

MIN. LAP

#4 = 2'-11''#5 = 3'-7''#6 = 4'-4''

* Cut bars to fit final projection of wall stem geometry

CONSTRUCTION JOINT

6" Hollow bulb dumbell type nonmetallic water seal (6" from top of wall to bottom) Cost included with Concrete Structures Geocomposite (Retaining Wall). Wall Drain F.F. of Wall-Concrete nails (flat head C.S.) 1" Chamfer-1" long at 12" cts. vertical ½" PJF -

EXPANSION JOINT

Wall Geometry Table - 016-W2502 Palatine Road Elevations Location Elev. C Station Offset (RT) Elev. B Elev. D 817+52.61 728.06 728.50 728.33 728.50 Begin Wall 82.05 733.74 733.57 K 1 817+74.28 78.24 728.66 732.25 817+95.94 74.42 729.24 736.07 735.90 734.25 К3 818+25.94 74.42 730.13 735.97 735.80 734.80 818+55.94 74.42 730.58 735.87 735.70 735.00 K 4 K5 818+85.94 74.42 730.43 735.77 735.60 735.00 735.50 Κ6 819+15.94 74.42 730.28 735.67 735.00 735.40 74.42 735.57 735.00 K7 819+45.94 729.92 74.42 734.12 733.96 731.50 K8 819+75.94 729.40 End Wall 820+00.07 78.67 728.71 729.50 729.33 729.25

Elev. A - Finished Grade at F.F. of Wall

Elev. B - Top of Wall

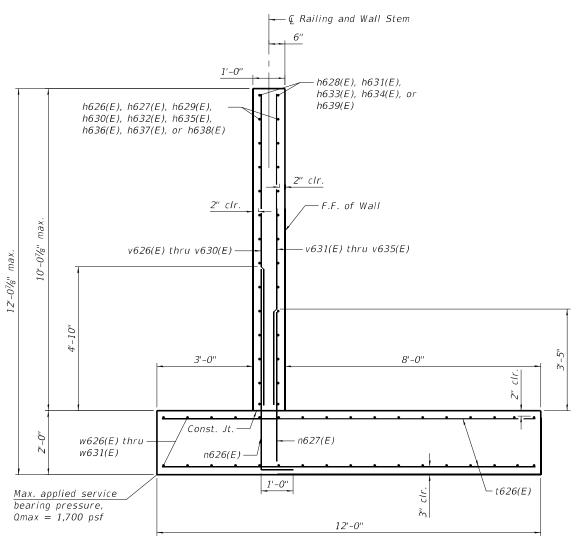
Elev. C - Finished Grade at B.F. of Wall

Elev. D - Exist. Grade at F.F. of Wall

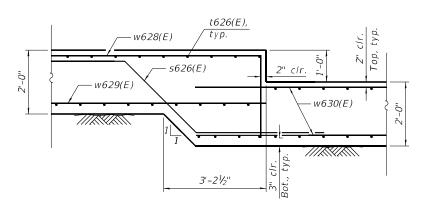
- See Sheet 5 of 10 for Section A-A.
- See Sheet 5 of 10 for Gutter Detial.
- See sheet 6 of 10 for Railing Details.
- Bars indicated thus 9x2-#4 etc. indicate 9 lines of bars with 2 lengths per line.
- information.

See Sheets 1, 3, and 4 of 10 for Elevations A, C, and D

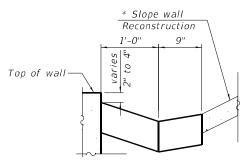
STRAND IDFPR NO. 184-001273


USER NAME = codyh JOLIET, ILLINOIS 60431 (815) 744-4200 PLOT SCALE = 0:2.0000 ':" / in. PLOT DATE = 9/20/2024

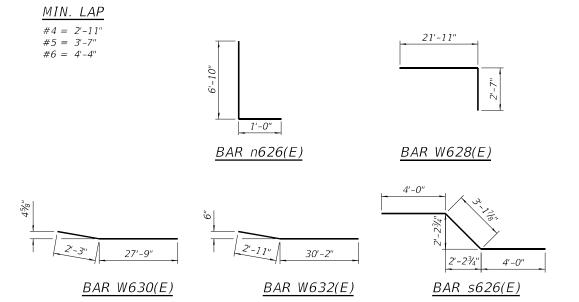
DESIGNED - JAS REVISED -CHECKED - NDR REVISED -DRAWN REVISED CHECKED - NDR REVISED -


STATE OF ILLINOIS DEPARTMENT OF TRANSPORTATION

WALL PANEL ELEVATION **STRUCTURE NO. 016-W2502** SHEET 4 OF 10 SHEETS


SECTION COUNTY 305 (531) BR 23 COOK 1211 901 CONTRACT NO. 62W38

SECTION A-A



SECTION B-B

CONCRETE GUTTER, TYPE B (SPECIAL)

* Slope wall reconstruction to be included with concurrent bridge rehabilitation project.

17-#6 v626(E) bars 17-#4 v631(E) bars 20-#6 v627(E) bars 20-#4 v632(E) bars 15-#6 v629(E) bars 15-#4 v634(E) bars 15-#6 v630(E) bars 15-#4 v635(E) bars

FIELD CUTTING DIAGRAM

Order bars full length. Cut as shown and use remainder of bars in opposite end of Wall

USER NAME = codyh DESIGNED - JAS REVISED -CHECKED - NDR REVISED -PLOT SCALE = 0:2.0000 ':" / in. DRAWN REVISED PLOT DATE = 9/20/2024 CHECKED - NDR REVISED -

STATE OF ILLINOIS DEPARTMENT OF TRANSPORTATION

ST	WALL DETAILS STRUCTURE NO. 016-W2502										
	SHEET	5	OF	10	SHEETS						

F.A. RTE	SEC ⁻	ГІОН		COUNTY	TOTAL SHEETS	SHEE NO.
305	(531) ا	BR 23		соок	1211	902
			CONTRAC	T NO. 62	W38	
		ILLINOIS	FED.	AID PROJECT		

BILL OF MATERIAL

Size

4

4

4

4

4

4

Length Shape

24'-2"

20'-0" 24'-7"

29'-8"

25'-4"

29'-8''

32'-9"

33'-5"

24'-7"

16'-3"

21'-8"

19'-1"

26'-2"

7'-10"

5'-4''

11'-2"

11'-8"

8'-11"

15'-1"

17'-2"

9'-6''

8'-11"

15'-1"

8'-3'' 17'-2"

9'-6"

24'-10''

30'-0"

21'-4"

18'-8"

30'-0"

19'-8"

SQ YD

CU YD

CU YD 2,446

POUND 27,370

247

294

33'-1'

Bar

h626(E)

h627(E)

h628(E)

h629(E)

h630(E)

h631(E)

h632(E)

h633(E)

h634(E)

h635(E)

h636(E)

h637(E) h638(E)

h639(E)

n626(E)

n627(E)

s626(E)

t626(E)

v626(E)

v627(E)

v628(E)

v629(E)

v630(E)

v631(E)

v632(E)

v633(E)

v634(E)

v635(E)

w626(E)

w627(E)

w628(E)

w629(E)

w630(E)

w631(E)

w632(E)

Coated

No.

32

4

72

8

16

4

10

333

333

15

668

17

20

200

15

15

17

20

200

15

15

30

150

15

15

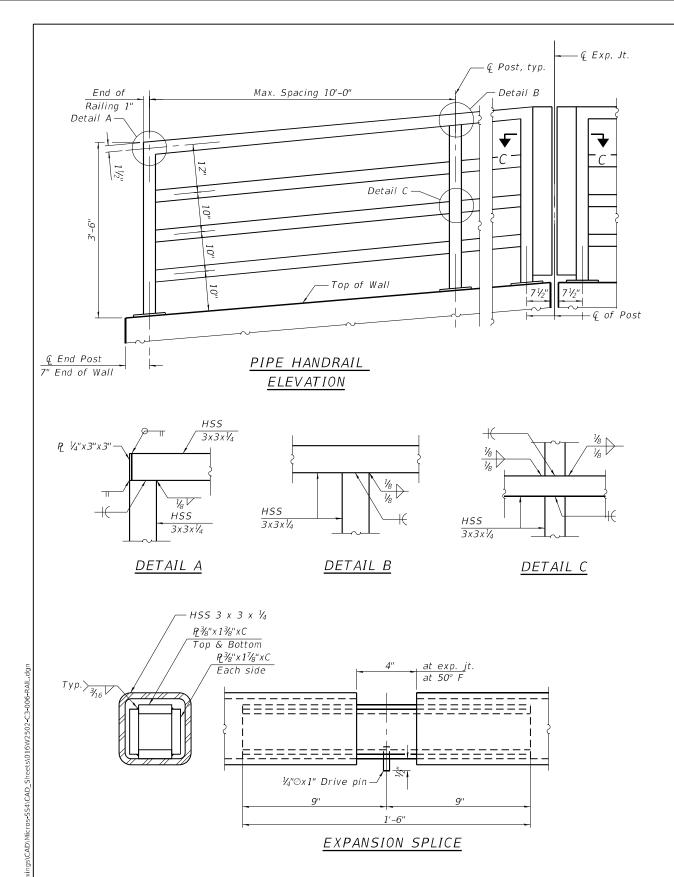
30

30

30

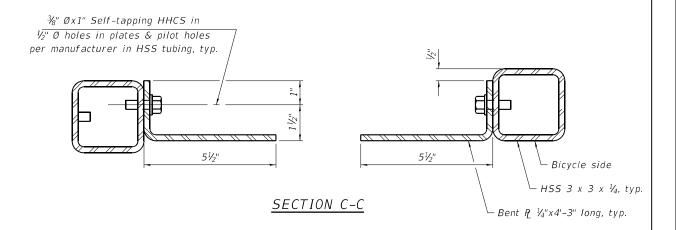
Reinforcement Bars, Epoxy

Structure Excavation


Concrete Structures

Protective Coat

(Retaining Wall)


9/20/2024 2:37:09 PM

(815) 744-4200

- Q of Post - & of Post 1" x 1½" 41/2" 41/2" Slotted Holes — HSS 3 x 3 x 1/4 11/2" 5/8" Ø x 2" hex. hd. H.S. bolts with (+) $1\frac{1}{2}$ " $\times 1\frac{1}{4}$ " $\times \frac{5}{16}$ " R washer 1⁄8" Fabric B.F. of — Base № ½"x6"x9" Wall reinforced \oplus elastomeric pad l" Round bar stock AASHTO M270 G50 - tap for ¾" Ø H.S. bolts BASE PLATE ½" x 1½" x 5¼" Bar - ½" x 1½" x 7½" Bar 11/2" ANCHORAGE ASSEMBLY

In lieu of the cast-in-place anchor device shown, the Contractor has the option of drilling and setting %" Ø fully threaded anchor rods with the same plate washers as specified above and heavy hex lock nuts according to Article 509.06 of the Standard Specifications. Embedment shall be according to the manufacturer's specifications.

BILL OF MATERIAL

Item	Unit	Quantity
Pipe Handrail	Foot	250

Notes:

- Railing shall be according to Section 509 of the Standard Specifications, except as noted, and will be paid for at the contract unit price per foot for PIPE HANDRAIL.
- 2. Hollow structural steel tubing shall conform to the requirements of ASTM designation A 500, Grade B, structural steel tubing.
- All other steel shapes and plates shall conform to the requirements of AASHTO M 270 Grade 36.
- 4. All posts, railing, splices, anchor devices, and bent plates shall be galvanized after shop fabrication according to AASHTO M 111 and ASTM A 385. All bolts, nuts, washers, and anchor rods shall be galvanized according to AASHTO M 232 except stainless stell bolts as noted.
- Vent holes for galvanized shall be placed in posts and rails at locations that will not allow the accumulation of moisture in the members.
- 6. All posts, rails, base plates and all components shall be cleaned and powder coated (electrostatically applied), in accordance with Article 1006.29(b)(5) of the Standard Specifications except as noted in the Special Provisions.

RAILING CRITERIA

NCHRP 350 Test Level	4
Max Post Spacing	10'-0"
Railing Weight (nlf)	50

. 3.1	1170 SOUTH HOUBOLT ROAD
	JOLIET, ILLINOIS 60431
CTDAND	(815) 744-4200
STRAND ASSOCIATES*	IDFPR NO. 184-001273

USER NAME = codyh	DESIGNED - JAS	REVISED -
	CHECKED - NDR	REVISED -
PLOT SCALE = 0:2.0000 ':" / in.	DRAWN - CJH	REVISED -
PLOT DATE = 9/20/2024	CHECKED - NDR	REVISED -

STATE OF ILLINOIS
DEPARTMENT OF TRANSPORTATION

RAILING DETAILS
STRUCTURE NO. 016-W2502

SHEET 6 OF 10 SHEETS

 F.A. RTE.
 SECTION
 COUNTY
 TOTAL SHEETS NO.
 SHEETS NO.

 305
 (531) BR 23
 COOK
 1211
 903

 CONTRACT NO. 62W38

Page $\underline{1}$ of $\underline{2}$

Date 23/05/03

ROUTE	FAP 342	DE	SCRI	PTION	IL 53	over F	Palatine Rd	LO	GED	BY G	onzale	ez (BR)
SECTION	2018-100-BR	ā	_ ı	OCAT	ION I	VW 1/4	I, SEC. 19, TWP. 42N, RNG. 11E	, 3 rd PM ,				
001111777	0 1						le 42.10977658, Longitude 88.0		۸.	440	16 DE	405
COUNTY	COOK DI	RILLING	ME	НОВ	Hollow	Stem	Auger (8" O.D., 3.25" I.D.) HAMN	MER TYPE	Au	ito 140	ID HE	105
STRUCT, NO.	016-0373		D	В	U	М	Surface Water Elev.	ft	D	В	U	М
Station			E	L	С	0	Stream Bed Elev.	ft	E	L	С	0
			P T	O W	S	S	C		P	O W	S	S
Station	GC-10 2341+34		Ĥ	S	Qu	T	Groundwater Elev.: First Encounter	Drv ft	Ĥ	s	Qu	T
Offset	2341+34 35.5 ft RT						Upon Completion 71	4.4 ft ∑				
Ground Surfa	ce Elev. 751.4	ft	(ft)	(/6")	(tsf)	(%)	After Hrs F	illed ft	(ft)	(/6")	(tsf)	(%)
ASPHALT - 10	п	750.6	_				Stiff, Brown, Moist, CLAY, Trac	е				
Soft to Stiff Bro	own, Dry, CLAY,	750.0		6			Gravel			2		
Trace Sand, Tr	race Gravel		-	4	2.0	16			-	4	1.9	26
				3	Р				-	4	В	2.0
			_									
			_									
3" Course Sa	1 0			3	0.5	14				3 4	2.0	20
3 Course S	and Seam		-5	2	P 0.5	17			-25	_	B	20
]		
			_	1	4.0	0.4				3	4.0	45
				2	1.2 B	24			-	6 9	4.3 B	15
			T .									
				1						5		
			_	1 2	0.4	13				8 9		15
			-10		В				-30	9		
			P						-			
				4								
				5	2.4	23						
			_	5	В				_			
			p -	3					_	4		
				4	2.7	21	Becomes Wet			5	2.6	20
			-15	7	В				-35	8	В	
			_									
				4						-		
			-	5	5.8	19		_	, —			
				8	В							
			-	, F					_	_		
				5 6	6.4	19				6 7	1.8	12
		731.4	-20	9	В	.0		711.4	-40	8	В	

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer, M-Modified SPT) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

BBS, form 137 (Rev. 8-99)

Page $\underline{2}$ of $\underline{2}$

Date 23/05/03

ROUTE	FAP 342	_ DESCR	IPTION	<u>IL 53</u>	over F	Palatine Rd	LOG	GGED BY Gonzalez (BR)
SECTION	2018-100-BR		LOCAT	NOI	W 1/4	I, SEC. 19, TWP. 42N, I Ie 42.10977658, Longi	RNG. 11E, 3 rd PM,	
COUNTY	Cook DR	ILLING ME	THOD			ie 42.10977658, Longi Auger (8" O.D., 3.25" l.		Auto 140 lb HE 105
			T	I			<u>-</u> /11/2000000000000000000000000000000000	
STRUCT. NO	016-0373	_ D E	B L	C	M	Surface Water Elev.	ft	
Station		— Ē	0	S	ĭ	Stream Bed Elev.	ft	
BORING NO.	GC-10	_ Ţ	W	_	S	Groundwater Elev.:		
BORING NO Station Offset	2341+34 35.5.ft.DT	_ H	S	Qu	T	First Encounter	Dryft	
Ground Surface	Elev. 751.4	— _{ft} (ft)	(/6")	(tsf)	(%)	After Hrs.	714.4 ft ∑ Filled ft	
Stiff, Brown, Wet Gravel	<u></u>	-45	5 4	1.6 B	23			
Stiff, Brown, Wet Trace Gravel	, CLAY LOAM,	702.6	5 5 8		23			
Loose, Brown, W Trace Clay, Trace	e Silt	698.4	4 5 5 5		26			
Boring terminated	d at 55 feet.		- - - - - - -					

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer, M-Modified SPT) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

BBS, form 137 (Rev. 8-99)

STRAND
ASSOCIATES IDFPR NO. 184-001273

USER NAME = codyh	DESIGNED -	REVISED -
	CHECKED -	REVISED -
PLOT SCALE = 0:2.0000 ':" / in.	DRAWN - CJH	REVISED -
PLOT DATE = 9/20/2024	CHECKED - NDR	REVISED -
•		

Page $\underline{1}$ of $\underline{2}$

Date 23/05/04

ROUTE	FAP 342	_ DE	SCRI	PTION	<u>IL 53</u>	over F	Palatine Rd		_LOC	GED	BY G	ionzale	z (BR)
SECTION _	2018-100-BR		_ 1	OCAT	NOI	VW 1/4	, SEC. 19, TWP. 42N,	RNG. 11E, 3 rd P	PM,				
COUNTY _	Cook DF	RILLING	MET	THOD	H <u>ollow</u>	Stem	le 42.10980038, Long Auger (8" O.D., 3.25"	gitude 88.00365 <u>I.D</u> .) HAMMER T	603 YPE	Au	to 140	lb HE	105
Station	0. 016-0970 . GC-11	_	D E P T	B L O W	U C S	M O I S	Surface Water Elev. Stream Bed Elev. Groundwater Elev.:		ft ft	D E P T	B L O W	U C S	M O I S
Station	3341+18 31.8 ft LT	_	Н	S	Qu	Т	First Encounter Upon Completion	Dry	ft	Н	S	Qu	Т
Ground Su	rface Elev. 747.8	ft	(ft)	(/6")	(tsf)	(%)	After Hrs.	Filled	ft	(ft)	(/6")	(tsf)	(%)
ASPHALT -		747.1	_				Stiff, Brown, Moist, C Gravel	CLAY, Trace		_			
Loose, Brow SAND	n, Moist, Coarse			8							4		
			-	3		8					3 5	3.4 B	21
L		744.8	-							_			
Medium Stiff CLAY, Trace	to Stiff, Brown, Moist, Gravel		S	2						_	5		
				3	2.6	19					7	6.0	16
			5	3	В					-25	9	В	
											_		
			*	1		24					5 5	5.2	21
				4						-	9	В	
			-	2							3		
			-10	3 5	2.0 B	21				-30	5 7	4.1 B	13
											990		
				2									
			_	4	4.5	18				_			
			-	6	В								
										_			
			-	3 5	4.3	20					3	1.4	20
			-15	7	В					-35	4	В	
			17										
				2						_			
			-	4 2	1.4 B	21							
Some Org	anics												
				4							4		
Stiff, Dark Bi	rown, Moist, CLAY	728.6	_	4	2.5	17				-	6 8	2.8	15
		727.8	-20	"	В		II			-40	0	В	

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer, M-Modified SPT) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

BBS, form 137 (Rev. 8-99)

Page $\underline{2}$ of $\underline{2}$

Date 23/05/04

ROUTE	FAP 342	DES	CRIPTIC	ON IL 5	3 over F	Palatine Rd	LOG	GGED BY Gonzalez (BR)
SECTION	2018-100-BR		LOC	ATION	NW 1/4	1, SEC. 19, TWP. 42N,	RNG. 11E, 3 rd PM,	
COUNTY	Cook DRI	LLING N	METHO	D Hollo		le 42.10980038, Long Auger (8" O.D., 3.25" I		Auto 140 lb HE 105
STRUCT. NO Station	016-0970	-	D E L P C	С	M O I	Surface Water Elev. Stream Bed Elev.	ft	
Station Offset	GC-11 3341+18 31.8 ft LT	_	T W H S (ft) (/6	Qu		Upon Completion	Dry ft ft	
Stiff, Brown, Mois Gravel (continued)	Elev. 747.8 t, CLAY, Trace	_ " ' - -		, (10)	(70)	After Hrs.	riied_ It	
		-	-45 8	3.5	20			
		- -						
			4 50 6	15.2	16			
		-692.8	3 4	1.6	13			
Boring terminated		- - -						

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer, M-Modified SPT) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

BBS, form 137 (Rev. 8-99)

1211 905

STRAND
ASSOCIATES IDFPR NO. 184-001273

USER NAME =	codyh	DESIGNED -		REVISED	-
		CHECKED -	"	REVISED	-
PLOT SCALE =	0:2.0000 ':" / in.	DRAWN -	CJH	REVISED	-
PLOT DATE =	9/20/2024	CHECKED -	NDR	REVISED	-

Page $\underline{1}$ of $\underline{1}$

Date 23/05/08

ROUTE	FAP 342	_ DES	3CRI	PTION	Palat	ine Rd		LOC	3GED	BY C	onzale	ez (AL)
SECTION	2018-100-BR		_ 1	OCAT	ON 1	VW 1/4	, SEC. 19, TWP. 42N, RNG. 11E, 10 (e. 42.11000629, Longitude 88.00	3 rd PM ,				
COUNTY	Cook DF	RILLING	MET	THOD			Auger (8" O.D., 3.25" I.D.) HAMM E		Αı	uto 140	0 lb HE	91
									_			
STRUCT. NO.	016-0970		D E	B L	U	M	Surface Water Elev.	ft	D E	В	U	M
Station	2	_	P	O	S	0	Stream Bed Elev.	ft	P	L	S	0
BORING NO.	GC-31 (P-RWB-01)	Т	W	_	S	Groundwater Elev.:		T	W		S
Station	3341+95 39.6 ft LT	_	Н	S	Qu	T	First Encounter D	ry ft	Н	S	Qu	Ţ
	39.6 ft L1 ace Elev. 728.2	ft	(ft)	(/6")	(tsf)	(%)	Upon Completion D After Hrs Fills	ry ft ed ft	(ft)	(/6")	(tsf)	(%)
	ASPHALT OVER		` '	. ,		,	Stiff, Brown, Moist, CLAY, Trace			. ,	. ,	(7
CONCRETE)		727.3	-				Gravel		_			
GRAVEL		726.7		4						4		
Medium Stiff, I	Brown, Moist, CLAY			3 2	2.7 P	24				5 7	1.2 B	20
		725.2	19		P						Ь	
Medium Stiff,	Brown, Moist, CLAY,								-			
Trace Gravel				3						5		
			_	2	1.7	24			_	6	1.4	16
		722.7	5		В		Boring terminated at 25 feet.	703.2	-25	3	В	
Stiff, Brown, M	loist, CLAY						Borning terminated at 25 feet.		-			
				6								
				7 10	3.9	18						
				10	В							
									19			
				5								
			_	8 12	4.9 B	19			_			
			-10	12	ь				-30			
			/(<u>-</u>						-			
				5								
				7 8	3.9 B	18						
			-	0	Ь				-			
									-			
				3								
			_	5 6	1.4 B	20			25			
			-15		ь				-35			
			2						-			
				3								
			- 10	4 5	1.4 B	21			1			
			10						_	-		
										1		
				4								
		708.2	20	5 7	1.2 B	21			40			

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer, M-Modified SPT) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

BBS, form 137 (Rev. 8-99)

Page $\underline{1}$ of $\underline{1}$

Date 23/05/08

ROUTE	FAP 342	_ DE	SCRI	PTION	Palat	ine Rd			_LOG	GED	BY _G	Sonzale	ez (AL)
SECTION	2018-100-BR		_ ı	OCAT	NOI	VW 1/4	, SEC. 19, TWP. 42N, RM e 42.11000700, Longitu	NG. 11E, 3 rd F	PM,				
COUNTY	Cook DR	ILLING	MET	ГНОД			Auger (8" O.D., 3.25" I.D			Αι	ıto 140) lb HE	91
	016-0373		D E P	B L O	U C S	M O I	Surface Water Elev Stream Bed Elev		ft ft	D E P	B L O	U C S	M O I
Station Offset	GC-32 (P-RWB-02) 2341+95 37.8 ft LT ice Elev. 728.5		H (ft)	W S (/6")	Qu (tsf)	S T (%)	Groundwater Elev.: First Encounter Upon Completion After Hrs.	Dry Dry Filled	ft	T H (ft)	W S (/6")	Qu (tsf)	S T (%)
ASPHALT - 8"		727.8					Stiff to Very Stiff, Brown			0			
GRAVEL		726.8		3			CLAY, Some Gravel			_	3		
Medium Stiff, E Some Gravel	Brown, Moist, CLAY,	120.0	_	1	1.9 B	20				_	5 6	0.8 B	20
				3							5		
				3	2.0 P	25			703.5	-25	8 11	2.3 B	18
Very Stiff, Brow Some Gravel	vn, Moist, CLAY,	723.0		4			Boring terminated at 25	feet.	700.0				
				7 11	4.3 B	19				-			
				5 8	4.2	19				-30			
			10	11	В					-30			
				4 5 7	1.4 B	16				_			
Very Stiff, Brow	vn, Moist, CLAY	715.5		6						-			
			-15	6 6	0.8 B	20				-35			
			_	4	0.0	40				-			
				5 6	0.6 B	18							
				4						_			
		708.5	-20	6 7	1.2 B	15				-40			

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer, M-Modified SPT) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

BBS, form 137 (Rev. 8-99)

(815) 744-4200 STRAND
ASSOCIATES^a IDFPR NO. 184-001273

USER NAME = codyh DESIGNED -REVISED -CHECKED -REVISED -PLOT SCALE = 0:2.0000 ':" / in. DRAWN - CJH REVISED -PLOT DATE = 9/20/2024 REVISED -CHECKED - NDR

STATE OF ILLINOIS **DEPARTMENT OF TRANSPORTATION**

SOIL BORING LOGS (3 OF 4) **STRUCTURE NO. 016-W2502** SHEET 9 OF 10 SHEETS

SECTION 305 (531) BR 23 COOK 1211 906 CONTRACT NO. 62W38

Page $\underline{1}$ of $\underline{1}$

Date 23/05/08

ROUTE	FAP 342	_ DES	3CRI	PTION	Palat	tine Rd		_LOG	GED	BY _G	onzale	ez (AL)
SECTION	2018-100-BR		_ L	OCAT	ION I	VW 1/4	I, SEC. 19, TWP. 42N, RNG. 11E, 3 rd P	Μ,				
COUNTY	Cook DRI	LLING	MET	HOD	H <u>ollow</u>	Stem	le 42.11001872, Longitude 88.00300 Auger (8" O.D., 3.25" I.D.) HAMMER T	189 YPE _	Αι	uto 140) lb HE	91
Station	016-0373 GC-33 (P-RWB-03)	_	D E P T	B L O W	U C S	M O I S	Surface Water Elev. Stream Bed Elev. Groundwater Elev.:	ft ft	D E P T	B L O W	U C S	M O I S
Station	2342+26	_	н	s	Qu	T	First Encounter Dry_	ft	Н	s	Qu	Т
Offset Ground Surf	41.3 ft RT ace Elev. 728.8	ft	(ft)	(/6")	(tsf)	(%)	Upon Completion Dry After Hrs Filled	ft ft	(ft)	(/6")	(tsf)	(%)
ASPHALT - 8		728.1					Stiff, Brown, Moist, CLAY, Some					
Stiff, Brown, M	loist, CLAY			4			Gravel (continued)	15-		9		
			N <u>-</u>	6	0.8	15				5	0.5	15
			1	7	В			\$ -		6	В	
								13-	_			
			28	3					-	4		
			_	5 4	2.3 B	23		700.0	-	6 8	0.7 B	15
		723.3	5	-	В		Boring terminated at 25 feet.	703.8	-25		В	
	loist, CLAY, Some			_								
Gravel			*	5 8	2.7	19			-			
				12	B	15		-				
			10	5					_			
				8	2.1	21		10-				
			-10	11	В			1-	-30			
			/G						-			
				6				15				
				6 8	0.9 B	19						
			-									
			_					2=				
				3 6	0.4	20						
			-15	7	В				-35			
			2						_			
				4				-				
				5	0.5	23		12				
			/s	9	В				_			
								-				
				3	0.7	20						
			-20	3 4	0.7 B	26			-40			

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer, M-Modified SPT) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

BBS, form 137 (Rev. 8-99)

Page $\underline{1}$ of $\underline{1}$

Date 23/05/08

ROUTE FAP 342	_ DESC	CRIPTION	Palat	ine Ro	<u> </u>	LOG	GED BY Gonzalez (A
SECTION 2018-100-BR		LOCAT	ION <u>N</u>	W 1/4	4, SEC. 19, TWP. 42N,	RNG. 11E, 3 rd PM,	
COUNTY Cook DR	II LING I	METHOD	l Wolloh	Latitu Stem	de 42.110007, Longit t Auger (8" O.D., 3.25" I.	Jde -88.003338 .D. :Hammer type	Auto 140 lb HE 91
BIN			19			- AMMERTINE	7,610 7,10 10 112 0
STRUCT. NO. 016-0373		D B E L	U	M	Surface Water Elev.	ft	
Station		PO	s	ī	Stream Bed Elev.	ft	
BORING NO. <u>GC-37 (P-RWB-02 S</u>		T W H S		S	Groundwater Elev.:		
Station 2341+95 Offset 34.8 ft LT	_ '	п °	Qu		First Encounter Upon Completion	Dry_ft Dry_ft	
Ground Surface Elev. 728.5	ft (ft) (/6")	(tsf)	(%)	After Hrs.	Filled ft	
	_						
	_						
		_					
	-						
	_						
Stiff, Brown, Dry, CLAY, With Sand, With Gravel (A-6)		_	4.8	18			
LL=33, PL=19, PI=14	_	-5	7.0	10			
13%Gravel, 13%Sand, 37%Silt, 37%Clay	_						
00 d 10000 1007 0 d 1000 00000 2		-					
	_						
	_						
Stiff, Brown, Dry, CLAY, Some Sand, Some Gravel (A-6)			5.3	18			
LL=35, PL=20, PI=15	_		110.000.00	64 USA			
41%Silt, 42%Clay	718.5	-10	4.2	19	_		
Boring terminated at 10 feet.							
	-						
	_	-					
		-					
	_						
	,	-15					
	-						
	_						
	_						
		-20					
		-20			ll		

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer, M-Modified SPT) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

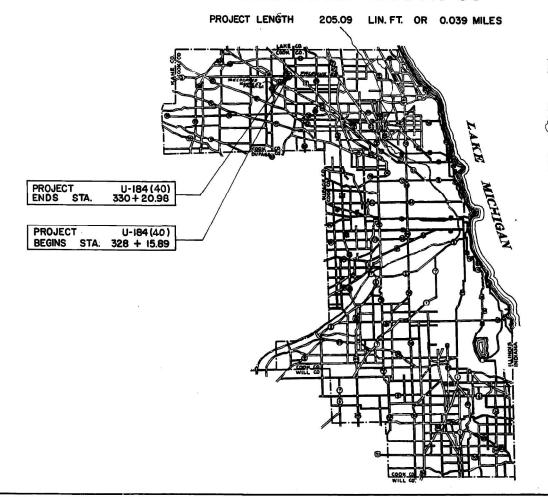
BBS, form 137 (Rev. 8-99)

STRAND
ASSOCIATES^a IDFPR NO. 184-001273

USER NAME =	codyh	DESIGNED	-		REVISED	-
		CHECKED	-		REVISED	-
PLOT SCALE =	0:2.0000 ':" / in.	DRAWN	-	CJH	REVISED	-
PLOT DATE =	9/20/2024	CHECKED	-	NDR	REVISED	-

STATE OF ILLINOIS DEPARTMENT OF PUBLIC WORKS AND BUILDINGS DIVISION OF HIGHWAYS PLANS FOR PROPOSED FEDERAL AID HIGHWAY

SCALES | PLAN 1 INCH 100 PT. | PROFILE, NOR. 1 INCH 100 PT. | PROFILE, VERT. 1 INCH 10 PT. | CROSS-SECTIONS 1 INCH 5 PT.


(S.B.I. ROUTE 53) F.A. ROUTE 61 SECTION 531-3HB - COOK COUNTY PROJECT U-184 (40)

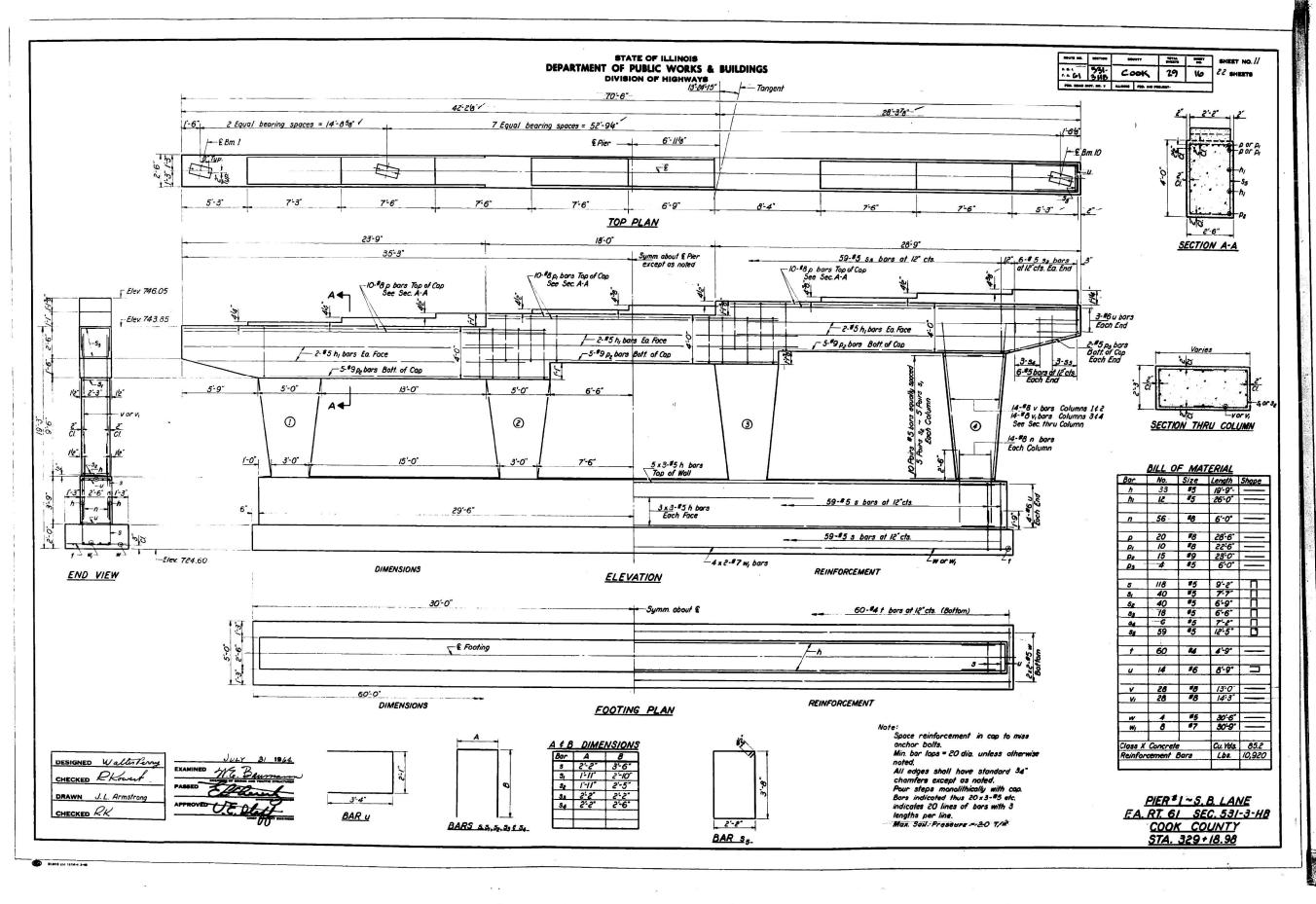
C - 90 - 442 - 64

DUAL STRUCTURES OVER PALATINE ROAD **RELOCATED ROUTE 53**

SECTION 531-3HB INCLUDES THE CONSTRUCTION OF DUAL 4-SPAN CONTINUOUS WIDE FLANGE BEAM GRADE SEPARATION STRUCTURES (TO CARRY RELOCATED ROUTE 53 OVER PALATINE ROAD), WITH SPANS 26 60'-9" AND 2@39'-3", ON OPEN R.C. ABUTMENTS AND R.C. PIERS, IN THE VILLAGE OF ARLINGTON HEIGHTS.

INDEX OF SHEETS ON SHEET 2

LOCATION OF SECTION INDICATED THUS:-


CONTRACT NO. 23867

COUNTY COOK SECTION 531-3HB F. A. ROUTE 61

USER NAME = codyn	DESIGNED -	REVISED -	
	CHECKED -	REVISED -	
PLOT SCALE = 0:2.0000 ':" / in.	DRAWN - CJH	REVISED -	
PLOT DATE = 9/20/2024	CHECKED - NDR	REVISED -	

SECTION	COUNTY	TOTAL SHEETS	SHEET NO.
(531) BR 23	COOK	1211	908
	CONTRAC	T NO. 62	W38
ILLINOIS FED.	AID PROJECT		

FILE NAME: S:\JOL\6300

1170 SOUTH HOUBOLT I
JOLIET, ILLINOIS 60431

STRAND
ASSOCIATES*

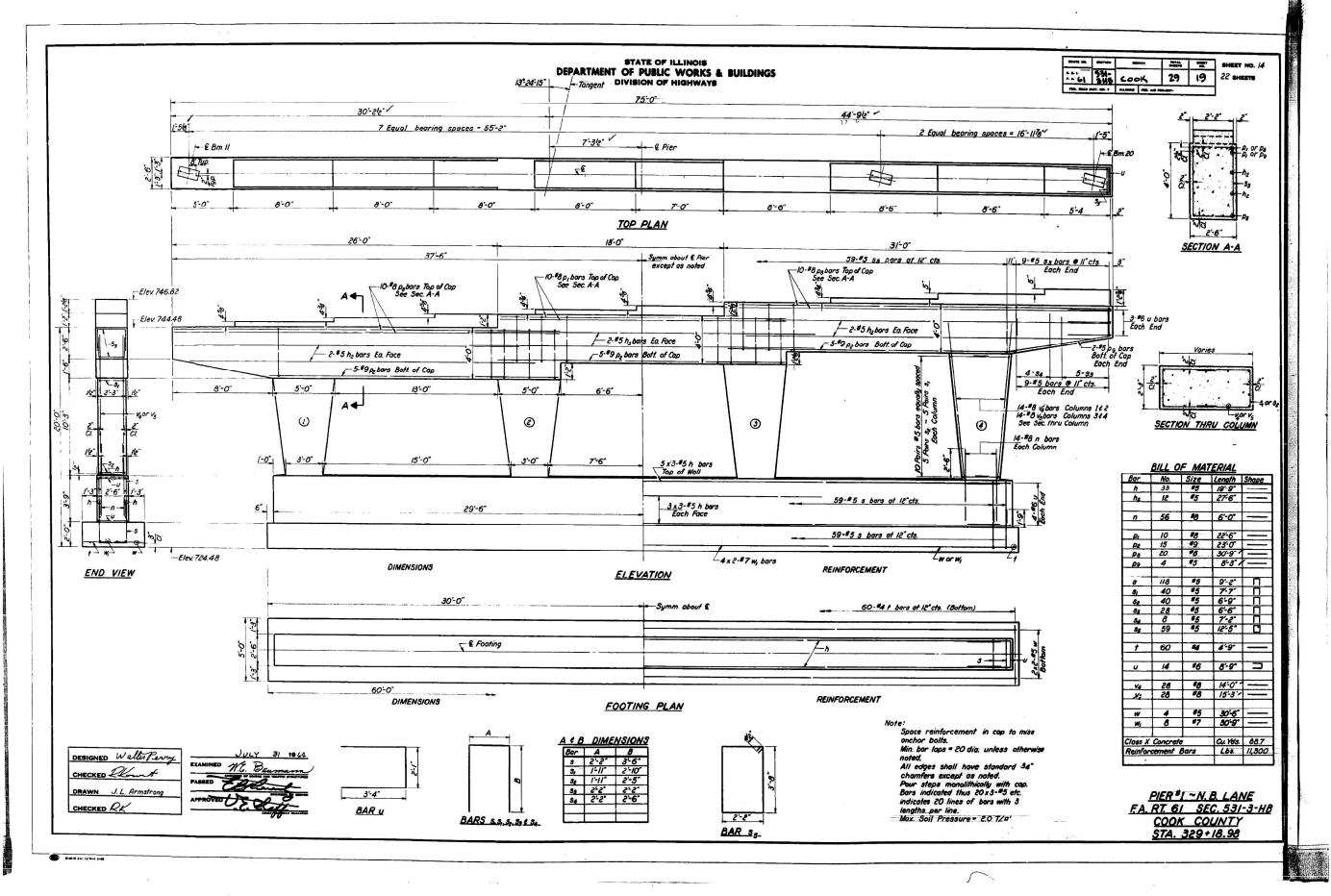
IDEPR NO. 184-001273

 USER NAME =
 codyh
 DESIGNED REVISED

 CHECKED REVISED

 PLOT SCALE =
 0:2.0000 "." / in.
 DRAWN CJH
 REVISED

 PLOT DATE =
 9/20/2024
 CHECKED NDR
 REVISED

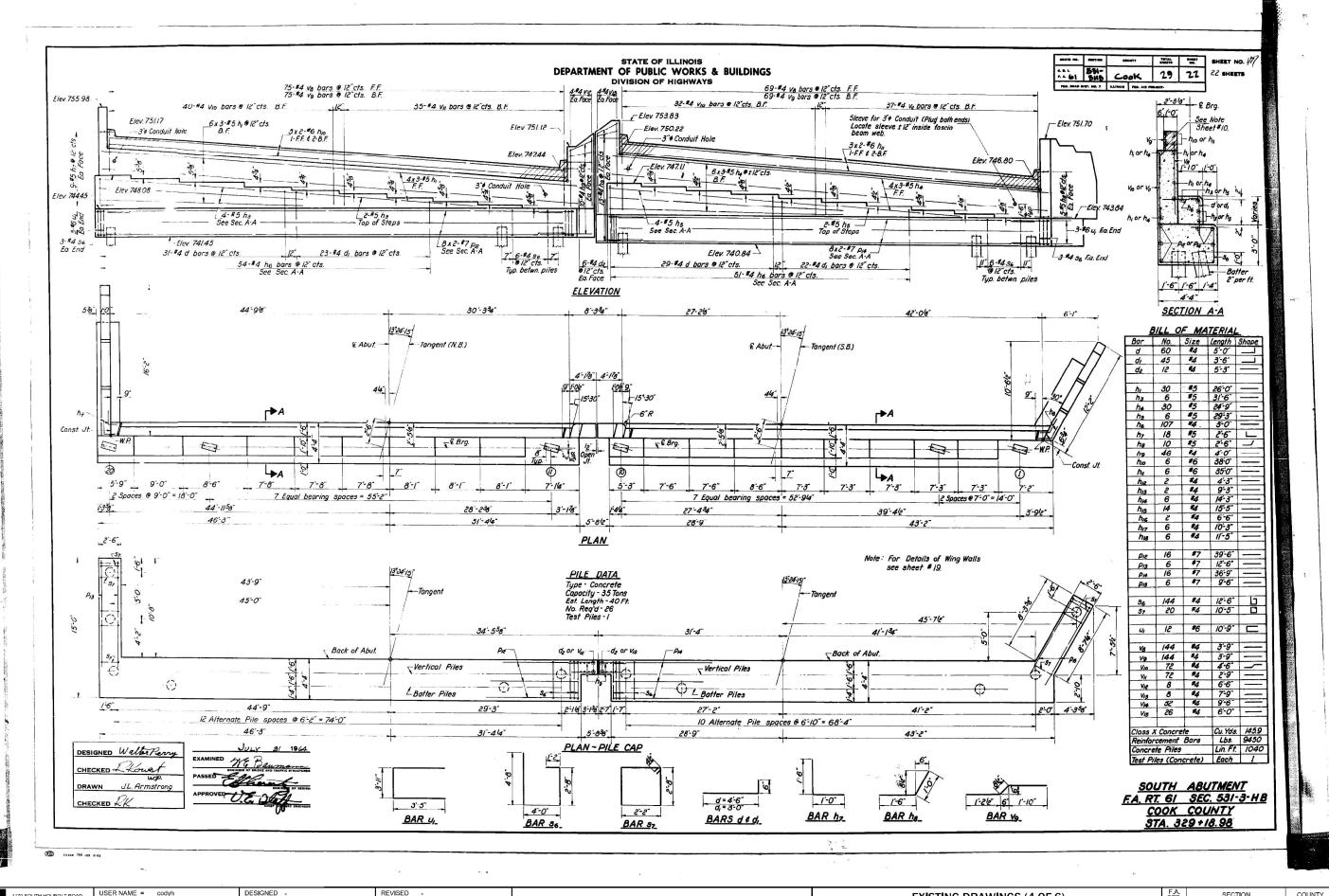

STATE OF ILLINOIS
DEPARTMENT OF TRANSPORTATION

EXISTING DRAWINGS (2 OF 6) STRUCTURE NO. 016-W2502
 FA RTE.
 SECTION
 COUNTY
 TOTAL SHEETS
 SHEETS NO.

 305
 (531) BR 23
 COOK
 1211
 909

 CONTRACT NO. 62W38

 ILLINOIS
 FED. AID PROJECT



(815) 744-4200

DESIGNED -USER NAME = codyh REVISED CHECKED -REVISED -PLOT SCALE = 0:2.0000 ':" / in. DRAWN REVISED REVISED PLOT DATE = 9/20/2024 CHECKED - NDR

STATE OF ILLINOIS DEPARTMENT OF TRANSPORTATION **EXISTING DRAWINGS (3 OF 6) STRUCTURE NO. 016-W2502**

SECTION COUNTY 305 (531) BR 23 COOK 1211 910 CONTRACT NO. 62W38

STRAND IDFPR NO. 184-001273 9/20/2024 2:38:17 PM

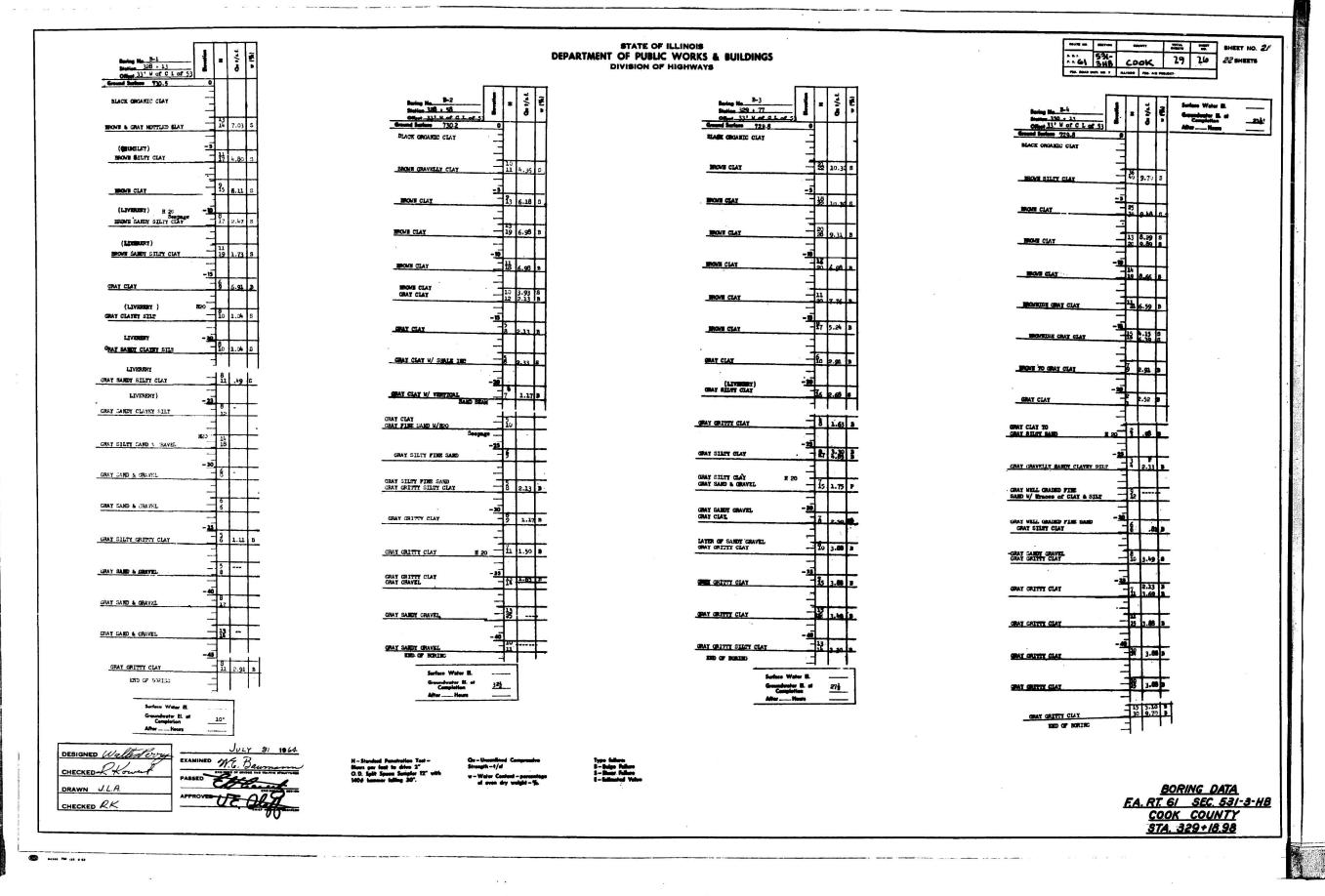
(815) 744-4200

CHECKED -

CHECKED -

DRAWN

PLOT SCALE = 0:2.0000 ':" / in.


PLOT DATE = 9/20/2024

REVISED

REVISED

STATE OF ILLINOIS DEPARTMENT OF TRANSPORTATION **EXISTING DRAWINGS (4 OF 6) STRUCTURE NO. 016-W2502**

SECTION COUNTY 305 (531) BR 23 COOK 1211 911 CONTRACT NO. 62W38

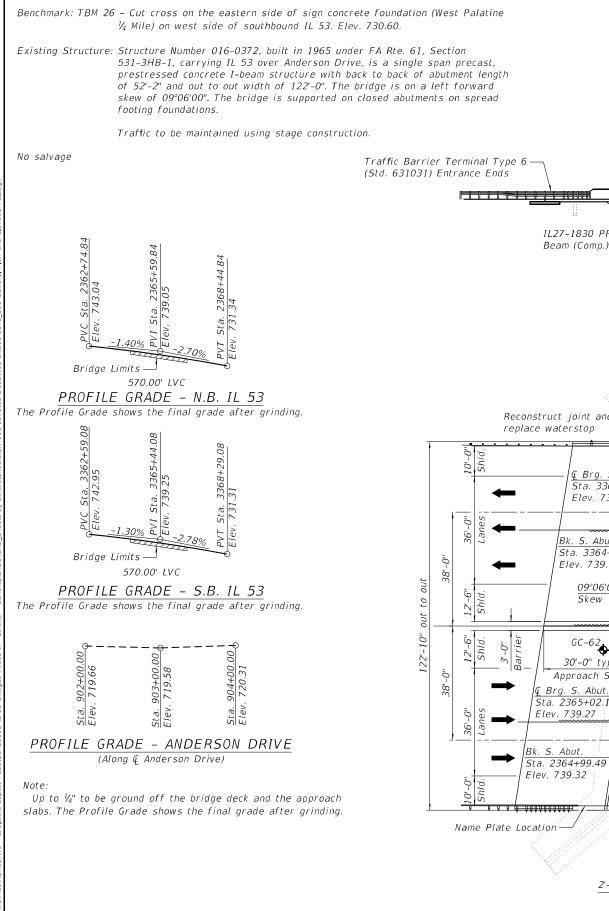
(815) 744-4200

USER NAME = codyh DESIGNED REVISED CHECKED -REVISED PLOT SCALE = 0:2.0000 ':" / in. DRAWN REVISED PLOT DATE = 9/20/2024 CHECKED -REVISED

STATE OF ILLINOIS DEPARTMENT OF TRANSPORTATION **EXISTING DRAWINGS (5 OF 6) STRUCTURE NO. 016-W2502**

SECTION COUNTY 305 (531) BR 23 COOK 1211 912 CONTRACT NO. 62W38

9/20/2024 2:38:29 PM


(815) 744-4200 **STRAND** IDFPR NO. 184-001273

USER NAME = codyh DESIGNED -REVISED CHECKED -REVISED -PLOT SCALE = 0:2.0000 ':" / in. DRAWN - CJH REVISED PLOT DATE = 9/20/2024 CHECKED - NDR

STATE OF ILLINOIS DEPARTMENT OF TRANSPORTATION **EXISTING DRAWINGS (6 OF 6) STRUCTURE NO. 016-W2502**

SECTION COUNTY 305 (531) BR 23 COOK 1211 913 CONTRACT NO. 62W38

9/20/2024 2:38:41 PM

44'-0" Limits of -Traffic Barrier Terminal Type 5 Protective Shield (Std. 631026) Exit Ends Existing approach * 15'-4" Min. IL27-1830 PPC bent piles, typ. **22'-0" ** 22'-0" vert. clr. Beam (Comp.) 2.0% 2.0% └─ PG & Ç Anderson Drive ** At Right Angle ELEVATION Sidewalk 5'-0" Bicycle Lane Sidewalk 5'-0" Bicycle Lane C&G 11'-7" G Anderson L Reconstruct joint and C&G replace waterstop .___ ⊈ Brg. S. Abut ¢ Brg. N. Abut Sta. 3364+98.61 Sta. 3365+45.38 Elev. 738.16 Elev. 739.09 3365+00 ─ SB PG Bk. N. Abut. Bk. S. Abut. Sta. 3365+48.08 Sta. 3364+95.91 Const. Line !!! Elev. 738.11 Elev. 739.14 -Temporary Śoil ∥|€ F.A.P. Rte. Retention System, typ. 09°06'00" ||| 342 (IL 53) Skew Stage Station Const. Line 365+00l Increase Boring, typ. 30'-0" typ. Pt. of F.A.P. Rte. 342 (IL 53) Approach Slabi Sta 1365+23.75 Brg. S. Abut. F.A.U. Rte. 3240 (Anderson Drive) clearance Sta. 2365+02.19 Sta 903+00.00 Elev. 739.27

365+00

2'-83/8'

Stage

Const.

46'- 91/4"

52'-2" Back to back abutments

PLAN

Line

Shoulder Inlet with

curb (Std. 610001), typ.

SARAH L. CZAPLICKI

081.006191

Sarah L. Czaplicki, PE, SE

Expires: November 30, 2024

SHEET 1 OF 38 SHEETS

LOADING HL-93

Allow 50 #/sq. ft. for future wearing surface.

SCOPE OF WORK

- 1. Remove existing superstructure, bearings and approach slabs.
- 2. Modify existing abutments to semi-integral.
- 3. Construct new bearings and superstructure consisting of PPC I-Beam and concrete deck slab
- 4. Construct new approach slabs.
- 5. Repair abutments with formed concrete repairs and epoxy crack sealing.
- 6. Reconstruct joint between south abutment and southwest wingwall.

SEISMIC DATA

Seismic Retrofit Category (SRC) = A Design Spectral Acceleration at 1.0 sec. (SD1) = 0.081g Design Spectral Acceleration at 0.2 sec. (SDS) =0.140g Soil Site Class = D Performance Level - PL1

DESIGN STRESSES

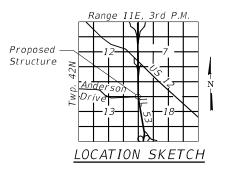
FIELD UNITS (NEW CONSTRUCTION) f'c = 4,000 psi (Superstructure)f'c = 3,500 psi (Substructure)

fy = 60,000 psi (Reinforcement)PRECAST PRESTRESSED UNITS (NEW CONSTRUCTION)

f'c = 8,500 psi

f'ci = 6,500 psi $fpu = 270,000 \ psi \ (0.6" \ low \ lax. \ strands)$ fpbt = 202,300 psi (0.6" low lax. strands)

FIELD UNITS (EXISTING CONSTRUCTION) fc = 1,000 psi (Substructure)


fs = 20,000 psi (Reinforcement)

DESIGN SPECIFICATIONS

NEW CONSTRUCTION

2020 AASHTO LRFD Bridge Design Specifications, 9th Edition EXISTING CONSTRUCTION

2002 AASHTO Standard Specifications for Highway Bridges, 17th Edition 2006 FHWA Seismic Retrofitting Manual for Highway Structures

GENERAL PLAN AND ELEVATION IL 53 OVER ANDERSON DRIVE F.A.P. RTE. 342 - SEC. (531) BR 23 COOK COUNTY STATION 1365+23.75 STRUCTURE NO. 016-0372

ر.		CZAPLICKI LOPEZ, PLLC	Г
1		201 KENMARE DRIVE	Г
VAIVIE.		BURR RIDGE, ILLINOIS 60527	Н
≤ ⊔		630-915-8861	L
	CZAPLICKI LOPEZ	DESIGN FIRM NO: 184,008135	Г

	USER NAME =	DESIGNED	-	PAF	REVISED -	
27		CHECKED	-	CSP	REVISED -	
21	PLOT SCALE =	DRAWN	-	SVJ	REVISED -	
35	PLOT DATE =	CHECKED	-	PAF	REVISED -	

STATE OF ILLINOIS **DEPARTMENT OF TRANSPORTATION**

∃Bk. N. Abut.

2'-83/8"

Elev. 738.29

Sta. 2365+51.66

€ Brg. N. Abut.

Elev. 738.35

Sta. 2365+48.96

- NB PG

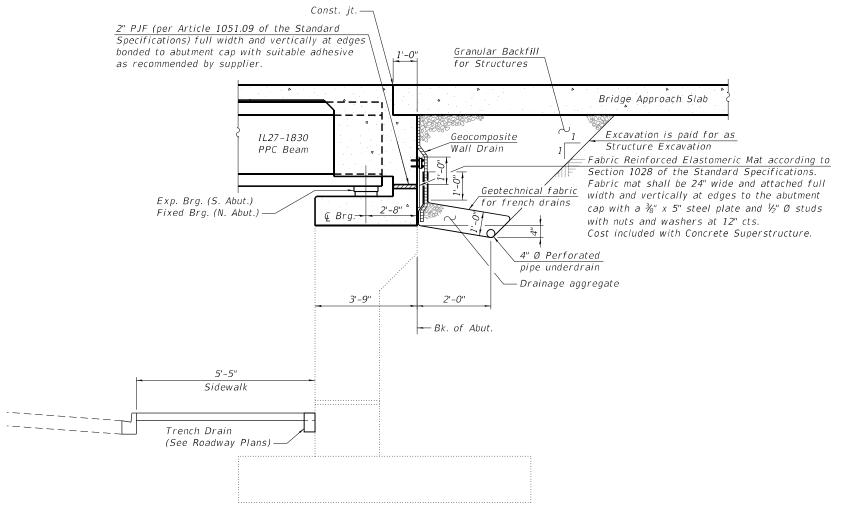
SECTION COUNTY (531) BR 23 соок 1211 914 CONTRACT NO. 62W38

INDEX OF SHEETS

- General Plan and Elevation
- General Data
- Stage Construction Details I
- Stage Construction Details II
- Temporary Soil Retention System Details
- Temporary Concrete Barrier
- Top of Slab Elevations I
- Top of Slab Elevations II
- Top of Slab Elevation III Top of Slab Elevation IV
- Top of Slab Elevation V
- Top of South Approach Slab Elevations I 13 Top of South Approach Slab Elevations II
- 14 Top of North Approach Slab Elevations i
- 15 16 Top of North Approach Slab Elevations II Superstructure - Southbound
- Superstructure Northbound
- 18 Superstructure Details 19
- Abutment Diaphragm Details Bridge Approach Slab Details I 20
- Bridge Approach Slab Details II Bridge Approach Slab Details III
- Bridge Approach Slab Details IV Framing Plan
- 21 22 23 24
- IL27N Beam
- 25 26 27 IL27N Beam Details Bearing Details I
- 28 Bearing Details II
- South Abutment Removal and Repair
- 29 30 North Abutment Removal and Repair
- South Abutment North Abutment
- 31 32 33 34 Abutment Details Wingwall Repairs
- Concrete Parapet Slipforming Option
- Bar Splicer Assembly and Mechanical Splicer Details
- 35 36 37 Boring Logs I 38
- Boring Logs II

GENERAL NOTES

- 1. Reinforcement bars designated (E) shall be epoxy coated.
- 2. The finishing machine rails shall be placed on the top of the top flange of the exterior beams within the deck pour. Beam blocks shall be placed between beams at all tie locations in each bay for the full width of the deck pour.
- 3. Slipforming of the median parapets is not allowed.
- 4. Plan dimensions and details relative to the existing structure have been taken from existing plans are subject to nominal construction variations. The Contactor shall field verify existing dimensions and details affecting new construction and make necessary approved adjustments prior to construction or ordering of materials. Such variations shall not be cause for additional compensation for a change in scope of the work, however, the Contractor will be paid for the quantity actually furnished at the unit price bid for the work.
- 5. Pinning of the Temporary Concrete Barrier in the top of the new bridge deck and approach slabs is not allowed.


STA. 1365+23.75 BUILT 20__ BY STATE OF ILLINOIS F.A.P. RTE. 342 - SEC. (531) BR 23 LOADING HL-93 STR. NO. 016-0372

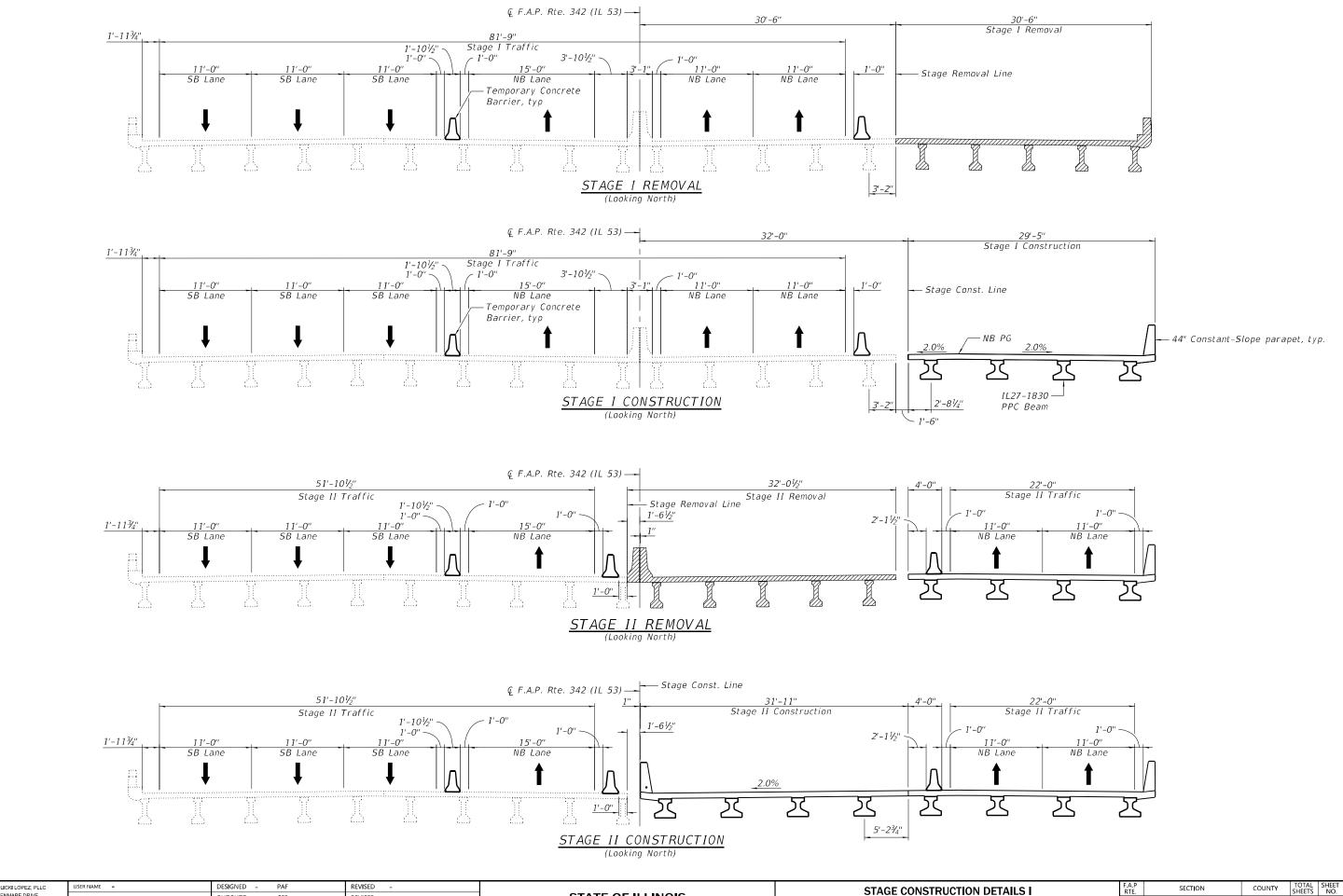
NAME PLATE See Std. 515001

Existing Name Plate shall be cleaned and relocated next to new Name Plate. Cost included with Name Plates.

TOTAL BILL OF MATERIAL

ITFM	UNIT	SUPER	SUB	TOTAL
Removal Of Existing Superstructures No. 5	Each	1	0	1
Concrete Removal	Cu. Yd.	0.0	36.8	36.8
Protective Shield	Sq. Yd.	601	0	601
Structure Excavation	Cu. Yd.	0	236	236
Concrete Structures	Cu. Yd.	0.0	129.4	129.4
Concrete Superstructure	Cu. Yd.	281.2	0.0	281.2
Protective Coat	Sq. Yd.	1,657	0	1,657
Concrete Superstructure (Approach Slab)	Cu. Yd.	346.5	0.0	346.5
Furnishing and Erecting Precast Prestressed Concrete Beams, IL27N	Foot	770	0	770
Reinforcement Bars, Epoxy Coated	Pound	196,560	9,490	206,050
Bar Splicers	Each	964	68	1,032
Name Plates	Each	1	0	1
Preformed Joint Seal 3 1/2"	Foot	111	0	111
Elastomeric Bearing Assembly, Type I	Each	16	0	16
Anchor Bolts, 3/4"	Each	64	0	64
Temporary Soil Retention System	Sq. Ft.	0	151	151
Granular Backfill for Structures	Cu. Yd.	0	217	217
Epoxy Crack Injection	Foot	0	408	408
Geocomposite Wall Drain	Sq. Yd.	0	146	146
Pipe Underdrains for Structures 4"	Foot	0	248	248
Bridge Deck Grooving (Longitudinal)	Sq. Yd.	898	0	898
Bar Terminators	Each	760	0	760
Approach Slab Removal	Sq. Yd.	960	0	960
Structural Repair of Concrete (Depth Equal to or Less than 5 Inches)	Sq. Ft.	0	7	7
Diamond Grinding (Bridge Section)	Sq. Yd.	1,359	0	1,359

SECTION THRU SEMI-INTEGRAL ABUTMENTS


(Horiz. dim. at Rt. L's)

A	CZAPLICKI LOPEZ, PLLC 201 KENMARE DRIVE BURR RIDGE, ILLINOIS 60527
CZAPLICKI LOPEZ	630-915-8861 DESIGN FIRM NO: 184,008135

USER NAME =	DESIGNED	-	PAF	REVISED	-
	CHECKED	-	CSP	REVISED	-
PLOT SCALE =	DRAWN	-	SVJ	REVISED	-
PLOT DATE =	CHECKED	-	PAF	REVISED	-

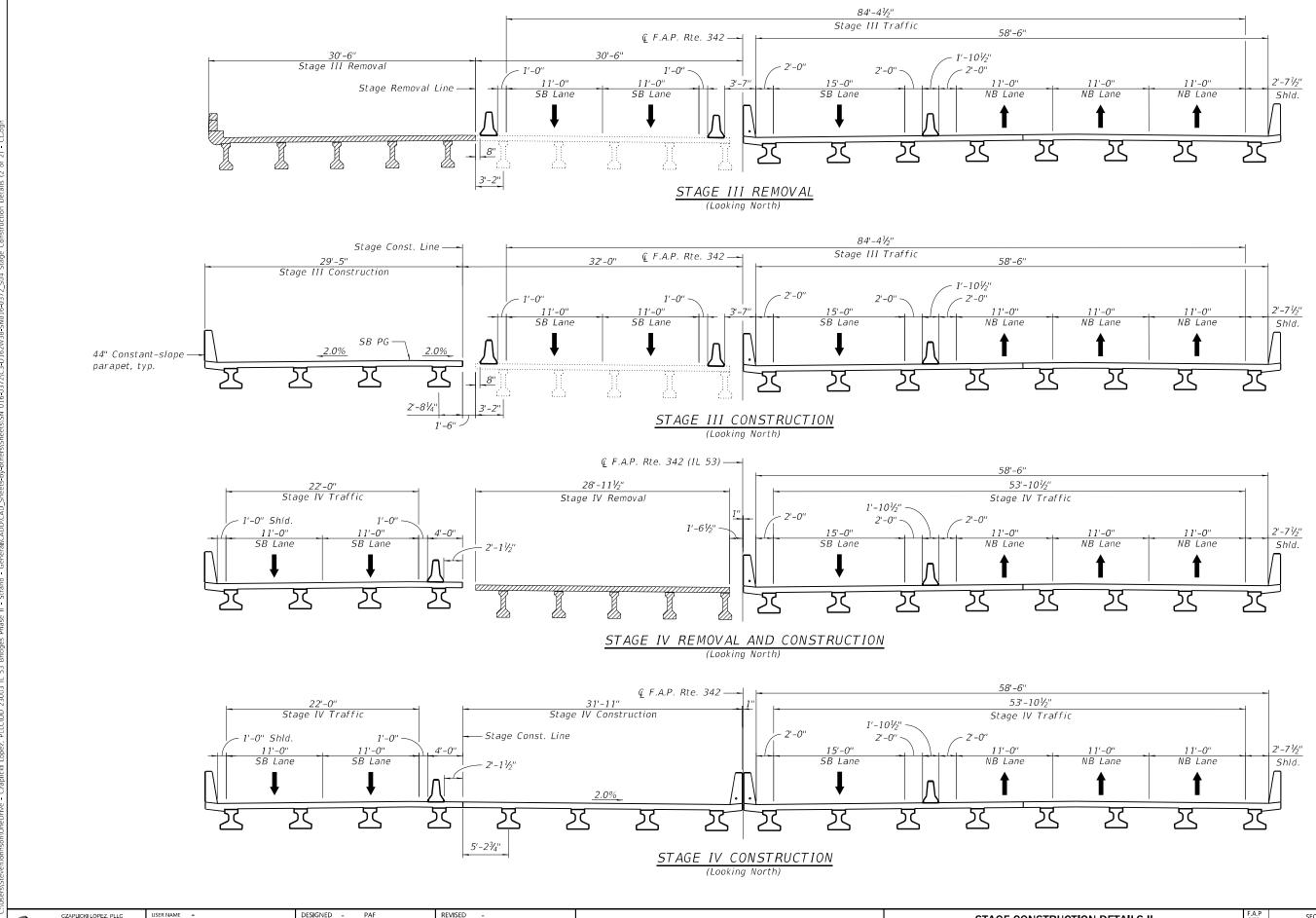
STATE OF ILLINOIS DEPARTMENT OF TRANSPORTATION

SECTION COUNTY **GENERAL DATA** 342 (531) BR 23 соок 1211 915 STRUCTURE NO. 016-0372 CONTRACT NO. 62W38 SHEET 2 OF 38 SHEETS

FILE NAME: C:\User

CZAPLICKI LOPEZ, PLLC
201 KENMARE DRIVE
BURR RIDGE, LLINOIS 60527
630-915-8861
CZAPLICKILOPEZ
DESIGN FIRM NO: 184,008135

STATE OF ILLINOIS
DEPARTMENT OF TRANSPORTATION


STAGE CONSTRUCTION DETAILS I
STRUCTURE NO. 016-0372

SHEET 3 OF 38 SHEETS

 F.A.P RTE.
 SECTION
 COUNTY
 TOTAL SHEETS
 SHEETS NO.

 342
 (531) BR 23
 COOK
 1211
 916

 CONTRACT NO. 62W38

9/20/2024 8:43:16 AM

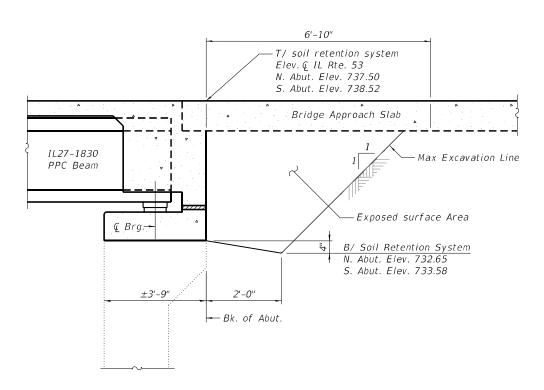
BURR RIDGE, ILLINOIS 60527

630-915-8861

CHECKED -

CHECKED -

DRAWN


CSP

REVISED

REVISED



(North Abutment Shown, South Abutment Similar)

TEMPORARY SOIL RETENTION SYSTEM - Q IL RTE 53 STAGE CONSTRUCTION LINE

(North Abutment Shown, South Abutment Similar)

TEMPORARY SOIL RETENTION SYSTEM - NB STAGE CONSTRUCTION LINE

(North Abutment Shown, South Abutment Similar)

Note:

A cantilevered sheet piling design does not appear feasible and additional members or other retention systems may be necessary. The Contractor shall submit a temporary soil retention system design including plan details and calculations for review and acceptance by the Engineer.

BILL OF MATERIAL

Item	Unit	Total
Temporary Soil Retention System	Sq. Ft.	151

CZAPLICKI LOPEZ, PLLC
201 KENMARE DRIVE
BURR RIDGE, ILLINOIS 60527
630-915-8881
CZAPLICKI LOPEZ
DESIGN FIRM NO: 184,008135

 USER NAME
 =
 DESIGNED
 PAF
 REVISED

 CHECKED
 CSP
 REVISED

 PLOT SCALE
 =
 DRAWN
 SVJ
 REVISED

 PLOT DATE
 =
 CHECKED
 PAF
 REVISED

STATE OF ILLINOIS
DEPARTMENT OF TRANSPORTATION

TEMPORARY SOIL RETENTION SYSTEM DETAILS
STRUCTURE NO. 016-0372

SHEET 5 OF 38 SHEETS

 F.A.P RTE.
 SECTION
 COUNTY
 TOTAL SHEETS
 SHEET NO.

 342
 (531) BR 23
 COOK
 1211
 918

 CONTRACT NO. 62W38

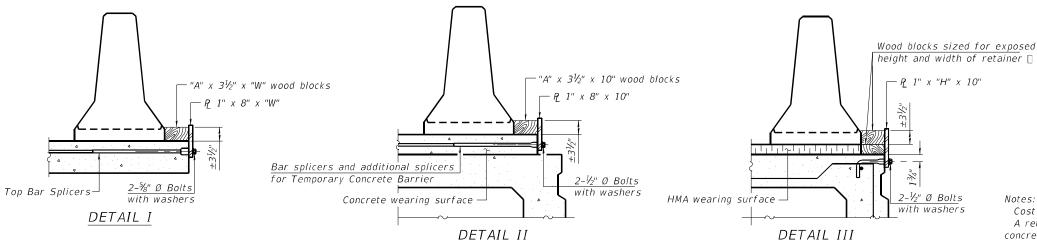
When "A" is 3'-1" or less, the temporary concrete barrier shall be restrained to the new slab according to Detail I, II or III. No restraint is required when "A" is greater than 3'-1".

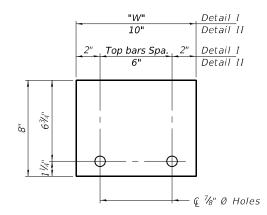
Temporary Concrete Barrier See Standard 704001 6" 6" min. min. <u>Drill 3-1 $\frac{1}{4}$ " Ø Holes in existing slab for 1" Ø restraining pins. Traffic side only.</u> Cost of restraining pins are included with Temporary Concrete Barrier. No restraint

* When hot-mix asphalt wearing surface is present, embedment shall be 3" plus the wearing surface depth.

Stage removal line

EXISTING DECK BEAM

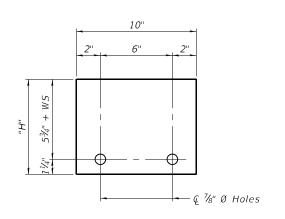

NEW SLAB OR NEW DECK BEAM


SECTIONS THRU SLAB OR DECK BEAM

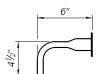
is required when "A" is greater than 3'-1".

EXISTING SLAB

-- Stage removal line


STEEL RETAINER P 1" x 8" x "W"

(Detail I and II)


RAILING CRITERIA

NCHRP 350 Test Level	3
Railing Weight (plf)	440

R-27 5-15-2023

STEEL RETAINER P 1" x "H" x 10" (Detail III)

RESTRAINING PIN

BAR SPLICER FOR #4 BAR - DETAIL III

Notes:

Cost of retainer assembly is included with Temporary Concrete Barrier. A retainer assembly shall be located at the approximate Q of each temporary concrete barrier.

The retainer plate shall not be removed until the concrete on the adjacent stage is ready to be poured. For Detail III applications the retainer plate shall not be removed until just prior to placing the adjacent beam.

When the 'A' dimension is less than $1\frac{1}{2}$ ", the wood block shall be omitted and the barrier shall be placed in direct contact with the steel retainer plate. For deck beam applications the minimum required 'A' distance is 6" to accommodate the shear key clamping device.

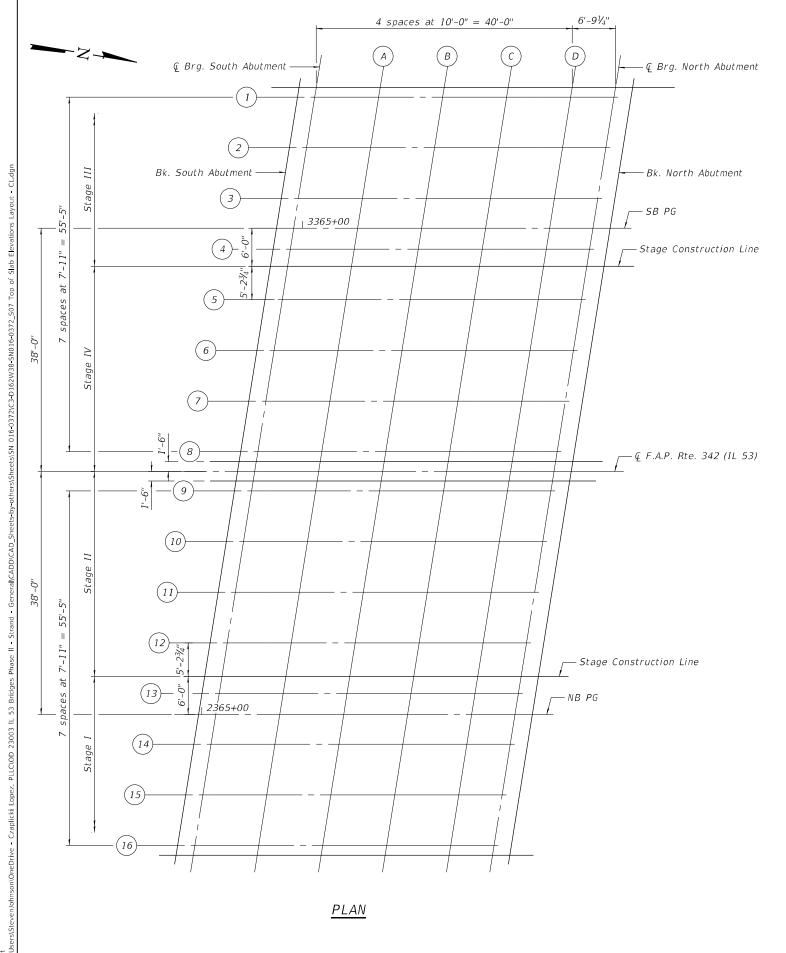
Detail I - Installation for a new bridge deck or bridge slab.

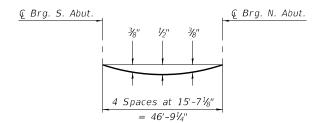
US Std. 11/16" I.D. x 21/2" O.D. x approx. 8 gauge thick washer

1" Ø pin -

- Detail II Installation for a new deck beam with an initial concrete wearing surface. Additional bar splicers shall be provided at 6'-0" centers and paired with the bar splicers of the concrete wearing surface reinforcement to accommodate the installation of the retainer assemblies. The cost of the additional bar splicers is included with the concrete wearing surface.
- Detail III Installation for a new deck beam with no initial wearing surface or with an initial hot-mix asphalt (HMA) wearing surface present. The deck beam directly beneath the temporary concrete barrier shall be fabricated with bar splicer inserts in the side of the beam, as detailed, to accommodate the installation of the retainer assemblies. A pair of bar splicers, 6" apart, shall be placed at 6'-0" centers along the length of the beam. The cost of the bar splicers is included with the deck beam.

CZAPLICKI LOPEZ, PLLC BURR RIDGE, ILLINOIS 60527

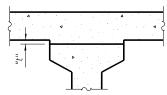

DESIGNED - PAF REVISED CHECKED -CSP REVISED DRAWN REVISED PLOT DATE = CHECKED -REVISED PAF


STATE OF ILLINOIS DEPARTMENT OF TRANSPORTATION **TEMPORARY CONCRETE BARRIER STRUCTURE NO. 016-0372** SHEET 6 OF 38 SHEETS

SECTION COUNTY (531) BR 23 соок 1211 919 CONTRACT NO. 62W38

7/₁₆" Ø hole

9/20/2024 8:43:17 AM



DEAD LOAD DEFLECTION DIAGRAM

(Includes weight of concrete, excluding beams).

Note:

The above deflections are not to be used in the field if the engineer is working from the grade elevations adjusted for dead load deflections as shown below.

To determine "t": After all precast prestressed beams have been erected, elevations of the top flanges of the beams shall be taken at intervals shown below. These elevations subtracted from the "Theoretical Grade Elevations Adjusted for Dead Load Deflections" shown below, minus slab thickness, equals the fillet heights "t" above top flanges of beams.

FILLET HEIGHTS

CZAPLICKI LOPEZ, PLLC
201 KENMARE DRIVE
BURR RIDGE, ILLINOIS 60527
630-915-8861
CZAPLICKI LOPEZ
DESIGN FIRM NO: 184,008135

 USER NAME
 =
 DESIGNED
 PAF
 REVISED

 CHECKED
 CSP
 REVISED

 PLOT SCALE
 =
 DRAWN
 SVJ
 REVISED

 PLOT DATE
 =
 CHECKED
 PAF
 REVISED

STATE OF ILLINOIS
DEPARTMENT OF TRANSPORTATION

TOP OF SLAB ELEVATIONS I STRUCTURE NO. 016-0372

 F.A.P RTE.
 SECTION
 COUNTY
 TOTAL SHEETS
 SHEET NO.

 342
 (531) BR 23
 COOK
 1211
 920

 CONTRACT NO. 62W38
 <u>BEAM 1</u>

Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevations Adjusted For Dead Load Deflection and Grinding
Bk. S. Abut.	3364+99.18	-20.44	738.67	738.69
Brg. S. Abut.	3365+01.88	-20.44	738.62	738.64
A B C D	3365+11.88 3365+21.88 3365+31.88 3365+41.88	-20.44 -20.44 -20.44 -20.44	738.43 738.23 738.03 737.83	738.48 738.30 738.10 737.87
Brg. N. Abut.	3365+48.65	-20.44	737.69	737.71
Bk. N. Abut.	3365+51.35	-20.44	737.63	737.65

<u>BEAM 2</u>

Location	Station	0ffset	Theoretical Grade Elevations	Theoretical Grade Elevations Adjusted For Dead Load Deflection and Grinding
Bk. S. Abut.	3364+97.91	-12.52	738.85	738.88
Brg. S. Abut.	3365+00.61	-12.52	738.80	738.82
A B C D	3365+10.61 3365+20.61 3365+30.61 3365+40.61	-12.52 -12.52 -12.52 -12.52	738.61 738.41 738.21 738.01	738.66 738.48 738.28 738.05
Brg. N. Abut.	3365+47.39	-12.52	737.87	737.89
Bk. N. Abut.	3365+50.08	-12.52	737.82	737.84

BEAM 3

Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevations Adjusted For Dead Load Deflection and Grinding
Bk. S. Abut.	3364+96.65	-4.60	739.04	739.06
Brg. S. Abut.	3364+99.34	-4.60	738.99	739.01
A B C D	3365+09.34 3365+19.34 3365+29.34 3365+39.34	-4.60 -4.60 -4.60 -4.60	738.79 738.60 738.40 738.19	738.85 738.67 738.47 738.24
Brg. N. Abut.	3365+46.12	-4.60	738.06	738.08
Bk. N. Abut.	3365+48.82	-4.60	738.00	738.02

SOUTHBOUND PROFILE GRADE LINE

Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevations Adjusted For Dead Load Deflection and Grinding
Bk. S. Abut.	3364+95.91	0.00	739.14	739.16
Brg. S. Abut.	3364+98.61	0.00	739.09	739.11
A B C D	3365+08.61 3365+18.61 3365+28.61 3365+38.61	0.00 0.00 0.00 0.00	738.90 738.70 738.50 738.30	738.95 738.77 738.57 738.35
Brg. N. Abut.	3365+45.38	0.00	738.16	738.18
Bk. N. Abut.	3365+48.08	0.00	738.11	738.13

BEAM 4

Location	Station	Offset	Theoretical Grade Elevations	Adjusted For Dead
Bk. S. Abut.	3364+95.38	3.31	739.09	739.11
Brg. S. Abut.	3364+98.08	3.31	739.04	739.06
A B C D	3365+08.08 3365+18.08 3365+28.08 3365+38.08	3.31 3.31 3.31 3.31	738.84 738.65 738.45 738.25	738.90 738.72 738.52 738.29
Brg. N. Abut.	3365+44.85	3.31	738.11	738.13
Bk. N. Abut.	3365+47.55	3.31	738.05	738.07

SOUTHBOUND STAGE CONSTRUCTION LINE

Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevations Adjusted For Dead Load Deflection and Grinding
Bk. S. Abut.	3364+94.95	6.00	739.04	739.06
Brg. S. Abut.	3364+97.65	6.00	738.99	739.01
A B C D	3365+07.65 3365+17.65 3365+27.65 3365+37.65	6.00 6.00 6.00 6.00	738.80 738.60 738.40 738.20	738.85 738.67 738.47 738.25
Brg. N. Abut.	3365+44.42	6.00	738.06	738.08
Bk. N. Abut.	3365+47.12	6.00	738.01	738.03

Note: All Stations and offsets measured to SB PG.

CZAPLICKI LOPEZ, PLLC
201 KEMMARE DRIVE
BURR RIDGE, ILLINOIS 60527
630-915-8861
DESIGN FIRM NO: 184.008135

USER NAME =	DESIGNED -	PAF	REVISED -
	CHECKED -	CSP	REVISED -
PLOT SCALE =	DRAWN -	SVJ	REVISED -
PLOT DATE =	CHECKED -	PAF	REVISED -

<u>BEAM 5</u>

Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevations Adjusted For Dead Load Deflection and Grinding
Bk. S. Abut.	3364+94.11	11.23	738.95	738.97
Brg. S. Abut.	3364+96.81	11.23	738.90	738.92
A B C D Brg. N. Abut. Bk. N. Abut.	3365+06.81 3365+16.81 3365+26.81 3365+36.81 3365+43.58 3365+46.28	11.23 11.23 11.23 11.23 11.23	738.71 738.51 738.31 738.11 737.98 737.92	738.76 738.59 738.38 738.16 738.00

BEAM 6

				
Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevations Adjusted For Dead Load Deflection and Grinding
Bk. S. Abut.	3364+92.84	19.15	738.82	738.84
Brg. S. Abut.	3364+95.54	19.15	738.77	738.79
A B C D	3365+05.54 3365+15.54 3365+25.54 3365+35.54	19.15 19.15 19.15 19.15	738.57 738.38 738.18 737.98	738.63 738.45 738.25 738.03
Brg. N. Abut.	3365+42.31	19.15	737.84	737.86
Bk. N. Abut.	3365+45.01	19.15	737.79	737.81

BEAM 7

Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevations Adjusted For Dead Load Deflection and Grinding
Bk. S. Abut.	3364+91.57	27.06	738.68	738.71
Brg. S. Abut.	3364+94.27	27.06	738.63	738.65
A B C D	3365+04.27 3365+14.27 3365+24.27 3365+34.27	27.06 27.06 27.06 27.06	738.44 738.25 738.05 737.85	738.49 738.32 738.12 737.89
Brg. N. Abut.	3365+41.05	27.06	737.71	737.73
Bk. N. Abut.	3365+43.74	27.06	737.66	737.68

BEAM 8

Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevations Adjusted For Dead Load Deflection and Grinding	
Bk. S. Abut.	3364+90.31	34.98	738.55	738.57	
Brg. S. Abut.	3364+93.00	34.98	738.50	738.52	
A B C D	3365+03.00 3365+13.00 3365+23.00 3365+33.00	34.98 34.98 34.98 34.98	738.31 738.11 737.92 737.72	738.36 738.18 737.98 737.76	
Brg. N. Abut.	3365+39.78	34.98	737.58	737.60	
Bk. N. Abut.	3365+42.48	34.98	737.52	737.54	

Note: All Stations and offsets measured to SB PG.

CZAPLICKI LOPEZ, PLLC
201 KENMARE DRIVE
BURR RIDGE, ILLING 60527
630-915-8861
CZAPLICKILOPEZ
DESIGN FIRM NO: 184,008135

DESIGNED - PAF REVISED -CHECKED - CSP REVISED -REVISED -CHECKED - PAF REVISED - BEAM 9

2365+57.26

Theoretical Grade heoretical Elevations Location Station Offset Grade Adjusted For Dead Load Deflection and Grinding Bk. S. Abut. 2365+05.09 738.51 738.53 Brg. S. Abut. 2365+07.79 -34.98 738.46 738.48 738.32 738.13 -34.98 -34.98 2365+17.79 738.27 2365+27.79 738.07 2365+37.79 2365+47.79 737.93 -34.98 737.87 -34.98 737.67 737.71 D 2365+54.56 -34.98 737.53 737.55 Brg. N. Abut.

BEAM 10

Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevations Adjusted For Dea Load Deflection and Grinding
Bk. S. Abut.	2365+03.82	-27.06	738.70	738.72
Brg. S. Abut.	2365+06.52	-27.06	738.64	738.66
A B C D Brg. N. Abut.	2365+16.52 2365+26.52 2365+36.52 2365+46.52 2365+53.30	-27.06 -27.06 -27.06 -27.06	738.45 738.25 738.05 737.85	738.50 738.32 738.12 737.89
Bk. N. Abut.	2365+55.99	-27.06	737.66	737.68

BEAM 11

Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevations Adjusted For Dead Load Deflection and Grinding		
Bk. S. Abut.	2365+02.56	-19.15	738.88	738.90		
Brg. S. Abut.	2365+05.26	-19.15	738.83	738.85		
A B C D	2365+15.26 2365+25.26 2365+35.26 2365+45.26	-19.15 -19.15 -19.15 -19.15	738.63 738.44 738.24 738.04	738.68 738.50 738.30 738.08		
Brg. N. Abut.	2365+52.03	-19.15	737.90	737.92		
Bk. N. Abut.	2365+54.73	-19.15	737.85	737.87		

<u>BEAM 12</u>

-34.98

737.48

737.50

Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevations Adjusted For Dead Load Deflection and Grinding
Bk. S. Abut.	2365+01.29	-11.23	739.06	739.08
Brg. S. Abut.	2365+03.99	-11.23	739.01	739.03
A B C D	2365+13.99 2365+23.99 2365+33.99 2365+43.99	-11.23 -11.23 -11.23 -11.23	738.82 738.62 738.42 738.22	738.86 738.68 738.48 738.26
Brg. N. Abut.	2365+50.76	-11.23	738.08	738.11
Bk. N. Abut.	2365+53.46	-11.23	738.03	738.05

NORTHBOUND STAGE CONSTRUCTION LINE

Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevations Adjusted For Dead Load Deflection and Grinding
Bk. S. Abut.	2365+00.45	-6.00	739.18	739.20
Brg. S. Abut.	2365+03.15	-6.00	739.13	739.15
A B C D	2365+13.15 2365+23.15 2365+33.15 2365+43.15	-6.00 -6.00 -6.00 -6.00	738.94 738.74 738.54 738.34	738.99 738.81 738.60 738.38
Brg. N. Abut.	2365+49.92	-6.00	738.21	738.23
Bk. N. Abut.	2365+52.62	-6.00	738.15	738.17

BEAM 13

Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevations Adjusted For Dead Load Deflection and Grinding
Bk. S. Abut.	2365+00.02	-3.31	739.24	739.26
Brg. S. Abut.	2365+02.72	-3.31	739.19	739.21
A B C D	2365+12.72 2365+22.72 2365+32.72 2365+42.72	-3.31 -3.31 -3.31 -3.31	739.00 738.80 738.61 738.41	739.05 738.87 738.67 738.45
Brg. N. Abut.	2365+49.49	-3.31	738.27	738.29
Bk. N. Abut.	2365+52.19	-3.31	738.21	738.23

All Stations and offsets measured to NB PG.

CZAPLICKI LOPEZ, PLLC 201 KENMARE DRIVE BURR RIDGE, ILLINOIS 60527

Bk. N. Abut.

USER NAME =	DESIGNED -	PAF	REVISED -	Ī
	CHECKED -	CSP	REVISED -	
PLOT SCALE =	DRAWN -	SVJ	REVISED -	
PLOT DATE =	CHECKED -	PAF	REVISED -	

NORTHBOUND PROFILE GRADE LINE

Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevations Adjusted For Dead Load Deflection and Grinding
Bk. S. Abut.	2364+99.49	0.00	739.32	739.34
Brg. S. Abut.	2365+02.19	0.00	739.27	739.29
A B C D	2365+12.19 2365+22.19 2365+32.19 2365+42.19	0.00 0.00 0.00 0.00	739.07 738.88 738.68 738.48	739.12 738.94 738.74 738.52
Brg. N. Abut.	2365+48.96	0.00	738.35	738.37
Bk. N. Abut.	2365+51.66	0.00	738.29	738.31

BEAM 14

Location	Station	0ffset	Theoretical Grade Elevations	Theoretical Grade Elevations Adjusted For Dead Load Deflection and Grinding	
Bk. S. Abut.	2364+98.75	4.60	739.24	739.26	
Brg. S. Abut.	2365+01.45	4.60	739.19	739.21	
A B C D	2365+11.45 2365+21.45 2365+31.45 2365+41.45	4.60 4.60 4.60 4.60	739.00 738.80 738.60 738.40	739.05 738.87 738.67 738.45	
Brg. N. Abut.	2365+48.22	4.60	738.27	738.29	
Bk. N. Abut.	2365+50.92	4.60	738.21	738.23	

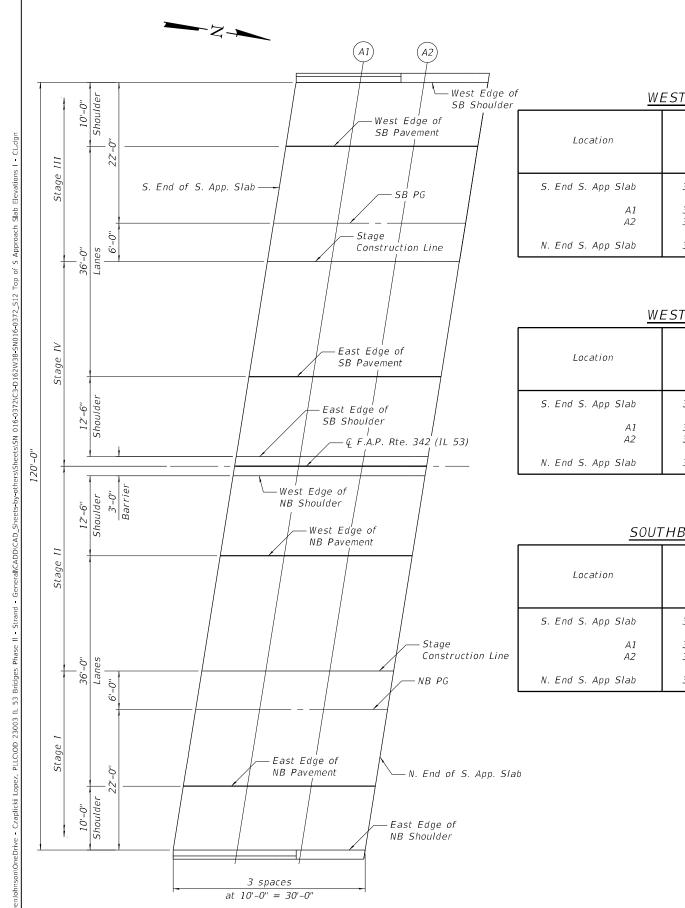
<u>BEAM 15</u>

Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevations Adjusted For Dead Load Deflection and Grinding
Bk. S. Abut.	2364+97.48	12.52	739.11	739.13
Brg. S. Abut.	2365+00.18	12.52	739.06	739.08
A B C D	2365+10.18 2365+20.18 2365+30.18 2365+40.18	12.52 12.52 12.52 12.52	738.86 738.67 738.47 738.27	738.91 738.73 738.53 738.31
Brg. N. Abut.	2365+46.96	12.52	738.14	738.16
Bk. N. Abut.	2365+49.65	12.52	738.08	738.10

<u>BEAM 16</u>

Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevations Adjusted For Dead Load Deflection and Grinding
Bk. S. Abut.	2364+96.22	20.44	738.97	738.99
Brg. S. Abut.	2364+98.92	20.44	738.92	738.94
A B C D	2365+08.92 2365+18.92 2365+28.92 2365+38.92	20.44 20.44 20.44 20.44	738.73 738.53 738.34 738.14	738.78 738.60 738.40 738.18
Brg. N. Abut.	2365+45.69	20.44	738.00	738.02
Bk. N. Abut.	2365+48.39	20.44	737.95	737.97

Note:


All Stations and offsets measured to NB PG.

CZAPLICKI LOPEZ, PLLC 201 KENMARE DRIVE BURR RIDGE, ILLINOIS 60527 630-915-8861 CZAPLICKI LOPEZ DESIGN FIRM NO: 184,008135
 USER NAME
 =
 DESIGNED
 PAF
 REVISED

 CHECKED
 CSP
 REVISED

 PLOT SCALE
 =
 DRAWN
 SVJ
 REVISED

 PLOT DATE
 =
 CHECKED
 PAF
 REVISED

<u>SOUTHBOUND</u>

WEST EDGE OF SB SHOULDER *

Location	Station	0ffset	Theoretical Grade Elevations	Theoretical Grade Elevation Adjusted for Grinding
S. End S. App Slab	3364+70.45	-22.00	739.18	739.20
A1 A2	3364+80.45 3364+90.45	-22.00 -22.00	739.00 738.81	739.02 738.83
N. End S. App Slab	3365+00.45	-22.00	738.62	738.64

STAGE CONSTRUCTION LINE *

Location	Station	0ffset	Theoretical Grade Elevations	Theoretical Grade Elevation Adjusted for Grinding
S. End S. App Slab	3364+65.96	6.00	739.58	739.61
A1 A2	3364+75.96 3364+85.96	6.00 6.00	739.40 739.21	739.42 739.23
N. End S. App Slab	3364+95.96	6.00	739.02	739.04

WEST EDGE OF SB PAVEMENT *

Location	Station	0ffset	Theoretical Grade Elevations	Theoretical Grade Elevation Adjusted for Grinding
S. End S. App Slab	3364+68.84	-12.00	739.41	739.43
A1 A2	3364+78.84 3364+88.84	-12.00 -12.00	739.23 739.04	739.25 739.06
N. End S. App Slab	3364+98.84	-12.00	738.85	738.87

EAST EDGE OF SB PAVEMENT *

Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevation Adjusted for Grinding
S. End S. App Slab	3364+63.08	24.00	739.28	739.30
A1 A2	3364+73.08 3364+83.08	24.00 24.00	739.09 738.91	739.11 738.93
N. End S. App Slab	3364+93.08	24.00	738.72	738.74

SOUTHBOUND PROFILE GRADE LINE *

Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevation Adjusted for Grinding
S. End S. App Slab	3364+66.92	0.00	739.69	739.71
A1 A2	3364+76.92 3364+86.92	0.00 0.00	739.50 739.31	739.52 739.33
N. End S. App Slab	3364+96.92	0.00	739.12	739.14

EAST EDGE OF SB SHOULDER *

Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevation Adjusted for Grinding
S. End S. App Slab	3364+61.08	36.50	739.06	739.09
A1 A2	3364+71.08 3364+81.08	36.50 36.50	738.88 738.69	738.90 738.72
N. End S. App Slab	3364+91.08	36.50	738.51	738.53

<u>PLAN</u>

* Station and Offset measured to SB PG

0		CZAPLICKI LOPEZ, PLLC	Γ
闄		201 KENMARE DRIVE	Г
NAME:		BURR RIDGE, ILLINOIS 60527	H
		630-915-8861	ı
ILE	CZAPLICKI LOPEZ	DESIGN FIRM NO: 184,008135	Г

	USER NAME =	DESIGNED - PAF	REVISED -
527		CHECKED - CSP	REVISED -
321	PLOT SCALE =	DRAWN - SVJ	REVISED -
135	PLOT DATE =	CHECKED - PAF	REVISED -

TOP OF SOUTH APPROACH SLAB ELEVATIONS I		SECTION	COUNTY	TOTAL SHEETS	SHEET NO.
STRUCTURE NO. 016-0372		(531) BR 23	соок	1211	925
311(00101)L 1(0, 010-0372			CONTRA	CT NO. 6	2W38
SHEFT 12 OF 38 SHEFTS		ILLINOIS EED AID	PROJECT		-

<u>NORTHBOUND</u>

WEST EDGE OF NB SHOULDER *

Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevation Adjusted for Grinding
S. End N. App Slab	2365+56.49	-36.50	737.46	737.48
A3 A4	2365+66.49 2365+76.49	-36.50 -36.50	737.26 737.05	737.28 737.07
N. End N. App Slab	2365+86.49	-36.50	736.84	736.86

NORTHBOUND PROFILE GRADE LINE *

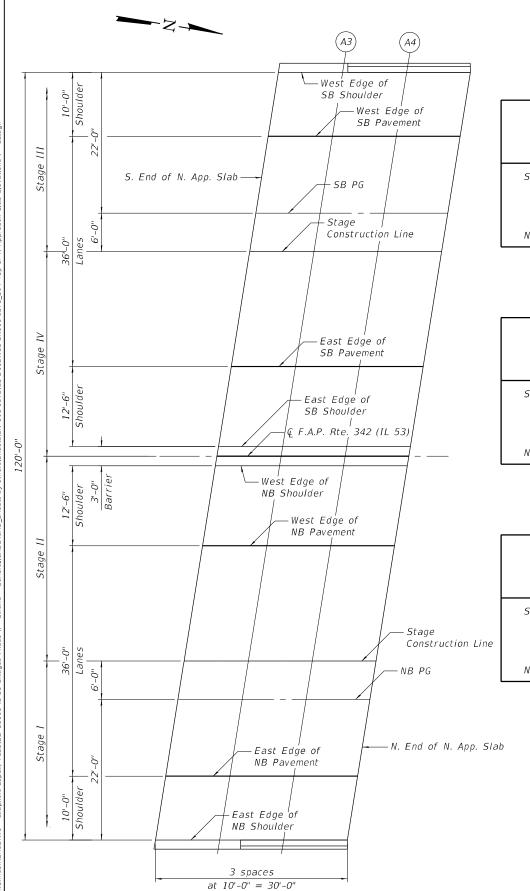
Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevation Adjusted for Grinding
S. End N. App Slab	2365+50.65	0.00	738.31	738.33
A3 A4	2365+60.65 2365+70.65	0.00 0.00	738.11 737.90	738.13 737.92
N. End N. App Slab	2365+80.65	0.00	737.69	737.71

WEST EDGE OF NB PAVEMENT *

Location	Station	0ffset	Theoretical Grade Elevations	Theoretical Grade Elevation Adjusted for Grinding
S. End N. App Slab	2365+54.49	-24.00	737.75	737.77
A3 A4	2365+64.49 2365+74.49	-24.00 -24.00	737.55 737.34	737.57 737.36
N. End N. App Slab	2365+84.49	-24.00	737.13	737.15

EAST EDGE OF NB PAVEMENT *

Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevation Adjusted for Grinding
S. End N. App Slab	2365+48.73	12.00	738.11	738.13
A3 A4	2365+58.73 2365+68.73	12.00 12.00	737.91 737.70	737.93 737.72
N. End N. App Slab	2365+78.73	12.00	737.49	737.51


<u>STAGE CONSTRUCTION LINE</u> *

Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevation Adjusted for Grinding
S. End N. App Slab	2365+51.61	-6.00	738.17	738.19
A3 A4	2365+61.61 2365+71.61	-6.00 -6.00	737.97 737.76	737.99 737.78
N. End N. App Slab	2365+81.61	-6.00	737.55	737.57

EAST EDGE OF NB SHOULDER *

Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevation Adjusted for Grinding
S. End N. App Slab	2365+47.12	22.00	737.94	737.96
A3 A4	2365+57.12 2365+67.12	22.00 22.00	737.74 737.53	737.76 737.55
N. End N. App Slab	2365+77.12	22.00	737.33	737.35

* Station and Offset measured to NB PG

<u>SOUTHBOUND</u>

WEST EDGE OF SB SHOULDER *

Location	Station	0ffset	Theoretical Grade Elevations	Theoretical Grade Elevation Adjusted for Grinding
S. End N. App Slab	3365+50.59	-22.00	737.62	737.64
A3 A4	3365+60.59 3365+70.59	-22.00 -22.00	737.41 737.20	737.43 737.22
N. End N. App Slab	3365+80.59	-22.00	736.99	737.01

STAGE CONSTRUCTION LINE *

Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevation Adjusted for Grinding
S. End N. App Slab	3365+46.11	6.00	738.03	738.05
A3 A4	3365+56.11 3365+66.11	6.00 6.00	737.82 737.61	737.84 737.64
N. End N. App Slab	3365+76.11	6.00	737.40	737.42

WEST EDGE OF SB PAVEMENT *

Location	Station	0ffset	Theoretical Grade Elevations	Theoretical Grade Elevation Adjusted for Grinding
S. End N. App Slab	3365+48.99	-12.00	737.85	737.87
A3 A4	3365+58.99 3365+68.99	-12.00 -12.00	737.64 737.43	737.66 737.46
N. End N. App Slab	3365+78.99	-12.00	737.22	737.24

EAST EDGE OF SB PAVEMENT *

Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevation Adjusted for Grinding
S. End N. App Slab	3365+43.22	24.00	737.73	737.75
A3 A4	3365+53.22 3365+63.22	24.00 24.00	737.52 737.32	737.54 737.34
N. End N. App Slab	3365+73.22	24.00	737.10	737.13

SOUTHBOUND PROFILE GRADE LINE *

Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevation Adjusted for Grinding
S. End N. App Slab	3365+47.07	0.00	738.13	738.15
A3 A4	3365+57.07 3365+67.07	0.00 0.00	737.92 737.71	737.94 737.74
N. End N. App Slab	3365+77.07	0.00	737.50	737.52

EAST EDGE OF SB SHOULDER *

Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevation Adjusted for Grinding
S. End N. App Slab	3365+41.22	36.50	737.52	737.54
A3 A4	3365+51.22 3365+61.22	36.50 36.50	737.31 737.11	737.34 737.13
N. End N. App Slab	3365+71.22	36.50	736.90	736.92

PLAN

* Station and Offset measured to SB PG

U			Τ
		CZAPLICKI LOPEZ, PLLC	ı
焸		201 KENMARE DRIVE	Γ
VAME:		BURR RIDGE, ILLINOIS 60527	ŀ
<u>~</u> ш		630-915-8861	L
⊒۱	CZAPLICKI LOPEZ	DESIGN FIRM NO: 184,008135	I

9/20/2024 10:00:18 AM

	USER NAME =	DESIGNED	-	PAF	REVISED	-
27		CHECKED	-	CSP	REVISED	-
21	PLOT SCALE =	DRAWN	-	SVJ	REVISED	-
35	PLOT DATE =	CHECKED	-	PAF	REVISED	-

TOP OF NORTH APPROACH SLAB ELEVATIONS I	F.A.P RTE.	SECTION	COUNTY	TOTAL SHEETS	SHEET NO.
STRUCTURE NO. 016-0372		(531) BR 23	соок	1211	927
311(00101)L 1(0; 0±0-0312			CONTRA	CT NO. 6	2W38
SHEET 14 OF 38 SHEETS		ILLINOIS FED AIR	PROJECT		-

<u>NORTHBOUND</u>

WEST EDGE OF NB SHOULDER *

Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevation Adjusted for Grinding
S. End S. App Slab	2364+76.35	-36.50	739.03	739.05
A1 A2	2364+86.35 2364+96.35	-36.50 -36.50	738.84 738.65	738.86 738.67
N. End S. App Slab	2365+06.35	-36.50	738.46	738.48

NORTHBOUND PROFILE GRADE LINE *

Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevation Adjusted for Grinding
S. End S. App Slab	2364+70.50	0.00	739.86	739.88
A1 A2	2364+80.50 2364+90.50	0.00 0.00	739.68 739.49	739.70 739.51
N. End S. App Slab	2365+00.50	0.00	739.30	739.32

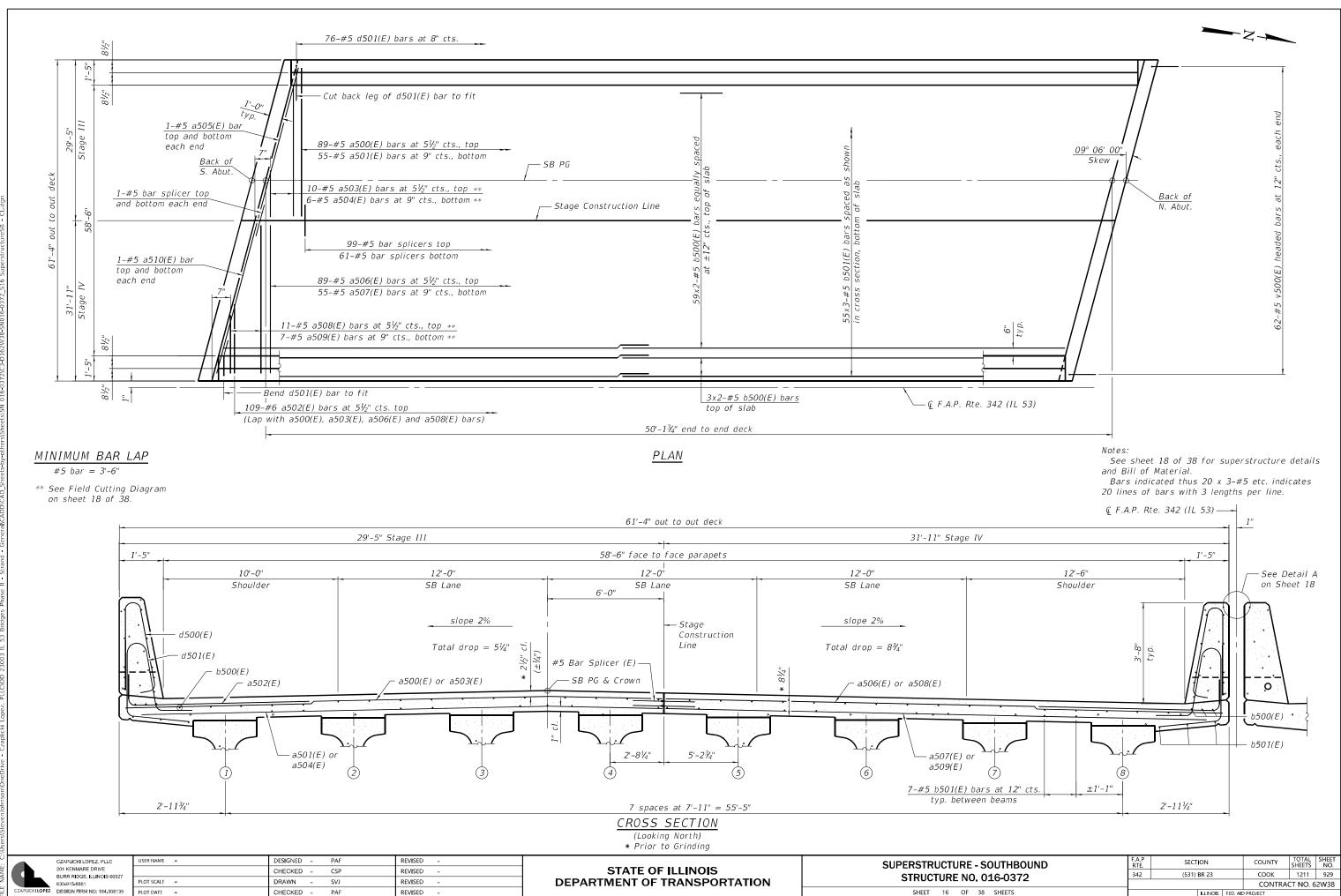
WEST EDGE OF NB PAVEMENT *

Location	Station	0ffset	Theoretical Grade Elevations	Theoretical Grade Elevation Adjusted for Grinding
S. End S. App Slab	2364+74.35	-24.00	739.31	739.33
A1 A2	2364+84.35 2364+94.35	-24.00 -24.00	739.13 738.94	739.15 738.96
N. End S. App Slab	2365+04.35	-24.00	738.75	738.77

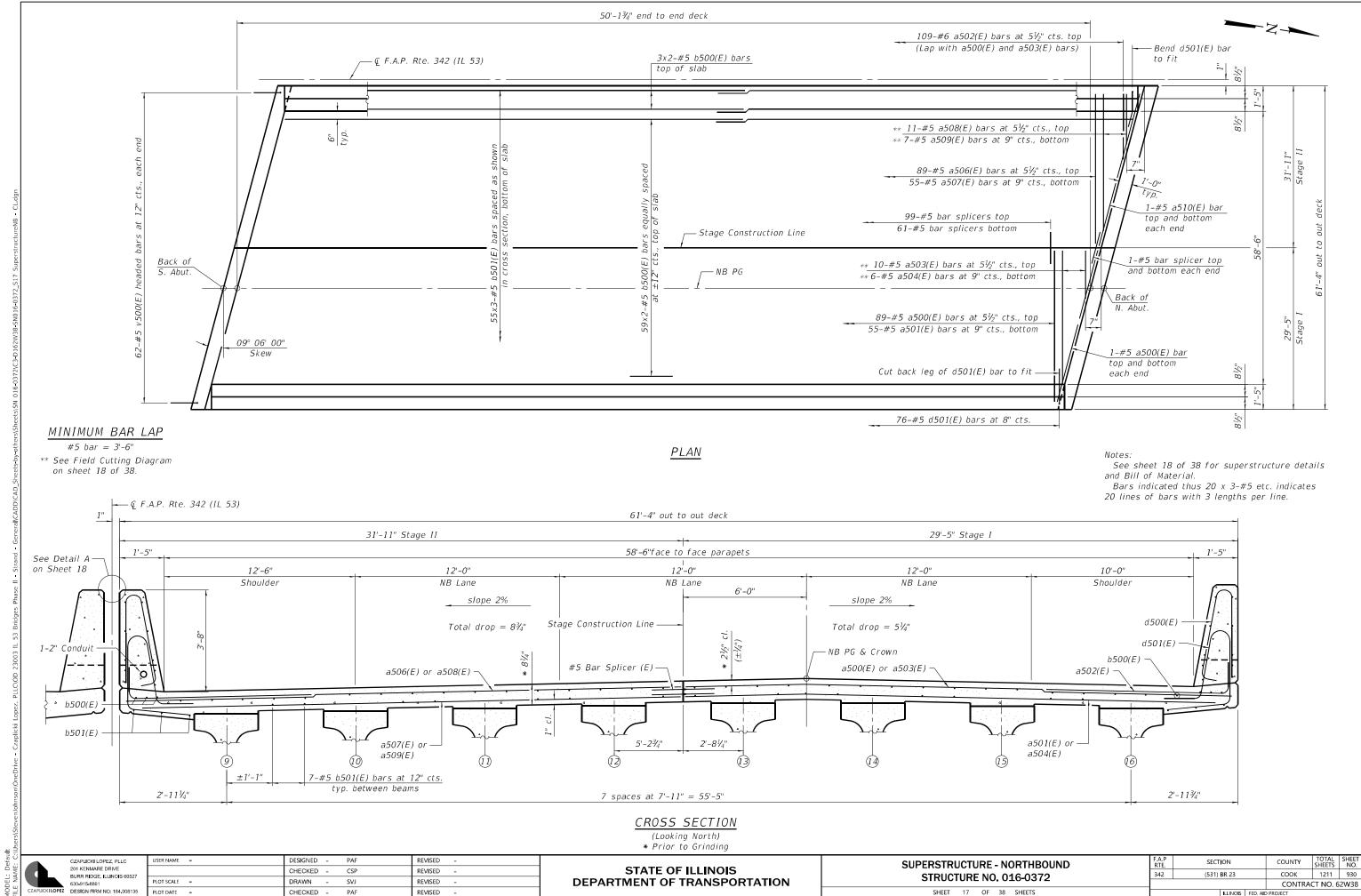
EAST EDGE OF NB PAVEMENT *

Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevation Adjusted for Grinding
S. End S. App Slab	2364+68.58	12.00	739.66	739.68
A1 A2	2364+78.58 2364+88.58	12.00 12.00	739.47 739.29	739.50 739.31
N. End S. App Slab	2364+98.58	12.00	739.10	739.12

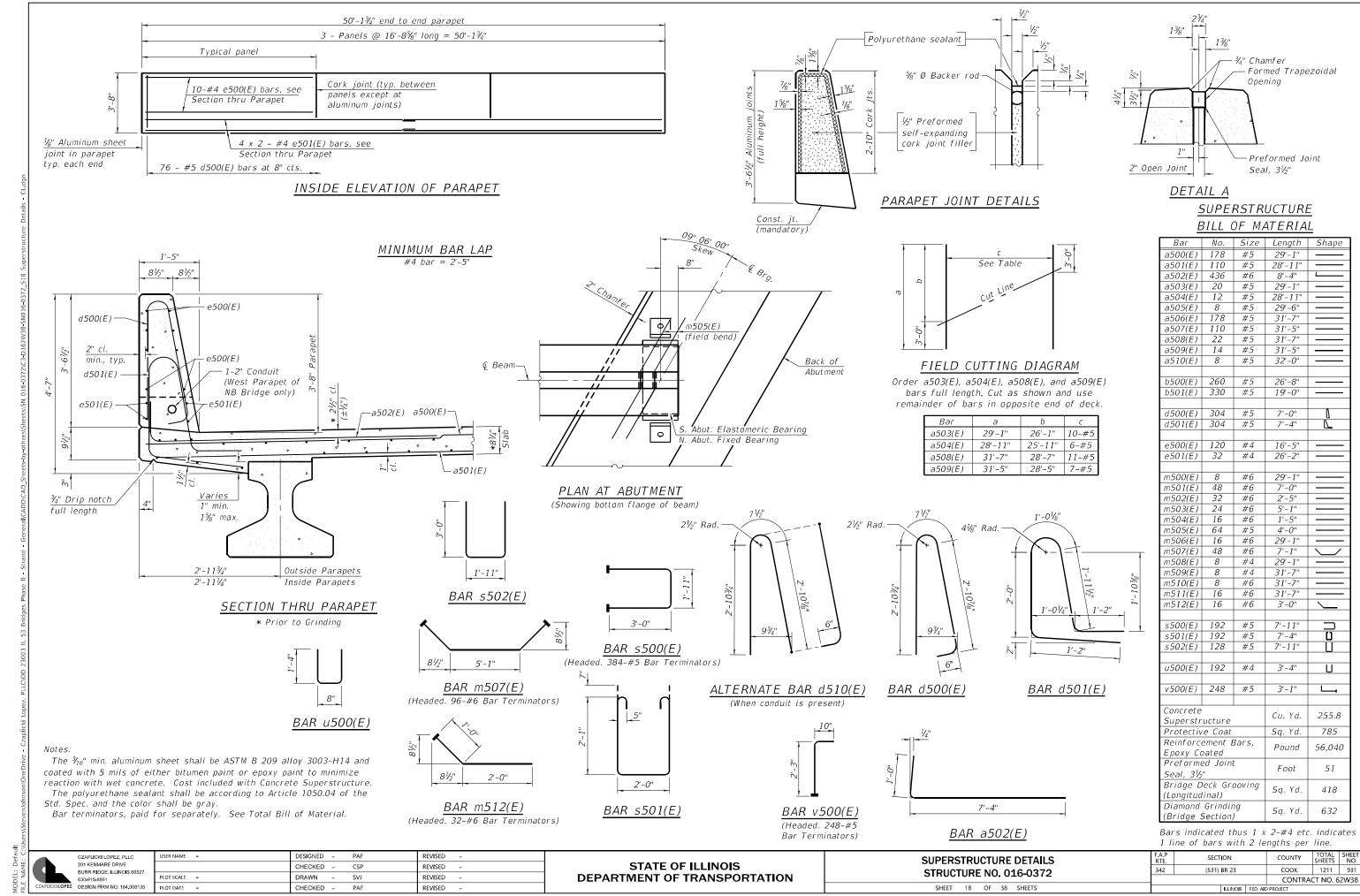
<u>STAGE CONSTRUCTION LINE</u> *

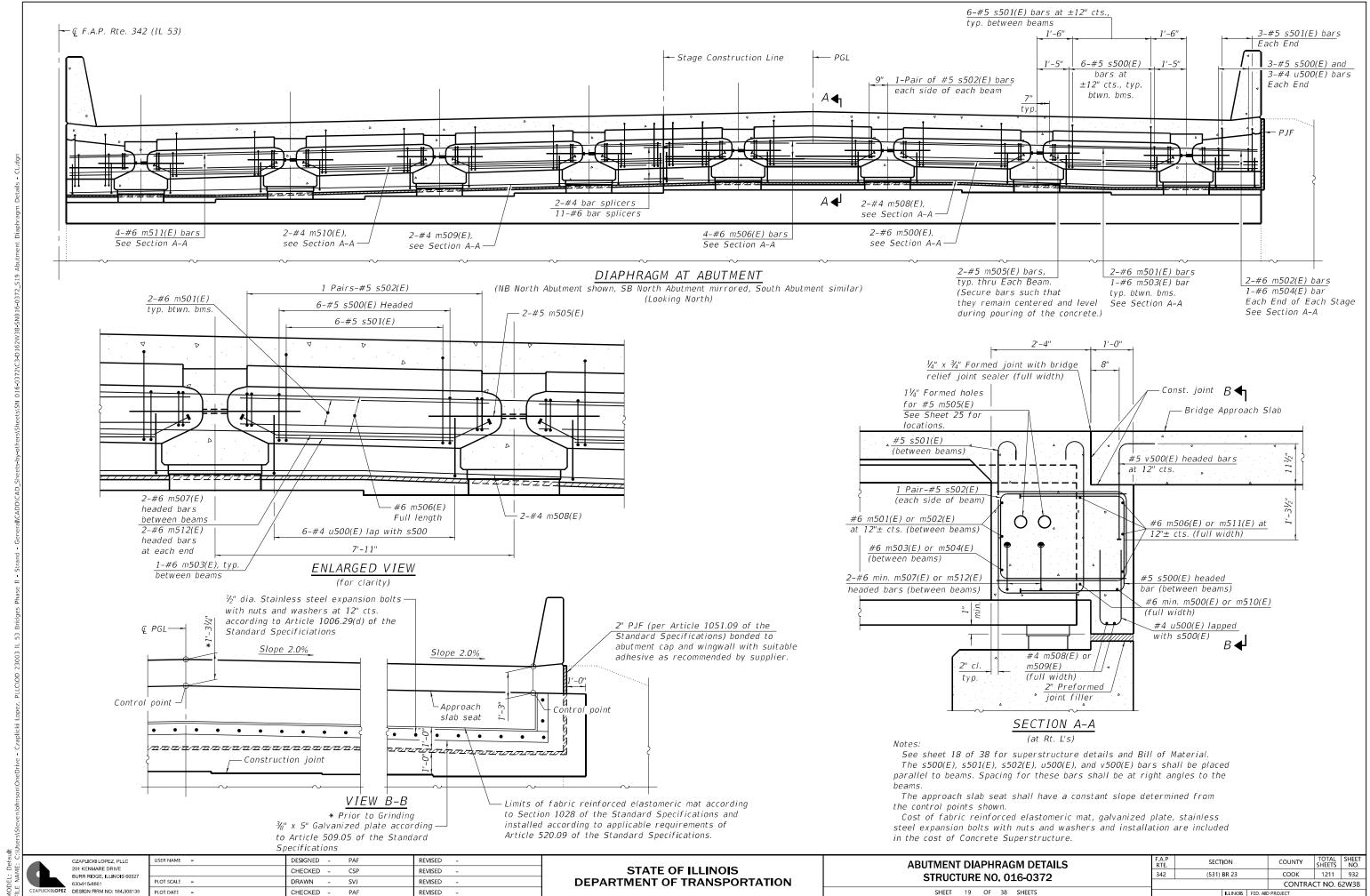

Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevation Adjusted for Grinding
S. End S. App Slab	2364+71.46	-6.00	739.73	739.75
A1 A2	2364+81.46 2364+91.46	-6.00 -6.00	739.54 739.35	739.56 739.37
N. End S. App Slab	2365+01.46	-6.00	739.16	739.18

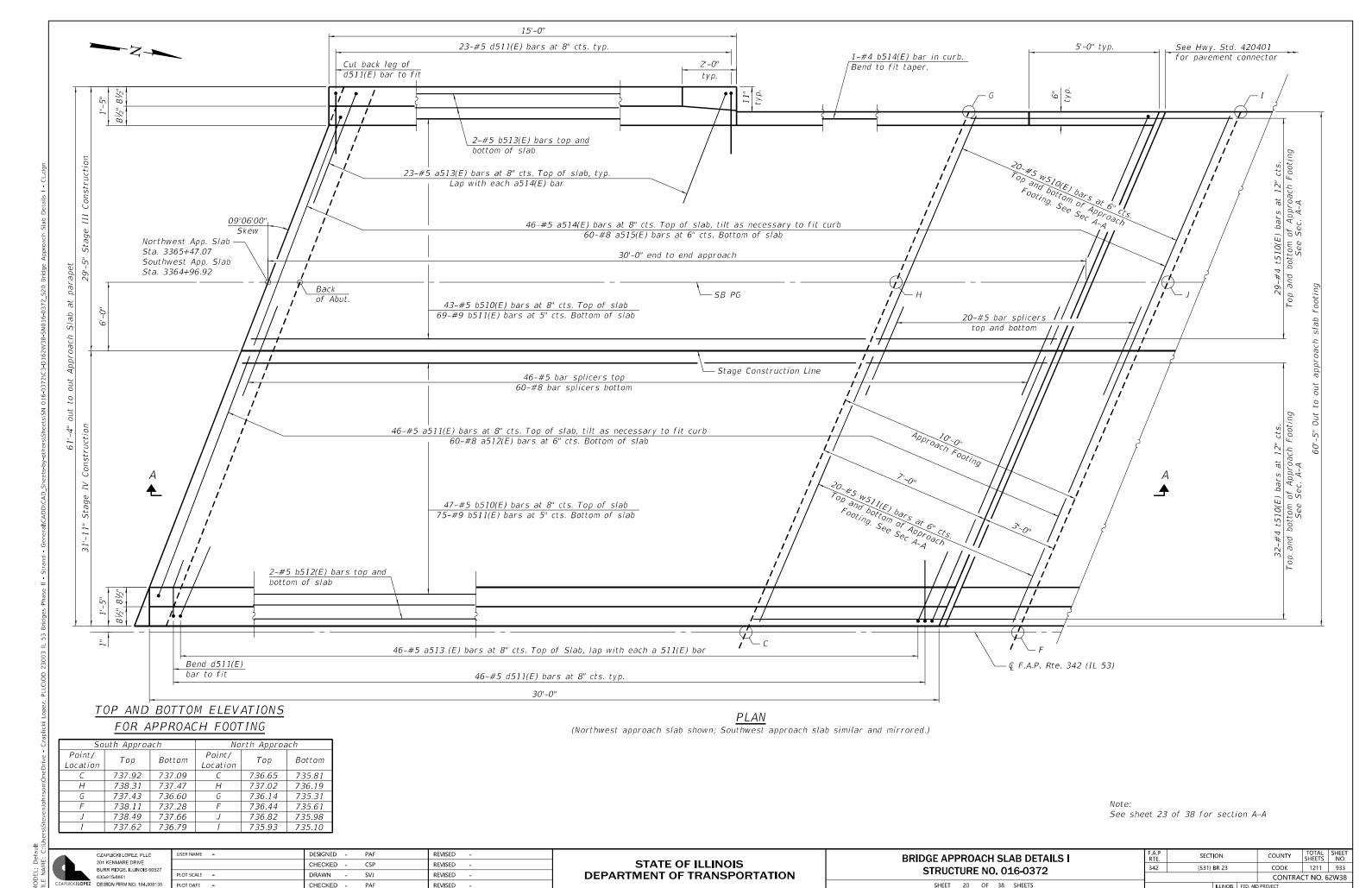
EAST EDGE OF NB SHOULDER *

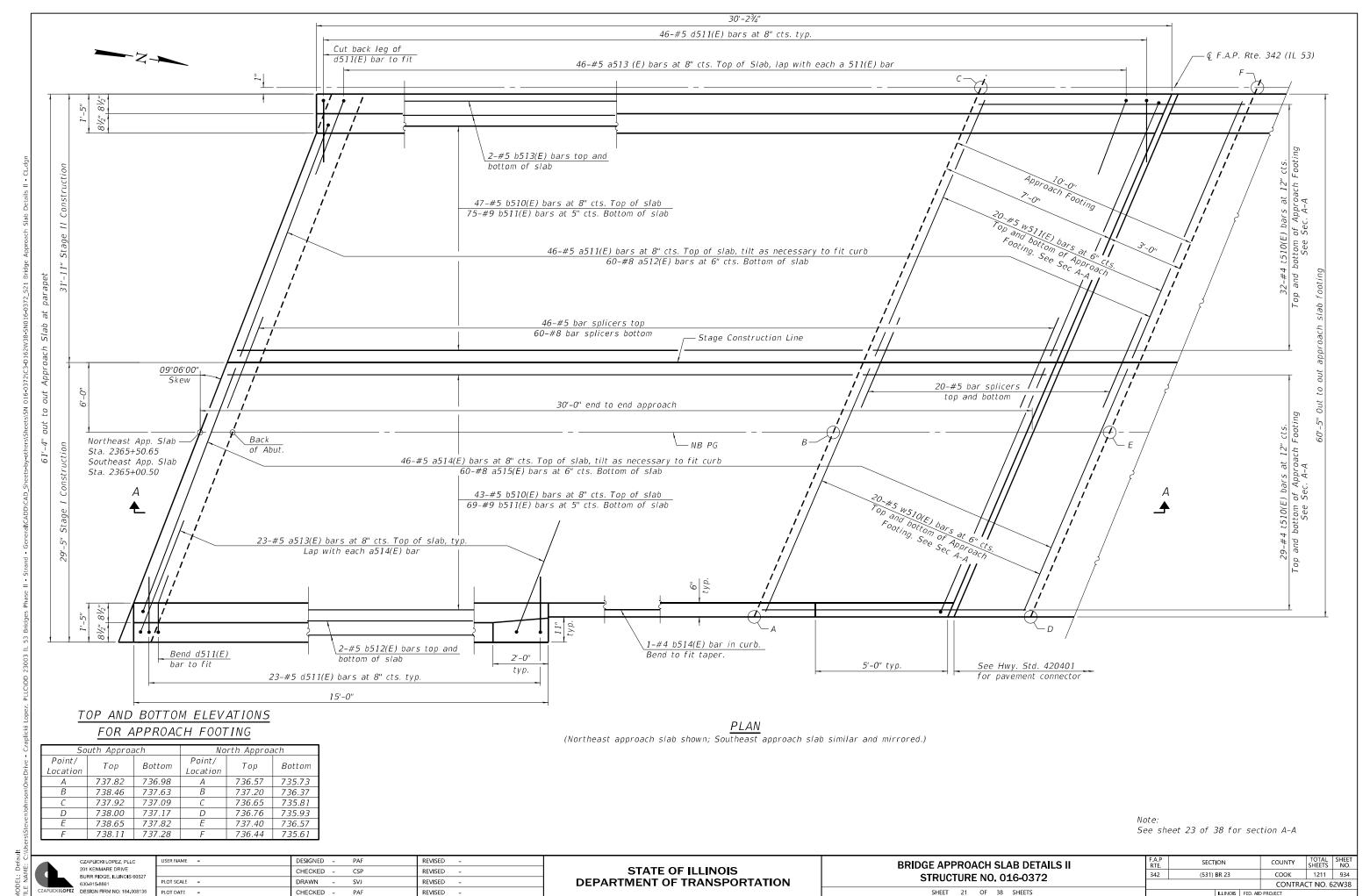

Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevation Adjusted for Grinding
S. End S. App Slab	2364+66.98	22.00	739.49	739.51
A1 A2	2364+76.98 2364+86.98	22.00 22.00	739.30 739.12	739.32 739.14
N. End S. App Slab	2364+96.98	22.00	738.93	738.95

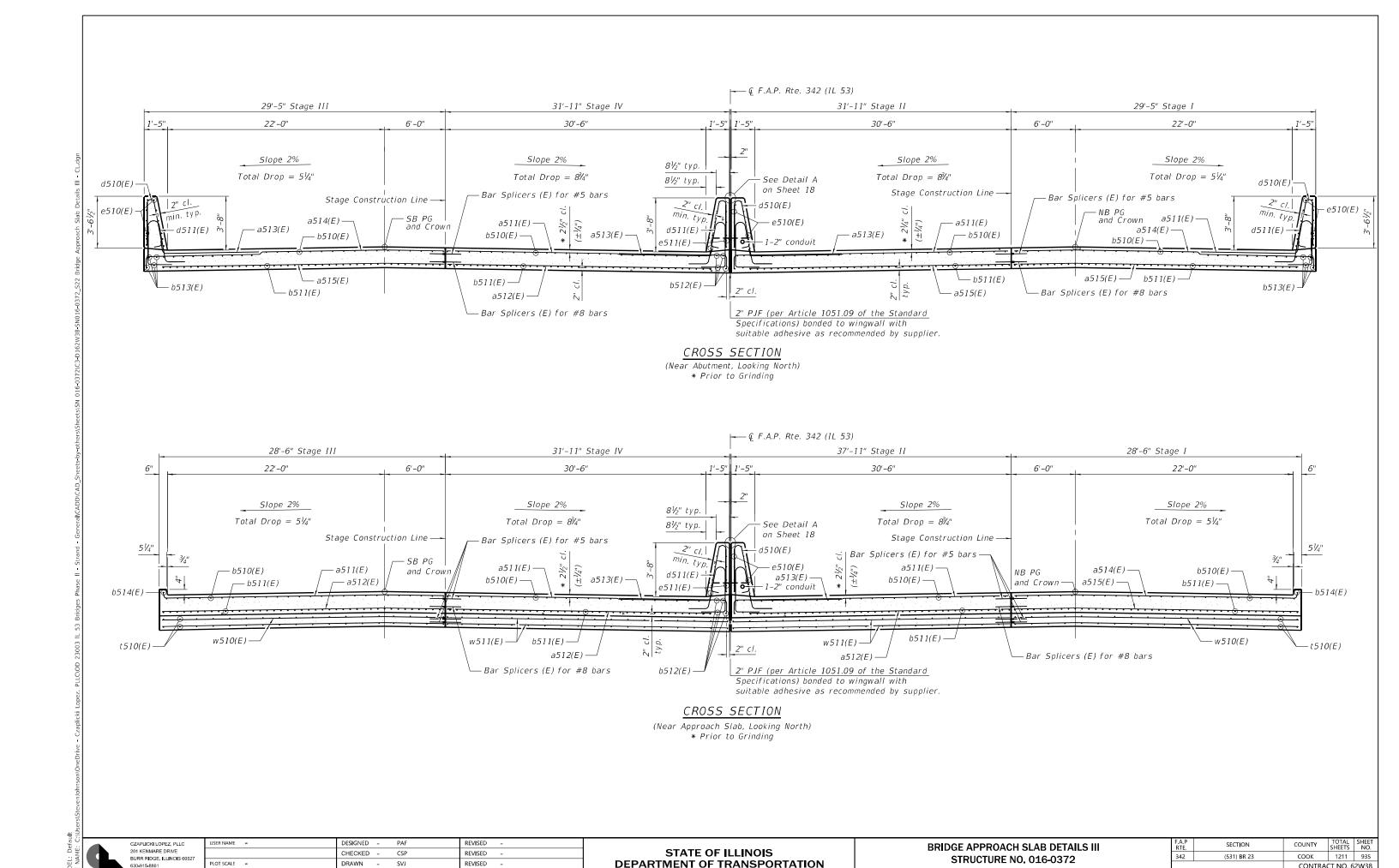
* Station and Offset measured to NB PG


9/20/2024 8:43:21 AM


9/20/2024 8:43:21 AM


9/20/2024 8:43:22 AM


9/20/2024 8:43:22 AM


9/20/2024 8:43:23 AM

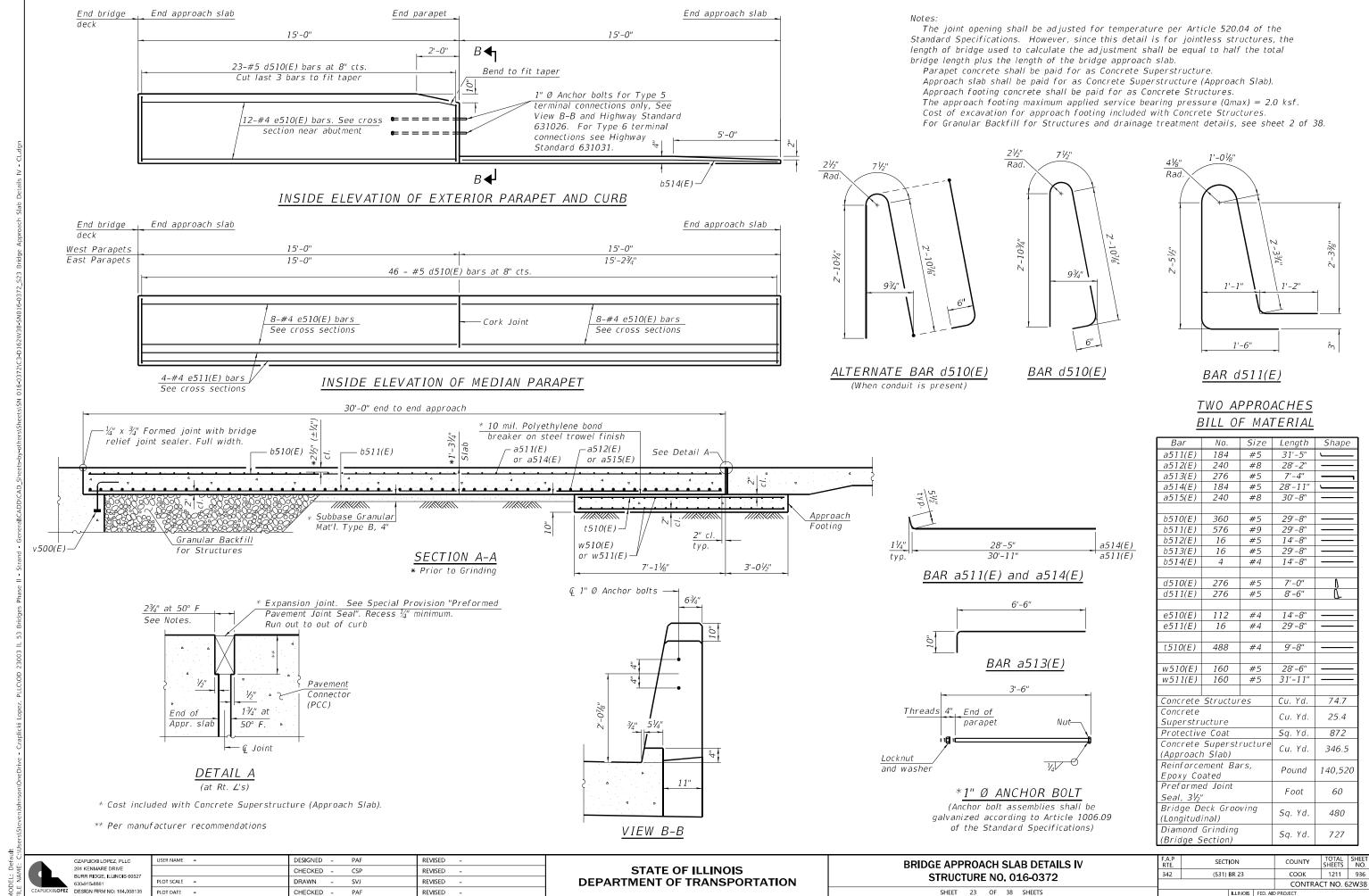
9/20/2024 8:43:24 AM

9/20/2024 8:43:24 AM

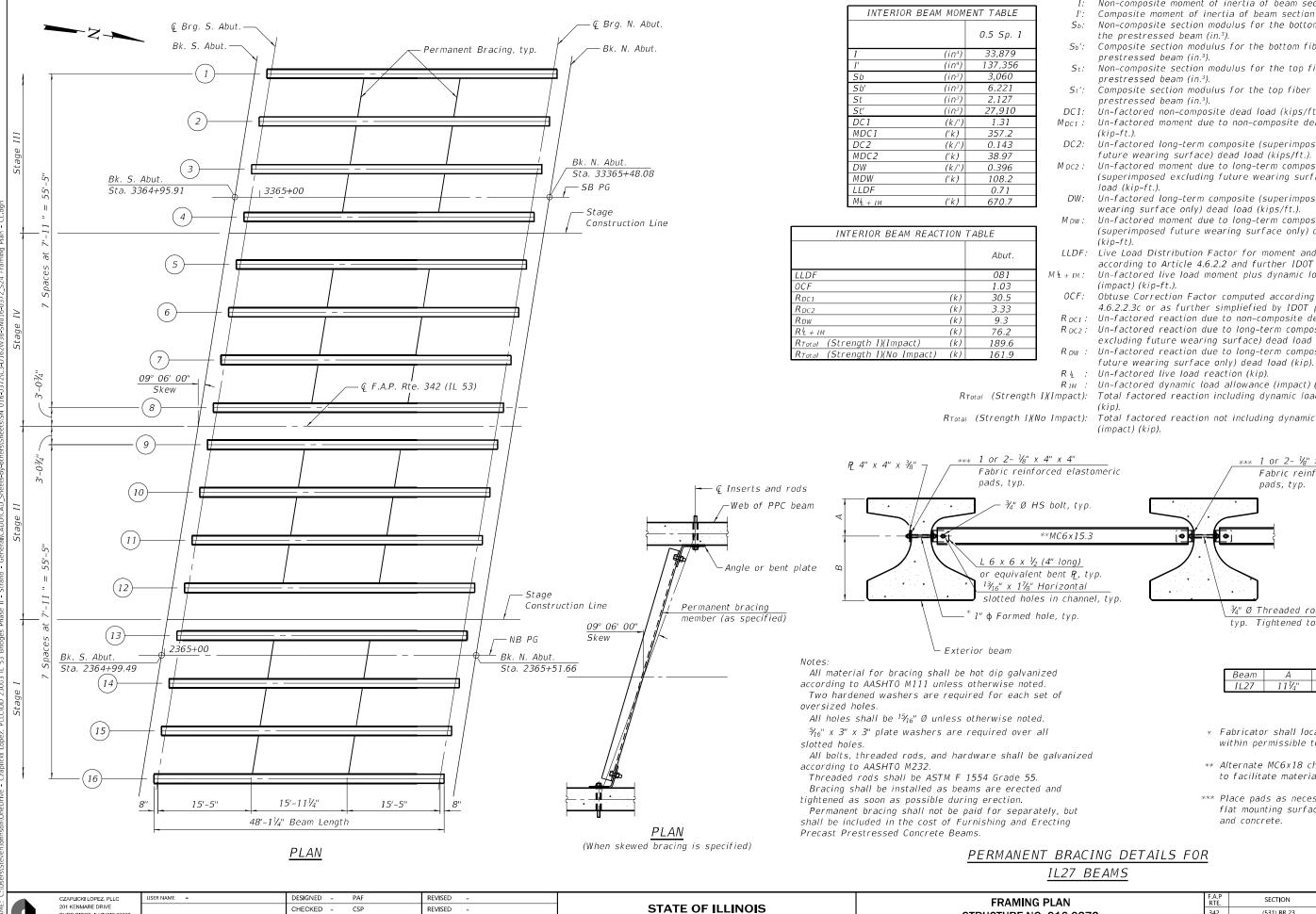
CONTRACT NO. 62W38

SHEET 22 OF 38 SHEETS

630-915-886


EZ DESIGN FIRM NO: 184,008135

PLOT DATE =


CHECKED -

PAF

REVISED

9/20/2024 8:43:25 AM

DEPARTMENT OF TRANSPORTATION

Non-composite moment of inertia of beam section (in.4).

Composite moment of inertia of beam section (in.4).

Non-composite section modulus for the bottom fiber of

 S_b ': Composite section modulus for the bottom fiber of the

Non-composite section modulus for the top fiber of the

Composite section modulus for the top fiber of the

Un-factored non-composite dead load (kips/ft.).

Un-factored moment due to non-composite dead load

Un-factored long-term composite (superimposed excluding future wearing surface) dead load (kips/ft.).

Un-factored moment due to long-term composite (superimposed excluding future wearing surface) dead

DW: Un-factored long-term composite (superimposed future

Un-factored moment due to long-term composite (superimposed future wearing surface only) dead load

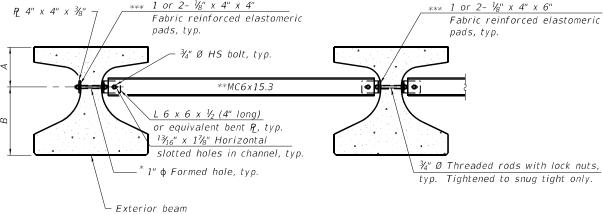
LLDF: Live Load Distribution Factor for moment and shear computed according to Article 4.6.2.2 and further IDOT provisions.

Un-factored live load moment plus dynamic load allowance (impact) (kip-ft.).

Obtuse Correction Factor computed according to Article 4.6.2.2.3c or as further simpliefied by IDOT provisions.

R_{DC1}: Un-factored reaction due to non-composite dead load (kip).

R_{DC2}: Un-factored reaction due to long-term composite (superimposed


excluding future wearing surface) dead load (kip). Un-factored reaction due to long-term composite (superimposed

: Un-factored live load reaction (kip).

R_{IM}: Un-factored dynamic load allowance (impact) (kip).

RTotal (Strength I)(Impact): Total factored reaction including dynamic load allowance (impact)

R_{Total} (Strength I)(No Impact): Total factored reaction not including dynamic load allowance

* Fabricator shall locate to miss strands

 Beam
 A
 B

 IL27 $11\frac{1}{4}$ "
 $1'-3\frac{3}{4}$ "

within permissible tolerances.

** Alternate MC6x18 channels are permitted to facilitate material acquisition.

*** Place pads as necessary to provide a flat mounting surface between the steel and concrete.

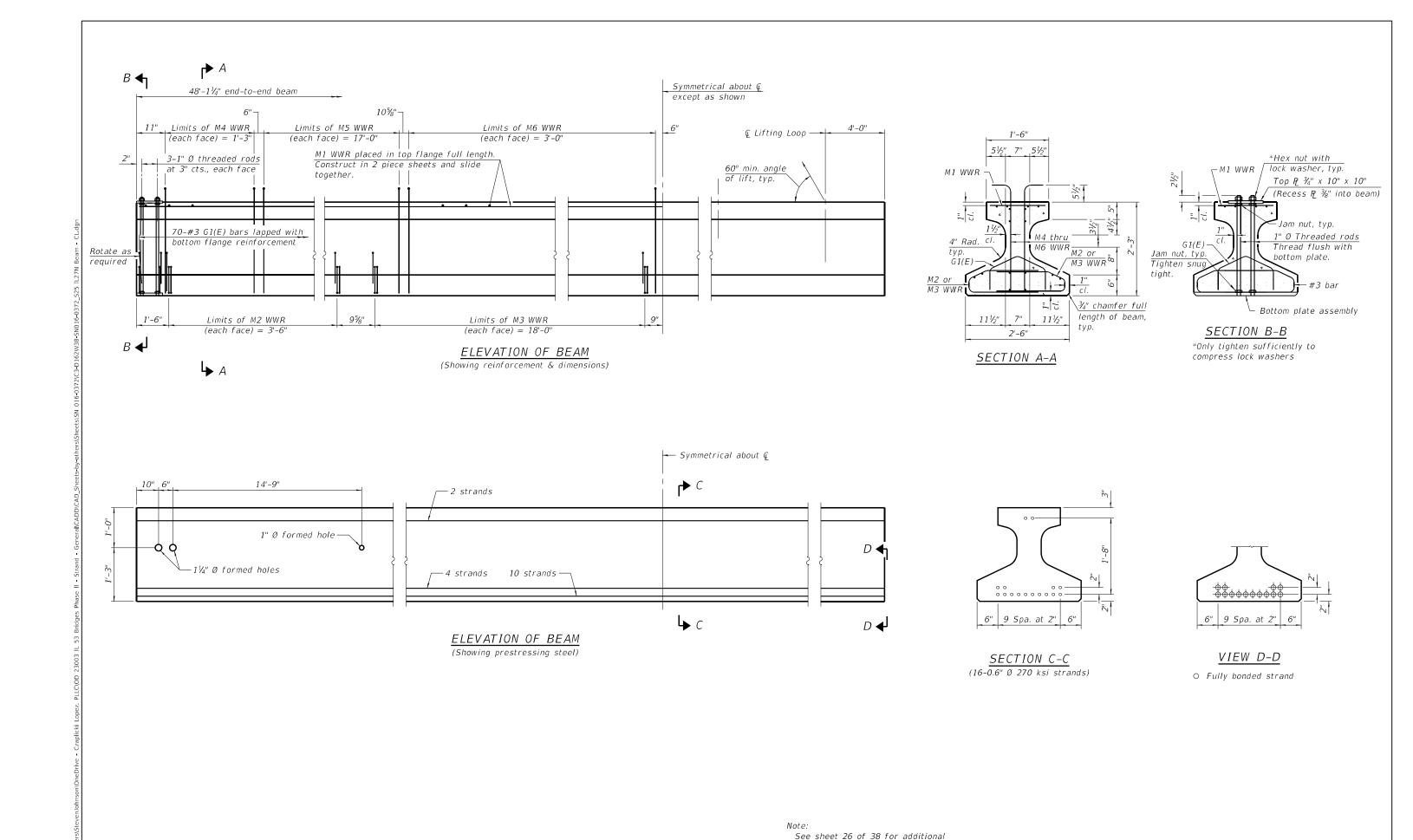
PERMANENT BRACING DETAILS FOR

FRAMING PLAN STRUCTURE NO. 016-0372		SECT	ION		COUNTY	TOTAL SHEETS	SHEET NO.
		342 (531) BR 23		соок	1211	937	
					CONTRA	CT NO. 6	2W38
SHEET 24 OF 38 SHEETS			ILLINOIS	FED. AID	PROJECT		

BURR RIDGE, ILLINOIS 60527

PLOT DATE =

630-915-886


DRAWN

CHECKED -

PAF

REVISED

REVISED

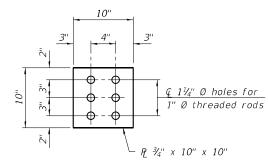
CZAPLICKI LOPEZ, PLLC
201 KENMARE DRIVE
BURR RIDGE, ILLINOIS 60527
630-915-8881

 USER NAME
 =
 DESIGNED
 PAF
 REVISED

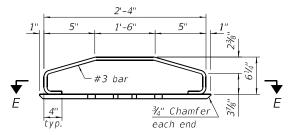
 CHECKED
 CSP
 REVISED

 PLOT SCALE
 DRAWN
 SVJ
 REVISED

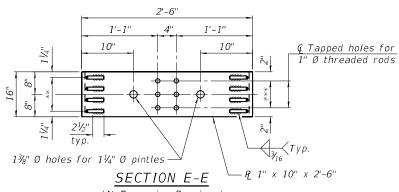
 PLOT DATE
 CHECKED
 PAF
 REVISED


STATE OF ILLINOIS
DEPARTMENT OF TRANSPORTATION

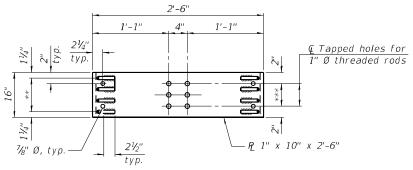
details and Bill of Material.


STRUCTURE NO. 016-0372

SHEET 25 OF 38 SHEETS

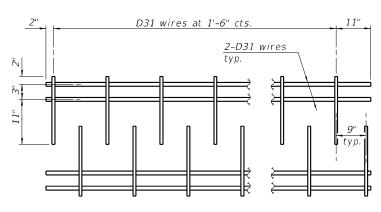

9/20/2024 8:43:26 AM

PLAN - TOP PLATE



ELEVATION - BOTTOM PLATE ASSEMBLY

(At Expansion Bearings) ** 6 Spaces at $2\frac{1}{4}$ " = $13\frac{1}{2}$ "


*** 4 Spaces at 3" = 12"

SECTION E-E

(At Fixed Bearings) ** 6 Spaces at 21/4" = 131/2"

*** 4 Spaces at 3" = 12"

M1 WWR DETAIL

When multiple sheets of M1 WWR are required along the beam length, #5(E) bars (5'-0" long) shall be used to splice the longitudinal D31 wires together (Min. Lap 2'-2").

NOTES

Inserts for ¾" Ø threaded dowel rods, when specified, are to be two strut, ferrule type for interior beams and single ferrule, flared loop type for exterior beams. Prestressing steel shall be uncoated high strength, low relaxation 7-wire strand, Grade 270. The nominal diameter for beam strands shall be 0.6" and the nominal cross-sectional area shall be 0.217 sq. in. The nominal diameter for lifting loops shall be $\frac{1}{2}$ " and the nominal cross sectional area shall be 0.153 sq. in.

The beams shall have a final concrete compressive strength, f'c, of 8500 psi and a release concrete compressive strength, f'ci, of 6500 psi

A minimum $2\frac{1}{2}$ " Ø lifting pin shall be used to engage the lifting loops during handling. The top and bottom plates shall be AASHTO M270 Grade 50.

The top plates and bottom plate assemblies shall be galvanized according to AASHTO M111. The threaded rods, nuts and washers shall be galvanized according to AASHTO M232. Threaded rods shall be ASTM F 1554 Grade 55.

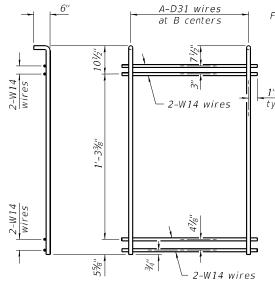
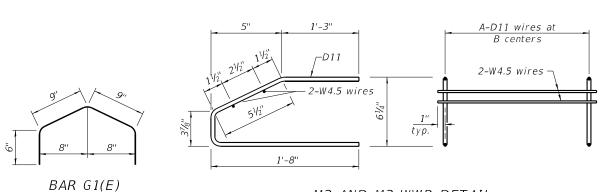

Welded Wire Reinforcement (WWR) shall conform to ASTM A884 with a Class A, Type 1 epoxy coating or ASTM A1060, Table 3 galvanized coating.

TABLE OF DIMENSIONS


(The WWR designs assume grade 60. If necessary, this permits the fabricator to directly substitute grade 60 rebar as detailed in the Manual for Fabrication of Precast Prestressed Concrete Products.)

SPAN 1

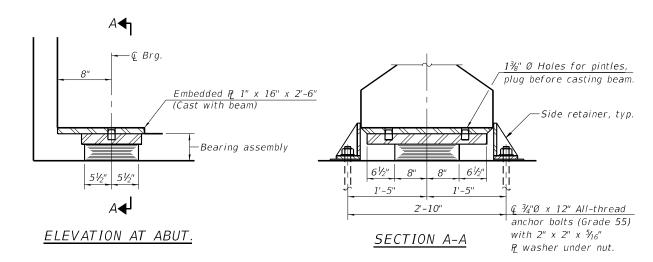
WWR	Α	В
M2	15	3"
М3	13	1'-6''
M4	6	3"
M5	35	6"
M6	4	1'-0"

M4 THRU M6 WWR DETAIL (See Table of Dimensions)

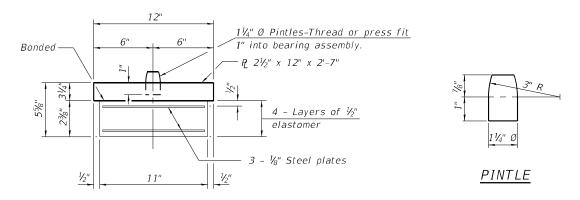
M2 AND M3 WWR DETAIL

(See Table of Dimensions)

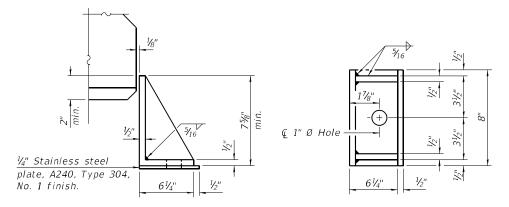
-3" Radius $-1\frac{1}{2}$ " Ø Conduit -Top of Beam 270 ksi strands _6" Fan at Fan at | LIFTING LOOP DETAIL


BILL OF MATERIAL

Item	Unit	Total
Furnishing and Erecting Precast Prestressed Concrete Beams, IL27N	Ft.	770



	USER NAME =	DESIGNED	-	PAF	REVISED	-
,		CHECKED	-	CSP	REVISED	-
'	PLOT SCALE =	DRAWN	-	SVJ	REVISED	-
5	PLOT DATE =	CHECKED	-	PAF	REVISED	-


L.P E.	SECT	ION		COUNTY	TOTAL SHEETS	SHEET NO.
2	(531) BR 23		соок	1211	939	
				CONTRA	CT NO. 6	2W38
		HUMOR	EED AND	DROJECT		

TYPE I ELASTOMERIC EXP. BRG.

BEARING ASSEMBLY

SIDE RETAINER

Equivalent rolled angle with stiffeners will be allowed in lieu of welded plates.

Notes

Side retainers and stainless steel plates shall be included in the cost of Elastomeric Bearing Assembly, Type I.

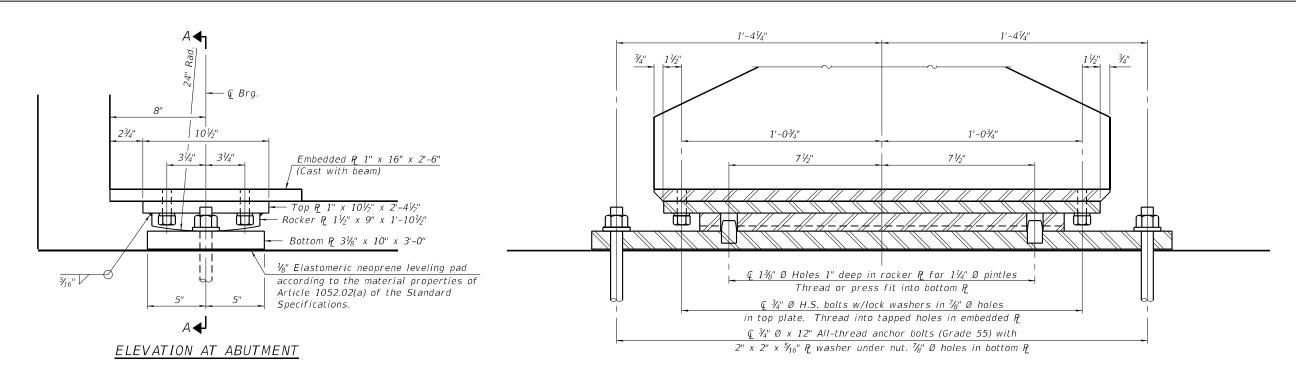
See sheet 28 of 38 for additional details of embedded plate.

Anchor bolts and side retainers at all supports shall be installed as each member is erected unless an equivalent temporary means of lateral restraint is used.

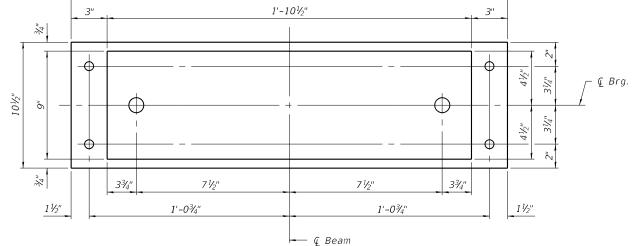
All exposed bearing plates and side retainers shall be hot dip galvanized according to AASHTO M111.

BILL OF MATERIAL

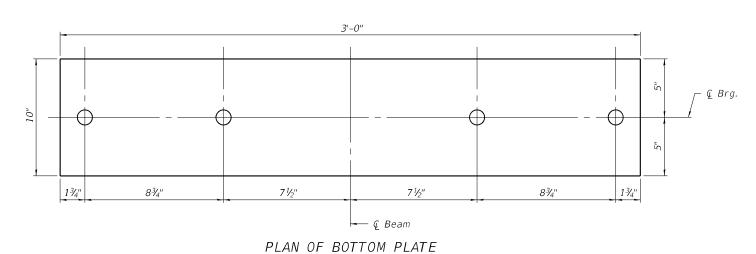
Item	Unit	Total
Elastomeric Bearing Assembly, Type I	Each	16
Anchor Bolts, ¾"	Each	32

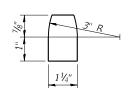

PI-2E-1

5-15-2023


	CZAPLICKI LOPEZ, PLLC	T
	201 KENMARE DRIVE	ı
	BURR RIDGE, ILLINOIS 60527	ŀ
	630-915-8861	ı
C7APLICKILOPE7	DESIGN FIRM NO: 194 009125	- [

	USER NAME =	DESIGNED	-	PAF	REVISED	-
.		CHECKED	-	CSP	REVISED	-
	PLOT SCALE =	DRAWN	-	SVJ	REVISED	-
5	PLOT DATE =	CHECKED	-	PAF	REVISED	-


F.A.P RTE.	SECTION		COUNTY	TOTAL SHEETS	SHEET NO.
342	(531) BR 23		соок	1211	940
			CONTRAC	CT NO. 6	2W38
	ILLINOIS	FED. AIC	PROJECT		


3" 1'-10½" 3"

PLAN OF TOP PLATE & ROCKER PLATE (Looking from below at top plate and rocker plate only)

SECTION A-A

<u> PINTLE</u>

Notes:

Anchor bolts shall be installed as each member is erected unless an equivalent temporary means of lateral restraint is used.

See sheet 27 of 38 for additional details of embedded plate.

All plates, hardware, and leveling pads required for the bearing, except anchor bolts, shall be included in the cost of Furnishing and Erecting Precast Prestressed Concrete IL27N Beams.

All plate material for bearings shall be hot dip galvanized according to AASHTO M111.

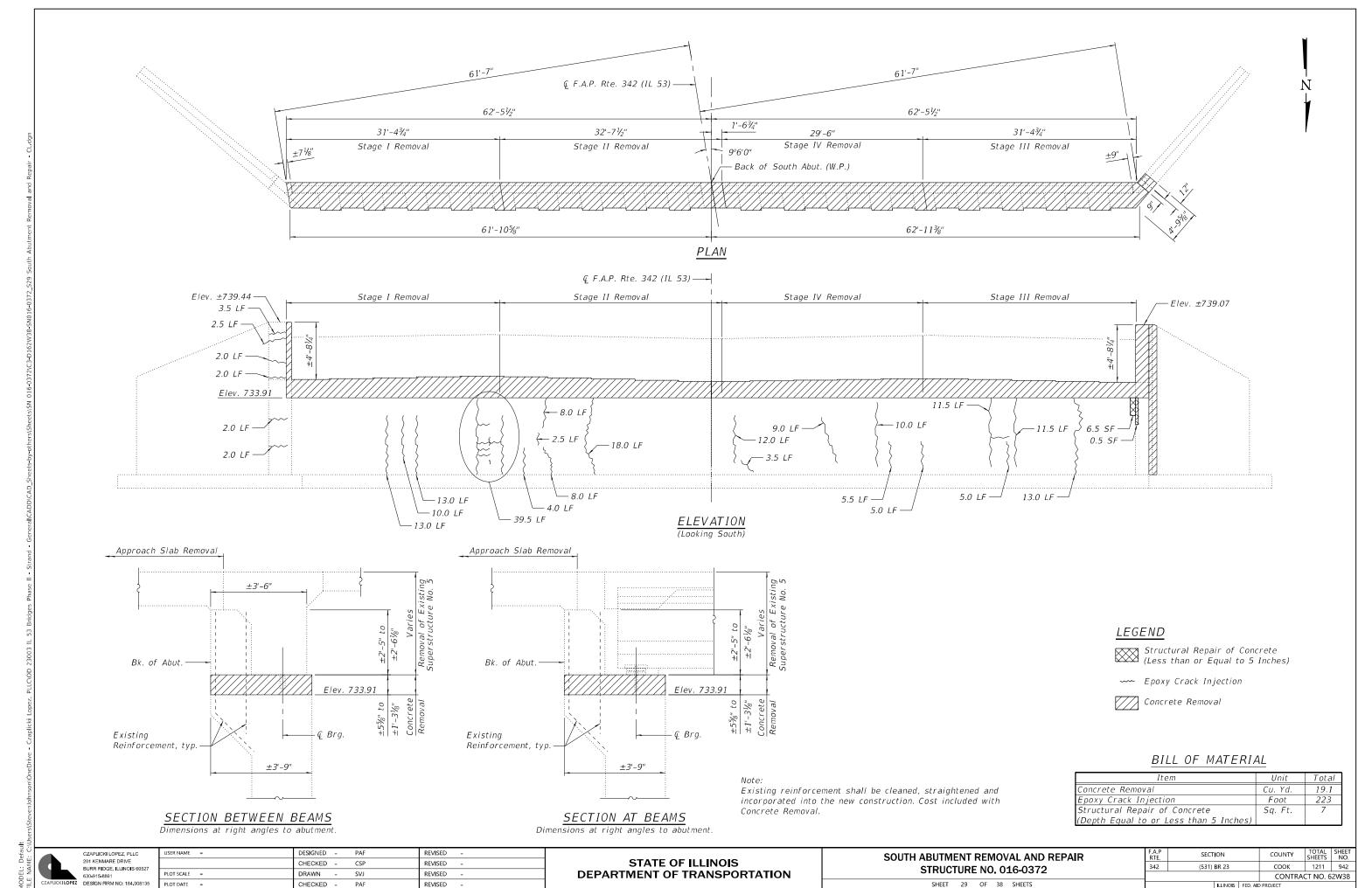
All bolts and washers shall be galvanized according to AASHTO M232.

 $\it H.S.$ bolts in bearing assembly shall be galvanized according to ASTM B 695 Class 50.

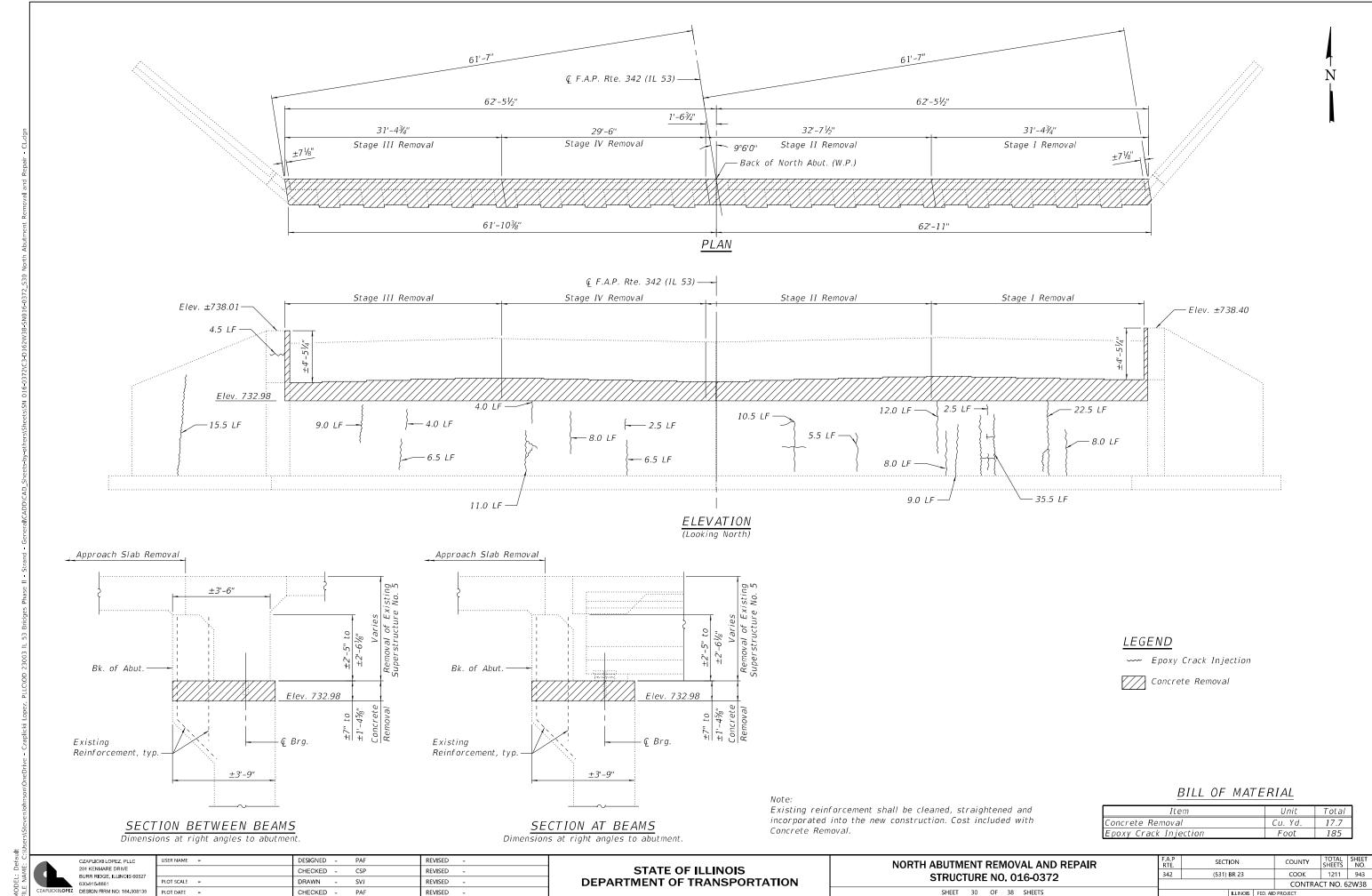
BILL OF MATERIAL

Item	Unit	Total
Anchor Bolts, ¾"	Each	<i>32</i>

PI-2FB


5-15-2023

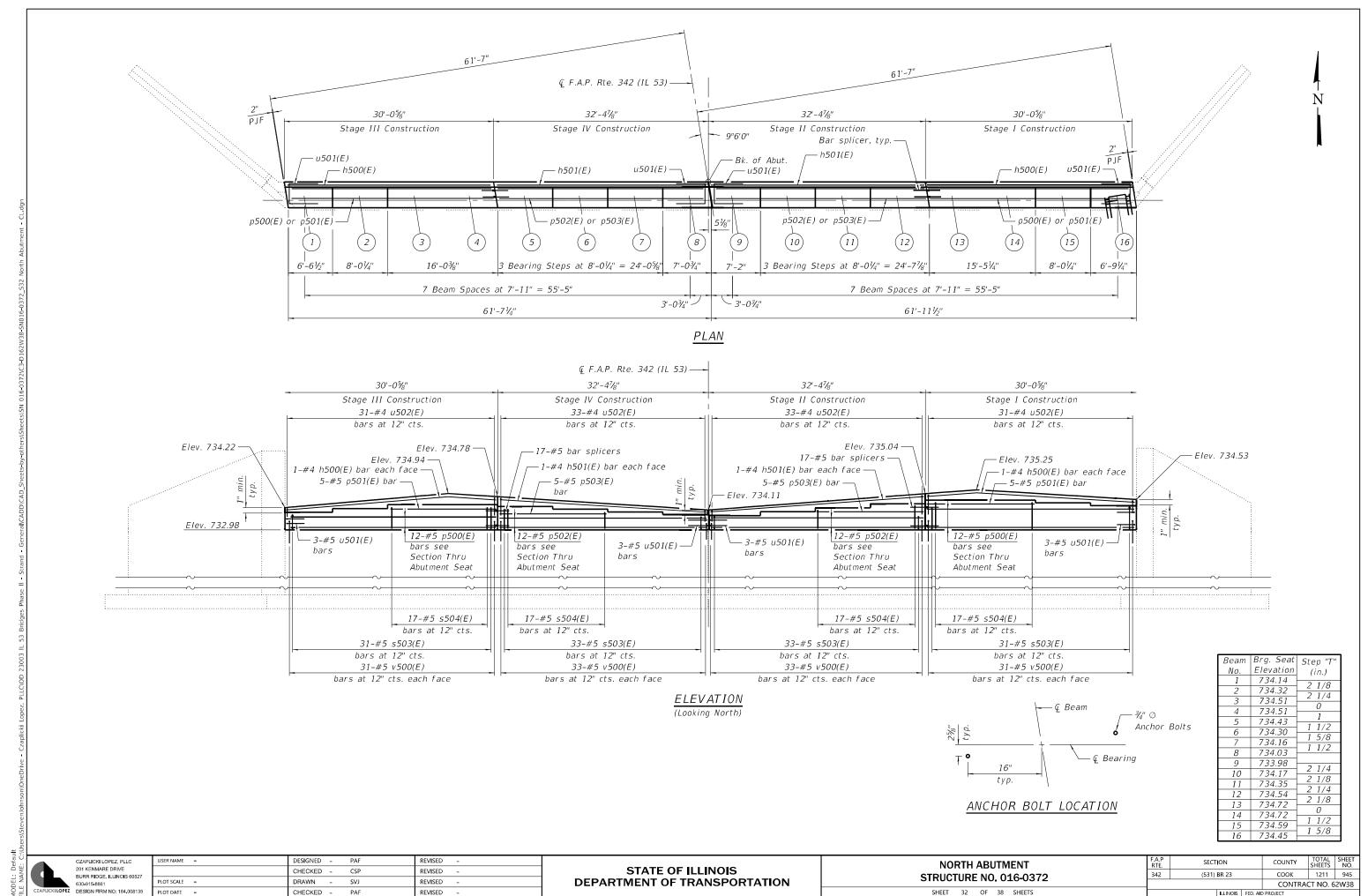
CZAPLICKI LOPEZ, PLLC
201 KENNARE DRIVE
BURR RIDGE, ILLINOIS 60527
630-915-8861
CZAPLICKILOPEZ DESIGN FIRM NO: 184,008135

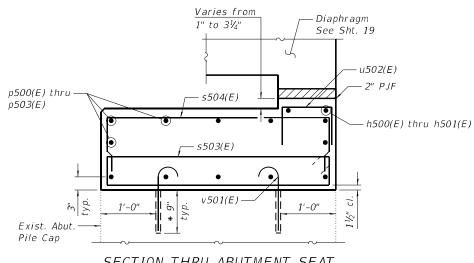

USER NAME =	DESIGNED	-	PAF	REVISED	-
	CHECKED	-	CSP	REVISED	-
PLOT SCALE =	DRAWN	-	SVJ	REVISED	-
PLOT DATE =	CHECKED	-	PAF	REVISED	-

STATE OF ILLINOIS
DEPARTMENT OF TRANSPORTATION

BEARING DETAILS II STRUCTURE NO. 016-0372 | SECTION | COUNTY | SHEETS | NO. |
| (531) BR 23 | COOK | 1211 | 941 |
| CONTRACT NO. 62W38

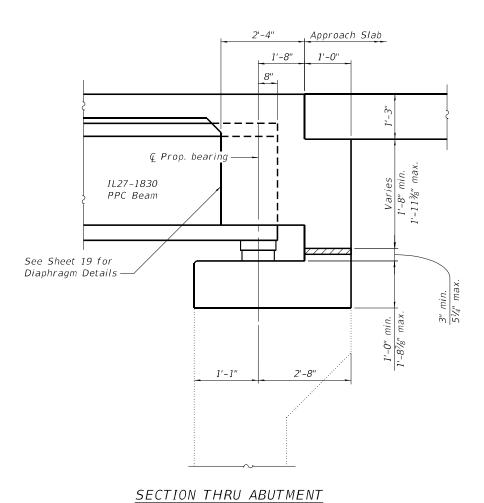
9/20/2024 8:43:28 AM


9/20/2024 8:43:28 AM


PEZ DESIGN FIRM NO: 184,008135 9/20/2024 8:43:29 AM

CHECKED -

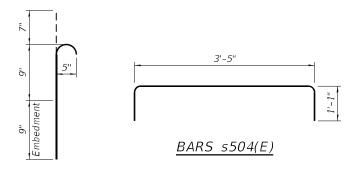
REVISED



9/20/2024 8:43:30 AM

SECTION THRU ABUTMENT SEAT

* Epoxy grout bars in 9" embedment according to Section 584 of the Standard Specifications. Cost included with Reinforcement Bars, Epoxy Coated, typ.



SOUTH ABUTMENT BILL OF MATERIAL

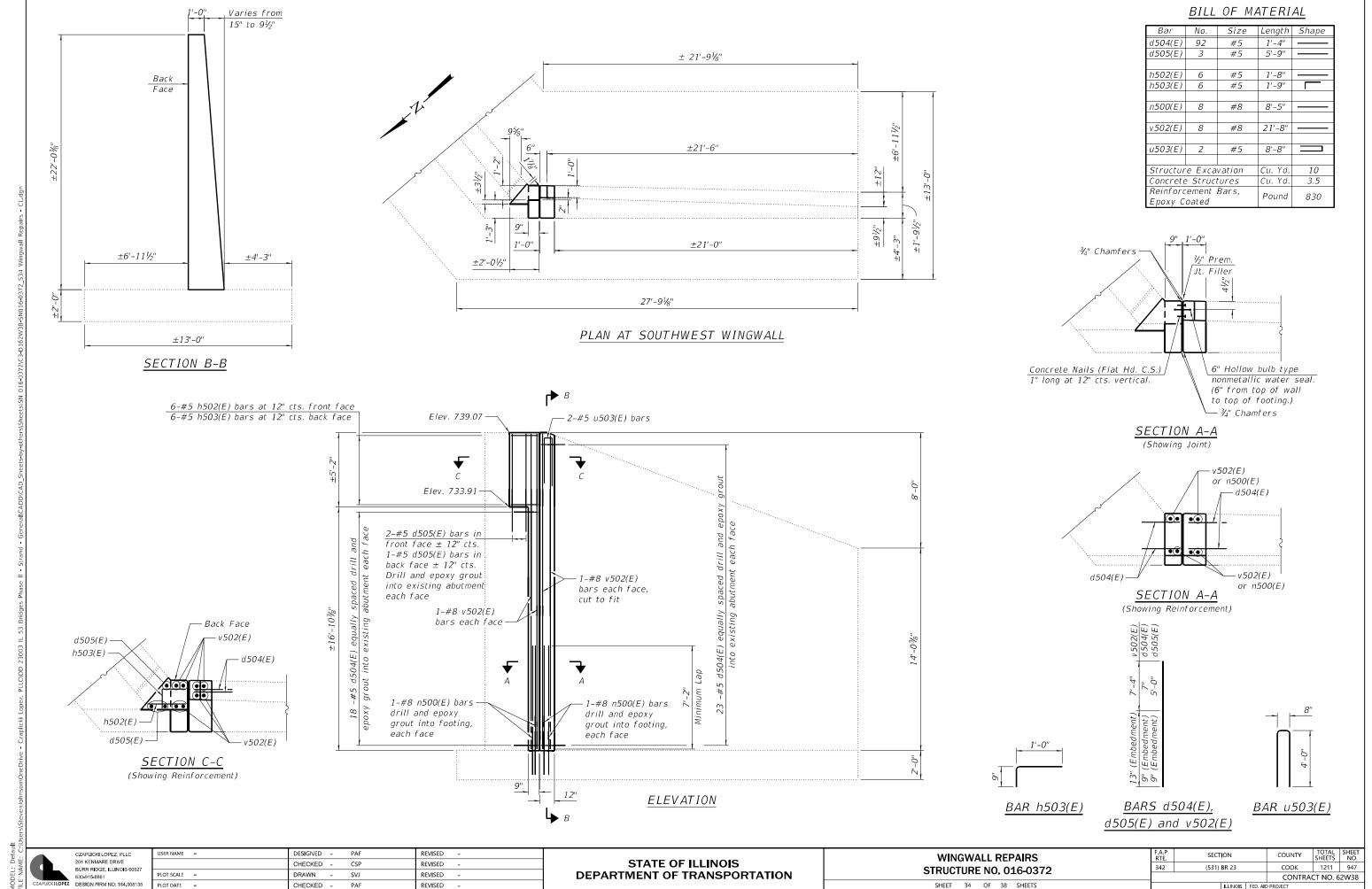
Bar	No.	Size	Length	Shape
h500(E)	4	#4	29'-8"	
h501(E)	4	#4	32'-1"	
p500(E)	24	#5	29'-8"	
p501(E)	5	#5	14'-9"	
p502(E)	24	#5	32'-1"	
p503(E)	5	#5	17'-0"	
s503(E)	128	#5	9'-3"	
s504(E)	68	#5	5'-7"	
v501(E)	256	#5	2'-1"	
u501(E)	12	#5	7'-5"	
u502(E)	128	#4	2'-0"	
Structure Excavation			Cu. Yd.	114
Concret	e Struc	tures	Cu. Yd.	25.5
Reinfor	cement	Bars,	Pound	4,330
Ероху С	oated		rouliu	4,330

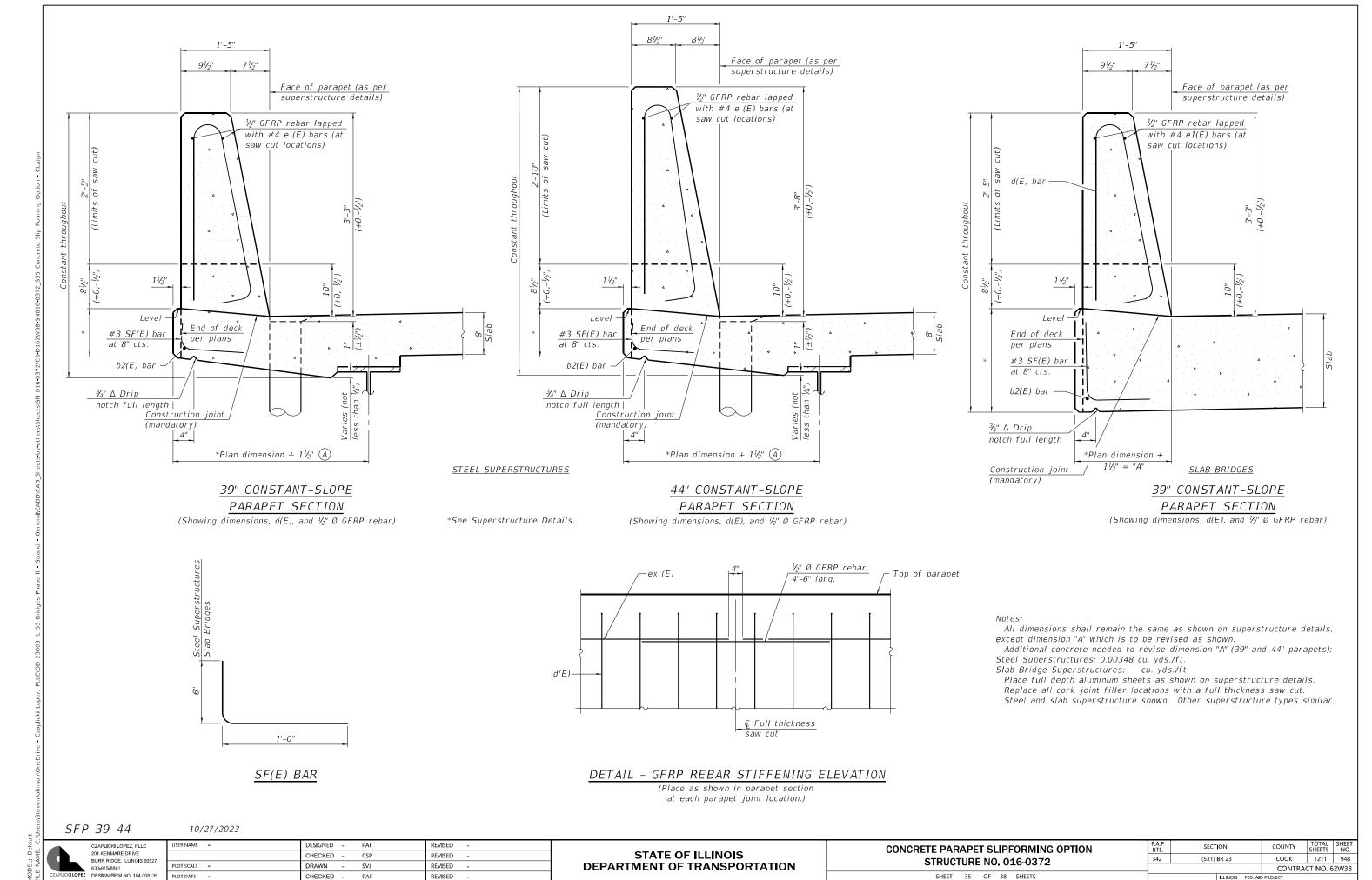
NORTH ABUTMENT BILL OF MATERIAL

Bar	No.	Size	Length	Shape
h500(E)	4	#4	29'-8"	
h501(E)	4	#4	32'-1"	
p500(E)	24	#5	29'-8"	
p501(E)	5	#5	14'-9"	
p502(E)	24	#5	32'-1"	
p503(E)	5	#5	17'-0"	
s503(E)	128	#5	9'-3"	<u> </u>
s504(E)	68	#5	5'-7"	
v501(E)	256	#5	2'-1"	
u501(E)	12	#5	7'-5"	
u502(E)	128	#4	2'-0"	
Structui	re Exca	Cu. Yd.	112	
Concret	e Struc	Cu. Yd.	25.7	
Reinford Epoxy C		Bars,	Pound	4,330

3'-5" u500(E) u501(E)

BARS v501(E)


BARS u501(E) AND u502(E) 3'-5"

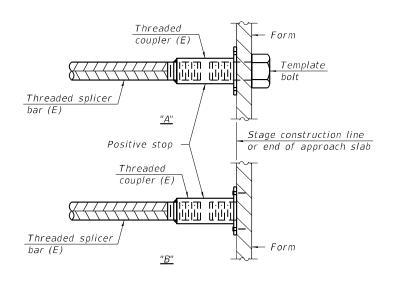

BARS s503(E)

	CZAPLICKI LOPEZ, PLLC 201 KENMARE DRIVE BURR RIDGE, ILLINOIS 60527 630-915-8861
CZAPLICKILOPEZ	DESIGN FIRM NO: 184,008135

	USER NAME =	DESIGNED -	PAF	REVISED -	
.		CHECKED -	CSP	REVISED -	
	PLOT SCALE =	DRAWN -	SVJ	REVISED -	
5	PLOT DATE =	CHECKED -	PAF	REVISED -	

9/20/2024 8:43:31 AM

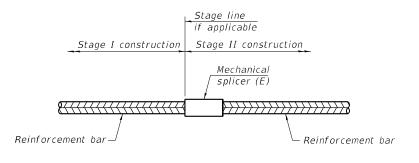
9/20/2024 8:43:31 AM


STANDARD BAR SPLICER ASSEMBLY PLAN

Only bar splicer assemblies as presented on the approved QPL list may be used.

Threaded splicer bar length = min. lap length + $1\frac{1}{2}$ " + thread length

* Epoxy not required on Bar Splicer Assembly components used in conjunction with black bars.


Location	Bar	No. assemblies	Minimum
	size	required	lap length
Deck Slab, top	#5	202	3'-6"
Deck Slab, bottom	#5	126	3'-6"
App. Slab, top	#5	184	3'-6"
App. Slab, bottom	#8	240	5'-1"
App. Footing	#5	160	3'-6"
Diaphragm	#4	8	2'-5"
Diaphragm	#6	44	3'-7"
S. Abutment	#5	34	3'-7"
N. Abutment	#5	34	3'-7"

INSTALLATION AND SETTING METHODS

"A": Set bar splicer assembly by means of a template bolt "B": Set bar splicer assembly by nailing to wood forms or cementing to steel forms.

(E): Indicates epoxy coating.

STANDARD MECHANICAL SPLICER

Location	Bar size	No. assemblies required

Notes:

Splicer bars shall be deformed with threaded ends and have a minimum $60\ ksi$ yield strength.

All reinforcement shall be lapped and tied to the splicer bars. Bar splicer assemblies shall be epoxy coated according to the requirements for reinforcement bars. See Section 508 of the Standard Specifications.

See approved list of bar splicer assemblies and mechanical splicers for alternatives.

BSD-1

5-15-2023

	USER NAME =	DESIGNED	-	PAF	REVISED	-
,		CHECKED	-	CSP	REVISED	-
'	PLOT SCALE =	DRAWN	-	SVJ	REVISED	-
5	PLOT DATE =	CHECKED	-	PAF	REVISED	-

SECTION2018-100-BF	?	L	OCAT	ION ,	SEC.	18, TWP. 42N, RNG. 11E, 3 rd PM , le 42.1164080, Longitude -88.0037	80				
COUNTY Cook D	RILLING	MET	HOD			Auger (8" O.D., 3.25" I.D.) HAMMER		Αι	ıto 140) lb HE	91
STRUCT. NO. Station GC-61 Station 2365+77.59		DEPTH	B L O W S	U C s	M O I S T	Surface Water Elev. Stream Bed Elev. Groundwater Elev.: First Encounter Dry		D E P T H	B L O W S	U C S	M O I S T
Offset 29.1 ft LT Ground Surface Elev. 737.4	ft	(ft)	(/6")	(tsf)	(%)	Upon Completion Dry After Hrs. Filled	ft	(ft)	(/6")	(tsf)	(%)
Concrete - 12"	736.4	-				Medium Stiff to Stiff, Brown, CLAY, some sand and gravel (continued)	716.4	_			
oose, Brown, SANDY LOAM			1			Stiff to Very Stiff, Brown, CLAY			4		
			1		17	I OAM			5 8	3.0	19
		7	3					_	0	B/S	
Medium Stiff to Stiff, Brown, CLAY	733.9		3						6		
ome sand and gravel	,		4	4.3	15				8	4.8	16
		-5	5	B/S				-25	10	В	
		_									
			3	2.1	20				4		40
			4	В					12	5.4 B	19
		1/2						-			
		_							_		
			2	2.4	18				5 6	3.9	19
		-10	5	B/S	10			-30	9	B	1.5
			3								
		-	5	3.1	15			-			
		_	5	B/S							
			4			Madian Branch Branch CANDY	703.9		7		
		-	6	3.0	19	Medium Dense, Brown, SANDY CLAY LOAM			7	0.3	10
		-15	6	B/S				-35	6	В	
			4								
		-	7	2.8	17			_			
			7	В							
			5					_	4		
		_	8	2.4	23			-	7	0.2	17
		-20	9	В	25-0.00			-40	4	В	

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer, M-Modified SPT)
The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

BBS, form 137 (Rev. 8-99)

Page $\underline{2}$ of $\underline{2}$

Date 24/5/22

					Latituc	18, TWP. 42N, RNG . 11 Je 42.1164080, Lo ngit	ude -88.003780	500 St Va 800-1 Mar 800-100-1
COUNTY	Cook D	RILLING M	ETHOD	Hollow	Stem	Auger (8" O.D., 3.25" I	.D.) HAMMER TYPE	Auto 140 lb HE 91
Station BORING NO Station	GC-61 2365+77.59	[0	L O W	U C s Qu	M O I S T	Surface Water Elev. Stream Bed Elev. Groundwater Elev.: First Encounter	ft Dry ft	
	29.1 ft LT ce Elev. 737.4	ft (f	t) (/6")	(tsf)	(%)	Upon Completion After Hrs.	Dry ft ftlled ft	
Medium Dense CLAY LOAM (c	, Brown, SANDY continued)		12					
		692.4 -4	10		16			
			55					

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer, M-Modified SPT)
The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

BBS, form 137 (Rev. 8-99)

CZAPLICKI LOPEZ. PLLC 201 KENMARE DRIVE BURR RIDGE, ILLINOIS 60527

USER NAME =	DESIGNED - PAF	REVISED -	
	CHECKED - CSP	REVISED -	
PLOT SCALE =	DRAWN - SVJ	REVISED -	
PLOT DATE =	CHECKED - PAF	REVISED -	

	0010	400 00						10 THE 101 PHO 115 OF THE					
SECTION	2018	-100-BR		_ L	OCAT	ION ,	SEC.	18, TWP. 42N, RNG. 11E, 3 rd PM , le 42.1161850, Longitude -88.00373	343				
COUNTY	Cook	DF	RILLING	MET	HOD			Auger (8" O.D., 3.25" I.D.) HAMMER		_Αι	ıto 140) lb HE	91
STRUCT. NO			_	D E P	B L O	U C S	M 0	Surface Water Elev. Stream Bed Elev.	_ ft _ ft	D E P	B L O	U C S	0
SORING NO Station Offset	2364+ 30.0	+95.40 ft LT		T H (ft)	W S (/6")	Qu (tsf)	s T (%)	Groundwater Elev.: First Encounter Dry Upon Completion Dry	ft	Т Н (ft)	W S (/6")	Qu (tsf)	S
Ground Surface Concrete - 11"	e Elev.	739.0	ft	(11)	(10)	(LSI)	(%)	After Hrs. Filled	π	(11)	(10)	(151)	(%
concrete - 11			738.1							\dashv			
Stiff, Brown, CLA	Y, with to	some			4			Stiff, Brown, CLAY, with sand,			5		
and and gravel					4	2.6 B/S	13	some silt			8 12	7.3 S	17
				1	-	B/S				-	12	0	
				_									
					6	4.0	44				4 5	4.0	L
				-5	7	4.6 B/S	14			-25	9	4.3 B/S	1
				-5	-	D/O				-25		Di C	
					_								
				-	7 5	2.6	15			-	3 5	4.1	1
				_	7	В	10				8	В	
				-	3					-	4		
				_	4	3.0	15				5	3.0	1
				-10	5	B/S				-30	8	В	
				-						-			
				_	3								
					5	2.0	14						
				_	5	S				_			
										-			
					4						3		
				45	6 8	3.6 B/S	23			-35	7	2.8 B	20
				-15		ыз				-35		ь	
				_									
					3 6	5.8	23			4			
				-	8	B/S	23			-			
				-					701.0				
			720.5	_									
					7	3.6	19	Loose, SAND, with gravel Stiff, brown, SANDY CLAY, some	700.0		3		19
				-20	8	В		silt		-40	3		"

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer, M-Modified SPT)
The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

BBS, form 137 (Rev. 8-99)

Page $\underline{2}$ of $\underline{2}$

Date 24/5/23

SECTION	2018-100-BR		L	OCAT	ION ,	SEC.	18, TWP. 42N, RNG . 1	1E, 3 rd PM ,	
						Latitud	le 42.1161850, Longi l	tude -88.0037343 I.D.) HAMMER TYPE	Auto 140 lb HE 0
OUNTT	COOK DI	CILLING I	VIE I	пор	I IOIIOW	Otem	Auger (0 O.D., 5.25	.D.) HAIVIIVIER I TPE	Auto 140 ID TIL 9
TRUCT. NO.			D	В	U	М	Surface Water Elev.	ft	
Station			E	L	C	0	Stream Bed Elev.	ft	
POPING NO	GC-62		T	w	3	S	Groundwater Elev.:		
Station	2364+95.40		H	s	Qu	T			
Offset	30.0 π L I						First Encounter Upon Completion	Dry ft	
accept de la company de la com	e Elev. 739.0	ft	(ft)	(/6")	(tsf)	(%)	After Hrs.	Filled ft	
	NDY CLAY, some								
ilt (continued)		-							
			-						
		-							
		_		6	4.5	40			
		694.0	45	8	1.5 B	18			
Boring terminate	ed at 45 feet	094.0	-45						
oring terminate	od di 40 leet.		8-						
		_							
		_							
			-						
		-							
			-						
		_							
		_	-50						
			_						
		=							
			2						
		-							
		_							
			-						
		-	_						
			-55						
		_	10.0						
		-	=						
		_	\dashv						
			_						
		-	_						
			-						

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer, M-Modified SPT)
The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

BBS, form 137 (Rev. 8-99)

4	CZAPLICKI LOPEZ, PL 201 KENMARE DRIVE BURR RIDGE, ILLINOI: 630-915-8861
CZAPLICKILOPEZ	DESIGN FIRM NO: 184
CZAPLICKILOPEZ	630-915-8861

ROUTE	FAP 342	DE	SCRI	PTION	TSR	S - No	rth side Anderson Driv	е	LOG	GED	BY G	onzale	z (OG)
SECTION	2018-100-BR		_ ı	OCAT	ION ,	SEC.	18, TWP. 42N, RNG. 1 de 42.1164080, Long i	1E, 3 rd PM,					
COUNTY	Cook DR	RILLING	MET	THOD			Auger (8" O.D., 3.25"			Αι	uto 140) lb HE	91
		_	D E P	B L O	U C s	M 0 1	Surface Water Elev. Stream Bed Elev.		ft	D E P	B L O	U C s	M 0 1
Station	GC-61 2365+77.59 29.1 ft LT se Elev. 737.4	 ft	H (ft)	W S (/6")	Qu (tsf)	S T (%)	Groundwater Elev.: First Encounter Upon Completion After Hrs.	Dry Dry Filled	ft	H (ft)	W S (/6")	Qu (tsf)	S T (%)
Concrete - 12"	<u> 131.4</u>	736.4	_		V1	1,-4	Medium Stiff to Stiff, some sand and grav	Brown, CLAY,	716.4	_	Ç-7	()	(.9
Loose, Brown, S	SANDY LOAM	730.4		1			Stiff to Very Stiff, Bro		710.4		4		
				3		17	LOAM				5 8	3.0 B/S	19
		733.9	_							-			
	Stiff, Brown, CLAY,		_	3	4.0	45				_	6 8	4.0	40
some sand and	gravei		-5	5	4.3 B/S	15				-25	10	4.8 B	16
			_							-			
				3	2.1	20					4		40
			_	4	В						11 12	5.4 B	19
			_										
				2	0.4	40					5	0.0	-10
			-10	4 5	2.4 B/S	18				-30	6 9	3.9 B	19
			_										
			_	3									
			-	5 5	3.1 B/S	15				-			
			_						703.9				
			-	4			Medium Dense, Brov	wn, SANDY	703.9		7		
			-15	6	3.0 B/S	19	CLAY LOAM			-35	7 6	0.3 B	10
			-	4						-			
			_	7	2.8 B	17				=			
			_										
			-	5						-	4		
				8	2.4 B	23				-	7 4	0.2 B	17
			-20	9	В					-40	4	В	

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer, M-Modified SPT)
The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

BBS, form 137 (Rev. 8-99)

ROUTE	FAP 342	DESC	RIPTION	I TSR	S - No	rth side Anderson Driv	eLOG	GED BY Gonzalez (C
SECTION	2018-100-BR		LOCA	TION ,	SEC.	18, TWP. 42N, RNG . 1 de 42.1164080, Long i	1E, 3 rd PM,	
COUNTY	Cook Di	RILLING MI	ETHOD	Hollow	Stem	Auger (8" O.D., 3.25"	I.D.) HAMMER TYPE	Auto 140 lb HE 91
Station			L	U C s	M 0	Surface Water Elev. Stream Bed Elev.	ft	
Station	GC-61 2365+77.59 29.1 ft LT	_ H	S	Qu	S T	Groundwater Elev.: First Encounter Upon Completion	Dry ft Dry ft	
	ce Elev. 737.4	ft (f	(/6")	(tsf)	(%)	After Hrs.	Filled ft	
iviedium Dense CLAY LOAM (c	, Brown, SANDY continued)	-						
		1-	_					
		-						
			\dashv					
		_	12 10		16	-		
		692.4 -4	- 40		10			
Boring terminat	ed at 45 feet.		-					
		-						
		_	\dashv					
		-	\dashv					
		-5						
		_~						
			\dashv					
			-					
		-						
		-						
		5	5					
		_						
			\dashv					
		-	\exists					
		_	\exists					
			0					

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer, M-Modified SPT)
The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

BBS, form 137 (Rev. 8-99)

CZAPLICKI LOPEZ, PLLC 201 KENMARE DRIVE BURR RIDGE, ILLINOIS 60527

DESIGNED - PAF REVISED -CHECKED - CSP REVISED -DRAWN -REVISED -REVISED -CHECKED - PAF

STATE OF ILLINOIS **DEPARTMENT OF TRANSPORTATION**

SECTION **BORING LOGS I** COUNTY COOK 1211 950 (531) BR 23 **STRUCTURE NO. 016-0372** CONTRACT NO. 62W38 SHEET 37 OF 38 SHEETS

					Latituc	18, TWP. 42N, RNG. 11E, 3 rd PM , le 42.1161850, Longitude -88.00373		_			. 04
COUNTY Cook DRILL	ING N	MET	HOD	Hollow	Stem	Auger (8" O.D., 3.25" I.D.) HAMMER 1	YPE	AL	140) lb HE	91
STRUCT. NO		D E P	B L O	U C s	M O I	Surface Water Elev. Stream Bed Elev.	ft	D E P	B L O	U C s	М О 1
BORING NO. GC-62 Station 2364+95.40 Offset 30.0 ft LT		T H	W S	Qu	S T	Groundwater Elev.: First Encounter Dry Upon Completion Dry	ft	T H	W S	Qu	S T
Ground Surface Elev. 739.0 Concrete - 11"	ft ((ft)	(/6")	(tsf)	(%)	After Hrs. Filled	ft	(ft)	(/6")	(tsf)	(%)
	38.1	-						\vdash			
Stiff, Brown, CLAY, with to some sand and gravel			4		- 10	Stiff, Brown, CLAY, with sand,		\Box	5		
sand and graver	_		4	2.6 B/S	13	some silt		-	8 12	7.3 S	17
		1	. **	5.0					882-87		
			6						4		
	-		7	4.6	14			\dashv	5	4.3	16
	_	-5	7	B/S				-25	9	B/S	
		-						-			
	_		7						3		
	_		5 7	2.6 B	15				5 8	4.1 B	19
		1	•					-		Б	
		_	3						4		
	_	-	4	3.0	15			-	5	3.0	18
	_	-10	5	B/S				-30	8	В	
		-						-			
	-		3					٣			
	_		5 5	2.0 S	14			_			
		-		- 0				-			
	_										
	-		6	3.6	23			\dashv	7	2.8	20
		-15	8	B/S				-35	7	В	
		-						-			
	-		3					\dashv			
	_		6 8	5.8 B/S	23			\Box			
		-	U	B/2			701.0	-			
	20.5							\exists			
	_	4	7	3.6	19	Loose, SAND, with gravel Stiff, brown, SANDY CLAY, some	700.0	_	3		19
		-20	8	3.0 B	10	Stiff, brown, SANDY CLAY, some		-40	3		13

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer, M-Modified SPT)
The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

BBS, form 137 (Rev. 8-99)

Page $\underline{2}$ of $\underline{2}$

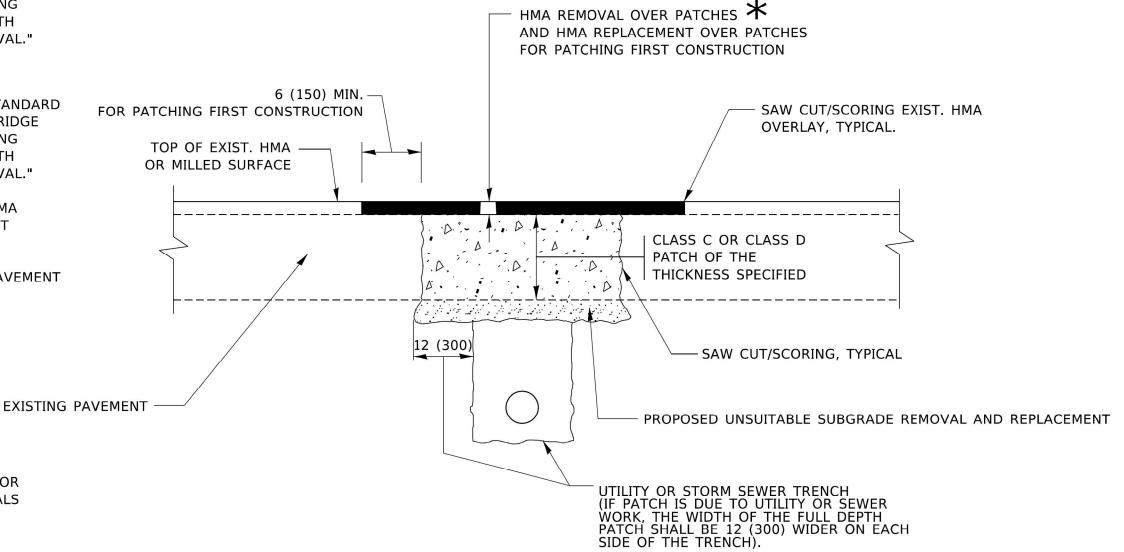
Date 24/5/23

ROUTE	FAP 342	DES	CRII	PTION	TSR	S - So	uth Side Anderson Driv	re	LOGGED BY Gonzalez (O
SECTION	2018-100-BR		_ L	OCAT	ION ,	SEC.	18, TWP. 42N, RNG . 11 de 42.1161850, Longit	1E, 3 rd PM ,	1
COUNTY	Cook DF	RILLING	MET	HOD	Hollow	Stem	Auger (8" O.D., 3.25" I	.D.) HAMMER TYP	PE Auto 140 lb HE 91
STRUCT. NO		_	D E P	B L O	U C S	M 0 1	Surface Water Elev. Stream Bed Elev.	f	t t
Station	GC-62 2364+95.40 30.0 ft LT	_	T H	W S	Qu	S	Groundwater Elev.: First Encounter Upon Completion	Dry_ f	
	e Elev. 739.0	ft	(ft)	(/6")	(tsf)	(%)	After Hrs.	Filled f	t
Stiff, brown, SAI silt <i>(continued)</i>	NDY CLAY, some	-		4					
		-		6	1.5	18			
		694.0	-45	8	В				
		- - - -	-50						
		-	-60						

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer, M-Modified SPT)
The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

BBS, form 137 (Rev. 8-99)

	CZAPLICKI LOPEZ, PLLC
	201 KENMARE DRIVE
	BURR RIDGE, ILLINOIS 60527
	630-915-8861
CZAPLICKILOPEZ	DESIGN FIRM NO: 184,008135


USER NAME =	DESIGNED -	PAF	REVISED -	
	CHECKED -	CSP	REVISED -	
PLOT SCALE =	DRAWN -	SVJ	REVISED -	
PLOT DATE =	CHECKED -	PAF	REVISED -	

METHOD OF MEASUREMENT

REFER TO SECTION 442 OF THE STANDARD SPECIFICATIONS FOR ROAD AND BRIDGE CONSTRUCTION AND THE RECURRING SPECIAL PROVISION "PATCHING WITH HOT-MIX ASPHALT OVERLAY REMOVAL."

BASIS OF PAYMENT

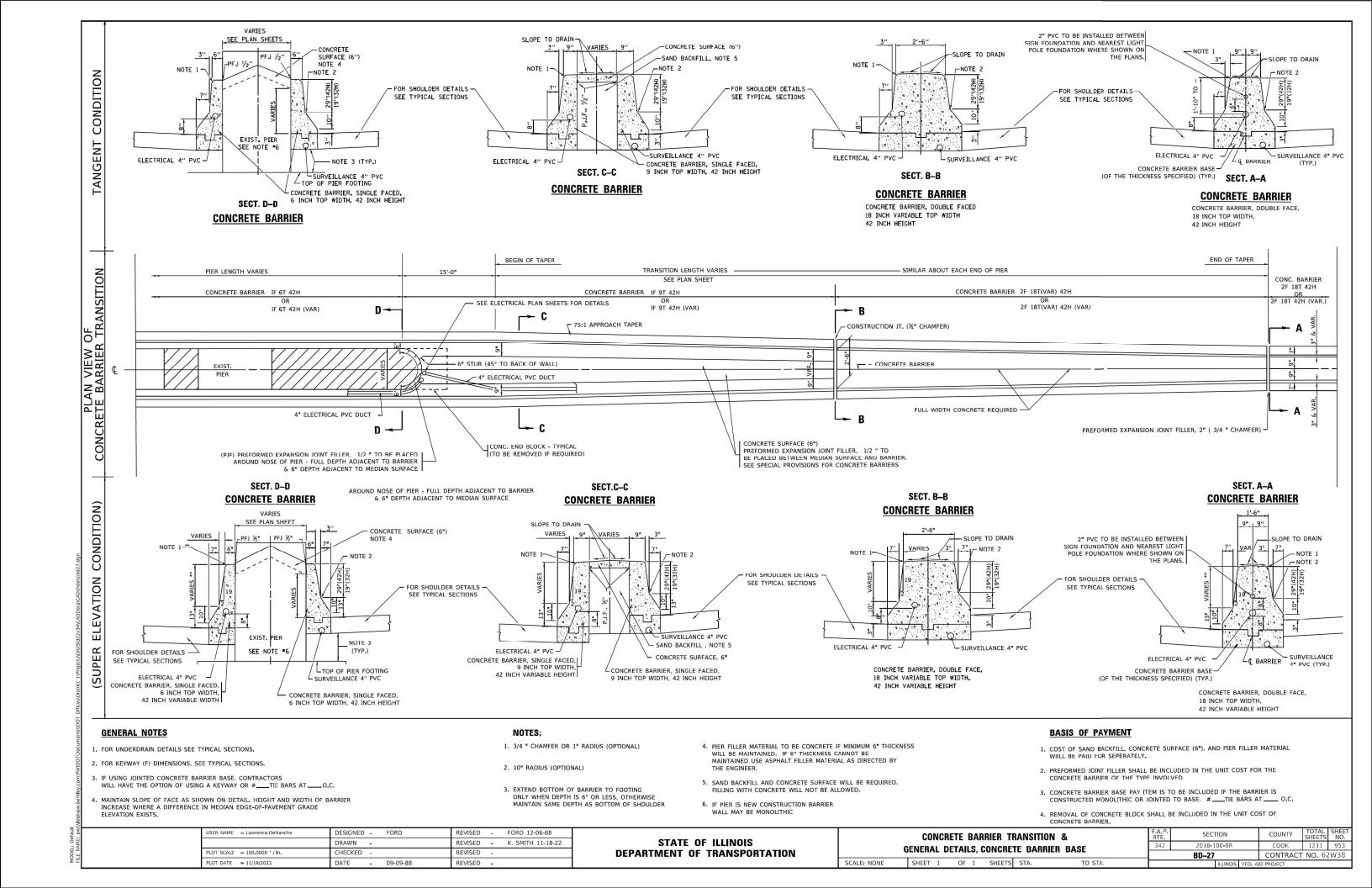
- 1. REFER TO SECTION 442 OF THE STANDARD SPECIFICATIONS FOR ROAD AND BRIDGE CONSTRUCTION AND THE RECURRING SPECIAL PROVISION "PATCHING WITH HOT-MIX ASPHALT OVERLAY REMOVAL."
- SAW CUT/SCORING OF EXISTING HMA OVERLAY IS INCLUDED IN THE COST OF PAVEMENT PATCHING.
- 3. SAW CUT/SCORING OF EXISTING PAVEMENT IS INCLUDED IN THE COST OF PAVEMENT PATCHING.

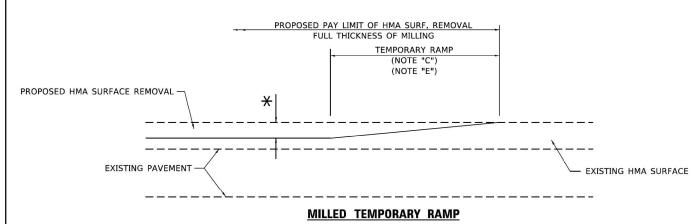
SEQUENCE OF CONSTRUCTION (PATCHING FIRST)

1. REMOVE THE EXISTING HMA MATERIAL OVER THE AREA TO BE PATCHED.

SEE TYPICAL SECTIONS FOR

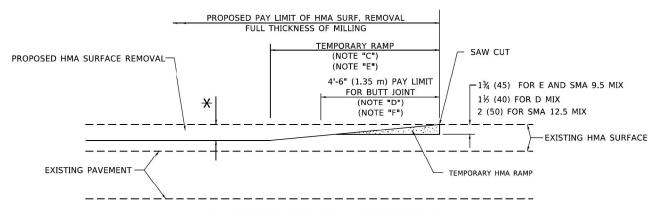
THICKNESS AND MATERIALS


- 2. REMOVE AND REPLACE WITH CLASS C OR D PATCH.
- 3. REPLACE HMA MATERIAL OVER THE AREA TO BE PATCHED.


SEQUENCE OF CONSTRUCTION (MILLING FIRST)

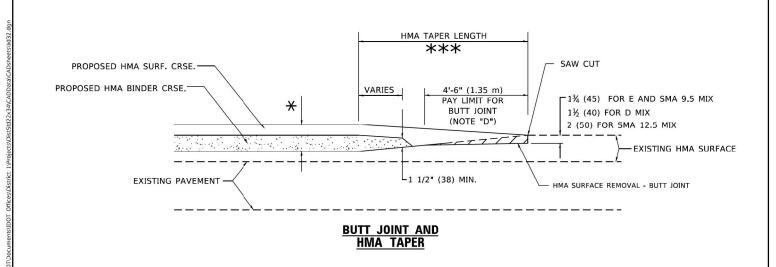
- 1. MILL HMA FIRST IF THERE IS AT LEAST $4\frac{1}{2}$ INCHES OR MORE OF HMA MATERIAL ON TOP OF THE EXISTING PAVEMENT OR IF THE PAVEMENT IS FULL DEPTH HMA. A MINIMUM OF 2 INCHES OF HMA MATERIAL SHALL BE IN PLACE AFTER MILLING.
- 2. REMOVE AND REPLACE WITH FULL DEPTH CLASS D PATCHES TO TOP OF MILLED SURFACE.

ALL DIMENSIONS ARE IN INCHES (MILLIMETERS) UNLESS OTHERWISE SHOWN.


USER NAME = Lawrence,DeManche	DESIGNED - R. SHAH	REVISED - R. BORO 01-01-07		PAVEMENT PATCHING FOR	F.A.P RTE.	SECTION	COUNTY	TOTAL SH SHEETS N	EET IO.
	DRAWN -	REVISED - R. BORO 09-04-07	STATE OF ILLINOIS	HMA SURFACED PAVEMENT	342	2018-100-BR	COOK	1211 9	52
PLOT SCALE = 100.0000 ' / in.	CHECKED -	REVISED - K. ENG 10-27-08	DEPARTMENT OF TRANSPORTATION	IIIVIA SUNI AGLD FAVLIVILIVI		BD400-04 (BD-22)	CONTRAC	F NO. 62W.	38
PLOT DATE = 11/18/2022	DATE - 10-25-94	REVISED - K. SMITH 11-18-22		SCALE: NONE SHEET 1 OF 1 SHEETS STA. TO STA.		ILLINOIS FED A	ID PROJECT		

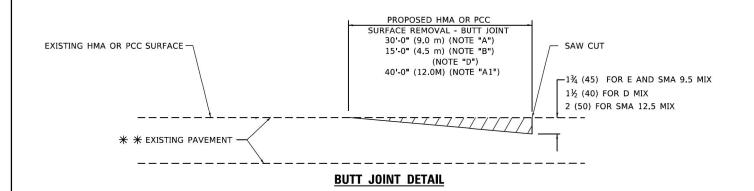
(FOR BUTT JOINT AND HMA TAPER SEE DETAIL BELOW)

OPTION 1



HMA CONSTRUCTED TEMPORARY RAMP

(FOR BUTT JOINT AND HMA TAPER SEE DETAIL BELOW)


OPTION 2

TYPICAL TEMPORARY RAMP

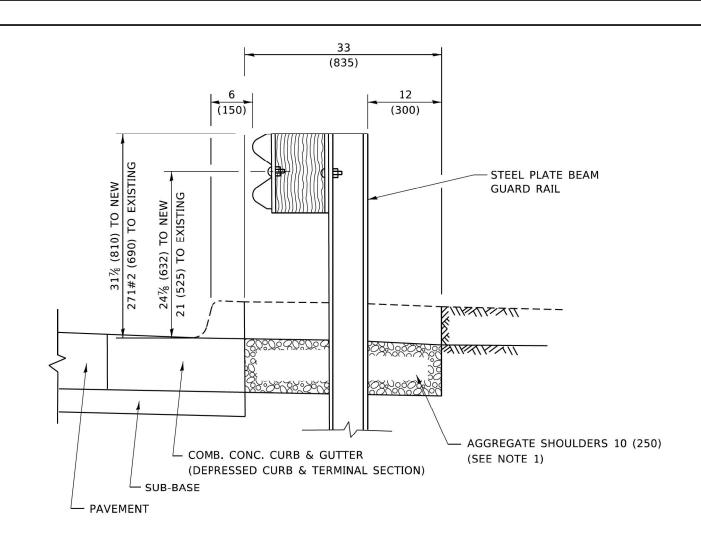
TYPICAL BUTT JOINT AND HMA TAPER FOR MILLING AND RESURFACING

STATE OF ILLINOIS DEPARTMENT OF TRANSPORTATION

TYPICAL BUTT JOINT AND HMA TAPER FOR RESURFACING ONLY

** PC CONCRETE, HMA OR HMA RESURFACED PAVEMENT.

GENERAL NOTES


- A. MAINLINE ARTERIAL ROADWAYS AND MAJOR SIDE ROADS.
- A1. INTERSTATES
- B. MINOR SIDE ROADS.
- C. THE TEMP. RAMP SHALL BE CONSTRUCTED IMMEDIATELY UPON REMOVAL OF THE EXISTING HMA SURFACE.
- D. THE BUTT JOINT SHALL BE CONSTRUCTED IMMEDIATELY PRIOR TO PLACING THE PROPOSED HMA COURSES.
- E. TAPER THE TEMP. RAMP AT A RATE OF 3' 4" (1.02m) PER 1 INCH (25 mm) OF MILLING THICKNESS.
 - igstar SEE TYPICAL SECTIONS FOR MILLING THICKNESS.
- F. SEE ARTICLE 406.08 AND 406.14 OF THE STANDARD SPECIFICATIONS FOR "HMA AND/OR PCC SURFACE REMOVAL, BUTT JOINT".
- *** 20'-0" (6.1 m) PER 1 (25) RESURFACING (NOTE "A") 10'-0" (3.0 m) PER 1 (25) RESURFACING (NOTE "B")

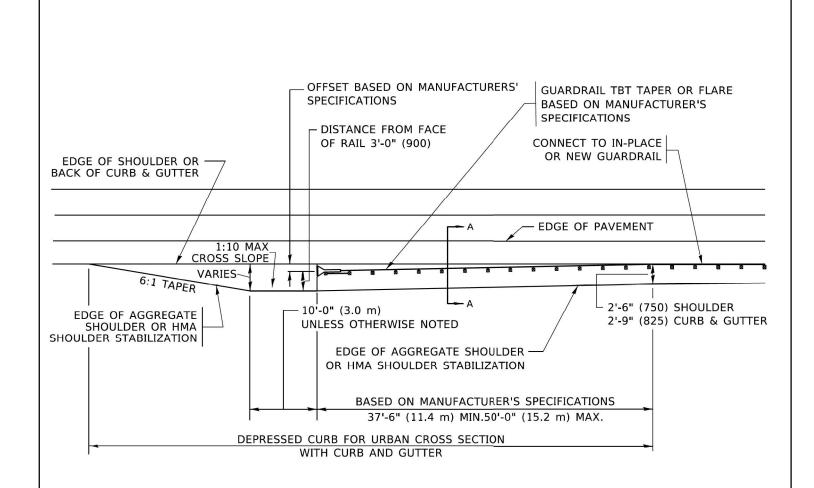
BASIS OF PAYMENT

- THE BUTT JOINT WILL BE PAID FOR AT THE CONTRACT UNIT PRICE PER SQUARE YARD (SQUARE METER) FOR "HOT-MIX ASPHALT SURFACE REMOVAL - BUTT JOINT" OR FOR "PORTLAND CEMENT CONCRETE SURFACE REMOVAL- BUTT JOINT".
- 2. THE TEMPORARY RAMP AND SAW CUT SHALL BE INCLUDED IN THE UNIT COST FOR HMA OR PCC SURFACE REMOVAL-BUTT JOINT.

SCALE: NONE

ALL DIMENSIONS ARE IN INCHES (MILLIMETERS) UNLESS OTHERWISE SHOWN.

SECTION A-A


NOTES:

- 1. THE AGGREGATE SHOULDER, 10 (250) OR HMA SHOULDER, 6 (150) (IF REQUIRED) SHALL EXTEND UNDER THE TRAFFIC BARRIER TERMINAL.
- 2. "EXISTING" GUARDRAIL REFERS TO CONNECTING TERMINAL SECTION TO GUARD RAILING PRIOR TO THE MIDWEST GUARDRAIL SYSTEM.
- 3. THE CONTRACTOR SHALL VERIFY THE TYPE/HEIGHT OF GUARDRAIL IN-PLACE BEFORE ORDERING THE NEW TERMINAL SECTION.
 COST INCLUDED WITH THE COST OF THE TERMINAL. THE EXISTING GUARDRAIL HEIGHT SHALL TRANSISTION TO MATCH THE NEW TERMINAL END SECTION AND SHALL BE PAID FOR AS VERTICAL ADJUSTMENT OF EXISTING GUADRAIL.

DETAILS FOR STEEL PLATE BEAM

GUARD RAIL ADJACENT TO CURB AND GUTTER

[FOR ROADWAY SPEED 35 MPH (60 kmh) TO 45 MPH (70 kmh)]

DEPRESSED CURB AND GUTTER AND SHOULDER TREATMENT AT TBT TY. 1 SPL.

AGGREGATE SHOULDER, 10 (250) WILL BE PAID ACCORDING TO SECTION 481.

HMA SHOULDERS 6 (150) (IF REQUIRED) WILL BE PAID ACCORDING TO SECTION 482.

COMB. CONC. C&G, STEEL PLATE BEAM GUARD RAIL AND TRAFFIC BARRIER TERMINAL, OF THE TYPE SPECIFIED WILL BE PAID FOR SEPARATELY.

TBT = TRAFFIC BARRIER TERMINAL
ALL DIMENSIONS ARE IN INCHES (MILLIMETERS)
UNLESS OTHERWISE SHOWN.

STATE OF ILLINOIS
DEPARTMENT OF TRANSPORTATION

DETAILS FOR DEPRESSED CURB & GUTTER AND SHOULDER TREATMENT AT TBT TY. 1 SPL.

| SHEET | 1 OF | 1 SHEETS | STA. TO STA.

TYPICAL BENCHING DETAIL FOR EMBANKMENT

GENERAL NOTES

- 1. CONSTRUCT SUCCEEDING BENCH CUTS AND EMBANKMENT PLACEMENT AND COMPACTION FROM BOTTOM TO TOP IN STAIRSTEP FASHION.
- 2. EXISTING FORESLOPE PREPARED IN ACCORDANCE WITH ARTICLE 205.03 OF THE STANDARD SPECIFICATIONS.
- 3. BENCH CUT EXISTING SLOPE TYPICAL FOR EACH STEP.
- 4. TRIM TO FINAL SLOPE.
- EQUAL 8-INCH (200) LIFTS OF EMBANKMENT COMPACTED IN ACCORDANCE WITH ARTICLE 205.05 OF THE STANDARD SPECIFICATIONS.

BASIS OF PAYMENT

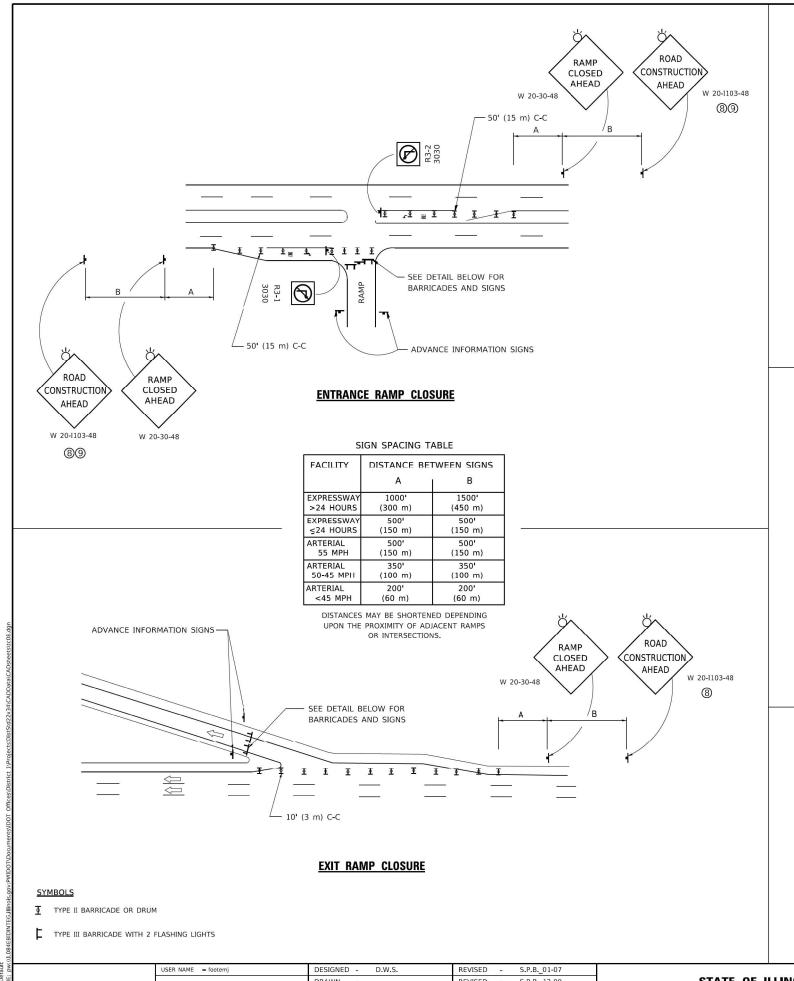
 EXCAVATION OF BENCH CUTS WITHIN EXISTING EMBANKMENT WILL BE PAID FOR AT THE CONTRACT UNIT PRICE PER CUBIC METER OR CUBIC YARD FOR "EARTH EXCAVATION". THIS PRICE WILL INCLUDE ALL LABOR AND MATERIAL, NO ADDITIONAL COMPENSATION WILL BE ALLOWED.

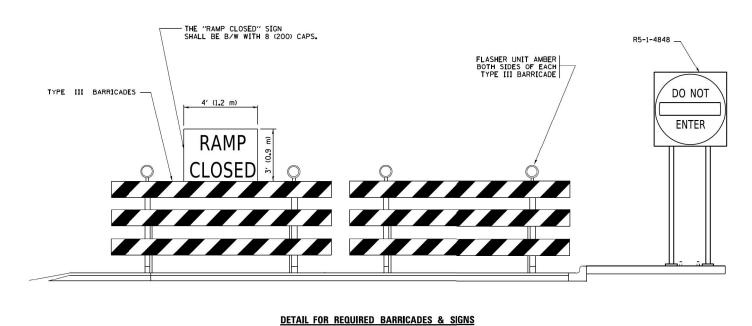
ALL DIMENSIONS ARE IN INCHES (MILLIMETERS) UNLESS OTHERWISE SHOWN.

USER NAME = Lawrence.DeManche	DESIGNED -	REVISED - K. SMITH 11-18-22
	DRAWN - CADD	REVISED -
PLOT SCALE = 100.0000 ' / in.	CHECKED - S.E.B.	REVISED -
PLOT DATE = 11/18/2022	DATE - 06-16-04	REVISED -

STATE OF ILLINOIS
DEPARTMENT OF TRANSPORTATION

BENCHING DETAIL
FOR EMBANKMENT WIDENING


SHEET 1 OF 1 SHEETS STA. TO STA.

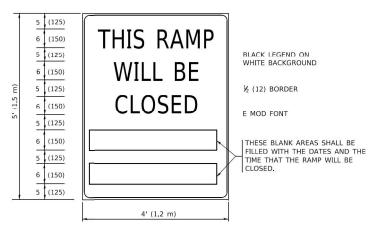

SCALE: NONE

A.P. SECTION COUNTY TOTAL SHEETS NO.

342 2018-100-BR COOK 1211 956

BD-51 CONTRACT NO. 62W38

RAMP CLOSURE ADVANCE INFORMATION SIGN


RAMP CLOSURE ADVANCE WARNING SIGN

RAMP CLOSED 10' (3 m)

BLACK LEGEND ON ORANGE

BACKGROUND MOUNTED DIAGONALLY E MOD FONT 1 (25) BORDER THESE SIGNS ARE REQUIRED ON ALL THE EXIT

GUIDE SIGNS FOR EXIT RAMPS THAT WILL BE CLOSED FOR MORE THAN FOUR (4) CONSECUTIVE DAYS

THESE SIGNS ARE REQUIRED ON BOTH SIDES OF THE RAMP, MINIMUM OF 1 WEEK IN ADVANCE OF THE CLOSURE.

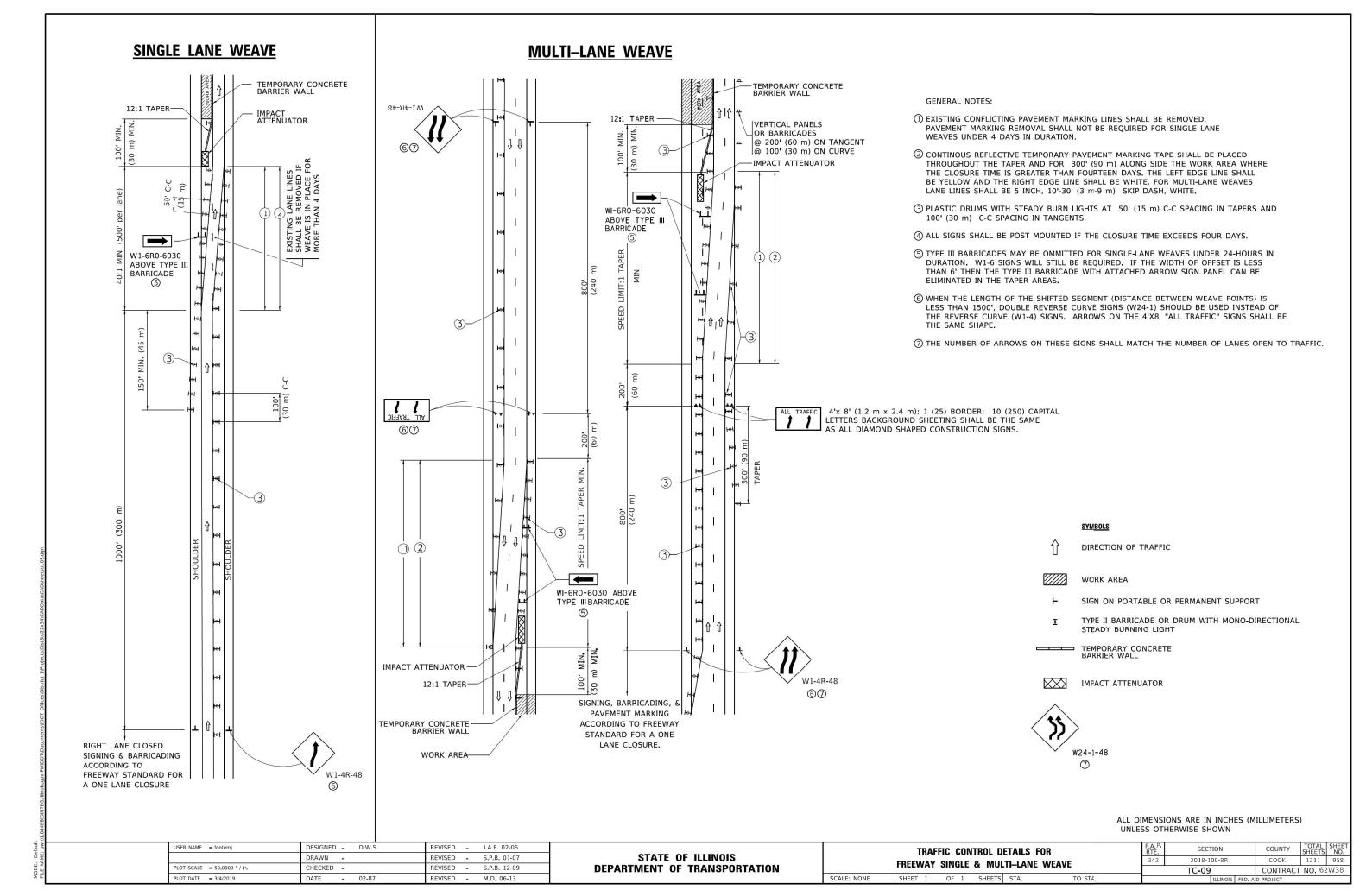
THESE SIGNS SHALL BE FABRICATED AND PAID FOR ACCORDING TO THE TEMPORARY INFORMATION SIGNING SPECIAL PROVISION

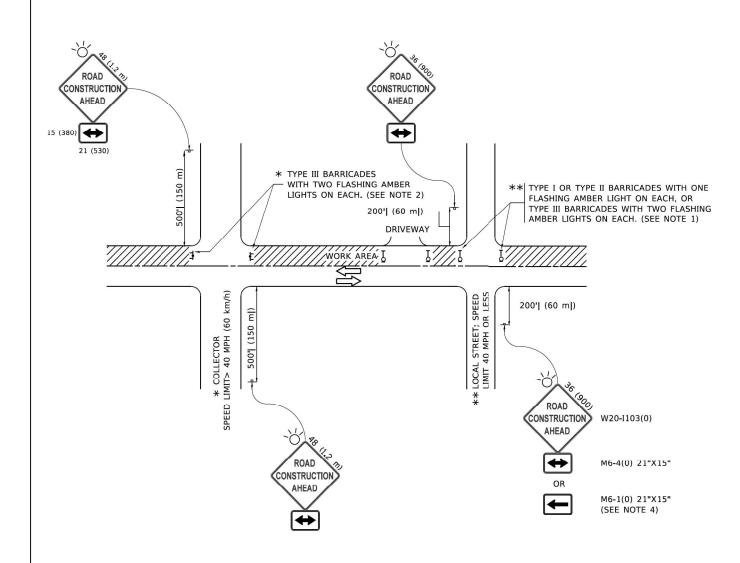
GENERAL NOTES:

- CONES MAY BE SUBSTITUTED FOR DRUMS OR TYPE II BARRICADES DURING DAY OPERATIONS. CONES SHALL BE 1 A MINIMUM OF 28 (700) HIGH.
- 2 VERTICAL BARRICADES SHALL NOT BE USED FOR RAMP CLOSURES.
- 3 A FLAGGER SHALL BE POSITIONED AT EACH CLOSED RAMP THAT IS OPEN TO CONSTRUCTION VEHICLES, PRECEEDED BY A W20-7 FLAGGER WARNING SIGN.
- 4 ALL ROUTE MARKERS AND TRAILBLAZER ASSEMBLIES WHICH DIRECT MOTORISTS TO A CLOSED ENTRANCE RAMP SHALL BE COVERED WHEN THE RAMP IS CLOSED FOR MORE THAN FOUR (4) DAYS.
- 5 THE SIGNING AND BARRICADING WHICH IS REQUIRED BY THIS DETAIL SHALL BE INCLUDED IN THE COST OF TRAFFIC CONTROL AND PROTECTION (EXPRESSWAYS).

- 6 AUTHORIZATION FROM THE DISTRICT'S BUREAU OF TRAFFIC IS REQUIRED FOR ALL RAMP CLOSURES.
- THE RAMP CLOSURE ADVANCE INFORMATION SIGNS SHALL BE ERECTED IF THE CLOSURE TIME EXCEEDS TWENTY-FOUR (24) HOURS. ADDITIONAL ADVANCE WARNING SIGNS ON EXIT GUIDE SIGNING WILL BE REQUIRED FOR EXIT RAMP CLOSURES THAT EXCEED FOUR (4) DAYS IN LENGTH
- (8) ROAD CONSTRUCTION AHEAD SIGNS MAY BE OMITTED WHEN THIS DETAIL IS USED IN CONJUNCTION WITH OTHER TRAFFIC CONTROL THAT ALREADY INCLUDES A ROAD CONSTRUCTION AHEAD SIGN.
- ARTERIAL ROAD CONSTRUCTION AHEAD SIGNS SHALL BE INSTALLED ON THE LEFT SIDE OF TRAFFIC IF THE MEDIAN IS MORE THAN 10 FT WIDE.

ALL DIMENSIONS ARE IN INCHES (MILLIMETERS) UNLESS OTHERWISE SHOWN.


REVISED -DRAWN S.P.B._12-09 PLOT SCALE = 50.0000 ' / in. CHECKED REVISED -M.D._06-13


STATE OF ILLINOIS

ENTRANCE AND EXIT RAMP **CLOSURE DETAILS**

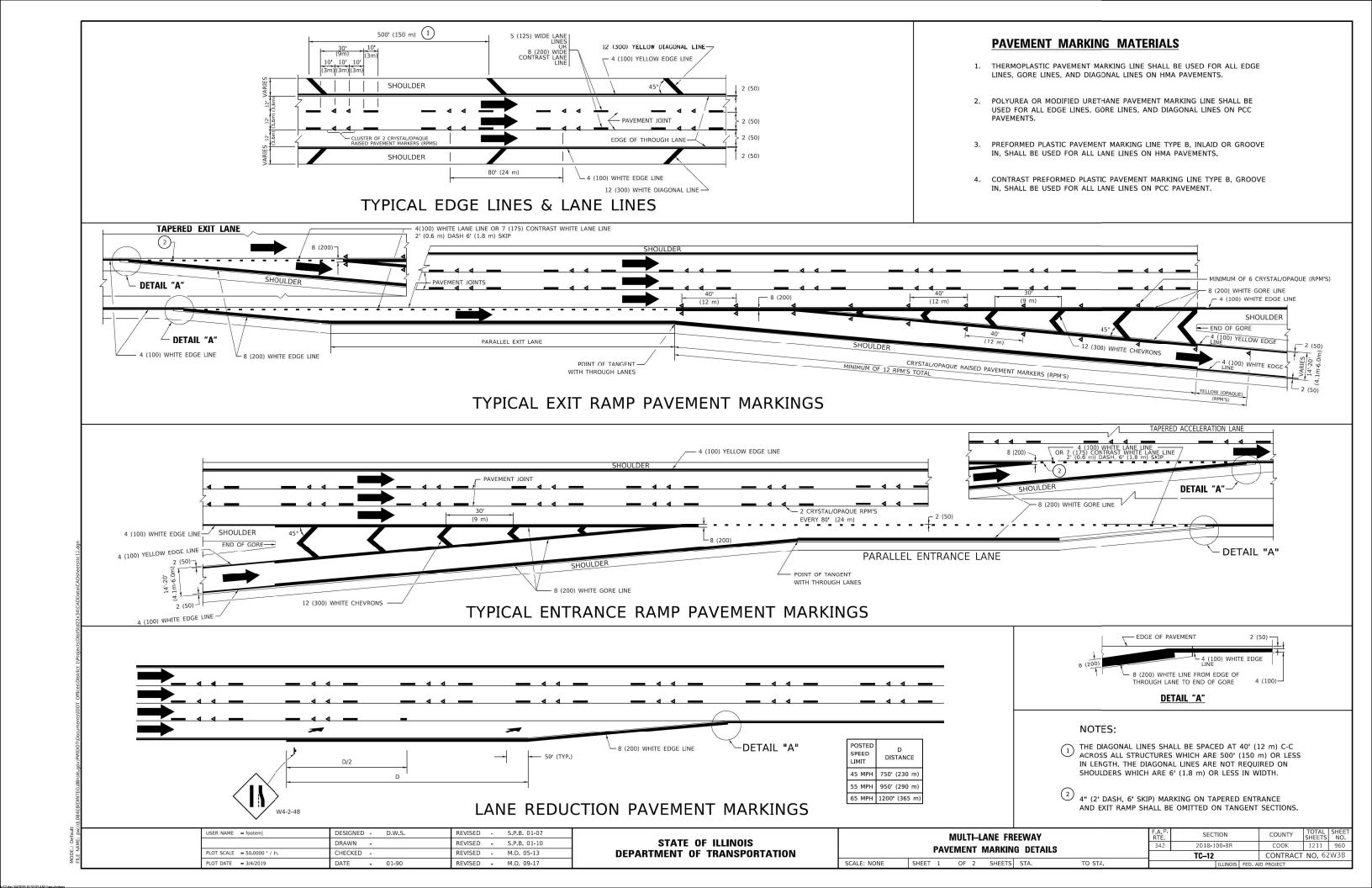
SECTION 2018-100-BE COOK 1211 957 TC-08 CONTRACT NO. 62W38

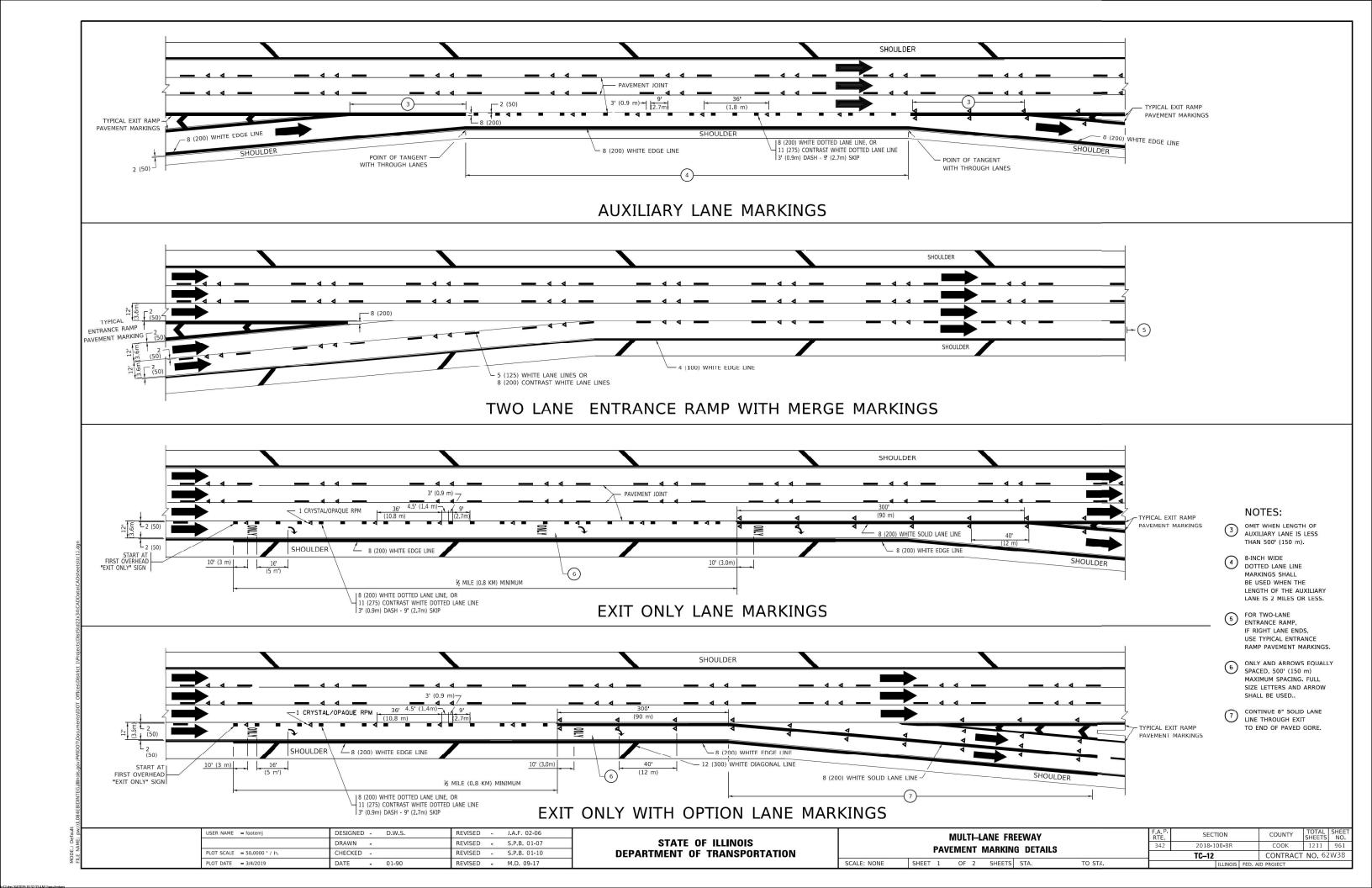
DEPARTMENT OF TRANSPORTATION OF 1 SHEETS STA. PLOT DATE = 3/4/2019 DATE 02-83 REVISED -M D 01-18 SCALE: NONE SHEET 1 TO STA

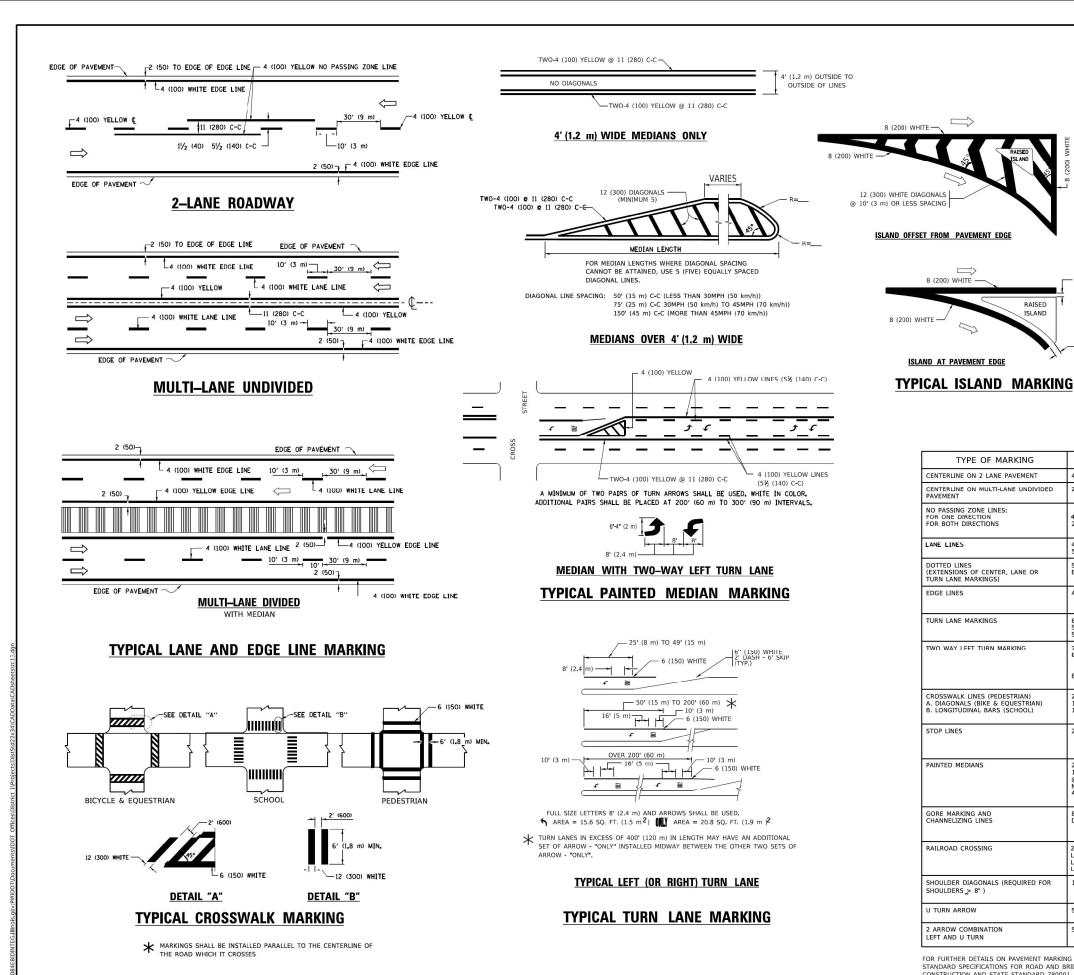
NOTES:

- 1. SIDE ROAD WITH A SPEED LIMIT OF 40 MPH (60 km/h) OR LESS AS SHOWN ON THE DRAWING AND AS DIRECTED BY THE ENGINEER:
- a) ONE "ROAD CONSTRUCTION AHEAD" SIGN 36 x 36 (900x900) WITH A FLASHER MOUNTED ON IT APPROXIMATELY 200' (60 m) IN ADVANCE OF THE MAIN ROUTE.
- b) THE CLOSED PORTION OF THE MAIN ROUTE SHALL BE PROTECTED BY BLOCKING WITH TYPE I, TYPE II OR TYPE III BARRICADES, 1/3 OF THE CROSS SECTION OF THE CLOSED PORTION.
- 2. SIDE ROAD WITH A SPEED LIMIT GREATER THAN 40 MPH (60 km/h) AS SHOWN ON THE DRAWING AND AS DIRECTED BY THE ENGINEER:
- a) ONE "ROAD CONSTRUCTION AHEAD" SIGN 48 x 48 (1.2 m x 1.2 m) WITH A FLASHER MOUNTED ON IT APPROXIMATELY 500" (150 m) IN ADVANCE OF THE MAIN ROUTE.
- THE CLOSED PORTION OF THE MAIN ROUTE SHALL BE PROTECTED BY
 b) BLOCKING WITH TYPE III BARRICADES, 1/2 OF THE CROSS SECTION
 OF THE CLOSED PORTION.
- 3. CONES MAY BE SUBSTITUTED FOR BARRICADES OR DRUMS AT HALF THE SPACING DURING DAY OPERATIONS. CONES SHALL BE A MINIMUM OF 28 (710)
- WHEN THE SIDE ROAD LIES BETWEEN THE BEGINNING OF THE MAINLINE
 4. SIGNING AND THE WORK ZONE, A SINGLE HEADED ARROW (M6-1) SHALL
 BE USED IN LIEU OF THE DOUBLE HEADED ARROW (M6-4).

SCALE: NONE


- 5. WHEN WORK IS BEING PERFORMED ON A SIDE ROAD OR DRIVEWAY, FOLLOW THE APPLICABLE STANDARD(S). THE DIRECTIONAL ARROW (M6-1 OR M6-4) SHALL BE COVERED OR REMOVED WHEN NO LONGER CONSISTENT WITH THE TRAFFIC CONTROL SET-UP.
- 6. ADVANCE WARNING SIGNS ARE TO BE OMITTED ON DRIVEWAYS UNLESS OTHERWISE SPECIFIED IN THE PLANS OR BY THE ENGINEER
- THE TRAFFIC CONTROL AND PROTECTION FOR SIDE ROADS, INTERSECTIONS, AND DRIVEWAYS SHALL BE INCLUDED IN THE COST OF SPECIFIED TRAFFIC CONTROL STANDARDS OR ITEMS.


All dimensions are in inches (millimeters) unless otherwise shown.


	~	
USER NAME = footemj	DESIGNED - L.H.A.	REVISED - A. HOUSEH 10-15-96
	DRAWN -	REVISED - T. RAMMACHER 01-06-00
PLOT SCALE = 50.0000 ' / in.	CHECKED -	REVISED - A. SCHUETZE 07-01-13
PLOT DATE = 3/4/2019	DATE - 06-89	REVISED _ A. SCHUETZE 09-15-16

STAT	E OI	F ILLINOIS
DEPARTMENT	0F	TRANSPORTATION

	TRAFF	IC:	CONT	RΩ	I AND P	ROTEC	CTION FOR	F.A.P. RTE.	SECTIO
SI					_ (0.000000) 100		DRIVEWAYS	342	2018-100
-	DE 110	70	o, iii				DINVENTATO		TC-10
	SHEET	1	OF	1	SHEETS	STA.	TO STA.		II

SPEED LIMIT 425 35 500 45 665 750 55 **COMBINATION** LEFT AND U-TURN 2 (50) 5'-4" (1620) 2 (50) LANE REDUCTION TRANSITION * LANE REDUCTION ARROWS REQUIRED AT SPEEDS OF 45 MPH OR

GREATER OR WHEN SPECIFIED IN PLANS.

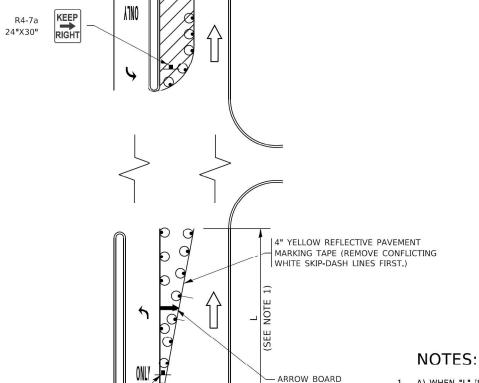
TYPE OF MARKING WIDTH OF LINE PATTERN COLOR SPACING / REMARKS CENTERLINE ON 2 LANE PAVEMENT YELLOW 10' (3 m) LINE WITH 30' (9 m) SPACE NO PASSING ZONE LINES: FOR ONE DIRECTION FOR BOTH DIRECTIONS 5½ (140) C-C FROM SKIP-DASH CENTERLINE 11 (280) C-C OMIT SKIP-DASH CENTERLINE BETWEEN 2 @ 4 (100) LANE LINES SKIP-DASH SKIP-DASH 10' (3 m) LINE WITH 30' (9 m) SPACE 4 (100) 5 (125) ON FREEWAYS DOTTED LINES (EXTENSIONS OF CENTER, LANE OR SAME AS LINE BEING EXTENDED SKIP-DASH SAME AS LINE BEING EXTENDED 2' (600) LINE WITH 6' (1,8 m) SPACE URN LANE MARKINGS) EDGE LINES 4 (100) SOLID YELLOW-LEFT WHITE-RIGHT OUTLINE MEDIANS IN YELLOW 6 (150) LINE: FULL SIZE LETTERS & SYMBOLS (8' (2.4m)) TURN LANE MARKINGS SOLID WHITE SEE TYPICAL TURN LANE MARKING DETAIL 10' (3 m) LINE WITH 30' (9 m) SPACE FOR SKIP-DASH; 5½ (140) C-C BETWEEN SOLID LINE AND SKIP-DASH LINE SEE TYPICAL TWO-WAY LEFT TURN MARKING DETAIL CROSSWALK LINES (PEDESTRIAN) A. DIAGONALS (BIKE & EQUESTRIAN) B. LONGITUDINAL BARS (SCHOOL) NOT LESS THAN 6' (1.8 m) APART 2' (600) APART 2' (600) APART SEE TYPICAL CROSSWALK MARKING DETAILS. PLACE 4' (1.2 m) IN ADVANCE OF AND PARALLEL TO CROSSWALK, IF PRESENT. OTHERWISE, PLACE AT DESIRED STOPPING POINT, PARALLEL TO CROSSROAD CENTERLINE, WHERE STOP LINES 24 (600) SOLID WHITE PAINTED MEDIANS SOLID 11 (280) C-C FOR THE DOUBLE LINE SEE TYPICAL PAINTED MEDIAN MARKING. YELLOW: TWO WAY TRAFFIC 2 (300) DIAGONALS WHITE: ONE WAY TRAFFIC NO DIAGONALS USED FO 1' (1.2 m) WIDE MEDIAN 8 (200) WITH 12 (300) DIAGONALS @ 45° SOLID DIAGONALS: 15' (4.5 m) C-C (LESS THAN 30MPH (50 km/h)) 20' (6 m) C-C 30MPH (50 km/h) TO 45MPH (70 km/h)) 30' (9 m) C-C (OVER 45MPH (70 km/h)) 24 (600) TRANSVERSE LINES; "RR" IS 6' (1.8 m) LETTERS; 16 (400) LINE FOR "X" RAILROAD CROSSING SOLID WHITE SEE STATE STANDARD 780001 AREA OF: 50' (15 m) C-C (LESS THAN 30MPH (50 km/h)) 75' (25 m) C-C (30 MPH (50 km/h) TO 45MPH (70 km/h)) 150' (45 m) C-C (OVER 45MPH (70 km/h)) WHITE - RIGHT YELLOW - LEFT SHOULDER DIAGONALS (REQUIRED FOR 12 (300) @ 45° SOLID SHOULDERS > 8') U TURN ARROW SEE DETAIL SOLID WHITE 2 ARROW COMBINATION LEFT AND U TURN 30.4 SF

U-TURN

FOR FURTHER DETAILS ON PAVEMENT MARKING REFER TO STANDARD SPECIFICATIONS FOR ROAD AND BRIDGE CONSTRUCTION AND STATE STANDARD 780001.

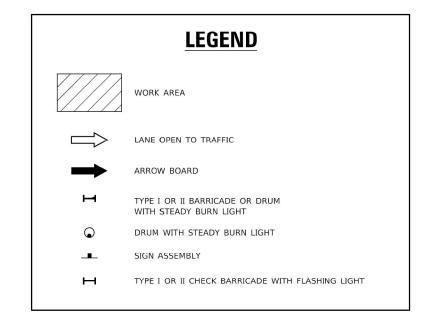
SCALE: NONE

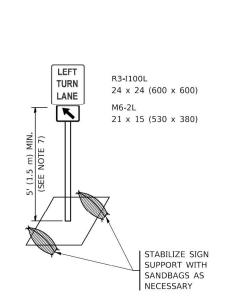
RAISED


unless otherwise shown.

USER NAME = footemj	DESIGNED -	EVERS	REVISED	-	C. JUCIUS 09-09-09
	DRAWN -		REVISED	-	C. JUCIUS 07-01-13
PLOT SCALE = 50.0000 ' / in.	CHECKED -		REVISED	.	C. JUCIUS 12-21-15
PLOT DATE = 3/4/2019	DATE -	03-19-90	REVISED		C. JUCIUS 04-12-16

STATE OF ILLINOIS **DEPARTMENT OF TRANSPORTATION**


DISTRICT ONE TYPICAL PAVEMENT MARKINGS							F.A.P. RTE.	SECTION	COUNTY	TOTAL SHEETS	
						as .	342	2018-100-BR	соок	1211	962
TITIOAL LAVENILITI MANANIOS								TC-13	CONTRACT NO. 62W38		
SHEET	1	OF	2	SHEETS	STA.	TO STA.	ILLINOIS FED. AID PROJECT				


TURN BAY ENTRANCE AT START OF LANE CLOSURE TAPER

- 1, A) WHEN "L" IS ≤ THE STORAGE LENGTH OF THE TURN LANE (AS SHOWN IN FIG. 1), USE FIGURE 1.
 - B) WHEN "L" IS > THE STORAGE LENGTH OF THE TURN LANE OR THE TURN LANE IS WITHIN THE LANE CLOSURE, USE FIGURE 2.
- 2. CONES MAY BE SUBSTITUTED FOR BARRICADES OR DRUMS AT HALF THE SPACING DURING DAY OPERATIONS. CONES SHALL BE A MINIMUM OF 28 (710) IN HEIGHT.
- LIGHTS WILL NOT BE REQUIRED ON BARRICADES OR DRUMS FOR DAY OPERATIONS. ALL LIGHTS SHALL BE MONODIRECTIONAL.
- 4. REFLECTIVE TEMPORARY PAVEMENT MARKINGS SHALL BE PLACED THROUGHOUT THE BARRICADED AREAS OF EACH TURN BAY AS SHOWN WHERE THE CLOSURE TIME IS GREATER THAN FOURTEEN (14) DAYS.
- 5. THIS APPLICATION ALSO APPLIES WHEN WORK IS BEING PERFORMED IN THE RIGHT LANE(S) AND THE RIGHT TURN BAY IS TO REMAIN OPEN. UNDER THIS CONDITION, "RIGHT TURN LANE" R3-I100R 24 x 24 (600 x 600) AND M6-2R 21 x 15 (530 x 380) SHALL BE USED.
- 6. THESE CONTROLS SHALL SUPPLEMENT MAINLINE TRAFFIC CONTROL FOR LANE CLOSURES.
- 7. THE SIGNS SHALL BE MOUNTED ABOVE THE BARRICADES/DRUMS ON SEPARATE SIGN SUPPORTS THAT MEET NCHRP 350 OR MASH PREQUIREMENTS.
- 8. TRAFFIC CONTROL AND PROTECTION AT TURN BAYS (TO REMAIN OPEN TO TRAFFIC) SHALL BE INCLUDED IN THE COST OF SPECIFIED TRAFFIC CONTROL STANDARDS OR ITEMS.

TURN BAY ENTRANCE WITHIN A LANE CLOSURE

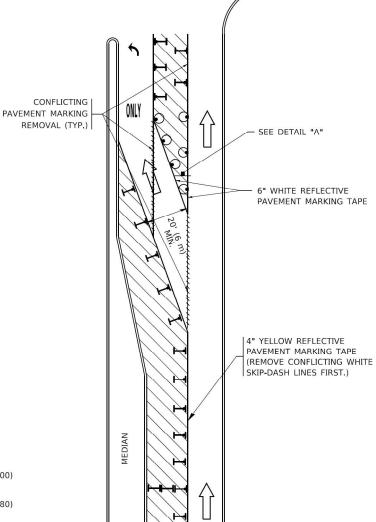
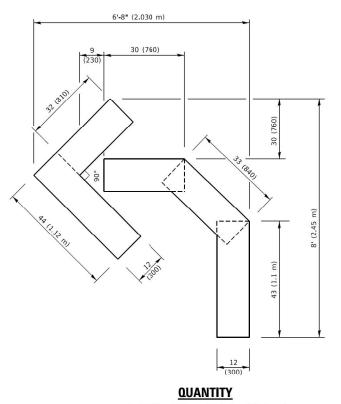


FIGURE 2

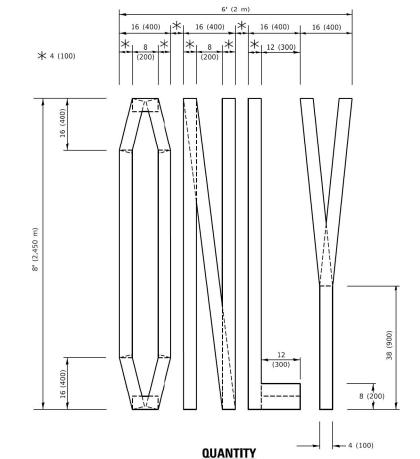
DETAIL A

All dimensions are in inches (millimeters) unless otherwise shown

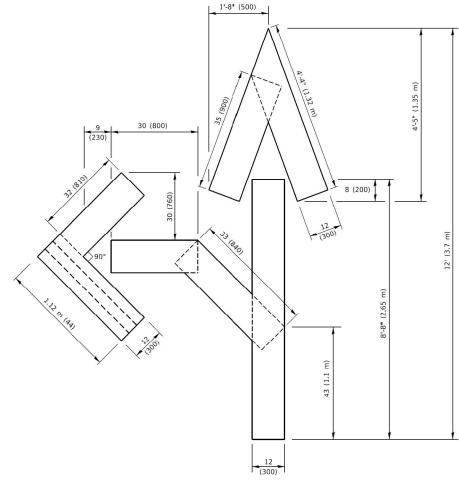
JSER NAME = footemi DESIGNED -T. RAMMACHER 09-08-94 REVISED - R. BORO 09-14-09 DRAWN - A. HOUSEH 11-07-95 REVISED - A. SCHUETZE 07-01-13 A. HOUSEH 10-12-96 REVISED - A. SCHUETZE 09-15-16 PLOT DATE = 3/4/2019 DATE -T. RAMMACHER 01-06-00 REVISED -


FIGURE 1

STATE OF ILLINOIS **DEPARTMENT OF TRANSPORTATION**


TRA	F.A.P RTE.	SECT					
	/TO	REMAIN	OPEN 1	TO TRAFF	IC)	342	2018-10
		TC-14					
SCALE: NONE	SHEET 1	OF 1	SHEETS	STA.	TO STA.		

-100-BR COOK 1211 963 CONTRACT NO. 62W38


SEE DETAIL "A"

4 (100) LINE = 45.5 ft. (13.9 m) 15.2 sq. ft. (1.41 sq. m)

4 (100) LINE = 64.1 ft. (19.5 m) 21.4 sq. ft. (1.99 sq. m)

QUANTITY

4 (100) LINE = 82.5 ft. (25.1 m) 27.5 sq. ft. (2.53 sq. m)

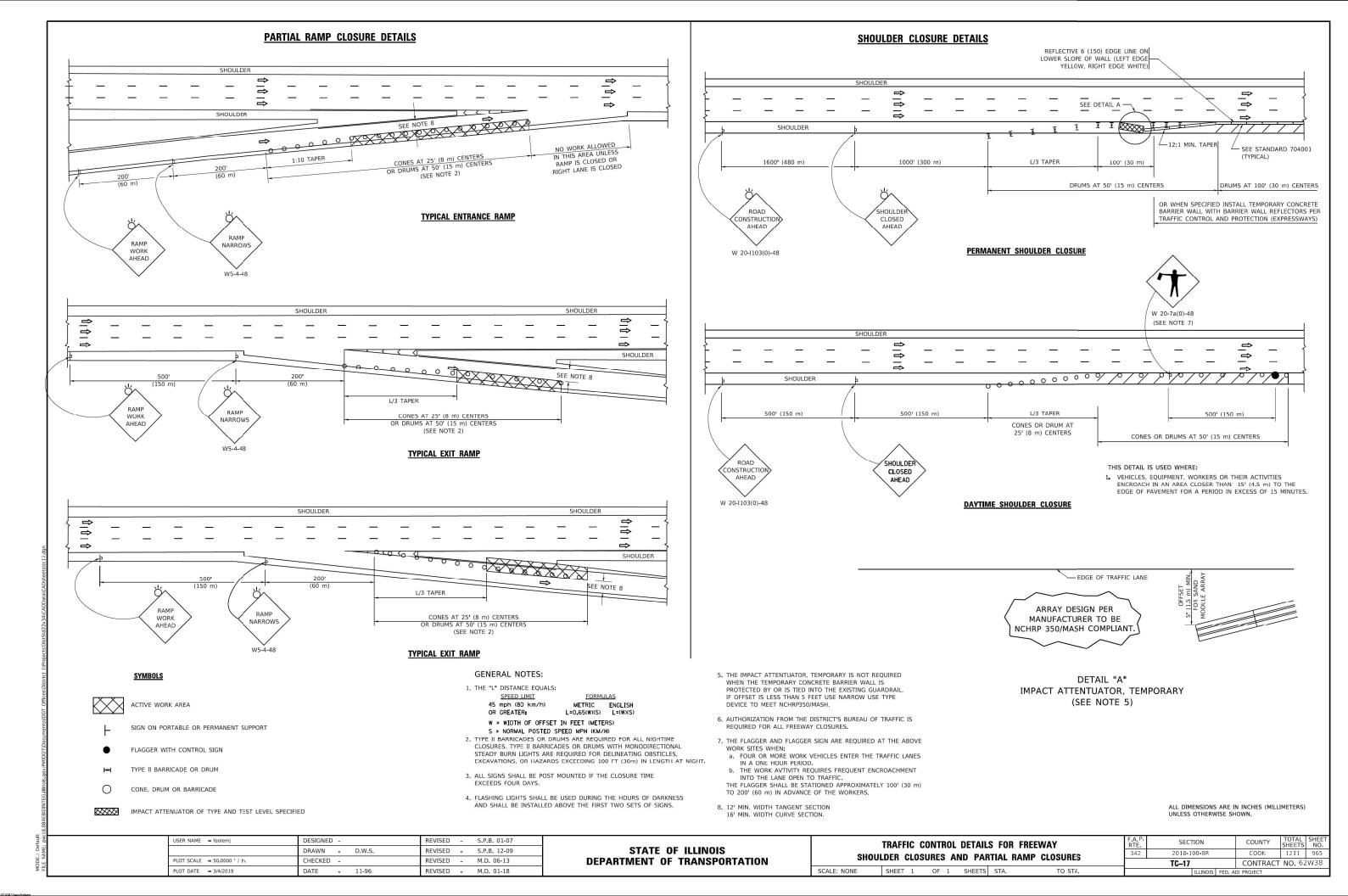
NOTE:

ALL QUANTITIES OF PLACEMENT ARE REPRESENTED IN LINEAR FEET OF 4" LINES TO MATCH THE 4" TEMPORARY TAPE PAY ITEM AND REPRESENTS THE TOTAL QUANTITY OF 4" TAPE REQUIRED.

4 (100) LINE = 225.9 ft. (68.9 m) 75.3 sq. ft. (6.99 sq. m)

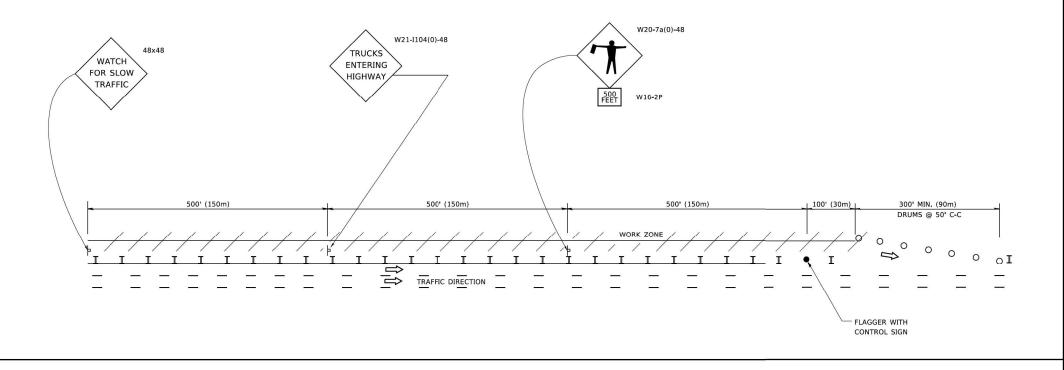
All dimensions are in inches (millimeters) unless otherwise shown.

 USER NAME
 Footemj
 DESIGNED
 REVISED
 - T. RAMMACHER 03-02-98

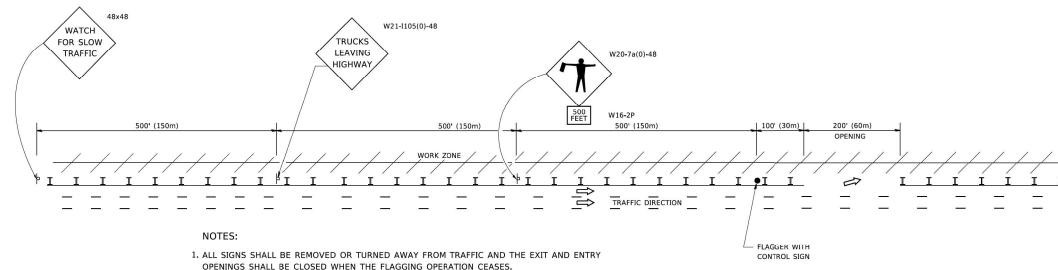

 DRAWN
 REVISED
 - E. GOMEZ 08-28-00

 PLOT SCALE
 = 50.0068 ' / in.
 CHECKED
 REVISED
 - E. GOMEZ 08-28-00

 PLOT DATE
 = 3/4/2019
 DATE
 09-18-94
 REVISED
 - A. SCHUETZE 09-15-16


STATE OF ILLINOIS
DEPARTMENT OF TRANSPORTATION

SCALE: NONE SHEET 1 OF 1 SHEETS STA. TO STA.



SIGNING FOR FLAGGING OPERATIONS AT WORK ZONE OPENINGS

WORK ZONE EXIT OPENING

WORK ZONE ENTRY OPENING

- OPENINGS SHALL BE CLOSED WHEN THE FLAGGING OPERATION CEASES. NON OPERATING EQUIPMENT SHALL COMPLY WITH ARTICLE 701.11
- 2. WORK ZONE OPENINGS SHALL BE A MINIMUM OF ONE HALF MILE APART AND A MINIMUM OF ONE QUARTER MILE FROM ALL ENTRANCE AND EXIT RAMPS.
- 3. EXITING THE WORK ZONE AT ANY PLACE OTHER THAN AT A WORK ZONE EXIT OPENING WILL BE PROHIBITED.
- 4. ALL VEHICLES SHALL ENTER THE WORK ZONE AT ENTRY OPENINGS, USING THEIR TURN SIGNALS TO WARN MOTORISTS
- 5. FLAGGERS SHALL NOT STOP TRAFFIC OR DIRECT TRAFFIC INTO AN ADJACENT LANE.

ALL DIMENSIONS ARE IN INCHES (MILLIMETERS) UNLESS OTHERWISE SHOWN

USER NAME = footemj	DESIGNED -	REVISED	-1	J.A.F. 02-06
	DRAWN -	REVISED	•	S.P.B. 01-07
PLOT SCALE = 50.0000 ' / h.	CHECKED -	REVISED		S.P.B. 12-09
PLOT DATE = 3/4/2019	DATE -	REVISED	-	M.D.06-13

STATE OF ILLINOIS **DEPARTMENT OF TRANSPORTATION**

FREEWA	Y /EXPRE	SSWA	Y SIG	NING F	OR FLAG	GING OPERATIONS	
AT W	ORK ZONI	E OPE	NINGS	ON F	REEWAYS	/EXPRESSWAYS	
SCALE: NONE	SHEET	1	OF 1	SHEETS	STA.	TO STA.	

		D PROJECT				
	TC-18	CONTRACT	NO. 62	2W38		
342	2018-1	COOK	1211	966		
F.A.P. RTE.	SEC	COUNTY	TOTAL SHEETS	SHE		

NOTES:

- 1. USE BLACK LETTERING ON ORANGE BACKGROUND.
- 2. ERECT SIGNS IN ADVANCE OF THE LOCATION FOR THE "ROAD CONSTRUCTION AHEAD" SIGN AT LOCATIONS AS DIRECTED BY THE ENGINEER.
- 3. ERECT SIGN 1 WITH INSTALLED PANEL 2 ONE WEEK PRIOR TO THE START OF CONSTRUCTION.
- 4. REMOVE PANEL 2) SOON AFTER THE START OF CONSTRUCTION.
- 5. SEE SPECIAL PROVISION FOR "TEMPORARY INFORMATION SIGNING" FOR ADDITIONAL INFORMATION.
- 6. ONE SIGN ASSEMBLY EQUALS 25.70 SQ. FT. (2.3 SQ. M.)
- 7. SHALL BE PAID FOR AS TEMPORARY INFORMATION SIGNING.

ALL DIMENSIONS ARE IN INCHES (MILLIMETERS) UNLESS OTHERWISE SHOWN.

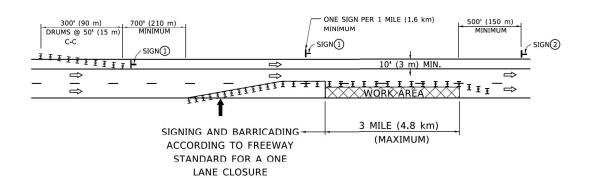
USER NAME = footemj	DESIGNED -	REVISED - R. MIRS 09-15-97				ARTERIAL ROAD		F.A.P.	SECTION	COUNTY	TOTAL	SHEET
	DRAWN -	REVISED - R. MIRS 12-11-97	STATE OF ILLINOIS	INFORMATION SIGN				342	2018-100-BR	соок	1211	967
PLOT SCALE = 50.0000 ' / in.	CHECKED -	REVISED -T. RAMMACHER 02-02-99	DEPARTMENT OF TRANSPORTATION	N		INI ONIVIATION SIGN			TC-22	CONTRACT NO. 62W3		W38
PLOT DATE = 3/4/2019	DATE -	REVISED - C. JUCIUS 01-31-07		SCALE: NONE	SHEET 1	OF 1 SHEETS STA.	TO STA.		ILLINOIS FEI	. AID PROJECT		

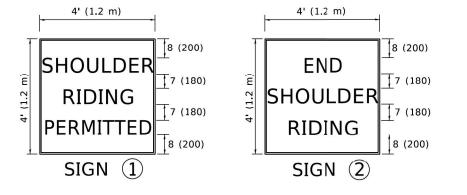
CENTER LANE CLOSURE TYPE I CHECK BARRICADES > DRUMS AT 50' (15 m) CENTERS AT 100' (30 m) CENTERS 06) ARROW BOARD DISPLAYING-DOUBLE ARROW PATTERN LANE CLOSE * W9-3a-48 **★** W9-3-48 SIGNING & BARRICADING ACCORDING TO FREEWAY STANDARD FOR A ONE LANE CLOSURE INSTALLATION SEQUENCE 1. CLOSE LANES 1&2 NOTES: ACTIVE WORK AREA 1. DRUMS WITH STEADY BURN LIGHTS SHALL BE USED AT 50' (15 m) CENTERS ON ALL TAPERS AND TANGENTS IN 2. ERECT INSIDE LANE 2 TAPER ADVANCE OF WORK AREA. 2. CLOSURE SHALL BE USED ONLY FOR OPERATIONS LASTING 72 HOURS OR LESS. 3. OPEN LANE 2 BY RELOCATING FIRST TAPER 3. CENTER LANE CLOSURE CONFIGURATION NON-ACTIVE IS NOT TO BE USED WITH WORKERS WORK AREA PRESENT. 4. REMOVE CLOSURE IN REVERSE ORDER USER NAME = footemj REVISED - J.A.F. 04-03 DESIGNED -DRAWN -REVISED - S.P.B. 01-07

CHECKED -

DATE

PLOT DATE = 3/4/2019


REVISED - S.P.B. 12-09


REVISED -

SHOULDER LANE

NOTE: CLOSURE SHALL BE USED ONLY FOR OPERATIONS LASTING 72 HOURS OR LESS. ONE SIGN PER 1 MILE (1.6 km) SIGN (2) SIGN 1 ⇒ 10' (3 m) MIN. **11111** 11111111 \Rightarrow ************** WORK AREA └ 700' (210 m) MIN. 3 MILE (4.8 km) SIGNING AND BARRICADING (MAXIMUM) ACCORDING TO FREEWAY STANDARD FOR A TWO

LANE CLOSURE

SYMBOLS

DIRECTION OF TRAFFIC

■ ARROWBOARD

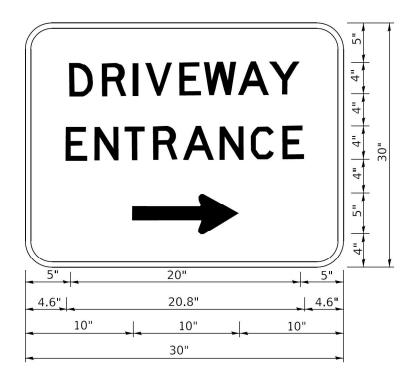
ACTIVE WORK AREA

- ► SIGN ON PORTABLE OR PERMANENT SUPPORT 🖈
- TYPE II BARRICADE, OR DRUM WITH MONO-DIRECTIONAL STEADY BURN LIGHT

SCALE: NONE

ALL DIMENSIONS ARE IN INCHES (MILLIMETERS)
UNLESS OTHERWISE SHOWN

* ALL SIGNS SHALL BE MOUNTED AT A MINIMUM HEIGHT OF 5' (1.5 m).


6 (150) SERIES "C" LEGEND BLACK LEGEND

1 (25) BORDER

WHITE REFLECT. BACKGROUND

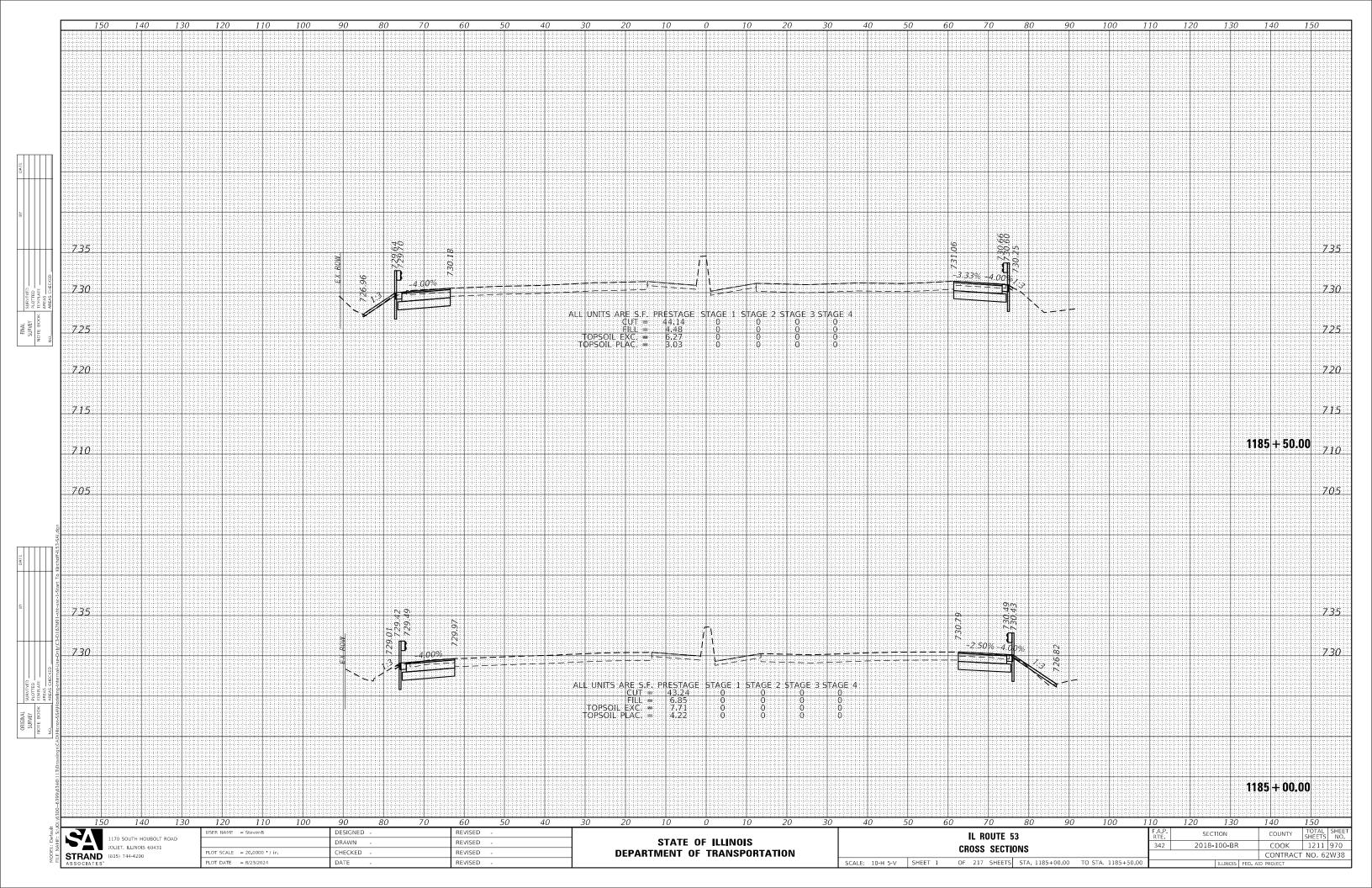
STATE OF ILLINOIS
DEPARTMENT OF TRANSPORTATION

								F.A.P.	0.0000000000000000000000000000000000000			TOTAL	SHEE
							FREEWAY	RTE.	SECTION		COUNTY	SHEETS	NO.
							DER LANE	342	2018-100-BR		COOK	1211	968
	OLIVICII LANE OLOGONE SHOOLDEN LANE								TC-25	CONTRACT NO. 62W38			
	SHEET	1	OF	1	SHEETS	STA.	TO STA.		ILLINOIS	FED. A	ID PROJECT		

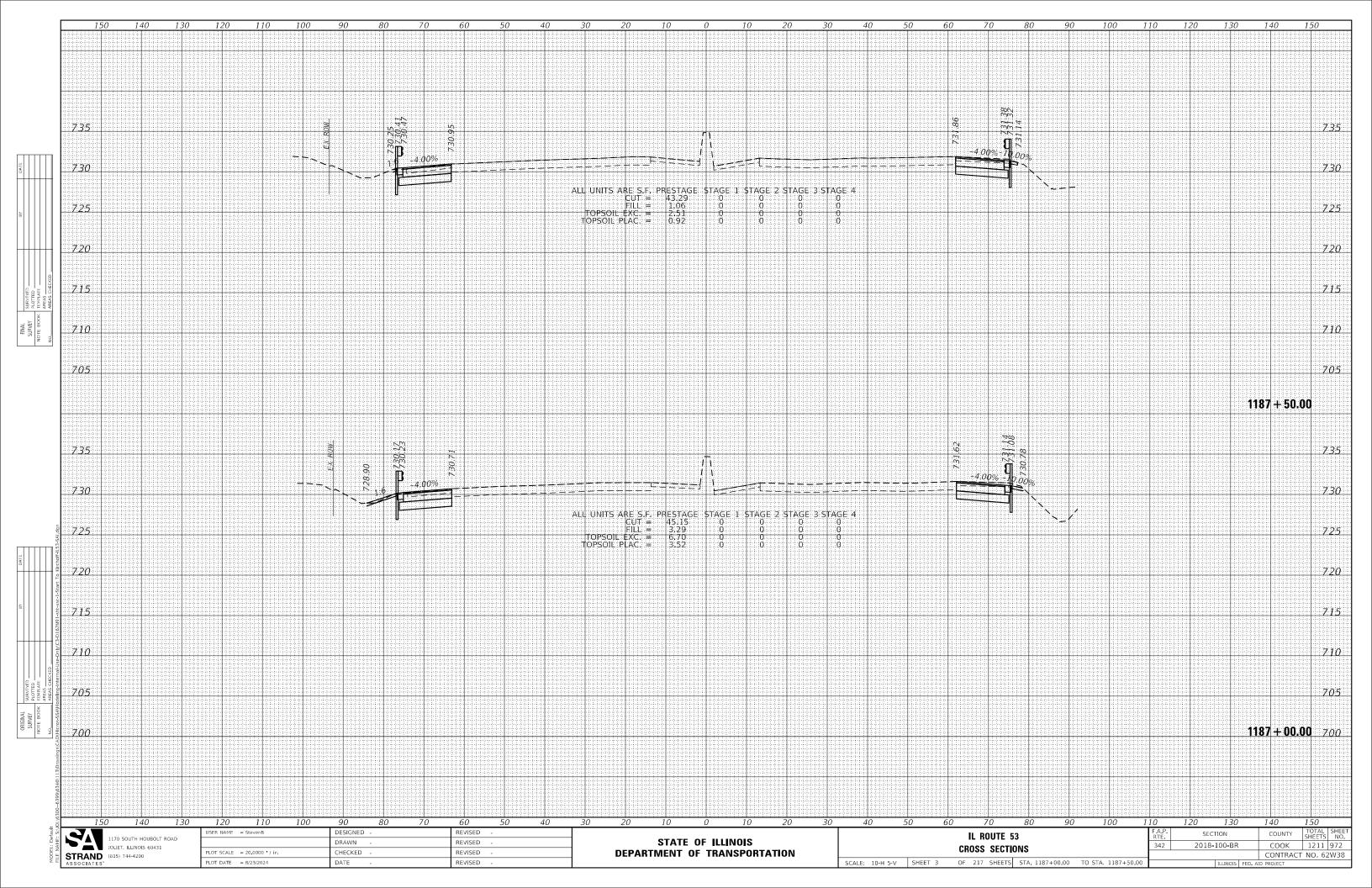
3.0" RADIUS, 0.5" BORDER, WHITE ON GREEN; REFLECTORIZED "DRIVEWAY" D; "ENTRANCE" D; STANDARD ARROW CUSTOM 12.0" x 5.0"

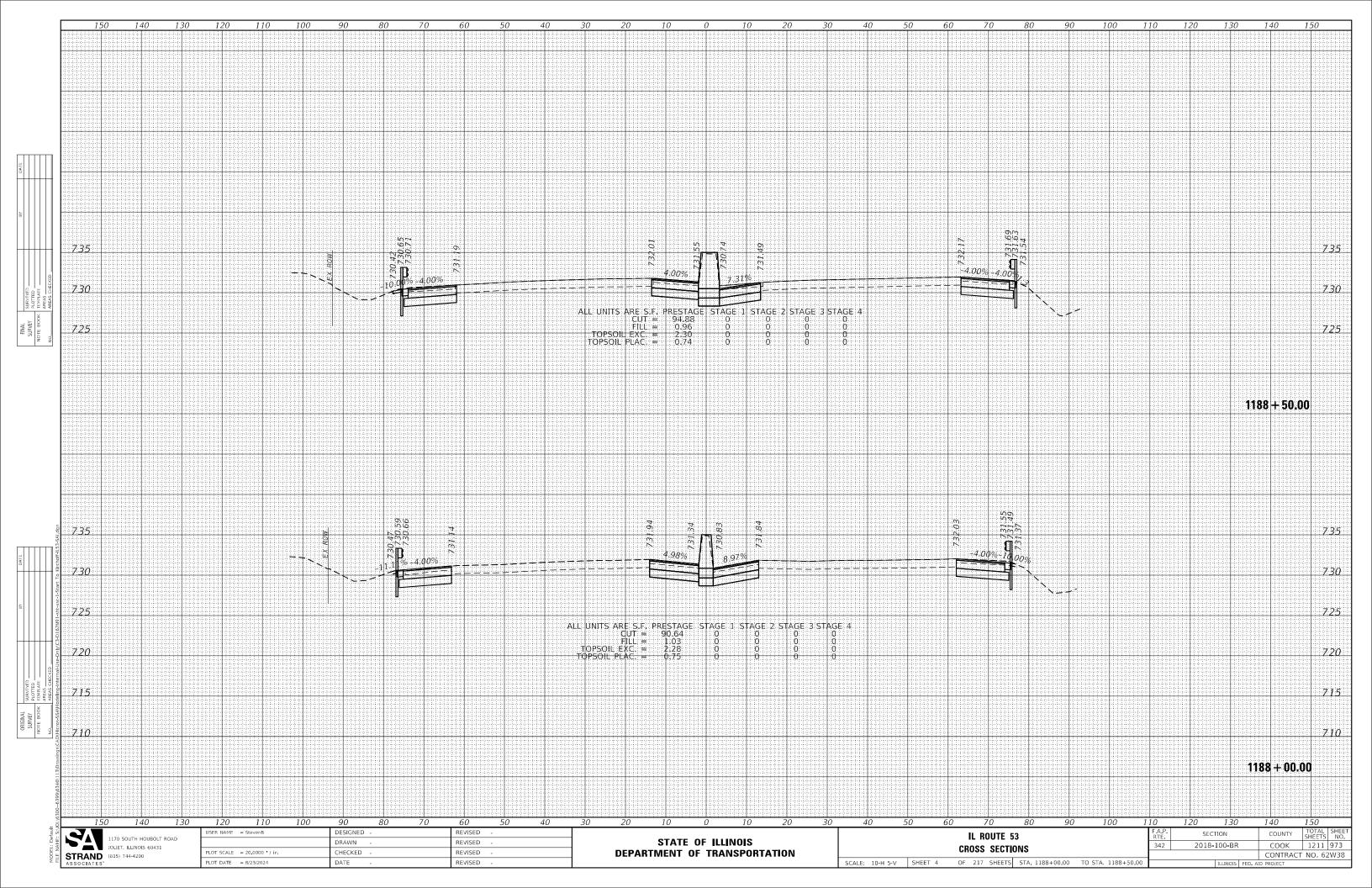
NOTES:

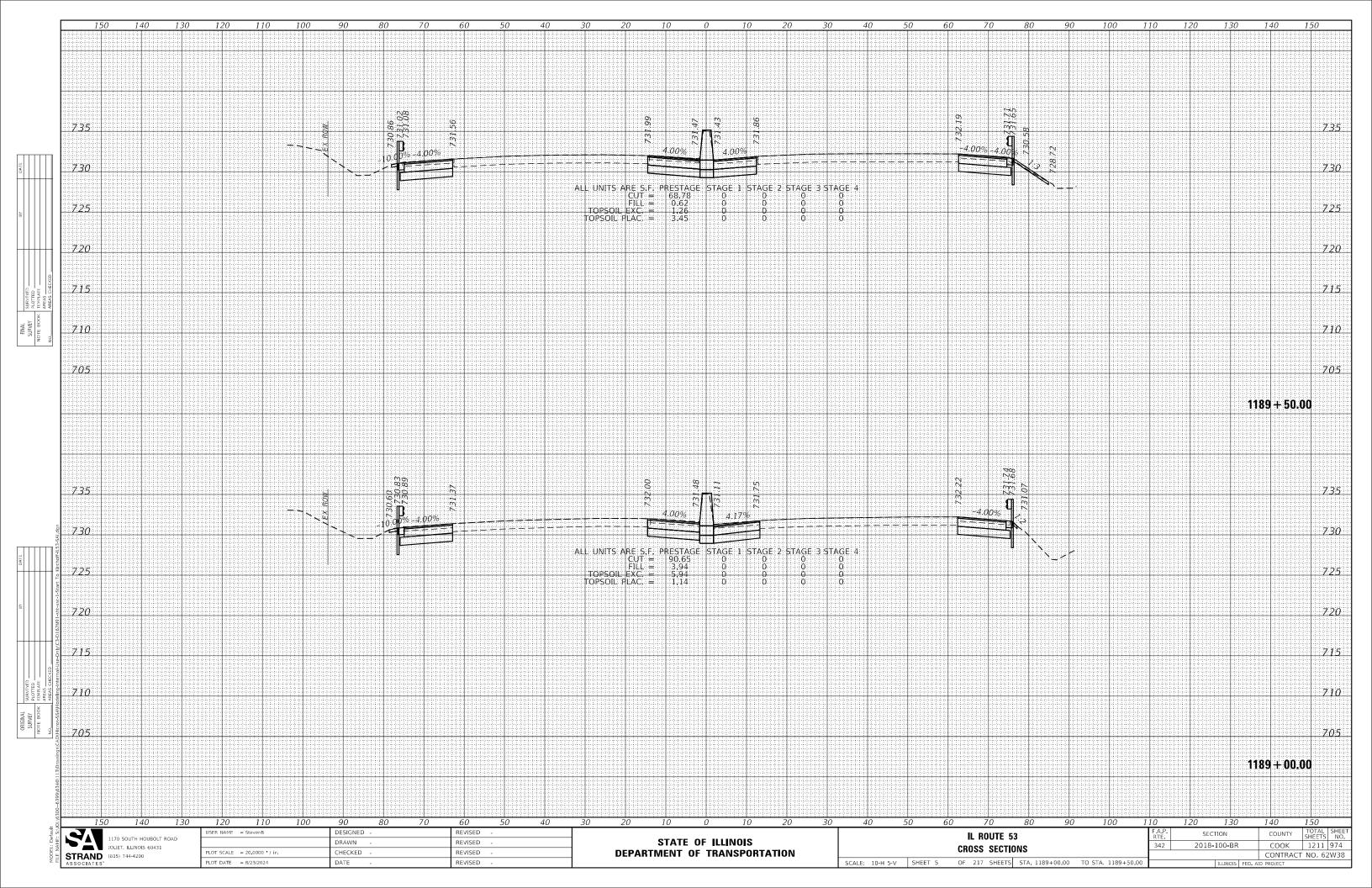
- 1. HALF OF THE SIGNS WILL REQUIRE A LEFT HAND FACING ARROW.
- 2. TWO SIGNS SHALL BE USED AT EACH COMMERCIAL ENTRANCE PLACED BACK-TO-BACK: ONE WITH A RIGHT HAND ARROW (SHOWN) SHALL BE PLACED ON THE NEAR RIGHT SIDE THE DRIVEWAY AND ONE WITH A LEFT HAND ARROW SHALL BE PLACED ON THE FAR LEFT SIDE OF THE DRIVEWAY.
- 3. SIGNS TO BE PAID FOR AS ITEM "TEMPORARY INFORMATION SIGNING".


 USER NAME
 = leysa
 DESIGNED
 REVISED
 C. JUCIUS 02-15-07

 DRAWN
 REVISED


 PLOT SCALE
 = 50,0000 ' / in.
 CHECKED
 REVISED


 PLOT DATE
 = 8/6/2021
 DATE
 REVISED


STATE OF ILLINOIS
DEPARTMENT OF TRANSPORTATION

