

STRUCTURE GEOTECHNICAL REPORT

F.A.P. 332 (IL 1) over CSX RR Retaining Wall

Proposed S.N. 012-W009

Clark County, Illinois

**F.A.P. 332 (IL 1)
SECTION (FX-VBR) B-1
CLARK COUNTY, ILLINOIS
JOB NO. P-97-098-20
CONTRACT NO. 74433
PTB 198-025
KEG NO. 21-1009.01**

Authored By:

**Matt D. Masterson, P.E.
Christoph Opperman, E.I.
Kaskaskia Engineering Group, LLC
208 East Main Street, Suite 100
Belleville, IL 62220
(618)233-5877
mmasterson@kaskaskiaeng.com**

Prepared for:

**ESCA Consultants
2008 Linview Avenue
PO Box 159
Urbana, IL 61803**

**September 21, 2021
REVISED December 16, 2022**

Kaskaskia
Engineering Group, LLC

12/16/2022
Exp. 11/30/2023

TABLE OF CONTENTS

1.0	Project Description and Scope	1
1.1	Introduction	1
1.2	Project Description.....	1
1.3	Proposed Structure Information	1
2.0	Existing Site Information.....	1
3.0	Subsurface Exploration and Generalized Subsurface Conditions	1
3.1	Bedrock	2
3.2	Groundwater	2
4.0	Geotechnical Evaluations	2
4.1	Settlement	2
4.2	Slope Stability	3
4.3	Seismic Considerations	4
5.0	Foundation Recommendations.....	4
5.1	Bearing Resistance.....	4
5.2	Site Grading and Drainage.....	5
6.0	Construction Considerations.....	5
6.1	Construction Activities.....	5
7.0	Computations	5
8.0	Geotechnical Data.....	5
9.0	Limitations	5

TABLES/FIGURES

Table 3.0 – Boring Depth and Location	2
Table 3.1 – Elevation of Top of Bedrock	2
Table 4.2 – Slope Stability Critical FOS.....	4
Table 4.3 – Seismic Design Parameters	4

Exhibit A	– Location Map
Exhibit B	– Boring Plan
Exhibit C	– Type, Size, and Location Plan (TS&L)
Exhibit D	– Boring Logs
Exhibit E	– Subsurface Profile
Exhibit F	– Settlement Calculations
Exhibit G	– Slope/W Slope Stability Analysis
Exhibit H	– Bearing Resistance Calculations

1.0 Project Description and Scope

1.1 Introduction

The geotechnical study summarized in this report was performed by Kaskaskia Engineering Group, LLC (KEG) for the proposed MSE wall along IL 1 over CSX railroad in Marshall, in Clark County, Illinois. The purpose of this report is to present geotechnical design and construction recommendations for the proposed structure.

1.2 Project Description

The project consists of constructing an MSE wall to provide embankment support of IL 1 during reconstruction of the existing bridge over the CSX railroad from Station 1169+25.00 to Station 1175+38.54. The general location of the wall is shown on a Location Map, included in Exhibit A. The site lies within the Springfield Plain of the Till Plains Section of the Central Lowland Province.

1.3 Proposed Structure Information

The proposed MSE wall will run South-North along the west side of IL 1 from a bridge structure over the CSX railroad, from Station 1169+25.00 to Station 1175+38.54. It will measure approximately 615 lineal feet along the front face of the wall. Based on the proposed cross-sections provided, the MSE wall will have a maximum exposed face height of 20-feet and 11-inches, with a total maximum wall height of 24-feet and 5-inches. See Exhibit C -Type, Size and Location Plan (TS&L) for additional information.

2.0 Existing Site Information

The new MSE wall will be a permanent structure that would avoid encroachment onto a Superfund site in the northwest quadrant of the crossing of IL 1 over the CSX railroad (Structure Number 012-0014).

3.0 Subsurface Exploration and Generalized Subsurface Conditions

The site investigation plan was developed and performed by KEG. A KEG representative was on-site to coordinate and log the borings, make site observations, and collect soil samples.

Eight standard penetration test (SPT) borings, designated RWB-1, RWB-2, RWB-3, RWB-4, RWB-5, RWB-6, RWB-7, and RWB-8 were drilled from June 28 through June 30, 2021. The boring layout is shown in Exhibit B. Detailed information regarding the nature and thickness of the soils encountered and the results of the field sampling and laboratory testing are shown on the Boring Logs, Exhibit D. A soil profile can be found in Exhibit E - Subsurface Profile.

Table 3.0 - Boring Depth and Location

Designation	Boring Depth (ft.)	Station	Offset (ft.)
RWB-1	20.0	1170+00.13	62.0 LT
RWB-2	16.3	1170+72.26	57.1 LT
RWB-3	20.0	1171+45.60	56.2 LT
RWB-4	20.0	1172+18.90	56.3 LT
RWB-5	20.0	1173+01.99	55.9 LT
RWB-6	20.0	1173.75.89	54.3 LT
RWB-7	20.0	1174+50.33	53.9 LT
RWB-8	20.0	1175+24.19	50.5 LT

The overburden soils were predominantly medium-stiff to stiff clays, clay loams, silty clay loams, sandy clay loams, and sandy clay loam tills down to shale and sandstone bedrock. Detailed information regarding the nature and thickness of the soils and rock encountered are shown on the Boring Logs - Exhibit D and Subsurface Profiles – Exhibit E.

3.1 Bedrock

Elevations of top of sandstone bedrock for all the borings are shown in Table 3.1 below:

Table 3.1 - Elevation of Top of Bedrock

Designation	Station	Offset	Top of Rock Elevation (ft.)
RWB-1	1170+00.13	62.0 LT	619.8
RWB-2	1170+72.26	57.1 LT	619.6
RWB-3	1171+45.60	56.2 LT	620.3
RWB-4	1172+18.90	56.3 LT	620.7
RWB-5	1173+01.99	55.9 LT	620.9
RWB-6	1173.75.89	54.3 LT	621.4
RWB-7	1174+50.33	53.9 LT	622.2
RWB-8	1175+24.19	50.5 LT	622.5

3.2 Groundwater

Groundwater was first encountered during drilling at a depth of 13.5 feet in Boring RWB-2, 16 feet in Boring RWB-5 and 7, and 16.5 feet in Boring RWB-8.

Without extended periods of observation, measurement of true groundwater levels may not be possible. It should be further noted that the groundwater level is subject to seasonal and climatic variations, including the level of adjacent affluents.

4.0 Geotechnical Evaluations

4.1 Settlement

Based on the borings completed for the proposed wall and the nature of the soils encountered in the borings, estimates of settlement were necessary. Although the existing soils of the current

approach embankment have most likely consolidated and settled over time in response to the current loading conditions, the proposed new wall-supported embankment configuration will result in potential settlements during and after construction completion.

Borings RWB-3 and RWB-5 were utilized for the settlement analysis. No specific consolidation testing was completed, and empirical methods were used for estimation of the settlement.

Settlement ranging from to 7.49 in. to 15.29 in. was calculated for the proposed wall-supported embankment. This settlement included three layers estimated as being normally consolidated relative to the overburden pressure plus the load from the new fill. The time for 50 percent consolidation (t_{50}) was calculated as ranging from about 4 to 15 days, and the time for 90 percent consolidation (t_{90}) ranging from 20 to 60 days. Times were also calculated utilizing wick drains on a 5-ft. triangular spacing, assuming that the drains were extended to the sandstone below the base of the new fill. With the wick drains, t_{50} was calculated to range from 1 to 2 days and t_{90} ranging from 3 to 10 days. While the wick drains will help to reduce the time for consolidation, they will not reduce the magnitude of settlement.

Due to the high estimated settlement amounts for the wall-supported embankment, its backfill, and the structures it will support, ground improvement will be required for support of the embankment. Ground improvement could consist of surcharging the fill area before the wall is constructed if the construction schedule would allow. If the layout of the site is such that the surcharge fill cannot be placed or if the construction schedule will not allow for an estimated 60 - day surcharge without wick drains, or a 10-day surcharge with wick drains, then other methods will need to be considered, such as aggregate column ground improvement (ACGI). We recommend that settlement platforms be utilized during embankment and/or surcharge construction for monitoring of the settlement. Once settlement monitoring indicates that movement is essentially complete, the surcharge could be removed, and the proposed wall could be installed. Calculations are attached as Exhibit F - Settlement Calculations.

In our opinion, removal and replacement is not a viable option due to the need to support the existing roadway to keep it open to traffic and to overexcavate the settlement impacted material out, as the material would need to be excavated out for the entire retained zone down to the top of bedrock, or within 1-foot of the top of bedrock behind the wall, not just the wall face. Due to the proximity of the wall and retained zone to that of the section of roadway embankment to remain, extensive shoring would be required to support such a large exposed soil excavation. ACGI would allow for installation of columns below the depth of the retained zone of the wall while leaving the soils in place for proper support of the existing embankment to remain in place.

4.2 Slope Stability

A stability analysis using SLOPE/W was performed for the proposed MSE wall using the proposed geometry on the cross-sections provided at Station 1171+50 and Station 1173+00 and the soil characteristics from Boring RWB-3 and Boring RWB-5. Two conditions were modeled: end-of-construction (Undrained) and long-term (Drained). A critical factor of safety (FOS) was calculated for each condition. According to current standard of practice, the target FOS is 1.5 for end of construction (EOC) and long-term conditions, which was achieved during the analysis.

In order to model the EOC and Long Term conditions, composite values for cohesion and friction angle were used to model the natural soils improved with Aggregate Column Ground Improvements.

The Bishop Circular Method, which generates circular-shaped failure surfaces, was used to

calculate the critical failure surfaces and FOS for the proposed conditions, as shown in Table 4.2. SLOPE/W program output from this analysis for the wall can be found in Exhibit G - SLOPE/W Slope Stability Analysis.

Table 4.2 – Slope Stability Critical FOS

Station	End-of- Construction	Long-Term
1171+50	2.3	1.5
1173+00	2.4	1.6

Acceptable FOS were obtained for the end-of-construction and long-term conditions as described above, with improvements to the natural soils supporting the proposed MSE wall as recommended in this report.

4.3 Seismic Considerations

Based on procedures outlined in AASHTO specifications and the subsurface conditions encountered, the site can be classified as Site Class D for foundation design. Seismic design parameters for the site based on Site Class D are listed below in Table 4.3, as follows:

Table 4.3 - Seismic Design Parameters

Parameter	Value
Soil Site Class	D
Spectral Response Acceleration, 0.2 Sec, S _{D2}	0.355g (Site Class D)
Spectral Response Acceleration, 1.0 Sec, S _{D1}	0.172g (Site Class D)
Seismic Performance Zone	2

5.0 Foundation Recommendations

5.1 Bearing Resistance

Based on the 2017 AASHTO LRFD Bridge Design Specifications, 8th Edition, with an estimated footing width of 2 feet; equation 10.6.3.1.2a-1, Table 10.5.5.2.2-1, and related sub-sections; a factored bearing resistance of 2,780 psf was estimated for wall footings bearing in competent clay, based on a Resistance Factor of 0.5. Calculations are included in Exhibit H – Bearing Resistance Calculations.

Retaining walls can be designed with an allowable coefficient of friction (resistance factor) between the base of the concrete footing and a clay subgrade of 0.85.

5.2 Site Grading and Drainage

Positive site drainage should be provided to reduce surface water infiltration around the perimeter of the wall. All grades should be sloped away from the wall, and surface drainage should be collected and discharged such that water is not permitted to pool or infiltrate any backfill of the wall.

6.0 Construction Considerations

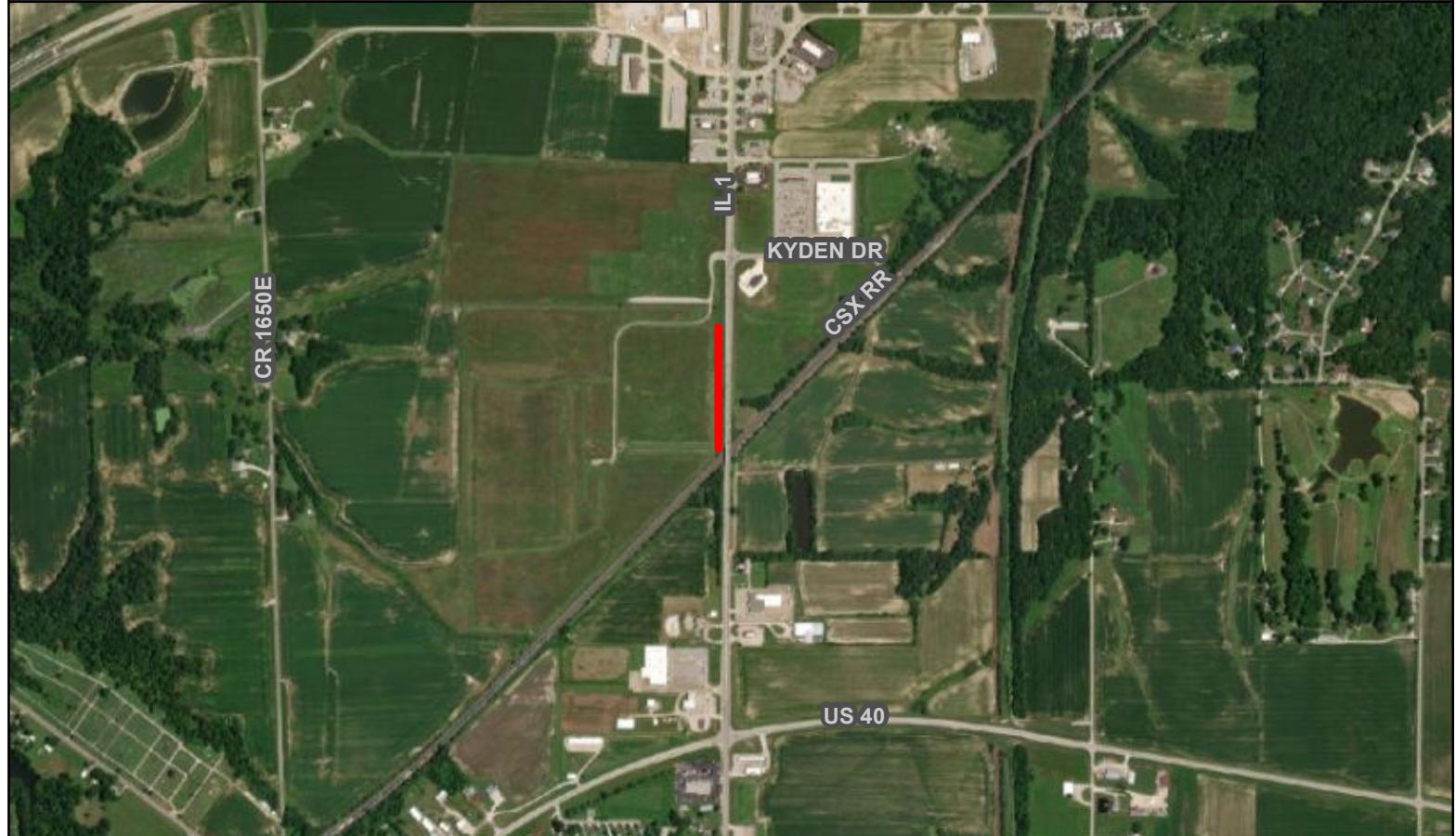
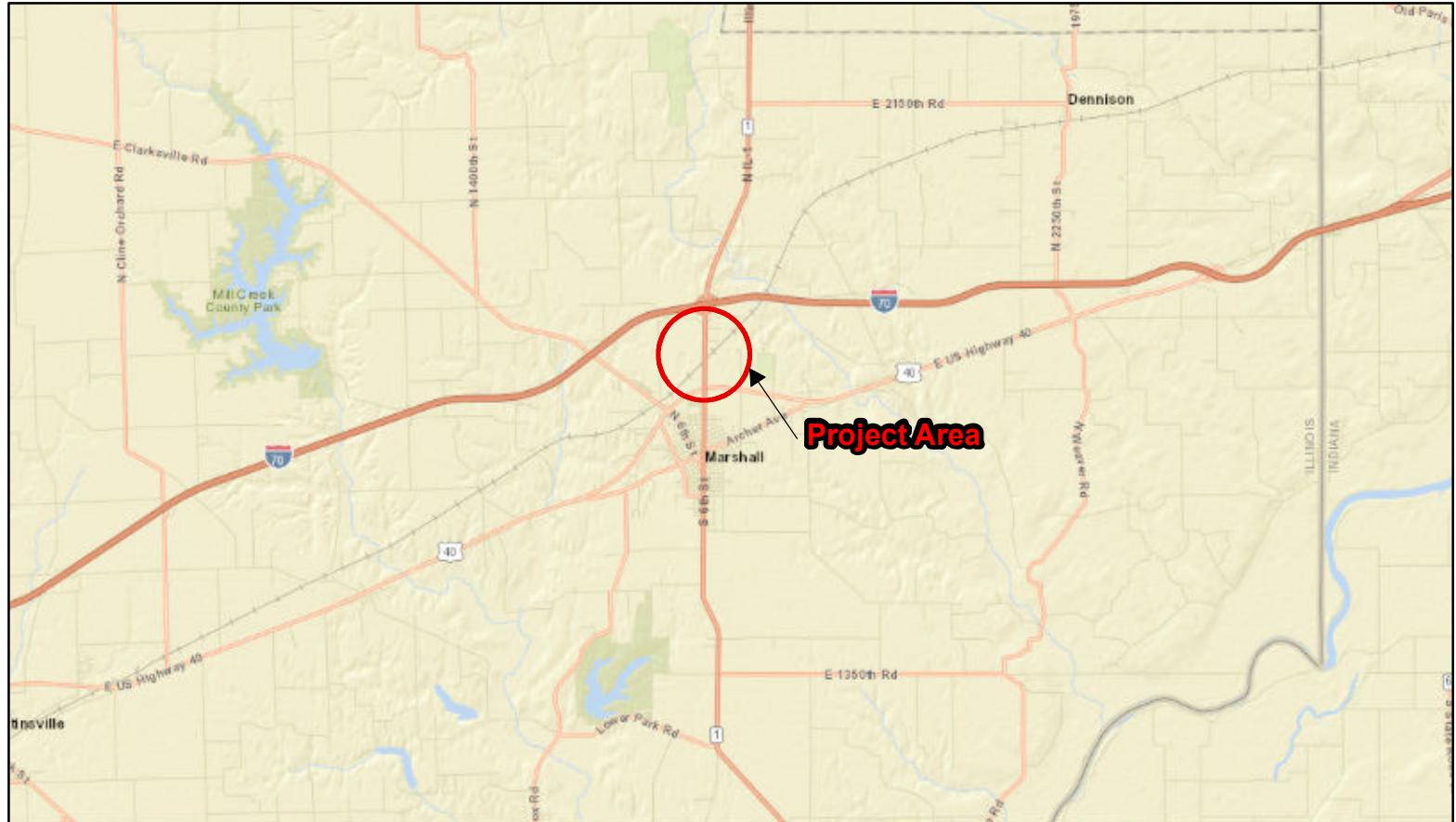
6.1 Construction Activities

Construction activities should be performed in accordance with the current IDOT Standard Specifications for Road and Bridge Construction and any pertinent Special Provisions or Policies.

Should any MSE wall or embankment design considerations assumed by either ESCA, IDOT, or KEG change, KEG should be contacted to determine if the recommendations stated in this report still apply.

7.0 Computations

Computations and analyses for special circumstances, if any, are included as Exhibits. Please refer to each section of the report for reference to the Exhibit containing any such calculations or analysis used.



8.0 Geotechnical Data

Soil borings can be found in Exhibit D. The Subsurface Profile can be found in Exhibit E.

9.0 Limitations

The recommendations provided herein are for the exclusive use of ESCA Consultants, Inc. and IDOT. They are specific only to the project described and are based on subsurface information obtained by KEG at eight boring locations within the project area, KEG's understanding of the project as described herein, and geotechnical engineering practice consistent with the standard of care. No other warranty is expressed or implied. KEG should be contacted if conditions encountered during construction are not consistent with those described.

EXHIBIT A
LOCATION MAP

EXHIBIT B
BORING PLAN

RWB-8 •
RWB-7 •
RWB-6 •
RWB-5 •
RWB-4 •
RWB-3 •
RWB-2 •
RWB-1 •

CSX RR

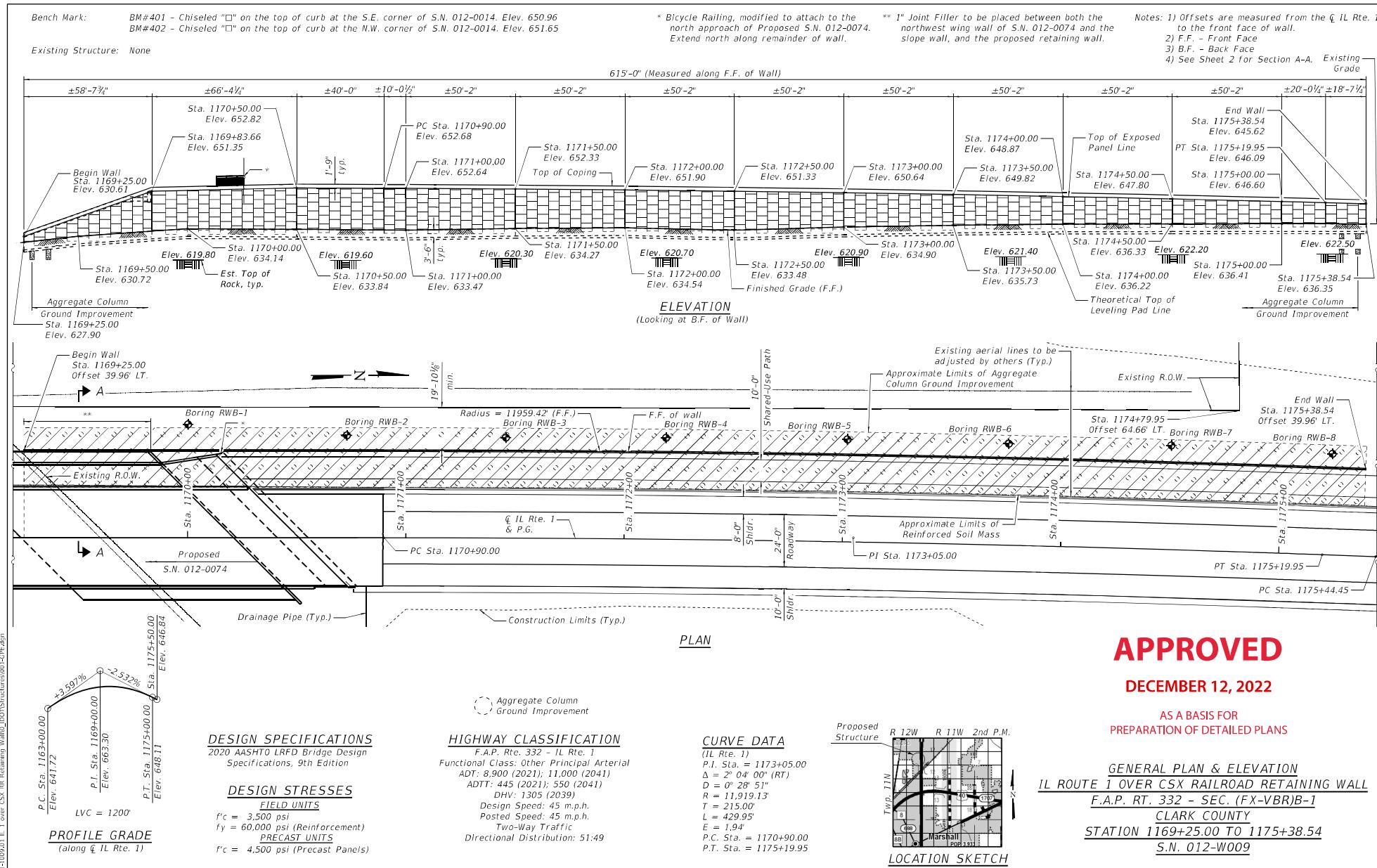
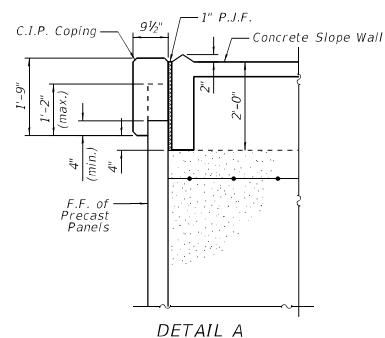
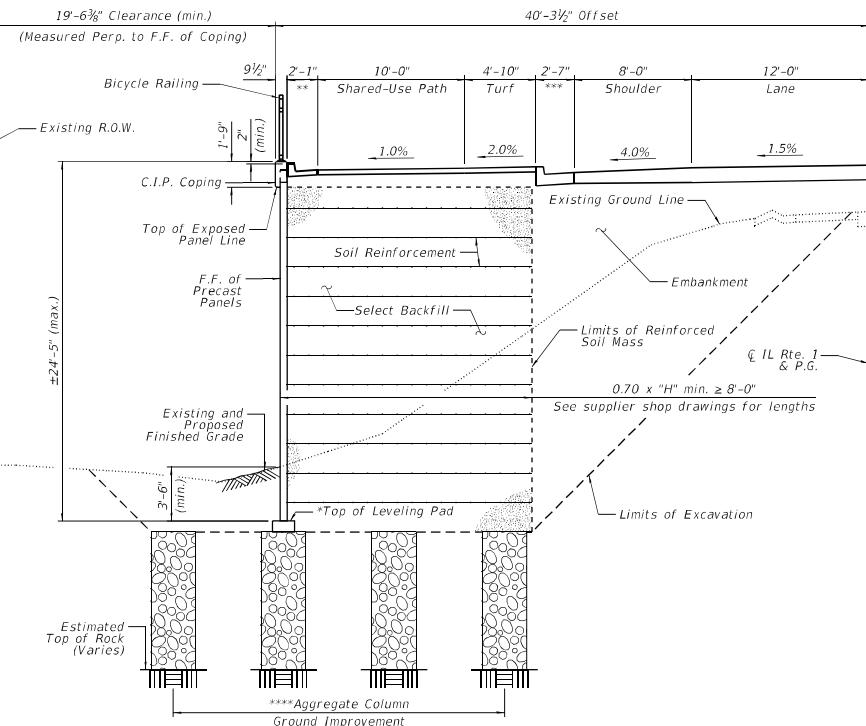
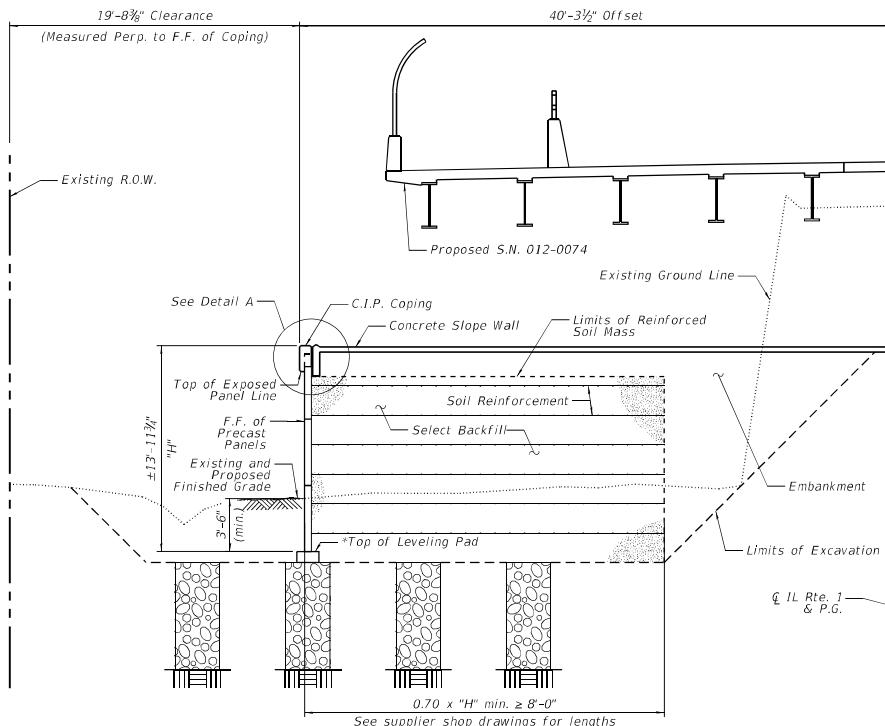

BORING LOCATION MAP
IL 1 over CSX Retaining Wall
Marshall, Illinois

Exhibit No.

B




EXHIBIT C

TYPE, SIZE, AND LOCATION PLAN (TS&L)

USER NAME	=	DESIGNED -	MMC	REVISED	06/02/2022 - MMC
		CHECKED -	JW	REVISED	10/12/2022 - MMC
PILOT SCALE	=	DRAWN -	MMC	REVISED	10/20/2022 - MMC
PILOT DATE	=	CHECKED -	JW	REVISED	-

F.A.P. RTE.	SECTION	COUNTY	TOTAL SHEETS	SHEET NO.
332	(FX-VBR)B-1	CLARK	1	1

* Dimensions of Leveling Pad to be determined during final design.
** Combination Concrete Curb and Gutter Type B-6.18
*** Curb & Gutter (See Roadway Plans)
**** Size, depth, and spacing of Aggregate Column Ground Improvement to be determined in design phase.

APPROVED

DECEMBER 12, 2022

AS A BASIS FOR
PREPARATION OF DETAILED PLANS

DETAILS

IL ROUTE 1 OVER CSX RAILROAD RETAINING WALL
F.A.P. RT. 332 - SEC. (FX-VBR)B-1
CLARK COUNTY
STATION 1169+25.00 TO 1175+38.54
S.N. 012-W009

EXHIBIT D
BORING LOGS

ROUTE FAP 332 (IL-1) DESCRIPTION IL 1 Over CSX RR Retaining Wall LOGGED BY KEG

SECTION (FX-VBR)B-1 **LOCATION** Clark County, IL

COUNTY Clark **DRILLING METHOD** HSA **HAMMER TYPE** AUTO

STRUCT. NO.	012-0074	D	B	U	M	Surface Water Elev.		ft	
Station	1169+65.27	E	L	C	O	Stream Bed Elev.		ft	
BORING NO.	RWB-1	P	O	S	I	Groundwater Elev.:			
Station	1170+00.13	T	W		S	First Encounter		ft	
Offset	62.0 ft LT	H	S	Qu	T	Upon Completion		ft	
Ground Surface Elev.	631.76	ft	(ft)	(/6")	(tsf)	(%)	After	Hrs.	ft

CLAY - Brown, medium-stiff, with trace organics			
1" coarse sand seam at 2'	WH		
	1	1.7	25
	1	B	
with trace sand			
	2		
	2	1.0	20
	3	B	
	-5		
Shelby Tube Pushed 6'-8' Recovery 23"			
		1.8	
		P	
CLAY LOAM - Brown, medium-stiff	623.3		
		3	
		5	1.8
		6	B
	-10		
SANDY CLAY LOAM - Brown, medium-stiff, moist	621.3		
		2	
		3	0.7
		14	B
SANDSTONE - Tan, highly weathered, dense	619.8		
		13	
		16	4.5
		22	P
	-15		
SHALE - Brown, moderately hard	618.8		
		41	
		50/1"	3.5
		-	P
		12	
		34	4.6
		50/2"	B
	611.8		
		20	

End of Boring

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer)
The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

ROUTE FAP 332 (IL-1) DESCRIPTION IL 1 Over CSX RR Retaining Wall LOGGED BY KEG

SECTION _____ **(FX-VBR)B-1** **LOCATION** _____ Clark County, IL _____

COUNTY Clark **DRILLING METHOD** HSA **HAMMER TYPE** AUTO

CLAY - Brown and gray, medium-stiff			
	WH		
	2	0.8	26
	2	B	
629.6			
CLAY LOAM - Brown, medium-stiff			
	1		
	2	1.0	21
	3	B	
	-5		
	3		
625.6			
SILTY CLAY LOAM TILL - Brown, medium-stiff			
	6	1.6	20
	8	B	
	3		
	5	2.4	18
	6	B	
	-10		
becomes moist at 11'	1		
	2	0.9	18
	3	B	
619.6			
SANDSTONE - Brown and red, highly weathered, very dense, with clay seams less than 1/2"	▼		
	18		
	26	-	14
	30		
	-15		
Sampler Refusal on Sandstone Bedrock. Boring Terminated at 16.3'.			
616.3	50/3"		
End of Boring	-	-	19
	-		
	-20		

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer)
The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

ROUTE FAP 332 (IL-1) DESCRIPTION IL 1 Over CSX RR Retaining Wall LOGGED BY KEG

SECTION (FX-VBR)B-1 **LOCATION** Clark County, IL

COUNTY Clark **DRILLING METHOD** HSA **HAMMER TYPE** AUTO

STRUCT. NO.	012-0074	D	B	U	M	Surface Water Elev.	ft
Station	1169+65.27	E	L	C	O	Stream Bed Elev.	ft
BORING NO.	RWB-3	P	O	S	I	Groundwater Elev.:	
Station	1171+45.60	T	W		S	First Encounter	ft
Offset	56.2 ft LT	H	S	Qu	T	Upon Completion	ft
Ground Surface Elev.	633.31	ft	(ft)	(/6")	(tsf)	After Hrs.	ft

CLAY - Brown and gray, medium-stiff, with trace sand

1		
2	0.8	30
3	B	
630.3		
CLAY LOAM - Brown, medium-stiff		
2		
3	1.2	28
-5	B	
3		
3	1.1	17
4	B	
625.3		
SILTY CLAY LOAM TILL - Brown, stiff		
4		
6	3.1	18
5	B	
-10		
3		
9	3.3	18
12	B	
620.3		
SANDSTONE-Brown, highly weathered, medium-dense, moist		
13		
15	-	12
-15		
9		
50/4"		
-	-	13
-		
becomes gray and brown, very dense, strong petroleum odor at 16'		
50/4"		
-	-	13
-		
becomes brown		
613.3		

End of Boring

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer)
The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

ROUTE FAP 332 (IL-1) DESCRIPTION IL 1 Over CSX RR Retaining Wall LOGGED BY KEG

SECTION (FX-VBR)B-1 **LOCATION** Clark County, IL

COUNTY Clark **DRILLING METHOD** HSA **HAMMER TYPE** AUTO

STRUCT. NO.	012-0074	D	B	U	M	Surface Water Elev.	ft	
Station	1169+65.27	E	L	C	O	Stream Bed Elev.	ft	
BORING NO.	RWB-4	P	O	S	I	Groundwater Elev.:		
Station	1172+18.90	T	W		S	First Encounter	ft	
Offset	56.3 ft LT	H	S	Qu	T	Upon Completion	ft	
Ground Surface Elev.	633.69	ft	(ft)	(/6")	(tsf)	(%)	After _____ Hrs.	ft

Soil profile log showing depths, horizons, and properties for three soil types: CLAY, SILTY CLAY LOAM TILL, and SANDSTONE.

CLAY - Brown and gray, medium-stiff, with trace sand

	1		
	2	1.2	23
	2	B	
630.7			
CLAY LOAM - Brown, medium-stiff			
	3		
	3	1.1	22
	3	B	
-5			
	3		
	3	1.3	31
	4	B	
625.7			
SILTY CLAY LOAM TILL - Brown, medium-stiff			
	4		
	4	2.0	24
	5	B	
-10			
	2		
	2	0.7	20
	2	B	
620.7			
SANDSTONE - Brown, highly weathered, very dense			
	17		
	31	-	15
	39		
-15			
	50/4"		
	-	-	12
	-		
	50/3"		
	-	-	11
613.7			
becomes red			

End of Boring

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer)
The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

SOIL BORING LOG

ROUTE FAP 332 (IL-1) DESCRIPTION IL 1 Over CSX RR Retaining Wall LOGGED BY KEG

SECTION (FX-VBR)B-1 LOCATION Clark County, IL

COUNTY Clark DRILLING METHOD HSA HAMMER TYPE AUTO

STRUCT. NO. 012-0074
Station 1169+65.27

BORING NO. RWB-5
Station 1173+01.99
Offset 55.9 ft LT
Ground Surface Elev. 633.85 ft

D	B	U	M
E	L	C	O
P	O	S	I
T	W	Qu	S
H	S		
(ft)	(/6")	(tsf)	(%)

Surface Water Elev. _____ ft
Stream Bed Elev. _____ ft

Groundwater Elev.:
First Encounter 617.9 ft
Upon Completion _____ ft
After _____ Hrs. _____ ft

CLAY - Brown and gray, medium-stiff, with trace sand

WH			
WH	0.8	32	
2	B		

SILTY CLAY LOAM - Brown, medium-stiff

2			
2	1.0	20	
3	B		
-5			

Shelby Tube Pushed 6-8'
Recovery 24"

1.8			
P			

SANDY CLAY LOAM - Brown, medium-stiff

3			
4	2.6	18	
4	B		
-10			

SANDSTONE - Brown, highly weathered, very dense

WH			
WH	0.7	19	
2	B		

becomes wet at 16'

16			
30	-	16	
46			
-15			
25			
25	-	16	
26			
50/4"			
-20			

End of Boring

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer)
The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

ROUTE FAP 332 (IL-1) DESCRIPTION IL 1 Over CSX RR Retaining Wall LOGGED BY KEG

SECTION (FX-VBR)B-1 **LOCATION** Clark County, IL

COUNTY Clark **DRILLING METHOD** HSA **HAMMER TYPE** AUTO

STRUCT. NO.	012-0074	D	B	U	M	Surface Water Elev.	ft
Station	1169+65.27	E	L	C	O	Stream Bed Elev.	ft
BORING NO.	RWB-6	P	O	S	I	Groundwater Elev.:	
Station	1173+75.89	T	W		S	First Encounter	ft
Offset	54.3 ft LT	H	S	Qu	T	Upon Completion	ft
Ground Surface Elev.	634.38	ft	(ft)	(/6")	(tsf)	After Hrs.	ft

Soil profile log showing depths, soil types, and test results for various layers. The profile is divided into three main sections: a top section (631.4 to 622.9), a middle section (622.9 to 614.4), and a bottom section (614.4 to 504").

Depth (m)	Soil Type	Test 1	Test 2	Test 3
631.4 - 626.4	SILTY CLAY LOAM - Brown, medium-stiff	2, 3, 3	1.0, B	26
626.4 - 622.9	SILTY CLAY LOAM TILL - Brown, medium-stiff	3	2.4, B	17
622.9 - 621.4	SANDY CLAY LOAM - Brown, medium-stiff, moist	4, 3	1.8, B	23
621.4 - 504"	SANDSTONE - Brown, highly weathered, very dense	2, 3, 8	0.4, B	14
504" - 503"		48	-	16
503" - 502"		50/5"	-	21
502" - 501"		12	-	15
501" - 500"		39	-	21
500" - 499"		50/3"	-	15
499" - 498"		50/4"	-	15
498" - 497"		-	-	15

End of Boring

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer)
The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

ROUTE FAP 332 (IL-1) DESCRIPTION IL 1 Over CSX RR Retaining Wall LOGGED BY KEG

SECTION (FX-VBR)B-1 **LOCATION** Clark County, IL

COUNTY Clark **DRILLING METHOD** HSA **HAMMER TYPE** AUTO

STRUCT. NO.	012-0074	D	B	U	M	Surface Water Elev.		ft
Station	1169+65.27	E	L	C	O	Stream Bed Elev.		ft
BORING NO.	RWB-7	P	O	S	I	Groundwater Elev.:		
Station	1174+50.33	T	W		S	First Encounter	619.2	ft
Offset	53.9 ft LT	H	S	Qu	T	Upon Completion		ft
Ground Surface Elev.	635.17	ft	(ft)	(/6")	(tsf)	After Hrs.		ft

CLAY - Brown, medium-stiff, with trace sand

2			
3	1.7	27	
3	B		
632.2			

SILTY CLAY LOAM - Brown, medium-stiff

3			
5	1.1	14	
5	B		
-5			
629.7			

SILTY CLAY LOAM TILL - Brown, medium-stiff

4			
5	2.1	16	
7	B		
626.2			

SANDY CLAY LOAM TILL - Brown, medium-stiff

3			
3	1.0	17	
2	B		
-10			
3			
3	1.8	14	
6	B		
622.2			

SANDSTONE - Brown, highly weathered, very dense

26			
50/5"	-	13	
-15			
6			
30	4.0	18	
50/3"	P		
50/5"			
-	-	-	17
615.2			

becomes wet at 16'

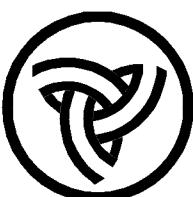
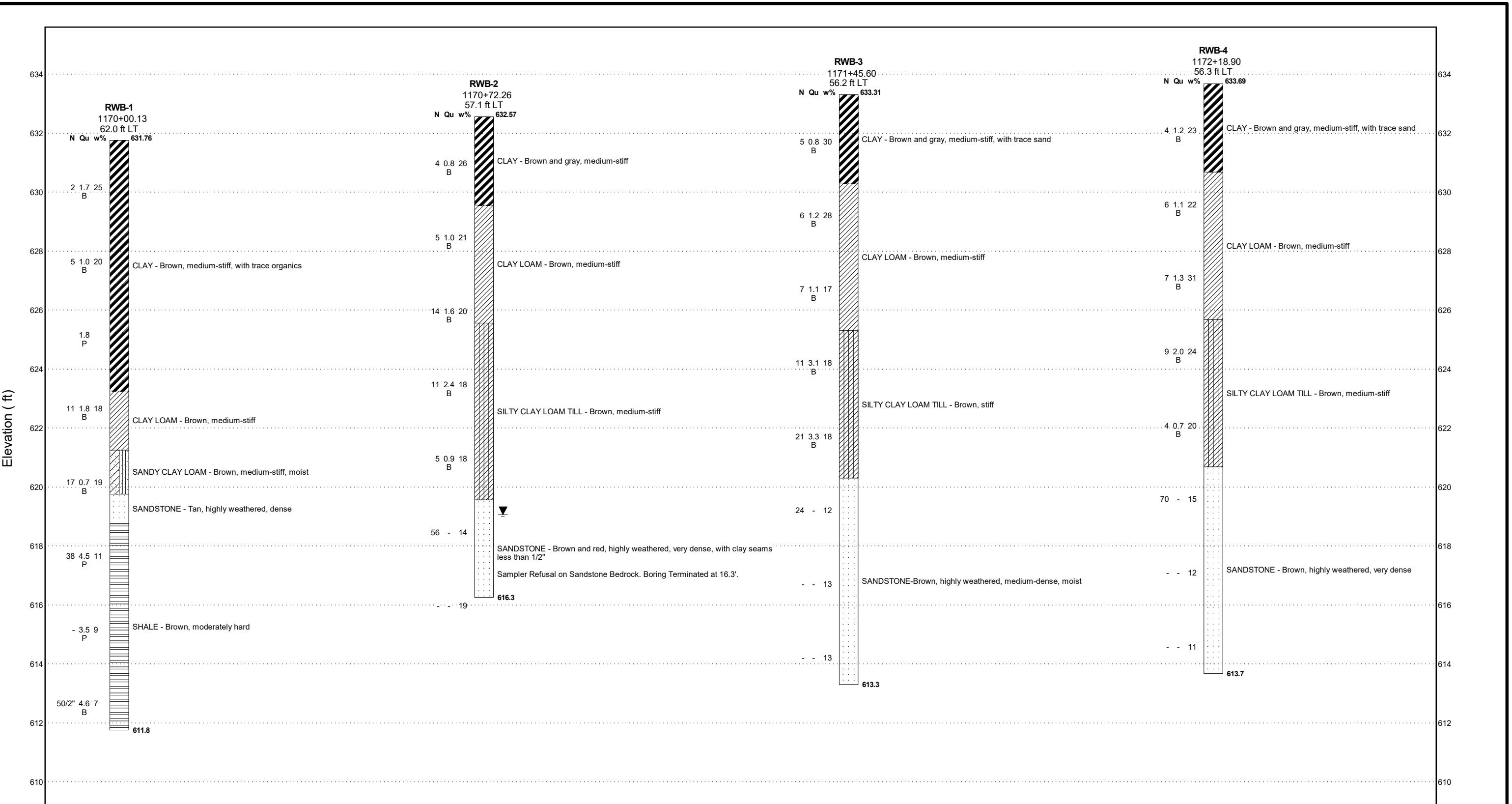
End of Boring

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

ROUTE FAP 332 (IL-1) DESCRIPTION IL 1 Over CSX RR Retaining Wall LOGGED BY KEG

SECTION (FX-VBR)B-1 **LOCATION** Clark County, IL

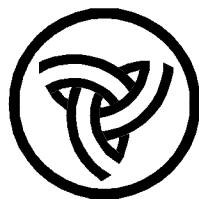
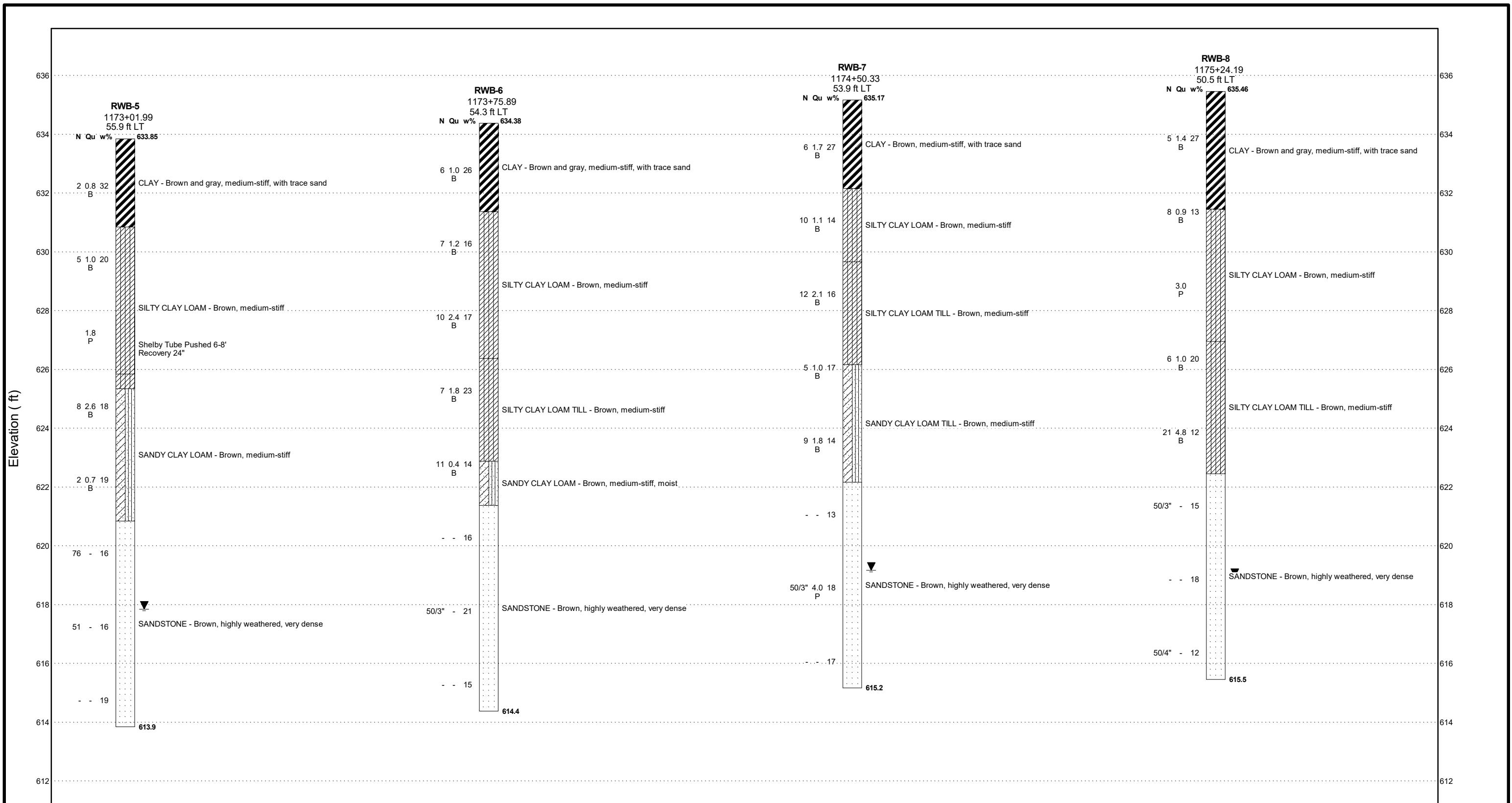
COUNTY Clark **DRILLING METHOD** HSA **HAMMER TYPE** AUTO



CLAY - Brown and gray, medium-stiff, with trace sand	1		
	2	1.4	27
	3	B	
	631.5	3	
SILTY CLAY LOAM - Brown, medium-stiff	4	0.9	13
	4	B	
	-5		
Shelby Tube Pushed 6-8' Recovery 19"		3.0	
		P	
	627.0		
SILTY CLAY LOAM TILL - Brown, medium-stiff	3		
	3	1.0	20
	3	B	
	-10		
	5		
becomes stiff at 11.5'	10	4.8	12
	11	B	
	622.5		
SANDSTONE - Brown, highly weathered, very dense	12		
	19	-	15
	50/3"		
	-15		
	50/5"		
becomes wet at 16.5'	-	-	18
	-		
	20		
	50	-	12
	50/4"		
	615.5		

End of Boring

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer)
The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

EXHIBIT E
SUBSURFACE PROFILE



Illinois Department of Transportation

Division of Highways

NOT TO HORIZONTAL SCALE

SUBSURFACE DATA PROFILE

Route: FAP 332 (IL-1)
Section: (FX-VBR)B-1
County: Clark

**Illinois Department
of Transportation**
Division of Highways

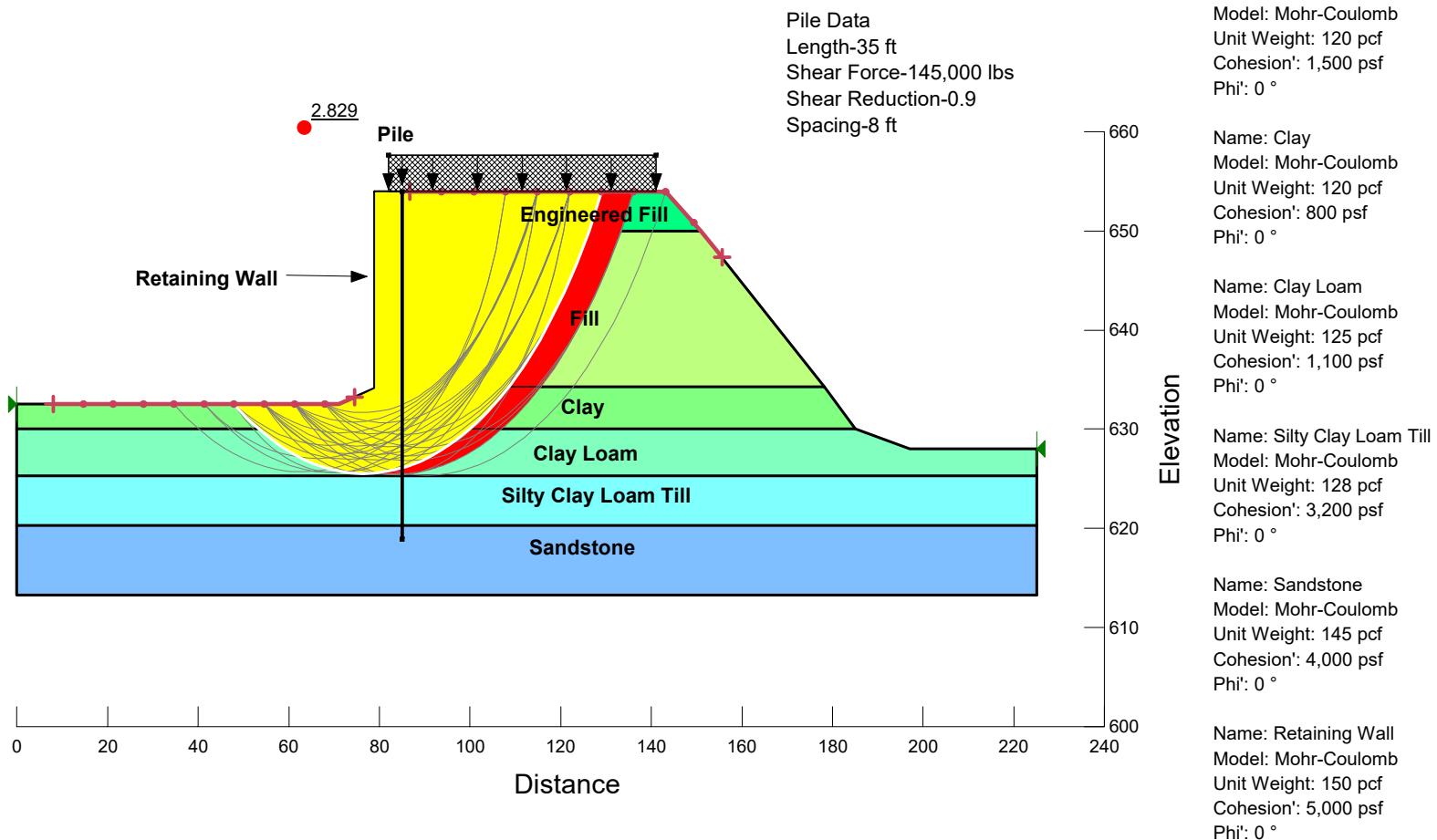
NOT TO HORIZONTAL SCALE

SUBSURFACE DATA PROFILE

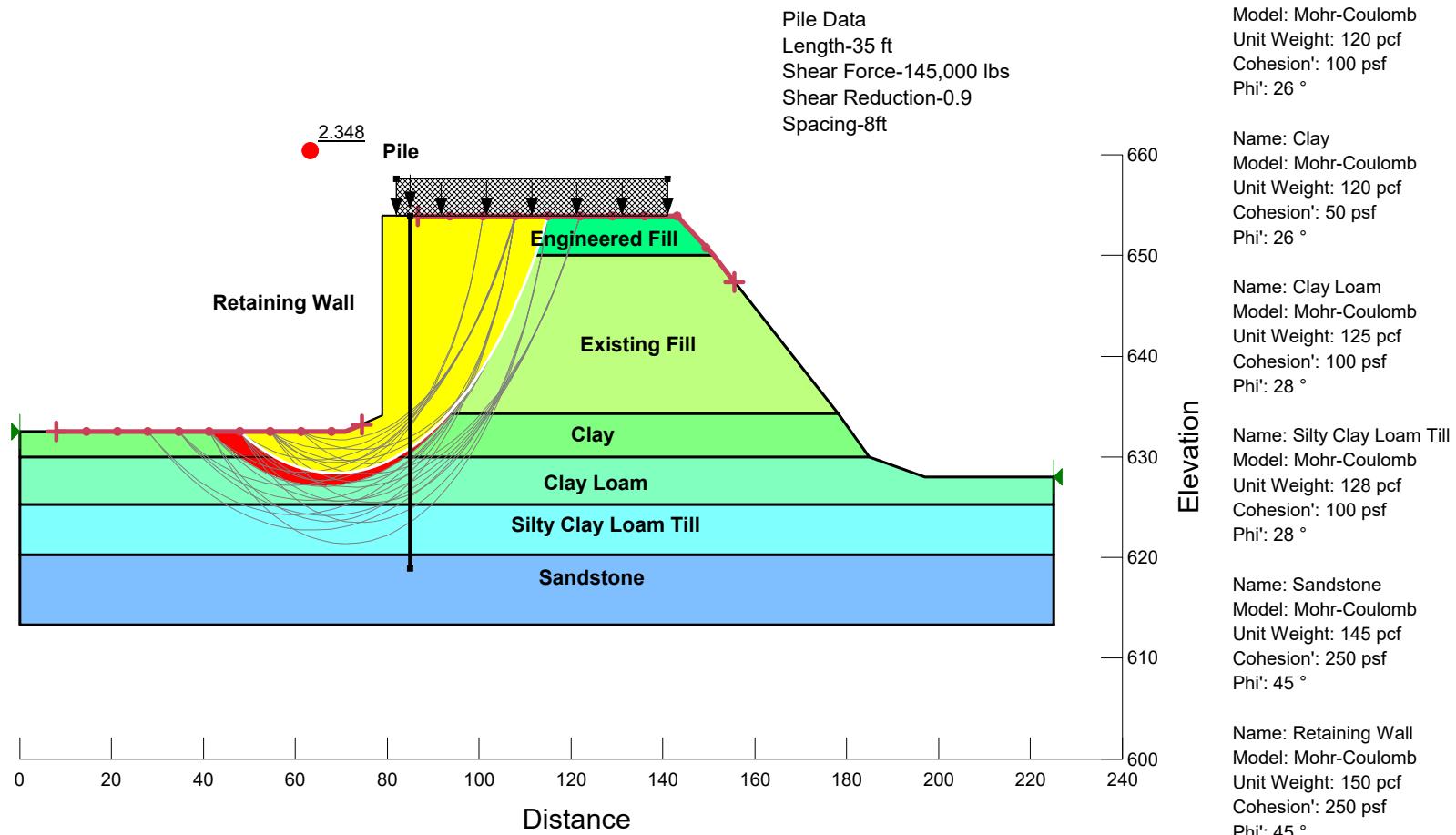
Route: FAP 332 (IL-1)
Section: (FX-VBR)B-1
County: Clark

EXHIBIT F
SETTLEMENT CALCULATIONS

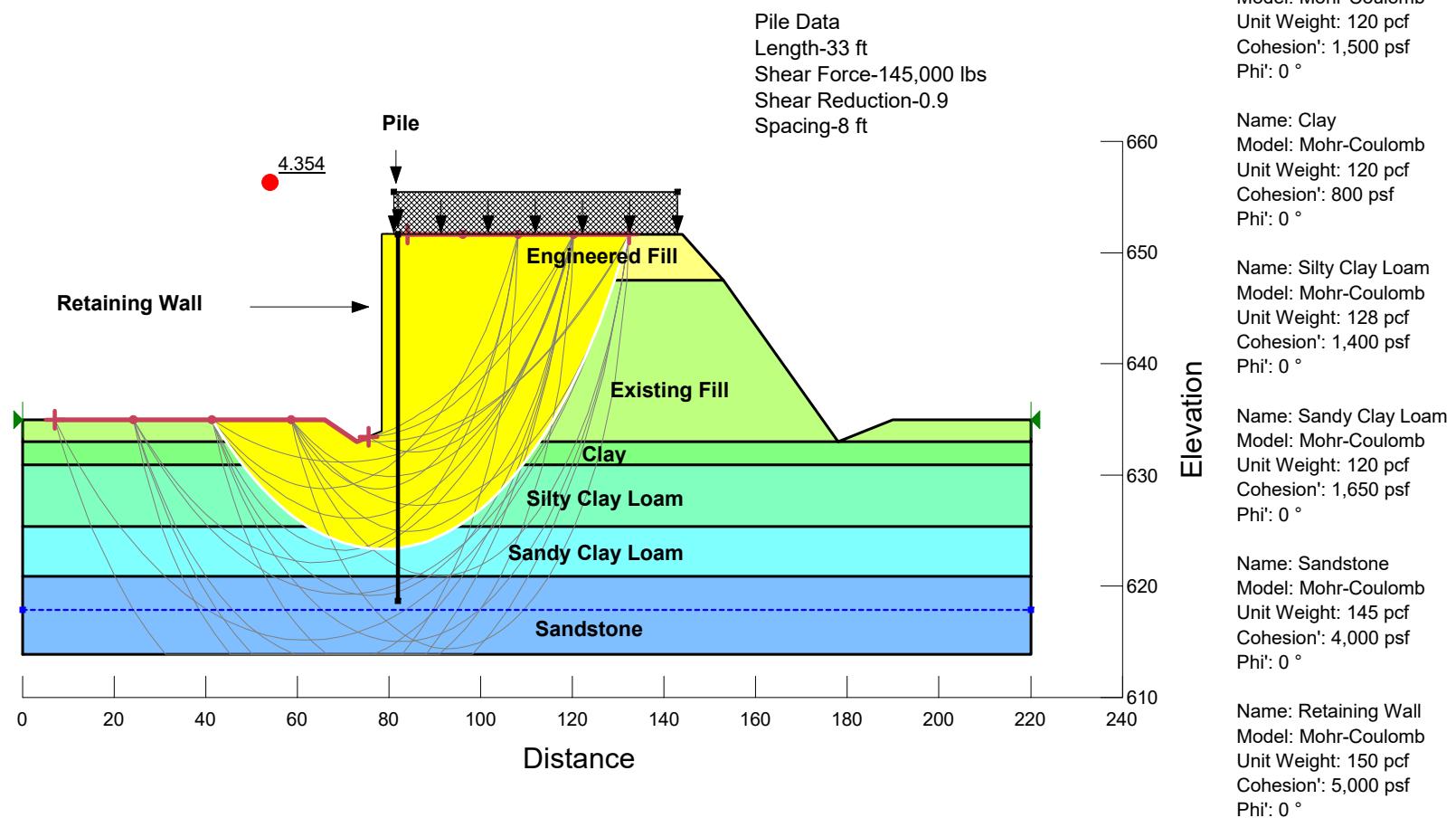
IL OVER CSX RR RETAINING WALL - SETTLEMENT CALCULATIONS

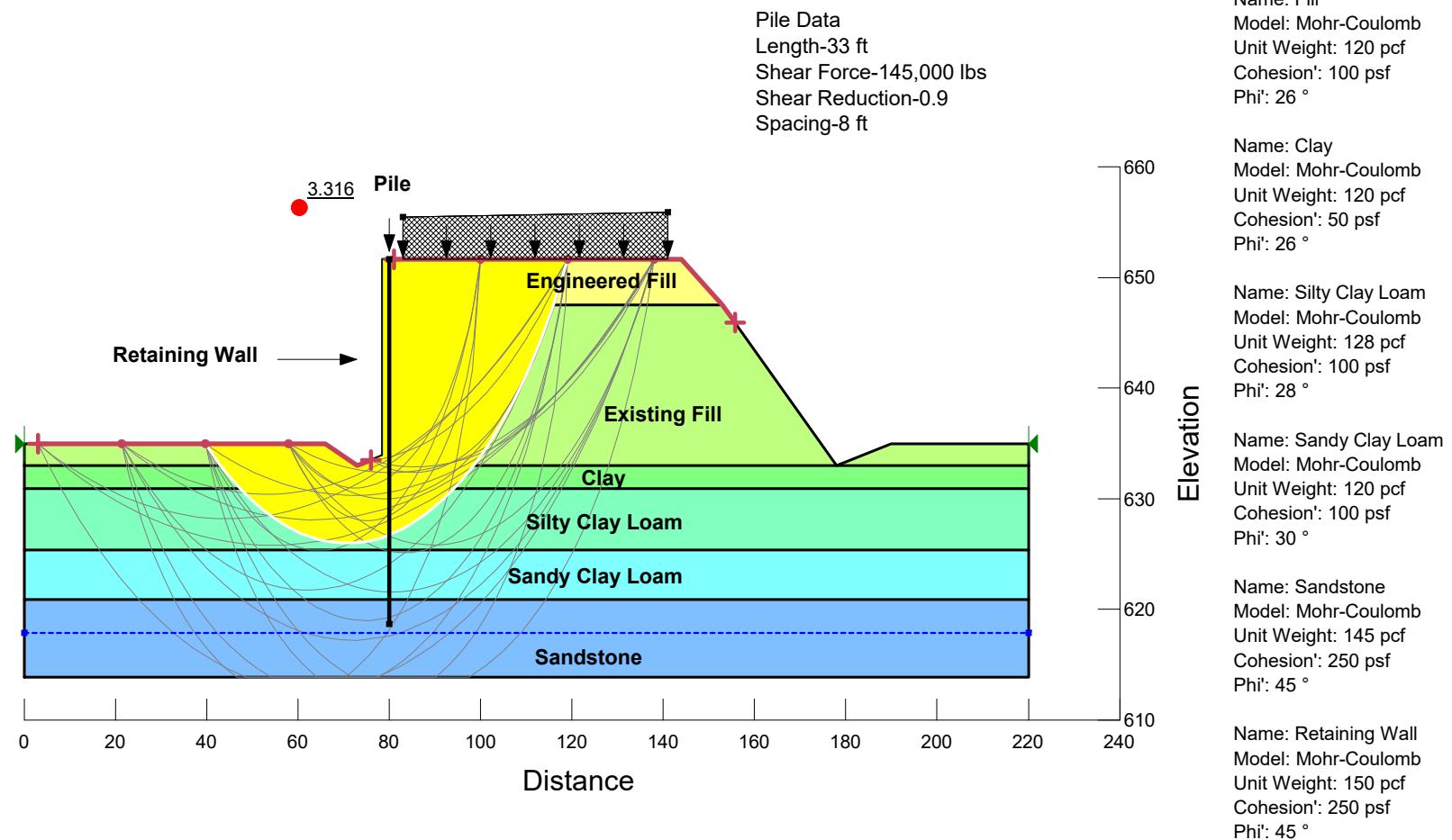

Boring RWB-3														
B (ft)=	52.00													
L (ft)=	570.00													
H (ft)=	22.00													
γ (pcf)=	125.00													
ΔP (psf)=	2750.00													
0.02	Hc (ft)	zcl (ft)	Descriptions	γ (pcf)	w (%)	OCR	p'o (psf)	Δp (psf)	p'o + Δp (psf)	p'c (psf)	CASE	eo	Cc	δ (ft)
1	3	1.5	CLAY	95	30	1	142.50	2665.88	2808.38	142.5	NC	0.81	0.249	0.53
2	5	5.5	CLAY LOAM	105	22.5	1	547.50	2463.19	3010.69	547.5	NC	0.61	0.249	0.57
3	5	10.5	SILTY CLAY LOAM TILL	115	18	1	1097.50	2246.61	3344.11	1097.5	NC	0.49	0.179	0.29
													Sp (ft)=	1.40
													Sp (in)=	16.79

Boring RWB-5																								
B (ft)=	52.00	L (ft)=	570.00	H (ft)=	17.83	γ (pcf)=	125.00	ΔP (psf)=	2228.75	Layer	Hc (ft)	zcl (ft)	Descriptions	γ (pcf)	w (%)	OCR	p'o (psf)	Δp (psf)	p'o + Δp (psf)	p'c (psf)	CASE	eo	Cc	δ (ft)
1	3	1.5	CLAY	95	32	1	142.50	2160.58	2303.08	142.5	NC	0.86	0.1980	0.39										
2	5.5	5.75	SILTY CLAY LOAM	110	20	1	587.50	1986.80	2574.30	587.5	NC	0.54	0.0900	0.21										
3	4.5	10.75	SANDY CLAY LOAM	120	18.5	1	1160.00	1812.74	2972.74	1160	NC	0.50	0.0765	0.09										
													Sp (ft)=	0.69										
													Sp (in)=	8.22										


EXHIBIT G

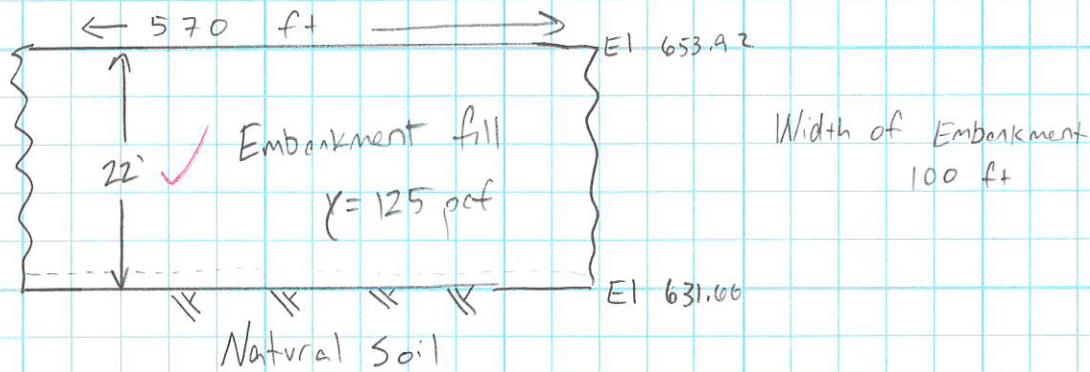
SLOPE/W SLOPE STABILITY ANALYSIS


IL 1 CSX Retaining Wall
Cross Section of 1171+50 (Boring RWB-3)
End-of-Construction (Undrained Analysis)


IL 1 CSX Retaining Wall
Cross Section of 1171+50 (Boring RWB-3)
Long Term (Drained Analysis)

IL 1 CSX Retaining Wall
Cross Section of 1173+00 (Boring RWB-5)
End-of-Construction (Undrained Analysis)

IL 1 CSX Retaining Wall
Cross Section of 1173+00 (Boring RWB-5)
Long Term (Drained Analysis)


EXHIBIT H
BEARING RESISTANCE CALCULATIONS

Project Title: IL 1 over CSX RR Retaining Wall
Sheet: 1 of 2
Project Number: 21-1009.01
Calculated By: CO Date: 09/09/2021
Checked By: MAM Date: 09/09/2021
Comments:

Bearing Resistance Calcs

Assumptions: Embankment fill

$$\begin{aligned} \gamma &= 125 \text{ psf} \\ L &= 570 \text{ ft} \\ H &= 22 \text{ ft} \end{aligned}$$

Check at sta 1171 + 15.30 near Boring RWB-3

Weight of wall:

$$W_w = L \times W \times H = (570 \text{ ft})(100 \text{ ft})(22 \text{ ft}) = 1,254,000 \text{ ft}^3$$

$$W_w = W_w \times \gamma = (1,254,000 \text{ ft}^3)(125 \text{ psf}) = 156,750,000 \text{ lbs}$$

Bearing pressure:

$$\frac{W_w}{A} = \frac{156,750,000 \text{ lbs}}{(570 \text{ ft})(100 \text{ ft})} = 2,750 \text{ psf}$$

Project Title: IL 1 over CSX RR Retaining Wall
Sheet: 2 of 2
Project Number: 21-1009.01
Calculated By: CO Date: 09/09/2021
Checked By: EMJ Date: 09/09/2021
Comments:

Bearing capacity for continuous foundations:

$$q_u = cN_c + \gamma' D_f N_q + 0.5 \gamma' B N_y$$

Bearing in clay at EL 631.66 from boring RWB-3

Parameters:

$$\phi' = 0$$

$$D_f = 3.5 \text{ ft}$$

$$N_c = 5.14$$

$$N_q = 1$$

$$N_y = 0$$

$c' = 1000 \text{ psf}$ (average cohesion in clay layers)

$\gamma' = 120 \text{ psf}$ for clay

$$\Rightarrow q_u = cN_c + \gamma' D_f N_q + 0.5 \gamma' B N_y$$

$$q_u = (1000 \text{ psf})(5.14) + (120 \text{ psf})(3.5 \text{ ft})(1) + 0$$

$$q_u = 5,560 \text{ psf}$$

$$q_a = q_u/2 = 2,780 \text{ psf}$$

$$2,780 \text{ psf} > 2,750 \text{ psf}$$

✓ OK

EXHIBIT I

IDOT STATIC METHOD OF ESTIMATING PILE LENGTH

SUBSTRUCTURE===== Retaining Wall
 REFERENCE BORING ===== RWB-05
 LRFD or ASD or SEISMIC ===== LRFD
 PILE CUTOFF ELEV. ===== 651.68 ft
 GROUND SURFACE ELEV. AGAINST PILE DURING DRIVING = 633.85 ft
 GEOTECHNICAL LOSS TYPE (None, Scour, Liquef., DD) ===== None
 BOTTOM ELEV. OF SCOUR, LIQUEF., or DD ===== ft
 TOP ELEV. OF LIQUEF. (so layers above apply DD) ===== ft

MAX. REQUIRED BEARING & RESISTANCE for Selected Pile, Soil Profile, & Losses

Maximum Nominal Req'd Bearing of Pile	Maximum Nominal Req'd Bearing of Boring	Maximum Factored Resistance Available in Boring	Maximum Pile Driveable Length in Boring
335 KIPS	325 KIPS	179 KIPS	33 FT.

TOTAL FACTORED SUBSTRUCTURE LOAD ===== 2 kips
 TOTAL LENGTH OF SUBSTRUCTURE (along skew)===== 52.00 ft
 NUMBER OF ROWS OF PILES PER SUBSTRUCTURE ===== 1

Approx. Factored Loading Applied per pile at 8 ft. Cts ===== 0.31 KIPS
 Approx. Factored Loading Applied per pile at 3 ft. Cts ===== 0.12 KIPS

PILE TYPE AND SIZE ===== Steel HP 10 X 42

Plugged Pile Perimeter===== 3.300 FT. Unplugged Pile Perimeter===== 4.858 FT.
 Plugged Pile End Bearing Area===== 0.680 SQFT. Unplugged Pile End Bearing Area===== 0.086 SQFT.

BOT. OF LAYER (FT.)	LAYER THICK. (FT.)	UNCONF. COMPR. STRENGTH (TSF.)	S.P.T. N VALUE (BLOWS)	GRANULAR OR ROCK LAYER DESCRIPTION	NOMINAL PLUGGED			NOMINAL UNPLUG'D			NOMINAL REQ'D BEARING (KIPS)	FACTORED GEOTECH. LOSS FROM SCOUR or DD (KIPS)	FACTORED GEOTECH. LOSS LOAD FROM DD (KIPS)	FACTORED RESISTANCE AVAILABLE (KIPS)	ESTIMATED PILE LENGTH (FT.)
					SIDE RESIST. (KIPS)	END BRG. RESIST. (KIPS)	TOTAL RESIST. (KIPS)	SIDE RESIST. (KIPS)	END BRG. RESIST. (KIPS)	TOTAL RESIST. (KIPS)					
632.85	1.00	0.80			1.9	7.6	9.6	2.9	9.8	3.8	4	0	0	2	19
630.85	2.00	0.80			3.9	9.5	15.4	5.7	1.2	19.4	10	0	0	5	21
628.35	2.50	1.00			5.9	28.9	8.6	1.2	36.2	19	0	0	0	11	23
625.35	3.00	1.80			10.8	17.2	47.3	15.9	2.2	36.2	36	0	0	20	26
622.85	2.50	2.60			11.4	24.8	40.6	16.8	3.1	50.7	41	0	0	22	29
620.85	2.00	0.70			3.5	6.7	175.1	5.1	0.8	72.4	72	0	0	40	31
620.35	0.50			Sandstone	34.3	137.7	209.3	50.4	17.4	122.9	123	0	0	68	31.3
619.85	0.50			Sandstone	34.3	137.7	243.6	50.4	17.4	173.3	173	0	0	95	31.8
619.35	0.50			Sandstone	34.3	137.7	277.9	50.4	17.4	223.7	224	0	0	123	32.3
618.85	0.50			Sandstone	34.3	137.7	312.1	50.4	17.4	274.2	274	0	0	151	32.8
618.35	0.50			Sandstone	34.3	137.7	346.4	50.4	17.4	324.6	325	0	0	179	33.3
617.85	0.50			Sandstone	34.3	137.7	380.6	50.4	17.4	375.0	375	0	0	206	33.8
617.35	0.50			Sandstone	34.3	137.7	414.9	50.4	17.4	425.5	415	0	0	228	34.3
616.85	0.50			Sandstone	34.3	137.7	449.1	50.4	17.4	475.9	449	0	0	247	34.8
616.35	0.50			Sandstone	34.3	137.7	483.4	50.4	17.4	526.3	483	0	0	266	35.3
615.85	0.50			Sandstone	34.3	137.7	517.7	50.4	17.4	576.8	518	0	0	285	35.8
615.35	0.50			Sandstone	34.3	137.7	551.9	50.4	17.4	627.2	552	0	0	304	36.3
614.85	0.50			Sandstone	34.3	137.7	586.2	50.4	17.4	677.6	586	0	0	322	36.8
614.35	0.50			Sandstone	34.3	137.7	620.4	50.4	17.4	728.1	620	0	0	341	37.3
613.85	0.50			Sandstone		137.7			17.4						

EXHIBIT J
IDOT DRILLED SHAFT SPREADSHEETS

STRUCTURE =====
 SUBSTRUCTURE & REFERENCE BORING =====
 GROUND SURFACE ELEVATION ===== 633.31 FT
 GROUND WATER ELEVATION ===== 619.31 FT
 ESTIMATED TOP OF ROCK ELEVATION ===== 620.30 FT
 DRILLED SHAFT DIAMETER IN ROCK ===== 18 IN.
 FACTORED AXIAL LOAD ===== 2 KIPS
 DRILLED SHAFT CONCRETE STRENGTH, f'c ===== 3.5 KSI

SN 012-0074

Boring RWB-3

FOUNDATION REDUNDANCY ===== REDUNDANT

Drilled Shaft Dia.'s for Design Table

18	IN.
24	IN.
30	IN.
	IN.
	IN.
	IN.

SOCKET DEPTH (FT)	TIP ELEV. (FT)	LAYER THICK. (FT)	UNCONFINED COMPRESSIVE STRENGTH (q_u) (KSF)	ROCK TYPE	GSI	ROCK CONDITION	RQD	JOINT TYPE	ROCK INTACT OR TIGHTLY JOINED?	SIDE RESISTANCE				AVG. q_u W/IN 2 - SHAFT DIA. (KSF)	TIP RESISTANCE			COMBINED SIDE & TIP RESISTANCE							
										NOM. RESIST. (KIPS)	Σ NOM. RESIST. (KIPS)	Σ FACT. RESIST. (KIPS)	SETTLEMENT			NOM. RESIST. (KIPS)	FACT. RESIST. (KIPS)	SETTL. W _{Rn} (IN.)	R_p/R_n	NOM. RESIST. (KIPS)	FACT. RESIST. (KIPS)	SETTLEMENT			
													Q _{C1} (KIPS)	W _{C1} (IN.)	W _{Rn} (IN.)										
2.00	618.30	2.00	417.0	Sandstone	35	Fractured	50	Open	No	100	100	55	68	0.038	0.200	626.0	434	217	0.411	0.66	291	151	110	0.040	0.183
4.00	616.30	2.00	626.0	Sandstone	40	Fractured	50	Open	No	110	210	116	162	0.058	0.158	626.0	538	269	0.529	0.41	354	188	223	0.061	0.146
6.00	614.30	2.00	626.0	Sandstone	40	Fractured	50	Open	No	110	320	176	259	0.072	0.153	626.0	560	280	0.566	0.29	450	241	332	0.077	0.144
8.00	612.30	2.00	626.0	Sandstone	40	Fractured	50	Open	No	110	431	237	360	0.086	0.154	626.0	580	290	0.602	0.22	550	297	441	0.093	0.147
10.00	610.30	2.00	626.0	Sandstone	40	Fractured	50	Open	No	110	541	297	465	0.101	0.159	626.0	598	299	0.638	0.17	652	353	552	0.109	0.154
12.00	608.30	2.00	626.0	Sandstone	40	Fractured	50	Open	No	110	651	358	574	0.116	0.166	626.0	616	308	0.683	0.14	753	409	663	0.125	0.163
14.00	606.30	2.00	626.0	Sandstone	40	Fractured	50	Open	No	110	761	419	686	0.133	0.175	626.0	633	316	0.710	0.11	854	465	775	0.142	0.173
16.00	604.30	2.00	626.0	Sandstone	40	Fractured	50	Open	No	110	871	479	800	0.150	0.186										
18.00	602.30	2.00	626.0	Sandstone	40	Fractured	50	Open	No	110	981	540	917	0.168	0.198										

Drilled Shaft Design Table for Boring RWB-3

Estimated Top of Rock Elevation: 620.30

(Page 1 of 1)

SOCKET DEPTH (FT)	TIP ELEV. (FT)	NOMINAL SHAFT RESIST. (KIPS)	FACTORED SHAFT RESIST. (KIPS)	RESIST. METHOD	SETTLEMENT DATA		
					Q _{C1} (KIPS)	W _{C1} (IN.)	W _{Rn} (IN.)
18 in. Diameter Drilled Shaft							
2	618.3	434	217	TIP	--	--	0.411
4	616.3	538	269	TIP	--	--	0.529
6	614.3	560	280	TIP	--	--	0.566
8	612.3	580	290	TIP	--	--	0.602
10	610.3	652	353	SIDE + TIP	552	0.109	0.154
12	608.3	753	409	SIDE + TIP	663	0.125	0.163
14	606.3	854	465	SIDE + TIP	775	0.142	0.173
16	604.3	871	479	SIDE	800	0.150	0.186
18	602.3	981	540	SIDE	917	0.168	0.198
24 in. Diameter Drilled Shaft							
2	618.3	772	386	TIP	--	--	0.550
4	616.3	957	478	TIP	--	--	0.707
6	614.3	995	498	TIP	--	--	0.733
8	612.3	1031	515	TIP	--	--	0.782
10	610.3	1064	532	TIP	--	--	0.835
12	608.3	1095	548	TIP	--	--	0.865
14	606.3	1202	652	SIDE + TIP	1043	0.151	0.203
16	604.3	1162	639	SIDE	1033	0.156	0.217
18	602.3	1308	720	SIDE	1182	0.172	0.227
30 in. Diameter Drilled Shaft							
2	618.3	1207	603	TIP	--	--	0.670
4	616.3	1495	748	TIP	--	--	0.876
6	614.3	1555	777	TIP	--	--	0.912
8	612.3	1610	805	TIP	--	--	0.954
10	610.3	1662	831	TIP	--	--	1.008
12	608.3	1711	856	TIP	--	--	1.055
14	606.3	1268	698	SIDE	1087	0.150	0.246
16	604.3	1452	799	SIDE	1263	0.165	0.253
18	602.3	1635	899	SIDE	1443	0.180	0.260

STRUCTURE =====
 SUBSTRUCTURE & REFERENCE BORING =====
 GROUND SURFACE ELEVATION ===== 633.85 FT
 GROUND WATER ELEVATION ===== 617.90 FT
 ESTIMATED TOP OF ROCK ELEVATION ===== 620.90 FT
 DRILLED SHAFT DIAMETER IN ROCK ===== 18 IN.
 FACTORED AXIAL LOAD ===== 2 KIPS
 DRILLED SHAFT CONCRETE STRENGTH, f'c ===== 3.5 KSI

SN 012-0074

Boring RWB-5

FOUNDATION REDUNDANCY ===== REDUNDANT

Drilled Shaft Dia.'s for Design Table

18	IN.
24	IN.
30	IN.
	IN.
	IN.
	IN.

SOCKET DEPTH (FT)	TIP ELEV. (FT)	LAYER THICK. (FT)	UNCONFINED COMPRESSIVE STRENGTH (q_u) (KSF)	ROCK TYPE	GSI	ROCK CONDITION	RQD	JOINT TYPE	ROCK INTACT OR TIGHTLY JOINED?	SIDE RESISTANCE					AVG. q_u W/IN 2 - SHAFT DIA. (KSF)	TIP RESISTANCE			COMBINED SIDE & TIP RESISTANCE						
										NOM. RESIST. (KIPS)	Σ NOM. RESIST. (KIPS)	Σ FACT. RESIST. (KIPS)	SETTLEMENT			NOM. RESIST. (KIPS)	FACT. RESIST. (KIPS)	SETTL. W _{Rn} (IN.)	R_p/R_n	NOM. RESIST. (KIPS)	FACT. RESIST. (KIPS)	SETTLEMENT			
													Q _{C1} (KIPS)	W _{C1} (IN.)	W _{Rn} (IN.)										
2.00	618.90	2.00	626.0	Sandstone	40	Fractured	50	Open	No	110	110	61	91	0.041	0.103	626.0	515	257	0.487	0.48	212	112	135	0.042	0.097
4.00	616.90	2.00	626.0	Sandstone	40	Fractured	50	Open	No	110	220	121	185	0.060	0.118	626.0	538	269	0.529	0.33	327	175	249	0.063	0.110
6.00	614.90	2.00	626.0	Sandstone	40	Fractured	50	Open	No	110	330	182	284	0.074	0.127	626.0	559	280	0.566	0.24	436	235	359	0.079	0.120
8.00	612.90	2.00	626.0	Sandstone	40	Fractured	50	Open	No	110	441	242	386	0.089	0.136	626.0	579	290	0.602	0.19	543	294	470	0.095	0.130
10.00	610.90	2.00	626.0	Sandstone	40	Fractured	50	Open	No	110	551	303	493	0.103	0.145	626.0	598	299	0.638	0.15	648	352	582	0.111	0.140
12.00	608.90	2.00	626.0	Sandstone	40	Fractured	50	Open	No	110	661	363	603	0.119	0.154	626.0	616	308	0.682	0.12	752	409	695	0.128	0.151
14.00	606.90	2.00	626.0	Sandstone	40	Fractured	50	Open	No	110	771	424	716	0.136	0.165	626.0	632	316	0.710	0.10	855	466	807	0.145	0.163
16.00	604.90	2.00	626.0	Sandstone	40	Fractured	50	Open	No	110	881	485	832	0.153	0.177										
18.00	602.90	2.00	626.0	Sandstone	40	Fractured	50	Open	No	110	991	545	950	0.172	0.190										

Drilled Shaft Design Table for Boring RWB-5

Estimated Top of Rock Elevation: 620.90

(Page 1 of 1)

SOCKET DEPTH (FT)	TIP ELEV. (FT)	NOMINAL SHAFT RESIST. (KIPS)	FACTORED SHAFT RESIST. (KIPS)	RESIST. METHOD	SETTLEMENT DATA		
					Q _{C1} (KIPS)	W _{C1} (IN.)	W _{Rn} (IN.)
18 in. Diameter Drilled Shaft							
2	618.9	515	257	TIP	--	--	0.487
4	616.9	538	269	TIP	--	--	0.529
6	614.9	559	280	TIP	--	--	0.566
8	612.9	579	290	TIP	--	--	0.602
10	610.9	648	352	SIDE + TIP	582	0.111	0.140
12	608.9	752	409	SIDE + TIP	695	0.128	0.151
14	606.9	855	466	SIDE + TIP	807	0.145	0.163
16	604.9	881	485	SIDE	832	0.153	0.177
18	602.9	991	545	SIDE	950	0.172	0.190
24 in. Diameter Drilled Shaft							
2	618.9	915	457	TIP	--	--	0.651
4	616.9	956	478	TIP	--	--	0.707
6	614.9	994	497	TIP	--	--	0.733
8	612.9	1030	515	TIP	--	--	0.781
10	610.9	1063	532	TIP	--	--	0.834
12	608.9	1095	547	TIP	--	--	0.864
14	606.9	1198	650	SIDE + TIP	1084	0.154	0.190
16	604.9	1175	646	SIDE	1072	0.159	0.205
18	602.9	1322	727	SIDE	1223	0.175	0.216
30 in. Diameter Drilled Shaft							
2	618.9	1429	715	TIP	--	--	0.796
4	616.9	1494	747	TIP	--	--	0.876
6	614.9	1554	777	TIP	--	--	0.912
8	612.9	1609	805	TIP	--	--	0.953
10	610.9	1661	831	TIP	--	--	1.008
12	608.9	1710	855	TIP	--	--	1.055
14	606.9	1285	707	SIDE	1131	0.153	0.229
16	604.9	1468	808	SIDE	1309	0.167	0.238
18	602.9	1652	909	SIDE	1490	0.183	0.247