STRUCTURE GEOTECHNICAL REPORT

U.S. 150 (BLOOMINGTON RD) OVER FAI 57 Existing SN: 010-0050 Proposed SN: 010-1050

FAI RTE. 719 Section 10 (5-1-RS-1, 14-1,6) R Champaign County

> Contract No.: 70897 P-95-030-11 PTB: 161-28

Prepared By: Christopher N. Farmer, P.E. Bacon Farmer Workman Engineering & Testing, Inc. 500 South 17th Street Paducah, Kentucky 42003 Phone: (270) 443-1995 Email: <u>cfarmer@bfwengineers.com</u>

Prepared For: Brandon Poiter, P.E., S.E. Bacon Farmer Workman Engineering & Testing, Inc. 403 N. Court Street Marion, Illinois 62959 Phone: (618) 997-9190

Report Date: October 17, 2017 (Rev 3) January 27, 2016 (Rev 2) December 16, 2015 (Rev 1) March 31, 2015 (Original) Attachments: Boring Location Map Preliminary TSL Boring Profile Sheet Subsurface Boring Logs Pile Tables

1.0 Introduction

Bacon Farmer Workman (BFW) Engineering & Testing, Inc., completed a geotechnical investigation for the replacement of an existing bridge location (SN 010-0050) (Station 157+29.99) carrying U.S. 150 (Bloomington Road) over I-57 in Section 10R, Township 20 North, Range 8 East of the 3rd PM in the city of Champaign, Champaign County, Illinois. This structure is slated to be replaced by proposed structure SN 010-1050. Phased construction is planned during construction

The purpose of the investigation was to explore the subsurface conditions, to determined engineering properties of the subsurface soil, and develop design and construction recommendations for the project.

Exhibit 1: Project Location Map

2.0 Existing and Proposed Structure Information

Existing Structure (SN 010-0050)

Based on information from the Bridge Condition Report, the existing structure was originally constructed in 1964 as a four-span rolled steel beam (W36) structure with open stub abutments on concrete piles and single hammerhead reinforced concrete piers supported on spread footings.

In 2000, the structure was widened from 33'-8" to 42'-7.75". The deck was replaced and the existing abutments and piers were widened. The area below the existing pier cap overhangs was filled in during the widening, creating a solid wall straight stem type pier. Two new beam lines, one each side of the bridge, composite in the positive moment regions were added. The beams were painted, raised approximately $2 \frac{1}{2}$ ", and steel studs were added in the positive moment regions to make them composite with the new deck. Total length of the existing structure is 258'-6" back to back of abutments and 48'-10" out to out deck width.

Proposed Structure (SN 010-1050)

The proposed structure (SN 010-1050) will consist of two main spans supported by a central pier and two integral abutments (east abutment and west abutment) with a total back to back of abutment length of 332'-8" and 48'-10" out to out deck width. Two new 30-foot long precast approach slabs will be constructed on either end of the bridge. The proposed structure is at a 0° skew to I-57 with the centerline at Station: 157+29.99. The existing four spans will be replaced with a double-span structure with plate steel girders supporting an 8" concrete slab. The girders and decking will be supported by concrete abutments, which in turn will be supported with steel H piles.

The Type, Size and Location (TS&L) plan for the US 150 (Bloomington Road) bridge over I-57 has been included in the Appendix.

3.0 Existing Site Conditions

US 150 (Bloomington Road) extends northwest – southeast and crosses over I-57. The existing embankment slopes and the north and south sides of the bridge appear to be approximately 2H:1V from the pier supports to the abutments.

Exhibit 2: US 150 (Bloomington Road) over I-57

3.1 Regional Geology

According to the Illinois State Geological Survey, "Bedrock Geology of Illinois" map, the site and surrounding area is situated in the Illinois Basin and is underlain by the Pennsylvanian-aged Tradewater Formation. The Illinois Basin is a Paleozoic depositional and structural basin centered in and underlying most of the state of Illinois. An Illinois Basin study reveals that the Tradewater Formation is composed of 70 to 80 percent shale and siltstone, 20 to 30 percent sandstone, and generally less than 5 percent coal and limestone. The Tradewater Formation is overlain by the Wedron Group, which is composed of mostly glacial till (an unsorted mixture of clay, silt, sand, and gravel) in broad ridges (last glaciation), and forms end moraines. The Wedron Group is finally capped by the Peoria and Roxana Silts, which are composed of windblown silt (loess) generally thicker than 20 feet blankets upland surfaces in these areas.

4.0 Subsurface Exploration and Generalized Subsurface Conditions

This section describes the subsurface exploration program and laboratory testing program completed as part of this Structure Geotechnical Report (SGR). The locations and subsurface data were provided by McCleary Engineering and were completed based on field conditions and accessibility. Therefore, no site observations have been made by BFW relative to existing conditions of the structure, roadway or of subsurface sample conditions. The locations of the soil borings are shown on the Boring Location Map located in the Appendix. The subsurface exploration program was performed in accordance with applicable IDOT geotechnical manuals and procedures.

4.1 Subsurface Exploration

The site subsurface exploration was conducted from January 22 to February 10, 2015 and included advancing a total of three (3) standard penetration test (SPT) borings within the vicinity of the proposed abutments and bridge pier locations. The locations of the soil borings are shown on the **Boring Location Map** provided in the Appendix.

Boring ID	Location	Station	Offset	Depth (feet)	Surface Elevation (feet)
B-1	West Abutment	155+27	10.5 ft Left	75	790.50
B-2	Center Pier	157+30	35.0 ft Left	75	770.00
B-3	East Abutment	159+25	12.0 ft Right	75	791.30

Table 1 – Summary of Subsurface Exploration US 150

The soil borings were drilled using a track mounted drill rig. All of the borings were drilled using 3¹/₄ - inch I.D. hollow stem augers. Soil sampling was performed according to AASHTO T 206, "Penetration Test and Split Barrel Sampling of Soils." Soil samples were obtained at 2.5-foot intervals to a minimum depth of 20 feet below existing grade and 5 foot intervals thereafter. McCleary Engineering field representative inspected, visually classified and logged the soil samples during the subsurface exploration activities, and performed unconfined compressive strength tests on cohesive soil samples using a calibrated Rimac compression tester and a calibrated hand penetrometer in accordance with IDOT procedures and requirements. Representative soil samples were collected from each sample interval, and were placed in jars and returned to the laboratory for further testing and evaluation.

4.2 Laboratory Testing

٠

All samples were inspected in the laboratory to verify the field classifications. A laboratory testing program was undertaken to characterize and determine engineering properties of the subsurface soils encountered in the area of the proposed bridge.

The following laboratory tests were performed on representative soil samples:

- Moisture Content
 AASHTO T-265
 - Grain Size Analysis AASHTO T-88 / AASHTO T-90
- Unconfined Compression AASHTO T-208

The laboratory tests were performed in accordance with test procedures outlined in the IDOT Geotechnical Manual (1999) and AASHTO requirements. Based on the laboratory test results, the soils encountered were classified according to the AASHTO classification system. The results of the laboratory testing program are included in the Appendix and are shown along with the field test results in the Soil Boring Logs also located in the appendix.

4.3 Subsurface Conditions

This section provides a brief description of the soils encountered in the borings performed in the vicinity of the proposed improvements. Variations in the general subsurface soil profile were noted during the drilling activities. Detailed descriptions of the subsurface soils are provided in the Soil Boring Logs located in the Appendix and are shown graphically in the Subsurface Profiles. The soil boring logs provide specific soil conditions encountered at each soil boring location. The soil boring logs include soil descriptions, stratifications, penetration resistance, elevations, location of the samples and laboratory test data. Unless otherwise noted, soil descriptions indicated on boring logs are visual identifications. The stratifications shown on the boring logs represent the conditions only at the actual boring locations, and represent the approximate boundary between subsurface materials; however, the actual transition may be gradual.

Subsurface information was obtained during a geotechnical investigation conducted over the entire proposed I-57 / I-74 interchange modifications. Borings B-1, B-2, and B-3 (Bloomington Road) were advanced in support of Proposed Structure 010-1050 on January 22 and February 10, 2015 along the existing Highway 150 alignment.

Bridge Abutments

Boring **B-1** was advanced near the <u>west abutment</u>, was located at Station 155+27 (Elev. 790.50'). The soil profile underlying the surface cover in boring <u>B-1</u> is described as a brown/black/gray very stiff silty clay loam till, which extends to approximately 19.5 feet deep (Elev. 771.00'). The silty clay loam till continues with depth, becoming gray in color at 30 feet deep (Elev. 760.50'). This gray silty clay loam till continues to 69 feet deep (Elev. 721.50'). These soils had SPT N-values ranging from 6 to 12 and unconfined compressive strength (Qu) values from 1.32 to 3.5. Below the silty clay loam till soils a coarse sandy gravel was identified to boring completion depth of 75 feet deep (Elev. 715.50'). The sand and gravels had SPT N-values ranging from 23 to 40.

Soil boring, **B-3**, was advanced at the <u>east abutment</u>, located at Station 159+25 (Elev. 791.30'). In boring **B-3**, underlying the surface cover is a fill soil consisting of brown hard silty clay loam, which extends to 4.5 feet deep (Elev. 786.80'), where the soil changes to a black stiff silty clay. This silty clay continues with depth becoming dark gray to gray/brown/black in color until 27 feet deep (Elev. 764.30') where a olive brown to gray silty clay loam till is encountered. This till continues with depth, becoming stiff, then hard by 37 feet deep (Elev. 754.30') until 67 feet deep (Elev. 724.30'). These soils had SPT N-values ranging from 7 to 17 and unconfined compressive strength (Qu) values from 0.74 to 4.5. Below the silty clay loam till, a medium to coarse sand and fine gravel was encountered to boring completion depths of 75 feet deep (716.30'). The sand and gravels had SPT N-values ranging from 16 to 21.

Center Pier

Boring B-2, advanced near the proposed pier location located at Station 157+30 (Elev. 770.00'). In boring **B-2**, underlying the bare soil cover is a very stiff brown and black silty clay / silty clay loam which extends down to 5.5 feet deep (Elev. 767.00') where a brown stiff silty clay till is encountered. This silty clay till continues with depth, becoming gray in color, to 42 feet deep (Elev. 728.00'). These soils had SPT N-values ranging from 2 to 15 and unconfined compressive strength (Qu) values from 0.25 to 2.5. Below the silty clay till, a gray medium-grained very loose sand is identified. This loose sand continues with depth to 53 feet deep (Elev. 717.00'). The sand had SPT N-values ranging from WHO (0) to 25. Below the loose sand a gray silty clay loam till is encountered with very hard consistencies. This till continues to boring completion depth of 75 feet deep (Elev. 695.00'). These soils had SPT N-values ranging from 10 to 26 and unconfined compressive strength (Qu) values from 1.24 to 7.6.

4.4 Groundwater Conditions

Water levels were checked in each boring to determine the general groundwater conditions present at the site and were measured while drilling and after each boring was completed.

Groundwater was identified in each boring as follows:

Boring	Groundwater Elevation (At time of drilling)	Groundwater Elevation (24-hours)
B-1 (West Abut)	715.5	N/A
B-2 (Center Pier)	727.0	N/A
B-3 (East Abut)	725.0	N/A

Table 2 – Groundwater Elevations

No 24-hour groundwater readings were noted. No streambed elevations or surface water elevations were noted.

Water level readings were made in the boreholes at times and under conditions shown on the boring logs and stated in the text of this report. However, it should be noted that fluctuations in groundwater level may occur due to variations in rainfall, other climatic conditions, or other factors not evident at the time measurements were made and reported.

5.0 Geotechnical Evaluations

The section provides geotechnical analysis and recommendations for the design of the proposed bridge based on the results of the field exploration, laboratory testing, and geotechnical analysis.

5.1 Derivation of Soil Parameters for Design

Unit weights, friction angles and shear strength parameters were estimated using corrected standard penetration test (SPT) using published correlations for N values results. The SPT values were corrected for hammer efficiency. The hammer efficiency correction factor considers the use of a safety hammer/rope/cat-head system, generally estimated to be 60% efficient. Thus, correlations should be based upon what is currently termed as N60 data. The efficiency of the automatic hammer used for this exploration was estimated to be approximately 80%. The correction for hammer efficiency is a direct ratio of relative efficiencies as follows:

N60 = N* (80/60) *Where the N value is the field recorded blow counts.

Table 3 - presents generalized soil parameters to be used based for designs on the laboratory and in-situ testing data:

		In situ	Undra	ined	Drai	ned
Approximate Depth / Elevation (feet)	Soil Description	Unit Weight γ (pcf)	Cohesion c (psf)	Friction Angle Φ (degrees)	Cohesion c (psf)	Friction Angle Φ (degrees)
786' to surface	Existing Clay Fill	120	3,000	0	150	28
764.3 – 786.8	Silty Clay	125	2,000	0	125	28
721.5 – 789.7	Silty Clay Till	125	2,000	0	125	28
724.3 – 764.3	Silly Clay Till	125	2,000	0	125	20
716.0 – 721.5	Sand &	130	0	34	0	34
715.5 – 724.3	Gravel	150	0	- 54	0	54

Table 3 – Summary of Soil Parameters

5.2 Settlement

The existing I-57 abutment side slopes are about 2H:1V towards the east and west abutments of US 150 (Bloomington Road). The preliminary TS&L shows the side slopes near the proposed approaches and new endslopes at the abutment locations will remain at 2H:1V.

The new approach slabs on either end of the bridge will be supported by new engineered fill. It is anticipated that approximately 4.8 feet (at the west abutment) and 3.7 feet (at the east abutment) will be placed at the new embankment approaches. To accommodate the proposed increase in approach and abutment heights, the abutment slopes will need to be regarded. The design grading shows that the proposed abutment slope will be a 2H:1V. Based on preliminary settlement calculations, the increase in stress due to the increase in fill would produce only minor settlements in the range of less than 0.4-inch near the east and west abutments and should not adversely affect the approach pavements. Therefore the anticipated settlement of the abutments due to the regarding activities is considered to be negligible.

5.3 Slope Stability – Bridge Abutments

The proposed construction of US 150 (Bloomington Road) over I-57 requires the abutments to be moved outward away from I-57. This new construction will result in changes to the endslopes at the new abutment locations. The proposed abutments are integral type with endslopes at 2 horizontal to 1 vertical (2H:1V). Slope stability of the bridge abutments was evaluated using a slope stability analysis software: *GSTABL7 with STEDwin*.

The proposed side slopes were analyzed based on the grading and the soils encountered during subsurface exploration. Three analyses were evaluated using the Bishop and Janbu analyses methods for the proposed slope geometry: end-of-construction (short term - undrained), long-term (drained) and a design seismic event. The analyses were performed using the soil parameters in Table 3 above. A critical factor of safety (FOS) was calculated for each condition. According to the current standard of practice, the target FOS is 1.5 for end-of-construction and long-term slope stability and 1.0 for the design seismic event.

In an effort to model the end-of-construction conditions, full cohesion ws used with a friction angle of 0 degrees assumed. Nominal values for cohesion were used with full friction angle to model the long-term and seismic conditions to analyze the condition where pore water pressure has dissipated. The results of the analysis are shown on the following page in Table 4.

Based on the analysis performed, the proposed slopes meet the minimum required factor of safety of 1.5 (end-of-construction, long-term) and 1.0 (seismic).

Boring		Calculate	ed Critic	al FOS
Location	Slope	End-of- Construction	Long Term	Seismic
B-1, West Abut	2H:1V	2.9	1.8	1.5
B-3, East Abut	2H:1V	2.5	1.7	1.5

 Table 4 – Stability Analysis Results – Bridge Abutments

5.4 Seismic Parameters

The seismic hazard for the site was analyzed per the IDOT Geotechnical Manual, IDOT Bridge Design Manual, and AASHTO LRDF Bride Design Specifications. The Seismic Soil Site Class was determined per the requirements of All Geotechnical Manual Users (AGMU) Memo 9.1, Design Guide for Seismic Site Class Determination, and the "Seismic Site class Determination" Excel spreadsheet provided by IDOT.

The proposed bridge has a total length less than 750 feet, with no single span longer than 200 feet, therefore, a global Site Class Definition was determined for this project Based on the seismic hazard maps the following coefficients should be used in design:

 S_s =0.146 g, F_a =1.60; therefore Design Spectral Accelerations at 0.2 sec, (S_{Ds})=0.234g S_1 =0.056 g, F_v =2.40; therefore Design Spectral Accelerations at 1.0 sec, (S_{D1})=0.135g

According to Table 3.10.3.1-1 (Site Class Definitions) of the 2008 AASHTO LRFD Manual, the project site soil profile is most accurately described as the AASHTO Soil Site Class D. According to Table 3.10.6-1 (Seismic Zones) of the 2008 AASHTO LRFD Manual, the Seismic Performance Zone is most accurately described as (SPZ)=1 ($F_vS_1\#0.15$)

Liquefaction analysis was conducted using Design Guide AGMU Memo 10.1 – Liquefaction Analysis. As noted in the previous paragraph the Seismic Performance Zone (SPZ) is SPZ – 1 and the Peak Ground Acceleration (PGA) modified by the zero-period site factor, F_{pga} is less than 0.15. Therefore, no liquefaction of soil layers are anticipated to occur.

Seismic Performance Zone (SPZ)	1
Design Spectral Acceleration at 0.2 sec. (S _{DS})	0.234 g
Design Spectral Acceleration at 1.0 sec. (Sp1)	0.135 g
Soil Site Class	D

 Table 5 – Seismic Coefficients Summary Table

5.5 Scour

The proposed bridge structure carrying US 150 (Bloomington Road) crosses over Interstate I-57 and no waterways are in the vicinity of the proposed project; therefore scour will not be a concern for this project.

5.6 Mining Activity

Based on a review of the Illinois State Geological Survey's on-line collection of County Coal Maps and Directories, the proposed structure is not located over a mine or mined out area.

5.7 Liquefaction

Based on the AGMU Memo 10.1 – Liquefaction Analysis Seismic Performance Zones 3 and 4 required liquefaction analyses, as well as, SPZ 2 with a Peak Seismic Ground Surface Acceleration, As equal to or greater than 0.15. The subject site is in SPZ 1 with a less than 0.15. Therefore, liquefaction was not considered as a reduction for the pile design capacity or other foundation considerations included herein.

5.8 Approach Slabs

Based on information from the structural engineer, the approach slabs are 30 feet in length and are precast. In accordance with the IDOT Bridge Manual, BFW evaluated the foundation soils at the approach slabs for bearing capacity and excessive settlement. With proper compaction of the approach subgrades, the bearing capacity and settlement requirements of the IDOT Bridge manual will be satisfied.

6.0 Foundation Type Evaluation and Design Recommendations

6.1 Foundation Type Feasibility

According to the existing plans, the existing abutment foundations consisted of prestressed concrete piles with the individual pier foundations supported by shallow spread foundations.

The initially proposed abutment type for this structure is integral. According to the Bridge manual, Section 3.8.3 on Integral Abutments: metal shell or H-piles are permitted based on the overall length of the bridge. However, the All Bridge Designers Memorandum (7/25/2012) Integral Abutment Bridge Policies and Details, states on Page 6, Assumption #11 that, "End Spans and simple spans exceeding 150 feet shall only utilize HP piles of HP 12 x 74 size and larger. Therefore, the use of metal shell piles would be excluded for use with the choice of integral abutments.

However, it is recommended that the use of <u>semi-integral</u> abutments be considered for multiple reasons including: 1) metal shell piles can be used with the proposed span length, 2) friction H-piles are notorious for being the most difficult pile to accurately estimate the length at which bearing will be obtained during construction, 3) the estimated H-pile lengths provided within the SGR extend beyond the depths of the borings which make the pile length estimates more subject to error, 4) the borings were terminated per department policy, however; no indication of either a hard layer, which either crush a shell pile or adequate end bearing layer(such as hard pan or bedrock that would stop an H-pile was encountered, 5) H-piles are highly subject to being driven substantially longer than the estimated pile length. When this occurs in the field the equipment and crew are on hold until additional piling can be located, shipped and spliced, typically resulting in project delays and extra costs for all the splices, extra pile and working days. 6) In addition, metal shell piles are IDOT Foundation and Geotechnical Unit's preferred foundation choice for the abutments because the pile lengths will be substantially shorter in comparison to HP-piles.

The Modified IDOT Static Method of Estimating Pile Length Excel spreadsheet was used to estimate the pile lengths at various axial geotechnical resistances for driven piles per AGMU Memo 10.2. Tables 7, 8 and 9 summarize the estimated pile lengths at various axial resistances for metal shell and H-piles sizes.

A spread footing was considered for support at the proposed pier location, since the existing pier is currently supported on shallow foundations. The structural engineer has provided a preliminary pier load of 5,087 kips; and the factored bearing resistance of the soil at or below a footing elevation of Elev. 763.70 is approximately 1,800 psf in addition to a soft sand layers located below the pier foundation depth. Therefore, a spread footing, while feasible may be fairly large in footprint in order to support the proposed load. A large footing excavation may encroach on the existing I-57 roadbeds. Temporary shoring may then be required for installation of shallow foundation at the pier. A pile supported pier is recommended in this location. Driven metal shell piles or HP piles are feasible in this location. However, metal shell piles are IDOT's preferred foundation choice for the footing because the pile lengths will be substantially shorter in comparison to HP-piles.

6.2 Driven Pile Supported Foundations

Piles considered for this site include HP-piles and metal shell piles. Metal shell piles are not feasible for the integral abutments based on All Bridge Designers Memorandum (7/25/2012) Integral Abutment Bridge Policies and Details. However, as stated previously, it is highly recommended that <u>semi-integral</u> abutments be considered which will allow the use of metal shell piles. Metal shell piles were considered feasible for the pile supported center pier.

The Modified IDOT static method Excel spreadsheet was used to estimate the pile lengths at various axial geotechnical resistances for driven piles per AGMU Memo 10.2. Tables 7, 8 and 9 summarize the estimated pile lengths at various axial resistances for HP-piles various sizes HP 14 x 102 and larger for each substructure. The complete IDOT Pile Design Tables for each substructure are included in the Appendix.

The factored resistance includes reduction for the geotechnical resistance of 0.55 for the pile installation. Based on the results of the subsurface investigation no geotechnical losses due to down drag or liquefaction were included in the axial pile capacity calculations.

The anticipated factored structural loadings were obtained from the structural engineer and are provided in the following table:

SIKENGIN	I LOaus, F	y (kips):			
		# of Lane	s Loaded		
	1	2	3	4	STRENGTH I (max)
*MPF, m	1.20	1.00	0.85	0.65	
W. Abut.	1720.6	1912.9	2045.0		2045
Pier 1	4414.1	4812.6	5086.7		5087
E. Abut.	1474.2	1657.4	1783.3		1783
* Multiple D	waanaa Ea		D Table 2 (

 Table 6 – Structural Loadings

* Multiple Presence Factor (LRFD Table 3.6.1.1.2-1)

STRENGTH I Loade Ev (kine)

The Nominal Required Bearing (R_N) represents the resistance the pile will experience during driving as well as assists the contractor in selecting a proper hammer size. The Factored Resistance Available (RF) documents the net long-term axial factored pile capacity available at the top of the pile to support factored substructure loads.

The pile cutoff elevations used for analysis were Elev. 786.20 and Elev. 7835.80 for the West and East abutments, respectively which includes a 2 feet embedment into the abutment as required by the Bridge Manual. A pile cutoff elevation of Elev. 765.7 for the pile supported center pier was used for analysis. Pile shoes for the metal shell and HP piles should not be required due to the subsurface conditions and the absence of bedrock

Due to the relative consistency between the soil test borings, only one test pile should be required for abutments and one for the center pier. A test pile is performed prior to production driving so that actual, on-site field data can be gathered to further evaluate pile driving requirements for the project. This is also the time in which the contractor's proposed equipment and methodologies identified in their Pile Installation Plan can be assessed.

6.3 Shallow Foundations

Based on the soils encountered, the new span lengths and the anticipated loads, shallow foundations are not a feasible option for the proposed substructures of the bridge. It is anticipated that shallow foundations designed for the loads provided will undergo settlement and therefore will not be a feasible option and are not discussed in the report.

Design Capacity Limitations

There are no downdrag, liquefaction, scour, or settlement issues at this structure that would result in the loss of capacity of the piling. Therefore, no design capacity limitations are necessary.

6.4 Lateral Load Resistance

Lateral loadings applied to pile foundations are typically resisted by battering selected piles, the soil/structure interaction, pile flexure, or a combination of these factors. Based on information provided by the structural engineer the lateral loads were anticipated to be greater than 3 kips.

Section 3.10.1.10 of the 2012 IDOT Bridge manual requires performing detailed structure interaction analysis if the factored lateral loading per pile exceeds 3 kips. The analysis shall determine actual pile moment and deflection to determine the selected pile adequacy for the existing loadings. Generally, the geotechnical engineer provides soil parameters to the structural engineer so that an L-Pile program, or other approved software, can be used for the lateral or displacement analysis of the foundations. Table 10 is included for the structural engineer's use in determining lateral pile response. The values were estimated based on the descriptions listed on the boring logs, SPT and laboratory data.

Soil Type	Angle of Internal Friction (degrees)	Undrained Shear Strength (psf)	Static Soil Modulus, k (pci)	Soil Strain Parameter E50	Effective Unit Weight (pcf)	Moist Unit Weight (pcf)
Silty Clay Loam	28	1500	300	0.010	57.6	120
Silty Clay Till	28	2000	500	0.005	62.6	125
Loose Fine Sand (Saturated)	30	n/a	20	n/a	67.6	130
Medium Sand (Saturated)	32	n/a	60	n/a	67.6	130

 Table 10 - Soil Parameters for Static Lateral Load Analysis

6.5 Wingwall Foundation Recommendations

Based on information provided by the structural engineer and the preliminary TS&L the wing walls for the integral abutment will be cantilever in design and will not rely on soil bearing.

Pile Capacity Tables (Tables 7 & 8) (Abutments)

10		Abuilleni
	ven at West A	butment (B-1 data)
Nominal Required Bearing (Kips)	Factored Resistance Available (Kips)	Estimated Pile Length (Ft)
Met	al Shell 12" Φ	w/0.25 walls
289	159	48
303	167	50
316	174	53
332	183	55
353*	194*	58*
Meta	al Shell 14" Φ	w/0.25" walls
340	187	48
356	196	50
371	204	53
391	215	55
413*	227*	58*
Meta	al Shell 14" Φ	w/0.312 walls
408	224	58
415	228	60
427	235	63
444	244	65
513*	282*	68*
	HP 14 x	102
535	294	75
545	300	77
612	337	87
679	374	97
810*	445*	107*
	HP 14 x	117
620	341	87
688	378	97
756	416	107
824	453	117
929*	510*	127*

Table 7 – West Abutment

Table 8 – East Abutment

Piling Dr	iven at East A	butment (B-3 data)
Nominal	Factored	Estimated Pile
Required	Resistance	Length
Bearing	Available	(Ft)
(Kips)	(Kips)	
Meta	al Shell 12" Φ	w/0.25 walls
264	145	37
285	157	40
312	171	42
336	185	45
353*	194*	47*
Meta	l Shell 14" Φ	w/0.25" walls
314	173	37
339	186	40
371	204	42
398	219	45
413*	227*	47*
Meta	l Shell 14" Φ	w/0.312 walls
423	233	50
441	242	52
459	252	55
484	266	57
513*	282*	59*
	HP 14 x	102
620	341	131
663	364	151
705	388	171
748	411	191
810*	445*	107*
	HP 14 x	117
670	369	151
713	392	171
756	416	191
799	440	211
929*	510*	231*

*- Maximum Nominal Required Bearing

Pile Capacity Table (Tables 9)

Center Pier

292 304	Factored Resistance Available (Kips) hell 12" Φ w/0 161 167	57 59
308 326	170 179	61 64
353*	194*	66*
Metal Sh	ell 14" Φ w/0	.25" walls
344	189	57
358	197	59
362	199	61
384	211	64
413*	227*	66*
Metal Sh	nell 14" Φ w/0	.312 walls
362	199	61
384	211	64
406	223	66
425	234	69
513*	282*	71*
	HP 14 x 102	
449	247	83
526	289	95
603	331	95
679	374	119
810*	445*	107*
	HP 14 x 117	
532	292	95
609	335	107
687	378	119
765	421	131
929*	510*	231*

*- Maximum Nominal Required Bearing

7.0 Construction Considerations

All work performed for the proposed project should conform to the requirements in the IDOT Standard Specifications for Road and Bridge Construction (2012) and the Supplemental Specifications and Recurring Special Provisions (2015). Any deviation from the requirements in the manuals above should be approved by the design engineer.

7.1 Site Preparation

Based on the design drawings, the demolition includes the removal of the existing bridge superstructure, abutments and piers. The existing below grade foundations for the piers may be abandoned in place provided they do not interfere with the proposed new roadway construction or new pier foundations. It is anticipated that the existing abutments will be completely removed; the piles for the abutments may be abandoned in place provided the tops of the piles are cut off to a minimum depth of 4 feet below the proposed new slope grades. The resulting excavation should be backfilled with structural fill consisting of crushed aggregate meeting IDOT CA-6 gradation requirements to the final finished grade. All existing backfill materials around the old foundations should be removed where it will interfere with new construction.

The proposed bridge and approach slabs are wider than the existing structure therefore additional site preparation will be necessary on either end of the bridge. For the proposed approach slabs and transitions slabs on either end of the bridge, site preparation should include the removal of existing pavements, curbs, foundations and landscaping as necessary. All vegetation, surface topsoil, pavements and debris should be cleared and removed. The exposed subgrade should then be field inspected to determine if undercuts are required. Any undercut areas may be backfilled with structural fill consisting of crushed aggregate meeting IDOT CA-6 gradation requirements to the final proposed foundation bearing elevation.

7.2 Site Excavation

The contractor will be responsible to provide a safe excavation during the construction activities of the project. All excavation should be conducted in accordance with applicable federal, state, and local safety regulation, including, but not limited to the Occupational Safety and Health Administration (OSHA) excavation safety standards. Excavation stability and soil pressures on temporary shoring are dependent on soil conditions, depths of excavation, installation procedures, and the magnitude of any surcharge loads on the ground surface adjacent to the excavation. Excavation near existing structures and underground utilities should be performed with extreme care to avoid undermining existing structures.

Excavation should not extend below the level of adjacent existing foundations or utilities unless underpinning or other support is installed. It is the responsibility of the contractor for field determinations of applicable conditions and providing adequate shoring for all excavation activities.

7.3 Groundwater Management

Based on the depth of groundwater observed in the borings, significant groundwater management is not anticipated for bridge construction. The contactor should control groundwater and surface water infiltration to provide construction in dry condition. Temporary ditches, sumps, granular drainage blankets, stone ditch protection, or hand-laid riprap with geotextile underlayment could be used to divert groundwater if significant seepage is encountered during construction. If water seepage occurs during footing or where wet conditions are encountered such that the water cannot be removed with conventional sumping, we recommend placing open grade stone similar to IDOT CA-7 to stabilize the bottom of the excavation.

The CA-7 stone should be placed to 12 inches about the water table, in 12-inch lifts, and should be compacted with the use of a heavy smooth drum roller or heavy vibratory plate compactor until stable. The remaining portion of the excavation beneath the footing should be backfilled using approved structural fill.

7.4 Temporary Sheeting and Soil Retention

The preliminary TS&L plans indicate that the construction of the proposed bridge will require complete removal of the existing structure and abutments. Based on information provided by the structural engineer, the construction for the proposed structure will be phased maintaining one lane of traffic.

Temporary Sheeting and Soil Retention

In evaluating the use of temporary cantilever sheet piling, a maximum of about 20.5 feet of retaining height above an excavation line at Elev. 770.5' at the west abutment and 16 feet of retained height above an excavation line at Elev. 776.5' at the east abutment was calculated. Embedment depths of 15.8 feet and 12.0 feet for the west and east abutments, respectively were determined from the Design chart. Based on the subsurface soils encountered and on preliminary calculations for the depth of embedment as per IDOT Bridge Manual using the "Design Guide and Charts for Temporary Cantilever Sheet Piling" simple cantilever sheeting piles are feasible to be used for both the east and west abutments.

8.0 Limitations

This report has been prepared for the exclusive use of the Illinois Department of Transportation and its structural consultant. The recommendations provided in the repot are specific to the project described herein, and are based on the information obtained from the soil boring locations within the project limits. The analysis have been performed and the recommendations have been provided in this report are based on subsurface conditions determined at the location of the borings. The report may not reflect all variations that may occur between boring locations or at some other time, the nature and extend of which may not become evident until during the time of construction. If variations in subsurface conditions become evident after submission of this report, it will be necessary to evaluate their nature and review the recommendations provided herein in light of the new conditions

Appendix A

Soil Boring Location Map

Station	155+27 157+30 159+25	DESIGNED DRAWN CHECKED DATE
Location	West Abut Bloomington Rd. over I-57 Pier Boring Bloomington Road East Abut Bloomington Rd./I-57	USER NAME = \$USER\$ LOT SCALE = \$SCALE\$ PLOT DATE = \$DATE\$
Boring Number	B-1 (Bloomington Rd I-57) B-2 (Bloomington Rd I-57) B-3 (Bloomington Rd I-57)	FILE NAME = \$FILEL\$ \$MODELNAME\$

Appendix B

Preliminary TSL

Bench Mark:

Appendix C

Soil Boring Profile Sheet

		SUBSURFACE P	PROFILE	5		WATER TABLE LEGEND	<u>DN</u>
		-		EL = Elevation (II) D = Depth Below Existing G	Depth Below Existing Ground Surface (ft)	= First Encountered	þ
-1-RS-1, 14-1,6)R					T206)		1
npaign				11	e Strength (tst) e .S= shear P= nenetrom	⊥⊥ = Upon Completion	ç
ATION			_	w% = Moisture Content Percentage	entage	= After hours	
4,000	6,000	8,000 10,0	0,000	12,000	14,000	16,000	
						840	0
						820	0
				B-3 (Bloom	nington Rd I-57)		
				120	129425		c
					791.30 ft 22/2015 :		5
				N Qu W	19" HMA		
				4.5 7 7 7	FILL: Silty Clay Loam		
B-2	B-2 (Bloomington Rd I-57) 157+30			12 2.9B 20 10 1.5P 30	brown hard Sul TV CL AV: Black		
	35.0 ft Left			2.5 B		780	0
	EL //0.00 ft 2/10/2015			2.9 B	stiff		
	I W% SILTY CLAY: Brown a	Ind Black		0.0 0.0	SILTY CLAY: Brown very stiff		
		srown		10 3.3 B 30	ier Sill 7 CLAY: Dark Gray iery stiff sil TV CLAY: Grav/Brown/Black		
	9 9 9 9			7 0.7 B 10	very stiff		
15 1.7 B 14 19 B	9 0 0	UWU.	- - - - - - - - - - - - - - - - - - -	10 1.7 B 10	soft SiLTY CLAY LOAM TILL: Brown	00/	5
				17 3.7 B 10	stiff		
				14 3.5 B 10			
	- - -	Λe		15 4.1 B 10			c
	10			14 2.3 B 10	9.6 <u>8</u>	044	5
		: ILL: Gray		14 2.3 B 10			
HM				53 2.9 B 8	SILTY CLAY LOAM TILL: Gray		
25	20 SAND: Gray			21 20	1		c
26 7.6 B	10	ILL: Gray		16 10	SAND & GRAVEL: Medium to coarse sa	coarse sand and fine gravel	5
12 1.7 B	-10 	: ILL: Gray					
	- 1	5ray					
12. 1.2 B	10					200	_
		5ray					b
			00				
4,000	0,000	_	n'nnn	12,000	14,000	10,000	
	Distance	Distance Along Baseline (ft)					

/	ア)	Ö ÄR	Vision of W Engin		S ave	of Transportation BIVI Engineering & Testing Inc.	ROUTE 1-57/74 SECTION 10(5-1- COUNTY Champ PROJECT LOCAT
					0	2.0	00
	840						
	820						
			B-1 (E	loon 1	55+.		
(800	2	ē		790. 22/2	10.5 ft Left EL 790.50 ft 1/22/2015	
(ff) noiti			3.5 B 2.7 P	30		6" HMA 10" PCC over sand base	
svəl∃	780	ە 0 ∞ ە ە	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	88888	GALESSE	SILTY CLAY LOAM TILL: Brown/Black/Gray very stiff SILTY CLAY LOAM TILL: Very stiff	/Black/Gray tiff
				30	<u> </u>	organics SILTY CLAY: Olive Brown	
	760	9	2.3 B 3.5 B	6 6	LIGE X	SILTY CLAY LOAM TILL: Brown very stiff	
		0 10	1.8 B	6 6	<u>IHHH</u>		
		- O	1.2 B	6 5	HHH (
	740	10	1.7 B.	6 6	<u>1979)</u>		
		7	1.2 B	6 0	L & B & B & B & B & B & B & B & B & B &	7787376	
		15	1.7 B	20	<u>CAB</u>	SILTY CLAY LOAM TILL: Gray	
	720	23		20		very suir	
		40		10	• • • • • • • • • • • • • • • • • • •	SAND and GRAVEL:	Coarse sand and fine gravel
	700						
					0	2,000	00

ST/SS/E TO .0F-2F-9-15-100_1L COUNTY.CPJ IL_DOT_D4-3F-30.6DT 3/23/15

Appendix D Soil Boring Logs

(Reference) Illinois Depart of Transporta	me tion	nt		SC	DIL BORIN	IG LO	G		Page	<u> 1 </u>	of <u>2</u>
Division of Highways Kaskaskia Engineering Group									Date	1/2	2/15
ROUTE 1-57/74 DESCRIPTIO	ON		West	Abut B	loomington Rd. over I-	57	LOGG	ED BY		TLM	
SECTION 10(5-1-RS-1, 14-1,6)R L	OCAT	ION _	, SEC.	34, T \	NP. 20N, RNG. 8E, 3 P	M					
COUNTY Champaign DRILLI		THOD			HSA	_ HAMMER	TYPE	<u> </u>	A	uto	
STRUCT. NO Station	P	B L O	U C S	M O I	Surface Water Elev. Stream Bed Elev.	n/a	ft ft	D E P	B L O	U C S	M O I
BORING NO.B-1 (Bloomington Rd I-57) Station 155+27 Offset 10.5ft Left Ground Surface Elev. 790.5	Н	W S	Qu (tsf)	S T (%)	Groundwater Elev.: ⊈ First Encounter ⊈ Upon Completion ⊈ After Hrs.	715.5	ft	T H (ft)	W S	Qu (tsf)	S T (%)
6" HMA 790.0 10" PCC over sand base 789.1	00	-			SILTY CLAY LOAM						
SILTY CLAY LOAM TILL: Brown/Black/Gray, very stiff		4	35	27.2							
		7 3 3	В	27.4					3	2.27	14.6
	5	-	P	27.4				-25	6	B	14.0
		3 3 6	1.32 B	22.2							
		3	D						2		
	-10	4	2.89 B	23.8	SILTY CLAY LOAM ⁻ very stiff			-30	7	3.5 B	13.0
		3	2.47	25.4	very stiff	fill. Glay,					
		5	2.47 B	20.4							
		3 4 5	1.57 B	25.2					3 5 5	1.81 B	12.3
SILTY CLAY LOAM TILL: Very stiff, organics	50 <u>-15</u> 	3						<u>-35</u>	5		
		3 4 5	2.27 B	25.4							
		3	1.04	26.4					2	4 57	10.0
SILTY CLAY: Olive Brown 770.5		5 7	1.81 B	20.1				-40	3 4	1.57 B	12.6

Illinois Departr of Transportati	nei ion	nt		SC	DIL BORIN	G LO	G		Page	2	of <u>2</u>
Division of Highways Kaskaskia Engineering Group									Date	1/2	2/15
ROUTE DESCRIPTION	N		West	Abut B	loomington Rd. over I-5	57	LOGGE	ED BY		TLM	
SECTION <u>10(5-1-RS-1, 14-1,6)R</u> LO	CATI	ON _	, SEC.	34, T \	NP. 20N, RNG. 8E, 3 P	М					
COUNTY Champaign DRILLING	g Me.	THOD			HSA	HAMMER	TYPE		Α	uto	
STRUCT. NO	D E	B L	U C	M	Surface Water Elev.	n/a	_ ft	D E	B L	U C	M O
Station	P T	0 W	S	I S	Stream Bed Elev.		_ π	P T	Ö W	S	I S
BORING NO.B <u>-1 (Bloomington Rd I-57)</u> Station155+27	H	S	Qu	T	Groundwater Elev.: ⊈First Encounter	715.5	_ ft	н	S	Qu	T
Offset 10.5ft Left Ground Surface Elev. 790.5 ft	(ft)		(tsf)	(%)	⊈ Upon Completion ⊈ After Hrs.		ft ft	(ft)		(tsf)	(%)
SILTY CLAY LOAM TILL: Gray, very stiff (continued)					SILTY CLAY LOAM T very stiff (continued)	TLL: Gray,					
								_			
		2 4	1.24	12.6					4 7	1.65	16.8
	-45	5	В					-65	8	В	
	_	3					721.50	_	4		
	-50	3 7	1.65 B	12.1	SAND and GRAVEL: sand and fine gravel	Coarse		-70	8 15		16.2
	50										
		4 6	2.06	10.4					12 17		11.1
	-55	8	B			<u>\</u>	715.50	-75	23		
					End of Boring	J					
	_										
	_	2									
		5	1.24	10.2							
	-60	6	В					-80			

ROUTE 1-57/74	Illinois Depa of Transport	artmen tation	nt		SC		G LOO	3		-	_	of <u>2</u>
SECTION 10(5-1-RS-1, 14-1,6)R LOCATION	Division of Highways Kaskaskia Engineering Group							0000	ים סי			
COUNTY Champaign DRILLING METHOD HSA HAMMER TYPE AUTO STRUCT. NO.												<u></u>
STRUCT. NO. m/a ft p b U C N Stram Bed Elev. m/a ft p b U C N Station 157+30 0 S I F V Groundwater Elev. m'a ft ft P 0 S Ground Surface Elev. 770.00 ft (ft) (ft) (ft) SULTY CLAY: Brown and Black, very stiff -												
Station E L C O Stream Bed Elev. Itel. Itel. E L C O BORING NO.B-2 (Bloomington Rd I-57) T W S I Groundwater Elev. T W S Groundwater Elev. T W S Qu T W S Groundwater Elev. T W S Qu Y First Encounter 727.0 ft H S Qu Y First Encounter First First First First	DUNTY Champaign DRIL		HOD			HSA	HAMMER	ΓΥΡΕ		Al		
SILTY CLAY: Brown and Black, very stiff no topsoil -	tation	E P 57) T H	L O W	C S Qu	O I S T	Stream Bed Elev Groundwater Elev.: ∑ First Encounter _ ▼ Upon Completion	727.0	_ft _ft _ft	E P T H	L O W	C S Qu	M O I S T (%)
no topsoil 2 4 2.5 22.0 5 P 22.0 -	TY CLAY: Brown and Black,	_ # [!!!		((3))	(/0)	SILTY CLAY TILL: Gra		π	(11)		((3))	(70)
2 2 2 5 P -	ry stiff no topsoil		2			(continued)	-					
Sil TY CLAY LOAM: Brown, soft, wet 1 - - - - - 2 -5 1 P - - - 2 - - - 2 - - - 2 - - - 2 - - - 2 - - - 2 - - - 2 -			4		22.0							
SILTY CLAY LOAM: Brown, soft, wet 1 0.25 24.2 - 1 0.25 24.2 - - - - SILTY CLAY TILL: Brown, stiff - 2 - - - - 3 1.07 14.5 - 5 B - - 3 1.07 14.5 - - 3 - - - 3 - - - - - - 3 - - - - - - - 3 - - - - - - - 3 - - - - - - - 3 - - - - - - - 3 - - - - - - - - - - - - -	7	67.00	5	Р					_			
SILTY CLAY TILL: Brown, stiff 764.50. -	TY CLAY LOAM: Brown, soft,		1						_	2		
SILTY CLAY TILL: Brown, stiff -764.50 -			1		24.2					3		11.6
SILTY CLAY TILL: Brown, stiff 2 - <t< td=""><td>7</td><td></td><td>1</td><td>P</td><td></td><td></td><td></td><td></td><td>-25</td><td>6</td><td>В</td><td></td></t<>	7		1	P					-25	6	В	
SILTY CLAY TILL: Gray, stiff 759.50 3 1.07 14.5 3 - - - - - 3 - - - - - - 4 1.65 14.6 - - - - - - - - - - - 3 - - - - - - - - - - - - -<	TY CLAY TILL: Brown, stiff		2									
SILTY CLAY TILL: Gray, stiff			3		14.5			<u>743.00</u>				
SILTY CLAY TILL: Gray, stiff 4 1.65 14.6 3 -10 7 B -10 3 -10 6 1.73 11.2 9 B -10 -10 -10 3 -10 -10 -10 -10 3 -10 -10 -10 -10 9 B -10 -10 -10 -10 7 B -10 -10 3 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -11 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -11 -11 -11 -11 -10 -10 -11 -11 -11 -11 -11 -1		-	5	В		SILTY CLAY TILL: Gra	ay, very stiff		_			
SILTY CLAY TILL: Gray, stiff 4 1.65 14.6 3 -10 7 B -10 3 -10 6 1.73 11.2 9 B -10 -10 -10 3 -10 -10 -10 -10 3 -10 -10 -10 -10 9 B -10 -10 -10 -10 7 B -10 -10 3 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -11 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -11 -11 -11 -11 -10 -10 -11 -11 -11 -11 -11 -1			3							3		
SILTY CLAY TILL: Gray, stiff 3 - <td< td=""><td></td><td></td><td>4</td><td></td><td>14.6</td><td></td><td></td><td></td><td>_</td><td>6</td><td></td><td>11.8</td></td<>			4		14.6				_	6		11.8
SILTY CLAY TILL: Gray, stiff 3 - <td< td=""><td>7</td><td></td><td>1</td><td>В</td><td></td><td></td><td></td><td></td><td>-30</td><td>8</td><td>В</td><td></td></td<>	7		1	В					-30	8	В	
9 B 3 3 5 1.90 11.8 	TY CLAY TILL: Gray, stiff		3									
3 - <td></td> <td></td> <td></td> <td></td> <td>11.2</td> <td></td> <td></td> <td><u>738.00</u></td> <td></td> <td></td> <td></td> <td></td>					11.2			<u>738.00</u>				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			9	D			ill. Glay,					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			3							2		
			5		11.8				_	-		12.4
5 1.4 11.9		-15	9						-35	5		
			5		11.9							
			-							_		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			5		12.5					5		15.0

of Transportati				SC	DIL BORING	LO	G		-		
Division of Highways Kaskaskia Engineering Group ROUTE I-57/74	J		Eas	st Abut	Bloomington Rd./I-57		LOGGE				2/15
SECTION _ 10(5-1-RS-1, 14-1,6)R _ LO											
COUNTY Champaign DRILLING										uto	
STRUCT. NO. Station BORING NO.B-3 (Bloomington Rd I-57) Station 159+25 Offset 12.0ft Right Ground Surface Elev. 791.30	D E P T H	B L O W S	U C S Qu (tsf)	M O I S T (%)	Surface Water Elev. Stream Bed Elev. Groundwater Elev.: ∑ First Encounter ∑ Upon Completion ∑ After Hrs.	725.0	_ ft _ ft _ ft	D E P T H	B L O W S	U C S Qu (tsf)	M O I S T (%)
19" HMA (no base course)					SILTY CLAY: Gray/Brown very stiff	n/Black,		_			
789.72 FILL: Silty Clay Loam, brown, hard		5	4.5	11.0							
		4 6	4.5 P	11.8							
796 90		3 4	2.89	22.0				_	3	3.30	25.3
786.80 SILTY CLAY: Black, stiff	-5		B					-25	6	В	20.0
		4		27.8			<u>764.30</u>				
SILTY CLAY: Black/Brown, stiff		6	P		SILTY CLAY LOAM TILL: Brown/Gray, soft	Olive			2		
SILTY CLAY: Brown, very stiff	-10		1.65 B	18.5				-30	3 4	0.74 B	14.8
		3 3 6	2.47 B	18.9	SILTY CLAY LOAM TILL: stiff	Brown,	<u>759.30</u>				
	_	3						_	2		
	-15	5 6	2.89 B	23.0				-35	5 5	1.65 B	14.7
		3					<u>754.30</u>				
SILTY CLAY: Dark Gray, very stiff		4	3.30 B	25.6	SILTY CLAY LOAM TILL: hard	Gray,			_		
771.30	-20	3 4 6	3.50 B	25.1				-40	6 8 9	3.71 B	10.8

Page <u>1</u> of <u>2</u>

(Reference) Illinois Department

Division of Highways Kaskaskia Engineering Group									Date	1/2	2/15
ROUTEI-57/74 DESCRIPTION	N		Eas	st Abut	Bloomington Rd./I-57		LOGGE	ED BY		TLM	
SECTION	CATI	ON _	, SEC.	34, T \	NP. 20N, RNG. 8E, 3 PN	Λ					
COUNTY Champaign DRILLING	G ME.	THOD			HSA	HAMMER	TYPE		A	uto	
STRUCT. NO Station BORING NO.B-3 (Bloomington Rd I-57) Station159+25 Offset12.0ft Right Ground Surface Elev791.30 ft	D E P T H	B L O W S	U C S Qu (tsf)	M O I S T (%)	Surface Water Elev Stream Bed Elev Groundwater Elev.: ∑ First Encounter ∑ Upon Completion ▼ After Hrs	725.0	_ ft _ ft _ ft	D E P T H	B L O W S	U C S Qu (tsf)	M O I S T (%)
SILTY CLAY LOAM TILL: Gray, hard <i>(continued)</i>	 45	5 6 8	3.50 B	12.1	SILTY CLAY LOAM TI hard <i>(continued)</i>	LL: Gray, ⊥		 	7 20 33	2.89 B	7.6
		5 6 9	4.12 B	11.8	SAND & GRAVEL: Me coarse sand and fine g	edium to	<u>724.30</u>		6 7 14		15.7
	 	4 6 8	2.27 B	11.8	End of Boring		716.30		6 5 11		12.8
		3 6 8	2.27 B	11.3							

Page <u>2</u> of <u>2</u>

SOIL BORING LOG

W Illinois Department of Transportation Division of Highways Kaskaskia Engineering Group

Appendix D

Pile Tables (East Abutment, West Abutment, Center Pier)

Pile Design Table for West Abutment utilizing Boring #1

		Die for west		t utilizi							
	Nominal	Factored	Estimated		Nominal	Factored	Estimated		Nominal	Factored	Estimated
	Required	Resistance	Pile		Required	Resistance	Pile		Required	Resistance	Pile
	Bearing	Available	Length		Bearing	Available	Length		Bearing	Available	Length
	(Kips)	(Kips)	(Ft.)		(Kips)	(Kips)	(Ft.)		(Kips)	(Kips)	(Ft.)
Metal \$	Shell 12"Φ	w/.179" wal		Steel	HP 10 X 57			Steel	HP 14 X 73		
	226	124	33		223	122	53		196	108	28
	233	128	35		235	129	55		235	129	30
	246	135	38		245	135	58		242	133	35
Metal \$		w/.25" walls			247	136	60		255	140	38
	226	124	33		254	140	63		263	145	40
	233	128	35		265	146	65		275	151	43
	246	135	38		274	151	68		280	154	45
	257	142	40		307	169	70		290	160	48
	270	148	43		310	171	73		308	169	50
	279	153	45		345	190	75		320	176	53
	289	159	48		352	194	77		340	187	55
	303	167	50		399	220	87		352	194	60
	316	174	53		446	245	97		362	199	63
	332	183	55	Steel	HP 12 X 53				380	209	65
	347	191	58		228	126	43		392	216	68
Metal \$	Shell 14"Φ	w/.25" walls	S		234	128	45		451	248	70
	213	117	28		242	133	48		456	251	73
	245	135	30		256	141	50		521	286	75
	270	148	33		266	146	53		531	292	77
	274	151	35		282	155	55	Steel	HP 14 X 89		
	290	160	38		294	161	58		199	109	28
	303	167	40		294	162	60		238	131	30
	317	174	43		302	166	63		245	135	35
	328	180	45		316	174	65		258	142	38
	340	187	48		327	180	68		267	147	40
	356	196	50		370	204	70		278	153	43
	371	204	53		374	206	73		284	156	45
	391	215	55	Steel	HP 12 X 63				294	161	48
	408	224	58		220	121	40		312	171	50
Metal \$	Shell 14"Φ	w/.312" wal	ls		230	127	43		324	178	53
	213	117	28		236	130	45		344	189	55
	245	135	30		244	134	48		356	196	60
	270	148	33		258	142	50		366	201	63
	274	151	35		268	148	53		384	211	65
	290	160	38		284	156	55		396	218	68
	303	167	40		296	163	58		457	251	70
	317	174	43		297	163	60		462	254	73
	328	180	45		305	168	63		528	290	75
	340	187	48		319	176	65		538	296	77
	356	196	50		329	181	68		604	332	87
	371	204	53		374	206	70		671	369	97
	391	215	55		378	208	73	Steel	HP 14 X 102		
	408	224	58		426	234	75		201	111	28
	415	228	60		434	239	77		241	133	30
	427	235	63		490	270	87		248	137	35
	444	244	65	Steel	HP 12 X 74				261	144	38
		252	68		223	123	40		270	148	40
	459					· _ •		1			
Steel F	459 HP 8 X 36				233	128	43		282	155	43

_				-			_			
	239	132	70		247	136	48	297	163	48
	242	133	73		262	144	50	315	173	50
	265	146	75		272	150	53	328	180	53
	271	149	77		288	159	55	348	192	55
Ste	el HP 10 X 42				300	165	58	360	198	60
	218	120	53		301	165	60	370	204	63
	230	127	55		309	170	63	389	214	65
	240	132	58		323	178	65	401	220	68
	242	133	60		334	184	68	462	254	70
	249	137	63		379	209	70	467	257	73
	260	143	65		384	211	73	535	294	75
	268	148	68		432	238	75	545	300	77
	300	165	70		441	243	77	612	337	87
	304	167	73		498	274	87	679	374	97
					554	305	97	747	411	107
				Steel I	HP 12 X 84			Steel HP 14 X 17		
					226	125	40	204	112	28
					237	130	43	245	135	30
					242	133	45	251	138	35
					251	138	48	265	146	38
					265	146	50	273	150	40
					276	152	53	285	157	43
					292	161	55	290	160	45
					304	167	58	300	165	48
					305	167	60	319	175	50
					313	172	63	331	182	53
					328	180	65	352	194	55
					338	186	68	364	200	60
					385	212	70	374	206	63
					389	214	73	393	216	65 69
					439	241	75	405	223	68 70
					448 505	246	77 87	468	257	70 72
					505	278		473	260	73 75
					563 620	309 341	97 107	542 552	298 304	75 77
					020	341	107	620	304 341	87
								688	378	97
								756	416	97 107
								824	410	107
								892	491	127
								Precast 14"x 14		121
								221	121	23
								248	136	25
								Timber Pile	100	20
								151	83	25
1										
1										
1										
			=				=			

Pile Design Table for East Abutment utilizing Boring #3

				t utilizii	ig воring #				-		
	Nominal	Factored	Estimated		Nominal	Factored	Estimated		Nominal	Factored	Estimated
	Required	Resistance	Pile		Required	Resistance	Pile		Required	Resistance	Pile
	Bearing	Available	Length		Bearing	Available	Length		Bearing	Available	Length
	(Kips)	(Kips)	(Ft.)		(Kips)	(Kips)	(Ft.)		(Kips)	(Kips)	(Ft.)
Metal S	Shell 12"Φ	w/.179" wa	lls	Steel	HP 10 X 57			Steel	HP 14 X 73		
	192	105	30		195	107	37		190	104	27
	222	122	32		209	115	40		202	111	30
	244	134	35		230	126	42		253	139	32
Metal S	Shell 12"Ф	w/.25" wall	s		244	134	47		274	151	35
	192	105	30		255	140	50		291	160	37
	222	122	32		265	146	52		312	171	40
	244	134	35		276	152	55		344	189	42
	264	145	37		293	161	57		354	194	47
	285	157	40		303	167	59		368	203	50
	312	171	42		321	177	61		383	211	52
	336	185	45		324	178	66		398	219	55
	344	189	47		327	180	69		425	234	57
Metal S	Shell 14"Ф	w/.25" wall	s		331	182	71		439	241	59
	193	106	25		361	198	91		469	258	61
	212	116	27		391	215	111		471	259	66
	227	125	30		420	231	131		475	261	69
	265	146	32		450	248	151		481	264	71
	291	160	35	Steel	HP 12 X 53				522	287	91
	314	173	37		166	91	30		564	310	111
	339	186	40		205	112	32	Steel	HP 14 X 89		
	371	204	42		222	122	35		192	106	27
	398	219	45		237	130	37		204	112	30
	405	223	47		254	140	40		257	141	32
Metal S	Shell 14"Φ	w/.312" wa	lls		280	154	42		278	153	35
	193	106	25		293	161	47		295	162	37
	212	116	27		305	168	50		316	174	40
	227	125	30		318	175	52		348	192	42
	265	146	32		330	182	55		358	197	47
	291	160	35		351	193	57		373	205	50
	314	173	37		363	200	59		388	213	52
	339	186	40		387	213	61		403	222	55
	371	204	42		389	214	66		430	236	57
	398	219	45		393	216	69		444	244	59
	405	223	47		397	218	71		475	261	61
	423	233	50	Steel	HP 12 X 63				477	262	66
	441	242	52		168	92	30		481	265	69
	459	252	55		207	114	32		486	268	71
	484	266	57		225	124	35		529	291	91
	501	276	59		240	132	37		571	314	111
Steel H	IP 8 X 36				257	141	40		613	337	131
	192	106	47		282	155	42		655	360	151
	201	110	50		295	162	47		697	383	171
	209	115	52		308	169	50	Steel	HP 14 X 102		
	218	120	55		321	176	52		194	107	27
	230	126	57		333	183	55		207	114	30
	238	131	59		355	195	57		260	143	32
	250	138	61		366	202	59		282	155	35
	254	140	64		390	215	61		299	165	33 37
1	254	140	66		393	216	66		320	176	40
	204		00	I	000	210	00	I	520	170	-0

257	141	69	396	218	69	353	194	42
260	143	71	401	220	71	362	199	47
284	156	91	436	240	91	377	207	50
Steel HP 10 X 42			472	259	111	392	216	52
191	105	37	Steel HP 12 X 74			407	224	55
205	113	40	170	93	30	435	239	57
225	124	42	210	115	32	449	247	59
239	131	47	228	125	35	481	264	61
249	137	50	243	134	37	483	266	66
260	143	52	260	143	40	487	268	69
270	149	55	287	158	42	492	271	71
287	158	57	299	165	47	535	294	91
296	163	59	312	172	50	577	318	111
314	173	61	325	179	52	620	341	131
317	175	66	338	186	55	663	364	151
320	176	69	360	198	57	705	388	171
324	178	71	372	204	59	748	411	191
			396	218	61	790	435	211
			398	219	66	Steel HP 14 X 117		
			402	221	69	197	108	27
			406	224	71	209	115	30
			442	243	91	264	145	32
			478	263	111	286	157	35
			514	283	131	303	167	37
			550	303	151	324	178	40
			586	322	171	357	197	42
			Steel HP 12 X 84			366	201	47
			172	95	30	382	210	50
			213	117	32	397	218	52
			232	127	35	412	227	55
			247	136	37	440	242	57
			264	145	40	455	250	59
			291	160	42	487	268	61
			304	167	47	489	269	66
			316	174	50	493	271	69
			329	181	52	498	274	71
			342	188	55	541	298	91
			364	200	57	584	321	111
			377	207	59	627	345	131
			401	221	61	670	369	151
			404	222	66	713	392	171
			407	224	69	756	416	191
			412	227	71	799	440	211
			448	247	91	842	463	231
			485	267	111	Precast 14"x 14"		
			521	287	131	186	102	15
			558	307	151	214	118	17
			594	327	171	236	130	22
			630	347	191	246	135	25
						Timber Pile		

Pile Design Table for Center Pier utilizing Boring #2

-	oorgii i uk		er Pier uti					1			
	Nominal	Factored	Estimated		Nominal	Factored	Estimated		Nominal	Factored	Estimated
	Required	Resistance	Pile		Required	Resistance	Pile		Required	Resistance	Pile
	Bearing	Available	Length		Bearing	Available	Length		Bearing	Available	Length
	(Kips)	(Kips)	(Ft.)		(Kips)	(Kips)	(Ft.)		(Kips)	(Kips)	(Ft.)
Metal S	Shell 12"Ф	w/.179" wa	ls	Steel	HP 10 X 57			Steel I	HP 14 X 73		
	133	73	27		112	61	40		141	77	27
	143	79	30		154	85	42		151	83	30
	152	83	32		158	87	45		156	86	32
	160	88	35		169	93	52		157	86	37
	165	91	37		178	98	55		157	86	40
	166	91	40		190	105	57		237	130	42
Metal S	Shell 12"Φ	w/.25" walls	s		198	109	61		245	135	45
	133	73	27		214	118	64		245	135	52
	143	79	30		228	125	66		257	141	55
	152	83	32		239	131	69		277	152	57
	160	88	35		250	138	71		284	156	61
	165	91	37		304	167	83		311	171	64
	166	91	40		358	197	95		331	182	66
	263	145	52		412	227	107		347	191	69
	276	152	55	Steel	HP 12 X 53				363	200	71
	292	161	57	01001	132	73	40		438	200	83
	304	167	59		191	105	40		514	282	95
	308	170	61		195	107	45	Stool	HP 14 X 89	202	55
	326	170	64		203	107	43 52	Steeri	131	72	22
	344	189	66		203	117	55		143	72	27
Motal S		w/.25" walls			213	126	55 57		143	84	30
wielai S	133	73	22		229	120	57 61		153	87	30 32
	150	73 82	22 25		250 257	141	64		158	87	32 37
	150	86	25 27		257 274	141	66		158	87 87	37 40
			30		274 287						
	169	93	30 32		287 300	158	69 74		241	133	42
	178	98 104				165	71		248	136	52 55
	189	104	35	Steel	364	200	83		260	143	55
	194	107	37	Steel	HP 12 X 63	70	10		280	154	57
	195	107	40		133	73	40		287	158	61
	310	170	52		193	106	42		315	173	64
	325	178	55		198	109	45		336	185	66
	344	189	57		205	113	52		351	193	69
	358	197	59		215	118	55		367	202	71
	362	199	61		231	127	57		443	244	83
	384	211	64		238	131	61		520	286	95
	406	223	66		259	143	64		596	328	107
Metal S		w/.312" wa			276	152	66		672	370	119
	133	73	22		289	159	69	Steel I	HP 14 X 102		
	150	82	25		303	167	71		132	73	22
	157	86	27		367	202	83		144	79	27
	169	93	30		431	237	95		154	85	30
	178	98	32		495	272	107		160	88	32
	189	104	35	Steel	HP 12 X 74				160	88	37
	194	107	37		135	74	40		160	88	40
	195	107	40		196	108	42		244	134	42
	310	170	52		201	110	45		251	138	52
	325	178	55	1	207	114	52		263	145	55
	344	189	57		218	120	55		284	156	57
		197	59	1	234	129	57		290	160	61

362 199 61 242 133 61 318 175 384 211 64 263 145 664 366 186 66 406 223 66 280 154 66 356 196 425 234 69 294 161 69 372 204 444 244 71 307 169 71 449 247 Steel HP 8 X 36 57 502 276 107 673 374 156 86 59 567 312 119 756 416 157 86 61 136 75 40 134 74 168 92 64 136 75 40 134 80 178 98 66 199 10 42 146 80 240 132 83 221 121 55 162 89 <t< th=""><th>64 66 69 71 83 95 107 119 131 22 27 30 32 37 40 42 52</th></t<>	64 66 69 71 83 95 107 119 131 22 27 30 32 37 40 42 52
406 223 66 280 154 66 356 196 425 234 69 294 161 69 372 204 444 244 71 307 169 71 449 247 Steel HP 8 X 36	69 71 83 95 107 119 131 22 27 30 32 37 40 42
425 234 69 294 161 69 372 204 444 244 71 307 169 71 449 247 Steel HP 8 X 36 372 205 83 526 289 140 77 55 437 240 95 603 331 149 82 57 502 276 107 679 374 156 86 59 567 312 119 756 416 157 86 61 Steel HP 12 X 84 5 567 312 119 76 86 168 92 64 136 75 40 134 74 178 98 66 199 110 42 146 80 187 103 69 2241 121 45 162 89 283 156 95 237 131 57 162 89	71 83 95 107 119 131 22 27 30 32 37 40 42
444 244 71 307 169 71 449 247 Steel HP 8 X 36	83 95 107 119 131 22 27 30 32 37 40 42
Steel HP 8 X 36 372 205 83 526 289 140 77 55 437 240 95 603 331 149 82 57 502 276 107 679 374 156 86 59 567 312 119 756 416 157 86 61 Steel HP 12 X 84 57 40 134 74 168 92 646 199 110 42 146 80 187 103 69 204 112 45 166 86 196 108 71 210 116 52 161 89 240 132 83 221 121 55 162 89 283 156 95 237 131 57 162 89 510 83 42 284 156 66 147 109 60	95 107 119 131 22 27 30 32 37 40 42
140 77 55 437 240 95 603 331 149 82 57 502 276 107 679 374 156 86 59 567 312 119 756 416 157 86 61 Steel HP 12 X 84 567 301 420 134 74 168 92 64 136 75 40 134 74 178 98 66 199 110 42 146 80 187 103 69 204 112 455 156 86 196 108 71 210 116 52 161 89 240 132 83 221 121 55 162 89 283 156 95 237 131 57 162 89 109 60 40 267 147 64 254 140 </td <td>107 119 131 22 27 30 32 37 40 42</td>	107 119 131 22 27 30 32 37 40 42
149 82 57 502 276 107 679 374 156 86 59 567 312 119 756 416 157 86 61 Steel HP 12 X 84 136 75 40 134 74 178 98 66 199 110 42 146 80 187 103 69 204 112 45 156 86 196 108 71 210 116 52 161 89 240 132 83 221 121 55 162 89 283 156 95 237 131 57 162 89 109 60 40 267 147 64 247 136 150 83 42 284 156 66 266 147 154 85 45 298 164 69 287 158 <td>119 131 22 27 30 32 37 40 42</td>	119 131 22 27 30 32 37 40 42
149 82 57 502 276 107 679 374 156 86 59 567 312 119 756 416 157 86 61 Steel HP 12 X 84 136 75 40 134 74 168 92 64 136 75 40 134 74 178 98 66 199 110 42 146 80 187 103 69 204 112 45 156 86 196 108 71 210 116 52 161 89 240 132 83 221 121 55 162 89 283 156 95 237 131 57 162 89 109 60 40 267 147 64 254 140 150 83 42 284 156 66 266 147	131 22 27 30 32 37 40 42
156 86 59 567 312 119 756 416 157 86 61 Steel HP 12 X 84 1 567 567 40 134 74 168 92 64 136 75 40 134 74 178 98 66 199 110 42 146 80 187 103 69 204 112 45 156 86 196 108 71 210 116 52 161 89 240 132 83 221 121 55 162 89 283 156 95 237 131 57 162 89 5teel HP 10 X 42 245 135 61 247 136 150 83 42 284 156 66 266 147 154 85 45 298 164 69 287 <t< td=""><td>131 22 27 30 32 37 40 42</td></t<>	131 22 27 30 32 37 40 42
157 86 61 Steel HP 12 X 84 Steel HP 14 X 117 168 92 64 136 75 40 134 74 178 98 66 199 110 42 146 80 187 103 69 204 112 45 156 86 196 108 71 210 116 52 161 89 240 132 83 221 121 55 162 89 283 156 95 237 131 57 162 89 283 156 95 237 131 57 162 89 5teel HP 10 X 42 245 135 61 247 136 109 60 40 267 147 64 254 140 150 83 42 284 156 66 266 147 154 85 45 298	22 27 30 32 37 40 42
168 92 64 136 75 40 134 74 178 98 66 199 110 42 146 80 187 103 69 204 112 45 156 86 196 108 71 210 116 52 161 89 240 132 83 221 121 55 162 89 283 156 95 237 131 57 162 89 284 156 95 237 131 57 162 89 5teel HP 10 X 42 245 135 61 247 136 150 83 42 284 156 66 266 147 154 85 45 298 164 69 287 158 165 91 52 311 171 71 293 161 174 96	27 30 32 37 40 42
178 98 66 199 110 42 146 80 187 103 69 204 112 45 156 86 196 108 71 210 116 52 161 89 240 132 83 221 121 55 162 89 283 156 95 237 131 57 162 89 283 156 95 237 135 61 247 136 109 60 40 267 147 64 254 140 150 83 42 284 156 66 266 147 154 85 45 298 164 69 287 158 165 91 52 311 171 71 293 161 174 96 55 377 207 83 322 177 <td< td=""><td>27 30 32 37 40 42</td></td<>	27 30 32 37 40 42
187 103 69 204 112 45 156 86 196 108 71 210 116 52 161 89 240 132 83 221 121 55 162 89 283 156 95 237 131 57 162 89 Steel HP 10 X 42 245 135 61 247 136 109 60 40 267 147 64 254 140 150 83 42 284 156 66 266 147 154 85 45 298 164 69 287 158 165 91 52 311 171 71 293 161 174 96 55 377 207 83 322 177 186 102 57 443 244 95 344 189 194 107<	30 32 37 40 42
196 108 71 210 116 52 161 89 240 132 83 221 121 55 162 89 283 156 95 237 131 57 162 89 Steel HP 10 X 42 245 135 61 247 136 109 60 40 267 147 64 254 140 150 83 42 284 156 66 266 147 154 85 45 298 164 69 287 158 165 91 52 311 171 71 293 161 174 96 55 377 207 83 322 177 186 102 57 443 244 95 344 189 194 107 61 574 316 119 376 207 210 11	32 37 40 42
240132832211215516289283156952371315716289Steel HP 10 X 422451356124713610960402671476425414015083422841566626614715485452981646928715816591523111717129316117496553772078332217718610257443244953441891941075950828010736019819410761574316119376207210115646403521314542502231236653229233524513571	37 40 42
283156952371315716289Steel HP 10 X 422451356124713610960402671476425414015083422841566626614715485452981646928715816591523111717129316117496553772078332217718610257443244953441891941075950828010736019819410761574316119376207210115646403521314542502231236666532292609335245135716464052131687378	40 42
Steel HP 10 X 42 245 135 61 247 136 109 60 40 267 147 64 254 140 150 83 42 284 156 66 266 147 154 85 45 298 164 69 287 158 165 91 52 311 171 71 293 161 174 96 55 377 207 83 322 177 186 102 57 443 244 95 344 189 194 107 59 508 280 107 360 198 194 107 61 574 316 119 376 207 210 115 64 640 352 131 454 250 223 123 66 532 292 609 335 245 135 71 687 378	42
109604026714764254140150834228415666266147154854529816469287158165915231117171293161174965537720783322177186102574432449534418919410759508280107360198194107615743161193762072101156464035213145425023412969	
15083422841566626614715485452981646928715816591523111717129316117496553772078332217718610257443244953441891941075950828010736019819410761574316119376207210115646403521314542502231236657153229260933524513571564567378687378	
15485452981646928715816591523111717129316117496553772078332217718610257443244953441891941075950828010736019819410761574316119376207210115646403521314542502231236653229223412969687378	
165915231117171293161174965537720783322177186102574432449534418919410759508280107360198194107615743161193762072101156464035213145425022312366532292609335669532378245135711111687378	55 57
1749655377207833221771861025744324495344189194107595082801073601981941076157431611937620721011564640352131454250223123665322926093352451357111687378	57 61
186102574432449534418919410759508280107360198194107615743161193762072101156464035213145425022312366532292609335245135715454687378	61
1941075950828010736019819410761574316119376207210115646403521314542502231236653229260933523412969697687378	64
1941076157431611937620721011564640352131454250223123665322922341296960933524513571687378	66
21011564640352131454250223123665322922341296960933524513571687378	69
223123665322922341296960933524513571687378	71
234 129 69 609 335 245 135 71 687 378	83
245 135 71 687 378	95
	107
298 164 83 765 421	119
	131
843 463	143
Precast 14"x 14"	
142 78	20
169 93	22
191 105	25
200 110	27
216 119	30
227 125	32
240 132	35
247 136	37
248 136	40
Timber Pile	-
136 75	30
146 80	32
I II II	