Structural Geotechnical Report

Leavitt Street Over I-290 & CTA Bridge Replacement SN: 016-2079 IDOT PTB 201-012 FAI 290 at Leavitt Street Cook County, Illinois

Prepared for

Illinois Department of Transportation Project Number: P-91-424-13

> Project Design Engineer Team Ciorba Group, Inc.

Geotechnical Consultant: GSG Consultants, Inc.

April 1, 2024 Revised November 26, 2024

November 26, 2024

Mr. Brett W. Sauter, PE, SE Structural Group Manager Ciorba Group, Inc. 8725 W. Higgins Road, Suite 600 Chicago, IL 60631

Structural Geotechnical Report Proposed Bridge Carrying Leavitt Street over I-290 Cook County, IL IDOT PTB 201-012

Dear Mr. Sauter:

Attached is a copy of the Structural Geotechnical Report for the above-referenced project. The report provides a description of the site investigation, site conditions, and foundation and construction recommendations. The overall site investigation for the proposed bridge replacement included advancing two (2) soil borings for the proposed new abutments, to depths ranging from 90 to 92 feet where auger refusal was encountered on bedrock.

Should you have any questions or require additional information, please call us at 630-994-2600.

Sincerely,

Daniel DiMaggio

Daniel DiMaggio, E.I.T. Project Engineer

BluSarne

Ala E Sassila, Ph.D., P.E. Principal

TABLE OF CONTENTS

1.0	INTRO	DUCTION1
	1.1 1.2	Existing Bridge Information2 Proposed Bridge Information3
2.0	SITE SU	JBSURFACE CONDITIONS
	2.1	Subsurface Exploration and Laboratory Testing4
	2.2	Laboratory Testing Program5
	2.3	Subsurface Soil Conditions5
	2.4	Groundwater Conditions7
3.0	GEOTE	CHNICAL ANALYSES
	3.1	Scour
	3.2	Settlement
	3.3	Undercuts Error! Bookmark not defined.
	3.4	Seismic Parameters9
4.0	GEOTE	CHNICAL BRIDGE DESIGN RECOMMENDATIONS
	4.1	Bridge Foundation Recommendations10
	4.2	Driven Pile Foundation Design Recommendations
	4.3	Pile Design
	4.4	Lateral Earth Pressure on Abutment Walls15
	4.5	Lateral load Resistance15
5.0	CONST	RUCTION CONSIDERATIONS
	5.1	Existing Utilities and Structures18
	5.2	Site Excavation
	5.3	Groundwater Management19
	5.4	Temporary Earth Structure Lateral Earth Pressures19
6.0	LIMITA	TIONS

<u>Exhibits</u>

Exhibit 1	Project Location Map
Exhibit 2	Existing Site Conditions at Existing and Proposed Bridge Locations

<u>Tables</u>

Table 1	Summary of Subsurface Exploration Borings
Table 2	Anticipated Embankment Settlement
Table 3	Seismic Parameters
Table 4a, 4b	Pile Design
Table 5a, 5b	Pile Design with Pre-Coring

Appendices

Appendix A	General Plan, Elevation & Details	
Appendix A	General Plan, Elevation & Details	

- Appendix B Soil Boring Location Plan & Subsurface Profiles
- Appendix C Soil Boring Logs
- Appendix D IDOT Pile Design Tables with no Downdrag
- Appendix D IDOT Pile Design Tables with Downdrag
- Appendix E Soil Design Parameters
- Appendix F IDOT Seismic Site Class Determination Calculations

Structural Geotechnical Report Leavitt Street Over I-290 Bridge Replacement SN: 016-2079 Cook County, Illinois IDOT PTB 201-012

1.0 INTRODUCTION

GSG Consultants, Inc. (GSG) completed a geotechnical investigation for the Phase II design of the proposed Leavitt Street over I-290 bridge replacement in the Near West Side neighborhood of Chicago in Cook County, Illinois. The purpose of the investigation was to explore the subsurface conditions, to determine engineering properties of the subsurface soil, and develop design and construction recommendations for the proposed bridge. **Exhibit 1** shows the general project location.

Exhibit 1 – Project Location Map (Source: USGS Topographic Maps, usgs.gov)

The general scope of the overall project is to replace the Leavitt Street bridge. The new bridge will have a longer span with similar width based on the Type, Size, and Location (TSL) plan provided by the Ciorba Group, Inc (Ciorba), the design section engineer.

1.1 Existing Bridge Information

IDOT Structure No. 016-2079 currently supports Leavitt Street over I-290. The existing bridge was constructed in 1953, with rehabilitation and repairs completed in 1983. The structure consists of a 3-span continuous non-composite wide flange steel beam bridge with concrete closed wall abutments and two reinforced concrete multi-column piers supported on metal shell cast in place concrete piles. The bridge carries two lanes of traffic and sidewalk in each direction. The bridge is supported on two piers and two abutments. The bridge is about 262.8 feet long from back-to-back of the abutments with an out-to-out deck width of 62.3 feet. The sides of the existing embankments are sloped, with some vegetated areas. **Exhibits 2a and 2b** generally show the existing site conditions at the existing bridge structure.

Exhibit 2a – Existing Leavitt Street Bridge, Looking North along Leavitt Street

Exhibit 2b – Existing Leavitt Street Bridge, Looking East along I-290

1.2 Proposed Bridge Information

Based on information provided by Ciorba (TSL dated 7/3/24), the SN 016-2079 bridge, carrying Leavitt Street over I-290 will be replaced to increase the vertical clearance and to widen I-290 below the bridge. The new bridge will be supported upon the existing central piers and new closed abutments. The new abutments will be constructed behind the existing abutments to provide additional lanes on I-290. This will require approximately 25.5 feet of new engineered fill where the vaulted abutments are removed. The proposed bridge will have an out-to-out deck width of 62.3 feet. The proposed bridge will be a 3-span structure and will be about 274.4 feet in length, back-to-back between the abutments. The vertical clearance above I-290 will be about 15'-1". Leavitt Street will be closed during construction. Based on the TSL plan, the new bridge superstructure will be supported on cast in place cantilever wall abutments with piles for the new abutment foundations.

2.0 SITE SUBSURFACE CONDITIONS

This section describes the subsurface exploration program and laboratory testing program completed as part of this project. The proposed locations and depths of the soil borings were selected in accordance with IDOT requirements and reviewed with Ciorba. The borings were completed in the field based on field conditions and accessibility.

2.1 Subsurface Exploration and Laboratory Testing

The site subsurface exploration for the proposed bridge was conducted between March 7 and March 20, 2024. The investigation included advancing two (2) borings to depths of 90 and 92 feet where auger refusal was encountered on limestone bedrock. The locations of these soil borings were adjusted in the field as necessary based on utilities and site access. The elevations and as-drilled locations for the borings were gathered by GSG's field crew using GPS surveying equipment. The approximate as-drilled locations of the soil borings are shown on the Soil Boring Location Plan & Subsurface Profiles (Appendix B). Table 1 presents a summary of the borings used for the analyses.

Associated Structure	Boring ID	Station*	Offset (ft) / Direction	Depth (ft)	Surface Elevation (ft) CCD / NAD 83
North Abutment	BSB-01	104+83.48	20.80 LT	92.0	13.52/593.4
South Abutment	BSB-02	100+89.09	19.44 LT	90.0	14.72/594.6

 Table 1 – Summary of Subsurface Exploration Borings

*Based on proposed Leavitt Street stationing

The soil borings were drilled using a truck mounted CME-75 (hammer efficiency 79.8%) drill rig, equipped with 3¼-inch I.D. hollow stem augers and an automatic hammer. Soil sampling was performed according to AASHTO T 206, "Penetration Test and Split Barrel Sampling of Soils." Soil samples were obtained at 2.5-foot intervals to a depth of 30 feet, then at 5-foot intervals until encountering auger refusal on apparent bedrock. Water level measurements were made in each boring when evidence of free groundwater was detected on the drill rods or in the samples. The boreholes were also checked for free water immediately after auger removal, and before filling the open boreholes with soil cuttings and surface patching with asphalt where necessary to match the existing pavement. Copies of the Soil Boring Logs are provided in **Appendix C**.

GSG's field representative inspected, visually classified and logged the soil samples during the subsurface exploration activities and performed unconfined compressive strength tests on cohesive soil samples using a calibrated Rimac compression tester and a calibrated hand penetrometer in accordance with IDOT procedures and requirements. Representative soil samples were collected from each sample interval and were placed in jars and returned to the laboratory for further testing and evaluation.

2.2 Laboratory Testing Program

All samples were inspected in the laboratory to verify the field classifications. A laboratory testing program was undertaken to characterize and determine engineering properties of the subsurface soils encountered in the area of the proposed bridge. Moisture content tests (ASTM D2216 / AASHTO T-265) were performed on representative soil samples.

The laboratory tests were performed in accordance with test procedures outlined in the most current IDOT Geotechnical Manual, and per ASTM and AASHTO requirements. Based on the laboratory test results, the soils encountered were classified according to the AASHTO and the Illinois Division of Highways (IDH) classification systems. The results of the laboratory testing program are shown on the **Soil Boring Logs (Appendix C)**.

2.3 Subsurface Soil Conditions

This section provides a brief description of the soils encountered in the borings performed in the vicinity of the proposed bridge. Variations in the general subsurface soil profile were noted during the drilling activities. Detailed descriptions of the subsurface soils are provided in the soil boring logs and are shown graphically in the Soil Boring Location Plan & Subsurface Profiles. The soil boring logs provide specific conditions encountered at each boring location and include soil descriptions, stratifications, penetration resistance, elevations, location of the samples, and laboratory test data. Unless otherwise noted, soil descriptions indicated on boring logs are visual identifications. The stratifications shown on the boring logs represent the conditions only at the actual boring locations and represent the approximate boundary between subsurface materials; however, the actual transition may be gradual.

The borings were drilled through the roadway along S. Leavitt Street and initially encountered 1 to 4 inches of asphalt, followed by 8 to 11 inches of concrete, and 7 to 10 inches of aggregate base. The surface elevations ranged between 14.72 and 13.56 CCD / 594.6 and 593.4 feet.

Below the pavement materials, the borings encountered brown and dark brown sandy fill materials to depths of 6 feet (El. 8.72 to 7.52 CCD / 588.6 to 587.4 feet). Beneath the sandy fill materials, boring BSB-01 encountered dark brown silty clay fill to a depth of 8.5 feet (El. 5.02 CCD / 584.9 feet).

Beneath the fill materials, the borings encountered native dark brown and gray stiff to very stiff silty clay to depths of 11 feet (El. 3.72 to 2.52 CCD / 583.6 to 582.4 CCD), followed by gray very soft to medium stiff silty clay to depths of 38.5 to 43.5 feet (El. -23.78 to -29.98 CCD / 556.1 to 539.9 feet), followed by gray stiff to hard silty clay to depths of 53.5 feet (El. -38.78 to -39.98 / 541.1 to 539.9). The borings then encountered gray dense to very dense silty loam to depths of 63.5 to 73.5 feet (El. -49.98 to -58.78 CCD / 539.9 to 521.1 feet), followed by gray hard to very hard silty clay to depths of 78.5 to 83.5 feet (El. -63.78 to -69.98 CCD / 516.1 feet to 509.9 feet), and then a layer of gray extremely dense gravel before encountering auger refusal on limestone bedrock at depths of 90 to 92 feet (El. -75.28 to -78.48 CCD / 504.6 to 501.4 feet). Boring BSB-02 noted a gravel seam at 39 feet and a sand seam at 59.5 feet and encountered a layer of gray very dense to extremely dense sandy loam between depths of 78.5 and 88.5 (between El. -63.78 and -73.78 CCD / 516.1 and 506.1 feet). Cobbles were noted at a depth of 8.5 feet in boring BSB-02. Silt seams were noted in boring BSB-01 at a depth of 79 feet and in boring BSB-02 at depths of 22 and 26.5 feet.

The unconfined compressive strength of the dark brown and gray stiff to very stiff silty clay ranged between 1.7 and 2.5 tons per square foot (tsf), with an average strength of 2.1 tsf. The unconfined compressive strength of the gray very soft to medium stiff silty clay ranged from less than 0.2 tsf to 0.6 tsf, with an average strength of 0.2 tsf. The gray stiff to hard silty clay layer beneath the very soft to medium stiff silty clay layer had unconfined compressive strength values ranging from 1.0 to 7.7 tsf, with most values being greater than 4.0 tsf, and with an average strength of 4.6 tsf. The gray dense to very dense silty loam had SPT blow count 'N' values ranging from 30 to 57 blows per foot (bpf), with an average value of 40 bpf. The gray hard to very hard silty clay had unconfined compressive strength values ranging from 6.3 to 15.6 tsf, with an

average value of 9.8 tsf. The gray extremely dense gravel had SPT blow count 'N' values ranging from 50 blows per 6 inches to 50 blows per 3 inches. The gray very dense to extremely dense sandy loam had SPT blow count 'N' values ranging from 58 bpf to 50 blows per 4 inches.

2.4 Groundwater Conditions

Water levels were checked in each boring to determine the general groundwater conditions present at the site and were measured while drilling and after each boring was completed. Groundwater was not observed during or immediately after completion of drilling at either of the boring locations. None of the borings were left open after leaving the site due to safety concerns.

Based on the observed water levels and soil color change from brown to gray, it is anticipated that the long-term groundwater level is approximately 20 feet below existing grade. Perched water may also be present within the fill materials or confined granular layers observed in the borings. Water level readings were made in the boreholes at times and under conditions shown on the boring logs and stated in the text of this report. However, it should be noted that fluctuations in groundwater level may occur due to variations in the rainfall, other climatic conditions, or other factors not evident at the time measurements were made and reported herein.

3.0 GEOTECHNICAL ANALYSES

This section provides GSG's geotechnical analysis and recommendations for the design of the proposed bridge abutments based on the results of the field exploration, laboratory testing, and geotechnical analysis. Subsurface conditions between borings may vary from those encountered at the boring locations. If structure locations, loadings, or elevations are changed, we request that GSG be contacted so that we may re-evaluate our recommendations.

3.1 Scour

The bridge structure carrying Leavitt Street over I-290 has no waterways in the vicinity; therefore, scour will not be a concern for this project.

3.2 Settlement

It is anticipated that up to 25.5 feet of fill will be required to build the new bridge abutments and replace the existing vaulted abutments. For the section of the newly constructed abutment where there will be fill placed over the abutment wall foundations, there will be minimal settlement since the load of the embankment will be transferred to the pile foundations below. However, for the section of the new embankment behind the abutment wall, where the existing abutment will be removed and replaced, there will be some additional load added due to the addition of new fill (approximately 5 feet) near the top of the embankment. Assuming construction of the new abutments will be completed immediately after the removal of the existing abutments, the anticipated settlement was calculated at each of the abutment locations. The results are summarized in **Table 2**. The new fill height was estimated based on the proposed TS&L provided by Ciorba (dated 07/03/2024).

Structure Name	Structure Station*	New Fill Height (ft)	Anticipated Settlement (inches)
North Abutment	Sta. 104+22	25.3	<1.0
South Abutment	Sta. 101+48	25.5	<1.0

|--|

*Based on proposed Leavitt Street Stationing

**With removal of soft clay soils beneath the bottom of the embankments and with placement of structural clay fill.

3.3 Seismic Parameters

The seismic hazard for the site was evaluated per the IDOT Geotechnical Manual, IDOT Bridge Design Manual, and AASHTO LRFD Bridge Design Specifications. The Seismic Soil Site Class was determined per the requirements of All Geotechnical Manual Users (AGMU) Memo 9.1, Design Guide for Seismic Site Class Determination, and the "Seismic Site Class Determination" Excel spreadsheet provided by IDOT. A global Site Class Definition was determined for this project, and was found to be Soil Site Class D. The Seismic Performance Zone (SPZ) was determined using Figure 2.3.10-2 in the IDOT Bridge Manual and was found to be Seismic Performance Zone 1.

The AASHTO Seismic Design Parameters program was used to determine the peak ground acceleration coefficient (PGA), and the short (S_{DS}) and long (S_{D1}) period design spectral acceleration coefficients for the proposed structure. For this section of the project, the S_{DS} and the S_{D1} were determined using 2020 AASHTO Guide Specifications as shown in **Table 3**. Given the site location and materials encountered, the potential for liquefaction is minimal.

Building Code Reference	PGA	S _{DS}	S _{D1}
2020 AASHTO Guide for LRFD Seismic Bridge Design	0.042g	0.145g	0.086g

Table 3 – Seismic Parameters

4.0 GEOTECHNICAL BRIDGE DESIGN RECOMMENDATIONS

The foundations for the proposed bridge must provide sufficient support to resist the dead and live loads, as well as seismic loading. The foundation design recommendations presented within this section were completed per the AASHTO LRFD 9th Edition (2020). The anticipated total loads provided by Ciorba for the proposed bridge abutments are 2,106 kips for the Service I case and 2,709 kips for the Strength I case.

4.1 Bridge Foundation Recommendations

Based on information provided by Ciorba, GSG understands that cast in place cantilever wall abutments supported on driven piles will be used for the abutment foundations. GSG evaluated this type of deep foundation system for the proposed bridge. The results of the evaluation are presented below.

4.2 Driven Pile Foundation Design Recommendations

Driven piles will be used to support the bridge abutments. Steel H-piles and metal shell pipe piles are considered to be feasible for this project. Concrete piles are not recommended for this site because the pile lengths cannot be readily adjusted to accommodate variability in soil conditions. H-piles are a feasible option for the construction of the abutments for the proposed bridge structure.

Based on the TSL, there will be little to no grade change at the new abutment locations, and no new fill will be placed. Therefore, capacity reductions for downdrag induced by fill placement do not apply for the pile design at this site.

4.3 Pile Design

The Modified IDOT static method-excel spreadsheet was used to estimate the pile lengths at various axial geotechnical resistances for driven piles per IDOT AGMU Memo 10.2. The factored resistance includes a reduction of 0.55 for the geotechnical resistance for the pile installation. No geotechnical losses due to scour or liquefaction were included in the axial pile resistance calculations.

Tables 4a and 4b summarize the estimated maximum pile lengths for representative pile sections along with the factored resistance available for several pile types which could be feasible for the

proposed substructures. The complete IDOT Pile Design Tables for each substructure, including factored resistance available (R_F) and nominal required bearing (R_N), are included in **Appendix D**.

The estimated pile lengths shown in **Table 4a and 4b** and in **Appendix D** are based on the pile cut off elevations noted below each table. The actual pile length and resistance should be evaluated based on test piles installed in accordance with the specifications provided in Section 512.15 of IDOT Standard Specifications for Road and Bridge Construction. Per section 3.10.1.11 of the IDOT Bridge Manual, the minimum pile spacing should be 3 pile diameters.

Pile Section	Nominal Required Bearing (Kips)	Factored Resistance Available (Kips)	Estimated Pile Length (FT)
Metal Shell 14" Φ	432	237	56
(Max. R _N = 459 Kips)	459	252	57
Metal Shell 14" Φ	512	282	61
(Max. R _N = 570 Kips)	570	313	62
Metal Shell 16" Φ	623	343	61
(Max. $R_N = 654$ Kips)	654	359	62
HP10x42	316	174	71
(Max. R _N = 335 Kips)	335	184	72
HP12x53	379	208	71
(Max. R _N = 418 Kips)	418	230	72
HP14x73	460	253	71
(Max. R _N = 578 Kips)	578	318	72

Table 4a – North Abutment Pile Design (BSB-01)

*Pile cut off elevation = 572.21 feet (TS&L dated 07/03/2024)

Ground surface elevation against pile during driving = 571.21 feet (TS&L dated 07/04/2024)

Pile Section	Nominal Required Bearing (Kips)	Factored Resistance Available (Kips)	Estimated Pile Length (FT)
Metal Shell 14" Φ	374	206	31
$(Max. R_N = 459 Kips)$	459	252	32
Metal Shell 14" Φ	465	256	45
(Max. $R_N = 570$ Kips)	570	313	46
Metal Shell 16" Φ	561	308	45
(Max. $R_N = 654$ Kips)	654	359	46
HP10x42	232	128	68
(Max. R _N = 335 Kips)	335	184	69
HP12x53	278	153	68
(Max. R _N = 418 Kips)	418	230	69
HP14x73	339	187	68
(Max. R _N = 578 Kips)	578	318	70

Table 4b – South Abutment Pile Design (BSB-02)

*Pile cut off elevation = 572.21 feet (TS&L dated 07/04/2024)

Ground surface elevation against pile during driving = 571.21 feet (TS&L dated 07/04/2024)

Based on information provided by Ciorba, due to the presence of a large siphon sewer with inlet and outlet junction chambers located east of the bridge, there are concerns of damage occurring to the sewer structures during pile driving activities. It is anticipated that pre-coring the piles down to an elevation below the bottoms of the chamber structures may be necessary to avoid causing damage to the siphon sewer structures. The bottom of chamber structure elevations are estimated to be approximately 5 feet below the proposed abutment footing foundations.

Tables 5a and 5b summarize the estimated maximum pile lengths for representative pile sections along with the factored resistance available for the piles that are feasible for the proposed substructures when pre-coring is included. The complete IDOT Pile Design Tables, including factored resistance available (RF) and nominal required bearing (R_N), are included in **Appendix E**.

Pile Section	Nominal Required Bearing (Kips)	Factored Resistance Available (Kips)	Estimated Pile Length (FT)
Metal Shell 14" Φ	427	235	56
(Max. $R_N = 459$ Kips)	459	252	57
Metal Shell 14" Φ	508	279	61
(Max. $R_N = 570$ Kips)	570	313	62
Metal Shell 16" Φ	618	340	61
(Max. $R_N = 654$ Kips)	654	359	62
HP10x42	313	172	71
(Max. R _N = 335 Kips)	335	184	72
HP12x53	375	206	71
(Max. $R_N = 418$ Kips)	418	230	72
HP14x73	455	250	71
(Max. R _N = 578 Kips)	578	318	72

Table 5a – North Abutment Pile Design with Pre-Coring (BSB-01)

*Pile cut off elevation = 572.21 feet (TS&L dated 07/03/2024)

Ground surface elevation against pile during driving = 571.21 feet (TS&L dated 07/04/2024) Bottom of pre-coring elevation = 566.21 feet

Pile Section	Nominal Required Bearing (Kips)	Factored Resistance Available (Kips)	Estimated Pile Length (FT)
Metal Shell 14" Φ	371	204	31
(Max. $R_N = 459$ Kips)	459	240	32
Metal Shell 14" Φ	461	254	45
(Max. R _N = 570 Kips)	570	268	46
Metal Shell 16" Φ	557	306	45
(Max. $R_N = 654$ Kips)	654	359	46
HP10x42	229	126	68
(Max. R _N = 335 Kips)	335	184	69
HP12x53	274	151	68
(Max. R _N = 418 Kips)	418	230	69
HP14x73	335	184	68
(Max. R _N = 578 Kips)	578	318	70

Table 5b – Se	outh Abutment	Pile Design with	Pre-Coring (BSB-02)
		The Design With		556 62,

*Pile cut off elevation = 572.21 feet (TS&L dated 07/04/2024)

Ground surface elevation against pile during driving = 571.21 feet (TS&L dated 07/04/2024) Bottom of pre-coring elevation = 566.21 feet

Although all of the above pile types are considerable options for foundation support, the structural engineer is responsible to determine what pile best suits the design. Some of the pile options may not be suitable alternatives due to spacing requirements or constructability concerns.

IDOT standard practice includes driving one (1) indicator pile for each sub structural element to determine the actual pile length. A test pile shall be performed at each abutment prior to production driving so that actual, on-site, field data can be gathered to determine pile driving requirements for the project. Driving shoes or conical tips, depending on the selected piles, in accordance with Section 1006.05 (e) of the IDOT Standard Specifications for Road and Bridge Construction (SSRBC), should be considered to protect piles from damage during driving.

4.4 Lateral Earth Pressure on Abutment Walls

The lateral earth pressures on retaining walls depend on the type of wall (i.e., restrained or unrestrained), the type and method of placement of backfill against the wall, and the magnitude of surcharge weight on the ground surface adjacent to the wall. In general, the static lateral earth pressure acting on the bridge abutment walls consists of two components: static active earth pressure and static active surcharge pressure. The backfill behind the abutment walls shall be free-draining aggregate in accordance with IDOT standard details. Heavy compaction equipment should not be allowed closer than five (5) feet to the retaining wall to prevent inducing high lateral earth pressures and causing wall yielding and/or other damage. Cantilever-type abutments shall be designed as unrestrained retaining walls. This means that these walls are free to rotate at the top in an active state of earth pressure. Abutment and wing walls that behave as a pinned support at the top, not allowing movement or rotation, should use the at-rest state of earth pressure for their design. **Table F1: Summary of Soil Parameters, Appendix F,** presents the design soil properties for the existing soils.

The recommended soil parameters listed in **Table F1** should be used to determine earth pressures acting on the retaining walls. It should be used for the retained soil and applied as a triangular load beginning at the base of the wall. The static active earth pressure (Pa) should be applied at $\frac{1}{3}$ H from the bottom of the pressure distribution, where H is the height of the wall. The abutment wall should be designed for surcharge loading due to surface loads within the zone of the proposed backfill. At a minimum, a uniform vertical pressure of 250 psf should be considered in the design. This shall be multiplied by the appropriate earth pressure coefficient to determine the resulting horizontal pressure on the abutment wall. The lateral load will act uniformly along the face of the wall. Other loads should also be evaluated using the procedures of AASHTO LRFD Section 3.11.6 on a case-by-case basis for the abutment walls. The abutment and retaining walls should be backfilled with a minimum of 4 feet (measured from the back of the wall) of free draining materials in accordance with IDOT standard construction specifications.

4.5 Lateral load Resistance

Lateral loadings applied to deep foundations are typically resisted by the soil/structure interaction, pile flexure, or a combination of these factors. Section 3.10.1.10 of the 2023 IDOT Bridge Manual requires performing detailed structure interaction analysis if the factored lateral loading per pile exceeds 3 kips. The analysis shall determine actual pile moment and deflection

to determine the selected pile adequacy for the existing loadings. **Table 6 and Table F-1** (Appendix F) provide generalized soil parameters for the site and include recommended lateral soil modulus and soil strain parameters that can be used for deep foundation analysis via the p-y curve method based on the encountered subsurface conditions.

Depth / Elevation Range (feet) (CCD / NAD 83)	Soil Description	Lateral Modulus of Subgrade Reaction (pci)	Soil Strain (٤ ₅₀)
	New Engineered Clay Fill	100	0.01
	New Engineered Granular Fill	90	N/A
1.0 to 6.0 (13.12-8.12) (593-588)	Brown and Dark Brown Sand Fill	25	N/A
6.0 to 11.0 (8.12-3.12) (588-583)	Dark Brown and Gray Stiff to Very Stiff Silty Clay	1,000	0.005
11.0 to 43.5 (3.12 - (-29.38)) (583-550.5)	Gray Very Soft to Medium Stiff Silty Clay	30	0.02
43.5 to 53.5 (-29.38 - (-39.38)) (550.5-540.5)	Gray Stiff to Hard Silty Clay	2,000	0.004
53.5 to 63.5 (-39.38 - (-49.38)) (540.5-530.5)	Gray Dense to Very Dense Silty Loam	125	N/A
63.5 to 83.5 (-49.38 - (-69.38)) (530.5-510.5)	Gray Hard to Very Hard Silty Clay	2,000	0.004
83.5 to 91.0 (-69.38 - (-76.88)) (510.5-503)	Gray Extremely Dense Gravel	125	N/A
6.0 to 8.5 (8.12-5.62) (588-585.5) *BSB-01 Only	Black Silty Clay Fill	30	0.02

Table 6 –	Lateral	Load	Resistance	Soil Parameters
	Eaterai			

Depth / Elevation Range (feet) (CCD / NAD 83)	Soil Description	Lateral Modulus of Subgrade Reaction (pci)	Soil Strain (٤₅०)
78.5 to 88.5 (-64.38 - (-74.38)) (515.5-505.5) *BSB-02 Only	Gray Very Dense to Extremely Dense Sandy Loam	125	N/A

*The initial p-y modulus, E_{py} , varies linearly with depth. To obtain E_{py} use the equation $E_{py} = k_{py} * z$, where k_{py} is the subgrade modulus given in the table and z is the distance from the surface to the center point of the layer in inches.

5.0 CONSTRUCTION CONSIDERATIONS

All work performed for the proposed project should conform to the requirements in the IDOT Standard Specifications for Road and Bridge Construction (2022). Any deviation from the requirements in the manuals above should be approved by the design engineer.

5.1 Existing Utilities and Structures

Based on the existing site conditions, utilities exist along the project corridor. Before proceeding with construction, all existing underground utility lines or structures that will interfere with construction should be completely relocated from the proposed construction areas. Where possible, existing utility lines that are to be abandoned in place should be removed and/or plugged with cement grout. All excavations resulting from underground utilities or structure removal activities should be cleaned of loose and disturbed materials, including all previously placed backfill, and backfilled with suitable fill materials in accordance with the requirements of this section. During the clearing and stripping operations, positive surface drainage should be maintained to prevent the accumulation of water.

5.2 Site Excavation

If borrow material is to be used for onsite construction, it should conform to Section 204 "Borrow and Furnished Excavation" of the IDOT Construction Manual (2021). The fill material should be free of organic matter and debris. Earth-moving operations should be avoided during excessively cold or wet weather to avoid freezing of softening subgrade soils.

Structural fill shall be placed in accordance with the recommendations provided in the IDOT Standard Specifications for Road and Bridge Construction (2022).

Should fill be placed during cool, wet seasons, the use of granular fill may be necessary since weather conditions will make compaction of cohesive soils more difficult. If water seepage while excavating and backfilling procedures, or where wet conditions are encountered such that the water cannot be removed with conventional sump and pump procedures, GSG recommends placing open grade stone similar to IDOT CA-7 to stabilize the bottom of the excavation. The CA-7 stone should be placed 12 inches above the water level, in 12-inch lifts, and should be compacted with the use of a heavy smooth drum roller or heavy vibratory plate compactor until

stable. The remaining portion of the excavation should be backfilled using approved engineered fill.

GSG recommends that foundation excavations, subgrade preparation, and structural fill placement and compaction be inspected by a GSG geotechnical engineer to verify the type and strength of soil materials present at the site and their conformance with the geotechnical recommendations in this report.

5.3 Groundwater Management

It is anticipated that the long-term groundwater level is below approximately 20 feet below existing grade. Perched water may also be present within the fill materials or confined granular layers. If rainwater run-off or groundwater is accumulated at the base of excavations, the contractor should remove accumulated water using conventional sump pit and pump procedures and maintain a dry and stable excavation. The location of the sump should be determined by the contractor based on field conditions. During earthmoving activities at the site, grading should be performed to ensure that drainage is maintained throughout the construction period. Water should not be allowed to accumulate in the foundation area either during or after construction. Undercut and excavated areas should be sloped toward one corner to facilitate removal of any collected rainwater or surface run-off. Grades should be sloped away from the excavations to minimize runoff from entering.

If water seepage occurs during excavations or where wet conditions are encountered such that the water cannot be removed with conventional sumping, we recommend placing open grade stone similar to IDOT CA-7 to stabilize the bottom of the excavation below the water table. The CA-7 stone should be placed 12 inches above the water table, in 12-inch lifts, and should be compacted with the use of a heavy smooth drum roller or heavy vibratory plate compactor until stable. The remaining portion of the excavation beneath the foundations should be backfilled using approved structural fill.

5.4 Temporary Earth Structure Lateral Earth Pressures

A temporary soil retention system (TSRS) is anticipated to be necessary for the construction of the new abutments. The IDOT temporary sheet piling design charts are not feasible for this project as the average unconfined compressive strengths of the clay are below the minimum

value of 1.0 tsf for the estimated retained height of 18 feet. A Temporary Soil Retention System will be required. The Temporary Soil Retention System shall be designed by an Illinois licensed structural engineer in accordance with the IDOT Bridge Design Manual. The design of the Temporary Soil Retention System is the responsibility of the contractor. The contractor should submit the TSRS plans to the structural design team for review prior to commencing construction of the TSRS.

6.0 LIMITATIONS

This report has been prepared for the exclusive use of the Illinois Department of Transportation (IDOT) and its Design Section Engineer consultant. The recommendations provided in the report are specific to the project described herein and are based on the information obtained at the soil boring locations within the proposed bridge area. The analyses have been performed and the recommendations provided in this report are based on subsurface conditions determined at the locations of the borings. This report may not reflect all variations that may occur between boring locations or at some other time, the nature and extent of which may not become evident until during the time of construction. If variations in subsurface conditions become evident after submission of this report, it will be necessary to evaluate their nature and review the recommendations presented herein.

APPENDIX A

GENERAL PLAN, ELEVATION & DETAILS

7/3/2024 3:16:38 PM

3.16.38 PM 1.02\002140

APPENDIX B SOIL BORING LOCATION PLAN & SUBSURFACE PROFILES

650 640 630 630 630 630 620 610 550 610 550 610 550 610 550 610 550 610 550 610 610 550 610	1															
030 640 630 630 640 630 620 610 ISTING GRADE - S LEAVITT STREET 600 888-41 600 1 4 4 4 4 4 4 4 4 4 580 590 1 4 4 4 4 590 1 4 4 580 1 580 1 580 1 570 1 560 1 560 1 560 1 540 1 540 1 530 1 530 1 530 1 530 1 530 1 540 1 530 1 530 1 540																
640 630 620 610 STING GRADE - S LEAVITT STREET 600 888-01 600 1 2000 FLUSSION 1 2000	1														03	50
640 630 620 610 STING GRADE - S LEAVITT STREET 600 958-01 600 1 4 1 4 4 90000, FEL230 MIL 590 590 1 4 4 90000, FEL230 MIL 590 580 1 4 938-01 580 1 4 1 4 1 4 4 9000, FEL2300, AU 1 4 500 570 1 580 1 520 1 530 1 540 1 540 1 540 1 540 1 540 1 540 1 540 1 540 1 540 1 540 1 520 1																
630 620 STING GRADE - S LEAVITT STREET 600 9 4 600 1 4 590 1 4 590 1 4 590 1 4 590 1 4 590 1 4 590 1 4 590 1 4 590 1 4 590 1 4 590 1 4 590 1 4 500 1 4 500 1 570 580 1 570 550 1 540 550 1 540 530 1 530 520 1 530 520 1 530 520 1 530 520 1 530 520 1 530 500	ì									: : : :					64	40
630 620 SSTING GRADE - S LEAVITT STREET 600 SSTING GRADE - S LEAVITT STREET 600 9 4 Brown FLUX SAND 1																
STING GRADE - S LEAVITT STREET 600 BSE-01 600 T 0															63	30
STING GRADE - S LEAVITT STREET 600 BSB-01 600 Image: Street St	ł															
STING GRADE - S LEAVITT STREET 610 BSE-01 600 BSE-01 600 BSE-01 590 P 1 000 MOX Surface Elevisition 13.52 feet 1 0.47 B D7 580 P 1 000 MOX Surface Elevisition 13.52 feet 590 P 1 0.47 B D7 580 P 1 0.42 B D7 580 P 1 0.42 B D7 580 P 0.42 B D7 580 570 P 0.42 B D7 560 550 P 1.62 B D7 560 550 P 0.42 B D7 540 540 P 1.62 B D7 540 530 P 0.42 B D7 540 540 P 0.42 B D7 540 530 P 0 2.2 B D7 520 P 0 2.2 B D7 520 P 0 2.2 B D7 520 P 0.47 B D															62	20
ISTING GRADE - S LEAVITT STREET 600 BSB-01 600 P 0 MCS Strate Elevidori 13.32 test 590 P 1 000000000000000000000000000000000000	1															
BITING GRADE - S LEAVITT STREET 6010 BSB-01 6000 P 0 MCS Surface Elevidion 13.32 feet 5900 P 4 BOOM FILLISAND 5800 5800 P 4 BOOM FILLISAND 5800 5800 P 4 BOOM FILLISAND 5800 5700 P 4 BOOM FILLISAND 5800 5700 P 4 BOOM FILLISAND 5800 5700 P 4 1078 JF 5700 5600 P 4 1078 JF 5500 5500 P 4 1021 BJF 5500 5500 P 4 102 BJF 5500 5200 P 4 22 BERP CONV (CUML) 5400 P 530 10 5300 5200 P 6 6560 JF 5200 5200 P 6 6560 JF 5500 5000 P 6 5600															6	10
BSB-01 600 N 00 MCN Surface Elevation 13.52 feet 590 1 4 BOONT FILL SAND 580 580 1 4 1572 Strepper Law (Law (Law (Law (Law (Law (Law (Law	IS	TING G	RADI	E - S	LE/	AVITT S	TREE	с							0	10
BSE-01 GU MC% Sufface Elevation 13.52 feet 590 1 4 Hown, PLL: SAND 580 1 4 Hown, PLL: SAND 580 1 1.02.8 J27 Still-Dec Street 580 1 0.02.8 J27 Still-Dec Street 580 1 0.02.8 J27 Still-Dec Street 570 1 0.02.8 J27 Still-Dec Street 550 1 0.21 B27 Still-Dec Street 550 1 0 22 Still-Dec Street 550 1 2 Still-Dec Street 520 520 1 3 12 520 520 1 3 12 520 510 1 3 12 520 500 1 1 Still-Dec Stree 500																
N Our MC% Surface Elevation 13.52 feet 590 1 4 Brown, FLL: SAND 580 1 1.421 B43 Brown, FLL: SAND 580 1 1.628 B17 Brit Dry R (CL, ML) 580 1 1.628 B17 Brit Dry R (CL, ML) 580 1 1.628 B17 Brit Dry R (CL, ML) 580 1 1.628 B17 Brit Dry R (CL, ML) 570 1 1.628 B17 Brit Dry R (CL, ML) 570 1 1.621 B17 Brit Dry R (CL, ML) 560 1 2 Still P (CL, MCC, ML) 540 1 3 Still P (CL, MCC, ML) 510 1 3 Still P (CL, MCC, ML) 510 1 3 Still P (CL, MCC, ML) 510 1 3 Still P (CL, MCC, MCC, ML) 510	-	BS	6 B- 01											 	60	00
1 0 0 0 0 590 1 4 Brown, FILL SAND 580 580 1 1 1 1 580 580 1 1 1 1 580 580 1 1 1 1 580 580 1 1 1 1 580 580 1 1 1 1 580 580 1 1 1 1 580 570 1 1 1 1 570 560 1 1 1 1 550 550 1 1 1 1 540 550 1 1 1 1 540 520 1 1 1 1 530 520 1 1 1 520 520 520 1 1 1 510 520 50			N	0.1	MC®											
Image: Second	Ę	<u></u>			4	Brown FI	evation 1	13.52 feet							59	90
Image: Project Project Project Reveal of Project Reve	X	-0-0-0-6	5 ¹⁴	<0.21 E	4 343	Dark Brow FILL: SILT	n, Y CLAY									
E-WH 0.21 B 2.35 WH 0.21 B 2.35 WH 0.21 B 2.35 WH 0.21 B 2.35 WH 0.21 B 2.7 Total 1.0 2.2 SH YC SUM WH 0.21 B 2.7 SH 10 SUM WH 0.21 B 2.7 SH YC SUM SH			10 4 10 1	1.67 B 0.62 B	27 21	Stiff Dark E SILTY CLA	Brown, AY (CL/M	1L)							58	30
2 2 Start Revealed			– WH 15 – WH	0.42 B 0.21 B	27 26											
Image: Section of the sectio			Е wн 20 - wн	<0.21 E	29										57	70
2 Entry CLAY (CLML) 560 3 21 550 5 5 530 5 5 530 5 5 530 5 5 530 5 5 530 5 5 530 5 5 530 5 5 530 5 5 530 5 5 530 5 5 530 5 5 530 5 5 530 5 5 530 5 5 530 5 5 500 5 5 500 5 500 8 6 6.25 B 22 5 500 7 0 500 8 ENTY CLAY (CLM) 9 6 6.25 B 9 9 9 <td< td=""><td>助</td><td></td><td>E WH</td><td><0.21 E</td><td>327</td><td>Very Soft t</td><td>o Mediur</td><td>n Stiff Grav</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	助		E WH	<0.21 E	327	Very Soft t	o Mediur	n Stiff Grav								
2 0				<0.21 B	327	SILTY CLA	AY (CL/M	1L)							E C	20
Image: Bit - 0.21 P 29 550 Fr 7 1.04 B 19 Fr 7 1.04 B 19 540 Fr 33 21 530 530 Fr 33 21 530 530 Fr 30 12 520 520 Fr 40 8.75 B 520 510 Fr 56 8 Effort to Vary Hert Site 510 Fr 50 8 Effort to Vary Hert Site 500 Fr 50 8 Effort to Vary Hert Site 500 Fr 50 8 Effort to Vary Hert Site 500 Fr 50 8 Effort to Vary Hert Site 500 Fr 50 8 Effort to Vary Hert Site 500 Fr Limestone 500 490 Fr Effort to Vary Hert Site 20 20 Fr Site Site 20 20 Fr Site			- - WH	0.21 B	24										50	50
100 22 SHT Y CLAN (CLANL) 540 536 16 530 540 536 16 530 530 536 13 SHT Y CLAN (ML) 530 536 13 SHT Y CLAN (ML) 530 550 520 520 520 536 13 SHT Y CLAN (ML) 530 550 520 520 520 550 8 Strep CRAN (ML) 510 550 8 Strep CRAN (ML) 500 6 6.25.8 22 Strep CRAN (ML) 500 7 10 10 10 490 490 480 480 480 480 100 10 10 10 10 10 100 10 10 10 10 10 10 100 10 10 10	言言		E 8	<0.21 F	29											
5 0 22 SHITY CLAN (CLIML) 540 5 36 10 530 530 5 36 13 SHITY COMM (ML) 530 5 520 520 520 520 7 46 6.25 B 22 Hard DVary Hard Gray. 510 5 50 8 Extremely Dense Gray. 510 500 5 6 8 Extremely Dense Gray. 500 490 6 6.25 B 22 Hard DVary Hard Gray. 510 500 6 8 Extremely Dense Gray. 500 490 490 6 9 9 9 9 9 10 480 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 </td <td></td> <td></td> <td>40 </td> <td>1 04 B</td> <td>19</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> </td> <td>55</td> <td>50</td>			40 	1 04 B	19									 	55	50
En Diama (Control of the control of the c	嗝		45 E		22	Stiff, Gray,		ана С 1								
Es 36 16 ES 13 21 530 ES 13 SILTY LOXM (ML) 520 ES 6 6.25 B 22 SILTY LOXM (ML) ES 6 6.25 B 22 SILTY LOXM (ML) ES 6 6.25 B 22 SILTY LOXM (ML) ES 50 8 Extremely Dense Gray. 510 ES SILTY LOXM (ML) 500 500 Sister L'GR/GC/SIL Sister L'GR/GC/SIL 500 Image: Sister L'GR/GC/SIL Sister L'GR/GC/SIL Sister L'GR/GC/SIL Extremely Dense Gray. Sister L'GR/GC/SIL Sister L'GR/GC/SIL Image: Sister L'GR/GC/SIL Sister L'GR/GC/SIL Sister L'GR/GC/SIL Image: Sister L'GR/GC/SIL Sister L'GR/GC/SIL Sister L'GR/GC/SIL Sister L'GR/GC/SIL Sister L'GR/G			50 ¹⁰ E		22										54	40
Image: State interview 530 Image: State interview 530 Image: State interview 530 Image: State interview 530 Image: State interview 520 Image: State interview 520 Image: State interview 520 Image: State interview 510 Image: State interview 500 Image: State interview 500 Image: State interview 510 Image: State interview<	1		- 36 55 -		16											
E 36 13 SETY COAW (ML) F 30 12 520 F 40 8.75 B 22 F 46 6.25 B 22 Hard to Very Hard Gray. 510 F 50 8 Extremely Dense Gray. 500 B Extremely Dense Gray. ILMESTONE 500 A LIMESTONE F 50 B Extremely Dense Gray. Extremely Dense Gray. 500 B LIMESTONE F 500 B Extremely Dense Gray. LIMESTONE 500 480 480 480 480 CONTACT NO. PIG 20100 100 + 50 STA. 100 + 50 TO STA. STA. 100 + 50 TO STA. STA. 100 + 50 TO STA.	1		- 33 60 -		21	Dense Gra									53	30
Image: Constraint of the section of the sec	1		- 36 65		13	SILTY LOA	ŇM (ML)									
Image: State of the s	1		Z0 ³⁰		12										52	20
46 6.25 B 22 Hard to Very Hard Gray. 510 50 8 Extremely Dense Gray. 500 50 8 Extremely Dense Gray. 500 40 490 490 400 480 400 480 400 480 400 480 400 480 400 480 400 480 400 480 400 480 400 480 400 480 400 480 400 480 400 480 400 480 400 480 400 480 400 480 400 480 480 480 480 480 480 480 480 480 480 480 480 480 59 500 500 500 500 500	i.		= - 40 Z5	8.75 B	22											
S TU S TU 50 8 Extremely Dense Gray; 500 490 490 490 490 480 480 50 8 500 480 50 9 9 9 9 50 8 500 480 480 480 480 50 9 9 9 50 9 9 9 9 50 9 9 9 9 50 9 9 9 9 50 9 9 9 9 50 9 9 9 9 50 10 105 + 25 100 + 50 105 + 25			E 46	6.25 B	22	Hard to Ve SILTY CLA	ry Hard (Y (CL/M	Gray, IL)								10
Extremely Dense Gray, Grav, LIMESTONE 500 490 490 490 480 480 480 500 500 500 500 500 490 500 480 500 480 500 500 500 500 500 490 500 480 500 500 500 480 500 500 500 500 500 490 500 500 500 490 500 490 500 480 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 <			E 50		8										5	10
1 LIMESTONE 500 490 490 480 480 1 1<			50		8	Extremely GRAVEL (Dense G GP/GC)	Gray,								
490 480 480 480 480 480 5 480 5 480 5 480 5 5 5 5 5 5 5 5 100+50 5 100+50 5 100+50 5 100+50	-		E.			LIMESTON	NE							 	50	00
2 0 490 2 0 480 2 0 480 3 0 480 4 0 480 4 0 480 4 0 480 4 0 480 4 0 480 4 0 480 4 0 0 4 0 0 4 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0																
P P	1														49	90
2 3 3 480 2 3 480 3 4 480 4 4 480 4 4 4 4 4 4 5 4 4 4 5 4 4 5 4 4 4 4 5 4 4 4 4 4 4 4 4 5 4 4 5 4 4 4 4 4 4 4 4 4 4 4 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4																
P P															48	30
P P	ł															
Image: section country TOTAL sheet Image: section country Total section country Image: section country Total section country Image: section country Total section country Image: section country Total section cou																
Image: bit is a section with the sectin with the section with the section with the section with the se	0.1					00				+25				 	NAV	'D 88
I-O12 EET OVER I-290 & CTA F.A. RTE. SECTION COUNTY TOTAL SHEET SHEET NO. OFILE COOK 2 2 STA. 100+50 TO STA. 105+25 ILLINOIS FED. AID PROJECT	104					105				105-						
Image: State in the s	4	012						F.A.			101		-	ТОТ	ALTS	HEFT
OFFICE CONTRACT NO. PTB 201-012 STA. 100+50 TO STA. 105+25 ILLINOIS FED. AID PROJECT						RTE.		SECT	IUN		C0 C	SHE 2	ETS	NO. 2		
	OFILE STA. 100+50 TO STA. 105+25					+25	CONTRACT NO. PTB 201-0						1-012			

APPENDIX C

SOIL BORING LOGS

Page <u>1</u> of <u>3</u>

Date 3/20/24

ROUTE	FAI 290 (I-290)	DE				Bridge Boring				LOGGED BY			V
SECTION	2021 120 00			0047		SEC	10 TWD 20N DNC 1/E						
SECTION	2021-120-DR		L	UCAI		<u>, SEC.</u> Latitu	de 41.8761186, Longitud	e -87.6814	4759				
COUNTY								HAMMER					
	U	RILLING		THOD					=FF (%)		/	9.8	
STRUCT. NO.	016-2079		D	В	U	M	Surface Water Elev.	N/A	ft	D	B	U	M
Station	N/A		P		S		Stream Bed Elev.	N/A	ft	E P		S	U I
BORING NO	BSB-01		T	w		S	Groundwater Flev ·			Ť	w		s
Station	104+83.48		н	S	Qu	Т	First Encounter	None	ft	Н	S	Qu	Т
Offset	20.80ft LT						Upon Completion	N/A	ft				
Ground Surf	ace Elev. 593.40	ft	(ft)	(/6")	(tsf)	(%)	After <u>N/A</u> Hrs	N/A	ft	(ft)	(/6'')	(tsf)	(%)
4 inches of As	sphalt	593.07					Very Soft to Soft	1		_			
7 inches of C	concrete	592 15		~			SII TY CI AY, trace grave	۲ چا			1.0.1.1		
	giogato Ducc	501 57	_	3		4	(CL/ML) (continued)				WH	0.0	20
Brown, Dry		001.07		2		4					WH	0.2 B	28
FILL: SAND, t	race gravel,			-									
concrete tragr	nents												
				2							WН		
				9		4					WH	<0.21	27
			-5	5						-25	WH	В	
	lam / Maiat	587.40		14/11							1.0/1.1		
FILL: SILTY C	CLAY. trace		_	WH	<0.21	13					WH	0.2	27
organics, grav	vel			1	B	45					WH	B B	21
		584.90											
Stiff				1							WН		
Dark Brown, V	/ery Moist trace gravel			1	1.7	27					WH	<0.21	27
(CL/ML)	lidoc graver		-10	3	В					-30	WH	В	
		500.40											
Verv Soft to S	oft	582.40		wн									
Gray, Moist to	Very Moist			WH	0.6	21							
SILTY CLAY,	trace gravel			1	В								
										_			
				WH						_	WH		1
			_	WH WU	0.4	27					WH WU	0.2 P	24
			-15	VVII	Б					-35	VVII	D	
				WН									
			_	WH	0.2	26							
				WH	В								
			_	14/11							1.4/1.1		
				VVH W/H	<0 21	20					VVH 1	<u><0 21</u>	20
			-20	WH	B	23				-40	4	-0.21 P	23

Illinois Department of Transportation

Division of Highways GSG Consultants, Inc.

Page $\underline{2}$ of $\underline{3}$

Date 3/20/24

ROUTE FAI 290 (I-290)				I	Bridge Boring				ED BY	C	V
SECTION 2021-120-BR		_ L	OCAT		<u>, SEC.</u>	18, TWP. 39N, RNG. 14E,	1750				
COUNTY COOK DR	DRI ILLINO	DRILLING RIG				<u>CME 75</u> MUD ROTARY HAMMER E			AL 7	<u>JTO</u> 9.8	
STRUCT. NO. 016-2079 Station N/A	_	D E P	B L O	U C S	M O I	Surface Water Elev. N/A Stream Bed Elev. N/A	ft ft	DEP	BLO	U C S	M 0 1
BORING NO. BSB-01 Station 104+83.48 Offset 20.80ft LT Ground Surface Flow 593.40		H (ft)	W S (/6")	Qu (tsf)	S Т (%)	Groundwater Elev.: First Encounter None Upon Completion N/A After N/A Hre	ft ft	I H (ft)	W S (/6")	Qu (tsf)	S T (%)
Very Soft to Soft Gray, Moist to Very Moist SILTY CLAY, trace gravel (CL/ML) <i>(continued)</i>	<u> </u>					Dense Gray, Moist to Very Moist SILTY LOAM (ML) <i>(continued)</i>	n				
Stiff, Crov Moist	549.90		2						11		
SILTY CLAY, with sand, trace gravel (CL/ML)		-45	2 5	1.0 B	19			-65	19 17		13
			1						9		
		-50	5 5		22			-70	10 20		12
	539.90						<u>519.90</u>		44		
Gray, Moist to Very Moist SILTY LOAM (ML)		-55	14 15 21		16	Gray, Moist SILTY CLAY (CL/ML)		-75	17 23	8.8 B	22
			11		21	8 inch Silt Seam at 70 feet			9	6.3	22
		-60	18					-80	20	0.3 B	~~

Illinois Department of Transportation

Division of Highways GSG Consultants, Inc.

Illinois Department of Transportation Division of Highways GSG Consultants, Inc.

Page <u>3</u> of <u>3</u>

Date 3/20/24

ROUTE	FAI 290 (I-290)	DE	DESCRIPTION			Bridge Boring			LOGGED BY DV				
	2021-120-BR		_ L	OCAT		, SEC.	18, TWP. 39N, RNG. 1	<u>4E,</u>	50				
COUNTY	COOK	DRI	LLIN	G RIG		CN	ie 41.8761186, Longi iE 75	HAMMER TY	PEAUT	0			
	D	RILLING	S ME	THOD		<u>N</u>	IUD ROTARY	_ HAMMER EFI	F (%) 79.8	}			
STRUCT. NO.	016-2079		D	В	U	м	Surface Water Elev.	N/A ft					
Station	N/A		E	L	C	0	Stream Bed Elev.	N/A ft					
			T	w	3	S	Groupdwater Flow						
Station	104+83.48		Ĥ	S	Qu	T	First Encounter	None ft					
Offset	20.80ft LT						Upon Completion	N/A ft					
Ground Sur	face Elev. 593.40	ft	(ft)	(/6'')	(tst)	(%)	After <u>N/A</u> Hrs.	<u> </u>					
Hard to Very	Hard												
SILTY CLAY	(CL/ML) (continued)												
	. , . , ,												
		509.90											
Extremely De	nse			39		0							
GRAVEL, wit	h clay, sand			50		0							
(GP/GC)			-85										
				50									
						8							
			-90										
WEATHEREI	DIMESTONE	502.40											
		501 40											
Auger Refusa	l at 92 feet	001.10											
End of Boring	l												
			-95										
			_										
			_										
			-100										

Page <u>1</u> of <u>3</u>

Date 3/7/24

SECTION 2021-120-BR LOCATION SEC. 18, TWP. 39N, RNG, 14E. COUNTY COOK DRILLING RID Laffude 41,8750366, Longitude 27,8814420 AUTO STRUCT, NO. 016-2079 NAMMER TYPE AUTO TAMMER TYPE AUTO 73.8 STRUCT, NO. 016-2079 NA E L C 0 S BORING NO. BSB-02 S S Guandwater Elew. N/A T B U N Groundwater Elew. N/A T W S Guandwater Elew. N/A T W S Station 100:489.09 T W S Guandwater Elew. N/A T WH S Guandwater Elew. N/A T WH S Guandwater Elew. N/A T WH S Guandwater El	ROUTE FAI 290 (I-2	<u>.90)</u> DES	SCR	PTION	I		Bridge Boring	LC)GGI	ED BY	C)F
Latitude 41 87/0306, Longitude -97,6814429 AUTO COUNTY COOK DRILLING MG MUD ROTARY HAMMER TFP2 AUTO STRUCT, NO. 016-2079 D B U MD Surface Water Elev. MA R D B U MO Straton MA R D B U MO Straton MA R D B U M Straton MA R D B U M Straton MA R H S Qu T W Straton Straton MA R H S Qu T W W S S S S Groundwater Elev.: First Encounter NA R R W Very Soft S	SECTION 2021-7	120-BR	L			SEC.	18. TWP. 39N. RNG. 14F.					
COUNTY COOK DRILLING RG CMLC 5 DATARY HAMMER FIP (* 20) 779.8 STRUCT, NO. 016-2079 B L MD ND Strain NA R B L C NA R B L C NA R B L C NA R E L C NA R R R R R R R R R R R R R R R R R R R						Latitu	de_41.8750366, Longitude -8	37.6814429				
B U B U D Surface Water Elev. NA.A ft B U NA BORING NO. BSB.02 F U NA T Surface Water Elev. NA T E L C NA T T NA T E L C NA T T T S Cu T	COUNTY COOK	DRII DRII I ING	LLIN S MF	g rig Thod								
STRUCT. NO. 016-2079 D H C M N/A T Surface Water Elev. N/A T F F O O O Station 100:063.09 T W S Cu T T Stream Bod Elev. N/A T F V S Cu T Offset 19.44ft IT W S Cu T T Stream Bod Elev. N/A T H S Cu T Offset 19.44ft IT S4.62 S T T Stream Bod Elev. N/A T H S Cu T Stream Bod Surface Elev. 594.62 S S Cu Very Stream Bod It Stream Bod Surface Stream S		DIGELING							-		<u>9.0</u>	
Station N/A P C S C S C S S Grundwater Elev. N/A R P N/A R N/A <th< td=""><td>STRUCT. NO. 016-2</td><td>2079</td><td></td><td>В</td><td>U</td><td>M</td><td>Surface Water Elev.</td><td>N/A ft</td><td></td><td>в</td><td></td><td>M</td></th<>	STRUCT. NO. 016-2	2079		В	U	M	Surface Water Elev.	N/A ft		в		M
BORING NO. BSB-02 1944fL 1944fL Ground Surface Elev. T 1944fL 1944fL Ground Surface Elev. T 1944fL (0) (0°) T (0) (0°) S tsp (0) (0°) S (0) (0°) S (0°) S (0°) S (0°) T (0°) None (1°) T (1°) W (1°) S (0°) S (1°) T (1°) W (1°) S (1°) T (1°) W (1°) S (1°) T (1°) W (1°) T (1°) W (1°) T (1°) W (1°) T (1°) W (1°) W (1°) T (1°) W (1°) W (1°) T (1°) W (1°) W (1°) W (1°) W (1°) W (1°) W (1°) T (1°) W (1°) W (1	Station N/	Α	P		S	I	Stream Bed Elev.	<u>N/A</u> ft	P		S	I I
Bitation DOUCD None	BORING NO BSB.	.02	T	w		S	Groundwater Elev :		Т	w		S
Offset 19.44ft 1 6 (%) (%) (%) MA mA <thma< th=""> mA mA</thma<>	Station 100+8	9.09	н	S	Qu	Т	First Encounter	None ft	н	S	Qu	Т
Ground Surface Elev. 594.60 ft (ft) (ft)<	Offset 19.44f	t LT					Upon Completion	N/A ft				
1 inch of Asphalt 594.52 - <td>Ground Surface Elev.</td> <td>594.60 ft</td> <td>(ft)</td> <td>(/6")</td> <td>(tsf)</td> <td>(%)</td> <td>After <u>N/A</u> Hrs.</td> <td>N/A ft</td> <td>(ft)</td> <td>(/6")</td> <td>(tsf)</td> <td>(%)</td>	Ground Surface Elev.	594.60 ft	(ft)	(/6")	(tsf)	(%)	After <u>N/A</u> Hrs.	N/A ft	(ft)	(/6")	(tsf)	(%)
B inches of Concrete 593.85 6 0 <td>1 inch of Asphalt</td> <td>594.52</td> <td></td> <td></td> <td></td> <td></td> <td>Very Soft to Soft</td> <td></td> <td></td> <td></td> <td></td> <td></td>	1 inch of Asphalt	594.52					Very Soft to Soft					
Multicles of Aggregate Dase 593.02 6 CLUMU (count rates gravel WH WH WH Z Black and Dark Brown, Moist - 3 1 5 Silt seam at 22 feet WH 02.1 28 - - - - - - - WH 02.1 29 -	8 inches of Concrete	593.85					Gray, Very Moist					
Black and Dark Brown, Moist 4 1 1 WH WH 8 FILL: SANDY LOAM, trace gravel - 3 - - WH 8 - 3 - - WH 8 - - 3 - - - WH 8 2 2.5 23 - - - 1 0.21 29 Cobbles at 8.5 feet - 2 2.5 23 - - - - 1 8 Cobbles at 8.5 feet - 4 - <t< td=""><td></td><td>593.02</td><td></td><td>6</td><td></td><td></td><td>(CL/ML) (continued)</td><td></td><td>_</td><td>WH</td><td></td><td></td></t<>		593.02		6			(CL/ML) (continued)		_	WH		
FILL: SANDY LUAN, trace gravel 3 3 4 -3 -3 -4 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -4 -2 -2.5 2 2.5 2 2.5 2 2.5 3 -4 -3 -4 -3 -4 -3 -4 -3 -4 -4 -4 -5 -21 -10 -4 -10 -4 -10 -4 -10 -4 -10 -4 -10 -4 -10 -4 -11 -4 -10 -4 -10 -4 -11	Black and Dark Brown, Mo	ist ,		4		15				WH	<0.21	28
Very Stiff 2	FILL: SANDY LOAM, trace	gravei		3			Silt seam at 22 feet			VVП	В	
- 3 -												
NH Col 23 588.60 2 -				3						wн		
				1		23				WH	<0.21	29
Joint of the second s			-5	1					-25	WН	В	
Sear. Gay and Brown, Moist SILTY CLAY, trace gravel (CL/ML) 2 2.5 23 Cobbles at 8.5 feet - 4 -			0									
Very Stiff 2 2 2 2 3 3 2 Dark Gray and Brown, Moist 3 B 1 0.21 20 (CL/ML) - - - - - 1 8 - Cobbles at 8.5 feet -		588.60										
Dark Gray and Brown, Moist (CL/ML) 2 2.5 23 Silt seam at 26.5 feet 1 <0.21	Very Stiff			2						3		
3 B 1 B Cobbles at 8.5 feet - 4 -	Dark Gray and Brown, Mol	SI		2	2.5	23	Silt seam at 26.5 feet				<0.21	20
Cobbles at 8.5 feet - 4 - - - - - WH - -5 -0 - 2 - - - WH - - - WH - - 0 1 B - - - WH - - - 0 1 B - - - - 0 1 B -	(CL/ML)			3	В					1	В	
Cobbles at 8.5 feet												
0000000 at 0.0 rect 1 1 2 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 1 8 1 1 8 1	Cobbles at 8 5 feet			1						ωн		
-10 6 -10 -10 6 -10 583.60 2 -10 2 -10 -10 2 -10 -10 2 -10 -10 3 B -10 2 -10 -10 2 -10 -10 3 B -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -11 0.4 28 -15 1 -10 -11 0.4 28 -11 -10 -10 -11 -10 -10 -11 -10 -10 -11 -10 -10 -11 -10 -10 -11 -10 -10 -10 -10 -10 -11 -10 -10 -11 -10 -10 -10 -10 -10 <tr< td=""><td></td><td></td><td></td><td>5</td><td></td><td>21</td><td></td><td></td><td></td><td>WH</td><td><0.21</td><td>28</td></tr<>				5		21				WH	<0.21	28
-10 -30 -30 583.60 2 Gray, Very Moist SILTY CLAY, trace gravel (CL/ML) 2 - - <td></td> <td></td> <td>10</td> <td>6</td> <td></td> <td></td> <td></td> <td></td> <td>20</td> <td>1</td> <td>B</td> <td>20</td>			10	6					20	1	B	20
583.60 2 2 Gray, Very Moist SILTY CLAY, trace gravel (CL/ML) 2 <0.21			-10						-30			
Very Soft to Soft 2		583.60										
Gray, Very Moist SILTY CLAY, trace gravel (CL/ML) 2 3 B WH 1 0.4 28 -15 1 B -15 1 WH WH WH WH WH 0.4 28 -15 1 B -15 WH WH WH WH -35 WH WH -35 WH B -15 WH -15 WH Gravel seam 39 feet -16 5.8 -40 17 B -40 17 B -40 -17 B -40 -17 B -10 -	Very Soft to Soft			2								
3 B	Gray, Very Moist			2	<0.21	29						
- -	(CL/ML)			3	В							
WH - WH - WH - WH - WH - WH - - WH - - WH - - S WH B -												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				\ <u>//</u> Ц						<u></u>		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					0.4	28				WH	<0.21	/3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			45	1	B	20				WH	-0.2 i B	-0
WH WH -<			-15						-35			
WH WH Image: Constraint of the second secon												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				WН								
1 B WH 556.10 WH 10				WH	0.2	29						
WH 556.10 10 WH Gravel seam 39 feet 16 5.8 12 WH B -40 17 B			_	1	В							
WH 556.10 10 WH Gravel seam 39 feet 16 5.8 12 WH B -40 17 B										,		
WH 10 WH <0.21				10/11				556.10		10		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				VVH W/니	<0.21	20	Gravel seam 30 foot			10	50	10
				WH	B	23			_40	17	B.0	12

Illinois Department of Transportation

Division of Highways GSG Consultants, Inc.

Page <u>2</u> of <u>3</u>

Date 3/7/24

ROUTE	FAI 290 (I-290)	DES	DESCRIPTION				Bridge Boring			ED BY	C)F
	2021-120-B	R	_ L	OCAT		, SEC.	18, TWP. 39N, RNG. 14E,	14400				
COUNTY	СООК		LIN ME	g rig Thod			ae 41.8750366, Longitude -87.683 IE 75 HAMMER UD ROTARY HAMMER	TYPE EFF (%)		Al 7	<u>JTO</u> 9.8	
STRUCT. NO. Station BORING NO.	016-2079 N/A BSB-02		D E P T	B L O W	U C S	M O I S T	Surface Water Elev. N/A Stream Bed Elev. N/A Groundwater Elev.:	_ ft _ ft	D E P T	B L O W	U C S	M O I S T
Station	<u>100+89.09</u> 19.44ft I T		п	3	Qu		First Encounter None	_ftft	п	3	Qu	1
Ground Surf	face Elev594.6	0 ft	(ft)	(/6'')	(tsf)	(%)	After <u>N/A</u> Hrs. <u>N/A</u>	ft	(ft)	(/6'')	(tsf)	(%)
Hard Gray, Moist SILTY CLAY, (CL/ML) <i>(cont</i>	trace gravel tinued)	-					Very Dense Gray, Moist SILTY LOAM (ML) <i>(continued)</i>					
		-		7			Hard to Very Hard	531.10		12		10
			-45	9 13	7.7 B	14	SILTY CLAY LOAM, trace gravel		-65	15 21	11.5 B	12
		-		5						15		
			-50	6 14	4.1 B	18			-70	24 34	15.6 B	11
Very Dense		541.10		18						8		
Gray, Moist SILTY LOAM	(ML)	-		26		17				11	7.1 B	26
		-	-55					516.10	-75 			
Sand seam at	t 59 5 feet	-		14 28 29		20	Very Dense to Extremely Dense Gray, Moist SANDY LOAM, trace gravel (SM)			21 28 30		11
	00.01001		-60				- ()		-80		1 1	

Illinois Department of Transportation

Division of Highways GSG Consultants, Inc.

Illinois Department of Transportation Division of Highways GSG Consultants, Inc.

Page <u>3</u> of <u>3</u>

ROUTE	FAI 290 (I-290)	DE	SCR	IPTION			Bridge Boring		LOGG	ED BY	DF
SECTION	2021-120-BR		_ I			, SEC.	18, TWP. 39N, RNG. 1	4E,			
		וחח				Latitu	de 41.8750366, Longi	tude -87.6814	429		
COUNTY	<u></u> о	DRI RII I IN(LLIN 3 MF						YPE 	AUTO 70.8)
STRUCT. NO.	016-2079 N/A		DE	BL	U C	M	Surface Water Elev.	<u> </u>	ft ft	19.0	
	14/7		Р	0	S	I		<u> </u>	n		
BORING NO.	BSB-02		Т	W		S	Groundwater Flev.:				
Station	100+89.09		н	S	Qu	Т	First Encounter	None	ft		
Offset	19.44ft LT						Upon Completion	N/A	ft		
Ground Surf	ace Elev. 594.60	ft	(ft)	(/6")	(tsf)	(%)	After N/A Hrs.	N/A	ft		
Very Dense to	Extremely Dense								-		
Grav. Moist	Extremely Denies			1							
SANDY LOAN	1, trace gravel (SM)			-							
(continued)	, , ,			-							
				4							
			_	-							
				1							
				50/4"							
						12					
			-85								
				1							
				1							
				1							
		506 10		1							
Extremely Der	ise			50/3"							
Light Gray, Mo	pist					6					
GRAVEL (GP)	504 60	-90	-							
Auger Refusa	at 90 feet	004.00	-50								
End of Boring				1							
				-							
				1							
				1							
				1							
				-							
				-							
				1							
				{							
			-95	-							
				-							
				+							
				-							
				4							
				-							
				-							
			_	-							
				-							
				-							
			-100								

APPENDIX D IDOT PILE DESIGN TABLES WITH NO PRE-CORE

Pile D	esign Tab	ole for Nort	h Abutme	nt - Wal	l utilizing E	Boring #BS	B-01					
	Nominal	Factored	Estimated		Nominal	Factored	Estimated			Nominal	Factored	Estimated
	Required	Resistance	Pile		Required	Resistance	Pile			Required	Resistance	Pile
	Bearing	Available	Length		Bearing	Available	Length			Bearing	Available	Length
	(Kips)	(Kips)	(Ft.)		(Kips)	(Kips)	(Ft.)			(Kips)	(Kips)	(Ft.)
Metal S	Shell 12"Ф	w/.25" wall	s	Steel	HP 10 X 42				Steel H	HP 12 X 84		
	41	22	27		73	40	42			72	39	32
	183	101	32		82	45	47			82	45	37
	204	112	37		92	50	52			94	52	42
	244	134	42		104	57	57			104	57	47
	253	139	47		129	71	62			117	64	52
	316	174	52		258	142	67			133	73	57
	375	206	57		277	153	70			172	95	62
Metal S	Shell 14"Ф	w/.25" wall	s		316	174	71			333	183	67
	49	27	27		335	184	72			368	202	70
	240	132	32	Steel	HP 10 X 57					403	222	71
	262	144	37		76	42	42			664	365	73
	310	171	42		84	46	47		Steel I	HP 14 X 73		
	317	174	47		94	52	52			48	26	27
	398	219	52		107	59	57			80	44	32
Metal \$	Shell 14"Ф	w/.312" wa	lls		136	75	62			94	51	37
	49	27	27		265	146	67			107	59	42
	240	132	32		285	157	70			119	66	47
	262	144	37		326	179	71			133	73	52
	310	171	42	_	454	250	73			151	83	57
	317	174	47	Steel	HP 12 X 53					191	105	62
	398	219	52		77	42	37			385	212	67
	470	259	57		88	48	42			426	234	70
Metal S	Shell 16"Ф	w/.312" wa	lls		98	54	47			460	253	71
	58	32	27		110	60	52			578	318	72
	304	167	32		124	68	57		Steel H	HP 14 X 89		~-
	326	179	37		155	85	62			49	27	27
	384	211	42		318	1/5	67			83	46	32
	387	213	4/		352	194	70			96	53	37
	487	268	52		379	208	71			110	61	42
Motol	576 Shall 46" M	317	5/	Steel		230	12			122	07 75	47
metars		w/.3/5 wa	07	Sleer	70	4.4	27			137	75	52
		32	21		79	44 50	37			100	00 110	57
	304	170	32		90	55	42			303	216	67
	384	211	12		101	62	47 52			/33	210	70
	387	211	42 Δ7		128	70	57	⊢┠		433 472	200	70
	<u>4</u> 87	213	52		162	89	62	⊢┠		705	388	73
	576	317	57		325	179	67		Steel H		2	15
Steel H	IP 8 X 36	011	01		358	197	70		010011	49	27	27
	74	41	52		389	214	71			85	47	32
	84	46	57		497	273	72			98	54	37
	104	57	62	Steel	HP 12 X 74		· –	⊢╂		112	62	42
	198	109	67		70	38	32			124	68	47
	214	118	70		81	44	37			139	77	52
	255	140	71		92	51	42			158	87	57
	286	157	72		103	56	47			206	113	62
	-				115	63	52			397	218	67
					130	72	57			438	241	70
					167	92	62			480	264	71
					329	181	67			810	445	73

Pile D	esign Tab	ole for Nort	h Abutme	nt	- Wall	utilizing E	Boring #BS	B-01				
	Nominal	Factored	Estimated			Nominal	Factored	Estimated		Nominal	Factored	Estimated
	Required	Resistance	Pile			Required	Resistance	Pile		Required	Resistance	Pile
	Bearing	Available	Length			Bearing	Available	Length		Bearing	Available	Length
	(Kips)	(Kips)	(Ft.)			(Kips)	(Kips)	(Ft.)		(Kips)	(Kips)	(Ft.)
						364	200	70	Steel H	IP 14 X 117	7	
						396	218	71		50	27	27
						589	324	73		88	48	32
										101	55	37
										115	63	42
										127	70	47
										143	78	52
										162	89	57
										214	118	62
										404	222	67
										445	245	70
										492	270	71
										929	511	74
									 Precas	st 14"x 14"		
										63	35	27

Pile D	esign Tal	ble for Sout	th Abutme	ent	: - Wal	l utilizing l	Boring #BS	SB-02					
	Nominal	Factored	Estimated			Nominal	Factored	Estimated			Nominal	Factored	Estimated
	Required	Resistance	Pile			Required	Resistance	Pile			Required	Resistance	Pile
	Bearing	Available	Length			Bearing	Available	Length			Bearing	Available	Length
	(Kips)	(Kips)	(Ft.)			(Kips)	(Kips)	(Ft.)			(Kips)	(Kips)	(Ft.)
Metal	Shell 12"Ф) w/.25" wall	S		Steel I	HP 10 X 42				Steel I	HP 12 X 84		
	7	4	11			79	43	31			39	21	26
	92	51	26			95	52	36			102	56	31
	290	159	31			111	61	41			123	68	36
	351	193	41			124	68	46			140	77	41
Metal	Shell 14"¢	w/.25" wall	S			128	71	51			159	87	46
	9	5	11			152	83	56			170	94	51
	114	63	26			179	98	61			192	106	56
	374	206	31			204	112	66			225	124	61
Metal	Shell 14"¢	9 w/.312" wa	lls			232	128	68			258	142	66
	9	5	11			335	184	69			300	165	68
	114	63	26		Steel I	HP 10 X 57					664	365	71
	374	206	31			31	17	26		Steel I	HP 14 X 73		
	435	239	41			82	45	31			43	23	26
Metal	Shell 16"Ф	w/.312" wa	lls			99	54	36			115	63	31
	11	6	11			114	62	41			139	77	36
	139	76	26			128	70	46			161	89	41
	469	258	31			132	72	51			181	100	46
	527	290	41			156	86	56			201	111	51
Metal	Shell 16"¢	9 w/.375" wa	lls			183	100	61			220	121	56
	11	6	11			209	115	66			259	143	61
	139	76	26			241	132	68			296	163	66
	469	258	31			454	250	70			339	187	68
	527	290	41		Steel I	HP 12 X 53					578	318	70
	609	335	51			34	19	26		Steel I	HP 14 X 89		
Steel H	IP 8 X 36					94	52	31			45	25	26
	77	42	36			114	63	36			119	66	31
	89	49	41			133	73	41			144	79	36
	99	55	51			149	82	46			164	90	41
	122	67	56			163	90	51			186	102	46
	137	75	61			181	100	56			205	113	51
	164	90	66			214	118	61			226	124	56
	187	103	68	_		244	134	66			264	145	61
	286	157	70	_		278	153	68			303	166	66
				_	04	418	230	69	-		350	192	68
					Steel	1P 12 X 63		00		044 41 1		388	/1
						30	20	20		Steer	1P 14 X 104	<u> </u>	00
				_		97	54	31			40	26	20
				_		110	00	30			122	07	31
				_		130	75	41			147	02	30
				_		103	04	40			107	92	41
						100	91	51			190	104	40
						180	102	00	-		207	114	51
				_		219	120	60			229	120	50
				\vdash		200	130	00	\square		200	147	01
				_		207	100	00			307	109	00
				\square	Staal		213	70	\square		300	197	00 71
				\square	Steel		04	06	\square	Staal		445 7	11
				\square		30 100	21	∠0 24	\square	Steell	ז ר 14 א 11 <i>1</i> גע		26
				\vdash		100	66	31 26	H		40	21 60	∠0 21
				\vdash		120	76	JU //1	H		120	60 03	26
				\vdash		150	26	41	\vdash		170	03	JU /1
			1			100	00	40			170	54	41

Pile D	esign Tal	ole for Sout	h Abutme	ent - Wal	l utilizing l	Boring #BS	6B-02				
	Nominal	Factored	Estimated		Nominal	Factored	Estimated		Nominal	Factored	Estimated
	Required	Resistance	Pile		Required	Resistance	Pile		Required	Resistance	Pile
	Bearing	Available	Length		Bearing	Available	Length		Bearing	Available	Length
	(Kips)	(Kips)	(Ft.)		(Kips)	(Kips)	(Ft.)		(Kips)	(Kips)	(Ft.)
					168	92	51		194	107	46
					189	104	56		210	116	51
					222	122	61		234	129	56
					254	140	66		273	150	61
					294	162	68		313	172	66
					589	324	71		368	202	68
									929	511	72
								Prec	ast 14"x 14"		
									11	6	11
									146	80	26

APPENDIX E IDOT PILE DESIGN TABLES WITH PRE-CORE

Pile D	esign Tal	ole for Nort	h Abutme	nt - Wal	I with Pre-0	Core to El.	566.2 feet	utilizir	ng Boring #	BSB-01	
	Nominal	Factored	Estimated		Nominal	Factored	Estimated		Nominal	Factored	Estimated
	Required	Resistance	Pile		Required	Resistance	Pile		Required	Resistance	Pile
	Bearing	Available	Length		Bearing	Available	Length		Bearing	Available	Length
	(Kips)	(Kips)	(Ft.)		(Kips)	(Kips)	(Ft.)		(Kips)	(Kips)	(Ft.)
Metal \$	Shell 12"¢) w/.25" wall	S	Steel	HP 10 X 42			Stee	HP 12 X 84		
	37	21	27		79	43	47		78	43	37
	180	99	32		88	48	52		90	49	42
	200	110	37		97	53	56		100	55	47
	240	132	42		100	55	57		113	62	52
	250	137	47		111	61	61		124	68	56
	313	172	52		126	69	62		128	71	57
	342	188	56		256	141	67		142	78	61
	371	204	57		275	151	70		168	92	62
Metal	Shell 14"¢	w/.25" wall	S		313	172	71		329	181	67
	45	25	27		335	184	72		364	200	70
	236	130	32	Steel	HP 10 X 57				399	219	71
	257	142	37		72	40	42		664	365	73
	306	168	42		81	44	47	Stee	HP 14 X 73		
	313	172	47		91	50	52		75	41	32
	393	216	52		100	55	56		89	49	37
Matal	427 25 - 11 4 41/47	235	56		103	57	57		102	56	42
Metal 3		w/.312 wa			114	63	61		114	63	47
	40	25	21		133	13	67		141	70	52
	230	130	32		203	144	07 70		141	78	50
	207	142	37		202	155	70	_	140	00	57 61
	212	100	42		322	250	72		102	102	62
	303	216	47 52	Stool	HP 12 X 53	230	75		380	200	67
	427	235	56	Oleei	73	40	37		421	203	70
	466	256	57		84	46	42		455	250	70
	508	279	61		94	52	47		578	318	72
Metal \$	Shell 16"⊄	w/.312" wa	lls		106	58	52	Stee	HP 14 X 89		
	54	29	27		116	64	56		78	43	32
	299	164	32		120	66	57		91	50	37
	321	177	37		133	73	61		105	58	42
	379	209	42		151	83	62		117	64	47
	382	210	47		314	173	67		132	73	52
	483	265	52		348	191	70		145	80	56
	522	287	56		375	206	71		150	83	57
	571	314	57		418	230	72		166	91	61
	618	340	61	Steel	HP 12 X 63				194	107	62
Metal \$	Shell 16"¢	w/.375" wa	lls		75	41	37		387	213	67
	54	29	27		86	47	42		428	235	70
	299	164	32		97	53	47		467	257	71
	321	177	37		108	60	52		705	388	73
	379	209	42		119	66	56	Stee	HP 14 X 10	2	
	382	210	47		123	68	57		44	24	27
	483	265	52		137	75	61		80	44	32
	522	287	56		157	87	62		93	51	37
	571	314	57		321	176	67		107	59	42
	618	340	61		355	195	70		119	65	47
Steel H	IP 8 X 36				385	212	71	_	134	74	52
	78	43	56		497	273	72	_	147	81	56
	81	44	57	Steel	HP 12 X 74				153	84	57
	89	49	61		77	42	37	_	169	93	61
	102	56	62		88	48	42		201	110	62
	196	108	67		98	54	47		392	215	67

Pile D	esign Tab	ole for Nort	h Abutme	nt - Wa	all with Pre-	Core to El.	566.2 feet	t ut	tilizing	g Boring #	BSB-01	
	Nominal	Factored	Estimated		Nominal	Factored	Estimated			Nominal	Factored	Estimated
	Required	Resistance	Pile		Required	Resistance	Pile			Required	Resistance	Pile
	Bearing	Available	Length		Bearing	Available	Length			Bearing	Available	Length
	(Kips)	(Kips)	(Ft.)		(Kips)	(Kips)	(Ft.)			(Kips)	(Kips)	(Ft.)
	212	117	70		111	61	52			433	238	70
	252	138	71		122	67	56			475	261	71
	286	157	72		126	69	57			810	445	73
					139	77	61		Steel H	HP 14 X 11	7	
					163	90	62			45	25	27
					325	179	67			83	46	32
					360	198	70			96	53	37
					392	216	71			110	60	42
					589	324	73			122	67	47
										138	76	52
										151	83	56
										157	86	57
										173	95	61
										209	115	62
										399	219	67
										440	242	70
										486	268	71
										929	511	74
									Precas	st 14"x 14"		
										58	32	27

Pile D	esign Tal	ole for Sout	th Abutme	nt - Wa	I with Pre-	Core to El.	566.2 feet	t ut	ilizin	g Boring #	#BSB-02	
	Nominal	Factored	Estimated		Nominal	Factored	Estimated			Nominal	Factored	Estimated
	Required	Resistance	Pile		Required	Resistance	Pile			Required	Resistance	Pile
	Bearing	Available	Lenath		Bearing	Available	Lenath			Bearing	Available	Lenath
	(Kips)	(Kips)	(Ft.)		(Kips)	(Kips)	(Ft.)			(Kips)	(Kips)	(Ft.)
Metal S	Shell 12"⊄	w/.25" wall	s (Steel	HP 10 X 42			S	Steel H	IP 12 X 84		
	4	2	11		76	42	31			35	19	26
	89	49	26		92	51	36			99	54	31
	287	158	31		108	59	41			120	66	36
	348	191	41		116	64	45			136	75	41
	373	205	45		121	67	46			146	80	45
Metal S	Shell 14"⊄	w/.25" wall	s		126	69	51			155	85	46
	5	3	11		149	82	56	_		168	92	51
	111	61	26		176	97	61	_		189	104	56
	371	204	31		201	111	66	_		221	122	61
Metal S	Shell 14"⊄) w/.312" wa	lls		229	126	68			254	140	66
	5	3	11		335	184	69	_		296	163	68
	111	61	26	Steel	HP 10 X 57					664	365	71
	371	204	31		79	43	31	S	Steel H	HP 14 X 73		
	432	237	41		96	53	36			38	21	26
	461	254	45		111	61	41			111	61	31
Metal S	Shell 16"⊄	w/.312" wa	lls		118	65	45			135	74	36
	6	4	11		125	69	46	_		157	86	41
	135	74	26		129	71	51	_		168	92	45
	465	256	31		153	84	56	_		177	97	46
	523	288	41		180	99	61	_		197	108	51
	557	306	45		206	113	66	_		216	119	56
Metal S	Shell 16"⊄	w/.375" wa	lls		238	131	68			255	140	61
	6	4	11		454	250	70			292	161	66
	135	74	26	Steel	HP 12 X 53		_			335	184	68
	465	256	31		31	17	26			578	318	70
	523	288	41		91	50	31	S	Steel H	HP 14 X 89		
	557	306	45		111	61	36			40	22	26
	605	333	51		129	71	41			115	63	31
Steel H	IP 8 X 36				138	76	45	_		140	77	36
	74	41	36		145	80	46	_		160	88	41
	87	48	41		161	88	51	_		171	94	45
	92	50	45		178	98	56			182	100	46
	98	54	51		211	116	61			200	110	51
	119	66	56		241	132	66			221	122	56
	136	75	61		274	151	68			260	143	61
	162	89	66		418	230	69			298	164	66
	184	101	68	Steel	HP 12 X 63					345	190	68
	286	157	70		32	18	26			705	388	71
					94	52	31	S	Steel H	HP 14 X 102	2	
					114	63	36			42	23	26
					132	73	41			118	65	31
					142	78	45			143	79	36
					149	82	46			162	89	41
					162	89	51			174	96	45
					182	100	56			185	102	46
					215	118	61			202	111	51
					246	136	66			225	124	56
					283	156	68			263	145	61
					497	273	70			303	166	66
				Steel	HP 12 X 74		-			353	194	68
					34	19	26			810	445	71
					96	53	31	S	Steel H	IP 14 X 117	7	

Pile D	esign Tab	ole for Sout	h Abutme	ent - Wal	I with Pre-	Core to El.	566.2 feet	t u	tilizin	g Boring #	#BSB-02	
	Nominal	Factored	Estimated		Nominal	Factored	Estimated			Nominal	Factored	Estimated
	Required	Resistance	Pile		Required	Resistance	Pile			Required	Resistance	Pile
	Bearing	Available	Length		Bearing	Available	Length			Bearing	Available	Length
	(Kips)	(Kips)	(Ft.)		(Kips)	(Kips)	(Ft.)			(Kips)	(Kips)	(Ft.)
					117	64	36			44	24	26
					134	74	41			121	67	31
					144	79	45			147	81	36
					152	84	46			166	91	41
					165	91	51			177	97	45
					186	102	56			190	104	46
					218	120	61			206	113	51
					250	138	66			230	126	56
					290	159	68			268	148	61
					589	324	71			309	170	66
										363	200	68
										929	511	72
									Precas	st 14"x 14"		
										7	4	11
										141	78	26

APPENDIX F

SOIL DESIGN PARAMETERS

Structural Geotechnical Report

PTB 201-012 SN 016-2079

GSG

Table F1: Summary of Soil Parameters

		1	Undra	ained	Drai	ned	Active	Passive	At Rest	Lateral		
Depth / Elevation Range CCD / NAVD	Soil Description	Unit Weight (pcf)	Cohesion c (psf)	Friction Angle (°)	Cohesion c (psf)	Friction Angle (°)	Earth Pressure Coefficient (K₃)	Earth Pressure Coefficient (K _P)	Earth Pressure Coefficient (K₀)	Modulus of Subgrade Reaction (pci)	Soil Strain (50)	Soil Type
	New Engineered Clay Fill	125	1,000	0	100	25	0.41	2.46	0.58	100	0.01	Stiff Clay w/o free water (Reese)
	New Engineered Granular Fill	125	0	32	0	32	0.33	3.00	0.50	90	N/A	Sand (Reese)
1.0 to 6.0 (13.12-8.12) (593-588)	Brown and Dark Brown Sand Fill	120	0	34	0	34	0.28	3.54	0.44	25	N/A	Sand (Reese)
6.0 to 11.0 (8.12-3.12) (588-583)	Dark Brown and Gray Stiff to Very Stiff Silty Clay	138	2,100	0	210	28	0.36	2.77	0.53	1,000	0.005	Stiff Clay w/o free water (Reese)
11.0 to 43.5 (3.12 - (-29.38)) (583-550.5)	Gray Very Soft to Medium Stiff Silty Clay	111	200	0	20	25	0.41	2.46	0.58	30	0.02	Stiff Clay w/o free water (Reese)
43.5 to 53.5 (-29.38 - (-39.38)) (550.5-540.5)	Gray Stiff to Hard Silty Clay	138	4,600	0	460	28	0.36	2.77	0.53	2,000	0.004	Stiff Clay w/o free water (Reese)
53.5 to 63.5 (-39.38 - (-49.38)) (540.5-530.5)	Gray Dense to Very Dense Silty Loam	134	0	42	0	42	0.20	5.04	0.33	125	N/A	Silt
63.5 to 83.5 (-49.38 - (-69.38)) (530.5-510.5)	Gray Hard to Very Hard Silty Clay	138	9,800	0	980	28	0.36	2.77	0.53	2,000	0.004	Stiff Clay w/o free water (Reese)

Structural Geotechnical Report

PTB 201-012 SN 016-2079

								1				
83.5 to 91.0 (-69.38 - (-76.88)) (510.5-503)	Gray Extremely Dense Gravel	138	0	42	0	42	0.20	5.04	0.33	125	N/A	Sand (Reese)
6.0 to 8.5 (8.12-5.62) (588-585.5) *BSB-01 Only	Black Silty Clay Fill	111	200	0	20	25	0.41	2.46	0.58	30	0.02	Stiff Clay w/o free water (Reese)
78.5 to 88.5 (-64.38 - (-74.38)) (515.5-505.5) *BSB-02 Only	Gray Very Dense to Extremely Dense Sandy Loam	138	0	40	0	40	0.22	4.60	0.36	125	N/A	Sand (Reese)

APPENDIX G SEISMIC SITE CLASS DETERMINATION CALCULATIONS

Substructure 1	Substructure 2	Substructure 3	Substructure 4
Base of Substruct Elev. (or ground surf for bents 571.2) ft	Base of Substruct Elev (or ground surf for bents 571.2) ft	Base of Substruct Elev (or ground surf for bents)	Base of Substruct Elev. (or ground surf for bents)
Pile or Shaff Dia	Pile or Shaft Dia	Pile or Shaft Dia	Pile or Shaft Dia
Boring Number BSB-1	Boring Number BSB-2	Boring Number	Boring Number
Top of Boring Elev	Top of Boring Flev	Top of Boring Elev	Top of Boring Flev
rop or boining zion.	Top of Bornig Liov.	rop of Bornig 2101.	
Approximate Fixity Elev. 565.2 ft.	Approximate Fixity Elev. 565.2 ft.	Approximate Fixity Elev. ft.	Approximate Fixity Elev. ft.
Individual Site Class Definition:	Individual Site Class Definition:	Individual Site Class Definition:	Individual Site Class Definition:
N (bar): 5 (Blows/ft.) Soil Site Class E	N (bar): 12 (Blows/ft.) Soil Site Class E	N (bar): (Blows/ft.) NA	N (bar):(Blows/ft.) NA
N _{ch} (bar): 50 (Blows/ft.) Soil Site Class D	N _{ch} (bar): 74 (Blows/ft.) Soil Site Class C	N _{ch} (bar): (Blows/ft.) NA	N _{ch} (bar): (Blows/ft.) NA
s _u (bar): <u>1.42</u> (ksf) Soil Site Class D <controls< td=""><td>s_u (bar): <u>1.71</u> (ksf) Soil Site Class D <controls< td=""><td>s_u (bar): (ksf) NA</td><td>s_u (bar): (ksf) NA</td></controls<></td></controls<>	s _u (bar): <u>1.71</u> (ksf) Soil Site Class D <controls< td=""><td>s_u (bar): (ksf) NA</td><td>s_u (bar): (ksf) NA</td></controls<>	s _u (bar): (ksf) NA	s _u (bar): (ksf) NA
Seismic Bot. Of Layer	Seismic Bot. Of Layer	Seismic Bot. Of Layer	Seismic Bot. Of Layer
Soil Column Sample Sample Description	Soil Column Sample Sample Description	Soil Column Sample Sample Description	Soil Column Sample Sample Description
Depth Elevation Thick. N Qu Boundary	Depth Elevation Thick. N Qu Boundary	Depth Elevation Thick. N Qu Boundary	Depth Elevation Thick. N Qu Boundary
(ft) (ft.) (tsf)	(ft) (ft.) (tsf)	(ft) (ft.) (tsf)	(ft) (ft.) (tsf)
587.4 6.00 9 B	588.6 6.00 4 B		
17.8 547.4 40.00 1 0.43 B	583.6 5.00 8 2.50 B		
42.8 522.4 25.00 29 B	6.6 558.6 25.00 1 0.22 B		
52.8 512.4 10.00 43 5.00 B	21.6 543.6 15.00 25 4.70 B		
62.8 502.4 10.00 69 5.00 B	31.6 533.6 10.00 53 B		
100.0 465.2 37.20 100 5.00 R	46.6 518.6 15.00 41 5.00 B		
	61.6 503.6 15.00 52 B		
	100.0 465.2 38.40 100 5.00 R		

Global Site Class Definition: Substructures 1 through 2

N (bar):	9	(Blows/ft.)	Soil Site Class E
N _{ch} (bar):	62	(Blows/ft.)	Soil Site Class C
s _u (bar):	1.57	(ksf)	Soil Site Class D <controls< td=""></controls<>

Method B - N (bar):	<u>5</u> (Blows/ft.)>	Soil Site Class E	
Method C - N _{ch} (bar):	50 (Blows/ft.)>	Soil Site Class D	
Method C - s _u (bar):	1.42 (ksf)>	Soil Site Class D	<controls< td=""></controls<>

Seismic							Me	ethod B - N (b	ar)	Me	thod C - N _{ch}	(bar)	Method C - s _u (bar)		
Soil Column	Bot. Of	Sample			Layer										
Depth	Sample	Thick.	Ν	Qu	Description		N,	d,	d_i / N_i	N _{chi}	d,	d _i / N _{chi}	S _{ui}	d,	d _i /s _{ui}
(ft)	Elevation	(ft.)		(tsf)	Boundary #		(Blows/ft.)	(ft.)	(ft. ² / Blows)	(Blows/ft.)	(ft.)	(ft. ² / Blows)	(ksf)	(ft.)	(ft. ³ / kip)
					1	В									
17.80	547.40	17.80	1	0.43	2	В	1	17.8	17.80				0.43	17.8	41.40
42.80	522.40	25.00	29		3	В	29	25	0.86	29	25	0.86			
52.80	512.40	10.00	43	5.00	4	В	43	10	0.23				5.00	10	2.00
62.80	502.40	10.00	69	5.00	5	В	69	10	0.14				5.00	10	2.00
100.00	465.20	37.20	100	5.00	6	R	100	37.2	0.37	100	37.2	0.37	5.00	37.2	7.44
			-												
				l											
											-				
								100.0	19.41		62.2	1.23		75	52.84
								П	н		Ш	н		п	П
								Σdi	Σ (d i / N i)		d _s	$\boldsymbol{\Sigma}$ (d _i / N _{chi})		d _c	Σ (d _i / s _{ui})

Substructure 2 Site Class Definition Calculations

Γ

Method B - N (bar):	<u>12 (Blows/ft.)</u> >	Soil Site Class E	
Method C - N _{ch} (bar):	74 (Blows/ft.)>	Soil Site Class C	
Method C - s _u (bar):	1.71 (ksf)>	Soil Site Class D	<

Seismic							Me	ethod B - N (b	ar)	Method C - N _{ch} (bar)		Method C - s _u (bar)			
Soil Column	Bot. Of	Sample			Layer										
Depth	Sample	Thick.	Ν	Qu	Description		Ni	d,	d_i / N_i	N _{chi}	d,	d _i / N _{chi}	S _{ui}	d,	d _i / s _{ui}
(ft)	Elevation	(ft.)		(tsf)	Boundary #	_	(Blows/ft.)	(ft.)	(π. / Blows)	(Blows/ft.)	(ft.)	(π. / Blows)	(ksf)	(ft.)	(π. ⁻ / kip)
					1	В									
6.60	EE9 60	6.60	1	0.22	2	В	1	6.6	6 60				0.22	6.6	20.00
21.60	543.60	15.00	25	4 70	3	B	25	0.0	0.60				4.70	15	3 10
31.60	533.60	10.00	53	4.70	- 4	B	53	10	0.00	53	10	0.19	4.70	15	5.19
46.60	518.60	15.00	41	5.00	6	B	41	15	0.37		10	0.10	5.00	15	3.00
61.60	503.60	15.00	52		7	В	52	15	0.29	52	15	0.29			
100.00	465.20	38.40	100	5.00	8	R	100	38.4	0.38	100	38.4	0.38	5.00	38.4	7.68
			-												
												-			
					-										
															1
															1
								100.0	8.43		63.4	0.86		75	43.87
								<i>.</i>			"	" 			_ / . /
								Σdi	Σ(d _i / N _i)		d s	Σ (d _i / N _{chi})		d _c	Σ(d _i /s _{ui})

<----Controls

Global Site Class Definition Calculations

Method B - N (bar):	<u>9</u> (Blows/ft.)	> Soil Site Class E	
Method C - N _{ch} (bar):	62 (Blows/ft.)	> Soil Site Class C	
Method C - s _u (bar):	1.57 (ksf)	> Soil Site Class D	<controls< td=""></controls<>

Location	N _{ch} (bar) d _s (soil only)	s _u (bar) d _c (soil only)	
	(ft.)	(ft.)	
Substructure 1	25	37.8	
Substructure 2	25	36.6	
Substructure 3			
Substructure 4			
Substructure 5			
Substructure 6			
Substructure 7			
Substructure 8			
	50	74.4	< Consider ds & dc
	П	П	
	$\Sigma~{\rm d_s}$ (soil only)	$\Sigma~\text{d}_{\text{c}}$ (soil only)	

Location	Method B	Meth	od C - N _{ch} (bar)	Met	(bar)			
Location	N (bar)	d _s	N _{ch} (bar)	d _s * N _{ch} (bar)	d _c	s _u (bar)	d _c * s _u (bar)		
		(ft.)	(Blows/ft.)		(ft.)	(ksf)			
Substructure 1	5	62.2	50	3110	7:	5 1.42	106.50		
Substructure 2	12	63.4	74	4691.6	7	5 1.71	128.25		
Substructure 3									
Substructure 4									
Substructure 5									
Substructure 6									
Substructure 7									
Substructure 8									
	9			62			1.57		
	II			П			П		
	Avg. N (bar)		Wt.'d Avg. N _{ch} (bar)						