Attachment 5 Precipitation Analysis



## HYDROLOGY ANALYSIS

PCSWMM for Stormceptor calculates annual hydrology with the US EPA SWMM and local continuous historical rainfall data. Performance calculations of the Stormceptor System are based on the average annual removal of TSS for the selected site parameters.

Smaller recurring storms account for the majority of rainfall events and average annual runoff volume, as observed in the historical rainfall data analyses presented in this section.

#### **Rainfall Station**

| Rannan Otation                |               |                                           |        |
|-------------------------------|---------------|-------------------------------------------|--------|
| Rainfall Station              | CHICAGO OH/   | ARE AP                                    |        |
| Rainfall File Name            | IL1549.NDC    | Total Number of Events                    | 7233   |
| Latitude                      | 41°59'42''N   | Total Rainfall (in.)                      | 1490.1 |
| Longitude                     | 87°56'1"W     | Average Annual Rainfall (in.)             | 33.9   |
| Elevation (ft)                |               | Total Evaporation (in.)                   | 160.6  |
| Rainfall Period of Record (y) | (1962 - 2005) | Total Infiltration (in.)                  | 0.0    |
| Total Rainfall Period (y)     | 44            | Percentage of Rainfall that is Runoff (%) | 92.2   |

#### **Rainfall Event Analysis with Cumulative Totals**

| Rainfall Depth | No. of Events |      | age of Total<br>vents | Total Volume | Percentage<br>Volu |         |
|----------------|---------------|------|-----------------------|--------------|--------------------|---------|
| in.            |               | %    | Cumul.%               | in.          | %                  | Cumul.% |
| 0.25           | 5605          | 77.5 | 77.5                  | 345          | 23.1               | 23.1    |
| 0.50           | 771           | 10.7 | 88.2                  | 278          | 18.7               | 41.8    |
| 0.75           | 370           | 5.1  | 93.3                  | 229          | 15.4               | 57.2    |
| 1.00           | 195           | 2.7  | 96.0                  | 169          | 11.3               | 68.5    |
| 1.25           | 109           | 1.5  | 97.5                  | 122          | 8.2                | 76.7    |
| 1.50           | 72            | 1.0  | 98.5                  | 98           | 6.6                | 83.3    |
| 1.75           | 35            | 0.5  | 99.0                  | 57           | 3.8                | 87.1    |
| 2.00           | 17            | 0.2  | 99.2                  | 32           | 2.1                | 89.2    |
| 2.25           | 18            | 0.2  | 99.4                  | 38           | 2.6                | 91.8    |
| 2.50           | 12            | 0.2  | 99.6                  | 28           | 1.9                | 93.7    |
| 2.75           | 8             | 0.1  | 99.7                  | 21           | 1.4                | 95.1    |
| 3.00           | 5             | 0.1  | 99.8                  | 14           | 1.0                |         |
| 3.25           | 4             | 0.1  | 99.9                  | 12           | 0.8                | 96.9    |
| 3.50           | 4             | 0.1  | 100.                  | 14           | 0.9                | 97.8    |
| 3.75           | 3             | 0.0  | 100.                  | 11           | 0.7                | 98.5    |
| 4.00           | 1             | 0.0  | 100.                  | 4            | 0.3                | 98.8    |
| 4.25           | 1 1           | 0.0  | 100.                  | 4            | 0.3                | 99.1    |
| 4.50           | 2             | 0.0  | 100.                  | 9            | 0.6                | 99.7    |
| 4.75           | 0             | 0.0  | 100.                  | 0            | 0.0                | 99.7    |
| 5.00           | 0             | 0.0  | 100.                  | 0            | 0.0                | 99.7    |
| 5.25           | 0             | 0.0  | 100.                  | 0            | 0.0                | 99.7    |
| 5.50           | 0             | 0.0  | 100.                  | 0            | 0.0                | 99.7    |
| 5.75           | 0             | 0.0  | 100.                  | 0            | 0.0                | 99.7    |
| 6.00           | 1             | 0.0  | 100.                  | 6            | 0.4                | 100.    |
| 6.25           | 0             | 0.0  | 100.                  | 0            | 0.0                | 100.    |
| 6.50           | 0             | 0.0  | 100.                  | 0            | 0.0                | 100.    |
| 6.75           | 0             | 0.0  | 100.                  | 0            | 0.0                | 100.    |
| 7.00           | 0             | 0.0  | 100.                  | 0            | 0.0                | 100.    |
| 7.25           | 0             | 0.0  | 100.                  | 0            | 0.0                | 100.    |
| 7.50           | 0             | 0.0  | 100.                  | 0            | 0.0                | 100.    |
| 7.75           | 0             | 0.0  | 100.                  | 0            | 0.0                | 100.    |
| 8.00           | 0             | 0.0  | 100.                  | 0            | 0.0                | 100.    |
| 8.25           | 0             | 0.0  | 100.                  | 0            | 0.0                | 100.    |
| >8.25          | 0             | 0.0  | 100.                  | 0            | 0.0                | 100.    |





;

## HYDROLOGY ANALYSIS

PCSWMM for Stormceptor calculates annual hydrology with the US EPA SWMM and local continuous historical rainfall data. Performance calculations of the Stormceptor System are based on the average annual removal of TSS for the selected site parameters.

Smaller recurring storms account for the majority of rainfall events and average annual runoff volume, as observed in the historical rainfall data analyses presented in this section.

#### **Rainfall Station**

| Rainfall Station              | CHICAGO MIDWAY AP 3SW |                                              |        |  |  |
|-------------------------------|-----------------------|----------------------------------------------|--------|--|--|
| Rainfall File Name            | IL1577.NDC            | Total Number of Events                       | 8735   |  |  |
| Latitude                      | 41°44'14"N            | Total Rainfall (in.)                         | 1968.1 |  |  |
| Longitude                     | 87°46'39"W            | Average Annual Rainfall (in.)                | 33.9   |  |  |
| Elevation (ft)                | 620                   | Total Evaporation (in.)                      | 183.7  |  |  |
| Rainfall Period of Record (y) | 1948 - 2005           | Total Infiltration (in.)                     | 0.0    |  |  |
| Total Rainfall Period (y)     | 58                    | Percentage of Rainfall that is<br>Runoff (%) | 93.7   |  |  |

#### Rainfall Event Analysis

| Rainfall Depth | No. of Events |      | age of Total<br>vents | Total Volume | Percentage<br>Volu |         |
|----------------|---------------|------|-----------------------|--------------|--------------------|---------|
| in,            |               | %    | Cumul.%               | in.          | %                  | Cumul.% |
| 0.25           | 6677          | 76.4 | 76.4                  | 536          | 27.2               | 27.2    |
| 0.50           | 1047          | 12.0 | 88.4                  | 381          | 19.4               | 46.6    |
| 0.75           | 408           | 4.7  | 93.1                  | 253          | 12.9               | 59.5    |
| 1.00           | 261           | 3.0  | 96.1                  | 228          | 11.6               | 71.1    |
| 1.25           | 119           | 1.4  | 97.5                  | 134          | 6.8                | 77.9    |
| 1.50           | 87            | 1.0  | 98.5                  | 120          | 6.1                | 84.0    |
| 1.75           | 35            | 0.4  | 98.9                  | 57           | 2.9                | 86.9    |
| 2.00           | 35            | 0.4  | 99.3                  | 66           | 3.3                | 90.2    |
| 2.25           | 11            | 0.1  | 99.4                  | 23           | 1.2                | 91.4    |
| 2.50           | 14            | 0.2  | 99.6                  | 33           | 1.7                | 93.1    |
| 2.75           | 11            | 0.1  | 99.7                  | 29           | 1.5                | 94.6    |
| 3.00           | 12            | 0.1  | 99.8                  | 35           | 1.8                | 96.4    |
| 3.25           | 1             | 0.0  | 99.8                  | 3            | 0.2                | 96.6    |
| 3.50           | 3             | 0.0  | 99.8                  | 10           | 0.5                | 97.1    |
| 3.75           | 3             | 0.0  | 99.8                  | 11           | 0.5                | 97.6    |
| 4.00           | 6             | 0.1  | 99.9                  | 23           | 1.2                | 98.8    |
| 4.25           | 0             | 0.0  | 99.9                  | 0            | 0.0                | 98.8    |
| 4.50           | 0             | 0.0  | 99.9                  | 0            | 0.0                | 98.8    |
| 4.75           | 3             | 0.0  | 99.9                  | 14           | 0.7                | 99.5    |
| 5.00           | 0             | 0.0  | 99,9                  | 0            | 0.0                | 99.5    |
| 5.25           | 0             | 0.0  | 99.9                  | 0            | 0.0                | 99.5    |
| 5.50           | 0             | 0.0  | 99.9                  | 0            | 0.0                | 99.5    |
| 5.75           | 0             | 0.0  | 99.9                  | 0            | 0.0                | 99.5    |
| 6.00           | 0             | 0.0  | 99.9                  | 0            | 0.0                | 99.5    |
| 6.25           | 1             | 0.0  | 100.                  | 6            | 0.3                | 99.8    |
| 6.50           | 0             | 0.0  | 100.                  | 0            | 0.0                | 99.8    |
| 6,75           | 1             | 0.0  | 100.                  | 7            | 0.3                | 100.    |
| 7.00           | 0             | 0.0  | 100.                  | 0            | 0.0                | 100.    |
| 7.25           | 0             | 0.0  | 100.                  | 0            | 0.0                | 100.    |
| 7.50           | 0             | 0.0  | 100.                  | 0            | 0.0                | 100.    |
| 7.75           | 0             | 0.0  | 100.                  | 0            | 0.0                | 100.    |
| 8.00           | 0             | 0.0  | 100.                  | 0            | 0.0                | 100.    |
| 8.25           | 0             | 0.0  | 100.                  | 0            | 0.0                | 100.    |
| >8.25          | 0             | 0.0  | 100.                  | 0            | 0.0                | 100.    |





#### **Particle Size Distribution**

Removing silt particles from runoff ensures that the majority of the pollutants, such as hydrocarbons and heavy metals that adhere to fine particles, are not discharged into our natural water courses. The table below lists the particle size distribution used to define the annual TSS removal.

| Particle Size | Distribution | Specific<br>Gravity | Settling<br>Velocity | Particle Size | Distribution | Specific<br>Gravity | Settling<br>Velocity |
|---------------|--------------|---------------------|----------------------|---------------|--------------|---------------------|----------------------|
| μm            | %            | •                   | ft/s                 | μm            | %            |                     | ft/s                 |
| 1             | 0            | 2.65                | 0.0012               |               |              |                     |                      |
| 53            | 3            | 2.65                | 0.0083               |               |              |                     |                      |
| 75            | 15           | 2.65                | 0.0133               |               |              |                     |                      |
| 88            | 25           | 2.65                | 0.0180               |               |              |                     |                      |
| 106           | 40.8         | 2.65                | 0.0254               |               |              |                     |                      |
| 125           | 15           | 2.65                | 0.0343               |               |              |                     |                      |
| 150           | 1            | 2.65                | 0.0475               |               |              |                     |                      |

**Figure 1. Particle Size Distribution for 10 ac, 100% impervious.** Pollutant load based on OK-110 (sand only) as charted above.



**Figure 2.** Long Term Pollutant Load by Flow Rate for CHICAGO OHARE AP – 1549, 1962 to 2005 for 10 ac, 100% impervious. The majority of the annual pollutant load is transported by small frequent storm events. Conversely, large infrequent events carry an insignificant percentage of the total annual pollutant load.





١,

## Pollutograph

# " 0K-110 "

| Flow Rate | Influent Mass | Effluent Mass | Total Mass | Cumulative Mass |
|-----------|---------------|---------------|------------|-----------------|
| cfs       | ton           | ton           | ton        | %               |
| 0.035     | 8.2819        | 14,4573       | 22,7007    | 36.5            |
| 0.141     | 13,4486       | 9.2829        | 22.7007    | 59.2            |
| 0.318     | 16.2591       | 6,4713        | 22.7007    | 71.6            |
| 0.565     | 17.9465       | 4,7817        | 22,7007    | 79.1            |
| 0.883     | 19.0542       | 3.6663        | 22.7007    | 83.9            |
| 1.271     | 19.8319       | 2.8842        | 22,7007    | 87.4            |
| 1.73      | 20,4083       | 2,3034        | 22.7007    | 89.9            |
| 2.26      | 20.8516       | 1,8579        | 22,7007    | 91.9            |
| 2.86      | 21.2025       | 1.5048        | 22.7007    | 93.4            |
| 3.531     | 21,4841       | 1,2232        | 22,7007    | 94.6            |
| 4,273     | 21.7118       | 0.9955        | 22.7007    | 95.6            |
| 5.085     | 21,8933       | 0.8118        | 22.7007    | 96.4            |
| 5,968     | 22.0429       | 0.6622        | 22.7007    | 97.1            |
| 6.922     | 22,1661       | 0.5379        | 22.7007    | 97.6            |
| 7.946     | 22,2673       | 0.4356        | 22.7007    | 97.0            |
| 9.041     | 22,3487       | 0.3531        | 22.7007    | 98.4            |
| 10.206    | 22,4136       | 0.2871        | 22.7007    | 98.7            |
| 11,442    | 22.4675       | 0.2332        | 22,7007    | 98.7            |
| 12,749    | 22.5104       | 0.1903        | 22.7007    |                 |
| 14.126    | 22.5467       | 0.1503        | 22.7007    | 99.2            |
| 15.574    | 22.5753       | 0.1254        |            | 99.3            |
| 17.092    | 22.5995       | 0.1234        | 22.7007    | 99.4            |
| 18.681    | 22.6204       | 0.0803        | 22.7007    | 99.6            |
| 20.341    | 22.6358       | 0.0649        | 22.7007    | 99.6            |
| 22.072    | 22.6358       |               | 22.7007    | 99.7            |
| 23.873    | 22.6578       | 0.0528        | 22.7007    | 99.8            |
| 25.744    | 22.6655       | 0.0429        | 22.7007    | 99.8            |
| 27.687    | 22.6055       | 0.0352        | 22.7007    | 99.8            |
| 29.7      | 22.6721       | 0.0286        | 22.7007    | 99.9            |
| 31.783    |               | 0.0231        | 22.7007    | 99.9            |
| 01.700    | 22.682        | 0.0187        | 22,7007    | 99,9            |







#### Particle Size Distribution

Removing silt particles from runoff ensures that the majority of the pollutants, such as hydrocarbons and heavy metals that adhere to fine particles, are not discharged into our natural water courses. The table below lists the particle size distribution used to define the annual TSS removal.

|                                |                            |                                   | Fine (organics                                 | s, s | silts and sand) |              |                     |                      |
|--------------------------------|----------------------------|-----------------------------------|------------------------------------------------|------|-----------------|--------------|---------------------|----------------------|
| Particle Size                  | Distribution               | Specific<br>Gravity               | Settling<br>Velocity                           |      | Particle Size   | Distribution | Specific<br>Gravity | Settling<br>Velocity |
| μm                             | %                          |                                   | ft/s                                           |      | μm              | %            |                     | ft/s                 |
| 20<br>60<br>150<br>400<br>2000 | 20<br>20<br>20<br>20<br>20 | 1.3<br>1.8<br>2.2<br>2.65<br>2.65 | 0.0013<br>0.0051<br>0.0354<br>0.2123<br>0.9417 |      |                 |              |                     |                      |

Figure 1. Particle Size Distribution for 10 ac, 100% impervious. Pollutant load based on EPA's ETV "FINE" as charted above.



**Figure 2.** Long Term Pollutant Load by Flow Rate for CHICAGO OHARE AP – 1549, 1962 to 2005 for 10 ac, 100% impervious. The majority of the annual pollutant load is transported by small frequent storm events. Conversely, large infrequent events carry an insignificant percentage of the total annual pollutant load.





"Fine" EPAEN (recommended)

| Flow Rate | Influent Mass | Effluent Mass | Total Mass | Cumulative Mass |
|-----------|---------------|---------------|------------|-----------------|
| cfs       | ton           | ton           | ton        | %               |
| 0.035     | 116.9762      | 357,1007      | 472.4555   | 24.8            |
| 0.141     | 232.507       | 241,3642      | 472.4555   | 49.2            |
| 0.318     | 299.7841      | 173.9991      | 472.4555   | 63.5            |
| 0.565     | 340.1035      | 133.2716      | 472.4555   | 72.0            |
| 0.883     | 367.4242      | 105.7056      | 472.4555   | 77.8            |
| 1.271     | 387.2297      | 85.6955       | 472.4555   | 82.0            |
| 1.73      | 402.4999      | 70.2812       | 472.4555   | 85.2            |
| 2.26      | 414.7154      | 58.0096       | 472.4555   | 87.8            |
| 2.86      | 424.8178      | 47.8467       | 472.4555   | 89.9            |
| 3.531     | 433.1778      | 39.4526       | 472.4555   | 91.7            |
| 4.273     | 440.1771      | 32.4049       | 472.4555   | 93.2            |
| 5.085     | 446.0742      | 26.4616       | 472.4555   | 94.4            |
| 5.968     | 451.1111      | 21.4269       | 472.4555   | 95.5            |
| 6.922     | 455.2933      | 17.2403       | 472.4555   | 96.4            |
| 7.946     | 458.7132      | 13.8006       | 472.4555   | 97.1            |
| 9.041     | 461.4643      | 11.0396       | 472.4555   | 97.7            |
| 10.206    | 463.6148      | 8.8792        | 472.4555   | 98.1            |
| 11.442    | 465.3352      | 7.1368        | 472.4555   | 98.5            |
| 12,749    | 466.7124      | 5.7552        | 472.4555   | 98.8            |
| 14.126    | 467.8597      | 4.609         | 472.4555   | 99.0            |
| 15.574    | 468.798       | 3.6652        | 472.4555   | 99.2            |
| 17.092    | 469.568       | 2.8985        | 472.4555   | 99.4            |
| 18.681    | 470.1851      | 2.2781        | 472.4555   | 99.5            |
| 20.341    | 470.668       | 1,7864        | 472.4555   | 99.6            |
| 22.072    | 471.0343      | 1.4223        | 472.4555   | 99.7            |
| 23.873    | 471.3192      | 1.1341        | 472.4555   | 99.8            |
| 25.744    | 471.5436      | 0.9108        | 472.4555   | 99.8            |
| 27.687    | 471.7295      | 0.7249        | 472.4555   | 99.8            |
| 29.7      | 471.8824      | 0.5698        | 472,4555   | 99.9            |
| 31.783    | 472.0122      | 0.4411        | 472.4555   | 99.9            |

Eper 44 yr.s



Flow (cfs)





#### **Particle Size Distribution**

Removing silt particles from runoff ensures that the majority of the pollutants, such as hydrocarbons and heavy metals that adhere to fine particles, are not discharged into our natural water courses. The table below lists the particle size distribution used to define the annual TSS removal.

| Particle Size | Distribution | Specific<br>Gravity | Settling<br>Velocity | Particle Size | Distribution | Specific<br>Gravity | Settling<br>Velocity |
|---------------|--------------|---------------------|----------------------|---------------|--------------|---------------------|----------------------|
| μm            | %            |                     | ft/s                 | μm            | %            |                     | ft/s                 |
| 1             | 5            | 2.65                | 0.0012               |               |              |                     |                      |
| 4             | 15           | 2.65                | 0.0012               |               |              |                     |                      |
| 29            | 25           | 2.65                | 0.0025               |               |              |                     |                      |
| 75            | 15           | 2.65                | 0.0133               |               |              |                     |                      |
| 175           | 30           | 2.65                | 0.0619               |               |              |                     |                      |
| 375           | 5            | 2.65                | 0.1953               |               |              |                     |                      |
| 750           | 5            | 2.65                | 0.4266               |               |              |                     |                      |

Figure 1. Particle Size Distribution for 10 ac, 100% impervious. Pollutant load based on LEED recognized TARP protocol NJDEP as charted above.



**Figure 2.** Long Term Pollutant Load by Flow Rate for CHICAGO OHARE AP – 1549, 1962 to 2005 for 10 ac, 100% impervious. The majority of the annual pollutant load is transported by small frequent storm events. Conversely, large infrequent events carry an insignificant percentage of the total annual pollutant load.







## Pollutograph

| Flow Rate | Influent Mass | Effluent Mass | Total Mass | Cumulative Ma |
|-----------|---------------|---------------|------------|---------------|
| cfs       | ton           | ton           | ton        | %             |
| 0.035     | 27.8366       | 86,6393       | 114.0755   | 24.4          |
| 0.141     | 55.4004       | 59.0304       | 114.0755   | 48.6          |
| 0.318     | 71.6133       | 42.8021       | 114.0755   | 62.8          |
| 0.565     | 81,4242       | 32,9054       | 114.0755   | 71.4          |
| 0.883     | 88.1056       | 26,1646       | 114.0755   | 77.2          |
| 1.271     | 92,9731       | 21.2465       | 114.0755   | 81.5          |
| 1.73      | 96,7362       | 17.4471       | 114.0755   | 84.8          |
| 2.26      | 99,7447       | 14,4144       | 114.0755   | 87.4          |
| 2.86      | 102.2417      | 11.902        | 114.0755   | 89.6          |
| 3.531     | 104,3053      | 9.8241        | 114.0755   | 91.4          |
| 4.273     | 106.0411      | 8,0795        | 114,0755   | 93.0          |
| 5,085     | 107.5063      | 6,6066        | 114,0755   | 94.2          |
| 5.968     | 108.7427      | 5.3625        | 114.0755   | 95.3          |
| 6,922     | 109.7822      | 4.323         | 114,0755   | 96.2          |
| 7,946     | 110.6237      | 3.4705        | 114,0755   | 97.0          |
| 9.041     | 111.3068      | 2,7819        | 114.0755   | 97.6          |
| 10.206    | 111.8447      | 2.2418        | 114,0755   | 98.0          |
| 11.442    | 112,2792      | 1.804         | 114.0755   | 98.4          |
| 12.749    | 112.6235      | 1.4575        | 114.0755   | 98.7          |
| 14.126    | 112,9084      | 1.1715        | 114.0755   | 99.0          |
| 15.574    | 113.1438      | 0.935         | 114.0755   | 99.2          |
| 17.092    | 113.3385      | 0.7425        | 114.0755   | 99.4          |
| 18.681    | 113.4958      | 0.5841        | 114.0755   | 99.5          |
| 20.341    | 113.6212      | 0.4587        | 114.0755   | 99.6          |
| 22.072    | 113.7125      | 0.3663        | 114.0755   | 99.7          |
| 23,873    | 113.7862      | 0.2926        | 114.0755   | 99.7          |
| 25.744    | 113.8412      | 0.2365        | 114.0755   | 99.8          |
| 27.687    | 113.8885      | 0.1892        | 114.0755   | 99.8          |
| 29.7      | 113,9281      | 0.1496        | 114.0755   | 99.9          |
| 31.783    | 113.9611      | 0.1166        | 114.0755   | 99.9          |
| 01.100    | 110.0011      | 1 0.1100      | 211-4.0700 |               |

Sper 44 yr.s





| Rainfall Depth,<br>X (inches) |           | umber of Days with<br>Greater Than X" |           | its Annually with<br>han X" |
|-------------------------------|-----------|---------------------------------------|-----------|-----------------------------|
| 77 (                          | 1981-2010 | 1971-2010                             | 1981-2010 | 1971-2000                   |
| 0.01                          | 124.10    | 127.00                                | 0.00%     | 0.00%                       |
| 0.10                          | 69.10     | 69.90                                 | 44.32%    | 44.96%                      |
| 0.50                          | 22.70     | 22.50                                 | 81.71%    | 82.28%                      |
| 0.75 <sup>ª</sup>             | 14.88     | 14.64                                 | 88.01%    | 88.47%                      |
| 1.00                          | 8.30      | 8.10                                  | 93.31%    | 93.62%                      |
| 1.25 <sup>ª</sup>             | 1.84      | 1.24                                  | 98.52%    | 99.03%                      |

<sup>a</sup> The annual mean number of days with precipitation greater than 0.75" and 1.25" was interpolated using the regression equations below.

<sup>b</sup> The percent of events annually less than X", assumes that the annual mean number of events is equal to the number of events greater than 0.01" per year.



## Water Quality Analysis of Elgin O'Hare-West Bypass Project

PREPARED BY: CH2M HILL

DATE: February 15, 2012

The Elgin O'Hare – West Bypass (EO-WB) project has been evaluated to determine the potential effects stormwater runoff may have on water quality in area waterways. The water quality in area waterways was analyzed using recommended approaches contained in the Illinois Department of Transportation's *Bureau of Design and Environment Manual, Chapter 26 Special Environmental Analyses* (IDOT, 2010). Changes in water quality attributable to total suspended solids (TSS) and metals (copper, lead, zinc) were evaluated using the methodology outlined in the Federal Highway Administration's *Pollutant Loadings and Impacts from Highway Stormwater Runoff Volume I: Design Procedure* (FHWA, 1990). The effect of chloride from deicing activities on water quality was made using the methodology outlined in the United States Geological Survey report developed by Frost, Pollock, and Wakelee (USGS, 1981). This memorandum outlines the use of the two methodologies, data sources, and findings. Chloride concentrations were subsequently evaluated further in a companion memo *Chloride Concentration Analysis*, which is included in Attachment 1.

### Area of Interest

The EO-WB project crosses the following watersheds:

- West Branch DuPage River Watershed
  - West Branch DuPage River (main stem)
- Salt Creek Watershed
  - Spring Brook Creek
  - Meacham Creek
  - Salt Creek (main stem)
  - Addison Creek
- Des Plaines River Watershed
  - Higgins Creek
  - Willow Creek
  - Bensenville Ditch
  - Silver Creek

Exhibit 1 shows these watersheds within the EO-WB project area.

EXHIBIT 1 EO-WB and Impacted Watersheds



## **Background Data**

The project study area is highly urbanized. The project results in an increase in impervious area within the study area and which varies from watershed to watershed. To put the additional impervious area into context, road lane-miles within the study area and individual watersheds were compared under existing conditions, a No-Build Alternative in which the EO-WB is not constructed but planned highway widening occurs, and the Build alternative (Table 1).

| Lane-Mile Changes i       |                               |                                |                        |
|---------------------------|-------------------------------|--------------------------------|------------------------|
| Functional<br>Class       | 2010<br>Existing<br>Condition | 2040 No-<br>Build<br>Condition | 2040 Build<br>Analysis |
| Freeway                   | 421.3                         | 445.9                          | 642.7                  |
| Principal Arterial        | 414.7                         | 414.7                          | 393.9                  |
| Minor Arterial            | 496.1                         | 496.1                          | 504.9                  |
| Collector                 | 278.5                         | 278.5                          | 309.1                  |
| Local Roads               | 1,140.0                       | 1,140.0                        | 1,140.0                |
| Total                     | 2,750.6                       | 2,775.2                        | 2,990.6                |
| Increase from<br>No-Build | NA                            | NA                             | 215.4                  |

The project results in a lane-mile

increase of 7.2 percent across the study area. When looking at the individual watersheds shown in Exhibit 1, the lane-mile increase averaged 16.5 percent across all the watersheds, with individual watersheds having an increase in lane-miles ranging from 4 to 38 percent as shown in Table 2.

TABLE 1

| Watershed Name           | 2010 Existing<br>Condition | 2040 Build Total<br>Lane Miles | Additional<br>Lane Miles | Percentage<br>Increase |
|--------------------------|----------------------------|--------------------------------|--------------------------|------------------------|
| West Branch DuPage River | 161.4                      | 168.1                          | 6.7                      | 4.2%                   |
| Spring Brook Creek       | 94.0                       | 100.8                          | 6.8                      | 7.3%                   |
| Meacham Creek            | 206.2                      | 228.3                          | 22.0                     | 10.7%                  |
| Salt Creek               | 153.7                      | 204.2                          | 50.6                     | 32.9%                  |
| Willow Creek             | 130.2                      | 179.5                          | 49.3                     | 37.9%                  |
| Higgins Creek            | 281.9                      | 316.5                          | 34.6                     | 12.3%                  |
| Bensenville Ditch        | 90.9                       | 106.3                          | 15.4                     | 16.9%                  |
| Silver Creek             | 70.4                       | 93.6                           | 23.2                     | 32.9%                  |
| Addison Creek            | 293.4                      | 329.1                          | 35.7                     | 12.2%                  |
| Total                    | 1,482.1                    | 1,726.4                        | 244.3                    | 16.5%                  |

#### TABLE 2

Lane-Mile Increases in the Project Area

The study area is already significantly developed. For example, prior watershed studies have analyzed the West Branch DuPage River and Salt Creek watersheds. Overall, the West Branch DuPage River and Salt Creek watersheds were found to have 13 and 23 percent impervious area, respectively, with 49 and 75 percent urbanized area, respectively, based upon year 2000 land use data (CH2M HILL, 2003, 2004). Significant development in these watersheds has continued since that time. Land use within several watersheds affected by

this project is shown in Table 3. With the level of development that has occurred in the watersheds, runoff is expected to exhibit storm water runoff pollution similar to other urbanized watersheds.

|                                      |         |       |                       |      | Watersh      | ed <sup>a</sup> |                    |      |          |       |
|--------------------------------------|---------|-------|-----------------------|------|--------------|-----------------|--------------------|------|----------|-------|
|                                      | Addison | Creek | Des Plaine<br>(main s |      | Salt Cr      | eek             | West Bra<br>DuPage |      | Willow C | creek |
| Land Use                             | acres   | %     | acres                 | %    | acres        | %               | acres              | %    | acres    | %     |
| Agricultural                         | 0.6     | 0.0   | 46.4                  | 0.1  | 295.9        | 0.6             | 940.6              | 4.4  | 69.6     | 0.5   |
| Commercial                           | 1,128.8 | 7.3   | 4,619.4               | 8.2  | 5,814.5      | 11.5            | 1,135.0            | 5.3  | 922.9    | 7.0   |
| Industrial                           | 2,466.4 | 16.0  | 4,371.1               | 7.8  | 2,448.6      | 4.9             | 296.6              | 1.4  | 5,071.1  | 38.3  |
| Institutional                        | 1,628.1 | 10.5  | 5,087.6               | 9.1  | 2,342.9      | 4.6             | 676.7              | 3.2  | 88.1     | 0.7   |
| Open Space                           | 1,021.7 | 6.6   | 7,170.4               | 12.8 | 9,237.2      | 18.3            | 4,670.3            | 22.0 | 652.7    | 4.9   |
| Residential                          | 7,233.4 | 46.8  | 28,879.8              | 51.4 | 24,464.<br>7 | 48.5            | 11,047.<br>9       | 51.9 | 1,525.8  | 11.5  |
| Transportation                       | 1,686.1 | 10.9  | 4,331.3               | 7.7  | 1,987.5      | 3.9             | 501.6              | 2.4  | 4,302.2  | 32.5  |
| Vacant/<br>Wetlands/<br>Construction | 237.3   | 1.5   | 1,050.7               | 1.9  | 2,636.9      | 5.2             | 1,521.5            | 7.2  | 559.4    | 4.2   |
| Water                                | 70.3    | 0.5   | 653.9                 | 1.2  | 1,257.3      | 2.5             | 497.9              | 2.3  | 48.1     | 0.4   |

## TABLE 3 Watershed Land Use Summary

Source: CMAP, 2005

Note: Land use acreages are from CMAP and may vary from data provided by other sources found in other tables within this document.

<sup>a</sup> Includes the 12-digit HUC sub-watersheds that the project corridor is located in.

The additional lane-miles were evaluated by individual watershed. The analysis of each watershed included the drainage area tributary to each crossing, existing and proposed 2040 Build impervious areas within the highway right of way, and existing and proposed 2040 Build EO-WB lane miles within each watershed. Table 4 lists this information. Impervious areas within the project footprint for existing conditions were compared to the impervious area under the proposed 2040 Build condition. The water quality analysis was made at the farthest downstream crossing of each waterway.

Storm water pollution from urbanized watersheds has been summarized in A Compilation and Analysis of NPDES Stormwater Monitoring Information from The National Stormwater Quality Database, Version 1.1 (Center for Watershed Protection, 2005), which also reviewed several prior national studies. A summary of the urban stormwater runoff quality for TSS and metals is included in Table 5.

## TABLE 4Watershed Parameters

|                                 |                                                              |                                             | ight-of-Way<br>Area (acres)           | Highway Lane Miles             |                          |  |
|---------------------------------|--------------------------------------------------------------|---------------------------------------------|---------------------------------------|--------------------------------|--------------------------|--|
| River                           | Drainage Area<br>Tributary to<br>Crossing (mi <sup>2</sup> ) | 2010<br>Existing<br>Conditions <sup>a</sup> | 2040 Build<br>Conditions <sup>b</sup> | 2010<br>Existing<br>Conditions | 2040 Build<br>Conditions |  |
| Addison Creek                   | 6.0                                                          | 62.74                                       | 83.37                                 | 47.52                          | 74.39                    |  |
| Silver Creek <sup>c</sup>       | 6.5                                                          | 65.73                                       | 73.80                                 | 12.84                          | 47.19                    |  |
| Bensenville Ditch               | 1.9                                                          | 11.90                                       | 27.98                                 | 0.92                           | 13.89                    |  |
| Willow Creek                    | 6.0                                                          | 98.35                                       | 163.06                                | 0                              | 50.29                    |  |
| Higgins Creek                   | 7.0                                                          | 121.76                                      | 184.59                                | 44.87                          | 78.99                    |  |
| Salt Creek                      | 71                                                           | 101.54                                      | 162.28                                | 23.46                          | 67.04                    |  |
| Meacham Creek                   | 2.9                                                          | 50.16                                       | 78.73                                 | 27.14                          | 43.77                    |  |
| Spring Brook Creek <sup>d</sup> | 0                                                            | 19.16                                       | 23.70                                 | 6.21                           | 11.34                    |  |
| West Branch DuPage River        | 4.5                                                          | 31.82                                       | 37.87                                 | 6.89                           | 10.62                    |  |

<sup>a</sup> Total impervious area within the footprint of the proposed EO-WB 2040 Build

<sup>b</sup> Total impervious area of the EO-WB

<sup>c</sup> Silver Creek total highway miles includes upstream highway miles from Bensenville Ditch.

<sup>d</sup> For water quality analysis, the start of the IEPA stream layer was used for determining tributary area because Spring Brook Creek does not have a highway crossing.

#### TABLE 5

Urban Storm water Runoff Quality for TSS and Metals

| Data Description                                                       | TSS<br>(mg/L) | Copper, Total<br>(mg/L) | Lead, Total<br>(mg/L) | Zinc, Total<br>(mg/L) |
|------------------------------------------------------------------------|---------------|-------------------------|-----------------------|-----------------------|
| National Stormwater Database (average)                                 | 79            | 0.016                   | 0.017                 | 0.116                 |
| National Stormwater Database (maximum)                                 | 4,800         | 1.360                   | 1.200                 | 22.500                |
| Prior study comparison range in National Stormwater Database (average) | 78 to 174     | 0.0135 to<br>0.0666     | 0.0675 to<br>0.175    | 0.162 to<br>0.176     |

Based upon guidance provided in the Federal Highway Administration's *Pollutant Loadings and Impacts from Highway Stormwater Runoff Volume I: Design Procedure* (FHWA, 1990), a reasonable estimate of the soluble fraction of metals is suggested to be: 40 percent for copper, 10 percent for lead, and 40 percent for zinc. The analysis used in this memorandum calculates dissolved metal concentrations.

The water quality values to be calculated for the EO-WB project are expected to be higher for TSS and dissolved metals since they represent once in 3-year values instead of average values. As a result, the concentrations determined by this study are expected to be higher than the average values from those found in the National Stormwater Quality Database.

Data from numerous sources were used as inputs to the water quality analysis. In addition to the watershed- and project-specific data, other data such as precipitation data, flow data,

water quality sampling data, and Illinois Environmental Protection Agency (IEPA) water quality criteria were used in the analysis.

#### **Precipitation Data**

Hourly precipitation data were from the NOAA Station 11-1549 gage at O'Hare airport. Historical data from June 1, 1962, through December 31, 2009, were available. The data were analyzed using the rainfall utility in the hydraulic modeling software XP-SWMM to determine individual storms within the period of record. The mean, standard deviation, and coefficient

| TABLE 6                        |
|--------------------------------|
| Summary of Historical Rainfall |
|                                |

| Parameter                  | Mean  | Standard<br>Deviation | Coefficient of Variation |
|----------------------------|-------|-----------------------|--------------------------|
| Average volume (in.)       | 0.42  | 0.6                   | 1.6                      |
| Average intensity (in./hr) | 0.07  | 0.2                   | 2.2                      |
| Average duration (hr)      | 14.1  | 19.4                  | 1.4                      |
| Average interval (hr)      | 155.1 | 165.5                 | 1.07                     |

of variation were determined for the volume of rainfall, intensity, duration, and storm interval, all required inputs for the FHWA pollutant loading analysis procedure (FHWA, 1990). A 24-hour dry period was used as the minimum time between individual storms. Table 6 lists the precipitation parameters calculated from the historical rainfall data at O'Hare.

Because of the proximity of the project area to O'Hare airport, the precipitation data from the airport gage was used for the water quality analysis in all watersheds crossed by the project. For the chloride water quality analysis (USGS, 1981), the annual precipitation is needed. The annual precipitation for Station 11-1549 (O'Hare airport) is 36.27 inches. This average is based on historical data from 1971 through 2000.

#### **Streamflow Data**

Streamflow data were not available for specific rivers and creeks in the project area or for nearby sampling sites. Instead, streamflow data from several different USGS gages were used to determine the average flow rate per square mile for the area. Table 7 lists the USGS gages used in this analysis.

#### Water Quality Background Data

The Illinois Natural History Survey (INHS) conducted a series of two water quality sampling efforts for the project. The data obtained were used to determine background concentrations within the rivers for the analysis. Others also have conducted water quality sampling efforts within these watersheds. Some of the data available include data collected by the IEPA, the Metropolitan Water Reclamation District of Greater Chicago, and the DuPage River Salt Creek Workgroup. The Workgroup has conducted conductivity/chloride measurements on the West Branch DuPage River and Salt Creek, and other watersheds in the area. The Workgroup has actively sought to document chloride concentrations in the watersheds throughout the year, but especially during winter months when road deicing material contributes chlorides to the watersheds. A study in the 2007/2008 winter found chloride concentrations in winter months frequently exceeded the 500 mg/L water quality standard (CDM, 2008).

#### TABLE 7

Summary of USGS Gage Data

| Gage    | Location                                           | Drainage<br>Area<br>(miles <sup>2</sup> ) | Average<br>Annual<br>Flow (cfs) | Average Annual Flow<br>(cfs) / Drainage Area<br>(miles <sup>2</sup> ) | Coefficient<br>of<br>Variation |
|---------|----------------------------------------------------|-------------------------------------------|---------------------------------|-----------------------------------------------------------------------|--------------------------------|
| 5539900 | West Branch Du Page River near<br>West Chicago, IL | 28.5                                      | 45.44 <sup>a</sup>              | 1.59                                                                  | 1.35                           |
| 5540275 | Spring Brook at 87th Street near<br>Naperville, IL | 9.9                                       | 11.35 <sup>b</sup>              | 1.15                                                                  | 2.25                           |
| 5530990 | Salt Creek at Rolling Meadows, IL                  | 30.5                                      | 33.63 <sup>c</sup>              | 1.10                                                                  | 1.98                           |
| 5531044 | Salt Creek near Elk Grove Village, IL              | 51.9                                      | 57.98 <sup>d</sup>              | 1.12                                                                  | 1.88                           |
| 5531300 | Salt Creek at Elmhurst, IL                         | 91.5                                      | 149.71 <sup>e</sup>             | 1.64                                                                  | 1.13                           |
| 5532000 | Addison Creek at Bellwood, IL                      | 17.9                                      | 21.38 <sup>f</sup>              | 1.19                                                                  | 1.47                           |
|         |                                                    | Average                                   | 53.25                           | 1.30                                                                  | 1.68                           |

<sup>a</sup> Data available from July 27, 1961, through April 19, 2011. Only years 1980 through 2011 were used for analysis. A review of the data showed increases in flow from 1961 through 1980, presumably from development.

<sup>b</sup> Data available from October 1, 1987, through April 19, 2011.

<sup>c</sup> Data available from July 12, 1973, through April 19, 2011.

<sup>d</sup> Data available from June 15, 1992, through April 19, 2011.

<sup>e</sup> Data available from June 1, 1989, through April 19, 2011.

<sup>f</sup> Data available from August 16, 1950, through April 19, 2011. Only years 1980 through 2011 were used for analysis. A review of the data showed increases in flows from 1950 through 1980, presumably from development.

A subsequent longer-term data collection effort at several locations along the Salt Creek watershed found the average chloride concentration over the winter season to be over 500 mg/L while the concentration outside of the winter season to be 200 to 300 mg/L. In the West Branch DuPage River, the winter season deicing chloride average concentration was 428 mg/L. A comparison of how the winter deicing season values compare to values throughout the year and outside of the deicing season is shown in Table 8.

#### TABLE 8

Variation in Chloride Concentration For Different Times of the Year

|                                                         | Salt Creek<br>at Busse<br>Woods | Salt Creek<br>at Wolf<br>Road | Salt<br>Creek at<br>JFK Blvd | West Branch<br>DuPage River at<br>Arlington Drive |
|---------------------------------------------------------|---------------------------------|-------------------------------|------------------------------|---------------------------------------------------|
| Annual Average (2010)                                   | 428.1                           | 358.4                         | 345.5                        | N/A                                               |
| Winter Average (Jan–Mar, Nov– Dec) 2010                 | 605.6                           | 576.1                         | 503.4                        | 428.3                                             |
| Average (Apr–Oct)                                       | 297.5                           | 256.8                         | 269.9                        | N/A                                               |
| Average (2010 INHS flow monitoring period) <sup>a</sup> | 312.9                           | 269.0                         | 299.0                        | N/A                                               |

Note: West Branch DuPage River data is from Jan-Feb 2010.

<sup>a</sup>INHS monitoring data May 27, 2010 and June 24, 2010. Average of May and June 2010 at Salt Creek monitoring station equals 266 mg/L.

The IEPA has also collected data within the watersheds. Data from 1999 to 2009 for locations within the Addison Creek, Salt Creek, and West Branch DuPage River watersheds are

shown in Table 9. A comparison of the TSS, copper, lead, and zinc values in Table 9 to the National Stormwater Database averages shows the values in Salt Creek and the West Branch DuPage River are lower on average than the average found in the National Stormwater Database. The National Stormwater Database values represent wet weather runoff from urbanized areas while the IEPA values would include dry weather sampling. IEPA data were also requested for Higgins Creek, Bensenville Ditch, and Silver Creek, but no data were available for these parameters during this period.

#### TABLE 9

1999 to 2009 Water Quality Data for Locations Within the Addison Creek, Salt Creek, and West Branch DuPage River Watersheds

|                 | TSS<br>(mg/L)    | Chloride<br>(mg/L) | Copper<br>(mg/L) | Lead<br>(mg/L)  | Zinc<br>(mg/L)  |
|-----------------|------------------|--------------------|------------------|-----------------|-----------------|
| Addison Creek   | Watershed (GLA-0 | 2)                 |                  |                 |                 |
| Average         | 23               | 389                | 0.008            | 0.003           | 0.062           |
| Range           | 2 to 58          | 67 to 1,780        | 0.001 to 0.020   | <0.001 to 0.007 | 0.007 to 0.100  |
| Salt Creek Wate | rshed (GL-09)    |                    |                  |                 |                 |
| Average         | 28               | 250                | 0.008            | 0.003           | 0.062           |
| Range           | 2 to 150         | 19 to 890          | 0.002 to 0.010   | <0.001 to 0.005 | 0.004 to 0.100  |
| West Branch Du  | Page River (GBK- | 09)                |                  |                 |                 |
| Average         | 32               | 226                | 0.007            | 0.003           | 0.060           |
| Range           | 1 to 232         | 18 to 853          | <0.001 to 0.019  | <0.001 to 0.006 | <0.001 to 0.100 |

In 2009 water quality samples were taken by INHS within Addison Creek, Higgins Creek, Meacham Creek, Salt Creek, and Willow Creek (INHS, 2009). Samples were taken June 16, August 10, and October 28, 2009. In 2010, water quality samples were taken within Spring Brook Creek and the tributary to the West Branch DuPage River. The samples were taken May 27 and June 24, 2010 (INHS, 2010). Hardness data from both sample sets were used to calculate IEPA water quality criteria when needed (described in the next section). The data used in this analysis are contained in Attachment 2 and summarized in Table 10. A review of USGS flow data in nearby streams indicates these data collection efforts represent dry weather conditions in the stream. The focus of this analysis is upon wet weather runoff. Consequently, values during wet runoff conditions are expected to vary from those collected for background conditions.

#### **IEPA Water Quality Criteria**

IEPA Part 302 Water Quality Standards were used to calculate acute and chronic standards for copper, lead, and zinc. The standards are based upon the hardness within each water body. The standard criterion for chloride is 500 mg/L. There is no IEPA numeric criterion for TSS. Table 11 lists the calculated acute and chronic criteria. The chronic zinc standard reflects the proposed Illinois Pollution Control Board change R2011-018.

|                   | Average and Range of Sampling Data |                 |                  |                 |                  |                          |                             |
|-------------------|------------------------------------|-----------------|------------------|-----------------|------------------|--------------------------|-----------------------------|
| Parameter (mg/L)  | Addison<br>Creek                   | Willow<br>Creek | Higgins<br>Creek | Salt<br>Creek   | Meacham<br>Creek | Spring<br>Brook<br>Creek | West Branch<br>DuPage River |
| TSS               |                                    |                 |                  | Not Test        | ted              |                          |                             |
| Copper average,   | 0.011                              | 0.018           | 0.019            | 0.009           | 0.008            | 0.005                    | 0.006                       |
| Copper range,     | 0.011–<br>0.013                    | 0.005–<br>0.032 | 0.001–<br>0.030  | 0.006–<br>0.013 | 0.006–<br>0.011  | 0.004–<br>0.007          | 0.006–0.007                 |
| Lead average,     | < 0.041                            | < 0.041         | < 0.041          | < 0.041         | < 0.041          | < 0.041                  | < 0.041                     |
| Lead range,       | < 0.041                            | < 0.041         | < 0.041          | < 0.041         | < 0.041          | < 0.041                  | < 0.041                     |
| Zinc average,     | 0.062                              | 0.063           | 0.140            | 0.073           | 0.043            | 0.013                    | 0.030                       |
| Zinc range,       | 0.019–<br>0.137                    | 0.009–<br>0.158 | 0.073–<br>0.195  | 0.013–<br>0.187 | 0.008–<br>0.111  | 0.008–<br>0.018          | 0.015–0.046                 |
| Chloride average, | 179.3                              | 203             | 161              | 226.3           | 198.7            | 183.0                    | 178.5                       |
| Chloride range,   | 158–199                            | 140–302         | 113–224          | 181–309         | 112–330          | 155–211                  | 154–203                     |
| Sample Dates      | Ju                                 | une 16, Augu    | ist 10, and Oc   | ctober 28, 20   | )09              | May 27 ar                | nd June 24, 2010            |

## TABLE 10 Summary of INHS Sampling Data

Note: Average values in **bold** exceed the chronic water quality standard.

Silver Creek and Bensenville Ditch were not sampled. The hardness data for all sampled rivers are similar, so the lowest value (229) was used for both Silver Creek and Bensenville Ditch. Using the lowest hardness value forces the criteria to be lower, and therefore the acute and chronic criteria threshold is more conservative.

#### Comparison of Chronic Water Quality Criteria to Background Data

A comparison of Tables 10 and 11 indicates the average background concentration of copper, lead, and zinc is less than the chronic water quality standard, except in Higgins Creek and Salt Creek. Higgins Creek is impaired for zinc and is being targeted for point source reductions after which it will be reassessed for meeting zinc water quality standards (AECOM, 2009). The Salt Creek zinc background concentration varied with two of the three samples being less than the chronic standard and one being greater than the chronic standard. A comprehensive list of background water quality data is contained in Attachment 2.

### **Event-Mean Concentration**

The FHWA documents site median concentrations of pollutants (mg/L) for TSS, copper, lead, and zinc. For this water quality analysis, metals data from the National Cooperative Highway Research Program report no. 474 were used (NCHRP, 2002). The NCHRP report used site median concentrations from a Michigan Department of Transportation (CH2M HILL, 1998) study. The NCHRP report compared the more recent Michigan Department of Transportation (MDOT) data and the historical FHWA site mean concentrations. The NCHRP report notes that the historical FHWA report includes data

| TABLE 11                                        |
|-------------------------------------------------|
| Acute and Chronic Criteria Calculated from IEPA |
| Part 302 Water Quality Standards                |

| Pollutant                                    | Acute Criteria<br>(mg/L)  | Chronic<br>Criteria (mg/L) |  |  |  |  |
|----------------------------------------------|---------------------------|----------------------------|--|--|--|--|
| Addison Cre                                  | ek ( <i>Hardness =</i> 2  | 90)                        |  |  |  |  |
| Copper                                       | 0.046                     | 0.028                      |  |  |  |  |
| Lead                                         | 0.236                     | 0.050                      |  |  |  |  |
| Zinc                                         | 0.295                     | 0.077                      |  |  |  |  |
| Higgins Cree                                 | ek ( <i>Hardness =</i> 27 | 78)                        |  |  |  |  |
| Copper                                       | 0.045                     | 0.027                      |  |  |  |  |
| Lead                                         | 0.226                     | 0.047                      |  |  |  |  |
| Zinc                                         | 0.284                     | 0.074                      |  |  |  |  |
| Meacham C                                    | reek ( <i>Hardness</i> =  | 308)                       |  |  |  |  |
| Copper                                       | 0.049                     | 0.030                      |  |  |  |  |
| Lead                                         | 0.251                     | 0.053                      |  |  |  |  |
| Zinc                                         | 0.310                     | 0.081                      |  |  |  |  |
| Salt Creek (                                 | Hardness = 248)           |                            |  |  |  |  |
| Copper                                       | 0.040                     | 0.025                      |  |  |  |  |
| Lead                                         | 0.200                     | 0.042                      |  |  |  |  |
| Zinc                                         | 0.258                     | 0.067                      |  |  |  |  |
| West Branch                                  | n DuPage River ( <i>F</i> | lardness = 229)            |  |  |  |  |
| Copper                                       | 0.037                     | 0.023                      |  |  |  |  |
| Lead                                         | 0.184                     | 0.039                      |  |  |  |  |
| Zinc                                         | 0.241                     | 0.063                      |  |  |  |  |
| Willow Creel                                 | k (Hardness = 230         | ))                         |  |  |  |  |
| Copper                                       | 0.037                     | 0.023                      |  |  |  |  |
| Lead                                         | 0.185                     | 0.039                      |  |  |  |  |
| Zinc                                         | 0.242                     | 0.063                      |  |  |  |  |
| Spring Brook Creek ( <i>Hardness = 316</i> ) |                           |                            |  |  |  |  |
| Copper                                       | 0.050                     | 0.030                      |  |  |  |  |
| Lead                                         | 0.258                     | 0.054                      |  |  |  |  |
| Zinc                                         | 0.317                     | 0.083                      |  |  |  |  |

from the era in which leaded gasoline was still in use and sampling techniques did not use "clean" techniques for metals. Consequently, the FHWA data are not representative of current conditions. As a result, the NCHRP data were used for the metals analysis. This NCHRP report does not include data for TSS, so the FHWA site median concentration was still used. Table 12 summarizes a comparison of the site median concentrations from NCHRP and the FHWA.

#### TABLE 12

Comparison of Site Median Concentrations from NCHRP Analysis and FHWA Procedure

|                     | Average Daily Traffic Greater Than<br>30,000 |      |  |  |  |  |  |  |  |  |
|---------------------|----------------------------------------------|------|--|--|--|--|--|--|--|--|
| Pollutant<br>(µg/L) | NCHRP (from MDOT<br>study)                   | FHWA |  |  |  |  |  |  |  |  |
| Copper              | 41                                           | 54   |  |  |  |  |  |  |  |  |
| Lead                | 25                                           | 400  |  |  |  |  |  |  |  |  |
| Zinc                | 187                                          | 329  |  |  |  |  |  |  |  |  |

#### Average Daily Traffic

The average daily traffic (ADT) for the project is generally greater than 30,000 vehicles per day for any one highway direction. There are only two segments out of 40 highway segments analyzed with year 2040 traffic volumes less than 30,000. Consequently all traffic volumes are greater than 30,000 ADT for water quality analysis purposes. This places the project in an urban transportation setting for the FHWA water quality analysis procedure.

#### Slope of Stream Channel

The USGS chloride analysis methodology incorporates the slope of the river channel with other parameters. The slope used in this analysis is the slope of the main channel, in feet per mile, between points 10 percent and 85 percent along the stream from monitoring site to the topographic divide. The slope (ft/mi) was calculated using USGS quad maps showing the topographic data and the stream within the project watershed boundaries.

## Applied Salt Loading

The amount of salt applied to the roadways is needed for the chloride analysis. Data from the Illinois Tollway and the Illinois Department of Transportation (IDOT) were used to determine the average salt usage per highway lane mile. The Illinois Tollway provided representative salt usage data for 2001–2002 through the 2010–2011 snow seasons. IDOT provided salt usage data for the 2006–2011 snow seasons. The average of the two sets of data was used to determine typical tons of chloride per mile per year (Table 13). The annual average was used in the analysis to be representative of recent seasonal variation. Table 13 lists the data used to determine tons/mile for the analysis. The average over the time period of 39.7 tons/lane-mile was selected for the analysis to represent average conditions.

| Yearly Salt Usage Data f | rom Illinois Tollway and Illinois D | epartment of Transportation | ו (IDOT)         |
|--------------------------|-------------------------------------|-----------------------------|------------------|
| Snow Season              | Tons of Salt Used                   | Lane Miles                  | Tons / Lane Mile |
| Illinois Tollway 05 Se   | ction                               |                             |                  |
| 2001–2002                | 4,265                               | 154.6                       | 27.6             |
| 2002–2003                | 5,534                               | 154.6                       | 35.8             |
| 2003–2004                | 5,727                               | 154.1                       | 37.2             |
| 2004–2005                | 7,443                               | 155.6                       | 47.8             |
| 2005–2006                | 4,832                               | 155.6                       | 31.1             |
| 2006–2007                | 7,210                               | 155.6                       | 46.3             |
| 2007–2008                | 10,389                              | 155.6                       | 66.8             |
| 2008–2009                | 6,540                               | 155.6                       | 42.0             |
| 2009–2010                | 5,801                               | 161.6                       | 35.9             |
| 2010–2011                | 5,976                               | 161.6                       | 37.0             |
| 10 Year Average.         | 6,371.7                             |                             | 40.7             |
| IDOT Rodenburg Roa       | ad Yard (Elgin O'Hare)              |                             |                  |
| 2006                     | 6,083                               | 348                         | 17.5             |
| 2007                     | 10,951                              | 348                         | 31.5             |
| 2008                     | 18,032                              | 337                         | 53.5             |
| 2009                     | 12,101                              | 337                         | 35.9             |
| 2010                     | 19,714                              | 337                         | 58.5             |
| 2011                     | 11,973                              | 337                         | 35.5             |
| 6 Year Average.          | 7,885.4                             |                             | 38.7             |
| Overall Average          |                                     |                             | 39.7             |

#### TABLE 13 Yearly Salt Usage Data from Illinois Tollway and Illinoi

## Methodology

The data described in the previous sections are the inputs to the two methodologies used in this analysis. The FHWA procedure *Pollutant Loadings and Impacts from Highway Stormwater Runoff Volume I: Design Procedure* was used for the TSS, copper, lead, and zinc analysis. The USGS procedure developed by Frost, Pollock, and Wakelee (USGS, 1981) was used for the chloride analysis.

### **TSS and Metals Analysis Procedure**

The FHWA procedure uses the percent imperviousness, rainfall characteristics, site median concentration, watershed drainage area, and streamflow to calculate the once in 3 year stream pollutant concentration; that concentration was compared to IEPA water quality criteria to determine how the stream may be affected by highway runoff. Only the impervious area within the highway right-of-way was used, because it represents the source area for urban highway pollutant runoff. The paved surface area and percent imperviousness was therefore 100 percent for the analysis.

Attachment 3 contains the FHWA procedure worksheets for each watershed, for both existing and 2040 Build conditions without BMPs.

### **Chloride Analysis Procedure**

The FHWA procedure does not include an analysis for chloride. Therefore the 1981 USGS analysis procedure was used for the chloride analysis. This long-standing methodology has been used for other chloride water quality analysis for IDOT. The methodology uses the drainage area of each watershed, lane miles within each watershed, river slope, annual precipitation, and the tons per lane-mile salt applied to calculate the annual daily average chloride concentration and annual daily maximum chloride concentration.

Attachment 1 contains the memorandum of the chlorides analysis including results.

## **Pollutant Reduction through Best Management Practices**

Best management practices (BMPs) will be implemented along the proposed project corridor. The BMPs will be wet ponds, dry ponds, grassed swales, bioswales, or similar. Wet pond BMP locations near O'Hare International Airport are being coordinated with the Federal Aviation Administration (FAA) because of the open water and habitat being a potential wildlife attractant. Numerous studies have been conducted to summarize pollutant reductions from BMPs. Several were reviewed as follows to determine a planning level pollutant load reduction when applied to the project:

- National Pollutant Removal Performance Database (September 2007)
  - Dry pond removal median values: TSS (49 percent), Cu (29), Zn (29)
  - Wet pond removal median values: TSS (80 percent), Cu (57), Zn (64)
  - Open channel median values: TSS (81 percent), Cu (65), Zn (71)
- FHWA, Stormwater BMPs in an Ultra-Urban Setting: Selection and Monitoring (May 2000)
   Dry detention pond removal: TSS (67–93 percent)
  - Extended detention wet pond removal: TSS (76 percent), metals (50–57 percent)
- FHWA, Evaluation and Management of Highway Runoff Water Quality (June 1996)
  - Extended detention dry pond removal: sediments (68-90 percent), metals (42-90)
  - Wet pond removal: sediments (90 percent), metals (n/a)
  - Grassed swales removal: sediments (70 percent), metals (50-90)

Other BMPs considered during the evaluation include a bioswale, which is defined as a grass swale with the bottom width containing an underdrain in an engineered soil media designed to encourage infiltration. The bioswale will encourage infiltration, thereby

removing suspended solids through filtering and other mechanisms. The Illinois Tollway has constructed bioswale and other storm water BMPs to improve water quality and is active in monitoring the bioswale BMP performance. However, performance data for the Illinois Tollway bioswale are not expected to be available until mid-2012.

The International Stormwater BMP Database was reviewed for performance of similar BMPs. A BMP documented in the database <sup>1</sup>describes the performance of a BMP similar to the bioswale BMP envisioned for implementation on the EO-WB project. The report describes the BMP as an "ecology embankment" (renamed in June 2008 to "media filter drain") and documents the BMP performance between 2001 and 2005 from data collected and analyzed for contaminant removal efficiencies. The ecology embankment achieved the following removal efficiencies:

- TSS: 94 percent average; for modeling purposes 90 percent was used
- Total Zn: 85 percent average; for modeling purposes 85 percent was used
- Total Cu: 86 percent average; for modeling purposes 85 percent was used

Because the removal rates are very good with the ecology embankment and the performance of BMPs constructed by the Illinois Tollway are not yet known, to be conservative the bioswale performance was modeled using the average performance of a grass swale and the ecology embankment. Therefore, for bioswale water quality modeling purposes, the following were assumed:

- TSS: 80 percent average removal
- Total Metals (copper, lead, zinc): 68 percent average removal

As bioswale performance data become available from the Illinois Tollway, a revision to the potential performance expected with bioswales for the project may be considered.

For the purpose of this study, the following conservative BMP performance is used based upon averages from these literature sources for proposed BMP performance:

- Dry detention pond: 50 percent TSS removal, 30 percent metals removal
- Wet detention pond: 80 percent TSS removal, 50 percent metals removal
- Grassed swale: 70 percent TSS removal, 50 percent metals removal
- Bioswale: 80 percent TSS removal, 68 percent metals removal
- Ecology Embankment: 90 percent TSS removal, 85 percent metals removal

A visual review of the study area adjacent to the proposed 2040 Build condition highways indicated there are few BMPs under existing conditions. There are limited detention ponds along the transportation corridor treating highway runoff and grassed swales do not appear to have been designed specifically for pollutant removal. The exception appears to be the existing Elgin-O'Hare Expressway west of Illinois State Highway 53 where grassed medians and grassed ditches are present. Consequently, under existing conditions, it is assumed that existing detention ponds will provide the average removal efficiencies listed above, but grassed swales will only be assumed to provide one-third of the pollutant removal efficiency typically expected from well-designed swales for areas east of Illinois Highway 53

<sup>&</sup>lt;sup>1</sup> The bioswale-type BMP is detailed in *Technology Evaluation and Engineering Report: WSDOT Ecology Embankments*, prepared for the State of Washington Department of Transportation by Herrera Environmental Consultants, Inc. (Seattle, WA), July 2006,

(Meacham Creek and West Branch DuPage River watersheds will assume existing grass swale performance with average removal efficiency). West of Highway 53, detention ponds treat stormwater runoff after the runoff is first treated by grassed swales. A value of onethird was selected to acknowledge some water quality benefit is expected with grassed swales, even though they may not perform at the level expected in the national stormwater quality studies.

For existing conditions, a review of percent treatment by grassed swales and ponds was conducted using available topographic information, aerials, and plans. Adjustments to the assumptions used in the analysis may be necessary after a more thorough analysis of the existing drainage patterns is completed as part of the planning process.

## Results

The water quality analysis calculated existing and proposed 2040 Build water quality in the project area watersheds. The findings were compared to background sample data and water quality criteria to determine the effect of the EO-WB on water quality. The results for TSS and metals analysis are shown without BMPs in Table 14. The results from the chlorides analysis are included in Attachment 1-A.

BMPs were evaluated under existing and 2040 Build conditions. For existing conditions, the approximate percentage of the highway draining to grass swales and other BMPs was made for each watershed. For 2040 Build conditions, the percentage of highway draining to BMPs was estimated. Where the highway is treated by both grass swales and other BMPs, it was assumed that the grass swales first remove pollutants before the runoff enters the other BMPs. Table 15 lists BMP coverage by watershed for existing and 2040 Build conditions. The results for the TSS and metals analysis with BMPs are shown in Table 16.

The analysis completed for Spring Brook Creek is slightly different from the other watersheds. There is no waterway crossing of the highway with Spring Brook Creek, however, the watershed does span both sides of the highway. The 2040 Build condition increases the highway impervious area by 4.54 acres within the project footprint within the Spring Brook Creek watershed. The 2040 Build lane miles increase 5.13 lane miles. The water quality analysis was performed where the IEPA stream designation starts. Due to the small watershed size, the good BMP coverage present under existing conditions, and the limits on constructing BMPs with the expanded highway, water quality does not improve under the 2040 Build condition with planned BMPs. If bioswales were implemented instead of grass swales, the TSS and metals concentrations could improve compared to existing conditions.

# TABLE 14 Water Quality Analysis Results (No BMPs)

|                     | Evaluation Condition                                                                | Addison<br>Creek   | Silver<br>Creek | Bensenville<br>Ditch | Willow<br>Creek | Higgins<br>Creek | Salt Creek | Spring<br>Brook<br>Creek | Meacham<br>Creek | West Branch<br>DuPage River |
|---------------------|-------------------------------------------------------------------------------------|--------------------|-----------------|----------------------|-----------------|------------------|------------|--------------------------|------------------|-----------------------------|
|                     | Criteria (mg/L) <sup>a</sup>                                                        | n/a                | n/a             | n/a                  | n/a             | n/a              | n/a        | n/a                      | n/a              | n/a                         |
| TSS⁵                | Existing condition without BMPs—<br>once in 3 year stream concentration<br>(mg/L)   | 257                | 307             | 274                  | 355             | 361              | 171        | 352                      | 360              | 284                         |
|                     | 2040 Build condition without BMPs—<br>once in 3 year stream concentration<br>(mg/L) | 337                |                 | 344                  | 412             | 407              | 204        | 372                      | 412              | 296                         |
|                     | Percent increase <sup>c</sup> from existing conditions                              | 31% <sup>313</sup> | 2%              | 25%                  | 16%             | 13%              | 19%        | 6%                       | 14%              | 4%                          |
|                     | Acute criteria (mg/L)                                                               | 0.046              | 0.037           | 0.037                | 0.037           | 0.045            | 0.040      | 0.050                    | 0.049            | 0.037                       |
|                     | Existing condition without BMPs—<br>once in 3 year stream concentration<br>(mg/L)   | 0.033              | 0.039           | 0.035                | 0.046           | 0.046            | 0.022      | 0.045                    | 0.046            | 0.036                       |
| Copper <sup>b</sup> | 2040 Build condition without BMPs—<br>once in 3 year stream concentration           | 0.043              |                 | 0.044                | 0.053           | 0.052            |            | 0.048                    | 0.053            | 0.038                       |
|                     | (mg/L)                                                                              | 0.04               | 0               |                      |                 | 0.0              | 026        |                          |                  |                             |
|                     | Percent increase <sup>c</sup> from existing conditions                              | 31%                | 2%              | 25%                  | 16%             | 13%              | 19%        | 6%                       | 14%              | 4%                          |
|                     | Acute criteria (mg/L)                                                               | 0.236              | 0.184           | 0.184                | 0.185           | 0.226            | 0.200      | 0.258                    | 0.251            | 0.184                       |
| Lead <sup>b</sup>   | Existing condition without BMPs—<br>once in 3 year stream concentration<br>(mg/L)   | 0.005              | 0.006           | 0.005                | 0.007           | 0.007            | 0.003      | 0.007                    | 0.007            | 0.006                       |
|                     | 2040 Build condition without BMPs—<br>once in 3 year stream concentration           | 0.007              |                 | 0.007                | 0.008           | 0.008            |            | 0.007                    | 0.008            | 0.006                       |
|                     | (mg/L)                                                                              | 0.00               | 6               |                      |                 | 0.               | 004        |                          |                  |                             |
|                     | Percent increase <sup>c</sup> from existing conditions                              | 31%                | 2%              | 25%                  | 16%             | 13%              | 19%        | 6%                       | 14%              | 4%                          |

# TABLE 14 Water Quality Analysis Results (No BMPs)

|                   | Evaluation Condition                                                                | Addison<br>Creek | Silver<br>Creek | Bensenville<br>Ditch | Willow<br>Creek | Higgins<br>Creek | Salt Creek | Spring<br>Brook<br>Creek | Meacham<br>Creek | West Branch<br>DuPage River |
|-------------------|-------------------------------------------------------------------------------------|------------------|-----------------|----------------------|-----------------|------------------|------------|--------------------------|------------------|-----------------------------|
|                   | Acute criteria (mg/L)                                                               | 0.295            | 0.241           | 0.241                | 0.242           | 0.284            | 0.258      | 0.317                    | 0.310            | 0.241                       |
| Zinc <sup>b</sup> | Existing condition without BMPs—<br>once in 3 year stream concentration<br>(mg/L)   | 0.151            | 0.180           | 0.161                | 0.208           | 0.211            | 0.100      | 0.206                    | 0.211            | 0.166                       |
|                   | 2040 Build condition without BMPs—<br>once in 3 year stream concentration<br>(mg/L) | 0.197            | 0.183           | 0.201                | 0.241           | 0.238            | 0.119      | 0.218                    | 0.241            | 0.173                       |
|                   | Percent increase <sup>c</sup> from existing conditions                              | 31%              | 2%              | 25%                  | 16%             | 13%              | 19%        | 6%                       | 14%              | 4%                          |

<sup>a</sup> No Numeric General Use Water Quality Standard is provided in the Illinois Administrative Code for TSS.

<sup>b</sup> Calculated using the FHWA Pollutant Loadings and Impacts from *Highway Stormwater Runoff Volume I: Design Procedure.* 

<sup>c</sup> Percent increase values were rounded. Percentages were calculated prior to rounding.

| TABLE 15                                         |
|--------------------------------------------------|
| Existing and Proposed 2040 Build Conditions BMPs |
|                                                  |

|                             |             |             | Exist                            | ting Cond      | ditions                         |                                 | 2040 Build Conditions                         |             |             |                                  |                |                                 |                                 |                                            |
|-----------------------------|-------------|-------------|----------------------------------|----------------|---------------------------------|---------------------------------|-----------------------------------------------|-------------|-------------|----------------------------------|----------------|---------------------------------|---------------------------------|--------------------------------------------|
|                             | Dry<br>pond | Wet<br>pond | Low<br>quality<br>grass<br>swale | Grass<br>swale | Grass<br>swale &<br>dry<br>pond | Grass<br>swale &<br>wet<br>pond | Grass<br>swale &<br>dry pond<br>& wet<br>pond | Dry<br>pond | Wet<br>pond | Low<br>quality<br>grass<br>swale | Grass<br>swale | Grass<br>swale &<br>dry<br>pond | Grass<br>swale &<br>wet<br>pond | Grass<br>swale &<br>dry pond &<br>wet pond |
| Addison Creek               |             |             | 50%                              |                |                                 |                                 |                                               |             |             | 50%                              |                | 50%                             |                                 |                                            |
| Silver Creek                |             |             | 20%                              |                |                                 |                                 |                                               | 50%         |             |                                  |                | 30%                             |                                 |                                            |
| Bensenville<br>Ditch        |             |             | 20%                              |                |                                 |                                 |                                               |             |             |                                  |                | 90%                             |                                 |                                            |
| Willow Creek                |             |             | 35%                              |                |                                 |                                 |                                               | 10%         |             |                                  | 10%            | 70%                             |                                 |                                            |
| Higgins Creek               |             |             | 70%                              |                |                                 |                                 |                                               | 20%         |             | 30%                              |                | 20%                             |                                 |                                            |
| Salt Creek                  |             | 15%         | 20%                              | 10%            |                                 |                                 |                                               |             |             |                                  | 30%            | 25%                             | 35%                             |                                            |
| Spring Brook<br>Creek       |             |             |                                  | 40%            | 35%                             |                                 |                                               |             |             |                                  | 40%            |                                 | 40%                             | 10%                                        |
| Meacham<br>Creek            |             |             |                                  | 15%            | 50%                             |                                 |                                               |             |             |                                  | 5%             | 10%                             |                                 | 75%                                        |
| West Branch<br>DuPage River |             |             |                                  |                | 75%                             | 80%                             |                                               |             |             |                                  |                |                                 | 80%                             |                                            |

Note: No value represents no existing or proposed BMPs.

# TABLE 16 Water Quality Analysis Results with Best Management Practices (BMPs)

|                     |                                                                                  | Addison<br>Creek | Silver<br>Creek     | Bensenville<br>Ditch | Willow<br>Creek | Higgins<br>Creek | Salt Creek       | Spring<br>Brook<br>Creek | Meacham<br>Creek | West Branch<br>DuPage River |
|---------------------|----------------------------------------------------------------------------------|------------------|---------------------|----------------------|-----------------|------------------|------------------|--------------------------|------------------|-----------------------------|
|                     | Criteria (mg/L) <sup>a</sup>                                                     | n/a              | n/a                 | n/a                  | n/a             | n/a              | n/a              | n/a                      | n/a              | n/a                         |
| TSS⁵                | Existing condition with BMPs—once in 3 year stream concentration (mg/L)          | 227              | 293                 | 262                  | 326             | 302              | 74               |                          |                  | 70                          |
|                     | 2040 Build condition with BMPs—<br>once in 3 year stream concentration<br>(mg/L) | 154              | 155                 |                      |                 | 269              | 47 <sub>88</sub> | 9469                     | 77               | 73                          |
|                     | Percent increase <sup>c</sup> in concentration                                   | -32%             | -47%                | -69%                 | -64%            | -11%             | -36%             | 6%                       | 12%              | 4%                          |
|                     | Acute criteria (mg/L)                                                            | 0.046            | 0.037 <sub>81</sub> | 0.03717              | 0.037           | 0.045            | 0.040            | 0.050                    | 0.049            | 0.037                       |
|                     | Existing condition with BMPs—once in 3 year stream concentration (mg/L)          | 0.030            |                     | 0.034                | 0.043           | 0.041            | 0.013            |                          |                  | 0.015                       |
| Copper <sup>b</sup> | 2040 Build condition with BMPs—<br>once in 3 year stream concentration<br>(mg/L) | 0.03<br>0.026    | 8                   | 0.018                | 0.025           | 0.040            | 0.01<br>0.010    | 9 0.0<br>0.020           | 17               | 0.015                       |
|                     | Percent increase <sup>c</sup> in concentration                                   | -15%             | -31%                | -46%                 | -43%            | -3%              | -18%             | 6%                       | 8%               | 4%                          |
|                     | Acute criteria (mg/L)                                                            | 0.236            | 0.184               | 0.184                | 0.185           | 0.226            | 0.200            | 0.0<br>0.258             | 18<br>0.251      | 0.184                       |
|                     | Existing condition with BMPs—once in 3 year stream concentration (mg/L)          | 0.005            |                     | 0.005                | 0.007           | 0.006            | 0.002            |                          |                  | 0.002                       |
| Lead <sup>b</sup>   | 2040 Build condition with BMPs—<br>once in 3 year stream concentration<br>(mg/L) | 0.00<br>0.004    | 6                   | 0.003                | 0.004           | 0.006            | 0.00<br>0.002    | 0.003                    |                  | 0.002                       |
|                     | Percent increase <sup>c</sup> in concentration                                   | -15%<br>0.00     | -31%<br>)4          | -46%                 | -43%            | -3%              | -18%             | 6%<br>0.0                | 8%<br>03         | 4%                          |

# TABLE 16 Water Quality Analysis Results with Best Management Practices (BMPs)

|                   |                                                                         | Addison<br>Creek | Silver<br>Creek | Bensenville<br>Ditch | Willow<br>Creek | Higgins<br>Creek | Salt Creek | Spring<br>Brook<br>Creek | Meacham<br>Creek | West Branch<br>DuPage River |
|-------------------|-------------------------------------------------------------------------|------------------|-----------------|----------------------|-----------------|------------------|------------|--------------------------|------------------|-----------------------------|
|                   | Acute criteria (mg/L)                                                   | 0.295            | 0.241           | 0.241                | 0.242           | 0.284            | 0.258      | 0.317                    | 0.310            | 0.241                       |
| Zinc <sup>b</sup> | Existing condition with BMPs—once in 3 year stream concentration (mg/L) | 0.138            |                 | 0.155                | 0.196           | 0.187            | 0.058      | 0.087                    | 0.076            | 0.066                       |
|                   | 2040 Build condition with BMPs—<br>once in 3 year stream concentration  | 0.1              | 74              |                      |                 |                  |            |                          |                  |                             |
|                   | (mg/L)                                                                  | 0.117            | 0.120           | 0.083                | 0.112           | 0.181            | 0.047      | 0.092                    |                  | 0.069                       |
|                   | Percent increase <sup>c</sup> in concentration                          | -15%             | -31%            | -46%                 | -43%            | -3%              | -18%       | 6%                       | 8%               | 4%                          |

<sup>a</sup> No Numeric General Use Water Quality Standard is provided in the Illinois Administrative Code for total suspended solids.

<sup>b</sup> Calculated using the FHWA Pollutant Loadings and Impacts from *Highway Stormwater Runoff Volume I: Design Procedure.* 

<sup>c</sup> Percent increase values were rounded. Percentages were calculated prior to rounding.

## TSS

With BMPs in place, the TSS concentration decreases in all watersheds from 11to 69 percent for the once in 3 year concentration, except for the Spring Brook Creek, Meacham Creek, and West Branch DuPage River watersheds. The decrease in TSS concentration is due to the limited amount of BMPs currently in place in these watersheds under existing conditions and the implementation of BMPs with the 2040 Build condition. In Meacham Creek and the West Branch DuPage River, a TSS increase of 12 and 4 percent is estimated. In Spring Brook Creek, a TSS increase of 6 percent is expected. The TSS concentrations in Spring Brook Creek, Meacham Creek, and West Branch DuPage River watersheds are generally smaller than the other watersheds. The increase in TSS occurs because of additional impervious area. There is no numeric water quality standard in Illinois for TSS.

#### Metals (Copper, Lead, Zinc)

With BMPs in place, the once in 3 year metals concentration improves by decreasing between 3 and 46 percent for all watersheds except Spring Brook Creek, Meacham Creek, and the West Branch DuPage River which increase from 4 to 8 percent. All of the watersheds have concentrations that are less than the acute metals criteria under 2040 Build conditions. The Willow Creek and Silver Creek copper concentrations under existing conditions were found to exceed the acute copper criteria, however under 2040 Build conditions, the copper concentrations were determined to improve and be less than the acute copper criteria due to the additional BMPs in place under 2040 Build conditions.

If bioswales were implemented instead of grass swales, the TSS and metals concentrations could improve for all watersheds compared to existing conditions.

#### Chloride

A detailed analysis of the chlorides pollutant concentrations from the project watersheds is included in the memorandum *Chloride Concentration Analysis*, which is included in Attachment 1.

# References

- AECOM. 2009. Des Plaines River/Higgins Creek Watershed TMDL Stage 1 Report. Prepared for the Illinois Environmental Protection Agency.
- Center for Watershed Protection. 2007. National Pollutant Removal Performance Database, v. 3. September.
- CDM. 2008. Conductivity and Chloride Monitoring Summary 2007/2008. Prepared for the DuPage River/Salt Creek Workgroup. August 6.
- CH2M HILL. 1998. *Highway Stormwater Runoff Sampling and Analysis*. Final Report Prepared for Michigan DOT. April.
- CH2M HILL. 2003. Total Maximum Daily Loads for West Branch DuPage River. Prepared for Illinois Environmental Protection Agency.
- CH2M HILL. 2004. Total Maximum Daily Loads for Salt Creek. Prepared for Illinois Environmental Protection Agency.
- Federal Highway Administration. 1990. Pollutant Loadings and Impacts from Highway Stormwater Runoff Volume 1: Design Procedure. Publication No. FHWA-RD-88-006. April.
- Herrera Environmental Consultants, Inc. for the State of Washington Department of Transportation. 2006. *Technology Evaluation and Engineering Report: WSDOT Ecology Embankments*. July.
- Illinois Department of Transportation (IDOT). 2010. *Bureau of Design and Environment Manual*. Chapter 26, Special Environmental Analyses.
- Illinois Environmental Protection Agency (IEPA). 2011. Water Quality Data and Personal Communication with Missy Kain. Various dates in June and July.
- INHS Technical Report. 2010. A Limited Assessment of Aquatic Resources (Fishes, Aquatic Macroinvertebrates Other Than Unionid Mussels, and Water Quality) Associated with Streams in the IDOT ELGIN-O'Hare Expressway 2010: Addenda A&B Project Corridors, DuPage County, Illinois. Prepared by Mark J. Wetzel, Steven J. Taylor, and Christopher A. Taylor (Illinois Natural History Survey). Prepared for the Illinois Department of Transportation–Bureau of Design and Environment. August 3.
- INHS Technical Report. 2009. A Limited Assessment of Aquatic Resources (Fishes, Aquatic Macroinvertebrates Other Than Unionid Mussels, and Water Quality) Associated with Five Streams in the IDOT Elgin-O'Hare Expressway 2009. Prepared by Mark J. Wetzel, Steven J. Taylor, and Christopher A. Taylor (Illinois Natural History Survey). Prepared for the Illinois Department of Transportation–Bureau of Design and Environment. December 15, 2009; rev. December 2, 2010.
- Illinois Tollway. 2011. Winter salt usage data through personal communication with Angela Force. July 28.

- International Stormwater BMP Database. 2011. www.bmpdatabase.org. Accessed August 26, 2011.
- National Cooperative Highway Research Program. 2002. Assessing the Impacts of Bridge Deck Runoff Contaminants in Receiving Waters Volume 2: Practitioner's Handbook. Report 474.
- U.S. Department of Transportation, Federal Highway Administration. 1996. *Evaluation and Management of Highway Runoff Water Quality*. Publication No. FHWA-PD-96-032. June.
- U.S. Department of Transportation, Federal Highway Administration. 2000. *Stormwater Best Management Practices in an Ultra-Urban Setting: Selection and Monitoring.* Publication N. FHWA-EP-00-002. May.
- U.S. Geological Survey. 1981. Frost, Pollock, and Wakelee. Open File Report 81-209. *Hydrologic Effects of Highway Deicing Chemicals in Massachusetts.*

Attachment 1 Chloride Concentration Analysis Memorandum

## Chloride Concentration Analysis of Elgin O'Hare – West Bypass Project

PREPARED BY: CH2M HILL

DATE: February 1, 2012

This memorandum summarizes the analysis of chloride and alternate methods to demonstrate compliance with the chloride water quality standard for the watersheds affected by the Elgin O'Hare – West Bypass (EO-WB) project. The Chloride water quality standard has often been exceeded in these watersheds and has led to the development of a chloride total maximum daily load (TMDL) for several watersheds. The presence of the TMDL and the additional chloride load anticipated with the EO-WB project provides both a challenge and unique opportunity for collaborative research with other chloride users in the watersheds to promote best principles for deicing.

Other pollutants such as TSS and metals were analyzed separately using a different methodology. The affected watersheds include parts of the West Branch DuPage River, Spring Brook Creek, Meacham Creek, Salt Creek, Willow Creek, Bensenville Ditch, Silver Creek, Addison Creek, and Higgins Creek.

#### Methodology

The methodology used to calculate potential chloride pollutant loading from the project area under existing, the initial construction phase, 2040 No-Build, and 2040 Build conditions was based on that outlined in the United States Geological Survey report developed by Frost, Pollock, and Wakelee (USGS, 1981). The methodology uses the drainage area of each watershed, lane miles within each watershed, river slope, annual precipitation, and tons per lane-mile salt applied to calculate the annual daily average chloride concentration and annual daily maximum chloride concentration. The data inputs that significantly drive the receiving water chloride concentration are lane miles and salt loading.

The initial construction phase condition reflects the portions of the EO-WB project that would be initially built providing sufficient capacity for approximately 20 to 25 years. The initial construction phase generally includes one less lane in either travel direction from what is envisioned with the 2040 Build scenario. The initial construction phase is being analyzed for chloride because it is a condition that is expected to occur for 20 to 25 years and advances in technology for deicing that develop over that time may be brought to bear to further reduce salt usage.

The 2040 No-Build condition reflects highway construction that is planned to occur regardless as to whether the EO-WB project occurs or not; and the 2040 Build condition reflects the complete project including additional travel lanes added to the initial construction phase for travel forecasted through 2040.

#### Area of Interest

The EO-WB project crosses the following watersheds:

- West Branch DuPage River Watershed
  - West Branch DuPage River (main stem)
- Salt Creek Watershed
  - Spring Brook Creek
  - Meacham Creek
  - Salt Creek (main stem)
  - Addison Creek
- Des Plaines River Watershed
  - Higgins Creek
  - Willow Creek
  - Bensenville Ditch
  - Silver Creek

Exhibit 1 shows these watersheds in the EO-WB project area. Only portions of the Salt Creek watershed are shown in this figure; additional areas are further upstream.

### **Applied Salt Loading**

The amount of salt applied to the roadways is needed for the chloride analysis. Data from the Illinois Tollway and the Illinois Department of Transportation (IDOT) were used to determine the average salt usage per highway lane mile. The Illinois Tollway provided representative systemwide salt usage data for 2001–2002 through the 2010–2011 snow seasons. IDOT provided salt usage data for the 2006–2011 snow seasons. The average of the two sets of data was used to determine typical tons of salt per mile per year (Table 1). The annual average was used in the analysis to be representative of recent seasonal variation. Table 1 lists the data used to determine tons/mile for the analysis. The average over the time period of 39.7 tons/lane-mile was selected for the analysis to represent average conditions.

### **Calculated Chloride Loading**

The USGS methodology was used to calculate the initial construction phase, 2040 No-Build, and 2040 Build conditions annual daily maximum chloride concentration attributed to highway runoff within each watershed. This methodology calculated the annual daily maximum chloride concentration assuming that all highway storm water reaches the area streams without any detention or storm water treatment practices in place. Table 2 summarizes the lane miles for the existing condition, initial construction phase, 2040 No-Build, and 2040 Build conditions, and Table 3 summarizes the existing and proposed chloride concentration. Concentrations exceeding the 500 mg/L water quality standard are highlighted in red. A table of all chloride concentration calculations and inputs is appended to this memorandum.

**EXHIBIT 1** EO-WB and Impacted Watersheds


TABLE 1

 Yearly Salt Usage Data from Illinois Tollway and IDOT

| Snow Season                  | Tons of Salt Used | Lane Miles | Tons / Lane Mile |
|------------------------------|-------------------|------------|------------------|
| Illinois Tollway M-05 SECTIC | )N                |            |                  |
| 2001–2002                    | 4,265             | 154.6      | 27.6             |
| 2002–2003                    | 5,534             | 154.6      | 35.8             |
| 2003–2004                    | 5,727             | 154.1      | 37.2             |
| 2004–2005                    | 7,443             | 155.6      | 47.8             |
| 2005–2006                    | 4,832             | 155.6      | 31.1             |
| 2006–2007                    | 7,210             | 155.6      | 46.3             |
| 2007–2008                    | 10,389            | 155.6      | 66.8             |
| 2008–2009                    | 6,540             | 155.6      | 42.0             |
| 2009–2010                    | 5,801             | 161.6      | 35.9             |
| 2010–2011                    | 5,976             | 161.6      | 37.0             |
| 10 Year Average.             | 6,371.7           |            | 40.7             |
| IDOT Rodenburg Road Yard     | (Elgin O'Hare)    |            |                  |
| 2006                         | 6,083             | 348        | 17.5             |
| 2007                         | 10,951            | 348        | 31.5             |
| 2008                         | 18,032            | 337        | 53.5             |
| 2009                         | 12,101            | 337        | 35.9             |
| 2010                         | 19,714            | 337        | 58.5             |
| 2011                         | 11,973            | 337        | 35.5             |
| 6 Year Average.              | 7,885.4           |            | 38.7             |
| Overall Average              |                   |            | 39.7             |

# TABLE 2 Summary of Existing and Proposed Highway Miles

| Watershed Name             | 2010 Existing<br>Highway Lane<br>Miles | Initial Construction<br>Phase Highway<br>Lane Miles | 2040 No-Build<br>Highway Lane<br>Miles | 2040 Build<br>Highway Lane<br>Miles |
|----------------------------|----------------------------------------|-----------------------------------------------------|----------------------------------------|-------------------------------------|
| Salt Creek Watershed       |                                        |                                                     |                                        |                                     |
| Spring Brook               | 6.2                                    | 10.1                                                | 6.2                                    | 11.3                                |
| Meacham Creek              | 27.1                                   | 39.6                                                | 27.1                                   | 43.8                                |
| Salt Creek (main stem)     | 23.5                                   | 56.2                                                | 23.5                                   | 67.0                                |
| Addison Creek              | 47.5                                   | 69.7                                                | 55.6                                   | 74.4                                |
| Des Plaines River Watershe | d                                      |                                                     |                                        |                                     |
| Willow Creek               | N/A                                    | 37.7                                                | N/A                                    | 50.3                                |
| Higgins Creek              | 44.9                                   | 73.9                                                | 58.6                                   | 79.0                                |
| Bensenville Ditch          | 0.9                                    | 10.6                                                | 0.9                                    | 13.9                                |
| Silver Creek               | 11.9                                   | 28.0                                                | 11.9                                   | 33.3                                |
| West Branch DuPage River   | Watershed                              |                                                     |                                        |                                     |
| West Branch DuPage River   | 6.9                                    | 9.7                                                 | 6.9                                    | 10.6                                |
| TOTAL                      | 168.9                                  | 335.4                                               | 190.7                                  | 383.6                               |

Note: There is no highway for Willow Creek Existing Conditions and 2040 No-Build Conditions

#### TABLE 3

Existing and Proposed Conditions Chloride Concentrations From Highway Deicing

|                             | Salt                |          | Ann. Daily Max Chloride, mg/L |                   |               |  |  |  |  |  |
|-----------------------------|---------------------|----------|-------------------------------|-------------------|---------------|--|--|--|--|--|
|                             | Applied,<br>tons/mi | Existing | Initial Construction<br>Phase | 2040 No-<br>Build | 2040<br>Build |  |  |  |  |  |
| Salt Creek Watershed        |                     |          |                               |                   |               |  |  |  |  |  |
| Spring Brook Creek          | 39.7                | 296      | 520                           | 296               | 520           |  |  |  |  |  |
| Meacham Creek               | 39.7                | 532      | 765                           | 532               | 842           |  |  |  |  |  |
| Salt Creek (main stem)      | 39.7                | 46       | 75                            | 46                | 84            |  |  |  |  |  |
| Addison Creek               | 39.7                | 467      | 716                           | 541               | 716           |  |  |  |  |  |
| Des Plaines River Watershed |                     |          |                               |                   |               |  |  |  |  |  |
| Willow Creek                | 39.7                | N/A      | 376                           | N/A               | 492           |  |  |  |  |  |
| Higgins Creek               | 39.7                | 385      | 658                           | 495               | 658           |  |  |  |  |  |
| Bensenville Ditch           | 39.7                | 52       | 415                           | 52                | 415           |  |  |  |  |  |
| Silver Creek                | 39.7                | 136      | 431                           | 136               | 431           |  |  |  |  |  |
| West Branch DuPage River W  | atershed            |          |                               |                   |               |  |  |  |  |  |
| West Branch DuPage River    | 39.7                | 110      | 156                           | 110               | 156           |  |  |  |  |  |

Note: Silver Creek includes upstream loading from Bensenville Ditch.

Values shown in red exceed the chloride water quality standard of 500 mg/L.

There is no highway for Willow Creek Existing Conditions and 2040 No-Build Conditions.

#### Initial Chloride Concentration Evaluation

The Spring Brook Creek, Meacham Creek, Addison Creek, and Higgins Creek subwatersheds exceed the 500 mg/L chloride water quality standard under the initial construction phase and 2040 Build conditions. Reducing the salt application rate alone may not be acceptable because of the potential safety impacts of reducing salt for deicing the highway. Consequently, the following methods to demonstrate water quality standard compliance were investigated:

- Determining the salt loading required to meet water quality standards by subwatershed.
- Evaluating potential peak chloride concentration attenuation from directing runoff through storm water best management practices (BMPs).
- Identifying alternative deicer materials that could substitute for salt.

These approaches are discussed below.

### Salt Usage Reduction Required to Achieve Water Quality Standards

An analysis of the salt application reduction required to lower the chloride concentration for the initial construction phase condition below 500 mg/L was done to determine how much of a reduction is necessary. Table 4 summarizes the reduction needed for the initial construction phase condition and for the 2040 Build condition within each watershed.

#### TABLE 4

Salt Usage Required to Meet Water Quality Standard

|                             | Initial Cor                                                                                                             | nstruction Phase | Conditions                          | s 2040 Build Conditions                              |                                           |     |  |  |  |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------------------|------------------------------------------------------|-------------------------------------------|-----|--|--|--|
|                             | Salt Applied, Reduction in Salt Resulting<br>tons/ lane- Application Annual Daily<br>mile (tons/lane-mile) Max Cl, mg/L |                  | Salt Applied,<br>tons/lane-<br>mile | Reduction in Salt<br>Application<br>(tons/lane-mile) | Resulting<br>Annual Daily<br>Max CI, mg/L |     |  |  |  |
| Salt Creek Watershee        | b                                                                                                                       |                  |                                     |                                                      |                                           |     |  |  |  |
| Spring Brook Creek          | 38.0                                                                                                                    | 1.7              | 498                                 | 38.0                                                 | 1.7                                       | 498 |  |  |  |
| Meacham Creek               | 25.5                                                                                                                    | 14.2             | 500                                 | 23.0                                                 | 23.0 16.7                                 |     |  |  |  |
| Salt Creek (main<br>stem)   | 39.7                                                                                                                    | 0.0              | 75 39.7                             |                                                      | 0.0                                       | 84  |  |  |  |
| Addison Creek               | 27.0                                                                                                                    | 12.7             | 495                                 | 27.0                                                 | 12.7                                      | 495 |  |  |  |
| Des Plaines River Wa        | atershed                                                                                                                |                  |                                     |                                                      |                                           |     |  |  |  |
| Willow Creek                | 39.7                                                                                                                    | 0.0              | 376                                 | 39.7                                                 | 0.0                                       | 492 |  |  |  |
| Higgins Creek               | 29.5                                                                                                                    | 10.2             | 495                                 | 29.5                                                 | 10.2                                      | 495 |  |  |  |
| Bensenville Ditch           | 39.7                                                                                                                    | 0.0              | 415                                 | 39.7                                                 | 0.0                                       | 415 |  |  |  |
| Silver Creek                | 39.7                                                                                                                    | 0.0              | 431                                 | 39.7                                                 | 0.0                                       | 431 |  |  |  |
| West Branch DuPage          | e River Waters                                                                                                          | shed             |                                     |                                                      |                                           |     |  |  |  |
| West Branch<br>DuPage River | 39.7                                                                                                                    | 0.0              | 156                                 | 39.7                                                 | 0.0                                       | 156 |  |  |  |

Note: Silver Creek includes upstream loading from Bensenville Ditch.

Values shown in blue indicate watersheds that exceed the chloride water quality standards of 500 mg/L. Salt application rates in these locations need to be reduced by the value shown in order to meet the standard.

Reduction in salt usage would be required for the 2040 Build condition in Meacham Creek, Addison Creek, Higgins Creek, and Spring Brook Creek.

The salt application rates to achieve the chloride water quality standard in watersheds are highlighted in blue. If salt usage could be lowered to the annual application rates shown in Table 4, the chloride water quality standard would be met from highway runoff. However, because the required salt usage reductions vary from 4.2 – to 42 percent below the current usage rate, achieving these low application rates through salt reduction alone is unlikely without compromising safety expectations. Consequently, one or more alternative chloride compliance approaches described below could be pursued.

### **Chloride Application Best Management Practices**

Two studies performed for the DuPage River Salt Creek Workgroup reviewed salt application and deicing programs at numerous communities in the Salt Creek watershed (CDM, 2007 and 2011). The workgroup has been focusing upon tracking chloride concentrations because there are chloride TMDLs in both the DuPage River and Salt Creek watersheds. These studies compiled results from community surveys and included potential salt reduction from alternative deicing programs. The 2007 study concluded that implementing the recommended measures could reduce chloride concentrations from 10 to 40 percent. The recommended measures include public education, staff training, and improved salt storage and handling practices; pre-wetting and anti-icing programs; consideration of alternative nonchloride products; and chloride monitoring in streams to demonstrate program effectiveness. The 2010 study, a follow-up of the 2007 study, determined that some communities had partially implemented some of the recommended deicing measures and had seen reductions in chloride applications.

A 2009 article published in *Stormwater* summarizes several different studies of chloride application and reduction programs. Chloride reductions of 20 to 30 percent could be attained through several equipment modifications and technologies (Talend, 2009).

The Tollway currently has a program for effective application of deicing materials using BMPs. Consequently achieving salt usage reduction as high as those documented in this study is unlikely.

### **Chloride Concentration Attenuation**

Research has shown that chloride is not removed using traditional BMPs such as wet ponds, but chloride concentration can be reduced or increased as runoff flows through BMPs (USGS, 2001). The 2001 USGS study looked specifically at the concentration of chloride (and other pollutants) at the entrance and exit of a vegetated storm water detention basin. The study basin was a mixture of open water and vegetated areas. The report concluded that chloride concentration can be reduced during large winter storm events (up to 30 percent reduction), but then during smaller storm events in other seasons an increase in chloride concentration was observed (over 200 percent increase measured). The USGS study summarized chloride concentration changes from storm events year round. Since chloride is not absorbed in the ground or used by vegetation, any chloride that may temporarily reside in a pond or swale during large storms will be released during a subsequent storm.

Although the overall mass of chloride was not reduced, the chloride concentration was reduced during the peak times of the year that salt is applied (during the winter months).

During spring, summer, and fall, the concentration of chloride leaving the basin was higher than what was entering the basin. Therefore, if storm water is directed to a detention basin, the peak chloride concentration is reduced in winter but conveyed to waterways through the entire year. The observation that the storm water BMP stored chloride in the winter would have the net result of reducing the peak chloride concentration during the winter.

Table 4 summarizes the chloride concentrations in project subwatersheds with a 20 percent reduction in the peak annual daily concentration. A 20 percent reduction was selected to represent a conservative estimate of the reduction in peak chloride loading reported by the 2001 USGS study and is intended to provide a conservative assumption since BMPs planned for the project (dry ponds, swales, and wet ponds) are not the same as that found in the study. Use of a 20 percent reduction is conservative based on reductions of up to 30 percent seen during the winter storm events in the 2001 USGS study. The 20 percent reduction in the peak chloride loading will still enter the waterway during subsequent storms; most likely during non-winter months, when loading from other chloride sources is lower. Subwatersheds after assuming this 20 percent reduction that still exceed the chloride water quality standard of 500 mg/L are highlighted in red.

|                             | Initial Cons                           | truction Phas                 | se Condition                               | 2040 Build Condition          |                               |                                            |  |  |  |
|-----------------------------|----------------------------------------|-------------------------------|--------------------------------------------|-------------------------------|-------------------------------|--------------------------------------------|--|--|--|
|                             | Salt<br>Applied,<br>tons/lane-<br>mile | Ann.<br>Daily Max<br>Cl, mg/L | 20 Percent<br>Reduction<br>Max Cl,<br>mg/L | Salt<br>Applied,<br>tons/mile | Ann. Daily<br>Max Cl,<br>mg/L | 20 Percent<br>Reduction<br>Max Cl,<br>mg/L |  |  |  |
| Salt Creek Watershed        |                                        |                               |                                            |                               |                               |                                            |  |  |  |
| Spring Brook Creek          | 39.7                                   | 520                           | 416                                        | 39.7                          | 520                           | 416                                        |  |  |  |
| Meacham Creek               | 39.7                                   | 765                           | 612                                        | 39.7                          | 842                           | 674                                        |  |  |  |
| Salt Creek (main stem)      | 39.7                                   | 75                            | 60                                         | 39.7                          | 84                            | 67                                         |  |  |  |
| Addison Creek               | 39.7                                   | 716                           | 573                                        | 39.7                          | 716                           | 573                                        |  |  |  |
| Des Plaines River Wate      | rshed                                  |                               |                                            |                               |                               |                                            |  |  |  |
| Willow Creek                | 39.7                                   | 376                           | 301                                        | 39.7                          | 492                           | 394                                        |  |  |  |
| Higgins Creek               | 39.7                                   | 658                           | 526                                        | 39.7                          | 658                           | 526                                        |  |  |  |
| Bensenville Ditch           | 39.7                                   | 415                           | 332                                        | 39.7                          | 415                           | 332                                        |  |  |  |
| Silver Creek                | 39.7                                   | 431                           | 345                                        | 39.7                          | 431                           | 345                                        |  |  |  |
| West Branch DuPage R        | iver Watershe                          | d                             |                                            |                               |                               |                                            |  |  |  |
| West Branch DuPage<br>River | 39.7                                   | 156                           | 125                                        | 39.7                          | 156                           | 125                                        |  |  |  |

#### TABLE 4

Summary of Chloride Loading and 20 Percent Reduction in Peak Chloride Loading

Note: Silver Creek includes upstream loading from Bensenville Ditch.

Values shown in red exceed the chloride water quality standard of 500 mg/L.

A peak reduction of 20 percent reduced the chloride concentration within the Spring Brook Creek subwatershed to less than the water quality standard of 500 mg/L for the initial construction phase and the 2040 Build Conditions. Addison Creek, Meacham Creek, and Higgins Creek subwatersheds still experience chloride concentrations that exceed the water quality standard for both initial construction phase and 2040 Build Conditions. Consequently, considering peak chloride concentration attenuation from storm water BMPs by itself will not meet water quality standard.

Because the BMPs planned for this project are not always the same at that studied in the 2001 USGS study, adjustments to planned BMPs, especially in subwatersheds with predicted high chloride concentration may be needed to obtain the chloride concentration reductions observed in the study. As storm water BMPs are implemented and performance observed, additional information will be gained and opportunities to reduce peak chloride concentration watersheds could emerge. However, even with BMPs, the chloride water quality standard will be exceeded in some watersheds. Mitigation measures could be considered and advancements in deicing technology develop that may reduce the peak chloride concentration over time.

## Mitigation

Deicing (e.g., salt application) of highways is necessary during the winter months for safety reasons. As a result, chloride water quality standards may be exceeded in some of the project corridor watersheds. The following measures will be used to minimize potential water quality impacts from deicing associated with the proposed improvements:

- Implementing stormwater BMPs (in accordance with FAA wildlife hazard guidelines, to the extent practicable) to reduce peak chloride concentrations consistent with the findings of USGS (Sherwood, 2001)
- Promoting weather-related data sharing between the Illinois Tollway and local communities to achieve more effective deicing material application based upon available pavement temperature and weather forecasts
- Strengthening watershed collaboration with the DRSCW by exploring opportunities for sponsoring research and assisting in a regional capital improvements for the reduction of chloride concentrations within the sub-watershed areas. By assisting with regional capital improvements through the DRSCW, member communities and groups will have the opportunity to receive assistance in up-grading salt application equipment to current standards thereby reducing application rates and chloride concentrations within the watersheds. Additionally, sponsoring research to explore the effectiveness of BMPs on reducing chloride concentrations in area watersheds, especially in the Meacham Creek watershed and west of I-290 where construction would commence as an initial phase of project implementation. Initially, pilot tests would be used to document the practicality of these chloride BMPs. The more promising findings will be considered further for implementation as part of subsequent phases of the EO-WB project. BMPs with successful test results would be implemented, where practical and feasible, with an emphasis on watersheds with chloride impairments.

Implementing these measures may help to mitigate the potential future impact from salt use and could provide guidance for future highway projects.

Through active participation in the DuPage River Salt Creek Workgroup the Tollway Authority will aid in the understanding of water quality issues in the entire watershed and will help disseminate information to numerous entities collaboratively working towards water quality improvement. Data from the DuPage River Salt Creek Workgroup chloride monitoring sites on the West Branch DuPage River and Salt Creek watersheds indicates the average chloride concentration during the winter deicing season can often exceed the water quality standard. Working collaboratively with other deicing agencies in the watershed could lead to more efficient salt usage over time.

Chloride total maximum daily loads have been developed for the West Branch DuPage River and Salt Creek watersheds and are in draft form for Higgins Creek. The Salt Creek watershed includes Meacham Creek, Spring Brook Creek, the Salt Creek main stem, and Addison Creek. BMPs for using best practices for roadway deicing have been disseminated through the DuPage River Salt Creek Workgroup and others to deicing organizations within the watersheds. Deicing BMPs will be used to minimize deicing material usage while balancing public safety. All entities conducting deicing activities in the watershed will benefit from working together to improve deicing management practices.

Sharing information between the Tollway Authority and local communities may help to reduce overall chloride loading within the watersheds. Shared information may include new deicing technology, weather forecasting, pavement temperature data, and chloride research findings.

Supporting research into new deicing technology effectiveness, measuring BMP performance, and resulting water quality will help mitigate the potential future impact from salt use and further inform future highway projects.

## **Alternate Deicers**

Alternative deicers are described in detail in the report, *Total Maximum Daily Loads for West Branch DuPage River* (CH2M HILL, 2003) and summarized here to provide a context for the potential use of alternative deicers to reduce salt usage and meet the chloride water quality standard. Cost information was not updated to present day values. Use of alternatives such as calcium chloride and calcium magnesium acetate may be less environmentally harmful to sensitive ecosystems. These alternatives are more expensive than regular salt but less corrosive to bridges and overpasses (see Tables 5 and 6).

## Conclusions

The chloride contribution from the EO-WB project will likely exceed the chloride water quality standard even when using BMPs. The additional chloride load anticipated with the EO-WB project provides both a challenge and unique opportunity for collaboration with other chloride users in the watersheds to promote sustainable deicing. A potential innovative approach includes taking a leadership role in conducting research and working with local collaborations with the goal of lowering chloride concentration over time in the watersheds crossed by the project.

Alternative Road Deicers: Temperature, Cost, and Environmental Considerations

| Check the Label For               | Works Down to:    | Cost is:                | Environmental Impacts                                                                                     |
|-----------------------------------|-------------------|-------------------------|-----------------------------------------------------------------------------------------------------------|
| Calcium magnesium acetate (CMA)   | 22°F to 25°F      | 20x more than rock salt | (+) less toxic but has dissolved oxygen impacts                                                           |
| Calcium chloride (CaCl)           | -25°F             | 3x more than rock salt  | (+) Can use lower doses<br>(+) No cyanide<br>(-) Chloride impact                                          |
| Urea                              | 20°F to 25°F      | 5x more than rock salt  | <ul><li>(+) Less corrosion</li><li>(-) Adds needless nutrients but has dissolved oxygen impacts</li></ul> |
| Sand                              | No melting effect | ~\$3 for a 50 lb bag    | (-) Accumulates in streets and streams                                                                    |
| Sodium chloride (NaCl; rock salt) | 15°F              | ~\$5 for a 50 lb bag    | (-) Contains cyanide<br>(-) Chloride Impact                                                               |

*Source:* Envirocast Newsletter. Volume 1, No. 3. http://www.stormcenter.com/envirocast/2003-01-01. January 2003.

#### TABLE 6

Alternative Road Deicers: Temperature and Cost Considerations

| Deicer                           | Minimum Operating Temperature | Cost (\$/lane mile/season) |
|----------------------------------|-------------------------------|----------------------------|
| Sodium chloride                  | 12°F                          | \$6,371–6,909              |
| Calcium chloride                 | -20°F                         | \$6,977–7,529              |
| CG-90 Surface Saver <sup>a</sup> | 1°F                           | \$5,931–6148               |
| Calcium magnesium acetate        | 23°F                          | \$12,958–16,319            |

<sup>a</sup>CG-90 is a combination of sodium and magnesium chloride with additives. *Source:* Center for Watershed Protection. *Stormwater BMP Design Supplement for Cold Climates.* Prepared for USEPA. December 1997.

# References

- CDM. 2007. Chloride Usage Education and Reduction Program Study. Prepared for DuPage River Salt Creek Workgroup.
- CDM. 2011. *Chloride Usage Education and Reduction Program 2010 Deicing Program Survey.* Prepared for DuPage River Salt Creek Workgroup.
- Center for Watershed Protection. *Stormwater BMP Design Supplement for Cold Climates*. Prepared for USEPA. December 1997.
- CH2M HILL. 2003. *Total Maximum Daily Loads for West Branch DuPage River*. Prepared for Illinois Environmental Protection Agency.
- CH2M HILL. 2004. *Total Maximum Daily Loads for Salt Creek*. Prepared for Illinois Environmental Protection Agency.
- Environmental Protection Agency (EPA). 2003. Water Quality Trading Policy.
- FHWA. Stormwater Best Management Practices in an Ultra-Urban Setting: Selection and Monitoring. FHWQ-EP-00-002. May 2000).
- Talend, Don. "Salt: No Easy Answers." Stormwater: The Journal for Surface Water Quality Professions (October 2009). Web. 21 Dec. 2011. <a href="http://www.stormh2o.com/october-2009/road-deicing-salt-2.aspx">http://www.stormh2o.com/october-2009/road-deicing-salt-2.aspx</a>>.
- U.S. Geological Survey. 1981. Frost, Pollock, and Wakelee. Open File Report 81-209. *Hydrologic Effects of Highway Deicing Chemicals in Massachusetts.*
- U.S. Geological Survey. 2001. Donald A. Sherwood. *Effects of a Vegetated Stormwater-Detention Basin on Chemical Quality and Temperature of Runoff from a Small Residential Development in Monroe County, New York.* Report WRIR 01-4099.

Attachment 1-A Chloride Analysis Calculations Chloride Concentration Inputs and Calculation Results

| Chloride Concentration inputs and Calculation | Drainage Area, sq | Lane    |              | Annual         | Salt Applied, | Salt Applied, | Ann Avg   |         | Ann. Daily Avg Cl, | Ann. Daily Max | ci. c      | Chloride Load, |
|-----------------------------------------------|-------------------|---------|--------------|----------------|---------------|---------------|-----------|---------|--------------------|----------------|------------|----------------|
| Condition                                     | mi                | Miles   | Slope, ft/mi |                | tons/mi       | tons          | Flow, cfs | Storage | mg/l               | mg/l           |            | ons            |
| Addision Creek                                |                   |         |              | [7             |               |               |           |         | 0,                 | 0,             |            |                |
| Existing                                      | (                 | 6 47.52 | 4.89         | 36.27          | 39.74         | 1888          | 9.00      | 0.0     | 0 25               | 5              | 467        | 1503           |
| Proposed - ICP                                | (                 | 5 74.39 | 4.89         | 36.27          | 39.74         | 2956          | 9.00      | 0.0     |                    |                | 716        | 2374           |
| Proposed 2040 NB                              | (                 | 5 55.56 | 4.89         | 36.27          | 39.74         | 2208          | 9.00      | 0.0     | 0 29               | 9              | 541        | 1764           |
| Proposed 2040 Build                           | (                 | 5 74.39 | 4.89         | 36.27          | 39.74         | 2956          | 9.00      | 0.0     | 0 40               | 0              | 716        | 2374           |
| Bensenville Ditch                             |                   |         |              |                |               |               |           |         |                    |                |            |                |
| Existing                                      | 1.9               | 9 0.92  | 10.31        | 36.27          | 39.74         | 37            | 2.98      | 3 0.0   | 0 1                | 5              | 52         | -8             |
| Proposed - ICP                                | 1.9               | 9 13.89 | 10.31        | 36.27          | 39.74         | 552           | 2.98      | 3 0.0   | 0 22               | 5              | 415        | 412            |
| Proposed 2040 NB                              | 1.9               | 9 0.92  | 10.31        | 36.27          | 39.74         | 37            | 2.98      | 3 0.0   | 0 1                | 5              | 52         | -8             |
| Proposed 2040 Build                           | 1.9               | 3 13.89 | 10.31        | 36.27          | 39.74         | 552           | 2.98      | 3 0.0   | 0 22               | 5              | 415        | 412            |
| Silver Creek                                  |                   |         |              |                |               |               |           |         |                    |                |            |                |
| Existing                                      | 6.5               | 5 12.84 | 6.93         | 36.27          | 39.74         | 510           | 9.72      | 2 0.0   | 0 6                | 4              | 136        | 379            |
| Proposed - ICP                                | 6.5               | 5 47.19 | 6.93         | 36.27          | 39.74         | 1875          | 9.72      | 2 0.0   | 0 23               | 5              | 431        | 1492           |
| Proposed - ICP SILVER ONLY                    | 6.                | 5 33.30 | 6.93         | 36.27          | 39.74         | 1323          | 9.72      | 2 0.0   | 0 16               | 6              | 312        | 1042           |
| Proposed 2040 NB                              | 6.5               | 5 12.84 | 6.93         | 36.27          | 39.74         | 510           | 9.72      | 2 0.0   | 0 6                | 4              | 136        | 379            |
| Proposed 2040 NB SILVER ONLY                  | 6.                | 5 11.92 | 6.93         | 36.27          | 39.74         | 474           | 9.72      | 2 0.0   | 0 5                | 9              | 128        | 349            |
| Proposed 2040 Build                           | 6.5               | 5 47.19 | 6.93         | 36.27          | 39.74         | 1875          | 9.72      | 2 0.0   | 0 23               | 5              | 431        | 1492           |
| Proposed 2040 Build SILVER ONLY               | 6.5               | 5 33.30 | 6.93         | 36.27          | 39.74         | 1323          | 9.72      | . 0.0   | 0 16               | 6              | 312        | 1042           |
| Willow Creek                                  |                   |         |              |                |               |               |           |         |                    |                |            |                |
| Existing                                      |                   | 5 0.00  |              |                |               |               |           |         | 0 not applicable   | not applicable |            | -38            |
| Proposed - ICP                                |                   | 5 37.72 |              |                |               |               |           |         |                    |                | 376        | 1185           |
| Proposed 2040 NB                              |                   | 5 0.00  |              |                |               |               |           |         | 0 not applicable   | not applicable |            | -38            |
| Proposed 2040 Build                           | (                 | 5 50.29 | 4.56         | 36.27          | 39.74         | 1999          | 9.00      | 0.0     | 0 27               | 0              | 492        | 1593           |
| Higgins Creek                                 |                   |         |              |                |               |               |           |         |                    |                |            |                |
| Existing                                      |                   | 7 44.87 |              | 36.27          |               |               |           |         |                    |                | 385        | 1417           |
| Proposed - ICP                                |                   | 7 78.99 |              | 36.27          |               |               |           |         |                    |                | 658        | 2524           |
| Proposed 2040 NB                              |                   | 7 58.63 |              | 36.27          |               |               |           |         |                    |                | 495        | 1863           |
| Proposed 2040 Build                           |                   | 7 78.99 | 16.44        | 36.27          | 39.74         | 3139          | 10.44     | 0.0     | 0 36               | 7              | 658        | 2524           |
| Salt Creek                                    | _                 |         |              |                |               |               |           |         |                    |                |            |                |
| Existing                                      | 7:                |         |              | 36.27          |               |               |           |         |                    | 1              | 46         | 723            |
| Proposed - ICP                                | 7:                |         |              | 36.27          |               |               |           |         |                    | 8              | 75         | 1783           |
| Proposed 2040 NB                              | 7:                |         |              | 36.27          |               |               |           |         |                    | 1              | 46         | 723            |
| Proposed 2040 Build                           | 7:                | 1 67.04 | 8.63         | 36.27          | 39.74         | 2664          | 96.73     | 8 0.0   | 0 3                | 3              | 84         | 2136           |
| Meacham Creek                                 | 2                 |         | 45 7         | 26.27          |               | 4070          |           |         |                    |                | 500        | 0.42           |
| Existing                                      | 2.9               |         |              | 36.27<br>36.27 |               |               |           |         |                    |                | 532<br>765 | 842<br>1247    |
| Proposed - ICP<br>Proposed 2040 NB            | 2.9               |         |              | 36.27          |               |               |           |         |                    |                | 532        | 842            |
| Proposed 2040 Build                           | 2.9               |         |              | 36.27          |               |               |           |         |                    |                | 842        | 1381           |
| Spring Brook Creek                            | Ζ.:               | 45.//   | 15.7         | 50.27          | 59.74         | 1/39          | 4.40      | 5 0.0   | 0 47               | 4              | 04Z        | 1301           |
| Existing                                      | 1.2               | 2 6.21  | 12.02        | 36.27          | 39.74         | 247           | 1.92      | 2 0.0   | 0 15               | 7              | 296        | 164            |
| Proposed - ICP                                | 1                 |         |              | 36.27          |               |               |           |         |                    |                | 520        | 330            |
| Proposed 2040 NB                              | 1                 |         |              |                |               |               |           |         |                    |                | 296        | 164            |
| Proposed 2040 Build                           | 1                 |         |              |                |               |               |           |         |                    |                | 520        | 330            |
| West Branch DuPage River                      | 1.,               | - 11.34 | 12.02        | 50.27          | 55.74         | 450           | 1.92      | . 0.0   | 20                 | ·•             | 520        | 550            |
| Existing                                      | 4.                | 5 6.89  | 6.87         | 36.27          | 39.74         | 274           | 6.83      | 8 0.0   | 0 /                | 8              | 110        | 186            |
| Proposed - ICP                                | 4.                |         |              | 36.27          |               |               |           |         |                    | 5              | 156        | 307            |
| Proposed 2040 NB                              | 4.                |         |              | 36.27          |               |               |           |         |                    | 8              | 110        | 186            |
| Proposed 2040 Build                           | 4.                |         |              | 36.27          |               |               |           |         |                    | 5              | 156        | 307            |
|                                               |                   | 10.02   | 0.07         | 50.27          | 55.74         | -122          | 0.00      | 0.0     | -                  | -              | 100        | 507            |

Attachment 2 INHS Water Quality Summary Data

| Site<br>Number | Habitat                    | Constituent    | June 16,<br>2009 | August<br>10, 2009 | October<br>28, 2009 | May 27,<br>2010 | June 2<br>2010 |
|----------------|----------------------------|----------------|------------------|--------------------|---------------------|-----------------|----------------|
| ACGA           | Addison Creek,             | TSS            |                  | Not tested fo      | NA                  |                 |                |
|                | at Grand Ave               | Copper, mg/L   | 0.01296          | 0.01079            | 0.01050             |                 |                |
|                |                            | Lead, mg/L     | < 0.041          | < 0.041            | < 0.041             |                 |                |
|                |                            | Zinc, mg/L     | 0.01900          | 0.03080            | 0.13700             |                 |                |
|                |                            | Chloride, mg/L | 181              | 158                | 199                 |                 |                |
| WCYR           | Willow Creek at            | TSS            |                  | Not tested fo      | r                   |                 |                |
|                | York Road                  | Copper, mg/L   | 0.01782          | 0.03156            | 0.00536             |                 |                |
|                |                            | Lead, mg/L     | < 0.041          | < 0.041            | < 0.041             |                 |                |
|                |                            | Zinc, mg/L     | 0.0219           | 0.009              | 0.158               |                 |                |
|                |                            | Chloride, mg/L | 302              | 140                | 167                 |                 |                |
| HC190          | Higgins Creek              | TSS            |                  | Not tested fo      | r                   |                 |                |
|                | upstream I-90              | Copper, mg/L   | 0.01704          | 0.03006            | 0.00990             |                 |                |
|                |                            | Lead, mg/L     | < 0.041          | < 0.041            | < 0.041             |                 |                |
|                |                            | Zinc, mg/L     | 0.07340          | 0.19540            | 0.15100             |                 |                |
|                |                            | Chloride, mg/L | 224              | 113                | 146                 |                 |                |
| SCTA           | Salt Creek                 | TSS            |                  | Not tested for     |                     |                 |                |
|                | upstream<br>Thorndale Ave. | Copper, mg/L   | 0.00853          | 0.01285            | 0.00606             |                 |                |
|                | momuale Ave.               | Lead, mg/L     | < 0.041          | < 0.041            | < 0.041             |                 |                |
|                |                            | Zinc, mg/L     | 0.0133           | 0.02               | 0.187               |                 |                |
|                |                            | Chloride, mg/L | 309              | 181                | 189                 |                 |                |
| MCMR           | Meacham                    | TSS            |                  | Not tested fo      | r                   |                 |                |
|                | Creek at<br>Medinah Road   | Copper, mg/L   | 0.00588          | 0.00717            | 0.01080             |                 |                |
|                | Medinan Road               | Lead, mg/L     | < 0.041          | < 0.041            | < 0.041             |                 |                |
|                |                            | Zinc, mg/L     | 0.00970          | 0.00770            | 0.11100             |                 |                |
|                |                            | Chloride, mg/L | 330              | 154                | 112                 |                 |                |
| 2010-06        | Spring Brook               | TSS            | NA               |                    |                     | Not tes         | sted for       |
|                |                            | Copper, mg/L   |                  |                    |                     | 0.00413         | 0.0068         |
|                |                            | Lead, mg/L     |                  |                    |                     | < 0.041         | < 0.04         |
|                |                            | Zinc, mg/L     |                  |                    |                     | 0.0082          | 0.0179         |
|                |                            | Chloride, mg/L |                  |                    |                     | 211             | 155            |
| 2010-07        | West Branch                | TSS            | _                |                    |                     | Not tes         | sted for       |
|                | DuPage River               | Copper, mg/L   |                  |                    |                     | 0.0059          | 0.0068         |
|                |                            | Lead, mg/L     |                  |                    |                     | < 0.041         | < 0.04         |
|                |                            | Zinc, mg/L     |                  |                    |                     | 0.0147          | 0.0459         |
|                |                            | Chloride, mg/L |                  |                    |                     | 203             | 154            |

INHS Water Quality Summary Data

Attachment 3 FHWA Methodology Worksheets

## Site: Addison Creek

Cells to input data to

|                                                                                    |                   | EXISTING CONDITIONS |         | Proposed CONDITIONS |         |          |          |          |          |         |
|------------------------------------------------------------------------------------|-------------------|---------------------|---------|---------------------|---------|----------|----------|----------|----------|---------|
|                                                                                    |                   | TSS                 |         |                     | Zinc    | TSS      | •        |          | Zinc     |         |
| ble 1. Worksheet A - Site Characteristics                                          |                   |                     | ••      | I                   |         |          | ••       |          |          | 1       |
| Drainage Area of Highway Segment (Section 2.1)                                     |                   |                     |         |                     |         |          |          |          |          |         |
| Total right of way                                                                 | AROW              | 62.74               | 62.74   | 62.74               | 62.74   | 83.37    | 83.37    | 83.37    | 83.37    | Acre    |
| Paved surface                                                                      | AHWY              | 62.74               | 62.74   | 62.74               |         | 83.37    | 83.37    |          | 83.37    |         |
| Percent Impervous                                                                  | IMP               | 100                 | 100     | 100                 | 100     | 100      | 100      | 100      |          |         |
|                                                                                    |                   |                     |         |                     |         |          |          |          |          |         |
| Rainfall Characteristics (section 2.2)                                             | MEAN              |                     |         |                     |         |          |          |          |          |         |
| Volume                                                                             | MVP               | 0.42                | 0.42    | 0.42                | 0.42    | 0.42     | 0.42     | 0.42     | 0.42     | inch    |
| Intensity                                                                          | MIP               | 0.07                | 0.07    | 0.07                | 0.07    | 0.07     | 0.07     |          | 0.07     |         |
| Duration                                                                           | MDP               | 14.14               | 14.14   | 14.14               | 14.14   | 14.14    | 14.14    | 14.14    | 14.14    |         |
| nterval                                                                            | MTP               | 155.11              | 155.11  | 155.11              | 155.11  | 155.11   | 155.11   |          | 155.11   |         |
|                                                                                    |                   |                     |         |                     |         |          |          |          |          |         |
|                                                                                    | COEF of VARIATION |                     |         |                     |         |          |          |          |          |         |
| /olume                                                                             | CVVP              | 1.55                | 1.55    | 1.55                | 1.55    | 1.55     | 1.55     | 1.55     | 1.55     | dimer   |
| ntensity                                                                           | CVIP              | 2.15                | 2.15    | 2.15                | 2.15    | 2.15     | 2.15     |          |          | dimer   |
| Juration                                                                           | CVDP              | 1.37                | 1.37    | 1.37                | 1.37    | 1.37     | 1.37     |          |          | dimer   |
| nterval                                                                            | CVTP              | 1.07                | 1.07    | 1.07                | 1.07    | 1.07     | 1.07     |          |          | dimer   |
|                                                                                    |                   | ,                   |         |                     |         |          | 2.07     | 2.07     | 2.07     |         |
| lumber of storms per year (24*365/MTP)                                             | NST               | 56.5                | 56.5    | 56.5                | 56.5    | 56.5     | 56.5     | 56.5     | 56.5     | no. ev  |
|                                                                                    |                   |                     |         |                     |         |          |          |          |          |         |
| Surrounding Area Type                                                              |                   |                     |         |                     |         |          |          |          |          | 1       |
| ADT ususally over 30,000 vehicles/day                                              | Urban             | x                   | x       | x                   | х       | х        | х        | х        | х        |         |
|                                                                                    |                   |                     |         |                     |         |          |          |          |          |         |
| ADT usually under 30,000 vpd, undeveloped or suburban                              | Rural             |                     |         |                     |         |          |          |          |          |         |
|                                                                                    |                   |                     |         |                     |         |          |          |          |          |         |
| Select pollutant for analysis (section 2.4) and estimate runoff quality characteri | stics (use        |                     |         |                     |         |          |          |          |          |         |
| ble 3)                                                                             |                   | TSS                 | Copper  | Lead                | Zinc    | TSS      | Copper   | Lead     | Zinc     |         |
| site median concentration                                                          | TCR               | 142                 | 0.041   | 0.025               | 0.187   | 142      |          | 0.025    | 0.187    | mg/l    |
| coef of variation (0.71 urban, 0.84 Rural, 0.75 estimate for all sites)            | CVCR              | 0.71                | 0.71    | 0.71                |         | 0.71     |          |          | 0.71     | dimen   |
|                                                                                    |                   |                     |         |                     |         |          |          |          |          |         |
| Select receiving water target concentration (section 2.6)                          |                   |                     |         |                     |         |          |          |          |          |         |
| rface water Total Hardness (Figure 5)                                              | ТН                | 290                 | 290     | 290                 | 290     | 290      | 290      | 290      | 290      | mg/l    |
| REAM -use table 4 for target concentration                                         |                   |                     |         |                     |         |          |          |          |          | 0,      |
| EPA Acute Criterion                                                                |                   | 1500                | 0.046   | 0.236               | 0.295   | 1500     | 0.046    | 0.236    | 0.295    | mg/l    |
| suggested Threshold Effect Level                                                   |                   | none                | 0.028   | 0.050               | 0.077   |          | 0.028    |          | 0.077    |         |
|                                                                                    |                   |                     |         |                     |         |          |          |          |          | 0,      |
| KE - use accepted level for average Phosphorus concentration                       |                   |                     |         |                     |         |          |          |          |          |         |
| arget concentration is 10 micrograms/liter                                         |                   | 10                  | 10      | 10                  | 10      | 10       | 10       | 10       | 10       | ug/l    |
|                                                                                    |                   |                     |         |                     |         |          |          |          |          | 0.      |
| Watershed Drainage Area                                                            | ATOT              | 6                   | 6       | 6                   | 6       | 6        | 6        | 6        | 6        | square  |
| stream of highway for a stream - total contributing area for a lake                |                   |                     |         |                     |         |          |          |          |          |         |
|                                                                                    |                   |                     |         |                     |         |          |          |          |          |         |
| Average annual stream flow (section 2.3)                                           |                   |                     |         |                     |         |          |          |          |          |         |
| unit area flow rate per square mile (figure 4)                                     | QSM               | 1.30                | 1.30    | 1.30                | 1.30    | 1.30     | 1.30     | 1.30     | 1.30     | cfs/squ |
| Coef of variation of stream flows (section 2.3)                                    | CVQS              | 1.68                | 1.68    | 1.68                | 1.68    | 1.68     | 1.68     |          |          | dimen   |
| Average stream flow (QSM*ATOT)                                                     | MQS               | 7.79                | 7.79    | 7.79                | 7.79    | 7.79     | 7.79     |          |          |         |
|                                                                                    |                   |                     |         |                     |         |          |          |          |          |         |
| le 5. Worksheet B - Highway Runoff Characteristics                                 |                   |                     |         |                     |         |          |          |          |          |         |
| Compute runoff coefficient (Rv) (section 3.1)                                      |                   |                     |         |                     |         |          |          |          |          |         |
| Percent Impervious (Worksheet A - Item 1c)                                         | IMP               | 100                 | 100     | 100                 | 100     | 100      | 100      | 100      | 100      | %       |
| Runoff Coefficient (=0.007*IMP+0.1)                                                | Rv                | 0.8                 | 0.8     | 0.8                 | 0.8     | 0.8      | 0.8      |          |          | ratio   |
|                                                                                    |                   |                     |         | -                   | _       |          | _        |          |          | 1       |
| compute runoff flow rates (section 3.1)                                            |                   |                     |         |                     |         |          |          |          |          | 1       |
| low rate from mean storm                                                           |                   |                     |         |                     |         |          |          |          |          |         |
| Rv*MIP*AROW                                                                        | MQR               | 3.505               | 3.505   | 3.505               | 3.505   | 4.657    | 4.657    | 4.657    | 4.657    | cfs     |
| oefficient of variation of runoff flows                                            |                   | 5.555               | 0.000   | 5.505               | 5.505   |          |          |          |          |         |
| CVIP (worksheet A - Item 2f)                                                       | CVVR              | 2.15                | 2.15    | 2.15                | 2.15    | 2.15     | 2.15     | 2.15     | 2 15     | dimen   |
|                                                                                    | CVVII             | 2.13                | 2.13    | 2.13                | 2.13    | 2.13     | 2.13     | 2.13     | 2.13     | amen    |
| ompute runoff volumes (section 3.1)                                                |                   |                     |         |                     |         |          |          |          |          |         |
| olume from the mean storm                                                          |                   |                     |         |                     |         |          |          |          |          |         |
| Rv*MVP*AROW*3630                                                                   | MVR               | 75754.4             | 75754.4 | 75754.4             | 75754.4 | 100663.7 | 100663.7 | 100663.7 | 100663.7 | cubic f |
| Coefficient of variation of runoff volumes                                         |                   | 75754.4             | 15154.4 | 15154.4             | 15154.4 | 100003.7 | 100003.7 | 100003.7 | 100003.7 |         |
| =CVVP (worksheet A - Item 2e)                                                      | CVVR              | 1.55                | 1.55    | 4                   | 4       | 1.55     | 4 66     | 1.55     | 4 66     | dimen   |
|                                                                                    |                   | 155                 | 1.55    | 1.55                | 1.55    | 1.55     | 1.55     | 1.55     | I.55     | runnen  |

| Site: Addison Creek    |
|------------------------|
| Cells to input data to |

|                                                                                                  |         |           | EXISTING C | ONDITIONS |         |           | Proposed C |
|--------------------------------------------------------------------------------------------------|---------|-----------|------------|-----------|---------|-----------|------------|
|                                                                                                  |         | TSS       | Copper     | Lead      | Zinc    | TSS       | Copper     |
| 4. Compute mass loads (section 3.2)                                                              |         |           |            |           |         |           |            |
| Site Median Conc (worksheet A - Item 4a)                                                         | TCR     | 142       |            |           |         |           |            |
| Coef of var. of site EMC's (Worksheet A - 4b)                                                    | CVCR    | 0.71      |            |           |         |           |            |
| Number of storms per year (Worksheet A - 2i)                                                     | NST     | 56.5      | 56.5       | 56.5      | 56.5    | 56.5      | 56.5       |
| a. mean event concentration (MCR)                                                                |         |           |            |           |         |           |            |
| =TCR*SQRT(1+CVCR^2)                                                                              | MCR     | 174.2     | 0.1        | 0.0       | 0.2     | 174.2     | 0.1        |
| b. mean event mass load                                                                          |         |           |            |           |         |           |            |
| =MCR*MVR*(0.00006245)                                                                            | M(MASS) | 823.885   | 0.238      | 0.145     | 1.085   | 1094.793  | 0.316      |
| c. annual mass laod from runoff                                                                  |         |           |            |           |         |           |            |
| =M(MASS)*NST                                                                                     | ANMASS  | 46529.695 | 13.435     | 8.192     | 61.275  | 61829.465 | 17.852     |
| 5. Compute flow ratio (MQS/MQR) (section 3.3)                                                    |         |           |            |           |         |           |            |
| a. ratio of average stream flow                                                                  |         |           |            |           |         |           |            |
| (worksheet A-7b) to MQR                                                                          | MQS/MQR | 2.223     | 2.223      | 2.223     | 2.223   | 1.673     | 1.673      |
| Table 6. Worksheet C - Stream Impact Analsysis                                                   |         |           |            |           |         |           |            |
| 1. Define the flow ratio MQS/MQR (Worksheet B-5a)                                                | MQS/MQR | 2.223     | 2.223      | 2.223     | 2.223   | 1.673     | 1.673      |
| 2. Compute the event frequency for a 3 year recurrence interval                                  |         |           |            |           |         |           |            |
| a. Enter the average number of storms per year                                                   |         |           |            |           |         |           |            |
| (from Worksheet A - Item 2i)                                                                     | NST     | 56.5      | 56.5       | 56.5      | 56.5    | 56.5      | 56.5       |
| b. Compute the probability (%) of the 3 year event                                               |         |           |            |           |         |           |            |
| =100*(1/(NST*3))                                                                                 | PR      | 0.59      | 0.59       | 0.59      | 0.59    | 0.59      | 0.59       |
| 3. Enter Value from Table 7 for MQS/MQR and frequency PR                                         | CU      | 2.01      | 2.01       | 2.01      | 2.01    | 2.64      | 2.64       |
| 4. Select pollutant for analysis                                                                 |         |           |            |           |         |           |            |
| a. Site median concentration (table 3)                                                           | тср     | 142       | 0.041      | 0.025     | 0.187   | 143       | 0.041      |
| a. Site median concentration (table 3)                                                           | TCR     | 142       | 0.041      | 0.025     | 0.187   | 142       | 0.041      |
| b. Soluble fraction (section 2.5)                                                                | FSOL    | 0.9       | 0.4        | 0.1       | 0.4     | 0.9       | 0.4        |
| c. Acute Criteria (table 4)                                                                      | СТА     | 1500      | 0.046      | 0.236     | 0.295   | 1500      | 0.046      |
| d Throshold offects level (Table 4)                                                              | СТТ     |           | 0.029      | 0.050     | 0.077   | none      | 0.029      |
| d. Threshold effects level (Table 4)                                                             | CIT     | none      | 0.028      | 0.050     | 0.077   | none      | 0.028      |
| 5. Compute the once in 3 year stream pollutant concentration                                     |         |           |            |           |         |           |            |
| =CU*TCR*FSOL                                                                                     | СО      | 257.35    | 0.03       | 0.01      | 0.15    | 336.93    | 0.04       |
| 6. Compare with Target Concentration, CTA                                                        |         |           |            |           |         |           |            |
| =CO/CTA                                                                                          | CRAT    | 0.17      | 0.71       | 0.02      | 0.51    | 0.22      | 0.93       |
| 6a. Compare with background concentrations                                                       |         | n/a       | 0.011      | < 0.041   | 0.062   | n/a       | 0.011      |
| 7. Evaluate Results                                                                              |         |           |            |           |         |           |            |
|                                                                                                  |         |           |            |           |         |           |            |
| a. If CRAT is less than about 0.75 a tocicity problem attributable to this pollutant is unlikely |         | STOP      | STOP       | STOP      | STOP    | STOP      | STOP       |
| b. If CRAT is greater than 5 reduction will definitely be required. Estimate the level of        |         |           |            |           |         |           |            |
| reduction possible and repeat the analysis with revisted values for either concentration or      |         |           |            |           |         |           |            |
| flow or both                                                                                     |         | CONTROL   | CONTROL    | CONTROL   | CONTROL | CONTROL   | CONTROL    |
| a if CDAT is still groater than 1 and groater reduction lough are not are the                    |         |           |            |           |         |           |            |
| c. if CRAT is still greater than 1 and greater reduction levels are not practical, estimate the  |         |           |            |           |         |           |            |
| potential for an adverse impact (as opposed to a criteria violation) by a comparison with the    | :       |           |            |           |         |           |            |
| threshold effects level)<br>=CO/CTT                                                              | CRTE    |           | EVALUATE   |           |         |           | EVALUATE   |
|                                                                                                  | CIVIL   | #VALUE!   | 1.17       | 0.10      | 1.96    | #VALUE!   | 1.53       |

|        | ONDITIONS | Zine     |             |
|--------|-----------|----------|-------------|
| ber    | Lead      | Zinc     |             |
| 0.041  | 0.025     | 0.187    | mall        |
|        |           |          | -           |
| 0.71   | 0.71      | 0.71     |             |
| 56.5   | 56.5      | 56.5     | number      |
|        |           |          |             |
| 0.4    |           |          | /1          |
| 0.1    | 0.0       | 0.2      | mg/l        |
|        |           |          |             |
| 0.316  | 0.193     | 1.442    | pounds      |
|        |           |          |             |
| 17.852 | 10.885    | 81.423   | pounds/year |
|        |           |          |             |
|        |           |          |             |
|        |           |          |             |
| 1.673  | 1.673     | 1.673    | ratio       |
|        |           |          |             |
|        |           |          |             |
| 1.673  | 1.673     | 1.673    | ratio       |
|        |           |          |             |
|        |           |          |             |
|        |           |          |             |
| 56.5   | 56.5      | 56.5     | number      |
|        |           |          |             |
| 0.59   | 0.59      | 0.59     | %           |
|        |           |          | _           |
| 2.64   | 2.64      | 2.64     | mg/l        |
|        |           |          |             |
|        |           |          | Name        |
| 0.041  | 0.025     | 0.187    | mg/l        |
|        | 0.4       |          | <b>c</b>    |
| 0.4    | 0.1       | 0.4      | fraction    |
| 0.046  | 0.220     | 0.205    |             |
| 0.046  | 0.236     | 0.295    | mg/I        |
| 0.020  | 0.050     | 0.077    |             |
| 0.028  | 0.050     | 0.077    | mg/l        |
|        |           |          |             |
| 0.04   | 0.01      | 0.20     | ma/l        |
| 0.04   | 0.01      | 0.20     | mg/l        |
|        |           |          |             |
| 0.02   | 0.02      | 0.07     | unti n      |
| 0.93   | 0.03      | 0.67     | ratio       |
| 0.011  | < 0.041   | 0.062    | mg/l        |
| 0.011  | < 0.041   | 0.002    | iiig/i      |
|        |           |          |             |
|        |           |          |             |
| )      | STOP      | STOP     |             |
|        | 5101      | 5101     |             |
|        |           |          |             |
|        |           |          |             |
| TROL   | CONTROL   | CONTROL  |             |
| OL     | CONTROL   | CONTROL  |             |
|        |           |          |             |
|        |           |          |             |
| UATE   | EVALUATE  | EVALUATE |             |
| 1.53   | 0.13      |          | ratio       |
| 1.00   | 0.13      | 2.50     |             |

# Site: Bensenville Ditch

| Cells to input data to | Cells to | o input | data | to |
|------------------------|----------|---------|------|----|
|------------------------|----------|---------|------|----|

|                                                                                                                                                                                                                                                                                                                                   |                   |          | EXISTING C | ONDITIONS |         |         | Proposed CONDITIONS |         |         |                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------|------------|-----------|---------|---------|---------------------|---------|---------|-----------------------|
|                                                                                                                                                                                                                                                                                                                                   |                   | TSS      | Copper     | Lead      | Zinc    | TSS     | Copper              | Lead    | Zinc    |                       |
| able 1. Worksheet A - Site Characteristics                                                                                                                                                                                                                                                                                        |                   | _        | _          | _         | _       | _       | _                   | _       | _       |                       |
| Drainage Area of Highway Segment (Section 2.1)                                                                                                                                                                                                                                                                                    |                   |          |            |           |         |         |                     |         |         |                       |
| Total right of way                                                                                                                                                                                                                                                                                                                | AROW              | 11.9     |            |           | 11.9    |         | 27.98               |         |         |                       |
| Paved surface                                                                                                                                                                                                                                                                                                                     | AHWY              | 11.9     |            |           | 11.9    |         |                     |         |         |                       |
| Percent Impervous                                                                                                                                                                                                                                                                                                                 | IMP               | 100      | 100        | 100       | 100     | 100     | 100                 | 100     | 100     | %                     |
| Rainfall Characteristics (section 2.2)                                                                                                                                                                                                                                                                                            | MEAN              |          |            |           |         |         |                     |         |         |                       |
| Volume                                                                                                                                                                                                                                                                                                                            | MVP               | 0.42     | 0.42       | 0.42      | 0.42    | 0.42    | 0.42                | 0.42    | 0.42    | inch                  |
| Intensity                                                                                                                                                                                                                                                                                                                         | MIP               | 0.07     | 0.07       | 0.07      | 0.07    | 0.07    | 0.07                |         |         | inch/hou              |
| Duration                                                                                                                                                                                                                                                                                                                          | MDP               | 14.14    | 14.14      | 14.14     | 14.14   |         | 14.14               |         |         |                       |
| Interval                                                                                                                                                                                                                                                                                                                          | MTP               | 155.11   | 155.11     | 155.11    | 155.11  |         | 155.11              |         |         |                       |
|                                                                                                                                                                                                                                                                                                                                   |                   |          |            |           |         |         |                     |         |         |                       |
|                                                                                                                                                                                                                                                                                                                                   | COEF of VARIATION |          |            |           |         |         |                     |         |         |                       |
| Volume                                                                                                                                                                                                                                                                                                                            | CVVP              | 1.55     | 1.55       | 1.55      | 1.55    | 1.55    | 1.55                | 1.55    | 1.55    | dimensio              |
| ntensity                                                                                                                                                                                                                                                                                                                          | CVIP              | 2.15     | 2.15       |           | 2.15    |         | 2.15                |         |         | dimensio              |
| Duration                                                                                                                                                                                                                                                                                                                          | CVDP              | 1.37     | 1.37       | 1.37      | 1.37    |         | 1.37                |         |         | dimensic              |
| Interval                                                                                                                                                                                                                                                                                                                          | CVTP              | 1.07     | 1.07       | 1.07      | 1.07    | 1.07    | 1.07                |         |         | dimensio              |
|                                                                                                                                                                                                                                                                                                                                   |                   |          |            |           |         |         |                     |         |         |                       |
| Number of storms per year (24*365/MTP)                                                                                                                                                                                                                                                                                            | NST               | 56.5     | 56.5       | 56.5      | 56.5    | 56.5    | 56.5                | 56.5    | 56.5    | no. event             |
| Surrounding Area Type                                                                                                                                                                                                                                                                                                             |                   |          |            |           |         |         | L                   |         |         |                       |
| ADT ususally over 30,000 vehicles/day                                                                                                                                                                                                                                                                                             | Urban             | x        | х          | х         | х       | х       | х                   | х       | х       |                       |
|                                                                                                                                                                                                                                                                                                                                   |                   |          |            |           |         |         |                     |         |         |                       |
| ADT usually under 30,000 vpd, undeveloped or suburban                                                                                                                                                                                                                                                                             | Rural             |          |            |           |         |         |                     |         |         |                       |
| Select pollutant for analysis (section 2.4) and estimate runoff quality charact                                                                                                                                                                                                                                                   | teristics (use    |          |            |           |         |         |                     |         |         |                       |
| ble 3)                                                                                                                                                                                                                                                                                                                            |                   | тѕѕ      | Copper     | Lead      | Zinc    | TSS     | Copper              | Lead    | Zinc    |                       |
| site median concentration                                                                                                                                                                                                                                                                                                         | TCR               | 142      | 0.041      | 0.025     | 0.187   | 142     | 0.041               | 0.025   | 0.187   | mø/l                  |
| coef of variation (0.71 urban, 0.84 Rural, 0.75 estimate for all sites)                                                                                                                                                                                                                                                           | CVCR              | 0.71     |            |           | 0.107   |         |                     |         |         | dimensio              |
|                                                                                                                                                                                                                                                                                                                                   | even              | 0.71     | 0.71       | 0.71      | 0.71    | 0.71    | 0.71                | 0.71    | 0.71    | unnensio              |
| Select receiving water target concentration (section 2.6)                                                                                                                                                                                                                                                                         |                   |          |            |           |         |         |                     |         |         |                       |
| rface water Total Hardness (Figure 5)                                                                                                                                                                                                                                                                                             | ТН                | 229      | 229        | 229       | 229     | 229     | 229                 | 229     | 229     | mg/l                  |
| REAM -use table 4 for target concentration                                                                                                                                                                                                                                                                                        |                   | 225      | 225        | 225       | 229     | 225     | 229                 | 225     | 225     | 111g/1                |
| EPA Acute Criterion                                                                                                                                                                                                                                                                                                               |                   | 1500     | 0.037      | 0.184     | 0.241   | 1500    | 0.037               | 0.184   | 0.241   | mg/l                  |
| suggested Threshold Effect Level                                                                                                                                                                                                                                                                                                  |                   | none     | 0.023      | 0.039     |         | none    | 0.037               |         |         | -                     |
|                                                                                                                                                                                                                                                                                                                                   |                   | none     | 0.023      | 0.035     | 0.005   | none    | 0.023               | 0.035   | 0.005   | 111g/1                |
| KE - use accepted level for average Phosphorus concentration                                                                                                                                                                                                                                                                      |                   |          |            |           |         |         |                     |         |         |                       |
| target concentration is 10 micrograms/liter                                                                                                                                                                                                                                                                                       |                   | 10       | 10         | 10        | 10      | 10      | 10                  | 10      | 10      | ug/l                  |
|                                                                                                                                                                                                                                                                                                                                   |                   | 10       | 10         | 10        | 10      | 10      | 10                  | 10      | 10      | 46/1                  |
| Watershed Drainage Area                                                                                                                                                                                                                                                                                                           | ATOT              | 1.9      | 1.9        | 1.9       | 1.9     | 1.9     | 1.9                 | 1.9     | 1.9     | square m              |
| ostream of highway for a stream - total contributing area for a lake                                                                                                                                                                                                                                                              |                   | 110      | 110        | 1.5       | 1.0     | 1.5     | 1.0                 | 1.0     | 1.5     | square m              |
|                                                                                                                                                                                                                                                                                                                                   |                   |          |            |           |         |         |                     |         |         |                       |
| Average annual stream flow (section 2.3)                                                                                                                                                                                                                                                                                          | QSM               | 1.30     | 1.30       | 1.30      | 1.30    | 1.30    | 1.30                | 1.20    | 1 20    | ofo /o quar           |
| unit area flow rate per square mile (figure 4)                                                                                                                                                                                                                                                                                    |                   |          |            |           |         |         |                     |         |         | cfs/squar             |
| Coef of variation of stream flows (section 2.3)                                                                                                                                                                                                                                                                                   | CVQS              | 1.68     | 1.68       | 1.68      | 1.68    |         | 1.68                |         |         | dimensio              |
| Average stream flow (QSM*ATOT)                                                                                                                                                                                                                                                                                                    | MQS               | 2.47     | 2.47       | 2.47      | 2.47    | 2.47    | 2.47                | 2.47    | 2.47    | CTS                   |
| ble 5. Worksheet B - Highway Runoff Characteristics                                                                                                                                                                                                                                                                               |                   |          |            |           |         |         |                     |         |         |                       |
| Compute runoff coefficient (Rv) (section 3.1)                                                                                                                                                                                                                                                                                     |                   |          |            |           |         |         |                     |         |         |                       |
| Percent Impervious (Worksheet A - Item 1c)                                                                                                                                                                                                                                                                                        | IMP               | 100      | 100        | 100       | 100     | 100     | 100                 | 100     | 100     | %                     |
| Runoff Coefficient (=0.007*IMP+0.1)                                                                                                                                                                                                                                                                                               | Rv                | 0.8      | 0.8        | 0.8       | 0.8     | 0.8     | 0.8                 | 0.8     | 0.8     | ratio                 |
| Compute runoff flow rates (section 3.1)                                                                                                                                                                                                                                                                                           |                   |          |            |           |         |         |                     |         |         |                       |
| Flow rate from mean storm                                                                                                                                                                                                                                                                                                         |                   |          |            |           |         |         |                     |         |         |                       |
|                                                                                                                                                                                                                                                                                                                                   | MQR               | 0.665    | 0.665      | 0.665     | 0.665   | 1.563   | 1.563               | 1.563   | 1.563   | cfs                   |
| =Rv*MIP*AROW                                                                                                                                                                                                                                                                                                                      | man               | 0.005    | 0.005      | 0.005     | 0.003   | 1.303   | 1.303               | 1.303   | 1.003   | 0.5                   |
|                                                                                                                                                                                                                                                                                                                                   |                   |          | 2.45       | 2.15      | 2.15    | 2.15    | 2.15                | 2.15    | 2 15    | dimensio              |
| Coefficient of variation of runoff flows                                                                                                                                                                                                                                                                                          |                   | 2 15     | 7151       |           | 2.13    | 2.13    | 2.13                | 2.13    | 2.13    | annensio              |
| Coefficient of variation of runoff flows                                                                                                                                                                                                                                                                                          | CVVR              | 2.15     | 2.15       | 2.15      |         |         |                     |         |         |                       |
| Coefficient of variation of runoff flows<br>=CVIP (worksheet A - Item 2f)                                                                                                                                                                                                                                                         | CVVR              | 2.15     | 2.15       | 2.15      |         |         |                     |         |         |                       |
| Coefficient of variation of runoff flows<br>=CVIP (worksheet A - Item 2f)<br>Compute runoff volumes (section 3.1)                                                                                                                                                                                                                 | CVVR              | 2.15     | 2.15       | 2.15      |         |         |                     |         |         |                       |
| Coefficient of variation of runoff flows<br>=CVIP (worksheet A - Item 2f)<br>Compute runoff volumes (section 3.1)<br>/olume from the mean storm                                                                                                                                                                                   |                   |          |            |           | 14360 5 | 22704 0 | 22704.0             | 22704 0 | 22704 0 | cubic for-            |
| Coefficient of variation of runoff flows<br>=CVIP (worksheet A - Item 2f)<br>Compute runoff volumes (section 3.1)<br>/olume from the mean storm<br>=Rv*MVP*AROW*3630                                                                                                                                                              | CVVR              | 2.15<br> | 14368.5    |           | 14368.5 | 33784.0 | 33784.0             | 33784.0 | 33784.0 | cubic fee             |
| <ul> <li>=Rv*MIP*AROW</li> <li>Coefficient of variation of runoff flows</li> <li>=CVIP (worksheet A - Item 2f)</li> <li>Compute runoff volumes (section 3.1)</li> <li>Volume from the mean storm</li> <li>=Rv*MVP*AROW*3630</li> <li>Coefficient of variation of runoff volumes</li> <li>=CVVP (worksheet A - Item 2e)</li> </ul> |                   |          |            |           | 14368.5 |         | 33784.0             |         |         | cubic fee<br>dimensio |

|                                                                                                          |          | EXISTING CONDITIONS |          |          |          | Proposed CONDITIONS |          |          |          |              |
|----------------------------------------------------------------------------------------------------------|----------|---------------------|----------|----------|----------|---------------------|----------|----------|----------|--------------|
|                                                                                                          |          | TSS                 | 1        | 1        | Zinc     | TSS                 | Copper   | 1        | Zinc     | ]            |
| 4. Compute mass loads (section 3.2)                                                                      |          |                     |          |          |          |                     |          |          |          |              |
| Site Median Conc (worksheet A - Item 4a)                                                                 | TCR      | 142                 | 0.041    | 0.025    | 0.187    | 142                 | 0.041    | 0.025    | 0.187    | mg/l         |
| Coef of var. of site EMC's (Worksheet A - 4b)                                                            | CVCR     | 0.71                | 0.71     | 0.71     | 0.71     | 0.71                | 0.71     | 0.71     | 0.71     | dimensionles |
| Number of storms per year (Worksheet A - 2i)                                                             | NST      | 56.5                | 56.5     | 56.5     | 56.5     | 56.5                | 56.5     | 56.5     | 56.5     | number       |
| a. mean event concentration (MCR)                                                                        |          |                     |          |          |          |                     |          |          |          |              |
| =TCR*SQRT(1+CVCR^2)                                                                                      | MCR      | 174.2               | 0.1      | 0.0      | 0.2      | 174.2               | 0.1      | 0.0      | 0.2      | mg/l         |
| b. mean event mass load                                                                                  |          |                     |          |          |          |                     |          |          |          |              |
| =MCR*MVR*(0.00006245)                                                                                    | M(MASS)  | 156.268             | 0.045    | 0.028    | 0.206    | 367.426             | 0.106    | 0.065    | 0.484    | pounds       |
| c. annual mass laod from runoff                                                                          |          |                     |          |          |          |                     |          |          |          |              |
| =M(MASS)*NST                                                                                             | ANMASS   | 8825.364            | 2.548    | 1.554    | 11.622   | 20750.731           | 5.991    | 3.653    | 27.327   | pounds/yea   |
| 5. Compute flow ratio (MQS/MQR) (section 3.3)                                                            |          |                     |          |          |          |                     |          |          |          |              |
| a. ratio of average stream flow                                                                          |          |                     |          |          |          |                     |          |          |          |              |
| (worksheet A-7b) to MQR                                                                                  | MQS/MQR  | 3.712               | 3.712    | 3.712    | 3.712    | 1.579               | 1.579    | 1.579    | 1.579    | ratio        |
| · · · · ·                                                                                                |          |                     | 0.722    | 0.711    | 0        |                     |          |          |          |              |
| Table 6. Worksheet C - Stream Impact Analsysis         1. Define the flow ratio MQS/MQR (Worksheet B-5a) | MQS/MQR  | 3.712               | 3.712    | 3.712    | 3.712    | 1.579               | 1.579    | 1.579    | 1.579    | ratio        |
|                                                                                                          |          | 5.712               | 5.712    | 5.712    | 5.712    | 1.575               | 1.575    | 1.575    | 1.575    | 1010         |
| 2. Compute the event frequency for a 3 year recurrence interval                                          |          |                     |          |          |          |                     |          |          |          |              |
| a. Enter the average number of storms per year                                                           |          |                     |          |          |          |                     |          |          |          |              |
| (from Worksheet A - Item 2i)                                                                             | NST      | 56.5                | 56.5     | 56.5     | 56.5     | 56.5                | 56.5     | 56.5     | 56.5     | number       |
| b. Compute the probability (%) of the 3 year event                                                       |          |                     |          |          |          |                     |          |          |          |              |
| =100*(1/(NST*3))                                                                                         | PR       | 0.59                | 0.59     | 0.59     | 0.59     | 0.59                | 0.59     | 0.59     | 0.59     | %            |
| 3. Enter Value from Table 7 for MQS/MQR and frequency PR                                                 | CU       | 2.15                | 2.15     | 2.15     | 2.15     | 2.69                | 2.69     | 2.69     | 2.69     | mg/l         |
| 4. Select pollutant for analysis                                                                         |          |                     |          |          |          |                     |          |          |          | Name         |
| a. Site median concentration (table 3)                                                                   | TCR      | 142                 | 0.041    | 0.025    | 0.187    | 142                 | 0.041    | 0.025    |          |              |
|                                                                                                          |          |                     |          |          |          |                     |          |          |          |              |
| b. Soluble fraction (section 2.5)                                                                        | FSOL     | 0.9                 | 0.4      | 0.1      | 0.4      | 0.9                 | 0.4      | 0.1      | 0.4      | fraction     |
| c. Acute Criteria (table 4)                                                                              | СТА      | 1500                | 0.037    | 0.184    | 0.241    | 1500                | 0.037    | 0.184    | 0.241    | mg/l         |
| d. Threshold effects level (Table 4)                                                                     | СТТ      | none                | 0.023    | 0.039    | 0.063    | none                | 0.023    | 0.039    | 0.063    | mg/l         |
|                                                                                                          | -        |                     |          |          |          |                     |          |          |          |              |
| 5. Compute the once in 3 year stream pollutant concentration                                             | <u> </u> | 274.20              | 0.04     | 0.01     | 0.10     | 242.70              | 0.04     | 0.01     | 0.20     |              |
| =CU*TCR*FSOL                                                                                             | СО       | 274.29              | 0.04     | 0.01     | 0.16     | 343.70              | 0.04     | 0.01     | 0.20     | mg/l         |
| 6. Compare with Target Concentration, CTA                                                                |          |                     |          |          |          |                     |          |          |          |              |
| =CO/CTA                                                                                                  | CRAT     | 0.18                | 0.95     | 0.03     | 0.67     | 0.23                | 1.19     | 0.04     | 0.83     | ratio        |
| 6a. Compare with background concentrations                                                               |          |                     |          |          |          |                     |          |          |          | mg/l         |
| 7. Evaluate Results                                                                                      |          |                     |          |          |          |                     |          |          |          |              |
|                                                                                                          |          |                     |          |          |          |                     |          |          |          |              |
| a. If CRAT is less than about 0.75 a tocicity problem attributable to this pollutant is unlikely         |          | STOP                | STOP     | STOP     | STOP     | STOP                | STOP     | STOP     | STOP     |              |
| b. If CRAT is greater than 5 reduction will definitely be required. Estimate the level of                |          |                     |          |          |          |                     |          |          |          |              |
| reduction possible and repeat the analysis with revisted values for either concentration or              |          |                     |          |          |          |                     |          |          |          |              |
| flow or both                                                                                             |          | CONTROL             | CONTROL  | CONTROL  | CONTROL  | CONTROL             | CONTROL  | CONTROL  | CONTROL  |              |
|                                                                                                          |          |                     |          |          |          |                     |          |          |          | 1            |
| c. if CRAT is still greater than 1 and greater reduction levels are not practical, estimate the          |          |                     |          |          |          |                     |          |          |          | 1            |
| potential for an adverse impact (as opposed to a criteria violation) by a comparison with the            |          |                     |          |          |          |                     |          |          |          |              |
| threshold effects level)                                                                                 |          | EVALUATE            | EVALUATE | EVALUATE | EVALUATE | EVALUATE            | EVALUATE | EVALUATE | EVALUATE |              |
| =CO/CTT                                                                                                  | CRTE     | #VALUE!             | 1.53     |          |          |                     | 1.91     |          |          | ratio        |
|                                                                                                          |          |                     | 1.00     | 1 0.14   | 1 2.33   |                     | L 1.91   | 0.17     |          |              |

## Site: Higgins Creek

Cells to input data to

|                                                                                           |                   |          | EXISTING C | ONDITIONS |          |          | Proposed C | ONDITIONS |          |            |
|-------------------------------------------------------------------------------------------|-------------------|----------|------------|-----------|----------|----------|------------|-----------|----------|------------|
|                                                                                           | _                 | TSS      | Copper     | Lead      | Zinc     | TSS      | Copper     | Lead      | Zinc     |            |
| ble 1. Worksheet A - Site Characteristics                                                 |                   |          |            |           |          |          |            |           |          |            |
| Drainage Area of Highway Segment (Section 2.1)<br>Total right of way                      | AROW              | 121.76   | 121.76     | 121.76    | 121.76   | 184.59   | 184.59     | 184.59    | 184.59   | Acro       |
| Paved surface                                                                             | AHWY              | 121.76   | 121.76     |           | 121.76   | 184.59   |            | 184.59    |          |            |
|                                                                                           | IMP               | 121.70   | 121.70     |           | 121.70   | 104.39   | 104.39     | 104.39    |          |            |
| Percent Impervous                                                                         | IIVIP             | 100      | 100        | 100       | 100      | 100      | 100        | 100       | 100      | %          |
| Rainfall Characteristics (section 2.2)                                                    | MEAN              |          |            |           |          |          |            |           |          |            |
| Volume                                                                                    | MVP               | 0.42     | 0.42       | 0.42      | 0.42     | 0.42     | 0.42       | 0.42      | 0.42     | inch       |
| Intensity                                                                                 | MIP               | 0.07     | 0.07       |           | 0.07     | 0.07     | 0.07       | 0.07      |          |            |
| Duration                                                                                  | MDP               | 14.14    | 14.14      |           | 14.14    | 14.14    | 14.14      | 14.14     |          |            |
| nterval                                                                                   | MTP               | 155.11   |            |           | 155.11   | 155.11   | 155.11     | 155.11    |          |            |
|                                                                                           |                   |          |            |           |          |          |            |           |          |            |
|                                                                                           | COEF of VARIATION |          |            |           |          |          |            |           |          |            |
| /olume                                                                                    | CVVP              | 1.55     | 1.55       | 1.55      | 1.55     | 1.55     | 1.55       | 1.55      | 1.55     | dime       |
| ntensity                                                                                  | CVIP              | 2.15     | 2.15       | 2.15      | 2.15     | 2.15     | 2.15       | 2.15      | 2.15     | dime       |
| Duration                                                                                  | CVDP              | 1.37     | 1.37       | 1.37      | 1.37     | 1.37     | 1.37       | 1.37      | 1.37     | dimei      |
| nterval                                                                                   | CVTP              | 1.07     | 1.07       | 1.07      | 1.07     | 1.07     | 1.07       | 1.07      | 1.07     | dimer      |
|                                                                                           | 1.c <del></del>   | 50.5     |            |           |          |          |            |           |          |            |
| umber of storms per year (24*365/MTP)                                                     | NST               | 56.5     | 56.5       | 56.5      | 56.5     | 56.5     | 56.5       | 56.5      | 56.5     | no. ev     |
| Surrounding Area Type                                                                     |                   |          |            |           |          |          |            |           |          |            |
| ADT ususally over 30,000 vehicles/day                                                     | Urban             | x        | х          | x         | x        | x        | x          | х         | x        |            |
|                                                                                           |                   |          |            |           |          |          |            |           |          |            |
| DT usually under 30,000 vpd, undeveloped or suburban                                      | Rural             |          |            |           |          |          |            |           |          |            |
| Select pollutant for analysis (section 2.4) and estimate runoff quality characteristics ( | ise               |          |            |           |          |          |            |           |          |            |
| ble 3)                                                                                    |                   | TSS      | Copper     | Lead      | Zinc     | TSS      | Copper     | Lead      | Zinc     |            |
| site median concentration                                                                 | TCR               | 142      |            | 0.025     | 0.187    | 142      |            | 0.025     | 0.187    | mg/l       |
| oef of variation (0.71 urban, 0.84 Rural, 0.75 estimate for all sites)                    | CVCR              | 0.71     |            |           |          | 0.71     |            |           |          | dimen      |
|                                                                                           |                   |          |            |           |          |          |            |           |          |            |
| Select receiving water target concentration (section 2.6)                                 |                   |          |            |           |          |          |            |           |          |            |
| rface water Total Hardness (Figure 5)                                                     | TH                | 278      | 278        | 278       | 278      | 278      | 278        | 278       | 278      | mg/l       |
| REAM -use table 4 for target concentration                                                |                   |          |            |           |          |          |            |           |          |            |
| EPA Acute Criterion                                                                       |                   | 1500     | 0.045      | 0.226     | 0.284    | 1500     | 0.045      | 0.226     | 0.284    | mg/l       |
| suggested Threshold Effect Level                                                          |                   | none     | 0.027      | 0.047     | 0.074    | none     | 0.027      | 0.047     | 0.074    | mg/l       |
|                                                                                           |                   |          |            |           |          |          |            |           |          |            |
| KE - use accepted level for average Phosphorus concentration                              |                   |          |            |           |          |          |            |           |          |            |
| arget concentration is 10 micrograms/liter                                                |                   | 10       | 10         | 10        | 10       | 10       | 10         | 10        | 10       | ug/l       |
|                                                                                           | 4707              | _        |            |           | _        | -        | _          | _         | _        |            |
| Vatershed Drainage Area                                                                   | ATOT              | 7        | 7          | 7         | 7        | 7        | 7          | 7         | 7        | square     |
| stream of highway for a stream - total contributing area for a lake                       |                   |          |            |           |          |          |            |           |          |            |
| Verses annual stream flow (section 2.2)                                                   |                   |          |            |           |          |          |            |           |          |            |
| Average annual stream flow (section 2.3)                                                  | 001               | 1.20     | 1.20       | 1 20      | 1 20     | 1 20     | 1 20       | 1 20      | 1 20     | of a la au |
| unit area flow rate per square mile (figure 4)                                            | QSM               | 1.30     | 1.30       |           |          | 1.30     | 1.30       | 1.30      |          | cfs/squ    |
| Coef of variation of stream flows (section 2.3)                                           | CVQS              | 1.68     | 1.68       |           | 1.68     | 1.68     | 1.68       | 1.68      |          | dimen      |
| verage stream flow (QSM*ATOT)                                                             | MQS               | 9.09     | 9.09       | 9.09      | 9.09     | 9.09     | 9.09       | 9.09      | 9.09     | CTS        |
| le 5. Worksheet B - Highway Runoff Characteristics                                        |                   |          |            |           |          |          |            |           |          |            |
| Compute runoff coefficient (Rv) (section 3.1)                                             |                   |          |            |           |          |          |            |           |          |            |
| Percent Impervious (Worksheet A - Item 1c)                                                | IMP               | 100      | 100        | 100       | 100      | 100      | 100        | 100       | 100      | %          |
| Runoff Coefficient (=0.007*IMP+0.1)                                                       | Rv                | 0.8      | 0.8        |           | 0.8      | 0.8      | 0.8        | 0.8       |          | ratio      |
|                                                                                           |                   |          |            |           |          |          |            |           |          |            |
| ompute runoff flow rates (section 3.1)                                                    |                   |          |            |           |          |          |            |           |          |            |
| low rate from mean storm                                                                  |                   |          |            |           |          |          |            |           |          |            |
| Rv*MIP*AROW                                                                               | MQR               | 6.802    | 6.802      | 6.802     | 6.802    | 10.312   | 10.312     | 10.312    | 10.312   | cfs        |
| oefficient of variation of runoff flows                                                   |                   |          |            |           |          |          |            |           |          |            |
| CVIP (worksheet A - Item 2f)                                                              | CVVR              | 2.15     | 2.15       | 2.15      | 2.15     | 2.15     | 2.15       | 2.15      | 2.15     | dimen      |
| ampute runoff volumes (section 2.1)                                                       |                   |          |            |           |          |          |            |           |          |            |
| ompute runoff volumes (section 3.1)<br>Solume from the mean storm                         |                   |          |            |           |          |          |            |           |          |            |
| Rv*MVP*AROW*3630                                                                          | MVR               | 147017.1 | 147017.1   | 147017.1  | 147017.1 | 222880.1 | 222880.1   | 222880.1  | 222880.1 | cubic f    |
| oefficient of variation of runoff volumes                                                 | 141 4 14          | 14/01/.1 | 14/01/.1   | 14/01/.1  | 14/01/.1 | 222000.1 | 222000.1   | 222000.1  | 222000.1 | CUDIC      |
| =CVVP (worksheet A - Item 2e)                                                             | CVVR              | 1.55     | 1.55       | 1.55      | 1.55     | 1.55     | 1.55       | 1.55      | 1 55     | dimen      |
|                                                                                           |                   | L.J.J    | L T.72     | 1.22      | T.22     | 1.00     | 1.33       | 1.00      | T.72     | launen     |

| Site: Higgins Creek    |
|------------------------|
| Cells to input data to |

|                                                                                                  |         |                     | FXISTING         |         |          |            | Proposed ( | 2             |
|--------------------------------------------------------------------------------------------------|---------|---------------------|------------------|---------|----------|------------|------------|---------------|
|                                                                                                  |         | TSS                 | Copper           | Lead    | Zinc     | TSS        | Copper     | Î             |
| 4. Compute mass loads (section 3.2)                                                              |         |                     |                  |         |          |            |            | 1             |
| Site Median Conc (worksheet A - Item 4a)                                                         | TCR     | 142                 | 0.041            | 0.025   | 0.187    | 142        | 0.041      | đ             |
| Coef of var. of site EMC's (Worksheet A - 4b)                                                    | CVCR    | 0.71                |                  |         |          |            |            | -             |
| Number of storms per year (Worksheet A - 2i)                                                     | NST     | 56.5                |                  |         |          |            |            | -             |
| a. mean event concentration (MCR)                                                                |         |                     |                  |         |          |            |            | ┨             |
| =TCR*SQRT(1+CVCR^2)                                                                              | MCR     | 174.2               | 0.1              | 0.0     | 0.2      | 174.2      | 0.1        | ſ             |
| p. mean event mass load                                                                          |         |                     |                  |         |          |            |            | 1             |
| =MCR*MVR*(0.00006245)                                                                            | M(MASS) | 1598.921            | 0.462            | 0.282   | 2.106    | 2423.988   | 0.700      | )             |
| c. annual mass laod from runoff                                                                  |         |                     |                  |         |          |            |            |               |
| =M(MASS)*NST                                                                                     | ANMASS  | 90300.536           | 26.073           | 15.898  | 118.917  | 136896.977 | 39.527     | 1             |
| 5. Compute flow ratio (MQS/MQR) (section 3.3)                                                    |         |                     |                  |         |          |            |            | ł             |
| a. ratio of average stream flow                                                                  |         |                     |                  |         |          |            |            |               |
| (worksheet A-7b) to MQR                                                                          | MQS/MQR | 1.336               | 1.336            | 1.336   | 1.336    | 0.882      | 0.882      | 2             |
| Table 6. Worksheet C - Stream Impact Analsysis                                                   |         |                     |                  |         |          |            |            | ł             |
| 1. Define the flow ratio MQS/MQR (Worksheet B-5a)                                                | MQS/MQR | 1.336               | 1.336            | 1.336   | 1.336    | 0.882      | 0.882      | 2             |
| 2. Compute the event frequency for a 3 year recurrence interval                                  |         |                     |                  |         |          |            | <u> </u>   | ł             |
| a. Enter the average number of storms per year                                                   |         |                     |                  |         |          |            |            | Τ             |
| (from Worksheet A - Item 2i)                                                                     | NST     | 56.5                | 56.5             | 56.5    | 56.5     | 56.5       | 56.5       | ÿ             |
| b. Compute the probability (%) of the 3 year event                                               |         |                     |                  |         |          |            |            | Ι             |
| =100*(1/(NST*3))                                                                                 | PR      | 0.59                | 0.59             | 0.59    | 0.59     | 0.59       | 0.59       | ŗ             |
| 3. Enter Value from Table 7 for MQS/MQR and frequency PR                                         | CU      | 2.82                | 2.82             | 2.82    | 2.82     | 3.18       | 3.18       | 3             |
| 4. Select pollutant for analysis                                                                 |         |                     |                  |         |          |            | <u> </u>   | ╉             |
| a. Site median concentration (table 3)                                                           | TCR     | 142                 | 0.041            | 0.025   | 0.187    | 142        | 0.041      | ļ             |
| b. Soluble fraction (section 2.5)                                                                | FSOL    | 0.9                 | 0.4              | 0.1     | . 0.4    | 0.9        | 0.4        | Į.            |
|                                                                                                  |         |                     |                  |         |          |            |            |               |
| c. Acute Criteria (table 4)                                                                      | СТА     | 1500                | 0.045            | 0.226   | 0.284    | 1500       | 0.045      | 4             |
| d. Threshold effects level (Table 4)                                                             | СТТ     | none                | 0.027            | 0.047   | 0.074    | none       | 0.027      | 1             |
| 5. Compute the once in 3 year stream pollutant concentration                                     |         |                     |                  |         |          |            | <u> </u>   | ł             |
| =CU*TCR*FSOL                                                                                     | СО      | 360.96              | 0.05             | 0.01    | 0.21     | 407.01     | 0.05       | ŗ             |
| 6. Compare with Target Concentration, CTA                                                        |         |                     |                  |         |          |            |            | ł             |
| =CO/CTA                                                                                          | CRAT    | 0.24                | 1.04             | 0.03    | 0.74     | 0.27       | 1.17       | ′<br>+        |
| 6a. Compare with background concentrations                                                       |         | n/a                 | 0.019            | < 0.041 | 0.140    | n/a        | 0.019      | ,<br>,        |
| 7. Evaluate Results                                                                              |         |                     |                  |         |          |            |            | $\frac{1}{1}$ |
| a. If CRAT is less than about 0.75 a tocicity problem attributable to this pollutant is unlikely |         | STOP                | STOP             | STOP    | STOP     | STOP       | STOP       |               |
| o. If CRAT is greater than 5 reduction will definitely be required. Estimate the level of        |         |                     |                  |         |          |            | <u> </u>   | ╉             |
| reduction possible and repeat the analysis with revisted values for either concentration or      |         |                     |                  |         |          |            |            |               |
| flow or both                                                                                     |         | CONTROL             | CONTROL          | CONTROL | CONTROL  | CONTROL    | CONTROL    | ┦             |
| c. if CRAT is still greater than 1 and greater reduction levels are not practical, estimate the  |         |                     |                  | 1       |          |            | <u> </u>   | $\dagger$     |
| potential for an adverse impact (as opposed to a criteria violation) by a comparison with the    |         | <b>-</b>            | <b></b>          | <b></b> | <b></b>  | <b>-</b>   | <b></b>    |               |
| threshold effects level)<br>=CO/CTT                                                              | CRTE    | EVALUATE<br>#VALUE! | EVALUATE<br>1.70 | 1       | EVALUATE |            | EVALUATE   | -             |
|                                                                                                  |         | " (//LOL:           | 1 1.70           | 1 0.15  | 1 2.04   |            | 1.52       | 1             |
| Background value                                                                                 |         |                     | 0.011            | <0.041  | 0.062    |            | 0.011      | Ŀ             |

| er      | Lead     | Zinc        |               |
|---------|----------|-------------|---------------|
|         |          |             |               |
| 0.041   |          | 0.187       | -             |
| 0.71    | 0.71     |             | dimensionless |
| 56.5    | 56.5     | 56.5        | number        |
|         |          |             |               |
|         |          |             |               |
| 0.1     | 0.0      | 0.2         | mg/l          |
|         |          |             |               |
| 0.700   | 0.427    | 3.192       | pounds        |
|         |          |             |               |
| 9.527   | 24.102   | 180.280     | pounds/year   |
|         |          |             |               |
|         |          |             |               |
|         |          |             |               |
| 0.882   | 0.882    | 0.882       | ratio         |
|         |          |             |               |
|         |          |             |               |
| 0.882   | 0.882    | 0.882       | ratio         |
|         | 0.001    | 0.001       |               |
|         |          |             |               |
|         |          |             |               |
| 56.5    | 56.5     | <b>56 5</b> | number        |
| 50.5    | 50.5     | 50.5        | number        |
| 0.50    | 0.50     | 0.50        | 0/            |
| 0.59    | 0.59     | 0.59        | %             |
| 2.40    | 2.40     | 2.40        | /             |
| 3.18    | 3.18     | 3.18        | mg/l          |
|         |          |             |               |
|         |          |             | Name          |
| 0.041   | 0.025    | 0.187       | mg/l          |
|         |          |             | _             |
| 0.4     | 0.1      | 0.4         | fraction      |
|         |          |             | _             |
| 0.045   | 0.226    | 0.284       | mg/l          |
|         |          |             |               |
| 0.027   | 0.047    | 0.074       | mg/l          |
|         |          |             |               |
|         |          |             |               |
| 0.05    | 0.01     | 0.24        | mg/l          |
|         |          |             |               |
|         |          |             |               |
| 1.17    | 0.04     | 0.84        | ratio         |
|         |          |             |               |
| 0.019   | < 0.041  | 0.140       | mg/l          |
|         |          |             |               |
|         |          |             |               |
|         |          |             |               |
|         | STOP     | STOP        |               |
|         |          |             |               |
|         |          |             |               |
|         |          |             |               |
| ROL     | CONTROL  | CONTROL     |               |
|         | SONTIOL  | SONTIOL     |               |
|         |          |             |               |
|         |          |             |               |
| 1 A T C |          |             |               |
|         | EVALUATE |             | ratio         |
| 1.92    | 0.17     | 3.20        | ratio         |
|         |          | -           |               |
| 0.011   | <0.041   | 0.062       |               |
|         |          |             |               |

## Site: Meacham Creek

| Cells | to inp | but da | ata to |
|-------|--------|--------|--------|
|-------|--------|--------|--------|

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                                            | EXISTING CONDITIONS                                        |                                                            |                                                                       |                                                                       |                                                                       |                                                            |                                                                       |                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                | TSS                                                        | I                                                          |                                                            | Zinc                                                                  | TSS                                                                   | Proposed CO<br>Copper                                                 |                                                            | Zinc                                                                  |                                                                           |
| Fable 1. Worksheet A - Site Characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                | · · · · ·                                                  |                                                            |                                                            | •                                                                     |                                                                       |                                                                       |                                                            |                                                                       | •                                                                         |
| 1. Drainage Area of Highway Segment (Section 2.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                |                                                            |                                                            |                                                            |                                                                       |                                                                       |                                                                       |                                                            |                                                                       |                                                                           |
| a. Total right of way                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AROW                                           | 50.16                                                      | 50.16                                                      | 50.16                                                      |                                                                       |                                                                       |                                                                       | 78.73                                                      |                                                                       |                                                                           |
| p. Paved surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AHWY                                           | 50.16                                                      | 50.16                                                      | 50.16                                                      |                                                                       |                                                                       | 78.73                                                                 | 78.73                                                      |                                                                       |                                                                           |
| z. Percent Impervous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IMP                                            | 100                                                        | 100                                                        | 100                                                        | 100                                                                   | 100                                                                   | 100                                                                   | 100                                                        | 100                                                                   | %                                                                         |
| . Rainfall Characteristics (section 2.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MEAN                                           |                                                            |                                                            |                                                            |                                                                       |                                                                       |                                                                       |                                                            |                                                                       |                                                                           |
| a. Volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MVP                                            | 0.42                                                       | 0.42                                                       | 0.42                                                       | 0.42                                                                  | 0.42                                                                  | 0.42                                                                  | 0.42                                                       | 0.42                                                                  | inch                                                                      |
| . Intensity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MIP                                            | 0.07                                                       | 0.07                                                       | 0.07                                                       | 0.07                                                                  | 0.07                                                                  | 0.07                                                                  | 0.07                                                       | 0.07                                                                  | inch/ho                                                                   |
| . Duration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MDP                                            | 14.14                                                      | 14.14                                                      | 14.14                                                      | 14.14                                                                 | 14.14                                                                 | 14.14                                                                 | 14.14                                                      | 14.14                                                                 | hour                                                                      |
| Interval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MTP                                            | 155.11                                                     | 155.11                                                     | 155.11                                                     | 155.11                                                                | 155.11                                                                | 155.11                                                                | 155.11                                                     | 155.11                                                                | hour                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | COEF of VARIATION                              |                                                            |                                                            |                                                            |                                                                       |                                                                       |                                                                       |                                                            |                                                                       |                                                                           |
| Volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CVVP                                           | 1.55                                                       | 1.55                                                       | 1.55                                                       | 1.55                                                                  | 1.55                                                                  | 1.55                                                                  | 1.55                                                       | 1 55                                                                  | dimensio                                                                  |
| Intensity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CVIP                                           | 2.15                                                       | 2.15                                                       | 2.15                                                       |                                                                       |                                                                       |                                                                       | 2.15                                                       |                                                                       | dimensio                                                                  |
| . Duration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CVDP                                           | 1.37                                                       | 1.37                                                       | 1.37                                                       |                                                                       |                                                                       |                                                                       | 1.37                                                       |                                                                       | dimensio                                                                  |
| Interval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CVTP                                           | 1.07                                                       | 1.57                                                       | 1.57                                                       |                                                                       | 1.57                                                                  | 1.57                                                                  | 1.57                                                       |                                                                       | dimensio                                                                  |
| Interval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CVIP                                           | 1.07                                                       | 1.07                                                       | 1.07                                                       | 1.07                                                                  | 1.07                                                                  | 1.07                                                                  | 1.07                                                       | 1.07                                                                  | unnensio                                                                  |
| Number of storms per year (24*365/MTP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NST                                            | 56.5                                                       | 56.5                                                       | 56.5                                                       | 56.5                                                                  | 56.5                                                                  | 56.5                                                                  | 56.5                                                       | 56.5                                                                  | no. event                                                                 |
| Surrounding Area Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                |                                                            |                                                            |                                                            |                                                                       |                                                                       |                                                                       |                                                            |                                                                       |                                                                           |
| ADT ususally over 30,000 vehicles/day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Urban                                          | x                                                          | х                                                          | х                                                          | х                                                                     | х                                                                     | х                                                                     | х                                                          | x                                                                     | 1                                                                         |
| . , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                |                                                            |                                                            |                                                            |                                                                       |                                                                       |                                                                       |                                                            |                                                                       |                                                                           |
| ADT usually under 30,000 vpd, undeveloped or suburban                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Rural                                          |                                                            |                                                            |                                                            |                                                                       |                                                                       |                                                                       |                                                            |                                                                       |                                                                           |
| Select pollutant for analysis (section 2.4) and estimate runoff quality character                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | istics (use                                    |                                                            |                                                            |                                                            |                                                                       |                                                                       |                                                                       |                                                            |                                                                       |                                                                           |
| able 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                | TSS                                                        | Copper                                                     | Lead                                                       | Zinc                                                                  | TSS                                                                   | Copper                                                                | Lead                                                       | Zinc                                                                  |                                                                           |
| site median concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TCR                                            | 142                                                        | 0.041                                                      | 0.025                                                      | 0.187                                                                 | 142                                                                   | 0.041                                                                 | 0.025                                                      | 0.187                                                                 | mg/l                                                                      |
| coef of variation (0.71 urban, 0.84 Rural, 0.75 estimate for all sites)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CVCR                                           | 0.71                                                       | 0.71                                                       | 0.71                                                       | 0.71                                                                  | 0.71                                                                  | 0.71                                                                  | 0.71                                                       |                                                                       | dimensior                                                                 |
| Solast resolving water target concentration (section 2.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                |                                                            |                                                            |                                                            |                                                                       |                                                                       |                                                                       |                                                            |                                                                       |                                                                           |
| Select receiving water target concentration (section 2.6)<br>urface water Total Hardness (Figure 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TH                                             | 308                                                        | 308                                                        | 308                                                        | 308                                                                   | 308                                                                   | 308                                                                   | 308                                                        | 200                                                                   | mg/l                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IH                                             | 308                                                        | 308                                                        | 308                                                        | 308                                                                   | 308                                                                   | 308                                                                   | 308                                                        | 308                                                                   | ing/i                                                                     |
| TREAM -use table 4 for target concentration . EPA Acute Criterion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                | 1500                                                       | 0.049                                                      | 0.251                                                      | 0.310                                                                 | 1500                                                                  | 0.049                                                                 | 0.251                                                      | 0.210                                                                 | mg/l                                                                      |
| suggested Threshold Effect Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |                                                            | 0.049                                                      | 0.251                                                      |                                                                       |                                                                       | 0.049                                                                 | 0.251                                                      |                                                                       | -                                                                         |
| r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                | none                                                       | 0.030                                                      | 0.053                                                      | 0.081                                                                 | none                                                                  | 0.030                                                                 | 0.053                                                      | 0.081                                                                 | ing/i                                                                     |
| N/C use accented lovel for average Describerus concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                |                                                            |                                                            |                                                            |                                                                       |                                                                       |                                                                       |                                                            |                                                                       |                                                                           |
| AKE - use accepted level for average Phosphorus concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                |                                                            |                                                            |                                                            |                                                                       |                                                                       |                                                                       |                                                            |                                                                       |                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                | 10                                                         | 10                                                         | 10                                                         | 10                                                                    | 10                                                                    | 10                                                                    | 10                                                         | 10                                                                    | ug/l                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                | 10                                                         | 10                                                         | 10                                                         | 10                                                                    | 10                                                                    | 10                                                                    | 10                                                         | 10                                                                    | ug/l                                                                      |
| target concentration is 10 micrograms/liter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | АТОТ                                           | 10<br>2.9                                                  | 10                                                         | 10                                                         |                                                                       |                                                                       |                                                                       | 10                                                         |                                                                       |                                                                           |
| target concentration is 10 micrograms/liter Watershed Drainage Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ΑΤΟΤ                                           |                                                            |                                                            |                                                            |                                                                       |                                                                       |                                                                       |                                                            |                                                                       |                                                                           |
| target concentration is 10 micrograms/liter<br>Watershed Drainage Area<br>ostream of highway for a stream - total contributing area for a lake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | АТОТ                                           |                                                            |                                                            |                                                            |                                                                       |                                                                       |                                                                       |                                                            |                                                                       |                                                                           |
| target concentration is 10 micrograms/liter<br>Watershed Drainage Area<br>ostream of highway for a stream - total contributing area for a lake<br>Average annual stream flow (section 2.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                | 2.9                                                        | 2.9                                                        | 2.9                                                        | 2.9                                                                   | 2.9                                                                   | 2.9                                                                   | 2.9                                                        | 2.9                                                                   | square mi                                                                 |
| target concentration is 10 micrograms/liter<br>Watershed Drainage Area<br>ostream of highway for a stream - total contributing area for a lake<br>Average annual stream flow (section 2.3)<br>unit area flow rate per square mile (figure 4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | QSM                                            | 2.9                                                        | 2.9                                                        | 2.9                                                        | 2.9                                                                   | 2.9                                                                   | 2.9                                                                   | 2.9                                                        | 2.9                                                                   | square mi<br>cfs/square                                                   |
| target concentration is 10 micrograms/liter<br>Watershed Drainage Area<br>ostream of highway for a stream - total contributing area for a lake<br>Average annual stream flow (section 2.3)<br>unit area flow rate per square mile (figure 4)<br>Coef of variation of stream flows (section 2.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | QSM<br>CVQS                                    | 2.9<br>                                                    | 2.9<br>1.30<br>1.68                                        | 2.9<br>1.30<br>1.68                                        | 2.9<br>1.30<br>1.68                                                   | 2.9<br>                                                               | 2.9<br>                                                               | 2.9<br>1.30<br>1.68                                        | 2.9<br>                                                               | square mi<br>cfs/square<br>dimensior                                      |
| target concentration is 10 micrograms/liter<br>Watershed Drainage Area<br>Instream of highway for a stream - total contributing area for a lake<br>Average annual stream flow (section 2.3)<br>unit area flow rate per square mile (figure 4)<br>Coef of variation of stream flows (section 2.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | QSM                                            | 2.9                                                        | 2.9                                                        | 2.9                                                        | 2.9<br>1.30<br>1.68                                                   | 2.9<br>                                                               | 2.9<br>                                                               | 2.9                                                        | 2.9<br>                                                               | square mi<br>cfs/square<br>dimensior                                      |
| target concentration is 10 micrograms/liter<br>Watershed Drainage Area<br>ostream of highway for a stream - total contributing area for a lake<br>Average annual stream flow (section 2.3)<br>unit area flow rate per square mile (figure 4)<br>Coef of variation of stream flows (section 2.3)<br>Average stream flow (QSM*ATOT)<br>ble 5. Worksheet B - Highway Runoff Characteristics                                                                                                                                                                                                                                                                                                                                                                                                       | QSM<br>CVQS                                    | 2.9<br>                                                    | 2.9<br>1.30<br>1.68                                        | 2.9<br>1.30<br>1.68                                        | 2.9<br>1.30<br>1.68                                                   | 2.9<br>                                                               | 2.9<br>                                                               | 2.9<br>1.30<br>1.68                                        | 2.9<br>                                                               | square mi<br>cfs/square<br>dimensior                                      |
| target concentration is 10 micrograms/liter<br>Watershed Drainage Area<br>ostream of highway for a stream - total contributing area for a lake<br>Average annual stream flow (section 2.3)<br>unit area flow rate per square mile (figure 4)<br>Coef of variation of stream flows (section 2.3)<br>Average stream flow (QSM*ATOT)<br>able 5. Worksheet B - Highway Runoff Characteristics<br>Compute runoff coefficient (Rv) (section 3.1)                                                                                                                                                                                                                                                                                                                                                     | QSM<br>CVQS<br>MQS                             | 2.9<br>1.30<br>1.68<br>3.77                                | 2.9<br>1.30<br>1.68<br>3.77                                | 2.9<br>1.30<br>1.68<br>3.77                                | 2.9<br>1.30<br>1.68<br>3.77                                           | 2.9<br>1.30<br>1.68<br>3.77                                           | 2.9<br>1.30<br>1.68<br>3.77                                           | 2.9<br>1.30<br>1.68<br>3.77                                | 2.9<br>1.30<br>1.68<br>3.77                                           | square mi<br>cfs/square<br>dimensior<br>cfs                               |
| target concentration is 10 micrograms/liter<br>Watershed Drainage Area<br>ostream of highway for a stream - total contributing area for a lake<br>Average annual stream flow (section 2.3)<br>unit area flow rate per square mile (figure 4)<br>Coef of variation of stream flows (section 2.3)<br>Average stream flow (QSM*ATOT)<br>able 5. Worksheet B - Highway Runoff Characteristics<br>Compute runoff coefficient (Rv) (section 3.1)<br>Percent Impervious (Worksheet A - Item 1c)                                                                                                                                                                                                                                                                                                       | QSM<br>CVQS<br>MQS                             | 2.9<br>1.30<br>1.68<br>3.77                                | 2.9<br>1.30<br>1.68<br>3.77<br>100                         | 2.9<br>1.30<br>1.68<br>3.77<br>100                         | 2.9<br>1.30<br>1.68<br>3.77<br>100                                    | 2.9<br>1.30<br>1.68<br>3.77<br>100                                    | 2.9<br>1.30<br>1.68<br>3.77                                           | 2.9<br>1.30<br>1.68<br>3.77<br>100                         | 2.9<br>1.30<br>1.68<br>3.77<br>100                                    | square mi<br>cfs/square<br>dimensior<br>cfs<br>%                          |
| target concentration is 10 micrograms/liter<br>Watershed Drainage Area<br>ostream of highway for a stream - total contributing area for a lake<br>Average annual stream flow (section 2.3)<br>unit area flow rate per square mile (figure 4)<br>Coef of variation of stream flows (section 2.3)<br>Average stream flow (QSM*ATOT)<br>ble 5. Worksheet B - Highway Runoff Characteristics<br>Compute runoff coefficient (Rv) (section 3.1)<br>Percent Impervious (Worksheet A - Item 1c)                                                                                                                                                                                                                                                                                                        | QSM<br>CVQS<br>MQS                             | 2.9<br>1.30<br>1.68<br>3.77                                | 2.9<br>1.30<br>1.68<br>3.77                                | 2.9<br>1.30<br>1.68<br>3.77                                | 2.9<br>1.30<br>1.68<br>3.77<br>100                                    | 2.9<br>1.30<br>1.68<br>3.77<br>100                                    | 2.9<br>1.30<br>1.68<br>3.77                                           | 2.9<br>1.30<br>1.68<br>3.77                                | 2.9<br>1.30<br>1.68<br>3.77<br>100                                    | square mi<br>cfs/square<br>dimension<br>cfs                               |
| target concentration is 10 micrograms/liter<br>Watershed Drainage Area<br>ostream of highway for a stream - total contributing area for a lake<br>Average annual stream flow (section 2.3)<br>unit area flow rate per square mile (figure 4)<br>Coef of variation of stream flows (section 2.3)<br>Average stream flow (QSM*ATOT)<br>ble 5. Worksheet B - Highway Runoff Characteristics<br>Compute runoff coefficient (Rv) (section 3.1)<br>Percent Impervious (Worksheet A - Item 1c)<br>Runoff Coefficient (=0.007*IMP+0.1)                                                                                                                                                                                                                                                                 | QSM<br>CVQS<br>MQS                             | 2.9<br>1.30<br>1.68<br>3.77                                | 2.9<br>1.30<br>1.68<br>3.77<br>100                         | 2.9<br>1.30<br>1.68<br>3.77<br>100                         | 2.9<br>1.30<br>1.68<br>3.77<br>100                                    | 2.9<br>1.30<br>1.68<br>3.77<br>100                                    | 2.9<br>1.30<br>1.68<br>3.77                                           | 2.9<br>1.30<br>1.68<br>3.77<br>100                         | 2.9<br>1.30<br>1.68<br>3.77<br>100                                    | square mi<br>cfs/square<br>dimension<br>cfs<br>%                          |
| target concentration is 10 micrograms/liter<br>Watershed Drainage Area<br>stream of highway for a stream - total contributing area for a lake<br>Average annual stream flow (section 2.3)<br>unit area flow rate per square mile (figure 4)<br>Coef of variation of stream flows (section 2.3)<br>Average stream flow (QSM*ATOT)<br>ble 5. Worksheet B - Highway Runoff Characteristics<br>Compute runoff coefficient (Rv) (section 3.1)<br>Percent Impervious (Worksheet A - Item 1c)<br>Runoff Coefficient (=0.007*IMP+0.1)<br>Compute runoff flow rates (section 3.1)                                                                                                                                                                                                                       | QSM<br>CVQS<br>MQS                             | 2.9<br>1.30<br>1.68<br>3.77                                | 2.9<br>1.30<br>1.68<br>3.77<br>100                         | 2.9<br>1.30<br>1.68<br>3.77<br>100                         | 2.9<br>1.30<br>1.68<br>3.77<br>100                                    | 2.9<br>1.30<br>1.68<br>3.77<br>100                                    | 2.9<br>1.30<br>1.68<br>3.77                                           | 2.9<br>1.30<br>1.68<br>3.77<br>100                         | 2.9<br>1.30<br>1.68<br>3.77<br>100                                    | square mi<br>cfs/square<br>dimension<br>cfs<br>%                          |
| <ul> <li>Watershed Drainage Area</li> <li>stream of highway for a stream - total contributing area for a lake</li> <li>Average annual stream flow (section 2.3)</li> <li>unit area flow rate per square mile (figure 4)</li> <li>Coef of variation of stream flows (section 2.3)</li> <li>Average stream flow (QSM*ATOT)</li> <li>ble 5. Worksheet B - Highway Runoff Characteristics</li> <li>Compute runoff coefficient (Rv) (section 3.1)</li> <li>Percent Impervious (Worksheet A - Item 1c)</li> <li>Runoff Coefficient (=0.007*IMP+0.1)</li> <li>Compute runoff flow rates (section 3.1)</li> <li>Flow rate from mean storm</li> </ul>                                                                                                                                                   | QSM<br>CVQS<br>MQS<br>IMP<br>Rv                | 2.9<br>1.30<br>1.68<br>3.77<br>100<br>0.8                  | 2.9<br>1.30<br>1.68<br>3.77<br>100<br>0.8                  | 2.9<br>1.30<br>1.68<br>3.77<br>100<br>0.8                  | 2.9<br>1.30<br>1.68<br>3.77<br>100<br>0.8                             | 2.9<br>1.30<br>1.68<br>3.77<br>100<br>0.8                             | 2.9<br>1.30<br>1.68<br>3.77<br>100<br>0.8                             | 2.9<br>1.30<br>1.68<br>3.77<br>100<br>0.8                  | 2.9<br>1.30<br>1.68<br>3.77<br>100<br>0.8                             | square mi<br>cfs/square<br>dimension<br>cfs<br>%<br>ratio                 |
| Average annual stream flow (section 2.3)<br>Unit area flow rate per square mile (figure 4)<br>Coef of variation of stream flows (section 2.3)<br>Average stream flow (QSM*ATOT)<br>ble 5. Worksheet B - Highway Runoff Characteristics<br>Compute runoff coefficient (Rv) (section 3.1)<br>Percent Impervious (Worksheet A - Item 1c)<br>Runoff Coefficient (=0.007*IMP+0.1)<br>Compute runoff flow rates (section 3.1)<br>Flow rate from mean storm<br>=Rv*MIP*AROW                                                                                                                                                                                                                                                                                                                           | QSM<br>CVQS<br>MQS                             | 2.9<br>1.30<br>1.68<br>3.77                                | 2.9<br>1.30<br>1.68<br>3.77<br>100                         | 2.9<br>1.30<br>1.68<br>3.77<br>100                         | 2.9<br>1.30<br>1.68<br>3.77<br>100<br>0.8                             | 2.9<br>1.30<br>1.68<br>3.77<br>100<br>0.8                             | 2.9<br>1.30<br>1.68<br>3.77<br>100<br>0.8                             | 2.9<br>1.30<br>1.68<br>3.77<br>100                         | 2.9<br>1.30<br>1.68<br>3.77<br>100<br>0.8                             | square mi<br>cfs/square<br>dimension<br>cfs<br>%<br>ratio                 |
| warget concentration is 10 micrograms/liter         Watershed Drainage Area         stream of highway for a stream - total contributing area for a lake         Average annual stream flow (section 2.3)         unit area flow rate per square mile (figure 4)         Coef of variation of stream flows (section 2.3)         Average stream flow (QSM*ATOT)         ble 5. Worksheet B - Highway Runoff Characteristics         Compute runoff coefficient (Rv) (section 3.1)         Percent Impervious (Worksheet A - Item 1c)         Runoff Coefficient (=0.007*IMP+0.1)         Compute runoff flow rates (section 3.1)         Flow rate from mean storm         =Rv*MIP*AROW         Coefficient of variation of runoff flows                                                        | QSM<br>CVQS<br>MQS<br>IMP<br>Rv                | 2.9<br>1.30<br>1.68<br>3.77<br>100<br>0.8                  | 2.9<br>1.30<br>1.68<br>3.77<br>100<br>0.8                  | 2.9<br>1.30<br>1.68<br>3.77<br>100<br>0.8                  | 2.9<br>1.30<br>1.68<br>3.77<br>100<br>0.8<br>2.802                    | 2.9<br>1.30<br>1.68<br>3.77<br>100<br>0.8<br>4.398                    | 2.9<br>1.30<br>1.68<br>3.77<br>100<br>0.8<br>4.398                    | 2.9<br>1.30<br>1.68<br>3.77<br>100<br>0.8                  | 2.9<br>1.30<br>1.68<br>3.77<br>100<br>0.8<br>4.398                    | square mi<br>cfs/square<br>dimension<br>cfs<br>%<br>ratio                 |
| target concentration is 10 micrograms/liter<br>Watershed Drainage Area<br>stream of highway for a stream - total contributing area for a lake<br>Average annual stream flow (section 2.3)<br>unit area flow rate per square mile (figure 4)<br>Coef of variation of stream flows (section 2.3)<br>Average stream flow (QSM*ATOT)<br>ble 5. Worksheet B - Highway Runoff Characteristics<br>Compute runoff coefficient (Rv) (section 3.1)<br>Percent Impervious (Worksheet A - Item 1c)<br>Runoff Coefficient (=0.007*IMP+0.1)<br>Compute runoff flow rates (section 3.1)<br>Flow rate from mean storm<br>=Rv*MIP*AROW<br>Coefficient of variation of runoff flows<br>=CVIP (worksheet A - Item 2f)                                                                                             | QSM<br>CVQS<br>MQS<br>IMP<br>Rv<br>MQR         | 2.9<br>1.30<br>1.68<br>3.77<br>100<br>0.8<br>2.802         | 2.9<br>1.30<br>1.68<br>3.77<br>100<br>0.8<br>2.802         | 2.9<br>1.30<br>1.68<br>3.77<br>100<br>0.8<br>2.802         | 2.9<br>1.30<br>1.68<br>3.77<br>100<br>0.8<br>2.802                    | 2.9<br>1.30<br>1.68<br>3.77<br>100<br>0.8<br>4.398                    | 2.9<br>1.30<br>1.68<br>3.77<br>100<br>0.8<br>4.398                    | 2.9<br>1.30<br>1.68<br>3.77<br>100<br>0.8<br>4.398         | 2.9<br>1.30<br>1.68<br>3.77<br>100<br>0.8<br>4.398                    | square mi<br>cfs/square<br>dimension<br>cfs<br>%<br>ratio                 |
| target concentration is 10 micrograms/liter<br>Watershed Drainage Area<br>stream of highway for a stream - total contributing area for a lake<br>Average annual stream flow (section 2.3)<br>unit area flow rate per square mile (figure 4)<br>Coef of variation of stream flows (section 2.3)<br>Average stream flow (QSM*ATOT)<br>ble 5. Worksheet B - Highway Runoff Characteristics<br>Compute runoff coefficient (Rv) (section 3.1)<br>Percent Impervious (Worksheet A - Item 1c)<br>Runoff Coefficient (=0.007*IMP+0.1)<br>Compute runoff flow rates (section 3.1)<br>Flow rate from mean storm<br>=Rv*MIP*AROW<br>Coefficient of variation of runoff flows<br>=CVIP (worksheet A - Item 2f)<br>Compute runoff volumes (section 3.1)                                                     | QSM<br>CVQS<br>MQS<br>IMP<br>Rv<br>MQR         | 2.9<br>1.30<br>1.68<br>3.77<br>100<br>0.8<br>2.802         | 2.9<br>1.30<br>1.68<br>3.77<br>100<br>0.8<br>2.802         | 2.9<br>1.30<br>1.68<br>3.77<br>100<br>0.8<br>2.802         | 2.9<br>1.30<br>1.68<br>3.77<br>100<br>0.8<br>2.802                    | 2.9<br>1.30<br>1.68<br>3.77<br>100<br>0.8<br>4.398                    | 2.9<br>1.30<br>1.68<br>3.77<br>100<br>0.8<br>4.398                    | 2.9<br>1.30<br>1.68<br>3.77<br>100<br>0.8<br>4.398         | 2.9<br>1.30<br>1.68<br>3.77<br>100<br>0.8<br>4.398                    | square m<br>cfs/squar<br>dimension<br>cfs<br>%<br>ratio                   |
| target concentration is 10 micrograms/liter<br>Watershed Drainage Area<br>stream of highway for a stream - total contributing area for a lake<br>Average annual stream flow (section 2.3)<br>unit area flow rate per square mile (figure 4)<br>Coef of variation of stream flows (section 2.3)<br>Average stream flow (QSM*ATOT)<br>ble 5. Worksheet B - Highway Runoff Characteristics<br>Compute runoff coefficient (Rv) (section 3.1)<br>Percent Impervious (Worksheet A - Item 1c)<br>Runoff Coefficient (=0.007*IMP+0.1)<br>Compute runoff flow rates (section 3.1)<br>Flow rate from mean storm<br>=Rv*MIP*AROW<br>Coefficient of variation of runoff flows<br>=CVIP (worksheet A - Item 2f)<br>Compute runoff volumes (section 3.1)<br>Volume from the mean storm                       | QSM<br>CVQS<br>MQS<br>IMP<br>Rv<br>MQR<br>CVVR | 2.9<br>1.30<br>1.68<br>3.77<br>100<br>0.8<br>2.802<br>2.15 | 2.9<br>1.30<br>1.68<br>3.77<br>100<br>0.8<br>2.802<br>2.15 | 2.9<br>1.30<br>1.68<br>3.77<br>100<br>0.8<br>2.802<br>2.15 | 2.9<br>1.30<br>1.68<br>3.77<br>100<br>0.8<br>2.802<br>2.15            | 2.9<br>1.30<br>1.68<br>3.77<br>100<br>0.8<br>4.398<br>2.15            | 2.9<br>1.30<br>1.68<br>3.77<br>100<br>0.8<br>4.398<br>2.15            | 2.9<br>1.30<br>1.68<br>3.77<br>100<br>0.8<br>4.398<br>2.15 | 2.9<br>1.30<br>1.68<br>3.77<br>100<br>0.8<br>4.398<br>2.15            | square m<br>cfs/squar<br>dimensio<br>cfs<br>%<br>ratio<br>cfs<br>dimensio |
| target concentration is 10 micrograms/liter<br>Watershed Drainage Area<br>ostream of highway for a stream - total contributing area for a lake<br>Average annual stream flow (section 2.3)<br>unit area flow rate per square mile (figure 4)<br>Coef of variation of stream flows (section 2.3)<br>Average stream flow (QSM*ATOT)<br>ble 5. Worksheet B - Highway Runoff Characteristics<br>Compute runoff coefficient (Rv) (section 3.1)<br>Percent Impervious (Worksheet A - Item 1c)<br>Runoff Coefficient (=0.007*IMP+0.1)<br>Compute runoff flow rates (section 3.1)<br>Flow rate from mean storm<br>=Rv*MIP*AROW<br>Coefficient of variation of runoff flows<br>=CVIP (worksheet A - Item 2f)<br>Compute runoff volumes (section 3.1)<br>Volume from the mean storm<br>=Rv*MVP*AROW*3630 | QSM<br>CVQS<br>MQS<br>IMP<br>Rv<br>MQR         | 2.9<br>1.30<br>1.68<br>3.77<br>100<br>0.8<br>2.802         | 2.9<br>1.30<br>1.68<br>3.77<br>100<br>0.8<br>2.802         | 2.9<br>1.30<br>1.68<br>3.77<br>100<br>0.8<br>2.802         | 2.9<br>1.30<br>1.68<br>3.77<br>100<br>0.8<br>2.802<br>2.15            | 2.9<br>1.30<br>1.68<br>3.77<br>100<br>0.8<br>4.398                    | 2.9<br>1.30<br>1.68<br>3.77<br>100<br>0.8<br>4.398                    | 2.9<br>1.30<br>1.68<br>3.77<br>100<br>0.8<br>4.398         | 2.9<br>1.30<br>1.68<br>3.77<br>100<br>0.8<br>4.398<br>2.15            | square m<br>cfs/squar<br>dimensio<br>cfs<br>%<br>ratio<br>cfs<br>dimensio |
| target concentration is 10 micrograms/liter<br>Watershed Drainage Area<br>ostream of highway for a stream - total contributing area for a lake<br>Average annual stream flow (section 2.3)<br>unit area flow rate per square mile (figure 4)<br>Coef of variation of stream flows (section 2.3)<br>Average stream flow (QSM*ATOT)<br>able 5. Worksheet B - Highway Runoff Characteristics                                                                                                                                                                                                                                                                                                                                                                                                      | QSM<br>CVQS<br>MQS<br>IMP<br>Rv<br>MQR<br>CVVR | 2.9<br>1.30<br>1.68<br>3.77<br>100<br>0.8<br>2.802<br>2.15 | 2.9<br>1.30<br>1.68<br>3.77<br>100<br>0.8<br>2.802<br>2.15 | 2.9<br>1.30<br>1.68<br>3.77<br>100<br>0.8<br>2.802<br>2.15 | 2.9<br>1.30<br>1.68<br>3.77<br>100<br>0.8<br>2.802<br>2.15<br>60564.9 | 2.9<br>1.30<br>1.68<br>3.77<br>100<br>0.8<br>4.398<br>2.15<br>95061.2 | 2.9<br>1.30<br>1.68<br>3.77<br>100<br>0.8<br>4.398<br>2.15<br>95061.2 | 2.9<br>1.30<br>1.68<br>3.77<br>100<br>0.8<br>4.398<br>2.15 | 2.9<br>1.30<br>1.68<br>3.77<br>100<br>0.8<br>4.398<br>2.15<br>95061.2 | square mi<br>cfs/square<br>dimensior<br>cfs<br>%<br>ratio                 |

## Site: Meacham Creek Cells to input data to

|                                                                                                          |         | EXISTING CONDITIONS |         |         |         | Proposed CONDITIONS |         |         |         |             |
|----------------------------------------------------------------------------------------------------------|---------|---------------------|---------|---------|---------|---------------------|---------|---------|---------|-------------|
|                                                                                                          |         | TSS                 | Copper  | Lead    | Zinc    | TSS                 | Copper  | Lead    | Zinc    |             |
| 4. Compute mass loads (section 3.2)                                                                      |         |                     |         |         |         |                     |         |         |         |             |
| Site Median Conc (worksheet A - Item 4a)                                                                 | TCR     | 142                 | 0.041   | 0.025   | 0.187   | 142                 | 0.041   | 0.025   | 0.187   | mg/l        |
| Coef of var. of site EMC's (Worksheet A - 4b)                                                            | CVCR    | 0.71                | 0.71    | 0.71    | 0.71    | 0.71                | . 0.71  | 0.71    | 0.71    | dimensionle |
| Number of storms per year (Worksheet A - 2i)                                                             | NST     | 56.5                | 56.5    | 56.5    | 56.5    | 56.5                | 56.5    | 56.5    | 56.5    | number      |
| a. mean event concentration (MCR)                                                                        |         |                     |         |         |         |                     |         |         |         |             |
| =TCR*SQRT(1+CVCR^2)                                                                                      | MCR     | 174.2               | 0.1     | 0.0     | 0.2     | 174.2               | 0.1     | 0.0     | 0.2     | mg/l        |
| b. mean event mass load                                                                                  |         |                     |         |         |         |                     |         |         |         |             |
| =MCR*MVR*(0.00006245)                                                                                    | M(MASS) | 658.688             | 0.190   | 0.116   | 0.867   | 1033.862            | 0.299   | 0.182   | 1.361   | pounds      |
| c. annual mass laod from runoff                                                                          |         |                     |         |         |         |                     |         |         |         |             |
| =M(MASS)*NST                                                                                             | ANMASS  | 37200.024           | 10.741  | 6.549   | 48.989  | 58388.315           | 16.859  | 10.280  | 76.892  | pounds/yea  |
| 5. Compute flow ratio (MQS/MQR) (section 3.3)                                                            |         |                     |         |         |         |                     |         |         |         |             |
| a. ratio of average stream flow                                                                          |         |                     |         |         |         |                     |         |         |         |             |
| (worksheet A-7b) to MQR                                                                                  | MQS/MQR | 1.344               | 1.344   | 1.344   | 1.344   | 0.856               | 0.856   | 0.856   | 0.856   | ratio       |
| Table 6. Worksheet C - Stream Impact Analsysis                                                           |         |                     |         |         |         |                     |         |         |         |             |
| 1. Define the flow ratio MQS/MQR (Worksheet B-5a)                                                        | MQS/MQR | 1.344               | 1.344   | 1.344   | 1.344   | 0.856               | 0.856   | 0.856   | 0.856   | ratio       |
| 2. Compute the event frequency for a 3 year recurrence interval                                          |         |                     |         |         |         |                     |         |         |         |             |
| a. Enter the average number of storms per year                                                           |         |                     |         |         |         |                     |         |         |         |             |
| (from Worksheet A - Item 2i)                                                                             | NST     | 56.5                | 56.5    | 56.5    | 56.5    | 56.5                | 56.5    | 56.5    | 56.5    | number      |
| b. Compute the probability (%) of the 3 year event                                                       |         |                     |         |         |         |                     |         |         |         |             |
| =100*(1/(NST*3))                                                                                         | PR      | 0.59                | 0.59    | 0.59    | 0.59    | 0.59                | 0.59    | 0.59    | 0.59    | %           |
| 3. Enter Value from Table 7 for MQS/MQR and frequency PR                                                 | CU      | 2.82                | 2.82    | 2.82    | 2.82    | 3.22                | 3.22    | 3.22    | 3.22    | mg/l        |
|                                                                                                          |         |                     |         |         |         |                     |         |         |         |             |
| 4. Select pollutant for analysis                                                                         |         |                     |         |         |         |                     |         |         |         | Name        |
| a. Site median concentration (table 3)                                                                   | TCR     | 142                 | 0.041   | 0.025   | 0.187   | 142                 | 0.041   | 0.025   | 0.187   | mg/l        |
| b. Soluble fraction (section 2.5)                                                                        | FSOL    | 0.9                 | 0.4     | 0.1     | 0.4     | 0.9                 | 0.4     | 0.1     | 0.4     | fraction    |
| c. Acute Criteria (table 4)                                                                              | СТА     | 1500                | 0.049   | 0.251   | 0.310   | 1500                | 0.049   | 0.251   | 0.310   | mg/l        |
| d. Threshold effects level (Table 4)                                                                     | СТТ     | none                | 0.030   | 0.053   | 0.081   | none                | 0.030   | 0.053   | 0.081   | mg/l        |
|                                                                                                          |         | lione               | 0.030   | 0.033   | 0.001   | none                | 0.030   | 0.033   | 0.001   |             |
| 5. Compute the once in 3 year stream pollutant concentration<br>=CU*TCR*FSOL                             | СО      | 360.42              | 0.05    | 0.01    | 0.21    | 411.71              | 0.05    | 0.01    | 0.24    | mg/l        |
|                                                                                                          |         |                     |         |         |         |                     |         |         |         |             |
| 6. Compare with Target Concentration, CTA<br>=CO/CTA                                                     | CRAT    | 0.24                | 0.94    | 0.03    | 0.68    | 0.27                | / 1.08  | 0.03    | 0.78    | ratio       |
| 6a. Compare with background concentrations                                                               |         | n/a                 | 0.009   | < 0.041 | 0.043   | n/a                 | 0.009   | < 0.041 | 0.043   | mg/l        |
|                                                                                                          |         | ii/d                | 0.008   | < 0.041 | 0.045   | 11/ d               | 0.008   | < 0.041 | 0.045   | ilig/1      |
| 7. Evaluate Results                                                                                      |         |                     |         |         |         |                     |         |         |         |             |
| a. If CRAT is less than about 0.75 a tocicity problem attributable to this pollutant is unlikely         |         | STOP                | STOP    | STOP    | STOP    | STOP                | STOP    | STOP    | STOP    |             |
|                                                                                                          |         |                     |         |         |         |                     |         |         |         |             |
| b. If CRAT is greater than 5 reduction will definitely be required. Estimate the level of                |         |                     |         |         |         |                     |         |         |         |             |
| reduction possible and repeat the analysis with revisted values for either concentration or flow or both |         | CONTROL             | CONTROL | CONTROL | CONTROL | CONTROL             | CONTROL | CONTROL | CONTROL |             |
| flow or both                                                                                             |         | CONTROL             | CONTROL | CONTROL | CONTROL | CONTROL             | CONTROL | CONTROL | CONTROL |             |
| c if CDAT is still greater than 1 and greater reduction lough are not prestical estimate the             |         |                     |         |         |         |                     |         |         |         | -           |
| c. if CRAT is still greater than 1 and greater reduction levels are not practical, estimate the          |         |                     |         |         |         |                     |         |         |         |             |
| potential for an adverse impact (as opposed to a criteria violation) by a comparison with the            |         |                     |         |         |         |                     |         |         |         |             |
| threshold effects level)                                                                                 | CDTE    |                     | -       |         |         | EVALUATE            |         |         | 1       |             |
| =CO/CTT                                                                                                  | CRTE    | #VALUE!             | 1.56    | 0.13    | 2.60    | #VALUE!             | 1.78    | 0.15    | 2.97    | ratio       |

## Site: Salt Creek

Cells to input data to

|                                                                                                                                                                                                                                                     |                   |          | EXISTING C |          |             |          | Proposed C | ONDITIONS |          |                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------|------------|----------|-------------|----------|------------|-----------|----------|------------------|
|                                                                                                                                                                                                                                                     |                   | TSS      | Copper     | Lead     | Zinc        | TSS      | Copper     | Lead      | Zinc     |                  |
| ble 1. Worksheet A - Site Characteristics                                                                                                                                                                                                           |                   |          |            |          |             |          |            |           |          |                  |
| Drainage Area of Highway Segment (Section 2.1)                                                                                                                                                                                                      |                   |          |            |          |             |          |            |           |          | Ι.               |
| Total right of way                                                                                                                                                                                                                                  | AROW              | 101.54   | 101.54     | 101.54   | 101.54      | 162.28   | 162.28     |           |          |                  |
| Paved surface                                                                                                                                                                                                                                       | AHWY              | 101.54   | 101.54     | 101.54   | 101.54      | 162.28   |            |           |          |                  |
| Percent Impervous                                                                                                                                                                                                                                   | IMP               | 100      | 100        | 100      | 100         | 100      | 100        | 100       | 100      | %                |
| Rainfall Characteristics (section 2.2)                                                                                                                                                                                                              | MEAN              |          |            |          |             |          |            |           |          |                  |
| Volume                                                                                                                                                                                                                                              | MVP               | 0.42     | 0.42       | 0.42     | 0.42        | 0.42     | 0.42       | 0.42      | 0.42     | inch             |
| Intensity                                                                                                                                                                                                                                           | MIP               | 0.07     | 0.07       | 0.07     | 0.07        | 0.07     | 0.07       | 0.07      |          | inch/            |
| Duration                                                                                                                                                                                                                                            | MDP               | 14.14    | 14.14      | 14.14    | 14.14       | 14.14    |            | 14.14     |          |                  |
| Interval                                                                                                                                                                                                                                            | MTP               | 155.11   | 155.11     | 155.11   |             | 155.11   | 155.11     |           |          |                  |
|                                                                                                                                                                                                                                                     |                   |          |            |          |             |          |            |           |          |                  |
|                                                                                                                                                                                                                                                     | COEF of VARIATION | 1 55     | 1 55       | 4 55     | 1 55        | 4 55     | 4 66       | 4 55      | 4 55     |                  |
| Volume                                                                                                                                                                                                                                              | CVVP              | 1.55     | 1.55       | 1.55     |             | 1.55     |            |           |          | dimer            |
| Intensity                                                                                                                                                                                                                                           | CVIP              | 2.15     | 2.15       | 2.15     | 2.15        | 2.15     |            |           |          | dimer            |
| Duration                                                                                                                                                                                                                                            | CVDP              | 1.37     | 1.37       | 1.37     | 1.37        | 1.37     | 1.37       | 1.37      | 1.37     | dimer            |
| Interval                                                                                                                                                                                                                                            | CVTP              | 1.07     | 1.07       | 1.07     | 1.07        | 1.07     | 1.07       | 1.07      | 1.07     | dimen            |
| Number of storms per year (24*365/MTP)                                                                                                                                                                                                              | NST               | 56.5     | 56.5       | 56.5     | 56.5        | 56.5     | 56.5       | 56.5      | 56.5     | no. ev           |
| Surrounding Area Type                                                                                                                                                                                                                               |                   |          |            |          |             |          |            |           |          |                  |
| ADT ususally over 30,000 vehicles/day                                                                                                                                                                                                               | Urban             | ×        | v          | v        | v           | v        | v          | v         | v        |                  |
| ADT ususally over 50,000 vehicles/day                                                                                                                                                                                                               | Orban             | X        | X          | X        | X           | X        | X          | X         | X        |                  |
| ADT usually under 30,000 vpd, undeveloped or suburban                                                                                                                                                                                               | Rural             |          |            |          |             |          |            |           |          |                  |
| Select pollutant for analysis (section 2.4) and estimate runoff quality characteristics (us                                                                                                                                                         | ie -              |          |            |          |             |          |            |           |          |                  |
| ble 3)                                                                                                                                                                                                                                              |                   | TSS      | Copper     | Lead     |             | TSS      |            | Lead      |          |                  |
| site median concentration                                                                                                                                                                                                                           | TCR               | 142      | 0.041      | 0.025    | 0.187       | 142      |            | 0.025     |          | mg/l             |
| coef of variation (0.71 urban, 0.84 Rural, 0.75 estimate for all sites)                                                                                                                                                                             | CVCR              | 0.71     | 0.71       | 0.71     | 0.71        | 0.71     | 0.71       | 0.71      | 0.71     | dimen            |
| Select receiving water target concentration (section 2.6)                                                                                                                                                                                           |                   |          |            |          |             |          |            |           |          |                  |
| rface water Total Hardness (Figure 5)                                                                                                                                                                                                               | TH                | 248      | 248        | 248      | 248         | 248      | 248        | 248       | 248      | mg/l             |
| REAM -use table 4 for target concentration                                                                                                                                                                                                          |                   |          |            |          |             |          |            |           |          |                  |
| EPA Acute Criterion                                                                                                                                                                                                                                 |                   | 1500     | 0.040      | 0.200    | 0.258       | 1500     | 0.040      | 0.200     | 0.258    | mg/l             |
| suggested Threshold Effect Level                                                                                                                                                                                                                    |                   | none     | 0.025      | 0.042    | 0.067       | none     | 0.025      | 0.042     | 0.067    | mg/l             |
| KE - use accepted level for average Phosphorus concentration                                                                                                                                                                                        |                   |          |            |          |             |          |            |           |          |                  |
| target concentration is 10 micrograms/liter                                                                                                                                                                                                         |                   | 10       | 10         | 10       | 10          | 10       | 10         | 10        | 10       | ug/l             |
|                                                                                                                                                                                                                                                     |                   |          |            |          |             |          |            |           |          |                  |
| Watershed Drainage Area<br>stream of highway for a stream - total contributing area for a lake                                                                                                                                                      | ATOT              | 71       | 71         | 71       | 71          | 71       | 71         | 71        | 71       | square           |
| stream of highway for a stream - total contributing area for a lake                                                                                                                                                                                 |                   |          |            |          |             |          |            |           |          |                  |
| Average annual stream flow (section 2.3)                                                                                                                                                                                                            |                   |          |            |          |             |          |            |           |          |                  |
| unit area flow rate per square mile (figure 4)                                                                                                                                                                                                      | QSM               | 1.30     | 1.30       | 1.30     |             | 1.30     | 1.30       | 1.30      |          | cfs/squ          |
| Coef of variation of stream flows (section 2.3)                                                                                                                                                                                                     | CVQS              | 1.68     | 1.68       | 1.68     | 1.68        | 1.68     | 1.68       | 1.68      | 1.68     | dimen            |
| verage stream flow (QSM*ATOT)                                                                                                                                                                                                                       | MQS               | 92.20    | 92.20      | 92.20    | 92.20       | 92.20    | 92.20      | 92.20     | 92.20    | cfs              |
| ble 5. Worksheet B - Highway Runoff Characteristics                                                                                                                                                                                                 |                   |          |            |          |             |          |            |           |          |                  |
| Compute runoff coefficient (Rv) (section 3.1)                                                                                                                                                                                                       |                   |          |            |          |             |          |            |           |          |                  |
| Percent Impervious (Worksheet A - Item 1c)                                                                                                                                                                                                          | IMP               | 100      | 100        | 100      | 100         | 100      | 100        | 100       | 100      | %                |
| Runoff Coefficient (=0.007*IMP+0.1)                                                                                                                                                                                                                 | Rv                | 0.8      | 0.8        | 0.8      | 0.8         | 0.8      | 0.8        | 0.8       |          | ratio            |
| Compute runoff flow rates (section 2.1)                                                                                                                                                                                                             |                   |          |            |          |             |          |            |           |          |                  |
| Compute runoff flow rates (section 3.1)<br>Flow rate from mean storm                                                                                                                                                                                |                   |          |            |          |             |          |            |           |          |                  |
| =Rv*MIP*AROW                                                                                                                                                                                                                                        | MQR               | 5.672    | 5.672      | 5.672    | 5.672       | 9.065    | 9.065      | 9.065     | 9.065    | cfc              |
| -                                                                                                                                                                                                                                                   | WIQN              | 5.672    | 5.0/2      | 5.072    | 5.0/2       | 9.065    | 9.065      | 9.065     | 9.065    | CIS              |
|                                                                                                                                                                                                                                                     | CVVR              | 2.15     | 2.15       | 2.15     | 2.15        | 2.15     | 2.15       | 2.15      | 2.15     | dimens           |
|                                                                                                                                                                                                                                                     |                   | 2.15     | 2.13       | 2.10     | <b>_</b> 15 | 2.13     | 2.13       |           | 2.13     |                  |
| CVIP (worksheet A - Item 2f)                                                                                                                                                                                                                        | CVVII             |          |            |          |             |          |            |           |          |                  |
| CVIP (worksheet A - Item 2f)                                                                                                                                                                                                                        |                   |          |            |          |             |          |            |           |          |                  |
| =CVIP (worksheet A - Item 2f)<br>Compute runoff volumes (section 3.1)<br>/olume from the mean storm                                                                                                                                                 |                   |          |            |          |             |          |            |           |          |                  |
| =CVIP (worksheet A - Item 2f)<br>Compute runoff volumes (section 3.1)<br>Volume from the mean storm<br>=Rv*MVP*AROW*3630                                                                                                                            | MVR               | 122602.8 | 122602.8   | 122602.8 | 122602.8    | 195942.3 | 195942.3   | 195942.3  | 195942.3 | cubic f          |
| Coefficient of variation of runoff flows<br>=CVIP (worksheet A - Item 2f)<br>Compute runoff volumes (section 3.1)<br>Volume from the mean storm<br>=Rv*MVP*AROW*3630<br>Coefficient of variation of runoff volumes<br>=CVVP (worksheet A - Item 2e) |                   | 122602.8 | 122602.8   | 122602.8 |             | 195942.3 | 195942.3   |           |          | cubic f<br>dimen |

### Site: Salt Creek Cells to input data to

|                                                                                                  |         |           | EXISTING ( | CONDITIONS |         |            | Proposed C | ONDITIONS |         |              |
|--------------------------------------------------------------------------------------------------|---------|-----------|------------|------------|---------|------------|------------|-----------|---------|--------------|
|                                                                                                  |         | TSS       | Copper     | Lead       | Zinc    | TSS        | Copper     | Lead      | Zinc    |              |
| 4. Compute mass loads (section 3.2)                                                              |         |           |            |            |         |            |            |           |         |              |
| Site Median Conc (worksheet A - Item 4a)                                                         | TCR     | 142       | 0.041      | 0.025      | 0.187   | 142        | 0.041      | 0.025     | 0.187   | mg/l         |
| Coef of var. of site EMC's (Worksheet A - 4b)                                                    | CVCR    | 0.71      |            |            |         |            |            |           | 0.71    | dimensionles |
| Number of storms per year (Worksheet A - 2i)                                                     | NST     | 56.5      | 56.5       | 56.5       | 56.5    | 56.5       | 56.5       | 56.5      | 56.5    | number       |
| a. mean event concentration (MCR)                                                                |         |           |            |            |         |            |            |           |         |              |
| =TCR*SQRT(1+CVCR^2)                                                                              | MCR     | 174.2     | 0.1        | 0.0        | 0.2     | 174.2      | 0.1        | 0.0       | 0.2     | mg/l         |
| b. mean event mass load                                                                          |         |           |            |            |         |            |            |           |         |              |
| =MCR*MVR*(0.00006245)                                                                            | M(MASS) | 1333.397  | 0.385      | 0.235      | 1.756   | 2131.019   | 0.615      | 0.375     | 2.806   | pounds       |
| c. annual mass laod from runoff                                                                  |         |           |            |            |         |            |            |           |         |              |
| =M(MASS)*NST                                                                                     | ANMASS  | 75304.833 | 21.743     | 13.258     | 99.169  | 120351.273 | 34.749     | 21.189    | 158.491 | pounds/yea   |
| 5. Compute flow ratio (MQS/MQR) (section 3.3)                                                    |         |           |            |            |         |            |            |           |         |              |
| a. ratio of average stream flow                                                                  |         |           |            |            |         |            |            |           |         |              |
| (worksheet A-7b) to MQR                                                                          | MQS/MQR | 16.255    | 16.255     | 16.255     | 16.255  | 10.171     | 10.171     | 10.171    | 10.171  | ratio        |
| Table 6. Worksheet C - Stream Impact Analsysis                                                   |         |           |            |            |         |            |            |           |         |              |
| 1. Define the flow ratio MQS/MQR (Worksheet B-5a)                                                | MQS/MQR | 16.255    | 16.255     | 16.255     | 16.255  | 10.171     | 10.171     | 10.171    | 10.171  | ratio        |
| 2. Compute the event frequency for a 3 year recurrence interval                                  |         |           |            |            |         |            |            |           |         |              |
| a. Enter the average number of storms per year                                                   |         |           |            |            |         |            |            |           |         |              |
| (from Worksheet A - Item 2i)                                                                     | NST     | 56.5      | 56.5       | 56.5       | 56.5    | 56.5       | 56.5       | 56.5      | 56.5    | number       |
| b. Compute the probability (%) of the 3 year event                                               |         |           |            |            |         |            |            |           |         |              |
| =100*(1/(NST*3))                                                                                 | PR      | 0.59      | 0.59       | 0.59       | 0.59    | 0.59       | 0.59       | 0.59      | 0.59    | %            |
| 3. Enter Value from Table 7 for MQS/MQR and frequency PR                                         | CU      | 1.33      | 1.33       | 1.33       | 1.33    | 1.59       | 1.59       | 1.59      | 1.59    | mg/l         |
| 4. Select pollutant for analysis                                                                 |         |           |            |            |         |            |            |           |         | Name         |
| a. Site median concentration (table 3)                                                           | TCR     | 142       | 0.041      | 0.025      | 0.187   | 142        | 0.041      | 0.025     |         |              |
| h. Caluble function (anotion 2.5)                                                                | 500     |           |            | 0.1        |         |            |            | 0.1       |         |              |
| b. Soluble fraction (section 2.5)                                                                | FSOL    | 0.9       | 0.4        | 0.1        | 0.4     | 0.9        | 0.4        | 0.1       | 0.4     | fraction     |
| c. Acute Criteria (table 4)                                                                      | СТА     | 1500      | 0.040      | 0.200      | 0.258   | 1500       | 0.040      | 0.200     | 0.258   | mg/l         |
| d. Threshold effects level (Table 4)                                                             | СТТ     | none      | 0.025      | 0.042      | 0.067   | none       | 0.025      | 0.042     | 0.067   | mg/l         |
| 5. Compute the once in 3 year stream pollutant concentration                                     |         |           |            |            |         |            |            |           |         |              |
| =CU*TCR*FSOL                                                                                     | СО      | 170.54    | 0.02       | 0.00       | 0.10    | 203.71     | 0.03       | 0.00      | 0.12    | mg/l         |
| 6. Compare with Target Concentration, CTA                                                        |         |           |            |            |         |            |            |           |         |              |
| =CO/CTA                                                                                          | CRAT    | 0.11      | 0.55       | 0.02       | 0.39    | 0.14       | 0.65       | 0.02      | 0.46    | ratio        |
| 6a. Compare with background concentrations                                                       |         | n/a       | 0.009      | < 0.041    | 0.073   | n/a        | 0.009      | < 0.041   | 0.073   | mg/l         |
| 7. Evaluate Results                                                                              |         |           |            |            |         |            |            |           |         |              |
|                                                                                                  |         |           |            |            |         |            |            |           |         |              |
| a. If CRAT is less than about 0.75 a tocicity problem attributable to this pollutant is unlikely |         | STOP      | STOP       | STOP       | STOP    | STOP       | STOP       | STOP      | STOP    |              |
| b. If CRAT is greater than 5 reduction will definitely be required. Estimate the level of        |         |           | 1          | 1          |         | 1          | 1          |           |         | 1            |
| reduction possible and repeat the analysis with revisted values for either concentration or      |         |           |            |            |         |            |            |           |         |              |
| flow or both                                                                                     |         | CONTROL   | CONTROL    | CONTROL    | CONTROL | CONTROL    | CONTROL    | CONTROL   | CONTROL |              |
| o if CDAT is still groater then 1 and greater reduction levels are not prestively activate the   |         |           |            |            |         |            |            |           |         |              |
| c. if CRAT is still greater than 1 and greater reduction levels are not practical, estimate the  |         |           |            |            |         |            |            |           |         |              |
| potential for an adverse impact (as opposed to a criteria violation) by a comparison with the    | !       |           |            |            |         |            |            |           |         |              |
| threshold effects level)<br>=CO/CTT                                                              | CRTE    |           |            |            |         | EVALUATE   |            |           |         | ratio        |
|                                                                                                  | UNIL    | #VALUE!   | 0.89       | 0.08       | 1.48    | #VALUE!    | 1.06       | 0.09      | 1.//    | ratio        |

## Site: Silver Creek

Cells to input data to

|                                                                                             |                   |         | EXISTING CO |         |         |         | Proposed ( | ONDITIONS |         |
|---------------------------------------------------------------------------------------------|-------------------|---------|-------------|---------|---------|---------|------------|-----------|---------|
|                                                                                             |                   | TSS     |             | -       | Zinc    | TSS     | Copper     | 1         | Zinc    |
| able 1. Worksheet A - Site Characteristics                                                  |                   | •       |             |         |         |         |            | •         | 1       |
| . Drainage Area of Highway Segment (Section 2.1)                                            |                   |         |             |         |         |         |            |           |         |
| . Total right of way                                                                        | AROW              | 65.73   | 65.73       | 65.73   | 65.73   |         |            | <u></u>   |         |
| . Paved surface                                                                             | AHWY              | 65.73   | 65.73       | 65.73   | 65.73   |         |            |           |         |
| . Percent Impervous                                                                         | IMP               | 100     | 100         | 100     | 100     | 100     | 100        | 100       | 100     |
| . Rainfall Characteristics (section 2.2)                                                    | MEAN              |         |             |         |         |         |            |           |         |
| . Volume                                                                                    | MVP               | 0.42    | 0.42        | 0.42    | 0.42    | 0.42    | 0.42       | 0.42      | 0.42    |
| . Intensity                                                                                 | MIP               | 0.42    | 0.42        | 0.42    | 0.42    |         | 0.42       |           |         |
| . Duration                                                                                  | MDP               | 14.14   | 14.14       | 14.14   | 14.14   | 14.14   | 14.14      |           |         |
| . Interval                                                                                  | MTP               | 155.11  | 155.11      | 155.11  | 155.11  | 155.11  | 155.11     |           |         |
|                                                                                             |                   |         |             |         |         |         |            |           |         |
|                                                                                             | COEF of VARIATION |         |             |         |         |         |            |           |         |
| . Volume                                                                                    | CVVP              | 1.55    | 1.55        | 1.55    | 1.55    | 1.55    | 1.55       | 1.55      | 1.55    |
| Intensity                                                                                   | CVIP              | 2.15    | 2.15        | 2.15    | 2.15    | 2.15    | 2.15       | 2.15      | 2.15    |
| Duration                                                                                    | CVDP              | 1.37    | 1.37        | 1.37    | 1.37    | 1.37    | 1.37       | 1.37      | 1.37    |
| Interval                                                                                    | CVTP              | 1.07    | 1.07        | 1.07    | 1.07    | 1.07    | 1.07       | 1.07      | 1.07    |
|                                                                                             |                   |         |             |         |         |         |            |           |         |
| Number of storms per year (24*365/MTP)                                                      | NST               | 56.5    | 56.5        | 56.5    | 56.5    | 56.5    | 56.5       | 56.5      | 56.5    |
|                                                                                             |                   |         |             |         |         |         |            |           |         |
| . Surrounding Area Type                                                                     | Linker            |         |             |         |         |         |            |           |         |
| ADT ususally over 30,000 vehicles/day                                                       | Urban             | X       | X           | X       | Х       | X       | ×          | X         | Х       |
| ADT usually under 30,000 vpd, undeveloped or suburban                                       | Rural             |         |             |         |         |         |            |           |         |
|                                                                                             | Nurai             |         |             |         |         |         |            |           |         |
| Select pollutant for analysis (section 2.4) and estimate runoff quality characteristics (us | : <b>е</b>        |         |             |         |         |         |            |           |         |
| able 3)                                                                                     |                   | TSS     | Copper      | Lead    | Zinc    | TSS     | Copper     | Lead      | Zinc    |
| site median concentration                                                                   | TCR               | 142     | 0.041       | 0.025   | 0.187   |         |            |           |         |
| coef of variation (0.71 urban, 0.84 Rural, 0.75 estimate for all sites)                     | CVCR              | 0.71    |             | 0.71    | 0.71    |         |            |           | 0.71    |
|                                                                                             |                   | 0.71    | 0.7 1       | 0.71    | 0.71    | 0.71    | 0.7 1      | 0.71      |         |
| Select receiving water target concentration (section 2.6)                                   |                   |         |             |         |         |         |            |           |         |
| rface water Total Hardness (Figure 5)                                                       | TH                | 229     | 229         | 229     | 229     | 229     | 229        | 229       | 229     |
| REAM -use table 4 for target concentration                                                  |                   |         |             |         |         |         |            |           |         |
| EPA Acute Criterion                                                                         |                   | 1500    | 0.037       | 0.184   | 0.241   | 1500    | 0.037      | 0.184     | 0.241   |
| suggested Threshold Effect Level                                                            |                   | none    | 0.023       | 0.039   | 0.063   | none    | 0.023      | 0.039     | 0.063   |
|                                                                                             |                   |         |             |         |         |         |            |           |         |
| KE - use accepted level for average Phosphorus concentration                                |                   |         |             |         |         |         |            |           |         |
| target concentration is 10 micrograms/liter                                                 |                   | 10      | 10          | 10      | 10      | 10      | 10         | 10        | 10      |
|                                                                                             |                   |         | 6.5         | 6.5     | ~ -     |         |            |           |         |
| Watershed Drainage Area                                                                     | ATOT              | 6.5     | 6.5         | 6.5     | 6.5     | 6.5     | 6.5        | 6.5       | 6.5     |
| stream of highway for a stream - total contributing area for a lake                         |                   |         |             |         |         |         |            |           |         |
| Average annual stream flow (section 2.3)                                                    |                   |         |             |         |         |         |            |           |         |
| unit area flow rate per square mile (figure 4)                                              | QSM               | 1.30    | 1.30        | 1.30    | 1.30    | 1.30    | 1.30       | 1.30      | 1.30    |
| Coef of variation of stream flows (section 2.3)                                             | CVQS              | 1.50    | 1.50        | 1.68    | 1.50    |         |            |           |         |
| Average stream flow (QSM*ATOT)                                                              | MQS               | 8.44    | 8.44        | 8.44    | 8.44    |         |            |           |         |
|                                                                                             |                   | 0.77    | 0.77        |         | 0.74    | 0.74    | 0.74       | 0.44      | 0.74    |
| le 5. Worksheet B - Highway Runoff Characteristics                                          |                   |         |             |         |         |         | L          |           |         |
| Compute runoff coefficient (Rv) (section 3.1)                                               |                   |         |             |         |         |         |            |           |         |
| Percent Impervious (Worksheet A - Item 1c)                                                  | IMP               | 100     | 100         | 100     | 100     | 100     | 100        | 100       | 100     |
| Runoff Coefficient (=0.007*IMP+0.1)                                                         | Rv                | 0.8     | 0.8         | 0.8     | 0.8     | 0.8     | 0.8        | 0.8       |         |
|                                                                                             |                   |         |             |         |         |         |            |           |         |
| Compute runoff flow rates (section 3.1)                                                     |                   |         |             |         |         |         |            |           |         |
| low rate from mean storm                                                                    |                   |         |             |         |         |         |            |           |         |
| Rv*MIP*AROW                                                                                 | MQR               | 3.672   | 3.672       | 3.672   | 3.672   | 4.123   | 4.123      | 4.123     | 4.123   |
| oefficient of variation of runoff flows                                                     |                   |         |             |         |         |         |            |           |         |
| CVIP (worksheet A - Item 2f)                                                                | CVVR              | 2.15    | 2.15        | 2.15    | 2.15    | 2.15    | 2.15       | 2.15      | 2.15    |
|                                                                                             |                   |         |             |         |         |         |            |           |         |
| ompute runoff volumes (section 3.1)                                                         |                   |         |             |         |         |         |            |           |         |
| plume from the mean storm                                                                   |                   |         |             |         |         |         |            |           |         |
| Rv*MVP*AROW*3630                                                                            | MVR               | 79364.6 | 79364.6     | 79364.6 | 79364.6 | 89108.6 | 89108.6    | 89108.6   | 89108.6 |
|                                                                                             |                   |         |             |         |         |         |            | 1         | 1       |
| Coefficient of variation of runoff volumes<br>=CVVP (worksheet A - Item 2e)                 | CVVR              | 1.55    | 1.55        | 1.55    | 1.55    | 1.55    | 1.55       | 1.55      | 1.55    |

Site: Silver Creek Cells to input data to

|                                                                                                  |         |           | EXISTING C | ONDITIONS |          |            | Proposed ( | 20            |
|--------------------------------------------------------------------------------------------------|---------|-----------|------------|-----------|----------|------------|------------|---------------|
|                                                                                                  |         | TSS       | Copper     | Lead      | Zinc     | TSS        | Copper     | T             |
| 4. Compute mass loads (section 3.2)                                                              |         |           |            |           |          |            |            |               |
| Site Median Conc (worksheet A - Item 4a)                                                         | TCR     | 142       |            | 0.025     |          |            |            | +             |
| Coef of var. of site EMC's (Worksheet A - 4b)                                                    | CVCR    | 0.71      |            | 0.71      | 0.71     | 0.71       | 0.72       | -             |
| Number of storms per year (Worksheet A - 2i)                                                     | NST     | 56.5      | 56.5       | 56.5      | 56.5     | 56.5       | 56.5       | 4             |
| a. mean event concentration (MCR)                                                                |         |           |            |           |          |            |            | 1             |
| =TCR*SQRT(1+CVCR^2)                                                                              | MCR     | 174.2     | 0.1        | 0.0       | 0.2      | 174.2      | 0.1        | -             |
| b. mean event mass load                                                                          |         |           |            |           |          |            |            | +             |
| =MCR*MVR*(0.00006245)                                                                            | M(MASS) | 863.149   | 0.249      | 0.152     | 1.137    | 969.122    | 0.280      | 4             |
| c. annual mass laod from runoff                                                                  |         | 40747460  | 14.075     | 0.503     | C4 105   | F 4722 002 | 15.00      | ł             |
| =M(MASS)*NST                                                                                     | ANMASS  | 48747.160 | 14.075     | 8.582     | 64.195   | 54732.092  | 15.803     | Ή             |
| 5. Compute flow ratio (MQS/MQR) (section 3.3)                                                    |         |           |            |           |          |            |            | 1             |
| a. ratio of average stream flow                                                                  |         |           |            |           |          |            |            |               |
| (worksheet A-7b) to MQR                                                                          | MQS/MQR | 2.299     | 2.299      | 2.299     | 2.299    | 2.048      | 2.048      | 5             |
| Table 6. Worksheet C - Stream Impact Analsysis                                                   |         |           |            |           |          |            |            | 1             |
| 1. Define the flow ratio MQS/MQR (Worksheet B-5a)                                                | MQS/MQR | 2.299     | 2.299      | 2.299     | 2.299    | 2.048      | 2.048      | ş             |
| 2. Compute the event frequency for a 3 year recurrence interval                                  |         |           |            |           |          |            |            | ╉             |
| a. Enter the average number of storms per year                                                   |         |           |            |           |          |            |            | t             |
| (from Worksheet A - Item 2i)                                                                     | NST     | 56.5      | 56.5       | 56.5      | 56.5     | 56.5       | 56.5       | ;             |
| b. Compute the probability (%) of the 3 year event                                               |         |           |            |           |          |            |            | t             |
| =100*(1/(NST*3))                                                                                 | PR      | 0.59      | 0.59       | 0.59      | 0.59     | 0.59       | 0.59       | į             |
| 3. Enter Value from Table 7 for MQS/MQR and frequency PR                                         | CU      | 2.40      | 2.40       | 2.40      | 2.40     | 2.45       | 2.4        | 5             |
|                                                                                                  |         |           |            |           |          |            |            | ļ             |
| 4. Select pollutant for analysis                                                                 | TOD     | 1.12      | 0.044      | 0.025     | 0.407    | 142        | 0.04       | ł             |
| a. Site median concentration (table 3)                                                           | TCR     | 142       | 0.041      | 0.025     | 0.187    | 142        | 0.042      | +             |
| b. Soluble fraction (section 2.5)                                                                | FSOL    | 0.9       | 0.4        | 0.1       | 0.4      | 0.9        | 0.4        | ŀ             |
| c. Acute Criteria (table 4)                                                                      | СТА     | 1500      | 0.037      | 0.184     | 0.241    | 1500       | 0.03       | 1             |
|                                                                                                  |         |           |            |           |          |            |            | 1             |
| d. Threshold effects level (Table 4)                                                             | СТТ     | none      | 0.023      | 0.039     | 0.063    | none       | 0.023      | ł             |
| 5. Compute the once in 3 year stream pollutant concentration                                     |         |           |            |           |          |            |            | ł             |
| =CU*TCR*FSOL                                                                                     | СО      | 306.79    | 0.04       | 0.01      | 0.18     | 312.57     | 0.04       | 4             |
| 6. Compare with Target Concentration, CTA                                                        |         |           |            |           |          |            |            | ╉             |
| =CO/CTA                                                                                          | CRAT    | 0.20      | 1.06       | 0.03      | 0.74     | 0.21       | 1.08       | ş             |
| 6a. Compare with background concentrations                                                       |         |           |            |           |          |            |            |               |
|                                                                                                  |         |           |            |           |          |            |            | t             |
| 7. Evaluate Results                                                                              |         |           |            |           |          |            |            | ļ             |
| a. If CRAT is less than about 0.75 a tocicity problem attributable to this pollutant is unlikely |         | STOP      | STOP       | STOP      | STOP     | STOP       | STOP       |               |
|                                                                                                  |         |           |            |           |          |            |            | 1             |
| b. If CRAT is greater than 5 reduction will definitely be required. Estimate the level of        |         |           |            |           |          |            |            |               |
| reduction possible and repeat the analysis with revisted values for either concentration or      |         |           |            |           |          |            |            |               |
| flow or both                                                                                     |         | CONTROL   | CONTROL    | CONTROL   | CONTROL  | CONTROL    | CONTROL    | ┨             |
| c. if CRAT is still greater than 1 and greater reduction levels are not practical, estimate the  |         |           |            |           |          |            |            | $\frac{1}{1}$ |
| potential for an adverse impact (as opposed to a criteria violation) by a comparison with the    | 2       |           |            |           |          |            |            |               |
| threshold effects level)                                                                         |         |           |            |           | EVALUATE |            | EVALUATE   | -             |
| =CO/CTT                                                                                          | CRTE    | #VALUE!   | 1.71       | 0.16      | 2.85     | #VALUE!    | 1.74       | ł             |

| r                                     | Lead                                                  | Zinc                                                          |                                           |
|---------------------------------------|-------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------|
|                                       |                                                       |                                                               | _                                         |
| 0.041                                 | 0.025                                                 | 0.187                                                         | -                                         |
| 0.71                                  | 0.71                                                  |                                                               | dimensionless                             |
| 56.5                                  | 56.5                                                  | 56.5                                                          | number                                    |
|                                       |                                                       |                                                               |                                           |
|                                       |                                                       |                                                               |                                           |
| 0.1                                   | 0.0                                                   | 0.2                                                           | mg/l                                      |
|                                       |                                                       |                                                               | 0,                                        |
| 0.280                                 | 0.171                                                 | 1 276                                                         | pounds                                    |
| 0.200                                 | 0.171                                                 | 1.270                                                         | pounds                                    |
| 5.803                                 | 9.636                                                 | 72 077                                                        | pounds/year                               |
| 5.605                                 | 9.050                                                 | 72.077                                                        | pourius/year                              |
|                                       |                                                       |                                                               |                                           |
|                                       |                                                       |                                                               |                                           |
|                                       |                                                       |                                                               |                                           |
| 2.048                                 | 2.048                                                 | 2.048                                                         | ratio                                     |
|                                       |                                                       |                                                               |                                           |
|                                       |                                                       |                                                               |                                           |
| 2.048                                 | 2.048                                                 | 2.048                                                         | ratio                                     |
|                                       |                                                       |                                                               |                                           |
|                                       |                                                       |                                                               |                                           |
|                                       |                                                       |                                                               |                                           |
| 56.5                                  |                                                       | EC E                                                          | number                                    |
| 20.5                                  | 56.5                                                  | 50.5                                                          | number                                    |
|                                       |                                                       |                                                               |                                           |
| 0.59                                  | 0.59                                                  | 0.59                                                          | %                                         |
|                                       |                                                       |                                                               |                                           |
| 2.45                                  | 2.45                                                  | 2.45                                                          | mg/l                                      |
|                                       |                                                       |                                                               |                                           |
|                                       |                                                       |                                                               | Name                                      |
|                                       |                                                       |                                                               |                                           |
| 0.041                                 | 0.025                                                 | 0.187                                                         |                                           |
| 0.041                                 | 0.025                                                 | 0.187                                                         |                                           |
| 0.041                                 |                                                       |                                                               |                                           |
|                                       | 0.025                                                 |                                                               | mg/l                                      |
| 0.4                                   | 0.1                                                   | 0.4                                                           | mg/I<br>fraction                          |
|                                       |                                                       |                                                               | mg/I<br>fraction                          |
| 0.4                                   | 0.1                                                   | 0.4                                                           | mg/I<br>fraction<br>mg/I                  |
| 0.4                                   | 0.1                                                   | 0.4                                                           | mg/I<br>fraction<br>mg/I                  |
| 0.4                                   | 0.1                                                   | 0.4                                                           | mg/I<br>fraction<br>mg/I                  |
| 0.4<br>0.037<br>0.023                 | 0.1<br>0.184<br>0.039                                 | 0.4<br>0.241<br>0.063                                         | mg/I<br>fraction<br>mg/I<br>mg/I          |
| 0.4                                   | 0.1                                                   | 0.4<br>0.241<br>0.063                                         | mg/I<br>fraction<br>mg/I                  |
| 0.4<br>0.037<br>0.023                 | 0.1<br>0.184<br>0.039                                 | 0.4<br>0.241<br>0.063                                         | mg/I<br>fraction<br>mg/I<br>mg/I          |
| 0.4<br>0.037<br>0.023                 | 0.1<br>0.184<br>0.039                                 | 0.4<br>0.241<br>0.063                                         | mg/I<br>fraction<br>mg/I<br>mg/I          |
| 0.4<br>0.037<br>0.023                 | 0.1<br>0.184<br>0.039                                 | 0.4<br>0.241<br>0.063<br>0.18                                 | mg/I<br>fraction<br>mg/I<br>mg/I          |
| 0.4                                   | 0.1<br>0.184<br>0.039<br>0.01                         | 0.4<br>0.241<br>0.063<br>0.18                                 | mg/I<br>fraction<br>mg/I<br>mg/I<br>mg/I  |
| 0.4                                   | 0.1<br>0.184<br>0.039<br>0.01                         | 0.4<br>0.241<br>0.063<br>0.18                                 | mg/I<br>fraction<br>mg/I<br>mg/I<br>mg/I  |
| 0.4                                   | 0.1<br>0.184<br>0.039<br>0.01                         | 0.4<br>0.241<br>0.063<br>0.18                                 | mg/I<br>fraction<br>mg/I<br>mg/I<br>mg/I  |
| 0.4                                   | 0.1<br>0.184<br>0.039<br>0.01                         | 0.4<br>0.241<br>0.063<br>0.18                                 | mg/I<br>fraction<br>mg/I<br>mg/I<br>mg/I  |
| 0.4                                   | 0.1<br>0.184<br>0.039<br>0.01                         | 0.4<br>0.241<br>0.063<br>0.18                                 | mg/I<br>fraction<br>mg/I<br>mg/I<br>mg/I  |
| 0.4                                   | 0.1<br>0.184<br>0.039<br>0.01<br>0.03                 | 0.4<br>0.241<br>0.063<br>0.18<br>0.76                         | mg/I<br>fraction<br>mg/I<br>mg/I<br>mg/I  |
| 0.4                                   | 0.1<br>0.184<br>0.039<br>0.01                         | 0.4<br>0.241<br>0.063<br>0.18                                 | mg/I<br>fraction<br>mg/I<br>mg/I<br>mg/I  |
| 0.4                                   | 0.1<br>0.184<br>0.039<br>0.01<br>0.03                 | 0.4<br>0.241<br>0.063<br>0.18<br>0.76                         | mg/I<br>fraction<br>mg/I<br>mg/I<br>mg/I  |
| 0.4                                   | 0.1<br>0.184<br>0.039<br>0.01<br>0.03                 | 0.4<br>0.241<br>0.063<br>0.18<br>0.76                         | mg/I<br>fraction<br>mg/I<br>mg/I<br>mg/I  |
| 0.4                                   | 0.1<br>0.184<br>0.039<br>0.01<br>0.01<br>0.03<br>STOP | 0.4<br>0.241<br>0.063<br>0.18<br>0.76<br>0.76<br>STOP         | mg/I<br>fraction<br>mg/I<br>mg/I<br>mg/I  |
| 0.4                                   | 0.1<br>0.184<br>0.039<br>0.01<br>0.03                 | 0.4<br>0.241<br>0.063<br>0.18<br>0.76                         | mg/I<br>fraction<br>mg/I<br>mg/I<br>mg/I  |
| 0.4                                   | 0.1<br>0.184<br>0.039<br>0.01<br>0.01<br>0.03<br>STOP | 0.4<br>0.241<br>0.063<br>0.18<br>0.76<br>0.76<br>STOP         | mg/I<br>fraction<br>mg/I<br>mg/I<br>mg/I  |
| 0.4                                   | 0.1<br>0.184<br>0.039<br>0.01<br>0.01<br>0.03<br>STOP | 0.4<br>0.241<br>0.063<br>0.18<br>0.76<br>0.76<br>STOP         | mg/I<br>fraction<br>mg/I<br>mg/I<br>mg/I  |
| 0.4                                   | 0.1<br>0.184<br>0.039<br>0.01<br>0.01<br>0.03<br>STOP | 0.4<br>0.241<br>0.063<br>0.18<br>0.76<br>0.76<br>STOP         | mg/I<br>fraction<br>mg/I<br>mg/I<br>mg/I  |
| 0.4<br>0.037<br>0.023<br>0.04<br>1.08 | 0.1<br>0.184<br>0.039<br>0.01<br>0.01<br>0.03<br>5TOP | 0.4<br>0.241<br>0.063<br>0.18<br>0.76<br>0.76<br>STOP         | mg/I<br>fraction<br>mg/I<br>mg/I<br>mg/I  |
| 0.4<br>0.037<br>0.023<br>0.04<br>1.08 | 0.1<br>0.184<br>0.039<br>0.01<br>0.01<br>0.03<br>5TOP | 0.4<br>0.241<br>0.063<br>0.18<br>0.18<br>0.76<br>0.76<br>STOP | mg/I<br>fraction<br>mg/I<br>mg/I<br>ratio |

# Site: Spring Brook

| Cells to input data to | Cells | ls to | input | data | to |
|------------------------|-------|-------|-------|------|----|
|------------------------|-------|-------|-------|------|----|

|                                                                                    |                                       |                | EXISTING C     | ONDITIONS      |          |          | Proposed Co | ONDITIONS    |         |                |
|------------------------------------------------------------------------------------|---------------------------------------|----------------|----------------|----------------|----------|----------|-------------|--------------|---------|----------------|
|                                                                                    |                                       | TSS            | Copper         | Lead           | Zinc     | TSS      | Copper      | Lead         | Zinc    |                |
| ble 1. Worksheet A - Site Characteristics                                          |                                       |                |                |                |          |          |             |              |         |                |
| Drainage Area of Highway Segment (Section 2.1)                                     |                                       | 10.10          | 10.10          | 10.10          | 10.10    | 22.7     | 22.7        | 22.5         |         |                |
| Total right of way<br>Paved surface                                                | AROW<br>AHWY                          | 19.16<br>19.16 | 19.16<br>19.16 | 19.16<br>19.16 |          |          |             | 23.7<br>23.7 |         | Acres<br>Acres |
|                                                                                    |                                       |                |                |                |          |          |             |              |         |                |
| Percent Impervous                                                                  | IMP                                   | 100            | 100            | 100            | ) 100    | 100      | 100         | 100          | 100     | %              |
| Rainfall Characteristics (section 2.2)                                             | MEAN                                  |                |                |                |          |          |             |              |         |                |
| /olume                                                                             | MVP                                   | 0.42           | 0.42           | 0.42           | 0.42     | 0.42     | 0.42        | 0.42         | 0.42    | inch           |
| Intensity                                                                          | MIP                                   | 0.07           | 0.07           | 0.07           |          |          | 0.07        | 0.07         |         | inch/          |
| Duration                                                                           | MDP                                   | 14.14          | 14.14          | 14.14          |          |          |             | 14.14        |         |                |
| nterval                                                                            | MTP                                   | 155.11         | 155.11         | 155.11         |          |          |             | 155.11       |         |                |
|                                                                                    |                                       | 100.11         | 100.11         | 100.11         | 100.11   | 100.11   | 100.11      | 100.11       | 100.11  | noui           |
|                                                                                    | COEF of VARIATION                     |                |                |                |          |          |             |              |         |                |
| /olume                                                                             | CVVP                                  | 1.55           | 1.55           | 1.55           | i 1.55   | 1.55     | 1.55        | 1.55         | 1.55    | dimen          |
| ntensity                                                                           | CVIP                                  | 2.15           | 2.15           | 2.15           | 2.15     | 2.15     | 2.15        | 2.15         | 2.15    | dimen          |
| Duration                                                                           | CVDP                                  | 1.37           | 1.37           | 1.37           | / 1.37   | 1.37     | 1.37        | 1.37         | 1.37    | dimen          |
| nterval                                                                            | CVTP                                  | 1.07           | 1.07           | 1.07           |          |          |             | 1.07         |         | dimen          |
|                                                                                    |                                       |                |                |                |          |          |             |              |         |                |
| umber of storms per year (24*365/MTP)                                              | NST                                   | 56.5           | 56.5           | 56.5           | 56.5     | 56.5     | 56.5        | 56.5         | 56.5    | no. eve        |
| Surrounding Area Type                                                              |                                       |                |                |                |          | <u> </u> |             |              |         |                |
| ADT ususally over 30,000 vehicles/day                                              | Urban                                 | ×              | Y              | x              | ( x      | x Y      | x           | x            | x x     |                |
| ···· , · · · · · · · · · · · · · · · ·                                             |                                       | ~              |                | ^              | 1        |          | ~           |              |         |                |
| ADT usually under 30,000 vpd, undeveloped or suburban                              | Rural                                 |                |                |                |          |          |             |              |         |                |
|                                                                                    |                                       |                |                |                |          |          |             |              |         |                |
| Select pollutant for analysis (section 2.4) and estimate runoff quality characters | eristics (use                         | 700            | <b>C</b>       | Land           | 7        | TCC      | <b>C</b>    | المعط        | 7:      |                |
| ble 3)                                                                             |                                       | TSS            | Copper         | Lead           |          |          |             | Lead         |         |                |
| site median concentration                                                          | TCR                                   | 142            | 0.041          | 0.025          |          |          |             | 0.025        |         |                |
| coef of variation (0.71 urban, 0.84 Rural, 0.75 estimate for all sites)            | CVCR                                  | 0.71           | 0.71           | 0.71           | 0.71     | . 0.71   | 0.71        | 0.71         | . 0.71  | dimens         |
|                                                                                    |                                       |                |                |                |          |          |             |              |         |                |
| Select receiving water target concentration (section 2.6)                          |                                       |                |                |                |          |          |             |              |         |                |
| rface water Total Hardness (Figure 5)                                              | TH                                    | 316            | 316            | 316            | 5 316    | 316      | 316         | 316          | 316     | mg/l           |
| REAM -use table 4 for target concentration                                         |                                       |                |                |                |          |          |             |              |         |                |
| EPA Acute Criterion                                                                |                                       | 1500           | 0.050          | 0.258          | 0.317    | 1500     | 0.050       | 0.258        | 0.317   | mg/l           |
| suggested Threshold Effect Level                                                   |                                       | none           | 0.030          | 0.054          | 0.083    | none     | 0.030       | 0.054        | 0.083   | mg/l           |
|                                                                                    |                                       |                |                |                |          |          |             |              |         |                |
| KE - use accepted level for average Phosphorus concentration                       |                                       |                |                |                |          |          |             |              |         |                |
| arget concentration is 10 micrograms/liter                                         |                                       | 10             | 10             | 10             | 10       | 10       | 10          | 10           | 10      | ug/l           |
|                                                                                    |                                       | 1 200          | 4 200          | 4.000          | 1 200    | 1 200    | 1.200       | 4.000        | 1 200   |                |
| Watershed Drainage Area                                                            | АТОТ                                  | 1.208          | 1.208          | 1.208          | 3 1.208  | 1.208    | 1.208       | 1.208        | 1.208   | square         |
| stream of highway for a stream - total contributing area for a lake                |                                       |                |                |                |          |          |             |              |         |                |
| Average annual stream flow (section 2.3)                                           |                                       |                |                |                |          |          |             |              |         |                |
| unit area flow rate per square mile (figure 4)                                     | QSM                                   | 1.30           | 1.30           | 1.30           | 1.30     | 1.30     | 1.30        | 1.30         | 1.30    | cfs/squ        |
| Coef of variation of stream flows (section 2.3)                                    | CVQS                                  | 1.68           | 1.68           | 1.68           |          |          |             | 1.68         |         | dimens         |
| Average stream flow (QSM*ATOT)                                                     | MQS                                   | 1.03           | 1.57           | 1.00           |          |          |             | 1.57         |         |                |
|                                                                                    | i i i i i i i i i i i i i i i i i i i | 1.57           | 1.57           | 1.37           | 1.57     | 1.57     | 1.57        | 1.37         | 1.57    | 013            |
| ble 5. Worksheet B - Highway Runoff Characteristics                                |                                       |                |                |                |          |          |             |              |         |                |
| Compute runoff coefficient (Rv) (section 3.1)                                      |                                       | 100            | 400            | 400            |          | 100      |             | 400          | 100     | 0/             |
| Percent Impervious (Worksheet A - Item 1c)                                         | IMP                                   | 100            | 100            | 100            |          |          | 100         | 100          |         |                |
| Runoff Coefficient (=0.007*IMP+0.1)                                                | Rv                                    | 0.8            | 0.8            | 0.8            | 8 0.8    | 0.8      | 0.8         | 0.8          | 0.8     | ratio          |
| Compute runoff flow rates (section 3.1)                                            |                                       |                |                |                |          |          |             |              |         |                |
| low rate from mean storm                                                           |                                       |                |                |                |          |          |             |              |         |                |
| Rv*MIP*AROW                                                                        | MQR                                   | 1.070          | 1.070          | 1.070          | 1.070    | 1.324    | 1.324       | 1.324        | 1.324   | cfs            |
| oefficient of variation of runoff flows                                            | ···· <b>····</b>                      |                | ,0             | 1.070          | 1.070    | 1.524    |             | 1.027        | 1.52 +  |                |
| CVIP (worksheet A - Item 2f)                                                       | CVVR                                  | 2.15           | 2.15           | 2.15           | 5 2.15   | 2.15     | 2.15        | 2.15         | 2 15    | dimens         |
|                                                                                    | C V V N                               | 2.13           | 2.13           | 2.13           | 2.13     | 2.13     | 2.13        | 2.13         | 2.13    | annens         |
| ompute runoff volumes (section 3.1)                                                |                                       |                |                |                | 1        |          |             |              |         |                |
| olume from the mean storm                                                          |                                       |                |                |                | 1        | 1        |             |              | 1       |                |
| Rv*MVP*AROW*3630                                                                   | MVR                                   | 23134.4        | 23134.4        | 23134.4        | 23134.4  | 28616.2  | 28616.2     | 28616.2      | 28616.2 | cubic fe       |
| coefficient of variation of runoff volumes                                         |                                       |                |                |                |          |          |             |              |         |                |
| CVVP (worksheet A - Item 2e)                                                       | CVVR                                  | 1.55           | 1.55           | 1.55           | 5 1.55   | 1.55     | 1.55        | 1.55         | 1 55    | dimens         |
|                                                                                    | CVVII                                 | 1.55           | 1.00           | 1.00           | л т. J J | 1.55     | 1.00        | 1.00         | L T.J.  | Immens         |

## Site: Spring Brook Cells to input data to

| 4. Compute mass loads (section 3.2)                                                                                                                                                                           |         |           |          | ONDITIONS |          |           | Proposed C | 0 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|----------|-----------|----------|-----------|------------|---|
| 4. Compute mass loads (section 3.2)                                                                                                                                                                           |         | TSS       | 1        |           | Zinc     | TSS       | Copper     | Γ |
|                                                                                                                                                                                                               |         |           | Coppe.   |           |          |           | coppe.     | F |
| Site Median Conc (worksheet A - Item 4a)                                                                                                                                                                      | TCR     | 142       | 0.041    | 0.025     | 0.187    | 142       | 0.041      | F |
| Coef of var. of site EMC's (Worksheet A - 4b)                                                                                                                                                                 | CVCR    | 0.71      | 0.71     | 0.71      | 0.71     | 0.71      | 0.71       | F |
| Number of storms per year (Worksheet A - 2i)                                                                                                                                                                  | NST     | 56.5      | 56.5     | 56.5      | 56.5     | 56.5      | 56.5       | F |
| a. mean event concentration (MCR)                                                                                                                                                                             |         |           |          |           |          |           |            | ╞ |
| =TCR*SQRT(1+CVCR^2)                                                                                                                                                                                           | MCR     | 174.2     | 0.1      | 0.0       | 0.2      | 174.2     | 0.1        | Γ |
| b. mean event mass load                                                                                                                                                                                       |         |           |          |           |          |           |            | Ĺ |
| =MCR*MVR*(0.00006245)                                                                                                                                                                                         | M(MASS) | 251.604   | 0.073    | 0.044     | 0.331    | 311.222   | 0.090      | L |
| c. annual mass laod from runoff                                                                                                                                                                               |         |           |          |           |          |           |            | L |
| =M(MASS)*NST                                                                                                                                                                                                  | ANMASS  | 14209.578 | 4.103    | 2.502     | 18.713   | 17576.566 | 5.075      | ╞ |
| 5. Compute flow ratio (MQS/MQR) (section 3.3)                                                                                                                                                                 |         |           |          |           |          |           |            | L |
| a. ratio of average stream flow                                                                                                                                                                               |         |           |          |           |          |           |            | L |
| (worksheet A-7b) to MQR                                                                                                                                                                                       | MQS/MQR | 1.466     | 1.466    | 1.466     | 1.466    | 1.185     | 1.185      | ┞ |
| Table 6. Worksheet C - Stream Impact Analsysis                                                                                                                                                                |         |           |          |           |          |           |            | F |
| 1. Define the flow ratio MQS/MQR (Worksheet B-5a)                                                                                                                                                             | MQS/MQR | 1.466     | 1.466    | 1.466     | 1.466    | 1.185     | 1.185      | ╞ |
| 2. Compute the event frequency for a 3 year recurrence interval                                                                                                                                               |         |           |          |           |          |           |            | ┢ |
| a. Enter the average number of storms per year                                                                                                                                                                |         |           |          |           |          |           |            | Γ |
| (from Worksheet A - Item 2i)                                                                                                                                                                                  | NST     | 56.5      | 56.5     | 56.5      | 56.5     | 56.5      | 56.5       |   |
| b. Compute the probability (%) of the 3 year event                                                                                                                                                            |         |           |          |           |          |           |            | Ĺ |
| =100*(1/(NST*3))                                                                                                                                                                                              | PR      | 0.59      | 0.59     | 0.59      | 0.59     | 0.59      | 0.59       | ╞ |
| 3. Enter Value from Table 7 for MQS/MQR and frequency PR                                                                                                                                                      | CU      | 2.75      | 2.75     | 2.75      | 2.75     | 2.91      | 2.91       | L |
| 4. Select pollutant for analysis                                                                                                                                                                              |         |           |          |           |          |           |            | ┝ |
| a. Site median concentration (table 3)                                                                                                                                                                        | TCR     | 142       | 0.041    | 0.025     | 0.187    | 142       | 0.041      | F |
|                                                                                                                                                                                                               | -       |           |          |           |          |           |            |   |
| b. Soluble fraction (section 2.5)                                                                                                                                                                             | FSOL    | 0.9       | 0.4      | 0.1       | 0.4      | 0.9       | 0.4        |   |
| c. Acute Criteria (table 4)                                                                                                                                                                                   | СТА     | 1500      | 0.050    | 0.258     | 0.317    | 1500      | 0.050      | E |
| d. Threshold effects level (Table 4)                                                                                                                                                                          | СТТ     | none      | 0.030    | 0.054     | 0.083    | none      | 0.030      | ┝ |
|                                                                                                                                                                                                               | en      | none      | 0.050    | 0.054     | 0.005    | none      | 0.030      | F |
| 5. Compute the once in 3 year stream pollutant concentration                                                                                                                                                  |         |           |          |           |          |           |            | L |
| =CU*TCR*FSOL                                                                                                                                                                                                  | CO      | 351.75    | 0.05     | 0.01      | 0.21     | 371.76    | 0.05       | ╞ |
| 6. Compare with Target Concentration, CTA                                                                                                                                                                     |         |           |          |           |          |           |            | L |
| =CO/CTA                                                                                                                                                                                                       | CRAT    | 0.23      | 0.90     | 0.03      | 0.65     | 0.25      | 0.95       | ┡ |
| 6a. Compare with background concentrations                                                                                                                                                                    |         | n/a       | 0.005    | < 0.041   | 0.013    | n/a       | 0.005      | < |
| 7. Evaluate Results                                                                                                                                                                                           |         |           |          |           |          |           |            | ╞ |
|                                                                                                                                                                                                               |         |           |          |           |          |           |            | ┢ |
| a. If CRAT is less than about 0.75 a tocicity problem attributable to this pollutant is unlike                                                                                                                | ely     | STOP      | STOP     | STOP      | STOP     | STOP      | STOP       | S |
| b. If CRAT is greater than 5 reduction will definitely be required. Estimate the level of                                                                                                                     |         |           |          |           |          |           |            | ┢ |
|                                                                                                                                                                                                               | or      |           |          |           |          |           |            |   |
| reduction possible and repeat the analysis with revisted values for either concentration of                                                                                                                   |         | CONTROL   | CONTROL  | CONTROL   | CONTROL  | CONTROL   | CONTROL    | 6 |
| -                                                                                                                                                                                                             |         |           |          |           |          |           |            | F |
| reduction possible and repeat the analysis with revisted values for either concentration of flow or both                                                                                                      | 1e      |           |          |           |          |           |            | Ê |
| reduction possible and repeat the analysis with revisted values for either concentration of<br>flow or both<br>c. if CRAT is still greater than 1 and greater reduction levels are not practical, estimate th |         |           |          |           |          |           |            | Ē |
| reduction possible and repeat the analysis with revisted values for either concentration of flow or both                                                                                                      |         |           | EVALUATE | EVALUATF  | EVALUATF |           | EVALUATE   | F |

|       | ONDITIONS |             |               |
|-------|-----------|-------------|---------------|
|       |           | <b></b> .   |               |
| r     | Lead      | Zinc        |               |
|       |           |             |               |
| 0.041 | 0.025     | 0.187       | -             |
| 0.71  | 0.71      | 0.71        | dimensionless |
| 56.5  | 56.5      | 56.5        | number        |
|       |           |             |               |
|       |           |             |               |
| 0.1   | 0.0       | 0.2         | mg/l          |
| 0.1   | 0.0       | 0.2         |               |
| 0.090 | 0.055     | 0.410       | pounds        |
| J.090 | 0.033     | 0.410       | poullus       |
|       |           |             | . ,           |
| 5.075 | 3.094     | 23.147      | pounds/year   |
|       |           |             |               |
|       |           |             |               |
|       |           |             |               |
| 1.185 | 1.185     | 1.185       | ratio         |
|       |           |             |               |
|       |           |             |               |
| 1.185 | 1.185     | 1.185       | ratio         |
|       |           |             |               |
|       |           |             |               |
|       |           |             |               |
|       |           | <b>FC F</b> |               |
| 56.5  | 56.5      | 56.5        | number        |
|       |           |             |               |
| 0.59  | 0.59      | 0.59        | %             |
|       |           |             |               |
| 2.91  | 2.91      | 2.91        | mg/l          |
|       |           |             |               |
|       |           |             | Name          |
| 0.041 | 0.025     | 0.187       | mg/l          |
|       |           |             | 0.            |
| 0.4   | 0.1       | 0.4         | fraction      |
|       |           |             |               |
| 0.050 | 0.258     | 0.317       | mg/l          |
| 0.050 | 0.238     | 0.317       | iiig/i        |
| 0.000 | 0.054     | 0.002       | ··· - /       |
| 0.030 | 0.054     | 0.083       | mg/I          |
|       |           |             |               |
|       |           |             |               |
| 0.05  | 0.01      | 0.22        | mg/l          |
|       |           |             |               |
|       |           |             |               |
| 0.95  | 0.03      | 0.69        | ratio         |
|       |           |             |               |
| 0.005 | < 0.041   | 0.013       | mg/l          |
|       |           |             | 0,            |
|       |           |             |               |
|       |           |             |               |
|       | STOP      | STOP        |               |
|       | 3105      | 3106        |               |
|       |           |             |               |
|       |           |             |               |
|       |           |             |               |
| ROL   | CONTROL   | CONTROL     |               |
|       |           |             |               |
|       |           |             |               |
|       |           |             |               |
| ATE   | EVALUATE  | EVALUATE    |               |
| 1.57  | 0.13      |             | ratio         |
| 1.57  | 0.13      | 2.05        |               |

|                                                                                         |                   |         | EXISTING C | ONDITIONS |         |         | Proposed Co | ONDITIONS |         |          |
|-----------------------------------------------------------------------------------------|-------------------|---------|------------|-----------|---------|---------|-------------|-----------|---------|----------|
|                                                                                         | _                 | TSS     | Copper     | Lead      | Zinc    | TSS     | Copper      | Lead      | Zinc    |          |
| e 1. Worksheet A - Site Characteristics                                                 |                   |         |            |           |         |         |             |           |         |          |
| Orainage Area of Highway Segment (Section 2.1)<br>Total right of way                    | AROW              | 31.82   | 31.82      | 31.82     | 31.82   | 37.87   | 37.87       | 37.87     | 37.87   | ١.       |
| aved surface                                                                            | AHWY              | 31.82   | 31.82      | 31.82     |         | 37.87   | 37.87       | 37.87     | 37.87   |          |
| ercent Impervous                                                                        | IMP               | 100     | 100        | 100       |         | 100     | 100         | 100       |         |          |
| ercent impervous                                                                        | IIVIP             | 100     | 100        | 100       | 100     | 100     | 100         | 100       | 100     | 70       |
| ainfall Characteristics (section 2.2)                                                   | MEAN              |         |            |           |         |         |             |           |         |          |
| olume                                                                                   | MVP               | 0.42    | 0.42       | 0.42      | 0.42    | 0.42    | 0.42        | 0.42      | 0.42    | in       |
| ntensity                                                                                | MIP               | 0.07    | 0.07       | 0.07      | 0.07    | 0.07    | 0.07        | 0.07      | 0.07    | in       |
| uration                                                                                 | MDP               | 14.14   | 14.14      | 14.14     | 14.14   | 14.14   | 14.14       | 14.14     | 14.14   | h        |
| terval                                                                                  | MTP               | 155.11  | 155.11     | 155.11    | -       | 155.11  | 155.11      | 155.11    | 155.11  |          |
|                                                                                         |                   |         |            |           |         |         |             |           |         |          |
|                                                                                         | COEF of VARIATION |         | 4.55       | 4 55      | 4.55    | 4 55    | 4 55        | 4 55      | 4.55    |          |
| blume<br>                                                                               | CVVP              | 1.55    | 1.55       | 1.55      |         |         | 1.55        | 1.55      |         |          |
| tensity                                                                                 | CVIP              | 2.15    | 2.15       | 2.15      |         | 2.15    | 2.15        | 2.15      |         |          |
| uration                                                                                 | CVDP              | 1.37    | 1.37       | 1.37      |         |         |             | 1.37      |         |          |
| terval                                                                                  | CVTP              | 1.07    | 1.07       | 1.07      | 1.07    | 1.07    | 1.07        | 1.07      | 1.07    | di       |
| mber of storms per year (24*365/MTP)                                                    | NST               | 56.5    | 56.5       | 56.5      | 56.5    | 56.5    | 56.5        | 56.5      | 56.5    | nc       |
| urrounding Area Type                                                                    |                   |         |            |           |         |         |             |           |         |          |
| DT ususally over 30,000 vehicles/day                                                    | Urban             | ×       | Y          | v         | v       | v       | v           | v         | v       |          |
| 2. acadany over bojodo venicesjudy                                                      | Cisuli            | ~       | ~          |           | ^       | ^       | Λ           |           | ^       |          |
| DT usually under 30,000 vpd, undeveloped or suburban                                    | Rural             |         |            |           |         |         |             |           |         |          |
| lect pollutant for analysis (section 2.4) and estimate runoff quality characteristics ( |                   |         |            |           |         |         |             |           |         |          |
| le 3)                                                                                   | MJC .             | тѕѕ     | Connor     | Lead      | Zinc    | TSS     | Connor      | Lead      | Zinc    |          |
| -                                                                                       | TCD               |         | Copper     |           |         |         |             |           |         |          |
| te median concentration                                                                 | TCR               | 142     | 0.041      | 0.025     |         | 142     |             | 0.025     |         | -        |
| ef of variation (0.71 urban, 0.84 Rural, 0.75 estimate for all sites)                   | CVCR              | 0.71    | 0.71       | 0.71      | 0.71    | 0.71    | 0.71        | 0.71      | 0.71    | dir      |
| lect receiving water target concentration (section 2.6)                                 |                   |         |            |           |         |         |             |           |         |          |
| ace water Total Hardness (Figure 5)                                                     | ТН                | 229     | 229        | 229       | 229     | 229     | 229         | 229       | 229     | m        |
| EAM -use table 4 for target concentration                                               |                   | -       |            |           | -       |         | -           | -         | -       |          |
| PA Acute Criterion                                                                      |                   | 1500    | 0.037      | 0.184     | 0.241   | 1500    | 0.037       | 0.184     | 0.241   | m        |
| iggested Threshold Effect Level                                                         |                   | none    | 0.023      | 0.039     |         | none    | 0.023       | 0.039     |         |          |
|                                                                                         |                   |         |            |           |         |         |             |           |         |          |
| - use accepted level for average Phosphorus concentration                               |                   |         |            |           |         |         |             |           |         |          |
| rget concentration is 10 micrograms/liter                                               |                   | 10      | 10         | 10        | 10      | 10      | 10          | 10        | 10      | ug       |
| atershed Drainage Area                                                                  | АТОТ              | 4.5     | 4.5        | 4.5       | 4.5     | 4.5     | 4.5         | 4.5       | 4 6     | ca       |
| ream of highway for a stream - total contributing area for a lake                       | AIOI              | 4.5     | 4.5        | 4.5       | 4.5     | 4.5     | 4.5         | 4.5       | 4.5     | sq       |
|                                                                                         |                   |         |            |           |         |         |             |           |         |          |
| verage annual stream flow (section 2.3)                                                 |                   |         |            |           |         |         |             |           |         |          |
| nit area flow rate per square mile (figure 4)                                           | QSM               | 1.30    | 1.30       | 1.30      |         |         |             | 1.30      |         |          |
| pef of variation of stream flows (section 2.3)                                          | CVQS              | 1.68    | 1.68       | 1.68      |         |         |             | 1.68      |         |          |
| erage stream flow (QSM*ATOT)                                                            | MQS               | 5.84    | 5.84       | 5.84      | 5.84    | 5.84    | 5.84        | 5.84      | 5.84    | cfs      |
| 5. Worksheet B - Highway Runoff Characteristics                                         |                   |         |            |           |         |         |             |           |         |          |
| mpute runoff coefficient (Rv) (section 3.1)                                             |                   |         |            |           |         |         |             |           |         |          |
| ercent Impervious (Worksheet A - Item 1c)                                               | IMP               | 100     | 100        | 100       | 100     | 100     | 100         | 100       | 100     | %        |
| unoff Coefficient (=0.007*IMP+0.1)                                                      | Rv                | 0.8     | 0.8        | 0.8       |         |         |             | 0.8       |         |          |
|                                                                                         |                   |         |            |           |         |         |             |           |         |          |
| ompute runoff flow rates (section 3.1) Dow rate from mean storm                         |                   |         |            |           |         |         |             |           |         |          |
| v*MIP*AROW                                                                              | MOP               | 1 770   | 1 770      | 1 770     | 1 770   | 2 110   | 2 1 1 1     | 3 440     | 2 1 1 0 | <u>_</u> |
| v*MIP*AROW<br>efficient of variation of runoff flows                                    | MQR               | 1.778   | 1.778      | 1.778     | 1.778   | 2.116   | 2.116       | 2.116     | 2.116   | CTS      |
| efficient of variation of runoff flows<br>VIP (worksheet A - Item 2f)                   | CVVR              | 2.15    | 2.15       | 2.15      | 2.15    | 2.15    | 2.15        | 2.15      | 2.15    | dir      |
|                                                                                         |                   |         | 2.13       |           |         |         |             |           |         | 1.011    |
| npute runoff volumes (section 3.1)                                                      |                   |         |            |           |         |         |             |           |         |          |
| ume from the mean storm<br>v*MVP*AROW*3630                                              | MVP               | 20120 5 | 20120 5    | 20120 5   | 20120 5 | 15725 5 | 15775 F     | אבססר ה   | 15705 F | <u>.</u> |
| v*MVP*AROW*3630<br>efficient of variation of runoff volumes                             | MVR               | 38420.5 | 38420.5    | 38420.5   | 38420.5 | 45725.5 | 45725.5     | 45725.5   | 45725.5 | CL       |
| /VP (worksheet A - Item 2e)                                                             | CVVR              | 1.55    | 1.55       | 1.55      | 1.55    | 1.55    | 1.55        | 1.55      | 1.55    | ď        |
| · ·                                                                                     |                   |         |            |           | T       |         |             |           | F       |          |

|                                                                                                                           |         |           | EXISTING C       | ONDITIONS |          |           | Proposed C       | 0 |
|---------------------------------------------------------------------------------------------------------------------------|---------|-----------|------------------|-----------|----------|-----------|------------------|---|
|                                                                                                                           |         | TSS       | Copper           | Lead      | Zinc     | TSS       | Copper           | Ī |
| 4. Compute mass loads (section 3.2)                                                                                       |         |           |                  |           |          |           |                  | ſ |
| Site Median Conc (worksheet A - Item 4a)                                                                                  | TCR     | 142       | 0.041            | 0.025     | 0.187    | 142       | 0.041            | Γ |
| Coef of var. of site EMC's (Worksheet A - 4b)                                                                             | CVCR    | 0.71      | 0.71             | 0.71      |          | 0.71      | 0.71             | + |
| Number of storms per year (Worksheet A - 2i)                                                                              | NST     | 56.5      | 56.5             | 56.5      | 56.5     | 56.5      | 56.5             | ╞ |
| a. mean event concentration (MCR)                                                                                         |         |           |                  |           |          |           |                  | ŀ |
| =TCR*SQRT(1+CVCR^2)                                                                                                       | MCR     | 174.2     | 0.1              | 0.0       | 0.2      | 174.2     | 0.1              | ļ |
| b. mean event mass load                                                                                                   |         |           |                  |           |          |           |                  | ļ |
| =MCR*MVR*(0.00006245)                                                                                                     | M(MASS) | 417.852   | 0.121            | 0.074     | 0.550    | 497.299   | 0.144            | ļ |
| c. annual mass laod from runoff                                                                                           |         | 22500 500 | 6.04.4           | 4.455     | 24.077   | 20005 425 | 0.400            | ╞ |
| =M(MASS)*NST                                                                                                              | ANMASS  | 23598.580 | 6.814            | 4.155     | 31.077   | 28085.425 | 8.109            | ł |
| 5. Compute flow ratio (MQS/MQR) (section 3.3)                                                                             |         |           |                  |           |          |           |                  | Į |
| a. ratio of average stream flow                                                                                           |         |           |                  |           |          |           |                  | ļ |
| (worksheet A-7b) to MQR                                                                                                   | MQS/MQR | 3.288     | 3.288            | 3.288     | 3.288    | 2.762     | 2.762            | ł |
| Table 6. Worksheet C - Stream Impact Analsysis                                                                            |         |           |                  |           |          |           |                  | ľ |
| 1. Define the flow ratio MQS/MQR (Worksheet B-5a)                                                                         | MQS/MQR | 3.288     | 3.288            | 3.288     | 3.288    | 2.762     | 2.762            | F |
| 2. Compute the event frequency for a 3 year recurrence interval                                                           |         |           |                  |           |          |           |                  | ł |
| a. Enter the average number of storms per year                                                                            |         |           |                  |           |          |           |                  | t |
| (from Worksheet A - Item 2i)                                                                                              | NST     | 56.5      | 56.5             | 56.5      | 56.5     | 56.5      | 56.5             | t |
| b. Compute the probability (%) of the 3 year event                                                                        |         |           |                  |           |          |           |                  | Γ |
| =100*(1/(NST*3))                                                                                                          | PR      | 0.59      | 0.59             | 0.59      | 0.59     | 0.59      | 0.59             | ļ |
| 3. Enter Value from Table 7 for MQS/MQR and frequency PR                                                                  | CU      | 2.22      | 2.22             | 2.22      | 2.22     | 2.32      | 2.32             |   |
| 4. Select pollutant for analysis                                                                                          |         |           |                  |           |          |           |                  | ╞ |
| a. Site median concentration (table 3)                                                                                    | TCR     | 142       | 0.041            | 0.025     | 0.187    | 142       | 0.041            | ł |
|                                                                                                                           |         |           | 0.0.12           | 0.020     | 0.207    |           | 0.0.1            | ľ |
| b. Soluble fraction (section 2.5)                                                                                         | FSOL    | 0.9       | 0.4              | 0.1       | 0.4      | 0.9       | 0.4              | ł |
| c. Acute Criteria (table 4)                                                                                               | СТА     | 1500      | 0.037            | 0.184     | 0.241    | 1500      | 0.037            | ŀ |
| d. Threshold effects level (Table 4)                                                                                      | СТТ     | nono      | 0.023            | 0.039     | 0.063    | 2020      | 0.023            | ł |
|                                                                                                                           |         | none      | 0.025            | 0.059     | 0.005    | none      | 0.025            | ┢ |
| 5. Compute the once in 3 year stream pollutant concentration                                                              |         |           |                  |           |          |           |                  | Į |
| =CU*TCR*FSOL                                                                                                              | СО      | 284.04    | 0.04             | 0.01      | 0.17     | 296.12    | 0.04             | ł |
| 6. Compare with Target Concentration, CTA                                                                                 |         |           |                  |           |          |           |                  | ł |
| =CO/CTA                                                                                                                   | CRAT    | 0.19      | 0.98             | 0.03      | 0.69     | 0.20      | 1.02             | Į |
| 6a. Compare with background concentrations                                                                                |         | n/a       | 0.006            | < 0.041   | 0.030    | n/a       | 0.006            |   |
|                                                                                                                           |         |           |                  |           |          |           |                  | Į |
| 7. Evaluate Results                                                                                                       |         |           |                  |           |          |           |                  | ł |
| a. If CRAT is less than about 0.75 a tocicity problem attributable to this pollutant is unlikely                          |         | STOP      | STOP             | STOP      | STOP     | STOP      | STOP             | ! |
| b. If CRAT is greater than 5 reduction will definitely be required. Estimate the level of                                 |         |           |                  |           |          |           |                  | ł |
| reduction possible and repeat the analysis with revisted values for either concentration or                               |         | 1         |                  |           |          |           |                  | I |
| flow or both                                                                                                              |         | CONTROL   | CONTROL          | CONTROL   | CONTROL  | CONTROL   | CONTROL          |   |
|                                                                                                                           |         |           |                  |           |          |           |                  | Į |
| c. if CRAT is still greater than 1 and greater reduction levels are not practical, estimate the                           |         |           |                  |           |          |           |                  |   |
| potential for an adverse impact (as opposed to a criteria violation) by a comparison with the<br>threshold effects level) |         |           |                  |           |          |           |                  |   |
| =CO/CTT                                                                                                                   | CRTE    | #VALUATE  | EVALUATE<br>1.58 |           | EVALUATE |           | EVALUATE<br>1.65 | + |
|                                                                                                                           | 5       | #VALUE!   | 1.30             | I 0.14    | 2.04     | TVALUE!   | 1.05             | T |

| cod C | ONDITIONS     |          |               |
|-------|---------------|----------|---------------|
|       |               | Zinc     |               |
| r     | Lead          | Zinc     |               |
| 0.041 | 0.025         | 0 107    | mg/l          |
| 0.71  | 0.025<br>0.71 | 0.187    | dimensionless |
| 56.5  | 56.5          |          | number        |
| 50.5  | 50.5          | 50.5     | number        |
|       |               |          |               |
| 0.1   | 0.0           | 0.2      | mg/l          |
| 0.1   | 0.0           | 0.2      | 1116/1        |
| 0.144 | 0.088         | 0 655    | pounds        |
|       | 0.000         | 0.000    | pounds        |
| 8.109 | 4.945         | 36.986   | pounds/year   |
|       |               |          |               |
|       |               |          |               |
|       |               |          |               |
| 2.762 | 2.762         | 2.762    | ratio         |
|       |               |          |               |
|       |               |          |               |
| 2.762 | 2.762         | 2.762    | ratio         |
|       |               |          |               |
|       |               |          |               |
|       |               |          |               |
| 56.5  | 56.5          | 56.5     | number        |
|       |               |          |               |
| 0.59  | 0.59          | 0.59     | %             |
| 2 2 2 | 2.22          | 2.22     |               |
| 2.32  | 2.32          | 2.32     | mg/l          |
|       |               |          | Name          |
| 0.041 | 0.025         | 0.187    |               |
| 5.041 | 0.025         | 0.107    | 1116/1        |
| 0.4   | 0.1           | 0.4      | fraction      |
|       |               |          |               |
| 0.037 | 0.184         | 0.241    | mg/l          |
|       |               |          |               |
| 0.023 | 0.039         | 0.063    | mg/l          |
|       |               |          |               |
|       |               |          |               |
| 0.04  | 0.01          | 0.17     | mg/l          |
|       |               |          |               |
|       |               |          |               |
| 1.02  | 0.03          | 0.72     | ratio         |
|       |               |          |               |
| 0.006 | < 0.041       | 0.030    | mg/l          |
|       |               |          |               |
|       |               |          |               |
|       | STOP          | STOP     |               |
|       | 3101          | 3105     |               |
|       |               |          |               |
|       |               |          |               |
| ROL   | CONTROL       | CONTROL  |               |
|       |               |          |               |
|       |               |          |               |
|       |               |          |               |
| ATE   | EVALUATE      | EVALUATE |               |
| 1.65  | 0.15          |          | ratio         |
|       |               |          | I             |

## Site: Willow Creek

Cells to input data to

|                                                                                     |                   |                | EXISTING C   | ONDITIONS |          |          | Proposed C | ONDITIONS |          |      |
|-------------------------------------------------------------------------------------|-------------------|----------------|--------------|-----------|----------|----------|------------|-----------|----------|------|
|                                                                                     |                   | TSS            | Copper       | Lead      | Zinc     | TSS      | Copper     | Lead      | Zinc     |      |
| 2 1. Worksheet A - Site Characteristics                                             |                   |                |              |           |          |          |            |           |          |      |
| rainage Area of Highway Segment (Section 2.1)<br>Dtal right of way                  | AROW              | 00.25          | 98.35        | 98.35     | 98.35    | 163.06   | 163.06     | 163.06    | 163.06   | ١.   |
| aved surface                                                                        | AHWY              | 98.35<br>98.35 | 98.35        | 98.35     |          | 163.06   |            |           |          |      |
| cent Impervous                                                                      | IMP               | 100            | 98.33<br>100 | 100       |          | 103.00   |            | 103.00    |          |      |
| reent impervous                                                                     | liviP             | 100            | 100          | 100       | 100      | 100      | 100        | 100       | 100      | 70   |
| infall Characteristics (section 2.2)                                                | MEAN              |                |              |           |          |          |            |           |          |      |
| blume                                                                               | MVP               | 0.42           | 0.42         | 0.42      | 0.42     | 0.42     | 0.42       | 0.42      | 0.42     | in   |
| ensity                                                                              | MIP               | 0.07           | 0.07         | 0.07      | 0.07     | 0.07     | 0.07       | 0.07      | 0.07     | in   |
| iration                                                                             | MDP               | 14.14          | 14.14        | 14.14     |          | 14.14    |            | 14.14     |          |      |
| erval                                                                               | MTP               | 155.11         | 155.11       | 155.11    |          | 155.11   |            |           |          |      |
|                                                                                     |                   |                |              |           |          |          |            |           |          |      |
|                                                                                     | COEF of VARIATION |                |              |           |          |          |            |           |          |      |
| olume                                                                               | CVVP              | 1.55           | 1.55         | 1.55      |          |          |            |           |          |      |
| tensity                                                                             | CVIP              | 2.15           | 2.15         | 2.15      |          |          |            |           |          |      |
| iration                                                                             | CVDP              | 1.37           | 1.37         | 1.37      | 1.37     | 1.37     | 1.37       | 1.37      | 1.37     | di   |
| rerval                                                                              | CVTP              | 1.07           | 1.07         | 1.07      | 1.07     | 1.07     | 1.07       | 1.07      | 1.07     | di   |
| mber of storms per year (24*365/MTP)                                                | NST               | 56.5           | 56.5         | 56.5      | 56.5     | 56.5     | 56.5       | 56.5      | 56.5     | nc   |
|                                                                                     |                   |                |              |           |          |          |            |           |          |      |
| urrounding Area Type                                                                |                   |                |              |           |          |          |            |           |          |      |
| DT ususally over 30,000 vehicles/day                                                | Urban             | X              | X            | X         | X        | X        | X          | Х         | X        |      |
| T usually under 30,000 vpd, undeveloped or suburban                                 | Rural             |                |              |           |          |          |            |           |          |      |
| elect pollutant for analysis (section 2.4) and estimate runoff quality characterist | tics (use         |                |              |           |          |          |            |           |          |      |
| e 3)                                                                                |                   | TSS            | Copper       | Lead      |          |          |            | Lead      |          |      |
| e median concentration                                                              | TCR               | 142            | 0.041        | 0.025     |          | 142      |            | 0.025     |          | mĮ   |
| ef of variation (0.71 urban, 0.84 Rural, 0.75 estimate for all sites)               | CVCR              | 0.71           | 0.71         | 0.71      | 0.71     | 0.71     | 0.71       | 0.71      | 0.71     | di   |
| ect receiving water target concentration (section 2.6)                              |                   |                |              |           |          |          |            |           |          |      |
|                                                                                     | <b>T</b> U        | 220            | 220          | 220       | 220      | 220      | 220        | 220       | 220      | _    |
| ce water Total Hardness (Figure 5)                                                  | TH                | 230            | 230          | 230       | 230      | 230      | 230        | 230       | 230      | m    |
| AM -use table 4 for target concentration                                            |                   |                |              |           |          |          |            |           |          |      |
| A Acute Criterion                                                                   |                   | 1500           | 0.037        | 0.185     |          |          |            | 0.185     |          |      |
| ggested Threshold Effect Level                                                      |                   | none           | 0.023        | 0.039     | 0.063    | none     | 0.023      | 0.039     | 0.063    | m    |
| - use accepted level for average Phosphorus concentration                           |                   |                |              |           |          |          |            |           |          |      |
| get concentration is 10 micrograms/liter                                            |                   | 10             | 10           | 10        | 10       | 10       | 10         | 10        | 10       | ug   |
|                                                                                     |                   |                |              |           |          |          |            |           |          | Ĭ    |
| atershed Drainage Area                                                              | ATOT              | 6              | 6            | 6         | 6        | 6        | 6          | 6         | 6        | squ  |
| ream of highway for a stream - total contributing area for a lake                   |                   |                |              |           |          |          |            |           |          |      |
| verage annual stream flow (section 2.3)                                             |                   |                |              |           |          |          |            |           |          |      |
|                                                                                     | QSM               | 1.30           | 1.30         | 1.30      | 1.30     | 1.30     | 1.30       | 1.30      | 1 20     | c.f. |
| it area flow rate per square mile (figure 4)                                        |                   |                |              |           |          |          |            |           |          | -    |
| bef of variation of stream flows (section 2.3)                                      | CVQS              | 1.68           | 1.68         | 1.68      |          | 1.68     | 1.68       | 1.68      |          |      |
| erage stream flow (QSM*ATOT)                                                        | MQS               | 7.79           | 7.79         | 7.79      | 7.79     | 7.79     | 7.79       | 7.79      | 7.79     | cfs  |
| 5. Worksheet B - Highway Runoff Characteristics                                     |                   |                |              |           |          |          |            |           |          | 1    |
| mpute runoff coefficient (Rv) (section 3.1)                                         |                   |                |              |           |          |          |            |           |          |      |
| rcent Impervious (Worksheet A - Item 1c)                                            | IMP               | 100            | 100          | 100       | 100      | 100      | 100        | 100       | 100      | %    |
| noff Coefficient (=0.007*IMP+0.1)                                                   | Rv                | 0.8            | 0.8          | 0.8       |          | 0.8      | 0.8        | 0.8       |          | -    |
|                                                                                     |                   |                |              |           |          |          |            |           |          | 1    |
| mpute runoff flow rates (section 3.1) w rate from mean storm                        |                   |                |              |           |          |          |            |           |          | 1    |
| /*MIP*AROW                                                                          | MOD               | F 404          | F 404        | F 404     | F 404    | 0.400    | 0.400      | 0.400     | 0.400    | -    |
| -                                                                                   | MQR               | 5.494          | 5.494        | 5.494     | 5.494    | 9.109    | 9.109      | 9.109     | 9.109    | CTS  |
| efficient of variation of runoff flows<br>/IP (worksheet A - Item 2f)               | CVVR              | 2.15           | 2.15         | 2.15      | 2.15     | 2.15     | 2.15       | 2.15      | 2.15     | dir  |
|                                                                                     |                   | 2.13           | 2.13         | 2.13      | 2.13     | 2.13     | 2.13       | 2.13      | 2.13     |      |
| npute runoff volumes (section 3.1)                                                  |                   |                |              |           |          |          |            |           |          |      |
| ume from the mean storm                                                             | 10/0              |                |              | 440       | 4.40     |          | 10000      | 40000     |          | 1    |
| v*MVP*AROW*3630                                                                     | MVR               | 118751.1       | 118751.1     | 118751.1  | 118751.1 | 196884.1 | 196884.1   | 196884.1  | 196884.1 | CL   |
| efficient of variation of runoff volumes                                            | CVVR              | 1.55           | 1.55         | 1.55      | 1.55     | 1.55     | 1.55       | 1.55      | 1.55     | 1.   |
| CVVP (worksheet A - Item 2e)                                                        |                   |                | 1 5 5        | 1 5 5     | . 1 5 5  | 1 1 5 5  | 1 1 5 5    |           | . 1 F F  | 10   |

| Site: Willow Creek     |
|------------------------|
| Cells to input data to |

|                                                                                                                      |         |           | EXISTING C | ONDITIONS |          |            | Proposed C |
|----------------------------------------------------------------------------------------------------------------------|---------|-----------|------------|-----------|----------|------------|------------|
|                                                                                                                      |         | TSS       | Copper     | Lead      | Zinc     | TSS        | Copper     |
| 4. Compute mass loads (section 3.2)                                                                                  |         |           |            |           |          |            |            |
| Site Median Conc (worksheet A - Item 4a)                                                                             | TCR     | 142       |            | 0.025     |          |            |            |
| Coef of var. of site EMC's (Worksheet A - 4b)                                                                        | CVCR    | 0.71      |            | 0.71      | 0.71     | 0.71       |            |
| Number of storms per year (Worksheet A - 2i)                                                                         | NST     | 56.5      | 56.5       | 56.5      | 56.5     | 56.5       | 56.5       |
| a. mean event concentration (MCR)                                                                                    |         |           |            |           |          |            |            |
| =TCR*SQRT(1+CVCR^2)                                                                                                  | MCR     | 174.2     | 0.1        | 0.0       | 0.2      | 174.2      | 0.1        |
| o. mean event mass load                                                                                              |         |           |            |           |          |            | <u> </u>   |
| =MCR*MVR*(0.00006245)                                                                                                | M(MASS) | 1291.507  | 0.373      | 0.227     | 1.701    | 2141.262   | 0.618      |
| c. annual mass laod from runoff                                                                                      |         |           |            |           |          |            | <b></b>    |
| =M(MASS)*NST                                                                                                         | ANMASS  | 72939.042 | 21.060     | 12.841    | 96.054   | 120929.742 | 34.916     |
| 5. Compute flow ratio (MQS/MQR) (section 3.3)                                                                        |         |           |            |           |          |            |            |
| a. ratio of average stream flow                                                                                      |         |           |            |           |          |            |            |
| (worksheet A-7b) to MQR                                                                                              | MQS/MQR | 1.418     | 1.418      | 1.418     | 1.418    | 0.855      | 0.855      |
| Table 6. Worksheet C - Stream Impact Analsysis                                                                       |         |           |            |           |          |            | <u> </u>   |
| 1. Define the flow ratio MQS/MQR (Worksheet B-5a)                                                                    | MQS/MQR | 1.418     | 1.418      | 1.418     | 1.418    | 0.855      | 0.855      |
| 2. Compute the event frequency for a 3 year recurrence interval                                                      |         |           |            |           |          |            | <u> </u>   |
| a. Enter the average number of storms per year                                                                       |         |           |            |           |          |            |            |
| (from Worksheet A - Item 2i)                                                                                         | NST     | 56.5      | 56.5       | 56.5      | 56.5     | 56.5       | 56.5       |
| b. Compute the probability (%) of the 3 year event                                                                   |         |           |            |           |          |            |            |
| =100*(1/(NST*3))                                                                                                     | PR      | 0.59      | 0.59       | 0.59      | 0.59     | 0.59       | 0.59       |
| 3. Enter Value from Table 7 for MQS/MQR and frequency PR                                                             | CU      | 2.78      | 2.78       | 2.78      | 2.78     | 3.22       | 3.22       |
| 1 Select well start for each vie                                                                                     |         |           |            |           |          |            | <b></b>    |
| 4. Select pollutant for analysis                                                                                     | TCD     | 142       | 0.041      | 0.025     | 0.187    | 142        | 0.041      |
| a. Site median concentration (table 3)                                                                               | TCR     | 142       | 0.041      | 0.025     | 0.187    | 142        | 0.041      |
| b. Soluble fraction (section 2.5)                                                                                    | FSOL    | 0.9       | 0.4        | 0.1       | 0.4      | 0.9        | 0.4        |
| c. Acute Criteria (table 4)                                                                                          | СТА     | 1500      | 0.037      | 0.185     | 0.242    | 1500       | 0.037      |
| d. Threshold effects level (Table 4)                                                                                 | стт     | none      | 0.023      | 0.039     | 0.063    | none       | 0.023      |
|                                                                                                                      |         |           | 0.023      | 0.035     | 0.005    | lione      | 0.025      |
| 5. Compute the once in 3 year stream pollutant concentration                                                         |         |           |            |           |          |            | Ļ          |
| =CU*TCR*FSOL                                                                                                         | CO      | 355.13    | 0.05       | 0.01      | 0.21     | 411.88     | 0.05       |
| 6. Compare with Target Concentration, CTA                                                                            |         |           |            |           |          |            |            |
| =CO/CTA                                                                                                              | CRAT    | 0.24      | 1.22       | 0.04      | 0.86     | 0.27       | 1.42       |
| 6a. Compare with background concentrations                                                                           |         | n/a       | 0.018      | < 0.041   | 0.063    | n/a        | 0.018      |
| 7. Evaluate Results                                                                                                  |         |           |            |           |          |            | <u> </u>   |
| a. If CRAT is less than about 0.75 a tocicity problem attributable to this pollutant is unlikel                      | v       | STOP      | STOP       | STOP      | STOP     | STOP       | STOP       |
|                                                                                                                      | 1       |           |            |           |          |            |            |
| b. If CRAT is greater than 5 reduction will definitely be required. Estimate the level of                            |         |           |            |           |          |            |            |
| reduction possible and repeat the analysis with revisted values for either concentration o                           | ſ       |           |            |           |          |            |            |
| flow or both                                                                                                         |         | CONTROL   | CONTROL    | CONTROL   | CONTROL  | CONTROL    | CONTROL    |
| c. if CRAT is still greater than 1 and greater reduction levels are not practical, estimate the                      |         |           |            |           |          | <b> </b>   | <u> </u>   |
|                                                                                                                      |         |           |            |           |          | 1          |            |
| potential for an adverse impact (as opposed to a criteria violation) by a comparison with f                          | ne      |           |            |           |          |            |            |
| potential for an adverse impact (as opposed to a criteria violation) by a comparison with t threshold effects level) | ne      | EVALUATE  | EVALUATE   | EVALUATE  | EVALUATE | EVALUATE   | EVALUATE   |

| sed Ci | ONDITIONS |          |                  |
|--------|-----------|----------|------------------|
| r      | Lead      | Zinc     |                  |
|        |           |          |                  |
| 0.041  | 0.025     | 0.187    | mg/l             |
| 0.71   | 0.71      | 0.71     | dimensionless    |
| 56.5   | 56.5      | 56.5     | number           |
|        |           |          |                  |
|        |           |          |                  |
| 0.1    | 0.0       | 0.2      | mg/l             |
|        |           |          |                  |
| 0.618  | 0.377     | 2.820    | pounds           |
| 1 016  | 21.290    | 150 252  | pounds/year      |
| 4.916  | 21.290    | 159.255  | pounds/year      |
|        |           |          |                  |
|        |           |          |                  |
| 0.855  | 0.855     | 0.855    | ratio            |
|        |           |          |                  |
|        |           |          |                  |
| 0.855  | 0.855     | 0.855    | ratio            |
|        |           |          |                  |
|        |           |          |                  |
|        |           |          | -                |
| 56.5   | 56.5      | 56.5     | number           |
| 0.50   | 0.50      | 0.50     | o/               |
| 0.59   | 0.59      | 0.59     | %                |
| 3.22   | 3.22      | 3 7 2    | mg/l             |
| J.22   | 5.22      | 5.22     | 111 <u>B</u> / 1 |
|        |           |          | Name             |
| 0.041  | 0.025     | 0.187    |                  |
|        |           |          |                  |
| 0.4    | 0.1       | 0.4      | fraction         |
|        |           |          |                  |
| 0.037  | 0.185     | 0.242    | mg/l             |
|        |           |          |                  |
| 0.023  | 0.039     | 0.063    | mg/l             |
|        |           |          |                  |
| 0.05   | 0.01      | 0.24     | mg/l             |
| 0.05   | 0.01      | 0.24     | iiig/i           |
|        |           |          |                  |
| 1.42   | 0.04      | 1.00     | ratio            |
|        |           |          |                  |
| 0.018  | < 0.041   | 0.063    | mg/l             |
|        |           |          |                  |
|        |           |          |                  |
|        |           |          |                  |
|        | STOP      | STOP     |                  |
|        |           |          |                  |
|        |           |          |                  |
| ROL    | CONTROL   | CONTROL  |                  |
|        | SOUTHOL   | JUINT    |                  |
|        |           |          |                  |
|        |           |          |                  |
|        | EVALUATE  | EVALUATE |                  |
| 2.29   | 0.21      | 3.81     | ratio            |
|        |           |          |                  |