STRUCTURE GEOTECHNICAL REPORT WILLOW ROAD (FAP 305) BRIDGE OVER LEHIGH AVENUE AND SOO LINE RAILROAD SN 016-0533, SECTION 1920.01-BR IDOT JOB D-91-407-11, PTB 159/ITEM 017 COOK COUNTY, ILLINOIS for Zroka Engineering, P.C. 4216 North Hermitage Avenue Chicago, IL 60613 (773) 935-6376 submitted by Wang Engineering, Inc. 1145 North Main Street Lombard, IL 60148 (630) 953-9928 Original Report May 23, 2012 Revised Report October 24, 2012 ### **Technical Report Documentation Page** | 1. Title and Subtitle Structure Geotechnical Repo | 2. Report Date
October 24, 2012 | | | | | | |---|--|---------------------------------|--|--|--|--| | Avenue and the SOO Line R | 3. Report Type ⊠ SGR ☐ RGR ☐ Draft ☐ Final ⊠ Revised | | | | | | | 4. Route / Section / County | | 5. IDOT Job / Contract No. | | | | | | FAP 305/ 1920.01-BR/ Cook | | D-91-407-11 / NA | | | | | | 1111 300, 1920.01 210 000. | | 2 31 107 117 1111 | | | | | | 6. PTB / Item No. | 5. Existing Structure Number(s) | 6. Proposed Structure Number(s) | | | | | | 154/07 | SN 016-0533 | SN 016-0533 | | | | | | 7. Prepared by | Contributor(s) | Contact Phone Number | | | | | | Wang Engineering, Inc. | Author: Mickey Snider, P.E. | (630) 953-9928 ext 27 | | | | | | 1145 N Main Street | QC/QA: Jerry W.H. Wang, PhD, P.E. | , | | | | | | Lombard, IL 60148 | PM: Liviu Iordache, P.G. | | | | | | | 9. Prepared for | Design / Structural Engineer | Contact Phone Number | | | | | | Zroka Engineering | Lori Sommer, P.E., S.E. | (847) 968-4312 | | | | | | 4216 North Hermitage | | | | | | | | Chicago, IL 60613 | | | | | | | | 10 Abstract | | | | | | | The three-span Willow Road (FAP 305) Bridge over Lehigh Avenue and the SOO Line Railroad will be widened and redecked. The bridge will be the same length but approximately 32.6 feet wider than the existing. A retaining wall will be required to support the widening of the southeast approach embankment. This report provides geotechnical recommendations for the design of the widened approach embankments, bridge foundations, and retaining wall. The existing embankment soils include stiff to very stiff silty clay fill and overlie stiff silty clay loam with traces of organic matter. Deeper foundation soils include very stiff silty clay loam with interbedded sand and silt and hard silty clay loam. The site classifies as Seismic Class C. The proposed approach embankments will be widened and its heights will increase by about 5 to 10 feet. External stability analyses show satisfactory factors of safety. We predict the total consolidation settlement underneath the widened fill sections off the north and south slopes will amount to less than 0.4 inch. The abutments should be supported on concrete-filled metal shell piles (14-inch diameter MSP) or steel H-piles (size HP12x53 or HP 14x73); estimated pile lengths and bearing elevations for various loads are included. The piers should be supported on shallow foundations or driven piles with the same sizes as the abutments. The maximum allowable soil bearing capacity is 2,700 psf for a factor of safety of 3.0. The settlement is estimated at approximately 1.0 inch. Geotechnical parameters for pile analyses under lateral loads are also included. The retaining wall along the southeast embankment has a maximum height of about 11.1 feet; the estimated maximum factored geotechnical resistance for an MSE or RCC type wall is 3,600 psf. We estimate the wall has adequate resistance against sliding, overturning, and global stability failure. The estimated long-term consolidation settlement is 1.1 inches. If the wall is constructed as a soldier-pile type, we estimate approximately 1.0 inch of lateral deflection for an HP14x73 pile spaced at 6-feet on center and driven to a depth of about 16 feet below existing grade. We estimate temporary steel sheeting may be required for temporary shoring along the abutment widening. If temporary sheeting is required, we recommend designing based on the charts included in IDOT Design Guide 3.13.1. ### 11. Path to archived file S:\Netprojects\7030301\Reports\RPT Wang MLS 7030301WillowSGR 120509.pdf # TABLE OF CONTENTS | 1.0 | INTRODUCTION | 1 | |-----|--|----| | 1.1 | Proposed Structure | 1 | | 1.2 | EXISTING STRUCTURE | 2 | | 2.0 | SITE CONDITIONS AND GEOLOGICAL SETTING | 2 | | 2.1 | Physiography | 2 | | 2.2 | Surficial Cover | 2 | | 2.3 | Bedrock | 3 | | 3.0 | METHODS OF INVESTIGATION | 3 | | 3.1 | SUBSURFACE INVESTIGATION | 3 | | 3.2 | LABORATORY TESTING | 4 | | 4.0 | RESULTS OF FIELD AND LABORATORY INVESTIGATIONS | 4 | | 4.1 | SOIL CONDITIONS | 4 | | 4.2 | GROUNDWATER CONDITIONS | 5 | | 4.3 | SCOUR CONSIDERATIONS | 6 | | 4.4 | SEISMIC DESIGN CONSIDERATIONS | 6 | | 5.0 | FOUNDATION ANALYSIS AND RECOMMENDATIONS | 6 | | 5.1 | APPROACH EMBANKMENTS AND SLABS | 7 | | 5 | 5.1.1 Settlement | | | 5 | 5.1.2 Global Stability | 7 | | 5.2 | STRUCTURE FOUNDATIONS | 7 | | 5 | 5.2.1 Shallow Pier Foundations | 8 | | 5 | 5.2.2 Driven Piles | 8 | | 5 | 5.2.3 Lateral Loading | | | 5 | 5.2.4 Retaining Wall Foundations | | | 5.3 | STAGE CONSTRUCTION DESIGN | 14 | | 6.0 | CONSTRUCTION CONSIDERATIONS | 14 | | 6.1 | SITE PREPARATION | 14 | | 6.2 | EXCAVATION AND DEWATERING. | 14 | | 6.3 | 3 FILLING AND BACKFILLING | 14 | |-----|------------------------------|----| | 6.4 | 4 EARTHWORK OPERATIONS | | | 6.5 | 5 PILING | | | 7.0 | QUALIFICATIONS | 16 | | RE | EFERENCES | | | EX | XHIBITS | | | | 1. Site Location Map | | | | 2. Site and Regional Geology | | | | 3. Boring Location Plan | | | | 4. Soil Profile | | | AP | PPENDIX A | | | | Boring Logs | | | AP | PPENDIX B | | | | Laboratory Test Results | | | AP | PPENDIX C | | | | Global Stability Evaluations | | # STRUCTURE GEOTECHNICAL REPORT WILLOW ROAD (FAP 305) BRIDGE OVER LEHIGH AVENUE AND SOO LINE RAILROAD SN 016-0533, SECTION 1920.01-BR IDOT JOB D-91-407-11, PTB 159/ITEM 017 COOK COUNTY, ILLINOIS FOR ZROKA ENGINEERING, INC. ### 1.0 INTRODUCTION This report presents the results of our subsurface investigation, laboratory testing, and geotechnical evaluations for widening and reconstruction of the Willow Road (FAP 305) Bridge over Lehigh Avenue and the SOO Line Railroad in Glenview, Cook County, Illinois. A *Site Location Map* is presented as Exhibit 1. ### 1.1 Proposed Structure Wang Engineering, Inc. (Wang) understands Zroka Engineering, Inc. (Zroka) envisions reconstructing the 3-span bridge superstructure and widening the existing stub abutment and pier foundations by approximately 37.0 feet. The back-to-back abutment bridge length will measure 290.8 feet; the proposed out-to-out bridge width will amount to 112.6 feet, which includes a 10-foot wide multi-use path along the south edge. The centerline elevation of the bridge will not change; however the widening will add approximately 5 to 10 feet of fill to the existing slopes and require a small retaining wall along the southeast embankment quarter due to right-of-way limitations. The wall will be constructed between Stations 101+70.0 and 103+52.5, offset 104 feet south, and have a maximum height of about 11.1 feet. We assume the end and side slopes will both be graded at 1:2 (V:H). The General Plan and Elevation (GPE) drawing provided by Zroka shows four stages of construction; we anticipate temporary steel sheet piling may be required to facilitate the excavation of the existing embankments to install the new abutments. The purpose of our investigation was to characterize the site soil and groundwater conditions, perform geotechnical analyses, and provide recommendations for the design and construction of the new bridge. ### 1.2 Existing Structure The Willow Road Bridge is a 3-span structure originally built in 1942 and widened in 1969. The bridge has open, abutments supported on pile foundations and two piers on spread footings. The Bridge Condition Report indicates both the abutments and piers appear to be good condition. The existing back-to-back of abutment length is 290.8 feet, and the existing out-to-out width is 80.0 feet. The slopes are graded at 1:2 (V:H). The site physiography is discussed in Section 2.1. ### 2.0 SITE CONDITIONS AND GEOLOGICAL SETTING The project area is located in northeastern Cook County, about 3.5 miles east of the Des Plaines River and 2.7 miles west of the Skokie Lagoons and the Chicago River. On the USGS *River Park 7.5 Minute Series* map, the bridge is located in the NE¼ of Section 22, Tier 42 N, Range 12 E of the Third Principal Meridian. The following review of published geologic data, with emphasis on factors that might influence the design and construction of the proposed engineering works, is meant to place the project area within a geological framework and confirm the dependability and consistency of the present subsurface investigation results. For the study of the regional geologic framework, Wang considered northeastern Illinois in general and Cook County in particular. Exhibit 2 illustrates the *Site and Regional Geology*. ### 2.1 Physiography The general topography of the project area slopes gently toward the south. The bridge is situated just 750 yards west of the West Fork North Branch which runs southward to join the North Branch of the Chicago River. The creek's floodplain is well developed and extends approximately half a mile west from its channel. No natural wetlands, marshes, or oxbow lakes are present in the vicinity of the bridge. At the bridge site, the elevation measures about 650 feet near Lehigh Avenue and the SOO line Railroad and about 670 feet along Willow Road. ### 2.2 Surficial Cover The project area was shaped during the Wisconsinan-age glaciation. An approximately 115-foot thick drift covers the bedrock (Leetaru et al. 2004). The glacigenic deposits were emplaced during pulsating advances and retreats of an icesheet lobe responsible for the formation of end moraines and associated
low-relief till and lake plains (Hansel and Johnson 1996, Kolata and Kimz 2010). The thick glacial cover is made up predominatly of diamicton attributed to the Wadsworth Formation of Wedron Group. The Wadsworth Formation consists of relatively homogenous, massive, gray till with clay to silty clay matrix, with dolomite and shale clasts and occasional lenses of sorted and stratified silt (Hansel and Johnson 1996). From a geotechnical viewpoint, the Wadsworth diamicton is characterized by low plasticity, medium to low moisture content, medium to very stiff consistency, poor permeability, and low compressibility (Bauer et al. 1991). ### 2.3 Bedrock In the project area, the glacigenic deposits unconformably rest over a 200-foot thick Silurian-age dolostone. The top of bedrock may be encountered at approximately 115 feet below ground surface (bgs). (Leetaru et al 2004). Structurally, the site is located on the eastern flank of the Wisconsin Arch, and approximately two miles north of the Des Plaines Disturbance. No underground mines have been mapped in the area (Kolata and Nimz 2010). Our subsurface investigation results fit into the local geologic context. The borings drilled in the project area revealed the native sediments consists of silty and clayey diamictons with infrequent silt lenses. None of the borings encountered the top of bedrock. ### 3.0 METHODS OF INVESTIGATION The following sections outline the subsurface and laboratory investigations. ### 3.1 Subsurface Investigation The subsurface investigation included 11 soil borings, designated as BB-01 through BB-08 and RW-01 through RW-03, and it was performed by Wang in February 2012. The borings were drilled from elevations of 636.4 to 668.4 feet to depths of 30.0 to 100.0 feet bgs. The northing and easting coordinates were acquired with a mapping-grade GPS unit; elevations, stations, and offsets were obtained from design drawings provided by Zroka. The as-drilled boring locations are shown in the *Boring Logs* (Appendix A) and in the *Boring Location Plan* (Exhibit 3). An ATV-mounted drilling rig, equipped with hollow stem augers, was used to advance and maintain an open borehole. Soil sampling was performed according to AASHTO T 206, "*Penetration Test and Split Barrel Sampling of Soils*." The soil was sampled at 2.5-foot intervals to 30.0 feet bgs and at 5.0-foot intervals thereafter. Field boring logs, prepared and maintained by a Wang engineer, included lithological descriptions, visual-manual soil classifications (IDH textural classification), results of pocket penetrometer or Rimac unconfined compressive strength testing on cohesive soils, and Standard Penetration Test (SPT) results recorded as blows per 6 inches of penetration. Groundwater observations were made during and at the completion of drilling operations. The borings were backfilled with soil cuttings and bentonite chips, and the surface was restored as close as possible to the original condition. ### 3.2 Laboratory Testing All soil samples were tested in the laboratory for moisture content (AASHTO T 265). Atterberg limits (AASHTO T 89/T 90) and particle size (AASHTO T 88) analyses were performed on selected samples. The soil samples were classified according to the IDH Soil Classification System. Laboratory test results are shown in the *Boring Logs* (Appendix A) and in the *Laboratory Test Results* (Appendix B). ### 4.0 RESULTS OF FIELD AND LABORATORY INVESTIGATIONS Detailed descriptions of the soil conditions encountered during the subsurface investigation are presented in the attached *Boring Logs* (Appendix A) and in the *Soil Profile* (Exhibit 4). Please note that strata contact lines represent approximate boundaries between soil types. The actual transition between soil types in the field may be gradual in horizontal and vertical directions. ### 4.1 Soil Conditions Behind the west abutment, Borings BB-01 and BB-08 encountered 7.0 to 7.5 inches of asphalt pavement overlying 6 to 17 inches of aggregate base. East of the bridge (Borings BB-04 and BB-05) the pavement is made up of a 2 inches of asphalt overlay, 8 to 10 inches of concrete, and 3 to 12 inches of aggregate base. Along Lehigh Avenue, the borings encountered 13 inches of asphalt pavement. Off the pavement, the remaining borings encountered 12 inches of topsoil. In descending order, the general lithologic succession encountered beneath the surface includes 1) man-made ground (fill); 2) very stiff silty clay loam with traces of organic matter; 3) stiff to very stiff silty clay and silty clay loam with interbedded sily loam; and 4) hard silty clay loam. ### 1) Man-made ground (fill) The Willow Road embankments were constructed of stiff to hard, brown, gray, and black silty clay to silty clay loam fill. The fill has unconfined compressive strength (Q_u) values of 1.4 to greater than 4.5 tsf with an average of 2.8 tsf. Moisture content values measure 15 to 24% with an average of 19%. At the pier locations, beneath the bridge, the borings encountered 5.0 to 10.0 feet of stiff, brown and gray silty clay loam to clay loam and loose, black and brown loam to gravelly sand fill. The cohesive soils have Q_u values averaging 1.7 tsf and moisture content values averaging 24%. The granular material has SPT (N)-values of 5 to 9 blows/foot and moisture contents of 6 and 32%. ### 2) Very stiff silty clay loam with traces of organic matter Beneath the embankment materials, the borings drilled behind the abutments advanced through approximately 3.0 to 5.0 feet of very stiff, black silty clay loam with organic matter that marks the boundary between the fill and natural materials. The boundary soils have an average Q_u value of 2.5 tsf and an average moisture content of 28%. ### 3) Stiff to very stiff silty clay and silty clay loam At elevations of 631.3 to 636.1 feet, the borings advanced through thick deposits of stif to very stiff, massive, gray silty clay and silty clay loam. This material has Q_u values of 1.3 to greater than 6.0 tsf with an average of 2.4 tsf and moisture content values of 13 to 22% with an average of 18%. Laboratory index testing on two samples shows liquid limit (L_L) values of 22 and 29% and plastic limit (P_L) values of 15 and 16%. The liquidity index is approximately 0.3, indicating the layer is overconsolidated and not prone to excessive deformation. Several interbedded layers of sand and silt were also encountered within the silty clay and silty clay loam. The granular material has N-values of 20 to 65 blows/foot. ### 4) Hard silty clay loam At elevations of 580.1 to 591.6 feet the borings encountered hard, gray silty clay loam continuing to the termination depths of the borings. The hard material has Q_u values greater than 4.5 tsf and moisture content values less than 17%. ### 4.2 Groundwater Conditions Groundwater associated with intebedded sand was encountered during the subsurface investigation at elevations of 612.5 to 618.0 feet (19.5 to 23.8 feet bgs) in two of the retaining wall borings. We estimate there is a possibility for perched groundwater in some of these thin layers, but overall the groundwater level is deep-seated. ### 4.3 Scour Considerations The bridge is not associated with a waterway and scour is not a concern. ### 4.4 Seismic Design Considerations The soils within the top 100 feet have a weighted average Q_u value of 2.7 ksf (AASHTO, 2012; Method C controlling). These results classify the site in the Seismic Site Class C; the project location belongs to Seismic Performance Zone 1. The seismic spectral acceleration parameters recommended for design in accordance with the 2012 *Interim Revisions* of the AASHTO *LRFD Design Specifications* are summarized in Table 1 (AASHTO 2012). Table 1: Seismic Design Parameters for Willow Road Bridge | Spectral | Spectral | | | |--------------|---------------------------|----------------------|--------------------------------| | Acceleration | Acceleration | | Design Spectrum | | Period | Coefficient ¹⁾ | Site Factors | for Site Class C ²⁾ | | (sec) | (% g) | | (% g) | | 0.0 | PGA= 4.0 | $F_{pga}=1.2$ | $A_s = 4.8$ | | 0.2 | $S_S = 8.6$ | $F_a = 1.2$ | $S_{DS}=10.3$ | | 1.0 | $S_1 = 3.4$ | F _v = 1.7 | $S_{D1} = 5.8$ | ¹⁾ Base spectral acceleration coefficients from AASHTO, 2012 ### 5.0 FOUNDATION ANALYSIS AND RECOMMENDATIONS Geotechnical evaluations and recommendations for the approach embankments and structure foundations are included in the following sections. The existing abutments and wingwalls are pile-supported. The proposed abutment widening will be supported on stub abutments at elevations of 660.3 feet with deep foundations. The deep foundations could consist of metal shell piles (MSP), steel H-piles, or drilled shafts. The piers will be supported on shallow foundations. The embankment slopes will be at 1:2 (V:H), and in the widening areas the fill height will reach a maximum height of about 5 ²⁾ Site Class C values to be presented on plans ($A_s = PGA*F_{pga}$; $S_{DS} = S_S*F_a$; $S_{D1} = S_1*F_v$) to 10 feet. A retaining wall is proposed at the base of the southeast embankment between Stations 101+70.0 and 103+52.5; the wall should be constructed as a mechanically-stabilized earth (MSE) wall, a reinforced concrete cantilever (RCC) wall, or a driven soldier-pile wall. ### 5.1 Approach Embankments and Slabs Wang has performed settlement and global stability analyses for the approach embankments and slabs based on the soil conditions encountered in the borings and preliminary geometry provided by Zroka. Based on settlement estimates we do not anticipate any issues with long-term performance of the approach slabs, nor do we anticipate downdrag allowances for piles will be required (see Section 5.2.2). Global stability is satisfactory. ### 5.1.1 Settlement Evaluations were performed to estimate settlements resulting from the proposed 5.0 to 10-foot high widened embankment section. The low moisture silty foundation soils are
overconsolidated materials for which we estimate an OCR value of at least 3.0. Consolidation parameters were obtained by correlations to the measured index properties. Our evaluations show the foundation soils will undergo a total long-term consolidation settlement of less than 0.4 inch. ### 5.1.2 Global Stability The global stability of the side and end slopes was analyzed based on the soil profile described in Section 4.1 and the information provided in the GPE plan. The slopes along the proposed approach embankments will be at 1:2 (V:H). The slopes are considered structure-supporting; therefore, the minimum required FOS for both short and long-term conditions is 1.5 (IDOT, 2012). *Slide v5.0* evaluation exhibits are shown in Appendix C. For the undrained (short-term) conditions, Wang estimates the end slopes have an FOS of 1.9 (Appendix C-1) and the side slopes, including the proposed retaining wall, have a FOS of 2.9 (Appendix C-3). For the drained (long-term) condition, we estimate the end slopes have an FOS of 1.5 (Appendix C-2) and the side slope has a FOS of 1.7 (Appendix C-4). The FOS against global instability along the slopes is satisfactory. ### **5.2** Structure Foundations Wang recommends the abutments and wingwalls be supported on MSP, steel H-piles, or drilled shafts. The piers should be supported on shallow foundations or driven piles. The proposed retaining wall along the southeast embankment should be constructed as an MSE or RCC gravity type or flexible soldier-pile type wall. ### 5.2.1 Shallow Pier Foundations The piers may be supported on shallow foundations established at elevations of 631.76 feet at Pier 1 and 629.68 feet at Pier 2. At these elevations the piers will be founded above stiff to very stiff silty clay and silty clay loam with average Q_u values of 1.7 to 2.5 tsf and low moisture contents. We estimate the foundation soils have a maximum allowable bearing capacity of 2,700 psf evaluated for a factor of safety of 3.0 (AASHTO, 2002). We estimate the piers will undergo approximately 1.0 inch of long-term consolidation settlement under 4,000 psf of bearing pressure. The estimate friction angle between the stiff and very stiff silty clay soil and a cast-in-place concrete pier is 19°; the corresponding friction coefficient is 0.34 (AASHTO, 2012). The pier foundations should be sized to accommodate a FOS of 1.5 (AASHTO, 2002). ### 5.2.2 Driven Piles IDOT specifies the maximum nominal required bearing (R_{NMAX}) for each pile and states the allowable resistance available (R_A) for MSP and steel H-piles in bridge widening should be based on a FOS of 3.0 (IDOT, 2012a). Nominal tip and side resistance were estimated using the methods and empirical equations presented in the latest *AGMU Memorandum* 10.2 – *Geotechnical Pile Design* (IDOT, 2011). The R_A , R_N , estimated pile tip elevations, and pile lengths for 14-inch diameter MSP, HP12x53 and HP14x73 steel H-piles are summarized in Tables 2 (14-inch MSP), 3 (HP12x53), and 4 (HP14x73). The lengths shown in the tables include a 1-foot pile embedment into the abutments as per the GPE plan. The settlement analysis performed for the embankment shows post-construction deformations less than 0.4 inch and downdrag allowances will not be required. We also do not estimate scour or liquefaction reductions will be required. Table 2: Estimated Pile Lengths and Tip Elevations for 14-inch Diameter Metal Shell Piles | Structure
Unit | Pile
Cap Base | Nominal
Required
Bearing, | Factored
Geotechnical
Loss, | Factored
Geotechnical
Loss Load, | Allowable
Resistance
Available, | Total
Estimated
Pile Length | Estimated Pile Tip Elevation | |-------------------|------------------|---------------------------------|-----------------------------------|--|---------------------------------------|-----------------------------------|------------------------------| | | Elevation (feet) | R _N
(kips) | $(DD+S_c+L_{iq})$ $(kips)$ | (DD only)
(kips) | R _A
(kips) | (feet) | (feet) | | | | 240 | 0.0 | 0.0 | 80 | 24 | 637.3 | | West
Abutment | 660.28 | 300 | 0.0 | 0.0 | 100 | 28 | 633.3 | | (BB-01,
BB-08) | 000.28 | 360 | 0.0 | 0.0 | 120 | 40 | 621.3 | | | | 420 | 0.0 | 0.0 | 140 | 47 | 614.3 | | | | 240 | 0.0 | 0.0 | 80 | 35 | 597.8 | | Pier #1 | 631.76 | 300 | 0.0 | 0.0 | 100 | 39 | 593.8 | | (BB-02,
BB-07) | | 360 | 0.0 | 0.0 | 120 | 39 | 593.8 | | | | 420 | 0.0 | 0.0 | 140 | 39 | 593.8 | | | | 240 | 0.0 | 0.0 | 80 | 33 | 597.7 | | Pier #2 | (20.79 | 300 | 0.0 | 0.0 | 100 | 40 | 590.7 | | (BB-03,
BB-06) | 629.68 | 360 | 0.0 | 0.0 | 120 | 44 | 586.7 | | | | 420 | 0.0 | 0.0 | 140 | 48 | 582.7 | | | | 240 | 0.0 | 0.0 | 80 | 29 | 632.3 | | East
Abutment | 660.29 | 300 | 0.0 | 0.0 | 100 | 35 | 626.3 | | (BB-04,
BB-05) | 660.28 | 360 | 0.0 | 0.0 | 120 | 44 | 617.3 | | | | 420 | 0.0 | 0.0 | 140 | 48 | 613.3 | Table 3: Estimated Pile Lengths and Tip Elevations for HP12x53 Steel Piles | Structure
Unit | Pile
Cap Base | Nominal
Required
Bearing, | Factored
Geotechnical
Loss, | Factored
Geotechnical
Loss Load, | Allowable
Resistance
Available, | Total
Estimated
Pile Length | Estimated Pile Tip Elevation | |-------------------|------------------|---------------------------------|-----------------------------------|--|---------------------------------------|-----------------------------------|------------------------------| | | Elevation (feet) | R _N (kips) | $(DD+S_c+L_{iq})$ (kips) | (DD only)
(kips) | R _A
(kips) | (feet) | (feet) | | | | 240 | 0.0 | 0.0 | 80 | 30 | 631.3 | | West
Abutment | ((0.29 | 300 | 0.0 | 0.0 | 100 | 47 | 614.3 | | (BB-01,
BB-08) | 660.28 | 360 | 0.0 | 0.0 | 120 | 59 | 602.3 | | | | 420 | 0.0 | 0.0 | 140 | 74 | 587.3 | | | | 240 | 0.0 | 0.0 | 80 | 42 | 590.8 | | Pier #1 | (21.77) | 300 | 0.0 | 0.0 | 100 | 60 | 572.8 | | (BB-02,
BB-07) | 631.76 | 360 | 0.0 | 0.0 | 120 | 68 | 564.8 | | | | 420 | 0.0 | 0.0 | 140 | 76 | 556.8 | | | (22.60 | 240 | 0.0 | 0.0 | 80 | 42 | 588.7 | | Pier #2 | | 300 | 0.0 | 0.0 | 100 | 49 | 581.7 | | (BB-03,
BB-06) | 629.68 | 360 | 0.0 | 0.0 | 120 | 60 | 570.7 | | | | 420 | 0.0 | 0.0 | 140 | 75 | 555.7 | | | | 240 | 0.0 | 0.0 | 80 | 41 | 620.3 | | East
Abutment | 660.29 | 300 | 0.0 | 0.0 | 100 | 53 | 608.3 | | (BB-04,
BB-05) | 660.28 | 360 | 0.0 | 0.0 | 120 | 63 | 598.3 | | | | 420 | 0.0 | 0.0 | 140 | 75 | 586.3 | Table 4: Estimated Pile Lengths and Tip Elevations for HP14x73 Steel Piles | Structure
Unit | Pile
Cap Base | Nominal
Required
Bearing, | Factored
Geotechnical
Loss, | Factored
Geotechnical
Loss Load, | Allowable
Resistance
Available, | Total
Estimated
Pile Length | Estimated Pile Tip Elevation | |------------------------------|------------------|---------------------------------|-----------------------------------|---|---------------------------------------|-----------------------------------|------------------------------| | | Elevation (feet) | R _N
(kips) | $(DD+S_c+L_{iq})$
(kips) | ical Geotechnical Loss Load, Ava Liq) (DD only) (kips) (k 0.0 8 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 | | (feet) | (feet) | | | | 240 | 0.0 | 0.0 | 80 | 25 | 636.3 | | West | | 300 | 0.0 | 0.0 | 100 | 35 | 626.3 | | Abutment (BB-01, | 660.28 | 360 | 0.0 | 0.0 | 120 | 47 | 614.3 | | BB-08) | | 420 | 0.0 | 0.0 | 140 | 56 | 605.3 | | | | 480 | 0.0 | 0.0 | 160 | 67 | 594.3 | | | | 240 | 0.0 | 0.0 | 80 | 38 | 594.8 | | D: //4 | | 300 | 0.0 | 0.0 | 100 | 43 | 589.8 | | Pier #1
(BB-02,
BB-07) | 631.76 | 360 | 0.0 | 0.0 | 120 | 52 | 580.8 | | BB-07) | | 420 | 0.0 | 0.0 | 140 | 66 | 566.8 | | | | 480 | 0.0 | 0.0 | 160 | 74 | 558.8 | | | | 240 | 0.0 | 0.0 | 80 | 36 | 594.7 | | 7: //0 | | 300 | 0.0 | 0.0 | 100 | 43 | 587.7 | | Pier #2
(BB-03,
BB-06) | 629.68 | 360 | 0.0 | 0.0 | 120 | 49 | 581.7 | | BB-00) | | 420 | 0.0 | 0.0 | 140 | 55 | 575.7 | | | | 480 | 0.0 | 0.0 | 160 | 66 | 564.7 | | | | 240 | 0.0 | 0.0 | 80 | 32 | 629.3 | | East | | 300 | 0.0 | 0.0 | 100 | 42 | 619.3 | | Abutment (BB-04, | 660.28 | 360 | 0.0 | 0.0 | 120 | 53 | 608.3 | | BB-05) | | 420 | 0.0 | 0.0 | 140 | 61 | 600.3 | | | | 480 | 0.0 | 0.0 | 160 | 70 | 691.3 | ### 5.2.3 Lateral Loading Lateral loads on piles should be analyzed for maximum moments and lateral deflections. Recommended lateral soil modulus and strain parameters required for analysis via the p-y curve method are included in Table 5. Table 5: Recommended Soil Parameters for Lateral Load Pile Analysis | Soil Type (Layer) | Unit Weight (pcf) | Undrained Shear Strength, c _u (psf) | Estimated Friction Angle, Φ (°) | Estimated Lateral Soil Modulus Parameter, k (pci) | Estimated Soil Strain Parameter, ε ₅₀ (%) | |---|-------------------|--|---------------------------------|---|--| | Stiff and V Stiff Silty
Clay Loam Fill (1) | 125 | 3000 | 0 | 2000 | 0.5 | | Stiff and V Stiff Silty Clay (2) | 125 | 125 2500 0 1500 | | 1500 | 0.6 | | Hard Silty Clay Loam (3) | 130 | 4000 | 0 | 2500 | 0.4 | ### 5.2.4 Retaining Wall Foundations Due to right-of-way restrictions along the southeast approach embankment, a retaining wall will be installed between Stations 101+70.0 and 103+52.5, offset 104.0 feet south of the Willow Road centerline. The wall will have a maximum height of about 11.1 feet and will be a fill-type; therefore, we recommend constructing an MSE or RCC wall. We understand, however, that due to
potential utility access conflicts immediately behind the wall, a gravity-type wall may not suitable in this location. We estimate a flexible, cantilever, soldier-pile type wall could be constructed, although it would likely be more challenging to construct due to the fill situation. The retaining wall is a new structure and will be designed in accordance with the AASHTO 2012 *LRFD Bridge Design Specifications* (AASHTO 2012, IDOT 2012) The base and leveling pad of an MSE wall should be established 3.5 feet below the finished grade at the front face and the base of a RCC wall should be established 4.0 feet below grade. Both wall types should have a minimum width of 0.7 times the total height of the wall. At the bearing elevations, the walls would be founded above very stiff silty clay with an average Q_u value of 2.0 tsf or loose to medium dense sand with an estimate friction angle of 32°. We estimate the foundation soils have a maximum factored bearing resistance (q_R) of 3,600 psf evaluated for a geotechnical resistance factor (ϕ_b) of 0.45 (AASHTO, 2012). The estimated settlement under the maximum factored bearing resistance is 1.1 inches. The estimated minimum friction angle between the foundation soil and select MSE wall backfill is 30°, while the friction angle between the soil and a cast-in-place RCC base is 22°; the corresponding friction coefficients are 0.57 and 0.40 (AASHTO, 2012). The MSE wall foundation should be sized to accommodate a geotechnical sliding resistance factor (ϕ_{τ}) of 0.90 and the RCC should be sized for a ϕ_{τ} of 0.85 (AASHTO, 2012). Both wall types should include a lateral earth pressure coefficient of 0.48 within the proposed fill to account for the 1:2 (V:H) slope behind the wall. Our analysis shows adequate sliding and overturning resistance. The global stability of the side slope and retaining wall are discussed in Section 5.1. A driven soldier-pile wall should be designed for a FOS of 1.5 against earth pressure failure and should have an estimated lateral deformation of 1.0 inch or less. The earth pressure analysis for a permanent flexible cantilever wall should be performed based on the drained (long-term) soil parameters included in Table 6; the lateral deformation analysis should be performed based on the lateral soil modulus and strain parameters provided above in Table 5. The active earth pressure coefficients reflect the 1:2 (V:H) slope behind the wall. In our preliminary analysis, for an HP14x73 soldier-pile wall, spaced at 6.0-feet on-center and driven to a depth of 16 feet below existing grade (total pile length 27 feet) we estimate an adequate FOS and a total deformation of about 1.0 inch at the top of the wall. The analysis does not include compaction loads from heavy equipment near the wall. Table 6: Geotechnical Parameters for Design of Flexible Walls | | _ | Drained She
Prope | Earth Pressure Coefficient | | | | |---|----------------|----------------------|----------------------------|--------------------|---------------------|--| | Soil
Description | Unit
Weight | Cohesion | Friction
Angle | Active
Pressure | Passive
Pressure | | | | (lbs/ft^3) | (lbs/ft^2) | (°) | | | | | New Embankment Fill | 125 | 0 | 30 | 0.48 | 3.00 | | | Stiff and V Stiff Silty
Clay Loam Fill (1) | 125 | 0 | 30 | 0.48 | 3.00 | | | Stiff and V Stiff Silty Clay (2) | 125 | 0 | 30 | 0.48 | 3.00 | | | Hard Silty Clay Loam (3) | 130 | 0 | 32 | 0.40 | 3.26 | | ### 5.3 Temporary Shoring Design The GPE plan provided by Zroka shows four stages of construction involving various removal and replacement of the existing bridge deck. The south portion of the widened deck and abutments will be constructed in Stage One; the north portion of the widening is scheduled for Stage Two. We anticipate the widening of the abutments and construction of new wingwalls may require about 7 to 8 feet of temporary shoring to support the existing embankment. If temporary shoring is required, we estimate temporary steel sheet piling designed based on the charts provided in IDOT *Design Guide 3.13.1*, will provide a feasible shoring method. ### 6.0 CONSTRUCTION CONSIDERATIONS ### 6.1 Site Preparation All vegetation, surface topsoil, existing pavement, and debris should be cleared and stripped where approach embankment fills will be placed. The exposed subgrade should be proofrolled. To aid in locating unstable and unsuitable materials, the proofrolling should be observed by a qualified engineer. Any unstable or unsuitable materials should be removed and replaced with compacted structural fill as described in Section 6.3. ### 6.2 Excavation and Dewatering Excavations should be performed in accordance with local, state, and federal regulations. The potential effect of ground movements upon nearby utilities should be considered during construction. Several utilities were cleared during the subsurface investigation that may require coordination during construction. Most notably, an MWRD sewer line running along the south side of the bridge and beneath Lehigh Avenue may pose concerns during the construction of Pier 1. The subsurface investigation encountered deep-seated groundwater with small potential for perched water within the upper sand interbeds. If perched groundwater or precipitation is allowed to enter the excavation, it should be immediately removed via sump-pump. Any soil allowed to soften in standing water should be removed and replaced with structural fill material. ### 6.3 Filling and Backfilling Fill material required to attain the final design elevations should be structural fill material and should be pre-approved prior to placement. Compacted cohesive or granular soil conforming to IDOT Section 204 would be acceptable as structural fill (2012). The fill material should be free of organic matter and debris. Structural fill should be placed in lifts and compacted according to IDOT Section 205, *Embankment* (2012). The onsite cohesive soil (**Layer 1**) could be considered as fill material assuming it has an organic content less than 10%. All backfill materials must be pre-approved by the Resident Engineer. To backfill the abutments we recommend porous granular material, such as crushed stone or crushed gravel that conforms to the gradation requirements specified in IDOT Articles 1004.01 or 1004.05 (2012b). Backfill material should be placed and compacted in accordance with the IDOT Section 205, *Embankment* (2012b) and the IDOT *Bridge Manual* (2012b). Estimated design parameters for granular structural backfill materials are presented in Table 7. Table 7: Estimated Granular Backfill Parameters | Soil Description | Porous Granular Material | |--------------------------------------|--------------------------| | | Backfill | | Unit Weight | 125 pcf | | Angle of Effective Internal Friction | 32° | | Active Earth Pressure Coefficient | 0.31 | | Passive Earth Pressure Coefficient | 3.26 | | At-Rest Earth Pressure Coefficient | 0.5 | ### 6.4 Earthwork Operations The required earthwork can be accomplished with conventional construction equipment. Moisture and traffic will cause deterioration of exposed subgrade soils. Precautions should be taken by the contractor to prevent water erosion of the exposed subgrade. A compacted subgrade will minimize water runoff erosion. Earth moving operations should be scheduled to not coincide with excessive cold or wet weather (early spring, late fall or winter). Any soil allowed to freeze or soften due to the standing water should be removed. Wet weather can cause problems with subgrade compaction. It is recommended that an experienced geotechnical engineer be retained to inspect the exposed subgrade, monitor earthwork operations, and provide material inspection services during the construction phase of this project. ### 6.5 Piling Driven piles shall be furnished and installed according to the requirements of Section 512, *Piling* (IDOT, 2012b) and steel H-piles shall be according to AASHTO M270, Grade 50. We do not anticipate conditions that would require the piles to be driven with a metal shoe. Wang recommends a minimum of one test pile be performed at each substructure location. Test piles should be driven to 110 percent of the nominal required bearing indicated above in Tables 2, 3, and 4 of Section 5.2.2. ### 7.0 QUALIFICATIONS The analysis and recommendations submitted in this report are based upon the data obtained from the borings drilled at the locations shown on the boring logs and in Exhibit 3. This report does not reflect any variations that may occur between the borings or elsewhere on the site, variations whose nature and extent may not become evident until the course of construction. In the event that any changes in the design and/or location of the bridge are planned, we should be timely informed so that our recommendations can be adjusted accordingly. It has been a pleasure to assist Zroka Engineering and the Illinois Department of Transportation on this project. Please call if there are any questions, or if we can be of further service. Respectfully Submitted, WANG ENGINEERING, INC. Mickey L. Snider, P.E. Senior Geotechnical Engineer Jerry W.H. Wang, PhD., P.E. QA/QC Reviewer ### REFERENCES - AASHTO (2002) Standard Specifications for Highway Bridges, Washington, D.C., American Association of State Highway and Transportation Officials. - AASHTO (2012) LRFD Bridge Design Specifications, Washington, D.C., American Association of State Highway and Transportation Officials. - BAUER, R.A., CURRY, B.B., GRAESE, A.M., VAIDEN, R.C., Su, W.J., and HASEK, M.J., 1991, Geotechnical Properties of Selected Pleistocene, Silurian, and Ordovician Deposits of Northeastern Illinois: Environmental Geology 139, Illinois State Geological Survey, 69 p. - HANSEL, A.K., and JOHNSON, W.H. (1996) Wedron and Mason Groups: Lithostratigraphic Reclassification of the Wisconsin Episode, Lake
Michigan Lobe Area: ISGS Bulletin 104: Champaign, Illinois State Geological Survey, 116 p. - IDOT (2012a) Bridge Manual, Illinois Department of Transportation. - IDOT (2012b) Standard Specifications for Road and Bridge Construction, Illinois Department of Transportation, 1098 p. - KOLATA, D.R. AND NIMZ, C.K. (2010) Geology of Illinois; University of Illinois, Urbana, ISGS, IL - LEETARU, H.E., SARGENT, M.L., AND KOLATA, D.R (2004) Geologic Atlas of Cook County for Planning Purposes, ISGS, Champaign, IL # **EXHIBITS** 0 0.5 1.0 Miles SITE AND REGIONAL GEOLOGY: WILLOW ROAD OVER THE SOO LINE RAILROAD, SN 016-0533, SEC 1920.01-BR, COOK COUNTY SCALE: GRAPHICAL EXHIBIT 2 DRAWN BY: C. Marin CHECKED BY: E. Datz 1145 N. Main Street Lombard, IL 60148 www.wangeng.com FOR ZROKA ENGINEERING 703-03-01 Site Map Scale 1 inch equals 220 feet # **Explanation:** Water Level Reading at time of drilling. Water Level Reading 24-hr after drilling or at Vertical Exaggeration: 2.5x ### Wang Engineering, Inc. 1145 N Main Street Lombard, IL 60148 ### Soil Profile A-A' SN 016-0533, SEC 1920.01-BR Willow Road Over Lehigh Ave and SOO Line RR Glenview, IL | JOB NUMBER | PLATE NUMBER | |------------|--------------| | 703-03-01 | EXHIBIT 4 | # **APPENDIX A** # **BORING LOG BB-01** WEI Job No.: 703-03-01 Client Zroka Engineering Project Willow Road Over Lehigh Ave and SOO Line RR Location Glenview, IL Datum: NGVD Elevation: 667.65 ft North: 1981445.85 ft East: 1123655.74 ft Station: 98+40 Offset: 25.37 RT | | Profile | Elevation (ft) | SOIL AND F | a) | Sample Type | Sample No. | SPT Values
(blw/6 in) | Qu
(tsf) | Moisture
Content (%) | Profile | Elevation (ft) | SOIL AND R
DESCRIPT | | Depth
(ft) | Sample Type | Sample No. | SPT Values
(blw/6 in) | Qu
(tsf) | Moisture
Content (%) | |---|---------------|---------------------|--|---|-------------|------------|--|----------------|-------------------------|-------------------------|-----------------|--|-----------------|------------------|-------------|------------|--------------------------|-------------|-------------------------| | | | 667.0
666.5
V | inch thick, CRUSH | PAVEMENT
HED STONE
BATE BASE
gray CLAY | | 1 | 6
6
8 | 2.05
B | 15 | | | | | -
-
- | | 9 | 4
6
7 | 3.77
B | 23 | | | | s | tiff to hard, brown a
ILTY CLAY to SILT
OAM with trace gra | Y CLAY | | 2 | 3
4
5 | 1.97
B | 18 | | | | | -
-
25_ | | 10 | 4
6
8 | 3.94
B | 19 | | | | | | | | 3 | 2
4
5 | 2.21
B | 19 | | 639.6 | | | -
-
- | | 11 | 6
6
8 | 4.26
B | 16 | | | | | | 10 | | 4 | 2
3
5 | 1.72
B | 19 | | Vei | y stiff, black SILT
AM with trace org
BURIED | | -

30_ | | 12 | 3
8
10 | 3.00
P | 24 | | | | | | | | 5 | 2
4
5 | 3.85
B | 18 | | | f to hard, gray SIL
n trace gravel | TY CLAY | -
-
-
- | | | | | | | | | | | 15 | | 6 | 2
3
6 | 2.38
B | 23 | | | | | -
-
35 | | 13 | 9
9
13 | 8.61
B | 19 | | | | | | | | 7 | 2
3
5 | 2.54
B | 22 | | | | | -
-
- | | | | | | | | | | | 20 | | 8 | 3
5
7 | 2.54
B | 18 | | | | | -
-
40_ | | 14 | 5
7
10 | 2.87
B | 19 | | <u>:</u> [| GENERAL NOTES | | | | | | | | | • | W | ATER LE | | L D | | | | | | | Begin Drilling 02-14-2012 Complete Drilling 02-14-2012 | | | | | | | | While Drilling | | | | | RY | | | | | | | | Drilling Contractor Wang Testing Service Drill Rig D-50 ATV Driller K&K Logger F. Bozga Checked by | | | | | | | At Completion of Date of Time After Drilling | | IA. | | ! V! | UD | •••• | · · · · · · | | | | | | | | | •• | | | | | | | | | | Depth to Water | | NA | | | | | | | notony Boyler hooldill your completion | | | | | | | | | | The stratification line | es represent th | ne app | roxima
mav b | ate b
e gra | oundar | у | | | | # **BORING LOG BB-01** WEI Job No.: 703-03-01 Client Zroka Engineering Project Willow Road Over Lehigh Ave and SOO Line RR Location Glenview, IL Datum: NGVD Elevation: 667.65 ft North: 1981445.85 ft East: 1123655.74 ft Station: 98+40 Offset: 25.37 RT | Profile | Elevation
(ft) | SOIL AND ROCK
DESCRIPTION | Depth (ft)
Sample Type | Sample No. | SPT Values
(blw/6 in) | Qu
(tsf) | Moisture
Content (%) | Profile | Elevation
(ft) | SOIL AND ROCK
DESCRIPTION | Depth
(#) | Sample Type | Sample No. | SPT Values (blw/6 in) | Qu
(tsf) | Moisture
Content (%) | |--|--|---|---|------------|--------------------------|-------------|-------------------------|-------------------|-------------------|---|------------------------------|-------------|------------|-----------------------|---------------|-------------------------| | | | | - | | | | | | | | -
-
-
-
- | | | | | | | | | | 45 | 15 | 4
5
7 | 1.97
B | 20 | | | | -
65_
-
-
- | | 19 | 5
6
8 | 2.13
B | 20 | | | | | 50 | 16 | 3 4 6 | 1.72
B | 22 | | | dium dense, gray SILTY
AM with trace gravel | -
-
70_
-
- | | 20 | 5
8
12 | 2.79
B | 18 | | 123/12 | | | 55 | 17 | 4
5
6 | 1.97
B | 21 | | 591.6
Vei | ry stiff to hard, gray SILTY
AY LOAM with trace gravel | -
-
75_
-
-
- | | 21 | 8
9
11 | NP | 13 | | WANGENGINC 7030301.GPJ WANGENG.GDT 4/23/12 | | | 60 | 18 | 7
7
9 | 2.46
B | 19 | | | | -
-
-
80_ | | 22 | 6
8
11 | 2.13
B | 18 | | 11.GPJ | - | GENERA | | | | - | | | | WATER L | | L D | | | | | | 20303C | egin Drill | ling 02-14-2012
ontractor Wang Testing S | Complet | | - | | 2-14
D-5 | | | | <u>Z</u>
▼ | | | RY
UD | | | | DI DI | riller | | | | | | | ا. .ا | ♥ | Time After Drilling | NA . | ••••• | ··iái | עיי | • • • • • • • | | | DI GENG | Driller K&K Logger F. Bozga Checked by Drilling Method 3.25" IDA HSA upto 30' followed by 3" roller bit mud | | | | | | | | | Depth to Water 🛂 NA | | | | | | | | WAN | | ary; Boring backfill upon c | The stratification lines represent the approximate boundary between soil types; the actual transition may be gradual. | | | | | | | | | | | | | | # **BORING LOG BB-01** WEI Job No.: 703-03-01 Client Zroka Engineering Project Willow Road Over Lehigh Ave and SOO Line RR Location Glenview, IL Datum: NGVD Elevation: 667.65 ft North: 1981445.85 ft East: 1123655.74 ft Station: 98+40 Offset: 25.37 RT | Profile | SOIL AND ROCK DESCRIPTION | Depth
(ft)
Sample Type | Sample No. | SPT Values
(blw/6 in) | Qu
(tsf) | Moisture
Content (%) | Profile | Elevation
(ft) | SOIL AND ROCK
DESCRIPTION | Depth
(ff) | Sample Type | Sample No. | SPT Values
(blw/6 in) | Qu
(tsf) | Moisture
Content (%) | |--|--|------------------------------|------------|--------------------------|------------------|-------------------------|---------|-------------------|--|-------------------------|-------------|------------|--------------------------|-------------|-------------------------| | | rock fragments, possibl
cobbles | e
85 | 23 | 8
15
5 <u>0/</u> 3 | 4.92
B |
14 | | | | | | | | | | | | | 90 | 24 | 12
13
22 | 5.74
B | 13 | | | | | | | | | | | | 572.6
Boring terminated at 95.00 ft | 95 | 25 | 6
11
16 | 3.77
B | 15 | | | | | | | | | | | WANGENGINC 7030301.GPJ WANGENG.GDT 4/23/12 and and an area of the control | GENERA
egin Drilling 02-14-2012 | Complet | e Dri | lling | | 02-14 | -201 | 12 | WATER I | _EVE
Ç | | D | RY | | | | MANGENCI
Dri
Dri | illing Contractor Wang Testing in iller K&K Logger illing Method 3.25" IDA HSA upto rotary; Boring backfill upon c | F. Boz | ga
llow | Cho | ecked
/3.''.r | oller | bit | mud | At Completion of Drilling Time After Drilling Depth to Water The stratification lines represente between soil types; the actual tr | NA NA t the appansition | | | UD
oundary | ········ | | # **BORING LOG BB-02** WEI Job No.: 703-03-01 Client Zroka Engineering Project Willow Road Over Lehigh Ave and SOO Line RR Location Glenview, IL Datum: NGVD Elevation: 641.81 ft North: 1981422.53 ft East: 1123773.70 ft Station: 99+58 Offset: 48.51 RT | Profile | BESSIAI HOR | Depth
(ft) | Sample Type | Sample No. | SPT Values
(blw/6 in) | Qu
(tsf) | Moisture
Content (%) | Profile | Elevation
(ft) | SOIL AND | | Depth
(ft) | Sample Type | Sample No. | SPT Values
(blw/6 in) | Qu
(tsf) | Moisture
Content (%) | |--|---|-------------------|-------------|------------|--------------------------|-------------|-------------------------|---------|-------------------|----------------|---|---|-------------|------------|--------------------------|-------------|-------------------------| | ###################################### | AOONLOATE BAOL | | X. | 1 | 8
7
5 | NP | 6 | | | | | -
-
- | | 9 | 4
4
6 | 1.31
B | 16 | | | Stiff, brown and black SILTY CLAYFILL | 5 | | 2 | 4
3
5 | 1.80
B | 20 | | | | | -
-
-
25_ | | 10 | 3
4
6 | 1.31
B | 19 | | | Stiff, brown and gray CLAY with trace gravel | - 1 - 1 - | | 3 | 1
2
3 | 1.25
B | 28 | | | | | -
-
-
- | | 11 | 3
4
5 | 1.48
B | 19 | | | | -
-
10_ | X. | 4 | 4
6
6 | 3.28
B | 22 | | | | | -
-
-
30_ | | 12 | 3
5
8 | 1.64
B | 18 | | | Stiff to very stiff, gray SILTY CLAY with trace gravel | | | 5 | 4
6
10 | 2.95
B | 18 | | | | | -
-
-
- | | | | | | | | | -
-
-
15 | | 6 | 3
5
7 | 2.62
B | 17 | | | | | -
-
-
35_ | | 13 | 5
7
10 | 2.46
B | 18 | | 4/23/12 | | | | 7 | 3
4
7 | 2.38
B | 19 | | | | | -
-
-
- | | | | | | | WANGENG.GDI | | 20 | | 8 | 2
4
5 | 1.64
B | 19 | | | | | -
-
40 | | 14 | 4
5
8 | 1.64
B | 17 | | 105 C - | GENERAL aia Deilling 02-10-2012 | | | | | | 2 40 | _20 | 12 | While Drilling | WATER | | L D | | | | | | Dri
Dri | Begin Drilling 02-10-2012 Complete Drilling 02-10-2012 Drilling Contractor Wang Testing Service Drill Rig D-50 ATV Driller K&K Logger F. Bozga Checked by Drilling Method 3.25" IDA HSA upto 30" followed by 3" roller bit mud rotary; Boring backfill upon completion | | | | | | | | | | of Drilling lling er Times represences; the actual | NA NA NA ent the app transition in the second |
roxim | MI | RY
UD
oundar | у | | ### **BORING LOG BB-02** WEI Job No.: 703-03-01 Client Zroka Engineering Project Willow Road Over Lehigh Ave and SOO Line RR Location Glenview, IL Datum: NGVD Elevation: 641.81 ft North: 1981422.53 ft East: 1123773.70 ft Station: 99+58 Offset: 48.51 RT # **BORING LOG BB-03** WEI Job No.: 703-03-01 Client Zroka Engineering Project Willow Road Over Lehigh Ave and SOO Line RR Location Glenview, IL Datum: NGVD Elevation: 641.46 ft North: 1981419.26 ft East: 1123901.43 ft Station: 99+86 Offset: 51.58 RT | Profile | | | Depth (ft) | recovery
Sample No | SPT Values (blw/6 in) | Qu
(tsf) | Moisture
Content (%) | Profile | Elevation (ft) | SOIL AND ROCK
DESCRIPTION | Depth
(ff) | Sample Type | SPT Values | (blw/6 in)
Qu
(tsf) | Moisture
Content (%) | |--|--------|--|---------------|-----------------------|-----------------------|-------------|-------------------------|---------|----------------|---|-------------------------|---|------------|---------------------------|-------------------------| | | | 12-inch thick, black CLAY LOAMTOPSOIL Hard, brown CLAY LOAM with little gravelFILL | $\overline{}$ | 1 | 6 8 | 4.26
B | 14 | | | | -
-
- | | 9 (| 5 1.50 | 0 21 | | | | Stiff, brown SILTY CLAY LOAM with little gravel and traces of woods and rootsFILL | 5_ | 2 | 3 3 6 | 1.80
B | 24 | | | | -
-
-
-
25_ | | ا ۸ ۱ | 1 2.46 | 6 20 | | | | Medium stiff to very stiff, brown and gray SILTY CLAY with trace gravel | | 3 | 2 2 3 | 0.74
B | 18 | | | | -
-
-
- | | 11 (| 3 2.05 | 5 19 | | | | | 10 | | 3 3 6 | 2.46
B | 19 | | | | -
-
-
30_ | | 12 | 1.56 | 6 20 | | | | | | 5 | 3
5
7 | 3.03
B | 19 | | | | -
-
-
- | | | | | | | | 626.0 | 15 | 6 | 4
6
6 | 2.87
B | 14 | | | | -
-
35_ | | 13 | 2.62 | 2 19 | | /12 | | Loose, gray SILTY LOAM with trace gravel | | 7 | , 4
4
5 | NP
- | 12 | | | | -
-
-
- | | | | | | WANGENGINC 7030301.GPJ WANGENG.GDT 4/23/12 | | Stiff to hard, gray SILTY CLAY LOAM with trace gravel | 20 | 8 | 3 4 5 | 2.30
B | 18 | | | | -
-
-
40_ | | 14 | 2.46 | 6 19 | | I.GPJ | | GENERAL | NC | TE | S | - | | • | | WATER | R LEVE | L D/ | ΛΤ̈́Α | | | | 30301 | _ | | Compl | | - | | 02-08 | | | While Drilling | <u>¥</u> | | DRY | | | | NC 7 | | lling Contractor Wang Testing S | | | | | | | | At Completion of Drilling | <u>¥</u> | • | MUE |) | | | ENG! | | ller K&K Logger B
lling Method 3.25" IDA HSA upto | | | Ch | | | | mud | Time After Drilling Depth to Water | NA
NA | | | | | | MANG | ااا ار | rotary; Boring backfill upon co | | | | - | | | | The stratification lines represent between soil types; the actual | sent the app | roximat | e boun | dary | | ### **BORING LOG BB-03** WEI Job No.: 703-03-01 Client Zroka Engineering Project Willow Road Over Lehigh Ave and SOO Line RR Datum: NGVD Elevation: 641.46 ft North: 1981419.26 ft East: 1123901.43 ft Station: 99+86 Offset: 51.58 RT ## **BORING LOG BB-04** WEI Job No.: 703-03-01 Client Zroka Engineering Project Willow Road Over Lehigh Ave and SOO Line RR Location Glenview, IL Datum: NGVD Elevation: 667.82 ft North: 1981445.15 ft East: 1124008.71 ft Station: 101+93 Offset: 25.25 RT | Profile | | Sample Type recovery Sample No. | SPT Values
(blw/6 in) | Qu
(tsf) | Moisture
Content (%) | Profile | Elevation (ft) DEDIT NOBERT AND Sample Type recovery Sample No. SPT Values (blw/6 in) Qu (tsf) Moisture Content (%) | |---|---|---------------------------------|--------------------------|-------------|-------------------------|---------|---| | | 2-inch thick ASPHALT over 667.08-inch thick CONCRETEPAVEMENT 3-inch thick, brown, GRAVELLY SANDAGGREGATE BASE Very stiff to hard, brown, gray | 1 | 7
9
11 | > 4.50
P | 12 | | 9 5 6 2.87
B | | | and black SILTY CLAY to SILTY CLAY LOAM with trace gravelFILL 5 | 2 | 8
10
9 | > 4.50
P | 16 | | 10 5 6 2.87 B B | | |

 | 3 | 5
6
6 | 2.50
P | 21 | | 11 5 NR 9 | | |
 -
 -
 10 | 4 | 4
3
5 | 2.62
B | 20 | | 12 3 4 2.13 B | | | | 5 | 2
3
4 | NR | | | Oss.8 Very stiff, black SILTY CLAY LOAM with trace organic matterBURIED TOPSOIL | | |
 -

 -
 | 6 | 3
4
5 | 2.87
B | 18 | | 13 3 4 2.00 P | | r 4/23/12
 |

 -

 | 7 | 3
4
6 | 2.38
B | 16 | | Stiff to very stiff, brown and gray SILTY CLAY with trace gravel | | WANGENGINC 7030301.GPJ WANGENG.GDT 4/23/12 O O O Ø Ø Ø | GENERAL N | 8
OTES | 3
5
6 | 2.13
B | 19 | | WATER LEVEL DATA | | 0301.c | | plete Dr | | 0 | 2-15 | -20° | | | D 73 | rilling Contractor Wang Testing Servi | ce | Drill Rig | ···· | D-5 | | TV At Completion of Drilling | | D ENGIN | | ozga
follov | | | | | Time After Drilling NA MA Depth to Water ▼ NA | | WANG | rilling Method 3.25" IDA HSA upto 30' rotary; Boring backfill upon comp | | - | | | | The stratification lines are not the approximate boundary | ### **BORING LOG BB-04** WEI Job No.: 703-03-01 Client Zroka Engineering Project Willow Road Over Lehigh Ave and SOO Line RR Location Glenview, IL Datum: NGVD Elevation: 667.82 ft North: 1981445.15 ft East: 1124008.71 ft Station: 101+93 Offset: 25.25 RT SPT Values (blw/6 in) SPT Values (blw/6 in) Moisture Content (%) Moisture Content (%) Sample Type Sample No Sample No Elevation (ft) Elevation (ft) Profile Profile **SOIL AND ROCK SOIL AND ROCK** Qu (tsf) Sample ⁻ Qu (tsf) **DESCRIPTION DESCRIPTION** 19 2.71 19 2.54 19 5 В В 10 3 1.15 21 20 2.87 15 16 3 9 В В 13 2.38 20 1.97 16 6 10 Hard, gray SILTY CLAY LOAM with trace gravel 7030301.GPJ WANGENG.GDT 4/23/12 3.28 4.59 15 15 **WATER LEVEL DATA GENERAL NOTES** 02-15-2012 Complete Drilling 02-15-2012 Begin Drilling While Drilling Wang Testing Service Drill Rig D-50 ATV At Completion of Drilling **Drilling Contractor K&K** Logger **F. Bozga** Checked by Time After Drilling Depth to Water Drilling Method 3.25" IDA HSA upto 30' followed by 3" roller bit mud The stratification lines represent the approximate boundary between soil types: the actual transition may be gradual. rotary; Boring backfill upon completion. # **BORING LOG BB-04** WEI Job No.: 703-03-01 Client Zroka Engineering Project Willow Road Over Lehigh Ave and SOO Line RR Location Glenview, IL Datum: NGVD Elevation: 667.82 ft North: 1981445.15 ft East: 1124008.71 ft Station: 101+93 Offset: 25.25 RT | Profile | Elevation (ft) | SOIL AND ROCK
DESCRIPTION | Depth
(ft) | Sample Type recovery | Sample No. | SPT Values
(blw/6 in) | Qu
(tsf) | Moisture
Content (%) | Profile | Elevation
(ff) | SOIL AND ROCK
DESCRIPTION | Depth
(ft) | Sample Type | Sample No. | SPT Values
(blw/6 in) | Qu
(tsf) | Moisture
Content (%) | |--|--|------------------------------|---------------|----------------------|------------|----------------------------------|-------------|-------------------------|---------|-------------------|------------------------------|---------------|-------------|------------|--------------------------|-------------|-------------------------| | | 577.8 | ring terminated at 90.00 ft | 90 / | 38 | 23 | 10
13
17
12
16
36 | 4.51
B | 15 | | | | | 35 | S | S | | | | رة
ا | GENERAL NOTES Begin Drilling 02-15-2012 Complete Drilling 02-15-2012 While Drilling Potential Processing Service Drill Rig D-50 ATV At Completion of Drilling MUD | | | | | | | | | | | | | | | | | | MANGENGINC
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO | iller
illing Met | K&K Logger | F. Bo | ozga
foll | a
ow | Time After Drilling | NA
NA | | | | / | | | | | | | #### **BORING LOG BB-05** WEI Job No.: 703-03-01 Client Zroka Engineering Project Willow Road Over Lehigh Ave and SOO Line RR Location Glenview, IL Datum: NGVD Elevation: 668.36 ft North: 1981495.43 ft East: 1123989.75 ft Station: 101+74 Offset: 24.72 LT | SOIL AND ROCK DESCRIPTION | Sample Type
recovery
Sample No. | SPT Values (blw/6 in) | Qu
(tsf) | Moisture
Content (%) | Profile | Elevation (ff) Depth (ff) Sample Type recovery Sample No. SPT Values (blw/6 in) Qu (tsf) Moisture | |--|---------------------------------------|--------------------------|-------------|-------------------------|---------|--| | 2-inch thick ASPHALT over 10-inch thick CONCRETEPAVEMENT 12-inch thick, brown, 666.4GRAVELLY SANDAGGREGATE BASE Stiff to hard, brown, gray and | 1 | 6
5
7 | NP | 9 | | 9 3 5 2.54 1 B | | black SILTY CLAY LOAM with trace gravelFILL 5_ | 2 | 5 5 6 | > 4.50
P | 21 | | 10 4 7 9 3.00 P | | | 3 | 4
6
7 | > 4.50
P | 12 | | 11 5 6 3.69 B | | | 4 | 3 4 4 | 2.54
B | 14 | | 12 4 5 8 2.95 B | | | 5 | 2 3 4 | 1.89
B | 18 | | Very stiff, brown and gray SILTY CLAY LOAM with trace organic matterBURIED TOPSOIL | | | 6 | 3 4 | 1.39
B | 20 | | 13 3 2.30 2 B | | 4423/12 | 7 | , 3
4
5 | 2.62
B | 17 | | Stiff to hard, gray SILTY CLAY to SILTY CLAY LOAM with trace gravel | | GENERAL N Begin Drilling 02-16-2012 Cor Drilling Contractor Wang Testing Server Drilling Method 3.25" IDA HSA upto 30 rotary; Boring backfill upon comp | 8 | 5 | 2.30
B | 18 | | 14 7 9 4.84 2 12 B | | GENERAL N | WATER LEVEL DATA | | | | | | | Begin Drilling 02-16-2012 Cor | mplete Di | D12 While Drilling ♀ DRY | | | | | | Drilling Contractor Wang Testing Serv | | | | D-50 |) AT | | | Driller K&K Logger F. E | | | | | | Time After Drilling NA | | Drilling Method 3.25" IDA HSA upto 30 | | - | | | | The stratification lines represent the approximate boundary | | rotary; Boring backfill upon com | pletion |) | | | | between soil types; the actual transition may be gradual. | # **BORING LOG BB-05** WEI Job No.: 703-03-01 Project Willow Road Over Lehigh Ave and SOO Line RR Datum: NGVD Elevation: 668.36 ft Station: 101+74 North: 1981495.43 ft Client Zroka Engineering East: 1123989.75 ft Location Glenview, IL Offset: 24.72 LT | Profile | | SOIL AND ROCK DESCRIPTION | Depth
(ft)
Sample Type | Sample No. | SPT Values
(blw/6 in) | Qu
(tsf) | Moisture
Content (%) | Profile | Elevation
(ft) | SOIL AND ROC
DESCRIPTION | K Depth | Sample Type | Sample No. | SPT Values
(blw/6 in) | Qu
(tsf) | Moisture
Content (%) | |--|---|---|------------------------------|------------|--------------------------|-------------|-------------------------|---------|-------------------|---|---|-------------|------------|--------------------------|-------------|-------------------------| | | | | 45_ | 15 | 4
6
7 | 2.46
B | 19 | | | | -
-
-
-
-
-
-
-
-
-
- | | 19 | 4
6
9 | 3.20
B | 21 | | | | | 50 | 16 | 5
7
7 | 2.87
B | 19 | | | | -
-
-
-
-
-
70_ | | 20 | 5
7
9 | 2.30
B | 16 | | | | | 55 | 17 | 4
7
8 | 1.97
B | 20 | | | | -
-
-
-
-
75_
- | | 21 | 4
5
6 | 1.07
B | 14 | | WANGENGINC 7030301.GPJ WANGENG.GDT 4/23/12 | 18 5 2.87 19 14 22 7 8 13 14 15 14 15 15 15 15 15 | | | | | | | | | | | | | | | | | WANGENGINC 703 | Dril | lling Contractor Wang Testing ller K&K Logger lling Method 3.25" IDA HSA up rotary; Boring backfill upon | F. Bozga
to 30' follo | a
owe | Che | ecked I | oller | bit | | At Completion of Drilling Time After Drilling Depth to Water The stratification lines repubetween soil types; the act | NA NA Tesent the app |
 | ate bo | UD
oundary
dual. | ··········· | | # **BORING LOG BB-05** WEI Job No.: 703-03-01 Client Zroka Engineering Project Willow Road Over Lehigh Ave and SOO Line RR Location Glenview, IL Datum: NGVD Elevation: 668.36 ft North: 1981495.43 ft East: 1123989.75 ft Station: 101+74 Offset: 24.72 LT | Profile | Elevation (ft) | | AND ROCK
CRIPTION | Depth (ft) Sample Type | Sample No. | SPT Values
(blw/6 in) | Qu
(tsf) | Moisture
Content (%) | Profile | Elevation
(ft) | SOIL AN | | Depth (ft) | Sample Type | Sample No. | SPT Values
(blw/6 in) | Qu
(tsf) | Moisture
Content (%) | |----------------|---------------------|---------------|--------------------------------------|------------------------|----------------|--------------------------|-------------|-------------------------|--------------|-------------------|-----------------------------|----------------|--------------|-------------|------------|--------------------------|-------------|-------------------------| | | 584.4 | ∕ery dense, ç | gray SILT | 85 | 23 | 13
24
36 | NΡ | 22 | | | | | | | | | | | | | | | ard, gray SILTY
with trace gravel | -
-
-
-
- | 90 | 24 | 9
17
25 | 4.92
B | 15 | | | | | | | | | | | | | 25 7 10 16 B 15 B | | | | | | | | | | | | | | | | | | | Begin Drilling | Be | egin Dr | | 2-16-2012 | 2 | While Drilling | | <u> </u> | | DI | RY | | | | | | | | | | 인
일 | _ | | Wang Testing | |
V | At Completio | _ | <u>¥</u> | | M | UD | | | | | | | | | | riller
rilling M | K&K | Logger | | | | | d | Time After D | | NA
NA | | | | | | | | | ANG
Dr | rilling M | | 25" IDA HSA upt | | | | | | | | Depth to Wa The stratificat | on lines repre | sent the app | roxima | ate b | oundary | / | | | ≩ L | rot | ary, Doring | g backfill upon. | between soil t | vpes; the actu | al transition i | nay be | e gra | dual. ´ | | | | | | | | | | # **BORING LOG BB-06** WEI Job No.: 703-03-01 Client Zroka Engineering Project Willow Road Over Lehigh Ave and SOO Line RR Location Glenview, IL Datum: NGVD Elevation: 640.00 ft North: 1981532.35 ft East: 1123869.85 ft Station: 100+54 Offset: 61.46 LT | Profile | Elevation (ft) | SOIL AND ROO
DESCRIPTIO | N o | Sample Type | Sample No. | SPT Values
(blw/6 in) | Qu
(tsf) | Moisture
Content (%) | Profile | Elevation
(ft) | SOIL ANI
DESCRI | | Depth
(ft) | Sample Type | Sample No. | SPT Values
(blw/6 in) | Qu
(tsf) | Moisture
Content (%) | |--|--|---|----------------------|---------------|------------|--------------------------|-------------|------------------------------|-------------|-------------------|--|-------|-----------------------------------|-------------|------------|--------------------------|-------------|-------------------------| | | 639.0 | 12-inch thick brown SIL ⁻
T(
Very stiff, brown SILTY (
with crushed asphalt | OPSOIL | | 1 | 9
8
4 | 2.50
P | 20 | | | | | -
-
-
- | X | 9 | 4
6
7 | 1.56
B | 21 | | | | Loose, black LOAM | FILL
-MOIST
5_ | | 2 | 2
2
3 | NP | 32 | | | | | -
-
-
25_ | X | 10 | 4
4
6 | 1.64
B | 21 | | | | Stiff to very stiff, gray and
SILTY CLAY with trace o | | | 3 | 2
4
5 | 2.05
B | 20 | | | | | -
-
-
- | | 11 | 4
6
9 | 1.56
B | 21 | | | 629.5 | | -
-
-
10_ | | 4 | 4
7
7 | 1.25
P | 23 | | | | | -
-
-
30_ | | 12 | 4
5
6 | 2.13
B | 21 | | |]; | Stiff to very stiff, gray SIL
CLAY with trace gravel | .TY - | | 5 | 8
9
15 | 4.59
B | 17 | | | | | -
-
-
- | | | | | | | $\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $ | | | | | | | | | | | | | 6
6
7 | 1.97
B | 20 | | | | | 23/12 | $\begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix}$ $\begin{bmatrix} 5 \\ 6 \\ 7 \end{bmatrix}$ $\begin{bmatrix} 1.97 \\ 8 \end{bmatrix}$ $\begin{bmatrix} 21 \\ 1$ | | | | | | | | | | | | | | | | | | | MANGENGINC 7030301.GPJ WANGENG.GDT 4// | $\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 20 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 8 \\ 4 \\ 7 \\ B \end{bmatrix}$ $\begin{bmatrix} 1 \\ 180 \\ 8 \\ B \end{bmatrix}$ $\begin{bmatrix} 20 \\ 1 \\ 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 40 \\ 8 \\ B \end{bmatrix}$ $\begin{bmatrix} 14 \\ 6 \\ 7 \\ 8 \\ B \end{bmatrix}$ $\begin{bmatrix} 1.72 \\ 8 \\ B \end{bmatrix}$ $\begin{bmatrix} 19 \\ 19 \\ 19 \\ 19 \\ 19 \end{bmatrix}$ | | | | | | | | | | | | | | | | | | | 301.GP | egin Dr | | NERAL N | IOT
nplete | | | 12 | While Drilling | WATER | LEVE | | | A
50 ft | | | | | | | 00 Dt | - | Contractor Wang Te | | | | _ | | While Drilling At Completion | of Drilling | ¥. | | | UD
UD | | | | | | | Dr Dr | iller | K&K Logo | ger B.V | Vilso | n | Ch | ecked | by | | | Time After Dri | lling | NA | | | | | | | MANGE
MANGE | _ | Method 3.25" IDA HStary; Boring backfill | = | | | - | | | | | Depth to Wate
The stratification
between soil ty | | NA
ent the app
transition r | roxima | ate be | oundarı
dual. | y | | #### **BORING LOG BB-06** WEI Job No.: 703-03-01 Client Zroka Engineering Project Willow Road Over Lehigh Ave and SOO Line RR Location Glenview, IL Datum: NGVD Elevation: 640.00 ft North: 1981532.35 ft East: 1123869.85 ft Station: 100+54 Offset: 61.46 LT # **BORING LOG BB-07** WEI Job No.: 703-03-01 Client Zroka Engineering Project Willow Road Over Lehigh Ave and SOO Line RR Location Glenview, IL Datum: NGVD Elevation: 642.50 ft North: 1981523.19 ft East: 1123740.76 ft Station: 99+25 Offset: 52.09 LT | | Profile | BESSIAII HON | Sample Type | Sample No. | SPT Values
(blw/6 in) | Qu
(tsf) | Moisture
Content (%) | Profile | Elevation
(ft) | SOIL AND | | Depth
(ft) | Sample Type | Sample No. | SPT Values
(blw/6 in) | Qu
(tsf) | Moisture
Content (%) | |--|----------------------|---|----------------|------------|--------------------------|----------------------|-------------------------|-------------|-------------------|--|-------------------------------------|-----------------------------|------------------|------------|--------------------------|-------------|-------------------------| | ļ | }#.}
}#.}
}#.} | 13-inch thick ASPHALTPAVEMENT | | | | | | | | | | _ | | | | | | | • | 0.000.000 | Medium dense, gray CRUSHED
STONE
AGGREGATE BASE | | 1 | 12
15
12 | NP | 5 | | | | | - | | 9 | 2
3
5 | 1.89
B | 19 | | | | Loose, brown and gray, coarse
GRAVELLY SAND
FILL | 5 | 2 | 7
5
4 | NP | 6 | | | | | -
-
-
25_ | | 10 | 3
4
5 | 1.56
B | 19 | | | | Stiff, brown and gray CLAY LOAMFILLMOIST | | 3 | 2
2
3 | 1.48
B | 29 | | | | | - | | 11 | 3
5
7 | 1.72
B | 19 | | | | 10 | | 4 | 1
3
5 | 1.00
P | 26 | | | | | -
-
30 | | 12 | 5
5
7 | 1.80
B | 17 | | | | Hard, brown SILTY CLAY with trace gravel | | 5 | 4
6
9 | 6.07
B | 19 | | | | | -
-
- | | | | | | | | | 15 | 5 | 6 | 3
5
8 | 4.51
B | 18 | | | | | -
-
35 | | 13 | 4
5
8 | 2.13
B | 19 | | 23/12 | | Stiff to very stiff, gray SILTY CLAY with trace gravel | | 7 | 4
4
6 | 2.38
B | 13 | | | | | -
-
- | | | | | | | WANGENGINC 7030301.GPJ WANGENG.GDT 4/23/12 | | 20 | | 8 | 2
4
5 | 2.05
B | 20 | | | | | -
-
-
40 | $/\setminus$ | 14 |
4
5
8 | 2.38
B | 18 | | 11.GPJ | | GENERAL | | WATER | | | | | - | | | | | | | | | | NGENGINC 70303(| Dri
Dri | lling Contractor Wang Testing Se
ller K&K Logger F.
lling Method 3,25" IDA HSA upto 3 | Bozg
0' fol | ja
low | Drill Rig
Cho |
ecked
7.3.".r | oller | 0 A⊺
bit | ΓV
mud | While Drilling At Completion Time After Drill Depth to Water | ling
r <u>¥</u> | VA
NA
NA | | DF
ML | JD | | | | ĕ. | | rotary; Boring backfill upon con | npleti | on. | | | | | | The stratification between soil type | n ines represe
les: the actual t | ะน เมe appi
transition r | oximat
nav be | arac | unaary
dual. | ′ | | # **BORING LOG BB-07** WEI Job No.: 703-03-01 Client Zroka Engineering Project Willow Road Over Lehigh Ave and SOO Line RR Location Glenview, IL Datum: NGVD Elevation: 642.50 ft North: 1981523.19 ft East: 1123740.76 ft Station: 99+25 Offset: 52.09 LT | Profile | Elevation (ft) | SOIL AND ROCK DESCRIPTION | Sample Type | Sample No. | SPT Values
(blw/6 in) | Qu
(tsf) | Moisture
Content (%) | Profile | Elevation
(ft) | SOIL AND ROCK
DESCRIPTION | Depth
(ft) | Sample Type | Sample No. | SPT Values
(blw/6 in) | Qu
(tsf) | Moisture
Content (%) | |--------------|--|--|----------------|------------|---|---------------|-------------------------|---------|---------------------|------------------------------|-----------------------------------|-------------|------------|--------------------------|-------------|-------------------------| | | | | - | | | | | | | | -
-
-
- | | | | | | | | | 45_ | | 15 | 4 6 8 | 2.38
B | 19 | | | | -
65_
-
-
-
- | | 19 | 10
15
30 | 5.74
B | 12 | | | | trace sand
50_ | | 16 | 4
6
7 | 1.23
B | 15 | | | | -
-
70_
-
-
-
- | | 20 | 6
10
14 | 3.53
B | 16 | | 4/23/12 | | possible cobbles
55_
Very stiff to hard, gray SILTY
CLAY LOAM with trace gravel | | 17 | 6
8
14 | 1.23
B | 14 | | <u>567.5</u>
Bor | ring terminated at 75.00 ft | -
-
75
-
-
-
- | | 21 | 10
13
15 | 3.03
B | 16 | | WANGENG.GDT | 18 12 13 12 80 80 80 80 80 80 80 80 80 80 80 80 80 | | | | | | | | | | | | | | | | | 1.GPJ | • | GENERAL N | | | | 12 | WATER | | L D | | | | | | | | | © Dr
O Dr | riller .
rilling N | contractor Wang Testing Service K&K Logger F. In Method 3.25" IDA HSA upto 30 tary; Boring backfill upon com | Bozg
' foll | a
ow | While Drilling At Completion of Drilling Time After Drilling Depth to Water The stratification lines represe between soil types; the actual | ▽
NA
NA | | M | RY
UD | | | | | | | | # **BORING LOG BB-08** WEI Job No.: 703-03-01 Client Zroka Engineering Project Willow Road Over Lehigh Ave and SOO Line RR Location Glenview, IL Datum: NGVD Elevation: 667.17 ft North: 1981497.45 ft East: 1123636.62 ft Station: 98+21 Offset: 26.19 LT | Profile | SOIL AND ROCK (fig.) | Sample Type recovery Sample No. | SPT Values
(blw/6 in) | Qu
(tsf) | Moisture
Content (%) | Profile | Elevation
(ft) | SOIL AND ROCK
DESCRIPTION | Depth
(ff) | Sample Type | Sample No. | SPT Values
(blw/6 in) | Qu
(tsf) | Moisture
Content (%) | |--|---|---------------------------------|--------------------------|---------------|---|---------------|-------------------|--|---------------------|-----------------|------------|--------------------------|-------------|-------------------------| | | 7-inch thick CONCRETEPAVEMENT 17-inch thick, brown, GRAVELLY SANDAGGREGATE BASE Very stiff to hard, brown and gray SILTY CLAY LOAM with trace | 1 | 16
10
8 | NP | 16 | | | | -
-
-
- | | 9 | 3
4
7 | 2.50
P | 17 | | | gravelFILL 5 | 2 | 5
7
8 | > 4.50
P | 18 | | | | -
-
-
25_ | | 10 | 4
4
8 | 1.89
B | 18 | | | -
-
- | 3 | 5
6
8 | 2.21
B | 16 | | 639.2 | | -
-
- | | 11 | 3
5
7 | 2.05
B | 21 | | | -
-
10 | 4 | 4
6
9 | 3.77
B | 16 | | Ver | y stiff, black SILTY CLAY
AM with organic matter
BURIED TOPSC | -
IL
30_
- | | 12 | 5
8
11 | 2.50
P | 32 | | | -
-
- | 5 | 3
5
7 | 3.12
B | 17 | | | f to hard, brown and gray
TY CLAY with trace gravel | -
-
-
- | | | | | | | | -
-
-
15_, | 18 | | | | -
-
35_ | | 13 | 6
7
8 | 4.92
B | 20 | | | | | 23/12 | | | | -
-
- | | | | | | | | | | | | WANGENGINC 7030301.GPJ WANGENG.GDT 4/23/12 | 20 | | | -
-
40_ | | 14 | 6
8
10 | 3.77
B | 19 | | | | | | | 1.GPJ | GENERAL N | | WATER I | | L D | | | | | | | | | | |)E080
- | | plete Dri | 12 | | <u>Ų.</u> | | | RY | | | | | | | | L SC I | illing Contractor Wang Testing Servi
iller K&K Logger F. Be | | | ΓV | At Completion of Drilling Time After Drilling | ▼
NA | | . iVi | UD | • • • • • • • • | | | | | | Dr SENG | illing Method 3.25" IDA HSA upto 30' | | | | | bit | mud | Depth to Water | NA | | | | | | | WANC | rotary; Boring backfill upon comp | | - | | | | | The stratification lines represent between soil types; the actual tr | | roxim
may b | ate bo | oundar <u>ı</u>
dual. | / | | #### **BORING LOG BB-08** WEI Job No.: 703-03-01 Client Zroka Engineering Project Willow Road Over Lehigh Ave and SOO Line RR Location Glenview, IL Datum: NGVD Elevation: 667.17 ft North: 1981497.45 ft East: 1123636.62 ft Station: 98+21 Offset: 26.19 LT # **BORING LOG BB-08** WEI Job No.: 703-03-01 Client Zroka Engineering Project Willow Road Over Lehigh Ave and SOO Line RR Location Glenview, IL Datum: NGVD Elevation: 667.17 ft North: 1981497.45 ft East: 1123636.62 ft Station: 98+21 Offset: 26.19 LT | Profile | Elevation (ft) | SOIL AND ROCK
DESCRIPTION | Depth (ft) Sample Type | Sample No. | SPT Values
(blw/6 in) | Qu
(tsf) | Moisture
Content (%) | Profile | Elevation
(ft) | SOIL AND ROO
DESCRIPTIO | | Sample Type recovery | Sample No. SPT Values (blw/6 in) | Qu
(tsf) | Moisture
Content (%) | |--|----------------|--|------------------------|------------|--------------------------|-------------|-------------------------|---------|-----------------------|---|---------------------------------------|----------------------|----------------------------------|-------------|-------------------------| | | 585.2 | /ery dense, gray SILTY LOAM | - | | | | | | | | | | | | | | | 580.7 | | 85 | 23 | 12
21
39 | NP | 15 | | | | | | | | | | | | Hard, gray SILTY CLAY LOAM vith trace gravel | | 24 | 10
14 | 6.56
B | | | | | | | | | | | | 577.2
E | Boring terminated at 90.00 ft | 90 / \ | - | 17 | | | | | | | | | | | | | | | 95 | | | | | | | | | | | | | | 3DT 4/23/12 | | | - | | | | | | | | | | | | | | WANGENGINC 7030301.GPJ WANGENG.GDT 4/23/12 | | GENERA | 100_
L NOTI | | | WAT | ER LEVE | L D | ATA | | | | | | | |)301.
Be | egin Dri | | Complete | | ing | (| 2-17 | -201 | 12 | While Drilling | <u> </u> | | DRY | | | | D 703 | - | ontractor Wang Testing S | | | | | | | | At Completion of Drillin | | | MUD | | | | D | riller . | | F. Bozga | | | | | | · · · · · · · · · · · | Time After Drilling | NA | | | | | | D GEN | rilling M | | | | - | | | | | Depth to Water | ▼ NA | | ta la comit | | | | X | rot | ary; Boring backfill upon c | ompletion | <u> </u> | | | | | | The stratification lines re between soil types; the a | epresent the app
actual transition | roxima
may be | te bounda
gradual. | ary | | # **BORING LOG RW-01** WEI Job No.: 703-03-01 Client Zroka Engineering Project Willow Road Over Lehigh Ave and SOO Line RR Location Glenview, IL Datum: NGVD Elevation: 637.36 ft North: 1981363.49 ft East: 1124004.85 ft Station: 101+89 Offset: 107.19 RT | Profile | SOIL AND ROCK DESCRIPTION | Depth
(ft)
Sample Type | recovery
Sample No. | SPT Values
(blw/6 in) | Qu
(tsf) | Moisture
Content (%) | Profile | Elevation (ft) | SOIL AND
DESCRIF | | Depth
(ft) | Sample Type | Sample No. | SPT Values (blw/6 in) | Qu
(tsf) | Moisture
Content (%) |
---|---|------------------------------|------------------------|--------------------------|-------------|-------------------------|---------------|-----------------------|--|--------------------------------|--------------------|-------------|------------|-----------------------|-------------|-------------------------| | | 12-inch thick, brown LOAMTOPSOIL Stiff, brown and gray SILTY CLAY LOAM | | 1 | 3
5
5 | 1.15
B | 18 | | coar
615.1
Very | ium dense, gr
se SAND
stiff, gray SIL | WE1 | - <u>-</u> - | | 9 | 5
8
13 | NP | 18 | | | Stiff to hard, brown and gray SILTY CLAY with trace gravel | 5 | 2 | 5
6
9 | 2.50
P | 19 | | SAN | se, gray, fine to | | -
-
-
25_ | | 10 | 3
4
5 | NP | 11 | | | | | 3 | 4
7
9 | 4.51
B | 17 | | | r stiff, gray SIL
e gravel | TY CLAY with | -
-
-
- | | 11 | 3
4
7 | 2.30
B | 20 | | | | 10 | 4 | 5
6
8 | 4.10
B | 18 | | 607.4
Borir | ng terminated | at 30.00 ft | 30 | | 12 | 3
5
7 | 2.46
B | 19 | | | | | 5 | 3
4
5 | 1.72
B | 19 | | | | | -
-
-
- | | | | | | | | | 15 | 6 | 3
4
5 | 1.80
B | 15 | | | | | -
35
- | | | | | | | GDT 4/23/12 | L _L = 29%, P _L = 16%
% Gravel = 5.4%
% Sand = 12.0%
% Silt = 49.0%
% Clay = 33.7% | | 7 | 3
4
6 | 1.64
B | 19 | | | | | -
-
- | | | | | | | MANGENGINC 7030301.GPJ WANGENG.GDT | GENERAL | 20 NO Comple | | | 12 | While Drilling | WATER L∣
Ş | | | | A
50 ft | | | | | | | MANGENGING 203
Ilird Ilird Ili | ling Contractor Wang Testing S ler K&K Logger B ling Method 3.25" IDA HSA; Bori | . Wils | on | Ch | ecked | by | | | At Completion of Time After Drilling Depth to Water The stratification between soil type | ing <u>Ţ</u> tines represent t | NA
NA
he app |
roxima | ate b | RY
oundar | у | | # **BORING LOG RW-02** WEI Job No.: 703-03-01 Client Zroka Engineering Project Willow Road Over Lehigh Ave and SOO Line RR Location Glenview, IL Datum: NGVD Elevation: 636.94 ft North: 1981365.34 ft East: 1124082.10 ft Station: 102+67 Offset: 105.22 RT | Profile | SOIL AND ROCK DESCRIPTION | Sample Type
recovery
Sample No. | SPT Values
(blw/6 in) | Qu
(tsf) | Moisture
Content (%) | Profile | Elevation
(ft) | SOIL AND ROCK
DESCRIPTION | Depth
(ff) | Sample Type | Sample No. | SPT Values
(blw/6 in) | Qu
(tsf) | Moisture
Content (%) | |--|---|---------------------------------------|--------------------------|-------------|-------------------------|------------------------|-------------------|--|---------------------------|------------------|----------------|--------------------------|-------------|-------------------------| | | 10-inch thick SAND and 636.1GRAVEL Black and brown SILTY CLAY LOAM with little gravel FILL | 1 | 6
9
9 | NR | 20 | | | | -
-
-
- | | 9 | 5
8
9 | 3.28
B | 17 | | | Loose, brown, fine SANDFILLMOIST 5_ | 2 | 4
4
5 | NP | 13 | | | | -
-
-
25_ | | 10 | 4
5
7 | 2.46
B | 17 | | | Stiff to very stiff, gray SILTY CLAY with trace gravel | 3 | 4
4
5 | 1.80
B | 13 | | | | -
-
-
- | | 11 | 3
5
7 | 2.62
B | 18 | | | 10_ | 4 | 2
4
6 | 2.87
B | 16 | | 606.9
Boi | ring terminated at 30.00 fl | 30 | | 12 | 5
8
13 | 2.62
B | 15 | | | | 5 | 3
4
5 | | | | -
-
-
- | | | | | | | | | |

 | 6 | 6
6
8 | 4.02
B | 17 | | | | -
-
35_
- | | | | | | | 4/23/12 | | 7 | 3
6
8 | | | -
-
-
- | | | | | | | | | | WANGENGINC 7030301.GPJ WANGENG.GDT 4/23/12 | GENERAL N | 8
IOTES | 3
4
6 | | WATER | -
-
40_
I EVE | | | Δ | | | | | | | 301.G | | nplete Dri | | 12 | While Drilling | Ţ | | | A
RY | | | | | | | 7030; | rilling Contractor Wang Testing Serv | | - | |)2-07
D-5(| | | At Completion of Drilling | ¥.
<u>¥</u> | | | NI
RY | | | | | | Vilson | | | | | | Time After Drilling | NA | ••••• | ابد | : >. ! | | · · · · · · · | | GENG | rilling Method 3.25" IDA HSA; Boring | | | | | | | Depth to Water 🖳 | NA | · · · · · · | | | | | | WAN | | | <u></u> | | - | | | The stratification lines repres-
between soil types; the actual | ent the app
transition | roxima
may be | ate b
e gra | oundar
idual. | у | | # **BORING LOG RW-03** WEI Job No.: 703-03-01 Client Zroka Engineering Project Willow Road Over Lehigh Ave and SOO Line RR Location Glenview, IL Datum: NGVD Elevation: 636.39 ft North: 1981364.12 ft East: 1124159.21 ft Station: 103+44 Offset: 106.32 RT | | | SOIL AND ROCK DESCRIPTION | Depth (ft) Sample Type | Sample No. | SPT Values
(blw/6 in) | Qu
(tsf) | Moisture
Content (%) | Profile | Elevation
(ft) | SOIL AND RO | | Sample Type | Sample No. | SPT Values
(blw/6 in) | Qu
(tsf) | Moisture
Content (%) | |--|---------------|---|------------------------|------------|--------------------------|---------------|---|---------|-------------------|---|------------------------------|-------------|------------|--------------------------|-------------|-------------------------| | | 14 | 436.22-inch thick ASPHALTPAVEMEN 3-inch thick CRUSHED STONAGGREGATE BAS Medium dense, brown, mediur SAND with little gravel | n - | 1 | 6
6
6 | NP | 6 | | | | -
-
-
- | | 9 | 3
5
7 | 2.54
B | 17 | | | | FIL
MOIS | | 2 | 6 5 6 | NP | 7 | | SA | dium dense, gray, co
ND | oarse -
WET25_ | | 10 | 8 6 6 | NP | 23 | | | | Hard, brown SILTY CLAY with trace gravel | | 3 | 5
7
12 | 5.06
B | 18 | | 609.1 | ff, gray SILTY CLAY | WET
-
- | | 11 | 12
12
5 | NP | 16 | | | | 625.9 | 10 | 4 | 8
12
14 | 6.23
B | 16 | | 606.4 | ring terminated at 30 | -
-
-
30
0.00 ft | | 12 | 4
5
7 | 1.72
B | 16 | | | | Stiff to very stiff, gray SILTY CLAY with trace gravel | | 5 | 5
6
8 | 3.20
B | 18 | | | | -
-
-
- | | | | | | | | | | 15 | 6 | 4
4
7 | 2.71
B | 18 | | | | -
-
35_
- | | | | | | | /23/12 | | | | 7 | 3
4
7 | 2.21
B | 18 | | | | -
-
-
- | | | | | | | WANGENGINC 7030301.GPJ WANGENG.GDT 4/23/12 | | | 20 | 8 | 3
4
6 | 1.80
B | 19 | | | 10/0- | -
-
40_ | | | • | | | | 301.GF | Do: | | Complete | 12 | | TER LEVE
Υ | | | | | | | | | | | | GINC 70303 | Dri | gin Drilling 02-07-2012 Iling Contractor Wang Testing Iler K&K Logger | | [| Orill Rig | ΓV | While Drilling At Completion of Drill Time After Drilling | | | | RY | | | | | | | WANGEN | Dri | lling Method 3,25" IDA HSA; B | | | | | | | | Depth to Water The stratification lines between soil types; the | | | | | y | | # **APPENDIX B** WEI SINCE 1982 Wang Engineering, Inc. 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-992 Telephone: 630 953-9928 Fax: 630 953-9938 Project: Willow Road Over Lehigh Ave and SOO Line RR Location: Glenview, IL Number: 703-03-01 SINCE 1982 Telephone: 630 953-9928 Fax: 630 953-9938 Location: Glenview, IL Number: 703-03-01 # **APPENDIX C** #### Undrained Analysis for End Slope, Ref Borings BB-01 and BB-08 | | | | Undrained | Undrained | |------------|------------------------------------|----------------------|-------------------
-----------------------------| | Laye
ID | er
Description | Unit Weight
(pcf) | Cohesion
(psf) | Friction Angle
(degrees) | | 1 | Embankment FILL | 125 | 1000 | 0 | | 2 | V Stiff SILTY CLAY | 120 | 2500 | 0 | | 3 | V Stiff SILTY CLAY to SI CLAY LOAM | 120 | 2400 | 0 | GLOBAL STABILITY ANALYSIS: WILLOW ROAD BRIDGE OVER LEHIGH AVENUE AND SOO RR, SN 016-0533, SEC 1920.01-BR, COOK COUNTY SCALE: AS SHOWN **APPENDIX C-1** DRAWN BY: MLS CHECKED BY: LMI 1145 N. Main Street Lombard, IL 60148 www.wangeng.com FOR ZROKA ENGINEERING #### Drained Analysis for End Slope, Ref Borings BB-01 and BB-08 | Laye
ID | r
Description | Unit Weight
(pcf) | Drained
Cohesion
(psf) | Drained
Friction Angle
(degrees) | |------------|------------------------------------|----------------------|------------------------------|--| | 1 | Embankment FILL | 125 | 100 | 30 | | 2 | V Stiff SILTY CLAY | 120 | 100 | 30 | | 3 | V Stiff SILTY CLAY to SI CLAY LOAM | 120 | 100 | 30 | GLOBAL STABILITY ANALYSIS: WILLOW ROAD BRIDGE OVER LEHIGH AVENUE AND SOO RR, SN 016-0533, SEC 1920.01-BR, COOK COUNTY SCALE: AS SHOWN **APPENDIX C-2** DRAWN BY: MLS CHECKED BY: LMI 1145 N. Main Street Lombard, IL 60148 www.wangeng.com FOR ZROKA ENGINEERING #### Undrained Analysis for Side Slope and Retaining Wall, Ref Borings BB-04 and BB-05 | Laye
ID | er Description | Unit Weight
(pcf) | Undrained
Cohesion
(psf) | Undrained
Friction Angle
(degrees) | |------------|------------------------------------|----------------------|--------------------------------|--| | 1 | Embankment FILL | 125 | 1000 | 0 | | 2 | V Stiff SILTY CLAY | 120 | 2500 | 0 | | 3 | V Stiff SILTY CLAY to SI CLAY LOAM | 120 | 2400 | 0 | GLOBAL STABILITY ANALYSIS: WILLOW ROAD BRIDGE OVER LEHIGH AVENUE AND SOO RR, SN 016-0533, SEC 1920.01-BR, COOK COUNTY SCALE: AS SHOWN **APPENDIX C-3** DRAWN BY: MLS CHECKED BY: LMI 1145 N. Main Street Lombard, IL 60148 www.wangeng.com FOR ZROKA ENGINEERING #### Drained Analysis for Side Slope and Retaining Wall, Ref Borings BB-04 and BB-05 | Lave | ar. | Unit Weight | Drained
Cohesion | Drained
Friction Angle | |------|------------------------------------|-------------|---------------------|---------------------------| | ID | Description | (pcf) | (psf) | (degrees) | | 1 | Embankment FILL | 125 | 100 | 30 | | 2 | V Stiff SILTY CLAY | 120 | 100 | 30 | | 3 | V Stiff SILTY CLAY to SI CLAY LOAM | 120 | 100 | 30 | GLOBAL STABILITY ANALYSIS: WILLOW ROAD BRIDGE OVER LEHIGH AVENUE AND SOO RR, SN 016-0533, SEC 1920.01-BR, COOK COUNTY SCALE: AS SHOWN **APPENDIX C-4** DRAWN BY: MLS CHECKED BY: LMI 1145 N. Main Street Lombard, IL 60148 www.wangeng.com FOR ZROKA ENGINEERING