

Chicago Testing Laboratory, Inc.

30W114 Butterfield Road, Warrenville, IL 60555 p 630.393.2851 f 630.393.2857 w chicagotestinglab.com e info@chicagotestinglab.com

Testing • Inspection • Training • Consulting • Research • Geotechnical

November 1, 2024

Robert T. Boro, P.E. Senior Project Manager HBM Engineering Group, LLC 4415 Harrison Street, Suite 231 Hillside, IL 60162

Re: Geotechnical Memorandum #1 Overhead Sign (OHS) Structures IDOT PTB 204-012 WO 3 IDOT Contract 62W87 I-94, 159th Street to the Little Calumet River Dolton, Illinois

CTL Project No. 24F763

Dear Mr. Boro,

C hicago Testing Laboratory, Inc. (CTL) completed a geotechnical investigation for the proposed US 6 to NB I-94 (OHS Structures, Signs 7 and 8) for IDOT Contract 62W87 along I-94 from 159th Street to the Little Calumet River in Dolton, Illinois. The purpose of the investigation was to obtain subsurface soil samples to characterize and determine the soil properties, determine the groundwater conditions, and provide analysis and recommendations for the proposed improvements. Appendix A shows the Site Location Map with the contract limits.

1.0 Project Information

Based on the preliminary information provided by HBM Engineering Group (HBM), the proposed project will include removal of an existing structure and replacing it with a new cantilever sign structure (SN: 1C016I094R070.7, Sign 7), at Station 481+82; and removal of an existing structure near Station 508+95 and replacing it with a new span OHS structure (SN: 1S016I094R071. Sign 8). The surrounding area includes urban properties throughout the project site. Based on the HBM's provided Design Plans (Appendix D), Sign 7 will have the standard drilled shaft foundation, and Sign 8 (Span OHS) is planned to have standard spread footing type foundation on one end and the standard drilled shaft foundation type on the other end.

2.0 Subsurface Exploration

This section describes the subsurface exploration and laboratory testing programs completed as part of this project. The subsurface investigation program was performed, according to applicable IDOT and AASHTO manuals and procedures.

2.1 Subsurface Site Investigation

The subsurface investigation was conducted on October 10, 2024, which included advancing three (3) soil borings to a depth of 40 feet below ground surface (bgs) for the proposed improvements. The boring locations were selected by CTL, with approval from HBM, and completed in the field based on site conditions and accessibility. Elevations of the boring locations were estimated using the provided plan and profiles and internet resources. Table 1 below presents a summary of the soil boring completed.

Boring	Location	Elevation (ft MSL)	Depth (ft)
OSB-7-1	Sign 7, STA 482+55, 90.00ft RT	597.0	40
OSB-8-1	Sign 8, STA 508+65, 90.00ft RT	596.5	40
OSB-8-2	Sign 8, STA 508+65, 10.00ft LT	593.0	40

Table 1: Summary of Soil Borings

The soil borings were conducted by GeoServices, a subcontracted drilling firm, under the field supervision by a CTL engineer using a truck mounted Mobile B-57 drill rig equipped with 2-1/4-inch I.D. hollow stem augers and an automatic hammer. Soil sampling was performed according to AASHTO T206 "Penetration Test and Split Barrel Sampling of Soils" using the Standard Penetration Test (SPT, ASTM D1556). In this procedure, a 2-inch O.D. split barrel or split spoon sampler is driven 18 inches into undisturbed soil using a 30-inch drop of a 140-pound hammer. The number of hammer drops (blow counts) is recorded in 6-inch intervals for each sample collected. The number of blow counts to advance the sampler the final 12 inches is called the SPT "N-value". The N-values are shown on the Soil Boring Logs (Appendix C).

Soil samples were obtained with the split barrel sampler at 2.5-foot intervals to the boring termination depths. A CTL field technician inspected, visually classified, and logged the soil samples throughout the subsurface exploration. Unconfined compressive strength values (Qu) of the cohesive soils encountered during the subsurface investigation were obtained in the field using a calibrated Rimac compressive tester in according to IDOT procedures or using a Pocket Penetrometer when the soil sample is small or disturbed. Representative soil samples from each sampling interval were collected, placed in sealed glass jars, and returned to the laboratory for further evaluation and testing.

2.2 Laboratory Testing Program

All soil samples collected during the subsurface exploration were inspected in the laboratory to verify the field classifications. A laboratory testing program was conducted on the soils encountered to characterize and determine the engineering properties for the design of the proposed improvements. Moisture Contents (AASHTO T265) were performed on all soil samples.

Based on the laboratory test results, soil samples were classified using the Illinois Division of Highways (IDH) classification systems. The laboratory and field test results are shown on the Soil Boring Logs (Appendix C).

2.3 General Subsurface Conditions

General subsurface conditions are described below and are grouped based on similar soils encountered throughout the proposed improvements.

Generally, Boring OSB-7-1 (at Sign 7) encountered near surface materials consisting of 3 inches of topsoil, underlain by a 12-ft thick fill material consisting of 18 inches of brown and gray, moist silty sand, with N-value of 28 and 8.8% moisture; 4 ft of silty clay with Qu of 2 tsf and 13.5% moisture; 2 ft of loam with N-value of 7 and 12.1% moisture; and 4 ft of stiff silty clay with Qu of 1.9 tsf and 14.4% moisture. The fill material is underlain by alternating soils of very loose, moist sandy loam and stiff to very stiff silty clay soils (Qu values between 1.3 and 2. tsf and moisture between 14.8% and 23%, to the boring termination.

Borings OSB-8-1 and OSB-8-2 (at Sign 8) encountered similar subsurface soil conditions, except for the near surface materials; Boring OSB-8-1 encountered 12 inches of topsoil, whereas Boring OSB-8-2 encountered 5-inch asphalt underlain by 10-inch concrete pavement. Generally, in both borings, the near surface materials are underlain by 5 to 12 ft thick loose to medium dense, brown and grey, moist to very wet, sandy loam, with N-value between 0 and 5, and moisture between 25% and 70%. The sandy loam is underlain by 6 to 9 ft of very loose, very wet, brown and grey, silty clay with Qu of 2 tsf and 13.5% moisture. Stiff to very stiff and hard, grey silty clay layer with Qu of 1.9 to 5 tsf, and moisture of 14% to 20%, was encountered at 12 ft depth in Boring OSB-8-1 and 17 ft depth in Boring OSB-8-2 to the boring termination.

Detailed descriptions of the soil borings are provided in Appendix C (Soil Boring Logs) which provides specific conditions encountered at each soil boring location. The stratifications shown on the soil boring logs represent the conditions only at the actual soil boring location and represents the approximate boundary between subsurface materials; however, the actual transition may be gradual.

2.4 Groundwater Conditions

Water level measurements were taken in the soil borings when water was encountered while drilling and after the completion of the soil borings. In both borings, OSB-8-1 and OSB-8-2, groundwater was encountered during drilling at 7 and 8 ft depths, respectively, but was not observed after completing the borings. The borings were not left open to collect delayed water readings after leaving the site due to safety concerns.

3.0 Geotechnical Analysis and Recommendations

This section provides the geotechnical analysis and recommendations for the proposed roadway reconstruction based on the results of the field exploration and laboratory testing.

3.1 Seismic Analyses

Table 2 below provides a summary of the seismic parameters. Based on the soil boring data and the seismic analyses (Appendix E), the Site Class C is recommended. Although the project site is considered to be in a low seismic area, the very loose, wet sand layer in Borings OSB-8-1 and OSB-8-2 might be considered a liquefiable layer and would cause a negative skin friction in the shaft foundation design.

Table 3: Seismic Parameters

Soil Site	Seismic Performance	0.2 Second Spectral	1.0 Second Spectral
Class	Zone (SPZ)	Response Acceleration (S _{DS})	Response Acceleration (S _{D1})
С	1	0.121	

3.2 Foundation Recommendations

For the cantilever sign structure (Sign 7), the standard drilled shaft depth (17 ft) shown on the plans is adequate since the weighted average Qu value of the soils down to 21 ft (ignoring the top 4 ft due to frost and ignoring the intermittent loose sandy loam and loam layers) is 1.26 tsf which meets the minimum required 1.25 tsf.

For the span sign structure (Sign 8), the depths of drilled shafts (16.5 ft) shown on the plan is not adequate, and thus the foundation dimensions should be based on the specific design, using the recommended soil parameters for axial and lateral resistances in Tables 3 and 4, respectively, based on AASHTO LRFD Design for drilled shafts.

				Estimat	ed Bearing R	Resistance	Est. Unit Av	0
Depth bgs (feet)	Soil Description	Avg. Qu (tsf)	Friction Angle, \$\overline{4}\$ (deg)	Service	(ksf) Resistance Factor	Factored	Resistance Compression ¹	(KSI) Tension (uplift) ²
1-8	Loose to Med Dense, moist Sandy Loam	0	30	n/a	n/a	n/a	0.14	0.11
8-17	V. Loose, wet Loam	0	28	n/a	n/a	n/a	0.19	0.15
14-36	Stiff to V. Stiff	1.7	0	15.3	0.4	6.1	0.78	0.60
36-40	Hard Silty Clay	4.2	0	37.8	0.4	15.1	1.93	1.48

Table 3: LRFD Soil Parameters for Axial Resistance – Borings OSB-8-1 & OSB-8-2

1. Compression resistance factor of 0.45 for clay and 0.55 for sand

2. Uplift resistance factor of $0.35\ \text{for clay}\ \text{and}\ 0.45\ \text{for sand}$

Depth-bgs (ft)	Soil Description	Avg. Qu (tsf)	Friction Angle, φ (deg)	Lateral Modulus of Subgrade Reaction, k (pci)	Strain (E50)
1-8	Loose to Med Dense, moist Sandy Loam	0	30	75	n/a
8-17	V. Loose, wet Loam	0	28	70	n/a
14-36	Stiff to V. Stiff	1.7	0	500	0.007
36-40	Hard Silty Clay	4.2	0	1235	0.005

Table 4: LRFD Soil Parameters for Lateral Resistance – Borings OSB-8-1 & OSB-8-2

3.3 Drilled Shaft Construction Recommendations

The drilled shaft construction should be completed in accordance with Section 516, Drilled Shafts, in the IDOT Standard Specification for Road and Bridge Construction. Temporary casing and wet drilled shaft construction methods are anticipated to be necessary at the Sign 8 shaft foundations, from the top down to a 17-ft depth on both sides of the span OHS structures, to avoid "blow up" and cave ins of the loose and very loose sandy loam layers.

4.0 Professional Disclaimer

This report was prepared on the basis of the project information supplied by the client and is intended only for use on this project. This report was prepared by interpreting the data from the soil borings and field tests made within the project limits and from the results of the laboratory tests obtained from the samples taken. The report gives a representative, but not exhaustive, picture of the project subsurface conditions. The geotechnical engineer warrants that the findings, recommendations, specifications, and professional advice given within this report have been prepared using generally accepted professional engineering practices. The recommendations provided in the report are specific to the project described herein and are based on the information obtained from the soil boring locations within the proposed roadway improvements. Changes involving the proposed roadway alignment and wall structures, from those enumerated within this report, should be submitted for our review to evaluate our recommendations.

Chicago Testing Laboratory, Inc. (CTL) appreciates the opportunity to work with you on this project and look forward to serving as your Geotechnical Engineering Consultant on this project during construction or future projects. We would be pleased to discuss any questions you have about the contents of this report.

Respectfully Submitted, CHICAGO TESTING LABORATORY, INC.

Jeffing A Katter

Jeffrey Rothamer, P.E. Director of Technical Services

Rowent

Riyad Wahab, PhD, P.E. Senior Geotechnical Engineer

Attachments - Appendix A: Site Location Map Appendix B: Boring Location Plan Appendix C: Soil Boring Logs Appendix D: Design Plans (HBM) Appendix E: Seismic Analyses APPENDIX A

SITE LOCATION MAP

	CHICAGO TESTING LABORATO	DRY, INC.	DRAWN BY: JAR	SITE LOCATION MAP
G.	30W114 BUTTERFIELD ROAD WARRENVILLE, IL 60555		CHECKED BY: RW	PTB 204-012 WO3 IDOT 62W87 OVERHEAD SIGNS
	PHONE: (630) 393-2851 FAX : (630) 393-2857	SCALE: NTS	DATE: 10/16/24	DOLTON, ILLINOIS

APPENDIX B

BORING LOCATION PLAN

APPENDIX C

SOIL BORING LOGS

Illinois Dep	partr	ne	nt		SC	DIL BORIN			Page	; <u>1</u>	of <u>1</u>
Division of Highways Chicago Testing Laboratory, FAI RTE 94 (I-94 Bisho	, Inc	OI			J				Date	10/	10/24
ROUTE Ford Expy)	DE	SCR	IPTION	N N		Overhead Sign 7		LOG	GED BY	′!	KL
SECTION2019-180-RS&	T	_ I			NE 1/4	4, SEC. 11, TWP. 36N, I	RNG. 25E, 3 rd P	м			
COUNTY Cook D	RILLING	S ME	THOD		Hol	llow Stem Auger	_ HAMMER TY	PE	A	uto	1
STRUCT. NO. Sign 7 Station 481+82.03		D E P	B L O	U C S	M 0 1	Surface Water Elev Stream Bed Elev	<u>N/A</u> f f	P	L	U C S	M O I
BORING NO. OSB-7-1 Station 482+55 Offset 90.00ft RT		T H	W S	Qu	S T	Groundwater Elev.: First Encounter Upon Completion	<u>None</u> f N/A f	t H	S	Qu	S T
Ground Surface Elev. 597.00) ft	(ft)	(/6")	(tsf)	(%)	After <u>N/A</u> Hrs.	N/A f	t (ft) (/6")	(tsf)	(%)
3 inches of Topsoil Brown and Gray, Moist FILL: SILTY SAND	_/ 596.75					Stiff to Very Stiff Gray, Moist SILTY CLAY trace gra	avel (CL/ML)	-			
TILL. OILTT GAND	595.00	_	9 13		8.8	(continued)		-	3	1.7	14.8
Brown and Gray, Moist FILL: SILTY CLAY	595.00		15						6	B	
			3					_	2		
			3	2.0 P	13.5			-	5 5	1.3 B	20.5
		-5	3					2	25 D		
	591.00										
Brown, Moist FILL: LOAM		_	2		12.1	-		-	3	1.7	20.9
			4		12.1				7	B	20.9
	589.00					-		-		1	
Brown and Gray, Moist FILL: SILTY CLAY		_						-			
			4	1.9	14.4	-			3	1.7	21.0
		-10	- ·	B				-	₃₀ 6	B	
			6						_		
	585.00		7		9.2			-	_		
Very Loose	303.00		4								
Brown, Moist SANDY LOAM (SM)											
	E02 00	_	1					-	3		
Stiff	583.00		1	1.5	21.5	-			5	1.7	20.4
Gray, Moist SILTY CLAY (CL/ML)		-15	1	Р				-3	₃₅ 7	В	
								-	_		
Very Loose	581.00		0						-		
Gray, Wet	580.00	_	0		22.8			-			
LOAM (SC-SM) Stiff to Very Stiff			2					-			
Gray, Moist			-						-		
SILTY CLAY trace gravel (CL/ML))		2					-	4		
			3	1.7	23.0				8	2.1	19.0
		20	4	B	1	11	55	57.00 -/	in 9	B	

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

(R) Illinois Dep	oartr	ne	nt		SC	DIL BORIN				Page	<u>1</u>	of <u>1</u>
Division of Highways Chicago Testing Laboratory,	Inc									Date	10/	10/24
FAI RTE 94 (I-94 Bisho ROUTE Ford Expy)	p DE	SCR	PTION	۱		Overhead Sign 8	3	LO	GGE	D BY	ŀ	٢L
SECTION2019-180-RS&	Т	_ I			NE 1/4	I, SEC. 11, TWP. 36N,	RNG. 25E, 3 rd PN	И				
COUNTY Cook D	RILLING	6 ME	THOD		Hol	low Stem Auger	HAMMER TYP	PE _		A	uto	
STRUCT. NO. Sign 8 Station 508+94.88		D E P T	B L O W	U C S	M O I S	Surface Water Elev. Stream Bed Elev.			D E P T	B L O W	U C S	M 0 1 S
BORING NO. OSB-8-1 Station 508+95 Offset 65.00ft RT Ground Surface Elev. 592.00		н	S	Qu (tsf)	T (%)	Groundwater Elev.: First Encounter Upon Completion After <u>N/A</u> Hrs.	584.0 ft	▼	н	S (/6")	Qu (tsf)	T (%)
12 inches of Topsoil	591.00					Stiff to Very Stiff Gray, Moist SILTY CLAY trace gi			_			
Loose to Medium Dense Brown, Moist		_	5 4		17.3	(continued)	lavel (CL/ML)		+	3 4	1.3	21.6
SANDY LOAM (SM)			4					_		6	В	
		_	3					_	_	3		
		-5	6 6		21.6			_	-25	5 5	1.3 B	20.2
	586.00							_	_			
Very Loose Gary, Wet LOAM (SC-SM)			5		24.9			_	_	3	1.7	20.6
		¥	1					_		5	В	
			0					_		3		
		-10	0 1		67.8			_	-30	5 6	1.3 B	19.5
								_	_			
	580.00	_	0		22.1				_			
Stiff to Very Stiff Gray, Moist			1					_	_			
SILTY CLAY trace gravel (CL/ML)		_	4					_	_	4		
			5 5	2.5 B	17.2			_	_	7 8	1.9 B	15.5
		-15						_	-35	0	5	
			3		10.0			_				
			4	1.7 B	18.6			-				
						Hard	554	4.00				
			3 3	1.5	18.8	Gray, Moist SILTY CLAY LOAM	trace gravel	_		8 13	4.2	13.6
		-20	4	В			552	2.00	-40	15	В	

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

Illinois Dep of Transpo	oartr ortati	ne ion	nt		SC	DIL BORIN		G		Page	<u>1</u>	of <u>1</u>
Division of Highways Chicago Testing Laboratory,	, Inc							-		Date	10/	/1/24
FAI RTE 94 (I-94 Bisho ROUTE Ford Expy)	p DE	SCR	PTION	۱		Overhead Sign 8	3	L(OGG	ED BY	J,	AR
SECTION2019-180-RS&	ιT	I			NE 1/4	l, SEC. 11, TWP. 36N,	RNG. 25E, 3 ^r	^d PM				
COUNTY Cook D	RILLING	S ME	THOD		Hol	low Stem Auger	HAMMER	TYPE		A	uto	
STRUCT. NO. Sign 8 Station 508+94.88		D E P T	B L O W	U C S	M O I S	Surface Water Elev. Stream Bed Elev. Groundwater Elev.:	N/A	_ ft _ ft	D E P T	B L O W	U C S	M O I S
BORING NO. OSB-8-2 Station 508+95 Offset 10.00ft LT	<i>c</i> .	H	S	Qu (tsf)	T (%)	First Encounter Upon Completion	585.0 None	_ft _ft	H (ft)	S	Qu (tsf)	т (%)
Ground Surface Elev593.00 5 inches of Asphalt Pavement	<u> </u>		(,0)	(131)	(70)	After <u>N/A</u> Hrs. Stiff	N/A	_ π	(11)	(,0)	(131)	(/0)
10 inches of Concrete Pavement	591.75		5			Gray, Moist SILTY CLAY trace g	ravel (CL/ML)			3		
Loose to Medium Dense Brown and Gray, Wet			9		22.7	(continued)				4	1.7 B	20.7
SANDY LOAM (SM)			9							5		
	589.00		5						_	3		
Loose to Medium Dense Gray, Wet SANDY LOAM (SM)		5	4 5		21.0				-25	4 6	1.9 B	21.4
			6 9		27.1					2 4	1.7	21.0
	585.00	_	7						_	6	В	
Very Loose Gray, Wet	000.00	<u> </u>	1						_	3		
LOAM (SC-SM)			1		67.3					4	1.9	20.7
		-10	1						-30	6	В	
			1									
			1		70.1							
						Very Stiff to Hard		560.00				
			0		40.5	Gray, Moist SILTY CLAY LOAM	trace gravel			5	0.0	40.4
		-15	0		42.5	(CL/ML)	g		-35	8 11	3.3 B	13.4
		_							_			
	576.00		0	1.0	38.5							
Stiff Gray, Moist	570.00		3	B								
SILTY CLAY trace gravel (CL/ML))											
			3	1.7	22.1					8 17	5.0	12.9
		-20	5	В				553.00	-40	27	В	

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

APPENDIX D

DESIGN PLANS (HBM)

TOTAL SHEE SHEETS NO.

586 311

0/3/2024 3:37:48 PM

10/3/2024 3:38:15 PM

OSC-A-7-NW 4-1-2020

TTTN	USER NA		DESIGNED -	JMI	REVISED -		CANTILEVER SIGN STRUCTURES - WALKWAY DETAILS	F.A.I. RTE	SECTION	COUNTY	TOTAL SHEET SHEETS NO.
		CHECKED - JMI REVISED -		STATE OF ILLINOIS	ALUMINUM TRUSS & STEEL POST	94	(42-B-11-1) BR, BJR 24	COOK	586 317		
	PLOT SC/	CALE = [DRAWN -	MI, LAB	REVISED -	DEPARTMENT OF TRANSPORTATION	ALUMINUM TRUSS & STEEL FUST	C			CT NO. 62W87
ENGINEERING GROUP	P, LLC PLOT DAT	ATE =	CHECKED -	8/16/2024	REVISED -		SHEET OH551-07 OF OH551-09SHEETS		ILLINOIS FED. /	AID PROJECT	

10/3/2024 3:38:24 PM

MOE

Concrete shall be placed monolithically, without construction joints.

2-17-2017

Backfill shall be placed per Article 502 of Standard Specification and prior to erection of support column.

A normal surface finish followed by a Concrete Sealer application will be required on concrete surfaces above the lowest elevation 6" below finished ground line. Cost included in "Drilled Shaft Concrete Foundation".

Sign #	Structure Number	Station	Truss Type	Shaft Diameter	Elevation Top	Elevation Bottom	Qu	A	В	F	Class DS Concrete Cubic Yards	
7	1C016I094R070.7	481+82.03	II-C-A	3' - 6"	601.93	581.43		3' - 6"	17' - 0''	20' - 6"	74	

JSER NAME = DESIGNED - JMI REVISED -F.A.I. RTE. SECTION TOTAL SHEET SHEETS NO. 586 318 **CANTILEVER SIGN STRUCTURES - DRILLED SHAFT** COUNTY CHECKED -STATE OF ILLINOIS JMI REVISED ALUMINUM TRUSS & STEEL POST 94 (42-R-11-1) BB BIB 24 COOK PLOT SCALE = DRAWN MI, LAB REVISED DEPARTMENT OF TRANSPORTATION CONTRACT NO. 62W87 SHEET OH551-08 OF OH551-09 SHEETS PLOT DATE = ILLINOIS FED. AID PROJECT ENG NEER NG CHECKED -8/16/2024 REV[SED

0/3/2024 3:38:32 PM

0SC-A-9

0/3/2024 3:38:52 PM	
---------------------	--

윤											
2	TTDI	USER NAME =	DESIGNED - JMI	REVISED -		CANTILEVER SIGN STRUCTURES	F.A.L DTE	SECTION	COUNTY	TOTAL	SHEET
M			CHECKED - JM	REVISED -	STATE OF ILLINOIS	BORING LOGS	94	(42-B-11-1) BR, BJR 24	соок	586	319
Z		PLOT SCALE =	DRAWN - MI, LAB	REVISED -	DEPARTMENT OF TRANSPORTATION	BURING LUGS			CONTRACT	T NO. 621	N87
5	ENGINEERING GROUP LLC	PLOT DATE -	CHECKED 8/16/2024	REVISED		SHEET OHSSI-00 OF OHSSI-00SHEETS	1		AD DROJECT		

BORING LOGS TO BE INCLUDED IN FINAL SUBMITTAL

GENERAL NOTES

DESIGN: AASHTO Standard Specifications for Structural Supports for Highway Signs, Luminaires and Traffic Signals. ("AASHTO Specifications")

CONSTRUCTION: Current (at time of letting) Illinois Department of Transportation Standard Specifications for Road and Bridge Construction, Supplemental Specifications and Special Provisions. ("Standard Specifications")

LOADING: 90 M.P.H. WIND VELOCITY

WALKWAY LOADING: Dead load plus 500 lbs. concentrated live load.

DESIGN STRESSES: fv = 60.000 p.s.i. (reinforcement)

WELDING: All welds to be continuous unless otherwise shown. All welding to be done in accordance with current AWS D1.1 and D1.2 Structural Welding Codes (Steel and Aluminum) and the Standard Specificiations.

MATERIALS: Aluminum Alloys as shown throughout plans. All Structural Steel Pipe shall be ASTM A53 Grade B or A500 Grade B or C. If A500 pipe is substituted for A53, then the outside diameter shall be as detailed and wall thickness greater than or equal to A53. All Structural Steel Plates and Shapes shall conform to AASHTO M270 Gr. 36. Gr. 50 or Gr. 50W*. Stainless steel for shims, sleeves and handhole covers shall be ASTM A240, Type 302 or 304, or another alloy suitable for exterior exposure and acceptable to the Engineer The steel pipe and stiffening ribs at the base plate for the column shall have a minimum longitudinal Charpy V-Notch (CVN) energy of 15 lb.-ft. at 40° F. (Zone 2) before galvanizing.

FASTENERS FOR ALUMINUM TRUSSES: All bolts noted as "high strength" must satisfy the requirements of AASHTO M164 (ASTM A325), or approved alternate, and must have matching lock nuts. Threaded studs for splices (if Members interfere) must satisfy the requirements of ASTM A449, ASTM A193, Grade B7 or approved alternate, and must have matching lock nuts. Bolts and lock nuts not required to be high strength must satisfy the requirements of ASTM A307 All bolts and lock nuts must be hot dip galvanized per AASHTO M232. The lock nuts must have nylon or steel inserts. A stainless steel flat washer conforming to ASTM A240 Type 302 or 304, is required under both head and nut or under both nuts where threaded studs are used. High strength bolt installation shall conform to Article 505.04 (f) (2)d of the IDOT Standard Specifications for Road and Bridge Construction. Rotational capacity ("ROCAP") testing of bolts will not be required.

U-BOLTS AND EYEBOLTS: U-Bolts and Eyebolts must be produced from ASTM A276 Type 304, 304L, 316 or 316L, Condition A, cold finished stainless steel, or an equivalent material acceptable to the Engineer. All nuts for U-Bolts and Evebolts must be lock nuts equivalent to ASTM A307 with nvlon or steel inserts and hot dip galvanized per AASHTO M232. A stainless steel flat washer conforming to ASTM A240, Type 302 or 304, is required under each U-Bolt and

GALVANIZING: All Steel Grating, Plates, Shapes and Pipe shall be Hot Dip Galvanized after fabrication in accordance with AASHTO M111. Painting is not

ANCHOR RODS: Shall conform to ASTM F1554 Gr. 105.

CONCRETE SURFACES: All concrete surfaces above an elevation 6" below the lowest final ground line at each foundation shall be cleaned and coated with Concrete Sealer in accordance with the Standard Specifications.

REINFORCEMENT BARS: Reinforcement Bars designated (E) shall be enoxy coated in accordance with the Standard Specifications

FOUNDATIONS: The contract unit price for Concrete Foundations and Drilled Shaft Concrete Foundations shall include reinforcement bars complete in place.

94

TOTAL BILL OF MATERIAL

UNIT	TOTAL
Foot	100
Cu Yd	25.1
Each	1
	Foot Cu Yd

SECTION

(42-8-11-1) BB BIB 24

ILLINGIS FED

TOTAL SHEE SHEETS NO

598 320

COUNTY

COOK

AID PROJECT

CONTRACT NO 62W87

10/3/2024 3:41:06 PM

0/3/2024 3:39:35 PM

0/3/2024 3:39:59 PM

0/3/2024 3:40:22 PM

ILLINOIS FED. AID PROJECT

ă			CHECKED JM	REVISED -	STATE OF ILLINOIS	OVERHEAD SIGN STRUCTURES
Ē		PLOT SCALE =	DRAWN - MI, LAB	REVISED -	DEPARTMENT OF TRANSPORTATION	SUPPORT FRAME FOR ALUMINUM TRUSS
0W	ENGINEERING GROUP, LLC	PLOT DATE =	CHECKED - 8/16/2024	REVISED -		SHEET OH552-06 OF OH552-12 SHEETS
	10/2/2024 2:20:40 PM		-		·	·

10/3/2024 3:39:49 PM

JSER NAME = DESIGNED - JMI REVISED -SECTION TOTAL SHEET SHEETS NO. 598 328 OVERHEAD SIGN STRUCTURES F.A.I. RTE. COUNTY CHECKED -STATE OF ILLINOIS JMI REVISED ALUMINUM WALKWAY DETAILS 94 (42-R-11-1) BB BIB 24 COOK PLOT SCALE = DRAWN MI, LAB REVISED DEPARTMENT OF TRANSPORTATION CONTRACT NO. 62W87 SHEET OH552-09 OF OH552-12 SHEETS PLOT DATE = ILLINOIS FED. AID PROJECT ENG NEER NG CHECKED -8/16/2024 REV[SED

0/3/2024 3:40:34 PM

3:40:48 PN

BORING LOGS TO BE INCLUDED IN FINAL SUBMITTAL

응 성										
efat.	TTDIC	USER NAME =	DESIGNED - JMI	REVISED -		OVERHEAD SIGN STRUCTURES	F.A.I. SECTION	COUNTY	TOTAL SH	HEET
O PU	HKM		CHECKED - JMI	REVISED -	STATE OF ILLINOIS	BORING LOGS	94 (42-B-11-1) BR. BJR 24	соок	598	331
N N		PLOT SCALE =	DRAWN - MI, LAB	REVISED -	DEPARTMENT OF TRANSPORTATION	BURING LUGS		CONTRACT	T NO. 62WF	37
FILE	ENGINEERING GROUP, LLC	PLOT DATE =	CHECKED - 8/16/2024	REVISED -		SHEET OHSS2-12 OF OHSS2-12 SHEETS	ILLINOIS F	D. AID PROJECT		

10/3/2024 3:40:52 PM

0/3/2024 8:04:22 PM

STRUCTURE	1C016I094R070.7
WIDTH x HEIGHT	15'-0" x 8'-6"
BORDER WIDTH	2"
CORNER RADIUS	12"
MOUNTING	OVERHEAD
BACKGROUND	TYPE: REFLECTIVE - ZZ
	COLOR: GREEN
LEGEND/BORDER	TYPE: REFLECTIVE - ZZ
	COLOR: WHITE

SIGN_7_STA_481 ± 82.03 - PROPOSED_SIGN_TRUSS_MOUNT

1C016I094R070.7

FILE

TTDI	USER NAME = hbmepw11ics01\$	DESIGNED - ADS	REVISED -		OVERHEAD SIGN STRUCTURES - SIGN PANEL DETAILS	F.A.I.	SECTION	COUNTY	TOTAL SHEET
		DRAWN - ADS	REVISED -	STATE OF ILLINOIS	SIGN 7 (1C016I094R070,7)	94	2019-180-RS&T	соок	586 309
	PLOT SCALE = 10.0000 ' / in.	CHECKED -	REVISED -	DEPARTMENT OF TRANSPORTATION				CONTRACT	NO. 62W87
ENGINEERING GROUP, LLC	PLOT DATE - 10/3/2024	DATE - 8/16/2024	REVISED -		SHEET 1 OF 2 SHEETS		ILLINOIS FEI	D. AID PROJECT	

10/3/2024 8:04:11 PM

L0/3/2024 8:04:10 PM

10.8** EXITS 73 A - B 6 159th St 1³/₄ MILES _____ 12.0" Radius, 2.0" Border, White on Green; "EXITS 73 A - B", E Mod 2K; 12.0" Radius, 2.0" Border, White on Green, "159th St", E Mod 2K; "1% MILES", E Mod 2K; Table of letter and object letts

 E
 X
 I
 T
 S
 7
 3
 A
 B

 10.8
 19.5
 30.4
 34.1
 43.0
 66.1
 80.5
 100.3
 120.4
 133.1
 1 5 9 t h S t 30.1 38.9 55.3 70.9 81.0 103.9 119.6 1 37.0 45.1 75.8 87.9 92.6 101.6 110.9

STRUCTURE	1S016I094R071.1
WIDTH x HEIGHT	13'-0" x 12'-0"
BORDER WIDTH	2"
CORNER RADIUS	12"
MOUNTING	OVERHEAD
BACKGROUND	TYPE: REFLECTIVE - ZZ
	COLOR: GREEN
LEGEND/BORDER	TYPE: REFLECTIVE - ZZ
	COLOR: WHITE

12.0" Radius, 2.0" Border, White on Green; "EXIT 71 B", E Mod 2K; 12.0" Radius, 2.0" Border, White on Green; "EAST", E Mod 2K; "Sibley Blvd", E Mod 2K; "¼ MILE", E Mod 2K; Table of letter and object lefts

 E
 X
 I
 T
 7
 1
 B

 54.6
 63.4
 74.3
 78.0
 100.4
 115.9
 127.9
 E A S T 29.9 78.9 91.4 105.4 116.9 S I b I e y B I v d 19.3 36.5 43.8 55.4 61.5 71.9 94.0 110.9 116.8 128.4
 ¼
 M
 I
 L
 E

 49.5
 72.9
 85.0
 89.8
 98.8

STRUCTURE

MOUNTING

WIDTH x HEIGHT

BORDER WIDTH

CORNER RADIUS

LEGEND/BORDER

BACKGROUND

STRUCTURE	1501
WIDTH x HEIGHT	15'-6
BORDER WIDTH	2"
CORNER RADIUS	12"
MOUNTING	OVE
BACKGROUND	TYPE
	COL
LEGEND/BORDER	TYPE
	COL

16I094R071.1 6" x 10'-6" RHEAD E: REFLECTIVE - ZZ OR: GREEN E: REFLECTIVE - ZZ OR: WHITE

SIGN_2_STA_508 + 94.88 - PROPOSED_SIGN_TRUSS_MOUNT

1S016I094R071.1

TYPE REFLECTIVE ZZ

TYPE: REFLECTIVE - ZZ

13'-0" x 12'-6"

COLOR: GREEN

COLOR: WHITE

OVERHEAD

2"

12"

STRUCTURE NO. 1S016I094R071.1

TTDI	USER NAME = hbmepw11ics01\$	DESIGNED - ADS	REVISED -		OVERHEAD SIGN STRUCTURES - SIGN PANEL DETAILS	F.A.I. BTE	SECTION	COUNTY T	OTAL SHEET
		DRAWN - ADS	REVISED -	STATE OF ILLINOIS		94	2019-180-RS&T	соок	586 310
	PLOT SCALE = 10.0000 ' / in.	CHECKED -	REVISED -	DEPARTMENT OF TRANSPORTATION	SIGN 8 (1S016I094R071.1)			CONTRACT N	IO. 62W87
ENGINEERING GROUP, LLC	PLOT DATE - 10/3/2024	DATE - 8/16/2024	REVISED -		SHEET 2 OF 2 SHEETS		ILLINOIS FED. 4	AID PROJECT	

10/3/2024 8:04:19 PM

FILE

APPENDIX E

SEISMIC ANALYSES

USGS web services were down for some period of time and as a result this tool wasn't operational, resulting in *timeout* error. USGS web services are now operational so this tool should work as expected.

OSHPD

PTB204-012 WO3 IDOT 62W87

Latitude, Longitude: 41.62836086, -87.57869244

Dot	University Ave	Kasten Dr 146th St Avalon Ave Blackstone Ave Cornell
Minerva	^{Linc} oln x	Ave Ave Ave Ave Ave Ave Ave Ave
Date		10/29/2024, 9:36:16 AM
-		ce Document ASCE7-16
Risk Categ	ory	
Site Class		C - Very Dense Soil and Soft Rock
Туре	Value	Description
SS	0.121	MCE _R ground motion. (for 0.2 second period)
S ₁	0.066	MCE _R ground motion. (for 1.0s period)
S _{MS}	0.157	Site-modified spectral acceleration value
S _{M1}	0.099	Site-modified spectral acceleration value
S _{DS}	0.105	Numeric seismic design value at 0.2 second SA
S _{D1}	0.066	Numeric seismic design value at 1.0 second SA
Туре	Value	Description
SDC	А	Seismic design category
Fa	1.3	Site amplification factor at 0.2 second
Fv	1.5	Site amplification factor at 1.0 second
PGA	0.06	MCE _G peak ground acceleration
F _{PGA}	1.3	Site amplification factor at PGA
PGA _M	0.078	Site modified peak ground acceleration
TL	12	Long-period transition period in seconds
SsRT	0.121	Probabilistic risk-targeted ground motion. (0.2 second)
SsUH	0.121	Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration
SsD	1.5	Factored deterministic acceleration value. (0.2 second)
S1RT	0.066	Probabilistic risk-targeted ground motion. (1.0 second)
S1UH	0.075	Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration.
	0.075 0.6	Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration. Factored deterministic acceleration value. (1.0 second)

10/29/24, 9:36 AM

Туре	Value	Description
PGA _{UH}	0.06	Uniform-hazard (2% probability of exceedance in 50 years) Peak Ground Acceleration
C _{RS}	0.953	Mapped value of the risk coefficient at short periods
C _{R1}	0.883	Mapped value of the risk coefficient at a period of 1 s
C _V	0.7	Vertical coefficient

DISCLAIMER

While the information presented on this website is believed to be correct, <u>SEAOC</u> <u>(OSHPD</u> and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in this web application should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. SEAOC / OSHPD do not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the seismic data provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the search results of this website.

PROJECT TITLE====IDO1 62W87 I-94 OHS Structures			
Substructure 1	Substructure 2	Substructure 3	Substructure 4
Base of Substruct. Elev. (or ground surf for bents 593 ft.	Base of Substruct. Elev. (or ground surf for bents 588 ft.	Base of Substruct. Elev. (or ground surf for bents 589 ft.	Base of Substruct. Elev. (or ground surf for bents) ft.
Pile or Shaft Dia. 14 inches	Pile or Shaft Dia. 14 inches	Pile or Shaft Dia. 14 inches	Pile or Shaft Dia. inches
Boring Number OSB-7-1	Boring Number OSB-8-1	Boring Number OSB-8-2	Boring Number
Top of Boring Elev. 597 ft.	Top of Boring Elev. 592 ft.	Top of Boring Elev. 593 ft.	Top of Boring Elev. ft.
Approximate Fixity Elev. 586 ft.	Approximate Fixity Elev. 581 ft.	Approximate Fixity Elev. 582 ft.	Approximate Fixity Elev. ft.
Individual Site Class Definition:	Individual Site Class Definition:	Individual Site Class Definition:	Individual Site Class Definition:
N (bar): 10 (Blows/ft.) Soil Site Class E	N (bar): 18 (Blows/ft.) Soil Site Class D	N (bar): 13 (Blows/ft.) Soil Site Class E	N (bar): (Blows/ft.) NA
Nch (bar): NA (Blows/ft.) NA s _u (bar): 1.74 (ksf) Soil Site Class D <controls< td=""></controls<>	N _{ch} (bar): NA (Blows/ft.) NA s _u (bar): 3.1 (ksf) Soil Site Class C <controls< td=""></controls<>	N _{ch} (bar): NA (Blows/ft.) NA s _u (bar): 3.51 (ksf) Soil Site Class C <controls< td=""></controls<>	N _{ch} (bar): (Blows/ft.) NA s _u (bar): (ksf) NA
			, , ,
Seismic Bot. Of Layer	Seismic Bot. Of Layer	Seismic Bot. Of Layer	Seismic Bot. Of Layer
Soil Column Sample Sample Description	Soil Column Sample Sample Description	Soil Column Sample Sample Description	Soil Column Sample Sample Description
Depth Elevation Thick. N Qu Boundary	Depth Elevation Thick. N Qu Boundary	Depth Elevation Thick. N Qu Boundary	Depth Elevation Thick. N Qu Boundary
(ft) (ft.) (tsf)	(ft) (ft.) (tsf)	(ft) (ft.) (tsf)	(ft) (ft.) (tsf)
594.5 2.50 28	589.5 2.50 8	590.5 2.50 18 B	
592.0 2.50 6 2.00 B 589.5 2.50 7 B	587.0 2.50 12 B 584.5 2.50 5	588.0 2.50 9 585.5 2.50 16 B	
587.0 2.50 11 1.90 B	582.0 2.50 1	583.0 2.50 2	
1.5 584.5 2.50 11 B	1.5 579.5 2.50 2 B	1.5 580.5 2.50 2	
4.0 582.0 2.50 2 1.50 B	4.0 577.0 2.50 10 2.50	4.0 578.0 2.50 0 B	
6.5 579.5 2.50 2 B	6.5 574.5 2.50 8 1.70	6.5 575.5 2.50 3 1.00	
9.0 577.0 2.50 7 1.70	9.0 572.0 2.50 7 1.50	9.0 573.0 2.50 9 1.70	
11.5 574.5 2.50 11 1.70	11.5 569.5 2.50 10 1.30	11.5 570.5 2.50 9 1.70	
14.0 572.0 2.50 10 1.30 16.5 569.5 2.50 12 1.70	14.0 567.0 2.50 10 1.30 16.5 564.5 2.50 9 1.70	14.0 568.0 2.50 10 1.90 16.5 565.5 2.50 10 1.70	
16.5 569.5 2.50 12 1.70 19.0 567.0 2.50 12 1.70	16.5 564.5 2.50 9 1.70 19.0 562.0 2.50 11 1.30	16.5 565.5 2.50 10 1.70 19.0 563.0 2.50 10 1.90 B	
24.0 562.0 5.00 12 1.70	24.0 557.0 5.00 15 1.90 B	24.0 558.0 5.00 19 3.30	
29.0 557.0 5.00 17 2.10	29.0 552.0 5.00 28 4.20	29.0 553.0 5.00 44 5.00	
100.0 486.0 71.00 17 2.10	100.0 481.0 71.00 28 4.20	100.0 482.0 71.00 44 5.00	

Global Site Class Definition: Substructures 1 through 3

N (bar):	14 (Blows/ft.)	Soil Site Class E
N _{ch} (bar):	(Blows/ft.)	NA, H < 0.1*H (Total)
s _u (bar):	2.79 (ksf)	Soil Site Class C <controls< td=""></controls<>