18 January 17, 2020 Letting ## Notice to Bidders, Specifications and Proposal Contract No. 62J60 WILL County Section 2019-086-BR Route FAU 383 District 1 Construction Funds # Illinois Department of Transportation ## **NOTICE TO BIDDERS** - 1. TIME AND PLACE OF OPENING BIDS. Electronic bids are to be submitted to the electronic bidding system (iCX-Integrated Contractors Exchange). All bids must be submitted to the iCX system prior to 10:00 a.m. January 17, 2020 prevailing time at which time the bids will be publicly opened from the iCX SecureVault. - **2. DESCRIPTION OF WORK**. The proposed improvement is identified and advertised for bids in the Invitation for Bids as: Contract No. 62J60 WILL County Section 2019-086-BR Route FAU 383 District 1 Construction Funds Bridge deck overlay and joint repairs on IL 113 over I-55 in the City of Braidwood. (SN 099-0151) - 3. INSTRUCTIONS TO BIDDERS. (a) This Notice, the invitation for bids, proposal and letter of award shall, together with all other documents in accordance with Article 101.09 of the Standard Specifications for Road and Bridge Construction, become part of the contract. Bidders are cautioned to read and examine carefully all documents, to make all required inspections, and to inquire or seek explanation of the same prior to submission of a bid. - (b) State law, and, if the work is to be paid wholly or in part with Federal-aid funds, Federal law requires the bidder to make various certifications as a part of the proposal and contract. By execution and submission of the proposal, the bidder makes the certification contained therein. A false or fraudulent certification shall, in addition to all other remedies provided by law, be a breach of contract and may result in termination of the contract. - 4. AWARD CRITERIA AND REJECTION OF BIDS. This contract will be awarded to the lowest responsive and responsible bidder considering conformity with the terms and conditions established by the Department in the rules, Invitation for Bids and contract documents. The issuance of plans and proposal forms for bidding based upon a prequalification rating shall not be the sole determinant of responsibility. The Department reserves the right to determine responsibility at the time of award, to reject any or all proposals, to readvertise the proposed improvement, and to waive technicalities. By Order of the Illinois Department of Transportation Omer Osman, Acting Secretary ## INDEX FOR SUPPLEMENTAL SPECIFICATIONS AND RECURRING SPECIAL PROVISIONS ## Adopted January 1, 2020 This index contains a listing of SUPPLEMENTAL SPECIFICATIONS and frequently used RECURRING SPECIAL PROVISIONS. ERRATA Standard Specifications for Road and Bridge Construction (Adopted 4-1-16) (Revised 1-1-20) ## SUPPLEMENTAL SPECIFICATIONS | Std. Sp | ec. Sec. | Page No. | |---------|---|----------| | 106 | Control of Materials | 1 | | 107 | Legal Regulations and Responsibility to Public | | | 109 | Measurement and Payment | | | 205 | Embankment | 4 | | 403 | Bituminous Surface Treatment (Class A-1, A-2, A-3) | | | 404 | Micro-Surfacing and Slurry Sealing | 6 | | 405 | Cape Seal | | | 406 | Hot-Mix Asphalt Binder and Surface Course | 27 | | 420 | Portland Cement Concrete Pavement | 28 | | 424 | Portland Cement Concrete Sidewalk | 30 | | 442 | Pavement Patching | | | 502 | Excavation for Structures | 32 | | 503 | Concrete Structures | 35 | | 504 | Precast Concrete Structures | 38 | | 506 | Cleaning and Painting New Steel Structures | 39 | | 522 | Retaining Walls | 40 | | 542 | Pipe Culverts | | | 586 | Sand Backfill for Vaulted Abutments | 42 | | 602 | Catch Basin, Manhole, Inlet, Drainage Structure, and Valve Vault Construction, Adjustment, ar | nd | | | Reconstruction | | | 603 | Adjusting Frames and Grates of Drainage and Utility Structures | | | 630 | Steel Plate Beam Guardrail | | | 631 | Traffic Barrier Terminals | | | 670 | Engineer's Field Office and Laboratory | 50 | | 701 | Work Zone Traffic Control and Protection | | | 704 | Temporary Concrete Barrier | | | 780 | Pavement Striping | 55 | | 781 | Raised Reflective Pavement Markers | | | 888 | Pedestrian Push-Button | | | 1001 | Cement | | | 1003 | Fine Aggregates | | | 1004 | Coarse Aggregates | 60 | | 1006 | Metals | | | 1020 | Portland Cement Concrete | | | 1043 | Adjusting Rings | | | 1050 | Poured Joint Sealers | | | 1069 | Pole and Tower | | | 1077 | Post and Foundation | | | 1096 | Pavement Markers | | | 1101 | General Equipment | | | 1102 | Hot-Mix Asphalt Equipment | 75 | | 1103 | Portland Cement Concrete Equipment | | | 1105 | Pavement Marking Equipment | | | 1106 | Work Zone Traffic Control Devices | 81 | ## **RECURRING SPECIAL PROVISIONS** The following RECURRING SPECIAL PROVISIONS indicated by an "X" are applicable to this contract and are included by reference: | CHECK | (SHE | ET# | PAGE NO. | |-------|------|--|----------| | 1 | | Additional State Requirements for Federal-Aid Construction Contracts | 83 | | 2 | | Subletting of Contracts (Federal-Aid Contracts) | | | 3 | Χ | EEO | | | 4 | Χ | Specific EEO Responsibilities Non Federal-Aid Contracts | 97 | | 5 | Χ | Required Provisions - State Contracts | | | 6 | | Asbestos Bearing Pad Removal | | | 7 | | Asbestos Waterproofing Membrane and Asbestos HMA Surface Removal | | | 8 | | Temporary Stream Crossings and In-Stream Work Pads | | | 9 | | Construction Layout Stakes Except for Bridges | | | 10 | Χ | Construction Layout Stakes | | | 11 | | Use of Geotextile Fabric for Railroad Crossing | 117 | | 12 | | Subsealing of Concrete Pavements | | | 13 | | Hot-Mix Asphalt Surface Correction | 123 | | 14 | | Pavement and Shoulder Resurfacing | 125 | | 15 | | Patching with Hot-Mix Asphalt Overlay Removal | 126 | | 16 | | Polymer Concrete | | | 17 | | PVC Pipeliner | 130 | | 18 | | Bicycle Racks | 131 | | 19 | | Temporary Portable Bridge Traffic Signals | | | 20 | Χ | Work Zone Public Information Signs | 135 | | 21 | | Nighttime Inspection of Roadway Lighting | 136 | | 22 | | English Substitution of Metric Bolts | | | 23 | | Calcium Chloride Accelerator for Portland Cement Concrete | | | 24 | | Quality Control of Concrete Mixtures at the Plant | | | 25 | Χ | Quality Control/Quality Assurance of Concrete Mixtures | 147 | | 26 | | Digital Terrain Modeling for Earthwork Calculations | | | 27 | | Reserved | 165 | | 28 | | Preventive Maintenance – Bituminous Surface Treatment (A-1) | | | 29 | | Reserved | | | 30 | | Reserved | | | 31 | | Reserved | | | 32 | | Temporary Raised Pavement Markers | | | 33 | | Restoring Bridge Approach Pavements Using High-Density Foam | | | 34 | | Portland Cement Concrete Inlay or Overlay | 179 | | 35 | | Portland Cement Concrete Partial Depth Hot-Mix Asphalt Patching | | | 36 | | Longitudinal Joint and Crack Patching | 186 | ## TABLE OF CONTENTS | LOCATION OF IMPROVEMENT | 1 | |---|-------| | DESCRIPTION OF IMPROVEMENT | 1 | | STATUS OF UTILITIES (D-1) | 1 | | UTILITIES TO BE ADJUSTED | 2 | | UTILITIES TO BE WATCHED AND PROTECTED | 3 | | TRAFFIC CONTROL PLAN | 6 | | TRAFFIC CONTROL AND PROTECTION (ARTERIALS) (D-1) | 7 | | PUBLIC CONVENIENCE AND SAFETY (D-1) | 8 | | MAINTENANCE OF ROADWAYS (D-1) | 8 | | HOT-MIX ASPHALT BINDER AND SURFACE COURSE (D-1) | 9 | | RECLAIMED ASPHALT PAVEMENT AND RECLAIMED ASPHALT SHINGLES (D-1) | 20 | | GROUND TIRE RUBBER (GTR) MODIFIED ASPHALT BINDER (D-1) | 33 | | FRICTION AGGREGATE (D-1) | 35 | | TEMPORARY PAVEMENT (D-1) | 38 | | TEMPORARY INFORMATION SIGNING | 39 | | HOT-MIX ASPHALT SURFACE REMOVAL, VARIABLE DEPTH | 40 | | CONCRETE MEDIAN REMOVAL | 40 | | CORRUGATED MEDIAN REMOVAL | 41 | | PORTLAND CEMENT CONCRETE SURFACE REMOVAL (VARIABLE DEPTH) | 41 | | APPROACH SLAB REPAIR | 42 | | CONCRETE MEDIAN, TYPE SB (SPECIAL) | 48 | | STRUCTURAL STEEL REPAIR | 48 | | STRUCTURAL STEEL REMOVAL | 49 | | CLEANING AND PAINTING CONTACT SURFACE AREAS OF EXISTING | STEEL | | STRUCTURES | 50 | | DECK SLAB REPAIR | 57 | | BRIDGE DECK LATEX CONCRETE OVERLAY | 63 | | STRUCTURAL REPAIR OF CONCRETE | 75 | | HOT DIP GALVANIZING FOR STRUCTURAL STEEL | 86 | | PREFORMED BRIDGE JOINT SEAL | 91 | | TRAFFIC CONTROL AND PROTECTION (EXPRESSWAYS) | 97 | | KEEPING THE EXPRESSWAY OPEN TO TRAFFIC | 102 | | FAILURE TO OPEN TRAFFIC LANES TO TRAFFIC | 103 | | HOT-MIX ASPHALT - MIXTURE DESIGN VERIFICATION AND PRODUCTION | (MODIFIED | |---|-----------| | FOR I-FIT DATA COLLECTION) (D-1) | 104 | | COMPENSABLE DELAY COSTS (BDE) | 105 | | CONSTRUCTION AIR QUALITY - DIESEL RETROFIT (BDE) | 109 | | DISADVANTAGED BUSINESS ENTERPRISE PARTICIPATION (BDE) | 112 | | DISPOSAL FEES (BDE) | 123 | | EMULSIFIED ASPHALTS (BDE) | 124 | | ENGINEER'S FIELD OFFICE AND LABORATORY (BDE) | 127 | | EQUIPMENT PARKING AND STORAGE (BDE) | 130 | | PAVEMENT MARKING REMOVAL (BDE) | 131 | | PORTLAND CEMENT CONCRETE (BDE) | 132 | | PORTLAND CEMENT CONCRETE BRIDGE DECK CURING (BDE) | 133 | | PROGRESS PAYMENTS (BDE) | 135 | | REMOVAL AND DISPOSAL OF REGULATED SUBSTANCES (BDE) | 136 | | SILT FENCE, GROUND STABILIZATION AND RIPRAP FILTER FABRIC (BDE) | 148 | | STEEL COST ADJUSTMENT (BDE) | 150 | | SUBCONTRACTOR AND DBE PAYMENT REPORTING (BDE) | 152 | | SUBCONTRACTOR MOBILIZATION PAYMENTS (BDE) | 153 | | TEMPORARY PAVEMENT MARKING (BDE) | 154 | | TRAFFIC CONTROL DEVICES - CONES (BDE) | 156 | | TRAFFIC SPOTTERS (BDE) | 157 | | WARM MIX ASPHALT (BDE) | 159 | | WEEKLY DBE TRUCKING REPORTS (BDE) | 160 | | WORKING DAYS (BDE) | | ## **STATE OF ILLINOIS** #### **SPECIAL PROVISIONS** The following Special Provisions supplement the "Standard Specifications for Road and Bridge Construction", adopted April 1, 2016, the latest edition of the "Manual on Uniform Traffic Control Devices for Streets and Highways" and the "Manual of Test Procedures for
Materials" in effect on the date of invitation for bids, and the "Supplemental Specifications and Recurring Special Provisions" indicated on the Check Sheet included herein which apply to and govern the improvements at FAU Route 383 (IL 113), Section 2019-086-BR, Will County, Contract No. 62J60 and in case of conflict with any part, or parts, of said Specifications, the said Special Provisions shall take precedence and shall govern. #### **LOCATION OF IMPROVEMENT** The project is located in the city of Braidwood, Wilmington Township and Reed Township, Will County, Illinois, along Illinois Route 113 (Johnson Road) over I-55. The net length for project improvements is 388 ft (0.073 miles). ## **DESCRIPTION OF IMPROVEMENT** The existing IL 113 bridge over I-55 (SN: 099-0151) will be repaired including: steel plating bean ends and diaphragm replacements; extension joint reconstruction; and the existing bridge deck latex overlay. The existing bridge approach slabs will be HMA overlaid. To make a room for traffic during the stage construction, the existing raised and corrugated median will be removed and replaced with a temporary pavement. At the end of the construction the medians will be rebuilt to match the original state. Pavement marking will be reestablished at the end of the construction. ## STATUS OF UTILITIES (D-1) Effective: June 1, 2016 Revised: January 1, 2020 Utility companies and/or municipal owners located within the construction limits of this project have provided the following information regarding their facilities and the proposed improvements. The tables below contain a description of specific conflicts to be resolved and/or facilities which will require some action on the part of the Department's contractor to proceed with work. Each table entry includes an identification of the action necessary and, if applicable, the estimated duration required for the resolution. ## **UTILITIES TO BE ADJUSTED** Conflicts noted below have been identified by following the suggested staging plan included in the contract. The company has been notified of all conflicts and will be required to obtain the necessary permits to complete their work; in some instances, resolution will be a function of the construction staging. The responsible agency must relocate, or complete new installations as noted below; this work has been deemed necessary to be complete for the Department's contractor to then work in the stage under which the item has been listed. ## Pre-Stage | STAGE /
LOCATION | TYPE | DESCRIPTION | RESPONSIBLE AGENCY | ACTION | |---------------------|------|-------------|--------------------|--------| | N/A | N/A | N/A | N/A | N/A | ## Stage 1 | STAGE /
LOCATION | TYPE | DESCRIPTION | RESPONSIBLE AGENCY | ACTION | |---------------------|------|-------------|--------------------|--------| | N/A | N/A | N/A | N/A | N/A | ## Stage 2 | STAGE /
LOCATION | TYPE | DESCRIPTION | RESPONSIBLE AGENCY | ACTION | |---------------------|------|-------------|--------------------|--------| | N/A | N/A | N/A | N/A | N/A | ## Stage 3 | STAGE /
LOCATION | TYPE | DESCRIPTION | RESPONSIBLE AGENCY | ACTION | |---------------------|------|-------------|--------------------|--------| | N/A | N/A | N/A | N/A | N/A | No conflicts to be resolved (or if there are conflicts they are to be listed as noted above) | Pre-Stage: | Days Total Installation | |------------|-------------------------| | Stage 1: | Days Total Installation | | Stage 2: | Days Total Installation | | Stage 3: | Days Total Installation | The following contact information is what was used during the preparation of the plans as provided by the Agency/Company responsible for resolution of the conflict. | Agency/Company
Responsible to | Name of contact | Address | Phone | e-mail address | |----------------------------------|---|--|----------------|-----------------| | Resolve Conflict | | | | | | AT&T #CG2113-1 | Mr. Steve Pesola | AT&T Legal
Mandate
Engineering
1000 Commerce
Dr.
Oak Brook, IL
60523 | 630-573-5703 | sp9653@att.com. | | ComEd | Mr. Pete Kratzer | ComEd – Public
Relocation Dept.
One Lincoln
Centre, Suite 600,
Oakbrook
Terrace, IL 60181 | | | | Comcast | | | | | | Nicor #SC17025 | Mr. Patricio Munoz, Superintendent, Construction Operations | | (815) 272-9269 | | | Level 3
Communications | | | | | | Buckeye Pipeline | | | | | ## UTILITIES TO BE WATCHED AND PROTECTED The areas of concern noted below have been identified by following the suggested staging plan included for the contract. The information provided is not a comprehensive list of all remaining utilities, but those which during coordination were identified as ones which might require the Department's contractor to take into consideration when making the determination of the means and methods that would be required to construct the proposed improvement. In some instances, the contractor will be responsible to notify the owner in advance of the work to take place so necessary staffing on the owner's part can be secured. ## Pre-Stage | STAGE /
LOCATION | TYPE | DESCRIPTION | OWNER | ACTION | |---------------------|----------|----------------------------------|-------|--| | | Electric | Overhead distribution facilities | ComEd | Follow OSHA rules and other applicable guidelines regarding working around electrical power lines. | ## Stage 1 | STAGE /
LOCATION | TYPE | DESCRIPTION | OWNER | ACTION | |---------------------|----------|----------------------------------|-------|--| | | Electric | Overhead distribution facilities | ComEd | Follow OSHA rules and other applicable guidelines regarding working around electrical power lines. | ## Stage 2 | STAGE /
LOCATION | TYPE | DESCRIPTION | OWNER | ACTION | |---------------------|----------|----------------------------------|-------|--| | | Electric | Overhead distribution facilities | ComEd | Follow OSHA rules and other applicable guidelines regarding working around electrical power lines. | ## Stage 3 | STAGE /
LOCATION | TYPE | DESCRIPTION | OWNER | ACTION | |---------------------|----------|----------------------------------|-------|--| | | Electric | Overhead distribution facilities | ComEd | Follow OSHA rules and other applicable guidelines regarding working around electrical power lines. | The following contact information is what was used during the preparation of the plans as provided by the owner of the facility. | Agency/Company | Name of contact | Address | Phone | e-mail address | |------------------|------------------|-----------------------|-------|----------------| | Responsible to | | | | | | Resolve Conflict | | | | | | ComEd | Mr. Pete Kratzer | ComEd – Pu | blic | | | | | Relocation Dept. | | | | | | One Lincoln Centre, S | uite | | | | | 600, Oakbrook Terrace | e, IL | | | | | 60181 | | | | | | | | | The above represents the best information available to the Department and is included for the convenience of the bidder. The days required for conflict resolution should be considered in the bid as this information has also been factored into the timeline identified for the project when setting the completion date. The applicable portions of the Standard Specifications for Road and Bridge Construction shall apply. Estimated duration of time provided above for the first conflicts identified will begin on the date of the executed contract regardless of the status of the utility relocations. The responsible agencies will be working toward resolving subsequent conflicts in conjunction with contractor activities in the number of days noted. The estimated relocation duration must be part of the progress schedule submitted by the contractor. A utility kickoff meeting will be scheduled between the Department, the Department's contractor and the utility companies when necessary. The Department's contractor is responsible for contacting J.U.L.I.E. prior to all excavation work. ## TRAFFIC CONTROL PLAN Effective: September 30, 1985 Revised: January 1, 2007 Traffic Control shall be according to the applicable sections of the Standard Specifications, the Supplemental Specifications, the "Illinois Manual on Uniform Traffic Control Devices for Streets and Highways", any special details and Highway Standards contained in the plans, and the Special Provisions contained herein. Special attention is called to Article 107.09 of the Standard Specifications and the following Highway Standards, Details, Quality Standard for Work Zone Traffic Control Devices, Recurring Special Provisions and Special Provisions contained herein, relating to traffic control. The Contractor shall contact the District One Bureau of Traffic at least 72 hours in advance of beginning work. ## **STANDARDS**: | 701006 | OFF-ROAD OPERATIONS 2L, 2W, 15' TO 24" FROM PAVEMENT EDGE | |--------|---| | 701011 | OFF-ROAD MOVING OPERATIONS 2L, 2W, DAY ONLY | | 701301 | LANE CLOSURE, 2L, 2W, SHORT TIME OPERATIONS | | 701311 | LANE CLOSURE, 2L, 2W, MOVING OPERATIONS – DAY ONLY | | 701400 | APPROACH TO LANE CLOSURE, FREEWAY / EXPRESSWAY | | 701401 | LANE CLOSURE, FREEWAY / EXPRESSWAY | | 701501 | URBAN LANE CLOSURE, 2L, 2W, UNDIVIDED | | 701502 | URBAN LANE CLOSURE, 2L, 2W, WITH BIDIRECTIONAL LEFT TURN LANE | | 701701 | URBAN LANE CLOSURE, MULTILANE INTERSECTION | | 701901 | TRAFFIC CONTROL DEVICES | ## **DETAILS**: | TC-10 | TRAFFIC | CONTROL
| AND | PROTECTION | FOR | SIDE | ROADS, | |-------|----------|-------------------|---------|----------------|---------|------|--------| | | INTERSEC | TIONS AND E | RIVEW | AYS | | | | | TC-13 | DISTRICT | ONE TYPICAL | . PAVEN | MENT MARKINGS | | | | | TC-16 | SHORT TE | RM PAVEMEI | NT MAR | KING LETTER AN | ID SYME | 3OL | | | TC-22 | ARTERIAL | ROAD INFOR | OITAM | N SIGN | | | | ## **SPECIAL PROVISIONS:** TRAFFIC CONTROL AND PROTECTION (ARTERIALS) (D-1) TRAFFIC CONTROL AND PROTECTION (EXPRESSWAYS) KEEPING THE EXPRESSWAY OPEN TO TRAFFIC FAILURE TO PEN TRAFFIC LANES TO TRAFFIC PUBLIC CONVENIENCE AND SAFETY (D-1) MAINTENANCE OF ROADWAYS (D-1) TEMPORARY PAVEMENT (D-1) TEMPORARY INFORMATION SIGNING PAVEMENT MARKING REMOVAL (BDE) EQUIPMENT PARKING & STORAGE (BDE) TRAFFIC CONTROL DEVICES-CONES (BDE) LIGHTS ON BARRICADES (BDE) TEMPORARY PAVEMENT MARKING (BDE) TRAFFIC SPOTTERS (BDE) ## TRAFFIC CONTROL AND PROTECTION (ARTERIALS) (D-1) Effective: February 1, 1996 Revised: March 1, 2011 Specific traffic control plan details and Special Provisions have been prepared for this contract. This work shall include all labor, materials, transportation, handling and incidental work necessary to furnish, install, maintain and remove all traffic control devices required as indicated in the plans and as approved by the Engineer. When traffic is to be directed over a detour route, the Contractor shall furnish, erect, maintain and remove all applicable traffic control devices along the detour route according to the details shown in the plans. <u>Method of Measurement</u>: All traffic control (except "Traffic Control and Protection (Expressways)" and temporary pavement markings) indicated on the traffic control plan details and specified in the Special Provisions will be measured for payment on a lump sum basis. <u>Basis of Payment</u>: All traffic control and protection will be paid for at the contract lump sum price for TRAFFIC CONTROL AND PROTECTION (SPECIAL). Temporary pavement markings will be paid for separately unless shown on a Standard. ## PUBLIC CONVENIENCE AND SAFETY (D-1) Effective: May 1, 2012 Revised: July 15, 2012 Add the following to the end of the fourth paragraph of Article 107.09: "If the holiday is on a Saturday or Sunday, and is legally observed on a Friday or Monday, the length of Holiday Period for Monday or Friday shall apply." Add the following sentence after the Holiday Period table in the fourth paragraph of Article 107.09: "The Length of Holiday Period for Thanksgiving shall be from 5:00 AM the Wednesday prior to 11:59 PM the Sunday After" Delete the fifth paragraph of Article 107.09 of the Standard Specifications: "On weekends, excluding holidays, roadways with Average Daily Traffic of 25,000 or greater, all lanes shall be open to traffic from 3:00 P.M. Friday to midnight Sunday except where structure construction or major rehabilitation makes it impractical." ## MAINTENANCE OF ROADWAYS (D-1) Effective: September 30, 1985 Revised: November 1, 1996 Beginning on the date that work begins on this project, the Contractor shall assume responsibility for normal maintenance of all existing roadways within the limits of the improvement. This normal maintenance shall include all repair work deemed necessary by the Engineer, but shall not include snow removal operations. Traffic control and protection for maintenance of roadways will be provided by the Contractor as required by the Engineer. If items of work have not been provided in the contract, or otherwise specified for payment, such items, including the accompanying traffic control and protection required by the Engineer, will be paid for in accordance with Article 109.04 of the Standard Specifications. ## **HOT-MIX ASPHALT BINDER AND SURFACE COURSE (D-1)** Effective: November 1, 2019 <u>Description</u>. This work shall consist of constructing a hot-mix asphalt (HMA) binder and/or surface course on a prepared base. Work shall be according to Sections 406 and 1030 of the Standard Specifications, except as modified herein. Materials. Revise Article 1004.03(c) to read: " (c) Gradation. The coarse aggregate gradations shall be as listed in the following table. | Use | Size/Application | Gradation No. | |-----------------------|----------------------------|--| | Class A-1, A-2, & A-3 | 3/8 in. (10 mm) Seal | CA 16 or CA 20 | | Class A-1 | 1/2 in. (13 mm) Seal | CA 15 | | Class A-2 & A-3 | Cover Coat | CA 14 | | | IL-19.0; | CA 11 ^{1/} | | | Stabilized Subbase IL-19.0 | | | LINAA LEWIS EGAL | SMA 12.5 ^{2/} | CA 13 ⁴ , CA 14, or CA 16 | | HMA High ESAL | SMA 9.5 ^{2/} | CA 13 ^{3/4/} or CA 16 ^{3/} | | | IL-9.5 | CA 16 | | | IL-9.5FG | CA 16 | | LIMA Low FSAL | IL-19.0L | CA 11 ^{1/} | | HMA Low ESAL | IL-9.5L | CA 16 | - 1/ CA 16 or CA 13 may be blended with the CA 11. - 2/ The coarse aggregates used shall be capable of being combined with stone sand, slag sand, or steel slag sand meeting the FA/FM 20 gradation and mineral filler to meet the approved mix design and the mix requirements noted herein. - 3/ The specified coarse aggregate gradations may be blended. - 4/ CA 13 shall be 100 percent passing the 1/2 in. (12.5mm) sieve." Revise Article 1004.03(e) of the Supplemental Specifications to read: "(e) Absorption. For SMA the coarse aggregate shall also have water absorption ≤ 2.0 percent." HMA Nomenclature. Revise the "High ESAL" portion of the table in Article 1030.01 to read: | "High ESAL | Binder Courses | IL-19.0, IL-9.5, IL-9.5FG,
IL-4.75, SMA 12.5,
Stabilized Subbase IL-19.0 | |------------|-----------------|--| | | Surface Courses | IL-9.5, IL-9.5FG,
SMA 12.5, SMA 9.5" | Revise Article 1030.02 of the Standard Specifications and Supplemental Specifications to read: "1030.02 Materials. Materials shall be according to the following. | Item | Article/Section | |--|-----------------| | (a) Coarse Aggregate | 1004.03 | | (b) Fine Aggregate | 1003.03 | | (c) RAP Material | | | (d) Mineral Filler | 1011 | | (e) Hydrated Lime | | | (f) Slaked Quicklime (Note 1) | | | (g) Performance Graded Asphalt Binder (Note 2) | 1032 | | (h) Fibers (Note 3) | | | (i) Warm Mix Asphalt (WMA) Technologies (Note 4) | | Note 1. Slaked quicklime shall be according to ASTM C 5. Note 2. The asphalt binder shall be an SBS PG 76-28 when the SMA is used on a full-depth asphalt pavement and SBS PG 76-22 when used as an overlay, except where modified herein. The asphalt binder shall be an Elvaloy or SBS PG 76-22 for IL-4.75, except where modified herein. The elastic recovery shall be a minimum of 80. Note 3. A stabilizing additive such as cellulose or mineral fiber shall be added to the SMA mixture according to Illinois Modified AASHTO M 325. The stabilizing additive shall meet the Fiber Quality Requirements listed in Illinois Modified AASHTO M 325. Prior to approval and use of fibers, the Contractor shall submit a notarized certification by the producer of these materials stating they meet these requirements. Reclaimed Asphalt Shingles (RAS) may be used in Stone Matrix Asphalt (SMA) mixtures designed with an SBA polymer modifier as a fiber additive if the mix design with RAS included meets AASHTO T305 requirements. The RAS shall be from a certified source that produces either Type I or Type 2. Material shall meet requirements noted herein and the actual dosage rate will be determined by the Engineer. Note 4. Warm mix additives or foaming processes shall be selected from the Department's Qualified Producer List, "Technologies for the Production of Warm Mix Asphalt (WMA)"." <u>Mixture Design</u>. Revise Article 1030.04(a)(1) of the Standard Specifications and the Supplemental Specifications to read: | Hig | h ESAL, | MIXTL | JRE C | OMPC | SITIC | N (% | PASS | ING) 1/ | | | |---------------------------|---------|-------|-------|--------|-------|-------------------|-------|------------------|--------|-------| | Sieve | IL-19.0 | mm | SMA | 12.5 | SMA | A 9.5 | IL- | 9.5mm | IL-4.7 | 75 mm | | Size | min | max | | 1 1/2 in
(37.5 mm) | | | | | | | | | | | | 1 in.
(25 mm) | | 100 | | | | | | | | | | 3/4 in.
(19 mm) | 90 | 100 | | 100 | | | | | | | | 1/2 in.
(12.5 mm) | 75 | 89 | 80 | 100 | | 100 | | 100 | | 100 | | 3/8 in.
(9.5 mm) | | | | 65 | 90 | 100 | 90 | 100 | | 100 | | #4
(4.75 mm) | 40 | 60 | 20 | 30 | 36 | 50 | 34 | 69 | 90 | 100 | | #8
(2.36 mm) | 20 | 42 | 16 | 24 4/ | 16 | 324/ | 34 5/ | 52 ^{2/} | 70 | 90 | | #16
(1.18 mm) | 15 | 30 | | | | | 10 | 32 | 50 | 65 | | #30
(600 μm) | | | 12 | 16 | 12 | 18 | | | | | | #50
(300 μm) | 6 | 15 | | | | | 4 | 15 | 15 | 30 | | #100
(150 μm) | 4 | 9 | | | | | 3 | 10 | 10 | 18 | | #200
(75 μm) | 3 | 6 | 7.0 | 9.0 3/ | 7.5 | 9.5 ^{3/} | 4 | 6 | 7 | 9 3/ | | #635
(20 μm) | | | ≤ ; | 3.0 | ≤ : | 3.0 | | | | | | Ratio Dust/Asphalt Binder | | 1.0 | | 1.5 | | 1.5 | | 1.0 | | 1.0 | - 1/ Based on percent of total aggregate weight. - 2/ The mixture composition shall not exceed 44 percent passing the #8 (2.36 mm) sieve for surface courses with Ndesign = 90. - 3/ Additional minus No. 200 (0.075 mm) material required by the mix design shall be mineral filler, unless otherwise approved by the Engineer. - 4/ When establishing the Adjusted Job Mix Formula (AJMF) the percent passing the #8 (2.36 mm) sieve shall not be adjusted above the percentage stated on the table. - 5/ When establishing the Adjusted Job Mix Formula (AJMF) the percent passing the #8 (2.36 mm) sieve shall not be adjusted below 34 percent. Revise Article 1030.04(b)(1) of the Standard Specifications to read: "(1) High ESAL Mixtures. The target value for the air voids of the HMA shall be 4.0 percent, for IL-4.75 it shall be 3.5 percent and for Stabilized Subbase it shall be 3.0 percent at the design number of gyrations. The voids in the mineral aggregate (VMA) and voids
filled with asphalt binder (VFA) of the HMA design shall be based on the nominal maximum size of the aggregate in the mix and shall conform to the following requirements. | | VOLUMETRIC REQUIREMENTS
High ESAL | | | | | | | |---------|--|--|--|---------|--|--|--| | | Voids in the | Voids Filled
with Asphalt
Binder | | | | | | | Ndesign | IL-19.0;
Stabilized Subbase
IL- 19.0 | (VFA),
% | | | | | | | 50 | | 65 – 78 ^{2/} | | | | | | | 70 | 13.5 | 65 - 75 | | | | | | | 90 | 10.0 | 15.0 | | 05 - 75 | | | | ^{1/} Maximum draindown for IL-4.75 shall be 0.3 percent. ^{2/} VFA for IL-4.75 shall be 72-85 percent." Revise the table in Article 1030.04(b)(3) to read: | "VOLUMETRIC REQUIREMENTS, SMA 12.5 ^{1/} and SMA 9.5 ^{1/} | | | | | | | |--|------------------------------|--|--|--|--|--| | Ndesign | Design Air Voids
Target % | Voids in the Mineral
Aggregate
(VMA), % min. | Voids Filled
with Asphalt
(VFA), % | | | | | 80 4/ | 3.5 | 17.0 ^{2/}
16.0 ^{3/} | 75 - 83 | | | | - 1/ Maximum draindown shall be 0.3 percent. The draindown shall be determined at the JMF asphalt binder content at the mixing temperature plus 30 °F. - 2/ Applies when specific gravity of coarse aggregate is \geq 2.760. - 3/ Applies when specific gravity of coarse aggregate is < 2.760. - 4/ Blending of different types of aggregate will not be permitted. For surface course, the coarse aggregate can be crushed steel slag, crystalline crushed stone or crushed sandstone. For binder course, coarse aggregate shall be crushed stone (dolomite), crushed gravel, crystalline crushed stone, or crushed sandstone. Add to the end of Article 1030.05 (d) (2) a. of the Standard Specifications: "During production, the Contractor shall test SMA mixtures for draindown according to AASHTO T305 at a frequency of 1 per day of production." Revise the last paragraph of Article 1102.01 (a) (5) of the Standard Specifications to read: "IL-4.75 and Stone Matrix Asphalt (SMA) mixtures which contain aggregate having absorptions greater than or equal to 2.0 percent, or which contain steal slag sand, shall have minimum surge bin storage plus haul time of 1.5 hours." Quality Control/Quality Assurance (QC/QA). Revise the third paragraph of Article 1030.05(d)(3) to read: "If the Contractor and Engineer agree the nuclear density test method is not appropriate for the mixture, cores shall be taken at random locations determined according to the QC/QA document "Determination of Random Density Test Site Locations". Core densities shall be determined using the Illinois Modified AASHTO T 166 or T 275 procedure." Add the following paragraphs to the end of Article 1030.05(d)(3): "Longitudinal joint density testing shall be performed at each random density test location. Longitudinal joint testing shall be located at a distance equal to the lift thickness or a minimum of 4 in. (100 mm), from each pavement edge (i.e. for a 5 in. (125 mm) lift the near edge of the density gauge or core barrel shall be within 5 in. (125 mm) from the edge of pavement). Longitudinal joint density testing shall be performed using either a correlated nuclear gauge or cores. - a. Confined Edge. Each confined edge density shall be represented by a one-minute nuclear density reading or a core density and shall be included in the average of density readings or core densities taken across the mat which represents the Individual Test. - b. Unconfined Edge. Each unconfined edge joint density shall be represented by an average of three one-minute density readings or a single core density at the given density test location and shall meet the density requirements specified herein. The three one-minute readings shall be spaced 10 ft (3 m) apart longitudinally along the unconfined pavement edge and centered at the random density test location. When a longitudinal joint sealant (LJS) is applied, longitudinal joint density testing will not be required on the joint(s) sealed." Revise the second table in Article 1030.05(d)(4) and its notes to read: | "DENSITY CONTROL LIMITS | | | | | | | |-------------------------|-------------------|---|--|--|--|--| | Mixture
Composition | Parameter | Individual Test
(includes confined
edges) | Unconfined Edge
Joint Density,
minimum | | | | | IL-4.75 | Ndesign = 50 | 93.0 – 97.4 % 1/ | 91.0% | | | | | IL-9.5FG | Ndesign = 50 - 90 | 93.0 – 97.4 % | 91.0% | | | | | IL-9.5 | Ndesign = 90 | 92.0 – 96.0 % | 90.0% | | | | | IL-9.5, IL-9.5L, | Ndesign < 90 | 92.5 – 97.4 % | 90.0% | | | | | IL-19.0 | Ndesign = 90 | 93.0 – 96.0 % | 90.0% | | | | | IL-19.0, IL-19.0L | Ndesign < 90 | 93.0 ^{2/} – 97.4 % | 90.0% | | | | | SMA | Ndesign = 80 | 93.5 – 97.4 % | 91.0% | | | | ^{1/} Density shall be determined by cores or by correlated, approved thin lift nuclear gauge. 2/ 92.0 % when placed as first lift on an unimproved subgrade." ## **Equipment**. Add the following to Article 1101.01 of the Standard Specifications: - "(h) Oscillatory Roller. The oscillatory roller shall be self-propelled and provide a smooth operation when starting, stopping, or reversing directions. The oscillatory roller shall be able to operate in a mode that will provide tangential impact force with or without vertical impact force by using at least one drum. The oscillatory roller shall be equipped with water tanks and sprinkling devices, or other approved methods, which shall be used to wet the drums to prevent material pickup. The drum(s) amplitude and frequency of the tangential and vertical impact force shall be approximately the same in each direction and meet the following requirements: - (1) The minimum diameter of the drum(s) shall be 42 in. (1070 mm); - (2) The minimum length of the drum(s) shall be 57 in. (1480 mm); - (3) The minimum unit static force on the drum(s) shall be 125 lb/in. (22 N/m); and - (4) The minimum force on the oscillatory drum shall be 18,000 lb (80 kN)." ## Construction Requirements. Add the following to Article 406.03 of the Standard Specifications: "(j) Oscillatory Roller1101.01" Revise the third paragraph of Article 406.05(a) to read: "All depressions of 1 in. (25 mm) or more in the surface of the existing pavement shall be filled with binder. At locations where heavy disintegration and deep spalling exists, the area shall be cleaned of all loose and unsound material, tacked, and filled with binder (hand method)." Revise Article 406.05(c) to read. "(c) Binder (Hand Method). Binder placed other than with a finishing machine will be designated as binder (hand method) and shall be compacted with a roller to the satisfaction of the Engineer. Hand tamping will be permitted when approved by the Engineer." Revise the special conditions for mixture IL-4.75 in Article 406.06(b)(2)e. to read: "e. The mixture shall be overlaid within 5 days of being placed." ## Revise Article 406.06(d) to read: "(d) Lift Thickness. The minimum compacted lift thickness for HMA binder and surface courses shall be as follows. | MINIMUM COMPACTED LIFT THICKNESS | | | |---|---|--| | Mixture Composition Thickness, in. (mm) | | | | IL-4.75 | 3/4 (19) - over HMA surfaces ^{1/} 1 (25) - over PCC surfaces ^{1/} | | | IL-9.5FG | 1 1/4 (32) | | | IL-9.5, IL-9.5L | 1 1/2 (38) | | | SMA 9.5 | 1 3/4 (45) | | | SMA 12.5 | 2 (51) | | | IL-19.0, IL-19.0L | 2 1/4 (57) | | ^{1/} The maximum compacted lift thickness for mixture IL-4.75 shall be 1 1/4 in. (32 mm)." Revise Table 1 and Note 3/ of Table 1 in Article 406.07(a) of the Standard Specifications to read: | "TABLE 1 - MINIMUM ROLLER REQUIREMENTS FOR HMA | | | | | |--|--|---|---|--| | | Breakdown Roller
(one of the
following) | Intermediate
Roller | Final Roller
(one or more of
the following) | Density
Requirement | | Binder and Surface 1/ | V _D , P ^{3/} , T _B , 3W,
O _T , O _B | P ^{3/} , O _T , O _B | V_S , T_B , $T_{F_1}O_T$ | As specified in Articles: 1030.05(d)(3), (d)(4), and (d)(7). | | IL-4.75 and SMA 4/5/ | T _{B,} 3W, O _T | | T _F , 3W, O _T | | | Bridge Decks ^{2/} | Тв | | T _F | As specified in Articles 582.05 and 582.06. | ^{3/} A vibratory roller (V_D) or oscillatory roller (O_T or O_B) may be used in lieu of the pneumatic-tired roller on mixtures containing polymer modified asphalt binder." Add the following to EQUIPMENT DEFINITION in Article 406.07(a) contained in the Errata of the Supplemental Specifications: - "O_T Oscillatory roller, tangential impact mode. Maximum speed is 3.0 mph (4.8 km/h) or 264 ft/min (80 m/min). - O_B Oscillatory roller, tangential and vertical impact mode, operated at a speed to produce not less than 10 vertical impacts/ft (30 impacts/m)." Delete last sentence of the second paragraph of Article 1102.01(a) (4) b. 2. Add to the end of Article 1102.01 (a) (4) b. 2.: "As an option, collected dust (baghouse) may be used in lieu of manufactured mineral filler according to the following: - (a.) Sufficient collected dust (baghouse) is available for production of the SMA mix for the entire project. - (b.) A mix design was prepared based on collected dust (baghouse). Revise Article 1030.04 (d) of the Standard Specifications to read: "(d) Verification Testing. High ESAL, IL-4.75, and SMA mix designs submitted for verification will be tested to ensure
that the resulting mix designs will pass the required criteria for the Hamburg Wheel Test (IL mod AASHTO T-324) and the Tensile Strength Test (IL mod AASHTO T-283). The Department will perform a verification test on gyratory specimens compacted by the Contractor. If the mix fails the Department's verification test, the Contractor shall make the necessary changes to the mix and resubmit compacted specimens to the Department for verification. If the mix fails again, the mix design will be rejected. All new mix designs will be required to be tested, prior to submittal for Department verification and shall meet the following requirements: (1)Hamburg Wheel Test criteria. The maximum allowable rut depth shall be 0.5 in. (12.5 mm). The minimum number of wheel passes at the 0.5 in. (12.5 mm) rut depth criteria shall be based on the high temperature binder grade of the mix as specified in the mix requirements table of the plans. Illinois Modified AASHTO T 324 Requirements ^{1/} | Asphalt Binder Grade | # Repetitions | Max Rut Depth (mm) | |-----------------------|---------------|--------------------| | PG 70 -XX (or higher) | 20,000 | 12.5 | | PG 64 -XX (or lower) | 10,000 | 12.5 | 1/ When produced at temperatures of 275 ± 5 °F (135 ± 3 °C) or less, loose Warm Mix Asphalt shall be oven aged at 270 ± 5 °F (132 ± 3 °C) for two hours prior to gyratory compaction of Hamburg Wheel specimens. Note: For SMA Designs (N-80) the maximum rut depth is 6.0 mm at 20,000 repetitions. For IL 4.75mm Designs (N-50) the maximum rut depth is 9.0mm at 15,000 repetitions. (2) Tensile Strength Criteria. The minimum allowable conditioned tensile strength shall be 60 psi (415 kPa) for non-polymer modified performance graded (PG) asphalt binder and 80 psi (550 kPa) for polymer modified PG asphalt binder. The maximum allowable unconditioned tensile strength shall be 200 psi (1380 kPa)." <u>Production Testing</u>. Revise first paragraph of Article 1030.06(a) of the Standard Specifications to read: "(a) High ESAL, IL-4.75, WMA, and SMA Mixtures. For each contract, a 300 ton (275 metric tons) test strip, except for SMA mixtures it will be 400 ton (363 metric ton), will be required at the beginning of HMA production for each mixture at the beginning of each construction year according to the Manual of Test Procedures for Materials "Hot Mix Asphalt Test Strip Procedures". At the request of the Producer, the Engineer may waive the test strip if previous construction during the current construction year has demonstrated the constructability of the mix using Department test results." Add the following after the sixth paragraph in Article 1030.06 (a) of the Standard Specifications: "The Hamburg Wheel test shall also be conducted on all HMA mixtures from a sample taken within the first 500 tons (450 metric tons) on the first day of production or during start up with a split reserved for the Department. The mix sample shall be tested according to the Illinois Modified AASHTO T 324 and shall meet the requirements specified herein. Mix production shall not exceed 1500 tons (1350 metric tons) or one day's production, whichever comes first, until the testing is completed and the mixture is found to be in conformance. The requirement to cease mix production may be waived if the plant produced mixture demonstrates conformance prior to start of mix production for a contract. If the mixture fails to meet the Hamburg Wheel criteria, no further mixture will be accepted until the Contractor takes such action as is necessary to furnish a mixture meeting the criteria" ## Method of Measurement: Add the following after the fourth paragraph of Article 406.13 (b): "The plan quantities of SMA mixtures shall be adjusted using the actual approved binder and surface Mix Design's G_{mb}." <u>Basis of Payment</u>. Replace the second through the fifth paragraphs of Article 406.14 with the following: "HMA binder and surface courses will be paid for at the contract unit price per ton (metric ton) for MIXTURE FOR CRACKS, JOINTS, AND FLANGEWAYS; HOT-MIX ASPHALT BINDER COURSE (HAND METHOD), of the Ndesign specified; HOT-MIX ASPHALT BINDER COURSE, of the mixture composition and Ndesign specified; HOT-MIX ASPHALT SURFACE COURSE, of the mixture composition, friction aggregate, and Ndesign specified; POLYMERIZED HOT-MIX ASPHALT BINDER COURSE, of the mixture composition and Ndesign specified; POLYMERIZED HOT-MIX ASPHALT BINDER COURSE, of the mixture composition and Ndesign specified; POLYMERIZED HOT-MIX ASPHALT SURFACE COURSE, of the mixture composition, friction aggregate, and Ndesign specified; POLYMERIZED HOT-MIX ASPHALT BINDER COURSE, STONE MATRIX ASPHALT, of the mixture composition and Ndesign specified; POLYMERIZED HOT-MIX ASPHALT, of the mixture composition, friction aggregate, and Ndesign specified." ## RECLAIMED ASPHALT PAVEMENT AND RECLAIMED ASPHALT SHINGLES (D-1) Effective: November 1, 2012 Revise: November 1, 2019 Revise Section 1031 of the Standard Specifications to read: ## "SECTION 1031. RECLAIMED ASPHALT PAVEMENT AND RECLAIMED ASPHALT SHINGLES **1031.01 Description.** Reclaimed asphalt pavement and reclaimed asphalt shingles shall be according to the following. - (a) Reclaimed Asphalt Pavement (RAP). RAP is the material resulting from cold milling or crushing an existing hot-mix asphalt (HMA) pavement. RAP will be considered processed FRAP after completion of both crushing and screening to size. The Contractor shall supply written documentation that the RAP originated from routes or airfields under federal, state, or local agency jurisdiction. - (b) Reclaimed Asphalt Shingles (RAS). Reclaimed asphalt shingles (RAS). RAS is from the processing and grinding of preconsumer or post-consumer shingles. RAS shall be a clean and uniform material with a maximum of 0.5 percent unacceptable material, as defined in Central Bureau of Materials Policy Memorandum, "Reclaimed Asphalt Shingle (RAS) Sources", by weight of RAS. All RAS used shall come from a Central Bureau of Materials approved processing facility where it shall be ground and processed to 100 percent passing the 3/8 in. (9.5 mm) sieve and 90 percent passing the #4 (4.75 mm) sieve. RAS shall meet the testing requirements specified herein. In addition, RAS shall meet the following Type 1 or Type 2 requirements. - (1) Type 1. Type 1 RAS shall be processed, preconsumer asphalt shingles salvaged from the manufacture of residential asphalt roofing shingles. - (2) Type 2. Type 2 RAS shall be processed post-consumer shingles only, salvaged from residential, or four unit or less dwellings not subject to the National Emission Standards for Hazardous Air Pollutants (NESHAP). ## 1031.02 Stockpiles. RAP and RAS stockpiles shall be according to the following. - (a) RAP Stockpiles. The Contractor shall construct individual, sealed RAP stockpiles meeting one of the following definitions. Additional processed RAP (FRAP) shall be stockpiled in a separate working pile, as designated in the QC Plan, and only added to the sealed stockpile when test results for the working pile are complete and are found to meet tolerances specified herein for the original sealed FRAP stockpile. Stockpiles shall be sufficiently separated to prevent intermingling at the base. All stockpiles (including unprocessed RAP and FRAP) shall be identified by signs indicating the type as listed below (i.e. "Non- Quality, FRAP -#4 or Type 2 RAS", etc...). - (1) Fractionated RAP (FRAP). FRAP shall consist of RAP from Class I, HMA (High and Low ESAL) or equivalent mixtures. The coarse aggregate in FRAP shall be crushed aggregate and may represent more than one aggregate type and/or quality, but shall be at least C quality. All FRAP shall be processed prior to testing and sized into fractions with the separation occurring on or between the #4 (4.75 mm) and 1/2 in. (12.5 mm) sieves. Agglomerations shall be minimized such that 100 percent of the RAP in the coarse fraction shall pass the maximum sieve size specified for the mixture composition of the mix design. - (2) Restricted FRAP (B quality) stockpiles shall consist of RAP from Class I, HMA (High ESAL), or HMA (High ESAL). If approved by the Engineer, the aggregate from a maximum 3.0 in. (75 mm) single combined pass of surface/binder milling will be classified as B quality. All millings from this application will be processed into FRAP as described previously. - (3) Conglomerate. Conglomerate RAP stockpiles shall consist of RAP from Class I, HMA (High and Low ESAL) or equivalent mixtures. The coarse aggregate in this RAP shall be crushed aggregate and may represent more than one aggregate type and/or quality, but shall be at least C quality. This RAP may have an inconsistent gradation and/or asphalt binder content prior to processing. All conglomerate RAP shall be processed (FRAP) prior to testing. Conglomerate RAP stockpiles shall not contain steel slag or other expansive material as determined by the Department. - (4) Conglomerate "D" Quality (DQ). Conglomerate DQ RAP stockpiles shall consist of RAP from HMA shoulders, bituminous stabilized subbases or HMA (Low ESAL)/HMA (Low ESAL) IL-19.0L binder mixture. The coarse aggregate in this RAP may be crushed or round but shall be at least D quality. This RAP may have an inconsistent gradation and/or asphalt binder content. Conglomerate DQ RAP stockpiles shall not contain steel slag or other expansive material as determined by the Department. (5) Non-Quality. RAP stockpiles that do not meet the requirements of the stockpile categories listed above shall be classified as "Non-Quality". RAP or FRAP containing contaminants, such as earth, brick, sand, concrete, sheet asphalt, bituminous surface treatment (i.e. chip seal), pavement fabric, joint sealants, plant cleanout etc., will be unacceptable unless the contaminants are removed to the satisfaction of the Engineer. Sheet asphalt shall be stockpiled separately. (b) RAS Stockpiles. Type 1 and Type 2 RAS shall be stockpiled
separately and shall be sufficiently separated to prevent intermingling at the base. Each stockpile shall be signed indicating what type of RAS is present. However, a RAS source may submit a written request to the Department for approval to blend mechanically a specified ratio of Type 1 RAS with Type 2 RAS. The source will not be permitted to change the ratio of the blend without the Department prior written approval. The Engineer's written approval will be required, to mechanically blend RAS with any fine aggregate produced under the AGCS, up to an equal weight of RAS, to improve workability. The fine aggregate shall be "B Quality" or better from an approved Aggregate Gradation Control System source. The fine aggregate shall be one that is approved for use in the HMA mixture and accounted for in the mix design and during HMA production. Records identifying the shingle processing facility supplying the RAS, RAS type, and lot number shall be maintained by project contract number and kept for a minimum of three years. ## **1031.03 Testing.** FRAP and RAS testing shall be according to the following. - (a) FRAP Testing. When used in HMA, the FRAP shall be sampled and tested either during processing or after stockpiling. It shall also be sampled during HMA production. - (1) During Stockpiling. For testing during stockpiling, washed extraction samples shall be run at the minimum frequency of one sample per 500 tons (450 metric tons) for the first 2000 tons (1800 metric tons) and one sample per 2000 tons (1800 metric tons) thereafter. A minimum of five tests shall be required for stockpiles less than 4000 tons (3600 metric tons). - (2) Incoming Material. For testing as incoming material, washed extraction samples shall be run at a minimum frequency of one sample per 2000 tons (1800 metric tons) or once per week, whichever comes first. - (3) After Stockpiling. For testing after stockpiling, the Contractor shall submit a plan for approval to the District proposing a satisfactory method of sampling and testing the RAP/FRAP pile either in-situ or by restockpiling. The sampling plan shall meet the minimum frequency required above and detail the procedure used to obtain representative samples throughout the pile for testing. Before extraction, each field sample of FRAP, shall be split to obtain two samples of test sample size. One of the two test samples from the final split shall be labeled and stored for Department use. The Contractor shall extract the other test sample according to Department procedure. The Engineer reserves the right to test any sample (split or Department-taken) to verify Contractor test results. - (b) RAS Testing. RAS shall be sampled and tested during stockpiling according to Central Bureau of Materials Policy Memorandum, "Reclaimed Asphalt Shingle (RAS) Sources". The Contractor shall also sample as incoming material at the HMA plant. - (1) During Stockpiling. Washed extraction and testing for unacceptable materials shall be run at the minimum frequency of one sample per 200 tons (180 metric tons) for the first 1000 tons (900 metric tons) and one sample per 1000 tons (900 metric tons) thereafter. A minimum of five samples are required for stockpiles less than 1000 tons (900 metric tons). Once a ≤ 1000 ton (900 metric ton), five-sample/test stockpile has been established it shall be sealed. Additional incoming RAS shall be in a separate working pile as designated in the Quality Control plan and only added to the sealed stockpile when the test results of the working pile are complete and are found to meet the tolerances specified herein for the original sealed RAS stockpile. - (2) Incoming Material. For testing as incoming material at the HMA plant, washed extraction shall be run at the minimum frequency of one sample per 250 tons (227 metric tons). A minimum of five samples are required for stockpiles less than 1000 tons (900 metric tons). The incoming material test results shall meet the tolerances specified herein. The Contractor shall obtain and make available all test results from start of the initial stockpile sampled and tested at the shingle processing facility in accordance with the facility's QC Plan. Before extraction, each field sample shall be split to obtain two samples of test sample size. One of the two test samples from the final split shall be labeled and stored for Department use. The Contractor shall extract the other test sample according to Department procedures. The Engineer reserves the right to test any sample (split or Department-taken) to verify Contractor test results. ## **1031.04 Evaluation of Tests.** Evaluation of test results shall be according to the following. (a) Evaluation of FRAP Test Results. All test results shall be compiled to include asphalt binder content, gradation and, when applicable (for slag), G_{mm}. A five test average of results from the original pile will be used in the mix designs. Individual extraction test results run thereafter, shall be compared to the average used for the mix design, and will be accepted if within the tolerances listed below. | Parameter | FRAP | | |-----------------|----------------------|--| | No. 4 (4.75 mm) | ± 6 % | | | No. 8 (2.36 mm) | ± 5 % | | | No. 30 (600 μm) | ± 5 % | | | No. 200 (75 μm) | ± 2.0 % | | | Asphalt Binder | ± 0.3 % | | | G _{mm} | ± 0.03 ^{1/} | | 1/ For stockpile with slag or steel slag present as determined in the current Manual of Test Procedures Appendix B 21, "Determination of Reclaimed Asphalt Pavement Aggregate Bulk Specific Gravity". If any individual sieve and/or asphalt binder content tests are out of the above tolerances when compared to the average used for the mix design, the FRAP stockpile shall not be used in Hot-Mix Asphalt unless the FRAP representing those tests is removed from the stockpile. All test data and acceptance ranges shall be sent to the District for evaluation. The Contractor shall maintain a representative moving average of five tests to be used for Hot-Mix Asphalt production. With the approval of the Engineer, the ignition oven may be substituted for extractions according to the ITP, "Calibration of the Ignition Oven for the Purpose of Characterizing Reclaimed Asphalt Pavement (RAP)" or Illinois Modified AASHTO T-164-11, Test Method A. (b) Evaluation of RAS Test Results. All of the test results, with the exception of percent unacceptable materials, shall be compiled and averaged for asphalt binder content and gradation. A five test average of results from the original pile will be used in the mix designs. Individual test results run thereafter, when compared to the average used for the mix design, will be accepted if within the tolerances listed below. | Parameter | RAS | |------------------------|---------| | No. 8 (2.36 mm) | ± 5 % | | No. 16 (1.18 mm) | ± 5 % | | No. 30 (600 µm) | ± 4 % | | No. 200 (75 µm) | ± 2.5 % | | Asphalt Binder Content | ± 2.0 % | If any individual sieve and/or asphalt binder content tests are out of the above tolerances when compared to the average used for the mix design, the RAS shall not be used in Hot-Mix Asphalt unless the RAS representing those tests is removed from the stockpile. All test data and acceptance ranges shall be sent to the District for evaluation. (c) Quality Assurance by the Engineer. The Engineer may witness the sampling and splitting conduct assurance tests on split samples taken by the Contractor for quality control testing a minimum of once a month. The overall testing frequency will be performed over the entire range of Contractor samples for asphalt binder content and gradation. The Engineer may select any or all split samples for assurance testing. The test results will be made available to the Contractor as soon as they become available. The Engineer will notify the Contractor of observed deficiencies. Differences between the Contractor's and the Engineer's split sample test results will be considered acceptable if within the following limits. | Test Parameter | Acceptable Limits of Precision | | |------------------------|--------------------------------|------| | % Passing:1/ | FRAP | RAS | | 1/2 in. | 5.0% | | | No. 4 | 5.0% | | | No. 8 | 3.0% | 4.0% | | No. 30 | 2.0% | 4.0% | | No. 200 | 2.2% | 4.0% | | Asphalt Binder Content | 0.3% | 3.0% | | G _{mm} | 0.030 | | 1/ Based on washed extraction. In the event comparisons are outside the above acceptable limits of precision, the Engineer will immediately investigate. (d) Acceptance by the Engineer. Acceptable of the material will be based on the validation of the Contractor's quality control by the assurance process. ## 1031.05 Quality Designation of Aggregate in RAP and FRAP. - (a) RAP. The aggregate quality of the RAP for homogeneous, conglomerate, and conglomerate "D" quality stockpiles shall be set by the lowest quality of coarse aggregate in the RAP stockpile and are designated as follows. - (1) RAP from Class I, HMA (High ESAL), or (Low ESAL) IL-9.5L surface mixtures are designated as containing Class B quality coarse aggregate. - (2) RAP from HMA (Low ESAL) IL-19.0L binder mixture is designated as Class D quality coarse aggregate. - (3) RAP from Class I, HMA (High ESAL) binder mixtures, bituminous base course mixtures, and bituminous base course widening mixtures are designated as containing Class C quality coarse aggregate. - (4) RAP from bituminous stabilized subbase and BAM shoulders are designated as containing Class D quality coarse aggregate. - (b) FRAP. If the Engineer has documentation of the quality of the FRAP aggregate, the Contractor shall use the assigned quality provided by the Engineer. If the quality is not known, the quality shall be determined as follows. Fractionated RAP stockpiles containing plus #4 (4.75 mm) sieve coarse aggregate shall have a maximum tonnage of 5,000 tons (4,500 metric tons). The Contractor shall obtain a representative sample witnessed by the Engineer. The sample shall be a minimum of 50 lb (25 kg). The sample shall
be extracted according to Illinois Modified AASHTO T 164 by a consultant laboratory prequalified by the Department for the specified testing. The consultant laboratory shall submit the test results along with the recovered aggregate to the District Office. The cost for this testing shall be paid by the Contractor. The District will forward the sample to the Central Bureau of Materials Aggregate Lab for MicroDeval Testing, according to ITP 327. A maximum loss of 15.0 percent will be applied for all HMA applications. The fine aggregate portion of the fractionated RAP shall not be used in any HMA mixtures that require a minimum of "B" quality aggregate or better, until the coarse aggregate fraction has been determined to be acceptable thru a MicroDeval Testing. **1031.06 Use of FRAP and/or RAS in HMA.** The use of FRAP and/or RAS shall be the Contractor's option when constructing HMA in all contracts. - (a) FRAP. The use of FRAP in HMA shall be as follows. - (1) Coarse Aggregate Size (after extraction). The coarse aggregate in all FRAP shall be equal to or less than the nominal maximum size requirement for the HMA mixture to be produced. - (2) Steel Slag Stockpiles. FRAP stockpiles containing steel slag or other expansive material, as determined by the Department, shall be homogeneous and will be approved for use in HMA (High ESAL and Low ESAL) mixtures regardless of lift or mix type. - (3) Use in HMA Surface Mixtures (High and Low ESAL). FRAP stockpiles for use in HMA surface mixtures (High and Low ESAL) shall have coarse aggregate that is Class B quality or better. FRAP shall be considered equivalent to limestone for frictional considerations unless produced/screened to minus 3/8 inch. - (4) Use in HMA Binder Mixtures (High and Low ESAL), HMA Base Course, and HMA Base Course Widening. FRAP stockpiles for use in HMA binder mixtures (High and Low ESAL), HMA base course, and HMA base course widening shall be FRAP in which the coarse aggregate is Class C quality or better. - (5) Use in Shoulders and Subbase. FRAP stockpiles for use in HMA shoulders and stabilized subbase (HMA) shall be FRAP, Restricted FRAP, conglomerate, or conglomerate DQ. - (b) RAS. RAS meeting Type 1 or Type 2 requirements will be permitted in all HMA applications as specified herein. (c) FRAP and/or RAS Usage Limits. Type 1 or Type 2 RAS may be used alone or in conjunction with FRAP in HMA mixtures up to a maximum of 5.0 percent by weight of the total mix. When FRAP is used alone or FRAP is used in conjunction with RAS, the percent of virgin asphalt binder replacement (ABR) shall not exceed the amounts listed below for a given N Design. Maximum Asphalt Binder Replacement (ABR) for FRAP with RAS Combination | HMA Mixtures | Maximum % ABR | | | |--------------|----------------------|-----------------------|---------------------| | Ndesign | Binder ^{5/} | Surface ^{5/} | Polymer Modified 3/ | | 30L | 50 | 40 | 30 | | 50 | 40 | 35 | 30 | | 70 | 40 | 30 | 30 | | 90 | 40 | 30 | 30 | | SMA | | | 30 | | IL-4.75 | | | 40 | - 1/ For Low ESAL HMA shoulder and stabilized subbase, the percent asphalt binder replacement shall not exceed 50 % of the total asphalt binder in the mixture. - 2/ When the binder replacement exceeds 15 % for all mixes, except for SMA and IL-4.75, the high and low virgin asphalt binder grades shall each be reduced by one grade (i.e. 25 % binder replacement using a virgin asphalt binder grade of PG64-22 will be reduced to a PG58-28). When constructing full depth HMA and the ABR is less than 15 %, the required virgin asphalt binder grade shall be PG64-28. - 3/ When the ABR for SMA or IL-4.75 is 15 % or less, the required virgin asphalt binder shall be SBS PG76-22 and the elastic recovery shall be a minimum of 80. When the ABR for SMA or IL-4.75 exceeds 15%, the virgin asphalt binder grade shall be SBS PG70-28 and the elastic recovery shall be a minimum of 80. - 4/ When FRAP or RAS is used alone, the maximum percent asphalt binder replacement designated on the table shall be reduced by 10 %. - 5/ When the mix has Illinois Flexibility Index Test (I-FIT) requirements, the maximum percent asphalt binder replacement designated on the table may be increased by 5%. **1031.07 HMA Mix Designs.** At the Contractor's option, HMA mixtures may be constructed utilizing FRAP and/or RAS material meeting the detailed requirements specified herein. - (a) FRAP and/or RAS. FRAP and /or RAS mix designs shall be submitted for verification. If additional FRAP or RAS stockpiles are tested and found to be within tolerance, as defined under "Evaluation of Tests" herein, and meet all requirements herein, the additional FRAP or RAS stockpiles may be used in the original design at the percent previously verified. - (b) RAS. Type 1 and Type 2 RAS are not interchangeable in a mix design. The RAP, FRAP and RAS stone specific gravities (G_{sb}) shall be according to the "Determination of Aggregate Bulk (Dry) Specific Gravity (G_{sb}) of Reclaimed Asphalt Pavement (RAP) and Reclaimed Asphalt Shingles (RAS)" procedure in the Department's Manual of Test Procedures for Materials. **1031.08 HMA Production.** HMA production utilizing FRAP and/or RAS shall be as follows. A scalping screen, gator, crushing unit, or comparable sizing device approved by the Engineer shall be used in the RAS and FRAP feed system to remove or reduce oversized and agglomerated material. If during mix production, corrective actions fail to maintain FRAP, RAS or QC/QA test results within control tolerances or the requirements listed herein, the Contractor shall cease production of the mixture containing FRAP or RAS and conduct an investigation that may require a new mix design. - (a) FRAP. The coarse aggregate in all FRAP used shall be equal to or less than the nominal maximum size requirement for the HMA mixture being produced. - (b) RAS. RAS shall be incorporated into the HMA mixture either by a separate weight depletion system or by using the RAP weigh belt. Either feed system shall be interlocked with the aggregate feed or weigh system to maintain correct proportions for all rates of production and batch sizes. The portion of RAS shall be controlled accurately to within ± 0.5 percent of the amount of RAS utilized. When using the weight depletion system, flow indicators or sensing devices shall be provided and interlocked with the plant controls such that the mixture production is halted when RAS flow is interrupted. - (c) HMA Plant Requirements. HMA plants utilizing FRAP and/or RAS shall be capable of automatically recording and printing the following information. - (1) Dryer Drum Plants. - a. Date, month, year, and time to the nearest minute for each print. - b. HMA mix number assigned by the Department. - c. Accumulated weight of dry aggregate (combined or individual) in tons (metric tons) to the nearest 0.1 ton (0.1 metric ton). - d. Accumulated dry weight of RAS and FRAP in tons (metric tons) to the nearest 0.1 ton (0.1 metric ton). - e. Accumulated mineral filler in revolutions, tons (metric tons), etc. to the nearest 0.1 unit. - f. Accumulated asphalt binder in gallons (liters), tons (metric tons), etc. to the nearest 0.1 unit - g. Residual asphalt binder in the RAS and FRAP material as a percent of the total mix to the nearest 0.1 percent. - h. Aggregate RAS and FRAP moisture compensators in percent as set on the control panel. (Required when accumulated or individual aggregate and RAS and FRAP are printed in wet condition.) - i. When producing mixtures with FRAP and/or RAS, a positive dust control system shall be utilized. - j. Accumulated mixture tonnage. - k. Dust Removed (accumulated to the nearest 0.1 ton (0.1 metric ton)) - (2) Batch Plants. - a. Date, month, year, and time to the nearest minute for each print. - b. HMA mix number assigned by the Department. - c. Individual virgin aggregate hot bin batch weights to the nearest pound (kilogram). - d. Mineral filler weight to the nearest pound (kilogram). - e. RAS and FRAP weight to the nearest pound (kilogram). - f. Virgin asphalt binder weight to the nearest pound (kilogram). - g. Residual asphalt binder in the RAS and FRAP material as a percent of the total mix to the nearest 0.1 percent. The printouts shall be maintained in a file at the plant for a minimum of one year or as directed by the Engineer and shall be made available upon request. The printing system will be inspected by the Engineer prior to production and verified at the beginning of each construction season thereafter. 1031.09 RAP in Aggregate Surface Course and Aggregate Wedge Shoulders, Type B. The use of RAP in aggregate surface course and aggregate shoulders shall be as follows. - (a) Stockpiles and Testing. RAP stockpiles may be any of those listed in Article 1031.02, except "Non-Quality" and "FRAP". The testing requirements of Article 1031.03 shall not apply. RAP used shall be according to the current Central Bureau of Materials Policy Memorandum, "Reclaimed Asphalt Pavement (RAP) for Aggregate Applications". - (b) Gradation. The RAP material shall meet the gradation requirements for CA 6 according to Article 1004.01(c), except the requirements for the minus No. 200 (75 μm) sieve shall not apply. The sample for the RAP material shall be air dried to constant weight prior to being tested for gradation." # **GROUND TIRE RUBBER (GTR) MODIFIED ASPHALT BINDER (D-1)** Effective: June 26, 2006 Revised: April 1, 2016 Add the following to the end of article 1032.05 of the Standard Specifications: "(c) Ground Tire Rubber (GTR) Modified Asphalt Binder. A quantity of 10.0 to 14.0 percent GTR (Note 1) shall be blended by dry unit weight with a PG 64-28 to make a GTR 70-28 or a PG 58-28 to make a GTR 64-28. The base PG 64-28 and PG 58-28 asphalt binders shall meet the requirements of Article 1032.05(a). Compatible polymers may be added during production. The GTR modified asphalt binder shall meet the requirements of the following table. | Test | Asphalt Grade GTR
70-28 | Asphalt Grade
GTR 64-28 | |--|-------------------------|----------------------------| | Flash Point (C.O.C.),
AASHTO T 48, °F (°C), min. | 450 (232) | 450 (232) | | Rotational Viscosity, AASHTO T 316 @ 275 °F (135 °C), Poises, Pa·s, max. | 30 (3) | 30 (3) | | Softening Point, AASHTO T 53, °F (°C), min. | 135 (57) | 130 (54) | | Elastic Recovery, ASTM D 6084, Procedure A (sieve waived) @ 77 °F, (25 °C), aged, ss, 100 mm elongation, 5 cm/min., cut immediately, %, min. | 65 | 65 | Note 1. GTR shall be produced from processing automobile and/or light truck tires by the ambient grinding method. GTR shall not exceed 1/16 in. (2 mm) in any dimension and shall contain no free metal particles or other materials. A mineral powder (such as talc) meeting the requirements of AASHTO M 17 may be added, up to a maximum of four percent by weight of GTR to reduce sticking and caking of the GTR particles. When tested in accordance with Illinois modified AASHTO T 27, a 50 g sample of the GTR shall conform to the following gradation requirements: | Sieve Size | Percent Passing | |------------------|-----------------| | No. 16 (1.18 mm) | 100 | | No. 30 (600 μm) | 95 ± 5 | | No. 50 (300 μm) | > 20 | Add the following to the end of Note 1. of article 1030.03 of the Standard Specifications: "A dedicated storage tank for the Ground Tire Rubber (GTR) modified asphalt binder shall be provided. This tank must be capable of providing continuous mechanical mixing throughout by continuous agitation and recirculation of the asphalt binder to provide a uniform mixture. The tank shall be heated and capable of maintaining the temperature of the asphalt binder at 300 °F to 350 °F (149 °C to 177 °C). The asphalt binder metering systems of dryer drum plants shall be calibrated with the actual GTR modified asphalt binder material with an accuracy of \pm 0.40 percent." Revise 1030.02(c) of the Standard Specifications to read: "(c) RAP Materials (Note 5)1031" Add the following note to 1030.02 of the Standard Specifications: Note 5. When using reclaimed asphalt pavement and/or reclaimed asphalt shingles, the maximum asphalt binder replacement percentage shall be according to the most recent special provision for recycled materials. # FRICTION AGGREGATE (D-1) Effective: January 1, 2011 Revised: November 1, 2019 Revise Article 1004.03(a) of the Standard Specifications to read: **"1004.03 Coarse Aggregate for Hot-Mix Asphalt (HMA).** The aggregate shall be according to Article 1004.01 and the following. (a) Description. The coarse aggregate for HMA shall be according to the following table. | Use | Mixture | Aggregates Allowed | |------------------------------|--|--| | Class A | Seal or Cover | Allowed Alone or in Combination ^{5/} : Gravel Crushed Gravel Carbonate Crushed Stone Crystalline Crushed Stone Crushed Sandstone Crushed Slag (ACBF) Crushed Steel Slag Crushed Concrete | | HMA
Low ESAL | Stabilized
Subbase or
Shoulders | Allowed Alone or in Combination ^{5/} : Gravel Crushed Gravel Carbonate Crushed Stone Crystalline Crushed Stone Crushed Sandstone Crushed Slag (ACBF) Crushed Steel Slag ^{1/} Crushed Concrete | | HMA
High ESAL
Low ESAL | Binder
IL-19.0
or IL-19.0L
SMA Binder | Allowed Alone or in Combination ^{5/6/} : Crushed Gravel Carbonate Crushed Stone ^{2/} Crystalline Crushed Stone Crushed Sandstone Crushed Slag (ACBF) Crushed Concrete ^{3/} | | HMA
High ESAL
Low ESAL | C Surface and
Binder IL-9.5 or
IL-9.5L
SMA
Ndesign 50
Surface | Allowed Alone or in Combination 5/: Crushed Gravel Carbonate Crushed Stone Crystalline Crushed Stone Crushed Sandstone Crushed Slag (ACBF) Crushed Steel Slag ^{4/} Crushed Concrete ^{3/} | | Use | Mixture | Aggregates Allowed | | |------------------|--|--|--| | HMA
High ESAL | D Surface and
Binder IL-9.5
SMA
Ndesign 50
Surface | Crushed Gravel | Stone (other than | | | | Other Combinations Allowed: | | | | | Up to | With | | | | 25% Limestone | Dolomite | | | | 50% Limestone | Any Mixture D aggregate other than Dolomite | | | | 75% Limestone | Crushed Slag
(ACBF) or Crushed
Sandstone | | HMA | E Surface | Allowed Alone or in Combination 5/6/: | | | High ESAL | IL-9.5
SMA
Ndesign 80
Surface | Crystalline Crushed Stone Crushed Sandstone Crushed Slag (ACBF) Crushed Steel Slag No Limestone. | | | | | Other Combinations Allowed: | | | | | Up to | With | | | | 50% Dolomite ^{2/} | Any Mixture E
aggregate | | | | 75% Dolomite ^{2/} | Crushed Sandstone, Crushed Slag (ACBF), Crushed Steel Slag, or Crystalline Crushed Stone | | | | 75% Crushed
Gravel ^{2/} or Crushed
Concrete ^{3/} | Crushed Sandstone,
Crystalline Crushed
Stone, Crushed Slag
(ACBF), or Crushed
Steel Slag | | Use | Mixture | Aggregates Allowed | | |------------------|---|---|--------------| | HMA
High ESAL | F Surface
IL-9.5
SMA
Ndesign 80
Surface | Allowed Alone or in Combination ^{5/6/} : Crystalline Crushed Stone Crushed Sandstone Crushed Slag (ACBF) Crushed Steel Slag No Limestone. Other Combinations Allowed: Up to With | | | | | 50% Crushed Gravel ^{2/} , Crushed Concrete ^{3/} , or Dolomite ^{2/} | Crushed Slag | - 1/ Crushed steel slag allowed in shoulder surface only. - 2/ Carbonate crushed stone (limestone) and/or crushed gravel shall not be used in SMA Ndesign 80. In SMA Ndesign 50, carbonate crushed stone shall not be blended with any of the other aggregates allowed alone in Ndesign 50 SMA binder or Ndesign 50 SMA surface. - 3/ Crushed concrete will not be permitted in SMA mixes. - 4/ Crushed steel slag shall not be used as leveling binder. - 5/ When combinations of aggregates are used, the blend percent measurements shall be by volume." - 6/ Combining different types of aggregate will not be permitted in SMA Ndesign 80." # **TEMPORARY PAVEMENT (D-1)** Effective: March 1, 2003 Revised: April 10, 2008 Description. This work shall consist of constructing a temporary pavement at the locations shown on the plans or as directed by the engineer. The contractor shall use either Portland cement concrete according to Sections 353 and 354 of the Standard Specifications or HMA according to Sections 355, 356, 406 of the Standard Specifications, and other applicable HMA special provisions as contained herein. The HMA mixtures to be used shall be specified in the plans. The thickness of the Temporary Pavement shall be as described in the plans. The contractor shall have the option of constructing either material type if both Portland cement concrete and HMA are shown in the plans. Articles 355.08 and 406.11 of the Standard Specifications shall not apply. The removal of the Temporary Pavement, if required, shall conform to Section 440 of the Standard Specification. Method of Measurement. Temporary pavement will be measured in place and the area computed in square yards (square meters). Basis of Payment. This work will be paid for at the contract unit price per square yard (square meter) for TEMPORARY PAVEMENT and TEMPORARY PAVEMENT (INTERSTATE). Removal of temporary pavement will be paid for at the contract unit price per square yard (square meter) for PAVEMENT REMOVAL. #### **TEMPORARY INFORMATION SIGNING** Effective: November 13, 1996 Revised: January 2, 2007 # Description. This work shall consist of furnishing, installing, maintaining, relocating for various states of construction and eventually removing temporary informational signs. Included in this item may be ground mount signs, skid mount signs, truss mount signs, bridge mount signs, and overlay sign panels which cover portions of existing signs. #### Materials. Materials shall be according to the following Articles of Section 1000 - Materials: | | <u>ltem</u> | Article/Section | |-----|-------------------------|-----------------| | a.) | Sign Base (Notes 1 & 2) | 1090 | | b.) | Sign Face (Note 3) | 1091 | | c.) | Sign Legends | 1092 | | d.) | Sign Supports | 1093 | | e.) | Overlay Panels (Note 4) | 1090.02 | - Note 1. The Contractor may use 5/8 inch (16 mm) instead of 3/4 inch (19 mm) thick plywood. - Note 2. Type A sheeting can be used on the plywood base. - Note 3. All sign faces shall be Type A except all orange signs shall meet the requirements of Article 1106.01. - Note 4. The overlay panels shall be 0.08 inch (2 mm) thick. # **GENERAL CONSTRUCTION REQUIREMENTS** ## Installation. The sign sizes and legend sizes shall be verified by the Contractor prior to fabrication. Signs which are placed along the roadway and/or within the construction zone shall be installed according to the requirements of Article 701.14 and Article 720.04. The signs shall be 7 ft (2.1 m) above the near edge of the pavement and shall be a minimum of 2 ft (600 mm) beyond the edge of the paved shoulder. A minimum of two (2) posts shall be used. The attachment of temporary signs to existing sign structures or sign panels shall be approved by the Engineer. Any damage to the existing signs due to the Contractor's operations shall be repaired or signs replaced, as determined by the Engineer, at
the Contractor's expense. Signs which are placed on overhead bridge structures shall be fastened to the handrail with stainless steel bands. These signs shall rest on the concrete parapet where possible. The Contractor shall furnish mounting details for approval by the Engineer. # Method of Measurement. This work shall be measured for payment in square feet (square meters) edge to edge (horizontally and vertically). All hardware, posts or skids, supports, bases for ground mounted signs, connections, which are required for mounting these signs will be included as part of this pay item. # Basis of Payment. This work shall be paid for at the contract unit price per square foot (square meter) for TEMPORARY INFORMATION SIGNING. # HOT-MIX ASPHALT SURFACE REMOVAL, VARIABLE DEPTH This work shall consist of the removal and satisfactory disposal of hot-mix asphalt surface. The depth of removal shall vary as shown on the plans. All work shall be done in accordance with Section 440 of the Standard Specifications and as directed by the Engineer. Hot-mix asphalt surface removal, variable depth will be measured for payment in place and the area computed in square yards. This work will be paid for at the contract unit price per square yard for HOT-MIX ASPHALT SURFACE REMOVAL, VARIABLE DEPTH. #### **CONCRETE MEDIAN REMOVAL** This work shall consist of the removal and satisfactory disposal of existing concrete median islands along IL 113. This work shall be performed in accordance with Section 440 of the Standard Specifications and shall be removed to the limits shown in the plans or as determined by the Engineer. Saw cuts may be required for the removal along the existing edge of pavement to cut through existing tie bars. Any such saw cuts will not be paid for separately, but will be considered included in the contract unit price for CONCRETE MEDIAN REMOVAL This work will be measured for and paid for at the contract unit price per square foot for CONCRETE MEDIAN REMOVAL and no additional compensation will be allowed. ## **CORRUGATED MEDIAN REMOVAL** This work shall consist of the removal and disposal of existing corrugated concrete medians along IL 113 in accordance with applicable portions of Section 440 of the Standard Specifications and as directed by the Engineer. Saw cuts may be required for the removal along the existing edge of pavement to cut through existing tie bars. Any such saw cuts will not be paid for separately, but will be considered included in the contract unit price for CORRUGATED MEDIAN REMOVAL. This work will be measured and paid for at the contract unit price per square foot for CORRUGATED MEDIAN REMOVAL. ## PORTLAND CEMENT CONCRETE SURFACE REMOVAL (VARIABLE DEPTH) Description: This item shall consist of the removal of the existing portland cement concrete surface at variable depths of the corrugated medians at the bridge approach slabs, at the locations shown on the plans or as directed by the engineer. The removal depth shall vary such that the depth of the existing portland cement concrete surface that is removed allows for the placement of the proposed bridge approach slab HMA overlay as shown on the plans. General: This work shall be performed in accordance with the plans and Section 440 of the Standard Specifications. Method of Measurement: This work shall be measured in square yards of the removed existing portland cement concrete surface. Basis of Payment: This work shall be paid for at the contract unit price per square yard for PORTLAND CEMENT CONCRETE SURFACE REMOVAL (VARIABLE DEPTH), which price shall include the labor, equipment and materials necessary to perform the work as herein specified and as directed by the engineer. ### **APPROACH SLAB REPAIR** Effective: March 13, 1997 Revised: April 12, 2018 # Description. This work shall consist of hot-mix asphalt surface removal, when required, the removal and disposal of all loose and deteriorated concrete and the replacement with new concrete to the original top of approach slab. The work shall be done according to the applicable requirements of Sections 501, 503 and 1020 of the Standard Specifications and this Special Provision. Approach slab repairs will be classified as follows: - (a) Partial-Depth. Partial-depth repairs shall consist of removing the loose and unsound approach slab concrete, disposing of the concrete removed and replacing with new concrete. The removal may be performed by chipping with power driven hand tools or by hydro-equipment. The depth shall be measured from the original concrete surface, at least 3/4 inch (20 mm) but not more than 5 1/2 inches (140 mm) unless otherwise specified on the plans. - (b) Full-Depth. Full-depth repairs shall consist of removing concrete full-depth of the slab, disposing of the concrete removed, and replacing with new concrete to the original approach slab surface. The removal may be performed with power driven hand tools or by hydro-equipment. ## Materials. All materials shall be according to Article 1020.02. Portland cement concrete for partial and full-depth repairs shall be according to Section 1020. Class PP-1, PP-2, PP-3, PP-4, PP-5 or BS concrete shall be used at the Contractor's option unless noted otherwise on the contract plans. For Class BS concrete, a CA 13, 14, or 16 shall be used. If the BS concrete mixture is used only for full depth repairs, a CA-11 may be used. # **Equipment:** The equipment used shall be subject to the approval of the Engineer and shall meet the following requirements: - (a) Surface Preparation Equipment. Surface preparation and concrete removal equipment shall comply with the applicable portions of Section 1100 of the Standard Specifications and the following: - (1) Sawing Equipment. Sawing equipment shall be a concrete saw capable of sawing concrete to the specified depth. - (2) Blast Cleaning Equipment. The blast cleaning may be performed by wet sandblasting, high-pressure waterblasting, abrasive blasting, or other methods approved by the Engineer. Blast cleaning equipment shall be capable of removing rust and old concrete from exposed reinforcement bars. Oil traps will be required. - (3) Power-Driven Hand Tools. Power-driven hand tools will be permitted including jackhammers lighter than the nominal 45 pound (20 kg.) class. Chipping hammers heavier than a nominal 15 pound (6.8 kg.) class shall not be used for removing concrete from below any reinforcing bar for partial depth repairs or final removal at the boundary of full-depth repairs. Jackhammers or chipping hammers shall not be operated at an angle in excess of 45 degrees measured from the surface of the slab. - (4) Hydro-Scarification Systems. The hydro-scarification equipment shall consist of filtering and pumping units operating with a remote-controlled robotic device. The equipment may use river, stream or lake water. Operation of the equipment shall be performed and supervised by qualified personnel certified by the equipment manufacturer. Evidence of certification shall be presented to the Engineer. The equipment shall be capable of removing concrete to the specified depth and removing rust and concrete particles from exposed reinforcing bars. Hydro-scarification equipment shall be calibrated before being used and shall operate at a minimum of 18,000 psi (124 MPa). - (b) Concrete Equipment: Equipment for proportioning and mixing the concrete shall comply with the applicable requirements of Section 1103 of the Standard Specifications. - (c) Placing and Finishing Equipment: Placing and finishing equipment shall be according to Article 1103.17 of the Standard Specifications. Adequate hand tools will be permitted for placing and consolidating concrete in the patch areas and for finishing small patches. # **Construction Requirements:** Sidewalks, curbs, drains, reinforcement and/or existing transverse and longitudinal joints which are to remain in place shall be protected from damage during removal and cleaning operations. All damage caused by the Contractor shall be corrected, at the Contractor's expense, to the satisfaction of the Engineer. The Contractor shall control the runoff water generated by the various construction activities in such a manner as to minimize, to the maximum extent practicable, the discharge of construction debris into adjacent waters, and shall properly dispose of the solids generated according to Article 202.03. Runoff water will not be allowed to constitute a hazard on adjacent or underlying roadways, waterways, drainage areas or railroads nor be allowed to erode existing slopes. # (a) Hot-Mix Asphalt Surface Removal. The hot-mix asphalt surface course shall be removed and disposed of according to applicable portions of Articles 440.04 and 440.06 of the Standard Specifications. If the overlay contains asbestos fibers, removal shall be according to the Special Provision for "Asbestos Waterproofing Membrane or Asbestos Bituminous Concrete Surface Removal". Removal of the hot-mix asphalt surface by the use of radiant or direct heat will not be permitted. # (b) Surface Preparation: All loose, disintegrated and unsound concrete shall be removed from portions of the approach slab shown on the plans or as designated by the Engineer. The Engineer will determine the limits of removal as the work progresses. The Contractor shall take care not to damage reinforcement bars or expansion joints which are to remain in place. Any damage to reinforcement bars or expansion joints shall be corrected at the Contractor's expense. All loose reinforcement bars, as determined by the Engineer, shall be retied at the Contractor's expense. (1) Partial-Depth. Areas to be repaired will be determined and marked by the Engineer. A concrete saw shall be used to provide vertical edges approximately 3/4 inch (20 mm) deep around the perimeter of the area to be patched when an overlay is not specified. Where high steel is present, the depth may be reduced as directed by the Engineer. A saw cut will not be
required on those boundaries along the face of the curb, parapet or joint or when sharp vertical edges are provided by hydro-scarification. The loose and unsound concrete shall be removed by chipping, with power driven hand tools or by hydro-equipment. All exposed reinforcing bars and newly exposed concrete shall be thoroughly blast cleaned. Where, in the judgment of the Engineer, the bond between existing concrete and reinforcement steel within the patch area has been destroyed, the concrete adjacent to the bar shall be removed to a depth that will permit new concrete to bond to the entire periphery of the exposed bar. A minimum of 1 inch (25 mm) clearance will be required. The Engineer may require enlarging a designated removal area should inspection indicate deterioration beyond the limits previously designated. In this event, a new saw cut shall be made around the extended area before additional removal is begun. The removal area shall not be enlarged solely to correct debonded reinforcement or deficient lap lengths. (2) Full-Depth. Concrete shall be removed as determined by the Engineer within all areas designated for full-depth repair and in all designated areas of partial depth repair in which unsound concrete is found to extend below a depth of 5 1/2 inches (140 mm) unless otherwise specified on the plans. Full depth removal shall be performed according to Article 501.05 of the Standard Specifications. A concrete saw shall be used to provide vertical edges approximately 3/4 inch (20 mm) deep around the perimeter of the area to be patched when an overlay is not specified. A saw cut will not be required on those boundaries along the face of the curb, parapet or joint or when sharp vertical edges are provided by hydro-scarification. The saw cut may be omitted if the deck is to receive an overlay. All voids under full depth repair areas shall be filled with a suitable material that meets the approval of the Engineer. - (3) Reinforcement Treatment. Care shall be exercised during concrete removal to protect the reinforcement bars from damage. Any damage to the reinforcement bars to remain in place shall be repaired or replaced to the satisfaction of the Engineer at the Contractor's expense. All existing reinforcement bars shall remain in place except as herein provided for corroded bars. Tying of loose bars will be required. Any existing reinforcement bars which have a loss of more than 25% of their cross section through corrosion shall be replaced in kind with new steel as directed by the Engineer. No welding of bars will be permitted and new bars shall be lapped a minimum of 32 bar diameters to existing bars. An approved "squeeze type" mechanical bar splicer capable of developing in tension at least 125 percent of the yield strength of the existing bar shall be used when it is not feasible to provide the minimum bar lap. - (4) Cleaning. Immediately after completion of the concrete removal and reinforcement repairs, the repair areas shall be cleaned of dust and debris. Once the initial cleaning is completed, the repair areas shall be thoroughly blast cleaned to a roughened appearance free from all foreign matter. Particular attention shall be given to removal of concrete fines. Any method of cleaning which does not consistently produce satisfactory results shall be discontinued and replaced by an acceptable method. All debris, including water, resulting from the blast cleaning shall be confined and shall be immediately and thoroughly removed from all areas of accumulation. If concrete placement does not follow immediately after the final cleaning, the area shall be carefully protected with well-anchored polyethylene sheeting. Exposed reinforcement bars shall be free of dirt, detrimental scale, paint, oil, or other foreign substances which may reduce bond with the concrete. A tight non-scaling coating of rust is not considered objectionable. Loose, scaling rust shall be removed by rubbing with burlap, wire brushing, blast cleaning or other methods approved by the Engineer. - (c) Placement & Finishing of Concrete Repair: - (1) Bonding Method. The patch area shall be cleaned to the satisfaction of the Engineer and shall be thoroughly wetted and maintained in a dampened condition with water for at least 12 hours before placement of the concrete. Any excess water shall be removed by compressed air or by vacuuming prior to the beginning of concrete placement. Water shall not be applied to the patch surface within one hour before or at any time during placement of the concrete. - (2) Concrete Placement. The concrete shall be placed and consolidated according to Article 503.07 and as herein specified. Article 1020.14 shall apply. When an overlay system is not specified, the patches shall be finished according to Article 503.16 of the Standard Specifications, followed by a light brooming. # (d) Curing. Concrete patches shall be cured by the Wetted Burlap Method according to Article 1020.13 (a)(3), and the curing period shall be 72 hours. In addition to Article 1020.13, when the air temperature is less than 55° F (13° C), the Contractor shall cover the patch with minimum R12 insulation. Insulation is optional when the air temperature is 55° F - 90° F (13° C - 32° C). Insulation shall not be placed when the air temperature is greater than 90° F (32° C). A 72-hour minimum drying period shall be required before placing waterproofing or hot-mix asphalt surfacing. # (e) Opening to Traffic. No traffic or construction equipment will be permitted on the repairs until after the specified cure period and the concrete has obtained a minimum compressive strength of 4000 psi (27.6 MPa) or flexural strength of 675 psi (4.65 MPa) unless permitted by the Engineer. Construction equipment will be permitted on a patch during the cure period if the concrete has obtained the minimum required strength. In this instance, the strength specimens shall be cured with the patch. ## Method of Measurement. When specified, hot-mix asphalt surface removal and full or partial depth repairs will be measured for payment and computed in square yards (square meters). #### Basis of Payment. The hot-mix asphalt surface removal will be paid for at the contract unit price per square yard (square meter) for HOT-MIX ASPHALT SURFACE REMOVAL (DECK). Areas removed and replaced up to and including a depth of 5 1/2 inches (140 mm) or as specified will be paid for at the contract unit price per square yard (square meter) for APPROACH SLAB REPAIR (PARTIAL DEPTH). Areas requiring removal greater than a depth of 5 1/2 inches (140 mm) shall be removed and replaced full depth and will be paid for at the contract unit price per square yard (square meter) for APPROACH SLAB REPAIR (FULL DEPTH). When corroded reinforcement bars are encountered in the performance of this work and replacement is required, the Contractor will be paid according to Article 109.04 of the Standard Specifications. No payment will be allowed for removal and replacement of reinforcement bars damaged by the Contractor in the performance of his/her work or for any increases in dimensions needed to provide splices for these replacement bars. Removal and disposal of asbestos waterproofing and/or asbestos hot-mix asphalt will be paid for as specified in the Special Provision for "Asbestos Waterproofing Membrane or Asbestos Bituminous Concrete Surface Removal". # **CONCRETE MEDIAN, TYPE SB (SPECIAL)** This work shall consist of constructing concrete median surfaces at locations shown on the plans and as directed by the Engineer, in conformance with the applicable portions of Section 606 of the Standard Specifications and Standard 606301, except the gutter shall be deleted to match the existing median surface. Basis of Payment: This work will be paid for at the contract unit price per square foot for CONCRETE MEDIAN, TYPE SB (SPECIAL). ## STRUCTURAL STEEL REPAIR <u>Description.</u> This work shall consist of furnishing all labor, equipment and materials necessary to furnish and install steel repair plates and members, according to Section 505 and removal and disposal of structural steel members as necessary according to Section 501 of the Standard Specifications, as indicated in the plans and in this special provision. <u>Construction Requirements.</u> Existing members noted in the plans to have structural steel repair, that are also noted to be straightened, shall be straightened prior to the connection of any new steel repair plates or members. If beam straightening is required, it shall not be included in this item and shall be paid for separately. Where required to align with existing holes, field drilling of holes in new members shall be accomplished using existing holes as a template unless field measurements are used to verify the plan dimensions. Burning of holes will not be permitted. All field drilling and grinding necessary to furnish and install the new steel plates and members shall be included in this item. The removal and disposal of any existing members, bolts or rivets necessary for the installation of the new members as shown in the plans shall be included in this item. Burning of existing rivets or bolts will only be allowed near steel surfaces which are to be removed and discarded. Burning of existing rivets or bolts will not be allowed for members to remain in place and members that are to be removed and reinstalled at a later date. When burning of rivets and bolts is not allowed, the head of the rivet or bolt shall be sheared off and the shank driven or drilled out. Extreme care shall be taken while removing the rivets or bolts so as not to damage the existing structural steel which is to remain. All damage to existing members which are to remain shall be repaired or the member replaced to the satisfaction of the Engineer. Repair or replacement of damaged members shall be at the Contractor's expense. All new structural steel shall be Galvanized in accordance with Guide Bridge Special
Provision "Hot Dip Galvanizing for Structural Steel", as noted in the plan details. Structural steel repair may include cleaning and painting of small areas of steel. This work shall be done in accordance with the applicable portions of Section 506 of the Standard Specifications, Guide Bridge Special Provision "Cleaning and Painting Contact Surface Areas of Existing Steel Structures", and the plan details. The cost of cleaning and painting will be included in the cost of STRUCTURAL STEEL REPAIR. <u>Basis of Payment.</u> This work will be paid for at the contract unit price per pound for STRUCTURAL STEEL REPAIR. # STRUCTURAL STEEL REMOVAL Effective: October 3, 1997 Revised: January 1, 2007 <u>Description</u>. This work shall consist of the satisfactory removal and disposal of structural steel members as shown on the plans. This work shall be performed according to Section 501 of the Standard Specifications. Burning of existing rivets or bolts will only be allowed near steel surfaces which are to be removed and discarded. Burning of existing rivets or bolts will not be allowed for members to remain in place and members that are to be removed and reinstalled at a later date. When burning of rivets or bolts is not allowed the head of the rivet or bolt shall be sheared off and the shank driven or drilled out. Extreme care shall be taken while removing the rivets or bolts so as not to damage the existing structural steel which is to remain. Unless noted otherwise on the plans, the cost of rivet and bolt removal shall be included in this item. All damage to existing members which are to remain shall be repaired or the member replaced to the satisfaction of the Engineer. Repair or replacement of damaged members shall be at the Contractor's expense and at no additional cost to the State. <u>Method of Measurement</u>. Structural steel removal will not be measured for payment. Payment will be based upon the pounds (kilograms) of structural steel removal shown on the plans. <u>Basis of Payment</u>. This work will be paid for at the contract unit price per pound (kilogram) for STRUCTURAL STEEL REMOVAL. # CLEANING AND PAINTING CONTACT SURFACE AREAS OF EXISTING STEEL STRUCTURES Effective: June 30, 2003 Revised: August 9, 2019 <u>Description.</u> This work shall consist of the surface preparation and painting of existing steel structures in areas that will be in contact with new steel. The existing steel at primary connections (faying surfaces) shall be prepared, and primed as specified herein prior to connecting new structural steel to the existing structure. The existing steel at secondary connections shall be prepared, and if bare metal is exposed, primed as specified herein prior to connecting new structural steel to the existing structure. <u>General.</u> The existing coatings shall be assumed to contain lead and may also contain other toxic metals. Any plans that may be furnished for the work, and any dimensions or other information given regarding a structure, are only for the purpose of assisting bidders in determining the type and location of steel to be cleaned and painted. It is the responsibility of the Contractor to verify this information and the accuracy of the information provided shall in no way affect the price bid for structural steel. <u>Materials.</u> The Bureau of Materials and Physical Research has established a list of all products that have met preliminary requirements. Each batch of material must be tested and approved before use. The paint materials shall meet the requirements of the following articles of the Standard Specification: ItemArticlea) Organic Zinc Rich Primer1008.05b) Aluminum Epoxy Mastic1008.03 ## Submittals: - a) Manufacturer's application instructions and product data sheets. Copies of the paint manufacturer's application instructions and product data sheets shall be furnished to the Engineer at the field site before steel cleaning begins. - b) Waste Management Plan. The Waste Management Plan shall address all aspects of waste handling, storage, testing, hauling and disposal. Include the names, addresses, and a contact person for the proposed licensed waste haulers and disposal facilities. Submit the name and qualifications of the laboratory proposed for Toxicity Characteristic Leaching Procedure (TCLP) analysis. - c) Quality Control (QC) Program. The QC Program shall identify the following; the instrumentation that will be used, a schedule of required measurements and observations, procedures for correcting unacceptable work, and procedures for improving surface preparation and painting quality as a result of quality control findings. Construction Requirements. The Contractor shall perform first line, in process QC inspections. The Contractor shall implement the submitted and accepted QC Program to insure that the work accomplished complies with these specifications. The designated Quality Control inspector shall be onsite full time during any operations that affect the quality of the coating system (e.g., surface preparation, coating mixing and application, and evaluations between coats and upon completion of the work). The Contractor shall provide artificial lighting in areas where natural light is inadequate, as determined by the Engineer, to allow proper cleaning, inspection, and painting. Illumination for inspection shall be at least 30 foot candles (325 LUX). Illumination for cleaning and priming, including the working platforms, access, and entryways shall be at least 20 foot candles (215 LUX). The Contractor shall be responsible for any damage caused to persons, vehicles, or property, except as indemnified by the Response Action Contractor Indemnification Act. Whenever the intended purposes of the protective devices are not being accomplished, as determined by the Engineer, work shall be immediately suspended until corrections are made. Painted surfaces damaged by any Contractor's operation shall be removed and repainted, as directed by the Engineer, at the Contractor's expense. <u>Weather Conditions</u>. Surfaces to be primed after cleaning shall remain free of moisture and other contaminants. The Contractor shall control his/her operations to insure that dust, dirt, or moisture does not come in contact with surfaces cleaned prior to painting. Surfaces painted shall be protected until the coating is sufficiently cured to protect itself from damage. Restrictions on ambient conditions shall be as per the coating manufacturer's written specifications. <u>Surface Preparation:</u> Prior to making connections or painting, all loose abrasives, paint, and residue shall be contained, collected, removed from the surface area and properly disposed of as specified later in this specification. <u>Soluble Salt Remediation</u>. The Contractor shall implement surface preparation procedures and processes that will remove chloride from the surfaces. Surfaces that may be contaminated with chloride include, but are not limited to, expansion joints and all areas that are subject to roadway splash or runoff such as fascia beams and stringers. Methods of chloride removal may include, but are not limited to, steam cleaning or pressure washing with or without the addition of a chemical soluble salt remover as approved by the coating manufacturer, and scrubbing before or after initial paint removal. The Contractor may also elect to clean the steel and allow it to rust overnight followed by recleaning, or by utilizing blends of fine and coarse abrasives during blast cleaning, wet abrasive/water jetting methods of preparation, or combinations of the above. If steam or water cleaning methods of chloride removal are utilized over surfaces where the coating has been completely removed, and the water does not contact any lead containing coatings, the water does not have to be collected. The Contractor shall provide the proposed procedures for chloride remediation in the Surface Preparation/Painting Plan. Upon completion of the chloride remediation steps, the Contractor shall use cell methods of field chloride extraction and test procedures (e.g., silver dichromate) accepted by the Engineer, to test representative surfaces that were previously rusted (e.g., pitted steel) for the presence of remaining chlorides. Remaining chloride levels shall be no greater than 7µg/sq cm as read directly from the surface without any multiplier applied to the results. The testing must be performed, and the results must be acceptable, prior to painting each day. A minimum of 5 tests per 1000 sq. ft. (93 sq m) or fraction thereof completed in a given day, shall be conducted at project start up. If results greater than 7 μ g/sq cm are detected, the surfaces shall be recleaned and retested at the same frequency. If acceptable results are achieved on three consecutive days in which testing is conducted, the test frequency may be reduced to 1 test per 1000 sq. ft. (93 sq. m) prepared each day provided the chloride remediation process remains unchanged. If unacceptable results are encountered, or the methods of chloride remediation are changed, the Contractor shall resume testing at a frequency of 5 tests per 1000 sq. ft. (93 sq. m). Following successful chloride testing the chloride test areas shall be cleaned as specified below. Painted surfaces of new steel damaged by abrasive blasting or by the Contractor's operations shall be repainted, as directed by the Engineer, at the Contractor's expense. a) Primary Connections. Primary connections shall be defined as faying (contact) surfaces of high-strength bolted connections specifically noted in plans. The surfaces of existing steel in all areas that will be in direct contact with new steel shall be prepared according to SSPC-SP15, Commercial Grade Power Tool Cleaning using vacuum-shrouded power tools equipped with HEPA filtration. The surface preparation shall remove all rust, mill scale, and existing paint from the contact surface. At the Contractors option, vacuum blast
cleaning according to SSPC-SP6, Commercial Blast Cleaning may be substituted for SSPC-SP15 at no additional cost to the Department. The surface profile for primary connection surfaces shall be 1.5 to 3.5 mils (38 to 90 microns). b) Secondary Connections. Secondary connections shall be defined as all surface areas of existing members that will be in contact with new steel except as previously defined as primary connections. These surfaces of existing steel in all areas that will be in direct contact with new steel shall be prepared according to SSPC-SP3, Power Tool Cleaning using vacuum-shrouded power tools equipped with HEPA filtration. The surface preparation shall remove all loose rust, loose mill scale, and loose, checked, alligatored and peeling paint from the contact surface. At the Contractors option, vacuum blast cleaning according to SSPC-SP6, Commercial Blast Cleaning or SSPC-SP15, Commercial Grade Power Tool Cleaning may be substituted for SSPC-SP3 at no additional cost to the Department. The surface profile for abrasive blast cleaning and Commercial Grade Power Tool Cleaning shall be 1.5 to 3.5 mils (38 to 90 microns). <u>Painting.</u> The manufacturer's written instructions shall be followed for paint storage, mixing, thinning, application, ambient conditions, and drying times between coats. The surface shall be free of dirt, dust, and debris prior to the application of any coat. The coatings shall be applied as a continuous film of uniform thickness free of defects including, but not limited to, runs, sags, overspray, dryspray, pinholes, voids, skips, misses, and shadow-through. Defects such as runs and sags shall be brushed out immediately during application. The Engineer will approve surface preparation prior to priming. - a) For Primary connections the surface of the prepared steel cleaned to bare metal shall be primed with an organic zinc rich primer between 3.5 and 5.0 mils (90 and 125 microns) dry film thickness. - b) For Secondary Connections the surface of the prepared steel cleaned to bare metal shall be painted with either one coat of epoxy mastic between 5 and 7 mils (125 microns to 180 microns) in thickness or one coat of an organic zinc rich primer between 3.5 and 5.0 mils (90 and 125 microns) in thickness. Areas not cleaned to bare metal need not be painted. For primary connections, the primer on the surface of the prepared steel shall cure according to the manufacturers instructions prior to connecting new structural steel to the existing structure. For secondary connections, the primer on the surface of the prepared steel need only be dry to touch prior to connecting new steel to the existing structure. The surrounding coating at each prepared location shall be feathered for a minimum distance of 1 1/2 in. (40 mm) to achieve a smooth transition between the prepared areas and the existing coating. <u>Collection, Temporary Storage, Transportation and Disposal of Waste.</u> The Contractor and the Department are considered to be co-generators of the waste. The Contractor is responsible for all aspects of waste collection, testing and identification, handling, storage, transportation, and disposal according to these specifications and all applicable Federal, State, and Local regulations. The Contractor shall provide for Engineer review and acceptance a Waste Management Plan that addresses all aspects of waste handling, storage, and testing, and provides the names, addresses, and a contact person for the proposed licensed waste haulers and disposal facilities. The Department will not perform any functions relating to the waste other than provide EPA identification numbers, provide the Contractor with the emergency response information, the emergency response telephone number required to be provided on the manifest, and to sign the waste manifest. The Engineer will obtain the identification numbers from the state and federal environmental protection agencies for the bridge(s) to be painted and furnish those to the Contractor. All surface preparation/paint residues shall be collected daily and deposited in all-weather containers supplied by the Contractor as temporary storage. The storage area shall be secure to prevent unauthorized entry or tampering with the containers. Acceptable measures include storage within a fully enclosed (e.g., fenced in) and locked area, within a temporary building, or implementing other reasonable means to reduce the possibility of vandalism or exposure of the waste to the public or the environment (e.g., securing the lids or covers of waste containers and roll-off boxes). Waste shall not be stored outside of the containers. Waste shall be collected and transferred to bulk containers taking extra precautions as necessary to prevent the suspension of residues in air or contamination of surrounding surfaces. Precautions may include the transfer of the material within a tarpaulin enclosure. Transfer into roll-off boxes shall be planned to minimize the need for workers to enter the roll-off box. No residues shall remain on uncontained surfaces overnight. Waste materials shall not be removed through floor drains or by throwing them over the side of the bridge. Flammable materials shall not be stored around or under any bridge structures. The all-weather containers shall meet the requirements for the transportation of hazardous materials and as approved by the Department. Acceptable containers include covered roll-off boxes and 55-gallon drums (17H). The Contractor shall insure that no breaks and no deterioration of these containers occurs and shall maintain a written log of weekly inspections of the condition of the containers. A copy of the log shall be furnished to the Engineer upon request. The containers shall be kept closed and sealed from moisture except during the addition of waste. Each container shall be permanently identified with the date that waste was placed into the container, contract number, hazardous waste name and ID number, and other information required by the IEPA. The Contractor shall have each waste stream sampled for each project and tested by TCLP and according to EPA and disposal company requirements. The Engineer shall be notified in advance when the samples will be collected. The samples shall be collected and shipped for testing within the first week of the project, with the results due back to the Engineer within 10 days. The costs of testing shall be considered included in this work. Copies of the test results shall be provided to the Engineer prior to shipping the waste. The existing paint removed, together with the surface preparation media (e.g. abrasive) shall be handled as a hazardous waste, regardless of the TCLP results. The waste shall be transported by a licensed hazardous waste transporter, treated by an IEPA permitted treatment facility to a non-hazardous special waste and disposed of at an IEPA permitted disposal facility in Illinois. The treatment/disposal facilities shall be approved by the Engineer, and shall hold an IEPA permit for waste disposal and waste stream authorization for this cleaning residue. The IEPA permit and waste stream authorization must be obtained prior to beginning cleaning, except that if necessary, limited paint removal will be permitted in order to obtain samples of the waste for the disposal facilities. The waste shall be shipped to the facility within 90 days of the first accumulation of the waste in the containers. When permitted by the Engineer, waste from multiple bridges in the same contract may be transported by the Contractor to a central waste storage location(s) approved by the Engineer in order to consolidate the material for pick up, and to minimize the storage of waste containers at multiple remote sites after demobilization. Arrangements for the final waste pickup shall be made with the waste hauler by the time blast cleaning operations are completed or as required to meet the 90 day limit stated above. The Contractor shall submit a waste accumulation inventory table to the Engineer no later than the 5th day of the month. The table shall show the number and size of waste containers filled each day in the preceding month and the amount of waste shipped that month, including the dates of shipments. The Contractor shall prepare a manifest supplied by the IEPA for off-site treatment and disposal before transporting the hazardous waste off-site. The Contractor shall prepare a land ban notification for the waste to be furnished to the disposal facility. The Contractor shall obtain the handwritten signature of the initial transporter and date of the acceptance of the manifest. The Contractor shall send one copy of the manifest to the IEPA within two working days of transporting the waste off-site. The Contractor shall furnish the generator copy of the manifest and a copy of the land ban notification to the Engineer. The Contractor shall give the transporter the remaining copies of the manifest. All other project waste shall be removed from the site according to Federal, State and Local regulations, with all waste removed from the site prior to final Contractor demobilization. The Contractor shall make arrangements to have other hazardous waste, which he/she generates, such as used paint solvent, transported to the Contractor's facility at the end of each day that this waste is generated. These hazardous wastes shall be manifested using the Contractor's own generator number to a treatment or disposal facility from the Contractor's facility. The Contractor shall not combine solvents or other wastes with cleaning residue wastes. All waste streams shall be stored in separate containers. The Contractor is responsible for the payment of any fines and undertaking any clean up activities mandated by State or federal environmental agencies for improper waste handling, storage, transportation, or disposal. Contractor personnel shall be trained in the proper handling of hazardous waste, and the
necessary notification and clean up requirements in the event of a spill. The Contractor shall maintain a copy of the personnel training records at each bridge site. It is understood and agreed that the cost of all work outlined above, unless otherwise specified, has been included in the bid, and no extra compensation will be allowed. <u>Basis of Payment:</u> This work will be considered included in the cost of "Furnishing and Erecting Structural Steel", "Erecting Structural Steel", or "Structural Steel Repair", as applicable, according to the Standard Specifications, unless otherwise specified on the plans. #### **DECK SLAB REPAIR** Effective: May 15, 1995 Revised: April 13, 2018 This work shall consist of hot-mix asphalt surface removal, when required, the removal and disposal of all loose and deteriorated concrete from bridge deck and the replacement with new concrete to the original top of deck. The work shall be done according to the applicable requirements of Sections 501, 503 and 1020 of the Standard Specifications and this Special Provision. Deck slab repairs will be classified as follows: - (a) Partial-Depth. Partial-depth repairs shall consist of removing the loose and unsound deck concrete, disposing of the concrete removed and replacing with new concrete. The removal may be performed by chipping with power driven hand tools or by hydroscarification equipment. The depth shall be measured from the top of the concrete deck surface, at least 3/4 in. (20 mm) but not more than 1/2 the concrete deck thickness. - (b) Full-Depth. Full-depth repairs shall consist of removing concrete full-depth of the deck, disposing of the concrete removed, and replacing with new concrete to the original concrete deck surface. The removal may be performed with power driven hand tools, hydraulic impact equipment, or by hydro-scarification equipment. Full-depth repairs shall be classified for payment as Full-Depth, Type I and Full-Depth, Type II according to the following: - Type I Full-depth patches less than or equal to 5 sq. ft. (0.5 sq m) in area. The minimum dimensions for a patch shall be 1 ft. x 1 ft. (300 mm x 300 mm). - Type II Full-depth patches greater than 5 sq. ft. (0.5 sq. m) in area. # Materials. Materials shall be according to Article 1020.02. Portland cement concrete for partial and full-depth repairs shall be according to Section 1020. Class PP-1, PP-2, PP-3, PP-4, PP-5 or BS concrete shall be used at the Contractor's option unless noted otherwise on the contract plans. # **Equipment:** The equipment used shall be subject to the approval of the Engineer and shall meet the following requirements: - (a) Surface Preparation Equipment. Surface preparation and concrete removal equipment shall be according to the applicable portions of Section 1100 and the following: - (1) Sawing Equipment. Sawing equipment shall be a concrete saw capable of sawing concrete to the specified depth. - (2) Blast Cleaning Equipment. The blast cleaning may be performed by wet sandblasting, high-pressure waterblasting, shotblasting or abrasive blasting. Blast cleaning equipment shall be capable of removing rust and old concrete from exposed reinforcement bars, and shall have oil traps. - (3) Power-Driven Hand Tools. Power-driven hand tools will be permitted including jackhammers lighter than the nominal 45 lb. (20 kg) class. Chipping hammers heavier than a nominal 15 lb. (6.8 kg) class shall not be used for removing concrete from below any reinforcing bar for partial depth repairs, or for removal within 1 ft (300 mm) of existing beams, girders or other supporting structural members that are to remain in service or within 1 ft (300 mm) of the boundaries of full-depth repairs. Jackhammers or chipping hammers shall not be operated at an angle in excess of 45 degrees measured from the surface of the slab. - (4) Hydraulic Impact Equipment. Hydraulic impact equipment with a maximum rated striking energy of 360 ft-lbs (270 J) may be permitted only in areas of full depth removal more than 1 ft (300 mm) away from existing beams, girders or other supporting structural members that are to remain in service or more than 1 ft (300 mm) from the boundaries of full-depth repairs. - (5) Hydro-Demolition Equipment. The hydro-demolition equipment shall consist of filtering and pumping units operating with a remote-controlled robotic device. The equipment shall use water according to Section 1002. The equipment shall be capable of being controlled to remove only unsound concrete. - (b) Concrete Equipment: Equipment for proportioning and mixing the concrete shall be according to Article 1020.03. - (c) Finishing Equipment: Finishing equipment shall be according to Article 1103.17. Adequate hand tools will be permitted for placing and consolidating concrete in the patch areas and for finishing small patches. <u>Construction Requirements:</u> Sidewalks, curbs, drains, reinforcement and/or existing transverse and longitudinal joints which are to remain in place shall be protected from damage during removal and cleaning operations. The Contractor shall control the runoff water generated by the various construction activities in such a manner as to minimize, to the maximum extent practicable, the discharge of untreated effluent into adjacent waters, and shall properly dispose of the solids generated according to Article 202.03. The Contractor shall submit a water management plan to the Engineer specifying the control measures to be used. The control measures shall be in place prior to the start of runoff water generating activities. Runoff water shall not be allowed to constitute a hazard to adjacent or underlying roadways, waterways, drainage areas or railroads nor be allowed to erode existing slopes. # (a) Hot-Mix Asphalt Surface Removal. The hot-mix asphalt surface course and all waterproofing membrane shall be removed and disposed of according to applicable portions of Articles 440.04 and 440.06, except milling equipment will not be allowed if the deck is to receive a waterproofing membrane system. If the overlay or waterproofing membrane contains asbestos fibers, removal shall be in accordance with the Special Provision for "Asbestos Waterproofing Membrane or Asbestos Hot-mix Asphalt Surface Removal". Removal of the hot-mix asphalt surface by the use of radiant or direct heat will not be permitted. # (b) Surface Preparation: All loose, disintegrated and unsound concrete shall be removed from portions of the deck slab shown on the plans or as designated by the Engineer. The Engineer will determine the limits of removal as the work progresses. The Contractor shall take care not to damage reinforcement bars or expansion joints which are to remain in place. Any damage to reinforcement bars or expansion joints shall be corrected at the Contractor's expense. All loose reinforcement bars, as determined by the Engineer, shall be retied at the Contractor's expense. (1) Partial-Depth. Areas to be repaired will be determined and marked by the Engineer. A concrete saw shall be used to provide vertical edges approximately 3/4 in. (20 mm) deep around the perimeter of the area to be patched when a concrete overlay is not specified. Where high steel is present, the depth may be reduced as directed by the Engineer. A saw cut will not be required on those boundaries along the face of the curb, parapet or joint or when sharp vertical edges are provided by hydro-demolition. The loose and unsound concrete shall be removed by chipping, with power driven hand tools or by hydro-demolition equipment. All exposed reinforcing bars and newly exposed concrete shall be thoroughly blast cleaned. Where, in the judgment of the Engineer, the bond between existing concrete and reinforcement steel within the patch area has been destroyed, the concrete adjacent to the bar shall be removed to a depth that will permit new concrete to bond to the entire periphery of the exposed bar. A minimum of 1 in. (25 mm) clearance will be required. The Engineer may require enlarging a designated removal area should inspection indicate deterioration beyond the limits previously designated. In this event, a new saw cut shall be made around the extended area before additional removal is begun. The removal area shall not be enlarged solely to correct debonded reinforcement or deficient lap lengths. (2) Full-Depth. Concrete shall be removed as determined by the Engineer within all areas designated for full-depth repair and in all designated areas of partial depth repair in which unsound concrete is found to extend below half the concrete deck thickness. Full depth removal shall be performed according to Article 501.05 except that hydraulic impact equipment may be permitted in areas of full depth removal more than 1 ft (300 mm) away from the edges of existing beams, girders or other supporting structural members or more than 1 ft (300 mm) from the boundaries of full-depth repairs. Saw cuts shall be made on the top of the deck, except those boundaries along the face of curbs, parapets and joints or where hydro-demolition provided sharp vertical edges. The top saw cut may be omitted if the deck is to receive an overlay. Forms for full-depth repair may be supported by hangers with adjustable bolts or by blocking from the beams below. When approved by the Engineer, forms for Type 1 patches may be supported by No. 9 wires or other devices attached to the reinforcement bars. All form work shall be removed after the curing sequence is complete and prior to opening to traffic. - (3) Reinforcement Treatment. Care shall be exercised during concrete removal to protect the reinforcement bars and structural steel from damage. Any damage to the reinforcement bars or structural steel to remain in place shall be repaired or replaced. All existing reinforcement bars shall remain in place except as herein provided for corroded bars. Tying of loose bars will be required. Reinforcing bars which have been cut or have lost 25 percent
or more of their original cross sectional area shall be supplemented by new in kind reinforcement bars. New bars shall be lapped a minimum of 32 bar diameters to existing bars. An approved mechanical bar splice capable of developing in tension at least 125 percent of the yield strength of the existing bar shall be used when it is not feasible to provide the minimum bar lap. No welding of bars will be permitted. - (4) Cleaning. Immediately after completion of the concrete removal and reinforcement repairs, the repair areas shall be cleaned of dust and debris. Once the initial cleaning is completed, the repair areas shall be thoroughly blast cleaned to a roughened appearance free from all foreign matter. Particular attention shall be given to removal of concrete fines. Any method of cleaning which does not consistently produce satisfactory results shall be discontinued and replaced by an acceptable method. All debris, including water, resulting from the blast cleaning shall be confined and shall be immediately and thoroughly removed from all areas of accumulation. If concrete placement does not follow immediately after the final cleaning, the area shall be carefully protected with well-anchored polyethylene sheeting. Exposed reinforcement bars shall be free of dirt, detrimental scale, paint, oil, or other foreign substances which may reduce bond with the concrete. A tight non-scaling coating of rust is not considered objectionable. Loose, scaling rust shall be removed by rubbing with burlap, wire brushing, blast cleaning or other methods approved by the Engineer. - (c) Placement & Finishing of Concrete Repair: - (1) Bonding Method. The patch area shall be cleaned to the satisfaction of the Engineer and shall be thoroughly wetted and maintained in a dampened condition with water for at least 12 hours before placement of the concrete. Any excess water shall be removed by compressed air or by vacuuming prior to the beginning of concrete placement. Water shall not be applied to the patch surface within one hour before or at any time during placement of the concrete. - (2) Concrete Placement. The concrete shall be placed and consolidated according to Article 503.07 and as herein specified. Article 1020.14 shall apply. When an overlay system is not specified, the patches shall be finished according to Article 503.16 (a), followed by a light brooming. # (d) Curing and Protection. Concrete patches shall be cured by the Wetted Burlap or Wetted Cotton Mat Method according to Article 1020.13 (a)(3) or Article 1020.13 (a)(5). The curing period shall be 3 days for Class PP-1, PP-2, PP-3, PP-4, and PP-5 concrete. The curing period shall be 7 days for Class BS concrete. In addition to Article 1020.13, when the air temperature is less than 55° F (13° C), the Contractor shall cover the patch according to Article 1020.13 (d)(1) with minimum R12 insulation. Insulation is optional when the air temperature is 55° F. - 90° F (13° C - 32° C). Insulation shall not be placed when the air temperature is greater than 90° F (32° C). A 72-hour minimum drying period shall be required before placing waterproofing or hot-mix asphalt surfacing. # (e) Opening to Traffic. No traffic will be permitted on a patch until after the specified cure period, and the concrete has obtained a minimum compressive strength of 4000 psi (27.6 MPa) or flexural strength of 675 psi (4.65 MPa). Construction equipment will be permitted on a patch during the cure period if the concrete has obtained the minimum required strength. In this instance, the strength specimens shall be cured with the patch. ## Method of Measurement. When specified, hot-mix asphalt surface removal and full or partial depth repairs will be measured for payment and computed in square yards (square meters). #### Basis of Payment. The hot-mix asphalt surface removal will be paid for at the contract unit price per square yard (square meter) for HOT-MIX ASPHALT SURFACE REMOVAL (DECK). Areas removed and replaced up to and including a depth of half the concrete deck thickness will be paid for at the contract unit price per square yard (square meter) for DECK SLAB REPAIR (PARTIAL). Areas requiring removal greater than a depth of half the concrete deck thickness shall be removed and replaced full depth and will be paid for at the contract unit price per square yard (square meter) for DECK SLAB REPAIR (FULL DEPTH, TYPE I) and/or DECK SLAB REPAIR (FULL DEPTH, TYPE II). When corroded reinforcement bars are encountered in the performance of this work and replacement is required, the Contractor will be paid according to Article 109.04. No payment will be allowed for removal and replacement of reinforcement bars damaged by the Contractor in the performance of his/her work or for any increases in dimensions needed to provide splices for these replacement bars. Removal and disposal of asbestos waterproofing and/or asbestos bituminous concrete will be paid for as specified in the Special Provision for "Asbestos Waterproofing Membrane or Asbestos Hot-Mix Asphalt Surface Removal". # **BRIDGE DECK LATEX CONCRETE OVERLAY** Effective: May 15, 1995 Revised: October 20, 2017 This work shall consist of the preparation of the existing concrete bridge deck and the construction of a latex overlay to the specified thickness. Materials. Materials shall meet the following Articles of Section 1000: | <u>Item</u> | <u>Section</u> | |--|-------------------------| | (a) Latex/Portland Cement Concrete (Note 1) (Note 2)(b) Packaged Rapid Hardening Mortar or Concrete(c) Concrete Curing Materials | 1020
1018
1022.02 | | (d) Fibers | (Note 3) | Note 1: The latex admixture shall be a uniform, homogeneous, non-toxic, film-forming, polymeric emulsion in water to which all stabilizers have been added at the point of manufacture. The latex admixture shall not contain any chlorides and shall contain 46 to 49 percent solids The Contractor shall submit a manufacturer's certification that the latex emulsion meets the requirements of FHWA Research Report RD-78-35, Chapter VI. The certificate shall include the date of manufacture of the latex admixture, batch or lot number, quantity represented, manufacturer's name, and the location of the manufacturing plant. The latex emulsion shall be sampled and tested in accordance with RD-78-35, Chapter VII, Certification Program. The latex admixture shall be packaged and stored in containers and storage facilities which will protect the material from freezing and from temperatures above 85°F (30°C). Additionally, the material shall not be stored in direct sunlight and shall be shaded when stored outside of buildings during moderate temperatures. Note 2: Cement shall be Type I portland cement. Fine aggregate shall be natural sand and the coarse aggregate shall be crushed stone or crushed gravel. The gradation of the coarse aggregates shall be CA 13, CA 14 or CA 16. Note 3: The fibers shall be macro-size and shall be Type II or III according to ASTM C 1116. Macro fibers shall have a length between 0.75 and 1.75 inches (19 and 45 mm) and aspect ratio (length divided by the equivalent diameter for the fiber) between 70 and 100. The fibers proposed for use along with the method of incorporating the fibers into the mix shall be submitted to the Department for approval prior to use. The dosage rate of fibers shall be per the manufacturer's recommendation but in no case less than 2 lb./cu yd (1.2 kg/cu m). Dosage rates greater than 3.0 lb/cu yd (1.8 kg/cu m) shall be evaluated by field demonstration for fiber clumping, ease of placement, and ease of finishing. The field demonstration shall consist of a minimum 2 cu yd (1.5 cu m) trial batch placed in a 12 ft. x 12 ft. (3.6 m x 3.6 m) slab or other configuration approved by the Engineer. The trial batch will be verified by the Engineer according to the "Portland Cement Concrete Level III Technician" course material. Based on the trial batch, the Department has the option to reduce the dosage rate of fibers. Mixture Design. The latex concrete shall contain the following approximate units of measure or volumes per cubic yard (cubic meter): Type I Portland Cement 658 lb. (390 kg) Latex Admixture 24.5 gal (121.3 L) Coarse Aggregate 42 to 50 percent by weight (mass) of total aggregate Water (including free moisture on the fine and coarse aggregates) 157 lb. (93.1 kg) maximum No air entraining admixtures shall be added to the mix. This mix design is based on a specific gravity of 2.65 for both the fine and the coarse aggregates. The mix will be adjusted by the Engineer to compensate for aggregate specific gravity and moisture. The latex concrete shall meet the following requirements: Slump shall be according to Article 1020.07 and 1020.12: 3 to 6 in. (75 to 150 mm) Air Content shall be according to Article 1020.08 and 1020.12: 7 percent maximum Water-cement ratio (considering all the nonsolids in the latex admixture as part of the total water) 0.30 to 0.40 Compressive Strength (14 days) 4000 psi (27,500 kPa) minimum Flexural Strength (14 days) 675 psi (4,650 kPa) <u>Equipment</u>: The equipment used shall be subject to the approval of the Engineer and shall meet the following requirements: - (a) Surface Preparation Equipment. Surface preparation equipment shall be according to the applicable portions of Section 1100 and the following: - (1) Sawing Equipment. Sawing equipment shall be a concrete saw capable of sawing concrete to the specified depth. - (2) Mechanical Blast Cleaning Equipment. Mechanical blast cleaning may be performed by high-pressure waterblasting or shotblasting. Mechanical blast cleaning equipment shall be capable of removing weak concrete at the surface, including the microfractured concrete surface layer remaining as a result of mechanical
scarification, and shall have oil traps. - Mechanical high-pressure waterblasting equipment shall be mounted on a wheeled carriage and shall include multiple nozzles mounted on a rotating assembly, and shall be operated with a 7000 psi (48 MPa) minimum water pressure. The distance between the nozzles and the deck surface shall be kept constant and the wheels shall maintain contact with the deck surface during operation. - (3) Hand-Held Blast Cleaning Equipment. Blast cleaning using hand-held equipment may be performed by high-pressure waterblasting or abrasive blasting. Hand-held blast cleaning equipment shall have oil traps. - Hand-held high-pressure waterblasting equipment that is used in areas inaccessible to mechanical blast cleaning equipment shall have a minimum water pressure of 7000 psi (48 MPa). - (4) Mechanical Scarifying Equipment. Scarifying equipment shall be a power-operated, mechanical scarifier capable of uniformly scarifying or removing the old concrete surface and new patches to the depths required in a satisfactory manner. Other types of removal devices may be used if their operation is suitable and they can be demonstrated to the satisfaction of the Engineer. - (5) Hydro-Scarification Equipment. The hydro-scarification equipment shall consist of filtering and pumping units operating with a computerized, self-propelled robotic machine with gauges and settings that can be easily verified. The equipment shall use water according to Section 1002. The equipment shall be capable of removing in a single pass, sound concrete to the specified depth, and operating at a 16,000 psi (110 MPa) minimum water pressure with a 55 gal/min (208 L/min) minimum water flow rate. - (6) Vacuum Cleanup Equipment. The equipment shall be equipped with fugitive dust control devices capable of removing wet debris and water all in the same pass. Vacuum equipment shall also be capable of washing the deck with pressurized water prior to the vacuum operation to dislodge all debris and slurry from the deck surface. - (7) Power-Driven Hand Tools. Power-driven hand tools will be permitted including jackhammers lighter than the nominal 45 lb. (20 kg) class. Jackhammers or chipping hammers shall not be operated at an angle in excess of 45 degrees measured from the surface of the slab. - (b) Pull-off Test Equipment. Equipment used to perform pull-off testing shall be either approved by the Engineer, or obtained from one of the following approved sources: James Equipment 007 Bond Tester 800-426-6500 Germann Instruments, Inc. BOND-TEST Pull-off System 847-329-9999 SDS Company DYNA Pull-off Tester 805-238-3229 Pull-off test equipment shall include all miscellaneous equipment and materials to perform the test and clean the equipment, as indicated in the Illinois Test procedure 304 and 305 "Pull-off Test (Surface or Overlay Method)". Prior to the start of testing, the Contractor shall submit to the Engineer a technical data sheet and material safety data sheet for the epoxy used to perform the testing. For solvents used to clean the equipment, a material safety data sheet shall be submitted. - (c) Concrete Equipment: A mobile Portland cement concrete plant shall be used for Latex Concrete and shall be according to Articles 1020.12, 1103.04 and the following: - (1) The device for proportioning water shall be accurate within one percent. - (2) The mixer shall be a self-contained, mobile, continuous mixer used in conjunction with volumetric proportioning. - (3) The mixer shall be calibrated prior to every placement of material or as directed by the Engineer. - (d) Finishing Equipment. Finishing equipment shall be according to Article 503.03. - (e) Mechanical Fogging Equipment. Mechanical fogging equipment shall be according to 503.03. <u>Construction Requirements:</u> Sidewalks, curbs, drains, reinforcement and/or existing transverse and longitudinal joints which are to remain in place shall be protected from damage during scarification and cleaning operations. All damage caused by the Contractor shall be corrected, at the Contractor's expense, to the satisfaction of the Engineer. The Contractor shall control the runoff water generated by the various construction activities in such a manner as to minimize, to the maximum extent practicable, the discharge of untreated effluent into adjacent waters, and shall properly dispose of the solids generated according to Article 202.03. The Contractor shall submit a water management plan to the Engineer specifying the control measures to be used. The control measures shall be in place prior to the start of runoff water generating activities. Runoff water shall not be allowed to constitute a hazard to adjacent or underlying roadways, waterways, drainage areas or railroads nor be allowed to erode existing slopes. #### (a) Deck Preparation: (1) Bridge Deck Scarification. The scarification work shall consist of removing the designated concrete deck surface using mechanical and hydro-scarifying equipment as specified. The areas designated shall be scarified to the depth specified on the plans. The depth specified shall be measured from the existing concrete deck surface to the top of peaks remaining after scarification. In areas of the deck not accessible to the scarifying equipment, power-driven hand tools will be permitted. Power driven hand tools shall be used for removal around areas to remain in place. The Contractor shall use mechanical scarification equipment to remove an initial depth of concrete roughening the concrete deck surface to facilitate hydro-scarification. At a minimum, the last 1/2 in. (13 mm) of removal shall be accomplished with hydro-scarification equipment. If the Contractor's use of mechanical scarifying equipment results in exposing, snagging, or dislodging the top mat of reinforcing steel, the mechanical scarifying depth shall be reduced as necessary immediately. If the exposing, snagging, or dislodging the top mat of reinforcing steel cannot be avoided, the mechanical scarifying shall be stopped immediately and the remaining removal shall be accomplished using the hydro-scarification equipment. All damage to the existing reinforcement resulting from the Contractor's operation shall be repaired or replaced at the Contractor's expense as directed by the Engineer. Replacement shall include the removal of any additional concrete required to position or splice the new reinforcing steel. Undercutting of exposed reinforcement bars shall only be as required to replace or repair damaged reinforcement. Repairs to existing reinforcement shall be according to the Special Provision for "Deck Slab Repair". Just prior to performing hydro-scarification, the deck shall be sounded, with unsound areas marked on the deck by the Engineer. A trial section, in an area of sound concrete, on the existing deck surface will be designated by the Engineer to calibrate the equipment settings to remove sound concrete to the required depth, in a single pass, and provide a highly roughened bondable surface. The trial section shall consist of approximately 30 sq. ft. (3 sq. m). After calibration in an area of sound concrete, the equipment shall be moved to a second trial section, as designated by the Engineer, in an area containing unsound concrete to verify the calibrated settings are sufficient to remove the unsound concrete. If the calibrated settings are insufficient to remove the unsound concrete, the equipment may be moved back to an area of sound concrete and the calibration settings verified. If the equipment cannot be calibrated to produce the required results in an area of sound concrete, it shall be removed and additional hydro-scarification equipment capable of producing the required results shall be supplied by the Contractor. After the equipment settings are established, they shall be supplied to the Engineer. These settings include the following: - a) Water pressure - b) Water flow rate - c) Nozzle type and size - d) Nozzle travel speed - e) Machine staging control (step/advance rate) Hydro-scarification may begin after the calibration settings have been approved by the Engineer. The removal depth shall be verified by the Engineer, as necessary. If sound concrete is being removed below the desired depth, the equipment shall be recalibrated. After hydro-scarification the deck shall be thoroughly vacuum cleaned in a timely manner before the water and debris are allowed to dry and re-solidify to the deck. The uses of alternative cleaning and debris removal methods to minimize driving heavy vacuum equipment over exposed deck reinforcement may be used subject to the approval of the Engineer. - (2) Deck Patching. After bridge deck scarification and cleaning, the Engineer will sound the scarified deck and survey the existing reinforcement condition. All remaining unsound concrete and unacceptably corroded reinforcement bars will be marked for additional removal and/or repairs as applicable. All designated repairs and reinforcement treatment shall be completed according to the Special Provision for "Deck Slab Repair" except as noted below: - a) Partial depth removal will not be measured for payment. Any deck survey information implying partial depth repairs is for information only. Partial depth removal shall be accomplished concurrent with the hydro-scarification operation. After the hydro scarification has been performed to the satisfaction of the Engineer, areas requiring additional partial depth removal of unsound concrete will be paid for according to Article 109.04. - b) In areas where unsound concrete extends below the specified removal depth and hydro-scarification completely removes unsound concrete, a full-depth repair is only required when the bottom mat of reinforcement is exposed. - c) All full-depth patches shall be struck off to the scarified deck surface and then roughened with a suitable stiff bristled broom or wire brush to provide a rough texture designed to promote bonding of the
overlay. Hand finishing of the patch surface shall be kept to a minimum to prevent overworking of the surface. - d) All full-depth repairs shall be completed prior to final surface preparation. - e) Any removal required or made below the specified depth for scarification of the bridge deck, which does not result in full-depth repair, shall be filled with the overlay material at the time of the overlay placement. - f) Epoxy coating, on existing reinforcement bars, damaged during hydro-scarification shall not be repaired. - g) Undercutting of exposed reinforcement bars shall only be as required to replace or repair damaged or corroded reinforcement. (3) Final Surface Preparation. Any areas determined by the Engineer to be inaccessible to scarifying equipment shall be thoroughly blast cleaned with hand-held equipment. If spoils from the scarification operation are allowed to dry and re-solidify on the deck surface, the deck surface shall be cleaned with mechanical blast cleaning equipment. Final surface preparation shall also include the cleaning of all dust, debris, concrete fines and other foreign substances from the deck surface including vertical faces of curbs, previously placed adjacent overlays, barrier walls up to a height of 1 in. (25 mm) above the overlay, depressions, and beneath reinforcement bars. Hand-held high-pressure waterblasting equipment shall be used for this operation. The Department may require surface pull-off testing of areas inaccessible to scarifying equipment. Testing shall be in according to the Illinois Test Procedure 304 "Pull-off Test (Surface Method)". The Contractor shall provide the test equipment. The Engineer shall determine each test location, and each individual test shall have a minimum strength of 175 psi (1,207 kPa). In the case of a failing test, the Contractor shall adjust the blast cleaning method and re-clean the area. Testing will be repeated until satisfactory results are attained. Exposed reinforcement bars shall be free of dirt, detrimental scale, paint, oil, and other foreign substances which may reduce bond with the concrete. A tight non-scaling coating of rust is not considered objectionable. Loose, scaling rust shall be removed by rubbing with burlap, wire brushing, blast cleaning or other methods approved by the Engineer. All loose reinforcement bars, as determined by the Engineer, shall be retied at the Contractor's expense. All dust, concrete fines, debris, including water, resulting from the surface preparation shall be confined and shall be immediately and thoroughly removed from all areas of accumulation. If concrete placement does not follow immediately after the final cleaning, the area shall be carefully protected with well-anchored white polyethylene sheeting. (b) Pre-placement Procedure. Prior to placing the overlay, the Engineer will inspect the deck surface. All contaminated areas shall be blast cleaned again at the Contractor's expense. Before placing the overlay, the finishing machine shall be operated over the full length of bridge segment to be overlaid to check support rails for deflection and confirm the minimum overlay thickness. All necessary adjustments shall be made and another check performed, unless otherwise directed by the Engineer. - (c) Placement Procedure: Concrete placement shall be according to Article 503.07 and the following: - (1) Bonding Method. The deck shall be cleaned to the satisfaction of the Engineer and shall be thoroughly wetted and maintained in a dampened condition with water for at least 12 hours before placement of the overlay. Any excess water shall be removed by compressed air or by vacuuming prior to the beginning of overlay placement. Water shall not be applied to the deck surface within one hour before or at any time during placement of the overlay. - (2) Overlay Placement. Placement of the concrete shall be according to Article 503.16. Internal vibration will be required along edges, adjacent to bulkheads, and where the overlay thickness exceeds 3 in. (75 mm). Internal vibration along the longitudinal edges of a pour will be required with a minimum of 2 hand-held vibrators, one on each edge of the pour. Hand finishing will be required along the edges of the pour and shall be done from sidewalks, curbs or work bridges. A construction dam or bulkhead shall be installed in case of a delay of 30 minutes or more in the concrete placement operation. All construction joints shall be formed. When required by the Engineer the previously placed overlay shall be sawed full-depth to a straight and vertical edge before fresh concrete is placed. The Engineer will determine the extent of the removal. When longitudinal joints are not shown on the plans, the locations shall be subject to approval by the Engineer and shall not be located in the wheel paths. The Contractor shall stencil the date of construction (month and year) and the letters LXF, for LateX with Fibers, into the overlay before it takes its final set. The stencil shall be located in a conspicuous location, as determined by the Engineer, for each stage of construction. This location shall be outside of the grooving where possible and within 3 ft. (1 m) of an abutment joint. The characters shall be 3 to 4 in. (75 mm to 100 mm) in height, 1/4 in. (5 mm) in depth and face the centerline of the roadway. # (3) Limitations of Operations: - (a) Weather Limitations. Temperature control for concrete placement shall be according to 1020.14(b). The concrete protection from low air temperatures during the curing period shall be according to Article 1020.13(d). Concrete shall not be placed when rain is expected during the working period. If night placement is required, illumination and placement procedures will be subject to the approval of the Engineer. No additional compensation will be allowed if night work is required. - (b) Other Limitations. Concrete delivery vehicles driven on the structure shall be limited to a maximum load of 6 cu. yd. (4.6 cu. m). Mobile concrete mixers, truck mixers, concrete pumps, or other heavy equipment will not be permitted on any portion of the deck where the top reinforcing mat has been exposed. Conveyors, buggy ramps and pump piping shall be installed in a way that will not displace undercut reinforcement bars. Air compressors may be operated on the deck only if located directly over a pier and supported off undercut reinforcement bars. Compressors will not be allowed to travel over undercut reinforcement bars. Concrete removal may proceed during final cleaning and concrete placement on adjacent portions of the deck, provided the removal does not interfere in any way with the cleaning or placement operations. Water or contaminants from the hydro-scarification shall not be permitted in areas where the new overlay has been placed until the overlay has cured a minimum of 24 hours. No concrete shall be removed within 6 ft. (1.8 m) of a newly-placed overlay until the concrete has obtained a minimum compressive strength of 3000 psi (20,700 kPa) or flexural strength of 600 psi (4,150 kPa). #### (4) Curing. Curing. The minimum curing time shall be 48 hours of wet cure followed by 48 hours of dry cure. The wet cure shall be according to Article 1020.13(a)(5) (Wetted Cotton Mat Method). When the cotton mats have been pre-dampened, excess water shall not be allowed to drip from the cotton mats onto the overlay during placement of the mats. After the wet cure is completed all layers of covering materials shall be removed to allow for the dry cure. If the ambient temperature falls below 50°F (10°C) during either the wet or dry curing periods, the time below 50°F (10°C) will not be included in the 96 hour curing period. If there is sufficient rain to wet the surface of the overlay for more than one hour of the dry cure period, the wet time will not be included in the 48 hour dry cure period. (5) Opening to Traffic. No traffic or construction equipment will be permitted on the overlay until after the specified cure period and the concrete has obtained a minimum compressive strength of 4000 psi (27,500 kPa) or flexural strength of 675 psi (4,650 kPa) unless permitted by the Engineer. (6) Overlay Testing. The Engineer reserves the right to conduct pull-off tests on the overlay to determine if any areas are not bonded to the underlying concrete, and at a time determined by the Engineer. The overlay will be tested according to the Illinois Test procedure 305 "Pull-off Test (Overlay Method)", and the Contractor shall provide the test equipment. Each individual test shall have a minimum strength of 150 psi (1,034 kPa). Unacceptable test results will require removal and replacement of the overlay at the Contractor's expense, and the locations will be determined by the Engineer. When removing portions of an overlay, the saw cut shall be a minimum depth of 1 in. (25 mm). If the overlay is to remain in place, all core holes due to testing shall be filled with a rapid set mortar or concrete. Only enough water to permit placement and consolidation by rodding shall be used, and the material shall be struck-off flush with the adjacent material. For a rapid set mortar mixture, one part packaged rapid set cement shall be combined with two parts fine aggregate, by volume; or a packaged rapid set mortar shall be used. For a rapid set concrete mixture, a packaged rapid set mortar shall be combined with coarse aggregate according to the manufacturer's instructions; or a packaged rapid set concrete shall be used. Mixing of a rapid set mortar or concrete_shall be according to the manufacturer's instructions. <u>Method of Measurement</u>. The area of bridge deck scarification will be measured for payment in square yards (square meters). No additional payment will be made for multiple passes of the equipment. The concrete overlay will be measured for payment in square yards (square meters). Additional concrete placed with the overlay, required to fill all depressions below
the specified thickness will be measured for payment in cubic yards (cubic meters). The volume will be determined by subtracting the theoretical volume of the overlay from the ticketed volume of overlay delivered minus the volume estimated by the Engineer left in the last truck at the end of the overlay placement. The theoretical cubic yard (cubic meter) quantity for the overlay will be determined by multiplying the plan surface area of the overlay times the specified thickness of the overlay. <u>Basis of Payment</u>. Bridge deck scarification will be paid for at the contract unit price per square yard (square meter) for BRIDGE DECK SCARIFICATION of the depth specified. Latex concrete overlay will be paid for at the contract unit price per square yard (square meter) for BRIDGE DECK LATEX CONCRETE OVERLAY, of the thickness specified. The additional volume of overlay required to fill all depressions below the specified thickness and/or for grade adjustments will be paid for at the Contractor's actual material cost for the latex concrete per cubic yard (cubic meter) times an adjustment factor. For volumes 15 percent or less over the theoretical volume of the overlay the adjustment factor will be 1.15. For volumes greater than 15 percent the adjustment factor will be 1.25 for that volume over 15 percent of the theoretical volume of the overlay. Areas requiring additional partial depth removal of unsound concrete after hydro-scarification will be paid for according to Article 109.04. When the Engineer conducts pull-off tests on the existing surface or overlay and they are acceptable, Contractor expenses incurred due to testing and for filling core holes will be paid according to Article 109.04. Unacceptable pull-off tests will be at the Contractor's expense. #### STRUCTURAL REPAIR OF CONCRETE Effective: March 15, 2006 Revised: August 9, 2019 <u>Description</u>. This work shall consist of structurally repairing concrete. Materials. Materials shall be according to the following. | Item | Article/Section | |--|-----------------| | (a) Portland Cement Concrete (Note 1) | 1020 | | (b) R1, R2, or R3 Concrete (Note 2) | | | (c) Normal Weight Concrete (Notes 3 and 4) | | | (d) Shotcrete (High Performance) (Notes 5 and 6) | | | (e) Reinforcement Bars | 1006.10 | | (f) Anchor Bolts | 1006.09 | | (g) Water | 1002 | | (h) Curing Compound | | | (i) Cotton Mats | 1022.02 | | (j) Protective Coat | 1023.01 | | (k) Epoxy (Note 7) | 1025 | | (I) Mechanical Bar Splicers | 508.06(c) | - Note 1. The concrete shall be Class SI, except the cement factor shall be a minimum 6.65 cwt/cu yd (395 kg/cu m), the coarse aggregate shall be a CA 16, and the strength shall be a minimum 4000 psi (27,500 kPa) compressive or 675 psi (4650 kPa) flexural at 14 days. A high range water-reducing admixture shall be used to obtain a 5-7 in. (125-175 mm) slump, but a cement factor reduction according to Article 1020.05(b)(8) is prohibited. A self-consolidating concrete mixture is also acceptable per Article 1020.04, except the mix design requirements of this note regarding the cement factor, coarse aggregate, strength, and cement factor reduction shall apply. - Note 2. The R1, R2, or R3 concrete shall be from the Department's qualified product list of Packaged, Dry, Rapid Hardening, Cementitious Materials for Concrete Repairs. The R1, R2, or R3 concrete shall comply with the air content and strength requirements for Class SI concrete as indicated in Note 1. Mixing shall be per the manufacturer's recommendations, except the water/cement ratio shall not exceed the value specified for Class SI concrete as indicated in Note 1. A high range water-reducing admixture shall be used to obtain a 5-7 in. (125-175 mm) slump, and a retarder may be required to allow time to perform the required field tests. The admixtures shall be per the manufacturer's recommendation, and the Department's qualified product list of Concrete Admixtures shall not apply. - Note 3. The "high slump" packaged concrete mixture shall be from the Department's qualified product list of Packaged, Dry, Formed, Concrete Repair Mixtures. The materials and preparation of aggregate shall be according to ASTM C 387. The cement factor shall be 6.65 cwt/cu yd (395 kg/cu m) minimum to 7.05 cwt/cu yd (418 kg/cu m) maximum. Cement replacement with fly ash or ground granulated blastfurnace slag shall be according to Section 1020. The "high slump" packaged concrete mixture shall have a water soluble chloride ion content of less than 0.40 lb/cu yd (0.24 kg/cu m). The test shall be performed according to ASTM C 1218, and the "high slump" packaged concrete mixture shall have an age of 28 to 42 days at the time of test. The ASTM C 1218 test shall be performed by an independent lab a minimum of once every two years, and the test results shall be provided to the Department. The coarse aggregate shall be a maximum size of 1/2 in. (12.5 mm). The packaged concrete mixture shall comply with the air content and strength requirements for Class SI concrete as indicated in Note 1. Mixing shall be per the manufacturer's recommendations, except the water/cement ratio shall not exceed the value specified for Class SI concrete as indicated in Note 1. A high range waterreducing admixture shall be used to obtain a 5-7 in. (125-175 mm) slump. The admixture shall be per the manufacturer's recommendation, and the Department's qualified product list of Concrete Admixtures shall not apply. A maximum slump of 10 in. (250 mm) may be permitted if no segregation is observed by the Engineer in a laboratory or field evaluation. - The "self-consolidating concrete" packaged concrete mixture shall be from the Note 4 Department's qualified product list of Packaged, Dry, Formed, Concrete Repair Mixtures. The materials and preparation of aggregate shall be according to ASTM C 387. The cement factor shall be 6.65 cwt/cu yd (395 kg/cu m) minimum to 7.05 cwt/cu yd (418 kg/cu m) maximum. Cement replacement with fly ash or ground granulated blast-furnace slag shall be according to Section 1020. The "selfconsolidating concrete" packaged concrete mixture shall have a water soluble chloride ion content of less than 0.40 lb/cu yd (0.24 kg/cu m). The test shall be performed according to ASTM C 1218, and the "self-consolidating concrete" packaged concrete mixture shall have an age of 28 to 42 days at the time of test. The ASTM C 1218 test shall be performed by an independent lab a minimum of once every two years, and the test results shall be provided to the Department. The concrete mixture should be uniformly graded, and the coarse aggregate shall be a maximum size of 1/2 in. (12.5 mm). The fine aggregate proportion shall be a maximum 50 percent by weight (mass) of the total aggregate used. The packaged concrete mixture shall comply with the air content and strength requirements for Class SI concrete as indicated in Note 1. Mixing shall be per the manufacturer's recommendations, except the water/cement ratio shall not exceed the value specified for Class SI concrete as indicated in Note 1. The admixtures used to produce self-consolidating concrete be per the manufacturer's shall recommendation, and the Department's qualified product list of Concrete Admixtures shall not apply. The packaged concrete mixture shall meet the self-consolidating requirements of Article 1020.04. Note 5. Packaged shotcrete that includes aggregate shall be from the Department's qualified product list of Packaged High Performance Shotcrete, and independent laboratory test results showing the product meets Department specifications will be required. The product shall be a packaged, pre-blended, and dry combination of materials, for the wet-mix shotcrete method according to ASTM C 1480. A non-chloride accelerator may be used according to the shotcrete manufacturer's recommendations. The shotcrete shall be Type FA or CA, Grade FR, and Class I. The fibers shall be Type III synthetic according to ASTM C 1116. The packaged shotcrete shall have a water soluble chloride ion content of less than 0.40 lb/cu yd (0.24 kg/cu m). The test shall be performed according to ASTM C 1218, and the hardened shotcrete shall have an age of 28 to 42 days at the time of test. The ASTM C 1218 test shall be performed by an independent lab a minimum of once every two years, and the test results shall be provided to the Department. Each individual aggregate used in the packaged shotcrete shall have either a maximum ASTM C 1260 expansion of 0.16 percent or a maximum ASTM C 1293 expansion of 0.040 percent. However, the ASTM C 1260 value may be increased to 0.27 percent for each individual aggregate if the cement total equivalent alkali content (Na₂O + 0.658K₂O) does not exceed 0.60 percent. As an alternative to these requirements, ASTM C 1567 testing which shows the packaged shotcrete has a maximum expansion of 0.16 percent may be submitted. The ASTM C 1260, C 1293, or C 1567 test shall be performed a minimum of once every two years. The 7 and 28 day compressive strength requirements in ASTM C 1480 shall not apply. Instead the shotcrete shall obtain a minimum compressive strength of 4000 psi (27,500 kPa) at 14 days. The packaged shotcrete shall be limited to the following proportions: The portland cement and finely divided minerals shall be 6.05 cwt/cu yd (360 kg/cu m) to 8.50 cwt/cu yd (505 kg/cu m) for Type FA and 6.05 cwt/cu yd (360 kg/cu. m) to 7.50 cwt/cu yd (445 kg/cu m) for Type CA. The portland cement shall not be below 4.70 cwt/cu yd (279 kg/cu m) for Type FA or CA. The finely divided mineral(s) shall constitute a maximum of 35 percent of the total cement plus finely divided mineral(s). Class F fly ash is optional and the maximum shall be 20 percent by weight (mass) of cement. Class C fly ash is optional and the maximum shall be 25 percent by weight (mass) of cement. Ground granulated blast-furnace slag is optional and the maximum shall be 30 percent by
weight (mass) of cement. Microsilica is required and shall be a minimum of 5 percent by weight (mass) of cement, and a maximum of 10 percent. As an alternative to microsilica, high-reactivity metakaolin may be used at a minimum of 5 percent by weight (mass) of cement, and a maximum of 10 percent. Fly ash shall not be used in combination with ground granulated blast-furnace slag. Class F fly ash shall not be used in combination with Class C fly ash. Microsilica shall not be used in combination with high-reactivity metakaolin. A finely divided mineral shall not be used in combination with a blended hydraulic cement, except for microsilica or high-reactivity metakaolin. The water/cement ratio as defined in Article 1020.06 shall be a maximum of 0.42. The air content as shot shall be 4.0 - 8.0 percent. Note 6 Packaged shotcrete that does not include pre-blended aggregate shall be from the Department's qualified product list of Packaged High Performance Shotcrete, and independent laboratory test results showing the product meets Department specifications will be required. The shotcrete shall be according to Note 5, except the added aggregate shall be according to Articles 1003.02 and 1004.02 in addition to each individual aggregate meeting the maximum expansion requirements of Note 5. The aggregate gradation shall be according to the manufacturer. The shotcrete shall be batched and mixed with added aggregate according to the manufacturer. Note 7. In addition ASTM C 881, Type IV, Grade 2 or 3, Class A, B, or C may be used. Equipment. Equipment shall be according to Article 503.03 and the following. Chipping Hammer – The chipping hammer for removing concrete shall be a light-duty pneumatic or electric tool with a 15 lb. (7 kg) maximum class or less. Blast Cleaning Equipment – Blast cleaning equipment for concrete surface preparation shall be the abrasive type, and the equipment shall have oil traps. Hydrodemolition Equipment – Hydrodemolition equipment for removing concrete shall be calibrated, and shall use water according to Section 1002. High Performance Shotcrete Equipment – The batching, mixing, pumping, hose, nozzle, and auxiliary equipment shall be for the wet-mix shotcrete method, and shall meet the requirements of ACI 506R. # **Construction Requirements** <u>General</u>. The repair methods shall be either formed concrete repair or shotcrete. The repair method shall be selected by the Contractor with the following rules. - (a) Rule 1. For formed concrete repair, a subsequent patch to repair the placement point after initial concrete placement will not be allowed. As an example, this may occur in a vertical location located at the top of the repair. - (b) Rule 2. Formed concrete repair shall not be used for overhead applications. - (c) Rule 3. If formed concrete repair is used for locations that have reinforcement with less than 0.75 in. (19 mm) of concrete cover, the concrete mixture shall contain fly ash or ground granulated blast-furnace slag at the maximum cement replacement allowed. - (d) Rule 4. Shotcrete shall not be used for any repair greater than 6 in. (150 mm) in depth, except in horizontal applications, where the shotcrete may be placed from above in one lift. - (e) Rule 5. Shotcrete shall not be used for column repairs greater than 4 in. (100 mm) in depth, unless the shotcrete mixture contains 3/8 in. (9.5 mm) aggregate. Temporary Shoring or Cribbing. When a temporary shoring or cribbing support system is required, the Contractor shall provide details and computations, prepared and sealed by an Illinois licensed Structural Engineer, to the Department for review and approval. When ever possible the support system shall be installed prior to starting the associated concrete removal. If no system is specified, but during the course of removal the need for temporary shoring or cribbing becomes apparent or is directed by the Engineer due to a structural concern, the Contractor shall not proceed with any further removal work until an appropriate and approved support system is installed. Concrete Removal. The Contractor shall provide ladders or other appropriate equipment for the Engineer to mark the removal areas. Repair configurations will be kept simple, and squared corners will be preferred. The repair perimeter shall be sawed a depth of 1/2 in. (13 mm) or less, as required to avoid cutting the reinforcement. Any cut reinforcement shall be repaired or replaced at the expense of the Contractor. If the concrete is broken or removed beyond the limits of the initial saw cut, the new repair perimeter shall be recut. The areas to be repaired shall have all loose, unsound concrete removed completely by the use of chipping hammers, hydrodemolition equipment, or other methods approved by the Engineer. The concrete removal shall extend along the reinforcement bar until the reinforcement is free of bond inhibiting corrosion. Reinforcement bar with 50 percent or more exposed shall be undercut to a depth of 3/4 in. (19 mm) or the diameter of the reinforcement bar, whichever is greater. If sound concrete is encountered before existing reinforcement bars are exposed, further removal of concrete shall not be performed unless the minimum repair depth is not met. The repair depth shall be a minimum of 1 in. (25 mm). The substrate profile shall be \pm 1/16 in. (\pm 1.5 mm). The perimeter of the repair area shall have a vertical face. If a repair is located at the ground line, any excavation required below the ground line to complete the repair shall be included in this work. The Contractor shall have a maximum of 14 calendar days to complete each repair location with concrete or shotcrete, once concrete removal has started for the repair. The Engineer shall be notified of concrete removal that exceeds 6 in. (150 mm) in depth, one fourth the cross section of a structural member, more than half the vertical column reinforcement is exposed in a cross section, more than 6 consecutive reinforcement bars are exposed in any direction, within 1.5 in. (38 mm) of a bearing area, or other structural concern. Excessive deterioration or removal may require further evaluation of the structure or installation of temporary shoring and cribbing support system. <u>Surface Preparation</u>. Prior to placing the concrete or shotcrete, the Contractor shall prepare the repair area and exposed reinforcement by blast cleaning. The blast cleaning shall provide a surface that is free of oil, dirt, and loose material. If a succeeding layer of shotcrete is to be applied, the initial shotcrete surface and remaining exposed reinforcement shall be free of curing compound, oil, dirt, loose material, rebound (i.e. shotcrete material leaner than the original mixture which ricochets off the receiving surface), and overspray. Preparation may be by lightly brushing or blast cleaning if the previous shotcrete surface is less than 36 hours old. If more than 36 hours old, the surface shall be prepared by blast cleaning. The repair area and perimeter vertical face shall have a rough surface. Care shall be taken to ensure the sawcut face is roughened by blast cleaning. Just prior to concrete or shotcrete placement, saturate the repair area with water to a saturated surface-dry condition. Any standing water shall be removed. Concrete or shotcrete placement shall be done within 3 calendar days of the surface preparation or the repair area shall be prepared again. <u>Reinforcement.</u> Exposed reinforcement bars shall be cleaned of concrete and corrosion by blast cleaning. After cleaning, all exposed reinforcement shall be carefully evaluated to determine if replacement or additional reinforcement bars are required. Reinforcing bars that have been cut or have lost 25 percent or more of their original cross sectional area shall be supplemented by new in kind reinforcement bars. New bars shall be lapped a minimum of 32 bar diameters to existing bars. A mechanical bar splicer shall be used when it is not feasible to provide the minimum bar lap. No welding of bars shall be performed. Intersecting reinforcement bars shall be tightly secured to each other using 0.006 in. (1.6 mm) or heavier gauge tie wire, and shall be adequately supported to minimize movement during concrete placement or application of shotcrete. For reinforcement bar locations with less than 0.75 in. (19 mm) of cover, protective coat shall be applied to the completed repair. The application of the protective coat shall be according to Article 503.19, 2nd paragraph, except blast cleaning shall be performed to remove curing compound. The Contractor shall anchor the new concrete to the existing concrete with 3/4 in. (19 mm) diameter hook bolts for all repair areas where the depth of concrete removal is greater than 8 in. (205 mm) and there is no existing reinforcement extending into the repair area. The hook bolts shall be spaced at 15 in. (380 mm) maximum centers both vertically and horizontally, and shall be a minimum of 12 in. (305 mm) away from the perimeter of the repair. The hook bolts shall be installed according to Section 584. Repair Methods. All repair areas shall be inspected and approved by the Engineer prior to placement of the concrete or application of the shotcrete. (a) Formed Concrete Repair. Falsework shall be according to Article 503.05. Forms shall be according to Article 503.06. Formwork shall provide a smooth and uniform concrete finish, and shall approximately match the existing concrete structure. Formwork shall be mortar tight and closely fitted where they adjoin the existing concrete surface to prevent leakage. Air vents may be provided to reduce voids and improve surface appearance. The Contractor may use exterior mechanical vibration, as approved by the Engineer, to release air pockets that may be entrapped. The concrete for formed concrete repair shall be a Class SI Concrete, or a packaged R1, R2, or R3 Concrete,, or a packaged Normal Weight Concrete at the Contractor's
option. The concrete shall be placed and consolidated according to Article 503.07. The concrete shall not be placed when frost is present on the surface of the repair area, or the surface temperature of the repair area is less than 40 °F (4 °C). All repaired members shall be restored as close as practicable to their original dimensions. Curing shall be done according to Article 1020.13. If temperatures below 45°F (7°C) are forecast during the curing period, protection methods shall be used. Protection Method I according to Article 1020.13(d)(1), or Protection Method II according to Article 1020.13(d)(2) shall be used during the curing period. The surfaces of the completed repair shall be finished according to Article 503.15. (b) Shotcrete. Shotcrete shall be tested by the Engineer for air content according to Illinois Modified AASHTO T 152. The sample shall be obtained from the discharge end of the nozzle by shooting a pile large enough to scoop a representative amount for filling the air meter measuring bowl. Shotcrete shall not be shot directly into the measuring bowl for testing. For compressive strength of shotcrete, a 18 x 18 x 3.5 in. (457 x 457 x 89 mm) test panel shall be shot by the Contractor for testing by the Engineer. A steel form test panel shall have a minimum thickness of 3/16 in. (5 mm) for the bottom and sides. A wood form test panel shall have a minimum 3/4 in. (19 mm) thick bottom, and a minimum 1.5 in. (38 mm) thickness for the sides. The test panel shall be cured according to Article 1020.13 (a) (3) or (5) while stored at the jobsite and during delivery to the laboratory. After delivery to the laboratory for testing, curing and testing shall be according to ASTM C 1140. The method of alignment control (i.e. ground wires, guide strips, depth gages, depth probes, and formwork) to ensure the specified shotcrete thickness and reinforcing bar cover is obtained shall be according to ACI 506R. Ground wires shall be removed after completion of cutting operations. Guide strips and formwork shall be of dimensions and a configuration that do not prevent proper application of shotcrete. Metal depth gauges shall be cut 1/4 in. (6 mm) below the finished surface. All repaired members shall be restored as close as practicable to their original dimensions. For air temperature limits when applying shotcrete in cold weather, the first paragraph of Article 1020.14(b) shall apply. For hot weather, shotcrete shall not be applied when the air temperature is greater than 90°F (32°C). The applied shotcrete shall have a minimum temperature of 50°F (10°C) and a maximum temperature of 90°F (32°C). The shotcrete shall not be applied during periods of rain unless protective covers or enclosures are installed. The shotcrete shall not be applied when frost is present on the surface of the repair area, or the surface temperature of the repair area is less than 40°F (4°C). If necessary, lighting shall be provided to provide a clear view of the shooting area. The shotcrete shall be applied according to ACI 506R, and shall be done in a manner that does not result in cold joints, laminations, sandy areas, voids, sags, or separations. In addition, the shotcrete shall be applied in a manner that results in maximum densification of the shotcrete. Shotcrete which is identified as being unacceptable while still plastic shall be removed and re-applied. The nozzle shall normally be at a distance of 2 to 5 ft. (0.6 to 1.5 m) from the receiving surface, and shall be oriented at right angles to the receiving surface. Exceptions to this requirement will be permitted to fill corners, encase large diameter reinforcing bars, or as approved by the Engineer. For any exception, the nozzle shall never be oriented more than 45 degrees from the surface. Care shall be taken to keep the front face of the reinforcement bar clean during shooting operations. Shotcrete shall be built up from behind the reinforcement bar. Accumulations of rebound and overspray shall be continuously removed prior to application of new shotcrete. Rebound material shall not be incorporated in the work. Whenever possible, shotcrete shall be applied to the full thickness in a single layer. The maximum thickness shall be according to Rules 4 and 5 under Construction Requirements, General. When two or more layers are required, the minimum number shall be used and shall be done in a manner without sagging or separation. A flash coat (i.e. a thin layer of up to 1/4 in. (6 mm) applied shotcrete) may be used as the final lift for overhead applications. Prior to application of a succeeding layer of shotcrete, the initial layer of shotcrete shall be prepared according to the surface preparation and reinforcement bar cleaning requirements. Upon completion of the surface preparation and reinforcement bar treatment, water shall be applied according to the surface preparation requirements unless the surface is moist. The second layer of shotcrete shall then be applied within 30 minutes. Shotcrete shall be cut back to line and grade using trowels, cutting rods, screeds or other suitable devices. The shotcrete shall be allowed to stiffen sufficiently before cutting. Cutting shall not cause cracks or delaminations in the shotcrete. For depressions, cut material may be used for small areas. Rebound material shall not be incorporated in the work. For the final finish, a wood float shall be used to approximately match the existing concrete texture. A manufacturer approved finishing aid may be used. Water shall not be used as a finishing aid. All repaired members shall be restored as close as practicable to their original dimensions. Contractor operations for curing shall be continuous with shotcrete placement and finishing operations. Curing shall be accomplished using wetted cotton mats, membrane curing, or a combination of both. Cotton mats shall be applied according to Article 1020.13(a)(5) except the exposed layer of shotcrete shall be covered within 10 minutes after finishing, and wet curing shall begin immediately. Curing compound shall be applied according to Article 1020.13(a)(4), except the curing compound shall be applied as soon as the shotcrete has hardened sufficiently to prevent marring the surface, and each of the two separate applications shall be applied in opposite directions to ensure coverage. The curing compound shall be according to Article 1022.01. Note 5 of the Index Table in Article 1020.13 shall apply to the membrane curing method. When a shotcrete layer is to be covered by a succeeding shotcrete layer within 36 hours, the repair area shall be protected with intermittent hand fogging, or wet curing with either burlap or cotton mats shall begin within 10 minutes. Intermittent hand fogging may be used only for the first hour. Thereafter, wet curing with burlap or cotton mats shall be used until the succeeding shotcrete layer is applied. Intermittent hand fogging may be extended to the first hour and a half if the succeeding shotcrete layer is applied by the end of this time. The curing period shall be for 7 days, except when there is a succeeding layer of shotcrete. In this instance, the initial shotcrete layer shall be cured until the surface preparation and reinforcement bar treatment is started. If temperatures below 45°F (7°C) are forecast during the curing period, protection methods shall be used. Protection Method I according to Article 1020.13(d)(1), or Protection Method II according to Article 1020.13(d)(2) shall be used during the curing period <u>Inspection of Completed Work.</u> The Contractor shall provide ladders or other appropriate equipment for the Engineer to inspect the repaired areas. After curing but no sooner than 28 days after placement of concrete or shooting of shotcrete, the repair shall be examined for conformance with original dimensions, cracks, voids, and delaminations. Sounding for delaminations will be done with a hammer or by other methods determined by the Engineer. The acceptable tolerance for conformance of a repaired area shall be within 1/4 in. (6 mm) of the original dimensions. A repaired area not in dimensional conformance or with delaminations shall be removed and replaced. A repaired area with cracks or voids shall be considered as nonconforming. Exceeding one or more of the following crack and void criteria shall be cause for removal and replacement of a repaired area. - 1. The presence of a single surface crack greater than 0.01 in. (0.25 mm) in width and greater than 12 in. (300 mm) in length. - 2. The presence of two or more surface cracks greater than 0.01 in. (0.25 mm) in width that total greater than 24 in. (600 mm) in length. - 3. The presence of map cracking in one or more regions totaling 15 percent or more of the gross surface area of the repair. - 4. The presence of two or more surface voids with least dimension 3/4 in. (19 mm) each. A repaired area with cracks or voids that do not exceed any of the above criteria may remain in place, as determined by the Engineer. If a nonconforming repair is allowed to remain in place, cracks greater than 0.007 in. (0.2 mm) in width shall be repaired with epoxy according to Section 590. For cracks less than or equal to 0.007 in. (0.2 mm) in width, the epoxy may be applied to the surface of the crack. Voids shall be repaired according to Article 503.15. <u>Publications and Personnel Requirements</u>. The Contractor shall provide a current copy of ACI 506R to the Engineer a minimum of one week prior to start of construction. The shotcrete personnel who perform the work shall have current American Concrete Institute (ACI) nozzlemen certification for vertical wet and overhead wet applications, except one individual may be in training. This individual shall be adequately supervised by a certified ACI nozzlemen as determined by the Engineer. A copy of the nozzlemen certificate(s) shall be given to the Engineer. <u>Method of Measurement</u>. This work will be measured for payment in
place and the area computed in square feet (square meters). For a repair at a corner, both sides will be measured. <u>Basis of Payment</u>. This work will be paid for at the contract unit price per square foot (square meter) for STRUCTURAL REPAIR OF CONCRETE (DEPTH GREATER THAN 5 IN. (125 MM), STRUCTURAL REPAIR OF CONCRETE (DEPTH EQUAL TO OR LESS THAN 5 IN. (125 MM). When not specified to be paid for elsewhere, the work to design, install, and remove the temporary shoring and cribbing will be paid for according to Article 109.04. With the exception of reinforcement damaged by the Contractor during removal, the furnishing and installation of supplemental reinforcement bars, mechanical bar splicers, hook bolts, and protective coat will be paid according to Article 109.04. #### HOT DIP GALVANIZING FOR STRUCTURAL STEEL Effective: June 22, 1999 Revised: October 20, 2017 <u>Description</u>. This work shall consist of surface preparation and hot dip galvanizing all structural steel specified on the plans and painting of galvanized structural steel when specified on the plans. <u>Materials</u>. Fasteners shall be ASTM F 3125, Grade 325, Type 1, High Strength bolts with matching nuts and washers. <u>Fabrication Requirements</u>. Hot-dip galvanizing shall be indicated on the shop drawings. The fabricator shall coordinate with the galvanizer to incorporate additional steel details required to facilitate galvanizing of the steel. These additional details shall be indicated on the shop drawings. To insure identification after galvanizing, piece marks shall be supplemented with metal tags for all items where fit-up requires matching specific pieces. After fabrication (cutting, welding, drilling, etc.) is complete, all holes shall be deburred and all fins, scabs or other surface/edge anomalies shall be ground or repaired per ASTM A6. The items shall then be cleaned per Steel Structures Painting Council's Surface Preparation Specification SSPC-SP1 (Solvent Cleaning) and SSPC-SP6 (Commercial Blast Cleaning). All surfaces shall be inspected to verify no fins, scabs or other similar defects are present. The Contractor shall consult with the galvanizer to insure proper removal of grease, paint and other deleterious materials prior to galvanizing. # Surface Preparation and Hot Dip Galvanizing <u>General</u>. Surfaces of the structural steel specified on the plans shall be prepared and hot dip galvanized as described herein. <u>Cleaning Structural Steel.</u> If rust, mill scale, dirt, oil, grease or other foreign substances have accumulated prior to galvanizing, steel surfaces shall be cleaned by a combination of caustic cleaning and cleaning according to SSPC-SP8 (Pickling). Special attention shall be given to the cleaning of corners and reentrant angles. <u>Surface Preparation</u>. A flux shall be applied to all steel surfaces to be galvanized. Any surfaces which will receive field-installed stud shear connectors shall not be galvanized within 2 in. (50 mm) of the stud location. Either the entire area receiving studs or just individual stud locations may be left ungalvanized. The following steel surfaces of bearings shall not be galvanized: stainless steel surfaces, surfaces which will be machined (except for fixed bearing sole plates), and surfaces which will have TFE, elastomer, or stainless steel parts bonded to them. The cleaned surfaces shall be galvanized within 24 hours after cleaning, unless otherwise authorized by the Engineer. <u>Application of Hot Dip Galvanized Coating</u>. Steel members, fabrications and assemblies shall be galvanized by the hot dip process in the shop according to AASHTO M 111. Bolts, nuts, and washers shall be galvanized according to ASTM F 2329. All steel shall be safeguarded against embrittlement according to ASTM A 143. Water quenching or chromate conversion coating shall not be used on any steel work that is to be painted. All galvanized steel work shall be handled in such a manner as to avoid any mechanical damage and to minimize distortion. Beams and girders shall be handled, stored and transported with their webs vertical and with proper cushioning to prevent damage to the member and coating. Members shall be supported and externally stiffened during galvanizing to prevent permanent distortion. <u>Hot Dip Galvanized Coating Requirements</u>. Coating weight, surface finish, appearance and adhesion shall conform to requirements of ASTM A 385, ASTM F2329, AASHTO M 111 or AASHTO M 232, as appropriate. Any high spots of zinc coating, such as metal drip lines and rough edges, left by the galvanizing operation in areas that are to be field connected or in areas that are to be painted shall be removed by cleaning per SSPC-SP2 (Hand Tool Cleaning) or SSPC-SP3 (Power Tool Cleaning). The zinc shall be removed until it is level with the surrounding area, leaving at least the minimum required zinc thickness. Shop assemblies producing field splices shall provide 1/8 in. (3 mm) minimum gaps between ends of members to be galvanized. At field splices of beams or girders, galvanizing exceeding 0.08 in. (2 mm) on the cross-sectional (end) face shall be partially removed until it is 0.04 in. to 0.08 in. (1 to 2 mm) thick. <u>Testing of Hot Dip Galvanized Coating.</u> Inspection and testing of hot dip galvanized coatings shall follow the guidelines provided in the American Galvanizers Association publication "*Inspection of Products Hot Dip Galvanized After Fabrication*". Sampling, inspection, rejection and retesting for conformance with requirements shall be according to AASHTO M 111 or AASHTO M 232, as applicable. Coating thickness shall be measured according to AASHTO M 111, for magnetic thickness gage measurement or AASHTO M 232, as applicable. All steel shall be visually inspected for finish and appearance. Bolts, nuts, washers, and steel components shall be packaged according to ASTM F 2329. Identity of bolts, nuts and washers shall be maintained for lot-testing after galvanizing according to Article 505.04(f)(2) for high strength steel bolts. A notarized certificate of compliance with the requirements listed herein shall be furnished. The certificate shall include a detailed description of the material processed and a statement that the processes used met or exceeded the requirements for successful galvanizing of the surface, where applicable. The certificate shall be signed by the galvanizer. Repair of Hot Dip Galvanized Coating. Surfaces with inadequate zinc thickness shall be repaired in the shop according to ASTM A 780 and AASHTO M 111. Surfaces of galvanized steel that are damaged after the galvanizing operation shall be repaired according to ASTM A 780 whenever damage exceeds 3/16 in. (5 mm) in width and/or 4 in. (100 mm) in length. Damage that occurs in the shop shall be repaired in the shop. Damage that occurs during transport or in the field shall be repaired in the field. <u>Connection Treatment.</u> After galvanizing and prior to shipping, contact surfaces for any bolted connections shall be roughened by hand wire brushing or according to SSPC-SP7 (Brush-Off Blast Cleaning). Power wire brushing is not allowed. All bolt holes shall be reamed or drilled to their specified diameters after galvanizing. All bolts shall be installed after galvanizing. # **Surface Preparation and Painting** <u>Surface Preparation.</u> When galvanized steel surfaces are specified to be painted they shall be clean and free of oil, grease, and other foreign substances. Surface preparation necessary to provide adequate adhesion of the coating shall be performed according to ASTM D6386. Surface preparation shall include, but not be limited to the following: - All galvanized steel surfaces that are to be painted shall be cleaned according to SSPC-SP1 (Solvent Cleaning). After cleaning, all chemicals shall be thoroughly rinsed from the surface with a suitable solvent. The steel shall be allowed to completely dry prior to coating application. - All galvanized steel surfaces that are to be painted shall be checked for the presence of chromate conversion coating according to ASTM D 6386 Appendix X1. Surfaces where chromate conversion coating is found shall be cleaned according to the same appendix and blown down with clean, compressed air according to ASTM D 6386 Section 6.1. - All galvanized steel surfaces that are to be painted shall be checked for the presence of wet storage stain. Surfaces where wet storage stain is found shall be cleaned, rinsed and completely dried according to ASTM D 6386 Section 6.2. - Following galvanizing, thickness readings shall verify the acceptable thickness of the galvanizing according to AASHTO M111/ASTM A123. <u>Paint Requirements.</u> The paint materials (epoxy intermediate coat and aliphatic urethane finish coat) shall meet the requirements of the Articles 1008.05(d) and (e) of the Standard Specification. All paint materials for the shop and field shall be supplied by the same manufacturer, and samples of components submitted for approval by the Department, before use. Paint storage, mixing, and application shall be according to Section 506 of the Standard Specifications and the paint manufacturer's written instructions and product data sheets. In the event of a conflict the Contractor shall advise the Engineer and comply with the Engineer's written resolution. Until a resolution is provided, the most restrictive conditions shall apply. <u>Shop Application of the Paint System.</u> The areas to be painted shall receive one full coat of an epoxy intermediate coat and one full coat of an aliphatic urethane finish coat. The film thickness of each coat shall be according to Article 506.09(f)(2). <u>Construction Requirements</u>. The contact surfaces of splice flange connections (mating flange faces and areas under splice bolt heads and nuts) shall be free of paint prior to assembly. If white rust is visible on the mating flange surfaces, the steel shall be prepared by hand wire brushing or
brush-off blasting according to SSPC-SP7. Power wire brushing is not allowed. After field erection, the following areas shall be prepared by cleaning according to SSPC-SP1 (Solvent Cleaning), tie- or wash-coated if applicable, and then painted or touched up with the paint specified for shop application (the intermediate coat and/or the finish coat): - exposed unpainted areas at bolted connections - areas where the shop paint has been damaged - any other unpainted, exposed areas as directed by the Engineer. <u>Special Instructions</u>. Painting Date/System Code. At the completion of the work, the Contractor shall stencil in contrasting color paint the date of painting the bridge and the paint type code from the Structure Information and Procedure Manual for the system used according to Article 506.10(i). The code designation for galvanizing is "V". If painting of the structural steel is not specified then the word "PAINTED" may be omitted, the month and year shall then correspond to the date the stencil is applied. <u>Basis of Payment</u>. The cost of all surface preparation, galvanizing, painting and all other work described herein shall be considered as included in the unit price bid for the applicable pay items to be galvanized and painted, according to the Standard Specifications. #### PREFORMED BRIDGE JOINT SEAL Effective: December 21, 2016 Revised: March 1, 2019 <u>Description.</u> This work shall consist of furnishing all labor, equipment and materials necessary to prepare the joint opening and install preformed bridge joint seal(s) at the locations specified. Unless otherwise detailed on the plans or specified herein, the maximum rated movement for this joint type is 4 inches (100 mm). <u>Materials:</u> Unless otherwise specified, one of the following prefabricated joint seals will be permitted. (a) Preformed Pre-compressed, Silicone Coated, Self-Expanding Sealant System. This Sealant system shall be comprised of three components: 1) cellular polyurethane foam impregnated with hydrophobic 100% acrylic, water-based emulsion, factory coated with highway-grade, fuel resistant silicone; 2) field-applied epoxy adhesive primer, 3) field-injected silicone sealant bands. The preformed, pre-compressed silicone joint seal shall, as a minimum, be according to the following: - The joint seal shall be held in place by a non-sag, high modulus silicone adhesive. - The joint seal shall be compatible with the epoxy and header material. - The joint seal shall withstand the effects of vertical and lateral movements, skew movements and rotational movement without adhesive or cohesive failure. - The joint seal shall be designed so that, the material is capable of movement of +50%, -50% (100% total) of nominal material size. The joint seal shall be one continuous gland in length and width. - Changes in plane and direction shall be executed using factory fabricated transition assemblies fabricated to the angle(s) specified on the plans. The transitions shall be watertight at the inside and outside corners through the full movement of the product. - The depth of the joint shall be recessed 3/4 in. (19 mm) below the riding surface throughout the normal limits of joint movement. - The joint seal shall be resistant to ultraviolet rays. - The joint seal shall be resistant to abrasion, oxidation, oils, gasoline, salt, and other materials that may be spilled on or applied to the surface. - The manufacturer shall certify that the joint composition shall be free of any waxes or wax compounds; asphalts or asphalt compounds. The joint material shall meet the following physical properties: | Property | Requirement | Test Method | | |--|-------------------------------|---------------|--| | Tensile Strength of Silicone Coating (min) | 140 psi | ASTM D 412 | | | UV Resistance of Joint System | No Changes2000
Hours | ASTM G155-00A | | | Density of Cellular Polyurethane Foam (Unconfined) | 4.0 lb/ cu ft
(200kg/cu m) | ASTM D545 | | | Heat Aging Effects (Silicone Coating) | No cracking, chalking | ASTM C 792 | | | Joint System Operating temp range (min) | -40° F to 185° F | ASTM C 711 | | The adhesive shall be a two-component, 100% solid, modified epoxy meeting the requirements of ASTM C881, Type I, Grade 3, Class B & C. The adhesive shall also have the following properties: | Property | Requirement | Test method | |--------------------------|-------------------------|-------------| | Tensile Strength | 2,500 psi (24 MPa) min. | ASTM D638 | | Compressive Strength | 7000 psi (48 MPa) min. | ASTM D695 | | Bond Strength (Dry Cure) | 2000 psi (28MPa) min | ASTM C882 | | Water Absorption | 0.1% by weight | ASTM D570 | The silicone band adhesive shall have the following properties: | Property | Requirement | Test Method | |-------------------------|---|-------------| | Movement Capability | +50/-50% | ASTM C 719 | | Elongation at Break | >600% | ASTM D 5893 | | Slump | ≤=0.3" | ASTM D 2202 | | Hardness (Shore A) max. | 20 | ASTM C 661 | | Tack free time (max) | 60 minutes | ASTM C 679 | | Heat Aging Effects | No cracking, chalking | ASTM C 792 | | Resilience | ≥ 75% | ASTM D5329 | | Bond | 0% Adhesive or Cohesive Failure after 5 cycles @100%extension | ASTM D 5329 | (b) Preformed Silicone Joint Seal. The preformed silicone joint seal used for this item shall conform to the following specifications: Table 1 Physical Properties of Preformed Silicone Gland | Property | Requirement | Test Method | | | |----------------------------------|------------------------------|-------------|--|--| | Rated Movement Capability | +2 ¼ inch total | N/A | | | | Tensile Strength, psi. | 1000 min | ASTM D 412 | | | | Elongation | 400% min | ASTM D 412 | | | | Tear (die B) | 100 ppi. min | ASTM D 624 | | | | Hardness Durometer (Shore A). | 55 +/- 5 max | ASTM D 2240 | | | | Compression set at 212°F, 70 hrs | 30% max | ASTM D 395 | | | | Heat Aged Properties | 5pt max loss on
Durometer | ASTM D 573 | | | | Tensile and Elongation % Loss | 10 % max | | | | The color of the preformed silicone seal shall be black, made by the addition of Carbon Black fillers which increases UV resistance, tensile strength, and abrasion wear properties. The locking adhesive shall be non-sag, high modulus silicone adhesive conforming to the following specifications: Table 2 Physical Properties of the Silicone Locking Adhesive | Property | Requirement | Test Method | | |--------------------------|--------------------------------------|-------------|--| | Tensile Strength, psi. | 200 min | ASTM D 412 | | | Elongation, % | 450 min | ASTM D 412 | | | Tack Free Time, minutes. | 20 max. | ASTM C 679 | | | Cure Time 1/4" bead, hrs | 24 max | ASTM C 679 | | | Resistance to U.V. | No cracking, chalking,or degradation | ASTM C793 | | | VOC (g/L) | 0 | ASTM D 3960 | | Any rips, tears, or bond failure will be cause for rejection. The two part epoxy primer shall be supplied for application to the vertical faces of the joint opening. The supplied primer shall be equally as effective when bonded to concrete or steel. This primer shall meet the following criteria: Table 3 Physical Properties of Preformed Silicone Joint System Primer | Property | Requirement | Test Method | | | |----------------------------------|----------------|----------------------------|--|--| | Viscosity (cps) | 44 | ASTM D 2196 | | | | Color | Light Amber | Visual | | | | Solids (%) | 41 ASTM D 4209 | | | | | Specific Gravity | 0.92 | ASTM D 1217 | | | | Product Flash Point (°F, T.C.C.) | 48 | ASTM D 56 | | | | Package Stability | N/A | One year in tightly sealed | | | | Fackage Stability | IN/A | containers | | | | Cleaning | N/A | Mineral Spirits | | | | VOC (g/L) | 520 | ASTM D 3960 | | | (a) Preformed Inverted EPDM Joint Seal. The preformed inverted EPDM joint seal used for this item shall conform to the following specifications: Table 1 Physical Properties of Preformed Silicone Gland | Property | Requirement | Test Method | | | |----------------------------------|--------------------|-------------|--|--| | Rated Movement Capability | Up To 5 inch total | N/A | | | | Tensile Strength, psi. | 1200 psi min | ASTM D 412 | | | | Elongation | 400 % min | ASTM D 412 | | | | Tear (Die C) | 150 pli. min | ASTM D 624 | | | | Durometer Content | 50 +/- 5 max | ASTM D 2240 | | | | Water Resistance (70 hrs @ 100c) | 10% max | ASTM D 471 | | | | Ozone Resistance | 100 min | ASTM D 1171 | | | | Color | Black | Visual | | | # Table 2 Physical Properties of the V-Epoxy-R V-Epoxy-R adhesive meets the requirements of ASTM C881 Type III, Grade 2. The adhesive shall also have the following properties: | Property | Requirement | Test Method | |---|--------------------------------------|-------------| | Color | Gray | Visual | | Viscosity | 45,000 CP (typ.) | N/A | | Gel Time (minutes) | 30 min. | ASTM C 881 | | Shelf Life (Separate Sealed Containers) | 12 Months | N/A | | _ | No cracking, chalking,or degradation | ASTM C793 | | VOC (g/L) | 0 | ASTM D 3960 | Any rips, tears, or bond failure will be cause for rejection. (d) Bonded Preformed Joint Seal. This joint system shall consist of preformed elastomeric seal bonded to the side walls of the joint opening using an adhesive as specified by the Manufacturer of the joint seal. The bonded preformed joint seal shall be according to Table 1 of ASTM D2628 with the following exceptions: Compression set shall not be over 40 percent when tested according to Method B (Modified) of ASTM D 395 after 70 hours at 212 °F (100 °C). The Compression-Deflection requirement will not apply to the bonded preformed joint seal. The adhesive shall be epoxy base, dual component, which resists salt, diluted acids, alkalis, solvents, greases, oils, moisture, sunlight and weathering. Temperatures up to 200 °F (93 °C) shall not reduce bond strength. At 68 °F (20 °C), the bond
strength shall be a minimum of 1000 psi (6.9 MPa) within 24 hours. Any primers or cleaning solutions used on the faces of the joint or on the profile of the sides of the bonded preformed joint seal shall be supplied by the manufacturer of the bonded preformed joint seal. Any additional installation materials and adhesive for splicing joint sections shall be as supplied by the manufacturer of the preformed joint seal. The Contractor shall submit the Manufacturer's material certification documentation stating that their materials meet the applicable requirements of this specification for the joint seal(s) installed. #### **CONSTRUCTION REQUIREMENTS** <u>General.</u> The Contractor shall furnish the Engineer with the manufacturer's product information and installation procedures at least two weeks prior to installation. The minimum ambient air temperature in which the joint seal can be installed is 40° F (4.4° C) and rising, except for bonded preformed joint seals which shall not be installed when temperatures below 50 °F (10 °C) are predicted within a 48 hour period. The joint surface shall be completely dry before installing the Joint Seal. For newly placed concrete, the concrete shall be fully cured and allowed to dry out a minimum of seven additional days prior to placement of the seal. Cold, wet, inclement weather will require an extended drying time. The Joint Seal shall not be installed immediately after precipitation or if precipitation is forecasted for the day. Joint preparation and installation of Joint Seal shall be done during the same day. <u>Surface Preparation</u>. Surface preparation shall be according to the joint seal manufacturer's written instructions. After surface preparation is completed, the joint shall be cleaned of debris using compressed air with a minimum pressure of 90 psi (620 kPa). The air compressor shall be equipped with traps to prevent the inclusion of water and/or oil in the air line. The compressed air shall be according to the cleanliness requirements of ASTM D 4285. When priming is required per the manufacturer's instruction, this operation shall immediately follow cleaning. <u>Joint Installation.</u> The Joint installation shall be per the manufacturer's instructions; special attention shall be given to insure the joint seal is properly recessed below the top of the riding surface as recommended by the manufacturer. For bonded joint seals the seal shall be inserted into the joint and held tightly against both sides of the joint until sufficient bond strength has been developed to resist the expected expansion forces. <u>Opening to traffic.</u> As these joint systems are supposed to be recessed below the top of the riding surface, there should be no restriction, based on the joint seal installation, on when these joints can be reopened to traffic. <u>Method of Measurement.</u> The installed preformed joint seal will be measured for payment in feet (meters) measured along the centerline of joint, from out to out of the deck, no measurement will be made for joint material used to turn up into the parapet, sidewalk, or median. <u>Basis of Payment.</u> The preformed bridge joint seal will be paid for at the contract unit price per foot (meter) for PREFORMED JOINT SEAL, of the design movement specified, rounded to the nearest half inch (13 mm). ### TRAFFIC CONTROL AND PROTECTION (EXPRESSWAYS) Effective: March 8, 1996 Revised: April 1, 2019 <u>Description</u>. This work shall include furnishing, installing, maintaining, replacing, relocating, and removing all traffic control devices used for the purpose of regulating, warning, or directing traffic. Traffic control and protection shall be provided as called for in the plans, applicable Highway Standards, District One Expressway details, Standards and Supplemental Specifications, these Special Provisions, or as directed by the Engineer. <u>General</u>. The governing factor in the execution and staging of work for this project is to provide the motoring public with the safest possible travel conditions on the expressway through the construction zone. The Contractor shall arrange his operations to keep the closing of lanes and/or ramps to a minimum. The Contractor shall be responsible for the proper location, installation, and arrangement of all traffic control devices. Special attention shall be given to existing warning signs and overhead guide signs during all construction operations. Warning signs and existing guide signs with down arrows shall be kept consistent with the barricade placement at all times. The Contractor shall immediately remove, completely cover, or turn from the motorist's view all signs which are inconsistent with lane assignment patterns. The Contractor shall coordinate all traffic control work on this project with adjoining or overlapping projects, including barricade placement necessary to provide a uniform traffic detour pattern. When directed by the Engineer, the Contractor shall remove all traffic control devices that were furnished, installed, or maintained by him under this contract, and such devices shall remain the property of the Contractor. All traffic control devices shall remain in place until specific authorization for relocation or removal is received from the Engineer. Additional requirements for traffic control devices shall be as follows. (a) Traffic Control Setup and Removal. The setting and removal of barricades for the taper portion of a lane closure shall be done under the protection of a vehicle with a truck/trailer mounted attenuator and arrow board per State Standard 701428 and Section 701 of the Standard Specifications. Failure to meet this requirement will be subject to a Traffic Control Deficiency. The deficiency will be calculated as outlined in Article 105.03 of the Standard Specifications. Truck/trailer mounted attenuators shall comply with Article 1106.02(g) or shall meet the requirements of NCHRP 350 Test Level 3 with vehicles used in accordance with manufacturer's recommendations and requirements. ## (b) Sign Requirements - (1) Sign Maintenance. Prior to the beginning of construction operations, the Contractor will be provided a sign log of all existing signs within the limits of the construction zone. The Contractor is responsible for verifying the accuracy of the sign log. Throughout the duration of this project, all existing traffic signs shall be maintained by the Contractor. All provisions of Article 107.25 of the Standard Specifications shall apply. - (2) Work Zone Speed Limit Signs. Work zone speed limit signs shall be installed as required in Article 701.14(b) and as shown in the plans and Highway Standards. Based upon the exiting posted speed limit, work zone speed limits shall be established and signed as follows. - a. Existing Speed Limit of 55mph or higher. The initial work zone speed limit assembly, located approximately 4200' before the closure, and shall be 55mph as shown in 701400. Additional work zone 45mph assemblies shall be used as required according to Article 701.14(b) and as shown in the Highway Standards and plans. WORK ZONE SPEED LIMIT 55 PHOTO ENFORCED assemblies may be omitted when this assembly would normally be placed within 1500 feet of the END WORK ZONE SPEED LIMIT sign. If existing speed limit is over 65mph then additional signage should be installed per 701400. - b. Existing Speed Limit of 45mph. The advance 55mph work zone speed limit assembly shown in 701400 shall be replaced with a 45mph assembly. Additional work zone 45mph assemblies shall be used as required according to Article 701.14(b) and as shown in the Highway Standards and plans. WORK ZONE SPEED LIMIT 55 PHOTO ENFORCED assemblies shall be eliminated in all cases. END WORK ZONE SPEED LIMIT signs are required. - (3) Exit Signs. The exit gore signs as shown in Standard 701411 shall be a minimum size of 48 inch by 48 inch with 12 inch capital letters and a 20 inch arrow. EXIT OPEN AHEAD signs shown in Standard 701411 shall be a minimum size of 48 inch by 48 inch with 8 inch capital letters. - (4) Uneven Lanes Signs. The Contractor shall furnish and erect "UNEVEN LANES" signs (W8-11) on both sides of the expressway, at any time when the elevation difference between adjacent lanes open to traffic equals or exceeds one inch. Signs shall be placed 500' in advance of the drop-off, within 500' of every entrance, and a minimum of every mile. - (c) Drums/Barricades. Check barricades shall be placed in work areas perpendicular to traffic every 1000', one per lane and per shoulder, to prevent motorists from using work areas as a traveled way. Check barricades shall also be placed in advance of each open patch, or excavation, or any other hazard in the work area, the first at the edge of the open traffic lane and the second centered in the closed lane. Check barricades, either Type I or II, or drums shall be equipped with a flashing light. To provide sufficient lane widths (10' minimum) for traffic and also working room, the Contractor shall furnish and install vertical barricades, in lieu of Type II or drums, along the cold milling and asphalt paving operations. The vertical barricades shall be placed at the same spacing as the drums. - (d) Vertical Barricades. Vertical barricades shall not be used in lane closure tapers, lane shifts, exit ramp gores, or staged construction projects lasting more than 12 hours. Also, vertical barricades shall not be used as patch barricades or check barricades. Special attention shall be given, and ballast provided per manufacture's specification, to maintain the vertical barricades in an upright position and in proper alignment. - (e) Temporary Concrete Barrier Wall. Prismatic barrier wall reflectors shall be installed on both the face of the wall next to traffic, and the top of sections of the temporary concrete barrier wall as shown in Standard 704001. The color of these reflectors shall match the color of the edgelines (yellow on the left and crystal or
white on the right). If the base of the temporary concrete barrier wall is 12 inches or less from the travel lane, then the lower slope of the wall shall also have a 6 inch wide temporary pavement marking edgeline (yellow on the left and white on the right). - (f) Flaggers. One flagger will be required for each separate activity of an operation that requires frequent construction vehicles to enter or leave a work zone to or from a lane open to traffic. Temporary traffic control and flagger position shall be according to District One Detail TC-18 Expressway Flagging, or as directed by the Engineer. - (g) Full Expressway Closures. Full Expressway Closures will only be permitted for a maximum of 15 minutes during the allowable hours listed in the Keeping the Expressway Open to Traffic Special Provision. During Full Expressway Closures, the Contractor will be required to close off all lanes except one, using Freeway Standard Closures. The Contractor will be required to provide one changeable message sign to be placed at the direction of the Engineer. The sign shall display a message as directed by the Engineer. A Maintenance of Traffic Plan shall be submitted to the District One Expressway Traffic Control Supervisor 14 days in advance of the planned work; including all stage changes. The Maintenance of Traffic Plan shall include, but not be limited to: lane and ramp closures, existing geometrics, and equipment and material location. The District One Expressway Traffic Control Supervisor (847-705-4151) shall be contacted at least 3 working days in advance of the proposed road closure and will coordinate the closure operation with police forces. <u>Method of Measurement</u>. This item of work will be measured on a lump sum basis for furnishing, installing, maintaining, replacing, relocating, and removing traffic control devices required in the plans and these Special Provisions. Traffic control and protection required under Standards 701101, 701400, 701401, 701402, 701406, 701411, 701416, 701426, 701428, 701446, 701901 and District details TC-8, TC-9, TC-17, TC-18 and TC-25 will be included with this item. #### Basis of Payment. (a) This work will be paid for at the contract lump sum price for TRAFFIC CONTROL AND PROTECTION (EXPRESSWAYS). This price shall be payment in full for all labor, materials, transportation, handling, and incidental work necessary to furnish, install, maintain, replace, relocate, and remove all Expressway traffic control devices required in the plans and specifications. In the event the sum total value of all the work items for which traffic control and protection is required is increased or decreased by more than ten percent (10%), the contract bid price for TRAFFIC CONTROL AND PROTECTION (EXPRESSWAYS) will be adjusted as follows: Adjusted contract price = $.25P + .75P [1\pm(X-0.1)]$ Where: "P" is the bid unit price for Traffic Control and Protection Where: "X" = Difference between original and final sum total value of all work items for which traffic control and protection is required Original sum total value of all work items for which traffic control and protection is required. The value of the work items used in calculating the increase and decrease will include only items that have been added to or deducted from the contract under Article 104.02 of the Standard Specifications and only items which require use of Traffic Control and Protection. Temporary traffic control costs due to delay will be paid for according to the Compensable Delay Costs (BDE) Special Provision. - (b) The <u>Engineer</u> may require additional traffic control be installed in accordance with standards and/or designs other than those included in the plans. In such cases, the standards and/or designs will be made available to the Contractor at least one week in advance of the change in traffic control. Payment for any additional traffic control required will be in accordance with Article 109.04 of the Standard Specifications. - (c) Revisions in the phasing of construction or maintenance operations, requested by the <u>Contractor</u>, may require traffic control to be installed in accordance with standards and/or designs other than those included in the plans. Revisions or modifications to the traffic control shown in the contract shall be submitted by the Contractor for approval by the Engineer. No additional payment will be made for a Contractor requested modification. - (d) Temporary concrete barrier wall will be measured and paid for according to Section 704. - (e) Impact attenuators, temporary bridge rail, and temporary rumble strips will be paid for separately. - (f) Temporary pavement markings shown on the Standard will be measured and paid for according to Section 703 and Section 780. - (g) All pavement marking removal will be measured and paid for according to Section 703 or Section 783. - (h) Temporary pavement marking on the lower slope of the temporary concrete barrier wall will be measured and paid for as TEMPORARY PAVEMENT MARKING, 6". - (i) All barrier wall reflectors will be measured and paid for according to Section 782. - (j) The Changeable Message Sign required for Full Expressway Closures shall not be paid for separately. #### **KEEPING THE EXPRESSWAY OPEN TO TRAFFIC** Effective: March 22, 1996 Revised: January 21, 2015 Whenever work is in progress on or adjacent to an expressway, the Contractor shall provide the necessary traffic control devices to warn the public and to delineate the work zone as required in these Special Provisions, the Standard Specifications, the State Standards and the District Freeway details. All Contractors' personnel shall be limited to these barricaded work zones and shall not cross the expressway. The Contractor shall request and gain approval from the Illinois Department of Transportation's Expressway Traffic Operations Engineer at www.idotlcs.com twenty-four (24) hours in advance of all daily lane, ramp and shoulder closures and 7 days in advance of all permanent and weekend closures on all Freeways and/or Expressways in District One. This advance notification is calculated based on workweek of Monday through Friday and shall not include weekends or Holidays. LOCATION: I-55: Reed Road to River Rd | WEEK NIGHT | TYPE OF CLOSURE | ALLOWABLE LANE CLOSURE HOURS | | | | | | |----------------|-----------------|------------------------------|----|----------------|---------------|----|----------------| | | | INBOUND OUTBOUND | | | | | | | Sunday - Thurs | One Lane | 7:00 PM | to | 5:00 AM | 8:00 PM | to | 6:00 AM | | Friday | One Lane | 8:00 PM (Fri) | to | 10:00 AM (Sat) | 9:00 PM (Fri) | to | 11:00 AM (Sat) | | Saturday | One Lane | 8:00 PM (Sat) | to | 11:59 AM (Sun) | 8:00 PM (Sat) | to | 11:59 AM (Sun) | In addition to the hours noted above, temporary shoulder and non-system interchange partial ramp closures are allowed weekdays between 9:00 A.M. and 3:00 P.M. and between 7:00 P.M. and 5:00 A.M. Narrow Lanes and permanent shoulder closures will not be allowed between Dec. 1st and April 1st. Contractor shall notify the District One Expressway Traffic Control Supervisor at least 3 working days (weekends and holidays DO NOT count into this 72 hours notification) in advance of any proposed stage change. All daily lane closures shall be removed during adverse weather conditions such as rain, snow, and/or fog and as determined by the Engineer. Also, the contractor shall promptly remove their lane closures when Maintenance forces are out for snow and ice removal. Additional lane closure hour restrictions may have to be imposed to facilitate the flow of traffic to and from major sporting events and/or other events. All lane closure signs shall not be erected any earlier than one-half (1/2) hour before the starting hours listed above. Also, these signs should be taken down within one-half (1/2) hour after the closure is removed. The Contractor will be required to cooperate with all other contractors when erecting lane closures on the expressway. All lane closures (includes the taper lengths) without a three (3) mile gap between each other, in one direction of the expressway, shall be on the same side of the pavement. Lane closures on the same side of the pavement with a one (1) mile or less gap between the end of one work zone and the start of taper of next work zone should be connected. The maximum length of any lane closure on the project and combined with any adjacent projects shall be three (3) miles. Gaps between successive permanent lane closures shall be no less than two (2) miles in length. Private vehicles shall not be parked in the work zone. Contractor's equipment and/or vehicles shall not be parked on the shoulders or in the median during non-working hours. The parking of equipment and/or vehicles on State right-of-way will only be permitted at the locations approved by the Engineer. Check barricades shall be placed every 1000' within a lane closure to prevent vehicles from driving through closed lanes. The Contractor shall furnish and install large (48" X 48") "DETOUR with arrow" signs as directed by the Engineer for all system ramp closures. In addition, one portable changeable message sign will be required to be placed in advance of the ramp closure. The cost of these signs and PCMS board shall be included in the cost of traffic control and protection (6 static signs maximum per closure). Should the Contractor fail to completely open, and keep open, the ramps to traffic in accordance with the above limitations, the Contractor shall be liable to the Department for liquidated damages as noted under the Special Provision, "Failure to Open Traffic Lanes to Traffic". #### FAILURE TO OPEN TRAFFIC LANES TO TRAFFIC Effective: March 22, 1996 Revised: February 9, 2005 Should the Contractor fail to completely open and keep open all the traffic lanes to traffic in accordance with the limitations specified under the Special Provisions for "Keeping the Expressway Open to
Traffic", the Contractor shall be liable to the Department for the amount of: One lane or ramp blocked = \$ (Designer to calculate based on Traffic Volumes.) Two lanes blocked = \$ (If applicable, designer to calculate based on Traffic Volumes.) Not as a penalty but as liquidated and ascertained damages for each and every 15 minute interval or a portion thereof that a lane is blocked outside the allowable time limitations. Such damages may be deducted by the Department from any monies due the Contractor. These damages shall apply during the contract time and during any extensions of the contract time. # HOT-MIX ASPHALT - MIXTURE DESIGN VERIFICATION AND PRODUCTION (MODIFIED FOR I-FIT DATA COLLECTION) (D-1) Effective: January 1, 2019 Revised: January 3, 2020 <u>Description</u>. This special provision requires the Illinois Flexibility Index Test (I-FIT) be used during mixture design verification and production testing for all hot-mix asphalt (HMA) mixtures. <u>Mixture Design</u>. Add the following to the list of referenced standards in Article 1030.04 of the Standard Specifications: "Illinois Modified AASHTO TP 124 Determining the Fracture Potential of Asphalt Mixtures Using the Illinois Flexibility Index Test (I-FIT)" Add to Article 1030.04(d) of the Standard Specifications: "During mixture design, prepared samples shall be submitted to the District laboratory for verification testing. The required testing, and number and size of prepared samples submitted, shall be according to the following tables. | High ESAL – Required Samples for Verification Testing 1/ | | | |--|---|--| | Mixture I-FIT Testing | | | | Binder | total of 3 - 160 mm tall bricks ^{2/} | | | Surface | total of 4 - 160 mm tall bricks ^{2/} | | | Low ESAL – Required Samples for Verification Testing 1/ | | | |---|--------------------------------------|--| | Mixture | I-FIT Testing | | | Binder | 1 - 160 mm tall brick ^{2/} | | | Surface | 2 - 160 mm tall bricks ^{2/} | | 1/Prepared samples shall be compacted gyratory bricks yielding test specimens with $7.0 \pm 1.0\%$ air voids. 2/If the Contractor does not possess the equipment to prepare the 160 mm tall brick(s), twice as many 115 mm tall compacted gyratory bricks will be acceptable. Add the following to Article 1030.04 (d) of Standard Specification to read: (3) I-FIT Flexibility Index (FI) Criteria. I-FIT testing will be according to Illinois Modified AASHTO TP 124 and the results will be for informational purposes only. Add the following to Article 1030.06 (a) of the Standard Specifications to read: An I-FIT shall be conducted on all HMA mixtures from a sample taken within the first 500 tons (450 metric tons) on the first day of production or during start up with an 80 lb (36 kg) split reserved for the Department. The mix sample shall be tested according to the Illinois Modified ASSHTO TP 124 Determining the Fracture Potential of Asphalt Mixtures Using the Illinois Flexibility Index Test (I-FIT). Within two working days after sampling, the Contractor shall deliver prepared samples to the District laboratory for verification testing. The required number and size of prepared samples submitted for the I-FIT testing shall be according to the "High ESAL - Required Samples for Verification Testing" table in Article 1030.04(d) above. Mixture sampled during production for I-FIT will be tested by the Department. Add the following to the end of Article 1030.06(b) of the Standard Specifications: "I-FIT testing will be performed for Low ESAL mixtures (excluding Class D patches, pavement patching and incidental HMA) during mixture production. Within one working day after sampling, the Contractor shall deliver prepared samples to the District laboratory for verification testing. The required number and size of prepared samples submitted for the I-FIT testing shall be according to the "Low ESAL - Required Samples for Verification Testing" table in Article 1030.04(d) above." # **COMPENSABLE DELAY COSTS (BDE)** Effective: June 2, 2017 Revised: April 1, 2019 Revise Article 107.40(b) of the Standard Specifications to read: - "(b) Compensation. Compensation will not be allowed for delays, inconveniences, or damages sustained by the Contractor from conflicts with facilities not meeting the above definition; or if a conflict with a utility in an unanticipated location does not cause a shutdown of the work or a documentable reduction in the rate of progress exceeding the limits set herein. The provisions of Article 104.03 notwithstanding, compensation for delays caused by a utility in an unanticipated location will be paid according to the provisions of this Article governing minor and major delays or reduced rate of production which are defined as follows. - (1) Minor Delay. A minor delay occurs when the work in conflict with the utility in an unanticipated location is completely stopped for more than two hours, but not to exceed two weeks. - (2) Major Delay. A major delay occurs when the work in conflict with the utility in an unanticipated location is completely stopped for more than two weeks. - (3) Reduced Rate of Production Delay. A reduced rate of production delay occurs when the rate of production on the work in conflict with the utility in an unanticipated location decreases by more than 25 percent and lasts longer than seven calendar days." Revise Article 107.40(c) of the Standard Specifications to read: - "(c) Payment. Payment for Minor, Major, and Reduced Rate of Production Delays will be made as follows. - (1) Minor Delay. Labor idled which cannot be used on other work will be paid for according to Article 109.04(b)(1) and (2) for the time between start of the delay and the minimum remaining hours in the work shift required by the prevailing practice in the area. Equipment idled which cannot be used on other work, and which is authorized to standby on the project site by the Engineer, will be paid for according to Article 109.04(b)(4). (2) Major Delay. Labor will be the same as for a minor delay. Equipment will be the same as for a minor delay, except Contractor-owned equipment will be limited to two weeks plus the cost of move-out to either the Contractor's yard or another job and the cost to re-mobilize, whichever is less. Rental equipment may be paid for longer than two weeks provided the Contractor presents adequate support to the Department (including lease agreement) to show retaining equipment on the job is the most economical course to follow and in the public interest. (3) Reduced Rate of Production Delay. The Contractor will be compensated for the reduced productivity for labor and equipment time in excess of the 25 percent threshold for that portion of the delay in excess of seven calendar days. Determination of compensation will be in accordance with Article 104.02, except labor and material additives will not be permitted. Payment for escalated material costs, escalated labor costs, extended project overhead, and extended traffic control will be determined according to Article 109.13." Revise Article 108.04(b) of the Standard Specifications to read: - "(b) No working day will be charged under the following conditions. - (1) When adverse weather prevents work on the controlling item. - (2) When job conditions due to recent weather prevent work on the controlling item. - (3) When conduct or lack of conduct by the Department or its consultants, representatives, officers, agents, or employees; delay by the Department in making the site available; or delay in furnishing any items required to be furnished to the Contractor by the Department prevents work on the controlling item. - (4) When delays caused by utility or railroad adjustments prevent work on the controlling item. - (5) When strikes, lock-outs, extraordinary delays in transportation, or inability to procure critical materials prevent work on the controlling item, as long as these delays are not due to any fault of the Contractor. - (6) When any condition over which the Contractor has no control prevents work on the controlling item." Revise Article 109.09(f) of the Standard Specifications to read: "(f) Basis of Payment. After resolution of a claim in favor of the Contractor, any adjustment in time required for the work will be made according to Section 108. Any adjustment in the costs to be paid will be made for direct labor, direct materials, direct equipment, direct jobsite overhead, direct offsite overhead, and other direct costs allowed by the resolution. Adjustments in costs will not be made for interest charges, loss of anticipated profit, undocumented loss of efficiency, home office overhead and unabsorbed overhead other than as allowed by Article 109.13, lost opportunity, preparation of claim expenses and other consequential indirect costs regardless of method of calculation. The above Basis of Payment is an essential element of the contract and the claim cost recovery of the Contractor shall be so limited." Add the following to Section 109 of the Standard Specifications. "109.13 Payment for Contract Delay. Compensation for escalated material costs, escalated labor costs, extended project overhead, and extended traffic control will be allowed when such costs result from a delay meeting the criteria in the following table. | Contract Type | Cause of Delay | Length of Delay | | |--------------------|--|---|--| | Working Days | Article 108.04(b)(3) or Article 108.04(b)(4) | No working days have been charged for two consecutive weeks. | | | Completion
Date | Article 108.08(b)(1) or Article 108.08(b)(7) | The Contractor has been granted a minimum two week extension of contract time, according to Article 108.08. | | Payment for
each of the various costs will be according to the following. - (a) Escalated Material and/or Labor Costs. When the delay causes work, which would have otherwise been completed, to be done after material and/or labor costs have increased, such increases will be paid. Payment for escalated material costs will be limited to the increased costs substantiated by documentation furnished by the Contractor. Payment for escalated labor costs will be limited to those items in Article 109.04(b)(1) and (2), except the 35 percent and 10 percent additives will not be permitted. - (b) Extended Project Overhead. For the duration of the delay, payment for extended project overhead will be paid as follows. - (1) Direct Jobsite and Offsite Overhead. Payment for documented direct jobsite overhead and documented direct offsite overhead, including onsite supervisory and administrative personnel, will be allowed according to the following table. | Original Contract
Amount | Supervisory and Administrative Personnel | | | |--|--|--|--| | Up to \$5,000,000 | One Project Superintendent | | | | Over \$ 5,000,000 - up to \$25,000,000 | One Project Manager, One Project Superintendent or Engineer, and One Clerk | | | | Over \$25,000,000 - up to \$50,000,000 | One Project Manager, One Project Superintendent, One Engineer, and One Clerk | | | | Over \$50,000,000 | One Project Manager,
Two Project Superintendents,
One Engineer, and
One Clerk | | | - (2) Home Office and Unabsorbed Overhead. Payment for home office and unabsorbed overhead will be calculated as 8 percent of the total delay cost. - (c) Extended Traffic Control. Traffic control required for an extended period of time due to the delay will be paid for according to Article 109.04. When an extended traffic control adjustment is paid under this provision, an adjusted unit price as provided for in Article 701.20(a) for increase or decrease in the value of work by more than ten percent will not be paid. Upon payment for a contract delay under this provision, the Contractor shall assign subrogation rights to the Department for the Department's efforts of recovery from any other party for monies paid by the Department as a result of any claim under this provision. The Contractor shall fully cooperate with the Department in its efforts to recover from another party any money paid to the Contractor for delay damages under this provision." ## **CONSTRUCTION AIR QUALITY - DIESEL RETROFIT (BDE)** Effective: June 1, 2010 Revised: November 1, 2014 The reduction of emissions of particulate matter (PM) for off-road equipment shall be accomplished by installing retrofit emission control devices. The term "equipment" refers to diesel fuel powered devices rated at 50 hp and above, to be used on the jobsite in excess of seven calendar days over the course of the construction period on the jobsite (including rental equipment). Contractor and subcontractor diesel powered off-road equipment assigned to the contract shall be retrofitted using the phased in approach shown below. Equipment that is of a model year older than the year given for that equipment's respective horsepower range shall be retrofitted: | Effective Dates | Horsepower Range | Model Year | |----------------------------|------------------|------------| | | | | | June 1, 2010 ^{1/} | 600-749 | 2002 | | | 750 and up | 2006 | | | | | | June 1, 2011 ^{2/} | 100-299 | 2003 | | | 300-599 | 2001 | | | 600-749 | 2002 | | | 750 and up | 2006 | | | | | | June 1, 2012 ^{2/} | 50-99 | 2004 | | | 100-299 | 2003 | | | 300-599 | 2001 | | | 600-749 | 2002 | | | 750 and up | 2006 | - 1/ Effective dates apply to Contractor diesel powered off-road equipment assigned to the contract. - 2/ Effective dates apply to Contractor and subcontractor diesel powered off-road equipment assigned to the contract. The retrofit emission control devices shall achieve a minimum PM emission reduction of 50 percent and shall be: - a) Included on the U.S. Environmental Protection Agency (USEPA) *Verified Retrofit Technology List* (http://www.epa.gov/cleandiesel/verification/verif-list.htm), or verified by the California Air Resources Board (CARB) (http://www.arb.ca.gov/diesel/verdev/vt/cvt.htm); or - b) Retrofitted with a non-verified diesel retrofit emission control device if verified retrofit emission control devices are not available for equipment proposed to be used on the project, and if the Contractor has obtained a performance certification from the retrofit device manufacturer that the emission control device provides a minimum PM emission reduction of 50 percent. Note: Large cranes (Crawler mounted cranes) which are responsible for critical lift operations are exempt from installing retrofit emission control devices if such devices adversely affect equipment operation. Diesel powered off-road equipment with engine ratings of 50 hp and above, which are unable to be retrofitted with verified emission control devices or if performance certifications are not available which will achieve a minimum 50 percent PM reduction, may be granted a waiver by the Department if documentation is provided showing good faith efforts were made by the Contractor to retrofit the equipment. Construction shall not proceed until the Contractor submits a certified list of the diesel powered off-road equipment that will be used, and as necessary, retrofitted with emission control devices. The list(s) shall include (1) the equipment number, type, make, Contractor/rental company name; and (2) the emission control devices make, model, USEPA or CARB verification number, or performance certification from the retrofit device manufacturer. Equipment reported as fitted with emissions control devices shall be made available to the Engineer for visual inspection of the device installation, prior to being used on the jobsite. The Contractor shall submit an updated list of retrofitted off-road construction equipment as retrofitted equipment changes or comes on to the jobsite. The addition or deletion of any diesel powered equipment shall be included on the updated list. If any diesel powered off-road equipment is found to be in non-compliance with any portion of this special provision, the Engineer will issue the Contractor a diesel retrofit deficiency deduction. Any costs associated with retrofitting any diesel powered off-road equipment with emission control devices shall be considered as included in the contract unit prices bid for the various items of work involved and no additional compensation will be allowed. The Contractor's compliance with this notice and any associated regulations shall not be grounds for a claim. # **Diesel Retrofit Deficiency Deduction** When the Engineer determines that a diesel retrofit deficiency exists, a daily monetary deduction will be imposed for each calendar day or fraction thereof the deficiency continues to exist. The calendar day(s) will begin when the time period for correction is exceeded and end with the Engineer's written acceptance of the correction. The daily monetary deduction will be \$1,000.00 for each deficiency identified. The deficiency will be based on lack of diesel retrofit emissions control. If a Contractor accumulates three diesel retrofit deficiency deductions for the same piece of equipment in a contract period, the Contractor will be shutdown until the deficiency is corrected. Such a shutdown will not be grounds for any extension of the contract time, waiver of penalties, or be grounds for any claim. ### **DISADVANTAGED BUSINESS ENTERPRISE PARTICIPATION (BDE)** Effective: September 1, 2000 Revised: March 2, 2019 <u>FEDERAL OBLIGATION</u>. The Department of Transportation, as a recipient of federal financial assistance, is required to take all necessary and reasonable steps to ensure nondiscrimination in the award and administration of contracts. Consequently, the federal regulatory provisions of 49 CFR Part 26 apply to this contract concerning the utilization of disadvantaged business enterprises. For the purposes of this Special Provision, a disadvantaged business enterprise (DBE) means a business certified by the Department in accordance with the requirements of 49 CFR Part 26 and listed in the Illinois Unified Certification Program (IL UCP) DBE Directory. STATE OBLIGATION. This Special Provision will also be used by the Department to satisfy the requirements of the Business Enterprise for Minorities, Females, and Persons with Disabilities Act, 30 ILCS 575. When this Special Provision is used to satisfy state law requirements on 100 percent state-funded contracts, the federal government has no involvement in such contracts (not a federal-aid contract) and no responsibility to oversee the implementation of this Special Provision by the Department on those contracts. DBE participation on 100 percent state-funded contracts will not be credited toward fulfilling the Department's annual overall DBE goal required by the US Department of Transportation to comply with the federal DBE program requirements. <u>CONTRACTOR ASSURANCE</u>. The Contractor makes the following assurance and agrees to include the assurance in each subcontract the Contractor signs with a subcontractor. The Contractor, subrecipient, or subcontractor shall not discriminate on the basis of race, color, national origin, or sex in the performance of this contract. The Contractor shall carry out applicable requirements of 49 CFR Part 26 in the award and administration of contracts funded in whole or in part with federal or state funds. Failure by the Contractor to carry out these requirements is a material breach of this contract, which may result in the termination of this contract or such other remedy as the recipient
deems appropriate, which may include, but is not limited to: - (a) Withholding progress payments; - (b) Assessing sanctions: - (c) Liquidated damages; and/or - (d) Disqualifying the Contractor from future bidding as non-responsible. OVERALL GOAL SET FOR THE DEPARTMENT. As a requirement of compliance with 49 CFR Part 26, the Department has set an overall goal for DBE participation in its federally assisted contracts. That goal applies to all federal-aid funds the Department will expend in its federally assisted contracts for the subject reporting fiscal year. The Department is required to make a good faith effort to achieve the overall goal. The dollar amount paid to all approved DBE companies performing work called for in this contract is eligible to be credited toward fulfillment of the Department's overall goal. CONTRACT GOAL TO BE ACHIEVED BY THE CONTRACTOR. This contract includes a specific DBE utilization goal established by the Department. The goal has been included because the Department has determined the work of this contract has subcontracting opportunities that may be suitable for performance by DBE companies. The determination is based on an assessment of the type of work, the location of the work, and the availability of DBE companies to do a part of the work. The assessment indicates, in the absence of unlawful discrimination and in an arena of fair and open competition, DBE companies can be expected to perform 7.00% of the work. This percentage is set as the DBE participation goal for this contract. Consequently, in addition to the other award criteria established for this contract, the Department will only award this contract to a bidder who makes a good faith effort to meet this goal of DBE participation in the performance of the work. A bidder makes a good faith effort for award consideration if either of the following is done in accordance with the procedures set for in this Special Provision: - (a) The bidder documents enough DBE participation has been obtained to meet the goal or, - (b) The bidder documents a good faith effort has been made to meet the goal, even though the effort did not succeed in obtaining enough DBE participation to meet the goal. <u>DBE LOCATOR REFERENCES</u>. Bidders shall consult the IL UCP DBE Directory as a reference source for DBE-certified companies. In addition, the Department maintains a letting and item specific DBE locator information system whereby DBE companies can register their interest in providing quotes on particular bid items advertised for letting. Information concerning DBE companies willing to quote work for particular contracts may be obtained by contacting the Department's Bureau of Small Business Enterprises at telephone number (217) 785-4611, or by visiting the Department's website at: http://www.idot.illinois.gov/doing-business/certifications/disadvantaged-business-enterprise-certification/il-ucp-directory/index. <u>BIDDING PROCEDURES</u>. Compliance with this Special Provision is a material bidding requirement and failure of the bidder to comply will render the bid not responsive. The bidder shall submit a DBE Utilization Plan (form SBE 2026), and a DBE Participation Statement (form SBE 2025) for each DBE company proposed for the performance of work to achieve the contract goal, with the bid. If the Utilization Plan indicates the contract goal will not be met, documentation of good faith efforts shall also be submitted. The documentation of good faith efforts must include copies of each DBE and non-DBE subcontractor quote submitted to the bidder when a non-DBE subcontractor is selected over a DBE for work on the contract. The required forms and documentation must be submitted as a single .pdf file using the "Integrated Contractor Exchange (iCX)" application within the Department's "EBids System". The Department will not accept a Utilization Plan if it does not meet the bidding procedures set forth herein and the bid will be declared not responsive. In the event the bid is declared not responsive, the Department may elect to cause the forfeiture of the penal sum of the bidder's proposal guaranty and may deny authorization to bid the project if re-advertised for bids. GOOD FAITH EFFORT PROCEDURES. The contract will not be awarded until the Utilization Plan is approved. All information submitted by the bidder must be complete, accurate and adequately document enough DBE participation has been obtained or document the good faith efforts of the bidder, in the event enough DBE participation has not been obtained, before the Department will commit to the performance of the contract by the bidder. The Utilization Plan will be approved by the Department if the Utilization Plan documents sufficient commercially useful DBE work to meet the contract goal or the bidder submits sufficient documentation of a good faith effort to meet the contract goal pursuant to 49 CFR Part 26, Appendix A. This means the bidder must show that all necessary and reasonable steps were taken to achieve the contract goal. Necessary and reasonable steps are those which, by their scope, intensity and appropriateness to the objective, could reasonably be expected to obtain sufficient DBE participation, even if they were not successful. The Department will consider the quality, quantity, and intensity of the kinds of efforts the bidder has made. Mere pro forma efforts, in other words efforts done as a matter of form, are not good faith efforts; rather, the bidder is expected to have taken genuine efforts that would be reasonably expected of a bidder actively and aggressively trying to obtain DBE participation sufficient to meet the contract goal. - (a) The following is a list of types of action that the Department will consider as part of the evaluation of the bidder's good faith efforts to obtain participation. These listed factors are not intended to be a mandatory checklist and are not intended to be exhaustive. Other factors or efforts brought to the attention of the Department may be relevant in appropriate cases and will be considered by the Department. - (1) Soliciting through all reasonable and available means (e.g. attendance at pre-bid meetings, advertising and/or written notices) the interest of all certified DBE companies that have the capability to perform the work of the contract. The bidder must solicit this interest within sufficient time to allow the DBE companies to respond to the solicitation. The bidder must determine with certainty if the DBE companies are interested by taking appropriate steps to follow up initial solicitations. - (2) Selecting portions of the work to be performed by DBE companies in order to increase the likelihood that the DBE goals will be achieved. This includes, where appropriate, breaking out contract work items into economically feasible units to facilitate DBE participation, even when the Contractor might otherwise prefer to perform these work items with its own forces. - (3) Providing interested DBE companies with adequate information about the plans, specifications, and requirements of the contract in a timely manner to assist them in responding to a solicitation. - (4) a. Negotiating in good faith with interested DBE companies. It is the bidder's responsibility to make a portion of the work available to DBE subcontractors and suppliers and to select those portions of the work or material needs consistent with the available DBE subcontractors and suppliers, so as to facilitate DBE participation. Evidence of such negotiation includes the names, addresses, and telephone numbers of DBE companies that were considered; a description of the information provided regarding the plans and specifications for the work selected for subcontracting; and evidence as to why additional agreements could not be reached for DBE companies to perform the work. - b. A bidder using good business judgment would consider a number of factors in negotiating with subcontractors, including DBE subcontractors, and would take a firm's price and capabilities as well as contract goals into consideration. However, the fact that there may be some additional costs involved in finding and using DBE companies is not in itself sufficient reason for a bidder's failure to meet the contract DBE goal, as long as such costs are reasonable. Also the ability or desire of a bidder to perform the work of a contract with its own organization does not relieve the bidder of the responsibility to make good faith efforts. Bidders are not, however, required to accept higher quotes from DBE companies if the price difference is excessive or unreasonable. In accordance with the above Bidding Procedures, the documentation of good faith efforts must include copies of each DBE and non-DBE subcontractor quote submitted to the bidder when a non-DBE subcontractor was selected over a DBE for work on the contract. - (5) Not rejecting DBE companies as being unqualified without sound reasons based on a thorough investigation of their capabilities. The bidder's standing within its industry, membership in specific groups, organizations, or associations and political or social affiliations (for example union vs. non-union employee status) are not legitimate causes for the rejection or non-solicitation of bids in the bidder's efforts to meet the project goal. - (6) Making efforts to assist interested DBE companies in obtaining bonding, lines of credit, or insurance as required by the recipient or Contractor. - (7) Making efforts to assist interested DBE companies in obtaining necessary equipment, supplies, materials, or related assistance or services. - (8) Effectively using the services of available minority/women community organizations; minority/women contractors' groups; local, state, and federal minority/women business assistance offices; and other organizations as allowed on a case-by-case basis to provide assistance in the recruitment and placement of DBE companies. - (b) If the Department
determines the bidder has made a good faith effort to secure the work commitment of DBE companies to meet the contract goal, the Department will award the contract provided it is otherwise eligible for award. If the Department determines the bidder has failed to meet the requirements of this Special Provision or that a good faith effort has not been made, the Department will notify the responsible company official designated in the Utilization Plan that the bid is not responsive. The notification will also include a statement of reasons for the adverse determination. If the Utilization Plan is not approved because it is deficient as a technical matter, unless waived by the Department, the bidder will be notified and will be allowed no more than a five calendar day period to cure the deficiency. - (c) The bidder may request administrative reconsideration of an adverse determination by emailing the Department at "DOT.DBE.UP@illinois.gov" within the five calendar days after the receipt of the notification of the determination. The determination shall become final if a request is not made on or before the fifth calendar day. A request may provide additional written documentation or argument concerning the issues raised in the determination statement of reasons, provided the documentation and arguments address efforts made prior to submitting the bid. The request will be reviewed by the Department's Reconsideration Officer. The Reconsideration Officer will extend an opportunity to the bidder to meet in person to consider all issues of documentation and whether the bidder made a good faith effort to meet the goal. After the review by the Reconsideration Officer, the bidder will be sent a written decision within ten working days after receipt of the request for reconsideration, explaining the basis for finding that the bidder did or did not meet the goal or make adequate good faith efforts to do so. A final decision by the Reconsideration Officer that a good faith effort was made shall approve the Utilization Plan submitted by the bidder and shall clear the contract for award. A final decision that a good faith effort was not made shall render the bid not responsive. <u>CALCULATING DBE PARTICIPATION</u>. The Utilization Plan values represent work anticipated to be performed and paid for upon satisfactory completion. The Department is only able to count toward the achievement of the overall goal and the contract goal the value of payments made for the work actually performed by DBE companies. In addition, a DBE must perform a commercially useful function on the contract to be counted. A commercially useful function is generally performed when the DBE is responsible for the work and is carrying out its responsibilities by actually performing, managing, and supervising the work involved. The Department and Contractor are governed by the provisions of 49 CFR Part 26.55(c) on questions of commercially useful functions as it affects the work. Specific counting guidelines are provided in 49 CFR Part 26.55, the provisions of which govern over the summary contained herein. - (a) DBE as the Contractor: 100 percent goal credit for that portion of the work performed by the DBE's own forces, including the cost of materials and supplies. Work that a DBE subcontracts to a non-DBE does not count toward the DBE goals. - (b) DBE as a joint venture Contractor: 100 percent goal credit for that portion of the total dollar value of the contract equal to the distinct, clearly defined portion of the work performed by the DBE's own forces. - (c) DBE as a subcontractor: 100 percent goal credit for the work of the subcontract performed by the DBE's own forces, including the cost of materials and supplies, excluding the purchase of materials and supplies or the lease of equipment by the DBE subcontractor from the Contractor or its affiliates. Work that a DBE subcontractor in turn subcontracts to a non-DBE does not count toward the DBE goal. - (d) DBE as a trucker: 100 percent goal credit for trucking participation provided the DBE is responsible for the management and supervision of the entire trucking operation for which it is responsible. At least one truck owned, operated, licensed, and insured by the DBE must be used on the contract. Credit will be given for the following: - (1) The DBE may lease trucks from another DBE firm, including an owner-operator who is certified as a DBE. The DBE who leases trucks from another DBE receives credit for the total value of the transportation services the lessee DBE provides on the contract. - (2) The DBE may also lease trucks from a non-DBE firm, including from an owneroperator. The DBE who leases trucks from a non-DBE is entitled to credit only for the fee or commission is receives as a result of the lease arrangement. - (e) DBE as a material supplier: - (1) 60 percent goal credit for the cost of the materials or supplies purchased from a DBE regular dealer. - (2) 100 percent goal credit for the cost of materials of supplies obtained from a DBE manufacturer. - (3) 100 percent credit for the value of reasonable fees and commissions for the procurement of materials and supplies if not a DBE regular dealer or DBE manufacturer. CONTRACT COMPLIANCE. Compliance with this Special Provision is an essential part of the contract. The Department is prohibited by federal regulations from crediting the participation of a DBE included in the Utilization Plan toward either the contract goal or the Department's overall goal until the amount to be applied toward the goals has been paid to the DBE. The following administrative procedures and remedies govern the compliance by the Contractor with the contractual obligations established by the Utilization Plan. After approval of the Utilization Plan and award of the contract, the Utilization Plan and individual DBE Participation Statements become part of the contract. If the Contractor did not succeed in obtaining enough DBE participation to achieve the advertised contract goal, and the Utilization Plan was approved and contract awarded based upon a determination of good faith, the total dollar value of DBE work calculated in the approved Utilization Plan as a percentage of the awarded contract value shall become the amended contract goal. All work indicated for performance by an approved DBE shall be performed, managed, and supervised by the DBE executing the DBE Participation Commitment Statement. - (a) <u>NO AMENDMENT</u>. No amendment to the Utilization Plan may be made without prior written approval from the Department's Bureau of Small Business Enterprises. All requests for amendment to the Utilization Plan shall be emailed to the Department at <u>DOT.DBE.UP@illinois.gov</u>. - (b) <u>CHANGES TO WORK</u>. Any deviation from the DBE condition-of-award or contract plans, specifications, or special provisions must be approved, in writing, by the Department as provided elsewhere in the Contract. The Contractor shall notify affected DBEs in writing of any changes in the scope of work which result in a reduction in the dollar amount condition-of-award to the contract. Where the revision includes work committed to a new DBE subcontractor, not previously involved in the project, then a Request for Approval of Subcontractor, Department form BC 260A or AER 260A, must be signed and submitted. If the commitment of work is in the form of additional tasks assigned to an existing subcontract, a new Request for Approval of Subcontractor will not be required. However, the Contractor must document efforts to assure the existing DBE subcontractor is capable of performing the additional work and has agreed in writing to the change. - (c) <u>SUBCONTRACT</u>. The Contractor must provide copies of DBE subcontracts to the Department upon request. Subcontractors shall ensure that all lower tier subcontracts or agreements with DBEs to supply labor or materials be performed in accordance with this Special Provision. - (d) <u>ALTERNATIVE WORK METHODS</u>. In addition to the above requirements for reductions in the condition of award, additional requirements apply to the two cases of Contractorinitiated work substitution proposals. Where the contract allows alternate work methods which serve to delete or create underruns in condition of award DBE work, and the Contractor selects that alternate method or, where the Contractor proposes a substitute work method or material that serves to diminish or delete work committed to a DBE and replace it with other work, then the Contractor must demonstrate one of the following: - (1) The replacement work will be performed by the same DBE (as long as the DBE is certified in the respective item of work) in a modification of the condition of award; or - (2) The DBE is aware its work will be deleted or will experience underruns and has agreed in writing to the change. If this occurs, the Contractor shall substitute other work of equivalent value to a certified DBE or provide documentation of good faith efforts to do so; or - (3) The DBE is not capable of performing the replacement work or has declined to perform the work at a reasonable competitive price. If this occurs, the Contractor shall substitute other work of equivalent value to a certified DBE or provide documentation of good faith efforts to do so. (e) <u>TERMINATION AND REPLACEMENT PROCEDURES</u>. The Contractor shall not terminate or replace a DBE listed on the approved Utilization Plan, or perform with other forces work designated for a listed DBE except as provided in this Special Provision. The Contractor shall utilize the specific DBEs listed to perform the work and supply the materials for which each is listed unless the Contractor obtains the Department's written consent as provided in subsection (a) of this part. Unless Department consent is provided for termination of a DBE subcontractor, the Contractor shall not be entitled to any payment for work or material unless it is performed or
supplied by the DBE in the Utilization Plan. As stated above, the Contractor shall not terminate or replace a DBE subcontractor listed in the approved Utilization Plan without prior written consent. This includes, but is not limited to, instances in which the Contractor seeks to perform work originally designated for a DBE subcontractor with its own forces or those of an affiliate, a non-DBE firm, or with another DBE firm. Written consent will be granted only if the Bureau of Small Business Enterprises agrees, for reasons stated in its concurrence document, that the Contractor has good cause to terminate or replace the DBE firm. Before transmitting to the Bureau of Small Business Enterprises any request to terminate and/or substitute a DBE subcontractor, the Contractor shall give notice in writing to the DBE subcontractor, with a copy to the Bureau, of its intent to request to terminate and/or substitute, and the reason for the request. The Contractor shall give the DBE five days to respond to the Contractor's notice. The DBE so notified shall advise the Bureau and the Contractor of the reasons, if any, why it objects to the proposed termination of its subcontract and why the Bureau should not approve the Contractor's action. If required in a particular case as a matter of public necessity, the Bureau may provide a response period shorter than five days. For purposes of this paragraph, good cause includes the following circumstances: - (1) The listed DBE subcontractor fails or refuses to execute a written contract; - (2) The listed DBE subcontractor fails or refuses to perform the work of its subcontract in a way consistent with normal industry standards. Provided, however, that good cause does not exist if the failure or refusal of the DBE subcontractor to perform its work on the subcontract results from the bad faith or discriminatory action of the Contractor; - (3) The listed DBE subcontractor fails or refuses to meet the Contractor's reasonable, nondiscriminatory bond requirements; - (4) The listed DBE subcontractor becomes bankrupt, insolvent, or exhibits credit unworthiness; - (5) The listed DBE subcontractor is ineligible to work on public works projects because of suspension and debarment proceedings pursuant 2 CFR Parts 180, 215 and 1200 or applicable state law. - (6) The Contractor has determined the listed DBE subcontractor is not a responsible contractor; - (7) The listed DBE subcontractor voluntarily withdraws from the projects and provides written notice to the Contractor of its withdrawal; - (8) The listed DBE is ineligible to receive DBE credit for the type of work required; - (9) A DBE owner dies or becomes disabled with the result that the listed DBE subcontractor is unable to complete its work on the contract; - (10) Other documented good cause that compels the termination of the DBE subcontractor. Provided, that good cause does not exist if the Contractor seeks to terminate a DBE it relied upon to obtain the contract so that the Contractor can self-perform the work for which the DBE contractor was engaged or so that the Contractor can substitute another DBE or non-DBE contractor after contract award. When a DBE is terminated or fails to complete its work on the Contract for any reason, the Contractor shall make a good faith effort to find another DBE to substitute for the original DBE to perform at least the same amount of work under the contract as the terminated DBE to the extent needed to meet the established Contract goal. The good faith efforts shall be documented by the Contractor. If the Department requests documentation under this provision, the Contractor shall submit the documentation within seven days, which may be extended for an additional seven days if necessary at the request of the Contractor. The Department will provide a written determination to the Contractor stating whether or not good faith efforts have been demonstrated. - (f) FINAL PAYMENT. After the performance of the final item of work or delivery of material by a DBE and final payment therefore to the DBE by the Contractor, but not later than 30 calendar days after payment has been made by the Department to the Contractor for such work or material, the Contractor shall submit a DBE Payment Agreement on Department form SBE 2115 to the Resident Engineer. If full and final payment has not been made to the DBE, the DBE Payment Agreement shall indicate whether a disagreement as to the payment required exists between the Contractor and the DBE or if the Contractor believes the work has not been satisfactorily completed. If the Contractor does not have the full amount of work indicated in the Utilization Plan performed by the DBE companies indicated in the Utilization Plan and after good faith efforts are reviewed, the Department may deduct from contract payments to the Contractor the amount of the goal not achieved as liquidated and ascertained damages. The Contractor may request an administrative reconsideration of any amount deducted as damages pursuant to subsection (h) of this part. - (g) <u>ENFORCEMENT</u>. The Department reserves the right to withhold payment to the Contractor to enforce the provisions of this Special Provision. Final payment shall not be made on the contract until such time as the Contractor submits sufficient documentation demonstrating achievement of the goal in accordance with this Special Provision or after liquidated damages have been determined and collected. - (h) <u>RECONSIDERATION</u>. Notwithstanding any other provision of the contract, including but not limited to Article 109.09 of the Standard Specifications, the Contractor may request administrative reconsideration of a decision to deduct the amount of the goal not achieved as liquidated damages. A request to reconsider shall be delivered to the Contract Compliance Section and shall be handled and considered in the same manner as set forth in paragraph (c) of "Good Faith Effort Procedures" of this Special Provision, except a final decision that a good faith effort was not made during contract performance to achieve the goal agreed to in the Utilization Plan shall be the final administrative decision of the Department. The result of the reconsideration process is not administratively appealable to the U.S. Department of Transportation. # DISPOSAL FEES (BDE) Effective: November 1, 2018 Replace Articles 109.04(b)(5) - 109.04(b)(8) of the Standard Specifications with the following: - "(5) Disposal Fees. When the extra work performed includes paying for disposal fees at a clean construction and demolition debris facility, an uncontaminated soil fill operation or a landfill, the Contractor shall receive, as administrative costs, an amount equal to five percent of the first \$10,000 and one percent of any amount over \$10,000 of the total approved costs of such fees. - (6) Miscellaneous. No additional allowance will be made for general superintendence, the use of small tools, or other costs for which no specific allowance is herein provided. - (7) Statements. No payment will be made for work performed on a force account basis until the Contractor has furnished the Engineer with itemized statements of the cost of such force account work. Statements shall be accompanied and supported by invoices for all materials used and transportation charges. However, if materials used on the force account work are not specifically purchased for such work but are taken from the Contractor's stock, then in lieu of the invoices, the Contractor shall furnish an affidavit certifying that such materials were taken from his/her stock, that the quantity claimed was actually used, and that the price and transportation claimed represent the actual cost to the Contractor. Itemized statements at the cost of force account work shall be detailed as follows. - a. Name, classification, date, daily hours, total hours, rate, and extension for each laborer and foreman. Payrolls shall be submitted to substantiate actual wages paid if so requested by the Engineer. - b. Designation, dates, daily hours, total hours, rental rate, and extension for each unit of machinery and equipment. - c. Quantities of materials, prices and extensions. - d. Transportation of materials. - e. Cost of property damage, liability and workmen's compensation insurance premiums, unemployment insurance contributions, and social security tax. - (8) Work Performed by an Approved Subcontractor. When extra work is performed by an approved subcontractor, the Contractor shall receive, as administrative costs, an amount equal to five percent of the total approved costs of such work with the minimum payment being \$100. - (9) All statements of the cost of force account work shall be furnished to the Engineer not later than 60 days after receipt of the Central Bureau of Construction form "Extra Work Daily Report". If the statement is not received within the specified time frame, all demands for payment for the extra work are waived and the Department is released from any and all such demands. It is the responsibility of the Contractor to ensure that all statements are received within the specified time regardless of the manner or method of delivery." #### **EMULSIFIED ASPHALTS (BDE)** Effective: August 1, 2019 Revise Article 1032.06 of the Standard Specifications to read: "1032.06 Emulsified Asphalts. Emulsified asphalts will be accepted according to the current Bureau of Materials Policy Memorandum, "Emulsified Asphalt Acceptance Procedure". These materials shall be homogeneous and shall show no separation of asphalt after thorough mixing, within 30 days after delivery, provided separation has not been caused by freezing. They shall coat the aggregate being used in the work to the satisfaction of the Engineer and shall be according to the following requirements. - (a) Anionic Emulsified Asphalt. Anionic emulsified asphalts RS-1, RS-2, HFRS-2, SS-1h, and SS-1 shall be according to AASHTO M 140, except as
follows. - (1) The cement mixing test will be waived when the emulsion is being used as a tack coat. - (2) The Solubility in Trichloroethylene test according to AASHTO T 44 may be run in lieu of Ash Content and shall meet a minimum of 97.5 percent. - (b) Cationic Emulsified Asphalt. Cationic emulsified asphalts CRS-1, CRS-2, CSS-1h, and CSS-1 shall be according to AASHTO M 208, except as follows. - (1) The cement mixing test will be waived when the emulsion is being used as a tack coat. - (2) The Solubility in Trichloroethylene test according to AASHTO T 44 may be run in lieu of Ash Content and shall meet a minimum of 97.5 percent. (c) High Float Emulsion. High float emulsions HFE-90, HFE-150, and HFE-300 are medium setting and shall be according to the following table. | Test | HFE-90 | HFE-150 | HFE-300 | |---|-------------------------|-------------------|-------------------| | Viscosity, Saybolt Furol, at 122 °F (50 °C), (AASHTO T 59), SFS 1/ | 50 min. | 50 min. | 50 min. | | Sieve Test, No. 20 (850 µm), retained on sieve, (AASHTO T 59), % | 0.10 max. | 0.10 max. | 0.10 max. | | Storage Stability Test, 1 day, (AASHTO T 59), % | 1 max. | 1 max. | 1 max. | | Coating Test (All Grades),
(AASHTO T 59), 3 minutes | stone coated thoroughly | | | | Distillation Test, (AASHTO T 59): Residue from distillation test to | | | | | 500 °F (260 °C), %
Oil distillate by volume, % | 65 min.
7 max. | 65 min.
7 max. | 65 min.
7 max. | | Characteristics of residue from distillation test to 500 °F (260 °C): Penetration at 77 °F (25 °C), (AASHTO T 49), 100 g, | 7 max. | 7 max. | 7 max. | | 5 sec, dmm | 90-150 | 150-300 | 300 min. | | Float Test at 140 °F (60 °C), (AASHTO T 50), sec. | 1200 min. | 1200 min. | 1200 min. | ^{1/} The emulsion shall be pumpable. (d) Penetrating Emulsified Prime. Penetrating Emulsified Prime (PEP) shall be according to AASHTO T 59, except as follows. | Test | Result | |--|-----------| | Viscosity, Saybolt Furol, at 77 °F (25 °C), SFS | 75 max. | | Sieve test, retained on No. 20 (850 µm) sieve, % | 0.10 max. | | Distillation to 500 °F (260 °C) residue, % | 38 min. | | Oil distillate by volume, % | 4 max. | The PEP shall be tested according to the current Bureau of Materials Illinois Laboratory Test Procedure (ILTP), "Sand Penetration Test of Penetrating Emulsified Prime (PEP)". The time of penetration shall be equal to or less than that of MC-30. The depth of penetration shall be equal to or greater than that of MC-30. (e) Delete this subparagraph. - (f) Polymer Modified Emulsified Asphalt. Polymer modified emulsified asphalts, e.g. SS-1hP, CSS-1hP, CRS-2P (formerly CRSP), CQS-1hP (formerly CSS-1h Latex Modified) and HFRS-2P (formerly HFP) shall be according to AASHTO M 316, except as follows. - (1) The cement mixing test will be waived when the polymer modified emulsion is being used as a tack coat. - (2) CQS-1hP (formerly CSS-1h Latex Modified) emulsion for micro-surfacing treatments shall use latex as the modifier. - (3) Upon examination of the storage stability test cylinder after standing undisturbed for 24 hours, the surface shall show minimal to no white, milky colored substance and shall be a homogenous brown color throughout. - (4) The distillation for all polymer modified emulsions shall be performed according to AASHTO T 59, except the temperature shall be 374 ± 9 °F (190 ± 5 °C) to be held for a period of 15 minutes and measured using an ASTM 16F (16C) thermometer. - (5) The specified temperature for the Elastic Recovery test for all polymer modified emulsions shall be 50.0 ± 1.0 °F (10.0 ± 0.5 °C). - (6) The Solubility in Trichloroethylene test according to AASHTO T 44 may be run in lieu of Ash Content and shall meet a minimum of 97.5 percent. - (g) Non-Tracking Emulsified Asphalt. Non-tracking emulsified asphalt NTEA (formerly SS-1vh) shall be according to the following. | Test | Requirement | | | |---|---------------|--|--| | Saybolt Viscosity at 77 °F (25 °C), | | | | | (AASHTO T 59), SFS | 20-100 | | | | Storage Stability Test, 24 hr, (AASHTO T 59), % | 1 max. | | | | Residue by Distillation, 500 ± 10 °F (260 ± 5 °C), or | | | | | Residue by Evaporation, 325 ± 5 °F (163 ± 3 °C), | | | | | (AASHTO T 59), % | 50 min. | | | | Sieve Test, No. 20 (850 μm), (AASHTO T 59), % | 0.3 max. | | | | Tests on Residue from Evaporation | | | | | Penetration at 77 °F (25 °C), 100 g, 5 sec, | | | | | (AASHTO T 49), dmm | 40 max. | | | | Softening Point, (AASHTO T 53), °F (°C) | 135 (57) min. | | | | Ash Content, (AASHTO T 111), % 1/ | 1 max. | | | 1/ The Solubility in Trichloroethylene test according to AASHTO T 44 may be run in lieu of Ash Content and shall meet a minimum of 97.5 percent The different grades are, in general, used for the following. | Grade | Use | |---|---| | SS-1, SS-1h, RS-1, RS-2, CSS-1, CRS-1, CRS-2, CSS-1h, HFE-90, SS-1hP, CSS-1hP, NTEA (formerly SS-1vh) | Tack Coat | | PEP | Prime Coat | | RS-2, HFE-90, HFE-150, HFE-300, CRS-2P (formerly CRSP), HFRS-2P (formerly HFP), CRS-2, HFRS-2 | Bituminous Surface Treatment | | CQS-1hP (formerly CSS-1h Latex Modified) | Micro-Surfacing
Slurry Sealing
Cape Seal" | # **ENGINEER'S FIELD OFFICE AND LABORATORY (BDE)** Effective: January 1, 2020 Revise the last sentence of the first paragraph of Article 670.01 of the Standard Specifications to read: "The building shall remain available for use until released by the Engineer." Revise the fifth and sixth paragraphs of Article 670.02 of the Standard Specifications to read: "Sanitary facilities shall include hot and cold potable running water, lavatory and toilet as an integral part of the office where available. A portable toilet, if necessary, shall be serviced once per week. Solid waste disposal consisting of two waste baskets and an outside trash container of sufficient size to accommodate a weekly provided pick-up service. In addition, the following furniture and equipment meeting the approval of the Engineer shall be furnished." Revise Article 670.02(b) through 670.02(r) of the Standard Specifications to read: - "(b) One desk with minimum working surface of 48 x 72 in. (1.2 x 1.8 m). - (c) Two free standing four drawer legal size file cabinets with lock and an underwriters' laboratories insulated file device 350 degrees one hour rating. - (d) Table(s) and chairs capable of seating 10 people. - (e) One equipment cabinet of minimum inside dimension of 44 in. (1100 mm) high x 24 in. (600 mm) wide x 30 in. (750 mm) deep with lock. The walls shall be of steel with a 3/32 in. (2 mm) minimum thickness with concealed hinges and enclosed lock constructed in such a manner as to prevent entry by force. The cabinet assembly shall be permanently attached to a structural element of the field office in a manner to prevent theft of the entire cabinet. - (f) One refrigerator with a minimum size of 14 cu ft (0.40 cu m) with a freezer unit. - (g) One electric desk type tape printing calculator. - (h) A minimum of two communication paths. The configuration shall include: - (1) Internet Connection. An internet service connection with a wireless router capable of providing service to a minimum of five devices. The internet service shall be for unlimited data with a minimum internet data download speed of 25 megabits per second. For areas where this minimum download speed is not available, the maximum speed available for the area shall be provided. - (2) Telephone Line. One landline touch tone telephone with voicemail or answering machine. The telephone shall have an unpublished number. - (i) One plain paper wireless color printer capable of reproducing prints up to 11 x 17 in. (280 x 432 mm) with an automatic feed tray. Separate paper trays for letter size and 11 x 17 in. (280 x 432 mm) paper shall be provided. The wireless printer shall also be equipped to copy in color and scan documents. - (j) One electric water cooler dispenser. - (k) One first-aid cabinet fully equipped. - (I) One microwave oven (minimum 700 watt) with a turntable and 1 cu ft (0.03 cu m) minimum capacity. - (m) One fire-proof safe, 0.5 cu ft (0.01 cu m) minimum capacity. - (n) One electric paper shredder. - (o) One post mounted rain gauge, located on the project site for each 5 miles (8 km) of project length." Revise the last sentence of the first paragraph of Articles 670.04 and 670.05 of the Standard Specifications to read: "Doors and windows shall be equipped with locks." Revise Article 670.04(c) through 670.04(n) of the Standard Specifications to read: - "(c) Two folding chairs. - (d) One equipment cabinet of minimum inside dimension of 44 in. (1100 mm) high x 24 in. (600 mm) wide x 30 in. (750 mm) deep with lock. The walls shall be of steel with a 3/32 in. (2 mm) minimum thickness with concealed hinges and enclosed lock constructed to prevent entry by force. The cabinet assembly shall be permanently attached to a structural element of the field office to prevent theft of the entire cabinet. - (e) A minimum of two communication paths. The configuration shall include: - (1) Internet Connection. An internet service connection with a wireless router capable of providing service to a minimum of five devices. The internet service shall be for unlimited data with a minimum internet download speed of 25 megabits per second. For areas where this minimum download speed is not available, the maximum speed available for the area shall be provided. - (2) Telephone Line. One land line touch tone telephone with voicemail or answering machine. The telephone shall have an unpublished number. - (f) One electric desk type tape printing calculator. - (g) One
first-aid cabinet fully equipped. - (h) One plain paper wireless color printer capable of reproducing prints up to 11 x 17 in. (280 x 432 mm) with an automatic feed tray. Separate paper trays for letter size and 11 x 17 in. (280 x 432 mm) paper shall be provided. The wireless printer shall also be equipped to copy in color and scan documents. - (i) A portable toilet meeting Federal, State, and local health department requirements shall be provided, maintained clean and in good working condition, and shall be stocked with lavatory and sanitary supplies at all times. The portable toilet shall be serviced once per week. - (j) One electric water cooler dispenser. - (k) One refrigerator with a minimum size of 14 cu ft (0.45 cu m) with a freezer unit. - (I) One microwave oven (minimum 700 watt) with a turntable and 1 cu ft (0.03 cu m) minimum capacity." Revise Article 670.05(f) of the Standard Specifications to read: "(f) One landline touch tone telephone with voicemail or an answering machine. The telephone shall have an unpublished number." Delete the last sentence of the second paragraph of Article 670.06 of the Standard Specifications. Revise the fifth sentence of the first paragraph of Article 670.07 of the Supplemental Specifications to read: "This price shall include all utility costs and shall reflect the salvage value of the building or buildings, equipment, and furniture which remain the property of the Contractor after release by the Engineer, except the Department will pay that portion of the monthly long distance and monthly local telephone, when combined, exceed \$250." #### **EQUIPMENT PARKING AND STORAGE (BDE)** Effective: November 1, 2017 Replace the first paragraph of Article 701.11 of the Standard Specifications with the following. - "701.11 Equipment Parking and Storage. During working hours, all vehicles and/or nonoperating equipment which are parked, two hours or less, shall be parked at least 8 ft (2.5 m) from the open traffic lane. For other periods of time during working and for all nonworking hours, all vehicles, materials, and equipment shall be parked or stored as follows. - (a) When the project has adequate right-of-way, vehicles, materials, and equipment shall be located a minimum of 30 ft (9 m) from the pavement. - (b) When adequate right-of-way does not exist, vehicles, materials, and equipment shall be located a minimum of 15 ft (4.5 m) from the edge of any pavement open to traffic. - (c) Behind temporary concrete barrier, vehicles, materials, and equipment shall be located a minimum of 24 in. (600 mm) behind free standing barrier or a minimum of 6 in. (150 mm) behind barrier that is either pinned or restrained according to Article 704.04. The 24 in. or 6 in. measurement shall be from the base of the non-traffic side of the barrier. - (d) Behind other man-made or natural barriers meeting the approval of the Engineer." # PAVEMENT MARKING REMOVAL (BDE) Effective: July 1, 2016 Revise Article 783.02 of the Standard Specifications to read: "783.02 Equipment. Equipment shall be according to the following. Item Article/Section - (a) Grinders (Note 1) - (b) Water Blaster with Vacuum Recovery1101.12 Note 1. Grinding equipment shall be approved by the Engineer." Revise the first paragraph of Article 783.03 of the Standard Specifications to read: "783.03 Removal of Conflicting Markings. Existing pavement markings that conflict with revised traffic patterns shall be removed. If darkness or inclement weather prohibits the removal operations, such operations shall be resumed the next morning or when weather permits. In the event of removal equipment failure, such equipment shall be repaired, replaced, or leased so removal operations can be resumed within 24 hours." Revise the first and second sentences of the first paragraph of Article 783.03(a) of the Standard Specifications to read: "The existing pavement markings shall be removed by the method specified and in a manner that does not materially damage the surface or texture of the pavement or surfacing. Small particles of tightly adhering existing markings may remain in place, if in the opinion of the Engineer, complete removal of the small particles will result in pavement surface damage." Revise the first paragraph of Article 783.04 of the Standard Specifications to read: "**783.04 Cleaning.** The roadway surface shall be cleaned of debris or any other deleterious material by the use of compressed air or water blast." Revise the first paragraph of Article 783.06 of the Standard Specifications to read: "783.06 Basis of Payment. This work will be paid for at the contract unit price per each for RAISED REFLECTIVE PAVEMENT MARKER REMOVAL, or at the contract unit price per square foot (square meter) for PAVEMENT MARKING REMOVAL – GRINDING and/or PAVEMENT MARKING REMOVAL – WATER BLASTING." Delete Article 1101.13 from the Standard Specifications. # **PORTLAND CEMENT CONCRETE (BDE)** Effective: November 1, 2017 Revise the Air Content % of Class PP Concrete in Table 1 Classes of Concrete and Mix Design Criteria in Article 1020.04 of the Standard Specifications to read: | "TABLE 1. CLASSES OF CONCRETE AND
MIX DESIGN CRITERIA | | | | |--|--|---------------------|--| | Class
of
Conc. | Use | Air
Content
% | | | PP | Pavement Patching
Bridge Deck Patching (10) | | | | | PP-1
PP-2
PP-3
PP-4
PP-5 | 4.0 - 8.0" | | Revise Note (4) at the end of Table 1 Classes of Concrete and Mix Design Criteria in Article 1020.04 of the Standard Specifications to read: "(4) For all classes of concrete, the maximum slump may be increased to 7 in (175 mm) when a high range water-reducing admixture is used. For Class SC, the maximum slump may be increased to 8 in. (200 mm). For Class PS, the maximum slump may be increased to 8 1/2 in. (215 mm) if the high range water-reducing admixture is the polycarboxylate type." # PORTLAND CEMENT CONCRETE BRIDGE DECK CURING (BDE) Effective: April 1, 2015 Revised: November 1, 2019 Revise the following three entries and add the following footnote to the Index Table of Curing and Protection of Concrete Construction in Article 1020.13 of the Standard Specifications: | "INDEX TABLE OF CURING AND PROTECTION OF CONCRETE CONSTRUCTION | | | | |--|---------------------------------|--------------------------|--| | TYPE OF CONSTRUCTION | CURING
METHODS | CURING
PERIOD
DAYS | LOW AIR TEMPERATURE PROTECTION METHODS | | Superstructure (except deck) | 1020.13(a)(1)(2)(3)(5)(6) 8/19/ | 7 | 1020.13(d)(1)(2) | | Superstructure (Approach Slab) | 1020.13(a)(5)(6) 19/ | 3 | 1020.13(d)(1)(2) 17/ | | Deck | 1020.13(a)(5)(6) 19/ | 7 | 1020.13(d)(1)(2) 17/ | ^{19/} The cellulose polyethylene or synthetic fiber with polymer polyethylene blanket method shall not be used on latex modified concrete, or vertical concrete surfaces greater than 1 ft (300 mm), e.g. parapets." Add the following to Article 1020.13(a) of the Standard Specifications. "(6)Cellulose Polyethylene Blanket Method and Synthetic Fiber with Polymer Polyethylene Blanket Method. After the surface of concrete has been textured or finished, it shall be covered immediately with a wetted cellulose polyethylene blanket or wetted synthetic fiber with polymer polyethylene blanket. The blankets shall be installed with the white perforated polyethylene side facing up. The blanket's fiber side shall be wetted immediately prior to placement or as the blanket is being placed, and the polyethylene side shall be thoroughly soaked with a gentle spray of water immediately after placement. For bridge decks, a foot bridge shall be used to place and wet the blankets. Adjoining blankets shall overlap a minimum of 8 in. (200 mm). Bubbles and wrinkles shall be removed with a broom, squeegee, or as recommended by the manufacturer. The blankets shall be maintained in a wetted condition until the concrete has hardened sufficiently to place soaker hoses without indentations to the concrete surface. The soaker hoses shall be placed on top of the blankets at a maximum 4 ft (1.2 m) spacing. The blankets shall be kept wet with a continuous supply of water for the remainder of the curing period. Other continuous wetting systems may be used if approved by the Engineer. For areas inaccessible to the blankets, curing shall be according to Article 1020.13(a)(3). " Revise the first paragraph of Article 1022.03 of the Standard Specifications to read: "1022.03 Waterproof Paper Blankets, White Polyethylene Sheeting, Burlap-Polyethylene Blankets, Cellulose Polyethylene Blankets, and Synthetic Fiber with Polymer Polyethylene Blankets. These materials shall be white and according to ASTM C 171. The cellulose polyethylene blanket shall consist of a perforated white polyethylene sheeting with cellulose fiber backing and shall be limited to single use only. The cellulose polyethylene blankets shall be delivered to the jobsite unused and in the manufacturer's unopened packaging until ready for installation. Each roll shall be clearly labeled on the product with product name, manufacturer, and manufacturer's certification of compliance with ASTMC 171. The synthetic fiber with polymer polyethylene blanket shall consist of a perforated white polyethylene sheeting with absorbent synthetic fibers and super absorbent polymer backing, and shall be limited to single use only. The synthetic fiber with polymer polyethylene blankets shall be delivered to the jobsite unused and in the manufacturer's unopened packaging until ready for installation. Each roll shall be clearly labeled on the product with product name, manufacturer, and manufacturer's certification of compliance with ASTM C 171." # PROGRESS PAYMENTS (BDE) Effective: November 2, 2013 Revise Article 109.07(a) of the Standard Specifications to read: "(a)
Progress Payments. At least once each month, the Engineer will make a written estimate of the quantity of work performed in accordance with the contract, and the value thereof at the contract unit prices. The amount of the estimate approved as due for payment will be vouchered by the Department and presented to the State Comptroller for payment. No amount less than \$1000.00 will be approved for payment other than the final payment. Progress payments may be reduced by liens filed pursuant to Section 23(c) of the Mechanics' Lien Act, 770 ILCS 60/23(c). If a Contractor or subcontractor has defaulted on a loan issued under the Department's Disadvantaged Business Revolving Loan Program (20 ILCS 2705/2705-610), progress payments may be reduced pursuant to the terms of that loan agreement. In such cases, the amount of the estimate related to the work performed by the Contractor or subcontractor, in default of the loan agreement, will be offset, in whole or in part, and vouchered by the Department to the Working Capital Revolving Fund or designated escrow account. Payment for the work shall be considered as issued and received by the Contractor or subcontractor on the date of the offset voucher. Further, the amount of the offset voucher shall be a credit against the Department's obligation to pay the Contractor, the Contractor's obligation to pay the subcontractor, and the Contractor's or subcontractor's total loan indebtedness to the Department. The offset shall continue until such time as the entire loan indebtedness is satisfied. The Department will notify the Contractor and Fund Control Agent in a timely manner of such offset. The Contractor or subcontractor shall not be entitled to additional payment in consideration of the offset. The failure to perform any requirement, obligation, or term of the contract by the Contractor shall be reason for withholding any progress payments until the Department determines that compliance has been achieved." # REMOVAL AND DISPOSAL OF REGULATED SUBSTANCES (BDE) Effective: January 1, 2019 Revised: January 1, 2020 Revise Section 669 of the Standard Specifications to read: #### "SECTION 669. REMOVAL AND DISPOSAL OF REGULATED SUBSTANCES **669.01 Description.** This work shall consist of the transportation and proper disposal of regulated substances. This work shall also consist of the removal, transportation, and proper disposal of underground storage tanks (UST), their contents and associated underground piping to the point where the piping is above the ground, including determining the content types and estimated quantities. **669.02 Equipment.** The Contractor shall notify the Engineer of the delivery of all excavation, storage, and transportation equipment to a work area location. The equipment shall comply with OSHA and American Petroleum Institute (API) guidelines and shall be furnished in a clean condition. Clean condition means the equipment does not contain any residual material classified as a non-special waste, non-hazardous special waste, or hazardous waste. Residual materials include, but are not limited to, petroleum products, chemical products, sludges, or any other material present in or on equipment. Before beginning any associated soil or groundwater management activity, the Contractor shall provide the Engineer with the opportunity to visually inspect and approve the equipment. If the equipment contains any contaminated residual material, decontamination shall be performed on the equipment as appropriate to the regulated substance and degree of contamination present according to OSHA and API guidelines. All cleaning fluids used shall be treated as the contaminant unless laboratory testing proves otherwise. **669.03 Pre-Construction Submittals and Qualifications.** Prior to beginning this work, or working in areas with regulated substances, the Contractor shall submit a "Regulated Substances Pre-Construction Plan (RSPCP)" to the Engineer for review and approval using form BDE 2730. The form shall be signed by an Illinois licensed Professional Engineer or Professional Geologist. As part of the RSPCP, the Contractor(s) or firm(s) performing the work shall meet the following qualifications. - (a) Regulated Substances Monitoring. Qualification for environmental observation and field screening of regulated substances work and environmental observation of UST removal shall require either pre-qualification in Hazardous Waste by the Department or demonstration of acceptable project experience in remediation and operations for contaminated sites in accordance with applicable Federal, State, or local regulatory requirements using BDE 2730. - Qualification for each individual performing regulated substances monitoring shall require a minimum of one-year of experience in similar activities as those required for the project. - (b) Underground Storage Tank Removal. Qualification for underground storage tank (UST) removal work shall require licensing and certification with the Office of the State Fire Marshall (OSFM) and possession of all permits required to perform the work. A copy of the permit shall be provided to the Engineer prior to tank removal. The qualified Contractor(s) or firm(s) shall also document it does not have any current or former ties with any of the properties contained within, adjoining, or potentially affecting the work. The Engineer will require up to 21 calendar days for review of the RSPCP. The review may involve rejection or revision and resubmittal; in which case, an additional 21 days will be required for each subsequent review. Work shall not commence until the RSPCP has been approved by the Engineer. After approval, the RSPCP shall be revised as necessary to reflect changed conditions in the field and documented using BDE 2730A "Regulated Substances Pre-Construction Plan (RSPCP) Addendum" and submitted to the Engineer for approval. #### **CONSTRUCTION REQUIREMENTS** - **669.04** Regulated Substances Monitoring. Regulated substances monitoring includes environmental observation and field screening during regulated substances management activities at the contract specific work areas. As part of the regulated substances monitoring, the monitoring personnel shall perform and document the applicable duties listed on form BDE 2732 "Regulated Substances Monitoring Daily Record (RSMDR)". - (a) Environmental Observation. Prior to beginning excavation, the Contractor shall mark the limits of the contract specific work areas. Once work begins, the monitoring personnel shall be present on-site continuously during the excavation and loading of material. - (b) Field Screening. Field screening shall be performed during the excavation and loading of material from the contract specific work areas, except for material classified according to Article 669.05(b)(1) or 669.05(c) where field screening is not required. Field screening shall be performed with either a photoionization detector (PID) (minimum 10.6eV lamp) or a flame ionization detector (FID), and other equipment as appropriate, to monitor for potential contaminants associated with regulated substances. The PID or FID shall be calibrated on-site, and background level readings taken and recorded daily, and as field and weather conditions change. Field screen readings on the PID or FID in excess of background levels indicates the potential presence of regulated substances requiring handling as a non-special waste, special waste, or hazardous waste. PID or FID readings may be used as the basis of increasing the limits of removal with the approval of the Engineer but shall in no case be used to decrease the limits. - **669.05 Regulated Substances Management and Disposal.** The management and disposal of soil and/or groundwater containing regulated substances shall be according to the following: - (a) Soil Analytical Results Exceed Most Stringent MAC. When the soil analytical results indicate detected levels exceed the most stringent maximum allowable concentration (MAC) for chemical constituents in soil established pursuant to Subpart F of 35 III. Adm. Code 1100.605, the soil shall be managed as follows: - (1) When analytical results indicate inorganic chemical constituents exceed the most stringent MAC, but still considered within area background levels by the Engineer, the excavated soil can be utilized within the right-of-way as embankment or fill, when suitable. If the soils cannot be utilized within the right-of-way, they shall be managed and disposed of at a landfill as a non-special waste. - (2) When analytical results indicate inorganic chemical constituents exceed the most stringent MAC but do not exceed the MAC for a Metropolitan Statistical Area (MSA) County identified in 35 III. Admin. Code 742 Appendix A. Table G, the excavated soil can be utilized within the right-of-way as embankment or fill, when suitable, or managed and disposed of at a clean construction and demolition debris (CCDD) facility or an uncontaminated soil fill operation (USFO) within an MSA County provided the pH of the soil is within the range of 6.25 9.0, inclusive. - (3) When analytical results indicate chemical constituents exceed the most stringent MAC but do not exceed the MAC for an MSA County excluding Chicago, or the MAC within the Chicago corporate limits, the excavated soil can be utilized within the right-of-way as embankment or fill, when suitable, or managed and disposed of off-site at a CCDD facility or an USFO within an MSA County excluding Chicago or within the Chicago corporate limits provided the pH of the soil is within the range of 6.25 9.0, inclusive. - (4) When analytical results indicate chemical constituents exceed the most stringent MAC but do not exceed the MAC for an MSA County excluding Chicago, the excavated soil can be utilized within the right-of-way as embankment or fill, when suitable, or managed and disposed of off-site at a CCDD facility or an USFO within an MSA County excluding Chicago provided
the pH of the soil is within the range of 6.25 9.0, inclusive. - (5) When the Engineer determines soil cannot be managed according to Articles 669.05(a)(1) through (a)(4) above and the materials do not contain special waste or hazardous waste, as determined by the Engineer, the soil shall be managed and disposed of at a landfill as a non-special waste. - (6) When analytical results indicate soil is hazardous by characteristic or listing pursuant to 35 III. Admin. Code 721, contains radiological constituents, or the Engineer otherwise determines the soil cannot be managed according to Articles 669.05(a)(1) through (a)(5) above, the soil shall be managed and disposed of off-site as a special waste or hazardous waste as applicable. - (b) Soil Analytical Results Do Not Exceed Most Stringent MAC. When the soil analytical results indicate that detected levels do not exceed the most stringent MAC, the excavated soil can be utilized within the right-of-way as embankment or fill, when suitable, or managed and disposed of off-site according to Article 202.03. However, the excavated soil cannot be taken to a CCDD facility or an USFO for any of the following reasons. - (1) The pH of the soil is less than 6.25 or greater than 9.0. - (2) The soil exhibited PID or FID readings in excess of background levels. - (c) Soil Analytical Results Exceed Most Stringent MAC but Do Not Exceed Tiered Approach to Corrective Action Objectives (TACO) Residential. When the soil analytical results indicate that detected levels exceed the most stringent MAC but do not exceed TACO Tier 1 Soil Remediation Objectives for Residential Properties pursuant to 35 III. Admin. Code 742 Appendix B Table A, the excavated soil can be utilized within the right-of-way as embankment or fill, when suitable, or managed and disposed of off-site according to Article 202.03. However, the excavated soil cannot be taken to a CCDD facility or an USFO. - (d) Groundwater. When groundwater analytical results indicate the detected levels are above Appendix B, Table E of 35 III. Admin. Code 742, the most stringent Tier 1 Groundwater Remediation Objectives for Groundwater Component of the Groundwater Ingestion Route for Class 1 groundwater, the groundwater shall be managed off-site as a special waste or hazardous waste as applicable. Special waste groundwater shall be containerized and trucked to an off-site treatment facility, or may be discharged to a sanitary sewer or combined sewer when permitted by the local sewer authority. Groundwater discharged to a sanitary sewer or combined sewer shall be pre-treated to remove particulates and measured with a calibrated flow meter to comply with applicable discharge limits. A copy of the permit shall be provided to the Engineer prior to discharging groundwater to the sanitary sewer or combined sewer. Groundwater encountered within trenches may be managed within the trench and allowed to infiltrate back into the ground. If the groundwater cannot be managed within the trench, it may be discharged to a sanitary sewer or combined sewer when permitted by the local sewer authority, or it shall be containerized and trucked to an off-site treatment facility as a special waste or hazardous waste. The Contractor is prohibited from discharging groundwater within the trench through a storm sewer. The Contractor shall install backfill plugs within the area of groundwater contamination. One backfill plug shall be placed down gradient to the area of groundwater contamination. Backfill plugs shall be installed at intervals not to exceed 50 ft (15 m). Backfill plugs are to be 4 ft (1.2 m) long, measured parallel to the trench, full trench width and depth. Backfill plugs shall not have any fine aggregate bedding or backfill, but shall be entirely cohesive soil or any class of concrete. The Contractor shall provide test data that the material has a permeability of less than 10-7 cm/sec according to ASTM D 5084, Method A or per another test method approved by the Engineer. The Contractor shall use due care when transferring contaminated material from the area of origin to the transporter. Should releases of contaminated material to the environment occur (i.e., spillage onto the ground, etc.), the Contractor shall clean-up spilled material and place in the appropriate storage containers as previously specified. Clean-up shall include, but not be limited to, sampling beneath the material staging area to determine complete removal of the spilled material. The Contractor shall provide engineered barriers, when required, and shall include materials sufficient to completely line excavation surfaces, including sloped surfaces, bottoms, and sidewall faces, within the areas designated for protection. The Contractor shall obtain all documentation including any permits and/or licenses required to transport the material containing regulated substances to the disposal facility. The Contractor shall coordinate with the Engineer on the completion of all documentation. The Contractor shall make all arrangements for collection and analysis of landfill acceptance testing. The Contractor shall coordinate waste disposal approvals with the disposal facility. The Contractor shall provide the Engineer with all transport-related documentation within two days of transport or receipt of said document(s). For management of special or hazardous waste, the Contractor shall provide the Engineer with documentation that the Contractor is operating with a valid Illinois special waste transporter permit at least two weeks before transporting the first load of contaminated material. Transportation and disposal of material classified according to Article 669.05(a)(5) or 669.05(a)(6) shall be completed each day so that none of the material remains on-site by the close of business, except when temporary staging has been approved. Any waste generated as a special or hazardous waste from a non-fixed facility shall be manifested off-site using the Department's county generator number provided by the Bureau of Design and Environment. An authorized representative of the Department shall sign all manifests for the disposal of the contaminated material and confirm the Contractor's transported volume. Any waste generated as a non-special waste may be managed off-site without a manifest, a special waste transporter, or a generator number. The Contractor shall select a landfill permitted for disposal of the contaminant within the State of Illinois. The Department will review and approve or reject the facility proposed by the Contractor to use as a landfill. The Contractor shall verify whether the selected disposal facility is compliant with those applicable standards as mandated by their permit and whether the disposal facility is presently, has previously been, or has never been, on the United States Environmental Protection Agency (U.S. EPA) National Priorities List or the Resource Conservation and Recovery Act (RCRA) List of Violating Facilities. The use of a Contractor selected landfill shall in no manner delay the construction schedule or alter the Contractor's responsibilities as set forth. - **669.06 Non-Special Waste Certification.** An authorized representative of the Department shall sign and date all non-special waste certifications. The Contractor shall be responsible for providing the Engineer with the required information that will allow the Engineer to certify the waste is not a special waste. - (a) Definition. A waste is considered a non-special waste as long as it is not: - (1) a potentially infectious medical waste; - (2) a hazardous waste as defined in 35 III. Admin. Code 721; - (3) an industrial process waste or pollution control waste that contains liquids, as determined using the paint filter test set forth in subdivision (3)(A) of subsection (m) of 35 III. Admin. Code 811.107; - (4) a regulated asbestos-containing waste material, as defined under the National Emission Standards for Hazardous Air Pollutants in 40 CFR Part 61.141; - (5) a material containing polychlorinated biphenyls (PCB's) regulated pursuant to 40 CFR Part 761; - (6) a material subject to the waste analysis and recordkeeping requirements of 35 III. Admin. Code 728.107 under land disposal restrictions of 35 III. Admin. Code 728; - (7) a waste material generated by processing recyclable metals by shredding and required to be managed as a special waste under Section 22.29 of the Environmental Protection Act; or - (8) an empty portable device or container in which a special or hazardous waste has been stored, transported, treated, disposed of, or otherwise handled. - (b) Certification Information. All information used to determine the waste is not a special waste shall be attached to the certification. The information shall include but not be limited to: - (1) the means by which the generator has determined the waste is not a hazardous waste; - (2) the means by which the generator has determined the waste is not a liquid; - (3) if the waste undergoes testing, the analytic results obtained from testing, signed and dated by the person responsible for completing the analysis; - (4) if the waste does not undergo testing, an explanation as to why no testing is needed; - (5) a description of the process generating the waste; and - (6) relevant material safety data sheets. **669.07 Temporary Staging.** Soil classified according to Articles 669.05(a)(2), (b)(1), or (c) may be temporarily staged at the Contractor's option. Soil classified according to Articles 669.05(a)(1), (a)(3), (a)(4), (a)(5), (a)(6), or (b)(2) shall be managed and disposed of without temporary staging to the greatest extent practicable. If circumstances beyond the Contractor's control require temporary staging of these latter materials, the Contractor shall request approval from the Engineer in writing. Temporary staging shall be accomplished within the right-of-way and the Contractor's means and methods shall be described in the approved or
amended RSPCP. Staging areas shall not be located within 200 feet (61 m) of a public or private water supply well; nor within 100 feet (30 m) of sensitive environmental receptor areas, including wetlands, rivers, streams, lakes, or designated habitat zones. The method of staging shall consist of containerization or stockpiling as applicable for the type, classification, and physical state (i.e., liquid, solid, semisolid) of the material. Materials of different classifications shall be staged separately with no mixing or co-mingling. When containers are used, the containers and their contents shall remain intact and inaccessible to unauthorized persons until the manner of disposal is determined. The Contractor shall be responsible for all activities associated with the storage containers including, but not limited to, the procurement, transport, and labeling of the containers. The Contractor shall not use a storage container if visual inspection of the container reveals the presence of free liquids or other substances that could cause the waste to be reclassified as a hazardous or special waste. When stockpiles are used, they shall be covered with a minimum 20-mil plastic sheeting or tarps secured using weights or tie-downs. Perimeter berms or diversionary trenches shall be provided to contain and collect for disposal any water that drains from the soil. Stockpiles shall be managed to prevent or reduce potential dust generation. When staging non-special waste, special waste, or hazardous waste, the following additional requirements shall apply: - (a) Non-Special Waste. When stockpiling soil classified according to Article 669.05(a)(1) or 669.05(a)(5), an impermeable surface barrier between the materials and the ground surface shall be installed. The impermeable barrier shall consist of a minimum 20-mil plastic liner material and the surface of the stockpile area shall be clean and free of debris prior to placement of the liner. Measures shall also be taken to limit or discourage access to the staging area. - (b) Special Waste and Hazardous Waste. Soil classified according to Article 669.05(a)(6) shall not be stockpiled but shall be containerized immediately upon generation in containers, tanks or containment buildings as defined by RCRA, Toxic Substances Control Act (TSCA), and other applicable State or local regulations and requirements, including 35 Ill. Admin. Code Part 722, Standards Applicable to Generators of Hazardous Waste. The staging area(s) shall be enclosed (by a fence or other structure) to restrict direct access to the area, and all required regulatory identification signs applicable to a staging area containing special waste or hazardous waste shall be deployed. Storage containers shall be placed on an all-weather gravel-packed, asphalt, or concrete surface. Containers shall be in good condition and free of leaks, large dents, or severe rusting, which may compromise containment integrity. Containers must be constructed of, or lined with, materials that will not react or be otherwise incompatible with the hazardous or special waste contents. Containers used to store liquids shall not be filled more than 80 percent of the rated capacity. Incompatible wastes shall not be placed in the same container or comingled. All containers shall be legibly labeled and marked using pre-printed labels and permanent marker in accordance with applicable regulations, clearly showing the date of waste generation, location and/or area of waste generation, and type of waste. The Contractor shall place these identifying markings on an exterior side surface of the container. Storage containers shall be kept closed, and storage pads covered, except when access is needed by authorized personnel. Special waste and hazardous waste shall be transported and disposed within 90 days from the date of generation. **669.08 Underground Storage Tank Removal.** For the purposes of this section, an underground storage tank (UST) includes the underground storage tank, piping, electrical controls, pump island, vent pipes and appurtenances. Prior to removing an UST, the Engineer shall determine whether the Department is considered an "owner" or "operator" of the UST as defined by the UST regulations (41 III. Adm. Code Part 176). Ownership of the UST refers to the Department's owning title to the UST during storage, use or dispensing of regulated substances. The Department may be considered an "operator" of the UST if it has control of, or has responsibility for, the daily operation of the UST. The Department may however voluntarily undertake actions to remove an UST from the ground without being deemed an "operator" of the UST. In the event the Department is deemed not to be the "owner" or "operator" of the UST, the OSFM removal permit shall reflect who was the past "owner" or "operator" of the UST. If the "owner" or "operator" cannot be determined from past UST registration documents from OSFM, then the OSFM removal permit will state the "owner" or "operator" of the UST is the Department. The Department's Office of Chief Counsel (OCC) will review all UST removal permits prior to submitting any removal permit to the OSFM. If the Department is not the "owner" or "operator" of the UST then it will not register the UST or pay any registration fee. The Contractor shall be responsible for obtaining permits required for removing the UST, notification to the OSFM, using an OSFM certified tank contractor, removal and disposal of the UST and its contents, and preparation and submittal of the OSFM Site Assessment Report in accordance with 41 III. Admin. Code Part 176.330. The Contractor shall contact the Engineer and the OSFM's office at least 72 hours prior to removal to confirm the OSFM inspector's presence during the UST removal. Removal, transport, and disposal of the UST shall be according to the applicable portions of the latest revision of the "American Petroleum Institute (API) Recommended Practice 1604". The Contractor shall collect and analyze tank content (sludge) for disposal purposes. The Contractor shall remove as much of the regulated substance from the UST system as necessary to prevent further release into the environment. All contents within the tank shall be removed, transported and disposed of, or recycled. The tank shall be removed and rendered empty according to IEPA definition. The Contractor shall collect soil samples from the bottom and sidewalls of the excavated area in accordance with 35 III. Admin. Code Part 734.210(h) after the required backfill has been removed during the initial response action, to determine the level of contamination remaining in the ground, regardless if a release is confirmed or not by the OSFM on-site inspector. In the event the UST is designated a leaking underground storage tank (LUST) by the OSFM's inspector, or confirmation by analytical results, the Contractor shall notify the Engineer and the District Environmental Studies Unit (DESU). Upon confirmation of a release of contaminants and notifications to the Engineer and DESU, the Contractor shall report the release to the Illinois Emergency Management Agency (IEMA) (e.g., by telephone or electronic mail) and provide them with whatever information is available ("owner" or "operator" shall be stated as the past registered "owner" or "operator", or the IDOT District in which the tank is located and the DESU Manager). The Contractor shall perform the following initial response actions if a release is indicated by the OSFM inspector: - (a) Take immediate action to prevent any further release of the regulated substance to the environment, which may include removing, at the Engineer's discretion, and disposing of up to 4 ft (1.2 m) of the contaminated material, as measured from the outside dimension of the tank; - (b) Identify and mitigate fire, explosion and vapor hazards; - (c) Visually inspect any above ground releases or exposed below ground releases and prevent further migration of the released substance into surrounding soils and groundwater; and - (d) Continue to monitor and mitigate any additional fire and safety hazards posed by vapors and free product that have migrated from the tank excavation zone and entered into subsurface structures (such as sewers or basements). The tank excavation shall be backfilled according to applicable portions of Sections 205, 208, and 550 with a material that will compact and develop stability. All uncontaminated concrete and soil removed during tank extraction may be used to backfill the excavation, at the discretion of the Engineer. After backfilling the excavation, the site shall be graded and cleaned. - **669.09 Regulated Substances Final Construction Report.** Not later than 90 days after completing this work, the Contractor shall submit a "Regulated Substances Final Construction Report (RSFCR)" to the Engineer using form BDE 2733 and required attachments. The form shall be signed by an Illinois licensed Professional Engineer or Professional Geologist. - **669.10 Method of Measurement.** Non-special waste, special waste, and hazardous waste soil will be measured for payment according to Article 202.07(b) when performing earth excavation, Article 502.12(b) when excavating for structures, or by computing the volume of the trench using the maximum trench width permitted and the actual depth of the trench. Groundwater containerized and transported off-site for management, storage, and disposal will be measured for payment in gallons (liters). Backfill plugs will be measured in cubic yards (cubic meters) in place, except the quantity for which payment will be made shall not exceed the volume of the trench, as computed by using the maximum width of trench permitted by the Specifications and the actual depth of the trench, with a deduction for the volume of the pipe. Engineered Barriers will be measured for payment in square yards (square meters). **669.11 Basis of Payment.** The work of preparing, submitting
and administering a Regulated Substances Pre-Construction Plan will be paid for at the contract lump sum price for REGULATED SUBSTANCES PRE-CONSTRUCTION PLAN. Regulated substances monitoring, including completion of form BDE 2732 for each day of work, will be paid for at the contract unit price per calendar day, or fraction thereof to the nearest 0.5 calendar day, for REGULATED SUBSTANCES MONITORING. The installation of engineered barriers will be paid for at the contract unit price per square yard (square meter) for ENGINEERED BARRIER. The work of UST removal, soil excavation, soil and content sampling, the management of excavated soil and UST content, and UST disposal, will be paid for at the contract unit price per each for UNDERGROUND STORAGE TANK REMOVAL. The transportation and disposal of soil and other materials from an excavation determined to be contaminated will be paid for at the contract unit price per cubic yard (cubic meter) for NON-SPECIAL WASTE DISPOSAL, SPECIAL WASTE DISPOSAL, or HAZARDOUS WASTE DISPOSAL. The transportation and disposal of groundwater from an excavation determined to be contaminated will be paid for at the contract unit price per gallon (liter) for SPECIAL WASTE GROUNDWATER DISPOSAL or HAZARDOUS WASTE GROUNDWATER DISPOSAL. When groundwater is discharged to a sanitary or combined sewer by permit, the cost will be paid for according to Article 109.05. Backfill plugs will be paid for at the contract unit price per cubic yard (cubic meter) for BACKFILL PLUGS. Payment for temporary staging of soil classified according to Articles 669.05(a)(1), (a)(3), (a)(4), (a)(5), (a)(6), or (b)(2) will be paid for according to Article 109.04. The Department will not be responsible for any additional costs incurred, if mismanagement of the staging area, storage containers, or their contents by the Contractor results in excess cost expenditure for disposal or other material management requirements. Payment for accumulated stormwater removal and disposal will be according to Article 109.04. Payment will only be allowed if appropriate stormwater and erosion control methods were used. Payment for decontamination, labor, material, and equipment for monitoring areas beyond the specified areas, with the Engineer's prior written approval, will be according to Article 109.04. When the waste material for disposal requires sampling for landfill disposal acceptance, the samples shall be analyzed for TCLP VOCs, SVOCs, RCRA metals, pH, ignitability, and paint filter test. The analysis will be paid for at the contract unit price per each for SOIL DISPOSAL ANALYSIS using EPA Methods 1311 (extraction), 8260B for VOCs, 8270C for SVOCs, 6010B and 7470A for RCRA metals, 9045C for pH, 1030 for ignitability, and 9095A for paint filter. The work of preparing, submitting and administering a Regulated Substances Final Construction Report will be paid for at the contract lump sum price REGULATED SUBSTANCES FINAL CONSTRUCTION REPORT." #### SILT FENCE, GROUND STABILIZATION AND RIPRAP FILTER FABRIC (BDE) Effective: November 1, 2019 Revise Article 1080.02 of the Standard Specifications to read: " 1080.02 Geotextile Fabric. The fabric for silt filter fence shall consist of woven fabric meeting the requirements of AASHTO M 288 for unsupported silt fence. The fabric for ground stabilization shall consist of woven yarns or nonwoven filaments of polyolefins or polyesters. Woven fabrics shall be Class 2 and nonwoven fabrics shall be Class 1 according to AASHTO M 288. The physical properties for silt fence and ground stabilization fabrics shall be according to the following. | PHYSICAL PROPERTIES | | | | |--|------------------------------|--|---| | | Silt Fence
Woven 1/ | Ground
Stabilization
Woven ^{2/} | Ground
Stabilization
Nonwoven ^{2/} | | Grab Strength, lb (N) ^{3/} ASTM D 4632 | 123 (550) MD
101 (450) XD | 247 (1100) min. ^{4/} | 202 (900) min. ^{4/} | | Elongation/Grab Strain, % ASTM D 4632 4/ | 49 max. | 49 max. | 50 min. | | Trapezoidal Tear Strength, lb (N) ASTM D 4533 4/ | -1 | 90 (400) min. | 79 (350) min. | | Puncture Strength, lb (N)
ASTM D 6241 4/ | | 494 (2200) min. | 433 (1925) min. | | Apparent Opening Size, Sieve No. (mm) ASTM D 4751 5/ | 30 (0.60) max. | 40 (0.43) max. | 40 (0.43) max. | | Permittivity, sec ⁻¹ ASTM D 4491 | 0.05 min. | | | | Ultraviolet Stability, % retained strength after 500 hours of exposure ASTM D 4355 | 70 min. | 50 min. | 50 min. | - 1/ NTPEP results or manufacturer's certification to meet test requirements. - 2/ NTPEP results to meet test requirements. Manufacturer shall have public release status and current reports on laboratory results in Test Data of NTPEP's DataMine. - 3/ MD = Machine direction. XD = Cross-machine direction. - 4/ Values represent the minimum average roll value (MARV) in the weaker principle direction, MD or XD. - 5/ Values represent the maximum average roll value." Revise Article 1080.03 of the Standard Specifications to read: " 1080.03 Filter Fabric. The filter fabric shall consist of woven yarns or nonwoven filaments of polyolefins or polyesters. Woven fabrics shall be Class 3 for riprap gradations RR 4 and RR 5, and Class 2 for RR 6 and RR 7 according to AASHTO M 288. Woven slit film geotextiles (i.e. geotextiles made from yarns of a flat, tape-like character) shall not be permitted. Nonwoven fabrics shall be Class 2 for riprap gradations RR 4 and RR 5, and Class 1 for RR 6 and RR 7 according to AASHTO M 288. After forming, the fabric shall be processed so that the yarns or filaments retain their relative positions with respect to each other. The fabric shall be new and undamaged. The filter fabric shall be manufactured in widths of not less than 6 ft (2 m). Sheets of fabric may be sewn together with thread of a material meeting the chemical requirements given for the yarns or filaments to form fabric widths as required. The sheets of filter fabric shall be sewn together at the point of manufacture or another approved location. The filter fabric shall be according to the following. | PHYSICAL PROPERTIES 1/ | | | | | |--|------------------|------------------|------------------|------------------| | | Gradation Nos. | | Gradation Nos. | | | | RR 4 & RR 5 | | RR 6 & RR 7 | | | | Woven | Nonwoven | Woven | Nonwoven | | Grab Strength, lb (N) | 180 (800) | 157 (700) | 247 (1100) | 202 (900) | | ASTM D 4632 2/ | min. | min. | min. | min. | | Elongation/Grab Strain, % ASTM D 4632 2/ | 49 max. | 50 min. | 49 max. | 50 min. | | Trapezoidal Tear Strength, lb (N) ASTM D 4533 ^{2/} | 67 (300)
min. | 56 (250)
min. | 90 (400)
min. | 79 (350)
min. | | Puncture Strength, lb (N) | 370 (1650) | 309 (1375) | 494 (2200) | 433 (1925) | | ASTM D 6241 2/ | min. | min. | min. | min. | | Ultraviolet Stability, % retained strength after 500 hours of exposure - ASTM D 4355 | | | | | - 1/ NTPEP results to meet test requirements. Manufacturer shall have public release status and current reports on laboratory results in Test Data of NTPEP's DataMine. - 2/ Values represent the minimum average roll value (MARV) in the weaker principle direction [machine direction (MD) or cross-machine direction (XD)]. As determined by the Engineer, the filter fabric shall meet the requirements noted in the following after an onsite investigation of the soil to be protected. | Soil by Weight (Mass) Passing the No. 200 sieve (75 µm), % | Apparent Opening Size,
Sieve No. (mm) - ASTM D 4751 ^{1/} | Permittivity, sec ⁻¹
ASTM D 4491 | |--|--|--| | 49 max. | 60 (0.25) max. | 0.2 min. | | 50 min. | 70 (0.22) max. | 0.1 min. | 1/ Values represent the maximum average roll value." #### STEEL COST ADJUSTMENT (BDE) Effective: April 2, 2004 Revised: August 1, 2017 **Description**. Steel cost adjustments will be made to provide additional compensation to the Contractor, or a credit to the Department, for fluctuations in steel prices when optioned by the Contractor. The bidder shall indicate with their bid whether or not this special provision will be part of the contract. Failure to indicate "Yes" for any item of work will make that item of steel exempt from steel cost adjustment. **Types of Steel Products**. An adjustment will be made for fluctuations in the cost of steel used in the manufacture of the following items: Metal Piling (excluding temporary sheet piling) Structural Steel Reinforcing Steel Other steel materials such as dowel bars, tie bars, mesh reinforcement, guardrail, steel traffic signal and light poles, towers and mast arms, metal railings (excluding wire fence), and frames and grates will be subject to a steel cost adjustment when the pay items they are used in have a contract value of \$10,000 or greater. The adjustments shall apply to the above items when they are part of the original proposed construction, or added as extra work and paid for by agreed unit prices. The adjustments shall not apply when the item is added as extra work and paid for at a lump sum price or by force account. **Documentation**. Sufficient documentation shall be furnished to the Engineer to verify the following: - (a) The dates and quantity of steel, in lb (kg), shipped from the mill to the fabricator. - (b) The quantity of steel, in lb (kg), incorporated into the various items of work covered by this special provision. The Department reserves the right to verify submitted quantities. **Method of Adjustment**. Steel cost adjustments will be computed as follows: SCA = Q X D Where: SCA = steel cost adjustment, in dollars Q = quantity of steel incorporated into the
work, in lb (kg) D = price factor, in dollars per lb (kg) $D = MPI_M - MPI_L$ Where: MPI_M = The Materials Cost Index for steel as published by the Engineering News- Record for the month the steel is shipped from the mill. The indices will be converted from dollars per 100 lb to dollars per lb (kg). MPI_L = The Materials Cost Index for steel as published by the Engineering News- Record for the month prior to the letting for work paid for at the contract price; or for the month the agreed unit price letter is submitted by the Contractor for extra work paid for by agreed unit price. The indices will be converted from dollars per 100 lb to dollars per lb (kg). The unit weights (masses) of steel that will be used to calculate the steel cost adjustment for the various items are shown in the attached table. No steel cost adjustment will be made for any products manufactured from steel having a mill shipping date prior to the letting date. If the Contractor fails to provide the required documentation, the method of adjustment will be calculated as described above; however, the MPI_M will be based on the date the steel arrives at the job site. In this case, an adjustment will only be made when there is a decrease in steel costs. **Basis of Payment**. Steel cost adjustments may be positive or negative but will only be made when there is a difference between the MPI_L and MPI_M in excess of five percent, as calculated by: Percent Difference = $\{(MPI_L - MPI_M) \div MPI_L\} \times 100$ Steel cost adjustments will be calculated by the Engineer and will be paid or deducted when all other contract requirements for the items of work are satisfied. Adjustments will only be made for fluctuations in the cost of the steel as described herein. No adjustment will be made for changes in the cost of manufacturing, fabrication, shipping, storage, etc. The adjustments shall not apply during contract time subject to liquidated damages for completion of the entire contract. #### Attachment | Item | Unit Mass (Weight) | |---|-------------------------------| | Metal Piling (excluding temporary sheet piling) | | | Furnishing Metal Pile Shells 12 in. (305 mm), 0.179 in. (3.80 mm) wall thickness) | 23 lb/ft (34 kg/m) | | Furnishing Metal Pile Shells 12 in. (305 mm), 0.250 in. (6.35 mm) wall thickness) | 32 lb/ft (48 kg/m) | | Furnishing Metal Pile Shells 14 in. (356 mm), 0.250 in. (6.35 mm) wall thickness) | 37 lb/ft (55 kg/m) | | Other piling | See plans | | Structural Steel | See plans for weights | | | (masses) | | Reinforcing Steel | See plans for weights | | | (masses) | | Dowel Bars and Tie Bars | 6 lb (3 kg) each | | Mesh Reinforcement | 63 lb/100 sq ft (310 kg/sq m) | | Guardrail | | | Steel Plate Beam Guardrail, Type A w/steel posts | 20 lb/ft (30 kg/m) | | Steel Plate Beam Guardrail, Type B w/steel posts | 30 lb/ft (45 kg/m) | | Steel Plate Beam Guardrail, Types A and B w/wood posts | 8 lb/ft (12 kg/m) | | Steel Plate Beam Guardrail, Type 2 | 305 lb (140 kg) each | | Steel Plate Beam Guardrail, Type 6 | 1260 lb (570 kg) each | | Traffic Barrier Terminal, Type 1 Special (Tangent) | 730 lb (330 kg) each | | Traffic Barrier Terminal, Type 1 Special (Flared) | 410 lb (185 kg) each | | Steel Traffic Signal and Light Poles, Towers and Mast Arms | | | Traffic Signal Post | 11 lb/ft (16 kg/m) | | Light Pole, Tenon Mount and Twin Mount, 30 - 40 ft (9 – 12 m) | 14 lb/ft (21 kg/m) | | Light Pole, Tenon Mount and Twin Mount, 45 - 55 ft (13.5 – 16.5 m) | 21 lb/ft (31 kg/m) | | Light Pole w/Mast Arm, 30 - 50 ft (9 – 15.2 m) | 13 lb/ft (19 kg/m) | | Light Pole w/Mast Arm, 55 - 60 ft (16.5 – 18 m) | 19 lb/ft (28 kg/m) | | Light Tower w/Luminaire Mount, 80 - 110 ft (24 – 33.5 m) | 31 lb/ft (46 kg/m) | | Light Tower w/Luminaire Mount, 120 - 140 ft (36.5 – 42.5 m) | 65 lb/ft (97 kg/m) | | Light Tower w/Luminaire Mount, 150 - 160 ft (45.5 – 48.5 m) | 80 lb/ft (119 kg/m) | | Metal Railings (excluding wire fence) | | | Steel Railing, Type SM | 64 lb/ft (95 kg/m) | | Steel Railing, Type S-1 | 39 lb/ft (58 kg/m) | | Steel Railing, Type T-1 | 53 lb/ft (79 kg/m) | | Steel Bridge Rail | 52 lb/ft (77 kg/m) | | Frames and Grates | | | Frame | 250 lb (115 kg) | | Lids and Grates | 150 lb (70 kg) | #### SUBCONTRACTOR AND DBE PAYMENT REPORTING (BDE) Effective: April 2, 2018 Add the following to Section 109 of the Standard Specifications. "109.14 Subcontractor and Disadvantaged Business Enterprise Payment Reporting. The Contractor shall report all payments made to the following parties: - (a) first tier subcontractors; - (b) lower tier subcontractors affecting disadvantaged business enterprise (DBE) goal credit; - (c) material suppliers or trucking firms that are part of the Contractor's submitted DBE utilization plan. The report shall be made through the Department's on-line subcontractor payment reporting system within 21 days of making the payment." # **SUBCONTRACTOR MOBILIZATION PAYMENTS (BDE)** Effective: November 2, 2017 Revised: April 1, 2019 Replace the second paragraph of Article 109.12 of the Standard Specifications with the following: "This mobilization payment shall be made at least seven days prior to the subcontractor starting work. The amount paid shall be at the following percentage of the amount of the subcontract reported on form BC 260A submitted for the approval of the subcontractor's work. | Value of Subcontract Reported on Form BC 260A | Mobilization Percentage | |---|-------------------------| | Less than \$10,000 | 25% | | \$10,000 to less than \$20,000 | 20% | | \$20,000 to less than \$40,000 | 18% | | \$40,000 to less than \$60,000 | 16% | | \$60,000 to less than \$80,000 | 14% | | \$80,000 to less than \$100,000 | 12% | | \$100,000 to less than \$250,000 | 10% | | \$250,000 to less than \$500,000 | 9% | | \$500,000 to \$750,000 | 8% | | Over \$750,000 | 7%" | #### **TEMPORARY PAVEMENT MARKING (BDE)** Effective: April 1, 2012 Revised: April 1, 2017 Revise Article 703.02 of the Standard Specifications to read: "703.02 Materials. Materials shall be according to the following. | (a) Pavement Marking Tape, Type I and Type III | 1095.06 | |--|----------| | (b) Paint Pavement Markings | 1095.02 | | (c) Pavement Marking Tape, Type IV | 1095.11" | Revise the second paragraph of Article 703.05 of the Standard Specifications to read: "Type I marking tape or paint shall be used at the option of the Contractor, except paint shall not be applied to the final wearing surface unless authorized by the Engineer for late season applications where tape adhesion would be a problem. Type III or Type IV marking tape shall be used on the final wearing surface when the temporary pavement marking will conflict with the permanent pavement marking such as on tapers, crossovers and lane shifts." Revise Article 703.07 of the Standard Specifications to read: "703.07 Basis of Payment. This work will be paid for as follows. - a) Short Term Pavement Marking. Short term pavement marking will be paid for at the contract unit price per foot (meter) for SHORT TERM PAVEMENT MARKING. Removal of short term pavement markings will be paid for at the contract unit price per square foot (square meter) for SHORT TERM PAVEMENT MARKING REMOVAL. - b) Temporary Pavement Marking. Where the Contractor has the option of material type, temporary pavement marking will be paid for at the contract unit price per foot (meter) for TEMPORARY PAVEMENT MARKING of the line width specified, and at the contract unit price per square foot (square meter) for TEMPORARY PAVEMENT MARKING LETTERS AND SYMBOLS. Where the Department specifies the use of pavement marking tape, the Type III or Type IV temporary pavement marking will be paid for at the contract unit price per foot (meter) for PAVEMENT MARKING TAPE, TYPE III or PAVEMENT MARKING TAPE, TYPE IV of the line width specified and at the contract unit price per square feet (square meter) for PAVEMENT MARKING TAPE, TYPE III - LETTERS AND SYMBOLS or PAVEMENT MARKING TAPE, TYPE IV - LETTERS AND SYMBOLS. Removal of temporary pavement markings will be paid for at the contract unit price per square foot (square meter) for TEMPORARY PAVEMENT MARKING REMOVAL. When temporary pavement marking is shown on the Standard, the cost of the temporary pavement marking and its removal will be included in the cost of the Standard." Add the following to Section 1095 of the Standard Specifications: "1095.11 Pavement Marking Tape, Type IV. The temporary, preformed, patterned markings shall consist of a white or yellow tape with wet retroreflective media incorporated to provide immediate and continuing retroreflection during both wet and dry conditions. The tape shall be manufactured without the use of heavy metals including lead chromate pigments or other similar, lead-containing chemicals. The white and yellow Type IV marking tape shall meet the Type III requirements of Article 1095.06 and the following. - (a) Composition. The retroreflective pliant polymer pavement markings shall consist of a mixture of high-quality polymeric materials, pigments and glass beads distributed throughout its base cross-sectional area, with a layer of wet retroreflective media bonded to a durable polyurethane topcoat surface. The patterned surface shall have approximately 40% ± 10% of the surface area raised and presenting a near vertical face to traffic from any direction. The channels between the raised areas shall be substantially free of exposed beads or particles. - (b) Retroreflectance. The white and yellow markings shall meet the following for initial dry and wet retroreflectance. - (1) Dry Retroreflectance. Dry retroreflectance shall be measured under dry conditions according to ASTM D 4061 and meet the values described in Article 1095.06 for Type III tape. - (2) Wet Retroreflectance. Wet retroreflectance shall
be measured under wet conditions according to ASTM E 2177 and meet the values shown in the following table. Wet Retroreflectance, Initial R_L | Color | R _L 1.05/88.76 | | | |--------|---------------------------|--|--| | White | 300 | | | | Yellow | 200 | | | (c) Color. The material shall meet the following requirements for daylight reflectance and color, when tested, using a color spectrophotometer with 45 degrees circumferential/zero degree geometry, illuminant D65, and a two degree observer angle. The color instrument shall measure the visible spectrum from 380 to 720 nm with a wavelength measurement interval and spectral bandpass of 10 nm. | Color | Daylight Reflectance %Y | |---------|-------------------------| | White | 65 minimum | | *Yellow | 36-59 | *Shall match Federal 595 Color No. 33538 and the chromaticity limits as follows. | Х | 0.490 | 0.475 | 0.485 | 0.530 | |---|-------|-------|-------|-------| | у | 0.470 | 0.438 | 0.425 | 0.456 | - (d) Skid Resistance. The surface of the markings shall provide an average minimum skid resistance of 50 BPN when tested according to ASTM E 303. - (e) Sampling, Testing, Acceptance, and Certification. Prior to approval and use of the wet reflective, temporary, removable pavement marking tape, the manufacturer shall submit a notarized certification from an independent laboratory, together with the results of all tests, stating that the material meets the requirements as set forth herein. The certification test report shall state the lot tested, manufacturer's name, and date of manufacture. After approval by the Department, samples and certification by the manufacturer shall be submitted for each batch used. The manufacturer shall submit a certification stating that the material meets the requirements as set forth herein and is essentially identical to the material sent for qualification. The certification shall state the lot tested, manufacturer's name, and date of manufacture. All costs of testing (other than tests conducted by the Department) shall be borne by the manufacturer." ### TRAFFIC CONTROL DEVICES - CONES (BDE) Effective: January 1, 2019 Revise Article 701.15(a) of the Standard Specifications to read: "(a) Cones. Cones are used to channelize traffic. Cones used to channelize traffic at night shall be reflectorized; however, cones shall not be used in nighttime lane closure tapers or nighttime lane shifts." Revise Article 1106.02(b) of the Standard Specifications to read: "(b) Cones. Cones shall be predominantly orange. Cones used at night that are 28 to 36 in. (700 to 900 mm) in height shall have two white circumferential stripes. If non-reflective spaces are left between the stripes, the spaces shall be no more than 2 in. (50mm) in width. Cones used at night that are taller than 36 in. (900 mm) shall have a minimum of two white and two fluorescent orange alternating, circumferential stripes with the top stripe being fluorescent orange. If non-reflective spaces are left between the stripes, the spaces shall be no more than 3 in. (75 mm) in width. The minimum weights for the various cone heights shall be 4 lb for 18 in. (2 kg for 450 mm), 7 lb for 28 in. (3 kg for 700 mm), and 10 lb for 36 in. (5 kg for 900 mm) with a minimum of 60 percent of the total weight in the base. Cones taller than 36 in. shall be weighted per the manufacturer's specifications such that they are not moved by wind or passing traffic." # TRAFFIC SPOTTERS (BDE) Effective: January 1, 2019 Revise Article 701.13 of the Standard Specifications to read: "701.13 Flaggers and Spotters. Flaggers shall be certified by an agency approved by the Department. While on the job site, each flagger shall have in his/her possession a current driver's license and a current flagger certification I.D. card. For non-drivers, the Illinois Identification Card issued by the Secretary of State will meet the requirement for a current driver's license. This certification requirement may be waived by the Engineer for emergency situations that arise due to actions beyond the Contractor's control where flagging is needed to maintain safe traffic control on a temporary basis. Spotters are defined as certified flaggers that provide support to workers by monitoring traffic. Flaggers and spotters shall be stationed to the satisfaction of the Engineer and be equipped with a fluorescent orange, fluorescent yellow/green, or a combination of fluorescent orange and fluorescent yellow/green vest meeting the requirements of ANSI/ISEA 107-2004 or ANSI/ISEA 107-2010 for Conspicuity Class 2 garments. Flaggers shall be equipped with a stop/slow traffic control sign. Spotters shall be equipped with a loud warning device. The warning sound shall be identifiable by workers so they can take evasive action when necessary. Other types of garments may be substituted for the vest as long as the garments have a manufacturer's tag identifying them as meeting the ANSI Class 2 requirement. The longitudinal placement of the flagger may be increased up to 100 ft (30 m) from that shown on the plans to improve the visibility of the flagger. Flaggers shall not encroach on the open lane of traffic unless traffic has been stopped. Spotters shall not encroach on the open lane of traffic, nor interact with or control the flow of traffic. For nighttime flagging, flaggers shall be illuminated by an overhead light source providing a minimum vertical illuminance of 10 fc (108 lux) measured 1 ft (300 mm) out from the flagger's chest. The bottom of any luminaire shall be a minimum of 10 ft (3 m) above the pavement. Luminaire(s) shall be shielded to minimize glare to approaching traffic and trespass light to adjoining properties. Nighttime flaggers shall be equipped with fluorescent orange or fluorescent orange and fluorescent yellow/green apparel meeting the requirements of ANSI/ISEA 107-2004 or ANSI/ISEA 107-2010 for Conspicuity Class 3 garments. Flaggers and spotters shall be provided per the traffic control plan and as follows. - (a) Two-Lane Highways. Two flaggers will be required for each separate operation where two-way traffic is maintained over one lane of pavement. Work operations controlled by flaggers shall be no more than 1 mile (1600 m) in length. Flaggers shall be in sight of each other or in direct communication at all times. Direct communication shall be obtained by using portable two-way radios or walkie-talkies. - The Engineer will determine when a side road or entrance shall be closed to traffic. A flagger will be required at each side road or entrance remaining open to traffic within the operation where two-way traffic is maintained on one lane of pavement. The flagger shall be positioned as shown on the plans or as directed by the Engineer. - (b) Multi-Lane Highways. At all times where traffic is restricted to less than the normal number of lanes on a multilane pavement with a posted speed limit greater than 40 mph and the workers are present, but not separated from the traffic by physical barriers, a flagger or spotter shall be furnished as shown on the plans. Flaggers shall warn and direct traffic. Spotters shall monitor traffic conditions and warn workers of errant approaching vehicles or other hazardous conditions as they occur. One flagger will be required for each separate activity of an operation that requires frequent encroachment in a lane open to traffic. One spotter will be required for each separate activity with workers near the edge of the open lane or with their backs facing traffic. Flaggers will not be required when no work is being performed, unless there is a lane closure on two-lane, two-way pavement." ### WARM MIX ASPHALT (BDE) Effective: January 1, 2012 Revised: April 1, 2016 **Description**. This work shall consist of designing, producing and constructing Warm Mix Asphalt (WMA) in lieu of Hot Mix Asphalt (HMA) at the Contractor's option. Work shall be according to Sections 406, 407, 408, 1030, and 1102 of the Standard Specifications, except as modified herein. In addition, any references to HMA in the Standard Specifications, or the special provisions shall be construed to include WMA. WMA is an asphalt mixture which can be produced at temperatures lower than allowed for HMA utilizing approved WMA technologies. WMA technologies are defined as the use of additives or processes which allow a reduction in the temperatures at which HMA mixes are produced and placed. WMA is produced by the use of additives, a water foaming process, or combination of both. Additives include minerals, chemicals or organics incorporated into the asphalt binder stream in a dedicated delivery system. The process of foaming injects water into the asphalt binder stream, just prior to incorporation of the asphalt binder with the aggregate. Approved WMA technologies may also be used in HMA provided all the requirements specified herein, with the exception of temperature, are met. However, asphalt mixtures produced at temperatures in excess of 275 °F (135 °C) will not be considered WMA when determining the grade reduction of the virgin asphalt binder grade. ### Equipment. Revise the first paragraph of Article 1102.01 of the Standard Specifications to read: "1102.01 Hot-Mix Asphalt Plant. The hot-mix asphalt (HMA) plant shall be the batch-type, continuous-type, or dryer drum plant. The plants shall be evaluated for prequalification rating and approval to produce HMA according to the current Bureau of Materials and Physical Research Policy Memorandum, "Approval of Hot-Mix Asphalt Plants and Equipment". Once approved, the Contractor shall notify the Bureau of Materials and Physical Research to obtain approval of all plant modifications. The plants shall not be used to produce mixtures concurrently for more than one project or for private work unless permission is granted in writing by the Engineer. The plant units shall be so designed, coordinated and operated that they will function properly and produce HMA having uniform temperatures and
compositions within the tolerances specified. The plant units shall meet the following requirements." Add the following to Article 1102.01(a) of the Standard Specifications. "(11) Equipment for Warm Mix Technologies. - a. Foaming. Metering equipment for foamed asphalt shall have an accuracy of ± 2 percent of the actual water metered. The foaming control system shall be electronically interfaced with the asphalt binder meter. - b. Additives. Additives shall be introduced into the plant according to the supplier's recommendations and shall be approved by the Engineer. The system for introducing the WMA additive shall be interlocked with the aggregate feed or weigh system to maintain correct proportions for all rates of production and batch sizes." ### Mix Design Verification. Add the following to Article 1030.04 of the Standard Specifications. - "(e) Warm Mix Technologies. - (1) Foaming. WMA mix design verification will not be required when foaming technology is used alone (without WMA additives). However, the foaming technology shall only be used on HMA designs previously approved by the Department. - (2) Additives. WMA mix designs utilizing additives shall be submitted to the Engineer for mix design verification." #### **Construction Requirements.** Revise the second paragraph of Article 406.06(b)(1) of the Standard Specifications to read: "The HMA shall be delivered at a temperature of 250 to 350 °F (120 to 175 °C). WMA shall be delivered at a minimum temperature of 215 °F (102 °C)." ### Basis of Payment. This work will be paid at the contract unit price bid for the HMA pay items involved. Anti-strip will not be paid for separately, but shall be considered as included in the cost of the work. ## **WEEKLY DBE TRUCKING REPORTS (BDE)** Effective: June 2, 2012 Revised: April 2, 2015 The Contractor shall submit a weekly report of Disadvantaged Business Enterprise (DBE) trucks hired by the Contractor or subcontractors (i.e. not owned by the Contractor or subcontractors) that are used for DBE goal credit. The report shall be submitted to the Engineer on Department form "SBE 723" within ten business days following the reporting period. The reporting period shall be Monday through Sunday for each week reportable trucking activities occur. Any costs associated with providing weekly DBE trucking reports shall be considered as included in the contract unit prices bid for the various items of work involved and no additional compensation will be allowed. #### **WORKING DAYS (BDE)** Effective: January 1, 2002 The Contractor shall complete the work within **50** working days. # REVISIONS TO THE ILLINOIS PREVAILING WAGE RATES The Prevailing rates of wages are included in the Contract proposals which are subject to Check Sheet #5 of the Supplemental Specifications and Recurring Special Provisions. The rates have been ascertained and certified by the Illinois Department of Labor for the locality in which the work is to be performed and for each craft or type of work or mechanic needed to execute the work of the Contract. As required by Prevailing Wage Act (820 ILCS 130/0.01, et seq.) and Check Sheet #5 of the Contract, not less than the rates of wages ascertained by the Illinois Department of Labor and as revised during the performance of a Contract shall be paid to all laborers, workers and mechanics performing work under the Contract. Post the scale of wages in a prominent and easily accessible place at the site of work. If the Illinois Department of Labor revises the prevailing rates of wages to be paid as listed in the specification of rates, the contractor shall post the revised rates of wages and shall pay not less than the revised rates of wages. Current wage rate information shall be obtained by visiting the Illinois Department of Labor web site at http://www.state.il.us/agency/idol/ or by calling 312-793-2814. It is the responsibility of the contractor to review the rates applicable to the work of the contract at regular intervals in order to insure the timely payment of current rates. Provision of this information to the contractor by means of the Illinois Department of Labor web site satisfies the notification of revisions by the Department to the contractor pursuant to the Act, and the contractor agrees that no additional notice is required. The contractor shall notify each of its subcontractors of the revised rates of wages.