INTERIOR GIRDER	MOME	NT TABLE
		0.5 Sp. 1
Is	(in4)	11,300
Ic(n)	(in4)	26,884
Ic(3n)	(in4)	19,288
Ic(cr)	(in4)	-
Ss	(in ³)	623
Sc(n)	(in ³)	877
Sc(3n)	(in ³)	782
Sc(cr)	(in ³)	-
DC1	(k/′)	0.827
M DC1	(′k)	800
DC2	(k/′)	0.150
M DC2	(′k)	142
DW	(k/′)	0.27
Mow	('k)	258
M4 + IM	(′k)	1,218
Mu (Strength I)	(′k)	3,700
¢ _f M _n	(′k)	4,296
fs DC1	(ksi)	10.9
fs DC2	(ksi)	2.2
fs DW	(ksi)	4.0
fs (4+IM)	(ksi)	16.7
fs (Service II)	(ksi)	38.8
0.95RhFyf	(ksi)	47.5
fs (Total)(Strength I)	(ksi)	-
Ø _f F _n	(ksi)	-
Vf	(k)	24.3

INTERIOR	GIRL	DER REACTION TABLE
		Abut.
R _{DC1}	(k)	36.4
R _{DC2}	(k)	6.6
Row	(k)	11.7
R4 + IM	(k)	74.9
R Total	(k)	129.6

- Is, Ss: Non-composite moment of inertia and section modulus of the steel section used for computing fs (Total-Strength I, and Service II) due to non-composite dead loads (in.⁴ and in.³).
- I_c(n), S_c(n): Composite moment of inertia and section modulus of the steel and deck based upon the modular ratio, "n", used for computing fs(Total-Strength I, and Service II) in uncracked sections due to short-term composite live loads (in.⁴ and in.³).
- Ic(3n), Sc(3n): Composite moment of inertia and section modulus of the steel and deck based upon 3 times the modular ratio, "3n", used for computing fs(Total-Strength I, and Service II) in uncracked sections, due to long-term composite (superimposed) dead loads (in.⁴ and in.³).
- Ic(cr), Sc(cr): Composite moment of inertia and section modulus of the steel and longitudinal deck reinforcement, used for computing fs (Total-Strength I and Service II) in cracked sections, due to both short-term composite live loads and long-term composite (superimposed) dead loads (in.⁴ and in.³).
 - DC1: Un-factored non-composite dead load (kips/ft.).
 - MDCI: Un-factored moment due to non-composite dead load (kip-ft.). DC2: Un-factored long-term composite (superimposed excluding future wearing surface) dead load (kips/ft.).
 - MDc2: Un-factored moment due to long-term composite (superimposed excluding future wearing surface) dead load (kip-ft.).
 - DW: Un-factored long-term composite (superimposed future wearing surface only) dead load (kips/ft.).
 - Mow: Un-factored moment due to long-term composite (superimposed future wearing surface only) dead load (kip-ft.).
 - M4 + IM: Un-factored live load moment plus dynamic load allowance (impact) (kip-ft.).
- Mu (Strength I): Factored design moment (kip-ft.).
 - 1.25 (MDCI + MDC2) + 1.5 MDW + 1.75 M&+ IM $\phi_f M_n$: Compact composite positive moment capacity computed according to Article 6.10.7.1 or non-slender negative moment capacity according to Article A6.1.1 or A6.1.2 (kip-ft).
 - fs DCI: Un-factored stress at edge of flange for controlling steel flange due to vertical non-composite dead loads as calculated below (ksi). MDC1 / Snc
 - fs DC2: Un-factored stress at edge of flange for controlling steel flange due to vertical composite dead loads as calculated helow (ksi)
 - MDC2 / Sc(3n) or MDC2 / Sc(cr) as applicable.
 - fs DW: Un-factored stress at edge of flange for controlling steel flanae due to vertical composite future wearing surface loads as calculated below (ksi). Mow / Sc(3n) or Mow / Sc(cr) as applicable.
 - fs (L+IM): Un-factored stress at edge of flange for controlling steel flange due to vertical composite live load plus impact loads as calculated below (ksi).
 - M4+ IM / Sc(n) or MDW / Sc(cr) as applicable.
- fs (Service II): Sum of stresses as computed below (ksi).
 - fsDC1 + fs DC2 + fs DW + 1.3 fs (4 + IM)
- 0.95RhFyf: Composite stress capacity for Service II loading according to Article 6.10.4.2 (ksi). fs (Total)(Strength I): Sum of stresses as computed below on non-compact
 - section (ksi).
 - 1.25 (fsDC1 + fsDC2) + 1.5 fsDW + 1.75 fs(& + IM)
 - $\phi_{f}F_{n}$: Non-Compact composite positive or negative stress capacity for
 - Strength I loading according to Article 6.10.7 or 6.10.8 (ksi). Vf: Maximum factored shear range in span computed according to Article 6.10.10.

(25 Required)

Notes.

Two hardened washers required for each set of oversized holes.

- *Alternate channels CI5X50 are permitted to facilitate material acquisition. Calculated weight of structural steel is based on the lighter section.
- The alternate, if utilized, shall be provided at no additional cost to the Department. $^{**3}_{4}$ " ϕ HS bolts, $^{15}_{16}$ " ϕ holes.

		USER NAME = SAW	DESIGNED - PMM	REVISED -		STRUCTURAL STEEL DETAILS	F.A.P. RTF	SECTION	COUNTY TOTAL SHEET	
Ψ	TROKA Zroka Engineering, P.C.		CHECKED - DAZ	REVISED -	STATE OF ILLINOIS DEPARTMENT OF TRANSPORTATION		646	5BR-3	CARROLL 84 37	
NA	chicago, IL 60613	PLOT SCALE = 0:2.0000 ':" / in.	DRAWN - SAW	REVISED -		DEPARTMENT OF TRANSPORTATION	S.N. 098–0051			CONTRACT NO. 64D84
FILE		PLOT DATE = 8/1/2013	CHECKED - PMM	REVISED -		SHEET NO. 14 OF 19 SHEETS	ILLINOIS FED. AID PROJECT		D. AID PROJECT	

ABUTMENT BEARING DETAILS

Anchor bolts shall be ASTM F1554, Grade 36 all-thread (or an Engineer-approved alternate material) of the arade(s) and diameter(s) specified. The corresponding specified grade of AASHTO M314 anchor bolts may be used in lieu of ASTM F1554.

Anchor bolts at fixed bearings may be either cast in place or installed in holes drilled after the supported member is in place.

Drilled and set anchor bolts shall be installed according to Article 521.06 of the Standard Specifications. All plates and pintles of the Bearing Assembly shall conform to the requirements of AASHTO M270 Grade 50W.

BILL	0F	MATERIAL

Item	Unit	Total
Anchor Bolts, 1"	Each	24