1
7 316-36-8 (0-31) 11/2 0905	65	×	X		\$	×	X X	×			110125
8 3160-36-7 (0-31) 11/2 0920	6 5	X	×		×	′x l	X	Ý			
9 3160-36-6 (0-31) 11/2 0930	2 2	X	×		X	X	X	X			
10 3160-36-5 (0-31) 11/2 0940	2 4	X	X		X	*	x	X			
11 3160-36-4 (0-31) 11/2 10:10	2 2	X	X		X	X	'χ	X			
12 3160-36-3 (0-31) 1/2 10:20	65	<b>X</b>	<b>\</b>		~	X	X	X			
13 3460-26-2 (0-31) 1/2 10:30	5 0	X	×		Ŕ	X	<b>X</b>	X			
14 3160-36-1 (0-31)1/2 10:40	65	X	አ		X	χ	X	*			-

Requested Due Date	Days 5 Days 7 Days 10	Days 15 Days	Sample Dispo	osal n to Client	Disposal by Lab Arc	chive for Months (A fee r	nay be assessed if samples	are retained longer th	ian 1 month)
Ralinquished By	Company  The Company	Date 11-2-17	)7.0 0	Received By	Company	TZ( Date 11 /03 /	7 Time 0850	Lab Courier	
Relinquished By	Company	Date	Time	Received By	Company	Date	Time	L F	
Relinquished By	Company	Date	Time	Received By	0	<b>.</b>		Shipped	
Trounquisitoù By	Outpany	Date	Time	neceived by	Company	Date	Time	Hand Delivered	
WW – Wastewater W – Water S – Soil SL – Sludge MS – Miscellaneous OL – Oil A – Air	Matrix Key SE – Sediment SO – Soil L – Leachate WI – Wipe DW – Drinking Water O – Other	lient Comments			,	Lab Comments:			

Page 192 of 195

# <u>TestAmerica</u>

### THE LEADER IN ENVIRONMENTAL TESTING

2417 Bond Street, University Park, IL 60484 Phone: 708.534.5200 Fax: 708.534.5211

(optional)	(optional)
Report To  Contact: TERRY DIX PA	Bill To Contact: JAnk
Company:	Company:
Address:	Address:
Address:	Address:
Phone:	Phone:
Fax:	Fax:
- AA W	

# **Chain of Custody Record**

Lab Job #:	2000	13675
Chain of Custoo	dy Number:	

Temperature °C of Cooler:

E-Mail:				PO#/Refere	nce#					 
Client Project # 3 6 0 1 5 - 0049	Preservative		_						-	Preservative Key  1. HCL, Cool to 4°
Project Name IDay WO 28	Parameter				5	576 578		<u>_</u>	٩	2. H2SO4, Cool to 4° 3. HNO3, Cool to 4° 4. NaOH, Cool to 4°
Project Location/State BENTON, IL Lab Project # 50013898		9	- ن		7 4	net r	_	1165	72	 - 5. NaOH/Zn, Cool to 4° 6. NaHSO4 7. Cool to 4°
Sampler newarry Lab PM DICK WRIGHT		0	0	3	4 4	2 6	7	3	<b>*</b>	8. None 9. Other
Sampling  Sampling  Date Time	# of Containers Matrix	7	2	5	t z	4705 5014	\$	8	PES	Comments
15 3160-21-10(0-2,51)11/2 11:00		λ	χ		λ	×	X	X		 SEE Pg 1
16 3160-21-9 (0-2.51) 11/2 11:10	65	χ	×		X	×	Х	, <del>)</del>		*0
17 3160-21-8 (0-2.57) 11/2 12:15	6 5	χ	x		λ	×	X	X		104 57
18 3160-21-7 (0-2.51) 11/2 12:25	6 5	X	X		X	λ	Х	X_		
19 3160-21-6 (0-2.51) 1/2 12:33	65	Х	X		X	X	χ	X_		
20 3160-21-5 (0-25) 11/2 12:45	65	×	X	` .	X	X	X	×		 
21 3160-21-4 (0-2.5') 11/2 12:55	ا ه ا	χ	×		X	X	X	_X_		
22 3160-21-3 (0-2.51) 11/2 1315	65	X	X		X	_ <b>X</b>	X	X		 
23 3160-21-2 (0-2.51)11/2 1325	65	Χ	X		χ	人	<u>λ</u>	X		
24 3160-21-1 (0-2,51) 11/2 1340	6 5	χ	X		X	オ	X	X		

Turnaround Time Req 1 Day 2 D Requested Due Date	ays 5 Days 7 Days	_10 Days 15 Days	Sample Disp	oosal rn to Client	Disposal by Lab Arcl	hive for Months (A fe	e may be assessed if samples a	are retained longer tha	n 1 month)
Relinquished By	Company  Am ecfor	Was Date 11-2.	-17 )700	Received By	Company	7A Date 11 0	3/17 Time 0850	Lab Courier	
Relinquished By	Сотрапу	Date	Time	Received By	Company	Date	Time	Shipped	
Relinquished By	Company	Date	Time	Received By	Company	Date	Time	Hand Delivered	
WW – Wastewater W – Water S – Soil SL – Sludge MS – Miscellaneous OL – Oil A – Air	Matrix Key SE – Sediment SO – Soll L – Leachate WI – Wipe DW – Drinking Water O – Other	Client Comments				Lab Comments:			

ļ.
ĺ
12
1
1

1	3

- 1	
164	

<b>—</b>	١	•	
	\m	Orl	$\bigcirc$
Test/			CU

2417 Bond Street, University Park, IL 60484 Phone: 708.534.5200 Fax: 708.534.5211	(optional)  Report To  Contact: TERRY D  Company: A m ECFM  Address:  Phone:  Fax:  E-Mall:	1X0N - W00D	Bill To  Contact:	(optional)	Lab Job # Chain of C	f Custody Record #:500136756  Custody Number: 4 of4  ture °C of Cooler:
Client Project #  Ameche wood 316015004  Project Name  TD0+ wo28  Project Location/State BEN+0n , IL 5001389  Sampler Tom McNAII DICK WR	Preservative Parameter	50	B 4L 5T 9L5	Telp merals SPLP merals PH	9 300,45 PES+ /4ERD	Preservative Key  1. HCL, Cool to 4°  2. H2SO4, Cool to 4°  3. HNO3, Cool to 4°  4. NaOH, Cool to 4°  5. NaOH/Zh, Cool to 4°  6. NaHSO4  7. Cool to 4°  8. None  9. Other
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1412 1 2		X X X	X X X X X	X X	SEE PS 1 Notes
Turnaround Time Required (Business Days)  1 Day 2 Days 5 Days 7 Days 10 Days 15 Days  Requested Due Date  Relinquished By Company Date  Relinquished By Company Date  Relinquished By Company Date	Time Receiv	ved By	Company Company Company	Date	A fee may be assessed if samples at the C3 / 17 Time 0850 Time	are retained longer than 1 month)  Lab Courier  Shipped
Matrix Key  WW – Wastewater  W – Water SO – Soil S – Soll L – Leachate SL – Sludge WI – Wipe MS – Miscellaneous DW – Drinking Water OL – Oil O – Other		Page 194		ab Comments:		Hand Delivered 11/15/201

## **Login Sample Receipt Checklist**

Client: AMEC Foster Wheeler E & I, Inc Job Number: 500-136756-1

Login Number: 136756 List Source: TestAmerica Chicago

List Number: 1

Creator: Kelsey, Shawn M

ordator. Rolody, Gridini III		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	(1.1)(2.4)(2.6)(3.8)c
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

4

6

8

10

10

13



THE LEADER IN ENVIRONMENTAL TESTING

## **ANALYTICAL REPORT**

TestAmerica Laboratories, Inc.

TestAmerica Chicago 2417 Bond Street University Park, IL 60484 Tel: (708)534-5200

TestAmerica Job ID: 500-136798-1

Client Project/Site: IDOT - Benton - WO 028

For:

AMEC Foster Wheeler E & I, Inc 4232 Brandywine Drive Suite A Peoria, Illinois 61614

Attn: Mr. Terry Dixon

RILL WhyM

Authorized for release by: 11/16/2017 8:39:31 AM

Richard Wright, Senior Project Manager (708)534-5200

richard.wright@testamericainc.com

..... LINKS .....

Review your project results through

Total Access

**Have a Question?** 



Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

# **Table of Contents**

Cover Page	1
Table of Contents	2
Case Narrative	3
Detection Summary	4
Sample Summary	6
Client Sample Results	7
Definitions	15
QC Association	16
Surrogate Summary	19
QC Sample Results	20
Chronicle	31
Certification Summary	33
Chain of Custody	34
Racaint Chacklists	35

2

4

5

9

11

13

### **Case Narrative**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028 TestAmerica Job ID: 500-136798-1

Job ID: 500-136798-1

Laboratory: TestAmerica Chicago

Narrative

Job Narrative 500-136798-1

### Receipt

The samples were received on 11/4/2017 11:05 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was  $2.0^{\circ}$  C.

### **GC/MS VOA**

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

#### GC/MS Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

#### Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

#### **General Chemistry**

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

### **Organic Prep**

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

4

5

_

7

8

9

1 1

___

10

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-8-2 (0-3)

Lab Sample ID: 500-136798-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Anthracene	0.012	J	0.039	0.0066	mg/Kg		₩	8270D	Total/NA
Benzo[a]anthracene	0.020	J	0.039	0.0053	mg/Kg	1	₩	8270D	Total/NA
Benzo[a]pyrene	0.052		0.039	0.0077	mg/Kg	1	₩	8270D	Total/NA
Benzo[b]fluoranthene	0.055		0.039	0.0086	mg/Kg	1	₩	8270D	Total/NA
Benzo[g,h,i]perylene	0.041		0.039	0.013	mg/Kg	1	₩	8270D	Total/NA
Chrysene	0.019	J	0.039	0.011	mg/Kg	1	₩	8270D	Total/NA
Fluoranthene	0.050		0.039	0.0074	mg/Kg	1	₩	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	0.037	J	0.039	0.010	mg/Kg	1	₩	8270D	Total/NA
2-Methylnaphthalene	0.015	J	0.080	0.0073	mg/Kg	1	₩	8270D	Total/NA
Naphthalene	0.0069	J	0.039	0.0061	mg/Kg	1	₩	8270D	Total/NA
Phenanthrene	0.044		0.039	0.0055	mg/Kg	1	₩	8270D	Total/NA
Pyrene	0.082		0.039	0.0079	mg/Kg	1	₩	8270D	Total/NA
Antimony	0.77	J F1 F2	1.2	0.23	mg/Kg	1		6010B	Total/NA
Arsenic	8.1		0.59	0.20	mg/Kg	1	₩	6010B	Total/NA
Barium	100		0.59	0.067	mg/Kg	1	₩	6010B	Total/NA
Beryllium	0.55		0.24	0.055	mg/Kg	1	ψ	6010B	Total/NA
Cadmium	0.18		0.12	0.021	mg/Kg	1	₩	6010B	Total/NA
Chromium	14		0.59	0.29	mg/Kg	1	₩	6010B	Total/NA
Cobalt	13		0.29	0.077	mg/Kg	1	ψ	6010B	Total/NA
Copper	17	B F1	0.59	0.16	mg/Kg	1	₩	6010B	Total/NA
Iron	15000		12	6.1	mg/Kg	1	₩	6010B	Total/NA
Lead	54		0.29	0.14	mg/Kg	1	ψ	6010B	Total/NA
Manganese	720		0.59	0.085	mg/Kg	1	₩	6010B	Total/NA
Nickel	11		0.59	0.17	mg/Kg	1	₩	6010B	Total/NA
Selenium	0.97	F1	0.59	0.35	mg/Kg	1	₩	6010B	Total/NA
Vanadium	26		0.29	0.069	mg/Kg	1	₩	6010B	Total/NA
Zinc	54	F1	1.2	0.52	mg/Kg	1	₩	6010B	Total/NA
Barium	0.72		0.50	0.050	mg/L	1		6010B	TCLP
Copper	0.021	J	0.025	0.010	mg/L	1		6010B	TCLP
Manganese	0.10		0.025	0.010	mg/L	1		6010B	TCLP
Zinc	0.062	J	0.50	0.020	mg/L	1		6010B	TCLP
Mercury	0.033		0.019	0.0063	mg/Kg	1	₩	7471B	Total/NA
pH	8.3		0.20	0.20		1		9045D	Total/NA

Client Sample ID: 3160-8-1 (0-3)

Lab Sample ID: 500-136798-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	0.020		0.019	0.0084	mg/Kg	1	₩	8260B	Total/NA
Acenaphthylene	0.0055	J	0.038	0.0051	mg/Kg	1	₩	8270D	Total/NA
Anthracene	0.016	J	0.038	0.0064	mg/Kg	1	₩	8270D	Total/NA
Benzo[a]anthracene	0.052		0.038	0.0052	mg/Kg	1		8270D	Total/NA
Benzo[a]pyrene	0.075		0.038	0.0075	mg/Kg	1	₩	8270D	Total/NA
Benzo[b]fluoranthene	0.084		0.038	0.0083	mg/Kg	1	₩	8270D	Total/NA
Benzo[g,h,i]perylene	0.051		0.038	0.012	mg/Kg	1	₩.	8270D	Total/NA
Benzo[k]fluoranthene	0.019	J	0.038	0.011	mg/Kg	1	₩	8270D	Total/NA
Chrysene	0.052		0.038	0.011	mg/Kg	1	₩	8270D	Total/NA
Dibenzofuran	0.047	J	0.19	0.045	mg/Kg	1	₩	8270D	Total/NA
Fluoranthene	0.075		0.038	0.0071	mg/Kg	1	₩	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	0.044		0.038	0.010	mg/Kg	1	₩	8270D	Total/NA
2-Methylnaphthalene	0.12		0.078	0.0071	mg/Kg	1	ψ	8270D	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Chicago

11/16/2017

Page 4 of 35

-

6

8

9

11

12

13

М

# **Detection Summary**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028 TestAmerica Job ID: 500-136798-1

_

Client Sample ID: 3160-8-1 (0-3) (Continued)

Lab Sam	ple ID:	500-136798-2	
---------	---------	--------------	--

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Naphthalene	0.053		0.038	0.0059	mg/Kg		₩	8270D	Total/NA
Phenanthrene	0.15		0.038	0.0054	mg/Kg	1	₩	8270D	Total/NA
Pyrene	0.070		0.038	0.0077	mg/Kg	1	₩	8270D	Total/NA
Antimony	0.21	J	1.1	0.21	mg/Kg	1	₩	6010B	Total/NA
Arsenic	7.9		0.54	0.19	mg/Kg	1	₩	6010B	Total/NA
Barium	91		0.54	0.062	mg/Kg	1	₩	6010B	Total/NA
Beryllium	0.53		0.22	0.051	mg/Kg	1	₩	6010B	Total/NA
Cadmium	0.53		0.11	0.020	mg/Kg	1	₩	6010B	Total/NA
Chromium	14		0.54	0.27	mg/Kg	1	₽	6010B	Total/NA
Cobalt	8.3		0.27	0.071	mg/Kg	1	₩	6010B	Total/NA
Copper	13	В	0.54	0.15	mg/Kg	1	₩	6010B	Total/NA
Iron	15000		11	5.6	mg/Kg	1	₩	6010B	Total/NA
Lead	82		0.27	0.13	mg/Kg	1	₩	6010B	Total/NA
Manganese	440		0.54	0.079	mg/Kg	1	₩	6010B	Total/NA
Nickel	14		0.54	0.16	mg/Kg	1	₩	6010B	Total/NA
Selenium	0.47	J	0.54	0.32	mg/Kg	1	₩	6010B	Total/NA
Vanadium	22		0.27	0.064	mg/Kg	1	₩	6010B	Total/NA
Zinc	71		1.1	0.48	mg/Kg	1	₩	6010B	Total/NA
Barium	0.86		0.50	0.050	mg/L	1		6010B	TCLP
Cadmium	0.0041	J	0.0050	0.0020	mg/L	1		6010B	TCLP
Copper	0.017	J	0.025	0.010	mg/L	1		6010B	TCLP
Iron	0.20	J	0.40	0.20	mg/L	1		6010B	TCLP
Manganese	0.029		0.025	0.010	mg/L	1		6010B	TCLP
Zinc	0.061	J	0.50	0.020	mg/L	1		6010B	TCLP
Mercury	0.045		0.019	0.0063	mg/Kg	1	₩	7471B	Total/NA
pH	8.5		0.20	0.20	SU	1		9045D	Total/NA

This Detection Summary does not include radiochemical test results.

# **Sample Summary**

Solid

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Lab Sample ID 500-136798-1

500-136798-2

Client Sample ID

3160-8-2 (0-3)

3160-8-1 (0-3)

TestAmerica Job ID: 500-136798-1

11/03/17 08:10 11/04/17 11:05

Matrix	Collected Received
Solid	11/03/17 08:00 11/04/17 11:05

4

5

6

8

9

11

12

13

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-8-2 (0-3)

Lab Sample ID: 500-136798-1 Date Collected: 11/03/17 08:00 **Matrix: Solid** Date Received: 11/04/17 11:05 Percent Solids: 80.8

Analyte	Result Qualifie			Unit	D	Prepared	Analyzed	Dil Fac
Acetone	<0.017	0.017	0.0075	mg/Kg	<u> </u>	11/04/17 15:18	11/08/17 11:35	1
Benzene	<0.0017	0.0017	0.00044	mg/Kg	₩	11/04/17 15:18	11/08/17 11:35	1
Bromodichloromethane	<0.0017	0.0017	0.00035	mg/Kg	☆	11/04/17 15:18	11/08/17 11:35	1
Bromoform	<0.0017	0.0017	0.00050	mg/Kg	₩	11/04/17 15:18	11/08/17 11:35	1
Bromomethane	<0.0043	0.0043	0.0016	mg/Kg	₩	11/04/17 15:18	11/08/17 11:35	1
2-Butanone (MEK)	<0.0043	0.0043	0.0019	mg/Kg	₩	11/04/17 15:18	11/08/17 11:35	1
Carbon disulfide	<0.0043	0.0043	0.00090	mg/Kg	☆	11/04/17 15:18	11/08/17 11:35	1
Carbon tetrachloride	<0.0017	0.0017	0.00050	mg/Kg	≎	11/04/17 15:18	11/08/17 11:35	1
Chlorobenzene	<0.0017	0.0017	0.00064	mg/Kg	≎	11/04/17 15:18	11/08/17 11:35	1
Chloroethane	<0.0043	0.0043	0.0013	mg/Kg	₩	11/04/17 15:18	11/08/17 11:35	1
Chloroform	<0.0017	0.0017	0.00060	mg/Kg	₩	11/04/17 15:18	11/08/17 11:35	1
Chloromethane	<0.0043	0.0043	0.0017	mg/Kg	₩	11/04/17 15:18	11/08/17 11:35	1
cis-1,2-Dichloroethene	<0.0017	0.0017	0.00048	mg/Kg	₩	11/04/17 15:18	11/08/17 11:35	1
cis-1,3-Dichloropropene	<0.0017	0.0017	0.00052	mg/Kg	☆	11/04/17 15:18	11/08/17 11:35	1
Dibromochloromethane	<0.0017	0.0017	0.00056	mg/Kg	☆	11/04/17 15:18	11/08/17 11:35	1
1,1-Dichloroethane	<0.0017	0.0017	0.00059	mg/Kg	₩	11/04/17 15:18	11/08/17 11:35	1
1,2-Dichloroethane	<0.0043	0.0043	0.0013	mg/Kg	≎	11/04/17 15:18	11/08/17 11:35	1
1,1-Dichloroethene	<0.0017	0.0017	0.00059	mg/Kg	₩	11/04/17 15:18	11/08/17 11:35	1
1,2-Dichloropropane	<0.0017	0.0017	0.00045	mg/Kg		11/04/17 15:18	11/08/17 11:35	1
1,3-Dichloropropene, Total	<0.0017	0.0017	0.00061	mg/Kg	₩	11/04/17 15:18	11/08/17 11:35	1
Ethylbenzene	<0.0017	0.0017	0.00083	mg/Kg	₩	11/04/17 15:18	11/08/17 11:35	1
2-Hexanone	<0.0043	0.0043	0.0013	mg/Kg		11/04/17 15:18	11/08/17 11:35	1
Methylene Chloride	<0.0043	0.0043	0.0017	mg/Kg	₩	11/04/17 15:18	11/08/17 11:35	1
4-Methyl-2-pentanone (MIBK)	<0.0043	0.0043	0.0013	mg/Kg	₩	11/04/17 15:18	11/08/17 11:35	1
Methyl tert-butyl ether	<0.0017	0.0017	0.00051	mg/Kg	₩.	11/04/17 15:18	11/08/17 11:35	1
Styrene	<0.0017	0.0017	0.00052	mg/Kg	₩	11/04/17 15:18	11/08/17 11:35	1
1,1,2,2-Tetrachloroethane	<0.0017	0.0017	0.00055	mg/Kg	₩	11/04/17 15:18	11/08/17 11:35	1
Tetrachloroethene	<0.0017	0.0017	0.00059	mg/Kg	₩.	11/04/17 15:18	11/08/17 11:35	1
Toluene	<0.0017	0.0017	0.00044	mg/Kg	☆	11/04/17 15:18	11/08/17 11:35	1
trans-1,2-Dichloroethene	<0.0017	0.0017	0.00076	mg/Kg	₩	11/04/17 15:18	11/08/17 11:35	1
trans-1,3-Dichloropropene	<0.0017	0.0017	0.00061	mg/Kg	₩.	11/04/17 15:18	11/08/17 11:35	1
1,1,1-Trichloroethane	<0.0017	0.0017	0.00058		☆	11/04/17 15:18	11/08/17 11:35	1
1,1,2-Trichloroethane	<0.0017	0.0017	0.00074		₩	11/04/17 15:18	11/08/17 11:35	1
Trichloroethene	<0.0017	0.0017	0.00058			11/04/17 15:18	11/08/17 11:35	1
Vinyl acetate	<0.0043	0.0043	0.0015		₩	11/04/17 15:18	11/08/17 11:35	1
Vinyl chloride	<0.0017	0.0017	0.00076		₩	11/04/17 15:18	11/08/17 11:35	1
Xylenes, Total	<0.0035	0.0035	0.00055			11/04/17 15:18	11/08/17 11:35	1
Surrogate	%Recovery Qualifie	er Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	86	75 - 131				11/04/17 15:18	11/08/17 11:35	1
Dibromofluoromethane	104	75 - 126				11/04/17 15:18	11/08/17 11:35	1
1,2-Dichloroethane-d4 (Surr)	107	70 - 134				11/04/17 15:18	11/08/17 11:35	1
Toluene-d8 (Surr)	96	75 - 124				11/04/17 15:18	11/08/17 11:35	1

Method: 8270D - Semivola	tile Organic Compounds (	GC/MS)						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	<0.039	0.039	0.0071	mg/Kg	₽	11/12/17 02:23	11/14/17 17:04	1
Acenaphthylene	<0.039	0.039	0.0052	mg/Kg	☼	11/12/17 02:23	11/14/17 17:04	1
Anthracene	0.012 J	0.039	0.0066	mg/Kg	₩	11/12/17 02:23	11/14/17 17:04	1
Benzo[a]anthracene	0.020 J	0.039	0.0053	mg/Kg	\$	11/12/17 02:23	11/14/17 17:04	1

TestAmerica Chicago

Page 7 of 35 11/16/2017

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Date Received: 11/04/17 11:05

TestAmerica Job ID: 500-136798-1

Lab Sample ID: 500-136798-1

Percent Solids: 80.8

Client Sample ID: 3160-8-2 (0-3) Date Collected: 11/03/17 08:00 **Matrix: Solid** 

Method: 8270D - Semivolatil Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]pyrene	0.052	0.039	0.0077	mg/Kg	<del></del>	11/12/17 02:23	11/14/17 17:04	1
Benzo[b]fluoranthene	0.055	0.039	0.0086	mg/Kg	₩	11/12/17 02:23	11/14/17 17:04	1
Benzo[g,h,i]perylene	0.041	0.039	0.013	mg/Kg	₽	11/12/17 02:23	11/14/17 17:04	1
Benzo[k]fluoranthene	<0.039	0.039	0.012	mg/Kg	₩	11/12/17 02:23	11/14/17 17:04	1
Bis(2-chloroethoxy)methane	<0.20	0.20	0.041	mg/Kg	₩	11/12/17 02:23	11/14/17 17:04	1
Bis(2-chloroethyl)ether	<0.20	0.20	0.060	mg/Kg	₩	11/12/17 02:23	11/14/17 17:04	1
Bis(2-ethylhexyl) phthalate	<0.20	0.20	0.073	mg/Kg	₩	11/12/17 02:23	11/14/17 17:04	1
4-Bromophenyl phenyl ether	<0.20	0.20	0.052	mg/Kg	₩	11/12/17 02:23	11/14/17 17:04	1
Butyl benzyl phthalate	<0.20	0.20	0.076	mg/Kg	₽	11/12/17 02:23	11/14/17 17:04	1
Carbazole	<0.20	0.20	0.099	mg/Kg	₩	11/12/17 02:23	11/14/17 17:04	1
4-Chloroaniline	<0.80	0.80	0.19	mg/Kg	₩	11/12/17 02:23	11/14/17 17:04	1
4-Chloro-3-methylphenol	<0.39	0.39	0.14	mg/Kg	₩	11/12/17 02:23	11/14/17 17:04	1
2-Chloronaphthalene	<0.20	0.20	0.044	mg/Kg	₩	11/12/17 02:23	11/14/17 17:04	1
2-Chlorophenol	<0.20	0.20	0.068	mg/Kg	≎	11/12/17 02:23	11/14/17 17:04	1
4-Chlorophenyl phenyl ether	<0.20	0.20	0.046	mg/Kg		11/12/17 02:23	11/14/17 17:04	1
Chrysene	0.019 J	0.039	0.011	mg/Kg	₩	11/12/17 02:23	11/14/17 17:04	1
Dibenz(a,h)anthracene	<0.039	0.039	0.0077	mg/Kg	₩	11/12/17 02:23	11/14/17 17:04	1
Dibenzofuran	<0.20	0.20	0.047	mg/Kg		11/12/17 02:23	11/14/17 17:04	1
1,2-Dichlorobenzene	<0.20	0.20		mg/Kg	₽		11/14/17 17:04	1
1.3-Dichlorobenzene	<0.20	0.20		mg/Kg	₩		11/14/17 17:04	1
1,4-Dichlorobenzene	<0.20	0.20	0.051		 ф		11/14/17 17:04	
3,3'-Dichlorobenzidine	<0.20	0.20		mg/Kg	₩		11/14/17 17:04	1
2,4-Dichlorophenol	<0.39	0.39		mg/Kg	₩		11/14/17 17:04	1
Diethyl phthalate	<0.20	0.20		mg/Kg			11/14/17 17:04	
2,4-Dimethylphenol	<0.39	0.39		mg/Kg	₩		11/14/17 17:04	1
Dimethyl phthalate	<0.20	0.33		mg/Kg			11/14/17 17:04	1
Di-n-butyl phthalate	<0.20	0.20		mg/Kg	· · · · · · · · · · · · · · · · · · ·		11/14/17 17:04	
4,6-Dinitro-2-methylphenol	<0.80	0.80		mg/Kg	₩		11/14/17 17:04	1
2,4-Dinitrophenol	<0.80	0.80		mg/Kg			11/14/17 17:04	1
2,4-Dinitrotoluene	<0.20	0.20		mg/Kg			11/14/17 17:04	
2,6-Dinitrotoluene	<0.20	0.20		mg/Kg	☼		11/14/17 17:04	1
	<0.20	0.20		mg/Kg	☼		11/14/17 17:04	1
Di-n-octyl phthalate					· · · · · · · · · · · · · · · · · · ·			1
Fluoranthene	0.050	0.039	0.0074		☆		11/14/17 17:04	-
Fluorene	<0.039	0.039	0.0056	0 0			11/14/17 17:04	1
Hexachlorobenzene	<0.080	0.080	0.0092				11/14/17 17:04	1
Hexachlorobutadiene	<0.20	0.20		mg/Kg	** **		11/14/17 17:04	1
Hexachlorocyclopentadiene	<0.80	0.80		mg/Kg		11/12/17 02:23		1
Hexachloroethane	<0.20	0.20		mg/Kg			11/14/17 17:04	
Indeno[1,2,3-cd]pyrene	0.037 J	0.039		mg/Kg			11/14/17 17:04	1
Isophorone	<0.20	0.20		mg/Kg	₩.		11/14/17 17:04	1
2-Methylnaphthalene	0.015 J	0.080	0.0073		<u>.</u> .		11/14/17 17:04	
2-Methylphenol	<0.20	0.20		mg/Kg	₩.		11/14/17 17:04	1
3 & 4 Methylphenol	<0.20	0.20		mg/Kg	₩.		11/14/17 17:04	1
Naphthalene	0.0069 J	0.039	0.0061		<b>.</b>		11/14/17 17:04	1
2-Nitroaniline	<0.20	0.20		mg/Kg	₩		11/14/17 17:04	1
3-Nitroaniline	<0.39	0.39		mg/Kg	☼		11/14/17 17:04	1
4-Nitroaniline	<0.39	0.39		mg/Kg	₩	11/12/17 02:23	11/14/17 17:04	1
Nitrobenzene	<0.039	0.039	0.0099	mg/Kg	₩	11/12/17 02:23	11/14/17 17:04	1
2-Nitrophenol	<0.39	0.39	0.094	mg/Kg	☼	11/12/17 02:23	11/14/17 17:04	1

TestAmerica Chicago

11/16/2017

Page 8 of 35

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-8-2 (0-3)

Date Collected: 11/03/17 08:00

Date Received: 11/04/17 11:05

TestAmerica Job ID: 500-136798-1

Lab Sample ID: 500-136798-1

**Matrix: Solid** 

Percent Solids: 80.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.80		0.80	0.38	mg/Kg	<u></u>	11/12/17 02:23	11/14/17 17:04	1
N-Nitrosodi-n-propylamine	<0.080		0.080	0.049	mg/Kg		11/12/17 02:23	11/14/17 17:04	1
N-Nitrosodiphenylamine	<0.20		0.20	0.047	mg/Kg	☼	11/12/17 02:23	11/14/17 17:04	1
2,2'-oxybis[1-chloropropane]	<0.20		0.20	0.046	mg/Kg	☼	11/12/17 02:23	11/14/17 17:04	1
Pentachlorophenol	<0.80		0.80	0.64	mg/Kg	₽	11/12/17 02:23	11/14/17 17:04	1
Phenanthrene	0.044		0.039	0.0055	mg/Kg	☼	11/12/17 02:23	11/14/17 17:04	1
Phenol	<0.20		0.20	0.088	mg/Kg	☼	11/12/17 02:23	11/14/17 17:04	1
Pyrene	0.082		0.039	0.0079	mg/Kg	☼	11/12/17 02:23	11/14/17 17:04	1
1,2,4-Trichlorobenzene	<0.20		0.20	0.043	mg/Kg	☼	11/12/17 02:23	11/14/17 17:04	1
2,4,5-Trichlorophenol	<0.39		0.39	0.091	mg/Kg	☼	11/12/17 02:23	11/14/17 17:04	1
2,4,6-Trichlorophenol	<0.39		0.39	0.14	mg/Kg		11/12/17 02:23	11/14/17 17:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	87		44 - 121				11/12/17 02:23	11/14/17 17:04	1
2-Fluorophenol	107		46 - 133				11/12/17 02:23	11/14/17 17:04	1
Nitrobenzene-d5	91		41 - 120				11/12/17 02:23	11/14/17 17:04	1
Phenol-d5	109		46 - 125				11/12/17 02:23	11/14/17 17:04	1
Terphenyl-d14	113		35 - 160				11/12/17 02:23	11/14/17 17:04	1
2,4,6-Tribromophenol	75		25 - 139				11/12/17 02:23	11/14/17 17:04	1

Method: 6010B - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.77	J F1 F2	1.2	0.23	mg/Kg	<u> </u>	11/07/17 08:36	11/07/17 15:10	1
Arsenic	8.1		0.59	0.20	mg/Kg	☼	11/07/17 08:36	11/07/17 15:10	1
Barium	100		0.59	0.067	mg/Kg	☼	11/07/17 08:36	11/07/17 15:10	1
Beryllium	0.55		0.24	0.055	mg/Kg		11/07/17 08:36	11/07/17 15:10	1
Cadmium	0.18		0.12	0.021	mg/Kg	☼	11/07/17 08:36	11/07/17 15:10	1
Chromium	14		0.59	0.29	mg/Kg	☼	11/07/17 08:36	11/07/17 15:10	1
Cobalt	13		0.29	0.077	mg/Kg		11/07/17 08:36	11/07/17 15:10	1
Copper	17	B F1	0.59	0.16	mg/Kg	☼	11/07/17 08:36	11/07/17 15:10	1
Iron	15000		12	6.1	mg/Kg	☼	11/07/17 08:36	11/07/17 15:10	1
Lead	54		0.29	0.14	mg/Kg	₽	11/07/17 08:36	11/07/17 15:10	1
Manganese	720		0.59	0.085	mg/Kg	☼	11/07/17 08:36	11/07/17 15:10	1
Nickel	11		0.59	0.17	mg/Kg	☼	11/07/17 08:36	11/07/17 15:10	1
Selenium	0.97	F1	0.59	0.35	mg/Kg	₽	11/07/17 08:36	11/07/17 15:10	1
Silver	<0.29		0.29	0.076	mg/Kg	☼	11/07/17 08:36	11/07/17 15:10	1
Thallium	<0.59		0.59	0.29	mg/Kg	☼	11/07/17 08:36	11/07/17 15:10	1
Vanadium	26		0.29	0.069	mg/Kg	<b>*</b>	11/07/17 08:36	11/07/17 15:10	1
Zinc	54	F1	1.2	0.52	mg/Kg	₩	11/07/17 08:36	11/07/17 15:10	1

Method: 6010B - Met	als (ICP) - TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/10/17 08:30	11/10/17 15:52	1
Barium	0.72		0.50	0.050	mg/L		11/10/17 08:30	11/10/17 15:52	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/10/17 08:30	11/10/17 15:52	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/10/17 08:30	11/10/17 15:52	1
Chromium	<0.025		0.025	0.010	mg/L		11/10/17 08:30	11/10/17 15:52	1
Cobalt	<0.025		0.025	0.010	mg/L		11/10/17 08:30	11/10/17 15:52	1
Copper	0.021	J	0.025	0.010	mg/L		11/10/17 08:30	11/10/17 15:52	1
Iron	<0.40		0.40	0.20	mg/L		11/10/17 08:30	11/10/17 15:52	1

Page 9 of 35

TestAmerica Chicago

11/16/2017

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-8-2 (0-3)

Date Collected: 11/03/17 08:00

Date Received: 11/04/17 11:05

TestAmerica Job ID: 500-136798-1

Percent Solids: 80.8

Lab Sample ID: 500-136798-1 **Matrix: Solid** 

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	<0.0075		0.0075	0.0075	mg/L		11/10/17 08:30	11/10/17 15:52	1
Manganese	0.10		0.025	0.010	mg/L		11/10/17 08:30	11/10/17 15:52	1
Nickel	<0.025		0.025	0.010	mg/L		11/10/17 08:30	11/10/17 15:52	1
Selenium	< 0.050		0.050	0.020	mg/L		11/10/17 08:30	11/10/17 15:52	1
Silver	<0.025		0.025	0.010	mg/L		11/10/17 08:30	11/10/17 15:52	1
Vanadium	<0.025		0.025	0.010	mg/L		11/10/17 08:30	11/10/17 15:52	1
Zinc	0.062	J	0.50	0.020	mg/L		11/10/17 08:30	11/10/17 15:52	1
Method: 6020A - Metals (	ICP/MS) - TCLP								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060		0.0060	0.0060	mg/L		11/10/17 08:30	11/10/17 16:11	1
Thallium -	<0.0020		0.0020	0.0020	mg/L		11/10/17 08:30	11/10/17 16:11	1
- Method: 7470A - TCLP M	ercury - TCLP								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/10/17 15:00	11/13/17 09:33	1
- Method: 7471B - Mercury	(CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.033		0.019	0.0063	mg/Kg	<del></del>	11/08/17 16:15	11/09/17 10:14	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	8.3		0.20	0.20	SU			11/14/17 17:36	

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-8-1 (0-3)

Acenaphthene

**Anthracene** 

Acenaphthylene

Benzo[a]anthracene

Lab Sample ID: 500-136798-2 Date Collected: 11/03/17 08:10 **Matrix: Solid** Date Received: 11/04/17 11:05 Percent Solids: 83.3

Method: 8260B - Volatile O Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	0.020		0.019	0.0084	mg/Kg	<u> </u>	11/04/17 15:18	11/08/17 12:00	1
Benzene	<0.0019		0.0019	0.00049	mg/Kg	₩	11/04/17 15:18	11/08/17 12:00	1
Bromodichloromethane	<0.0019		0.0019	0.00039	mg/Kg	₩	11/04/17 15:18	11/08/17 12:00	1
Bromoform	<0.0019		0.0019	0.00056	mg/Kg	<b>\$</b>	11/04/17 15:18	11/08/17 12:00	1
Bromomethane	<0.0048		0.0048	0.0018	mg/Kg	₩	11/04/17 15:18	11/08/17 12:00	1
2-Butanone (MEK)	<0.0048		0.0048	0.0021	mg/Kg	₩	11/04/17 15:18	11/08/17 12:00	1
Carbon disulfide	<0.0048		0.0048	0.0010	mg/Kg	\$	11/04/17 15:18	11/08/17 12:00	1
Carbon tetrachloride	<0.0019		0.0019	0.00056	mg/Kg	☼	11/04/17 15:18	11/08/17 12:00	1
Chlorobenzene	<0.0019		0.0019	0.00071	mg/Kg	☼	11/04/17 15:18	11/08/17 12:00	1
Chloroethane	<0.0048		0.0048	0.0014	mg/Kg	₽	11/04/17 15:18	11/08/17 12:00	1
Chloroform	<0.0019		0.0019	0.00067	mg/Kg	☼	11/04/17 15:18	11/08/17 12:00	1
Chloromethane	<0.0048		0.0048	0.0019	mg/Kg	☼	11/04/17 15:18	11/08/17 12:00	1
cis-1,2-Dichloroethene	<0.0019		0.0019	0.00054	mg/Kg	≎	11/04/17 15:18	11/08/17 12:00	1
cis-1,3-Dichloropropene	< 0.0019		0.0019	0.00058	mg/Kg	₩	11/04/17 15:18	11/08/17 12:00	1
Dibromochloromethane	< 0.0019		0.0019	0.00063	mg/Kg	☼	11/04/17 15:18	11/08/17 12:00	1
1,1-Dichloroethane	<0.0019		0.0019	0.00066	mg/Kg	ф.	11/04/17 15:18	11/08/17 12:00	1
1,2-Dichloroethane	<0.0048		0.0048	0.0015	mg/Kg	₩	11/04/17 15:18	11/08/17 12:00	1
1,1-Dichloroethene	<0.0019		0.0019	0.00066	mg/Kg	☼	11/04/17 15:18	11/08/17 12:00	1
1,2-Dichloropropane	<0.0019		0.0019	0.00050	mg/Kg		11/04/17 15:18	11/08/17 12:00	1
1,3-Dichloropropene, Total	<0.0019		0.0019	0.00068	mg/Kg	₩	11/04/17 15:18	11/08/17 12:00	1
Ethylbenzene	<0.0019		0.0019	0.00092	mg/Kg	☼	11/04/17 15:18	11/08/17 12:00	1
2-Hexanone	<0.0048		0.0048	0.0015	mg/Kg		11/04/17 15:18	11/08/17 12:00	1
Methylene Chloride	<0.0048		0.0048	0.0019		☼	11/04/17 15:18	11/08/17 12:00	1
4-Methyl-2-pentanone (MIBK)	<0.0048		0.0048	0.0014	0 0	☼	11/04/17 15:18	11/08/17 12:00	1
Methyl tert-butyl ether	<0.0019		0.0019	0.00057	0 0		11/04/17 15:18	11/08/17 12:00	1
Styrene	<0.0019		0.0019	0.00058		≎	11/04/17 15:18	11/08/17 12:00	1
1,1,2,2-Tetrachloroethane	<0.0019		0.0019	0.00062	0 0	≎		11/08/17 12:00	1
Tetrachloroethene	<0.0019		0.0019	0.00066				11/08/17 12:00	1
Toluene	<0.0019		0.0019	0.00049	0 0	₩		11/08/17 12:00	1
trans-1,2-Dichloroethene	<0.0019		0.0019	0.00085	0 0	≎		11/08/17 12:00	1
rans-1,3-Dichloropropene	<0.0019		0.0019	0.00068		 \$		11/08/17 12:00	1
1,1,1-Trichloroethane	<0.0019		0.0019	0.00065		₽		11/08/17 12:00	1
1,1,2-Trichloroethane	<0.0019		0.0019	0.00083		☼		11/08/17 12:00	1
Trichloroethene	<0.0019		0.0019	0.00065				11/08/17 12:00	
Vinyl acetate	<0.0048		0.0048	0.0017		₩		11/08/17 12:00	1
Vinyl chloride	< 0.0019		0.0019	0.00085		₩		11/08/17 12:00	1
Xylenes, Total	<0.0039		0.0039	0.00062				11/08/17 12:00	1
· •	0/5	0	I too to				D	A t	D'' E-
Surrogate	%Recovery	Qualitier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	90		75 - 131					11/08/17 12:00	1
Dibromofluoromethane	108		75 - 126					11/08/17 12:00	1
1,2-Dichloroethane-d4 (Surr)	112		70 - 134					11/08/17 12:00	
Toluene-d8 (Surr)	95		75 - 124				11/04/17 15:18	11/08/17 12:00	1
Method: 8270D - Semivola	_	•	•						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

TestAmerica Chicago

11/16/2017

11/12/17 02:23 11/14/17 17:31

* 11/12/17 02:23 11/14/17 17:31

11/12/17 02:23 11/14/17 17:31

Page 11 of 35

0.038

0.038

0.038

0.038

0.0069 mg/Kg

0.0051 mg/Kg

0.0064 mg/Kg

0.0052 mg/Kg

<0.038

0.0055 J

0.016 J

0.052

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-8-1 (0-3)

Date Collected: 11/03/17 08:10

Date Received: 11/04/17 11:05

4-Nitroaniline

Nitrobenzene

2-Nitrophenol

TestAmerica Job ID: 500-136798-1

Lab Sample ID: 500-136798-2

Matrix: Solid

Percent Solids: 83.3

Method: 8270D - Semivolatil Analyte	•	Qualifier	ŔĹ	MDL	•	D	Prepared	Analyzed	Dil Fac
Benzo[a]pyrene	0.075		0.038	0.0075	mg/Kg	<u></u>	11/12/17 02:23	11/14/17 17:31	1
Benzo[b]fluoranthene	0.084		0.038	0.0083	mg/Kg	☼	11/12/17 02:23	11/14/17 17:31	1
Benzo[g,h,i]perylene	0.051		0.038	0.012	mg/Kg		11/12/17 02:23	11/14/17 17:31	1
Benzo[k]fluoranthene	0.019	J	0.038	0.011	mg/Kg	☼	11/12/17 02:23	11/14/17 17:31	1
Bis(2-chloroethoxy)methane	<0.19		0.19	0.039	mg/Kg	☼	11/12/17 02:23	11/14/17 17:31	1
Bis(2-chloroethyl)ether	<0.19		0.19	0.058	mg/Kg	₽	11/12/17 02:23	11/14/17 17:31	1
Bis(2-ethylhexyl) phthalate	<0.19		0.19	0.070	mg/Kg	☼	11/12/17 02:23	11/14/17 17:31	1
4-Bromophenyl phenyl ether	<0.19		0.19	0.051	mg/Kg	☼	11/12/17 02:23	11/14/17 17:31	1
Butyl benzyl phthalate	<0.19		0.19	0.073	mg/Kg		11/12/17 02:23	11/14/17 17:31	1
Carbazole	<0.19		0.19	0.096	mg/Kg	☼	11/12/17 02:23	11/14/17 17:31	1
4-Chloroaniline	<0.78		0.78		mg/Kg	☼	11/12/17 02:23	11/14/17 17:31	1
4-Chloro-3-methylphenol	<0.38		0.38	0.13	mg/Kg	ф.	11/12/17 02:23	11/14/17 17:31	1
2-Chloronaphthalene	<0.19		0.19	0.043	mg/Kg	☼	11/12/17 02:23	11/14/17 17:31	1
2-Chlorophenol	<0.19		0.19		mg/Kg	₩	11/12/17 02:23	11/14/17 17:31	1
4-Chlorophenyl phenyl ether	<0.19		0.19		mg/Kg		11/12/17 02:23	11/14/17 17:31	1
Chrysene	0.052		0.038	0.011	mg/Kg	☼	11/12/17 02:23	11/14/17 17:31	1
Dibenz(a,h)anthracene	<0.038		0.038	0.0074	mg/Kg	☼	11/12/17 02:23	11/14/17 17:31	1
Dibenzofuran	0.047	J	0.19		mg/Kg	ф.	11/12/17 02:23	11/14/17 17:31	1
1,2-Dichlorobenzene	<0.19		0.19		mg/Kg	☼	11/12/17 02:23	11/14/17 17:31	1
1,3-Dichlorobenzene	<0.19		0.19		mg/Kg	₩	11/12/17 02:23	11/14/17 17:31	1
1,4-Dichlorobenzene	<0.19		0.19		mg/Kg		11/12/17 02:23	11/14/17 17:31	1
3,3'-Dichlorobenzidine	<0.19		0.19		mg/Kg	₩	11/12/17 02:23	11/14/17 17:31	1
2,4-Dichlorophenol	<0.38		0.38	0.091		☼	11/12/17 02:23	11/14/17 17:31	1
Diethyl phthalate	<0.19		0.19		mg/Kg			11/14/17 17:31	
2,4-Dimethylphenol	<0.38		0.38		mg/Kg	☼		11/14/17 17:31	
Dimethyl phthalate	<0.19		0.19	0.050	mg/Kg	☼		11/14/17 17:31	1
Di-n-butyl phthalate	<0.19		0.19	0.059	mg/Kg			11/14/17 17:31	
4,6-Dinitro-2-methylphenol	<0.78		0.78	0.31	mg/Kg	☼		11/14/17 17:31	1
2,4-Dinitrophenol	<0.78		0.78		mg/Kg	☆		11/14/17 17:31	1
2,4-Dinitrotoluene	<0.19		0.19		mg/Kg	ф.		11/14/17 17:31	1
2,6-Dinitrotoluene	<0.19		0.19		mg/Kg	☼		11/14/17 17:31	1
Di-n-octyl phthalate	<0.19		0.19		mg/Kg	☼		11/14/17 17:31	1
Fluoranthene	0.075		0.038	0.0071	mg/Kg			11/14/17 17:31	1
Fluorene	<0.038		0.038	0.0054	0 0	☼		11/14/17 17:31	1
Hexachlorobenzene	<0.078		0.078	0.0089	0 0	₩		11/14/17 17:31	1
Hexachlorobutadiene	<0.19		0.19		mg/Kg			11/14/17 17:31	1
Hexachlorocyclopentadiene	<0.78		0.78		mg/Kg	☆		11/14/17 17:31	1
Hexachloroethane	<0.19		0.19		mg/Kg	☆		11/14/17 17:31	1
Indeno[1,2,3-cd]pyrene	0.044		0.038		mg/Kg			11/14/17 17:31	1
Isophorone	<0.19		0.19		mg/Kg	₩		11/14/17 17:31	
2-Methylnaphthalene	0.12		0.078	0.0071		☆		11/14/17 17:31	1
2-Methylphenol	<0.19		0.19		mg/Kg	· · · · · · · · · · · · · · · · · · ·	11/12/17 02:23		
3 & 4 Methylphenol	<0.19		0.19		mg/Kg	☆		11/14/17 17:31	1
Naphthalene	0.053		0.038	0.0059		₩		11/14/17 17:31	1
2-Nitroaniline	<0.19		0.19		mg/Kg			11/14/17 17:31	
3-Nitroaniline	<0.19		0.19		mg/Kg	₽		11/14/17 17:31	1
- Tata Garinino	-0.50		0.50	0.12	9,1.09	u.	11/12/17 02.20	444444= := 5:	

TestAmerica Chicago

11/16/2017

☼ 11/12/17 02:23 11/14/17 17:31

11/12/17 02:23 11/14/17 17:31

11/12/17 02:23 11/14/17 17:31

Page 12 of 35

0.38

0.038

0.38

0.16 mg/Kg

0.0096 mg/Kg

0.091 mg/Kg

<0.38

<0.038

< 0.38

2

3

5

0

10

11 12

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-8-1 (0-3)

Date Collected: 11/03/17 08:10

Date Received: 11/04/17 11:05

TestAmerica Job ID: 500-136798-1

Lab Sample ID: 500-136798-2

**Matrix: Solid** 

Percent Solids: 83.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.78		0.78	0.37	mg/Kg	<u> </u>	11/12/17 02:23	11/14/17 17:31	1
N-Nitrosodi-n-propylamine	<0.078		0.078	0.047	mg/Kg	₽	11/12/17 02:23	11/14/17 17:31	1
N-Nitrosodiphenylamine	<0.19		0.19	0.045	mg/Kg	☼	11/12/17 02:23	11/14/17 17:31	1
2,2'-oxybis[1-chloropropane]	<0.19		0.19	0.045	mg/Kg	☼	11/12/17 02:23	11/14/17 17:31	1
Pentachlorophenol	<0.78		0.78	0.62	mg/Kg	₽	11/12/17 02:23	11/14/17 17:31	1
Phenanthrene	0.15		0.038	0.0054	mg/Kg	☼	11/12/17 02:23	11/14/17 17:31	1
Phenol	<0.19		0.19	0.086	mg/Kg	☼	11/12/17 02:23	11/14/17 17:31	1
Pyrene	0.070		0.038	0.0077	mg/Kg	₽	11/12/17 02:23	11/14/17 17:31	1
1,2,4-Trichlorobenzene	<0.19		0.19	0.042	mg/Kg	☼	11/12/17 02:23	11/14/17 17:31	1
2,4,5-Trichlorophenol	<0.38		0.38	0.088	mg/Kg	☼	11/12/17 02:23	11/14/17 17:31	1
2,4,6-Trichlorophenol	<0.38		0.38	0.13	mg/Kg	₩	11/12/17 02:23	11/14/17 17:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	89		44 - 121				11/12/17 02:23	11/14/17 17:31	1
2-Fluorophenol	109		46 - 133				11/12/17 02:23	11/14/17 17:31	1
Nitrobenzene-d5	92		41 - 120				11/12/17 02:23	11/14/17 17:31	1
Phenol-d5	119		46 - 125				11/12/17 02:23	11/14/17 17:31	1
Terphenyl-d14	109		35 - 160				11/12/17 02:23	11/14/17 17:31	1
2,4,6-Tribromophenol	81		25 - 139				11/12/17 02:23	11/14/17 17:31	1

Method: 6010B - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.21	J	1.1	0.21	mg/Kg	<u></u>	11/07/17 08:36	11/07/17 15:37	1
Arsenic	7.9		0.54	0.19	mg/Kg	₩	11/07/17 08:36	11/07/17 15:37	1
Barium	91		0.54	0.062	mg/Kg	₩	11/07/17 08:36	11/07/17 15:37	1
Beryllium	0.53		0.22	0.051	mg/Kg	₩.	11/07/17 08:36	11/07/17 15:37	1
Cadmium	0.53		0.11	0.020	mg/Kg	₩	11/07/17 08:36	11/07/17 15:37	1
Chromium	14		0.54	0.27	mg/Kg	₩	11/07/17 08:36	11/07/17 15:37	1
Cobalt	8.3		0.27	0.071	mg/Kg		11/07/17 08:36	11/07/17 15:37	1
Copper	13	В	0.54	0.15	mg/Kg	₩	11/07/17 08:36	11/07/17 15:37	1
Iron	15000		11	5.6	mg/Kg	₩	11/07/17 08:36	11/07/17 15:37	1
Lead	82		0.27	0.13	mg/Kg		11/07/17 08:36	11/07/17 15:37	1
Manganese	440		0.54	0.079	mg/Kg	₩	11/07/17 08:36	11/07/17 15:37	1
Nickel	14		0.54	0.16	mg/Kg	₩	11/07/17 08:36	11/07/17 15:37	1
Selenium	0.47	J	0.54	0.32	mg/Kg	φ.	11/07/17 08:36	11/07/17 15:37	1
Silver	<0.27		0.27	0.070	mg/Kg	₩	11/07/17 08:36	11/07/17 15:37	1
Thallium	<0.54		0.54	0.27	mg/Kg	₩	11/07/17 08:36	11/07/17 15:37	1
Vanadium	22		0.27	0.064	mg/Kg	ф.	11/07/17 08:36	11/07/17 15:37	1
Zinc	71		1.1	0.48	mg/Kg	₩	11/07/17 08:36	11/07/17 15:37	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/10/17 08:30	11/10/17 15:56	1
Barium	0.86		0.50	0.050	mg/L		11/10/17 08:30	11/10/17 15:56	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/10/17 08:30	11/10/17 15:56	1
Cadmium	0.0041	J	0.0050	0.0020	mg/L		11/10/17 08:30	11/10/17 15:56	1
Chromium	<0.025		0.025	0.010	mg/L		11/10/17 08:30	11/10/17 15:56	1
Cobalt	<0.025		0.025	0.010	mg/L		11/10/17 08:30	11/10/17 15:56	1
Copper	0.017	J	0.025	0.010	mg/L		11/10/17 08:30	11/10/17 15:56	1
Iron	0.20	J	0.40	0.20	mg/L		11/10/17 08:30	11/10/17 15:56	1

TestAmerica Chicago

Page 13 of 35

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Client Sample ID: 3160-8-1 (0-3)

Method: 6010B - Metals (ICP) - TCLP (Continued)

Date Collected: 11/03/17 08:10

Date Received: 11/04/17 11:05

TestAmerica Job ID: 500-136798-1

Percent Solids: 83.3

Lab Sample ID: 500-136798-2 **Matrix: Solid** 

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	<0.0075		0.0075	0.0075	mg/L		11/10/17 08:30	11/10/17 15:56	1
Manganese	0.029		0.025	0.010	mg/L		11/10/17 08:30	11/10/17 15:56	1
Nickel	<0.025		0.025	0.010	mg/L		11/10/17 08:30	11/10/17 15:56	1
Selenium	<0.050		0.050	0.020	mg/L		11/10/17 08:30	11/10/17 15:56	1
Silver	<0.025		0.025	0.010	mg/L		11/10/17 08:30	11/10/17 15:56	1
Vanadium	<0.025		0.025	0.010	mg/L		11/10/17 08:30	11/10/17 15:56	1
Zinc	0.061	J	0.50	0.020	mg/L		11/10/17 08:30	11/10/17 15:56	1
- Method: 6020A - Metals (	ICP/MS) - TCLP								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060		0.0060	0.0060	mg/L		11/10/17 08:30	11/10/17 16:15	1
Thallium -	<0.0020		0.0020	0.0020	mg/L		11/10/17 08:30	11/10/17 16:15	1
- Method: 7470A - TCLP M	ercury - TCLP								
Analyte	· · · · · · · · · · · · · · · · · · ·	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/10/17 15:00	11/13/17 09:55	1
- Method: 7471B - Mercury	(CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.045		0.019	0.0063	mg/Kg	<del></del>	11/08/17 16:15	11/09/17 10:16	1
- General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
				0.20				11/14/17 17:36	

# **Definitions/Glossary**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136798-1

# **Qualifiers**

#### **GC/MS Semi VOA**

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

#### **Metals**

Qualifier	Qualifier Description
F1	MS and/or MSD Recovery is outside acceptance limits.
F2	MS/MSD RPD exceeds control limits
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
В	Compound was found in the blank and sample.
F3	Duplicate RPD exceeds the control limit
F5	Duplicate RPD exceeds limit, and one or both sample results are less than 5 times RL. The data are considered valid because the absolute difference is less than the RL.
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.
F4	MS/MSD RPD exceeds control limits due to sample size difference.

# Glossary

**RER** 

**RPD** 

TEF

**TEQ** 

RL

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control

TestAmerica Chicago

Page 15 of 35

2

3

4

6

7

a

10

13

# **QC Association Summary**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136798-1

# **GC/MS VOA**

#### **Prep Batch: 408715**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136798-1	3160-8-2 (0-3)	Total/NA	Solid	5035	
500-136798-2	3160-8-1 (0-3)	Total/NA	Solid	5035	

#### **Analysis Batch: 408942**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136798-1	3160-8-2 (0-3)	Total/NA	Solid	8260B	408715
500-136798-2	3160-8-1 (0-3)	Total/NA	Solid	8260B	408715
MB 500-408942/7	Method Blank	Total/NA	Solid	8260B	
LCS 500-408942/4	Lab Control Sample	Total/NA	Solid	8260B	
LCSD 500-408942/5	Lab Control Sample Dup	Total/NA	Solid	8260B	

# **GC/MS Semi VOA**

#### **Prep Batch: 409543**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136798-1	3160-8-2 (0-3)	Total/NA	Solid	3541	
500-136798-2	3160-8-1 (0-3)	Total/NA	Solid	3541	
MB 500-409543/1-A	Method Blank	Total/NA	Solid	3541	
LCS 500-409543/2-A	Lab Control Sample	Total/NA	Solid	3541	

#### **Analysis Batch: 409648**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 500-409543/1-A	Method Blank	Total/NA	Solid	8270D	409543
LCS 500-409543/2-A	Lab Control Sample	Total/NA	Solid	8270D	409543

# **Analysis Batch: 409849**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136798-1	3160-8-2 (0-3)	Total/NA	Solid	8270D	409543
500-136798-2	3160-8-1 (0-3)	Total/NA	Solid	8270D	409543

#### Metals

# **Prep Batch: 408756**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136798-1	3160-8-2 (0-3)	Total/NA	Solid	3050B	<u> </u>
500-136798-2	3160-8-1 (0-3)	Total/NA	Solid	3050B	
MB 500-408756/1-A	Method Blank	Total/NA	Solid	3050B	
LCS 500-408756/2-A	Lab Control Sample	Total/NA	Solid	3050B	
500-136798-1 MS	3160-8-2 (0-3)	Total/NA	Solid	3050B	
500-136798-1 MSD	3160-8-2 (0-3)	Total/NA	Solid	3050B	
500-136798-1 DU	3160-8-2 (0-3)	Total/NA	Solid	3050B	

# **Analysis Batch: 408957**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136798-1	3160-8-2 (0-3)	Total/NA	Solid	6010B	408756
500-136798-2	3160-8-1 (0-3)	Total/NA	Solid	6010B	408756
MB 500-408756/1-A	Method Blank	Total/NA	Solid	6010B	408756
LCS 500-408756/2-A	Lab Control Sample	Total/NA	Solid	6010B	408756
500-136798-1 MS	3160-8-2 (0-3)	Total/NA	Solid	6010B	408756
500-136798-1 MSD	3160-8-2 (0-3)	Total/NA	Solid	6010B	408756

TestAmerica Chicago

Page 16 of 35

# **QC Association Summary**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136798-1

# **Metals (Continued)**

#### **Analysis Batch: 408957 (Continued)**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136798-1 DU	3160-8-2 (0-3)	Total/NA	Solid	6010B	408756

# **Prep Batch: 409061**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136798-1	3160-8-2 (0-3)	Total/NA	Solid	7471B	
500-136798-2	3160-8-1 (0-3)	Total/NA	Solid	7471B	
MB 500-409061/12-A	Method Blank	Total/NA	Solid	7471B	
LCS 500-409061/13-A	Lab Control Sample	Total/NA	Solid	7471B	

#### **Analysis Batch: 409233**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136798-1	3160-8-2 (0-3)	Total/NA	Solid	7471B	409061
500-136798-2	3160-8-1 (0-3)	Total/NA	Solid	7471B	409061
MB 500-409061/12-A	Method Blank	Total/NA	Solid	7471B	409061
LCS 500-409061/13-A	Lab Control Sample	Total/NA	Solid	7471B	409061

#### Leach Batch: 409249

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136798-1	3160-8-2 (0-3)	TCLP	Solid	1311	
500-136798-2	3160-8-1 (0-3)	TCLP	Solid	1311	
LB 500-409249/1-B	Method Blank	TCLP	Solid	1311	
LB 500-409249/1-E	Method Blank	TCLP	Solid	1311	

# **Prep Batch: 409364**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136798-1	3160-8-2 (0-3)	TCLP	Solid	3010A	409249
500-136798-2	3160-8-1 (0-3)	TCLP	Solid	3010A	409249
LB 500-409249/1-B	Method Blank	TCLP	Solid	3010A	409249
LCS 500-409364/2-A	Lab Control Sample	Total/NA	Solid	3010A	

# **Prep Batch: 409460**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136798-1	3160-8-2 (0-3)	TCLP	Solid	7470A	409249
500-136798-2	3160-8-1 (0-3)	TCLP	Solid	7470A	409249
LB 500-409249/1-E	Method Blank	TCLP	Solid	7470A	409249
MB 500-409460/12-A	Method Blank	Total/NA	Solid	7470A	
LCS 500-409460/13-A	Lab Control Sample	Total/NA	Solid	7470A	

# **Analysis Batch: 409503**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136798-1	3160-8-2 (0-3)	TCLP	Solid	6010B	409364
500-136798-2	3160-8-1 (0-3)	TCLP	Solid	6010B	409364
LB 500-409249/1-B	Method Blank	TCLP	Solid	6010B	409364
LCS 500-409364/2-A	Lab Control Sample	Total/NA	Solid	6010B	409364

# Analysis Batch: 409646

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136798-1	3160-8-2 (0-3)	TCLP	Solid	6020A	409364
500-136798-2	3160-8-1 (0-3)	TCLP	Solid	6020A	409364
LB 500-409249/1-B	Method Blank	TCLP	Solid	6020A	409364
LCS 500-409364/2-A	Lab Control Sample	Total/NA	Solid	6020A	409364

TestAmerica Chicago

3

4

5

6

8

9

11

12

4 4

1.4

# **QC Association Summary**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136798-1

# Analysis Batch: 409718

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136798-1	3160-8-2 (0-3)	TCLP	Solid	7470A	409460
500-136798-2	3160-8-1 (0-3)	TCLP	Solid	7470A	409460
LB 500-409249/1-E	Method Blank	TCLP	Solid	7470A	409460
MB 500-409460/12-A	Method Blank	Total/NA	Solid	7470A	409460
LCS 500-409460/13-A	Lab Control Sample	Total/NA	Solid	7470A	409460

# **General Chemistry**

# Analysis Batch: 408654

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136798-1	3160-8-2 (0-3)	Total/NA	Solid	Moisture	
500-136798-2	3160-8-1 (0-3)	Total/NA	Solid	Moisture	

#### Analysis Batch: 409880

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-136798-1	3160-8-2 (0-3)	Total/NA	Solid	9045D	
500-136798-2	3160-8-1 (0-3)	Total/NA	Solid	9045D	

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Solid Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		BFB	DBFM	12DCE	TOL
Lab Sample ID	Client Sample ID	(75-131)	(75-126)	(70-134)	(75-124)
500-136798-1	3160-8-2 (0-3)	86	104	107	96
500-136798-2	3160-8-1 (0-3)	90	108	112	95
LCS 500-408942/4	Lab Control Sample	85	100	104	97
LCSD 500-408942/5	Lab Control Sample Dup	90	96	92	110
MB 500-408942/7	Method Blank	88	100	100	96
Surrogate Legend					

Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane

12DCE = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Solid Prep Type: Total/NA

_		Percent Surrogate Recovery (Acceptance Limits)						
		FBP	2FP	NBZ	PHL	TPH	TBP	
Lab Sample ID	Client Sample ID	(44-121)	(46-133)	(41-120)	(46-125)	(35-160)	(25-139)	
500-136798-1	3160-8-2 (0-3)	87	107	91	109	113	75	
500-136798-2	3160-8-1 (0-3)	89	109	92	119	109	81	
LCS 500-409543/2-A	Lab Control Sample	88	86	90	89	83	77	
MB 500-409543/1-A	Method Blank	83	93	92	83	78	57	

#### Surrogate Legend

FBP = 2-Fluorobiphenyl

2FP = 2-Fluorophenol

NBZ = Nitrobenzene-d5

PHL = Phenol-d5

TPH = Terphenyl-d14

TBP = 2,4,6-Tribromophenol

Page 19 of 35

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 500-408942/7 Client Sample ID: Method Blank **Matrix: Solid Prep Type: Total/NA** 

**Analysis Batch: 408942** 

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	<0.020		0.020	0.0087				11/08/17 11:07	1
Benzene	<0.0020		0.0020	0.00051	mg/Kg			11/08/17 11:07	1
Bromodichloromethane	<0.0020		0.0020	0.00041	mg/Kg			11/08/17 11:07	1
Bromoform	<0.0020		0.0020	0.00058	mg/Kg			11/08/17 11:07	1
Bromomethane	<0.0050		0.0050	0.0019	mg/Kg			11/08/17 11:07	1
2-Butanone (MEK)	<0.0050		0.0050	0.0022	mg/Kg			11/08/17 11:07	1
Carbon disulfide	<0.0050		0.0050	0.0010	mg/Kg			11/08/17 11:07	1
Carbon tetrachloride	<0.0020		0.0020	0.00058	mg/Kg			11/08/17 11:07	1
Chlorobenzene	<0.0020		0.0020	0.00074	mg/Kg			11/08/17 11:07	1
Chloroethane	<0.0050		0.0050	0.0015	mg/Kg			11/08/17 11:07	1
Chloroform	<0.0020		0.0020	0.00069	mg/Kg			11/08/17 11:07	1
Chloromethane	<0.0050		0.0050	0.0020	mg/Kg			11/08/17 11:07	1
cis-1,2-Dichloroethene	<0.0020		0.0020	0.00056	mg/Kg			11/08/17 11:07	1
cis-1,3-Dichloropropene	<0.0020		0.0020	0.00060	mg/Kg			11/08/17 11:07	1
Dibromochloromethane	<0.0020		0.0020	0.00065	mg/Kg			11/08/17 11:07	1
1,1-Dichloroethane	<0.0020		0.0020	0.00069	mg/Kg			11/08/17 11:07	1
1,2-Dichloroethane	<0.0050		0.0050	0.0016	mg/Kg			11/08/17 11:07	1
1,1-Dichloroethene	<0.0020		0.0020	0.00069	mg/Kg			11/08/17 11:07	1
1,2-Dichloropropane	<0.0020		0.0020	0.00052	mg/Kg			11/08/17 11:07	1
1,3-Dichloropropene, Total	<0.0020		0.0020	0.00070	mg/Kg			11/08/17 11:07	1
Ethylbenzene	<0.0020		0.0020	0.00096	mg/Kg			11/08/17 11:07	1
2-Hexanone	<0.0050		0.0050	0.0016				11/08/17 11:07	1
Methylene Chloride	< 0.0050		0.0050	0.0020	mg/Kg			11/08/17 11:07	1
4-Methyl-2-pentanone (MIBK)	< 0.0050		0.0050	0.0015	mg/Kg			11/08/17 11:07	1
Methyl tert-butyl ether	<0.0020		0.0020	0.00059				11/08/17 11:07	1
Styrene	<0.0020		0.0020	0.00060				11/08/17 11:07	1
1,1,2,2-Tetrachloroethane	<0.0020		0.0020	0.00064				11/08/17 11:07	1
Tetrachloroethene	<0.0020		0.0020	0.00068	mg/Kg			11/08/17 11:07	1
Toluene	<0.0020		0.0020	0.00051	mg/Kg			11/08/17 11:07	1
trans-1,2-Dichloroethene	<0.0020		0.0020	0.00089				11/08/17 11:07	1
trans-1,3-Dichloropropene	<0.0020		0.0020	0.00070	mg/Kg			11/08/17 11:07	1
1,1,1-Trichloroethane	<0.0020		0.0020	0.00067				11/08/17 11:07	1
1,1,2-Trichloroethane	<0.0020		0.0020	0.00086				11/08/17 11:07	1
Trichloroethene	<0.0020		0.0020	0.00068				11/08/17 11:07	1
Vinyl acetate	<0.0050		0.0050	0.0017				11/08/17 11:07	1
Vinyl chloride	<0.0020		0.0020	0.00089				11/08/17 11:07	1
Xylenes, Total	<0.0040		0.0040	0.00064				11/08/17 11:07	1

	MB	МВ				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	88		75 - 131		11/08/17 11:07	1
Dibromofluoromethane	100		75 - 126		11/08/17 11:07	1
1,2-Dichloroethane-d4 (Surr)	100		70 - 134		11/08/17 11:07	1
Toluene-d8 (Surr)	96		75 - 124		11/08/17 11:07	1

TestAmerica Chicago

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

# Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 500-408942/4

**Matrix: Solid** 

Analysis Batch: 408942

**Client Sample ID: Lab Control Sample Prep Type: Total/NA** 

	Spike	LCS	LCS		%Rec.
Analyte	Added	Result	Qualifier Unit	D %Rec	Limits
Acetone	0.0500	0.0590	mg/Kg		40 - 150
Benzene	0.0500	0.0491	mg/Kg	98	70 - 125
Bromodichloromethane	0.0500	0.0524	mg/Kg	105	67 - 129
Bromoform	0.0500	0.0557	mg/Kg	111	68 - 136
Bromomethane	0.0500	0.0463	mg/Kg	93	70 - 130
2-Butanone (MEK)	0.0500	0.0438	mg/Kg	88	47 - 138
Carbon disulfide	0.0500	0.0483	mg/Kg	97	70 - 129
Carbon tetrachloride	0.0500	0.0573	mg/Kg	115	75 - 125
Chlorobenzene	0.0500	0.0496	mg/Kg	99	50 - 150
Chloroethane	0.0500	0.0473	mg/Kg	95	75 - 125
Chloroform	0.0500	0.0525	mg/Kg	105	57 ₋ 135
Chloromethane	0.0500	0.0402	mg/Kg	80	70 - 125
cis-1,2-Dichloroethene	0.0500	0.0500	mg/Kg	100	70 - 125
cis-1,3-Dichloropropene	0.0500	0.0495	mg/Kg	99	70 - 125
Dibromochloromethane	0.0500	0.0547	mg/Kg	109	69 - 125
1,1-Dichloroethane	0.0500	0.0499	mg/Kg	100	70 - 125
1,2-Dichloroethane	0.0500	0.0586	mg/Kg	117	70 - 130
1,1-Dichloroethene	0.0500	0.0527	mg/Kg	105	70 - 120
1,2-Dichloropropane	0.0500	0.0494	mg/Kg	99	70 - 125
Ethylbenzene	0.0500	0.0480	mg/Kg	96	61 - 136
2-Hexanone	0.0500	0.0384	mg/Kg	77	48 - 146
Methylene Chloride	0.0500	0.0468	mg/Kg	94	70 - 126
4-Methyl-2-pentanone (MIBK)	0.0500	0.0382	mg/Kg	76	50 - 148
Methyl tert-butyl ether	0.0500	0.0543	mg/Kg	109	50 - 140
Styrene	0.0500	0.0503	mg/Kg	101	70 - 125
1,1,2,2-Tetrachloroethane	0.0500	0.0464	mg/Kg	93	70 - 122
Tetrachloroethene	0.0500	0.0511	mg/Kg	102	70 - 124
Toluene	0.0500	0.0479	mg/Kg	96	70 - 125
trans-1,2-Dichloroethene	0.0500	0.0500	mg/Kg	100	70 - 125
trans-1,3-Dichloropropene	0.0500	0.0516	mg/Kg	103	70 - 125
1,1,1-Trichloroethane	0.0500	0.0557	mg/Kg	111	70 - 128
1,1,2-Trichloroethane	0.0500	0.0511	mg/Kg	102	70 - 125
Trichloroethene	0.0500	0.0506	mg/Kg	101	70 - 125
Vinyl acetate	0.0500	0.0518	mg/Kg	104	40 - 153
Vinyl chloride	0.0500	0.0425	mg/Kg	85	70 - 125
Xylenes, Total	0.100	0.0998	mg/Kg	100	53 - 147

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	85		75 - 131
Dibromofluoromethane	100		75 - 126
1,2-Dichloroethane-d4 (Surr)	104		70 - 134
Toluene-d8 (Surr)	97		75 - 124

TestAmerica Chicago

11/16/2017

Page 21 of 35

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

4

# Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 500-408942/5

**Matrix: Solid** 

Analysis Batch: 408942

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Analyte         Added         Result         Qualifier         Unit         D         %Rec         Limits         RPD         Limit           Acetonne         0.0500         0.05497         mg/Kg         99         40.150         13         30           Benzene         0.0500         0.05497         mg/Kg         101         70.125         13         30           Bromodiciloromethane         0.0500         0.0437         mg/Kg         107         68.136         43         30           Bromomethane         0.0500         0.0430         mg/Kg         107         70.130         18         30           2-Butanone (MEK)         0.0500         0.0400         mg/Kg         80         47 - 138         9         30           Carbon disulfide         0.0500         0.0516         mg/Kg         80         47 - 129         12         30           Carbon disulfide         0.0500         0.0516         mg/Kg         80         57 - 125         10         30           Carbon disulfide         0.0500         0.0516         mg/Kg         86         50 - 150         14         30           Chlorobenzere         0.0500         0.0521         mg/Kg         10	<b>,</b>	Spike	LCSD	LCSD				%Rec.		RPD
Benzene         0.0500         0.0504         mg/Kg         101         70.125         3         30           Bromodichloromethane         0.0500         0.0497         mg/Kg         99         67.129         5         30           Bromoform         0.0500         0.0537         mg/Kg         107         70.130         18         30           2-Butanone (MEK)         0.0500         0.0400         mg/Kg         86         70.129         3         30           2-Butanone (MEK)         0.0500         0.0430         mg/Kg         86         70.125         10         30           Carbon disulfide         0.0500         0.0430         mg/Kg         86         70.125         10         30           Chlorobenzene         0.0500         0.0430         mg/Kg         86         50.150         14         30           Chlororoffane         0.0500         0.0430         mg/Kg         98         75.125         10         30           Chlororomethane         0.0500         0.0501         mg/Kg         88         70.125         9         30           cis-1.3-Dichloropropene         0.0500         0.0511         mg/Kg         88         70.125         10	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Bromodichloromethane         0.0500         0.0497         mg/Kg         99         67-129         5         30           Bromoform         0.0500         0.05837         mg/Kg         177         70-130         4         30           Bromomethane         0.0500         0.0388         mg/Kg         77         70-130         30           2-Butanone (MEK)         0.0500         0.0400         mg/Kg         80         47-138         9         30           Carbon disulfide         0.0500         0.0501         mg/Kg         86         70-129         12         30           Chlorochane         0.0500         0.0501         mg/Kg         86         50-150         14         30           Chlorochane         0.0500         0.0430         mg/Kg         86         50-150         14         30           Chlorochane         0.0500         0.0501         mg/Kg         100         75-125         2         30           Chlorochane         0.0500         0.0501         mg/Kg         88         70-125         9         30           Chlorochane         0.0500         0.0501         mg/Kg         100         70-125         9         30           <	Acetone	0.0500	0.0497		mg/Kg		99	40 - 150	17	30
Bromoform         0.0500         0.0537         mg/Kg         107         68.136         4         30           Bromomethane         0.0500         0.0385         mg/Kg         37         70.130         18         30           Salbatone (MEK)         0.0500         0.0400         mg/Kg         86         47.138         9         30           Carbon disulfide         0.0500         0.0430         mg/Kg         103         75.125         10         30           Carbon tetrachloride         0.0500         0.0430         mg/Kg         103         75.125         10         30           Chlorochane         0.0500         0.0462         mg/Kg         103         75.125         2         30           Chlorochane         0.0500         0.0462         mg/Kg         100         75.125         2         30           Chlorochane         0.0500         0.0431         mg/Kg         100         70.125         12         30           Chlorochane         0.0500         0.0501         mg/Kg         100         70.125         10         30           cis-1,2-Dichlorochane         0.0500         0.0501         mg/Kg         109         70.125         12         3	Benzene	0.0500	0.0504		mg/Kg		101	70 - 125	3	30
Bromomethane         0,0500         0,0385         mg/Kg         77         70 - 130         18         30           2-Butanone (MEK)         0,0500         0,0400         mg/Kg         80         47 - 138         9         30           Carbon Isulfide         0,0500         0,0430         mg/Kg         86         70 - 129         12         30           Chlorobenzene         0,0500         0,0516         mg/Kg         103         75 - 125         10         30           Chlorobenzene         0,0500         0,0430         mg/Kg         92         75 - 125         2         30           Chloroform         0,0500         0,0501         mg/Kg         100         57 - 135         5         30           Chloromethane         0,0500         0,0501         mg/Kg         100         70 - 125         2         30           Chloromethane         0,0500         0,0501         mg/Kg         80         70 - 125         0         30           cis-1,3-Dichloropropene         0,0500         0,0517         mg/Kg         103         69 - 125         12         30           Librichloropropene         0,0500         0,0442         mg/Kg         18         70 - 125         <	Bromodichloromethane	0.0500	0.0497		mg/Kg		99	67 - 129	5	30
2-Butanone (MEK)         0.0500         0.0400         mg/Kg         80         47 - 138         9         30           Carbon disulfide         0.0500         0.0430         mg/Kg         86         70 - 129         12         30           Carbon tetrachloride         0.0500         0.0516         mg/Kg         103         75 - 125         10         30           Chloroebrane         0.0500         0.0430         mg/Kg         86         50 - 150         14         30           Chloroethane         0.0500         0.0462         mg/Kg         92         75 - 125         2         30           Chloroethane         0.0500         0.0462         mg/Kg         100         57 - 135         5         30           Chloromethane         0.0500         0.0439         mg/Kg         88         70 - 125         0         30           Cis-1,2-Dichloroptene         0.0500         0.0501         mg/Kg         100         70 - 125         0         30           cis-1,3-Dichloroptene         0.0500         0.0517         mg/Kg         109         70 - 125         10         30           Dibromochloromethane         0.0500         0.0501         mg/Kg         109         70 -	Bromoform	0.0500	0.0537		mg/Kg		107	68 - 136	4	30
Carbon disulfide         0.0500         0.0430         mg/Kg         86         70 - 129         12         30           Carbon tetrachloride         0.0500         0.0516         mg/Kg         103         75 - 125         10         30           Chlorocetrace         0.0500         0.0430         mg/Kg         86         50 - 150         14         30           Chlorocethane         0.0500         0.0462         mg/Kg         92         75 - 125         2         30           Chlorocethane         0.0500         0.0501         mg/Kg         100         57 - 135         5         30           Chloromethane         0.0500         0.0501         mg/Kg         100         70 - 125         0         30           cis-1,2-Dichlorocethene         0.0500         0.0501         mg/Kg         100         70 - 125         10         30           cis-1,3-Dichlorocethane         0.0500         0.0517         mg/Kg         103         69 - 125         6         30           Dibromochloromethane         0.0500         0.0517         mg/Kg         88         70 - 125         12         30           1,1-Dichlorocethane         0.0500         0.0522         mg/Kg         104	Bromomethane	0.0500	0.0385		mg/Kg		77	70 - 130	18	30
Carbon tetrachloride         0.0500         0.0516         mg/Kg         103         75-125         10         30           Chlorobenzene         0.0500         0.0430         mg/Kg         86         50-150         14         30           Chloroethane         0.0500         0.0462         mg/Kg         92         75-125         2         30           Chloroform         0.0500         0.0501         mg/Kg         180         57-125         9         30           Chloromethane         0.0500         0.0439         mg/Kg         180         70-125         9         30           cis-1,2-Dichloroethene         0.0500         0.0511         mg/Kg         100         70-125         0         30           cis-1,3-Dichloropropene         0.0500         0.0517         mg/Kg         103         69-125         6         30           Dibromochloromethane         0.0500         0.0517         mg/Kg         88         70-125         12         30           1,1-Dichloroethane         0.0500         0.0442         mg/Kg         88         70-125         12         30           1,1-Dichloroethane         0.0500         0.0522         mg/Kg         101         70-130	2-Butanone (MEK)	0.0500	0.0400		mg/Kg		80	47 - 138	9	30
Chlorobenzene         0.0500         0.0430         mg/kg         86         50.150         14         30           Chloroethane         0.0500         0.0462         mg/kg         92         75.125         2         30           Chloroform         0.0500         0.0501         mg/kg         100         57.135         5         30           Chloromethane         0.0500         0.0439         mg/kg         188         70.125         9         30           cis-1,2-Dichloroethane         0.0500         0.0501         mg/kg         190         70.125         10         30           Dibromochloromethane         0.0500         0.0517         mg/kg         103         69-125         10         30           1,1-Dichloroethane         0.0500         0.0517         mg/kg         103         69-125         12         12         10         30           1,2-Dichloroethane         0.0500         0.0502         mg/kg         104         70-125         12         30           1,2-Dichloroethane         0.0500         0.0502         mg/kg         101         70-125         12         30           1,2-Dichloroethane         0.0500         0.0501         0.0511 <th< td=""><td>Carbon disulfide</td><td>0.0500</td><td>0.0430</td><td></td><td>mg/Kg</td><td></td><td>86</td><td>70 - 129</td><td>12</td><td>30</td></th<>	Carbon disulfide	0.0500	0.0430		mg/Kg		86	70 - 129	12	30
Chloroethane         0.0500         0.0462         mg/Kg         92         75-125         2         30           Chloroform         0.0500         0.0501         mg/Kg         100         57-135         5         30           Chloromethane         0.0500         0.0439         mg/Kg         100         57-125         9         30           cis-1,2-Dichloroethene         0.0500         0.0501         mg/Kg         100         70-125         0         30           cis-1,3-Dichloroptopene         0.0500         0.0546         mg/Kg         109         70-125         10         30           Dibromochloromethane         0.0500         0.0517         mg/Kg         103         69-125         6         30           1,1-Dichloroethane         0.0500         0.0442         mg/Kg         103         69-125         12         30           1,1-Dichloroethane         0.0500         0.0505         mg/Kg         101         70-125         12         30           1,1-Dichloroethane         0.0500         0.0505         mg/Kg         101         70-126         3         30           1,2-Dichloroethane         0.0500         0.0501         mg/Kg         90         61-136	Carbon tetrachloride	0.0500	0.0516		mg/Kg		103	75 - 125	10	30
Chloroform         0.0500         0.0501         mg/Kg         100         57 - 135         5         30           Chloromethane         0.0500         0.0439         mg/Kg         88         70 - 125         9         30           cis-1,2-Dichloroethane         0.0500         0.0501         mg/Kg         100         70 - 125         10         30           Dibromochloromethane         0.0500         0.0517         mg/Kg         103         69 - 125         6         30           1,1-Dichloroethane         0.0500         0.0517         mg/Kg         88         70 - 125         12         30           1,2-Dichloroethane         0.0500         0.0522         mg/Kg         104         70 - 130         12         30           1,2-Dichloroethane         0.0500         0.0502         mg/Kg         104         70 - 120         4         30         1,2-Dichloroethane         0.0500         0.0501         mg/Kg         104         70 - 125         3         30         30           1,2-Dichloroethane         0.0500         0.0501         mg/Kg         104         70 - 125         3         30         13         30         4         4         70 - 126         9         30	Chlorobenzene	0.0500	0.0430		mg/Kg		86	50 - 150	14	30
Chloromethane         0.0500         0.0439         mg/Kg         88         70 - 125         9         30           cis-1,2-Dichloroethene         0.0500         0.0501         mg/Kg         100         70 - 125         0         30           cis-1,3-Dichloroethene         0.0500         0.0546         mg/Kg         109         70 - 125         10         30           Dibromochloromethane         0.0500         0.0517         mg/Kg         103         69 - 125         16         30           1,1-Dichloroethane         0.0500         0.0522         mg/Kg         104         70 - 130         12         30           1,2-Dichloroethane         0.0500         0.0505         mg/Kg         101         70 - 125         12         30           1,1-Dichloroethane         0.0500         0.0505         mg/Kg         101         70 - 120         4         30           1,1-Dichloroethane         0.0500         0.0505         mg/Kg         101         70 - 125         3         30           1,1-Dichloroethane         0.0500         0.0501         mg/Kg         101         70 - 125         3         30           Ethylberosene         0.0500         0.0374         mg/Kg         80 <td>Chloroethane</td> <td>0.0500</td> <td>0.0462</td> <td></td> <td>mg/Kg</td> <td></td> <td>92</td> <td>75 - 125</td> <td>2</td> <td>30</td>	Chloroethane	0.0500	0.0462		mg/Kg		92	75 - 125	2	30
cis-1,2-Dichloroethene         0.0500         0.0501         mg/kg         100         70 - 125         0         30           cis-1,3-Dichloropropene         0.0500         0.0546         mg/kg         109         70 - 125         10         30           Dibromochloromethane         0.0500         0.0517         mg/kg         103         69 - 125         6         30           1,1-Dichloroethane         0.0500         0.0442         mg/kg         88         70 - 125         12         30           1,2-Dichloroethane         0.0500         0.0552         mg/kg         104         70 - 130         12         30           1,1-Dichloroethane         0.0500         0.0505         mg/kg         101         70 - 125         30         11         70 - 120         4         30           1,2-Dichloropropane         0.0500         0.0501         mg/kg         102         70 - 125         3         30           Ethylbenzene         0.0500         0.0501         mg/kg         90         61 - 136         7         30           2-Hexanone         0.0500         0.0374         mg/kg         86         70 - 126         9         30           Wethylene Chloride         0.0500	Chloroform	0.0500	0.0501		mg/Kg		100	57 ₋ 135	5	30
cis-1,3-Dichloropropene         0.0500         0.0546         mg/Kg         109         70 - 125         10         30           Dibromochloromethane         0.0500         0.0517         mg/Kg         103         69 - 125         6         30           1,1-Dichloroethane         0.0500         0.0442         mg/Kg         88         70 - 125         12         30           1,2-Dichloroethane         0.0500         0.0552         mg/Kg         104         70 - 130         12         30           1,1-Dichloroethene         0.0500         0.05505         mg/Kg         101         70 - 125         3         30           Ethylbenzene         0.0500         0.0511         mg/Kg         90         61 - 136         7         30           2-Hexanone         0.0500         0.0374         mg/Kg         75         48 - 146         3         30           Methylene Chloride         0.0500         0.0429         mg/Kg         86         70 - 126         9         30           Methylere Chloride         0.0500         0.0414         mg/Kg         83         50 - 148         8         30           Methyl tert-butyl ether         0.0500         0.0414         mg/Kg         80	Chloromethane	0.0500	0.0439		mg/Kg		88	70 - 125	9	30
Dibromochloromethane         0.0500         0.0517         mg/Kg         103         69 - 125         6         30           1,1-Dichloroethane         0.0500         0.0442         mg/Kg         88         70 - 125         12         30           1,2-Dichloroethane         0.0500         0.0522         mg/Kg         104         70 - 130         12         30           1,1-Dichloroethane         0.0500         0.0505         mg/Kg         101         70 - 120         4         30           1,2-Dichloroptopane         0.0500         0.0501         mg/Kg         102         70 - 125         3         30           Ethylbenzene         0.0500         0.0449         mg/Kg         90         61 - 136         7         30           2-Hexanone         0.0500         0.0449         mg/Kg         75         48 - 146         3         30           Methylene Chloride         0.0500         0.0429         mg/Kg         86         70 - 126         9         30           4-Methyl-2-pentanone (MIBK)         0.0500         0.0414         mg/Kg         83         50 - 148         8         30           Styrene         0.0500         0.0500         0.0500         mg/Kg	cis-1,2-Dichloroethene	0.0500	0.0501		mg/Kg		100	70 - 125	0	30
1,1-Dichloroethane       0.0500       0.0442       mg/kg       88       70 - 125       12       30         1,2-Dichloroethane       0.0500       0.0502       mg/kg       104       70 - 130       12       30         1,1-Dichloroethane       0.0500       0.0505       mg/kg       101       70 - 125       3       30         1,2-Dichloropropane       0.0500       0.0511       mg/kg       90       61 - 136       7       30         2-Hexanone       0.0500       0.0449       mg/kg       90       61 - 136       7       30       30         Methylene Chloride       0.0500       0.0429       mg/kg       86       70 - 126       9       30         4-Methyl-2-pentanone (MIBK)       0.0500       0.0414       mg/kg       83       50 - 148       8       30         Methyl tert-butyl ether       0.0500       0.0400       mg/kg       80       50 - 140       30       30         Styrene       0.0500       0.0506       mg/kg       93       70 - 125       1       30         Tetrachloroethane       0.0500       0.0526       mg/kg       101       70 - 125       15       30         Toluene       0.0500	cis-1,3-Dichloropropene	0.0500	0.0546		mg/Kg		109	70 - 125	10	30
1,2-Dichloroethane       0.0500       0.0522       mg/Kg       104       70 - 130       12       30         1,1-Dichloroethene       0.0500       0.0505       mg/Kg       101       70 - 120       4       30         1,2-Dichloropropane       0.0500       0.0511       mg/Kg       102       70 - 125       3       30         Ethylbenzene       0.0500       0.0449       mg/Kg       90       61 - 136       7       30         2-Hexanone       0.0500       0.0374       mg/Kg       86       70 - 126       9       30         Methylene Chloride       0.0500       0.0429       mg/Kg       86       70 - 126       9       30         4-Methyl-2-pentanone (MIBK)       0.0500       0.0414       mg/Kg       83       50 - 148       8       30         Methyl tert-butyl ether       0.0500       0.0400       mg/Kg       80       50 - 148       8       30         Styrene       0.0500       0.0506       mg/Kg       80       50 - 140       30       30         Tetrachloroethane       0.0500       0.0506       mg/Kg       101       70 - 125       1       30         Trans-1,2-Dichloroethane       0.0500       0.0558 </td <td>Dibromochloromethane</td> <td>0.0500</td> <td>0.0517</td> <td></td> <td>mg/Kg</td> <td></td> <td>103</td> <td>69 - 125</td> <td>6</td> <td>30</td>	Dibromochloromethane	0.0500	0.0517		mg/Kg		103	69 - 125	6	30
1,1-Dichloroethene       0.0500       0.0505       mg/Kg       101       70 - 120       4       30         1,2-Dichloropropane       0.0500       0.0511       mg/Kg       102       70 - 125       3       30         Ethylbenzene       0.0500       0.0449       mg/Kg       90       61 - 136       7       30         2-Hexanone       0.0500       0.0374       mg/Kg       86       70 - 126       9       30         Methylene Chloride       0.0500       0.0429       mg/Kg       86       70 - 126       9       30         4-Methyl-2-pentanone (MIBK)       0.0500       0.0414       mg/Kg       83       50 - 148       8       30         Methyl tert-butyl ether       0.0500       0.0400       mg/Kg       80       50 - 140       30       30         Styrene       0.0500       0.0506       mg/Kg       101       70 - 125       1       30         Styrene       0.0500       0.0506       mg/Kg       93       70 - 122       0       30         Toluene       0.0500       0.0506       mg/Kg       105       70 - 125       15       30         trans-1,2-Dichloroethene       0.0500       0.0508       mg/Kg </td <td>1,1-Dichloroethane</td> <td>0.0500</td> <td>0.0442</td> <td></td> <td>mg/Kg</td> <td></td> <td>88</td> <td>70 - 125</td> <td>12</td> <td>30</td>	1,1-Dichloroethane	0.0500	0.0442		mg/Kg		88	70 - 125	12	30
1,2-Dichloropropane       0.0500       0.0511       mg/kg       102       70 - 125       3       30         Ethylbenzene       0.0500       0.0449       mg/kg       90       61 - 136       7       30         2-Hexanone       0.0500       0.0374       mg/kg       75       48 - 146       3       30         Methylene Chloride       0.0500       0.0429       mg/kg       86       70 - 126       9       30         4-Methyl-2-pentanone (MIBK)       0.0500       0.0414       mg/kg       83       50 - 148       8       30         Methyl tert-butyl ether       0.0500       0.0400       mg/kg       80       50 - 140       30       30         Styrene       0.0500       0.0506       mg/kg       101       70 - 125       1       30         Styrene       0.0500       0.0506       mg/kg       101       70 - 125       1       30         1,1,2,2-Tetrachloroethane       0.0500       0.0526       mg/kg       105       70 - 122       0       30         Toluene       0.0500       0.0558       mg/kg       112       70 - 125       15       30         trans-1,2-Dichloroethene       0.0500       0.0504 <td< td=""><td>1,2-Dichloroethane</td><td>0.0500</td><td>0.0522</td><td></td><td>mg/Kg</td><td></td><td>104</td><td>70 - 130</td><td>12</td><td>30</td></td<>	1,2-Dichloroethane	0.0500	0.0522		mg/Kg		104	70 - 130	12	30
Ethylbenzene         0.0500         0.0449         mg/Kg         90         61-136         7         30           2-Hexanone         0.0500         0.0374         mg/Kg         75         48-146         3         30           Methylene Chloride         0.0500         0.0429         mg/Kg         86         70-126         9         30           4-Methyl-2-pentanone (MIBK)         0.0500         0.0414         mg/Kg         83         50-148         8         30           Methyl tert-butyl ether         0.0500         0.0400         mg/Kg         80         50-140         30         30           Styrene         0.0500         0.0506         mg/Kg         101         70-125         1         30           1,1,2,2-Tetrachloroethane         0.0500         0.0465         mg/Kg         93         70-122         0         30           Tetrachloroethene         0.0500         0.0526         mg/Kg         105         70-124         3         30           Toluene         0.0500         0.0558         mg/Kg         112         70-125         15         30           trans-1,2-Dichloroethene         0.0500         0.0548         mg/Kg         110         70-125	1,1-Dichloroethene	0.0500	0.0505		mg/Kg		101	70 - 120	4	30
2-Hexanone       0.0500       0.0374       mg/kg       75       48 - 146       3       30         Methylene Chloride       0.0500       0.0429       mg/kg       86       70 - 126       9       30         4-Methyl-2-pentanone (MIBK)       0.0500       0.0414       mg/kg       83       50 - 148       8       30         Methyl tert-butyl ether       0.0500       0.0400       mg/kg       80       50 - 140       30       30         Styrene       0.0500       0.0506       mg/kg       101       70 - 125       1       30         1,1,2,2-Tetrachloroethane       0.0500       0.0465       mg/kg       93       70 - 122       0       30         Tetrachloroethene       0.0500       0.0526       mg/kg       105       70 - 124       3       30         Toluene       0.0500       0.0558       mg/kg       112       70 - 125       15       30         trans-1,2-Dichloroethene       0.0500       0.0548       mg/kg       110       70 - 125       23       30         trans-1,3-Dichloroethane       0.0500       0.0548       mg/kg       101       70 - 125       6       30         1,1,2-Trichloroethane       0.0500	1,2-Dichloropropane	0.0500	0.0511		mg/Kg		102	70 - 125	3	30
Methylene Chloride         0.0500         0.0429         mg/Kg         86         70 - 126         9         30           4-Methyl-2-pentanone (MIBK)         0.0500         0.0414         mg/Kg         83         50 - 148         8         30           Methyl tert-butyl ether         0.0500         0.0400         mg/Kg         80         50 - 140         30         30           Styrene         0.0500         0.0506         mg/Kg         101         70 - 125         1         30           1,1,2,2-Tetrachloroethane         0.0500         0.0465         mg/Kg         93         70 - 122         0         30           Tetrachloroethane         0.0500         0.0556         mg/Kg         105         70 - 122         0         30           Toluene         0.0500         0.0558         mg/Kg         112         70 - 125         15         30           trans-1,2-Dichloroethene         0.0500         0.0397         mg/Kg         79         70 - 125         23         30           trans-1,3-Dichloropropene         0.0500         0.0548         mg/Kg         110         70 - 125         6         30           1,1,1-Trichloroethane         0.0500         0.0500         0.0500	Ethylbenzene	0.0500	0.0449		mg/Kg		90	61 - 136	7	30
4-Methyl-2-pentanone (MIBK)       0.0500       0.0414       mg/Kg       83       50 - 148       8       30         Methyl tert-butyl ether       0.0500       0.0400       mg/Kg       80       50 - 140       30       30         Styrene       0.0500       0.0506       mg/Kg       101       70 - 125       1       30         1,1,2,2-Tetrachloroethane       0.0500       0.0465       mg/Kg       93       70 - 122       0       30         Tetrachloroethane       0.0500       0.0526       mg/Kg       105       70 - 124       3       30         Toluene       0.0500       0.0558       mg/Kg       112       70 - 125       15       30         trans-1,2-Dichloroethane       0.0500       0.0504       mg/Kg       110       70 - 125       23       30         trans-1,3-Dichloropropene       0.0500       0.0548       mg/Kg       110       70 - 125       6       30         1,1,1-Trichloroethane       0.0500       0.0500       mg/Kg       101       70 - 125       7       30         Trichloroethane       0.0500       0.0550       mg/Kg       10       70 - 125       7       30         Trichloroethane       0.0500	2-Hexanone	0.0500	0.0374		mg/Kg		75	48 - 146	3	30
Methyl tert-butyl ether         0.0500         0.0400         mg/Kg         80         50 - 140         30         30           Styrene         0.0500         0.0506         mg/Kg         101         70 - 125         1         30           1,1,2,2-Tetrachloroethane         0.0500         0.0465         mg/Kg         93         70 - 122         0         30           Tetrachloroethane         0.0500         0.0526         mg/Kg         105         70 - 124         3         30           Toluene         0.0500         0.0558         mg/Kg         112         70 - 125         15         30           trans-1,2-Dichloroethene         0.0500         0.0397         mg/Kg         79         70 - 125         23         30           trans-1,3-Dichloropropene         0.0500         0.0548         mg/Kg         110         70 - 125         6         30           1,1,1-Trichloroethane         0.0500         0.0504         mg/Kg         101         70 - 125         7         30           Trichloroethane         0.0500         0.0550         mg/Kg         110         70 - 125         7         30           Trichloroethane         0.0500         0.0513         mg/Kg         103	Methylene Chloride	0.0500	0.0429		mg/Kg		86	70 - 126	9	30
Styrene         0.0500         0.0506         mg/Kg         101         70 - 125         1         30           1,1,2,2-Tetrachloroethane         0.0500         0.0465         mg/Kg         93         70 - 122         0         30           Tetrachloroethene         0.0500         0.0526         mg/Kg         105         70 - 124         3         30           Toluene         0.0500         0.0558         mg/Kg         112         70 - 125         15         30           trans-1,2-Dichloroethene         0.0500         0.0397         mg/Kg         79         70 - 125         23         30           trans-1,3-Dichloropropene         0.0500         0.0548         mg/Kg         110         70 - 125         6         30           1,1,1-Trichloroethane         0.0500         0.0504         mg/Kg         101         70 - 128         10         30           1,1,2-Trichloroethane         0.0500         0.0550         mg/Kg         110         70 - 125         7         30           Trichloroethene         0.0500         0.0513         mg/Kg         103         70 - 125         1         30           Vinyl acetate         0.0500         0.0429         mg/Kg         93	4-Methyl-2-pentanone (MIBK)	0.0500	0.0414		mg/Kg		83	50 - 148	8	30
1,1,2,2-Tetrachloroethane       0.0500       0.0465       mg/Kg       93       70-122       0       30         Tetrachloroethene       0.0500       0.0526       mg/Kg       105       70-124       3       30         Toluene       0.0500       0.0558       mg/Kg       112       70-125       15       30         trans-1,2-Dichloroethene       0.0500       0.0397       mg/Kg       79       70-125       23       30         trans-1,3-Dichloropropene       0.0500       0.0548       mg/Kg       110       70-125       6       30         1,1,1-Trichloroethane       0.0500       0.0504       mg/Kg       101       70-125       7       30         1,1,2-Trichloroethane       0.0500       0.0550       mg/Kg       110       70-125       7       30         Trichloroethene       0.0500       0.0513       mg/Kg       103       70-125       1       30         Vinyl acetate       0.0500       0.0429       mg/Kg       86       40-153       19       30         Vinyl chloride       0.0500       0.0467       mg/Kg       93       70-125       9       30	Methyl tert-butyl ether	0.0500	0.0400		mg/Kg		80	50 - 140	30	30
Tetrachloroethene         0.0500         0.0526         mg/Kg         105         70-124         3         30           Toluene         0.0500         0.0558         mg/Kg         112         70-125         15         30           trans-1,2-Dichloroethene         0.0500         0.0397         mg/Kg         79         70-125         23         30           trans-1,3-Dichloropropene         0.0500         0.0548         mg/Kg         110         70-125         6         30           1,1,1-Trichloroethane         0.0500         0.0504         mg/Kg         101         70-128         10         30           1,1,2-Trichloroethane         0.0500         0.0550         mg/Kg         110         70-125         7         30           Trichloroethene         0.0500         0.0513         mg/Kg         103         70-125         1         30           Vinyl acetate         0.0500         0.0429         mg/Kg         86         40-153         19         30           Vinyl chloride         0.0500         0.0467         mg/Kg         93         70-125         9         30	Styrene	0.0500	0.0506		mg/Kg		101	70 - 125	1	30
Toluene         0.0500         0.0558         mg/Kg         112         70-125         15         30           trans-1,2-Dichloroethene         0.0500         0.0397         mg/Kg         79         70-125         23         30           trans-1,3-Dichloropropene         0.0500         0.0548         mg/Kg         110         70-125         6         30           1,1,1-Trichloroethane         0.0500         0.0504         mg/Kg         101         70-128         10         30           1,1,2-Trichloroethane         0.0500         0.0550         mg/Kg         110         70-125         7         30           Trichloroethene         0.0500         0.0513         mg/Kg         103         70-125         1         30           Vinyl acetate         0.0500         0.0429         mg/Kg         86         40-153         19         30           Vinyl chloride         0.0500         0.0467         mg/Kg         93         70-125         9         30	1,1,2,2-Tetrachloroethane	0.0500	0.0465		mg/Kg		93	70 - 122	0	30
trans-1,2-Dichloroethene         0.0500         0.0397         mg/Kg         79         70 - 125         23         30           trans-1,3-Dichloropropene         0.0500         0.0548         mg/Kg         110         70 - 125         6         30           1,1,1-Trichloroethane         0.0500         0.0504         mg/Kg         101         70 - 128         10         30           1,1,2-Trichloroethane         0.0500         0.0550         mg/Kg         110         70 - 125         7         30           Trichloroethene         0.0500         0.0513         mg/Kg         103         70 - 125         1         30           Vinyl acetate         0.0500         0.0429         mg/Kg         86         40 - 153         19         30           Vinyl chloride         0.0500         0.0467         mg/Kg         93         70 - 125         9         30	Tetrachloroethene	0.0500	0.0526		mg/Kg		105	70 - 124	3	30
trans-1,3-Dichloropropene         0.0500         0.0548         mg/Kg         110         70 - 125         6         30           1,1,1-Trichloroethane         0.0500         0.0504         mg/Kg         101         70 - 128         10         30           1,1,2-Trichloroethane         0.0500         0.0550         mg/Kg         110         70 - 125         7         30           Trichloroethene         0.0500         0.0513         mg/Kg         103         70 - 125         1         30           Vinyl acetate         0.0500         0.0429         mg/Kg         86         40 - 153         19         30           Vinyl chloride         0.0500         0.0467         mg/Kg         93         70 - 125         9         30	Toluene	0.0500	0.0558		mg/Kg		112	70 - 125	15	30
1,1,1-Trichloroethane       0.0500       0.0504       mg/Kg       101       70 - 128       10       30         1,1,2-Trichloroethane       0.0500       0.0550       mg/Kg       110       70 - 125       7       30         Trichloroethene       0.0500       0.0513       mg/Kg       103       70 - 125       1       30         Vinyl acetate       0.0500       0.0429       mg/Kg       86       40 - 153       19       30         Vinyl chloride       0.0500       0.0467       mg/Kg       93       70 - 125       9       30	trans-1,2-Dichloroethene	0.0500	0.0397		mg/Kg		79	70 - 125	23	30
1,1,2-Trichloroethane       0.0500       0.0550       mg/Kg       110       70 - 125       7       30         Trichloroethene       0.0500       0.0513       mg/Kg       103       70 - 125       1       30         Vinyl acetate       0.0500       0.0429       mg/Kg       86       40 - 153       19       30         Vinyl chloride       0.0500       0.0467       mg/Kg       93       70 - 125       9       30	trans-1,3-Dichloropropene	0.0500	0.0548		mg/Kg		110	70 - 125	6	30
Trichloroethene         0.0500         0.0513         mg/Kg         103         70 - 125         1         30           Vinyl acetate         0.0500         0.0429         mg/Kg         86         40 - 153         19         30           Vinyl chloride         0.0500         0.0467         mg/Kg         93         70 - 125         9         30	1,1,1-Trichloroethane	0.0500	0.0504		mg/Kg		101	70 - 128	10	30
Vinyl acetate         0.0500         0.0429         mg/Kg         86         40 - 153         19         30           Vinyl chloride         0.0500         0.0467         mg/Kg         93         70 - 125         9         30	1,1,2-Trichloroethane	0.0500	0.0550		mg/Kg		110	70 - 125	7	30
Vinyl chloride 0.0500 0.0467 mg/Kg 93 70 - 125 9 30	Trichloroethene	0.0500	0.0513		mg/Kg		103	70 - 125	1	30
,	Vinyl acetate	0.0500	0.0429		mg/Kg		86	40 - 153	19	30
Xylenes, Total 0.100 0.0997 mg/Kg 100 53 - 147 0 30	Vinyl chloride	0.0500	0.0467		mg/Kg		93	70 - 125	9	30
	Xylenes, Total	0.100	0.0997		mg/Kg		100	53 - 147	0	30

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	90		75 - 131
Dibromofluoromethane	96		75 - 126
1,2-Dichloroethane-d4 (Surr)	92		70 - 134
Toluene-d8 (Surr)	110		75 124

TestAmerica Chicago

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

# Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 500-409543/1-A

**Matrix: Solid** 

Client Sample ID: Method Blank
Prep Type: Total/NA
<b>Prep Batch: 409543</b>

Analysis Batch: 409648	MP	MB						Prep Batch:	<del>-</del> 103343
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	<0.033		0.033		mg/Kg			11/13/17 13:10	1
Acenaphthylene	<0.033		0.033	0.0044				11/13/17 13:10	1
Anthracene	<0.033		0.033	0.0056				11/13/17 13:10	1
	<0.033		0.033	0.0036	0 0			11/13/17 13:10	
Benzo[a]anthracene									
Benzo[a]pyrene	< 0.033		0.033	0.0064				11/13/17 13:10	1
Benzo[b]fluoranthene	<0.033		0.033	0.0072				11/13/17 13:10	1
Benzo[g,h,i]perylene	<0.033		0.033	0.011	mg/Kg			11/13/17 13:10	1
Benzo[k]fluoranthene	<0.033		0.033	0.0098				11/13/17 13:10	1
Bis(2-chloroethoxy)methane	<0.17		0.17		mg/Kg			11/13/17 13:10	1
Bis(2-chloroethyl)ether	<0.17		0.17		mg/Kg			11/13/17 13:10	1
Bis(2-ethylhexyl) phthalate	<0.17		0.17		mg/Kg			11/13/17 13:10	1
4-Bromophenyl phenyl ether	<0.17		0.17	0.044	mg/Kg			11/13/17 13:10	1
Butyl benzyl phthalate	<0.17		0.17	0.063	mg/Kg		11/12/17 02:23	11/13/17 13:10	1
Carbazole	<0.17		0.17	0.083	mg/Kg		11/12/17 02:23	11/13/17 13:10	1
4-Chloroaniline	<0.67		0.67	0.16	mg/Kg		11/12/17 02:23	11/13/17 13:10	1
4-Chloro-3-methylphenol	<0.33		0.33	0.11	mg/Kg		11/12/17 02:23	11/13/17 13:10	1
2-Chloronaphthalene	<0.17		0.17	0.037	mg/Kg		11/12/17 02:23	11/13/17 13:10	1
2-Chlorophenol	<0.17		0.17	0.057	mg/Kg		11/12/17 02:23	11/13/17 13:10	1
4-Chlorophenyl phenyl ether	<0.17		0.17	0.039	mg/Kg		11/12/17 02:23	11/13/17 13:10	1
Chrysene	< 0.033		0.033	0.0091	mg/Kg		11/12/17 02:23	11/13/17 13:10	1
Dibenz(a,h)anthracene	< 0.033		0.033	0.0064	mg/Kg		11/12/17 02:23	11/13/17 13:10	1
Dibenzofuran	<0.17		0.17		mg/Kg		11/12/17 02:23	11/13/17 13:10	1
1,2-Dichlorobenzene	<0.17		0.17		mg/Kg		11/12/17 02:23	11/13/17 13:10	1
1,3-Dichlorobenzene	<0.17		0.17		mg/Kg		11/12/17 02:23	11/13/17 13:10	1
1,4-Dichlorobenzene	<0.17		0.17		mg/Kg		11/12/17 02:23	11/13/17 13:10	1
3,3'-Dichlorobenzidine	<0.17		0.17		mg/Kg		11/12/17 02:23	11/13/17 13:10	1
2,4-Dichlorophenol	<0.33		0.33		mg/Kg			11/13/17 13:10	1
Diethyl phthalate	<0.17		0.17		mg/Kg			11/13/17 13:10	1
2,4-Dimethylphenol	<0.33		0.33		mg/Kg			11/13/17 13:10	1
Dimethyl phthalate	<0.17		0.17		mg/Kg			11/13/17 13:10	1
Di-n-butyl phthalate	<0.17		0.17		mg/Kg			11/13/17 13:10	1
4,6-Dinitro-2-methylphenol	<0.67		0.67		mg/Kg			11/13/17 13:10	1
2,4-Dinitrophenol	<0.67		0.67		mg/Kg			11/13/17 13:10	1
2,4-Dinitrotoluene	<0.17		0.17		mg/Kg			11/13/17 13:10	
2,6-Dinitrotoluene	<0.17		0.17		mg/Kg			11/13/17 13:10	1
Di-n-octyl phthalate	<0.17		0.17		mg/Kg			11/13/17 13:10	1
Fluoranthene				0.0062				11/13/17 13:10	
	<0.033		0.033						1
Fluorene	< 0.033		0.033	0.0047	0 0			11/13/17 13:10	1
Hexachlorobenzene	< 0.067		0.067	0.0077				11/13/17 13:10	1
Hexachlorobutadiene	<0.17		0.17		mg/Kg			11/13/17 13:10	1
Hexachlorocyclopentadiene	<0.67		0.67		mg/Kg			11/13/17 13:10	1
Hexachloroethane	<0.17		0.17		mg/Kg			11/13/17 13:10	
Indeno[1,2,3-cd]pyrene	<0.033		0.033	0.0086				11/13/17 13:10	1
Isophorone	<0.17		0.17		mg/Kg			11/13/17 13:10	1
2-Methylnaphthalene	<0.067		0.067	0.0061				11/13/17 13:10	1
2-Methylphenol	<0.17		0.17		mg/Kg			11/13/17 13:10	1
3 & 4 Methylphenol	<0.17		0.17		mg/Kg		11/12/17 02:23	11/13/17 13:10	1
Naphthalene	< 0.033		0.033	0.0051	mg/Kg		11/12/17 02:23	11/13/17 13:10	1

TestAmerica Chicago

Page 23 of 35

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

2

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 500-409543/1-A

**Matrix: Solid** 

Analysis Batch: 409648

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 409543

	MR	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Nitroaniline	<0.17		0.17	0.045	mg/Kg		11/12/17 02:23	11/13/17 13:10	1
3-Nitroaniline	<0.33		0.33	0.10	mg/Kg		11/12/17 02:23	11/13/17 13:10	1
4-Nitroaniline	<0.33		0.33	0.14	mg/Kg		11/12/17 02:23	11/13/17 13:10	1
Nitrobenzene	<0.033		0.033	0.0083	mg/Kg		11/12/17 02:23	11/13/17 13:10	1
2-Nitrophenol	<0.33		0.33	0.079	mg/Kg		11/12/17 02:23	11/13/17 13:10	1
4-Nitrophenol	<0.67		0.67	0.32	mg/Kg		11/12/17 02:23	11/13/17 13:10	1
N-Nitrosodi-n-propylamine	<0.067		0.067	0.041	mg/Kg		11/12/17 02:23	11/13/17 13:10	1
N-Nitrosodiphenylamine	<0.17		0.17	0.039	mg/Kg		11/12/17 02:23	11/13/17 13:10	1
2,2'-oxybis[1-chloropropane]	<0.17		0.17	0.039	mg/Kg		11/12/17 02:23	11/13/17 13:10	1
Pentachlorophenol	<0.67		0.67	0.53	mg/Kg		11/12/17 02:23	11/13/17 13:10	1
Phenanthrene	<0.033		0.033	0.0046	mg/Kg		11/12/17 02:23	11/13/17 13:10	1
Phenol	<0.17		0.17	0.074	mg/Kg		11/12/17 02:23	11/13/17 13:10	1
Pyrene	<0.033		0.033	0.0066	mg/Kg		11/12/17 02:23	11/13/17 13:10	1
1,2,4-Trichlorobenzene	<0.17		0.17	0.036	mg/Kg		11/12/17 02:23	11/13/17 13:10	1
2,4,5-Trichlorophenol	<0.33		0.33	0.076	mg/Kg		11/12/17 02:23	11/13/17 13:10	1
2,4,6-Trichlorophenol	<0.33		0.33	0.11	mg/Kg		11/12/17 02:23	11/13/17 13:10	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	83	44 - 121	11/12/17 02:23	11/13/17 13:10	1
2-Fluorophenol	93	46 - 133	11/12/17 02:23	11/13/17 13:10	1
Nitrobenzene-d5	92	41 - 120	11/12/17 02:23	11/13/17 13:10	1
Phenol-d5	83	46 - 125	11/12/17 02:23	11/13/17 13:10	1
Terphenyl-d14	78	35 - 160	11/12/17 02:23	11/13/17 13:10	1
2,4,6-Tribromophenol	57	25 - 139	11/12/17 02:23	11/13/17 13:10	1

Lab Sample ID: LCS 500-409543/2-A

**Matrix: Solid** 

Analysis Batch: 409648

Client Sample ID: Lab Control Sample
Prep Type: Total/NA

Analysis Batch: 409648	Spike	LCS	LCS				Prep Batch: 409543 %Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Acenaphthene	1.33	1.01		mg/Kg		76	58 - 110
Acenaphthylene	1.33	1.03		mg/Kg		77	60 - 110
Anthracene	1.33	1.08		mg/Kg		81	63 - 110
Benzo[a]anthracene	1.33	0.987		mg/Kg		74	63 - 110
Benzo[a]pyrene	1.33	1.09		mg/Kg		82	61 - 120
Benzo[b]fluoranthene	1.33	1.12		mg/Kg		84	62 - 120
Benzo[g,h,i]perylene	1.33	1.11		mg/Kg		83	64 - 120
Benzo[k]fluoranthene	1.33	1.05		mg/Kg		78	65 - 120
Bis(2-chloroethoxy)methane	1.33	1.11		mg/Kg		83	60 - 112
Bis(2-chloroethyl)ether	1.33	1.01		mg/Kg		76	55 - 111
Bis(2-ethylhexyl) phthalate	1.33	1.02		mg/Kg		77	63 - 118
4-Bromophenyl phenyl ether	1.33	1.04		mg/Kg		78	63 - 110
Butyl benzyl phthalate	1.33	1.04		mg/Kg		78	61 - 116
Carbazole	1.33	1.11		mg/Kg		83	59 - 158
4-Chloroaniline	1.33	1.00		mg/Kg		75	30 - 150
4-Chloro-3-methylphenol	1.33	1.12		mg/Kg		84	61 - 114
2-Chloronaphthalene	1.33	1.06		mg/Kg		79	64 - 110
2-Chlorophenol	1.33	0.999		mg/Kg		75	64 - 110

TestAmerica Chicago

11/16/2017

Page 24 of 35

2

3

5

7

ŏ

10

12

13

Ш

Spike

Added

LCS LCS

Result Qualifier

mg/Kg

84

83

80

84

81

78

92

71

97

91

76

85

89

80

109

59

81

80

77

78

82

57 - 127

55 - 110

62 - 110

60 - 120

57 - 120

63 - 11057 - 124

40 - 122

60 - 160

60 - 116

60 - 120

30 - 122

56 - 118

65 - 112

40 - 124

13 - 112

62 - 120

56 - 122

63 - 120 62 - 110

50 - 120

57 - 120

TestAmerica Job ID: 500-136798-1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Lab Sample ID: LCS 500-409543/2-A

**Matrix: Solid** 

Indeno[1,2,3-cd]pyrene

2-Methylnaphthalene

3 & 4 Methylphenol

2-Methylphenol

Naphthalene

2-Nitroaniline

3-Nitroaniline

4-Nitroaniline

Nitrobenzene

2-Nitrophenol

4-Nitrophenol

N-Nitrosodi-n-propylamine

2,2'-oxybis[1-chloropropane]

N-Nitrosodiphenylamine

1,2,4-Trichlorobenzene

2,4,5-Trichlorophenol

2,4,6-Trichlorophenol

Pentachlorophenol

Phenanthrene

Phenol

Pyrene

Isophorone

Analyte

**Analysis Batch: 409648** 

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Client Sample ID: Lab Control Sample

Olle	iit Jai	lible in	. Lab Control Sample
			Prep Type: Total/NA
			<b>Prep Batch: 409543</b>
			%Rec.
Jnit	D	%Rec	Limits

Allalyte	Added	itesuit (	Qualifier Offic	D /orcec	Lillits	
4-Chlorophenyl phenyl ether	1.33	1.07	mg/Kg	80	63 - 110	
Chrysene	1.33	0.987	mg/Kg	74	63 - 120	
Dibenz(a,h)anthracene	1.33	1.14	mg/Kg	86	64 - 119	
Dibenzofuran	1.33	1.06	mg/Kg	79	64 - 110	
1,2-Dichlorobenzene	1.33	0.967	mg/Kg	73	62 - 110	
1,3-Dichlorobenzene	1.33	0.936	mg/Kg	70	60 - 110	
1,4-Dichlorobenzene	1.33	0.968	mg/Kg	73	61 - 110	
3,3'-Dichlorobenzidine	1.33	0.966	mg/Kg	72	49 - 112	
2,4-Dichlorophenol	1.33	1.04	mg/Kg	78	58 - 120	
Diethyl phthalate	1.33	1.10	mg/Kg	82	58 - 120	
2,4-Dimethylphenol	1.33	1.06	mg/Kg	80	60 - 110	
Dimethyl phthalate	1.33	1.08	mg/Kg	81	64 - 110	
Di-n-butyl phthalate	1.33	1.11	mg/Kg	83	65 - 120	
4,6-Dinitro-2-methylphenol	2.67	0.855	mg/Kg	32	10 - 110	
2,4-Dinitrophenol	2.67	<0.67	mg/Kg	20	10 - 100	
2,4-Dinitrotoluene	1.33	1.08	mg/Kg	81	62 - 117	
2,6-Dinitrotoluene	1.33	1.11	mg/Kg	83	67 - 120	
Di-n-octyl phthalate	1.33	0.966	mg/Kg	72	63 - 119	
Fluoranthene	1.33	1.11	mg/Kg	83	62 - 120	
Fluorene	1.33	1.07	mg/Kg	80	62 - 120	
Hexachlorobenzene	1.33	1.05	mg/Kg	79	55 - 117	
Hexachlorobutadiene	1.33	1.01	mg/Kg	76	56 - 120	
Hexachlorocyclopentadiene	1.33	0.914	mg/Kg	69	10 - 106	
Hexachloroethane	1.33	0.997	mg/Kg	75	61 - 110	

1.33

1.33

1.33

1.33

1.33

1.33

1.33

1.33

1.33

1.33

1.33

2.67

1.33

1.33

1.33

2.67

1.33

1.33

1.33

1.33

1.33

1.33

1.12

1.10

1.07

1.12

1.08

1.05

1.23

1.30

1.21

1.02

2.25

1.19

1.07

1.45

1.58

1.08

1.07

1.03

1.04

1.09

1.05

0.946

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

# Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 500-409543/2-A

**Matrix: Solid** 

**Analysis Batch: 409648** 

**Client Sample ID: Lab Control Sample** Prep Type: Total/NA

**Prep Batch: 409543** 

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	88		44 - 121
2-Fluorophenol	86		46 - 133
Nitrobenzene-d5	90		41 - 120
Phenol-d5	89		46 - 125
Terphenyl-d14	83		35 - 160
2,4,6-Tribromophenol	77		25 - 139

Method: 6010B - Metals (ICP)

Lab Sample ID: MB 500-408756/1-A

**Matrix: Solid** 

**Analysis Batch: 408957** 

**Client Sample ID: Method Blank** Prep Type: Total/NA

**Prep Batch: 408756** 

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Antimony <2.0 2.0 0.39 mg/Kg 11/07/17 08:36 11/07/17 15:02 Arsenic <1.0 1.0 0.34 mg/Kg 11/07/17 08:36 11/07/17 15:02 Barium <1.0 0.11 mg/Kg 11/07/17 08:36 11/07/17 15:02 1.0 Beryllium < 0.40 0.40 0.093 mg/Kg 11/07/17 08:36 11/07/17 15:02 Cadmium < 0.20 0.20 0.036 mg/Kg 11/07/17 08:36 11/07/17 15:02 11/07/17 08:36 11/07/17 15:02 Chromium <1.0 1.0 0.50 mg/Kg Cobalt < 0.50 0.50 0.13 mg/Kg 11/07/17 08:36 11/07/17 15:02 Copper 11/07/17 08:36 11/07/17 15:02 0.394 J 1.0 0.28 mg/Kg Iron <20 20 10 mg/Kg 11/07/17 08:36 11/07/17 15:02 Lead < 0.50 0.50 0.23 mg/Kg 11/07/17 08:36 11/07/17 15:02 0.15 mg/Kg 11/07/17 08:36 11/07/17 15:02 Manganese <1.0 1.0 11/07/17 08:36 11/07/17 15:02 Nickel 1.0 0.29 mg/Kg <1.0 Selenium <1.0 1.0 0.59 mg/Kg 11/07/17 08:36 11/07/17 15:02 Silver < 0.50 0.50 0.13 mg/Kg 11/07/17 08:36 11/07/17 15:02 Thallium 0.50 mg/Kg <1.0 1.0 11/07/17 08:36 11/07/17 15:02 Vanadium < 0.50 0.50 0.12 mg/Kg 11/07/17 08:36 11/07/17 15:02 Zinc 0.88 mg/Kg 11/07/17 08:36 11/07/17 15:02 <2.0 2.0

Lab Sample ID: LCS 500-408756/2-A

**Matrix: Solid** 

Analysis Batch: 408957

**Client Sample ID: Lab Control Sample** Prep Type: Total/NA

**Prep Batch: 408756** 

Spike	LCS	LCS				%Rec.
Added	Result	Qualifier	Unit	D	%Rec	Limits
50.0	44.1		mg/Kg		88	80 - 120
10.0	9.69		mg/Kg		97	80 - 120
200	195		mg/Kg		97	80 - 120
5.00	4.71		mg/Kg		94	80 - 120
5.00	4.82		mg/Kg		96	80 - 120
20.0	18.9		mg/Kg		94	80 - 120
50.0	46.9		mg/Kg		94	80 - 120
25.0	24.0		mg/Kg		96	80 - 120
100	94.2		mg/Kg		94	80 - 120
10.0	9.70		mg/Kg		97	80 - 120
50.0	45.1		mg/Kg		90	80 - 120
	Added 50.0 10.0 200 5.00 5.00 20.0 50.0 25.0 100 10.0	Added         Result           50.0         44.1           10.0         9.69           200         195           5.00         4.71           5.00         4.82           20.0         18.9           50.0         46.9           25.0         24.0           100         94.2           10.0         9.70	Added         Result         Qualifier           50.0         44.1           10.0         9.69           200         195           5.00         4.71           5.00         4.82           20.0         18.9           50.0         46.9           25.0         24.0           100         94.2           10.0         9.70	Added         Result         Qualifier         Unit           50.0         44.1         mg/Kg           10.0         9.69         mg/Kg           200         195         mg/Kg           5.00         4.71         mg/Kg           5.00         4.82         mg/Kg           20.0         18.9         mg/Kg           50.0         46.9         mg/Kg           25.0         24.0         mg/Kg           100         94.2         mg/Kg           10.0         9.70         mg/Kg	Added         Result         Qualifier         Unit         D           50.0         44.1         mg/Kg         mg/Kg           10.0         9.69         mg/Kg         mg/Kg           200         195         mg/Kg           5.00         4.71         mg/Kg           5.00         4.82         mg/Kg           20.0         18.9         mg/Kg           50.0         46.9         mg/Kg           25.0         24.0         mg/Kg           100         94.2         mg/Kg           10.0         9.70         mg/Kg	Added         Result         Qualifier         Unit         D         %Rec           50.0         44.1         mg/Kg         88           10.0         9.69         mg/Kg         97           200         195         mg/Kg         97           5.00         4.71         mg/Kg         94           5.00         4.82         mg/Kg         96           20.0         18.9         mg/Kg         94           50.0         46.9         mg/Kg         94           25.0         24.0         mg/Kg         96           100         94.2         mg/Kg         94           10.0         9.70         mg/Kg         97

TestAmerica Chicago

Page 26 of 35

10

11/16/2017

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

# Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: LCS 500-408756/2-A Matrix: Solid Analysis Batch: 408957		Client Sample ID: Lab Control Prep Type: T Prep Batch:					
, , , , , , , , , , , , , , , , , , , ,	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Nickel	50.0	48.0		mg/Kg		96	80 - 120
Selenium	10.0	9.21		mg/Kg		92	80 - 120
Silver	5.00	4.64		mg/Kg		93	80 - 120
Thallium	10.0	9.13		mg/Kg		91	80 - 120
Vanadium	50.0	44.4		mg/Kg		89	80 - 120
Zinc	50.0	42.3		mg/Kg		85	80 - 120

Lab Sample ID: 500-136798-1 MS Client Sample ID: 3160-8-2 (0-3) **Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 408957 Prep Batch: 408756** MS MS %Rec. Sample Sample Spike Result Qualifier Added Result Qualifier **Analyte** Unit D %Rec Limits ₩ Antimony 0.77 J F1 F2 26.4 4.77 F1 mg/Kg 15 75 - 125 5.28 ☼ Arsenic 8.1 12.7 mg/Kg 86 75 - 125 ∜ Barium 100 106 202 mg/Kg 95 75 - 125 ₩ 75 - 125 Beryllium 0.55 2.64 2.81 86 mg/Kg Cadmium 0.18 2.64 2.40 mg/Kg ₩ 84 75 - 125 Chromium 14 10.6 25.6 ₩ 110 75 - 125 mg/Kg ₩ Cobalt 13 26.4 37.1 mg/Kg 93 75 - 125 ₩ Copper 17 BF1 13.2 26.3 F1 mg/Kg 69 75 - 125 ₩ 75 - 125 Iron 15000 52.8 15900 4 mg/Kg 1211 ₽ Lead 54 5.28 45.8 4 mg/Kg -163 75 - 125 ☼ Manganese 720 26.4 692 4 mg/Kg -118 75 - 125 Nickel 11 26.4 38.0 mg/Kg ₩ 104 75 - 125 ₽ 66 75 - 125 Selenium 0.97 5.28 4.43 F1 mg/Kg ₩ Silver < 0.29 2.64 2.12 mg/Kg 80 75 - 125 Thallium ☼ 5.28 88 < 0.59 4.62 mg/Kg 75 - 125

26.4

26.4

50.6

71.2 F1

Lab Sample ID: 500-136798-1 MSD

26

54 F1

Matriv: Solid

Vanadium

Zinc

Matrix: Solid									Prep 1y	pe: rot	ai/NA
Analysis Batch: 408957									Prep Ba	atch: 40	<b>)8756</b>
-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Antimony	0.77	J F1 F2	30.5	5.97	F1 F4	mg/Kg	<u></u>	17	75 - 125	22	20
Arsenic	8.1		6.10	14.1		mg/Kg	₩	98	75 - 125	11	20
Barium	100		122	218		mg/Kg	₩	95	75 - 125	7	20
Beryllium	0.55		3.05	3.17		mg/Kg		86	75 - 125	12	20
Cadmium	0.18		3.05	2.80		mg/Kg	₩	86	75 - 125	15	20
Chromium	14		12.2	25.5		mg/Kg	₩	95	75 - 125	0	20
Cobalt	13		30.5	41.8		mg/Kg	₩.	96	75 - 125	12	20
Copper	17	B F1	15.2	27.7	F1	mg/Kg	☼	70	75 - 125	5	20
Iron	15000		61.0	15900	4	mg/Kg	₩	947	75 - 125	0	20
Lead	54		6.10	46.7	4	mg/Kg	₩.	-127	75 - 125	2	20
Manganese	720		30.5	807	4	mg/Kg	☼	275	75 - 125	15	20
Nickel	11		30.5	42.0		mg/Kg	₩	103	75 - 125	10	20
Selenium	0.97	F1	6.10	5.29	F1	mg/Kg	₩.	71	75 - 125	18	20
Silver	<0.29		3.05	2.49		mg/Kg	₩	82	75 - 125	16	20

TestAmerica Chicago

Page 27 of 35

10

Client Sample ID: 3160-8-2 (0-3) Prep Type: Total/NA

₩

93

65

75 - 125

75 - 125

mg/Kg

mg/Kg

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Method: 6010B - Metals (ICP) (Continued)

Sample Sample

54 F1

<0.59

26

Result Qualifier

Lab Sample ID: 500-136798-1 MSD Client Sample ID: 3160-8-2 (0-3) **Matrix: Solid** Prep Type: Total/NA

**Analysis Batch: 408957** 

Analyte

Thallium

Zinc

Vanadium

Spike	MSD	MSD				%Rec.	iten: 40	RPD	
Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
6.10	5.37		mg/Kg	<u> </u>	88	75 - 125	15	20	
30.5	52.4		mg/Kg	₩	87	75 - 125	3	20	
30.5	74.6	F1	mg/Kg	₩	68	75 ₋ 125	5	20	

Lab Sample ID: 500-136798-1 DU Client Sample ID: 3160-8-2 (0-3) **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 408957 Prep Batch: 408756 Sample Sample DU DU **RPD** Result Qualifier RPD Analyte Result Qualifier Unit D Limit ₩ Antimony 0.77 J F1 F2 mg/Kg NC 20 <1.1 ₩ Arsenic 8.1 10.0 F3 21 20 mg/Kg 100 Barium 98.0 mg/Kg 4 20 mg/Kg Beryllium 0.55 0.578 5 20 Cadmium 0.18 20 0.124 F5 mg/Kg 39 ť Chromium 14 17.1 F3 mg/Kg 21 20 Cobalt 13 21 20 10.1 F3 mg/Kg Ö Copper 17 14.8 mg/Kg 20 Iron 15000 17800 20 mg/Kg 16 ₩ Lead 54 38.9 F3 mg/Kg 33 20 Manganese ₩ 720 595 mg/Kg 19 20 Nickel 10.9 3 11 mg/Kg 20 9 Selenium 0.97 F1 0.882 mg/Kg 20 NC 20 Silver <0.29 <0.28 mg/Kg Ö Thallium <0.59 <0.56 mg/Kg NC 20 Vanadium 8 20 26 28.1 mg/Kg ά Zinc 54 F1 45.5 mg/Kg 17 20

Lab Sample ID: LCS 500-409364/2-A

**Matrix: Solid** 

**Analysis Batch: 409503** 

Client	Sample	ID: Lab	Control	Sample
		Prep	Type:	Γotal/NA
		Pro	n Ratch	409364

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	0.100	0.0986		mg/L		99	80 - 120	
Barium	0.500	0.517		mg/L		103	80 - 120	
Beryllium	0.0500	0.0524		mg/L		105	80 - 120	
Cadmium	0.0500	0.0498		mg/L		100	80 - 120	
Chromium	0.200	0.202		mg/L		101	80 - 120	
Cobalt	0.500	0.505		mg/L		101	80 - 120	
Copper	0.250	0.256		mg/L		102	80 - 120	
Iron	1.00	1.18		mg/L		118	80 - 120	
Lead	0.100	0.0955		mg/L		95	80 - 120	
Manganese	0.500	0.516		mg/L		103	80 - 120	
Nickel	0.500	0.503		mg/L		101	80 - 120	
Selenium	0.100	0.0920		mg/L		92	80 - 120	
Silver	0.0500	0.0491		mg/L		98	80 - 120	
Vanadium	0.500	0.509		mg/L		102	80 - 120	
Zinc	0.500	0.496	J	mg/L		99	80 - 120	

Page 28 of 35

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: LB 500-409249/1-B Client Sample ID: Method Blank **Matrix: Solid** 

**Analysis Batch: 409503** 

**Prep Type: TCLP** Prep Batch: 409364

LB I	LB						
Result (	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
<0.050	0.050	0.010	mg/L		11/10/17 08:30	11/10/17 14:59	1
<0.50	0.50	0.050	mg/L		11/10/17 08:30	11/10/17 14:59	1
<0.0040	0.0040	0.0040	mg/L		11/10/17 08:30	11/10/17 14:59	1
<0.0050	0.0050	0.0020	mg/L		11/10/17 08:30	11/10/17 14:59	1
<0.025	0.025	0.010	mg/L		11/10/17 08:30	11/10/17 14:59	1
<0.025	0.025	0.010	mg/L		11/10/17 08:30	11/10/17 14:59	1
<0.025	0.025	0.010	mg/L		11/10/17 08:30	11/10/17 14:59	1
<0.40	0.40	0.20	mg/L		11/10/17 08:30	11/10/17 14:59	1
<0.0075	0.0075	0.0075	mg/L		11/10/17 08:30	11/10/17 14:59	1
<0.025	0.025	0.010	mg/L		11/10/17 08:30	11/10/17 14:59	1
<0.025	0.025	0.010	mg/L		11/10/17 08:30	11/10/17 14:59	1
<0.050	0.050	0.020	mg/L		11/10/17 08:30	11/10/17 14:59	1
<0.025	0.025	0.010	mg/L		11/10/17 08:30	11/10/17 14:59	1
<0.025	0.025	0.010	mg/L		11/10/17 08:30	11/10/17 14:59	1
<0.50	0.50	0.020	mg/L		11/10/17 08:30	11/10/17 14:59	1
	Result	<0.050	Result         Qualifier         RL         MDL           <0.050	Result         Qualifier         RL         MDL         Unit           <0.050	Result         Qualifier         RL         MDL         Unit         D           <0.050	Result         Qualifier         RL         MDL         Unit         D         Prepared           <0.050	Result Qualifier         RL         MDL mg/L         Unit mg/L         D mg/L         Prepared malyzed         Analyzed           <0.050

Method: 6020A - Metals (ICP/MS)

Lab Sample ID: LCS 500-409364/2-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA Prep Batch: 409364 **Analysis Batch: 409646** LCS LCS Spike %Rec.

Added Result Qualifier Limits Analyte Unit %Rec Antimony 0.500 0.478 mg/L 96 80 - 120 Thallium 0.100 0.100 mg/L 100 80 - 120

Lab Sample ID: LB 500-409249/1-B **Client Sample ID: Method Blank** 

**Matrix: Solid** Analysis Batch: 409646 Prep Batch: 409364 LB LB

**Analyte** Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Antimony <0.0060 0.0060 0.0060 mg/L 11/10/17 08:30 11/10/17 16:03 Thallium <0.0020 0.0020 0.0020 mg/L 11/10/17 08:30 11/10/17 16:03

Method: 7470A - TCLP Mercury

Lab Sample ID: MB 500-409460/12-A **Client Sample ID: Method Blank** 

**Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 409718** 

MB MB

Prepared Analyte Result Qualifier RL **MDL** Unit Analyzed Dil Fac 11/10/17 15:00 11/13/17 08:24 Mercury < 0.00020 0.00020 0.00020 mg/L

TestAmerica Chicago

**Prep Type: TCLP** 

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

**Method: 7470A - TCLP Mercury (Continued)** 

Lab Sample ID: LCS 500-409460/13-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 409718 Prep Batch: 409460** 

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits 0.00200 80 - 120 Mercury 0.00230 mg/L 115

Lab Sample ID: LB 500-409249/1-E Client Sample ID: Method Blank **Matrix: Solid Prep Type: TCLP Prep Batch: 409460** 

Analysis Batch: 409718 LB LB

Result Qualifier Analyte RL **MDL** Unit Prepared Analyzed Dil Fac 11/10/17 15:00 11/13/17 08:41 Mercury <0.00020 0.00020 0.00020 mg/L

Method: 7471B - Mercury (CVAA)

Lab Sample ID: MB 500-409061/12-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA

**Analysis Batch: 409233 Prep Batch: 409061** MB MB

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Mercury 0.017 0.0056 mg/Kg 11/08/17 16:15 11/09/17 09:53 <0.017

Lab Sample ID: LCS 500-409061/13-A **Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Total/NA Analysis Batch: 409233 Prep Batch: 409061** 

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits Mercury 0.167 0.173 mg/Kg 103 80 - 120

10

TestAmerica Chicago

Lab Sample ID: 500-136798-1

Lab Sample ID: 500-136798-2

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Lab Sample ID: 500-136798-1

**Matrix: Solid** 

Client Sample ID: 3160-8-2 (0-3) Date Collected: 11/03/17 08:00 Date Received: 11/04/17 11:05

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			409249	11/09/17 14:56	JLC	TAL CHI
TCLP	Prep	3010A			409364	11/10/17 08:30	JEF	TAL CHI
TCLP	Analysis	6010B		1	409503	11/10/17 15:52	KML	TAL CHI
TCLP	Leach	1311			409249	11/09/17 14:56	JLC	TAL CHI
TCLP	Prep	3010A			409364	11/10/17 08:30	JEF	TAL CHI
TCLP	Analysis	6020A		1	409646	11/10/17 16:11	FXG	TAL CHI
TCLP	Leach	1311			409249	11/09/17 14:56	JLC	TAL CHI
TCLP	Prep	7470A			409460	11/10/17 15:00	EEN	TAL CHI
TCLP	Analysis	7470A		1	409718	11/13/17 09:33	EEN	TAL CHI
Total/NA	Analysis	9045D		1	409880		SMO	TAL CHI
					(Start) 1	1/14/17 17:36		
					(End) 1	1/14/17 12:20		
Total/NA	Analysis	Moisture		1	408654	11/06/17 14:52	PFK	TAL CHI

Client Sample ID: 3160-8-2 (0-3)

Date Collected: 11/03/17 08:00 **Matrix: Solid** Date Received: 11/04/17 11:05 Percent Solids: 80.8

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035	<del></del>		408715	11/04/17 15:18	WRE	TAL CHI
Total/NA	Analysis	8260B		1	408942	11/08/17 11:35	DJD	TAL CHI
Total/NA	Prep	3541			409543	11/12/17 02:23	JP1	TAL CHI
Total/NA	Analysis	8270D		1	409849	11/14/17 17:04	WDS	TAL CHI
Total/NA	Prep	3050B			408756	11/07/17 08:36	JEF	TAL CHI
Total/NA	Analysis	6010B		1	408957	11/07/17 15:10	PJ1	TAL CHI
Total/NA	Prep	7471B			409061	11/08/17 16:15	EEN	TAL CHI
Total/NA	Analysis	7471B		1	409233	11/09/17 10:14	EEN	TAL CHI

Client Sample ID: 3160-8-1 (0-3)

Date Collected: 11/03/17 08:10

Date Received: 11/04/17 11:05

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			409249	11/09/17 14:56	JLC	TAL CHI
TCLP	Prep	3010A			409364	11/10/17 08:30	JEF	TAL CHI
TCLP	Analysis	6010B		1	409503	11/10/17 15:56	KML	TAL CHI
TCLP	Leach	1311			409249	11/09/17 14:56	JLC	TAL CHI
TCLP	Prep	3010A			409364	11/10/17 08:30	JEF	TAL CHI
TCLP	Analysis	6020A		1	409646	11/10/17 16:15	FXG	TAL CHI
TCLP	Leach	1311			409249	11/09/17 14:56	JLC	TAL CHI
TCLP	Prep	7470A			409460	11/10/17 15:00	EEN	TAL CHI
TCLP	Analysis	7470A		1	409718	11/13/17 09:55	EEN	TAL CHI

TestAmerica Chicago

Page 31 of 35

**Matrix: Solid** 

# **Lab Chronicle**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136798-1

Client Sample ID: 3160-8-1 (0-3)

Date Collected: 11/03/17 08:10 Date Received: 11/04/17 11:05

Lab Sample ID: 500-136798-2

**Matrix: Solid** 

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9045D			409880		SMO	TAL CHI
					(Start) 1	1/14/17 17:36		
					(End) 1	1/14/17 12:20		
Total/NA	Analysis	Moisture		1	408654	11/06/17 14:52	PFK	TAL CHI

Lab Sample ID: 500-136798-2 Client Sample ID: 3160-8-1 (0-3)

Date Collected: 11/03/17 08:10 **Matrix: Solid** Date Received: 11/04/17 11:05 Percent Solids: 83.3

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			408715	11/04/17 15:18	WRE	TAL CHI
Total/NA	Analysis	8260B		1	408942	11/08/17 12:00	DJD	TAL CHI
Total/NA	Prep	3541			409543	11/12/17 02:23	JP1	TAL CHI
Total/NA	Analysis	8270D		1	409849	11/14/17 17:31	WDS	TAL CHI
Total/NA	Prep	3050B			408756	11/07/17 08:36	JEF	TAL CHI
Total/NA	Analysis	6010B		1	408957	11/07/17 15:37	PJ1	TAL CHI
Total/NA	Prep	7471B			409061	11/08/17 16:15	EEN	TAL CHI
Total/NA	Analysis	7471B		1	409233	11/09/17 10:16	EEN	TAL CHI

#### **Laboratory References:**

TAL CHI = TestAmerica Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

# **Accreditation/Certification Summary**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-136798-1

# Laboratory: TestAmerica Chicago

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Program		EPA Region	<b>Identification Number</b>	<b>Expiration Date</b>	
llinois	NELAP		5	100201	04-30-18	
The following analytes	s are included in this repo	ort, but accreditation/	certification is not offe	ered by the governing author	ority:	
Analysis Method	Prep Method	Matrix	Analyt	е		
6020A	3010A	Solid	Antimo	imony		
6020A	3010A	Solid	Thalliu	m		
8260B	5035	Solid	1,3-Dio	chloropropene, Total		
9045D		Solid	рН			
Moisture		Solid	Percer	nt Moisture		
Moisture		Solid	Percer	nt Solids		

Δ

5

6

0

9

11

12

Testameric  THE LEADER IN ENVIRONMENTAL TES  2417 Bond Street, University Park, IL 60484 Phone: 708.534.5200 Fax: 708.534.5211	TING	Address: 423 Address: 501 Phone: 515 Eax: 309	mecfo 32 Ba +E A 14	0)X WANDYN pco	300	Bill To Contact: Company: Address: Address: Phone: Fax: PO#/Refere		(optional)		Lab . Chai	of Custody Record  Job #: 500-1367-8  In of Custody Number:  Berature °C of Cooler:  Preservative Key
Client  Project Name  TOAT WO 28  Project Location/State BENTON TL  Sampler  Ton MCNALLY  Sample ID	ject#	7 8 VGH +	# of Containers  Matrix	5007	0075	70792 metals	TLLP netals	Hd	90 301195	500-136798 Cd	1. HCL, Cool to 4° 2. H2SO4, Cool to 4° 3. HNO3, Cool to 4° 4. NaOH, Cool to 4° 5. NaOH/Zn, Cool to 4° 6. NaHSO4 7. Cool to 4° 8. None 9. Other
3160-8-2(0-		୦୧୬୦୦	6 5		X	٨	X	Х	X		PLEASE HOLD
2 3160-8-1 (0-	3) 11/	3 0810	6 3	X	Х	Х	X		X		SPLP BASED
											on telp
											RESULTS.
											PIEASE SEE
											DIXON EMAIL
		'					<u> </u>				for (18) mens
								****			L10+
Turnaround Time Required (Business Days)1 Day 2 Days 5 Days 7 Days 10 Requested Due Date  Reflinquished By Company Relinquished By Company	Date  Date  Date	0/3/17	<u> </u>	rn to Client  Received By	<u> </u>	osal by Lab	Archiv	,	Months (A		es are retained longer than 1 month)  Lab Courier  Shipped
Relinquished By Company	Date	Т	Time	Received By		C	ompany		Date	Time	Hand Delivered
Matrix Key	Client Comments			·			Le	ab Comments	:		i iulu velivolou

TAL-412159 672017

# **Login Sample Receipt Checklist**

Client: AMEC Foster Wheeler E & I, Inc Job Number: 500-136798-1

Login Number: 136798 List Source: TestAmerica Chicago

List Number: 1

Creator: Sanchez, Ariel M

Creator. Sanchez, Arren W		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	2.0
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

-

3

4

6

8

10

13



THE LEADER IN ENVIRONMENTAL TESTING

# **ANALYTICAL REPORT**

TestAmerica Laboratories, Inc.

TestAmerica Chicago 2417 Bond Street University Park, IL 60484 Tel: (708)534-5200

TestAmerica Job ID: 500-137674-1

Client Project/Site: IDOT - Benton - WO 028

#### For:

AMEC Foster Wheeler E & I, Inc 4232 Brandywine Drive Suite A Peoria, Illinois 61614

Attn: Mr. Terry Dixon

# Jodie Brocken

Authorized for release by: 11/30/2017 2:53:14 PM Jodie Bracken, Project Management Assistant II jodie.bracken@testamericainc.com

Designee for

Richard Wright, Senior Project Manager (708)534-5200 richard.wright@testamericainc.com

.....LINKS .....

Review your project results through

Total Access

**Have a Question?** 



Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

# **Table of Contents**

Cover Page	1
Table of Contents	2
Case Narrative	3
Detection Summary	4
Sample Summary	5
Client Sample Results	6
Definitions	10
QC Association	11
Surrogate Summary	14
QC Sample Results	15
Chronicle	30
Certification Summary	31
Chain of Custody	32
Racaint Chacklists	33

2

4

6

8

46

11

13

#### **Case Narrative**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028 TestAmerica Job ID: 500-137674-1

Job ID: 500-137674-1

Laboratory: TestAmerica Chicago

Narrative

Job Narrative 500-137674-1

#### Receipt

The sample was received on 11/22/2017 9:05 AM; the sample arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 0.7° C.

#### **GC/MS VOA**

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

#### GC/MS Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

#### GC Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

#### Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### **General Chemistry**

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

#### **Organic Prep**

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

a

3

4

6

7

10

111

12

# **Detection Summary**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

**Client Sample ID: 3160-32-07** 

pН

TestAmerica Job ID: 500-137674-1

Lab Sample ID: 500-137674-1

9045D

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzo[a]anthracene	0.0054	J	0.040	0.0054	mg/Kg		₩	8270D	Total/NA
2-Methylnaphthalene	0.021	J	0.081	0.0074	mg/Kg	1	₩	8270D	Total/NA
Naphthalene	0.0094	J	0.040	0.0062	mg/Kg	1	₩	8270D	Total/NA
Phenanthrene	0.027	J	0.040	0.0056	mg/Kg	1	₽	8270D	Total/NA
Arsenic	10	F1	0.61	0.21	mg/Kg	1	₩	6010B	Total/NA
Barium	79		0.61	0.070	mg/Kg	1	₩	6010B	Total/NA
Beryllium	0.36		0.24	0.057	mg/Kg	1	₩	6010B	Total/NA
Cadmium	0.022	JB	0.12	0.022	mg/Kg	1	₩	6010B	Total/NA
Chromium	21		0.61	0.30	mg/Kg	1	₩	6010B	Total/NA
Cobalt	4.3		0.31	0.080	mg/Kg	1	₩	6010B	Total/NA
Copper	14		0.61	0.17	mg/Kg	1	₩	6010B	Total/NA
Iron	25000		12	6.4	mg/Kg	1	₩	6010B	Total/NA
Lead	16	F1	0.31	0.14	mg/Kg	1	₩	6010B	Total/NA
Manganese	180	F2	0.61	0.089	mg/Kg	1	₩	6010B	Total/NA
Nickel	15		0.61	0.18	mg/Kg	1	₩	6010B	Total/NA
Selenium	0.53	J F1	0.61	0.36	mg/Kg	1	₽	6010B	Total/NA
Vanadium	43		0.31	0.072	mg/Kg	1	₩	6010B	Total/NA
Zinc	59		1.2	0.54	mg/Kg	1	₩	6010B	Total/NA
Barium	0.37	J	0.50	0.050	mg/L	1		6010B	TCLP
Cobalt	0.014	J	0.025	0.010	mg/L	1		6010B	TCLP
Copper	0.021	J	0.025	0.010	mg/L	1		6010B	TCLP
Iron	0.40		0.40	0.20	mg/L	1		6010B	TCLP
Manganese	1.7		0.025	0.010	mg/L	1		6010B	TCLP
Nickel	0.048		0.025	0.010	mg/L	1		6010B	TCLP
Zinc	0.22	J	0.50	0.020	mg/L	1		6010B	TCLP
Manganese	0.20		0.025	0.010	mg/L	1		6010B	SPLP East
Mercury	0.022	В	0.020	0.0068	mg/Kg	1	₩	7471B	Total/NA

0.20

0.20 SU

This Detection Summary does not include radiochemical test results.

11/30/2017

3

6

Q

9

10

12

13

14

Total/NA

# **Sample Summary**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-137674-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
500-137674-1	3160-32-07	Solid	11/21/17 15:05	11/22/17 13:58

R

9

11

15

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

**Client Sample ID: 3160-32-07** Lab Sample ID: 500-137674-1

Date Collected: 11/21/17 15:05 **Matrix: Solid** Date Received: 11/22/17 13:58 Percent Solids: 80.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	<0.020		0.020	0.0088	mg/Kg	<u> </u>	11/22/17 17:00	11/27/17 12:01	1
Benzene	<0.0020		0.0020	0.00051	mg/Kg	₽	11/22/17 17:00	11/27/17 12:01	1
Bromodichloromethane	<0.0020		0.0020	0.00041	mg/Kg	₩	11/22/17 17:00	11/27/17 12:01	1
Bromoform	<0.0020		0.0020	0.00059	mg/Kg		11/22/17 17:00	11/27/17 12:01	1
Bromomethane	<0.0050		0.0050	0.0019	mg/Kg	₩	11/22/17 17:00	11/27/17 12:01	1
2-Butanone (MEK)	< 0.0050		0.0050	0.0022	mg/Kg	☼	11/22/17 17:00	11/27/17 12:01	1
Carbon disulfide	<0.0050		0.0050	0.0010	mg/Kg		11/22/17 17:00	11/27/17 12:01	1
Carbon tetrachloride	<0.0020		0.0020	0.00059	mg/Kg	₩	11/22/17 17:00	11/27/17 12:01	1
Chlorobenzene	<0.0020		0.0020	0.00074	mg/Kg	₩	11/22/17 17:00	11/27/17 12:01	1
Chloroethane	<0.0050		0.0050	0.0015	mg/Kg		11/22/17 17:00	11/27/17 12:01	1
Chloroform	<0.0020		0.0020	0.00070	mg/Kg	₩	11/22/17 17:00	11/27/17 12:01	1
Chloromethane	< 0.0050		0.0050	0.0020	mg/Kg	☼	11/22/17 17:00	11/27/17 12:01	1
cis-1,2-Dichloroethene	<0.0020		0.0020	0.00056	mg/Kg	φ.	11/22/17 17:00	11/27/17 12:01	1
cis-1,3-Dichloropropene	<0.0020		0.0020	0.00061	mg/Kg	₩	11/22/17 17:00	11/27/17 12:01	1
Dibromochloromethane	<0.0020		0.0020	0.00066	mg/Kg	☼	11/22/17 17:00	11/27/17 12:01	1
1,1-Dichloroethane	<0.0020		0.0020	0.00069	mg/Kg	φ.	11/22/17 17:00	11/27/17 12:01	1
1,2-Dichloroethane	<0.0050		0.0050	0.0016	mg/Kg	≎	11/22/17 17:00	11/27/17 12:01	1
1,1-Dichloroethene	<0.0020		0.0020	0.00069	mg/Kg	₽	11/22/17 17:00	11/27/17 12:01	1
1,2-Dichloropropane	<0.0020		0.0020	0.00052	mg/Kg		11/22/17 17:00	11/27/17 12:01	1
1,3-Dichloropropene, Total	<0.0020		0.0020	0.00071	mg/Kg	₩	11/22/17 17:00	11/27/17 12:01	1
Ethylbenzene	<0.0020		0.0020	0.00097	mg/Kg	₩	11/22/17 17:00	11/27/17 12:01	1
2-Hexanone	<0.0050		0.0050	0.0016	mg/Kg		11/22/17 17:00	11/27/17 12:01	1
Methylene Chloride	<0.0050		0.0050	0.0020	mg/Kg	₩	11/22/17 17:00	11/27/17 12:01	1
4-Methyl-2-pentanone (MIBK)	<0.0050		0.0050	0.0015	mg/Kg	₩	11/22/17 17:00	11/27/17 12:01	1
Methyl tert-butyl ether	<0.0020		0.0020	0.00059	mg/Kg		11/22/17 17:00	11/27/17 12:01	1
Styrene	<0.0020		0.0020	0.00061	mg/Kg	₩	11/22/17 17:00	11/27/17 12:01	1
1,1,2,2-Tetrachloroethane	<0.0020		0.0020	0.00064	mg/Kg	₩	11/22/17 17:00	11/27/17 12:01	1
Tetrachloroethene	<0.0020		0.0020	0.00069	mg/Kg		11/22/17 17:00	11/27/17 12:01	1
Toluene	<0.0020		0.0020	0.00051	mg/Kg	₩	11/22/17 17:00	11/27/17 12:01	1
trans-1,2-Dichloroethene	<0.0020		0.0020	0.00089	mg/Kg	≎	11/22/17 17:00	11/27/17 12:01	1
trans-1,3-Dichloropropene	<0.0020		0.0020	0.00071	mg/Kg		11/22/17 17:00	11/27/17 12:01	1
1,1,1-Trichloroethane	<0.0020		0.0020	0.00068	mg/Kg	₽	11/22/17 17:00	11/27/17 12:01	1
1,1,2-Trichloroethane	<0.0020		0.0020	0.00087	mg/Kg	₽	11/22/17 17:00	11/27/17 12:01	1
Trichloroethene	<0.0020		0.0020	0.00068	mg/Kg		11/22/17 17:00	11/27/17 12:01	1
Vinyl acetate	< 0.0050		0.0050	0.0018	mg/Kg	₩	11/22/17 17:00	11/27/17 12:01	1
Vinyl chloride	<0.0020		0.0020	0.00089	mg/Kg	₩	11/22/17 17:00	11/27/17 12:01	1
Xylenes, Total	<0.0040		0.0040	0.00065	mg/Kg	₽	11/22/17 17:00	11/27/17 12:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103		75 - 131				11/22/17 17:00	11/27/17 12:01	1
Dibromofluoromethane	103		75 - 126				11/22/17 17:00	11/27/17 12:01	1
1,2-Dichloroethane-d4 (Surr)	103		70 - 134				11/22/17 17:00	11/27/17 12:01	1
Taluana de (Cum)			75 101				44/00/47 47:00	11/07/17 10:01	

Surroyate	∕∞Recovery	Qualifier Liffin	15	Frepareu	Allalyzeu	DII Fac
4-Bromofluorobenzene (Surr)	103	75 - 1	31	11/22/17 17:00	11/27/17 12:01	1
Dibromofluoromethane	103	75 - 1	126	11/22/17 17:00	11/27/17 12:01	1
1,2-Dichloroethane-d4 (Surr)	103	70 - 1	134	11/22/17 17:00	11/27/17 12:01	1
Toluene-d8 (Surr)	92	75 - 1	24	11/22/17 17:00	11/27/17 12:01	1
Toluene-d8 (Surr)	92	75 - 1	24	11/22/17 17:00	11/27/17 12:01	1

Method: 8270D -	Semivolatile Organic Co	mpounds (GC/MS)						
Analyte	Result	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	<0.040	0.040	0.0072	mg/Kg	<del>\</del>	11/22/17 16:19	11/27/17 16:03	1
Acenaphthylene	<0.040	0.040	0.0053	mg/Kg	☼	11/22/17 16:19	11/27/17 16:03	1
Anthracene	<0.040	0.040	0.0067	mg/Kg	☼	11/22/17 16:19	11/27/17 16:03	1
Benzo[a]anthracene	0.0054	<b>J</b> 0.040	0.0054	mg/Kg	≎	11/22/17 16:19	11/27/17 16:03	1

TestAmerica Chicago

Page 6 of 34 11/30/2017

### **Client Sample Results**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

**Client Sample ID: 3160-32-07** 

Date Collected: 11/21/17 15:05

**Naphthalene** 

2-Nitroaniline

3-Nitroaniline

4-Nitroaniline

Nitrobenzene

2-Nitrophenol

TestAmerica Job ID: 500-137674-1

Lab Sample ID: 500-137674-1

Matrix: Solid

Percent Solids: 80.8

Method: 8270D - Semivolatil Analyte	_	Qualifier	RL	MDL	•	D	Prepared	Analyzed	Dil Fac
Benzo[a]pyrene	<0.040		0.040	0.0078	mg/Kg	<u> </u>	11/22/17 16:19	11/27/17 16:03	1
Benzo[b]fluoranthene	<0.040		0.040	0.0087	mg/Kg	☼	11/22/17 16:19	11/27/17 16:03	1
Benzo[g,h,i]perylene	<0.040	F1	0.040	0.013	mg/Kg	₩.	11/22/17 16:19	11/27/17 16:03	1
Benzo[k]fluoranthene	<0.040		0.040	0.012	mg/Kg	☼	11/22/17 16:19	11/27/17 16:03	1
Bis(2-chloroethoxy)methane	<0.20		0.20	0.041	mg/Kg	₩	11/22/17 16:19	11/27/17 16:03	1
Bis(2-chloroethyl)ether	<0.20	F1 F2	0.20	0.060	mg/Kg	₽	11/22/17 16:19	11/27/17 16:03	1
Bis(2-ethylhexyl) phthalate	<0.20		0.20	0.073	mg/Kg	₩	11/22/17 16:19	11/27/17 16:03	1
4-Bromophenyl phenyl ether	<0.20		0.20	0.053	mg/Kg	☼	11/22/17 16:19	11/27/17 16:03	1
Butyl benzyl phthalate	<0.20		0.20	0.076	mg/Kg	φ.	11/22/17 16:19	11/27/17 16:03	1
Carbazole	<0.20		0.20	0.10	mg/Kg	☼	11/22/17 16:19	11/27/17 16:03	1
4-Chloroaniline	<0.81		0.81	0.19	mg/Kg	☼	11/22/17 16:19	11/27/17 16:03	1
4-Chloro-3-methylphenol	<0.40		0.40	0.14	mg/Kg	φ.	11/22/17 16:19	11/27/17 16:03	1
2-Chloronaphthalene	<0.20		0.20	0.044	mg/Kg	₩	11/22/17 16:19	11/27/17 16:03	1
2-Chlorophenol	<0.20		0.20	0.069	mg/Kg	☼	11/22/17 16:19	11/27/17 16:03	1
4-Chlorophenyl phenyl ether	<0.20		0.20	0.047	mg/Kg	₩	11/22/17 16:19	11/27/17 16:03	1
Chrysene	<0.040		0.040	0.011	mg/Kg	☼	11/22/17 16:19	11/27/17 16:03	1
Dibenz(a,h)anthracene	<0.040		0.040	0.0078	mg/Kg	☼	11/22/17 16:19	11/27/17 16:03	1
Dibenzofuran	<0.20		0.20	0.047	mg/Kg	☼	11/22/17 16:19	11/27/17 16:03	1
1,2-Dichlorobenzene	<0.20	F1	0.20	0.048	mg/Kg	☼	11/22/17 16:19	11/27/17 16:03	1
1,3-Dichlorobenzene	<0.20	F1	0.20	0.045	mg/Kg	☼	11/22/17 16:19	11/27/17 16:03	1
1,4-Dichlorobenzene	<0.20	F1	0.20	0.052	mg/Kg	₩	11/22/17 16:19	11/27/17 16:03	1
3,3'-Dichlorobenzidine	<0.20	F1	0.20	0.056	mg/Kg	☼	11/22/17 16:19	11/27/17 16:03	1
2,4-Dichlorophenol	<0.40		0.40	0.096	mg/Kg	₩	11/22/17 16:19	11/27/17 16:03	1
Diethyl phthalate	<0.20		0.20	0.068	mg/Kg	φ.	11/22/17 16:19	11/27/17 16:03	1
2,4-Dimethylphenol	<0.40		0.40	0.15	mg/Kg	₩	11/22/17 16:19	11/27/17 16:03	1
Dimethyl phthalate	<0.20		0.20	0.053	mg/Kg	₩	11/22/17 16:19	11/27/17 16:03	1
Di-n-butyl phthalate	<0.20		0.20	0.061	mg/Kg	₽	11/22/17 16:19	11/27/17 16:03	1
4,6-Dinitro-2-methylphenol	<0.81		0.81	0.32	mg/Kg	☼	11/22/17 16:19	11/27/17 16:03	1
2,4-Dinitrophenol	<0.81	F2	0.81	0.71	mg/Kg	₩	11/22/17 16:19	11/27/17 16:03	1
2,4-Dinitrotoluene	<0.20		0.20	0.064	mg/Kg	₽	11/22/17 16:19	11/27/17 16:03	1
2,6-Dinitrotoluene	<0.20		0.20	0.079	mg/Kg	☼	11/22/17 16:19	11/27/17 16:03	1
Di-n-octyl phthalate	<0.20		0.20	0.066	mg/Kg	₩	11/22/17 16:19	11/27/17 16:03	1
Fluoranthene	<0.040		0.040	0.0075	mg/Kg	₽	11/22/17 16:19	11/27/17 16:03	1
Fluorene	<0.040		0.040	0.0057	mg/Kg	₩	11/22/17 16:19	11/27/17 16:03	1
Hexachlorobenzene	<0.081		0.081	0.0093	mg/Kg	☼	11/22/17 16:19	11/27/17 16:03	1
Hexachlorobutadiene	<0.20		0.20	0.063	mg/Kg		11/22/17 16:19	11/27/17 16:03	1
Hexachlorocyclopentadiene	<0.81		0.81	0.23	mg/Kg	₩	11/22/17 16:19	11/27/17 16:03	1
Hexachloroethane	<0.20	F1	0.20	0.061	mg/Kg	₽	11/22/17 16:19	11/27/17 16:03	1
Indeno[1,2,3-cd]pyrene	<0.040		0.040	0.010	mg/Kg	₽	11/22/17 16:19	11/27/17 16:03	1
Isophorone	<0.20		0.20	0.045	mg/Kg	☼	11/22/17 16:19	11/27/17 16:03	1
2-Methylnaphthalene	0.021	J	0.081	0.0074	mg/Kg	☼	11/22/17 16:19	11/27/17 16:03	1
2-Methylphenol	<0.20		0.20	0.065	mg/Kg	₽	11/22/17 16:19	11/27/17 16:03	1
3 & 4 Methylphenol	<0.20		0.20	0.067	mg/Kg	≎	11/22/17 16:19	11/27/17 16:03	1

TestAmerica Chicago

11/30/2017

11/22/17 16:19 11/27/17 16:03

* 11/22/17 16:19 11/27/17 16:03 * 11/22/17 16:19 11/27/17 16:03

11/22/17 16:19 11/27/17 16:03

* 11/22/17 16:19 11/27/17 16:03

11/22/17 16:19 11/27/17 16:03

Page 7 of 34

0.040

0.20

0.40

0.40

0.040

0.40

0.0062 mg/Kg

0.054 mg/Kg

0.12 mg/Kg

0.17 mg/Kg

0.010 mg/Kg

0.095 mg/Kg

0.0094 J

<0.20

<0.40

< 0.40

< 0.040

< 0.40

2

3

5

7

9

10

### **Client Sample Results**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

**Client Sample ID: 3160-32-07** 

Date Collected: 11/21/17 15:05

Date Received: 11/22/17 13:58

TestAmerica Job ID: 500-137674-1

Lab Sample ID: 500-137674-1

atrix: Solid Percent Solids: 80.8

Ma						
		_				

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	<0.81		0.81	0.38	mg/Kg	<u></u>	11/22/17 16:19	11/27/17 16:03	1
N-Nitrosodi-n-propylamine	<0.081		0.081	0.049	mg/Kg	φ.	11/22/17 16:19	11/27/17 16:03	1
N-Nitrosodiphenylamine	<0.20		0.20	0.047	mg/Kg	☼	11/22/17 16:19	11/27/17 16:03	1
2,2'-oxybis[1-chloropropane]	<0.20	F1	0.20	0.047	mg/Kg	☼	11/22/17 16:19	11/27/17 16:03	1
Pentachlorophenol	<0.81		0.81	0.65	mg/Kg	\$	11/22/17 16:19	11/27/17 16:03	1
Phenanthrene	0.027	J	0.040	0.0056	mg/Kg	☼	11/22/17 16:19	11/27/17 16:03	1
Phenol	<0.20		0.20	0.089	mg/Kg	≎	11/22/17 16:19	11/27/17 16:03	1
Pyrene	<0.040		0.040	0.0080	mg/Kg	₽	11/22/17 16:19	11/27/17 16:03	1
1,2,4-Trichlorobenzene	<0.20		0.20	0.043	mg/Kg	≎	11/22/17 16:19	11/27/17 16:03	1
2,4,5-Trichlorophenol	<0.40		0.40	0.092	mg/Kg	☼	11/22/17 16:19	11/27/17 16:03	1
2,4,6-Trichlorophenol	<0.40		0.40	0.14	mg/Kg	₩	11/22/17 16:19	11/27/17 16:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	68		44 - 121				11/22/17 16:19	11/27/17 16:03	1
2-Fluorophenol	82		46 - 133				11/22/17 16:19	11/27/17 16:03	1
Nitrobenzene-d5	64		41 - 120				11/22/17 16:19	11/27/17 16:03	1
Phenol-d5	67		46 - 125				11/22/17 16:19	11/27/17 16:03	1
Terphenyl-d14	63		35 - 160				11/22/17 16:19	11/27/17 16:03	1
2,4,6-Tribromophenol	81		25 - 139				11/22/17 16:19	11/27/17 16:03	1

Analyte	Result C	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	<0.020	0.020	0.0072	mg/Kg	<u> </u>	11/24/17 07:47	11/30/17 11:32	1
PCB-1221	<0.020	0.020	0.0089	mg/Kg	☼	11/24/17 07:47	11/30/17 11:32	1
PCB-1232	<0.020	0.020	0.0088	mg/Kg	☼	11/24/17 07:47	11/30/17 11:32	1
PCB-1242	<0.020	0.020	0.0066	mg/Kg	₽	11/24/17 07:47	11/30/17 11:32	1
PCB-1248	<0.020	0.020	0.0080	mg/Kg	☼	11/24/17 07:47	11/30/17 11:32	1
PCB-1254	<0.020	0.020	0.0044	mg/Kg	☼	11/24/17 07:47	11/30/17 11:32	1
PCB-1260	<0.020	0.020	0.0099	mg/Kg		11/24/17 07:47	11/30/17 11:32	1
0	0/5							

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	79		49 - 129	11/24/17 07:47	11/30/17 11:32	1
DCB Decachlorobiphenyl	115		37 - 121	11/24/17 07:47	11/30/17 11:32	1

Method: 6010B - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<1.2		1.2		mg/Kg	— <del>-</del>	11/23/17 07:44		1
Arsenic	10	F1	0.61		mg/Kg	☼	11/23/17 07:44	11/23/17 23:17	1
Barium	79		0.61	0.070	mg/Kg	₩	11/23/17 07:44	11/23/17 23:17	1
Beryllium	0.36		0.24	0.057	mg/Kg		11/23/17 07:44	11/23/17 23:17	1
Cadmium	0.022	JB	0.12	0.022	mg/Kg	₩	11/23/17 07:44	11/23/17 23:17	1
Chromium	21		0.61	0.30	mg/Kg	₩	11/23/17 07:44	11/23/17 23:17	1
Cobalt	4.3		0.31	0.080	mg/Kg		11/23/17 07:44	11/23/17 23:17	1
Copper	14		0.61	0.17	mg/Kg	₩	11/23/17 07:44	11/23/17 23:17	1
Iron	25000		12	6.4	mg/Kg	₩	11/23/17 07:44	11/23/17 23:17	1
Lead	16	F1	0.31	0.14	mg/Kg		11/23/17 07:44	11/23/17 23:17	1
Manganese	180	F2	0.61	0.089	mg/Kg	₩	11/23/17 07:44	11/23/17 23:17	1
Nickel	15		0.61	0.18	mg/Kg	₩	11/23/17 07:44	11/23/17 23:17	1
Selenium	0.53	J F1	0.61	0.36	mg/Kg	φ.	11/23/17 07:44	11/23/17 23:17	1
Silver	< 0.31		0.31	0.079	mg/Kg	₩	11/23/17 07:44	11/23/17 23:17	1

Page 8 of 34

TestAmerica Chicago

11/30/2017

### **Client Sample Results**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

**Client Sample ID: 3160-32-07** 

Date Collected: 11/21/17 15:05

Date Received: 11/22/17 13:58

Mercury

Analyte

Mercury

Analyte

рН

**General Chemistry** 

Method: 7471B - Mercury (CVAA)

TestAmerica Job ID: 500-137674-1

Lab Sample ID: 500-137674-1 **Matrix: Solid** 

Percent Solids: 80.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Thallium	<0.61		0.61	0.30	mg/Kg	<u></u>	11/23/17 07:44	11/23/17 23:17	1
Vanadium	43		0.31	0.072	mg/Kg		11/23/17 07:44	11/23/17 23:17	1
Zinc	59		1.2	0.54	mg/Kg	₽	11/23/17 07:44	11/23/17 23:17	1
Method: 6010B - Meta	als (ICP) - TCLP								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/29/17 08:23	11/29/17 16:04	1
Barium	0.37	J	0.50	0.050	mg/L		11/29/17 08:23	11/29/17 16:04	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/29/17 08:23	11/29/17 16:04	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/29/17 08:23	11/29/17 16:04	1
Chromium	<0.025		0.025	0.010	mg/L		11/29/17 08:23	11/29/17 16:04	1
Cobalt	0.014	J	0.025	0.010	mg/L		11/29/17 08:23	11/29/17 16:04	1
Copper	0.021	J	0.025	0.010	mg/L		11/29/17 08:23	11/29/17 16:04	1
Iron	0.40		0.40	0.20	mg/L		11/29/17 08:23	11/29/17 16:04	1
Lead	< 0.0075		0.0075	0.0075	mg/L		11/29/17 08:23	11/29/17 16:04	1
Manganese	1.7		0.025	0.010	mg/L		11/29/17 08:23	11/29/17 16:04	1
Nickel	0.048		0.025	0.010	mg/L		11/29/17 08:23	11/29/17 16:04	1
Selenium	<0.050		0.050	0.020	mg/L		11/29/17 08:23	11/29/17 16:04	1
Silver	<0.025		0.025	0.010	mg/L		11/29/17 08:23	11/29/17 16:04	1
Vanadium	<0.025		0.025	0.010	mg/L		11/29/17 08:23	11/29/17 16:04	1
Zinc	0.22	J	0.50	0.020	mg/L		11/29/17 08:23	11/29/17 16:04	1
- Method: 6010B - Meta	als (ICP) - SPLP Eas	t							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Manganese	0.20		0.025	0.010	mg/L		11/29/17 09:01	11/29/17 16:25	1
Method: 6020A - Meta	als (ICP/MS) - TCLP								
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060		0.0060	0.0060	mg/L		11/29/17 08:23	11/29/17 16:37	1
Thallium	<0.0020		0.0020	0.0020	mg/L		11/29/17 08:23	11/29/17 16:37	1
Method: 7470A - TCL	P Mercury - TCLP								
Analyte	· ·	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

0.00020

RL

RL

0.20

0.020

<0.00020

Result Qualifier

Result Qualifier

0.022 B

5.4

0.00020 mg/L

MDL Unit

0.0068 mg/Kg

MDL Unit

0.20 SU

11/29/17 15:15 11/30/17 10:07

Analyzed

Analyzed

11/28/17 13:02

Dil Fac

Dil Fac

Prepared

Prepared

11/30/2017

### **Definitions/Glossary**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-137674-1

#### **Qualifiers**

#### **GC/MS Semi VOA**

Qualifier	Qualifier Description
F1	MS and/or MSD Recovery is outside acceptance limits.
F2	MS/MSD RPD exceeds control limits
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

#### **Metals**

Qualifier	Qualifier Description
F1	MS and/or MSD Recovery is outside acceptance limits.
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
F2	MS/MSD RPD exceeds control limits
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.

### Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)

MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated

ND	Not Detected at the reporting limit (or MDL or EDL if shown)

PQL	Practical Quantitation I	imit
FUL	Fractical Quantitation i	_1111111

QC **Quality Control** 

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) TEF Toxicity Equivalent Quotient (Dioxin) **TEQ** 

Page 10 of 34

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Project/Site. IDOT - Beriton - WO o.

3

#### **GC/MS VOA**

#### **Prep Batch: 411403**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-137674-1	3160-32-07	Total/NA	Solid	5035	

### **Analysis Batch: 411445**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-137674-1	3160-32-07	Total/NA	Solid	8260B	411403
MB 500-411445/6	Method Blank	Total/NA	Solid	8260B	
LCS 500-411445/4	Lab Control Sample	Total/NA	Solid	8260B	
LCSD 500-411445/5	Lab Control Sample Dup	Total/NA	Solid	8260B	

## 8

### GC/MS Semi VOA

### **Prep Batch: 411212**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-137674-1	3160-32-07	Total/NA	Solid	3541	
MB 500-411212/1-A	Method Blank	Total/NA	Solid	3541	
LCS 500-411212/2-A	Lab Control Sample	Total/NA	Solid	3541	
500-137674-1 MS	3160-32-07	Total/NA	Solid	3541	
500-137674-1 MSD	3160-32-07	Total/NA	Solid	3541	

### **Analysis Batch: 411278**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 500-411212/1-A	Method Blank	Total/NA	Solid	8270D	411212
LCS 500-411212/2-A	Lab Control Sample	Total/NA	Solid	8270D	411212

### Analysis Batch: 411454

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-137674-1	3160-32-07	Total/NA	Solid	8270D	411212
500-137674-1 MS	3160-32-07	Total/NA	Solid	8270D	411212
500-137674-1 MSD	3160-32-07	Total/NA	Solid	8270D	411212

### **GC Semi VOA**

### **Prep Batch: 411275**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-137674-1	3160-32-07	Total/NA	Solid	3541	
MB 500-411275/1-A	Method Blank	Total/NA	Solid	3541	
LCS 500-411275/3-A	Lab Control Sample	Total/NA	Solid	3541	

#### **Analysis Batch: 411518**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 500-411275/1-A	Method Blank	Total/NA	Solid	8082A	411275
LCS 500-411275/3-A	Lab Control Sample	Total/NA	Solid	8082A	411275

#### **Analysis Batch: 411995**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-137674-1	3160-32-07	Total/NA	Solid	8082A	411275

### **QC Association Summary**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-137674-1

#### **Metals**

Prep	Batch:	411251
------	--------	--------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-137674-1	3160-32-07	Total/NA	Solid	3050B	
MB 500-411251/1-A	Method Blank	Total/NA	Solid	3050B	
LCS 500-411251/2-A	Lab Control Sample	Total/NA	Solid	3050B	
500-137674-1 MS	3160-32-07	Total/NA	Solid	3050B	
500-137674-1 MSD	3160-32-07	Total/NA	Solid	3050B	
500-137674-1 DU	3160-32-07	Total/NA	Solid	3050B	

#### **Analysis Batch: 411309**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-137674-1	3160-32-07	Total/NA	Solid	6010B	411251
MB 500-411251/1-A	Method Blank	Total/NA	Solid	6010B	411251
LCS 500-411251/2-A	Lab Control Sample	Total/NA	Solid	6010B	411251
500-137674-1 MS	3160-32-07	Total/NA	Solid	6010B	411251
500-137674-1 MSD	3160-32-07	Total/NA	Solid	6010B	411251
500-137674-1 DU	3160-32-07	Total/NA	Solid	6010B	411251

#### **Prep Batch: 411477**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-137674-1	3160-32-07	Total/NA	Solid	7471B	
MB 500-411477/12-A	Method Blank	Total/NA	Solid	7471B	
LCS 500-411477/13-A	Lab Control Sample	Total/NA	Solid	7471B	

#### Leach Batch: 411663

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-137674-1	3160-32-07	TCLP	Solid	1311	<u> </u>
LB 500-411663/1-B	Method Blank	TCLP	Solid	1311	
LB 500-411663/1-C	Method Blank	TCLP	Solid	1311	

#### Leach Batch: 411674

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-137674-1	3160-32-07	SPLP East	Solid	1312	
LB 500-411674/1-B	Method Blank	SPLP East	Solid	1312	

#### **Analysis Batch: 411792**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-137674-1	3160-32-07	Total/NA	Solid	7471B	411477
MB 500-411477/12-A	Method Blank	Total/NA	Solid	7471B	411477
LCS 500-411477/13-A	Lab Control Sample	Total/NA	Solid	7471B	411477

#### **Prep Batch: 411800**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-137674-1	3160-32-07	TCLP	Solid	3010A	411663
LB 500-411663/1-B	Method Blank	TCLP	Solid	3010A	411663
LCS 500-411800/2-A	Lab Control Sample	Total/NA	Solid	3010A	

#### **Prep Batch: 411807**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-137674-1	3160-32-07	SPLP East	Solid	3010A	411674
LB 500-411674/1-B	Method Blank	SPLP East	Solid	3010A	411674
LCS 500-411807/2-A	Lab Control Sample	Total/NA	Solid	3010A	

TestAmerica Chicago

Page 12 of 34

### **QC Association Summary**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028 TestAmerica Job ID: 500-137674-1

-

### **Metals (Continued)**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-137674-1	3160-32-07	TCLP	Solid	7470A	411663
LB 500-411663/1-C	Method Blank	TCLP	Solid	7470A	411663
MB 500-411892/12-A	Method Blank	Total/NA	Solid	7470A	
LCS 500-411892/13-A	Lab Control Sample	Total/NA	Solid	7470A	

#### Analysis Batch: 411940

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-137674-1	3160-32-07	TCLP	Solid	6010B	411800
LB 500-411663/1-B	Method Blank	TCLP	Solid	6010B	411800
LCS 500-411800/2-A	Lab Control Sample	Total/NA	Solid	6010B	411800

### **Analysis Batch: 411942**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-137674-1	3160-32-07	SPLP East	Solid	6010B	411807
LB 500-411674/1-B	Method Blank	SPLP East	Solid	6010B	411807
LCS 500-411807/2-A	Lab Control Sample	Total/NA	Solid	6010B	411807

#### **Analysis Batch: 411982**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-137674-1	3160-32-07	TCLP	Solid	6020A	411800
LB 500-411663/1-B	Method Blank	TCLP	Solid	6020A	411800
LCS 500-411800/2-A	Lab Control Sample	Total/NA	Solid	6020A	411800

#### **Analysis Batch: 412012**

_ •					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-137674-1	3160-32-07	TCLP	Solid	7470A	411892
LB 500-411663/1-C	Method Blank	TCLP	Solid	7470A	411892
MB 500-411892/12-A	Method Blank	Total/NA	Solid	7470A	411892
LCS 500-411892/13-A	Lab Control Sample	Total/NA	Solid	7470A	411892

### **General Chemistry**

#### Analysis Batch: 411344

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-137674-1	3160-32-07	Total/NA	Solid	Moisture	

#### **Analysis Batch: 411701**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-137674-1	3160-32-07	Total/NA	Solid	9045D	

4

6

8

9

1

12

13

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Method: 8260B - Volatile Organic Compounds (GC/MS)

**Matrix: Solid** Prep Type: Total/NA

			Pe	ercent Surre	gate Rec
		BFB	DBFM	12DCE	TOL
Lab Sample ID	Client Sample ID	(75-131)	(75-126)	(70-134)	(75-124)
500-137674-1	3160-32-07	103	103	103	92
LCS 500-411445/4	Lab Control Sample	99	101	94	96
LCSD 500-411445/5	Lab Control Sample Dup	101	102	98	95
MB 500-411445/6	Method Blank	99	102	100	93

Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane

12DCE = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

**Matrix: Solid** Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits						
		FBP	2FP	NBZ	PHL	TPH	TBP	
Lab Sample ID	Client Sample ID	(44-121)	(46-133)	(41-120)	(46-125)	(35-160)	(25-139)	
500-137674-1	3160-32-07	68	82	64	67	63	81	
500-137674-1 MS	3160-32-07	87	94	83	76	73	120	
500-137674-1 MSD	3160-32-07	76	86	72	70	69	105	
LCS 500-411212/2-A	Lab Control Sample	79	111	72	93	76	82	
MB 500-411212/1-A	Method Blank	78	107	63	89	78	69	

**Surrogate Legend** 

FBP = 2-Fluorobiphenyl

2FP = 2-Fluorophenol

NBZ = Nitrobenzene-d5

PHL = Phenol-d5

TPH = Terphenyl-d14

TBP = 2,4,6-Tribromophenol

### Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

**Matrix: Solid** Prep Type: Total/NA

			Percent S	Surrogate Recovery (Acceptance Limits	s)
		TCX1	DCB1		
Lab Sample ID	Client Sample ID	(49-129)	(37-121)		
500-137674-1	3160-32-07	79	115		
LCS 500-411275/3-A	Lab Control Sample	99	101		
MB 500-411275/1-A	Method Blank	107	106		

TCX = Tetrachloro-m-xylene

DCB = DCB Decachlorobiphenyl

Page 14 of 34

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 500-411445/6 Client Sample ID: Method Blank **Matrix: Solid Prep Type: Total/NA** 

**Analysis Batch: 411445** 

•	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	<0.020		0.020	0.0087	mg/Kg			11/27/17 11:10	1
Benzene	<0.0020		0.0020	0.00051	mg/Kg			11/27/17 11:10	1
Bromodichloromethane	<0.0020		0.0020	0.00041	mg/Kg			11/27/17 11:10	1
Bromoform	<0.0020		0.0020	0.00058	mg/Kg			11/27/17 11:10	1
Bromomethane	<0.0050		0.0050	0.0019	mg/Kg			11/27/17 11:10	1
2-Butanone (MEK)	<0.0050		0.0050	0.0022	mg/Kg			11/27/17 11:10	1
Carbon disulfide	<0.0050		0.0050	0.0010	mg/Kg			11/27/17 11:10	1
Carbon tetrachloride	<0.0020		0.0020	0.00058	mg/Kg			11/27/17 11:10	1
Chlorobenzene	<0.0020		0.0020	0.00074	mg/Kg			11/27/17 11:10	1
Chloroethane	<0.0050		0.0050	0.0015	mg/Kg			11/27/17 11:10	1
Chloroform	<0.0020		0.0020	0.00069	mg/Kg			11/27/17 11:10	1
Chloromethane	< 0.0050		0.0050	0.0020	mg/Kg			11/27/17 11:10	1
cis-1,2-Dichloroethene	<0.0020		0.0020	0.00056	mg/Kg			11/27/17 11:10	1
cis-1,3-Dichloropropene	< 0.0020		0.0020	0.00060	mg/Kg			11/27/17 11:10	1
Dibromochloromethane	<0.0020		0.0020	0.00065	mg/Kg			11/27/17 11:10	1
1,1-Dichloroethane	<0.0020		0.0020	0.00069				11/27/17 11:10	1
1,2-Dichloroethane	< 0.0050		0.0050	0.0016	mg/Kg			11/27/17 11:10	1
1,1-Dichloroethene	<0.0020		0.0020	0.00069				11/27/17 11:10	1
1,2-Dichloropropane	<0.0020		0.0020	0.00052	mg/Kg			11/27/17 11:10	1
1,3-Dichloropropene, Total	<0.0020		0.0020	0.00070	mg/Kg			11/27/17 11:10	1
Ethylbenzene	<0.0020		0.0020	0.00096				11/27/17 11:10	1
2-Hexanone	<0.0050		0.0050	0.0016				11/27/17 11:10	1
Methylene Chloride	<0.0050		0.0050	0.0020				11/27/17 11:10	1
4-Methyl-2-pentanone (MIBK)	< 0.0050		0.0050	0.0015	mg/Kg			11/27/17 11:10	1
Methyl tert-butyl ether	<0.0020		0.0020	0.00059				11/27/17 11:10	1
Styrene	<0.0020		0.0020	0.00060				11/27/17 11:10	1
1,1,2,2-Tetrachloroethane	<0.0020		0.0020	0.00064				11/27/17 11:10	1
Tetrachloroethene	<0.0020		0.0020	0.00068	mg/Kg			11/27/17 11:10	1
Toluene	<0.0020		0.0020	0.00051				11/27/17 11:10	1
trans-1,2-Dichloroethene	<0.0020		0.0020	0.00089				11/27/17 11:10	1
trans-1,3-Dichloropropene	<0.0020		0.0020	0.00070	mg/Kg			11/27/17 11:10	1
1,1,1-Trichloroethane	<0.0020		0.0020	0.00067				11/27/17 11:10	1
1,1,2-Trichloroethane	<0.0020		0.0020	0.00086				11/27/17 11:10	1
Trichloroethene	<0.0020		0.0020	0.00068				11/27/17 11:10	1
Vinyl acetate	<0.0050		0.0050	0.0017				11/27/17 11:10	1
Vinyl chloride	<0.0020		0.0020	0.00089				11/27/17 11:10	1
Xylenes, Total	<0.0040		0.0040	0.00064				11/27/17 11:10	1

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		75 - 131		11/27/17 11:10	1
Dibromofluoromethane	102		75 - 126		11/27/17 11:10	1
1,2-Dichloroethane-d4 (Surr)	100		70 - 134		11/27/17 11:10	1
Toluene-d8 (Surr)	93		75 - 124		11/27/17 11:10	1

Page 15 of 34

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

# Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 500-411445/4

**Matrix: Solid** 

**Analysis Batch: 411445** 

**Client Sample ID: Lab Control Sample Prep Type: Total/NA** 

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acetone	0.0500	0.0457		mg/Kg		91	40 - 150	
Benzene	0.0500	0.0516		mg/Kg		103	70 - 125	
Bromodichloromethane	0.0500	0.0542		mg/Kg		108	67 - 129	
Bromoform	0.0500	0.0480		mg/Kg		96	68 - 136	
Bromomethane	0.0500	0.0573		mg/Kg		115	70 - 130	
2-Butanone (MEK)	0.0500	0.0309		mg/Kg		62	47 - 138	
Carbon disulfide	0.0500	0.0513		mg/Kg		103	70 - 129	
Carbon tetrachloride	0.0500	0.0581		mg/Kg		116	75 - 125	
Chlorobenzene	0.0500	0.0502		mg/Kg		100	50 - 150	
Chloroethane	0.0500	0.0488		mg/Kg		98	75 - 125	
Chloroform	0.0500	0.0558		mg/Kg		112	57 ₋ 135	
Chloromethane	0.0500	0.0438		mg/Kg		88	70 - 125	
cis-1,2-Dichloroethene	0.0500	0.0536		mg/Kg		107	70 - 125	
cis-1,3-Dichloropropene	0.0500	0.0505		mg/Kg		101	70 - 125	
Dibromochloromethane	0.0500	0.0537		mg/Kg		107	69 - 125	
1,1-Dichloroethane	0.0500	0.0482		mg/Kg		96	70 - 125	
1,2-Dichloroethane	0.0500	0.0542		mg/Kg		108	70 - 130	
1,1-Dichloroethene	0.0500	0.0541		mg/Kg		108	70 - 120	
1,2-Dichloropropane	0.0500	0.0458		mg/Kg		92	70 - 125	
Ethylbenzene	0.0500	0.0489		mg/Kg		98	61 - 136	
2-Hexanone	0.0500	0.0276		mg/Kg		55	48 - 146	
Methylene Chloride	0.0500	0.0522		mg/Kg		104	70 - 126	
4-Methyl-2-pentanone (MIBK)	0.0500	0.0285		mg/Kg		57	50 - 148	
Methyl tert-butyl ether	0.0500	0.0562		mg/Kg		112	50 - 140	
Styrene	0.0500	0.0507		mg/Kg		101	70 - 125	
1,1,2,2-Tetrachloroethane	0.0500	0.0542		mg/Kg		108	70 - 122	
Tetrachloroethene	0.0500	0.0465		mg/Kg		93	70 - 124	
Toluene	0.0500	0.0485		mg/Kg		97	70 - 125	
trans-1,2-Dichloroethene	0.0500	0.0534		mg/Kg		107	70 - 125	
trans-1,3-Dichloropropene	0.0500	0.0502		mg/Kg		100	70 - 125	
1,1,1-Trichloroethane	0.0500	0.0562		mg/Kg		112	70 - 128	
1,1,2-Trichloroethane	0.0500	0.0501		mg/Kg		100	70 - 125	
Trichloroethene	0.0500	0.0548		mg/Kg		110	70 - 125	
Vinyl acetate	0.0500	0.0321		mg/Kg		64	40 - 153	
Vinyl chloride	0.0500	0.0518		mg/Kg		104	70 - 125	
Xylenes, Total	0.100	0.0998		mg/Kg		100	53 - 147	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	99		75 - 131
Dibromofluoromethane	101		75 - 126
1,2-Dichloroethane-d4 (Surr)	94		70 - 134
Toluene-d8 (Surr)	96		75 - 124

TestAmerica Chicago

__

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

### Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 500-411445/5

**Matrix: Solid** 

**Analysis Batch: 411445** 

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

-	Spike						%Rec.	RPI		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Acetone	0.0500	0.0463		mg/Kg		93	40 - 150	1	30	
Benzene	0.0500	0.0501		mg/Kg		100	70 - 125	3	30	
Bromodichloromethane	0.0500	0.0517		mg/Kg		103	67 - 129	5	30	
Bromoform	0.0500	0.0494		mg/Kg		99	68 - 136	3	30	
Bromomethane	0.0500	0.0550		mg/Kg		110	70 - 130	4	30	
2-Butanone (MEK)	0.0500	0.0300		mg/Kg		60	47 - 138	3	30	
Carbon disulfide	0.0500	0.0485		mg/Kg		97	70 - 129	6	30	
Carbon tetrachloride	0.0500	0.0562		mg/Kg		112	75 ₋ 125	3	30	
Chlorobenzene	0.0500	0.0485		mg/Kg		97	50 - 150	3	30	
Chloroethane	0.0500	0.0474		mg/Kg		95	75 - 125	3	30	
Chloroform	0.0500	0.0537		mg/Kg		107	57 ₋ 135	4	30	
Chloromethane	0.0500	0.0419		mg/Kg		84	70 - 125	5	30	
cis-1,2-Dichloroethene	0.0500	0.0507		mg/Kg		101	70 - 125	6	30	
cis-1,3-Dichloropropene	0.0500	0.0498		mg/Kg		100	70 - 125	1	30	
Dibromochloromethane	0.0500	0.0545		mg/Kg		109	69 - 125	2	30	
1,1-Dichloroethane	0.0500	0.0463		mg/Kg		93	70 - 125	4	30	
1,2-Dichloroethane	0.0500	0.0540		mg/Kg		108	70 - 130	0	30	
1,1-Dichloroethene	0.0500	0.0521		mg/Kg		104	70 - 120	4	30	
1,2-Dichloropropane	0.0500	0.0441		mg/Kg		88	70 - 125	4	30	
Ethylbenzene	0.0500	0.0479		mg/Kg		96	61 - 136	2	30	
2-Hexanone	0.0500	0.0300		mg/Kg		60	48 - 146	8	30	
Methylene Chloride	0.0500	0.0502		mg/Kg		100	70 - 126	4	30	
4-Methyl-2-pentanone (MIBK)	0.0500	0.0309		mg/Kg		62	50 - 148	8	30	
Methyl tert-butyl ether	0.0500	0.0565		mg/Kg		113	50 - 140	0	30	
Styrene	0.0500	0.0498		mg/Kg		100	70 - 125	2	30	
1,1,2,2-Tetrachloroethane	0.0500	0.0563		mg/Kg		113	70 - 122	4	30	
Tetrachloroethene	0.0500	0.0455		mg/Kg		91	70 - 124	2	30	
Toluene	0.0500	0.0467		mg/Kg		93	70 - 125	4	30	
trans-1,2-Dichloroethene	0.0500	0.0503		mg/Kg		101	70 - 125	6	30	
trans-1,3-Dichloropropene	0.0500	0.0507		mg/Kg		101	70 - 125	1	30	
1,1,1-Trichloroethane	0.0500	0.0548		mg/Kg		110	70 - 128	3	30	
1,1,2-Trichloroethane	0.0500	0.0510		mg/Kg		102	70 - 125	2	30	
Trichloroethene	0.0500	0.0512		mg/Kg		102	70 - 125	7	30	
Vinyl acetate	0.0500	0.0350		mg/Kg		70	40 - 153	9	30	
Vinyl chloride	0.0500	0.0483		mg/Kg		97	70 - 125	7	30	
Xylenes, Total	0.100	0.0978		mg/Kg		98	53 - 147	2	30	

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	101		75 - 131
Dibromofluoromethane	102		75 - 126
1,2-Dichloroethane-d4 (Surr)	98		70 - 134
Toluene-d8 (Surr)	95		75_124

TestAmerica Chicago

**Client Sample ID: Method Blank** 

**Prep Type: Total/NA** 

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 500-411212/1-A

**Matrix: Solid** 

Hexachlorocyclopentadiene

Hexachloroethane

Isophorone

Indeno[1,2,3-cd]pyrene

2-Methylnaphthalene

3 & 4 Methylphenol

2-Methylphenol

Naphthalene

Analysis Batch: 411278	MD	MB						Prep Batch: 41121		
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Acenaphthene	<0.033		0.033	0.0060	mg/Kg		-	11/24/17 16:14	1	
Acenaphthylene	< 0.033		0.033	0.0044			11/22/17 16:19	11/24/17 16:14	1	
Anthracene	<0.033		0.033	0.0056			11/22/17 16:19	11/24/17 16:14	1	
Benzo[a]anthracene	<0.033		0.033	0.0045	mg/Kg		11/22/17 16:19	11/24/17 16:14	1	
Benzo[a]pyrene	< 0.033		0.033	0.0064	mg/Kg		11/22/17 16:19	11/24/17 16:14	1	
Benzo[b]fluoranthene	< 0.033		0.033	0.0072	mg/Kg		11/22/17 16:19	11/24/17 16:14	1	
Benzo[g,h,i]perylene	<0.033		0.033	0.011	mg/Kg		11/22/17 16:19	11/24/17 16:14	1	
Benzo[k]fluoranthene	< 0.033		0.033	0.0098			11/22/17 16:19	11/24/17 16:14	1	
Bis(2-chloroethoxy)methane	<0.17		0.17	0.034	mg/Kg		11/22/17 16:19	11/24/17 16:14	1	
Bis(2-chloroethyl)ether	<0.17		0.17	0.050	mg/Kg		11/22/17 16:19	11/24/17 16:14	1	
Bis(2-ethylhexyl) phthalate	<0.17		0.17	0.061	mg/Kg		11/22/17 16:19	11/24/17 16:14	1	
4-Bromophenyl phenyl ether	<0.17		0.17	0.044	mg/Kg		11/22/17 16:19	11/24/17 16:14	1	
Butyl benzyl phthalate	<0.17		0.17	0.063	mg/Kg		11/22/17 16:19	11/24/17 16:14	1	
Carbazole	<0.17		0.17		mg/Kg		11/22/17 16:19	11/24/17 16:14	1	
4-Chloroaniline	<0.67		0.67	0.16	mg/Kg		11/22/17 16:19	11/24/17 16:14	1	
4-Chloro-3-methylphenol	<0.33		0.33		mg/Kg		11/22/17 16:19	11/24/17 16:14	1	
2-Chloronaphthalene	<0.17		0.17	0.037	mg/Kg		11/22/17 16:19	11/24/17 16:14	1	
2-Chlorophenol	<0.17		0.17	0.057	mg/Kg		11/22/17 16:19	11/24/17 16:14	1	
4-Chlorophenyl phenyl ether	<0.17		0.17	0.039	mg/Kg		11/22/17 16:19	11/24/17 16:14	1	
Chrysene	< 0.033		0.033	0.0091	mg/Kg		11/22/17 16:19	11/24/17 16:14	1	
Dibenz(a,h)anthracene	< 0.033		0.033	0.0064	mg/Kg		11/22/17 16:19	11/24/17 16:14	1	
Dibenzofuran	<0.17		0.17	0.039	mg/Kg		11/22/17 16:19	11/24/17 16:14	1	
1,2-Dichlorobenzene	<0.17		0.17	0.040	mg/Kg		11/22/17 16:19	11/24/17 16:14	1	
1,3-Dichlorobenzene	<0.17		0.17	0.037	mg/Kg		11/22/17 16:19	11/24/17 16:14	1	
1,4-Dichlorobenzene	<0.17		0.17	0.043	mg/Kg		11/22/17 16:19	11/24/17 16:14	1	
3,3'-Dichlorobenzidine	<0.17		0.17	0.047	mg/Kg		11/22/17 16:19	11/24/17 16:14	1	
2,4-Dichlorophenol	<0.33		0.33	0.079	mg/Kg		11/22/17 16:19	11/24/17 16:14	1	
Diethyl phthalate	<0.17		0.17	0.056	mg/Kg		11/22/17 16:19	11/24/17 16:14	1	
2,4-Dimethylphenol	<0.33		0.33	0.13	mg/Kg		11/22/17 16:19	11/24/17 16:14	1	
Dimethyl phthalate	<0.17		0.17	0.043	mg/Kg		11/22/17 16:19	11/24/17 16:14	1	
Di-n-butyl phthalate	<0.17		0.17	0.051	mg/Kg		11/22/17 16:19	11/24/17 16:14	1	
4,6-Dinitro-2-methylphenol	<0.67		0.67	0.27	mg/Kg		11/22/17 16:19	11/24/17 16:14	1	
2,4-Dinitrophenol	<0.67		0.67	0.59	mg/Kg		11/22/17 16:19	11/24/17 16:14	1	
2,4-Dinitrotoluene	<0.17		0.17	0.053	mg/Kg		11/22/17 16:19	11/24/17 16:14	1	
2,6-Dinitrotoluene	<0.17		0.17	0.065	mg/Kg		11/22/17 16:19	11/24/17 16:14	1	
Di-n-octyl phthalate	<0.17		0.17		mg/Kg		11/22/17 16:19	11/24/17 16:14	1	
Fluoranthene	<0.033		0.033	0.0062	mg/Kg		11/22/17 16:19	11/24/17 16:14	1	
Fluorene	< 0.033		0.033	0.0047	mg/Kg		11/22/17 16:19	11/24/17 16:14	1	
Hexachlorobenzene	< 0.067		0.067	0.0077			11/22/17 16:19	11/24/17 16:14	1	
Hexachlorobutadiene	<0.17		0.17		mg/Kg		11/22/17 16:19	11/24/17 16:14	1	

TestAmerica Chicago

11/22/17 16:19 11/24/17 16:14

11/22/17 16:19 11/24/17 16:14

11/22/17 16:19 11/24/17 16:14

11/22/17 16:19 11/24/17 16:14

11/22/17 16:19 11/24/17 16:14

11/22/17 16:19 11/24/17 16:14

11/22/17 16:19 11/24/17 16:14

11/22/17 16:19 11/24/17 16:14

Page 18 of 34

0.67

0.17

0.033

0.17

0.17

0.17

0.033

0.067

0.19 mg/Kg

0.051 mg/Kg

0.037 mg/Kg

0.0061 mg/Kg

0.053 mg/Kg

0.055 mg/Kg

0.0051 mg/Kg

0.0086 mg/Kg

< 0.67

< 0.17

< 0.033

< 0.17

< 0.067

< 0.17

< 0.17

< 0.033

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

### Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

MB MB

Lab Sample ID: MB 500-411212/1-A

**Matrix: Solid** 

**Analysis Batch: 411278** 

**Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 411212** 

	IVID	IAID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Nitroaniline	<0.17		0.17	0.045	mg/Kg		11/22/17 16:19	11/24/17 16:14	1
3-Nitroaniline	<0.33		0.33	0.10	mg/Kg		11/22/17 16:19	11/24/17 16:14	1
4-Nitroaniline	<0.33		0.33	0.14	mg/Kg		11/22/17 16:19	11/24/17 16:14	1
Nitrobenzene	<0.033		0.033	0.0083	mg/Kg		11/22/17 16:19	11/24/17 16:14	1
2-Nitrophenol	<0.33		0.33	0.079	mg/Kg		11/22/17 16:19	11/24/17 16:14	1
4-Nitrophenol	<0.67		0.67	0.32	mg/Kg		11/22/17 16:19	11/24/17 16:14	1
N-Nitrosodi-n-propylamine	<0.067		0.067	0.041	mg/Kg		11/22/17 16:19	11/24/17 16:14	1
N-Nitrosodiphenylamine	<0.17		0.17	0.039	mg/Kg		11/22/17 16:19	11/24/17 16:14	1
2,2'-oxybis[1-chloropropane]	<0.17		0.17	0.039	mg/Kg		11/22/17 16:19	11/24/17 16:14	1
Pentachlorophenol	<0.67		0.67	0.53	mg/Kg		11/22/17 16:19	11/24/17 16:14	1
Phenanthrene	<0.033		0.033	0.0046	mg/Kg		11/22/17 16:19	11/24/17 16:14	1
Phenol	<0.17		0.17	0.074	mg/Kg		11/22/17 16:19	11/24/17 16:14	1
Pyrene	<0.033		0.033	0.0066	mg/Kg		11/22/17 16:19	11/24/17 16:14	1
1,2,4-Trichlorobenzene	<0.17		0.17	0.036	mg/Kg		11/22/17 16:19	11/24/17 16:14	1
2,4,5-Trichlorophenol	<0.33		0.33	0.076	mg/Kg		11/22/17 16:19	11/24/17 16:14	1
2,4,6-Trichlorophenol	<0.33		0.33	0.11	mg/Kg		11/22/17 16:19	11/24/17 16:14	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	78		44 - 121	11/22/17 16:19	11/24/17 16:14	1
2-Fluorophenol	107		46 - 133	11/22/17 16:19	11/24/17 16:14	1
Nitrobenzene-d5	63		41 - 120	11/22/17 16:19	11/24/17 16:14	1
Phenol-d5	89		46 - 125	11/22/17 16:19	11/24/17 16:14	1
Terphenyl-d14	78		35 - 160	11/22/17 16:19	11/24/17 16:14	1
2,4,6-Tribromophenol	69		25 - 139	11/22/17 16:19	11/24/17 16:14	1

Lab Sample ID: LCS 500-411212/2-A

**Matrix: Solid** 

Analysis Batch: 411278

**Client Sample ID: Lab Control Sample** Prep Type: Total/NA **Prep Batch: 411212** 

Analysis Batch: 411278	Spike	LCS	LCS				WRec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Acenaphthene	1.33	1.07		mg/Kg		80	58 - 110
Acenaphthylene	1.33	1.01		mg/Kg		75	60 - 110
Anthracene	1.33	1.07		mg/Kg		81	63 - 110
Benzo[a]anthracene	1.33	0.903		mg/Kg		68	63 - 110
Benzo[a]pyrene	1.33	1.14		mg/Kg		86	61 - 120
Benzo[b]fluoranthene	1.33	1.08		mg/Kg		81	62 - 120
Benzo[g,h,i]perylene	1.33	1.11		mg/Kg		83	64 - 120
Benzo[k]fluoranthene	1.33	1.12		mg/Kg		84	65 - 120
Bis(2-chloroethoxy)methane	1.33	0.980		mg/Kg		73	60 - 112
Bis(2-chloroethyl)ether	1.33	0.936		mg/Kg		70	55 - 111
Bis(2-ethylhexyl) phthalate	1.33	1.05		mg/Kg		79	63 - 118
4-Bromophenyl phenyl ether	1.33	0.978		mg/Kg		73	63 - 110
Butyl benzyl phthalate	1.33	1.06		mg/Kg		80	61 - 116
Carbazole	1.33	1.39		mg/Kg		104	59 - 158
4-Chloroaniline	1.33	1.04		mg/Kg		78	30 - 150
4-Chloro-3-methylphenol	1.33	0.964		mg/Kg		72	61 - 114
2-Chloronaphthalene	1.33	1.05		mg/Kg		79	64 - 110
2-Chlorophenol	1.33	1.09		mg/Kg		81	64 - 110

TestAmerica Chicago

Page 19 of 34

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

### Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 500-411212/2	-A
Metrice Colid	

Matrix: Solid

Client Sample ID: Lab Control Sample
Prep Type: Total/NA
Prep Batch: 411212

Analysis Batch: 411278	Spike	LCS LCS			Prep Batch: 41121 %Rec.
Analyte	Added	Result Qualifi	ier Unit	D %Rec	Limits
4-Chlorophenyl phenyl ether	1.33	0.967	mg/Kg	73	63 - 110
Chrysene	1.33	0.922	mg/Kg	69	63 - 120
Dibenz(a,h)anthracene	1.33	1.18	mg/Kg	88	64 - 119
Dibenzofuran	1.33	1.01	mg/Kg	75	64 - 110
1,2-Dichlorobenzene	1.33	0.971	mg/Kg	73	62 - 110
1,3-Dichlorobenzene	1.33	0.952	mg/Kg	71	60 - 110
1,4-Dichlorobenzene	1.33	0.957	mg/Kg	72	61 - 110
3,3'-Dichlorobenzidine	1.33	0.889	mg/Kg	67	49 - 112
2,4-Dichlorophenol	1.33	1.01	mg/Kg	76	58 - 120
Diethyl phthalate	1.33	1.04	mg/Kg	78	58 - 120
2,4-Dimethylphenol	1.33	1.01	mg/Kg	76	60 - 110
Dimethyl phthalate	1.33	1.08	mg/Kg	81	64 - 110
Di-n-butyl phthalate	1.33	1.14	mg/Kg	86	65 - 120
4,6-Dinitro-2-methylphenol	2.67	1.08	mg/Kg	41	10 - 110
2,4-Dinitrophenol	2.67	0.659 J	mg/Kg	25	10 - 100
2,4-Dinitrotoluene	1.33	1.19	mg/Kg	89	62 - 117
2,6-Dinitrotoluene	1.33	1.03	mg/Kg	77	67 - 120
Di-n-octyl phthalate	1.33	1.22	mg/Kg	92	63 - 119
Fluoranthene	1.33	1.10	mg/Kg	83	62 - 120
Fluorene	1.33	1.01	mg/Kg	76	62 - 120
Hexachlorobenzene	1.33	1.01	mg/Kg	76	55 - 117
Hexachlorobutadiene	1.33	0.787	mg/Kg	59	56 - 120
Hexachlorocyclopentadiene	1.33	0.690	mg/Kg	52	10 - 106
Hexachloroethane	1.33	0.942	mg/Kg	71	61 - 110
Indeno[1,2,3-cd]pyrene	1.33	1.21	mg/Kg	91	57 - 127
Isophorone	1.33	0.946	mg/Kg	71	55 - 110
2-Methylnaphthalene	1.33	0.961	mg/Kg	72	62 - 110
2-Methylphenol	1.33	1.07	mg/Kg	80	60 - 120
3 & 4 Methylphenol	1.33	1.05	mg/Kg	78	57 - 120
Naphthalene	1.33	1.01	mg/Kg	75	63 - 110
2-Nitroaniline	1.33	0.995	mg/Kg	75	57 - 124
3-Nitroaniline	1.33	1.16	mg/Kg	87	40 - 122
4-Nitroaniline	1.33	1.70	mg/Kg	127	60 - 160
Nitrobenzene	1.33	0.957	mg/Kg	72	60 - 116
2-Nitrophenol	1.33	1.06	mg/Kg	80	60 - 120
4-Nitrophenol	2.67	1.78	mg/Kg	67	30 - 122
N-Nitrosodi-n-propylamine	1.33	0.946	mg/Kg	71	56 - 118
N-Nitrosodiphenylamine	1.33	1.10	mg/Kg	82	65 - 112
2,2'-oxybis[1-chloropropane]	1.33	0.725	mg/Kg	54	40 - 124
Pentachlorophenol	2.67	1.45	mg/Kg	54	13 - 112
Phenanthrene	1.33	1.06	mg/Kg	80	62 - 120
Phenol	1.33	1.11	mg/Kg	83	56 - 122
Pyrene	1.33	0.973	mg/Kg	73	63 - 120
1,2,4-Trichlorobenzene	1.33	0.956	mg/Kg	72	62 - 110
2,4,5-Trichlorophenol	1.33	0.971	mg/Kg	73	50 - 120
2,4,6-Trichlorophenol	1.33	0.946	mg/Kg	71	57 - 120

TestAmerica Chicago

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

### Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 500-411212/2-A

Lab Sample ID: 500-137674-1 MS

Analysis Batch: 411454

**Matrix: Solid** 

**Matrix: Solid** 

**Analysis Batch: 411278** 

**Client Sample ID: Lab Control Sample Prep Type: Total/NA** 

**Prep Batch: 411212** 

LCS LCS

Sample Sample

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	79		44 - 121
2-Fluorophenol	111		46 - 133
Nitrobenzene-d5	72		41 - 120
Phenol-d5	93		46 - 125
Terphenyl-d14	76		35 - 160
2.4.6-Tribromophenol	82		25 - 139

Client Sample ID: 3160-32-07

**Prep Type: Total/NA** 

**Prep Batch: 411212** %Rec.

I .	•	•	•						
Analyte	Result Q	ualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Acenaphthene	<0.040		1.62	1.20		mg/Kg	<u></u>	74	58 - 110
Acenaphthylene	<0.040		1.62	1.22		mg/Kg	☼	75	60 - 110
Anthracene	<0.040		1.62	1.42		mg/Kg	₩	88	63 - 110
Benzo[a]anthracene	0.0054 J		1.62	1.25		mg/Kg	₩.	77	63 - 110
Benzo[a]pyrene	<0.040		1.62	1.55		mg/Kg	☼	96	61 - 120
Benzo[b]fluoranthene	<0.040		1.62	1.68		mg/Kg	₩	104	62 - 120
Benzo[g,h,i]perylene	<0.040 F1	1	1.62	1.11		mg/Kg	₩.	69	64 - 120
Benzo[k]fluoranthene	<0.040		1.62	1.73		mg/Kg	₩	107	65 - 120
Bis(2-chloroethoxy)methane	<0.20		1.62	1.22		mg/Kg	₩	75	60 - 112
Bis(2-chloroethyl)ether	<0.20 F1	1 F2	1.62	0.880	F1	mg/Kg	₩.	54	55 - 111

Spike

MS MS

10

l	Acenaphthylene	<0.040		1.62	1.22	mg/Kg	Đ:	75	60 - 110	
	Anthracene	<0.040		1.62	1.42	mg/Kg	₩	88	63 - 110	
	Benzo[a]anthracene	0.0054	J	1.62	1.25	mg/Kg	₩	77	63 - 110	
	Benzo[a]pyrene	<0.040		1.62	1.55	mg/Kg	₩	96	61 - 120	
	Benzo[b]fluoranthene	<0.040		1.62	1.68	mg/Kg	₩	104	62 - 120	
l	Benzo[g,h,i]perylene	<0.040	F1	1.62	1.11	mg/Kg	₩	69	64 - 120	
	Benzo[k]fluoranthene	<0.040		1.62	1.73	mg/Kg	₩	107	65 - 120	
	Bis(2-chloroethoxy)methane	<0.20		1.62	1.22	mg/Kg	₩	75	60 - 112	
İ	Bis(2-chloroethyl)ether	<0.20	F1 F2	1.62	0.880 F1	mg/Kg	₩	54	55 - 111	
	Bis(2-ethylhexyl) phthalate	<0.20		1.62	1.20	mg/Kg	₩	74	63 - 118	
	4-Bromophenyl phenyl ether	<0.20		1.62	1.48	mg/Kg	₩	91	63 - 110	
İ	Butyl benzyl phthalate	<0.20		1.62	1.12	mg/Kg	₩	69	61 - 116	
	Carbazole	<0.20		1.62	1.52	mg/Kg	₩	94	59 - 158	
	4-Chloroaniline	<0.81		1.62	0.949	mg/Kg	₩	59	30 - 150	
l	4-Chloro-3-methylphenol	<0.40		1.62	1.47	mg/Kg	₩	91	61 - 114	
	2-Chloronaphthalene	<0.20		1.62	1.32	mg/Kg	₩	82	64 - 110	
	2-Chlorophenol	<0.20		1.62	1.31	mg/Kg	₩	81	64 - 110	
	4-Chlorophenyl phenyl ether	<0.20		1.62	1.43	mg/Kg	₩	88	63 - 110	
	Chrysene	<0.040		1.62	1.27	mg/Kg	₩	79	63 - 120	
	Dibenz(a,h)anthracene	<0.040		1.62	1.30	mg/Kg	₩	81	64 - 119	
l	Dibenzofuran	<0.20		1.62	1.41	mg/Kg	₩	87	64 - 110	
	1,2-Dichlorobenzene	<0.20	F1	1.62	0.977 F1	mg/Kg	₩	60	62 - 110	
	1,3-Dichlorobenzene	<0.20	F1	1.62	0.940 F1	mg/Kg	₩	58	60 - 110	
İ	1,4-Dichlorobenzene	<0.20	F1	1.62	0.958 F1	mg/Kg	₩	59	61 - 110	
	3,3'-Dichlorobenzidine	<0.20	F1	1.62	0.460 F1	mg/Kg	₩	28	49 - 112	
	2,4-Dichlorophenol	<0.40		1.62	1.43	mg/Kg	₩	88	58 - 120	
İ	Diethyl phthalate	<0.20		1.62	1.58	mg/Kg	₩	98	58 - 120	
	2,4-Dimethylphenol	<0.40		1.62	1.26	mg/Kg	₩	78	60 - 110	
	Dimethyl phthalate	<0.20		1.62	1.41	mg/Kg	₩	87	64 - 110	
l	Di-n-butyl phthalate	<0.20		1.62	1.41	mg/Kg	₩	87	65 - 120	
	4,6-Dinitro-2-methylphenol	<0.81		3.23	1.46	mg/Kg	₩	45	10 - 110	
	2,4-Dinitrophenol	<0.81	F2	3.23	1.36	mg/Kg	₩	42	10 - 100	
	2,4-Dinitrotoluene	<0.20		1.62	1.51	mg/Kg	₩	93	62 - 117	
	2,6-Dinitrotoluene	<0.20		1.62	1.49	mg/Kg	₩	92	67 - 120	
	Di-n-octyl phthalate	<0.20		1.62	1.56	mg/Kg	₩	97	63 - 119	
٠										

TestAmerica Chicago

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

### Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 500-137674-1 MS Client Sample ID: 3160-32-07 Matrix: Solid **Prep Type: Total/NA** Analysis Batch: 411454 **Prep Batch: 411212** 

-	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Fluoranthene	<0.040		1.62	1.38		mg/Kg	<u> </u>	85	62 - 120	
Fluorene	<0.040		1.62	1.43		mg/Kg	₩.	89	62 - 120	
Hexachlorobenzene	<0.081		1.62	1.70		mg/Kg	₩	105	55 ₋ 117	
Hexachlorobutadiene	<0.20		1.62	1.25		mg/Kg	₩	78	56 - 120	
Hexachlorocyclopentadiene	<0.81		1.62	0.309	J	mg/Kg	₩	19	10 - 106	
Hexachloroethane	<0.20	F1	1.62	0.912	F1	mg/Kg	₩	56	61 - 110	
Indeno[1,2,3-cd]pyrene	<0.040		1.62	1.24		mg/Kg	₩	77	57 ₋ 127	
Isophorone	<0.20		1.62	1.15		mg/Kg	₩	71	55 - 110	
2-Methylnaphthalene	0.021	J	1.62	1.25		mg/Kg	₩	76	62 - 110	
2-Methylphenol	<0.20		1.62	1.33		mg/Kg	₩.	82	60 - 120	
3 & 4 Methylphenol	<0.20		1.62	1.25		mg/Kg	₩	77	57 - 120	
Naphthalene	0.0094	J	1.62	1.19		mg/Kg	₩	73	63 - 110	
2-Nitroaniline	<0.20		1.62	1.45		mg/Kg	₩	90	57 - 124	
3-Nitroaniline	<0.40		1.62	1.30		mg/Kg	₩	80	40 - 122	
4-Nitroaniline	<0.40		1.62	1.59		mg/Kg	₩	99	60 - 160	
Nitrobenzene	<0.040		1.62	1.41		mg/Kg	₩.	87	60 - 116	
2-Nitrophenol	<0.40		1.62	1.23		mg/Kg	₩	76	60 - 120	
4-Nitrophenol	<0.81		3.23	2.59		mg/Kg	☼	80	30 - 122	
N-Nitrosodi-n-propylamine	<0.081		1.62	1.24		mg/Kg	₩.	76	56 - 118	
N-Nitrosodiphenylamine	<0.20		1.62	1.39		mg/Kg	₩	86	65 - 112	
2,2'-oxybis[1-chloropropane]	<0.20	F1	1.62	0.638	F1	mg/Kg	☼	39	40 - 124	
Pentachlorophenol	<0.81		3.23	1.61		mg/Kg	₩.	50	13 - 112	
Phenanthrene	0.027	J	1.62	1.49		mg/Kg	₩	91	62 - 120	
Phenol	<0.20		1.62	1.33		mg/Kg	₩	83	56 - 122	
Pyrene	<0.040		1.62	1.11		mg/Kg	₩.	69	63 - 120	
1,2,4-Trichlorobenzene	<0.20		1.62	1.22		mg/Kg	₩	76	62 - 110	
2,4,5-Trichlorophenol	<0.40		1.62	1.45		mg/Kg	₩	90	50 ₋ 120	
2,4,6-Trichlorophenol	<0.40		1.62	1.52		mg/Kg	₩.	94	57 ₋ 120	

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	87		44 - 121
2-Fluorophenol	94		46 - 133
Nitrobenzene-d5	83		41 - 120
Phenol-d5	76		46 - 125
Terphenyl-d14	73		35 - 160
2,4,6-Tribromophenol	120		25 - 139

Lab Sample ID: 500-137674-1 MSD

**Matrix: Solid** 

Analysis Batch: 411454

Client Sample ID: 3160-32-07
Prep Type: Total/NA
<b>Prep Batch: 411212</b>

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acenaphthene	<0.040		1.61	1.06		mg/Kg	₩	66	58 - 110	13	30
Acenaphthylene	<0.040		1.61	1.12		mg/Kg	₩	70	60 - 110	8	30
Anthracene	<0.040		1.61	1.30		mg/Kg	☆	80	63 - 110	9	30
Benzo[a]anthracene	0.0054	J	1.61	1.11		mg/Kg	₩	68	63 - 110	12	30
Benzo[a]pyrene	<0.040		1.61	1.27		mg/Kg	☆	79	61 - 120	20	30
Benzo[b]fluoranthene	<0.040		1.61	1.55		mg/Kg	₽	96	62 - 120	8	30

TestAmerica Chicago

Page 22 of 34

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

### Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 500-137674-1 MSD

Client Sample ID: 3160-32-07

Matrix: Solid

Prep Type: Total/NA

Matrix: Solid									Prep Ty		
Analysis Batch: 411454	Sample	Sample	Spike	MSD	MSD				Prep Ba %Rec.	itch: 41	11212 RPD
Analyte	•	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzo[g,h,i]perylene	<0.040		1.61	0.990		mg/Kg	<u></u>	61	64 - 120	12	30
Benzo[k]fluoranthene	<0.040		1.61	1.41		mg/Kg	· · · · · · · · · · · · · · · · · · ·	87	65 - 120	21	30
Bis(2-chloroethoxy)methane	<0.20		1.61	1.10		mg/Kg	₽	68	60 - 112	11	30
Bis(2-chloroethyl)ether		F1 F2	1.61		F1 F2	mg/Kg		40	55 - 111	31	30
Bis(2-ethylhexyl) phthalate	<0.20		1.61	1.03		mg/Kg	₽	64	63 - 118	16	30
4-Bromophenyl phenyl ether	<0.20		1.61	1.36		mg/Kg	☼	84	63 - 110	8	30
Butyl benzyl phthalate	<0.20		1.61	1.02		mg/Kg		63	61 - 116	10	30
Carbazole	<0.20		1.61	1.33		mg/Kg	☼	83	59 - 158	13	30
4-Chloroaniline	<0.81		1.61	0.875		mg/Kg	₽	54	30 - 150	8	30
4-Chloro-3-methylphenol	<0.40		1.61	1.28		mg/Kg		79	61 - 114	13	30
2-Chloronaphthalene	<0.20		1.61	1.19		mg/Kg	≎	73	64 - 110	11	30
2-Chlorophenol	<0.20		1.61	1.19		mg/Kg	☼	74	64 - 110	10	30
4-Chlorophenyl phenyl ether	<0.20		1.61	1.27		mg/Kg		79	63 - 110	12	30
Chrysene	<0.040		1.61	1.12		mg/Kg	≎	69	63 - 120	13	30
Dibenz(a,h)anthracene	<0.040		1.61	1.15		mg/Kg	≎	71	64 - 119	12	30
Dibenzofuran	<0.20		1.61	1.23		mg/Kg		76	64 - 110	13	30
1,2-Dichlorobenzene	<0.20	F1	1.61	0.875	F1	mg/Kg	₩	54	62 - 110	11	30
1,3-Dichlorobenzene	<0.20		1.61	0.847		mg/Kg	₩	52	60 - 110	10	30
1,4-Dichlorobenzene	<0.20		1.61	0.834		mg/Kg	 <del>.</del>	52	61 - 110	14	30
3,3'-Dichlorobenzidine	<0.20		1.61	0.525		mg/Kg	₩	32	49 - 112	13	30
2,4-Dichlorophenol	<0.40		1.61	1.25	• •	mg/Kg	₩	77	58 - 120	13	30
Diethyl phthalate	<0.20		1.61	1.36		mg/Kg		84	58 - 120	15	30
2,4-Dimethylphenol	<0.40		1.61	1.17		mg/Kg	₽	73	60 - 110	7	30
Dimethyl phthalate	<0.20		1.61	1.23		mg/Kg	₽	76	64 - 110	13	30
Di-n-butyl phthalate	<0.20		1.61	1.25		mg/Kg	<del>-</del>	77	65 - 120	12	30
4,6-Dinitro-2-methylphenol	<0.81		3.23	1.22		mg/Kg	₽	38	10 - 110	19	30
2,4-Dinitrophenol	<0.81	F2	3.23	0.974	F2	mg/Kg	₽	30	10 - 110	33	30
2,4-Dinitrotoluene	<0.20		1.61	1.34		mg/Kg		83	62 - 117	12	30
2,6-Dinitrotoluene	<0.20		1.61	1.31		mg/Kg	₽	81	67 - 120	13	30
Di-n-octyl phthalate	<0.20		1.61	1.35		mg/Kg	₽	84	63 - 119	15	30
Fluoranthene	<0.040		1.61	1.31		mg/Kg		81	62 - 120	5	30
Fluorene	<0.040		1.61	1.27		mg/Kg	₽	78	62 - 120	12	30
Hexachlorobenzene	<0.040		1.61	1.51		mg/Kg	₽	94	55 ₋ 117	11	30
Hexachlorobutadiene	<0.20		1.61	1.11		mg/Kg		69	56 - 120	12	30
Hexachlorocyclopentadiene	<0.20		1.61	0.231	1	mg/Kg	₽	14	10 - 106	29	30
Hexachloroethane	<0.20	E1	1.61	0.783		mg/Kg	₽	49	61 - 110	15	30
Indeno[1,2,3-cd]pyrene	<0.040	Г1	1.61	1.09		mg/Kg	 \$\tilde{\pi}\$	67	57 ₋ 127	13	30
Isophorone	<0.20		1.61	1.08		mg/Kg	₽	67	55 ₋ 110	7	30
2-Methylnaphthalene	0.021		1.61	1.06		mg/Kg	₽	64	62 - 110	17	30
2-Methylphenol	<0.20		1.61	1.14				70	60 - 120	16	30
3 & 4 Methylphenol	<0.20		1.61	1.14		mg/Kg mg/Kg	₩	70	57 - 120	8	30
, ·	0.0094		1.61	1.13			₽	64	63 ₋ 110	14	30
Naphthalene 2-Nitroaniline	<0.20					mg/Kg	<del></del> .		57 - 124		30
2-Nitroaniline 3-Nitroaniline	<0.20		1.61 1.61	1.29 1.18		mg/Kg	₩	80 73	57 - 124 40 - 122	12 9	30
						mg/Kg	₩				
4-Nitroaniline	<0.40		1.61	1.39		mg/Kg	<del></del>	86	60 - 160	14	30
Nitrobenzene	<0.040		1.61	1.18		mg/Kg		73 72	60 - 116	17	30
2-Nitrophenol	<0.40		1.61	1.16		mg/Kg	☼	72	60 - 120	6	30
4-Nitrophenol	<0.81		3.23	2.06		mg/Kg	₽	64	30 - 122	23	30

TestAmerica Chicago

Page 23 of 34

9

3

5

7

10

13

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

### Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 500-137674-1 MSD

**Matrix: Solid** 

Analysis Batch: 411454

Client Sample ID: 3160-32-07 **Prep Type: Total/NA** 

**Prep Batch: 411212** 

_	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
N-Nitrosodi-n-propylamine	<0.081		1.61	1.12		mg/Kg	<del>\</del>	70	56 - 118	10	30
N-Nitrosodiphenylamine	<0.20		1.61	1.23		mg/Kg	₩.	76	65 - 112	13	30
2,2'-oxybis[1-chloropropane]	<0.20	F1	1.61	0.565	F1	mg/Kg	₩	35	40 - 124	12	30
Pentachlorophenol	<0.81		3.23	1.40		mg/Kg	₩.	43	13 - 112	14	30
Phenanthrene	0.027	J	1.61	1.28		mg/Kg	₩	77	62 - 120	16	30
Phenol	<0.20		1.61	1.20		mg/Kg	₩	74	56 - 122	11	30
Pyrene	<0.040		1.61	1.06		mg/Kg	₩.	66	63 - 120	5	30
1,2,4-Trichlorobenzene	<0.20		1.61	1.09		mg/Kg	☼	68	62 - 110	11	30
2,4,5-Trichlorophenol	<0.40		1.61	1.37		mg/Kg	₩	85	50 - 120	6	30
2,4,6-Trichlorophenol	<0.40		1.61	1.31		mg/Kg		81	57 - 120	14	30

MSD MSD

	MISD	WISD	
Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	76		44 - 121
2-Fluorophenol	86		46 - 133
Nitrobenzene-d5	72		41 - 120
Phenol-d5	70		46 - 125
Terphenyl-d14	69		35 - 160
2,4,6-Tribromophenol	105		25 - 139

### Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

MD MD

Lab Sample ID: MB 500-411275/1-A

**Matrix: Solid** 

**Analysis Batch: 411518** 

Client Sample ID: Method Blank Prep Type: Total/NA

**Client Sample ID: Lab Control Sample** 

**Prep Batch: 411275** 

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	<0.017		0.017	0.0059	mg/Kg		11/24/17 07:47	11/27/17 12:47	1
PCB-1221	<0.017		0.017	0.0073	mg/Kg		11/24/17 07:47	11/27/17 12:47	1
PCB-1232	<0.017		0.017	0.0073	mg/Kg		11/24/17 07:47	11/27/17 12:47	1
PCB-1242	<0.017		0.017	0.0055	mg/Kg		11/24/17 07:47	11/27/17 12:47	1
PCB-1248	<0.017		0.017	0.0066	mg/Kg		11/24/17 07:47	11/27/17 12:47	1
PCB-1254	<0.017		0.017	0.0036	mg/Kg		11/24/17 07:47	11/27/17 12:47	1
PCB-1260	<0.017		0.017	0.0082	mg/Kg		11/24/17 07:47	11/27/17 12:47	1

	MB MB				
Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	107	49 - 129	11/24/17 07:47	11/27/17 12:47	1
DCB Decachlorobiphenyl	106	37 - 121	11/24/17 07:47	11/27/17 12:47	1

Lab Sample ID: LCS 500-411275/3-A

Matrix: Solid Analysis Batch: 411518								pe: Total/NA atch: 411275
•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
PCB-1016	 0.167	0.154		mg/Kg		92	57 - 120	
PCB-1260	0.167	0.168		mg/Kg		101	61 - 125	

Page 24 of 34

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

**Client Sample ID: Method Blank** 

### Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Lab Sample ID: LCS 500-411275/3-A

**Matrix: Solid** 

**Analysis Batch: 411518** 

LCS LCS

<2.0

Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	99		49 - 129
DCB Decachlorobiphenyl	101		37 - 121

**Client Sample ID: Lab Control Sample Prep Type: Total/NA** 

**Prep Batch: 411275** 

**Prep Type: Total/NA** 

Method: 6010B - Metals (ICP)

Lab Sample ID: MB 500-411251/1-A **Matrix: Solid** 

matrix. Cond								i icp Type. It	Julian
Analysis Batch: 411309								Prep Batch:	411251
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<2.0		2.0	0.39	mg/Kg		11/23/17 07:44	11/23/17 23:04	1
Arsenic	<1.0		1.0	0.34	mg/Kg		11/23/17 07:44	11/23/17 23:04	1
Barium	<1.0		1.0	0.11	mg/Kg		11/23/17 07:44	11/23/17 23:04	1
Beryllium	<0.40		0.40	0.093	mg/Kg		11/23/17 07:44	11/23/17 23:04	1
Cadmium	0.0630	J	0.20	0.036	mg/Kg		11/23/17 07:44	11/23/17 23:04	1
Chromium	<1.0		1.0	0.50	mg/Kg		11/23/17 07:44	11/23/17 23:04	1
Cobalt	<0.50		0.50	0.13	mg/Kg		11/23/17 07:44	11/23/17 23:04	1
Copper	<1.0		1.0	0.28	mg/Kg		11/23/17 07:44	11/23/17 23:04	1
Iron	<20		20	10	mg/Kg		11/23/17 07:44	11/23/17 23:04	1
Lead	<0.50		0.50	0.23	mg/Kg		11/23/17 07:44	11/23/17 23:04	1
Manganese	<1.0		1.0	0.15	mg/Kg		11/23/17 07:44	11/23/17 23:04	1
Nickel	<1.0		1.0	0.29	mg/Kg		11/23/17 07:44	11/23/17 23:04	1
Selenium	<1.0		1.0	0.59	mg/Kg		11/23/17 07:44	11/23/17 23:04	1
Silver	<0.50		0.50	0.13	mg/Kg		11/23/17 07:44	11/23/17 23:04	1
Thallium	<1.0		1.0	0.50	mg/Kg		11/23/17 07:44	11/23/17 23:04	1
Vanadium	<0.50		0.50	0.12	mg/Kg		11/23/17 07:44	11/23/17 23:04	1

2.0

0.88 mg/Kg

Lab Sample ID: LCS 500-411251/2-A

**Matrix: Solid** 

Zinc

**Analysis Batch: 411309** 

**Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 411251** 

11/23/17 07:44 11/23/17 23:04

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Antimony	50.0	46.2	-	mg/Kg		92	80 - 120	
Arsenic	10.0	9.07		mg/Kg		91	80 - 120	
Barium	200	195		mg/Kg		97	80 - 120	
Beryllium	5.00	4.91		mg/Kg		98	80 - 120	
Cadmium	5.00	4.87		mg/Kg		97	80 - 120	
Chromium	20.0	19.0		mg/Kg		95	80 - 120	
Cobalt	50.0	48.4		mg/Kg		97	80 - 120	
Copper	25.0	24.6		mg/Kg		99	80 - 120	
Iron	100	101		mg/Kg		101	80 - 120	
Lead	10.0	9.31		mg/Kg		93	80 - 120	
Manganese	50.0	48.5		mg/Kg		97	80 - 120	
Nickel	50.0	48.9		mg/Kg		98	80 - 120	
Selenium	10.0	9.48		mg/Kg		95	80 - 120	
Silver	5.00	4.61		mg/Kg		92	80 - 120	
Thallium	10.0	9.58		mg/Kg		96	80 - 120	

TestAmerica Chicago

Page 25 of 34

10

11/30/2017

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

### Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: LCS 500-411251/2-A **Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Total/NA Prep Batch: 411251 Analysis Batch: 411309** Spike LCS LCS %Rec. Analyte Added Result Qualifier Limits Unit D %Rec Vanadium 47.7 50.0 mg/Kg 95 80 - 120 Zinc 48.3 50.0 mg/Kg 97 80 - 120

Lab Sample ID: 500-137674-1 MS **Client Sample ID: 3160-32-07 Matrix: Solid Prep Type: Total/NA** Analysis Batch: 411309 Prep Batch: 411251

Analysis Batch: 411309	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Antimony	<1.2	F1	30.4	5.53	F1	mg/Kg	₩	18	75 - 125
Arsenic	10	F1	6.09	14.8		mg/Kg	₩	75	75 ₋ 125
Barium	79		122	198		mg/Kg	₩	97	75 ₋ 125
Beryllium	0.36		3.04	3.14		mg/Kg	₩.	92	75 - 125
Cadmium	0.022	JB	3.04	2.64		mg/Kg	☼	86	75 ₋ 125
Chromium	21		12.2	32.6		mg/Kg	₩	98	75 ₋ 125
Cobalt	4.3		30.4	33.3		mg/Kg	₩.	95	75 - 125
Copper	14		15.2	29.3		mg/Kg	☼	100	75 ₋ 125
Iron	25000		60.9	26700	4	mg/Kg	₩	2082	75 - 125
Lead	16	F1	6.09	21.4		mg/Kg		88	75 - 125
Manganese	180	F2	30.4	229	4	mg/Kg	₩	150	75 - 125
Nickel	15		30.4	47.7		mg/Kg	₩	107	75 ₋ 125
Selenium	0.53	J F1	6.09	5.19		mg/Kg	₩	77	75 - 125
Silver	<0.31		3.04	2.56		mg/Kg	☼	84	75 - 125
Thallium	<0.61		6.09	5.23		mg/Kg	☼	86	75 ₋ 125
Vanadium	43		30.4	70.5		mg/Kg	₩.	92	75 - 125
Zinc	59		30.4	91.9		mg/Kg	☼	107	75 ₋ 125

Lab Sample ID: 500-137674-1 MSD

Matrix: Solid									Prep Ty		
Analysis Batch: 411309	Sample	Sample	Spike	MSD	MSD				Prep Ba %Rec.	itcn: 41	11251 RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Antimony	<1.2	F1	27.6	5.44	F1	mg/Kg	₩	20	75 - 125	2	20
Arsenic	10	F1	5.52	13.2	F1	mg/Kg	☼	54	75 - 125	11	20
Barium	79		110	181		mg/Kg	≎	92	75 - 125	9	20
Beryllium	0.36		2.76	2.90		mg/Kg	₩.	92	75 - 125	8	20
Cadmium	0.022	JB	2.76	2.36		mg/Kg	☼	85	75 - 125	11	20
Chromium	21		11.0	32.5		mg/Kg	₩	107	75 - 125	0	20
Cobalt	4.3		27.6	30.4		mg/Kg	₩.	95	75 - 125	9	20
Copper	14		13.8	26.7		mg/Kg	☼	92	75 - 125	9	20
Iron	25000		55.2	25000	4	mg/Kg	₩	-786	75 - 125	7	20
Lead	16	F1	5.52	19.8	F1	mg/Kg		68	75 - 125	8	20
Manganese	180	F2	27.6	185	4 F2	mg/Kg	₩	6	75 - 125	21	20
Nickel	15		27.6	46.4		mg/Kg	₩	113	75 - 125	3	20
Selenium	0.53	J F1	5.52	4.42	F1	mg/Kg	₩.	70	75 - 125	16	20
Silver	<0.31		2.76	2.28		mg/Kg	₩	82	75 - 125	12	20
Thallium	<0.61		5.52	4.79		mg/Kg	☼	87	75 - 125	9	20
Vanadium	43		27.6	70.1		mg/Kg	₩.	100	75 - 125	1	20
Zinc	59		27.6	92.4		mg/Kg	₩	119	75 - 125	1	20

**Client Sample ID: 3160-32-07** 

Page 26 of 34

11/30/2017

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Lab Sample ID: 500-137674-1 DU

**Matrix: Solid** 

Method: 6010B - Metals (ICP) (Continued)

Client Sample ID: 3160-32-07 Prep Type: Total/NA

**Analysis Batch: 411309 Prep Batch: 411251** Sample Sample DU DU **RPD** Analyte Result Qualifier Result Qualifier Unit D RPD Limit **Antimony** <1.2 F1 <1.2 mg/Kg NC 20 Arsenic 10 F1 10.2 ₩ 0.6 20 mg/Kg ₩ Barium 79 70.8 mg/Kg 11 20 Beryllium 0.36 0.314 12 20 mg/Kg ₩ Cadmium 0.022 JB <0.12 mg/Kg NC 20 Chromium 21 18.4 mg/Kg ά 12 20 Cobalt 4.3 3.97 8 20 mg/Kg Copper 14 12.8 mg/Kg 9 20 25000 24000 6 20 Iron mg/Kg 2 Lead 16 F1 15.7 mg/Kg 20 176 20 Manganese 180 F2 mg/Kg ₿ Nickel 15 13.5 mg/Kg 12 20 Selenium 0.53 JF1 0.464 J mg/Kg 13 20 Silver < 0.30 ₩ NC 20 < 0.31 mg/Kg Thallium ₿ NC < 0.61 < 0.60 mg/Kg 20 Vanadium 43 35.7 mg/Kg 18 20 Zinc 59 54.7 mg/Kg

10

Lab Sample ID: LCS 500-411800/2-A

**Matrix: Solid** 

**Analysis Batch: 411940** 

**Client Sample ID: Lab Control Sample** Prep Type: Total/NA **Prep Batch: 411800** 

7 maryolo Batom 411040	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Arsenic	0.100	0.0997		mg/L		100	80 - 120
Barium	0.500	0.507		mg/L		101	80 - 120
Beryllium	0.0500	0.0509		mg/L		102	80 - 120
Cadmium	0.0500	0.0498		mg/L		100	80 - 120
Chromium	0.200	0.202		mg/L		101	80 - 120
Cobalt	0.500	0.503		mg/L		101	80 - 120
Copper	0.250	0.261		mg/L		104	80 - 120
Iron	1.00	1.09		mg/L		109	80 - 120
Lead	0.100	0.0958		mg/L		96	80 - 120
Manganese	0.500	0.502		mg/L		100	80 - 120
Nickel	0.500	0.503		mg/L		101	80 - 120
Selenium	0.100	0.0956		mg/L		96	80 - 120
Silver	0.0500	0.0478		mg/L		96	80 - 120
Vanadium	0.500	0.516		mg/L		103	80 - 120
Zinc	0.500	0.489	J	mg/L		98	80 - 120

Lab Sample ID: LCS 500-411807/2-A **Matrix: Solid** 

Analysis Batch: 411942							Prep
-	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Manganese	0.500	0.498		mg/L		100	80 - 12

**Client Sample ID: Lab Control Sample** Prep Type: Total/NA

p Batch: 411807 C.

ts 80 - 120

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: LB 500-411663/1-B Client Sample ID: Method Blank **Matrix: Solid Prep Type: TCLP Analysis Batch: 411940** Prep Batch: 411800

IR IR

	LB	LB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/29/17 08:23	11/29/17 15:15	1
Barium	<0.50		0.50	0.050	mg/L		11/29/17 08:23	11/29/17 15:15	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/29/17 08:23	11/29/17 15:15	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/29/17 08:23	11/29/17 15:15	1
Chromium	<0.025		0.025	0.010	mg/L		11/29/17 08:23	11/29/17 15:15	1
Cobalt	<0.025		0.025	0.010	mg/L		11/29/17 08:23	11/29/17 15:15	1
Copper	<0.025		0.025	0.010	mg/L		11/29/17 08:23	11/29/17 15:15	1
Iron	<0.40		0.40	0.20	mg/L		11/29/17 08:23	11/29/17 15:15	1
Lead	<0.0075		0.0075	0.0075	mg/L		11/29/17 08:23	11/29/17 15:15	1
Manganese	<0.025		0.025	0.010	mg/L		11/29/17 08:23	11/29/17 15:15	1
Nickel	<0.025		0.025	0.010	mg/L		11/29/17 08:23	11/29/17 15:15	1
Selenium	<0.050		0.050	0.020	mg/L		11/29/17 08:23	11/29/17 15:15	1
Silver	<0.025		0.025	0.010	mg/L		11/29/17 08:23	11/29/17 15:15	1
Vanadium	<0.025		0.025	0.010	mg/L		11/29/17 08:23	11/29/17 15:15	1
Zinc	<0.50		0.50	0.020	mg/L		11/29/17 08:23	11/29/17 15:15	1
_									

Lab Sample ID: LB 500-411674/1-B

**Matrix: Solid** 

**Analysis Batch: 411942** LB LB

**Client Sample ID: Method Blank Prep Type: SPLP East Prep Batch: 411807** 

Result Qualifier RL **MDL** Unit Prepared Analyzed <0.025 0.025 0.010 mg/L 11/29/17 09:01 11/29/17 16:21 Manganese

Method: 6020A - Metals (ICP/MS)

Lab Sample ID: LCS 500-411800/2-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 411982 Prep Batch: 411800** Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits

0.500 0.499 **Antimony** mg/L 100 80 - 120 Thallium 0.100 0.104 mg/L 104 80 - 120

Lab Sample ID: LB 500-411663/1-B Client Sample ID: Method Blank **Matrix: Solid** 

**Prep Type: TCLP Analysis Batch: 411982** Prep Batch: 411800 LB LB

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060		0.0060	0.0060	mg/L		11/29/17 08:23	11/29/17 16:33	1
Thallium	<0.0020		0.0020	0.0020	mg/L		11/29/17 08:23	11/29/17 16:33	1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

Method: 7470A - TCLP Mercury

Lab Sample ID: MB 500-411892/12-A

**Matrix: Solid** 

**Analysis Batch: 412012** 

MB MB

LB LB Result Qualifier

MB MB

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 0.00020 11/29/17 15:15 11/30/17 09:46 Mercury <0.00020 0.00020 mg/L

LCS LCS

0.00210

Result Qualifier

MDL Unit

0.00020 mg/L

LCS LCS

0.168

Result Qualifier

Unit

mg/Kg

Unit

mg/L

Spike

Added

0.00200

Lab Sample ID: LCS 500-411892/13-A

**Matrix: Solid** 

Analyte

**Analysis Batch: 412012** 

Mercury

Lab Sample ID: LB 500-411663/1-C

**Matrix: Solid** 

**Analysis Batch: 412012** 

Analyte

Mercury <0.00020 Method: 7471B - Mercury (CVAA)

Lab Sample ID: MB 500-411477/12-A

**Matrix: Solid** 

**Analysis Batch: 411792** 

Lab Sample ID: LCS 500-411477/13-A

**Matrix: Solid** 

Mercury

Analysis Batch: 411792

Analyte

Client Sample ID: Method Blank

Prep Type: Total/NA

**Prep Batch: 411892** 

**Client Sample ID: Lab Control Sample** 

%Rec

105

Prep Type: Total/NA **Prep Batch: 411892** 

%Rec.

Limits 80 - 120

Client Sample ID: Method Blank

**Prep Type: TCLP** 

**Prep Batch: 411892** 

Prepared Analyzed Dil Fac

11/29/17 15:15 11/30/17 10:01

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 411477

Analyte Result Qualifier **MDL** Unit Prepared Analyzed Mercury 0.00608 J 0.017 0.0056 mg/Kg 11/27/17 14:00 11/28/17 09:00

Spike

Added

0.167

RL

0.00020

**Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Prep Batch: 411477

%Rec.

Limits

D %Rec 100 80 - 120

11/30/2017

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

**Client Sample ID: 3160-32-07** 

Date Collected: 11/21/17 15:05

Date Received: 11/22/17 13:58

Lab Sample ID: 500-137674-1

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
SPLP East	Leach	1312			411674	11/28/17 13:45	JLC	TAL CHI
SPLP East	Prep	3010A			411807	11/29/17 09:01	JEF	TAL CHI
SPLP East	Analysis	6010B		1	411942	11/29/17 16:25	PJ1	TAL CHI
TCLP	Leach	1311			411663	11/28/17 13:45	JLC	TAL CHI
TCLP	Prep	3010A			411800	11/29/17 08:23	JEF	TAL CHI
TCLP	Analysis	6010B		1	411940	11/29/17 16:04	PJ1	TAL CHI
TCLP	Leach	1311			411663	11/28/17 13:45	JLC	TAL CHI
TCLP	Prep	3010A			411800	11/29/17 08:23	JEF	TAL CHI
TCLP	Analysis	6020A		1	411982	11/29/17 16:37	FXG	TAL CHI
TCLP	Leach	1311			411663	11/28/17 13:45	JLC	TAL CHI
TCLP	Prep	7470A			411892	11/29/17 15:15	EEN	TAL CHI
TCLP	Analysis	7470A		1	412012	11/30/17 10:07	EEN	TAL CHI
Total/NA	Analysis	9045D		1	411701		SMO	TAL CHI
					(Start) 1	11/28/17 13:02		
					(End) 1	11/28/17 13:09		
Total/NA	Analysis	Moisture		1	411344	11/24/17 11:33	LWN	TAL CHI

**Client Sample ID: 3160-32-07** 

Date Collected: 11/21/17 15:05 Date Received: 11/22/17 13:58 Lab Sample ID: 500-137674-1

Matrix: Solid Percent Solids: 80.8

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			411403	11/22/17 17:00	WRE	TAL CHI
Total/NA	Analysis	8260B		1	411445	11/27/17 12:01	DJD	TAL CHI
Total/NA	Prep	3541			411212	11/22/17 16:19	NRJ	TAL CHI
Total/NA	Analysis	8270D		1	411454	11/27/17 16:03	AJD	TAL CHI
Total/NA	Prep	3541			411275	11/24/17 07:47	JP1	TAL CHI
Total/NA	Analysis	8082A		1	411995	11/30/17 11:32	BJH	TAL CHI
Total/NA	Prep	3050B			411251	11/23/17 07:44	JEF	TAL CHI
Total/NA	Analysis	6010B		1	411309	11/23/17 23:17	KML	TAL CHI
Total/NA	Prep	7471B			411477	11/27/17 14:00	JEF	TAL CHI
Total/NA	Analysis	7471B		1	411792	11/28/17 09:56	EEN	TAL CHI

#### **Laboratory References:**

TAL CHI = TestAmerica Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

TestAmerica Chicago

### **Accreditation/Certification Summary**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: IDOT - Benton - WO 028

TestAmerica Job ID: 500-137674-1

### Laboratory: TestAmerica Chicago

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Program		EPA Region	<b>Identification Number</b>	<b>Expiration Date</b>			
Illinois	NELAP		5	100201	04-30-18			
The following analyte:	s are included in this repo	rt, but accreditation/	certification is not offe	ered by the governing auth	ority:			
Analysis Method	Prep Method	Matrix	Analyt	е				
6020A	3010A	Solid	Antimo	mony				
6020A	3010A	Solid	Thalliu	um				
8260B	5035	Solid	1,3-Dio	chloropropene, Total				
9045D		Solid	pН					
Moisture		Solid	Percer	nt Moisture				
Moisture		Solid	Percent Solids					

- 0

_

9

10

12

-	•			•	•	
ı	esi	ŀΔı	$   \gamma $	$\Delta$ r		
- 1	しつ	<b> 7</b>				C

THE LEADER IN ENVIRONMENTAL TES 2417 Bond Street, University Park, IL 60484 Phone: 708.534.5200 Fax: 708.534.5211

	Rer	oort To		(optiona	al)		Bill To		(optional)		1	Chain o	f Custody Record
u	Cor	ntact: Te	rry ]	Dix	01								
STING	Cor	ntact: <u>Te</u> npany: <u>A</u> n	rect	w	wood							Lab Job :	# 500-13767C
TING		iress:					Address:						Custody Number:
	Add	dress:					Address:						
	Pho	one:				<del></del>	Phone:						of
	ľ	:				<del></del>						Temperat	ture °C of Cooler:O.8-70.7
Project #	E-M	lail:	Droop	ervative			PO#/Refere	ence#			τ Ι		Preservative Key
riojeci #			Prese	ervative			_						1. HCL, Cool to 4°
			Para	meter									2. H2SO4, Cool to 4° 3. HNO3, Cool to 4°
oject #			-			~		12	l was				4. NaOH, Cool to 4° 5. NaOH/Zn, Cool to 4°
0013	898				~	Ü		12/2	12 to		\ w		6. NaHSO4 7. Cool to 4°
k Wri	562		1		701	0,	878	~	TCLPMable 592P motals		Solids		8. None
KWY	gns		ω,	t	0		7	_B	20	-	5		9. Other
	Sar	npling	# of Containers	¥	>	N	0	0_	12 2	Garage Comme	00		
	Date	Time	5 o	Matrix			L	,,,	1- 2				Comments
	11-21-17	305	6	5	$\times$	$\times$	$\times$	$\rightarrow$	$\rightarrow$	X	×		Hold SPLP Rending
													TCLP results
							_			-			
	<del></del>		<del> </del>	+ +			<del>                                     </del>	<del> </del>	<del> </del>		<del> </del>		
			<u> </u>				ļ	-					
			T										Literana
							<u> </u>				ļ <u>.</u>	<del>                                     </del>	
			-	-				ļ <u>.</u>			<u> </u>		
													500-137674 COC
			T										
	<u> </u>	Row	re	11		)	)	1	1		1		
			Samp	le Dispos	sal	-h							
0 Days	15 Dave 7	Other	1		to Client	Z / Dior	oosal by Lab	1 1	nive for	Months			are retained longer than 1 month)

Olland Dust							
Client Proje  AmecFW wood Client Proje	ct#	Preservative					Preservative Key  1. HCL, Cool to 4°
Project Name  FOOT Benton WO-28  Project Location/State  TLRT 37 Benton FL  50	# 213898 Wright	Parameter	C 5 0C ₅	PCB Total Medals	TCLPMGB18 5919 motals	solids	2. H2SO4, Cool to 4° 3. HN03, Cool to 4° 4. NaOH, Cool to 4° 5. NaOH/Zn, Cool to 4° 6. NaHSO4 7. Cool to 4° 8. None
Old Sample ID	Sampling Date Time	# of Containers Matrix	510	PCB Total 1	712P	1 - 1	9. Other  Comments
3160-32-07	11-21-17 305		XX	XX	×   X	X	Hold SPLP Ruding TCLP results
					<del>  -  </del>		500-137674 COC
Turnaround Time Required (Business Days)1 Day2 Days5 Days7 Days10 Da Requested Due Date		Sample Disposal	Client	posal by Lab Arci	hive for Months	(A fee may be assessed if sample:	s are retained longer than 1 month)
Relinquished By  Solitan Solitan Amec PW  Relinquished By  Company  Company	Date 11-21-17 Date	630	eceived by	Sourc Company	TACLE Date Date	127/17 Time 0905	Lab Courier Shipped Fx Priorit
Relinquished By Company	Date	Time Re	eceived By	Company	Date	Time	Hand Delivered
WW – Wastewater         SE – Sediment           W – Water         SO – Soil           S – Soil         L – Leachate           SL – Sludge         WI – Wipe	nt Comments				Lab Comments:		
MS – Miscellaneous DW – Drinking Water DL – Oil O – Other A – Air				32 of 34			TAL-1/23-901/220

### **Login Sample Receipt Checklist**

Client: AMEC Foster Wheeler E & I, Inc Job Number: 500-137674-1

Login Number: 137674 List Source: TestAmerica Chicago

List Number: 1

Creator: Sanchez, Ariel M

Creator. Sanchez, Arier W		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	0.7
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.		

5

5

6

8

10

12

13

### **Login Sample Receipt Checklist**

Client: AMEC Foster Wheeler E & I, Inc Job Number: 500-137674-1

Login Number: 137674 List Source: TestAmerica Chicago

List Number: 1

Creator: Sanchez, Ariel M

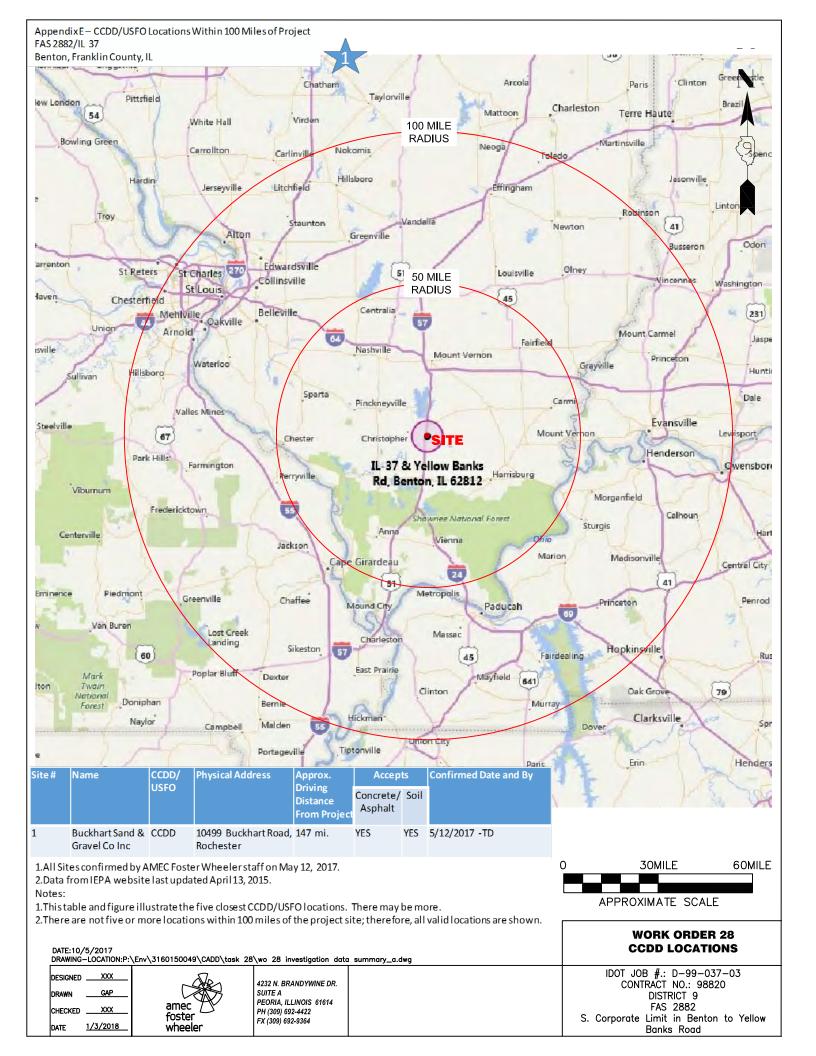
Creator. Sanchez, Ariel W		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	0.7
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.		

_

3

4

**3** 


9

11

12

Appendix D – CCDD 663 Certifications (Submitted Separately)

Appendix E – CCDD/USFO Locations

