

HYDRAULIC REPORT

ROUTE:

COUNTY: STRUCTURE NO.: PROJECT NO.: IDOT PTB: Illinois Route 102 (FAP 631) over Ryans Creek (aka Rayns Creek) Will 099-0170 (Existing), 099-0918 (Proposed) P-91-187-13 162 Item 005

Prepared for:

Illinois Department of Transportation

Division of Highways - District 1 Bureau of Programming Hydraulics Studies Unit

Prepared By:

Primera Engineers, Ltd.

November, 2016

TABLE OF CONTENTS

- Section 1 Narrative
- Section 2 Waterway Information Table
- Section 3 Hydraulic Report Data Sheets
- Section 4 Location Map
- Section 5 Photographs
- Section 6 Hydrology
- Section 7 Streambed Profile
- Section 8 Roadway Profile
- Section 9 Cross Section Plots
- Section 10 Bridge Layout/Plan Drawing Plots
- Section 11 Bridge Cross Section Plots Existing Conditions
- Section 12 Bridge Cross Section Plots Proposed Conditions
- Section 13 Hydraulic Analyses
- Section 14 Scour Analysis
- Section 15 Survey Notes
- Section 16 Estimated Water Surface Elevation (EWSW) Data
- Section 17 Correspondence Notes
- Section 18 Alternatives Analysis
- Section 19 CD

Illinois Route 102 (FAP 631) over Ryans Creek Will County

SECTION 1

Narrative

INDEX

- 1. PROJECT DESCRIPTION
- 2. DESCRIPTION OF EXISTING STRUCTURE AND FLOODPLAIN
- 3. FIELD OBSERVATIONS
- 4. HISTORICAL OBSERVATIONS / RECORDS
- 5. OTHER STUDIES & AFFECTED AGENCIES
- 6. DATUM CORRELATION
- 7. SENSITIVE FLOOD RECEPTORS
- 8. HYDROLOGIC METHODOLOGY
 - a. CN VALUE
 - b. PRECIPITATION GAGES
 - c. CRITICAL DURATION ANALYSIS
- 9. HYDRAULIC ANALYSES
 - a. MANNING'S "N" VALUES
 - b. STARTING WATER SURFACE ELEVATION
 - c. EXISTING BRIDGE GEOMETRY
 - d. NATURAL CONDITIONS HYDRAULIC ANALYSIS
 - e. PROPOSED STRUCTURE ALTERNATIVES ANALYSIS
 - f. PROPOSED CONDITIONS
- 10. SCOUR ANALYSIS
- 11. RIPRAP DESIGN
- 12. COMPENSATORY STORAGE
- 13. PERMIT REQUIREMENTS
- 14. FREEBOARD CLEARANCE
- 15. CONCLUSION

Structure Number:	099-0170 (Existing)
County:	WILL
Route:	FAP 631 (Illinois Route 102)
Waterway:	Ryans Creek
Cross Streets:	1 mile southeast of W. Manteno Road and 0.5 miles northwest of S. Chicago Road.

1. PROJECT DESCRIPTION

The Illinois Department of Transportation is proposing the removal and replacement of the existing IL Route 102 single span concrete deck beam bridge across Ryans Creek in Wesley Township, Unincorporated Will County. This project is located approximately 1 mile southeast of W. Manteno Road and 0.5 miles northwest of S. Chicago Road along Illinois Route 102. Associated improvements include resurfacing, new ditches and proposed guardrail as warranted. It is anticipated that the proposed roadway profile will be raised and the waterway opening sized larger than the existing conditions to provide the required clearance and freeboard and reduce the potential for overtopping of the roadway and scour. The purpose of this project is to replace the functionally obsolete and deteriorated structure with a new structure that meets current standards. This report will evaluate the existing bridge and the proposed alternatives and recommendations in accordance with the IDOT Drainage Manual.

2. DESCRIPTION OF EXISTING STRUCTURE AND FLOODPLAIN

Structure Number 099-0170 was constructed in 1929 and the deck rehabilitated in 1971, 1985, and 2009. This structure is a single span concrete bridge with precast concrete deck beams having a span of 21.3', height of 8.59 feet, and a 44' width on a 20 degree skew. The span perpendicular to the flow is 20.0' in width and will be used to model the effective waterway opening.

According to the latest IDOT Structures Information Management System Master Structure Report and structural evaluation, the bridge is in poor condition. Weight restrictions are posted for this bridge. The deck geometry meets the present minimum design criteria and waterway adequacy is better than adequate. The channel and protection is in satisfactory condition with minor deterioration of the scour protection noted. The structure was given a scour critical rating of 7 with riprap countermeasures provided in 1996. The approach roadway alignment also meets present design criteria.

Ryans Creek is located approximately 4200 feet upstream of the confluence with the Kankakee River. The floodplain located downstream of the structure is a heavily forested area within the Kankakee River State Park. Upstream of the culvert the overbank areas consist of a forested area on steep terrain to the northwest and row crops to the southeast. The farmed terrain slopes gently towards Ryans Creek.

A driveway crossing of Ryans Creek previously existed within the state park downstream of IL Route 102. The crossing provided access to what looks like a residence. New maps indicate that the crossing and home have removed. The Preliminary FEMA FIRM, Exhibit 1, removes the call out for the private driveway. The 2012 USGS map, Exhibit 2, also removed the crossing. The 2015 Google Maps, Exhibit 3, shows that the homes have been razed. Therefore, it is assumed that this crossing no longer exists. In addition, the contours indicate the channel at the location of the private driveway to be at approximately elevation 555. The channel elevation at IL route 102

is at elevation 568.5' or 13.5' higher. Any head created by the private driveway will dissipate prior to having any effect on the water surface profiles at the bridge.

Exhibit 1. Preliminary FEMA FIRM

Exhibit 2. 2012 BONFIELD USGS Quadrangle Map

Exhibit 3. 2015 Google Earth Image of area in question.

3. FIELD OBSERVATIONS

A site inspection performed on August 20, 2014 noted that the channel and floodplain upstream and downstream of the structure are in good condition with no erosion of the banks observed. No debris was noted within the waterway opening or under the structure. A small vegetated gravel bar (sediment deposit) was noted within the channel downstream of the structure. Although the weather was dry, continuous base flow through the creek was observed and standing water under the bridge was approximately 3 feet deep. The top of footings were exposed along the northwest abutment or right side facing downstream.

4. HISTORICAL OBSERVATIONS / RECORDS

An email dated May 7, 2012 from the IDOT District 1 Incident Center reported that a flood event occurred along Illinois Route 102 which closed the road between Rivals Road south to Old Chicago Road due to water on the pavement (Exhibit 4). The email indicates the road was temporarily closed due to overflowing water from the tributary of the Kankakee River. Forked Creek is located to the North of this section but would have no effect near Old Chicago Road. Ryans Creek is located at the southern end of this section and it is assumed that the south end of the closure was due to Ryans Creek overtopping the roadway. The all-time H.W.E. over the roadway was determined by assuming a depth of water over the pavement of 0.3' and adding this to the existing overtopping elevation (579.2') for an all-time HWE elevation of 579.5'. This elevation is an assumption since we have reports of the roadway overtopping, but do not have any accurate way of determining the depth of water over the pavement. The extents of the flooding over the roadway were then drawn into an exhibit based on the survey and appeared to be reasonable.

A damage inspection report dated 7/31/2012 indicated extensive areas of delamination of the deck beams, but there were no indications of erosion or scour. Emails dated March, 2015 indicate that riprap was placed in the channel to fill a scour hole 2.5' deep beneath the footing as an emergency scour measure in 1996. A memo dated November 1, 1996 indicate an RR7 riprap would be required while the scour hole was filled with an RR5 riprap. Therefore this structure was placed on a scour critical monitoring program including underwater inspections for spread footings.

5. OTHER STUDIES & AFFECTED AGENCIES

The current effective FEMA FIRM map, Map Number 17197C0580 E dated September 6, 1995 indicates Ryans Creek has been designated a Zone A floodplain with no Base Flood Elevations determined. A preliminary map has been prepared which also indicates a Zone A designation. Both maps have been included in Section 5 of this report.

The Kankakee River located 4200 feet downstream of IL Route 102 has been studied and has a designated floodway. The flood profile illustrates a Base Flood Elevation along the Kankakee River of 555 feet at the mouth of Ryans Creek. Kankakee River flood elevations were used as starting water surface elevations for the Ryans Creek backwater analysis. It was found that the structure is located far enough upstream that backwater from the Kankakee River has no effect on water surface elevations along Ryans Creek at the IL Route 102 bridge.

Note there are no Hydrologic Atlas's created for this area of Will County.

6. DATUM CORRELATION

AES Services, Inc. (AES) conducted a topographic and cross section survey of the project site including the roadway approaches to the bridge crossing. In addition, a stream cross-section survey of Ryans Creek, upstream and downstream of the crossing, was completed. The vertical datum used by AES for their survey work was North American Vertical Datum 1988 (NAVD 88). The March 17, 2003 FIS indicates that all flood elevations are referenced to NGVD29. No base flood elevations have been determined along Ryans Creek that would require a datum conversion.

7. SENSITIVE FLOOD RECEPTORS

There are no sensitive flood receptors located within the 100-year backwater of the structure.

8. <u>HYDROLOGIC METHODOLOGY</u>

Ryans Creek at Illinois Route 102 has a drainage area of 6.59 square miles. This area of southern Will County appears to be rural but is a heavily travelled truck route and was considered to be an urbanizing area for hydrologic methodology. A HEC-HMS hydrologic analysis was used to calculate the discharges for the 2-year, 10-year, 50-year, 100-year, 200-year and 500-year storm events. These flows will be used in the HEC-RAS hydraulic model.

The watershed was analyzed using one large subarea due to several factors including land use, flow path, and storage. The land use within the watershed is fairly homogenous throughout consisting of cropland with gently sloping contours. The main flow path runs throughout the length of the watershed area which is characterized as a fairly long and narrow area. Inflows would have fairly consistent lengths to reach the main flow path. Lastly, any storage areas created by upstream road crossings were not considered in the analysis as it is assumed the crossings may be upsized in the future reducing the floodplain storage. Therefore, it was determined that one subarea for this watershed would provide flow rates representative of the actual conditions.

StreamStats was used to calculate the drainage area, stream length (L) and main-channel slope (S) to be used in the Time of Concentration (Tc) and Storage Coefficient (R) equations for the Clark Unit Hydrograph. The value for L was 6.32 miles and the value for S was 12.997 feet per mile. The calculated value for Tc = $1.54 L^{0.875} S^{-0.181} = 4.859$ hours. The calculated value for R = $16.4 L^{0.342} S^{-0.790} = 4.062$ hours. The regional value of R/(Tc + R) for the location of the culvert is 0.5. Using the above calculated values for Tc and R, the calculated value for R/(Tc + R) is 0.46.

a. <u>CN VALUE</u>

The drainage area consists primarily of agricultural land and woods in A and B hydrologic soils. Google Earth, NRCS Web Soil Survey, and TR-55 were then used to determine the SCS Curve Number at 59. Calculations can be found in Section 6 of this report.

b. PRECIPITATION GAGES

Time-series precipitation gage data was implemented in HEC-HMS by using the Illinois State Water Survey (ISWS) Isohyetal rainfall depth maps with the Huff Rainfall Distributions. An adjustment factor was applied to each rainfall depth for durations outside the 24-hr event as

shown in Table 1: Isohyetal Rainfall Depths with Adjustment Factors. These rainfall depths were input into the HEC-HMS model to calculate the critical duration flows.

Storm Event	72-hr Duration (Adj. Factor = 1.16)	48-hr Duration (Adj. Factor =1.08)	24-hr Duration (Adj. Factor = 1.00)	18 hr Duration (Adj. Factor = 0.94)	12 hr Duration (Adj factor = 0.87)
2-yr	3.712	3.46	3.20	3.01	2.78
10-yr	5.8	5.40	5.00	4.70	4.35
50-yr	8.12	7.56	7.00	6.58	6.09
100-yr	9.86	9.18	8.50	7.99	7.40

		-						-
Table	1: Isol	hvetal R	Rainfal	I Depth	s with Ad	djustment	Factors	

c. CRITICAL DURATION ANALYSIS

A critical duration analysis was completed to determine the peak flows. The results of the analysis are summarized in Table 2: Critical Duration Analysis. It was found that the 24-hour storm was the critical duration for all storm events except the 2-year storm.

Table 2. Childar Duration Analysis									
	2-year	10-year	50-year	100-yr	200-year	Į			
Storm Duration	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)				
12-hour	38.4	259.8	652	1015.2					
18-hour	58.9	317.6	759.8	1151.3					
24-hour	97.7	407.6	866	1250.3	1700*				
48-hour	102.7	384.8	772.9	1085.2					
72-hour	103.5	268	606.8	838.9					

Table 2: Critical Duration Analysis

* Extrapolated value

StreamStats rural regression equations were used to verify the drainage area and basin characteristics and to determine if our flows were within the streamstats 90% prediction intervals. It was found that HEC-HMS results were close to the average flows for the 10 and 50-year storms and more conservative than the regression equations for the 100-year and 500-year storms. All events with the exception of the 2-year storm fell within the maximum 90% prediction intervals. Table 3 illustrates the flow comparison between the two models. Since the two-year storm was well below the Stream Stats minimum, the Stream Stats average flow of 242 cfs was used for the 2-year storm event.

Table 3: Comparison of HEC-HMS and Stream Stats Flow Rates

El	2-year	10-year	50-year	100-yr	200-yr	500-yr
Flow model	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)
HEC-HMS	104	408	866	1250	1700	2375
Stream Stats (Minimum)	128	270	373	408		479
Stream Stats (Average)	242	523	774	873		1110
Stream Stats (Maximum)	457	1010	1600	1870		2570

9. <u>HYDRAULIC ANALYSES</u>

The hydraulic modeling was performed using HEC-RAS 4.1.0 and is based on the field survey performed by AES Services, Inc. in August 2014 and March 2015. The stream survey consisted of a total of eight cross sections; two each at the upstream and downstream face of the bridge and at 500 feet and 1000 feet upstream and downstream. Elevations were taken every 50 to 100

500-yr (cfs)

2375*

feet along the centerline of the stream. Additional cross-sections were interpolated in HEC-RAS at RS 1144, 1708, 2275, and 2772 to reduce warnings generated in the model. The warnings indicated that the conveyance ratio's were not falling into the allowable range and additional cross-sections may be needed. Therefore, cross-sections were interpolated between two surveyed cross-sections to try and reduce the warnings generated and provide better results.

An IDOT roadway survey was provided in August 2014 which picked up roadway profile elevations every 50 feet along the roadway. The surveys were merged and used for modeling purposes.

a. MANNINGS "n" VALUES

The Manning's "n" values were determined using Chapter 5, Section 5-301.01 of the IDOT Drainage Manual. The main channel 'n' value on the upstream side of the bridge crossing is a clean, straight dug channel and was determined to have an "n" value of 0.04. The left overbank floodplain "n" value consists of lawn and crops. A Manning's "n" value of 0.04 was calculated for the mowed grassed area, and a value of 0.06 was calculated for the crops. The right over bank consists of a mowed grass area and a stand of timber. An "n" value of 0.04 was used for the mowed grass area and 0.1 for the timber.

The channel downstream of the structure had dense vegetation. A Manning's "n" of 0.55 was calculated for the main channel. The floodplain area downstream of the structure was heavily wooded and the "n" value was determined to be 0.1 in both left and right overbank areas. Exhibit 5 shows the corresponding Manning's "n" values on aerial mapping. The channel cross-section exhibits in Section 9 also display the corresponding "n" values. Manning's "n" calculations are found in Section 13. Hydraulic Analysis.

The contraction and expansion coefficients used for the HEC-RAS cross sections were 0.1 and 0.3, respectively; since the change in the cross sections is small and flow is subcritical. Near the bridge crossing, the coefficients were increased to 0.3 and 0.5 at the upstream and downstream crossing sections.

Ineffective flow areas were used to model the channel areas where flow is stagnant. A contraction ratio on the upstream side of the bridge of 1:1 was used. An expansion ratio of 3:1 was used downstream of the bridge.

b. STARTING WATER SURFACE ELEVATION

Various starting water surface elevations (SWSE's) were used to determine convergence downstream of the bridge. Critical depth and normal depth were used as SWSE's and it was found that the WSE's converged approximately 500 feet downstream of the bridge at river station (RS) 1708 for all storm events.

In addition, an analysis was completed using backwater from the Kankakee River to determine if backwater had any effect on Ryans Creek. The 100-yr water surface elevations (555.7) from the Kankakee River were used as starting water surface elevations. It was determined that the bottom of channel elevations along Ryans Creek were approximately 12 feet above the 100-yr backwater elevation from the Kankakee River and had no effect on flows along Ryans Creek.

Normal depth SWSE were used for existing, natural and proposed conditions modeling.

c. EXISTING BRIDGE GEOMETRY

The existing structure is a single span bridge having a span of 21 feet, height of 8.59 feet and width of 44 feet on a 20 degree skew. To account for the skew, the waterway opening was measured perpendicular to the abutments and an opening of 20 feet was used for modeling purposes. Reinforced concrete wingwalls at 45° angles are located upstream and downstream of the bridge.

The roadway profile was entered using the roadway centerline elevations which were found to be the high point. No superelevated sections. The bridge modeling approach used energy and momentum equations for low flow methods and pressure/weir for high flow methods.

The model was generating warnings indicating the conveyance ratio's were not falling into the allowable range and additional cross-sections may be needed. Therefore, cross-sections were interpolated between two surveyed cross-sections to try and reduce the warnings generated and provide better results.

It was found that the existing structure has a waterway opening of 140 square feet and passes the 100-year storm event without overtopping of the roadway. The roadway overtops during the 200-year storm. The overtopping elevation (low point of road) is at elevation 579.17' at STA 740+68. The existing structure does not meet the 2 foot minimum clearance criteria for the 50-year design storm with a clearance of 1.91 feet from the low beam elevation (577.20'). The minimum freeboard requirement of 3 feet from the existing headwater elevation (576.1') is also not met with a calculated freeboard of 2.87 feet from the low edge of pavement (578.97'). Table 4 summarizes the Existing Conditions WSE's.

Existing Conditions RS	10-year	50-year	100-year	200-year	500-year
3022	575.54	576.89	579.09	580.05	580.60
2772	575.19	576.62	579.03	580.00	580.53
2508	574.85	576.42	578.99	579.95	580.47
2275	574.39	576.31	578.96	579.93	580.43
2040	573.96	576.15	578.84	579.94	580.45

Table 4: Summary of Existing Conditions Water Surface Elevations

2026	573.87	575.82	578.50	579.60	580.08
2000			Bridge		
1977	573.60	575.15	575.88	576.53	577.29
1966	573.56	575.15	575.91	576.60	577.47
1708	572.24	573.42	574.10	574.77	575.62
1485	571.20	572.36	572.97	573.60	574.42
1144	568.09	568.90	569.45	569.90	570.45
939	565.98	566.70	567.11	567.52	568.03

d. Natural Conditions Hydraulic Analysis

The Natural Conditions model was then created from the existing conditions model by removing the IL Route 102 bridge, roadway embankment, and ineffective flow areas from the model. The contraction and expansion ratios were reduced to 0.1 and 0.3. Table 5 summarizes the Natural Conditions WSE's.

Natural Conditions	10-year	50-year	100-year	200-year	500-year
3022	575.54	576.65	577.30	577.93	578.66
2772	575.18	576.24	576.88	577.49	578.22
2508	574.83	575.88	576.51	577.11	577.85
2275	574.30	575.58	576.26	576.89	577.63
2040	573.78	575.36	576.11	576.77	577.57
2026	573.77	575.30	576.00	576.62	577.41
1977	573.61	575.15	575.88	576.51	577.29
1966	573.55	575.10	575.84	576.48	577.26
1708	572.24	573.42	574.10	574.77	575.63
1485	571.20	572.36	572.97	573.60	574.42
1144	568.09	568.90	569.45	569.90	570.45
939	565.98	566.70	567.11	567.52	568.03

Table 6 illustrates the change in WSE between the existing and natural WSE's at RS 2026 for various storm events.

Table 6: Comparison of Existing and Natural WSE's at Upstre	m Face (RS 2026)
Table of Companion of Exioting and Hatara Hole o at open o	

RS 2026	Existing Conditions WSE	Natural Conditions WSE	Δ in WSE				
10-year	573.87	573.77	+0.10				
50-year	575.82	575.30	+0.52				
100-year	578.50	576.00	+2.50				
200-year	579.60	576.62	+2.98				
500-year	580.08	577.41	+2.67				

The results of the modeling are further summarized in the Waterway Information Table located in Section 2.

e. PROPOSED STRUCTURE ALTERNATIVES ANALYSIS

A proposed structure alternatives analysis was completed with various structures considered including various size single span bridges, open abutment bridges, double and multi-cell culverts and three sided structures. The following summary discusses the benefits and constraints associated with each alternative. The alternatives were required to meet the following six criteria:

- 1. No Impacts to the archeological Area east of the bridge
- 2. No impacts to the State Park on the south side of the ROW
- 3. Mitigate existing scour concerns
- 4. Meet 3' of freeboard from edge of shoulder for 50-yr design storm
- 5. Meet 2' of Clearance from low chord (bridges only)
- 6. Increase the level of protection to reduce overtopping

Numerous iterations of sizes were completed for each type of alternative analyzed. The five best fit proposed alternatives with their associated pros and cons are outlined below.

Alternative 1: Open Abutment – An open abutment structure was analyzed with a proposed 57 foot span. The perpendicular opening chosen has a 50 foot top width and a 29 foot bottom width. This structure meets clearance and freeboard criteria and addresses the existing scour issue by placing the abutments outside the main channel flow. Water surface elevations will be lowered reducing the potential for roadway overtopping and increasing the level of protection to greater than a 500-year event. A raise in roadway profile is required to fit the larger beams and meet clearance requirements. Retaining walls are proposed to avoid acquiring ROW from the State Park. The raise in profile will extend the project limits to well inside the archeological site. Impacts to the archeological site will trigger additional surveys and coordination with IHPA which may delay the project by several years. The existing structure has a current rating of 3 and replacement without further delay is critical. Therefore, this alternative was not the best practicable alternative.

Alternative 2. Closed Abutment – A proposed 30' foot span was evaluated. This structure met freeboard and clearance requirements with no raise in the roadway profile. The shorter project limits avoided the archeological area and the need to acquire ROW. A HEC-RAS scour analysis indicated scour depths of approximately 16 feet below the channel bed. The structure increased the level of protection of overtopping to between a 200-year and 500-year event. Borings indicate the depth to bedrock is approximately 45 to 50 feet below the channel bed at this location. It was determined that the scour elevations would be below the footings and would not meet the scour rating criteria. Therefore, this alternative was not chosen as the best practicable alternative.

Alternative 3. Double Box Culverts – Twin 12' x 9' double box culverts were evaluated. The culverts were depressed 1 foot into the channel and a weir wall was proposed on one side to allow for a low flow channel. No raise in profile was required and this alternative avoided the archeological site as well as the need to acquire ROW. This structure did not meet freeboard requirements and the waterway opening decreased from existing conditions for the 200 and 500 year storm events. Velocities were increased from existing conditions for storm events greater than a 50-year storm. The level of protection was increased to a 200-year event but this alternative is not recommended based on the decrease in waterway opening and increase in channel velocities.

Alternative 4. Precast Multi-Cell Box Culverts – This alternative proposed a multi-cell culvert consisting of (1) - 12' x 9' center culvert with two (2) outer 10' x 9' precast RC box culverts. The

culverts were depressed 1 foot into the channel and a weir wall was proposed on the two outside culverts to allow for a low flow channel through the center culvert. These culverts met the freeboard requirements with no increase in roadway profile. No impacts to the archeological site were required and no need to acquire ROW. Water surface elevations were lowered and an increased waterway opening provided. The level of protection was increased to between a 200-year and 500-year storm event. Scour is not an issue with culverts, riprap protection would be provided at the inlet and outlet. This scenario meets five of the six requirements with the clearance requirement no longer applicable. Drawbacks associated with a multi-cell culvert includes the tendency to collect debris and block during high flows. Another drawback is the maximum width of a precast box culvert is approximately 12 feet which is less than the existing 20 foot clear span opening. The precast culvert will reduce the main waterway opening span even though we are increasing overall waterway opening area. In discussions with the Hydraulics Unit, it was requested that we run an additional multi-cell alternative which uses a wider cast-in-place center structure appx 15'- 18' to reduce blockages.

Alternative 4a. Cast-in-Place Multi-Cell Box Culverts - This alternative proposed a multi-cell culvert consisting of (1) - 18' x 9' center culvert with two (2) outer 10' x 9' cast-in-place RC box culverts. The culverts were depressed 1 foot into the channel and a weir wall was proposed on the two outside culverts to allow for a low flow channel through the center culvert. These culverts meet freeboard requirements with no increase in roadway profile. No impacts to the archeological site are proposed and no need to acquire ROW is required. Water surface elevations were lowered, an increased waterway opening provided, and the level of protection was increased to between a 200-year and 500-year storm event. Scour is not an issue with culverts. Riprap protection is proposed at the inlet and outlet of the culverts. This scenario meets five of the six requirements with the clearance requirement no longer applicable. Drawbacks associated with a cast-in-place multi-cell culvert will have a tendency to collect debris and block during high flows. This scenario has a wider center culvert opening than Alternative 4 which will reduce the potential to block. Another drawback to this alternative is the increased cost of a cast-in-place structure versus precast culverts. This structure meets the requirements listed above and was determined to be the best practicable alternative. Therefore, the cast-in-place culvert is the recommended alternative.

Alternative 5. Three-sided Culvert – A three-sided culvert was analyzed and found to meet freeboard criteria with no increase in the roadway profile. No impacts to the archeological site were proposed. This type of structure would have similar scour issues to the closed abutment structure so was not further evaluated. This alternative was not chosen as the best practicable alternative.

The results of the alternatives analysis concluded that Alternative 4a, the cast-in-place multi-cell culvert, is the best practicable alternative and is the recommended structure. This structure meets five of the six criteria with the clearance requirement no longer applicable. The wider center culvert will reduce the potential for blocking associated with the smaller precast multi-cell culverts. A more in-depth proposed conditions analysis of this structure follows. Section 2 of the report provides the backup documentation for the alternatives analysis and includes a waterway information table, roadway profile, and HEC-RAS Output for each alternative studied.

f. PROPOSED CONDITIONS

The proposed structure consists of $(1) - 18' \times 9'$ center culvert with $(2) - 10' \times 9'$ cast-in-place RC box culverts with a length along the stream of 43.93 feet. The culverts were depressed 1 foot into

the channel and a weir wall was proposed on the two outside culverts to allow for a low flow channel through the center culvert. The proposed waterway opening height from the flowline elevation is 8 feet for the center culvert and 7 feet for the outside culverts. The skew of the structure was increased from 20 degrees to 28 degrees, relative to the road, in order to better match the flow of Ryans Creek. The skew reduced the perpendicular waterway opening to (1) 15.9' x 8' and (2) – 8.8' x 7' RC box culverts. In order to keep the culvert sizes on the skew as whole numbers for construction purposes, the perpendicular waterway opening lengths were kept as decimal places when accounting for the perpendicular waterway opening and HEC-RAS analysis. The overall waterway opening was increased for all storm events.

The roadway profile was modified to provide a smoother vertical curve to the west of the culvert. No change in profile is proposed on the east side in order to avoid the archeological site. The low point of the road occurs along the archeological site boundary line and therefore was not changed. Roadway overtopping will occur at STA 740+68 at elevation 579.17'. The culvert "low chord" is proposed to be lower than the existing bridge low chord. This is required to meet the existing roadway elevation at the structure which includes the 8-foot waterway opening, thickness of the top of culvert (14-inches) and depth of pavement (10.5-inches of HMA and 12-inches of aggregate). A raise in roadway profile would extend the limits of roadway construction east into the archeological area which IDOT requested we avoid impacts. Therefore, we were unable to raise the roadway profile and had to reduce our culvert "low chord" elevation.

The results of the HEC-RAS proposed conditions analysis are summarized in Table 7 below. Water surface elevations were reduced from existing conditions for all storm events. Table 8 compares the existing and proposed water surface elevations for all storm events at RS 2026, the upstream face of the structure. The 100-year WSE was reduced by 1.83'. An overtopping analysis was completed which shows the level of protection from overtopping is increased from the 130 year storm event in existing conditions, to the 360-year storm event in proposed conditions. The overtopping analysis can be found in Section 2. Waterway Opening of this report. Freeboard was increased from 2.87 feet in existing conditions to 3.27 feet in proposed conditions which meets the minimum requirement. Freeboard calculations are detailed in the Freeboard section of this narrative.

Proposed Conditions RS	10-year	50-year	100-year	200-year	500-year
3022	575.54	576.72	577.56	578.61	580.31
2772	575.18	576.36	577.26	578.42	580.21
2508	574.83	576.06	577.03	578.28	580.14
2275	574.31	575.86	576.92	578.21	580.10
2040	573.79	575.62	576.66	577.92	580.11
2026	573.83	575.65	576.67	577.89	579.81
2000		Mu	lti-Cell Culver	rts	
1977	573.75	575.44	576.34	577.20	578.52
1966	573.56	575.15	575.91	576.60	577.47
1708	572.24	573.42	574.10	574.77	575.62
1485	571.20	572.36	572.97	573.60	574.42
1144	568.09	568.90	569.45	569.90	570.45
939	565.98	566.70	567.11	567.52	568.03

 Table 7: Summary of Proposed Conditions Water Surface Elevations

RS 2026	Existing Conditions WSE	Proposed Conditions WSE	∆ in WSE
10-year	573.87	573.83	-0.04′
50-year	575.82	575.65	-0.17′
100-year	578.50	576.67	-1.83′
200-year	579.60	577.89	-1.71′
500-year	580.08	579.81	027′

|--|

The proposed structure should strive to have a created head less than 0.3' for the 50-year event and less than 0.5' for the 100-year event. The created head for the proposed structure is 0.4' for the 50-year event and 0.7 feet for the 100-year event. Although the structure does not meet the above considerations, the head is reduced substantially from existing conditions which were 0.8' and 2.7' respectively.

In summary, these culverts increase the waterway opening and decrease water surface elevations. Freeboard requirements are met with no increase in roadway profile. No impacts to the archeological site are proposed. The level of protection for overtopping was increased from the 130-yr storm event to the 360-yr storm event. Scour is not an issue with culverts. Riprap protection is proposed at the inlet and outlet of the culverts and is discussed further in the Riprap Analysis section of this narrative.

The proposed structure does not require ROW acquisition to accommodate the proposed drainage improvements.

10. SCOUR ANALYSIS

The SIMS Master Structure Report indicates a scour critical evaluation was completed in December 1995 and the structure was given a Scour Critical Rating of 7. The evaluation noted that the scour problem was corrected. Emails dated March, 2015 indicate that riprap was placed in the channel to fill a scour hole 2.5' deep beneath the footing as an emergency scour measure. A memo dated November 1, 1996 indicate calculations were completed and an RR7 riprap would be required while the scour hole was filled with an RR5 riprap. Therefore this structure was placed on a scour critical monitoring program including underwater inspections for spread footings.

An underwater inspection was completed in August 2004 and given an appraisal rating of 5. This report indicated major deterioration in underwater units and the east and west footings are entirely exposed. The August 2014 inspection noted scattered riprap in the channel within the bridge and a scour hole of approximately 2.3 feet along the right abutment.

A detailed channel survey was completed under the bridge on March 19, 2015. The findings indicate "In a review of the stream bed our crew didn't find any holes, pockets or scour locations. We did a grid of approximately 10', we did notice that there is an exposed footing." An exhibit titled *Survey Under Bridge* can be found in Section 14. Scour Analysis and illustrates the additional shots taken under the bridge and the location of the exposed footings.

A HEC-18 scour analysis was completed for the existing conditions. A live bed contraction scour depth of 6.7' was computed for the 100-year event. This is assuming no overtopping of the structure. Abutment Scour of 31.6' was computed for a total 100-year scour depth of 40.6'. A total scour depth of 53.2' was calculated for the 130-year pressure flow. Calculations are included in Section 14. Scour Analysis.

A second analysis was completed using the NCHRP Method. Scour depths of 10.4 feet for the 100-year and 16.9 feet for pressure flow using the 130 year storm event were calculated. Table 9 summarizes the results of the two scour calculation methods.

Scour		Total Scour Depth	s (feet)
Analysis	100-year Storm	130-year Pressure	200-year Overtopping Event
Method	Event	Flow	
HEC-18	40.6'	53.2'	40.7'
NCHRP	10.4	16.9'	12.5'

Table 9. Existing Conditions Scour Analysis

11. <u>RIPRAP DESIGN</u>

Riprap protection sizing will be completed during the Phase II design process in accordance with IDOT standards.

12. COMPENSATORY STORAGE

No compensatory storage required.

13. PERMIT REQUIREMENTS

This structure has a drainage area of 6.59 square miles in southern Will County. The FEMA FIRM designates Ryans Creek as a Zone "A", "non-designated" floodway in NE IL and falls under the IDNR-OWR Section 3700 regulations for Construction in Floodways of Rivers, Lakes and Streams.

To meet the Part 3700 floodway regulations, in non-regulatory floodplain (urban) areas, the water surface profile increase will not exceed 0.5 feet at the structure, nor 0.1 foot at a point 1000 feet upstream of the structure. The water surface profiles at the proposed structure have been reduced from existing conditions for all storm events up to and including the 100-year storm event.

This project falls under Statewide Permit #12 as there is no demonstrable flood damage associated with this crossing, the waterway opening is larger than the existing structure, no increase in the roadway profile is proposed, and the structure has been designed by standard hydrologic and hydraulic engineering methods. The Bureau of Design should process statewide Permit No. 12 through the Hydraulics Section when the final plans are prepared.

14. FREEBOARD / CLEARANCE

Design Criteria

- Design Storm = 50-year event
- Minimum roadway freeboard 3ft between design headwater elevation and lowest edge of pavement elevation.
- Minimum clearance from low chord elevation is 2 feet to the natural high water elevation

Existing Clearance

Clearance = Low chord – NHWE Clearance = 577.20 - 575.30 = 1.90' < 2' Does not meet Design Criteria Existing Freeboard Freeboard = Low EOP - Design HWE Low EOP =578.97' <u>Design HW</u>E (50-year) = 576.1' Existing Freeboard = 2.87' < than the minimum required 3' Proposed Clearance Not Applicable **Proposed Freeboard** Freeboard = Low EOP - Design HWE Low EOP = 578.97' Design HWE (50-year) = 575.70[°] Proposed Freeboard = 3.27' > than the minimum required 3'

15. CONCLUSION

The existing structure consists of a single span bridge having a width of 20 feet and height of 8.56 feet with an overall length of 44 feet on a 20 degree skew. The structure was overtopped in May, 2012. The existing conditions modeling indicates the structure passes the 100-year storm event with no overtopping of the roadway but overtops during the 130-year event. The structure has a 100-year waterway opening of 140 sq. ft., provides 2.87 feet of freeboard and 1.90 feet of clearance from the low beam elevation neither of which meets the minimum design criteria. The structure had a scour critical evaluation of 7 in 1995 and provided riprap countermeasures in the channel. In 2004 an underwater inspection determined the footings to be exposed. The existing footings do not sit on pilings.

An alternatives analysis was completed to address the existing site constraints which included avoiding an archeological site, avoiding the need to acquire ROW from adjacent state park, reducing scour potential, meeting freeboard and clearance requirements, and increase the level of protection of overtopping. The recommended alternative is a multi-cell culvert option which consists of (1) - 18' x 9' center culvert with (2) - 10' x 9' cast-in-place RC box culverts. No widening of the crossing is required and the culverts have a length along the stream of 44 feet. The culverts were depressed 1 foot into the channel and a weir wall was proposed on the two outside culverts

to allow for a low flow channel through the center culvert. The proposed waterway opening height from the flowline elevation is 8 feet for the center culvert and 7 feet for the outside culverts. The skew of the structure was increased from 20 degrees to 28 degrees, relative to the road, in order to better match the flow of Ryans Creek. The skew reduced the proposed perpendicular waterway opening to (1) 15.9' x 8' and (2) – 8.8' x 7' RC box culverts.

The proposed multi-cell culverts provide a larger waterway opening, no increase in roadway profile, and an increased level of protection of overtopping to a 360-yr storm event. Scour is not an issue for the proposed culverts and riprap is proposed at the inlets and outlets of the structure. The proposed culverts reduce the velocity through the bridge, meet freeboard requirements, and reduce the created head. No impacts to the archeological site are proposed.

IL Route 102 (FAP 631) over Ryans Creek Will County

SECTION 2

Waterway Information Table

		02 (FAP 631)		<u> </u>		Existing SN: 0					
Waterway: I						oposed SN: 0			00/11/0010		
Section: (3-R			Prepared by: Dawn Cosentino Date: 02/11/2010 Checked by: Chad Dillavou Date: 02/12/2010						
County:	VVIII				(Checked by: C	had Dillavou	Date:	02/12/2016		
				E	xisting Overtop	oing Elev. = 57	79.17 at \$	Sta. 740+68			
Drainage Area = 6	.59 square	miles		Pro	posed Overtopp	ping Elev. = 57	79.17 at S	Sta. 740+68			
Flood Event	Freq.	Discharge	Waterway	Opening - ft ²	Natural	He	ad - ft	Headwater	Elevation – ft		
FIOOU EVENI	Yr.	ft³/s	Existing	Proposed	H.W.E ft	Existing	Proposed	Existing	Proposed		
	10	408	96	157	573.8	0.2	0.0	574.0	573.8		
Design	50	866	126	207	575.3	0.8	0.4	576.1	575.7		
Base	100	1250	140	231	576.0	2.7	0.7	578.7	576.7		
Scour Design Check	200	1700	152	250	576.6	3.2	1.3	579.8	577.9		
Overtop Existing	130	1375	164		576.2	2.9		579.1			
Overtop Proposed	360	2100		250	576.2		1.9		578.1		
Max. Calc.	500	2375	164	250	577.4	2.9	2.5	580.3	579.9		
All-Time H.W. Surveyed Normal Wa		570.0 ft	TING STRUC	TURE			, ,	2-Yr. Flow Ra PROPOSED	ate = 242 ft ³ /s STRUCTURE		
		Span Conc.					(1)- 15.9' x 8' ar				
		on skew, 20.0				Length Of Span:	40' on skew, 36	5.5' on perpendic	ular		
		ngth along str	eam/abutme	nts=43.93'		# Cells:					
	d: <u>577.2</u>	-			Top Of Cro	wn Elev.: Beam:					
		grees (relative	to road)				28 degrees (rela				
Clearanc					Cu		567.58(u/s)567				
		<u>8 (u/s) 568.61</u>					578.97 at STA	/40.68			
Freeboar		7 at STA 740	+08			Freeboard:	3.27				
		/s) N/A (d/s)									
Guivent invent											
	-	ING EMBED	MENT		PROPOSED EMBEDMENT						
	Depth: N/A					Depth: 1'					
U/S Streambed Elev					U/S Streambed Elev.: 568.58 in center and 569.58 on outer culverts						
D/S Streambed Elev	D/S Streambed Elev.:					D/S Streambed Elev.: 568.5 in center and 569.5 on outer culverts					

NOTE: Proposed Structure Details Are Preliminary; Subject To Refinement In TSL Stage.

EXISTING STRUCTURE ELEVATION

Dimensions measured perpendicular to flow

FILE NAME =	USER NAME = \$USER\$	DESIGNED - DCC	REVISED -		IL ROUTE 102 OVER RYANS CREEK	F.A.P. RTF.	SECTION	COUNTY TOTAL SHEET
\$FILES\$		DRAWN - CBP	REVISED -	STATE OF ILLINOIS	EXISTING SITE STRUCTURE CROSS SECTIONAL INFORMATION	631	(111N-B)B-R	WILL 1 1
	PLOT SCALE = \$SCALE\$	CHECKED - CMD	REVISED -	DEPARTMENT OF TRANSPORTATION				CONTRACT NO. 60V28
\$MODELNAME\$	PLOT DATE = \$DATE\$	DATE - 5/11/2016	REVISED -		SCALE: 1" = 5' SHEET 1 OF 1 SHEETS STA. 740+50.00 TO STA. 742+50	.00	ILLINOIS F	ED. AID PROJECT

PROPOSED STRUCTURE ELEVATION

Dimensions measured perpendicular to flow

FILE NAME =	USER NAME = \$USER\$	DESIGNED - DCC	REVISED -		IL ROUTE 102 OVER RYANS CREEK	F.A.P. RTE.	SECTION	COUNTY TOTAL SHEET SHEETS NO.
\$FILES\$		DRAWN - CBP	REVISED -	STATE OF ILLINOIS		631	(111N-B)B-R	WILL 1 1
	PLOT SCALE = \$SCALE\$	CHECKED - CMD	REVISED -	DEPARTMENT OF TRANSPORTATION	PROPOSED SITE STRUCTURE CROSS SECTIONAL INFORMATION			CONTRACT NO. 60V28
\$MODELNAME\$	PLOT DATE = \$DATE\$	DATE - 5/11/2016	REVISED -		SCALE: 1" = 5' SHEET 1 OF 1 SHEETS STA. 740+50.00 TO STA. 742+50.00		ILLINOIS FED.	AID PROJECT

Illinois Department of Transportation Hydraulic Report

WATERWAY OPENING - The effective waterway opening should be calculated at the upstream face of the structure based on the Natural Highwater Elevation for a given frequency. It should represent actual existing conditions, not as-built or cleaned out. It is determined by calculating the flow area under the Natural High Water Elevation (N.H.W.E.) at the surveyed bridge opening section. It is <u>not</u> based on the Existing H.W.E. or the Proposed H.W.E. This value is <u>not</u> the value you can find in the Hydraulic Software output. It is calculated separately from any Hydraulic Software. Pier area below the N.H.W.E. should be subtracted from the total opening area. An adjustment for improperly skewed piers may be required which will increase the pier area and reduce the net opening.

WATERWAY OPENING (sq. ft.) - EXISTING

	A	В	С	D	E	C+(D*E)
Flood Frequency	Natural	Bridge	Area Under	Bridge Span	NHWE-	Waterway Opening
	H.W.E.	U/S Flowline	elev 569.93*	W (ft)	569.93	(sq. ft.)
10-year	573.8	568.58	18	20.0	3.86	96
50-year	575.3	568.58	18	20.0	5.36	126
100-year	576.0	568.58	18	20.0	6.06	140
200-year	576.6	568.58	18	20.0	6.68	152
500-year	577.4	568.58	18	20.0	7.27	164

*See attached openign exhibit

WATERWAY OPENING (sq. ft.) - PROPOSED

(1) 18' x 9' and (2) 10' x 9' RC Box Culverts depressed 9" with 1' weir wall on outside culverts on a 28 degree skew Perpendicular Waterway Opening = (1)-15.9' x 8' and (2)-8.8' x 7' Cast in place culverts

	A	В	С	D=(A-B)*C	E	F	G=(A-E)*F	Н	I	J=(A-E)*F	D+G+J
Flood Frequency	Natural	Culvert #1	vert Span on I	Waterway Opening #1	Culvert #2	Culvert Span	Waterway Opening #2	Culvert #3	Culvert Span	Waterway Opening #2	Total Waterway Openin
	H.W.E.	U/S Flowline	W (ft)	(Sq. Ft.)	U/S Flowline	W (ft)	(Sq. Ft.)	U/S Flowline	W (ft)	(Sq. Ft.)	(sq. ft.)
10-year	573.8	568.58	15.9	82.84	569.58	8.8	37.05	569.58	8.8	37.05	157
50-year	575.3	568.58	15.9	106.69	569.58	8.8	50.25	569.58	8.8	50.25	207
100-year	576.0	568.58	15.9	117.82	569.58	8.8	56.41	569.58	8.8	56.41	231
200-year	576.6	568.58	15.9	127.20	569.58	8.8	61.60	569.58	8.8	61.60	250
500-year	577.4	568.58	15.9	127.20	569.58	8.8	61.60	569.58	8.8	61.60	250

IL Route 102 (FAP 631) over Ryans Creek Monday, January 11, 2016 Triple Boxes (1)- 18' x 9' and (2)-10' x 9' Box Culverts Actual Waterway Opening (1)- 15.9' x 8' and (2)-8.8' x 7' Cast-in-place Box Culverts 28 degree skew depressed 1 foot

pening	

HEAD - The largest change in computed water surface elevation, comparing the computed water surface elevations from the existing condition and proposed condition to the natural condition for each upstream cross section, is the Created Head. That Created Head is entered into the HEAD column of the Waterway Information Table for each flow profile. Head should not be negative, so use a value of zero if a negative number is computed. Proposed structures that result in headwater less than the Natural HWE for a given frequency should indicate "0.0" as the head and the headwater elevation will be equal to the NHWE.

HEAD (ft) - EXISTING

	(A)	(B)	(C)	Head Elevs	(C)	(D)	(C)	Head Elevs	(E)	(F)	(C)	Head Elevs	(G)	(H)	(C)	Head Elevs	(G)	(H)	(C)	Head Elevs
	Existing	Natural	Head (ft)	(NHWE +Largest	Existing	Natural	Head (ft)	(NHWE +Largest	Existing	Natural	Head (ft)	(NHWE +Largest	Existing	Natural	Head (ft)	(NHWE +Largest	Existing	Natural	Head (ft)	(NHWE +Largest
	Condition	Condition	(A - B)	Created Head)	Condition	Condition	(A - B)	Created Head)	Condition	Condition	(A - B)	Created Head)	Condition	Condition	(A - B)	Created Head)	Condition	Condition	(A - B)	Created Head)
Cross Section Station		10-у	ear Flood Frequen	су		50	-year Flood Frequen	су		100)-year Flood Frequen	су			200-year Flood Frequer	ю			500-year Flood Frequenc	у
3022	575.56	575.55	0.0		577.01	576.75	0.3		579.15	577.43	1.7		580.08	578.08	2.0		580.64	578.82	1.8	
2772	575.22	575.20	0.0		576.77	576.40	0.4		579.09	577.09	2.0		580.03	577.72	2.3	I	580.57	578.45	2.1	
2508	574.91	574.88	0.0		576.61	576.13	0.5		579.05	576.80	2.3		579.99	577.43	2.6	Î	580.51	578.16	2.4	
2275	574.41	574.32	0.1		576.44	575.75	0.7		579.01	576.48	2.5		579.96	577.13	2.8	Î	580.47	577.88	2.6	
2040	573.96	573.78	0.2		576.15	575.36	0.8		578.84	576.11	2.7		579.94	576.77	3.2	Î	580.45	577.57	2.9	
2026	573.87	573.77	0.1	574.0	575.82	575.30	0.5	576.1	578.50	576.00	2.5	578.7	579.60	576.62	3.0	579.8	580.08	577.41	2.7	580.3

HEAD (ft) - PROPOSED

	(A)	(B)	(C)	Head Elevs	(C)	(D)	(C)	Head Elevs	(E)	(F)	(C)	Head Elevs	(G)	(H)	(C)	Head Elevs	(G)	(H)	(C)	Head Elevs
	Proposed Condition	Natural Condition	Head (ft) (A - B)	(NHWE +Largest Created Head)	Condition		Head (ft) (A - B)		Proposed Condition	Natural Condition	Head (ft) (A - B)		Proposed Condition	Natural Condition	Head (ft) (A - B)	(NHWE +Largest Created Head)	Proposed Condition		Head (ft) (A - B)	(NHWE +Largest Created Head)
Upstream Channel Cross Section Station			vear Flood Frequen	, , , , , , , , , , , , , , , , , , , ,			-year Flood Frequenc	,			0-year Flood Frequen				200-year Flood Frequen	ncy			500-year Flood Frequenc	,
3022	575.55	575.55	0.0		576.83	576.75	0.1		577.71	577.43	0.3		578.75	578.08	0.7		580.36	578.82	1.5	1
2772	575.20	575.20	0.0		576.53	576.40	0.1		577.45	577.09	0.4		578.57	577.72	0.9	Ĩ	580.26	578.45	1.8	
2508	574.88	574.88	0.0		576.31	576.13	0.2		577.27	576.80	0.5		578.46	577.43	1.0	Ĩ	580.19	578.16	2.0	
2275	574.32	574.32	0.0	1	576.04	575.75	0.3		577.10	576.48	0.6	1	578.36	577.13	1.2	Ī	580.15	577.88	2.3	
2040	573.79	573.78	0.0	1	575.62	575.36	0.3		576.66	576.11	0.5	1	577.92	576.77	1.1	İ	580.11	577.57	2.5	
2026	573.83	573.77	0.0	573.8	575.65	575.30	0.4	575.7	576.67	576.00	0.7	576.7	577.89	576.62	1.3	577.8	579.81	577.41	2.4	580.0

IL Route 102 (FAP 631) over Ryans Creek Monday, December 21, 2015 Proposed Cast-in-Place Multi-Cell Culverts (1)- 15.9' x 8' and (2)- 8.8' x 7' Box Culverts

IL Route 102 (FAP 631) over Ryans Creek Will County

SECTION 3

Hydraulic Report Data Sheets

Hydraulic Report Data Sheets

Rou		oute 102)	P or D #	P-91-187-13	
Sec	/		PTB #	162 Item 005	
Cou	nty <u>Will</u> at SN 099-0170				
	SN 099-0918				
1.01					
		Genera	Information		
1.	Stream name:	Ryans Creek			
2.	Structure location:	NW ¼ of the Township 32N,	SE Range 1	1/4 of Section 10E of the 3	n 21, rd P.M.
3.	Hydraulic Report Prepar	ed By: 🛛 Consultant _ District	Primera Eng	jineers, Ltd.	Prime 🛛 Sub
4.	Hydraulic Report Approv	· · ·		R to BBS Hydraulics S it 2 hard copies of HR t	
		Site D	esign Data		
5.	Drainage Area (sq. mi.):	6.59			
6.	Highway Classification:	☐ Rural⊠ Urban☐ Other		Principal Arterial Minor Arterial Collector Local	
7.	Design Frequency:] 30 yr 🛛 50 Yr. 🗌 🤆	Other		
8.	Number of Waterway Inf If more than one, explair				
		Hydrologic &	Hydraulic Ana	alysis	
9.	Hydrology Modeling (che	eck all that apply):		m Stats ☐ FIS C-HMS 3.5	Gage Data
10.	If no, explain c. Source of Starting W d. Non- IDOT encroach	RAS WSPRO Image: Constraint of the second seco	Drainage Mar 0079 s 🛛 No s 🗌 No	ap. 5? ⊠ Yes nual and FHWA values	No used in model
	f. Were the Expansion/0 If No or N/A	Contraction cones properly ac , explain:	ddressed?	🛛 Yes 🗌 No	□ N/A
Printe	ed 9/14/16	Pa	ge 1 of 4		BBS 2800 (Rev. 02/25/13)

	g. What Expansion and Contraction R	ates were used?	Expansio Contractio		1	
	IDNR – OWR Floodway Permit					
11.	Is area experiencing urbanization or e	expected to urbaniz	e within 10 yea	ırs? 🛛 Ye	s 🗌 No	(Rural)
12.	Are there any sensitive flood receptor If yes, list and describe critical upstrea					🗌 Yes 🛛 No
13.	Is there any History of Flooding or Ov Sources & dates of Observed Highwa IDOT email dated May 7, 2012 indica "overflowing tributary to Kankakee Riv	iter: tes roadway overto	pped from Sou	th Rivals Roa		ago Road due to
14.	Is the structure hydraulically connecte Public Body of Water?	ed to or within the fl		DNR-OWR de		
15.	Required IDNR - OWR Permit type: Individual 3700 SWP #2 None	⊠ SWP #12	🗌 Flo	odway 3708		
		Proposed Str	ucture Data			
16.	Project Scope (check all that apply): a. ∑ Complete Replacement b. ☐ Superstructure Replacement c: ☐ Superstructure Widening; Leng U/S d. ☐ Bridge	gth of Pier Extensic ☐ Three-sided ⊠ Yes	D/S			
17.	If a bridge is proposed, supply: Flow line elevation (ft): Preliminary low beam elevation (ft): Width of deck (ft): Total length from face to face of abutr	nent (ft)	Skew	ent type: (degrees): er of spans:		
18.	If a culvert is proposed, supply: Type and size: (1) - 15.9' x 8' and Upstream invert elevation (ft): Downstream invert elevation (ft): Note: Upstream and downstream elevations si	(2) - 8.8' x 7' 568.58 568.50 hould reflect the elevation	Skew	nce type: (degrees):	44' Wingwalls 28 degrees other embedmen	
19.	If a three-sided structure is proposed, U/S Flow line elevation (ft): Span (ft): Height (ft):	supply:	Leng	(degrees): h (ft): per of spans:		
20.	a. Is the IDOT Clearance Policy met²b. Is the IDOT Freeboard Policy met²		□ No ⊠ □ No □	NA NA	Value (ft): Value (ft):	3.27'
21.	Type of streambed soil :	🛛 Silt 🗌	Sand 🛛	_oam		
Printe	ed 9/14/16	Page 2	2 of 4		BB	S 2800 (Rev. 02/25/13)

22.	Scour/ Migration Problems: 🔲 None/Minimal 🛛 Significant 🔲 Severe Comments: Existing Scour critical rating of 7 with riprap countermeasures placed in 1995.						
	Ice Concerns: Comments:	None/Minimal	□ s	ignificant	□ s	evere	
	Debris Concerns: Comments:	🛛 None/Minimal	□ s	ignificant	□ s	evere	
	Proposed or Identified Count	ermeasures: Riprap	inlet an	nd Outlet Prot	ection		
	Existing Structure Data						
				Structure U/S		Subject Structure	Structure D/S
23.	Distance from proposed (subject) structure: (ft.)			2588'		N\A	N/A
24.	Type of structure:			Four (4) 10' x 6' Box CUlverts		Single Span Bridge	N/A
25.	Low beam elevation:			N/A		577.17	N/A
26.	Flow line elevation:			N/A		U/S 868.58 D/S 868.61	N/A
27.	Maximum known high water elevation:			N/A		579.5'	N/A
28.	Date of maximum high water:			N/A		May 7, 2012	N/A
29.	Cause (backwater, headwater, etc.):			N/A		Headwater	N/A
30.	Does structure carry entire d	esign flood flow?		🗌 Yes 🗌] No	🛛 Yes 🗌 No	🗌 Yes 🗌 No
	If not, state area of additiona	not, state area of additional waterway opening: (ft2)		N/A			N/A
31.	Type and size of existing overflow structures:			N/A		N/A	N/A
32.	Has adverse scour occurred under or adjacent to the structure?			N/A		Yes at abutments	N/A
33.	Classify type of scour and/or aggradation / degradation:			N/A		Abutment /Degradation	N/A
Required Additional Data							
34.	Deviations from the General Procedures presented in IDOT Drainage Manual CH. 2, CH.6, and CH.7: No						
35.	Information regarding high water from other streams, reservoirs, flood control projects, proposed channel changes, or other controls affecting proposed waterway area:						
	None						
36.	· · –	Dawn Cosentino				Date: August 20), 2014
	Remarks:						
37.	Prepared by: Dawn C. Cosentino					Date February 1	6, 2016
	Signed (QA/QC): Chad Di	llavou				Date February 1	7, 2016

Hydraulic Report Checklist

The District or Consultant should complete the following checklist before submitting the Hydraulic Report for approval.

1.	\boxtimes	Title Page		
2.	\boxtimes	Table of Contents		
3.	\square	Narrative - (as outlined in Section 2-601.01 Item #3)		
4.	\square	Waterway Information Table (WIT) - (as outlined in Section 2-601.01 Item #4)		
5.	\boxtimes	Hydraulic Report Data Sheets		
6.	\boxtimes	Location Map - should show the subject structure along with nearby location defining landmarks (cities, roads, highways, nearby structures over same stream, etc.)		
7.	\square	USGS Hydrologic Atlas (historical data available on selected streams- District 1 only)		
8.	\boxtimes	Photographs - (Minimum: U/S & D/S structure faces, U/S & D/S channel, U/S & D/S roadway across structure)		
9.	\boxtimes	Hydrology (map, calculations and related exhibits)		
10.	\boxtimes	Streambed Profile		
11.	\boxtimes	Roadway Profile (existing and proposed)		
12.		Cross Section Plots - with plan layout preferably overlayed upon an aerial photo with the contours		
13.	\boxtimes	Bridge Opening Plots		
14.	\boxtimes	Natural Condition Analysis When HEC-RAS modeling is being used, ALL		
15.	\boxtimes	Existing Condition Analysis Plans (Natural, Existing, & Proposed) shall be included in ONE Project File.		
16.	\boxtimes	Proposed Condition Analysis		
17.	\square	Scour Analysis – Existing and Proposed Conditions		
18.		Compensatory Storage Calculations (if required- District 1 only. Include permit summary form and related attachments.)		
19.	\square	Survey Notes (if available, CADD plot of survey points. No Electronic Point Files)		
20.	\square	EWSE Data - (per Section 2-402.06)		
21.	\boxtimes	Correspondence Notes		
22.	\boxtimes	CD with Project Files (Include pdf copy of the Hydraulic Report and working files for the hydrology and hydraulic analyses.)		

LOCATION MAP OF DOCUMENTED FLOODING

IL Route 102 (FAP 631) over Ryans Creek Will County

SECTION 4

Location Maps

Hydraulic Report

LOCATION MAP

Will County

USGS Bonfield Quadrangle, 1973

IL Route 102 (FAP 631) across Ryans Creek

PRELIMINARY MAP NO. 17197C0580G

SECTION 5

Photographs

SECTION 6

Hydrology

IL 102 (FAP 631) ACROSS RYANS CREEK (also known as RAYNS CREEK)

STREAM STATS DRAINAGE BOUNDARY MAP

■USGS Illinois StreamStats

Basin Characteristics Report

Date: Mon Apr 14 2014 08:13:29 Mountain Daylight Time NAD27 Latitude: 41.2394 (41 14 22) NAD27 Longitude: -88.0793 (-88 04 46) NAD83 Latitude: 41.2394 (41 14 22) NAD83 Longitude: -88.0794 (-88 04 46)

Parameter	Value
Area in square miles	6.59
Unadjusted 10-85 slope in feet per mile	13.815
Adjusted 10-85 slope in feet per mile	12.997
Unadjusted Basin Length ArcHydro Method in miles	5.98
Adjusted Basin Length ArcHydro Method in miles	6.32
Average soil permeability	1.418
Percent of area covered by open water	0.047

MUSGS Illinois StreamStats

Streamstats Ungaged Site Report

Date: Mon Apr 14 2014 08:14:35 Mountain Daylight Time Site Location: Illinois NAD27 Latitude: 41.2394 (41 14 22) NAD27 Longitude: -88.0793 (-88 04 46) NAD83 Latitude: 41.2394 (41 14 22) NAD83 Longitude: -88.0794 (-88 04 46) Drainage Area: 6.59 mi2

Peak Flow Basin Characteristics 100% Region 2 AMS (6.59 mi2)			
Parameter Value Regression Equation		ation Valid Range	
		Min	Max
Drainage Area (square miles)	6.59	0.03	9554
Stream Slope 10 and 85 Method (feet per mi)	12.997	0.81	317
Percent Open Water AND Herb Wetland (percent)	0.047	0	8

Peak F	eak Flow Streamflow Statistics						
			Equivalent	90-Percent Pre	diction Interval		
Statistic	tistic Flow (ft ³ /s) Prediction Error (percent)	years of record	Minimum	Maximum			
PK2	242	40	2.6	128	457		
PK5	407	41	3.1	215	772		
PK10	523	42	3.8	270	1010		
PK25	664	45	4.6	331	1340		
PK50	774	47	5.2	373	1600		
PK100	873	49	5.6	408	1870		
PK500	1110	55	6.2	479	2570		

TR 55 Worksheet 2: Runoff Curve Number and Runoff

Project: IL Route 102 across Ryans Creek	Designed By: DCC	Date: 4/14/
Location: Unincorporated Will County	Checked: Doug Keppy	Date: 4/22/1

Check one:
Present
Developed

1. Runoff curve number (CN)

Soil name	Cover description		CN <u>1</u> /	i	Area	Product
and hydrologic group (Appendix A)	(Cover type, treatment, and hydrologic condition; percent impervious; unconnected/connected impervious area ratio)	Table 2-2	Fig. 2-3	Fig. 2-4	□ acres □ mi ² ■ %	of CN x area
	Residential 2 acre lots 70%A 30%B	52			5.0	258.5
A	Row Crops SR Good Condition	67			15.0	1,005.0
A	Woods - Fair Condition	36			25.0	900.0
А	Grassed Waterways	49			10.0	490.0
В	Row Crops SR Good Condition	78			30.0	2,340.0
В	Woods - Fair Condition	60			15.0	900.0
				•		

 $^{\underline{1} /}$ Use only one CN source per line.

Totals =

100.0

5,893.5

 $CN \text{ (weighted)} = \frac{\text{total product}}{\text{total area}} = \frac{5,893.5}{100.0} = \frac{59}{100.0}$ Use CN = 59

2. Runoff

	Storm #1	Storm #2	Storm #3
Frequency years			
Rainfall, P (24 hour) in.			
Runoff, Q in.			
(Use P and CN with Table 2-1, Figure 2-1,			

or equations 2-3 and 2-4.)

IL 102 over Ryans Creek

Α	В	С	D
45.1	202.5		5.9
235.9	30.3		
204.4	157.2		
41.5	76.5		
26.3	5.5	102.7	
15	2.4		
235.7	53.3		
62.2	8.2		
10.3			
26.6			
	42.3		
35.4	135.3		
16.7			
48.2			
17.1			
5.9			
90.9		27.6	
8	20	13.7	
0.1	6.3		
	91.6		
		32.9	58.2
		10.6	
93	149.3		
24.1			
2.2			
246			2.2
	242.7		
	267.3		
345.8	19		
63.7		9.2	
		77.5	
	6	22.5	
	29	_	35.4
157.9	-		2.4
	40.9		23.7
26.8			
134.4			
9.2			
2228.4	1585.6	296.7	127.8

Acres of Soils Groups from Soil Survey

TOTAL

4238.5

C & D soils will be absorbed into B

Use 53% A and 47% B Soils breakdown

3° 5' 30'' W

Soil Map—Kankakee County, Illinois, and Will County, Illinois (IL 102 over Ryans Creek)

Natural Resources Conservation Service

USDA

5/7/2015 Page 1 of 5

MAP I	_EGEND	MAP INFORMATION
Area of Interest (AOI) Area of Interest (AOI) Soils	 Spoil Area Stony Spot Very Stony Spot 	The soil surveys that comprise your AOI were mapped at 1:12,00 Please rely on the bar scale on each map sheet for map measurements.
 Soil Map Unit Polygons Soil Map Unit Lines Soil Map Unit Points Soil Map Unit Points Borrow Pit Clay Spot Closed Depression Gravel Pit Gravelly Spot 		Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: Web Mercator (EPSG:3857) Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accura calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as the version date(s) listed below. Soil Survey Area: Kankakee County, Illinois Survey Area Data: Version 9, Dec 8, 2013
 Landfill Lava Flow Marsh or swamp Mine or Quarry Miscellaneous Water Perennial Water Rock Outcrop Saline Spot Sandy Spot Severely Eroded Spot Sinkhole Slide or Slip Sodic Spot 	Major Roads Local Roads Background Maior Roads Aerial Photography	 Soil Survey Area: Will County, Illinois Survey Area Data: Version 8, Dec 8, 2013 Your area of interest (AOI) includes more than one soil survey are These survey areas may have been mapped at different scales, w a different land use in mind, at different times, or at different leve of detail. This may result in map unit symbols, soil properties, ar interpretations that do not completely agree across soil survey ar boundaries. Soil map units are labeled (as space allows) for map scales 1:50,0 or larger. Date(s) aerial images were photographed: Jun 13, 2011—Mar 2012 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifti of map unit boundaries may be evident.

Map Unit Legend

	Kankakee Count	y, Illinois (IL091)	
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
69A	Milford silty clay loam, 0 to 2 percent slopes	45.1	1.1%
146A	Elliott silt loam, 0 to 2 percent slopes	235.9	5.6%
146B	Elliott silt loam, 2 to 4 percent slopes	202.5	4.8%
146B2	Elliott silty clay loam, 2 to 4 percent slopes, eroded	30.3	0.7%
223B	Varna silt loam, 2 to 4 percent slopes	157.2	3.7%
223B2	Varna silt loam, 2 to 4 percent slopes, eroded	76.5	1.8%
223C3	Varna silty clay loam, 4 to 6 percent slopes, severely eroded	102.7	2.4%
232A	Ashkum silty clay loam, 0 to 2 percent slopes	204.4	4.8%
293A	Andres silt loam, 0 to 2 percent slopes	41.5	1.0%
294B	Symerton silt loam, 2 to 5 percent slopes	5.5	0.1%
298B	Beecher silt loam, 2 to 4 percent slopes	2.4	0.1%
369A	Waupecan silt loam, 0 to 2 percent slopes	26.3	0.6%
369B	Waupecan silt loam, 2 to 4 percent slopes	53.3	1.3%
440A	Jasper loam, 0 to 2 percent slopes	15.0	0.4%
440B	Jasper loam, 2 to 5 percent slopes	8.2	0.2%
523A	Dunham silty clay loam, 0 to 2 percent slopes	235.7	5.6%
526A	Grundelein silt loam, 0 to 2 percent slopes	62.2	1.5%
530D3	Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	5.9	0.1%
594A	Reddick clay loam, 0 to 2 percent slopes	10.3	0.2%
740A	Darroch silt loam, 0 to 2 percent slopes	26.6	0.6%
Subtotals for Soil Survey A	Area	1,547.4	36.5%
Totals for Area of Interest		4,238.6	100.0%

	Will County, Illin	nois (IL197)	
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
23B	Blount silt loam, 2 to 4 percent slopes	42.3	1.0%
67A	Harpster silty clay loam, 0 to 2 percent slopes	35.4	0.8%
132A	Starks silt loam, 0 to 2 percent slopes	16.7	0.4%
146A	Elliott silt loam, 0 to 2 percent slopes	48.2	1.1%
146B	Elliott silt loam, 2 to 4 percent slopes	135.3	3.2%
184A	Roby fine sandy loam, 0 to 2 percent slopes	17.1	0.4%
206A	Thorp silt loam, 0 to 2 percent slopes	5.9	0.1%
232A	Ashkum silty clay loam, 0 to 2 percent slopes	90.9	2.1%
240C2	Plattville silt loam, 4 to 6 percent slopes, eroded	27.6	0.7%
290A	Warsaw silt loam, 0 to 2 percent slopes	8.0	0.2%
290B	Warsaw silt loam, 2 to 4 percent slopes	20.0	0.5%
290C2	Warsaw silt loam, 4 to 6 percent slopes, eroded	13.7	0.3%
293A	Andres silt loam, 0 to 2 percent slopes	0.1	0.0%
294B	Symerton silt loam, 2 to 5 percent slopes	6.3	0.1%
298B	Beecher silt loam, 2 to 4 percent slopes	91.6	2.2%
311C	Ritchey silt loam, 4 to 6 percent slopes	32.9	0.8%
311D	Ritchey silt loam, 6 to 12 percent slopes	58.2	1.4%
315C2	Channahon silt loam, 4 to 6 percent slopes, eroded	10.6	0.2%
327A	Fox silt loam, 0 to 2 percent slopes	93.0	2.2%
327B	Fox silt loam, 2 to 4 percent slopes	149.3	3.5%
329A	Will silty clay loam, 0 to 2 percent slopes	24.1	0.6%
330A	Peotone silty clay loam, 0 to 2 percent slopes	2.2	0.1%
369A	Waupecan silt loam, 0 to 2 percent slopes	246.0	5.8%

	Will County, Illing	ois (IL197)	
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
369B	Waupecan silt loam, 2 to 4 percent slopes	242.7	5.7%
387B	Ockley loam, 2 to 4 percent slopes	267.3	6.3%
403F	Elizabeth silt loam, 20 to 30 percent slopes	2.2	0.1%
494B	Kankakee fine sandy loam, 2 to 4 percent slopes	19.0	0.4%
523A	Dunham silty clay loam, 0 to 2 percent slopes	345.8	8.2%
526A	Grundelein silt loam, 0 to 2 percent slopes	63.7	1.5%
530C2	Ozaukee silt loam, 4 to 6 percent slopes, eroded	9.2	0.2%
531C2	Markham silt loam, 4 to 6 percent slopes, eroded	77.5	1.8%
570B	Martinsville loam, 2 to 4 percent slopes	6.0	0.1%
570C2	Martinsville loam, 4 to 6 percent slopes, eroded	22.5	0.5%
741B	Oakville fine sand, 1 to 6 percent slopes	29.0	0.7%
741D	Oakville fine sand, 6 to 12 percent slopes	35.4	0.8%
741E	Oakville fine sand, 12 to 20 percent slopes	2.4	0.1%
741F	Oakville fine sand, 20 to 30 percent slopes	23.7	0.6%
792A	Bowes silt loam, 0 to 2 percent slopes	157.9	3.7%
792B	Bowes silt loam, 2 to 4 percent slopes	40.9	1.0%
1103A	Houghton muck, undrained, 0 to 2 percent slopes	26.8	0.6%
3082A	Millington silt loam, 0 to 2 percent slopes, frequently flooded	134.4	3.2%
3451A	Lawson silt loam, 0 to 2 percent slopes, frequently flooded	9.2	0.2%
Subtotals for Soil Survey A	Area	2,691.0	63.5%
Totals for Area of Interest		4,238.6	100.0%

Table 2-2a

Runoff curve numbers for urban areas 1/

Cover description			Curve nı -hydrologic	umbers for soil group	
-	Average percent		• 0	• •	
Cover type and hydrologic condition	impervious area ⅔	А	В	С	D
Fully developed urban areas (vegetation established)					
Dpen space (lawns, parks, golf courses, cemeteries, etc.) ^{3/} :					
Poor condition (grass cover < 50%)		68	79	86	89
Fair condition (grass cover 50% to 75%)		49	69	79	84
Good condition (grass cover > 75%)		39	61	74	80
mpervious areas:		00	01		00
Paved parking lots, roofs, driveways, etc.					
(excluding right-of-way)		98	98	98	98
Streets and roads:		00	00	00	00
Paved; curbs and storm sewers (excluding					
right-of-way)		98	98	98	98
Paved; open ditches (including right-of-way)		83	89	92	93
Gravel (including right-of-way)	•••••	76	85	89	91
Dirt (including right-of-way)		70 72	82	87	89
Western desert urban areas:	•••••	12	01	01	00
Natural desert landscaping (pervious areas only) 4/		63	77	85	88
Artificial desert landscaping (impervious weed barrier,		00		05	00
desert shrub with 1- to 2-inch sand or gravel mulch					
and basin borders)		96	96	96	96
Urban districts:	•••••	00	00	00	
Commercial and business	85	89	92	94	95
Industrial		81	88	91	93
Residential districts by average lot size:	12	01	00	01	00
1/8 acre or less (town houses)	65	77	85	90	92
1/4 acre		61	75	83	87
1/3 acre		57	72	81	86
1/2 acre		54	70	80	85
1 acre		51	68	79	84
2 acres		46	65	77	82
	10				0
Developing urban areas					
Newly graded areas					
(pervious areas only, no vegetation) 5/		77	86	91	94
Idle londs (CN's are determined using seven trace					
Idle lands (CN's are determined using cover types					

similar to those in table 2-2c).

 $^{\rm 1}\,$ Average runoff condition, and I_a = 0.2S.

² The average percent impervious area shown was used to develop the composite CN's. Other assumptions are as follows: impervious areas are directly connected to the drainage system, impervious areas have a CN of 98, and pervious areas are considered equivalent to open space in good hydrologic condition. CN's for other combinations of conditions may be computed using figure 2-3 or 2-4.

 $^3\,$ CN's shown are equivalent to those of pasture. Composite CN's may be computed for other combinations of open space

⁴ Composite CN's for natural desert landscaping should be computed using figures 2-3 or 2-4 based on the impervious area percentage (CN = 98) and the pervious area CN. The pervious area CN's are assumed equivalent to desert shrub in poor hydrologic condition.

⁵ Composite CN's to use for the design of temporary measures during grading and construction should be computed using figure 2-3 or 2-4 based on the degree of development (impervious area percentage) and the CN's for the newly graded pervious areas.

cover type.

Table 2-2bRunoff curve numbers for cultivated agricultural lands 1/2

Cover description			Curve numbers for hydrologic soil group			
	*	Hydrologic		. 0	0 1	
Cover type	Treatment ^{2/}	condition 3/	А	В	С	D
Fallow	Bare soil	_	77	86	91	94
	Crop residue cover (CR)	Poor	76	85	90	93
		Good	74	83	88	90
Row crops	Straight row (SR)	Poor	72	81	88	91
-		Good	67	<mark>78</mark>	85	89
	SR + CR	Poor	71	80	87	90
		Good	64	75	82	85
	Contoured (C)	Poor	70	79	84	88
		Good	65	75	82	86
	C + CR	Poor	69	78	83	87
		Good	64	74	81	85
	Contoured & terraced (C&T)	Poor	66	74	80	82
		Good	62	71	78	81
	C&T+ CR	Poor	65	73	79	81
		Good	61	70	77	80
Small grain	SR	Poor	65	76	84	88
Ū.		Good	63	75	83	87
	SR + CR	Poor	64	75	83	86
		Good	60	72	80	84
	С	Poor	63	74	82	85
		Good	61	73	81	84
	C + CR	Poor	62	73	81	84
		Good	60	72	80	83
	C&T	Poor	61	72	79	82
		Good	59	70	78	81
	C&T+ CR	Poor	60	71	78	81
		Good	58	69	77	80
Close-seeded	SR	Poor	66	77	85	89
or broadcast		Good	58	72	81	85
legumes or	С	Poor	64	75	83	85
rotation		Good	55	69	78	83
meadow	C&T	Poor	63	73	80	83
		Good	51	67	76	80

 $^{\rm 1}$ Average runoff condition, and $\rm I_a{=}0.2S$

² Crop residue cover applies only if residue is on at least 5% of the surface throughout the year.

³ Hydraulic condition is based on combination factors that affect infiltration and runoff, including (a) density and canopy of vegetative areas, (b) amount of year-round cover, (c) amount of grass or close-seeded legumes, (d) percent of residue cover on the land surface (good \geq 20%), and (e) degree of surface roughness.

Poor: Factors impair infiltration and tend to increase runoff.

Good: Factors encourage average and better than average infiltration and tend to decrease runoff.

Table 2-2 cc

2-2c	Runoff curve numbers for other agricultural lands ${}^{\!$

Cover description		Curve numbers for hydrologic soil group			
Cover type	Hydrologic condition	А	В	C	D
Pasture, grassland, or range—continuous	Poor	68	79	86	89
forage for grazing. 2/	Fair	49	69	79	84
	Good	39	61	74	80
Meadow—continuous grass, protected from grazing and generally mowed for hay.	_	30	58	71	78
Brush—brush-weed-grass mixture with brush	Poor	48	67	77	83
the major element. $3/$	Fair	35	56	70	77
-	Good	30 4/	48	65	73
Woods—grass combination (orchard	Poor	57	73	82	86
or tree farm). 5/	Fair	43	65	76	82
	Good	32	58	72	79
Woods. 6/	Poor	45	66	77	83
	Fair	36	60	73	79
	Good	30 4⁄	55	70	77
Farmsteads—buildings, lanes, driveways, and surrounding lots.	—	59	74	82	86

Average runoff condition, and $I_a = 0.2S$. 1

2*Poor:* <50%) ground cover or heavily grazed with no mulch.

Fair: 50 to 75% ground cover and not heavily grazed.

Good: > 75% ground cover and lightly or only occasionally grazed.

Poor: <50% ground cover.

3

Fair: 50 to 75% ground cover.

Good: >75% ground cover.

⁴ Actual curve number is less than 30; use CN = 30 for runoff computations.

CN's shown were computed for areas with 50% woods and 50% grass (pasture) cover. Other combinations of conditions may be computed 5from the CN's for woods and pasture.

Poor: Forest litter, small trees, and brush are destroyed by heavy grazing or regular burning. 6 Fair: Woods are grazed but not burned, and some forest litter covers the soil. Good: Woods are protected from grazing, and litter and brush adequately cover the soil.

■USGS Illinois StreamStats

Basin Characteristics Report

Date: Mon Apr 14 2014 08:13:29 Mountain Daylight Time NAD27 Latitude: 41.2394 (41 14 22) NAD27 Longitude: -88.0793 (-88 04 46) NAD83 Latitude: 41.2394 (41 14 22) NAD83 Longitude: -88.0794 (-88 04 46)

Parameter		
Area in square miles		
Unadjusted 10-85 slope in feet per mile		
Adjusted 10-85 slope in feet per mile		
Unadjusted Basin Length ArcHydro Method in miles		
Adjusted Basin Length ArcHydro Method in miles		
Average soil permeability		
Percent of area covered by open water		

In cooperation with the Illinois Department of Natural Resources, Office of Water Resources

Equations for Estimating Clark Unit-Hydrograph Parameters for Small Rural Watersheds in Illinois

Water-Resources Investigations Report 00–4184

U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY

Equation Development

For small rural watersheds in Illinois, three methods were used to develop new equations for estimating T_C and R. Similar to the Graf and others (1982b) study, a multiple-linear regression analysis was used to determine mathematical relations among watershed characteristics and (T_C+R) , and an attempt was made to determine regional values of $R/(T_C+R)$. The second method involved using multiple-linear regression analysis to determine mathematical relations among watershed characteristics and average values of T_C and R for each watershed. No storm characteristics or seasonal effects were analyzed in the second method. The third method involved using multiple-linear regression analysis to determine mathematical relations among watershed, storm, and seasonal characteristics and values of T_C and R for each storm. Overall, the second method yielded the best equations, as described in the following sections.

Results Based on Methods Similar to the Graf and others (1982b) Study

In the first method, equations for estimating (T_C+R) were developed utilizing multiple-linear regression to relate the logarithm of the average (T_C+R) for each watershed to logarithms of watershed area and main-channel length and slope. The multiple-linear regression of logarithms resulted in an estimation equation

$$h_{pi} = a W_1^{b1} W_2^{b2} , (8)$$

where

 h_{pi} is hydrograph parameter *i*

[in this case $(T_C + R)$],

 W_j are watershed characteristics j,

bj are exponents corresponding to

watershed characteristics j, and a is a coefficient.

Watershed characteristics were added one at a time to the regression model (eq. 8), and characteristics were retained in the regression model only if the corresponding exponents were statistically significant (the corresponding 95-percent confidence interval for the parameter did not include zero) and the sign of the exponent was correct from a physical viewpoint. For example, hydrograph-timing parameters should increase with increasing area and main-channel length and decrease with increasing main-channel slope. From the regression, an equation involving the length and slope was determined to yield the highest coefficient of determination (R^2 =0.74).

Next, the average $[R/(T_C+R)]$ values for each watershed were plotted on a map of the State of Illinois. Contours were drawn to try to determine regional trends in the values, but all such attempts were unsuccessful. Before abandoning the method similar to that used by Graf and others (1982b) because of the inability to find regional trends in average $[R/(T_C+R)]$, the logarithm of these values were regressed against watershed characteristics similar to the previous regression, using values of average (T_C+R) . All combinations of the regression yielded very poor coefficient of determination (R^2) values (highest equaling 0.38). With no reliable method of determining $[R/(T_C+R)]$, this method was abandoned.

Interestingly, the coefficient and exponents for the Graf and others (1982b) equation for (T_C+R) were not within the 95-percent confidence intervals when compared to the equation developed for (T_C+R) for this study, except for a slight overlap in the length exponent. The upper and lower confidence bounds for the length exponent were 0.650 and 0.339, respectively, for the (T_C+R) equation developed in this study.

Results Based on Average Values of T_C and R for Each Watershed

The second method, determined to be the overall best method in this study, utilized multiple-linear regression analysis to relate the logarithms of the average T_C and average R for each watershed to logarithms of watershed area and main-channel length and slope. Equations for the T_C and R estimations (in hours) that yield the highest R^2 values included main-channel length and slope and are

$$T_C = 1.54 L^{0.875} S^{-0.181}$$
 and (9)

$$R = 16.4 L^{0.342} S^{-0.790}, \tag{10}$$

where

- *L* is the stream length measured along the main channel from the watershed outlet to the watershed divide, in mi, and
- S is the main-channel slope determined from elevations at points that represent 10 and 85 percent of the distance along the channel

IL RIE 102 across Ryans Creek acro Will Co.

Figure 2. Regional values of $R/(T_c + R)$ determined by Graf and others (1982b) for Illinois.

4

Storm period (hours)	Ratio, x-hr/24-hr
0.08 (5 min.)	0.12
0.17 (10 min.)	0.21
0.25	0.27
0.50	0.37
1	0.47
2	0.58
3	0.64
6	0.75
12	0.87
18	0.94
24	1.00
48	1.08
72	1.16

Table 2. Average Ratios of X-Hour/24-Hour Rainfall for Illinois

Table 3. Ratios of Illinois Rainfall Amountsfor Recurrence Intervals of Less than 1 Yearto Rainfall Amounts for Recurrence Intervals of 1 Year,for Various Rainstorm Periods

	Ratio, x-month to 12-month rainfall amount for given rainstorm period			nount	
Storm period	2 months	3 months	4 months	6 months	9 months
≤24 hours	0.55	0.64	0.70	0.81	0.92
48 hours	0.53	0.62	0.69	0.80	0.92
72 hours	0.52	0.61	0.69	0.80	0.92

Table 3 shows the relationship between l-year and shorter-interval frequency values for various rain periods (Huff and Angel, 1989). Table 3 can be used if one desires recurrence-interval values for 2 to 9 months.

The following examples illustrate how to use figure 13 or 14 in conjunction with tables 2 and 3 to calculate frequency values for any given situation. Assume that a user wishes to calculate the maximum 6-hour rainfall expected to occur, on the average, once in 25 years at Aurora (figure 12). The 24-hour map for a 25-year recurrence (figure 14) shows a value of 6.00 inches at Aurora. Table 2 shows that the 6-hour/24-hour ratio is 0.75. Multiplying 6.00 by 0.75 gives a value of 4.50 inches for the 6-hour, 25-year storm.

IL 102 OVER KHYNS CREEK Rainfall Depths 24.m Storms DCC 10/28/2014

Figure 14. Frequency distribution of 24-hour maximum rainfall (inches), six-county area (adjusted)

100-year, 24-hour

Figure 14. Concluded

Project : Ryans Creek

Basin Model : Basin 1 Oct 31 14:20:51 CDT 2014

Subbasin-1

HEC-HMS Input Parameters IL Route 102 across Ryans Creek

Basin 1 Characteristics

Karaka Hec-HMS 3.5 [C:\\Documents\IL 102 across Ryans Creek\HEC-HMS\Ryans
<u>File Edit View Components Parameters Compute Results Tools Help</u>
🗋 😅 🔜 🎒 💽 🕂 🕂 🔍 💩 🕒 🖬 🍄 🌩 😴 🖆 👋 📟 🔤 💷
Ryans Creek Basin Models Control Specifications Time-Series Data
Components Compute Results
Subbasin Loss Transform Options
Basin Name: Basin 1 Element Name: Subbasin-1
Description: Subbasin-1
Downstream:None
*Area (MI2) 6.59
Canopy Method:None
Surface Method:None
Loss Method: SCS Curve Number
Transform Method: Clark Unit Hydrograph
Baseflow Method:None
Subbasin Loss Transform Options
Basin Name: Basin 1 Element Name: Subbasin-1
Initial Abstraction (IN) 2
*Curve Number: 59
*Impervious (%) 0.0
🗳 Subbasin Loss Transform Options
Basin Name: Basin 1
Element Name: Subbasin-1
*Time of Concentration (HR) 4.859
*Storage Coefficient (HR) 4.062

Meteorologic Models

Huff 1st Quartile, 1-hour Rainfall distribution

Kernel Content And Contents Herein And Antheness Real Antheness Read Antheness Read Antheness Re			
<u>File Edit View Components Parameters Compute Results Tools Help</u>			
🗋 😅 🖬 🍜 💽 🕂 🕂 오 💩 🗠 🖬 🍄 🌩 🛫 🔠 🕷 💷 🤋			
Precipitation Gages			
🖨 🛱 Huff 1st Q, 1hr			
🛄 📴 01Jan2000, 00:00 - 01Jan2000, 01:00			
🕀 👫 Huff 1st Q, 2hr			
🕀 👫 Huff 1st Q, 3 hr			
🕀 🚰 HUff 1st Q, 6hr			
huff 2nd Q, 12 hr			
: _*			
Components Compute Results			
Time-Series Gage Time Window Table Graph			
Name: Huff 1st Q, 1hr			
*Start Date (ddMMMYYYY) 01Jan2000			
*Start Time (HH:mm) 00:00			
*End Date (ddMMMYYYY) 01Jan2000			
*End Time (HH:mm) 01:00			

🚰 Time-Series Gage Time Window Table Graph	
Time (ddMMMYYYY, HH:mm)	Precipitation (IN)
01Jan2000, 00:00	0.00
01Jan2000, 00:03	0.16
01Jan2000, 00:06	0.33
01Jan2000, 00:09	0.43
01Jan2000, 00:12	0.52
01Jan2000, 00:15	0.60
01Jan2000, 00:18	0.66
01Jan2000, 00:21	0.71
01Jan2000, 00:24	0.75
01Jan2000, 00:27	0.79
01Jan2000, 00:30	0.82
01Jan2000, 00:33	0.84
01Jan2000, 00:36	0.86
01Jan2000, 00:39	0.88
01Jan2000, 00:42	0.90
01Jan2000, 00:45	0.92
01Jan2000, 00:48	0.94
01Jan2000, 00:51	0.96
01Jan2000, 00:54	0.97
01Jan2000, 00:57	0.98
01Jan2000, 01:00	1.00

Huff 1st Quartile, 2-hour Rainfall distribution

🔀 HEC-HMS 3.5 [C:\\Do	ocuments\IL 102 across Ryans Creek\HEC-HMS\Ryans Creek\I				
File Edit View Compon	File Edit View Components Parameters Compute Results Tools Help				
🗋 😂 🖬 🖨 📢	🕂 오 💩 🗠 🖨 🍈 💠 📥 😹 🖷 📾 📾 📾				
Precipitation Gages G Huff 1st Q, 1hr U 01Jan2000, 00:00 - 01Jan2000, 01:00 G Huff 1st Q, 2hr U 01Jan2000, 00:00 - 01Jan2000, 02:00 G Huff 1st Q, 3 hr G Huff 1st Q, 6hr					
Components Compute Results					
🔓 Time-Series Gage 🛛 Time	e Window Table Graph				
Name:	Huff 1st Q, 2hr				
*Start Date (ddMMMYYYY) 01Jan2000					
*Start Time (HH:mm)	*Start Time (HH:mm) 00:00				
*End Date (ddMMMYYYY)	01Jan2000				
*End Time (HH:mm)	02:00				

_

Time (ddMMMYYYY, HH:mm)	Precipitation (IN)
01Jan2000, 00:00	0.000
01Jan2000, 00:03	0.080
01Jan2000, 00:06	0.160
01Jan2000, 00:09	0.245
01Jan2000, 00:12	0.330
01Jan2000, 00:15	0.380
01Jan2000, 00:18	0.430
01Jan2000, 00:21	0.475
01Jan2000, 00:24	0.520
01Jan2000, 00:27	0.560
01Jan2000, 00:30	0.600
01Jan2000, 00:33	0.630
01Jan2000, 00:36	0.660
01Jan2000, 00:39	0.685
01Jan2000, 00:42	0.710
01Jan2000, 00:45	0.730
01Jan2000, 00:48	0.750
01Jan2000, 00:51	0.770
01Jan2000, 00:54	0.790
01Jan2000, 00:57	0.805
01Jan2000, 01:00	0.820
01Jan2000, 01:03	0.830
01Jan2000, 01:06	0.840
01Jan2000, 01:09	0.850
01Jan2000, 01:12	0.860
01Jan2000, 01:15	0.870
01Jan2000, 01:18	0.880
D1Jan2000, 01:21	0.880
01Jan2000, 01:21	0.890
	0.900
01Jan2000, 01:27	
01Jan2000, 01:30	0.920
01Jan2000, 01:33	0.930
01Jan2000, 01:36	0.940
01Jan2000, 01:39	
01Jan2000, 01:42	0.960
01Jan2000, 01:45	0.965
01Jan2000, 01:48	0.970
01Jan2000, 01:51	0.975
01Jan2000, 01:54	0.980
01Jan2000, 01:57	0.990
01Jan2000, 02:00	1.000
Huff 1st Quartile, 3-hour Rainfall distribution

K HEC-HMS 3.5 [C:\\Do	ocuments\IL 102 across Ryans Creek\HEC-HMS\Ryans		
File Edit View Components Parameters Compute Results Tools Help			
🗋 🖻 🗃 🖨 🥀 🤄	🕂 🤇 🔐 🕒 🏺 🌩 🖵 🖆 🕷 🖩 🔤 🔲 (
□ Line Line Line Line Line Line Line Line			
Components Compute Results			
Gaph Time-Series Gage Time Window Table Graph			
Name: Huff 1st Q, 3 hr			
*Start Date (ddMMMYYYY)	01Jan2000		
*Start Time (HH:mm)	00:00		
*End Date (ddMMMYYYY)	01Jan2000		
*End Time (HH:mm)	03:00		

Graph Time-Series Gage Time Window Table Graph	
Time (ddMMMYYYY, HH:mm)	Precipitation (IN)
01Jan2000, 00:00	0.00
01Jan2000, 00:06	0.11
01Jan2000, 00:12	0.23
01Jan2000, 00:18	0.33
01Jan2000, 00:24	0.40
01Jan2000, 00:30	0.46
01Jan2000, 00:36	0.40 52
01Jan2000, 00:42	0.57
01Jan2000, 00:48	0.62
01Jan2000, 00:54	0.66
01Jan2000, 01:00	0.69
01Jan2000, 01:06	0.72
01Jan2000, 01:12	0.75
01Jan2000, 01:18	0.78
01Jan2000, 01:24	0.80
01Jan2000, 01:30	0.82
01Jan2000, 01:36	0.83
01Jan2000, 01:42	0.85
01Jan2000, 01:48	0.86
01Jan2000, 01:54	0.87
01Jan2000, 02:00	0.89
01Jan2000, 02:06	0.90
01Jan2000, 02:12	0.91
01Jan2000, 02:18	0.93
01Jan2000, 02:24	0.94
01Jan2000, 02:30	0.95
01Jan2000, 02:36	0.96
01Jan2000, 02:42	0.97
01Jan2000, 02:48	0.98
01Jan2000, 02:54	0.99
01Jan2000, 03:00	1.00

Huff 1st Quartile, 6-hour Rainfall Distribution

File Edit View Compone	ents <u>P</u> arameters Compute <u>R</u> esults <u>T</u> ools <u>H</u> elp	
🗋 🚅 🖬 🎒 📐 4	▶ < ≗ ⊌ ■ 肇 \$ ♥ ♥ 🕊 🕌 🖩 🖩 🗐	
Huff 1st Q, 2hr		
🖨 🔓 HUff 1st Q, 6hr		
L ≣ 01Jan2000,	00:00 - 01Jan2000, 06:00	
Components Compute Re	sults	
Time-Series Gage Time Window Table Graph		
Name: HUff 1st Q, 6hr		
*Start Date (ddMMMYYYY)	01Jan2000	
*Start Time (HH:mm)	00:00	
*End Date (ddMMMYYYY)	01Jan2000	
*End Time (HH:mm)	06:00	

Time (ddMMMYYYY, HH:mm)	Precipitation (IN)	
01Jan2000, 00:00	0.00	
01Jan2000, 00:15	0.13	
01Jan2000, 00:30	0.27	
01Jan2000, 00:45	0.38	
01Jan2000, 01:00	0.46	
01Jan2000, 01:15	0.54	
01Jan2000, 01:30	0.60	
01Jan2000, 01:45	0.65	
01Jan2000, 02:00	0.69	
01Jan2000, 02:15	0.73	
01Jan2000, 02:30	0.77	
01Jan2000, 02:45	0.80	
01Jan2000, 03:00	0.82	
01Jan2000, 03:15	0.84	
01Jan2000, 03:30	0.85	
01Jan2000, 03:45	0.87	
01Jan2000, 04:00	0.89	
01Jan2000, 04:15	0.90	
01Jan2000, 04:30	0.92	
01Jan2000, 04:45	0.94	
01Jan2000, 05:00	0.95	
01Jan2000, 05:15	0.96	
01Jan2000, 05:30	0.97	
01Jan2000, 05:45	0.98	
01Jan2000, 06:00	1.00	

Huff 2nd Quartile, 12-hour Rainfall Distribution

🔀 HEC-HMS 3.5 [C:\\Documents\IL 102 across Ryans Creek\HI		
File Edit View Components Parameters Compute Results I		
🗋 🗃 🖬 🎒 💽 🕂 🤤 🎂 🖬 🏶 🗳 😴 📥 🕷		
HUff 1st Q, 6hr		
□ 🔓 huff 2nd Q, 12 hr □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □		
Huff 3rd 0. 18 hr		
Components Compute Results		
Graph Time Series Gage Time Window Table Graph		
Name: huff 2nd Q, 12 hr		
*Start Date (ddMMMYYYY) 01Jan2000		
*Start Time (HH:mm) 00:00	Start Time (HH:mm) 00:00	
*End Date (ddMMMYYYY) 01Jan2000		
*End Time (HH:mm) 12:00		

Graph	
Time (ddMMMYYYY, HH:mm)	Precipitation (IN)
01Jan2000, 00:00	0.00
01Jan2000, 00:30	0.03
01Jan2000, 01:00	0.06
01Jan2000, 01:30	0.10
01Jan2000, 02:00	0.13
01Jan2000, 02:30	0.17
01Jan2000, 03:00	0.22
01Jan2000, 03:30	0.28
01Jan2000, 04:00	0.36
01Jan2000, 04:30	0.45
01Jan2000, 05:00	0.58
01Jan2000, 05:30	0.63
01Jan2000, 06:00	0.70
01Jan2000, 06:30	0.75
01Jan2000, 07:00	0.79
01Jan2000, 07:30	0.83
01Jan2000, 08:00	0.86
01Jan2000, 08:30	0.89
01Jan2000, 09:00	0.91
01Jan2000, 09:30	0.93
01Jan2000, 10:00	0.94
01Jan2000, 10:30	0.96
01Jan2000, 11:00	0.97
01Jan2000, 11:30	0.98
01Jan2000, 12:00	1.00

Huff 3rd Quartile, 18-hour Rainfall Distribution

Kernel Contents Herein			
File Edit View Components Parameters Compute Results Ic			
🗋 😅 🖬 🎒 💽 🕂 🗢 🤐 🖕 🖬 🏺 🌩 😴 🖆 🕷			
⊨ 🔓 Huff 3rd Q, 18 hr □ 🕞 01Jan2000, 00:00 - 01Jan2000, 18:00			
Components Compute Results			
🔀 Time-Series Gage Time Window Table Graph			
Name: Huff 3rd Q, 18 hr			
*Start Date (ddMMMYYYY) 01Jan2000			
*Start Time (HH:mm) 00:00			
*End Date (ddMMMYYYY) 01Jan2000			
*End Time (HH:mm) 18:00			

Time (ddMMMYYYY, HH:mm)	Precipitation (IN)	
01Jan2000, 00:00	0.00	
01Jan2000, 00:30	0.02	
01Jan2000, 01:00	0.03	
01Jan2000, 01:30	0.05	
01Jan2000, 02:00	0.07	
01Jan2000, 02:30	0.08	
01Jan2000, 03:00	0.10	
01Jan2000, 03:30	0.12	
01Jan2000, 04:00	0.13	
01Jan2000, 04:30	0.15	
01Jan2000, 05:00	0.17	
01Jan2000, 05:30	0.19	
01Jan2000, 06:00	0.2	
01Jan2000, 06:30	0.2	
01Jan2000, 07:00	0.2	
01Jan2000, 07:30	0.2	
01Jan2000, 08:00	0.3	
01Jan2000, 08:30	0.3	
01Jan2000, 09:00	0.3	
01Jan2000, 09:30	0.4	
01Jan2000, 10:00	0.4	
01Jan2000, 10:30	0.5	
01Jan2000, 11:00	0.6	
01Jan2000, 11:30	0.6	
01Jan2000, 12:00	0.7	
01Jan2000, 12:30	0.7	
01Jan2000, 13:00	0.8	
01Jan2000, 13:30	0.8	
01Jan2000, 14:00	0.8	
01Jan2000, 14:30	0.8	
01Jan2000, 15:00	0.9	
01Jan2000, 15:30	0.9	
01Jan2000, 16:00	0.9	
01Jan2000, 16:30	0.9	
01Jan2000, 17:00	0.9	
01Jan2000, 17:30	0.9	
01Jan2000, 18:00	1.0	

Huff 3rd Quartile, 24 hour Rainfall Distribution

🛎 HEC-HMS 3.5 [C:\\Documents\IL 102 across Ryans Creek\HEC-HMS\{			
File Edit View Components Parameters Compute Results Tools Help			
🗋 😅 🖶 🎒 💽 🕂 🕂 오 🎰 🏎 🖬 🍑 🌳 🌄 🐸 🗯 📟 🔤			
└──Uto 01Jan2000, 00:00 - 01Jan2000, 12:00			
Components Compute Results			
🚰 Time-Series Gage Time Window Table Graph			
Name: Huff 3rd Q, 24 hr			
*Start Date (ddMMMYYYY) 01Jan2000			
*Start Time (HH:mm) 00:00			
*End Date (ddMMMYYYY) 02Jan2000			
*End Time (HH:mm) 00:00			

D1Jan2000, 00:00	0.00 0.01 0.03 0.04 0.05 0.06 0.08 0.09 0.10 0.11 0.12 0.14 0.15 0.17 0.15 0.17 0.18 0.20 0.20
1Jan2000, 01:00	0.03 0.04 0.05 0.06 0.08 0.09 0.10 0.11 0.12 0.14 0.15 0.17 0.18 0.20 0.20
1Jan2000, 01:30 1 1Jan2000, 02:00 1 1Jan2000, 02:30 1 1Jan2000, 03:00 1 1Jan2000, 03:30 1 1Jan2000, 04:00 1 1Jan2000, 04:30 1 1Jan2000, 05:00 1 1Jan2000, 05:30 1 1Jan2000, 06:00 1 1Jan2000, 07:00 1 1Jan2000, 07:30 1 1Jan2000, 08:00 1 1Jan2000, 08:30 1	0.04 0.05 0.06 0.08 0.09 0.10 0.11 0.12 0.14 0.15 0.17 0.18 0.20 0.20
1Jan2000, 01:30 1Jan2000, 02:00 1Jan2000, 02:30 1Jan2000, 03:00 1Jan2000, 03:30 1Jan2000, 03:30 1Jan2000, 04:00 1Jan2000, 04:30 1Jan2000, 05:00 1Jan2000, 05:30 1Jan2000, 06:30 1Jan2000, 07:00 1Jan2000, 07:30 1Jan2000, 08:00 1Jan2000, 08:30	0.05 0.06 0.08 0.09 0.10 0.11 0.12 0.14 0.15 0.17 0.18 0.20 0.20
11an2000, 02:00	0.06 0.08 0.09 0.10 0.11 0.12 0.14 0.15 0.17 0.18 0.20 0.22
1Jan2000, 02:30 1Jan2000, 03:00 1Jan2000, 03:30 1Jan2000, 03:30 1Jan2000, 04:00 1Jan2000, 04:30 1Jan2000, 05:00 1Jan2000, 05:30 1Jan2000, 06:00 1Jan2000, 06:30 1Jan2000, 07:00 1Jan2000, 07:30 1Jan2000, 08:00 1Jan2000, 08:30	0.06 0.08 0.09 0.10 0.11 0.12 0.14 0.15 0.17 0.18 0.20 0.22
1Jan2000, 03:00 1Jan2000, 03:30 1Jan2000, 04:00 1Jan2000, 04:30 1Jan2000, 05:00 1Jan2000, 05:30 1Jan2000, 06:00 1Jan2000, 06:30 1Jan2000, 07:00 1Jan2000, 07:30 1Jan2000, 08:00 1Jan2000, 08:30	0.08 0.09 0.10 0.11 0.12 0.14 0.15 0.17 0.18 0.20 0.22
1Jan2000, 03:30 1Jan2000, 04:00 1Jan2000, 04:30 1Jan2000, 05:00 1Jan2000, 05:30 1Jan2000, 06:00 1Jan2000, 06:30 1Jan2000, 07:00 1Jan2000, 07:30 1Jan2000, 08:00 1Jan2000, 08:30	0.10 0.11 0.12 0.14 0.15 0.17 0.18 0.20 0.22
1Jan2000, 04:00	0.10 0.11 0.12 0.14 0.15 0.17 0.18 0.20 0.22
1Jan2000, 04:30	0.11 0.12 0.14 0.15 0.17 0.18 0.20 0.22
1Jan2000, 05:00 1 1Jan2000, 05:30 1 1Jan2000, 06:00 1 1Jan2000, 06:30 1 1Jan2000, 07:00 1 1Jan2000, 07:30 1 1Jan2000, 08:00 1 1Jan2000, 08:30 1	0.14 0.15 0.17 0.18 0.20 0.22
1Jan2000, 05:30 1Jan2000, 06:00 1Jan2000, 06:30 1Jan2000, 07:00 1Jan2000, 07:30 1Jan2000, 08:00 1Jan2000, 08:30	0.14 0.15 0.17 0.18 0.20 0.22
1Jan2000, 06:00	0.15 0.17 0.18 0.20 0.22
1Jan2000, 06:30 1 1Jan2000, 07:00 1 1Jan2000, 07:30 1 1Jan2000, 08:00 1 1Jan2000, 08:30 1	0.17 0.18 0.20 0.22
1Jan2000, 07:00 1 1Jan2000, 07:30 1 1Jan2000, 08:00 1 1Jan2000, 08:30 1	0.18 0.20 0.22
LJan2000, 07:30 LJan2000, 08:00 LJan2000, 08:30	0.20
1Jan2000, 08:00 1Jan2000, 08:30	0.22
LJan2000, 08:30	
	0.23
1Jan2000, 09:00	0.25
1Jan2000, 09:30	0.27
LJan2000, 10:00	0.29
Jan2000, 10:30	0.3
LJan2000, 11:00	0.33
LJan2000, 11:30	0.30
LJan2000, 12:00	0.30
1Jan2000, 12:30	0.41
1Jan2000, 13:00	0.44
1Jan2000, 13:30	0.48
1Jan2000, 14:00	0.53
1Jan2000, 14:30	0.58
1Jan2000, 15:00	0.64
1Jan2000, 15:30	0.69
1Jan2000, 16:00	0.73
1Jan2000, 16:30	0.77
1Jan2000, 17:00	0.80
1Jan2000, 17:30	0.83
1Jan2000, 18:00	0.85
1Jan2000, 18:30	0.83
	0.90
LJan2000, 19:00 LJan2000, 19:30	0.97
LJan2000, 20:00	0.91
1Jan2000, 20:30	0.92
1Jan2000, 21:00	0.94
1Jan2000, 21:30	0.9
IJan2000, 22:00	0.9
1Jan2000, 22:30	0.9
1Jan2000, 23:00	0.9
1Jan2000, 23:30	0.9

Huff 4th Quartile, 48-hour Rainfall Distribution

Kernet Strate Strate Strate Strate Strate Strate Kernet Strate St			
<u>File Edit View Components Parameters Compute R</u>			
🗋 🖨 🖬 🍯 💽 🕂 이 수 수 🎰 📾 🏵 후 🗮			
Huff 3rd Q, 24 hr			
Huff 4th Q, 120 hr			
☐			
Components Compute Results			
🔓 Time-Series Gage 🛛 Time Window 🖓 Table 🛛 Graph			
Name: Huff 4th Q, 48 hr			
*Start Date (ddMMMYYYY)	01Jan2000		
*Start Time (HH:mm) 00:00			
*End Date (ddMMMYYYY)) 03Jan2000		
*End Time (HH:mm)	00:00		

*End Time	(HH:mm)	00:00
-----------	---------	-------

Time (ddMMMYYYY, HH:mm)	Precipitation (IN)
1Jan2000, 00:00	0.00
1Jan2000, 01:00	0.01
1Jan2000, 02:00	0.02
1Jan2000, 03:00	0.03
1Jan2000, 04:00	0.04
1Jan2000, 05:00	0.03
1Jan2000, 06:00	0.07
1Jan2000, 07:00	0.08
1Jan2000, 08:00	0.09
1Jan2000, 09:00	0.10
1Jan2000, 10:00	0.10
1Jan2000, 11:00	0.12
Jan2000, 12:00	0.13
Jan2000, 13:00	0.14
1Jan2000, 14:00	0.10
1Jan2000, 15:00	0.12
1Jan2000, 16:00	0.11
1Jan2000, 17:00	0.1
1Jan2000, 18:00	0.2
1Jan2000, 19:00	0.2
1Jan2000, 20:00	0.2
1Jan2000, 21:00	0.2
1Jan2000, 22:00	0.2
1Jan2000, 23:00	0.2
2Jan2000, 00:00	0.2
2Jan2000, 01:00	0.3
2Jan2000, 02:00	0.33
2Jan2000, 03:00	0.33
2Jan2000, 04:00	0.34
2Jan2000, 05:00	0.3
2Jan2000, 06:00	0.3
2Jan2000, 07:00	0.3
2Jan2000, 08:00	0.40
2Jan2000, 09:00	0.43
2Jan2000, 10:00	0.4
2Jan2000, 10:00	0.49
2Jan2000, 11:00	0.5
2Jan2000, 12:00 2Jan2000, 13:00	0.5
2Jan2000, 13:00 2Jan2000, 14:00	0.5
2Jan2000, 14:00 2Jan2000, 15:00	0.6
2Jan2000, 15:00	0.6
2Jan2000, 17:00	0.73
2Jan2000, 18:00	0.7
2Jan2000, 19:00	0.8
2Jan2000, 20:00	0.8
2Jan2000, 21:00	0.9
2Jan2000, 22:00	0.9
2Jan2000, 23:00	0.9

Huff 4th Quartile, 72-hour Rainfall Distribution

Kernet Streek HEC-HMS 3.5 [C:\\Documents\IL 102 across Ryans Creek\HEC-HMS\Ryans Creek\R									
<u>File Edit View Components Parameters Compute Results Tools Help</u>									
□ ☞ 🖬 🍯 💽 ⊕ < \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$									
표 🔓 Huff 4th Q, 120 hr									
Huff 4th Q, 48 hr									
🛱 🛱 Huff 4th Q, 72 hr									
🛅 01Jan2000, 00:00 - 04Jan2000, 00:00									
Components Compute Results									
Time-Series Gage Time Window Table Graph									
Name: Huff 4th Q, 72 hr									
*Start Date (ddMMMYYYY) 01Jan2000									
*Start Time (HH:mm) 00:00									
*End Date (ddMMMYYYY) 04Jan2000									
*End Time (HH:mm) 00:00									

Time-Series Gage Time Window Table Graph	Desistation (724)
Time (ddMMMYYYY, HH:mm)	Precipitation (IN)
01Jan2000, 00:00	0.00
01Jan2000, 02:00	0.01
01Jan2000, 04:00	0.02
01Jan2000, 06:00	0.04
01Jan2000, 08:00	0.06
01Jan2000, 10:00	0.07
01Jan2000, 12:00	0.09
01Jan2000, 14:00	0.10
01Jan2000, 16:00	0.11
01Jan2000, 18:00	0.13
01Jan2000, 20:00	0.15
01Jan2000, 22:00	0.16
02Jan2000, 00:00	0.18
02Jan2000, 02:00	0.20
02Jan2000, 04:00	0.21
02Jan2000, 06:00	0.23
02Jan2000, 08:00	0.25
02Jan2000, 10:00	0.26
02Jan2000, 12:00	0.28
02Jan2000, 14:00	0.30
02Jan2000, 16:00	0.32
02Jan2000, 18:00	0.34
02Jan2000, 20:00	0.36
02Jan2000, 22:00	0.38
03Jan2000, 00:00	0.41
03Jan2000, 02:00	0.44
03Jan2000, 04:00	0.48
03Jan2000, 06:00	0.51
03Jan2000, 08:00	0.55
03Jan2000, 10:00	0.60
03Jan2000, 12:00	0.68
03Jan2000, 14:00	0.75
03Jan2000, 16:00	0.81
03Jan2000, 18:00	0.87
03Jan2000, 20:00	0.91
03Jan2000, 22:00	0.96
04Jan2000, 00:00	1.00

IL Route 102 over Ryans Creek HEC-HMS Model Precipitation Data July 14, 2015

Start States		States	Start States	Save	States	Start States	Save	
💐 Simulation R	.un	Ratio	🕺 Simulation R	un	Ratio	🗱 Simulation R	lun	Ratio
Name:	002yr,	01hr	Name:	002yr,	02hr	Name:	002yr,	03hr
Ratio Method:			Ratio Method:			Ratio Method:		
Apply to Subbasins:	-		Apply to Subbasins:	-		Apply to Subbasins:	Yes	
Apply to Sources:	-		Apply to Sources:	No		Apply to Sources:	No	
Ratio:			Ratio:	1.86		Ratio:	2.05	
Start States	Save	States	Start States	Sav	e States	Start States	Sav	ve States
🗱 Simulation R	tun	Ratio	X Simulation		Ratio	👋 Simulation	Run	Ratio
Namo	002yr,	06hr				Nam		
Ratio Method:				: 002yr		Ratio Metho	e: 002yı d: Drocir	-
Apply to Subbasins:	-	auon	Ratio Method		itation	Apply to Subbasin		ILduon
Apply to Subbasilis. Apply to Sources:	-		Apply to Subbasins	-			-	
	-		Apply to Sources	: No		Apply to Source		
Ratio:	2.4		Ratio	: 2.78		Ratio	o: 3.008	
Start States	Save	States	Start States	Sav	e States	Start States	S	ave States
💐 Simulation R	un	Ratio	🗱 Simulation F	Run	Ratio	📃 🕺 Simulatio	n Run	Rat
	002yr,			002yr	-			yr, 72hr
Ratio Method:		ation	Ratio Method:	Precip	itation	Ratio Meth		ipitation
Apply to Subbasins:	-		Apply to Subbasins:	Yes		Apply to Subbasi	-	
Apply to Sources:			Apply to Sources:	No		Apply to Source		
Ratio:	3.2							
			Ratio	3.46		Ra	tio: 3.71	.2
			Ratio	3.46				
Start States		States	Start States	Save S		Start States	Save	States
Start States X3 Simulation R		States Ratio		Save S	States Ratio		Save	
🗱 Simulation R		Ratio	Start States	Save Save	Ratio	Start States	Save	States Ratio
X Simulation R	un 010yr, (Ratio 01hr	Start States	Save 9 in 010yr, 0	Ratio)2hr	Start States	Save tun 010yr,	States Ratio 03hr
X Simulation R Name: Ratio Method:	un 010yr, (Precipita	Ratio 01hr	Start States X Simulation Ru Name: (Save S in D 10yr, C Precipita	Ratio)2hr	Start States X3 Simulation R	Save tun 010yr, Precipit	States Ratio 03hr
X Simulation R Name: Ratio Method:	un 010yr, (Precipita Yes	Ratio 01hr	Start States X Simulation Ru Name: (Ratio Method:	Save S In D 10yr, O Precipita Yes	Ratio)2hr	Start States X3 Simulation R Name: Ratio Method:	Save tun 010yr, Precipit Yes	States Ratio 03hr
X Simulation R Name: Ratio Method: Apply to Subbasins:	un 010yr, (Precipita Yes No	Ratio 01hr	Start States Simulation Ru Name: (Ratio Method: Apply to Subbasins:	Save S in D10yr, O Precipita Yes No	Ratio)2hr	Start States X Simulation R Name: Ratio Method: Apply to Subbasins:	Save tun 010yr, Precipit Yes No	States Ratio 03hr
X3 Simulation R Name: Ratio Method: Apply to Subbasins: Apply to Sources:	un 010yr, (Precipita Yes No	Ratio 01hr	Start States Simulation Ru Name: (Ratio Method: Apply to Subbasins: Apply to Sources:	Save S in D10yr, O Precipita Yes No	Ratio)2hr	Start States Simulation R Name: Ratio Method: Apply to Subbasins: Apply to Sources:	Save tun 010yr, Precipit Yes No	States Ratio 03hr
X Simulation R Name: Ratio Method: Apply to Subbasins: Apply to Sources:	un O10yr, (Precipita Yes No 2.35	Ratio 01hr	Start States Simulation Ru Name: (Ratio Method: Apply to Subbasins: Apply to Sources:	Save S in D10yr, O Precipita Yes No 2.9	Ratio D2hr ation	Start States Simulation R Name: Ratio Method: Apply to Subbasins: Apply to Sources: Ratio:	Save tun O10yr, Precipit Yes No 3.2	States Ratio 03hr ation
X Simulation R Name: Ratio Method: Apply to Subbasins: Apply to Sources: Ratio:	un 010yr, (Precipita Yes No 2.35 Save	Ratio 01hr ation	Start States Simulation Ru Name: (Ratio Method: Apply to Subbasins: Apply to Sources: Ratio:	Save Save Save Save Save Save Save Save	Ratio)2hr ation	Start States Simulation R Name: Ratio Method: Apply to Subbasins: Apply to Sources:	Save tun O10yr, Precipit Yes No 3.2	States Ratio 03hr
Simulation R Name: Ratio Method: Apply to Subbasins: Apply to Sources: Ratio: Start States Start States Simulation R	un 010yr, (Precipita Yes No 2.35 Save	Ratio 01hr ation States Ratio	Start States Simulation Ru Name: (Ratio Method: Apply to Subbasins: Apply to Sources: Ratio: Start States Simulation R	Save Sinn Dilloyr, C Precipita Yes No 2.9 Save un	Ratio D2hr ation States Ratio	Start States Simulation R Name: Ratio Method: Apply to Subbasins: Apply to Sources: Ratio: Start States Simulation	Save Run O10yr, Precipit Yes No 3.2 Save Run	States Ratio O3hr ation States Ratio
Simulation R Name: Ratio Method: Apply to Subbasins: Apply to Sources: Ratio: Start States Simulation R Name:	un O10yr, (Precipita Yes No 2.35 Save un O10yr, (Ratio 01hr ation States Ratio 06hr	Start States Xi Simulation Ru Name: (Ratio Method: Apply to Subbasins: Apply to Sources: Ratio: Ratio:	Save Save Save Save Save Save Save Save	Ratio D2hr ation States Ratio 12hr	Start States Simulation R Name: Ratio Method: Apply to Subbasins: Apply to Sources: Ratio: Start States Start States Simulation Name	Save tun Precipit Yes No 3.2 Save Run : 010yr,	States Ratio 03hr ation e States Ratio 18hr
Simulation R Name: Ratio Method: Apply to Subbasins: Apply to Sources: Ratio: Start States Start States X3 Simulation R Name: Ratio Method:	un 010yr, (Precipita Yes No 2.35 Save un 010yr, (Precipita	Ratio 01hr ation States Ratio 06hr	Start States Simulation Ru Name: (Ratio Method: Apply to Subbasins: Apply to Sources: Ratio: Start States Simulation R Name: Ratio Method:	Save Sinn Save Sinn Save Sinn Save Sinn Save Save Save Save Save Save Save Save	Ratio D2hr ation States Ratio 12hr	Start States Simulation R Ratio Method: Apply to Subbasins: Apply to Sources: Ratio: Start States Start States Mame Ratio Method	Save tun O10yr, Precipit Yes No 3.2 Save Run : O10yr, : Precipi	States Ratio 03hr ation e States Ratio 18hr
Simulation R Name: Ratio Method: Apply to Subbasins: Apply to Sources: Ratio: Start States Start States X3 Simulation R Ratio Method: Apply to Subbasins:	un 010yr, (Precipita Yes No 2.35 Save un 010yr, (Precipita Yes	Ratio 01hr ation States Ratio 06hr	Start States Simulation Ru Ratio Method: Apply to Subbasins: Apply to Sources: Ratio: Start States Start States Simulation R Name: Ratio Method: Apply to Subbasins:	Save Sin Save Sin Save Sin Save Sin Save Sin Save Save Save Save Save Save Save Save	Ratio D2hr ation States Ratio 12hr	Start States Start States Name: Ratio Method: Apply to Subbasins: Apply to Sources: Ratio: Start States Start States Simulation Name Ratio Method Apply to Subbasins	Save Cun 010yr, Precipit Yes No 3.2 Save Run : O10yr, : Precipi : Yes	States Ratio 03hr ation e States Ratio 18hr
Simulation R Name: Ratio Method: Apply to Subbasins: Apply to Sources: Ratio: Start States Simulation R Name: Ratio Method:	un 010yr, (Precipita Yes No 2.35 Save un 010yr, (Precipita Yes No	Ratio 01hr ation States Ratio 06hr	Start States Simulation Ru Name: (Ratio Method: Apply to Subbasins: Apply to Sources: Ratio: Start States Simulation R Name: Ratio Method:	Save Sinn D10yr, C Precipita Yes No 2.9 Save un O10yr, Precipit Yes No	Ratio D2hr ation States Ratio 12hr	Start States X Simulation R Ratio Method: Apply to Subbasins: Apply to Sources: Ratio: Start States X Simulation I Name Ratio Method Apply to Subbasins Apply to Subbasins Apply to Sources	Save Cun 010yr, Precipit Yes No 3.2 Save Run : O10yr, : Precipi : Yes	States Ratio 03hr ation e States Ratio 18hr

IL Route 102 over Ryans Creek HEC-HMS Model Precipitation Data July 14, 2015

											_
Start States	Save	States	Start States	Sa	ve State		Start States	Sav	e <mark>State</mark>	es	1
💥 Simulation R	Run	Ratio	🗱 Simulation F	Run	Ra	atio	🐹 Simulation I	Run	Ra	atio	
Name:	010yr,	24hr	Name	: 010	/r, 48hr		Name	: 010yr	. 72hi	r	
Ratio Method:			Ratio Method: Precipitation			Ratio Method					
Apply to Subbasins:	-		Apply to Subbasins	: Yes		A	pply to Subbasins	: Yes			
Apply to Sources:	No		Apply to Sources	: No			Apply to Sources	: No			
Ratio:			Ratio	: 5.4			Ratio	: 5.4			
		1									
Start States	Save	States	Start States	Sa	ve State	s	Start States	Sav	e State	es	1
North States North States		Ratio	💥 Simulation R			atio	👋 Simulation		_	atio	
Namo	050yr,	0.1 br	Name:	050			Name	: 050yr	03h	r	
Ratio Method:			Ratio Method:	_			Ratio Method	_			
Apply to Subbasins:	-		Apply to Subbasins:	-			pply to Subbasins	-			-
Apply to Sources:	-		Apply to Sources:	-			Apply to Sources				
Ratio:	-		Ratio:	-			Ratio	: 4.48			=
		[]			_	[]					
Start States	Save	States	X Simulation Rur	Rat	io Star	t State	Simulation P	un Rat	io st	art S	tate
🗱 Simulation R	Run	Ratio	No Simulation Rul	1 ruc		C State:	Simulation R			art J	luce
Name	050yr,	06hr	Nan	ne: 0	50yr, 1	2hr	Na	me: O	50yr,	18 h	r
Ratio Method:			Ratio Metho	od: P	recipita	tion	Ratio Met	hod: P	recipi	tatio	n
Apply to Subbasins:	-		Apply to Subbasins: No			Apply to Subba	sins: Y	es			
Apply to Sources:			Apply to Sources: No			Apply to Sources: No					
Ratio:			Rat	tio: 6	.09		R	atio: 6	.58		
💐 Simulation Ru	Ratio	Start Stat		D							
Simulation Rul	T Tutto	Start Stat	🖞 💐 Simulation Ru	un Ra	atio	art State	🗱 Simulation	Run	Ratio	Sta	rt State
Nan	ne: 050)yr, 24hr	Na	me:	050yr,	48hr		Name	050	vr.	72hr
Ratio Meth	od: Pre	cipitation	Ratio Met	hod:	Precipi	tation	Ratio M		-		
Apply to Subbasi	ns: Yes	5	Apply to Subba	sins:	Yes		Apply to Sub		-		
Apply to Source	es: No		Apply to Sour	÷					-		
	tio: 7.0	0		atio:			Apply to S				
1.0		•	-	acro.	7.50		-	Ratio	8.1.	2	
					[7					
💐 Simulation Run	Ratio	Start States	s 🕺 🏷 Simulation	Run	Ratio	Start S	tate 👋 Simula	tion Rı	in Ra	atio	Start S
				Marrie	o. 100	0.0		Na	me:	100	yr, 03h
		/r, 01hr				yr, 02h					ipitation
Ratio Metho	-	ipitation			-	cipitatio	Apply to			-	apreación
Apply to Subbasir	ns: Yes		Apply to Sub	basin	s: Yes				-	-	
			Apply to Se	ource	s. No		Apply t	to Sour	ces:	NO	
Apply to Source	es: No		Apply to 50	041.00	5. 110				atio:		

💐 Simulation Run	Ratio	Start Stat	X Simulation Run	Ratio	Start States	X Simulation Ru	n Ratio	Start State
Sindudon Run								
Name	e: 100)yr, 06hr 🛛	Name	e: 100	YR, 12hr	Nan	ne: 10	0yr, 18hr
Ratio Metho	d: Pre	cipitation	Ratio Methoo	l: Pre	cipitation	Ratio Meth	od: Pr	ecipitation
Apply to Subbasin	s: Yes	;	Apply to Subbasing	s: Yes		Apply to Subbasi	ins: Ye	S
Apply to Source	s: No		Apply to Sources	s: No		Apply to Source	ces: No)
Rati	Ratio: 6.38		Ratio: 7.40			Ra	tio: 7.9	99
-				_				
💐 Simulation Run	Ratio	Start States	💐 Simulation Run	Ratio	Start Stat	🗱 Simulation Run	Ratio S	Start States
Name	e: 100	yr, 24hr	Nam	e: 10	0 yr, 4 8hr	Name	: 100yı	, 72hr
Ratio Method	l: Prec	ipitation	Ratio Metho	d: Pr	ecipitation	Ratio Method	: Precip	oitation
Apply to Subbasing	: Yes		Apply to Subbasir	ns: Ye	S	Apply to Subbasins	: Yes	
Apply to Sources	s: No		Apply to Source	es: No)	Apply to Sources	: No	
Ratio	: 8.5		Rat	io: 9.1	18	Ratio	: 9.86	

Project:	Ryans C	reek Simul	ation Run:	0	02yr, 72hr		
Start of Run End of Run Compute T): (01Jan2000, 00: 05Jan2000, 00: 30Oct2014, 16:	00	Met	in Model: eorologic Model: trol Specifications:	Basin 1 Huff 4th Q 72 Control 09 - I	
Hydrologic Element		Drainage Area (MI2)	Peak Disch (CFS)	narg	eTime of Peak	Volume (IN)	

04Jan2000, 00:55

0.34

6.59

Subbasin-1

Subbasin "Subbasin-1" Results for Run "002yr, 72hr"

Project: Ryans	Creek Simul	ation Run: 0	10yr, 18hr	
Start of Run:	01Jan2000, 00:	00 Met	in Model:	Basin 1
End of Run:	03Jan2000, 00:		eorologic Model:	HUFF 3RD C
Compute Time:	30Oct2014, 16:		htrol Specifications:	Control 06 H
Hydrologic	Drainage Area	Peak Discharg	eTime of Peak	Volume
Element	(MI2)	(CFS)		(IN)

6.59

Subbasin-1

01Jan2000, 17:30

Subbasin "Subbasin-1" Results for Run "010yr, 18hr"

Project:	Ryans Creel	k Simul	ation Run:	010yr, 24hr	
Start of Run End of Run: Compute Ti	03Ja	an2000, 00 an2000, 00 oct2014, 16:	:00 Me	sin Model: eteorologic Model: ontrol Specifications:	Basin 1 Huff 3rd Q 2 Control 07 -
Hydrologic Element	Dra (MI	-	Peak Dischar (CFS)	geTime of Peak	Volume (IN)

01Jan2000, 22:40

1.06

407.6

Subbasin-1

Subbasin "Subbasin-1" Results for Run "010yr, 24hr"

Project:	Ryans C	Creek Simul	ation Run:	010yr, 48	hr	
Start of Run End of Run: Compute Ti	:	01Jan2000, 00 04Jan2000, 00 30Oct2014, 16	:00 N	Basin Mode Meteorologi Control Spe		Basin 1 HUFF 4TH (Control 08 -
Hydrologic Element		Drainage Area (MI2)	Peak Discha (CFS)	argeTime of	Peak	Volume (IN)

Subbasin-1

6.59

02Jan2000, 23:25

Subbasin "Subbasin-1" Results for Run "010yr, 48hr"

Project:	Ryans C	reek Simul	ation Run:	050yr, 18hr	
Start of Run End of Run: Compute Ti	: (01Jan2000, 00: 03Jan2000, 00: 30Oct2014, 16:	00 Me	sin Model: teorologic Model: ntrol Specifications:	Basin 1 HUFF 3RD C Control 06 H
Hydrologic Element		Drainage Area (MI2)	Peak Discharg (CFS)	geTime of Peak	Volume (IN)

Subbasin-1

6.59

1.82

01Jan2000, 16:45

Project:	Ryans C	reek Simul	ation Run:	050yr, 24hr	
Start of Ru End of Rur Compute T	n:	01Jan2000, 00 03Jan2000, 00 30Oct2014, 16	:00 Me	sin Model: eteorologic Model: ontrol Specifications:	Basin 1 Huff 3rd Q 2 Control 07 -
Hydrologic Element		Drainage Area (MI2)	Peak Dischar (CFS)	geTime of Peak	Volume (IN)

Subbasin-1

6.59

01Jan2000, 22:00

Subbasin "Subbasin-1" Results for Run "050yr, 24hr"

Project: Rya	ans Creek Sim	ulation Run:	050yr, 48hr	
Start of Run:	01Jan2000, 0	0:00 Me	sin Model:	Basin 1
End of Run:	04Jan2000, 0		teorologic Model:	HUFF 4TH (
Compute Time	: 30Oct2014, 1		ntrol Specifications:	Control 08 -
Hydrologic	Drainage Are	ea Peak Discharg	geTime of Peak	Volume
Element	(MI2)	(CFS)		(IN)

6.59

Subbasin-1

2.47

02Jan2000, 22:50

Subbasin "Subbasin-1" Results for Run "050yr, 48hr"

Project:	Ryans C	creek Simul	ation Run:	100yr, 18hr		
Start of Run End of Run Compute T	1: (01Jan2000, 00: 03Jan2000, 00: 30Oct2014, 16:	00 N	asin Model: leteorologic Mod control Specificati	Basin 1 HUFF 3RD C Control 06 H	
Hydrologic Element		Drainage Area (MI2)	Peak Discha (CFS)	argeTime of Peak	Volume (IN)	

6.59

Subbasin-1

2.77

01Jan2000, 16:25

Subbasin "Subbasin-1" Results for Run "100yr, 18hr"

Project: Ryan	s Creek	Simulation F	Run: 100yr, 24hr	
Start of Run: End of Run: Compute Time:	03Jan20	000, 00:00 000, 00:00 14, 17:02:19	Basin Model: Meteorologic Mode Control Specificatio	
Hydrologic Element	Drainag (MI2)	e Area Peak (CFS)	DischargeTime of Peak	Volume (IN)

6.59

Subbasin-1

01Jan2000, 21:45

Subbasin "Subbasin-1" Results for Run "100yr, 24hr"

Project: R	yans Creek	Simulation Run:	100yr, 48hr	
Start of Run:	04Jan20	00, 00:00	Basin Model:	Basin 1
End of Run:		00, 00:00	Meteorologic Model:	HUFF 4TH (
Compute Tin		14, 17:03:47	Control Specifications:	Control 08 -
Hydrologic	Drainag	e Area Peak Disc	hargeTime of Peak	Volume
Element	(MI2)	(CFS)		(IN)

6.59

Subbasin-1

02Jan2000, 22:35

Subbasin "Subbasin-1" Results for Run "100yr, 48hr"

IL Route 102 (FAP 631) over Ryans Creek Will County

SECTION 7

Streambed Profile

		280	575	570	265	555 555	68.732	00.00
							56.63	
				EWSE	569.6		85.692	
		•			S58462 558462 7.90		55.95	
					51A 21+5		268.52	
			L. 577.20				96 . 798	
			-LOW CHORD EL.		STA 20+40 568.76 568.76 568.58		568.42	
	50+03				568.61 568.61 568.85 568.85 568.85 568.85 568.85 568.85 568.85 568.85 568.85	OF BRIDGE	60 . 692 07 . 892	
, X		¥ ¥ 1 31U08 31					76.892	_
	T AT ROADWAY	89		EWSE 570.00	568.45 558.45 558.45 559.49 569.49 568.85		57 . 892	
	LUIO4_M01 2.79.17	STA. 741+68			567.18		61•695	
							26 . 832	-
					17+08 569-31		70.832	
				EWSE 568:93	56.7.93		569.12	
					<u></u>		68.792	
							17.732	
							72.732	_
				EWSE 567.95			£8 . 793	
		•		Ew	STA 14+30 STA 567.67 567		28.793	
					21 SI		22.732	_
					C 2566.08 S 21A 13460 S 21A 13460 S 21A 13445 S 64.24		88.992	
					564 2017	2	¢7.¢38	_
						566.95	07.992	
					06+		60.992	
					A 11+			

		STRUCTURE NOTATINS CHIKD	•ON	
		GRADES CHECKED B.M. NOTED	NOTE BOOK	
		PLOTTED PLOTTED	רתטרזבב	
3140	84		םפטבזי ר	

		CADD FILE NAME	
		RT, OF WAY CHECKED	NOTE BOOK
		PLOTTED SURVEYED	мајч
3TAO	18		144 10

IL Route 102 (FAP 631) over Ryans Creek Will County

SECTION 8

Roadway Profile

IL Route 102 (FAP 631) over Ryans Creek Will County

SECTION 9

Cross Section Plots

FILE NAME =	USER NAME = gwielich	DESIGNED - DCC	REVISED -			IL ROUT	TE 182	> • \/F	
D118713-sht-drain_001		DRAWN - VEA	REVISED -	STATE OF ILLINOIS					
	PLOT SCALE = 200.0000 '/ in.	CHECKED - CMD	REVISED -	DEPARTMENT OF TRANSPORTATION		HECRAS C	RUSS	SECI	IUN
Default	PLOT DATE = 7/22/2015	DATE - 11/19/2014	REVISED -		SCALE: 1" = 100'	SHEET 1	0F	1 Sł	HEETS

		\land	1000		
					1.111.211
	\rightarrow			1.00	10 A 10 A 10
			/		1000
					1000
	/				11
					1200
	\rightarrow 1	/		2275	82501
/			N		1000
//	´				
//		200	I		
\times		20.599 C.3	Q.		
1 XX		7.1824	Ĩ		
X		1000		~	/
\times					-
)				$Q \cup$	
	/		5	$\left(\right)$	11000
/	/	/)	10008-2
/	/				Contractory of
/			/		1. 1. 1. 1.
			/		012030
	\frown	/			and the second second
/	,4	/			12200
	$\land \bigcirc$	/			25.6415
1					
<	\sim				
/					
					4350
					All B
	<u>x x - x - </u>	× × ×	X	-x x	<u> </u>
	<u> </u>				EX ROW
CALCULATION OF THE OWNER	12233	1 4 5 4 5	and the second sec	\geq	244022
<u> </u>					1.00
100000 A	739+00				
100.27	ALC: TRACE	CONTRACT.	2.5.	1.4.77	
Provide Star	1 m - 1 1 1 1 1	1000045-12	Million B		tes and the second second
	C C YARDON			100.01	
					The second second
				_	EX ROW
					EX ROW
					EX ROW
					EX ROW
					EX ROW
					EX ROW
					EX ROW
					EX ROW
					EX ROW
					EX ROW
					EX ROW
	1977 1977				EX ROW
	1977 CDOWNSTRI	EAMFACE OF BRID			EX ROW
	1977 (DOWNSTRI				EX ROW
	1977 (DOWNSTRI				EX ROW
	1977 (DOWNSTRI				EX ROW
	1977 (DOWNSTR				EX ROW
					EX ROW
	1977 (DOWNSTRE				EX ROW
					EX ROW
					EX ROW
					EX ROW
					EX ROW
					EX ROW
					EX ROW
					EX ROW
					EX ROW
					EX ROW
					EX ROW
					EX ROW
		EAMFACE OF BRID			
YANS CREEK		EAMFACE OF BRID		COUNTY	
ANS CREEK		EAMFACE OF BRIE	DGE)		OTAL SHEET NO. 1 1
VANS CREEK DN DETAIL		EAMFACE OF BRID			OTAL SHEET NO. 1 1

585 n = .1	n = . 055		R	YANS CREEK - IL 102 RS = 939				n = .1				
HEAVY STAND OF T					HEAVY STAND	OF TIMBER				CRO	SS SECTIONS	TAKEN
<u>ELEV. 581.52</u> STA. 0.00											OKING DOWNS	
580 579,22 7.61 577 35												
577.35 13.77												
<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	7											
N 571.0 VE 573.30 VE 570 VE 570 VE 571.02 VE 570												
573.30 18.23	38.03 563.61	<u>100 YR WSE</u> 566.91							569.00			
<u>571.02</u> ∃ <u>571.02</u> 31.07		66.26							500.00			
565 <u>567.</u>	<u>16</u> <u>566.45</u> <u>103.27</u>	66.26 29.81	\			++-						
	5 565.29 55.41 55.41	<u>565.72</u> 138.36 <u>565.16</u> 173.26										
	55.41 <u>563.21</u> <u>562.61</u> 81.58 <u>86.42</u>	173.26	<u>564.36</u> 193.75									
560	81.58 86.42 100		200		300		400		500			
				STATION (FT)								
		RYANS CREEK - IL 102 RS = 1144										
590	n = .1 , n = .055 ,	RS = 1144										
HEAVY ST	AND OF TIMBER MAIN CHANNEL		AND OF TIMBER									
ELEV. 585.37 STA. 0.00 585 584.23 10.02												
585 584,23												
<u>583.15</u>												
<u>580</u> <u>581.01</u>	577.69 \											
$\frac{580.04}{31.91}$	44.50											
<u><u><u></u></u> 575 <u>37.97 57</u></u>	6.62		574,56 573,65 215,79 574,156 215,79 574,157 574,157 574,157 574,157 574,156									
	NWSE 565.80\ 568.95	100 YR WSE 569.48	215.79 574.	<u>)2</u>								
570	NWSE 568.95 573.35 569.89 119.67 59.12 /66.84 111.33	568.72 137.94	<u>570.55</u> 198.09 205.57									
	570.78 64.50 568.17 95.70 72.94 565.21 566.31 92.15 78.77 106.15 567. 123.5 566.31 100 101.74		569.45									
EZE	72.94 <u>565.21</u> 100.13 <u>567.</u> <u>566.31</u> 92.15	<u>.48 568.69</u> 92 147.06 <u>567</u> 182	<u>569.45</u> 193.58 <u>65</u> 5 <u>568.38</u> 11 189.07									
565 Ø	100 101.74		500	STATION (FT)	300							
	RYANS CREEK - R\$ = 1485	5										
590 HEA	n = .1 n = .09		n = .1 AND OF TIMBER									
<u>589.24</u> 13.26												
585 STA. 0.00 587.21 46.89												
46.89	584.01 55.19			<u>582.42</u> 251.05								
£ 580												
	<u>580.39</u> 64.55		<u>579.88</u> 238.59	17								
575		100 YR WSE 572.22	<u>575.78</u> 228.47 7									
	<u>576.80</u> 73.32 567.95	571.52	571.28 /									
	$\frac{572.92}{82.90} $	29.87 <u>571.15</u> 52.84	571.10 171.89 571.14 573.28 217.14 573.2 222.8	<u>1</u> 5								
570	82.30		/									
	<u>571,05</u> 90.47	135.21	<u>569.70</u> 208.48								D BY AES SERVICE	
565	<u>567.96</u> 94.18 104.9	02							ALL	ELEVATIONS A	RE REFERENCED TO) NAVD 88.
0	1¢0		200	STATION (FT)	300							
FILE NAME =		DESIGNED - NWS	REVISED -		VER RYANS CREEK	<u> </u>				F.A.P. RTE. 631	SECTION	COUNTY TOT
\$FILES\$		DRAWN - JFS CHECKED - RJD	REVISED - REVISED -	STATE	OF ILLINOIS			ITIONS CHANNEL CRO		631	20-Y	WILL 5 CONTRACT NO
\$MODELNAME\$		DATE - 4/27/2015	REVISED -	DEPARTMENT O	F TRANSPORTATIO	SCALE: 1"=20	(HORIZ.) SHEET NO. 1	OF 5 SHEETS STA.	9+39 TO STA. 14+85	FED. ROAD D	IST. NO. 1 ILLINOIS FED.	

	_											RYANS	С REEK - RS = 1708	L 102									
		590	ELEV. 58	HEAV	n = .1 Y STAND (OF TIMBER							n = .05 MAIN CHAN				HE	n = .1 Avy stan	D OF TIMBI	ER			
DATE		(FT)	<u>58</u> 31.	5.41 16	<u>584.80</u> 61.66	 5 9	<u>83.62</u> 3.80 <u>582.5</u> 110.22	<u>4</u>												<u>580.2</u> 389.5	7 581.81 404.36 5	58	33.41 29.95
2		ELE VATION ELE VATION 2222 2222						<u>580.72</u> 126.28	<u>577.</u> 148.			<u>573.03</u> /201.66	NWSE 568.93	100 YR 573 573.51 260.44	V <u>SE</u> .70 <u>573.</u> 287.	.32 .72		57	<u>576.</u> 370. <u>575.28</u> 4.19 364.08	58 87	<u>577.89</u> 377.55		
£		570							<u>579</u> 172		573.42 194.87 <u>572</u> 212	.40	<u>572.6</u> 247.9 568.87 219.20	<u>8</u> <u>572.0</u> 266.7		<u>_</u>	<u>573</u> 327	. <u>33</u> .13	1,78				
SURVEYED PLOTTED TEMPLATE ABEAS	EAS CHECKED	<u>565</u>)				100)				69.84 16.13 <u>567.1</u> 228.0	93	570.01 241.36 68.61 35.67		3	00				400		-
FINAL SURVEY NOTE BOOK ARR		585	<u>ELEV. 58</u> STA. 0.0	2.34 HEAV	<u>n = .1</u> Y STAND (OF TIMBER										RYANS R:	СREEK - II S = 1966	102 	n = "(MAIN CHA			HEAVY	n = , STAND (
	_	580	£	5 581.58 48.54			580.78 97.09		T 7						<u>100 YR</u> 575 . 25	WSE				E 7E	50		<u> </u>
		575 1 4						14	78.89 17.69		576.86 198.83		5 <u>74.99</u> 234.41	<u> </u>	4.15 1.80	<u> </u>	<u>574.05</u> <u>326.34</u> <u>573.85</u> 317.52	573.74 334.84	571.27 338.63 571.08 364.88	<u>575</u> 574.18 390 376.59			
		N 570 ELE A 565												21	1.80		1211.22		568.85 352.25	572.0 368.2 569.69 361.12 <u>NWSE</u> 570.00	3		
		<u>560</u>)				100)			2	00				3	00				400		
DATE		590	-		<u>n = .1</u> Y STAND (OF TIMBER								RYANS F	СREEK - I S = 1977	L 102			n = .055 MAIN CHANN	NEL ++			
B		585	ELEV. 58	0 0																E 70 AC	579.60		<u>580.07</u> 456.93
SURVEYED SURVEYED PLOTTED TEMPLATE AREAS	AS CHECKED	ELE VATION (FT) 2222 2222		<u>581.</u> 49.10	<u>17 / </u>		<u>581.10</u> 99.15	·	<u>578.69</u> 152.19		<u> </u>			47		 <u>577.37</u> 302.30		<u>100 YF</u> 575.21 77.35 33.71	R WSE	579.46 383.14 578.99 367.49	<u>579.60</u> 410.48	<u> </u>	456.93
ORIGINAL SURVEY NOTE BOOK TEM	NO. ARE	ELE / A											<u>576</u> 251	50				572.29 336.00		NW 570.			
		565 ()				100)			2	00	s	TATION (F	тэ	3	00	<u>56</u> 34	<u>8.61</u> 9.70	<u>569.64</u> 365.85	400		<u> </u>
		LE NAME =			USER NA	ME = \$USER\$		DESIGNED			REVISED -			 	ROUTE	102 0V			EK				
		TLES\$				ALE =\$SCALE\$ TE = \$DATE\$		CHECKED	- JFS - RJD - 4/27/2015	F	REVISED - REVISED - REVISED -					TATE O	= ILLINO	IS		SCALE:		HEET NO. 2 OF 5	

									Т	
				CROS	S SECT	IONS	Т	AKEN		
					KING D					
									·	
									-	
.1 OF T									_	
UF I	IMBER									
				<u>580.82</u> 544.10	L .					
		578.62 496.78>-							+	
57C ·	13	496.78 > -	·							
576. 468.	23	-								
									-	
		5	0						600	
		וכ	10						500	
H	EAVY STAN	n = .1 D OF TIMB	ER						+	
								•		
							582	2.31	1	
		<u>580.49</u> 505.88		<u>581.</u> 552.	<u>22</u> 00		594	.25		
\sum		88.cuc								
									+	
				L					\pm	
				COMPLETED					SUST	2013
			ALL ELE	ATIONS AR	L REFEREN	CED TO	NA	/D 88.		
		50	0						600	
				F.A.P.	SECTION				τοται	LSHEET
NEL	CROSS SE	CTIONS		RTE. 631	SECTION (111N-B)B-F	2		WILL	TOTAL SHEET 5	L SHEET S NO. 2
ST	A. 17+08	TO STA.	19+77		T. NO. 1 ILLIN		0.05	CONTRAC		
1 31/	- 11708	IU STA.	13411	FED. ROAD DIS	1. NU. 1 ILLIN	JISTFED. AI	υPR	UJEU I		

-	590	LAW	n = .04									RYANS CR RS	= 2026	<u>n :</u>	.04				
														MAIN C	HANNEL				
-	585 ELEV. 58	30.07											<u>100 YR</u> 578.57	wse				579.93	580.1
-	ELEV. 58												579.02 319.64		578.94 353.40\		<u>579.48</u> 402.38	<u>579.93</u> 434.76	<u>580.1</u> 461.6
DATE	2011 275 275	50.	9 <u>.63</u> 17		<u>579.07</u> 99.05	<u>578</u> 150	3.7 <u>3</u> .23	<u>578.69</u> 200.25		<u>578.15</u> 251.51		<u>578.22</u> 301.21		<u> </u>	' /			<u>579.77</u> 441.30	
	급 570												<u>571.49</u> 321.38	570.4 345.2					
ά													570.34		<u>NWSE</u> 570.00				
	5650				100				200			3	00				400		
K SURVEYED PLOTTED R PLOTTED AREAS AREAS AREAS AREAS CHECKED												RYANS C	REEK - IL	102					
FINAL SURVEY NOTE BOOK	590	CULTIVA		= .06 MATURE R	OW CROPS						n AWN, PASTI	= .04	= 2040 GRASS			n = MAIN CH	.04		= .04 HORT GRAS
-	585																		
-	ELEV. 58		<u>580</u> 	0 <u>.84</u> 16 — — — — —									<u>100 YR</u> 578 . 92	WSE					
	S75				<u>579.88</u> 100.86	<u> </u>	9.42 10	<u> </u>		576 37					573 31		<u>NWSE</u> 570.00	<u>57</u> 44	75.98 49.98
-								200.0.		<u>576.37</u> 250.10		<u>575.00</u> / 300.06		<u> </u>	573.31 359.00 .44	<u>570.76</u> √364.79	573.76 400.11		
-	570														<u>569.61</u> 366.59	0.569.07 375.04	387.95 570.54 385.20		
	565 Ø				100				200	STATION	(FT)	3	00			375.04	<u>568.76</u> 381.62 400		
DATE	590	CULTIVA	n IED AREA,	= .06 MATURE R	¢W CROPS							RYANS R	CREEK - 1 S = 2275	n =	.04 IORT GRASS	s		n = .04	
β.	<u>ELEV. 58</u> S85	35.33)0																	
	580	<u>584.32</u> 44.92	7	+	<u>582.70</u> / 113.74			<u>581.15</u> 169.27											
SURVEYED SURVEYED TEMPLATE AREAS CHECKED									<u>579.70</u> 224.22	<u>579.14</u> 250.12 <u>577.12</u> 250.42 <u>5</u>		575	5.43	<u>100 YR</u> 579.11	wse		575.22 51 394.80 7 40	<u>75.61</u> 05.92	<u>575.24</u> 46 454.91
ORIGINAL SURVEY NOTE BOOK AREA: NO.	575									250.42 <u>5</u> 2	<u>76.40</u> 70.21		574.85 314.13	<u>574.29</u> 335.37	<u>574.02</u> 357.55	<u>573.97</u> 380.46	<u>576.16</u> 404.83 <u>573.61</u>	572.64 /410.44 570.85 /416.69	454.91 <u>574.4</u> / 443.9
0R 81 NOT	570																394.80	<u>9.61</u> <u>570.5</u> <u>425.9</u> <u>1.56</u> <u>NWSE</u> 570.6	572.44 51 440.13 50 55
-	565 Ø				100				200		STATION	(FT) ³	00				400	570.6	<u>,</u>
-	FILE NAME =		USER	NAME = \$USER\$		DESIGNED -	NWS	REVISED -								 			
	\$FILES\$			SCALE =\$SCALE			JFS	REVISED -			IL ROUTE	E 102 OV State of			:K		EXISTING	CONDITIONS	CHANNE

	n = .	04		n =	.04			i.	n =	.1	
.1.	MAIN CH	ANNEL		LAW	'N			Н	n = EAVY T	IMBER	2.1
										586.8 607.16	7 5)
									<u>584.3</u> 597.5		
								581.		$\langle \tau \rangle'$	
								<u>581.</u> 587	.41		
				<u> </u>					-		
		575.9	2 575	58		577.42	579.35				
25 80		575.9 504 <u>.8</u> 57	$2 \\ 0 \\ - 529 \\ 5.98$				574.30	ľ.			
<u> </u>	$\frac{573}{487}$	<u>18</u> / 49	2.95	<u>575.</u> 540	. <u>59</u> .19						
61.72	` <u>`</u>	, ,									
<u>570</u> 465	A 487 .67 .90 .569.57 475.23 .569.16 .483.09	NWSE									
	<u>569.57</u> / 475.23	571.48									
	483.09	ĺ									
		51	00							600	
										_	
						S SECT					
					L00	KING D	UWNS	IR	LAM		
						BY AES SE				NUGUST	2013
			ALL ELE	(A 10	NS AR	E REFEREN	LED IO	NA'	VU 88.		
		l									
	CROSS SE	CTIONS		F.A.P. RTE.		SECTION		(COUNTY	TOT A SHEE	
				631		(111N-B)B-F		-		5 ACT N	5 0.60V28
STA	30+22	TO STA.	30+22	EED P		T. NO. 1 ILLIN					

IL Route 102 (FAP 631) over Ryans Creek Will County

SECTION 10

Bridge Layout/Plan Drawing Plots

SECTION 11

Bridge Cross Section Plots – Existing Conditions

SECTION 12

Bridge Cross Section Plots – Proposed Conditions

IL Route 102 (FAP 631) over Ryans Creek Will County

SECTION 13

Hydraulic Analyses

Za

Table 5-301.011b	
Base n _b Values for Stable Channel and Floodplains	Base n _b V

Material	Median Siz	e of Bed Material Bas	e n _b	
Concrete Rock cut	<u>Millimeters</u>	Inches	<u>Range</u> 0.012-0.018	
F <mark>irm soil</mark> Coarse sand	1-2		0.025-0.032 0.026-0.035	Floodplain
Fine gravel Gravel	2-64	0.08-2.5	0.028-0.035	channel
Coarse gravel Cobble Boulder	64-256 >256	2.5-10.1 >10.1	0.030-0.050 0.040-0.070	

The n_b values selected from Table 5-301.011a and Table 5-301.011b are for straight channels of nearly uniform cross-sectional shape. Channel irregularities (n_1) , alignment (n_2) , obstruction (n_3) , vegetation (n_4) and meandering (m) increase the roughness and the value of n must be adjusted accordingly as shown in Table 5-301.011c.

The effects of depth of flow on the selection of n values for channels must be considered. If the depth of flow is shallow in relation to the size of the roughness elements, the n value can be large. The n value generally decreases with increasing depth, except where the channel banks are much rougher than the bed or where dense brush overhangs the low-water channel.

Irregularity (n₁)

Where the ratio of width to depth is small, roughness caused by eroded and scalloped banks, projecting points, and exposed tree roots along the banks must be accounted for by fairly large adjustments. Chow_(1959)³, and Benson and Dalrymple (1967)⁵, showed that severely eroded and scalloped banks can increase n values by as much as 0.02. Larger adjustments may be required for very large, irregular banks having projecting points.

Variation in Channel Cross Section (n₂)

The value of n is not affected significantly by relatively large changes in the shape and size of cross sections if the changes are gradual and uniform. Greater roughness is associated with alternating large and small sections where the changes are abrupt. The degree of the effect of changes in the size of the channel depends primarily on the number of alternations of large and small sections and secondarily on the magnitude of the changes. The effects of sharp ends, constrictions, and side-to-side shifting of the low-water channel may extend downstream for several hundred feet. The n value for a reach below these disturbances may require adjustment, even though none of the roughnessproducing factors are apparent in the study reach. A maximum increase in n of 0.003 will result from the usual amount of channel curvature found in designed channels and the reaches of natural channels used to compute discharge.

25

Channel Cond	ditions	n value Adjustment <u>1</u> /	Example
Degree of Irregularity (n ₁)	Smooth	0.000	Compares to the smoothest channel attainable in a given bed material.
	Minor	0.001-0.005	Compares to carefully dredged channels in good condition but having slightly eroded or scoured sideslopes
	Moderate	0.006-0.010	Compares to dredged channels having moderate to considerable bed roughness and moderately sloughed or eroded sideslopes.
	Severe	0.011-0.020	Badly sloughed or scalloped banks of natural streams; badly eroded or sloughed sides of canals or drainage channels; unshaped, jagged and irregular surfaces of channels in rock.
Variation in Channel Cross Section	Gradual	0.000	Size and shape of channel cross sections change gradually.
(n ₂)	Alternating occasionally	0.001-0.005	Large and small cross sections alternate occasionally, or the main flow shifts from side to side owing to changes in cross-sectional shape.
	Alternating Frequently	0.010-0.015	Large and small cross sections alternate frequently, or the main flow frequently shifts from side to side owing to changes in cross-sectional shape.

Table 5-301.011c Factors that Effect Roughness of Channel

Channel Conc	ditions	n value Adjustment <u>1</u> /	Example
Effect of Obstruction (n ₃)	Negligible	0.000-0.004	A few scattered obstructions, which include debris deposits, stumps, exposed roots, logs, piers, or isolated boulders, that occupy less than 5 percent of the cross-sectional area.
	Minor	0.005-0.015	Obstructions occupy less than 15 percent of the cross-sectional area and the spacing between obstructions is such that the sphere of influence around one obstruction does not extend to the sphere of influence around another obstruction. Small adjustments are used for curved smooth-surfaced objects than are used for sharp-edged angular objects.
	Appreciable	0.020-0.030	Obstructions occupy from 15 to 50 percent of the cross-sectional area or the space between obstructions is small enough to cause the effects of several obstructions to be additive, thereby blocking an equivalent part of a cross section.
	Severe	0.040-0.050	Obstructions occupy more than 50 percent of the cross-sectional area or the space between obstructions is small enough to cause turbu-lence across most of the cross-section.

Table 5-301.011c (continued) Factors that Effect Roughness of Channel

Channel Conditions n value Example Adjustment 1/ Amount Small 0.002-0.010 Dense growths of flexible turf grass, of such as Bermuda, or weeds growing Vegetation where the average depth of flow is at (n₄) least two times the height of the vegetation; supple tree seedlings such as willow, cottonwood, arrowseed, or saltcedar growing where the average depth of flow is at least three times the height of the vegetation. Medium 0.010-0.025 Turf grass growing where the average depth of flow is from one to two times the height of the vegetation: moderately dense stemmy grass, weeds, or tree seedlings growing where the average depth of flow is from two to three times the height of the vegetation; brushy, moderately dense vegetation, similar to 1 to 2 year old willow trees in the dormant season growing along the banks and no significant vegetation along the channel bottoms where the hydraulic radius exceeds two feet. Large 0.025-0.050 Turf grass growing where the average depth of flow is about equal to the height of vegetation; 8 to 10 year old willow or cottonwood trees inter-grown with some weeds and brush (none of the vegetation in foliage) where the hydraulic radius exceeds 2 ft; bushy willows about 1 year old inter-grown with some weeds along sideslopes (all vegetation in full foliage) and no significant vegetation along channel bottoms where the hydraulic radius is greater than 2 feet. Very Large 0.050-0.100 Turf grass growing where the average depth of flow is less than half the height of the vegetation; bushy willow trees about 1 year old inter-grown with weeds along sideslopes (all vegetation in full foliage) or dense cat-tails growing along channel bottom: trees inter-grown with weeds and brush (all vegetation in full foliage).

20

Channel Condi	tions	n value Adjustment <u>1</u> /	Example
Degree of Meandering 1/ (Adjustment	Minor	1.00	Ratio of the channel length to valley length is 1.0 to 1.2.
values apply to flow confined in	Appreciable	1.15	Ratio of the channel length to valley length is 1.2 to 1.5.
the channel and do not apply where downvalley flow crosses meanders.) (m)	Severe	1.30	Ratio of the channel length to valley length is greater than 1.5.

Table 5-301.011c (continued) Factors that Effect Roughness of Channel

1/ Adjustments for degree of irregularity, variations in cross-section, effect of obstructions, and vegetation are added to the base n value before multiplying by the adjustment for meander.

5-301.012 Floodplain Roughness Coefficient

It is usually necessary to determine roughness values for channels and floodplains separately. The makeup of a floodplain can be quite different from that of a channel. The physical shape of a floodplain is different from that of a channel and the vegetation covering a floodplain is typically different from that found in a channel. The following procedure is used for determining an n value for floodplains.

Modified Channel Method

By altering the procedure that was developed for estimating n values for channels, the following equation can be used to estimate n values for a floodplain.

$$n = (n_b + n_1 + n_2 + n_3 + n_4)m$$
 (Eq. 5-11)

Where:

- n_b = a base value of n for the floodplain's natural bare soil surface, with nothing on the surface
- n₁ = a value to correct for the effect of surface irregularities on the floodplain
- n_2 = a value for variations in shape and size of the floodplain cross-section assumed to equal 0.0
- n_3 = a value for obstructions on the floodplain
- $n_4 = a$ value for vegetation on the floodplain
- m = a correction factor for sinuosity of the floodplain, equal to 1.0

Using Equation 5-11, the roughness value for the floodplain is determined by selecting a base value of n_b for the natural bare soil surface of the floodplain and adding adjustment factors due to surface irregularity, obstructions and vegetation.

Floodplain Conditions		n value adjustment	Example
Degree of Irregularity (n1)	Smooth	0.000	Compares to the smoothest, flattest floodplain attainable
	Minor	0.001-0.005	A floodplain with minor irregularity in shape, a few rises and dips or sloughs may be visible on the floodplain.
	Moderate	0.006-0.010	Has more rises and dips. Sloughs and hummocks may occur.
	Severe	0.011-0.020	The floodplain is very irregular in shape Many rises and dips or sloughs are visible. Irregular ground surfaces in pastureland and furrows perpendicular to the flow are also included.
Variation of Floodplain Cross Section (<mark>n</mark> ₂)		0.000	Not applicable.
Effect of Obstructions (n ₃)	Negligible	0.000-0.004	A few scattered obstructions, which include debris deposits, stumps, exposed roots, logs or isolated boulders, occupy less than 5 percent of the cross-sectional area.
	Minor	0.005-0.019	Obstructions occupy less than 15 percent of the cross- sectional area.
	Appreciable	0.020-0.030	Obstructions occupy from 15 to 50 percent of the cross-sectional area.

Table 5-301.012 Factors that Effect Roughness of Floodplains

Table 5-301.012 (continued) Factors that Effect Roughness of Floodplains

Floodplain Conditions		n value adjustment	Example
Amount of Vegetation (n₄)	Small	0.001-0.010	Dense growth of flexible turf grass, such as Bermuda, or weeds growing where the average depth of flow is at least two times the height of the vegetation; or supple tree seedlings such as willow, cottonwood, arrowweed or saltcedar growing where the average depth of flow is at least three times the height of the vegetation.
	Medium	0.011-0.025	Turf grass growing where the average depth of flow is from one to two times the height of the vegetation; or moderately dense stemmy grass, weeds or tree seedlings growing where the average depth of flow is from two to three times the height of the vegetation; brushy, moderately dense vegetation, similar to 1 to 2 year old willow trees in the dormant season.
	Large	0.025-0.050	Turf grass growing where the average depth of flow is about equal to the height of vegetation; or 8 to 10 year old willow or cottonwood trees inter-grown with some weeds and brush (none of the vegetation in foliage) where the hydraulic radius exceeds 2 ft.; or mature row crops such as small vegetables; or mature field crops where depth of flow is at least twice the height of the vegetation.
	Very Large	0.050-0.100	Turf grass growing where the average depth of flow is less than half the height of the vegetation; or moderate to dense brush; or heavy stand of timber with few down trees and little undergrowth with depth of flow below branches; or mature field crops where depth of flow is less than height of the vegetation.
	Extreme	0.100-0.200	Dense bushy willow, mesquite, and saltcedar (all vegetation in full foliage); or heavy stand of timber, few down trees, depth of flow reaching branches.
Degree of Meander (m)		1.0	Not applicable.

HEC-RAS EXISTING CONDITIONS MODEL

I L102acrossRaynsCK. rep

HEC-RAS Version 4.1.0 Jan 2010 U.S. Army Corps of Engineers Hydrologic Engineering Center 609 Second Street Davis, California Х Х XXXXXX XXXX XXXX ΧХ XXXX Х Х Х Х Х х х х х Х Х Х Х Х Х Х Х Х Х XXXXXXX XXXX Х XXX XXXX XXXXXX XXXX Х Х ХХ Х Х Х Х Х X X Х Х Х Х Х Х Х Х Х x X Х XXXXXX XXXX Х XXXXX Х PROJECT DATA Project Title: IL 102 across Ryans Creek Project File : IL102acrossRaynsCK.prj Run Date and Time: 5/9/2016 2:16:49 PM Project in English units PLAN DATA Plan Title: Existing Conditions 1 Plan File : p: \2013\2013127.05\Calculations\Drainage\Hydraulic Report - Proposed Conditions 3\HEC-RAS\IL102acrossRaynsCK.p04 Geometry Title: Ryans Creek - Existing Conditions 1 Geometry File : p:\2013\2013127.05\Calculations\Drainage\Hydraulic Report - Proposed Conditions 3\HEC-RAS\IL102acrossRaynsCK.g04 Flow Title : HEC-HMS Flows normal depth : p:\2013\2013127.05\Cal cul ati ons\Drai nage\Hydraul i c Report - Proposed Conditions Flow File 3\HEC-RAS\IL102acrossRaynsCk. f03 Plan Summary Information: Number of: Cross Sections = 12 Multiple Openings = 0 Inline Structures = Cul verts = 0 0 Bridges 1 Lateral Structures = 0 = Computational Information Water surface calculation tolerance = 0.01 Critical depth calculation tolerance = 0.01Maximum number of iterations = 20 Maximum difference tolerance = 0.3 Flow tolerance factor = 0.001 Computation Options Critical depth computed only where necessary Conveyance Calculation Method: At breaks in n values only Friction Slope Method: Average Conveyance Computational Flow Regime: Subcritical Flow

I L102acrossRaynsCK. rep

Flow Title: HEC-HMS Flows normal depth Flow File : p:\2013\2013127.05\Calculations\Drainage\Hydraulic Report - Proposed Conditions 3\HEC-RAS\IL102acrossRaynsCK.f03

Flow Data (cfs) ************************************		* * * * * * * * * * * * *	*****	* * * * * * * * * * * * * * * * * * *	****	* * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	* * * * * * *
* River	Reach	RS	*	2-yr	10-yr	50-yr	100-yr	200-yr	
500-yr * * Ryans Creek 2375 * ************	1	3022 **********	*	242	408	866	1250	1700	* * * * * * *
* * * * * *									

Boundary Conditions

* River	Reach	Profile	*	Upstream	**************************************
* * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * *	*******	* * * * * * * * * * * * * * * * * * * *
* Ryans Creek	1	2-yr	*		Normal S = 0.0079 *
* Rýans Creek	1	10-yr	*		Normal S = 0.0079 *
* Ryans Creek	1	50-yr	*		Normal S = 0.0079 *
* Ryans Creek	1	100-yr	*		Normal S = 0.0079 *
* Ryans Creek	1	200-yr	*		Normal S = 0.0079 *
* Ryans Creek	1	500-yr	*		Normal S = 0.0079 *

GEOMETRY DATA

Geometry Title: Ryans Creek - Existing Conditions 1 Geometry File: p:\2013\2013127.05\Calculations\Drainage\Hydraulic Report - Proposed Conditions 3\HEC-RAS\IL102acrossRaynsCK.g04

CROSS SECTION

RIVER: Ryans Creek REACH: 1	RS: 3022	
INPUT Description: Station Elevation Data Sta Elev Sta	num= 29 Elev Sta Elev	v Sta Elev Sta Elev
0 598.01 49.856 362.947 575.64 376.267 456.803 575.25 461.715 487.823 573.78 492.95 540.193 575.59 558.176 607.162 586.87 618.717	575. 27 401. 201 574. 75 573. 71 465. 9 570. 67 575. 978 492. 954 575. 98 577. 42 574. 296 579. 35	6249.858582.74349.944579.855426.854575.11456.8575.257475.225569.57483.085569.168504.8575.92529.371575.585587.41581.84597.565584.32632.004595.47
Manning's n Values Sta n Val Sta ************************************	****	I Stan Val Stan Val ************************************
	Lengths: Left Channel 242.5 250	Right Coeff Contr. Expan.

StaL StaR Elev 0 456.8 575.25 492.95 632.004 575.98	Permanent F F	I L102acrossRaynsCK. rep
CROSS SECTION		
RIVER: Ryans Creek REACH: 1	RS: 2772	
INPUT Description: Interpolated Station Elevation Data Sta Elev Sta	num= 53 Elev Sta Elev Sta	a Elev Sta Elev
$\begin{array}{ccccccc} 0 & 593.38 & 49.52 \\ 248.18 & 582.53 & 251.3 \\ 325.06 & 577.59 & 347.59 \\ 375.88 & 574.37 & 398.5 \\ 453.73 & 577.14 & 457.2 \\ 472.3 & 569.81 & 479.87 \\ 498.86 & 576.03 & 502.42 \\ 531.83 & 578.29 & 538.49 \\ 561.31 & 583.04 & 567.2 \\ 596.97 & 590.4 & 600.95 \\ 621.09 & 597.19 & 626.14 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 579.63 302.85 578.72 1 574.77 373.74 574.42 9 574.58 426.41 574.62 8 572.54 466.74 571.13 8 573.46 490.34 575.54 2 577.04 527.46 577.88 2 581.32 556.82 582.24 2 587.88 588.59 588.34
	num= 5 n Val Sta n Val Sta . 04 453. 73 . 04 490. 34	
Bank Sta: Left Right 453.73 490.34	Lengths: Left Channel Right 279.8 262.7 257.1	Coeff Contr. Expan. .1 .3
CROSS SECTION		
RIVER: Ryans Creek REACH: 1	RS: 2508	
INPUT Description: Station Elevation Data Sta Elev Sta	num= 31 Elev Sta Elev Sta	
$\begin{array}{ccccccc} 0 & 588.\ 75 & 50.\ 007 \\ 278.\ 765 & 577.\ 46 & 300.\ 802 \\ 398.\ 031 & 573.\ 58 & 423.\ 527 \\ 472.\ 517 & 570.\ 48 & 483.\ 288 \\ 515.\ 726 & 578.\ 37 & 530.\ 002 \\ 566.\ 042 & 589.\ 43 & 587.\ 844 \\ 632.\ 149 & 605.\ 36 \end{array}$	587. 58149. 921584. 9249. 602576. 28322. 862574. 68349. 69574. 11450. 66579. 02455. 366571. 66487. 73575. 1496. 415580. 99539. 779583. 17549. 965594. 38600. 434597. 51611. 284	7 574.12 373.339 573.51 6 574.69 461.507 570.47 5 576.13 507.437 577.09 7 585.75 560.04 588.13
	num= 5 n Val Sta n Val Sta . 04 450. 66 . 04 487. 73	* * * * * * * * * * * * * * * * * * * *
Bank Sta: Left Right 450.66 487.73	Lengths: Left Channel Right 167.7 233.9 253.1	

Page 3

CROSS SECTION

RIVER: Ryans Creek RS: 2275 REACH: 1 I NPUT Description: Interpolated XSEC Station Elevation Data num= 49 Sta Elev Sta Elev Sta Elev Sta Sta Elev Sta Elev 0 585.33 44.92 584.32 56.56 584.04 113.74 582.7 134.67 582.11 226. 24 169.27 581.15 224.22 579.7 579.65 250.12 579.14 250.42 577.12 270.21 576.4 282.03 575.85 290.03 575.43 314.13 574.85 335.37 574.29 338.37 574.26 357.55 574.02 380.46 573.97 394.8 575.22 404.83 576.16 405.12 576.07 405.92 575.61 409.11 410.44 573.61 572.64 412.09 572.08 416.69 570.85 569.61 421.56 425.9 570.51 429.22 571.08 430.95 571.21 440.13 572.44 443.92 574.43 454.91 575.24 468.87 576.1 479.36 577.02 485.13 577.59 497.43 578.84 507.97 580.07 509.81 580.36 522.7 582.53 535.46 584.59 543.05 585.76 565.98 589.39 570.65 589.93 586.59 591.9 600. 32 593. 51 605. 17 594. 16 612. 57 595.22 626.74 597.06 Manning's n Values num= 5 Sta n Val ******* 0 . 06 250. 12 . 04 404. 83 . 04 443. 92 .04 507.97 . 1 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 404.83 443.92 165.4 235.8 269.5 . 3 . 1 CROSS SECTION RIVER: Ryans Creek REACH: 1 RS: 2040 I NPUT Description: Station Elevation Data num= 24 Sta Sta Elev Sta Elev Elev Sta Elev Sta Elev ****** 0 581.9 50.161 580.84 100.862 579.88 150.103 578.42 200.63 577.11 250. 103 576. 37 300. 06 575 350.109 359 573.306 359.389 573.44 573.3 360. 473 572. 86 364. 785 570.76 366.588 569.61 375.036 569.07 381.617 568.76 385. 202 570. 54 387. 953 571.69 400.108 573.76 400.11 573.76 449.98 575.98 477.612 577.3 547.81 585.23 595.223 587.26 621.324 588.76 Manning's n Values num= 5 Sta n Val . 06 100. 862 . 04 0 359 . 04 400. 11 .04 477.612 . 1 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 359 400.11 7 10.5 . 3 - 7 . 5 Ineffective Flow 2 num= Sta L Sta R Elev Permanent 0 345 579.3 F F 405 621.324 579.3

CROSS SECTION

RIVER: Ryans Creek REACH: 1 RS: 2026
INPUT Description: U/S Face of Bridge Station Elevation Data num= 27 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev
0 580.07 50.169 579.63 99.049 579.07 150.23 578.73 200.253 578.69 251.513 578.15 301.206 578.22 319.64 579.02 319.64 579.018 321.377 571.49 324.132 570.34 326 569.93 329 569.12 333 568.6 337 568.58 341 569.65 345.274 570.41 353.4 578.935 353.405 578.94 402.381 579.48 434.757 579.93 441.297 579.77 461.679 580.1 482.935 579.56 503.38 580.44 549.01 581.24 589.84 581.85 581.85 581.85 581.85
Manning's n Values num= 5 Sta n Val Sta n Val Sta n Val Sta n Val Sta n Val 0 .04 150.23 .04 319.64 .04 353.4 .04 402.381 .04
Bank Sta: LeftRightLengths: LeftChannelRightCoeffContr.Expan.319. 64353. 447. 74644.3.5IneffectiveFlownum=2StaStaElevPermanent0320579. 3F350589. 84579. 3F
BRI DGE
RIVER: Ryans Creek REACH: 1 RS: 2000
INPUT Description: IL ROUTE 102 Distance from Upstream XS = 1 Deck/Roadway Width = 44 Weir Coefficient = 2.6 Upstream Deck/Roadway Coordinates num= 27
Sta Hi Cord Lo Cord Sta Hi Cord Lo Cord Sta Hi Cord Lo Cord
-165.85 584.46 -115.85 583.48 -65.85 582.48
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
384.15 579.91 434.15 580.18 484.15 581 534.15 581.05 584.15 581.88 609.15 582.66 634.15 583.1 684.15 583.54 734.15 584.26

I L102acrossRaynsCK. rep 341 569. 65 345. 274 570. 41 353. 4 578. 935 353. 405 578. 94 402. 381 579. 48 434. 757 579. 93 441. 297 579. 77 461. 679 580. 1 482. 935 579. 56 503. 38 580. 44 549. 01 581. 24 589. 84 581. 85
Manning's n Values num= 5 Sta n Val Sta n Val Sta n Val Sta n Val Sta n Val ************************************
0 . 04 150. 23 . 04 319. 64 . 04 353. 4 . 04 402. 381 . 04
Bank Sta: Left Right Coeff Contr. Expan. 319.64 353.4 .3 .5 Ineffective Flow num= 2 Sta L Sta R Elev 0 320 579.3 350 589.84 579.3
Downstream Deck/Roadway Coordinates
num= 27 Sta Hi Cord Lo Cord Sta Hi Cord Lo Cord Sta Hi Cord Lo Cord
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Downstream Bridge Cross Section Data Station Elevation Data num= 23 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev
0 581.76 49.102 581.47 99.149 581.1 152.194 578.69 201.052 577.88 251.501 576.47 302.302 577.37 333.707 577.35 333.71 577.344 335.997 572.29 342 569.69 345 569.35 349.704 568.61 355 569.33 362 569.65 367.49 578.993 367.493 579.01 383.139 579.46 410.477 579.6 456.934 580.07 505.876 580.49 552.003 581.22 594.245 582.31
Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 0 .1 333.71 .055 367.49 .1
Bank Sta: Left Right Coeff Contr. Expan. 333.71 367.49 .3 .5 Ineffective Flow num= 2 Sta L Sta R Elev Permanent 0 336 578 F 366 594.245 578 F
Upstream Embankment side slope=0 horiz. to 1.0 verticalDownstream Embankment side slope=0 horiz. to 1.0 verticalMaximum allowable submergence for weir flow=.98Elevation at which weir flow begins=Energy head used in spillway design=Spillway height used in design=Weir crest shape=Broad Crested
Number of Bridge Coefficient Sets = 1

Number of Bridge Coefficient Sets = 1

Low Flow Methods and Data Energy Cd = .6 Momentum Selected Low Flow Methods = Highest Energy Answer High Flow Method Pressure and Weir flow Submerged Inlet Cd Submerged Inlet + Outlet Cd = . 8 Max Low Cord -Additional Bridge Parameters Add Friction component to Momentum Do not add Weight component to Momentum Class B flow critical depth computations use critical depth inside the bridge at the upstream end Criteria to check for pressure flow = Upstream energy grade line CROSS SECTION RIVER: Ryans Creek REACH: 1 RS: 1977 I NPUT Description: D/S Face of Bridge Station Elevation Data num= 23 ev Sta Elev Sta Elev Elev Elev Sta Sta Sta Elev 0 581.76 49.102 581.47 99.149 581.1 152.194 578.69 201.052 577.88 251.501 576.47 302.302 577.37 333.707 577.35 333.71 577.344 335.997 572.29 342 569.69 345 569.35 349.704 568.61 355 569.33 362 569.65 367.49 578.993 367.493 579.01 383.139 579.46 410.477 579.6 456.934 580.07 505.876 580.49 552.003 581.22 594.245 582.31 Manning's n Values num= Sta n Val Sta n Val Sta n Val ***** 0 . 1 333. 71 . 055 367. 49 . 1 Bank Sta: Left Right Lengths: Left Channel Ri ght Coeff Contr. Expan. 333.71 367.49 11 14.5 . 3 .5 14 Ineffective Flow 2 num= Sta L Sta R Elev Permanent 578 F 0 336 366 594.245 578 F CROSS SECTION RIVER: Ryans Creek REACH: 1 RS: 1966 I NPUT Description: Station Elevation Data num= 28 Sta Elev Elev Sta Elev Sta Elev Sta Sta Elev 0 582.34 48.536 581.58 97.087 580.78 147.691 578.89 198.83 576.86 234. 409 574. 99 250. 806 574. 6 271. 804 574. 15 317. 52 573. 85 326. 34 574. 05

I L102acrossRaynsCK. rep 326. 343 574. 05 334. 84 573. 741 334. 869 573. 74 338. 634 571. 27 341. 982 569. 98 352. 252 568. 85 361. 121 569. 69 364. 88 571. 08 368. 264 572. 09 376. 587 574. 18 376.59 574.18 390.17 575.5 390.174 496.783 578.62 544.104 580.82 587.298 575. 5 442. 069 575. 47 468. 234 576. 13 582.06 Manning's n Values 3 num= Sta n Val Sta n Val Sta n Val 0 . 1 334.84 . 055 376.59 . 1 Bank Sta: Left Right .59 .59 .289 .258 .182 num= 2 Coeff Contr. Expan. 334.84 376.59 .3.5 Ineffective Flow Sta L Sta R 0 335 Elev Permanent F 578 F 374 587.298 578 CROSS SECTION RIVER: Ryans Creek REACH: 1 RS: 1708 I NPUT Description: Interpolated XSEC Station Elevation Data num= 48 Sta El ev Sta Elev Elev Sta Elev Sta Sta Elev 0 585.78 31.16 585.41 9.22 585.69 30.82 585.41 61.66 584.8 582.54 126.28 93.04 583.67 93.8 583.62 110. 22 580.72 129.72 580.29 148.87 577.92 151.68 577.64 159.29 576.83 172.35 575.48 172.62 575.45 194.87 573.42 201.66 573.03 207.26 572.83 212.65 572.4 212.68 572.38 569.49 219.2 216.13 569.84 216.74 568.87 228.62 567.93 235.67 568.61 238.67 569.41 241.36 570.01 241.57 570.05 247.98 572.68 259.71 573.5 260. 44 573. 51 266. 79 572. 05 277. 29 572. 64 287. 72 573. 32 304. 53 573. 29 310. 34 573. 37 325. 85 573. 33 327. 13 573. 33 351. 78 574. 19 353. 79 574. 21 364.08 575.28 370.87 576.58 377.55 577.89 389.56 580.27 392.65 580.61 404.36 581.81 417.03 582.5 429.95 583.41 Manning's n Values num= Sta n Val Sta n Val 3 Sta n Val **** 0 .1 212.65 .055 247.98 . 1 Bank Sta: Left Right Lengths: Left Channel Right 212.65 247.98 222 202 202 Leffective Flow num= 1 Coeff Contr. Expan. .1 .3 Elev Permanent Sta L Sta R 325 429.95 F CROSS SECTION RIVER: Ryans Creek RS: 1485 REACH: 1 I NPUT Description: Station Elevation Data num= 30 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev **** Page 8

0 589.22 3.922 55.187 584.01 64.531 90.47 571.048 94.183 119.381 571.18 129.867 171.886 571.1 184.941 228.474 575.78 238.59	589. 27 13. 258 589. 24 39. 58 580. 39 73. 323 576. 8 82. 904 567. 96 104. 978 567. 02 114. 613 571. 52 135. 214 568. 6 144. 055 570. 57 208. 475 569. 7 217. 135 579. 88 251. 054 582. 42 261. 718	572.92 90.468 571.05 567.95 119.38 571.179 569.8 152.838 571.15 571.28 222.854 573.51
Manning's n Values Sta n Val Sta ************************************	num= 3 n Val Sta n Val ************************************	
Bank Sta: Left Right 90.47 119.38	Lengths: Left Channel Right 230.3 335 197.7	Coeff Contr. Expan. 1 3
CROSS SECTION		
RIVER: Ryans Creek REACH: 1	RS: 1144	
INPUT Description: Initerpolate Station Elevation Data Sta Elev Sta	num= 48	Elev Sta Elev
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	585.03 10.02 584.23 10.69 580.04 34.88 579.44 37.81 577.69 50.07 576.62 52.03 570.78 66.84 569.89 72.94 564.82 101.74 566.31 106.15 567.48 128.84 567.88 130.95 568.54 158.57 568.27 163.47 567.65 189.07 568.38 193.56 572.38 206.13 572.51 215.79 574.06 233.18 574.56 54	584. 15 18. 13 583. 15 579. 15 37. 97 579. 11 576. 14 54. 74 575. 45 568. 17 78. 77 566. 31 566. 83 111. 33 568. 81 568. 06 137. 94 568. 72 568. 16 174. 14 567. 94 569. 45 193. 62 569. 46
******	num= 3 n Val Sta n Val ************************************	
Bank Sta: Left Right 72.94 111.33	Lengths: Left Channel Right 203.7 205 203.7	Coeff Contr. Expan. .1 .3
CROSS SECTION		
RIVER: Ryans Creek REACH: 1	RS: 939	
INPUT Description: Station Elevation Data Sta Elev Sta	num= 26 Elev Sta Elev Sta	Elev Sta Elev
0 581. 527. 609546 28. 84959 571. 0931. 07133 55. 41613 565. 2981. 58443 116. 2802 566. 32 129. 809 164. 3529 565. 41173. 2559	571. 0238. 03796 571. 941. 58479	571.8849.00148 567.46 565.07103.2744 566.45 565.81155.8341 565.6

500 569

Manning's n Values Sta n Val Sta ******			
0 . 155. 41613	. 055103. 2744 . 1		
Bank Sta: Left Right 55. 41613103. 2744	Lengths: Left Channel 0 0	Coeff Contr. .1	Expan. . 3

SUMMARY OF MANNING'S N VALUES

River: Ryans Creek

* R	leach *	River Sta	a. *	n1 *	n2 *	n3 *	n4 *	n5 '
* * * * * * *	******	* * * * * * * * * * *	* * * * * * * *	********	********	* * * * * * * * * * *	* * * * * * * * * * *	* * * * * * * * *
*1	*	3022	*	. 06*	. 04*	. 04*	. 04*	. 1'
*1	*	2772	*	. 06*	. 04*	. 04*	. 04*	. 1'
*1	*	2508	*	. 06*	. 04*	. 04*	. 04*	. 1'
*1	*	2275	*	. 06*	. 04*	. 04*	. 04*	. 1'
*1	*	2040	*	. 06*	. 04*	. 04*	. 04*	. 1*
*1	*	2026	*	. 04*	. 04*	. 04*	. 04*	. 04*
*1	*	2000	*Bi	ridge *	*	*	*	*
*1	*	1977	*	.1*	. 055*	. 1*	*	*
*1	*	1966	*	. 1*	. 055*	. 1*	*	*
*1	*	1708	*	. 1*	. 055*	. 1*	*	*
*1	*	1485	*	. 1*	. 055*	. 1*	*	*
*1	*	1144	*	.1*	. 055*	.1*	*	*
*1	*	939	*	. 1*	. 055*	. 1*	*	*

SUMMARY OF REACH LENGTHS

River: Ryans C		****	* * * *	* * * * * * * * * *	*****	* * * * * * * * *
* Reach	*	River Sta.				Right *
*1	*	3022	*	242.5*	250*	248.3*
*1 *1	*	2772 2508	* *	279. 8* 167. 7*	262. 7* 233. 9*	257. 1* 253. 1*
*1 *1	*	2275 2040	*	165.4* 7*	235. 8* 10. 5*	269.5* 7*
*1	*	2026	*	47.7*	46*	44*
*1 *1	*	2000 1977	*Bi *	ridge * 11*	* 14.5*	* 14*
*1 *1	*	1966	*	289*	258*	182*
*1	*	1708 1485	*	222* 230. 3*	202* 335*	202* 197. 7*
*1 *1	*	1144 939	*	203.7*	205*	203. 7* 0*
*****	* * * * * *	707	* * * *	********	*******	*******

SUMMARY OF CONTRACTION AND EXPANSION COEFFICIENTS River: Ryans Creek

Reach	*	River S	`+~	* Contr.	* Expan
***********					* Expan. '
1	*	3022	*	. 1*	. 3*
1	*	2772	*	. 1*	. 3*
1	*	2508	*	. 1*	. 3*
1	*	2275	*	. 1*	.3*
1	*	2040	*	.3*	. 5*
1	*	2026	*	. 3*	.5*
1	*	2000	*Br	idge *	*
1	*	1977	*	. 3*	. 5*
1	*	1966	*	.3*	. 5*
1	*	1708	*	.1*	. 3*
1	*	1485	*	.1*	3*
1	*	1144	*	. 1*	.3*
1	*	939	*	1*	. 3*

HEC-RAS Plan: Existing 1 River: Ryans Creek Reach: 1 Profile: 2-yr

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
1	3022	2-yr	242.00	569.16	574.77	571.52	574.84	0.000654	2.10	115.29	34.50	0.19
1	2772	2-yr	242.00	569.81	574.43		574.57	0.001957	3.02	85.55	72.29	0.33
1	2508	2-yr	242.00	570.47	573.99		574.11	0.001551	2.76	102.49	93.24	0.29
1	2275	2-yr	242.00	569.61	573.38		573.58	0.003555	3.55	68.17	32.49	0.43
1	2040	2-yr	242.00	568.76	572.83	570.99	572.96	0.001895	2.87	84.35	34.11	0.32
1	2026	2-yr	242.00	568.58	572.80	570.92	572.94	0.001580	2.94	82.17	26.48	0.29
1	2000		Bridge									
1	1977	2-yr	242.00	568.61	572.63	570.88	572.77	0.003369	3.01	80.28	27.91	0.31
1	1966	2-yr	242.00	568.85	572.58	571.03	572.72	0.003833	2.96	81.79	33.57	0.33
1	1708	2-yr	242.00	567.93	571.39		571.57	0.005138	3.34	72.48	30.82	0.38
1	1485	2-yr	242.00	567.02	570.39		570.55	0.004910	3.34	89.32	65.19	0.37
1	1144	2-yr	242.00	564.82	567.59		567.91	0.015086	4.50	53.84	35.09	0.63
1	939	2-yr	242.00	562.46	565.56	565.05	565.67	0.007901	3.05	125.39	156.77	0.45

HEC-RAS Plan: Existing 1 River: Ryans Creek Reach: 1 Profile: 2-yr

Reach	River Sta	Profile	E.G. Elev	W.S. Elev	Vel Head	Frctn Loss	C & E Loss	Q Left	Q Channel	Q Right	Top Width
			(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft)
1	3022	2-yr	574.84	574.77	0.07	0.26	0.01		242.00		34.50
1	2772	2-yr	574.57	574.43	0.14	0.46	0.01	2.90	239.10		72.29
1	2508	2-yr	574.11	573.99	0.11	0.52	0.01	13.25	228.75		93.24
1	2275	2-yr	573.58	573.38	0.20	0.60	0.02		242.00		32.49
1	2040	2-yr	572.96	572.83	0.13	0.02	0.00		242.00		34.11
1	2026	2-yr	572.94	572.80	0.13	0.00	0.02		242.00		26.48
1	2000		Bridge								
1	1977	2-yr	572.77	572.63	0.14	0.05	0.00		242.00		27.91
1	1966	2-yr	572.72	572.58	0.14	1.14	0.01		242.00		33.57
1	1708	2-yr	571.57	571.39	0.17	1.01	0.00		242.00		30.82
1	1485	2-yr	570.55	570.39	0.16	2.63	0.02		224.21	17.79	65.19
1	1144	2-yr	567.91	567.59	0.31	2.18	0.06		241.97	0.03	35.09
1	939	2-yr	565.67	565.56	0.11			0.03	182.60	59.37	156.77

HEC-RAS Plan: Existing 1 River: Ryans Creek Reach: 1 Profile: 2-yr

Reach	River Sta	Profile	E.G. Elev	W.S. Elev	Crit W.S.	Frctn Loss	C & E Loss	Top Width	Q Left	Q Channel	Q Right	Vel Chnl
			(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft/s)
1	2040	2-yr	572.96	572.83	570.99	0.02	0.00	34.11		242.00		2.87
1	2026	2-yr	572.94	572.80	570.92	0.00	0.02	26.48		242.00		2.94
1	2000 BR U	2-yr	572.92	572.73	570.90	0.11	0.01	20.00		242.00		3.47
1	2000 BR D	2-yr	572.81	572.60	570.94	0.00	0.03	20.00		242.00		3.66
1	1977	2-yr	572.77	572.63	570.88	0.05	0.00	27.91		242.00		3.01
1	1966	2-yr	572.72	572.58	571.03	1.14	0.01	33.57		242.00		2.96

Errors Warn	ings and Notes for Plan : Existing 1
Location:	River: Ryans Creek Reach: 1 RS: 3022 Profile: 2-yr
Warning:	Divided flow computed for this cross-section.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or
	greater than 1.4. This may indicate the need for additional cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was
	used.
Location:	River: Ryans Creek Reach: 1 RS: 2772 Profile: 2-yr
Warning:	Divided flow computed for this cross-section.
Location:	River: Ryans Creek Reach: 1 RS: 2508 Profile: 2-yr
Warning:	Divided flow computed for this cross-section.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or
	greater than 1.4. This may indicate the need for additional cross sections.
Location:	River: Ryans Creek Reach: 1 RS: 2040 Profile: 2-yr
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was
1010.	used.
Location:	River: Ryans Creek Reach: 1 RS: 2026 Profile: 2-yr
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface
1010.	was used.
Location:	River: Ryans Creek Reach: 1 RS: 2000 Profile: 2-yr
Warning:	For the final momentum answer at the bridge, the upstream energy was computed lower than the
warning.	energy inside of the bridge deck. This is not physically possible. Please review your bridge data and
	results for reasonableness.
Location:	River: Ryans Creek Reach: 1 RS: 2000 Profile: 2-yr Upstream
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or
wanning.	greater than 1.4. This may indicate the need for additional cross sections.
Note:	
NOLE.	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface
Loootion	was used.
Location:	River: Ryans Creek Reach: 1 RS: 2000 Profile: 2-yr Downstream
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface
1	was used.
Location:	River: Ryans Creek Reach: 1 RS: 1977 Profile: 2-yr
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface
	was used.
Location:	River: Ryans Creek Reach: 1 RS: 1966 Profile: 2-yr
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This
	may indicate the need for additional cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was
	used.
Location:	River: Ryans Creek Reach: 1 RS: 1708 Profile: 2-yr
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This
	may indicate the need for additional cross sections.
Location:	River: Ryans Creek Reach: 1 RS: 1485 Profile: 2-yr
Warning:	Divided flow computed for this cross-section.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or
	greater than 1.4. This may indicate the need for additional cross sections.
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This
	may indicate the need for additional cross sections.
Location:	River: Ryans Creek Reach: 1 RS: 1144 Profile: 2-yr
Warning:	Divided flow computed for this cross-section.
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This
	may indicate the need for additional cross sections.
Logotion	River: Ryans Creek Reach: 1 RS: 939 Profile: 2-yr
Location:	

HEC-RAS Plan: Existing 1 River: Ryans Creek Reach: 1 Profile: 10-yr

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
I	3022	10-yr	408.00	569.16	575.56	572.23	575.67	0.000911	2.67	185.06	126.26	0.23
I	2772	10-yr	408.00	569.81	575.22		575.36	0.001708	3.20	162.03	107.46	0.31
I	2508	10-yr	408.00	570.47	574.91		574.99	0.001038	2.59	214.38	140.69	0.25
I	2275	10-yr	408.00	569.61	574.41		574.62	0.002748	3.81	119.53	90.50	0.40
1	2040	10-yr	408.00	568.76	573.96	571.69	574.11	0.001650	3.13	135.94	71.37	0.31
I	2026	10-yr	408.00	568.58	573.87	571.58	574.08	0.001843	3.67	111.02	27.74	0.32
I	2000		Bridge									
I	1977	10-yr	408.00	568.61	573.60	571.53	573.83	0.003792	3.79	107.58	28.92	0.34
I	1966	10-yr	408.00	568.85	573.56	571.65	573.75	0.003987	3.47	117.50	39.00	0.35
I	1708	10-yr	408.00	567.93	572.24		572.50	0.005764	4.08	100.44	38.29	0.42
I	1485	10-yr	408.00	567.02	571.20		571.40	0.004977	3.87	157.73	116.41	0.39
1	1144	10-yr	408.00	564.82	568.09	567.66	568.58	0.018348	5.66	77.96	65.09	0.71
1	939	10-yr	408.00	562.46	565.98	565.43	566.11	0.007910	3.46	204.15	212.75	0.46

HEC-RAS Plan: Existing 1 River: Ryans Creek Reach: 1 Profile: 10-yr

Reach	River Sta	Profile	E.G. Elev	W.S. Elev	Vel Head	Frctn Loss	C & E Loss	Q Left	Q Channel	Q Right	Top Width
			(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft)
1	3022	10-yr	575.67	575.56	0.10	0.30	0.00	29.29	378.71		126.26
1	2772	10-yr	575.36	575.22	0.13	0.35	0.02	74.73	333.27		107.46
1	2508	10-yr	574.99	574.91	0.08	0.36	0.01	118.98	289.02		140.69
1	2275	10-yr	574.62	574.41	0.22	0.49	0.02	14.10	393.90		90.50
1	2040	10-yr	574.11	573.96	0.15	0.02	0.02	7.50	400.35	0.15	71.37
1	2026	10-yr	574.08	573.87	0.21	0.00	0.03		408.00		27.74
1	2000		Bridge								
1	1977	10-yr	573.83	573.60	0.22	0.06	0.02		408.00		28.92
1	1966	10-yr	573.75	573.56	0.19	1.23	0.02		408.00		39.00
1	1708	10-yr	572.50	572.24	0.26	1.08	0.02		407.90	0.10	38.29
1	1485	10-yr	571.40	571.20	0.20	2.79	0.03	0.01	348.04	59.95	116.41
1	1144	10-yr	568.58	568.09	0.49	2.36	0.11		402.73	5.27	65.09
1	939	10-yr	566.11	565.98	0.13			0.44	270.24	137.32	212.75

HEC-RAS Plan: Existing 1 River: Ryans Creek Reach: 1 Profile: 10-yr

Reach	River Sta	Profile	E.G. Elev	W.S. Elev	Crit W.S.	Frctn Loss	C & E Loss	Top Width	Q Left	Q Channel	Q Right	Vel Chnl
			(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft/s)
1	2040	10-yr	574.11	573.96	571.69	0.02	0.02	71.37	7.50	400.35	0.15	3.13
1	2026	10-yr	574.08	573.87	571.58	0.00	0.03	27.74		408.00		3.67
1	2000 BR U	10-yr	574.04	573.72	571.59	0.13	0.01	20.00		408.00		4.56
1	2000 BR D	10-yr	573.90	573.54	571.63	0.00	0.07	20.00		408.00		4.80
1	1977	10-yr	573.83	573.60	571.53	0.06	0.02	28.92		408.00		3.79
1	1966	10-yr	573.75	573.56	571.65	1.23	0.02	39.00		408.00		3.47

Location:	River: Ryans Creek Reach: 1 RS: 3022 Profile: 10-yr
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was
	used.
Location:	River: Ryans Creek Reach: 1 RS: 2772 Profile: 10-yr
Warning:	Divided flow computed for this cross-section.
Location:	River: Ryans Creek Reach: 1 RS: 2508 Profile: 10-yr
Warning:	Divided flow computed for this cross-section.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or
	greater than 1.4. This may indicate the need for additional cross sections.
Location:	River: Ryans Creek Reach: 1 RS: 2275 Profile: 10-yr
Warning:	Divided flow computed for this cross-section.
Location:	River: Ryans Creek Reach: 1 RS: 2040 Profile: 10-yr
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was
	used.
Location:	River: Ryans Creek Reach: 1 RS: 2026 Profile: 10-yr
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface
	was used.
Location:	River: Ryans Creek Reach: 1 RS: 2000 Profile: 10-yr
Warning:	For the final momentum answer at the bridge, the upstream energy was computed lower than the
	energy inside of the bridge deck. This is not physically possible. Please review your bridge data and
	results for reasonableness.
Location:	River: Ryans Creek Reach: 1 RS: 2000 Profile: 10-yr Upstream
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or
NI-1-	greater than 1.4. This may indicate the need for additional cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface
Lasting	was used.
Location:	River: Ryans Creek Reach: 1 RS: 2000 Profile: 10-yr Downstream
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface
Location:	was used. River: Ryans Creek Reach: 1 RS: 1977 Profile: 10-yr
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface
NOLE.	was used.
Location:	River: Ryans Creek Reach: 1 RS: 1966 Profile: 10-yr
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This
wannig.	may indicate the need for additional cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was
	used.
Location:	River: Ryans Creek Reach: 1 RS: 1708 Profile: 10-yr
Warning:	Divided flow computed for this cross-section.
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This
<u> </u>	may indicate the need for additional cross sections.
Location:	River: Ryans Creek Reach: 1 RS: 1485 Profile: 10-yr
Warning:	Divided flow computed for this cross-section.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or
	greater than 1.4. This may indicate the need for additional cross sections.
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This
0	may indicate the need for additional cross sections.
Location:	River: Ryans Creek Reach: 1 RS: 1144 Profile: 10-yr
Warning:	Divided flow computed for this cross-section.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or
	greater than 1.4. This may indicate the need for additional cross sections.
Marning.	The energy loss use greater than $1.04(0.2 \text{ m})$ between the surrout and provide great exception. This

The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This

may indicate the need for additional cross sections.

Profile: 10-yr

Errors Warnings and Notes for Plan : Existing 1

River: Ryans Creek Reach: 1 RS: 3022

Location:

Warning:

Errors Warnings and Notes for Plan : Existing 1 (Continued)

Location:	River: Ryans Creek Reach: 1 RS: 939 Profile: 10-yr
Warning:	Divided flow computed for this cross-section.

HEC-RAS Plan: Existing 1 River: Ryans Creek Reach: 1 Profile: 50-yr

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
1	3022	50-yr	866.00	569.16	577.01	573.71	577.09	0.000664	2.75	443.93	195.39	0.21
1	2772	50-yr	866.00	569.81	576.77		576.88	0.001071	3.11	366.10	160.33	0.26
1	2508	50-yr	866.00	570.47	576.61		576.67	0.000548	2.36	492.67	191.27	0.19
1	2275	50-yr	866.00	569.61	576.44		576.53	0.000812	2.83	431.17	203.69	0.23
1	2040	50-yr	866.00	568.76	576.15	573.13	576.32	0.001000	3.47	267.00	195.29	0.27
1	2026	50-yr	866.00	568.58	575.82	572.93	576.23	0.002488	5.18	167.26	30.05	0.38
1	2000		Bridge									
1	1977	50-yr	866.00	568.61	575.15	572.85	575.65	0.005799	5.69	152.12	30.53	0.44
1	1966	50-yr	866.00	568.85	575.15	572.93	575.51	0.004417	4.83	179.28	155.14	0.40
1	1708	50-yr	866.00	567.93	573.42	571.98	573.95	0.008132	5.94	177.17	132.58	0.52
1	1485	50-yr	866.00	567.02	572.36		572.61	0.004928	4.75	307.67	134.73	0.41
1	1144	50-yr	866.00	564.82	568.90	568.90	569.73	0.022817	7.68	151.55	117.92	0.83
1	939	50-yr	866.00	562.46	566.70	566.05	566.87	0.007907	4.19	390.77	297.29	0.48

HEC-RAS Plan: Existing 1 River: Ryans Creek Reach: 1 Profile: 50-yr

Reach	River Sta	Profile	E.G. Elev	W.S. Elev	Vel Head	Frctn Loss	C & E Loss	Q Left	Q Channel	Q Right	Top Width
			(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft)
1	3022	50-yr	577.09	577.01	0.08	0.21	0.00	261.02	534.07	70.90	195.39
1	2772	50-yr	576.88	576.77	0.11	0.20	0.02	364.73	488.14	13.13	160.33
1	2508	50-yr	576.67	576.61	0.06	0.13	0.00	462.77	396.43	6.80	191.27
1	2275	50-yr	576.53	576.44	0.09	0.20	0.01	325.91	509.17	30.91	203.69
1	2040	50-yr	576.32	576.15	0.17	0.02	0.07	87.24	756.09	22.66	195.29
1	2026	50-yr	576.23	575.82	0.42	0.00	0.11		866.00		30.05
1	2000		Bridge								
1	1977	50-yr	575.65	575.15	0.50	0.07	0.07		866.00		30.53
1	1966	50-yr	575.51	575.15	0.36	1.51	0.05		866.00		155.14
1	1708	50-yr	573.95	573.42	0.53	1.26	0.08	6.83	840.47	18.70	132.58
1	1485	50-yr	572.61	572.36	0.25	2.81	0.06	2.67	586.88	276.45	134.73
1	1144	50-yr	569.73	568.90	0.83	2.56	0.20	1.06	780.30	84.63	117.92
1	939	50-yr	566.87	566.70	0.16			2.99	468.69	394.31	297.29

HEC-RAS Plan: Existing 1 River: Ryans Creek Reach: 1 Profile: 50-yr

Reach	River Sta	Profile	E.G. Elev	W.S. Elev	Crit W.S.	Frctn Loss	C & E Loss	Top Width	Q Left	Q Channel	Q Right	Vel Chnl
			(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft/s)
1	2040	50-yr	576.32	576.15	573.13	0.02	0.07	195.29	87.24	756.09	22.66	3.47
1	2026	50-yr	576.23	575.82	572.93	0.00	0.11	30.05		866.00		5.18
1	2000 BR U	50-yr	576.12	575.33	573.13	0.22	0.04	20.00		866.00		7.11
1	2000 BR D	50-yr	575.86	574.96	573.16	0.01	0.20	20.00		866.00		7.64
1	1977	50-yr	575.65	575.15	572.85	0.07	0.07	30.53		866.00		5.69
1	1966	50-yr	575.51	575.15	572.93	1.51	0.05	155.14		866.00		4.83

Location:	ings and Notes for Plan : Existing 1 River: Ryans Creek Reach: 1 RS: 3022 Profile: 50-yr
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was
	used.
Location:	River: Ryans Creek Reach: 1 RS: 2772 Profile: 50-yr
Warning:	Divided flow computed for this cross-section.
Location:	River: Ryans Creek Reach: 1 RS: 2508 Profile: 50-yr
Warning:	Divided flow computed for this cross-section.
Location:	River: Ryans Creek Reach: 1 RS: 2040 Profile: 50-yr
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or
	greater than 1.4. This may indicate the need for additional cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was
	used.
Location:	River: Ryans Creek Reach: 1 RS: 2026 Profile: 50-yr
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface
	was used.
Location:	River: Ryans Creek Reach: 1 RS: 2000 Profile: 50-yr
Warning:	For the final momentum answer at the bridge, the upstream energy was computed lower than the
	downstream energy. This is not physically possible, the momentum answer has been disregarded.
Note:	Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The
	momentum answer has been disregarded.
Location:	River: Ryans Creek Reach: 1 RS: 2000 Profile: 50-yr Upstream
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or
	greater than 1.4. This may indicate the need for additional cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface
	was used.
Location:	River: Ryans Creek Reach: 1 RS: 2000 Profile: 50-yr Downstream
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface
	was used.
Location:	River: Ryans Creek Reach: 1 RS: 1977 Profile: 50-yr
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface
11010.	was used.
Location:	River: Ryans Creek Reach: 1 RS: 1966 Profile: 50-yr
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This
wanning.	may indicate the need for additional cross sections.
Note:	
Note.	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was
Location	used. River: Ryans Creek Reach: 1 RS: 1708 Profile: 50-yr
Location:	
	Divided flow computed for this cross-section.
	The energy less was an estimate $A \cap H (0, 2, m)$ between the sympattic and may develop energy and the
	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This
Warning:	may indicate the need for additional cross sections.
Warning: Location:	may indicate the need for additional cross sections. River: Ryans Creek Reach: 1 RS: 1485 Profile: 50-yr
Warning: Location:	may indicate the need for additional cross sections. River: Ryans Creek Reach: 1 RS: 1485 Profile: 50-yr The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional
Warning: Location: Warning:	may indicate the need for additional cross sections. River: Ryans Creek Reach: 1 RS: 1485 Profile: 50-yr The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.
Warning: Location: Warning:	may indicate the need for additional cross sections. River: Ryans Creek Reach: 1 RS: 1485 Profile: 50-yr The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or
Warning: Location: Warning: Warning:	may indicate the need for additional cross sections. River: Ryans Creek Reach: 1 RS: 1485 Profile: 50-yr The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.
Warning: Location: Warning: Warning:	may indicate the need for additional cross sections. River: Ryans Creek Reach: 1 RS: 1485 Profile: 50-yr The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This
Warning: Location: Warning: Warning: Warning:	 may indicate the need for additional cross sections. River: Ryans Creek Reach: 1 RS: 1485 Profile: 50-yr The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: Location: Warning: Warning: Warning: Location:	 may indicate the need for additional cross sections. River: Ryans Creek Reach: 1 RS: 1485 Profile: 50-yr The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections. River: Ryans Creek Reach: 1 RS: 1144 Profile: 50-yr
Warning: Warning: Location: Warning: Warning: Warning: Location: Warning:	 may indicate the need for additional cross sections. River: Ryans Creek Reach: 1 RS: 1485 Profile: 50-yr The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections. River: Ryans Creek Reach: 1 RS: 1144 Profile: 50-yr The energy equation could not be balanced within the specified number of iterations. The program used
Warning: Location: Warning: Warning: Warning: Location:	 may indicate the need for additional cross sections. River: Ryans Creek Reach: 1 RS: 1485 Profile: 50-yr The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections. River: Ryans Creek Reach: 1 RS: 1144 Profile: 50-yr
Warning: Location: Warning: Warning: Warning:	 may indicate the need for additional cross sections. River: Ryans Creek Reach: 1 RS: 1485 Profile: 50-yr The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections. River: Ryans Creek Reach: 1 RS: 1144 Profile: 50-yr The energy equation could not be balanced within the specified number of iterations. The program used

Errors Warnings and Notes for Plan : Existing 1 (Continued)

The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or
greater than 1.4. This may indicate the need for additional cross sections.
The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This
may indicate the need for additional cross sections.
During the standard step iterations, when the assumed water surface was set equal to critical depth, the
calculated water surface came back below critical depth. This indicates that there is not a valid
subcritical answer. The program defaulted to critical depth.

HEC-RAS Plan: Existing 1 River: Ryans Creek Reach: 1 Profile: 100-yr

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
I	3022	100-yr	1250.00	569.16	579.15	574.79	579.18	0.000201	1.89	889.82	220.50	0.12
I	2772	100-yr	1250.00	569.81	579.09		579.13	0.000271	2.05	843.18	244.78	0.14
I	2508	100-yr	1250.00	570.47	579.05		579.07	0.000144	1.50	1034.86	240.77	0.10
I	2275	100-yr	1250.00	569.61	579.01		579.04	0.000146	1.61	1032.20	248.79	0.11
1	2040	100-yr	1250.00	568.76	578.84	574.08	578.98	0.000452	3.07	428.75	355.47	0.19
I	2026	100-yr	1250.00	568.58	578.50	573.84	578.89	0.001496	5.05	247.35	122.22	0.31
I	2000		Bridge									
I	1977	100-yr	1250.00	568.61	575.88	573.73	576.68	0.008047	7.20	173.60	31.29	0.52
I	1966	100-yr	1250.00	568.85	575.91	573.72	576.46	0.005524	5.98	208.94	242.51	0.46
1	1708	100-yr	1250.00	567.93	574.10		574.73	0.008383	6.70	268.44	161.89	0.55
I	1485	100-yr	1250.00	567.02	572.97		573.28	0.005473	5.48	390.89	138.68	0.44
	1144	100-yr	1250.00	564.82	569.45	569.45	570.36	0.021237	8.39	218.32	125.14	0.83
1	939	100-yr	1250.00	562.46	567.11	566.38	567.30	0.007901	4.66	517.99	325.46	0.50

HEC-RAS Plan: Existing 1 River: Ryans Creek Reach: 1 Profile: 100-yr

Reach	River Sta	Profile	E.G. Elev	W.S. Elev	Vel Head	Frctn Loss	C & E Loss	Q Left	Q Channel	Q Right	Top Width
			(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft)
1	3022	100-yr	579.18	579.15	0.04	0.06	0.00	509.05	513.59	227.36	220.50
1	2772	100-yr	579.13	579.09	0.04	0.05	0.00	654.33	495.32	100.35	244.78
1	2508	100-yr	579.07	579.05	0.02	0.03	0.00	814.88	383.95	51.17	240.77
1	2275	100-yr	579.04	579.01	0.03	0.05	0.01	683.71	452.01	114.29	248.79
1	2040	100-yr	578.98	578.84	0.14	0.01	0.08	184.79	1009.24	55.97	355.47
1	2026	100-yr	578.89	578.50	0.40				1250.00		122.22
1	2000		Bridge								
1	1977	100-yr	576.68	575.88	0.81	0.10	0.12		1250.00		31.29
1	1966	100-yr	576.46	575.91	0.56	1.72	0.02		1250.00		242.51
1	1708	100-yr	574.73	574.10	0.62	1.35	0.09	29.56	1109.49	110.95	161.89
1	1485	100-yr	573.28	572.97	0.31	2.86	0.06	7.84	772.21	469.94	138.68
1	1144	100-yr	570.36	569.45	0.91	2.49	0.22	4.51	1027.69	217.80	125.14
1	939	100-yr	567.30	567.11	0.19			5.89	612.80	631.32	325.46

HEC-RAS Plan: Existing 1 River: Ryans Creek Reach: 1 Profile: 100-yr

Reach	River Sta	Profile	E.G. Elev	W.S. Elev	Crit W.S.	Frctn Loss	C & E Loss	Top Width	Q Left	Q Channel	Q Right	Vel Chnl
			(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft/s)
1	2040	100-yr	578.98	578.84	574.08	0.01	0.08	355.47	184.79	1009.24	55.97	3.07
1	2026	100-yr	578.89	578.50	573.84			122.22		1250.00		5.05
1	2000 BR U	100-yr	578.89	577.35	574.18					1250.00		7.77
1	2000 BR D	100-yr	576.71	575.88	574.25			20.00		1250.00		9.48
1	1977	100-yr	576.68	575.88	573.73	0.10	0.12	31.29		1250.00		7.20
1	1966	100-yr	576.46	575.91	573.72	1.72	0.02	242.51		1250.00		5.98

Location:	River: Ryans Creek Reach: 1 RS: 3022 Profile: 100-yr
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was
	used.
Location:	River: Ryans Creek Reach: 1 RS: 2275 Profile: 100-yr
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or
	greater than 1.4. This may indicate the need for additional cross sections.
Location:	River: Ryans Creek Reach: 1 RS: 2040 Profile: 100-yr
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or
	greater than 1.4. This may indicate the need for additional cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was
	used.
Location:	River: Ryans Creek Reach: 1 RS: 2026 Profile: 100-yr
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface
	was used.
Location:	River: Ryans Creek Reach: 1 RS: 2000 Profile: 100-yr
Warning:	For the final momentum answer at the bridge, the upstream energy was computed lower than the
	downstream energy. This is not physically possible, the momentum answer has been disregarded.
Note:	Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The
	momentum answer has been disregarded.
Note:	The downstream water surface is below the minimum elevation for pressure flow. The sluice gate
	equations were used for pressure flow.
Location:	River: Ryans Creek Reach: 1 RS: 2000 Profile: 100-yr Upstream
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface
	was used.
Location:	River: Ryans Creek Reach: 1 RS: 2000 Profile: 100-yr Downstream
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface
	was used.
Location:	River: Ryans Creek Reach: 1 RS: 1977 Profile: 100-yr
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface
	was used.
Location:	River: Ryans Creek Reach: 1 RS: 1966 Profile: 100-yr
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This
	may indicate the need for additional cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was
	used.
Location:	River: Ryans Creek Reach: 1 RS: 1708 Profile: 100-yr
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This
<u> </u>	may indicate the need for additional cross sections.
Location:	River: Ryans Creek Reach: 1 RS: 1485 Profile: 100-yr
Warning:	The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional
<u> </u>	cross sections.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or
	greater than 1.4. This may indicate the need for additional cross sections.
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This
	may indicate the need for additional cross sections.
Location:	River: Ryans Creek Reach: 1 RS: 1144 Profile: 100-yr
	The energy equation could not be balanced within the specified number of iterations. The program used
Warning.	critical depth for the water surface and continued on with the calculations.
Warning:	TO MODE ADDALL TO THE WALL OWNED AND CONTINUED OF WITH THE CARCUALCED.
	The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional
Warning:	The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.
Warning: Warning: Warning:	The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional

Errors Warnings and Notes for Plan : Existing 1 (Continued)

	may indicate the need for additional cross sections.
Warning:	During the standard step iterations, when the assumed water surface was set equal to critical depth, the
	calculated water surface came back below critical depth. This indicates that there is not a valid
	subcritical answer. The program defaulted to critical depth.

HEC-RAS Plan: Existing 1 River: Ryans Creek Reach: 1 Profile: 200-yr

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
I	3022	200-yr	1700.00	569.16	580.08	576.22	580.12	0.000196	2.02	1100.82	236.26	0.12
l	2772	200-yr	1700.00	569.81	580.03		580.07	0.000245	2.13	1084.92	263.60	0.14
I	2508	200-yr	1700.00	570.47	579.99		580.02	0.000143	1.63	1263.92	245.98	0.10
I	2275	200-yr	1700.00	569.61	579.96		579.99	0.000143	1.73	1285.92	292.56	0.11
1	2040	200-yr	1700.00	568.76	579.94	574.69	579.96	0.000105	1.62	1612.35	403.19	0.09
I	2026	200-yr	1700.00	568.58	579.60	574.79	579.88	0.001308	4.71	550.01	360.48	0.28
	2000		Bridge									
I	1977	200-yr	1700.00	568.61	576.53	574.66	577.73	0.010751	8.81	192.89	37.13	0.61
I	1966	200-yr	1700.00	568.85	576.60	574.45	577.41	0.006802	7.20	236.07	269.97	0.52
I	1708	200-yr	1700.00	567.93	574.77		575.45	0.008296	7.29	362.90	179.13	0.56
I	1485	200-yr	1700.00	567.02	573.60		573.97	0.005777	6.10	479.74	141.86	0.46
1	1144	200-yr	1700.00	564.82	569.90	569.90	570.97	0.022049	9.34	275.51	128.58	0.86
1	939	200-yr	1700.00	562.46	567.52	566.69	567.73	0.007903	5.11	654.56	353.14	0.51

HEC-RAS Plan: Existing 1 River: Ryans Creek Reach: 1 Profile: 200-yr

Reach	River Sta	Profile	E.G. Elev	W.S. Elev	Vel Head	Frctn Loss	C & E Loss	Q Left	Q Channel	Q Right	Top Width
			(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft)
1	3022	200-yr	580.12	580.08	0.04	0.05	0.00	718.81	617.72	363.47	236.26
1	2772	200-yr	580.07	580.03	0.04	0.05	0.00	934.43	587.96	177.61	263.60
1	2508	200-yr	580.02	579.99	0.03	0.03	0.00	1140.27	472.47	87.26	245.98
1	2275	200-yr	579.99	579.96	0.03	0.03	0.00	968.49	549.92	181.58	292.56
1	2040	200-yr	579.96	579.94	0.02	0.00	0.08	737.05	603.39	359.55	403.19
1	2026	200-yr	579.88	579.60	0.28			323.47	1362.79	13.74	360.48
1	2000		Bridge								
1	1977	200-yr	577.73	576.53	1.21	0.12	0.20		1700.00		37.13
1	1966	200-yr	577.41	576.60	0.81	1.90	0.06		1700.00		269.97
1	1708	200-yr	575.45	574.77	0.68	1.39	0.09	68.37	1378.54	253.09	179.13
1	1485	200-yr	573.97	573.60	0.37	2.93	0.07	17.50	972.39	710.11	141.86
1	1144	200-yr	570.97	569.90	1.07	2.53	0.26	10.30	1305.34	384.35	128.58
1	939	200-yr	567.73	567.52	0.21			10.08	769.77	920.16	353.14

HEC-RAS Plan: Existing 1 River: Ryans Creek Reach: 1 Profile: 200-yr

Reach	River Sta	Profile	E.G. Elev	W.S. Elev	Crit W.S.	Frctn Loss	C & E Loss	Top Width	Q Left	Q Channel	Q Right	Vel Chnl
			(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft/s)
1	2040	200-yr	579.96	579.94	574.69	0.00	0.08	403.19	737.05	603.39	359.55	1.62
1	2026	200-yr	579.88	579.60	574.79			360.48	323.47	1362.79	13.74	4.71
1	2000 BR U	200-yr	579.88	579.60	575.32			131.28	143.84	1552.21	0.76	9.47
1	2000 BR D	200-yr	579.85	579.60	575.37			130.38	143.84	1552.21	0.76	9.58
1	1977	200-yr	577.73	576.53	574.66	0.12	0.20	37.13		1700.00		8.81
1	1966	200-yr	577.41	576.60	574.45	1.90	0.06	269.97		1700.00		7.20

Errors Warnings and Notes for Plan	Existing 1
------------------------------------	------------

Location:	River: Ryans Creek Reach: 1 RS: 2040 Profile: 200-yr
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or
	greater than 1.4. This may indicate the need for additional cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was
	used.
Location:	River: Ryans Creek Reach: 1 RS: 2026 Profile: 200-yr
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface
	was used.
Location:	River: Ryans Creek Reach: 1 RS: 2000 Profile: 200-yr
Note:	Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The
	momentum answer has been disregarded.
Note:	The downstream water surface is below the minimum elevation for pressure flow. The sluice gate
	equations were used for pressure flow.
Location:	River: Ryans Creek Reach: 1 RS: 2000 Profile: 200-yr Upstream
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface
	was used.
Note:	For the cross section inside the bridge at the upstream end, the water surface and energy have been
	projected from the upstream cross section. The selected bridge modeling method does not compute
	answers inside the bridge.
Location:	River: Ryans Creek Reach: 1 RS: 2000 Profile: 200-yr Downstream
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface
	was used.
Note:	For the cross section inside the bridge at the downstream end, the energy is based on critical depth over
1010.	the weir. The water surface has been projected.
_ocation:	River: Ryans Creek Reach: 1 RS: 1977 Profile: 200-yr
Warning:	Divided flow computed for this cross-section.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface
	was used.
Location:	River: Ryans Creek Reach: 1 RS: 1966 Profile: 200-yr
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This
Noto	may indicate the need for additional cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was
	used.
Location:	River: Ryans Creek Reach: 1 RS: 1708 Profile: 200-yr
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This
	may indicate the need for additional cross sections.
Location:	River: Ryans Creek Reach: 1 RS: 1485 Profile: 200-yr
Warning:	The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional
	cross sections.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or
	greater than 1.4. This may indicate the need for additional cross sections.
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This
	may indicate the need for additional cross sections.
Location:	River: Ryans Creek Reach: 1 RS: 1144 Profile: 200-yr
Warning:	The energy equation could not be balanced within the specified number of iterations. The program used
	critical depth for the water surface and continued on with the calculations.
Warning:	The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional
	cross sections.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or
	greater than 1.4. This may indicate the need for additional cross sections.
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This
	may indicate the need for additional cross sections.

Errors Warnings and Notes for Plan : Existing 1 (Continued)

calculated water surface came back below critical depth. This indicates that there is not a valid
subcritical answer. The program defaulted to critical depth.

HEC-RAS Plan: Existing 1 River: Ryans Creek Reach: 1 Profile: 500-yr

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
I	3022	500-yr	2375.00	569.16	580.64	576.69	580.71	0.000271	2.48	1239.65	258.65	0.15
I	2772	500-yr	2375.00	569.81	580.57		580.63	0.000325	2.57	1228.71	266.72	0.16
I	2508	500-yr	2375.00	570.47	580.51		580.56	0.000205	2.04	1393.86	248.88	0.12
I	2275	500-yr	2375.00	569.61	580.47		580.52	0.000203	2.15	1442.46	315.54	0.13
1	2040	500-yr	2375.00	568.76	580.45	575.47	580.48	0.000145	1.96	1825.55	434.58	0.11
I	2026	500-yr	2375.00	568.58	580.08	576.02	580.40	0.001552	5.32	753.90	492.60	0.31
	2000		Bridge									
I	1977	500-yr	2375.00	568.61	577.29	575.88	579.17	0.014423	11.00	215.86	108.51	0.72
I	1966	500-yr	2375.00	568.85	577.47	575.41	578.67	0.008492	8.80	269.92	300.21	0.59
I	1708	500-yr	2375.00	567.93	575.62		576.36	0.008069	7.93	490.45	194.92	0.56
I	1485	500-yr	2375.00	567.02	574.42		574.86	0.006074	6.86	597.66	145.91	0.48
1	1144	500-yr	2375.00	564.82	570.45	570.45	571.75	0.023372	10.57	347.83	132.31	0.91
1	939	500-yr	2375.00	562.46	568.03	567.03	568.27	0.007912	5.65	843.21	387.61	0.52

HEC-RAS Plan: Existing 1 River: Ryans Creek Reach: 1 Profile: 500-yr

Reach	River Sta	Profile	E.G. Elev	W.S. Elev	Vel Head	Frctn Loss	C & E Loss	Q Left	Q Channel	Q Right	Top Width
			(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft)
1	3022	500-yr	580.71	580.64	0.06	0.07	0.00	1023.57	808.23	543.20	258.65
1	2772	500-yr	580.63	580.57	0.06	0.07	0.01	1344.08	760.73	270.19	266.72
1	2508	500-yr	580.56	580.51	0.05	0.04	0.00	1609.78	630.72	134.50	248.88
1	2275	500-yr	580.52	580.47	0.05	0.03	0.00	1370.46	726.23	278.31	315.54
1	2040	500-yr	580.48	580.45	0.03	0.00	0.08	1093.93	773.81	507.26	434.58
1	2026	500-yr	580.40	580.08	0.32			678.06	1625.12	71.82	492.60
1	2000		Bridge								
1	1977	500-yr	579.17	577.29	1.88	0.16	0.34		2375.00		108.51
1	1966	500-yr	578.67	577.47	1.20	2.08	0.23		2375.00		300.21
1	1708	500-yr	576.36	575.62	0.74	1.41	0.09	145.12	1739.20	490.68	194.92
1	1485	500-yr	574.86	574.42	0.44	3.02	0.09	36.32	1256.27	1082.41	145.91
1	1144	500-yr	571.75	570.45	1.30	2.59	0.32	22.59	1702.11	650.30	132.31
1	939	500-yr	568.27	568.03	0.25			17.77	988.81	1368.43	387.61

HEC-RAS Plan: Existing 1 River: Ryans Creek Reach: 1 Profile: 500-yr

Reach	River Sta	Profile	E.G. Elev	W.S. Elev	Crit W.S.	Frctn Loss	C & E Loss	Top Width	Q Left	Q Channel	Q Right	Vel Chnl
			(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft/s)
1	2040	500-yr	580.48	580.45	575.47	0.00	0.08	434.58	1093.93	773.81	507.26	1.96
1	2026	500-yr	580.40	580.08	576.02			492.60	678.06	1625.12	71.82	5.32
1	2000 BR U	500-yr	580.39	580.08	576.85			308.10	474.61	1821.04	69.80	10.05
1	2000 BR D	500-yr	580.39	580.08	576.88			308.11	474.61	1821.04	69.80	10.15
1	1977	500-yr	579.17	577.29	575.88	0.16	0.34	108.51		2375.00		11.00
1	1966	500-yr	578.67	577.47	575.41	2.08	0.23	300.21		2375.00		8.80

Errors Warnings and Notes for Plan : Existing 1

Enois wain	ings and notes for Plan. Existing i
Location:	River: Ryans Creek Reach: 1 RS: 2040 Profile: 500-yr
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or
	greater than 1.4. This may indicate the need for additional cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was
	used.
Location:	River: Ryans Creek Reach: 1 RS: 2026 Profile: 500-yr
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface
	was used.
Location:	River: Ryans Creek Reach: 1 RS: 2000 Profile: 500-yr
Note:	Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The
	momentum answer has been disregarded.
Note:	The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow
	equation was used for pressure flow.
Location:	River: Ryans Creek Reach: 1 RS: 2000 Profile: 500-yr Upstream
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface
	was used.
Note:	For the cross section inside the bridge at the upstream end, the water surface and energy have been
	projected from the upstream cross section. The selected bridge modeling method does not compute
	answers inside the bridge.
Location:	River: Ryans Creek Reach: 1 RS: 2000 Profile: 500-yr Downstream
Note:	
NOLE.	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface
Noto	was used.
Note:	For the cross section inside the bridge at the downstream end, the water surface and energy have been
	projected from the downstream cross section. The selected bridge modeling method does not compute
	answers inside the bridge.
Location:	River: Ryans Creek Reach: 1 RS: 1977 Profile: 500-yr
Warning:	Divided flow computed for this cross-section.
Warning:	The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional
	cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface
	was used.
Location:	River: Ryans Creek Reach: 1 RS: 1966 Profile: 500-yr
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This
	may indicate the need for additional cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was
	used.
Location:	River: Ryans Creek Reach: 1 RS: 1708 Profile: 500-yr
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This
	may indicate the need for additional cross sections.
Location:	River: Ryans Creek Reach: 1 RS: 1485 Profile: 500-yr
Warning:	The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional
	cross sections.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or
	greater than 1.4. This may indicate the need for additional cross sections.
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This
5	may indicate the need for additional cross sections.
Location:	River: Ryans Creek Reach: 1 RS: 1144 Profile: 500-yr
	The energy equation could not be balanced within the specified number of iterations. The program used
Warning:	critical depth for the water surface and continued on with the calculations.
Warning: Warning:	critical depth for the water surface and continued on with the calculations. The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional
Warning:	critical depth for the water surface and continued on with the calculations.

Errors Warnings and Notes for Plan : Existing 1 (Continued)

Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This
	may indicate the need for additional cross sections.
Warning:	During the standard step iterations, when the assumed water surface was set equal to critical depth, the
	calculated water surface came back below critical depth. This indicates that there is not a valid
	subcritical answer. The program defaulted to critical depth.

HEC-RAS NATURAL CONDITIONS MODEL

I L102acrossRaynsCK. rep

HEC-RAS Version 4.1.0 Jan 2010 U.S. Army Corps of Engineers Hydrologic Engineering Center 609 Second Street Davis, California

Х	Х	XXXXXX	XX	XX		ХХ	ХΧ	Х	X	XXXX
Х	Х	Х	Х	Х		Х	Х	Х	Х	Х
Х	Х	Х	Х			Х	Х	Х	Х	Х
XXXX	XXX	XXXX	Х		XXX	ХΧ	ХХ	XXX	XXX	XXXX
Х	Х	Х	Х			Х	Х	Х	Х	Х
Х	Х	Х	Х	Х		Х	Х	Х	Х	Х
Х	Х	XXXXXX	ХХ	XX		Х	Х	Х	Х	XXXXX

PROJECT DATA Project Title: IL 102 across Ryans Creek Project File : IL102acrossRaynsCK.prj Run Date and Time: 5/9/2016 2:13:29 PM

Project in English units

PLAN DATA

Plan Title: Natural Conditions 1 Plan File : p: \2013\2013127.05\Calculations\Drainage\Hydraulic Report - Proposed Conditions 3\HEC-RAS\IL102acrossRaynsCK.p02 Geometry Title: Ryans Creek - Natural Conditions 1 Geometry File: p: \2013\2013127.05\Calculations\Drainage\Hydraulic Report - Proposed Conditions 3\HEC-RAS\IL102acrossRaynsCK.g03 : HEC-HMS Flows normal depth Flow Title Flow File : p:\2013\2013127.05\Calculations\Drainage\Hydraulic Report - Proposed Conditions 3\HEC-RAS\IL102acrossRaynsCK.f03 Plan Summary Information: Number of: Cross Sections = 12 Multiple Openings = 0 0 Inline Structures = 0 Cul verts = Bridges = 0 Lateral Structures = 0 Computational Information Water surface calculation tolerance = 0.01Critical depth calculation tolerance = 0.01Maximum number of iterations = 20 = 0.3 Maximum difference tolerance Flow tolerance factor = 0.001 Computation Options Critical depth computed only where necessary Conveyance Calculation Method: At breaks in n values only Friction Slope Method: Average Conveyance Computational Flow Regime: Subcritical Flow

I L102acrossRaynsCK. rep

FLOW DATA

Flow Title: HEC-HMS Flows normal depth Flow File : p:\2013\2013127.05\Calculations\Drainage\Hydraulic Report - Proposed Conditions 3\HEC-RAS\IL102acrossRaynsCK.f03

Flow Data (cfs)

*************	* * * * * * * * * * * *	*************	*****	* * * * * * * * * * * * * * * * * * * *	******	*****	* * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * *
* River	Reach	RS	*	2-yr	10-yr	50-yr	100-yr	200-yr	500-yr *
* Ryans Creek	1	3022	*	242	4Ŏ8	866	1250	17Ŏ0	2375 *
***************	* * * * * * * * * * * *	*************	*****	* * * * * * * * * * * * * * * * * * * *	**********	*************	* * * * * * * * * * * * * * * *	*************	* * * * * * * * * * * * *

Boundary Conditions

*****	*****	* * * * * * * * * * * * * * * * * *	* * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *
* River	Reach	Profile	*	Upstream	Downstream *
* Ryans Creek	1	2-yr	*		Normal S = 0.0079 *
* Ryans Creek	1	10-yr	*		Normal S = 0.0079 *
* Rýans Creek	1	50-ýr	*		Normal S = 0.0079 *
* Rýans Creek	1	100-yr	*		Normal S = 0.0079 *
* Ryans Creek	1	200-yr	*		Normal S = 0.0079 *
* Ryans Creek	1	500-yr	*	* * * * * * * * * * * * * * * * * * * *	Normal S = 0.0079 *

GEOMETRY DATA

Geometry Title: Ryans Creek - Natural Conditions 1 Geometry File: p:\2013\2013127.05\Calculations\Drainage\Hydraulic Report - Proposed Conditions 3\HEC-RAS\IL102acrossRaynsCK.g03

CROSS SECTION

RIVER: Ryans Creek REACH: 1	RS: 3022		
INPUT Description: Station Elevation Data Sta Elev Sta	Elev Sta		
0598. 0149. 856362. 947575. 64376. 267456. 803575. 25461. 715487. 823573. 78492. 95540. 193575. 59558. 176607. 162586. 87618. 717	590. 95149. 759575. 27401. 201573. 71465. 9575. 978492. 954577. 42574. 296590. 82626. 175	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	582. 74349. 944579. 85575. 11456. 8575. 25569. 57483. 085569. 16575. 92529. 371575. 58581. 84597. 565584. 3595. 47595. 47
	num= 5 n Val Sta		
0 . 06 349. 944	. 04 456. 8	. 04 492. 95	. 04 574. 296 . 1

Page 2

I L102acrossRaynsCK. rep

Bank Sta: Left Right 456.8 492.95 Ineffective Flow num= Sta L Sta R Elev 0 456.8 575.25 492.95 632.004 575.98 CROSS SECTION	Lengths: Left Channel 242.5 250 2 Permanent F F	Right Coeff Contr. Expan. 248.3 .1 .3
RIVER: Ryans Creek REACH: 1	RS: 2772	
Sta Elev Sta	num= 53 Elev Sta Elev	Sta Elev Sta Elev
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	148.75 585.61 150.94 585.54 280.66 579.63 302.85 578.72 360.51 574.77 373.74 574.42 423.99 574.58 426.41 574.62 461.78 572.54 466.74 571.13 487.28 573.46 490.34 575.54 517.82 577.04 527.46 577.88 551.42 581.32 556.82 582.24 586.62 587.88 588.59 588.34 611.6 594.26 618.53 596.38
Sťa nVal Sta	num= 5 n Val Sta n Val	Sta n Val Sta n Val
0 . 06 280. 66	. 04 453. 73 . 04	490.34 .04 538.49 .1
Bank Sta: Left Right 453.73 490.34	Lengths: Left Channel 279.8 262.7	Right Coeff Contr. Expan. 257.1 .1 .3
CROSS SECTION		
RIVER: Ryans Creek REACH: 1	RS: 2508	
Sta Elev Sta	576. 28322. 862574. 68574. 11450. 66579. 02	249.602582.24278.434581.48349.697574.12373.339573.51455.366574.69461.507570.47496.415576.13507.437577.09549.967585.75560.04588.13

I L102acrossRaynsCK. rep 632.149 605.36 Manning's n Values num= Sta n Val ******** 0 . 06 278. 765 . 04 450. 66 . 04 487. 73 . 04 530. 002 . 1 Bank Sta: Left Right Lengths: Left Channel Coeff Contr. Expan. Right 450.66 487.73 167.7 233.9 25<u>3</u>.1 . 1 . 3 CROSS SECTION RIVER: Ryans Creek REACH: 1 RS: 2275 I NPUT Description: Interpolated XSEC Station Elevation Data num= 49 Sta Sta Elev Sta Elev Elev Sta Flev Sta Flev ***** ********* 0 585.33 44.92 584.32 56.56 584.04 113.74 582.7 134.67 582.11 169.27 581.15 224.22 579.7 226.24 579.65 250.12 579.14 250.42 577.12 270.21 576.4 282.03 575.85 290.03 575.43 314.13 574.85 335.37 574.29 380.46 573.97 338.37 574.26 357.55 574.02 394.8 575.22 404.83 576.16 405.12 576.07 405.92 575.61 409.11 573.61 410.44 572.64 412.09 572.08 416.69 570.85 421.56 569.61 425.9 570.51 429.22 571.08 430.95 571.21 440.13 572.44 443.92 574.43 454.91 575.24 468.87 576.1 479.36 577.02 485.13 577.59 497.43 578.84 507.97 580.07 509.81 580.36 522.7 582.53 535.46 584.59 543.05 585.76 565.98 589.39 570.65 589.93 586.59 591.9 600. 32 593. 51 605. 17 594. 16 612. 57 595. 22 626. 74 597. 06 Manning's n Values num= 5 Sta n Val 0 . 06 250. 12 . 04 404. 83 . 04 443. 92 .04 507.97 . 1 Coeff Contr. Bank Sta: Left Right Lengths: Left Channel Right Expan. 404.83 443.92 165.4 235.8 . 3 269.5 . 1 CROSS SECTION **RIVER:** Ryans Creek RS: 2040 REACH: 1 I NPUT Description: Station Elevation Data num= 24 ation Elevation Data num= 24 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev **** 0 581.9 50.161 580.84 100.862 579.88 150.103 578.42 200.63 577.11 250. 103 576. 37 300. 06 575 350. 109 573. 44 359 573. 306 359. 389 573. 3 360. 473 572. 86 364. 785 570. 76 366. 588 569. 61 375. 036 569. 07 381. 617 568. 76 385. 202 570. 54 387. 953 571. 69 400. 108 573. 76 400. 11 573. 76 449. 98 575. 98 477. 612 577. 3 547. 81 585. 23 595. 223 587. 26 621. 324 588. 76
IL102acrossRaynsCK. rep

Manning's n Values num= 5 Sta n Val Sta n Val Šta n Val Sta n Val Sta n Val Sta n Val Sťa nVal Sta nVal 0 . 06 100. 862 . 04 359 . 04 400. 11 .04 477.612 . 1 Bank Sta: Left Right Lengths: Left Channel Coeff Contr. Expan. Ri ght 359 400.11 ~ 7 . 3 7 10.5 . 1 CROSS SECTION RIVER: Ryans Creek RS: 2026 REACH: 1 I NPUT Description: U/S Face of Bridge Station Elevation Data num= 26 Sta Elev -50 581.882 0 580.07 50.169 579.63 99.049 579.07 150.23 578.24 200. 253 576. 93 251. 513 576. 19 301. 206 574.82 310 574.1 319.64 573 325 570.35 328 569.35 330 568.83 333 568.6 337 568.58 341 569.65 345 570.41 360 573.58 402.381 575.8 434.757 577.12 441.297 577.5 461.679 579 482.935 581 503.38 583 549.01 585 589.84 587 Manning's n Values num= 5 Sta n Val ************ ************* ******** **** -50 . 04 99. 049 . 04 301. 206 . 04 337 . 04 345 . 04 Bank Sta: Left Right 319.64 360 Lengths: Left Channel Right Coeff Contr. Expan. . 3 47.7 . 1 46 44 CROSS SECTION RIVER: Ryans Creek REACH: 1 RS: 1977 I NPUT Description: D/S Face of Bridge Station Elevation Data num= 24 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev ***** 0 581.76 49.102 581.47 99.149 581.1 152.194 578.69 201.052 576.86 251.501 574.6 302.302 574 330 573. 9 333. 71 573. 75 337 572. 29 345 569.35 349.704 568.61 355 569.33 342 569.69 360 569.65 574 383.139 574.5 410.477 365 572.1 367.493 572.5 375 575 456.934 575.85 505.876 578.6 552.003 580. 8 594. 245 582. 31 Manning's n Values num= Sta n Val Sta n Val Sta n Val ******** ***** ******** 0 .1 333.71 .055 375 . 1

I L102acrossRaynsCK. rep

Bank Sta: Left Right 333.71 375	Lengths: Left C 11	hannel Right 14.5 14	Coeff Contr. .1	Expan. . 3
CROSS SECTION				
RI VER: Ryans Creek REACH: 1	RS: 1966			
INPUT Description: Station Elevation Data Sta Elev Sta	num= 27 Elev Sta	El ev Sta	El ev Sta	El ev ******
0 582. 34 48. 536 234. 409 574. 99 250. 806 326. 343 574. 05 334. 84 352. 252 568. 85 361. 121 376. 59 574. 18 390. 17 544. 104 580. 82 587. 298	581.58 97.087 574.6 271.804 573.741 334.869 569.69 364.88 574.5 442.069 582.06	580. 78 147. 691 574. 15 317. 52 573. 74 338. 634 571. 08 368. 264 575. 47 468. 234	578. 89 198. 83 573. 85 326. 34 571. 27 341. 982 572. 09 376. 587 576. 13 496. 783	576.86 574.05 569.98 574.18 578.62
Manni ng's n Values Sta n Val Sta ************************************	num= 3 n Val Sta .055 376.59	n Val ****** . 1		
Bank Sta: Left Right 334.84 376.59	Lengths: Left C 289	hannel Right 258 182	Coeff Contr. .1	Expan. . 3
CROSS SECTION				
RIVER: Ryans Creek REACH: 1	RS: 1708			
INPUT Description: Interpolated Station Elevation Data Sta Elev Sta	num= 48 Elev Sta	Elev Sta	Elev Sta	Elev
$\begin{array}{cccccccc} 0 & 585.78 & 9.22 \\ 93.04 & 583.67 & 93.8 \\ 148.87 & 577.92 & 151.68 \\ 194.87 & 573.42 & 201.66 \\ 216.13 & 569.84 & 216.74 \\ 238.67 & 569.41 & 241.36 \\ 260.44 & 573.51 & 266.79 \\ 310.34 & 573.37 & 325.85 \\ 364.08 & 575.28 & 370.87 \\ 404.36 & 581.81 & 417.03 \\ \end{array}$	$\begin{array}{cccccc} 585.\ 69 & 30.\ 82\\ 583.\ 62 & 110.\ 22\\ 577.\ 64 & 159.\ 29\\ 573.\ 03 & 207.\ 26\\ 569.\ 49 & 219.\ 2\\ 570.\ 01 & 241.\ 57\\ 572.\ 05 & 277.\ 29\\ 573.\ 33 & 327.\ 13\\ 576.\ 58 & 377.\ 55\\ 582.\ 5 & 429.\ 95\\ \end{array}$	$\begin{array}{ccccccc} 585.\ 41 & 31.\ 16\\ 582.\ 54 & 126.\ 28\\ 576.\ 83 & 172.\ 35\\ 572.\ 83 & 212.\ 65\\ 568.\ 87 & 228.\ 62\\ 570.\ 05 & 247.\ 98\\ 572.\ 64 & 287.\ 72\\ 573.\ 33 & 351.\ 78\\ 577.\ 89 & 389.\ 56\\ 583.\ 41 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	584. 8 580. 29 575. 45 572. 38 568. 61 573. 5 573. 29 574. 21 580. 61
Manning's n Values Sta n Val Sta	****			
0 . 1 212. 65	. 055 247. 98	. 1	-	

I L102acrossRaynsCK. rep

Bank Sta: Left Right 212.65 247.98	Lengths: Left Channel Right Coeff Contr. Expan. 222 202 202 .1 .3	
CROSS SECTION		
RIVER: Ryans Creek REACH: 1	RS: 1485	
INPUT Description: Station Elevation Data Sta Elev Sta	num= 30 Elev Sta Elev Sta Elev Sta Elev	
0 589.22 3.922 55.187 584.01 64.531 90.47 571.048 94.183 119.381 571.18 129.867 171.886 571.1 184.941 228.474 575.78 238.59	589. 2713. 258589. 2439. 58588. 446. 889587. 21580. 3973. 323576. 882. 904572. 9290. 468571. 05567. 96104. 978567. 02114. 613567. 95119. 38571. 179571. 52135. 214568. 6144. 055569. 8152. 838571. 15570. 57208. 475569. 7217. 139571. 28222. 854573. 51579. 88251. 054582. 42261. 718583. 37272. 598584. 76	
Manning's n Values Sta n Val Sta		
0 . 1 90. 47	. 055 119. 38 . 1	
Bank Sta: Left Right 90.47 119.38	Lengths:Left ChannelRightCoeff Contr.Expan.230.3335197.7.1.3	
CROSS SECTION		
RIVER: Ryans Creek REACH: 1	RS: 1144	
INPUT Description: Initerpolate Station Elevation Data Sta Elev Sta		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Manning's n Values Sta n Val Sta		
0 .1 72.94	. 055 111. 33 . 1	

IL102acrossRaynsCK. rep

Bank Sta: Left Right 72.94 111.33	Lengths: Left Channel 203.7 205	Right Coeff Co 203.7	ntr. Expan. .1 .3
CROSS SECTION			
RIVER: Ryans Creek REACH: 1	RS: 939		
INPUT Description: Station Elevation Data Sta Elev Sta ************************************	num= 26 Elev Sta Elev 579. 2213. 77442 577. 3518 571. 0238. 03796 571. 941 563. 2186. 42336 562. 4692 566. 26138. 3556 565. 7214 565. 16180. 8474 564. 9418	3. 23405 573. 326. 5 . 58479 571. 8849. 0 2. 93948 565. 07103. 9. 9176 565. 81155.	0148 567.46 2744 566.45 8341 565.6
Manni ng' s n Val ues Sta n Val Sta 0 . 155. 41613	num= 3 n Val Sta n Val		7302 304.30
Bank Sta: Left Right 55.41613103.2744	Lengths: Left Channel 0 0	Right Coeff Co 0	ntr. Expan. .1 .3
*****	*****	*****	* * * * * * * * * * * *
SUMMARY OF MANNING'S N VA	LUES		
River: Ryans Creek	****	****	* * * * * * * * * * * * * * * * * *
* Reach * Rive	er Sta. * n1 * n2	2 * n3 *	n4 * n5 *
*1 * 302 *1 * 277 *1 * 250 *1 * 227 *1 * 204 *1 * 202 *1 * 202 *1 * 197 *1 * 196 *1 * 170 *1 * 148 *1 * 114 *1 * 203	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 04* . 1* . 04* . 04*
*****	* * * * * * * * * * * * * * * * * * * *	****	****

SUMMARY OF REACH LENGTHS

River: Ryans Creek

I L102acrossRaynsCK. rep

 Reach 	*	River Sta.	*	Left * C	hannel *	Riaht *
*****	* * * * * * * * * *	****	* * * * *	*****		
*1	*	3022	*	242.5*	250*	248.3*
*1	*	2772	*	279.8*	262.7*	257.1*
*1	*	2508	*	167.7*	233.9*	253.1*
*1	*	2275	*	165.4*	235.8*	269.5*
*1	*	2040	*	7*	10.5*	7*
*1	*	2026	*	47.7*	46*	44*
*1	*	1977	*	11*	14.5*	14*
*1	*	1966	*	289*	258*	182*
*1	*	1708	*	222*	202*	202*
*1	*	1485	*	230.3*	335*	197.7*
*1	*	1144	*	203.7*	205*	203.7*
*1	*	939	*	0*	0*	0*

SUMMARY OF CONTRACTION AND EXPANSION COEFFICIENTS River: Ryans Creek

*****	*****	******	* * * * *	*****	* * * * * * * * * * *
* Reach	*	River S	ta.	* Contr.	* Expan. *
******	****	*******	*****	********	*****
*1	*	3022	*	. 1*	. 3*
*1	*	2772	*	. 1*	. 3*
*1	*	2508	*	. 1*	. 3*
*1	*	2275	*	. 1*	. 3*
*1	*	2040	*	. 1*	. 3*
*1	*	2026	*	. 1*	. 3*
*1	*	1977	*	.1*	. 3*
*1	*	1966	*	. 1*	. 3*
*1	*	1708	*	. 1*	. 3*
*1	*	1485	*	.1*	.3*
*1	*	1144	*	. 1*	. 3*
*1	*	939	*	.1*	. 3*
*****	****	*******	*****	******	*****

HEC-RAS Plan: NAtural 1 River: Ryans Creek Reach: 1 Profile: 2-yr

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
1	3022	2-yr	242.00	569.16	574.77	571.52	574.84	0.000656	2.10	115.21	34.17	0.19
1	2772	2-yr	242.00	569.81	574.43		574.57	0.001968	3.02	85.26	71.89	0.33
1	2508	2-yr	242.00	570.47	573.98		574.10	0.001571	2.78	101.67	92.45	0.29
1	2275	2-yr	242.00	569.61	573.36		573.56	0.003680	3.59	67.40	32.42	0.44
1	2040	2-yr	242.00	568.76	572.78		572.91	0.002003	2.93	82.56	33.69	0.33
1	2026	2-yr	242.00	568.58	572.77		572.89	0.001635	2.70	89.78	36.08	0.30
1	1977	2-yr	242.00	568.61	572.63		572.77	0.003996	3.05	79.43	31.88	0.34
1	1966	2-yr	242.00	568.85	572.57		572.71	0.003854	2.96	81.63	33.55	0.33
1	1708	2-yr	242.00	567.93	571.39		571.57	0.005138	3.34	72.48	30.82	0.38
1	1485	2-yr	242.00	567.02	570.39		570.55	0.004910	3.34	89.32	65.19	0.37
1	1144	2-yr	242.00	564.82	567.59		567.91	0.015086	4.50	53.84	35.09	0.63
1	939	2-yr	242.00	562.46	565.56	565.05	565.67	0.007901	3.05	125.39	156.77	0.45

HEC-RAS Plan: NAtural 1 River: Ryans Creek Reach: 1 Profile: 2-yr

Reach	River Sta	Profile	E.G. Elev	W.S. Elev	Vel Head	Frctn Loss	C & E Loss	Q Left	Q Channel	Q Right	Top Width
			(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft)
1	3022	2-yr	574.84	574.77	0.07	0.26	0.01		242.00		34.17
1	2772	2-yr	574.57	574.43	0.14	0.46	0.01	2.80	239.20		71.89
1	2508	2-yr	574.10	573.98	0.11	0.53	0.01	12.82	229.18		92.45
1	2275	2-yr	573.56	573.36	0.20	0.63	0.02		242.00		32.42
1	2040	2-yr	572.91	572.78	0.13	0.02	0.01		242.00		33.69
1	2026	2-yr	572.89	572.77	0.11	0.11	0.00		242.00		36.08
1	1977	2-yr	572.77	572.63	0.14	0.06	0.00		242.00		31.88
1	1966	2-yr	572.71	572.57	0.14	1.14	0.00		242.00		33.55
1	1708	2-yr	571.57	571.39	0.17	1.01	0.00		242.00		30.82
1	1485	2-yr	570.55	570.39	0.16	2.63	0.02		224.21	17.79	65.19
1	1144	2-yr	567.91	567.59	0.31	2.18	0.06		241.97	0.03	35.09
1	939	2-yr	565.67	565.56	0.11			0.03	182.60	59.37	156.77

Location:	River: Ryans Creek Reach: 1 RS: 3022 Profile: 2-yr									
Warning:	Divided flow computed for this cross-section.									
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or									
	greater than 1.4. This may indicate the need for additional cross sections.									
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was									
	used.									
Location:	River: Ryans Creek Reach: 1 RS: 2772 Profile: 2-yr									
Warning:	Divided flow computed for this cross-section.									
Location:	River: Ryans Creek Reach: 1 RS: 2508 Profile: 2-yr									
Warning:	Divided flow computed for this cross-section.									
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or									
	greater than 1.4. This may indicate the need for additional cross sections.									
Location:	River: Ryans Creek Reach: 1 RS: 2026 Profile: 2-yr									
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or									
	greater than 1.4. This may indicate the need for additional cross sections.									
Note:	Manning's n values were composited to a single value in the main channel.									
Location:	River: Ryans Creek Reach: 1 RS: 1966 Profile: 2-yr									
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This									
	may indicate the need for additional cross sections.									
Location:	River: Ryans Creek Reach: 1 RS: 1708 Profile: 2-yr									
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This									
	may indicate the need for additional cross sections.									
Location:	River: Ryans Creek Reach: 1 RS: 1485 Profile: 2-yr									
Warning:	Divided flow computed for this cross-section.									
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or									
	greater than 1.4. This may indicate the need for additional cross sections.									
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This									
	may indicate the need for additional cross sections.									
Location:	River: Ryans Creek Reach: 1 RS: 1144 Profile: 2-yr									
Warning:	Divided flow computed for this cross-section.									
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This									
	may indicate the need for additional cross sections.									
Location:	River: Ryans Creek Reach: 1 RS: 939 Profile: 2-yr									
Warning:	Divided flow computed for this cross-section.									

HEC-RAS Plan: NAtural 1 River: Ryans Creek Reach: 1 Profile: 10-yr

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
	3022	10-yr	408.00	569.16	575.55	572.23	575.66	0.000923	2.68	183.63	125.83	0.24
	2772	10-yr	408.00	569.81	575.20		575.34	0.001760	3.24	159.83	107.06	0.32
	2508	10-yr	408.00	570.47	574.88		574.96	0.001100	2.66	209.16	139.88	0.25
	2275	10-yr	408.00	569.61	574.32		574.56	0.003087	3.98	111.76	85.84	0.42
	2040	10-yr	408.00	568.76	573.78		573.95	0.002062	3.36	125.82	61.30	0.35
	2026	10-yr	408.00	568.58	573.77		573.93	0.001611	3.16	131.57	50.84	0.31
	1977	10-yr	408.00	568.61	573.61		573.81	0.004418	3.57	114.30	39.02	0.37
	1966	10-yr	408.00	568.85	573.55		573.74	0.004038	3.48	117.16	38.95	0.35
	1708	10-yr	408.00	567.93	572.24		572.50	0.005764	4.08	100.44	38.29	0.42
	1485	10-yr	408.00	567.02	571.20		571.40	0.004977	3.87	157.73	116.41	0.39
	1144	10-yr	408.00	564.82	568.09	567.66	568.58	0.018348	5.66	77.96	65.09	0.71
	939	10-yr	408.00	562.46	565.98	565.43	566.11	0.007910	3.46	204.15	212.75	0.46

HEC-RAS Plan: NAtural 1 River: Ryans Creek Reach: 1 Profile: 10-yr

Reach	River Sta	Profile	E.G. Elev	W.S. Elev	Vel Head	Frctn Loss	C & E Loss	Q Left	Q Channel	Q Right	Top Width
			(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft)
1	3022	10-yr	575.66	575.55	0.10	0.31	0.00	28.40	379.60		125.83
1	2772	10-yr	575.34	575.20	0.14	0.37	0.02	72.77	335.23		107.06
1	2508	10-yr	574.96	574.88	0.08	0.39	0.02	115.14	292.86		139.88
1	2275	10-yr	574.56	574.32	0.24	0.59	0.02	9.06	398.94		85.84
1	2040	10-yr	573.95	573.78	0.17	0.02	0.01	3.89	404.10	0.00	61.30
1	2026	10-yr	573.93	573.77	0.15	0.12	0.00	2.07	405.82	0.11	50.84
1	1977	10-yr	573.81	573.61	0.20	0.06	0.00		408.00		39.02
1	1966	10-yr	573.74	573.55	0.19	1.23	0.01		408.00		38.95
1	1708	10-yr	572.50	572.24	0.26	1.08	0.02		407.90	0.10	38.29
1	1485	10-yr	571.40	571.20	0.20	2.79	0.03	0.01	348.04	59.95	116.41
1	1144	10-yr	568.58	568.09	0.49	2.36	0.11		402.73	5.27	65.09
1	939	10-yr	566.11	565.98	0.13			0.44	270.24	137.32	212.75

Errors Warnings and Notes for Plan : NAtural 1

Location:	River: Ryans Creek Reach: 1 RS: 3022 Profile: 10-yr
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was
	used.
Location:	River: Ryans Creek Reach: 1 RS: 2772 Profile: 10-yr
Warning:	Divided flow computed for this cross-section.
Location:	River: Ryans Creek Reach: 1 RS: 2508 Profile: 10-yr
Warning:	Divided flow computed for this cross-section.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or
	greater than 1.4. This may indicate the need for additional cross sections.
Location:	River: Ryans Creek Reach: 1 RS: 2275 Profile: 10-yr
Warning:	Divided flow computed for this cross-section.
Location:	River: Ryans Creek Reach: 1 RS: 2026 Profile: 10-yr
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or
	greater than 1.4. This may indicate the need for additional cross sections.
Note:	Manning's n values were composited to a single value in the main channel.
Location:	River: Ryans Creek Reach: 1 RS: 1966 Profile: 10-yr
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This
	may indicate the need for additional cross sections.
Location:	River: Ryans Creek Reach: 1 RS: 1708 Profile: 10-yr
Warning:	Divided flow computed for this cross-section.
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This
	may indicate the need for additional cross sections.
Location:	River: Ryans Creek Reach: 1 RS: 1485 Profile: 10-yr
Warning:	Divided flow computed for this cross-section.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or
	greater than 1.4. This may indicate the need for additional cross sections.
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This
	may indicate the need for additional cross sections.
Location:	River: Ryans Creek Reach: 1 RS: 1144 Profile: 10-yr
Warning:	Divided flow computed for this cross-section.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or
	greater than 1.4. This may indicate the need for additional cross sections.
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This
	may indicate the need for additional cross sections.
Location:	River: Ryans Creek Reach: 1 RS: 939 Profile: 10-yr
Warning:	Divided flow computed for this cross-section.

HEC-RAS Plan: NAtural 1 River: Ryans Creek Reach: 1 Profile: 50-yr

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
1	3022	50-yr	866.00	569.16	576.75	573.71	576.86	0.000902	3.10	393.43	192.02	0.24
1	2772	50-yr	866.00	569.81	576.40		576.56	0.001626	3.66	309.04	147.59	0.32
1	2508	50-yr	866.00	570.47	576.13		576.22	0.000913	2.88	405.15	174.39	0.24
1	2275	50-yr	866.00	569.61	575.75		575.94	0.001935	3.98	299.74	174.04	0.35
1	2040	50-yr	866.00	568.76	575.36		575.56	0.001518	3.84	291.64	149.30	0.32
1	2026	50-yr	866.00	568.58	575.30		575.54	0.001629	4.12	246.44	108.82	0.33
1	1977	50-yr	866.00	568.61	575.15		575.42	0.004032	4.41	280.84	179.35	0.37
1	1966	50-yr	866.00	568.85	575.10		575.36	0.003782	4.30	292.43	190.19	0.36
1	1708	50-yr	866.00	567.93	573.42	571.98	573.95	0.008139	5.95	177.47	132.58	0.52
1	1485	50-yr	866.00	567.02	572.36		572.61	0.004928	4.75	307.67	134.73	0.41
1	1144	50-yr	866.00	564.82	568.90	568.90	569.73	0.022817	7.68	151.55	117.92	0.83
1	939	50-yr	866.00	562.46	566.70	566.05	566.87	0.007907	4.19	390.77	297.29	0.48

HEC-RAS Plan: NAtural 1 River: Ryans Creek Reach: 1 Profile: 50-yr

Reach	River Sta	Profile	E.G. Elev	W.S. Elev	Vel Head	Frctn Loss	C & E Loss	Q Left	Q Channel	Q Right	Top Width
			(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft)
1	3022	50-yr	576.86	576.75	0.11	0.29	0.00	237.78	572.91	55.31	192.02
1	2772	50-yr	576.56	576.40	0.15	0.32	0.02	332.59	527.80	5.60	147.59
1	2508	50-yr	576.22	576.13	0.09	0.27	0.01	426.13	436.67	3.20	174.39
1	2275	50-yr	575.94	575.75	0.19	0.38	0.00	241.20	610.19	14.61	174.04
1	2040	50-yr	575.56	575.36	0.19	0.02	0.00	117.08	712.90	36.02	149.30
1	2026	50-yr	575.54	575.30	0.24	0.11	0.00	45.67	782.31	38.02	108.82
1	1977	50-yr	575.42	575.15	0.27	0.06	0.00	74.14	781.72	10.14	179.35
1	1966	50-yr	575.36	575.10	0.26	1.38	0.03	77.24	778.16	10.60	190.19
1	1708	50-yr	573.95	573.42	0.53	1.26	0.09	6.83	840.86	18.31	132.58
1	1485	50-yr	572.61	572.36	0.25	2.81	0.06	2.67	586.88	276.45	134.73
1	1144	50-yr	569.73	568.90	0.83	2.56	0.20	1.06	780.30	84.63	117.92
1	939	50-yr	566.87	566.70	0.16			2.99	468.69	394.31	297.29

Errors Warnings and Notes for Plan : NAtural 1

Location:	River: Ryans Creek Reach: 1 RS: 3022 Profile: 50-yr
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was
	used.
Location:	River: Ryans Creek Reach: 1 RS: 2772 Profile: 50-yr
Warning:	Divided flow computed for this cross-section.
Location:	River: Ryans Creek Reach: 1 RS: 2508 Profile: 50-yr
Warning:	Divided flow computed for this cross-section.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or
	greater than 1.4. This may indicate the need for additional cross sections.
Location:	River: Ryans Creek Reach: 1 RS: 2275 Profile: 50-yr
Warning:	Divided flow computed for this cross-section.
Location:	River: Ryans Creek Reach: 1 RS: 2026 Profile: 50-yr
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or
	greater than 1.4. This may indicate the need for additional cross sections.
Note:	Manning's n values were composited to a single value in the main channel.
Location:	River: Ryans Creek Reach: 1 RS: 1966 Profile: 50-yr
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or
	greater than 1.4. This may indicate the need for additional cross sections.
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This
	may indicate the need for additional cross sections.
Location:	River: Ryans Creek Reach: 1 RS: 1708 Profile: 50-yr
Warning:	Divided flow computed for this cross-section.
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This
0	may indicate the need for additional cross sections.
Location:	River: Ryans Creek Reach: 1 RS: 1485 Profile: 50-yr
Warning:	The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional
<u> </u>	cross sections.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or
rrannig.	greater than 1.4. This may indicate the need for additional cross sections.
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This
<u> </u>	may indicate the need for additional cross sections.
Location:	River: Ryans Creek Reach: 1 RS: 1144 Profile: 50-yr
Warning:	The energy equation could not be balanced within the specified number of iterations. The program used
rrannig.	critical depth for the water surface and continued on with the calculations.
Warning:	Divided flow computed for this cross-section.
Warning:	The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional
rrannig.	cross sections.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or
rrannig.	greater than 1.4. This may indicate the need for additional cross sections.
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This
wanning.	may indicate the need for additional cross sections.
Warning:	During the standard step iterations, when the assumed water surface was set equal to critical depth, the
wanniy.	calculated water surface came back below critical depth. This indicates that there is not a valid
	subcritical answer. The program defaulted to critical depth.

HEC-RAS Plan: NAtural 1 River: Ryans Creek Reach: 1 Profile: 100-yr

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
	3022	100-yr	1250.00	569.16	577.43	574.79	577.55	0.000873	3.32	528.19	200.86	0.24
	2772	100-yr	1250.00	569.81	577.09		577.26	0.001624	3.95	417.50	172.25	0.32
	2508	100-yr	1250.00	570.47	576.80		576.91	0.000942	3.15	530.91	198.49	0.25
	2275	100-yr	1250.00	569.61	576.48		576.65	0.001616	4.01	439.07	205.20	0.33
	2040	100-yr	1250.00	568.76	576.11		576.32	0.001447	4.16	419.89	193.20	0.32
	2026	100-yr	1250.00	568.58	576.00		576.29	0.001783	4.73	336.51	148.74	0.36
	1977	100-yr	1250.00	568.61	575.88		576.17	0.003984	4.86	431.45	234.35	0.38
	1966	100-yr	1250.00	568.85	575.84		576.11	0.003677	4.70	450.62	238.33	0.37
	1708	100-yr	1250.00	567.93	574.10		574.72	0.008353	6.69	278.68	161.90	0.54
	1485	100-yr	1250.00	567.02	572.97		573.28	0.005473	5.48	390.89	138.68	0.44
	1144	100-yr	1250.00	564.82	569.45	569.45	570.36	0.021237	8.39	218.32	125.14	0.83
	939	100-yr	1250.00	562.46	567.11	566.30	567.30	0.007912	4.66	517.71	325.40	0.50

HEC-RAS Plan: NAtural 1 River: Ryans Creek Reach: 1 Profile: 100-yr

Reach	River Sta	Profile	E.G. Elev	W.S. Elev	Vel Head	Frctn Loss	C & E Loss	Q Left	Q Channel	Q Right	Top Width
			(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft)
1	3022	100-yr	577.55	577.43	0.12	0.29	0.01	419.62	695.39	134.99	200.86
1	2772	100-yr	577.26	577.09	0.17	0.33	0.02	553.98	666.16	29.85	172.25
1	2508	100-yr	576.91	576.80	0.10	0.25	0.01	685.44	552.03	12.53	198.49
1	2275	100-yr	576.65	576.48	0.17	0.33	0.00	475.63	728.39	45.99	205.20
1	2040	100-yr	576.32	576.11	0.21	0.02	0.01	253.00	899.06	97.93	193.20
1	2026	100-yr	576.29	576.00	0.30	0.12	0.00	120.24	1031.75	98.02	148.74
1	1977	100-yr	576.17	575.88	0.30	0.05	0.01	190.03	1008.06	51.92	234.35
1	1966	100-yr	576.11	575.84	0.28	1.36	0.03	200.36	995.72	53.92	238.33
1	1708	100-yr	574.72	574.10	0.62	1.35	0.09	29.52	1107.64	112.84	161.90
1	1485	100-yr	573.28	572.97	0.31	2.86	0.06	7.84	772.21	469.94	138.68
1	1144	100-yr	570.36	569.45	0.91	2.50	0.22	4.51	1027.69	217.80	125.14
1	939	100-yr	567.30	567.11	0.19			5.88	612.91	631.21	325.40

Location:	River: Ryans Creek Reach: 1 RS: 3022 Profile: 100-yr
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was
	used.
Location:	River: Ryans Creek Reach: 1 RS: 2772 Profile: 100-yr
Warning:	Divided flow computed for this cross-section.
Location:	River: Ryans Creek Reach: 1 RS: 2508 Profile: 100-yr
Warning:	Divided flow computed for this cross-section.
Location:	River: Ryans Creek Reach: 1 RS: 2026 Profile: 100-yr
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or
	greater than 1.4. This may indicate the need for additional cross sections.
Note:	Manning's n values were composited to a single value in the main channel.
Location:	River: Ryans Creek Reach: 1 RS: 1966 Profile: 100-yr
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or
	greater than 1.4. This may indicate the need for additional cross sections.
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This
	may indicate the need for additional cross sections.
Location:	River: Ryans Creek Reach: 1 RS: 1708 Profile: 100-yr
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This
	may indicate the need for additional cross sections.
Location:	River: Ryans Creek Reach: 1 RS: 1485 Profile: 100-yr
Warning:	The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional
	cross sections.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or
	greater than 1.4. This may indicate the need for additional cross sections.
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This
	may indicate the need for additional cross sections.
Location:	River: Ryans Creek Reach: 1 RS: 1144 Profile: 100-yr
Warning:	The energy equation could not be balanced within the specified number of iterations. The program used
	critical depth for the water surface and continued on with the calculations.
Warning:	The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional
	cross sections.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or
	greater than 1.4. This may indicate the need for additional cross sections.
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This
	may indicate the need for additional cross sections.
Warning:	During the standard step iterations, when the assumed water surface was set equal to critical depth, the
	calculated water surface came back below critical depth. This indicates that there is not a valid
	subcritical answer. The program defaulted to critical depth.

HEC-RAS Plan: NAtural 1 River: Ryans Creek Reach: 1 Profile: 200-yr

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
	3022	200-yr	1700.00	569.16	578.08	576.22	578.21	0.000871	3.56	660.06	208.24	0.25
	2772	200-yr	1700.00	569.81	577.72		577.91	0.001652	4.34	536.87	203.01	0.33
	2508	200-yr	1700.00	570.47	577.43		577.55	0.000982	3.43	662.03	219.80	0.26
	2275	200-yr	1700.00	569.61	577.13		577.31	0.001463	4.16	580.49	230.05	0.32
	2040	200-yr	1700.00	568.76	576.77		576.99	0.001443	4.49	561.48	242.97	0.33
	2026	200-yr	1700.00	568.58	576.62		576.96	0.001901	5.25	444.56	201.07	0.38
	1977	200-yr	1700.00	568.61	576.51		576.83	0.003985	5.26	589.38	259.98	0.39
	1966	200-yr	1700.00	568.85	576.48		576.77	0.003676	5.09	613.77	266.13	0.38
	1708	200-yr	1700.00	567.93	574.77		575.42	0.008010	7.16	394.01	179.18	0.55
	1485	200-yr	1700.00	567.02	573.60		573.97	0.005777	6.10	479.74	141.86	0.46
	1144	200-yr	1700.00	564.82	569.90	569.90	570.97	0.022049	9.34	275.51	128.58	0.86
	939	200-yr	1700.00	562.46	567.52	566.69	567.73	0.007903	5.11	654.56	353.14	0.51

HEC-RAS Plan: NAtural 1 River: Ryans Creek Reach: 1 Profile: 200-yr

Reach	River Sta	Profile	E.G. Elev	W.S. Elev	Vel Head	Frctn Loss	C & E Loss	Q Left	Q Channel	Q Right	Top Width
			(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft)
1	3022	200-yr	578.21	578.08	0.13	0.29	0.01	631.79	828.23	239.98	208.24
1	2772	200-yr	577.91	577.72	0.19	0.34	0.02	795.73	830.74	73.53	203.01
1	2508	200-yr	577.55	577.43	0.12	0.24	0.01	992.84	675.14	32.02	219.80
1	2275	200-yr	577.31	577.13	0.18	0.31	0.00	745.86	861.98	92.17	230.05
1	2040	200-yr	576.99	576.77	0.22	0.02	0.01	419.29	1091.84	188.87	242.97
1	2026	200-yr	576.96	576.62	0.34	0.12	0.01	235.06	1278.51	186.43	201.07
1	1977	200-yr	576.83	576.51	0.32	0.05	0.01	334.32	1230.85	134.83	259.98
1	1966	200-yr	576.77	576.48	0.30	1.32	0.03	351.34	1214.12	134.55	266.13
1	1708	200-yr	575.42	574.77	0.64	1.37	0.08	67.36	1355.61	277.03	179.18
1	1485	200-yr	573.97	573.60	0.37	2.93	0.07	17.50	972.39	710.11	141.86
1	1144	200-yr	570.97	569.90	1.07	2.53	0.26	10.30	1305.34	384.35	128.58
1	939	200-yr	567.73	567.52	0.21			10.08	769.77	920.16	353.14

Location:	River: Ryans Creek Reach: 1 RS: 2508 Profile: 200-yr
Warning:	Divided flow computed for this cross-section.
Location:	River: Ryans Creek Reach: 1 RS: 2026 Profile: 200-yr
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or
	greater than 1.4. This may indicate the need for additional cross sections.
Note:	Manning's n values were composited to a single value in the main channel.
Location:	River: Ryans Creek Reach: 1 RS: 1966 Profile: 200-yr
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or
	greater than 1.4. This may indicate the need for additional cross sections.
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This
	may indicate the need for additional cross sections.
Location:	River: Ryans Creek Reach: 1 RS: 1708 Profile: 200-yr
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This
	may indicate the need for additional cross sections.
Location:	River: Ryans Creek Reach: 1 RS: 1485 Profile: 200-yr
Warning:	The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional
	cross sections.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or
	greater than 1.4. This may indicate the need for additional cross sections.
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This
	may indicate the need for additional cross sections.
Location:	River: Ryans Creek Reach: 1 RS: 1144 Profile: 200-yr
Warning:	The energy equation could not be balanced within the specified number of iterations. The program used
	critical depth for the water surface and continued on with the calculations.
Warning:	The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional
	cross sections.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or
	greater than 1.4. This may indicate the need for additional cross sections.
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This
	may indicate the need for additional cross sections.
Warning:	During the standard step iterations, when the assumed water surface was set equal to critical depth, the
	calculated water surface came back below critical depth. This indicates that there is not a valid
	subcritical answer. The program defaulted to critical depth.

HEC-RAS Plan: NAtural 1 River: Ryans Creek Reach: 1 Profile: 500-yr

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
	3022	500-yr	2375.00	569.16	578.82	576.69	578.97	0.000925	3.94	817.25	216.70	0.26
	2772	500-yr	2375.00	569.81	578.45		578.67	0.001636	4.71	693.54	225.02	0.34
	2508	500-yr	2375.00	570.47	578.16		578.30	0.001010	3.71	826.14	229.96	0.26
	2275	500-yr	2375.00	569.61	577.88		578.07	0.001325	4.33	756.82	237.71	0.31
	2040	500-yr	2375.00	568.76	577.57		577.79	0.001330	4.69	780.44	297.00	0.32
	2026	500-yr	2375.00	568.58	577.41		577.76	0.001832	5.59	628.44	257.94	0.38
	1977	500-yr	2375.00	568.61	577.29		577.64	0.004003	5.75	804.38	293.11	0.40
	1966	500-yr	2375.00	568.85	577.26		577.58	0.003684	5.55	831.45	292.41	0.38
	1708	500-yr	2375.00	567.93	575.63		576.28	0.007413	7.61	554.75	195.02	0.54
	1485	500-yr	2375.00	567.02	574.42		574.86	0.006074	6.86	597.66	145.91	0.48
	1144	500-yr	2375.00	564.82	570.45	570.45	571.75	0.023372	10.57	347.83	132.31	0.91
	939	500-yr	2375.00	562.46	568.03	567.03	568.27	0.007912	5.65	843.21	387.61	0.52

HEC-RAS Plan: NAtural 1 River: Ryans Creek Reach: 1 Profile: 500-yr

Reach	River Sta	Profile	E.G. Elev	W.S. Elev	Vel Head	Frctn Loss	C & E Loss	Q Left	Q Channel	Q Right	Top Width
			(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft)
1	3022	500-yr	578.97	578.82	0.16	0.30	0.01	946.34	1023.09	405.57	216.70
1	2772	500-yr	578.67	578.45	0.22	0.34	0.02	1195.61	1028.46	150.93	225.02
1	2508	500-yr	578.30	578.16	0.14	0.23	0.00	1478.73	827.09	69.18	229.96
1	2275	500-yr	578.07	577.88	0.19	0.28	0.00	1183.55	1024.01	167.44	237.71
1	2040	500-yr	577.79	577.57	0.22	0.01	0.01	727.93	1295.22	351.86	297.00
1	2026	500-yr	577.76	577.41	0.35	0.12	0.00	483.83	1540.42	350.75	257.94
1	1977	500-yr	577.64	577.29	0.34	0.05	0.01	562.81	1529.08	283.10	293.11
1	1966	500-yr	577.58	577.26	0.32	1.26	0.03	584.70	1505.12	285.18	292.41
1	1708	500-yr	576.28	575.63	0.65	1.36	0.06	139.80	1669.97	565.23	195.02
1	1485	500-yr	574.86	574.42	0.44	3.02	0.09	36.32	1256.27	1082.41	145.91
1	1144	500-yr	571.75	570.45	1.30	2.59	0.32	22.59	1702.11	650.30	132.31
1	939	500-yr	568.27	568.03	0.25			17.77	988.81	1368.43	387.61

Location:	River: Ryans Creek Reach: 1 RS: 2508 Profile: 500-yr
Warning:	Divided flow computed for this cross-section.
Location:	River: Ryans Creek Reach: 1 RS: 2026 Profile: 500-yr
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or
	greater than 1.4. This may indicate the need for additional cross sections.
Note:	Manning's n values were composited to a single value in the main channel.
Location:	River: Ryans Creek Reach: 1 RS: 1966 Profile: 500-yr
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or
	greater than 1.4. This may indicate the need for additional cross sections.
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This
	may indicate the need for additional cross sections.
Location:	River: Ryans Creek Reach: 1 RS: 1708 Profile: 500-yr
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This
	may indicate the need for additional cross sections.
Location:	River: Ryans Creek Reach: 1 RS: 1485 Profile: 500-yr
Warning:	The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional
	cross sections.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or
	greater than 1.4. This may indicate the need for additional cross sections.
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This
	may indicate the need for additional cross sections.
Location:	River: Ryans Creek Reach: 1 RS: 1144 Profile: 500-yr
Warning:	The energy equation could not be balanced within the specified number of iterations. The program used
	critical depth for the water surface and continued on with the calculations.
Warning:	The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional
	cross sections.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or
	greater than 1.4. This may indicate the need for additional cross sections.
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This
	may indicate the need for additional cross sections.
Warning:	During the standard step iterations, when the assumed water surface was set equal to critical depth, the
	calculated water surface came back below critical depth. This indicates that there is not a valid
	subcritical answer. The program defaulted to critical depth.

HEC-RAS PROPOSED CONDITIONS MODEL

I L102acrossRaynsCK. rep

HEC-RAS Version 4.1.0 Jan 2010 U.S. Army Corps of Engineers Hydrologic Engineering Center 609 Second Street Davis, California Х Х XXXXXX XXXX XXXX ΧХ XXXX Х Х Х Х Х х х х х Х Х Х Х Х Х Х Х Х Х XXXXXXX XXXX Х XXX XXXX XXXXXX XXXX Х Х ХХ Х Х Х Х Х X X Х Х Х Х Х Х Х Х Х x X Х XXXXXX XXXX Х XXXXX Х PROJECT DATA Project Title: IL 102 across Ryans Creek Project File : IL102acrossRaynsCK.prj Run Date and Time: 5/9/2016 2:20:17 PM Project in English units PLAN DATA Plan Title: Proposed Conditions 1 Plan File : p: \2013\2013127.05\Calculations\Drainage\Hydraulic Report - Proposed Conditions 3\HEC-RAS\IL102acrossRaynsCK.p05 Geometry Title: Ryans Creek - Proposed Conditions 1 Geometry File : p:\2013\2013127.05\Calculations\Drainage\Hydraulic Report - Proposed Conditions 3\HEC-RAS\IL102acrossRaynsCK.g05 Flow Title : HEC-HMS Flows normal depth : p:\2013\2013127.05\Cal cul ati ons\Drai nage\Hydraul i c Report - Proposed Conditions Flow File 3\HEC-RAS\IL102acrossRaynsCk. f03 Plan Summary Information: Number of: Cross Sections = 12 Multiple Openings = 0 = Inline Structures = Cul verts 1 0 Bridges 0 Lateral Structures = 0 = Computational Information Water surface calculation tolerance = 0.01 Critical depth calculation tolerance = 0.01Maximum number of iterations = 20 Maximum difference tolerance = 0.3 Flow tolerance factor = 0.001 Computation Options Critical depth computed only where necessary Conveyance Calculation Method: At breaks in n values only Friction Slope Method: Average Conveyance Computational Flow Regime: Subcritical Flow

I L102acrossRaynsCK. rep

Flow Title: HEC-HMS Flows normal depth Flow File : p:\2013\2013127.05\Calculations\Drainage\Hydraulic Report - Proposed Conditions 3\HEC-RAS\IL102acrossRaynsCK.f03

Flow Data (cfs) *******		* * * * * * * * * * * * *	******	****	****	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * *	*****
* River	Reach	RS	*	2-yr	10-yr	50-yr	100-yr	200-yr	
500-yr * * Ryans Creek 2375 * ******	1	3022	*	242	408	866	1250 *******	1700	* * * * * * *
* * * * * *									

Boundary Conditions

* River	River Reach		*	Upstream	Downstream *		
* Ryans Creek	1	2-vr	*		Normal $S = 0.0079$ *		
* Rvans Creek	1	10-vr	*		Normal $S = 0.0079 *$		
* Ryans Creek	1	50-yr	*		Normal S = 0.0079 *		
* Ryans Creek	1	100-yr	*		Normal S = 0.0079 *		
* Rýans Creek	1	200-ýr	*		Normal S = $0.0079 *$		
* Rýans Creek	1	500-ýr	*		Normal S = $0.0079 *$		

GEOMETRY DATA

Geometry Title: Ryans Creek - Proposed Conditions 1 Geometry File: p:\2013\2013127.05\Calculations\Drainage\Hydraulic Report - Proposed Conditions 3\HEC-RAS\IL102acrossRaynsCK.g05

CROSS SECTION

RIVER: Ryans Creek REACH: 1	RS: 3022	
INPUT Description: Station Elevation Data Sta Elev Sta	num= 29 Elev Sta Elev	v Sta Elev Sta Elev
0 598.01 49.856 362.947 575.64 376.267 456.803 575.25 461.715 487.823 573.78 492.95 540.193 575.59 558.176 607.162 586.87 618.717	575. 27 401. 201 574. 75 573. 71 465. 9 570. 67 575. 978 492. 954 575. 98 577. 42 574. 296 579. 35	6249.858582.74349.944579.855426.854575.11456.8575.257475.225569.57483.085569.168504.8575.92529.371575.585587.41581.84597.565584.32632.004595.47
Manning's n Values Sta n Val Sta ************************************	****	I Stan Val Stan Val ************************************
	Lengths: Left Channel 242.5 250	Right Coeff Contr. Expan.

StaL StaR Elev 0 456.8 575.25 492.95 632.004 575.98	Permanent F F	I L102acrossRaynsCK. rep
CROSS SECTION		
RIVER: Ryans Creek REACH: 1	RS: 2772	
INPUT Description: Interpolated Station Elevation Data Sta Elev Sta	num= 53 Elev Sta Elev Sta	a Elev Sta Elev
$\begin{array}{ccccccc} 0 & 593.38 & 49.52 \\ 248.18 & 582.53 & 251.3 \\ 325.06 & 577.59 & 347.59 \\ 375.88 & 574.37 & 398.5 \\ 453.73 & 577.14 & 457.2 \\ 472.3 & 569.81 & 479.87 \\ 498.86 & 576.03 & 502.42 \\ 531.83 & 578.29 & 538.49 \\ 561.31 & 583.04 & 567.2 \\ 596.97 & 590.4 & 600.95 \\ 621.09 & 597.19 & 626.14 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 579.63 302.85 578.72 1 574.77 373.74 574.42 9 574.58 426.41 574.62 8 572.54 466.74 571.13 8 573.46 490.34 575.54 2 577.04 527.46 577.88 2 581.32 556.82 582.24 2 587.88 588.59 588.34
	num= 5 n Val Sta n Val Sta . 04 453. 73 . 04 490. 34	
Bank Sta: Left Right 453.73 490.34	Lengths: Left Channel Right 279.8 262.7 257.1	Coeff Contr. Expan. .1 .3
CROSS SECTION		
RIVER: Ryans Creek REACH: 1	RS: 2508	
INPUT Description: Station Elevation Data Sta Elev Sta	num= 31 Elev Sta Elev Sta	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	587. 58149. 921584. 9249. 602576. 28322. 862574. 68349. 69574. 11450. 66579. 02455. 366571. 66487. 73575. 1496. 418580. 99539. 779583. 17549. 96594. 38600. 434597. 51611. 284	7 574.12 373.339 573.51 6 574.69 461.507 570.47 5 576.13 507.437 577.09 7 585.75 560.04 588.13
	num= 5 n Val Sta n Val Sta . 04 450. 66 . 04 487. 73	* * * * * * * * * * * * * * * * * * * *
Bank Sta: Left Right 450.66 487.73	Lengths: Left Channel Right 167.7 233.9 253.1	

Page 3

CROSS SECTION

RIVER: Ryans Creek RS: 2275 REACH: 1 I NPUT Description: Interpolated XSEC Station Elevation Data num= 49 Sta Elev Sta Elev Sta Elev Sta Sta Elev Sta Elev 0 585.33 44.92 584.32 56.56 584.04 113.74 582.7 134.67 582.11 226. 24 169.27 581.15 224.22 579.7 579.65 250.12 579.14 250.42 577.12 270.21 576.4 282.03 575.85 290.03 575.43 314.13 574.85 335.37 574.29 338.37 574.26 357.55 574.02 380.46 573.97 394.8 575.22 404.83 576.16 405.12 576.07 405.92 575.61 409.11 410.44 573.61 572.64 412.09 572.08 416.69 570.85 569.61 421.56 425.9 570.51 429.22 571.08 430.95 571.21 440.13 572.44 443.92 574.43 454.91 575.24 468.87 576.1 479.36 577.02 485.13 577.59 497.43 578.84 507.97 580.07 509.81 580.36 522.7 582.53 535.46 584.59 543.05 585.76 565.98 589.39 570.65 589.93 586.59 591.9 600. 32 593. 51 605. 17 594. 16 612. 57 595.22 626.74 597.06 Manning's n Values num= 5 Sta n Val ******* 0 . 06 250. 12 . 04 404. 83 . 04 443. 92 .04 507.97 . 1 Bank Sta: Left Right Lengths: Left Channel Ri ght Coeff Contr. Expan. 404.83 443.92 165.4 235.8 269.5 . 3 . 1 CROSS SECTION **RIVER:** Ryans Creek REACH: 1 RS: 2040 I NPUT Description: Station Elevation Data num= 24 Sta Sta Elev Sta Elev Elev Sta Elev Sta Elev ****** 0 581.9 50.161 580.84 100.862 579.88 150.103 578.42 200.63 577.11 250. 103 576. 37 300. 06 575 350.109 359 573.306 359.389 573.44 573.3 360. 473 572. 86 364. 785 570.76 366.588 569.61 375.036 569.07 381.617 568.76 385. 202 570. 54 387. 953 571.69 400.108 573.76 400.11 573.76 449.98 575.98 477.612 577.3 547.81 585.23 595.223 587.26 621.324 588.76 Manning's n Values num= 5 Sta n Val . 06 100. 862 . 04 0 359 . 04 400. 11 . 04 477. 612 . 1 Bank Sta: Left Right Lengths: Left Channel Ri ght Coeff Contr. Expan. 359 400.11 7 10.5 . 3 - 7 . 5 Ineffective Flow 2 num= Sta L Sta R Elev Permanent 0 345 579.3 F F 405 621.324 579.3

CROSS SECTION

RIVER: Ryans Creek RS: 2026 REACH: 1 I NPUT Description: U/S Face of Bridge Station Elevation Data 19 num= Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev ***** ******** 0 580.07 50.169 579.63 99.049 579.07 150.23 578.73 200.253 578.69 251.513 578.15 301.206 578.22 315.5 578.8 317.5 568.58 354.5 568.58 356.5 578.7 402.381 579.48 434.757 579.93 441.297 579.77 461.679 580.1 482.935 579.56 503.38 580.44 549.01 581.24 589.84 581.85 Manning's n Values 2 num= Sťa n Val Sta n Val ****** 0 . 04 402. 381 . 04 Bank Sta: Left Ri ght Lengths: Left Channel Ri ght Coeff Contr. Expan. 315.5 356.5 - -47.7 46 44 . 3 .5 2 Ineffective Flow num= Sta L Sta R Elev Permanent 0 314.5 579.3 F 357.5 589.84 579.3 F CULVERT RIVER: Ryans Creek REACH: 1 RS: 2000 I NPUT Description: IL ROUTE 102 Distance from Upstream XS = 1 Deck/Roadway Width 44 = Weir Coefficient 2.6 = Upstream Deck/Roadway Coordinates 22 num= Sta Hi Cord Lo Cord Sta Hi Cord Lo Cord Sta Hi Cord Lo Cord ***** -166 584.6 -116 583.57 -66 582.59 34 580.94 -16 581.62 84 580.26 134 579.9 184 579.55 234 579.26 252 579.17 284 579.26 334 579.64 384 580.07 434 580.59 484 581.19 534 581.86 584 582.53 634 583.35 684 584.18 734 584.85 784 585.37 585.71 834 Upstream Bridge Cross Section Data 19 Station Elevation Data num= Elev Sta Elev Sta Sta El ev Sta Elev Sta Elev ******** 0 580.07 50.169 579.63 99.049 579.07 150.23 578.73 200.253 578.69 251.513 578.15 301.206 578.22 315.5 578.8 317.5 568.58 354.5 568.58 356.5 578.7 402.381 579.48 434.757 579.93 441.297 579.77 461.679 580.1 580.44 549.01 581.24 589.84 581.85 482.935 579.56 503.38 2 Manning's n Values num=

********** ***** 0 . 04 402. 381 . 04 Bank Sta: Left Ri ght Coeff Contr. Expan. 315.5 356.5 . 3 . 5 Ineffective Flow 2 num= Elev Permanent Sta L Sta R 0 314.5 579.3 F 357.5 589.84 579.3 F Downstream Deck/Roadway Coordinates num= 22 Sta Hi Cord Lo Cord Sta Hi Cord Lo Cord Sta Hi Cord Lo Cord ***** -149 584.6 -99 583.57 -49 582.59 51 580.94 101 580.26 1 581.62 151 579.9 201 579.55 251 579.26 269 579.17 301 579.26 351 579.64 401 580.07 451 580.59 501 581.19 551 581.86 601 582.53 651 583.35 701 584.18 751 584.85 801 585.37 851 585.71 Downstream Bridge Cross Section Data Station Elevation Data num= 18 Elev Elev Sta Elev Sta Sta Elev Sta Sta Elev ***** 0 581.76 49.101 581.47 99.149 581.1 152.194 578.69 201.052 577.88 251.501 576.47 302.302 577.37 329 577.35 331.5 568.5 368.5 568.5 370 578.993 371 579.01 383.139 579.46 410.477 579.6 456.934 580.07 505.876 580.49 552.003 581.22 594.245 582.31 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val ***** 0 . 1 329 . 055 370 . 1 Coeff Contr. Ri ght 370 Bank Sta: Left Expan. 329 . 3 . 5 Ineffective Flow 2 num= Sta L Sta R Elev Permanent 0 328 578 F 371 594.245 578 F Upstream Embankment side slope 0 horiz. to 1.0 vertical = Downstream Embankment side slope = Maximum allowable submergence for weir flow = Elevation at which weir flow begins = Energy head used in spillway design = 0 horiz. to 1.0 vertical . 98 Spillway height used in design = Weir crest shape = Broad Crested Number of Culverts = 3Culvert Name Ri se Span Shape Culvert #3 Box 9 8.8 FHWA Chart # 8 - flared wingwalls FHWA Scale # 1 - Wingwall flared 30 to 75 deg. Solution Criteria = Highest U.S. EG Culvert Upstrm Dist Length Top n Bottom n Depth Blocked Entrance Loss Coef Exit Loss Coef Page 6

Sta n Val

Sta n Val

I L102acrossRaynsCK. rep . 011 . 011 2 1 1 44 . 4 Upstream Elevation = 567.58 Centerline Station = 322.6 Downstream Elevation = 567.5Centerline Station = 336.6 Culvert Name Shape Ri se Span Box 9 Culvert #1 15.9 FHWA Chart # 8 - flared wingwalls FHWA Scale # 1 - Wingwall flared 30 to 75 deg. Solution Criteria = Highest U.S. EG Culvert Upstrm Dist Length Top n Bottom n Depth Blocked Entrance Loss Coef Exit Loss Coef 1 44 . 011 . 011 1 . 4 1 Elevation = 567.58Upstream Centerline Station = 335.85 Downstream Elevation = 567.5Centerline Station = 349.85 Culvert Name Shape Ri se Span Culvert #2 Box 9 8.8 FHWA Chart # 8 - flared wingwalls FHWA Scale # 1 - Wingwall flared 30 to 75 deg. Solution Criteria = Highest U.S. EG Culvert Upstrm Dist Length Top n Bottom n Depth Blocked Entrance Loss Coef Exit Loss Coef **4**4 . 011 . 011 1 2 . 4 1 Upstream Elevation = 567.58Centerline Station = 349.08 Downstream Elevation = 567.5Centerline Station = 363.1 CROSS SECTION **RIVER:** Ryans Creek REACH: 1 RS: 1977 I NPUT Description: D/S Face of Bridge Station Elevation Data num= 18 Sta Elev Sta Elev Sta Sta Elev Sta Elev Elev ******* 0 581.76 49.101 581.47 99.149 581. 1 152. 194 578. 69 201. 052 577. 88 251.501 576.47 302.302 577.37 329 577.35 331.5 568.5 368.5 568.5 371 579.01 383.139 370 578.993 579.46 410.477 579.6 456.934 580.07 505.876 580.49 552.003 581.22 594.245 582.31 Manning's n Values num= Sta Sťa n Val n Val Sta n Val **************** ***** ******* 0 . 1 . 055 329 370 . 1 Bank Sta: Left Lengths: Left Channel Right Coeff Contr. Ri ght Expan. 329 **3**70 11 14.5 14 . 3 . 5 Ineffective Flow 2 num= Sta L Sta R Elev Permanent 0 F 328 578 F 371 594.245 578

CROSS SECTION

REACH: 1 RS: 1966 I NPUT Description: Station Elevation Data num= 28 Elev Sta Elev Elev Sta Elev Sta Elev Sta Sta ***** 0 582.34 48.536 581.58 97.087 580.78 147.691 578.89 198.83 576.86 234.409 574.99 250.806 574.6 271.804 574.15 317.52 573.85 326.34 574.05 326. 343 574. 05 334. 84 573. 741 334. 869 573.74 338.634 571.27 341.982 569.98 352.252 568.85 361.121 569.69 364.88 571.08 368.264 572.09 376.587 574.18 376.59 574.18 390.17 575.5 390.174 575. 5 442. 069 575. 47 468. 234 576. 13 496.783 578.62 544.104 580.82 587.298 582.06 Manning's n Values num= 3 Sťa n Val Sta n Val Sta n Val ***** 0 . 1 334.84 .055 376.59 . 1 Bank Sta: Left Right 334.84 376.59 Lengths: Left Channel Right Coeff Contr. Expan. 2 289 258 Ĭ82 .3.5 Ineffective Flow num= Sta L Sta R Elev Permanent 0 335 578 F 374 587.298 F 578 CROSS SECTION **RIVER:** Ryans Creek REACH: 1 RS: 1708 I NPUT Description: Interpolated XSEC Station Elevation Data num= 48 Sta Elev Elev Sta Elev Sta Elev Sta Elev Sta ***** 61.66 584.8 0 585.78 9.22 585.69 30.82 585.41 31.16 585.41 93.04 583.67 93.8 583.62 110.22 582.54 126.28 580.72 129.72 580.29 148.87 577.92 151.68 577.64 159.29 576.83 172.35 575.48 172.62 575.45 194.87 573.42 201.66 573.03 207.26 572.83 212.65 572.4 212.68 572.38 216.13 569.84 216.74 569.49 219.2 568.87 228.62 567.93 235.67 568.61 569.41 241.36 570.01 241.57 277.29 570.05 247.98 238.67 572.68 259.71 573.5 260.44 573.51 266.79 572.05 572.64 287.72 573.32 304.53 573.29 310.34 573.37 325.85 573.33 327.13 573.33 351.78 574.19 353.79 574.21 364.08 575.28 370.87 576.58 377.55 577.89 389.56 580.27 392.65 580.61 404.36 581.81 417.03 582.5 429.95 583.41 Manning's n Values num= 3 Stan Val Stan Val Stan Val Sta n Val . 1 0 . 1 212. 65 . 055 247. 98 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 212.65 247.98 . 1 - 1 222 202 Ž02 . 3 Ineffective Flow num= 1 Sta L Sta R Elev Permanent 325 429.95 F

CROSS SECTION

RIVER: Ryans Creek

RIVER: Ryans Creek REACH: 1	RS: 1485
INPUT Description: Station Elevation Data Sta Elev Sta	num= 30 Elev Sta Elev Sta Elev Sta Elev
0 589.22 3.922 55.187 584.01 64.531 90.47 571.048 94.183 119.381 571.18 129.867 171.886 571.1 184.941 228.474 575.78 238.59	589. 2713. 258589. 2439. 58588. 446. 889587. 21580. 3973. 323576. 882. 904572. 9290. 468571. 05567. 96104. 978567. 02114. 613567. 95119. 38571. 179571. 52135. 214568. 6144. 055569. 8152. 838571. 15570. 57208. 475569. 7217. 139571. 28222. 854573. 51579. 88251. 054582. 42261. 718583. 37272. 598584. 76
Manning's n Values Sta n Val Sta ************************************	num= 3 n Val Sta n Val .055 119.38 .1
Bank Sta: Left Right 90.47 119.38	Lengths: Left Channel Right Coeff Contr. Expan. 230.3 335 197.7 .1 .3
CROSS SECTION	
RIVER: Ryans Creek REACH: 1	RS: 1144
INPUT Description: Initerpolate Station Elevation Data Sta Elev Sta	d XSEC num= 48 Elev Sta Elev Sta Elev Sta Elev
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	585.03 10.02 584.23 10.69 584.15 18.13 583.15 580.04 34.88 579.44 37.81 579.15 37.97 579.11 577.69 50.07 576.62 52.03 576.14 54.74 575.45 570.78 66.84 569.89 72.94 568.17 78.77 566.31 564.82 101.74 566.31 106.15 566.83 111.33 568.81 567.48 128.84 567.88 130.95 568.06 137.94 568.72 568.54 158.57 568.27 163.47 568.16 174.14 567.94 567.65 189.07 568.38 193.58 569.45 193.62 569.46 572.38 206.13 572.51 215.79 573.65 216.04 573.68 574.06 233.18 574.56 574.56 574.56 574.56 574.56
Manning's n Values Sta n Val Sta ************************************	num= 3 n Val Sta n Val ************************************
Bank Sta: Left Right 72.94 111.33	Lengths: Left Channel Right Coeff Contr. Expan. 203.7 205 203.7 .1 .3
CROSS SECTION	

RIVER: Ryans Creek REACH: 1

RS: 939

I L102acrossRaynsCK. rep

			I L102acrossRayns	CK. rep
I NPUT Description:				
Station Elevation Data	num= 26			
Sta Elev Sta	Elev Sta	Elev Sta	El ev Sta	Elev
****				******
0 581.527.609546		577.3518.23405	573. 326. 50088	571.07
28.84959 571.0931.07133	571.0238.03796		571.8849.00148	567.46
55. 41613 565. 2981. 58443 116. 2802 566. 32 129. 809	563. 2186. 42336 566. 26138. 3556	565. 72149. 9176	565.07103.2744 565.81155.8341	566.45 565.6
164. 3529 565. 41173. 2559	565. 16180. 8474		564. 65193. 7582	564.36
500 569		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	001.00170.7002	001.00
Manning's n Values	num= 3			
Sta n Val Sta		n Val		
0 . 155. 41613				
0 . 155. 41015	. 055105. 2744	. 1		
Bank Sta: Left Right	Lengths: Left Cha	annel Right	Coeff Contr.	Expan.
55. 41613103. 2744	0	0 0	. 1	. 3
******	* * * * * * * * * * * * * * * * * * * *	************	*******	****
SUMMARY OF MANNING'S N VA	LUES			
River: Ryans Creek				
*****	* * * * * * * * * * * * * * * * * * * *	*****	****	****
* Reach * Rive	r Sta. * n1	* n2 *	n3 * n4	* n5 *
* * * * * * * * * * * * * * * * * * * *	*****	*******	****	****
*1 * 302		. 04*		.1*
*1 * 277		. 04*	. 04* . 0	
1 200	0.0)6* . 04*)4* .1*
221	5.0	06* . 04* 06* . 04*	.04* .0 .04* .0)4* . 1*)4* . 1*
*1 * 202)4* . 04*	.04 .0	* *
	0 *Culvert	* *	* *	*
*1 * 197	7 * .	1* . 055*	. 1*	* *
*1 * 196	6 * .	1* . 055*	. 1*	* *
*1 * 170	8 * .	1* .055*	. 1*	* *
*1 * 148 *1 * 114	5 ^ . 4 *	1* .055* 1* .055*	. 1* . 1*	* *
*1 * 939	·4 · ·	1* . 055*	. 1*	* *
۲۵۶ * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	· · · · · · · · · · · · · · · · · · ·		****
* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	*****	****	****
SUMMARY OF REACH LENGTHS				
Diver Duene Creek				
River: Ryans Creek	* * * * * * * * * * * * * * * * * * *	*****	****	
		* Channel *		
****	*****	*******	****	
*1 * 302	2 * 242.	5* 250*	248.3*	
*1 * 277	2 * 279.	8* 262.7*	257.1*	
*1 * 250			253.1*	
*1 * 227		4* 235.8* 7* 10.5*	269. 5*	
204	0	7* 10.5* 7* 46*	7* 44*	
*1 * 202 *1 * 200	-0 47.		44 **	
*1 * 197	7 *	11* 14.5*	14*	
*1 * 196	6 * 28	39* 258*	182*	
*1 * 170		22* 202*	202*	
			Page 10	

						IL102across	RaynsCK. rep
*1	*	1485	*	230.3*	335*	197.7*	5
*1	*	1144	*	203.7*	205*	203.7*	
*1	*	939	*	0*	0*	0*	
*********	*******		*******	*******	********	*******	
SUMMARY OF River: Ryar	CONTRACTI					*****	* * * * * * * * * * * * * *
Kiver. Kyai	13 CI CEK						
* * * * * * * * * * * *	******	* * * * * * * * * *	*******	*******	* * * * * * * * *		
* Reach	۲ * * * * * * * * * *	River Sta	a. * Co	ontr. *	Expan. *		
*1	*	3022	*	1*	2*		
*1	*						
1			*	1*	2*		
*1	*	2772 2508	*	. 1*	. 3*		

*1	*	2275	*	. 1*	. 3*	
*1	*	2040	*	. 3*	. 5*	
*1	*	2026	*	. 3*	. 5*	
*1	*	2000	*Cul	vert *	*	
*1	*	1977	*	. 3*	. 5*	
*1	*	1966	*	. 3*	. 5*	
*1	*	1708	*	. 1*	. 3*	
*1	*	1485	*	. 1*	. 3*	
*1	*	1144	*	. 1*	. 3*	
*1	*	939	*	. 1*	. 3*	
* * * * * * * * * * * *	* * * * * * * * *	* * * * * * * *	* * * * * *	* * * * * * * * * * *	*******	

HEC-RAS Plan: Proposed 1 River: Ryans Creek Reach: 1 Profile: 2-yr

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
1	3022	2-yr	242.00	569.16	574.77	571.52	574.84	0.000656	2.10	115.15	33.93	0.19
1	2772	2-yr	242.00	569.81	574.42		574.57	0.001975	3.03	85.05	71.60	0.33
1	2508	2-yr	242.00	570.47	573.98		574.09	0.001586	2.79	101.07	91.87	0.30
1	2275	2-yr	242.00	569.61	573.34		573.54	0.003778	3.62	66.81	32.36	0.44
1	2040	2-yr	242.00	568.76	572.73	570.99	572.87	0.002095	2.98	81.13	33.36	0.34
1	2026	2-yr	242.00	568.58	572.78	569.68	572.81	0.000318	1.52	158.81	38.65	0.13
1	2000		Culvert									
1	1977	2-yr	242.00	568.50	572.73	569.60	572.76	0.000586	1.51	160.22	38.80	0.13
1	1966	2-yr	242.00	568.85	572.58	571.03	572.72	0.003833	2.96	81.79	33.57	0.33
1	1708	2-yr	242.00	567.93	571.39		571.57	0.005138	3.34	72.48	30.82	0.38
1	1485	2-yr	242.00	567.02	570.39		570.55	0.004910	3.34	89.32	65.19	0.37
1	1144	2-yr	242.00	564.82	567.59		567.91	0.015086	4.50	53.84	35.09	0.63
1	939	2-yr	242.00	562.46	565.56	565.05	565.67	0.007901	3.05	125.39	156.77	0.45

HEC-RAS Plan: Proposed 1 River: Ryans Creek Reach: 1 Profile: 2-yr

Reach	River Sta	Profile	E.G. Elev	W.S. Elev	Vel Head	Frctn Loss	C & E Loss	Q Left	Q Channel	Q Right	Top Width
			(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft)
1	3022	2-yr	574.84	574.77	0.07	0.26	0.01		242.00		33.93
1	2772	2-yr	574.57	574.42	0.14	0.46	0.01	2.72	239.28		71.60
1	2508	2-yr	574.09	573.98	0.11	0.54	0.01	12.50	229.50		91.87
1	2275	2-yr	573.54	573.34	0.20	0.65	0.02		242.00		32.36
1	2040	2-yr	572.87	572.73	0.14	0.01	0.05		242.00		33.36
1	2026	2-yr	572.81	572.78	0.04				242.00		38.65
1	2000		Culvert								
1	1977	2-yr	572.76	572.73	0.04	0.02	0.03		242.00		38.80
1	1966	2-yr	572.72	572.58	0.14	1.14	0.01		242.00		33.57
1	1708	2-yr	571.57	571.39	0.17	1.01	0.00		242.00		30.82
1	1485	2-yr	570.55	570.39	0.16	2.63	0.02		224.21	17.79	65.19
1	1144	2-yr	567.91	567.59	0.31	2.18	0.06		241.97	0.03	35.09
1	939	2-yr	565.67	565.56	0.11			0.03	182.60	59.37	156.77

HEC-RAS Plan: Proposed 1 River: Ryans Creek Reach: 1 Profile: 2-yr

Reach	River Sta	Profile	E.G. US.	W.S. US.	E.G. IC	E.G. OC	Min El Weir Flow	Q Culv Group	Q Weir	Delta WS	Culv Vel US	Culv Vel DS
			(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(ft)	(ft/s)	(ft/s)
1	2000 Culvert #3	2-yr	572.81	572.78	571.27	572.82	579.31	56.72		0.05	2.05	2.00
1	2000 Culvert #1	2-yr	572.81	572.78	570.55	572.81	579.31	128.57		0.05	1.95	1.91
1	2000 Culvert #2	2-yr	572.81	572.78	571.27	572.82	579.31	56.72		0.05	2.05	2.00

_ocation:	River: Ryans Creek Reach: 1 RS: 3022 Profile: 2-yr									
Warning:	Divided flow computed for this cross-section.									
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or									
	greater than 1.4. This may indicate the need for additional cross sections.									
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was									
	used.									
Location:	River: Ryans Creek Reach: 1 RS: 2772 Profile: 2-yr									
Warning:	Divided flow computed for this cross-section.									
Location:	River: Ryans Creek Reach: 1 RS: 2508 Profile: 2-yr									
Warning:	Divided flow computed for this cross-section.									
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or									
	greater than 1.4. This may indicate the need for additional cross sections.									
Location:	River: Ryans Creek Reach: 1 RS: 2040 Profile: 2-yr									
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or									
	greater than 1.4. This may indicate the need for additional cross sections.									
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was									
	used.									
Location:	River: Ryans Creek Reach: 1 RS: 2026 Profile: 2-yr									
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface									
	was used.									
Location:	River: Ryans Creek Reach: 1 RS: 1977 Profile: 2-yr									
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or									
	greater than 1.4. This may indicate the need for additional cross sections.									
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface									
	was used.									
Location:	River: Ryans Creek Reach: 1 RS: 1966 Profile: 2-yr									
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This									
	may indicate the need for additional cross sections.									
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was									
	used.									
Location:	River: Ryans Creek Reach: 1 RS: 1708 Profile: 2-yr									
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This									
	may indicate the need for additional cross sections.									
Location:	River: Ryans Creek Reach: 1 RS: 1485 Profile: 2-yr									
Warning:	Divided flow computed for this cross-section.									
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or									
	greater than 1.4. This may indicate the need for additional cross sections.									
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This									
	may indicate the need for additional cross sections.									
Location:	River: Ryans Creek Reach: 1 RS: 1144 Profile: 2-yr									
Warning:	Divided flow computed for this cross-section.									
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This									
	may indicate the need for additional cross sections.									
Location:	River: Ryans Creek Reach: 1 RS: 939 Profile: 2-yr									
Warning:	Divided flow computed for this cross-section.									

HEC-RAS Plan: Proposed 1 River: Ryans Creek Reach: 1 Profile: 10-yr

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
1	3022	10-yr	408.00	569.16	575.55	572.23	575.66	0.000923	2.68	183.67	125.84	0.24
1	2772	10-yr	408.00	569.81	575.20		575.34	0.001759	3.24	159.89	107.08	0.32
1	2508	10-yr	408.00	570.47	574.88		574.96	0.001098	2.65	209.33	139.91	0.25
1	2275	10-yr	408.00	569.61	574.32		574.56	0.003075	3.98	112.02	86.00	0.42
1	2040	10-yr	408.00	568.76	573.79	571.69	573.96	0.002039	3.34	125.75	61.74	0.34
1	2026	10-yr	408.00	568.58	573.83	570.13	573.90	0.000448	2.04	199.75	39.07	0.16
1	2000		Culvert									
1	1977	10-yr	408.00	568.50	573.75	570.05	573.81	0.000845	2.04	199.96	39.23	0.16
1	1966	10-yr	408.00	568.85	573.56	571.65	573.75	0.003987	3.47	117.50	39.00	0.35
1	1708	10-yr	408.00	567.93	572.24		572.50	0.005764	4.08	100.44	38.29	0.42
1	1485	10-yr	408.00	567.02	571.20		571.40	0.004977	3.87	157.73	116.41	0.39
1	1144	10-yr	408.00	564.82	568.09	567.66	568.58	0.018348	5.66	77.96	65.09	0.71
1	939	10-yr	408.00	562.46	565.98	565.43	566.11	0.007910	3.46	204.15	212.75	0.46

HEC-RAS Plan: Proposed 1 River: Ryans Creek Reach: 1 Profile: 10-yr

Reach	River Sta	Profile	E.G. Elev	W.S. Elev	Vel Head	Frctn Loss	C & E Loss	Q Left	Q Channel	Q Right	Top Width
			(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft)
1	3022	10-yr	575.66	575.55	0.10	0.31	0.00	28.42	379.58		125.84
1	2772	10-yr	575.34	575.20	0.14	0.37	0.02	72.83	335.17		107.08
1	2508	10-yr	574.96	574.88	0.08	0.39	0.02	115.27	292.73		139.91
1	2275	10-yr	574.56	574.32	0.24	0.58	0.02	9.21	398.79		86.00
1	2040	10-yr	573.96	573.79	0.17	0.01	0.05	4.29	403.71	0.00	61.74
1	2026	10-yr	573.90	573.83	0.06				408.00		39.07
1	2000		Culvert								
1	1977	10-yr	573.81	573.75	0.06	0.02	0.04		408.00		39.23
1	1966	10-yr	573.75	573.56	0.19	1.23	0.02		408.00		39.00
1	1708	10-yr	572.50	572.24	0.26	1.08	0.02		407.90	0.10	38.29
1	1485	10-yr	571.40	571.20	0.20	2.79	0.03	0.01	348.04	59.95	116.41
1	1144	10-yr	568.58	568.09	0.49	2.36	0.11		402.73	5.27	65.09
1	939	10-yr	566.11	565.98	0.13			0.44	270.24	137.32	212.75

HEC-RAS Plan: Proposed 1 River: Ryans Creek Reach: 1 Profile: 10-yr

Reach	River Sta	Profile	E.G. US.	W.S. US.	E.G. IC	E.G. OC	Min El Weir Flow	Q Culv Group	Q Weir	Delta WS	Culv Vel US	Culv Vel DS
			(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(ft)	(ft/s)	(ft/s)
1	2000 Culvert #3	10-yr	573.90	573.83	572.05	573.91	579.31	98.76		0.09	2.69	2.64
1	2000 Culvert #1	10-yr	573.90	573.83	571.33	573.89	579.31	210.48		0.09	2.56	2.52
1	2000 Culvert #2	10-yr	573.90	573.83	572.05	573.91	579.31	98.76		0.09	2.69	2.64

Errors Warnings and Notes for Plan : Proposed 1

Location:	River: Ryans Creek Reach: 1 RS: 3022 Profile: 10-yr
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was
	used.
Location:	River: Ryans Creek Reach: 1 RS: 2772 Profile: 10-yr
Warning:	Divided flow computed for this cross-section.
Location:	River: Ryans Creek Reach: 1 RS: 2508 Profile: 10-yr
Warning:	Divided flow computed for this cross-section.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or
wanning.	
	greater than 1.4. This may indicate the need for additional cross sections. River: Rvans Creek Reach: 1 RS: 2275 Profile: 10-vr
Location:	
Warning:	Divided flow computed for this cross-section.
Location:	River: Ryans Creek Reach: 1 RS: 2040 Profile: 10-yr
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or
	greater than 1.4. This may indicate the need for additional cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was
	used.
Location:	River: Ryans Creek Reach: 1 RS: 2026 Profile: 10-yr
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface
	was used.
Location:	River: Ryans Creek Reach: 1 RS: 1977 Profile: 10-yr
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or
<u> </u>	greater than 1.4. This may indicate the need for additional cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface
	was used.
Location:	River: Ryans Creek Reach: 1 RS: 1966 Profile: 10-yr
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This
	may indicate the need for additional cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was
	used.
Location:	River: Ryans Creek Reach: 1 RS: 1708 Profile: 10-yr
Warning:	Divided flow computed for this cross-section.
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This
	may indicate the need for additional cross sections.
Location:	River: Ryans Creek Reach: 1 RS: 1485 Profile: 10-yr
Warning:	Divided flow computed for this cross-section.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or
	greater than 1.4. This may indicate the need for additional cross sections.
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This
0	may indicate the need for additional cross sections.
_ocation:	River: Ryans Creek Reach: 1 RS: 1144 Profile: 10-yr
Warning:	Divided flow computed for this cross-section.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or
vvanning.	
A /	greater than 1.4. This may indicate the need for additional cross sections.
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This
	may indicate the need for additional cross sections.
Location:	River: Ryans Creek Reach: 1 RS: 939 Profile: 10-yr
Warning:	Divided flow computed for this cross-section.

HEC-RAS Plan: Proposed 1 River: Ryans Creek Reach: 1 Profile: 50-yr

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
1	3022	50-yr	866.00	569.16	576.83	573.71	576.93	0.000814	2.98	409.90	193.12	0.23
1	2772	50-yr	866.00	569.81	576.53		576.67	0.001402	3.45	328.39	152.46	0.30
1	2508	50-yr	866.00	570.47	576.31		576.38	0.000750	2.66	436.59	180.17	0.22
1	2275	50-yr	866.00	569.61	576.04		576.17	0.001340	3.44	351.77	188.20	0.29
1	2040	50-yr	866.00	568.76	575.62	573.13	575.85	0.001482	3.94	235.61	164.73	0.32
1	2026	50-yr	866.00	568.58	575.65	571.14	575.81	0.000803	3.19	271.31	39.78	0.22
1	2000		Culvert									
1	1977	50-yr	866.00	568.50	575.44	571.05	575.61	0.001592	3.24	267.13	39.95	0.22
1	1966	50-yr	866.00	568.85	575.15	572.93	575.51	0.004417	4.83	179.28	155.14	0.40
1	1708	50-yr	866.00	567.93	573.42	571.98	573.95	0.008132	5.94	177.17	132.58	0.52
1	1485	50-yr	866.00	567.02	572.36		572.61	0.004928	4.75	307.67	134.73	0.41
1	1144	50-yr	866.00	564.82	568.90	568.90	569.73	0.022817	7.68	151.55	117.92	0.83
1	939	50-yr	866.00	562.46	566.70	566.05	566.87	0.007907	4.19	390.77	297.29	0.48

HEC-RAS Plan: Proposed 1 River: Ryans Creek Reach: 1 Profile: 50-yr

Reach	River Sta	Profile	E.G. Elev	W.S. Elev	Vel Head	Frctn Loss	C & E Loss	Q Left	Q Channel	Q Right	Top Width
			(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft)
1	3022	50-yr	576.93	576.83	0.10	0.26	0.00	245.90	559.53	60.57	193.12
1	2772	50-yr	576.67	576.53	0.14	0.27	0.02	344.73	513.34	7.92	152.46
1	2508	50-yr	576.38	576.31	0.07	0.20	0.01	441.39	420.27	4.34	180.17
1	2275	50-yr	576.17	576.04	0.13	0.31	0.01	280.23	564.85	20.92	188.20
1	2040	50-yr	575.85	575.62	0.22	0.01	0.03	74.39	773.75	17.86	164.73
1	2026	50-yr	575.81	575.65	0.16				866.00		39.78
1	2000		Culvert								
1	1977	50-yr	575.61	575.44	0.16	0.04	0.06		866.00		39.95
1	1966	50-yr	575.51	575.15	0.36	1.51	0.05		866.00		155.14
1	1708	50-yr	573.95	573.42	0.53	1.26	0.08	6.83	840.47	18.70	132.58
1	1485	50-yr	572.61	572.36	0.25	2.81	0.06	2.67	586.88	276.45	134.73
1	1144	50-yr	569.73	568.90	0.83	2.56	0.20	1.06	780.30	84.63	117.92
1	939	50-yr	566.87	566.70	0.16			2.99	468.69	394.31	297.29

HEC-RAS Plan: Proposed 1 River: Ryans Creek Reach: 1 Profile: 50-yr

Read	h	River Sta	Profile	E.G. US.	W.S. US.	E.G. IC	E.G. OC	Min El Weir Flow	Q Culv Group	Q Weir	Delta WS	Culv Vel US	Culv Vel DS
				(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(ft)	(ft/s)	(ft/s)
1	2000	Culvert #3	50-yr	575.81	575.65	573.74	575.81	579.31	211.50		0.20	4.10	4.04
1	2000	Culvert #1	50-yr	575.81	575.65	573.16	575.80	579.31	443.01		0.20	4.06	4.01
1	2000	Culvert #2	50-yr	575.81	575.65	573.74	575.81	579.31	211.50		0.20	4.10	4.04

Location:	River: Ryans Creek Reach: 1 RS: 3022 Profile: 50-yr									
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was									
	used.									
Location:	River: Ryans Creek Reach: 1 RS: 2772 Profile: 50-yr									
Warning:	Divided flow computed for this cross-section.									
Location:	River: Ryans Creek Reach: 1 RS: 2508 Profile: 50-yr									
Warning:	Divided flow computed for this cross-section.									
Location:	River: Ryans Creek Reach: 1 RS: 2275 Profile: 50-yr									
Warning:	Divided flow computed for this cross-section.									
Location:	River: Ryans Creek Reach: 1 RS: 2040 Profile: 50-yr									
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was									
	used.									
Location:	River: Ryans Creek Reach: 1 RS: 2026 Profile: 50-yr									
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface									
	was used.									
Location:	River: Ryans Creek Reach: 1 RS: 1977 Profile: 50-yr									
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or									
	greater than 1.4. This may indicate the need for additional cross sections.									
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface									
	was used.									
Location:	River: Ryans Creek Reach: 1 RS: 1966 Profile: 50-yr									
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This									
	may indicate the need for additional cross sections.									
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was									
	used.									
Location:	River: Ryans Creek Reach: 1 RS: 1708 Profile: 50-yr									
Warning:	Divided flow computed for this cross-section.									
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This									
	may indicate the need for additional cross sections.									
Location:	River: Ryans Creek Reach: 1 RS: 1485 Profile: 50-yr									
Warning:	The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional									
	cross sections.									
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or									
	greater than 1.4. This may indicate the need for additional cross sections.									
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This									
	may indicate the need for additional cross sections.									
Location:	River: Ryans Creek Reach: 1 RS: 1144 Profile: 50-yr									
Warning:	The energy equation could not be balanced within the specified number of iterations. The program used									
	critical depth for the water surface and continued on with the calculations.									
Warning:	Divided flow computed for this cross-section.									
Warning:	The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional									
	cross sections.									
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or									
3	greater than 1.4. This may indicate the need for additional cross sections.									
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This									
	may indicate the need for additional cross sections.									
Warning:	During the standard step iterations, when the assumed water surface was set equal to critical depth, the									
	calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.									

HEC-RAS Plan: Proposed 1 River: Ryans Creek Reach: 1 Profile: 100-yr

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
1	3022	100-yr	1250.00	569.16	577.71	574.79	577.80	0.000665	2.99	583.52	203.99	0.21
1	2772	100-yr	1250.00	569.81	577.45		577.58	0.001152	3.50	484.68	192.00	0.28
1	2508	100-yr	1250.00	570.47	577.27		577.34	0.000610	2.66	627.61	214.77	0.20
1	2275	100-yr	1250.00	569.61	577.10		577.20	0.000814	3.10	574.40	229.31	0.24
1	2040	100-yr	1250.00	568.76	576.66	574.08	576.95	0.001474	4.48	297.71	233.48	0.33
1	2026	100-yr	1250.00	568.58	576.67	571.85	576.92	0.001107	4.01	312.05	40.18	0.25
1	2000		Culvert									
1	1977	100-yr	1250.00	568.50	576.34	571.77	576.60	0.002284	4.13	303.01	40.33	0.27
1	1966	100-yr	1250.00	568.85	575.91	573.72	576.46	0.005524	5.98	208.94	242.51	0.46
1	1708	100-yr	1250.00	567.93	574.10		574.73	0.008383	6.70	268.44	161.89	0.55
1	1485	100-yr	1250.00	567.02	572.97		573.28	0.005473	5.48	390.89	138.68	0.44
1	1144	100-yr	1250.00	564.82	569.45	569.45	570.36	0.021237	8.39	218.32	125.14	0.83
1	939	100-yr	1250.00	562.46	567.11	566.38	567.30	0.007901	4.66	517.99	325.46	0.50

HEC-RAS Plan: Proposed 1 River: Ryans Creek Reach: 1 Profile: 100-yr

Reach	River Sta	Profile	E.G. Elev	W.S. Elev	Vel Head	Frctn Loss	C & E Loss	Q Left	Q Channel	Q Right	Top Width
			(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft)
1	3022	100-yr	577.80	577.71	0.09	0.21	0.00	441.02	655.15	153.83	203.99
1	2772	100-yr	577.58	577.45	0.13	0.22	0.02	569.20	636.55	44.25	192.00
1	2508	100-yr	577.34	577.27	0.07	0.14	0.00	720.13	509.38	20.49	214.77
1	2275	100-yr	577.20	577.10	0.10	0.23	0.02	545.62	637.45	66.93	229.31
1	2040	100-yr	576.95	576.66	0.29	0.01	0.02	141.14	1070.30	38.56	233.48
1	2026	100-yr	576.92	576.67	0.25				1250.00		40.18
1	2000		Culvert								
1	1977	100-yr	576.60	576.34	0.26	0.05	0.09		1250.00		40.33
1	1966	100-yr	576.46	575.91	0.56	1.72	0.02		1250.00		242.51
1	1708	100-yr	574.73	574.10	0.62	1.35	0.09	29.56	1109.49	110.95	161.89
1	1485	100-yr	573.28	572.97	0.31	2.86	0.06	7.84	772.21	469.94	138.68
1	1144	100-yr	570.36	569.45	0.91	2.49	0.22	4.51	1027.69	217.80	125.14
1	939	100-yr	567.30	567.11	0.19			5.89	612.80	631.32	325.46

HEC-RAS Plan: Proposed 1 River: Ryans Creek Reach: 1 Profile: 100-yr

Reach	River Sta	Profile	E.G. US.	W.S. US.	E.G. IC	E.G. OC	Min El Weir Flow	Q Culv Group	Q Weir	Delta WS	Culv Vel US	Culv Vel DS
			(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(ft)	(ft/s)	(ft/s)
1	2000 Culvert #3	100-yr	576.92	576.67	574.96	576.92	579.31	307.43		0.33	5.16	5.11
1	2000 Culvert #1	100-yr	576.92	576.67	574.45	576.91	579.31	635.15		0.33	5.15	5.10
1	2000 Culvert #2	100-yr	576.92	576.67	574.96	576.92	579.31	307.43		0.33	5.16	5.11

	······································
Location:	River: Ryans Creek Reach: 1 RS: 3022 Profile: 100-yr
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was
	used.
Location:	River: Ryans Creek Reach: 1 RS: 2508 Profile: 100-yr
Warning:	Divided flow computed for this cross-section.
Location:	River: Ryans Creek Reach: 1 RS: 2040 Profile: 100-yr
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was
	used.
Location:	River: Ryans Creek Reach: 1 RS: 2026 Profile: 100-yr
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface
	was used.
Location:	River: Ryans Creek Reach: 1 RS: 1977 Profile: 100-yr
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or
	greater than 1.4. This may indicate the need for additional cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface
	was used.
Location:	River: Ryans Creek Reach: 1 RS: 1966 Profile: 100-yr
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This
	may indicate the need for additional cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was
	used.
Location:	River: Ryans Creek Reach: 1 RS: 1708 Profile: 100-yr
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This
	may indicate the need for additional cross sections.
Location:	River: Ryans Creek Reach: 1 RS: 1485 Profile: 100-yr
Warning:	The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional
	cross sections.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or
	greater than 1.4. This may indicate the need for additional cross sections.
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This
	may indicate the need for additional cross sections.
Location:	River: Ryans Creek Reach: 1 RS: 1144 Profile: 100-yr
Warning:	The energy equation could not be balanced within the specified number of iterations. The program used
	critical depth for the water surface and continued on with the calculations.
Warning:	The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional
	cross sections.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or
	greater than 1.4. This may indicate the need for additional cross sections.
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This
	may indicate the need for additional cross sections.
Warning:	During the standard step iterations, when the assumed water surface was set equal to critical depth, the
	calculated water surface came back below critical depth. This indicates that there is not a valid
	subcritical answer. The program defaulted to critical depth.

HEC-RAS Plan: Proposed 1 River: Ryans Creek Reach: 1 Profile: 200-yr

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
1	3022	200-yr	1700.00	569.16	578.75	576.22	578.83	0.000500	2.88	801.98	215.89	0.19
1	2772	200-yr	1700.00	569.81	578.57		578.68	0.000753	3.24	721.98	228.59	0.23
1	2508	200-yr	1700.00	570.47	578.46		578.52	0.000409	2.42	895.03	233.78	0.17
1	2275	200-yr	1700.00	569.61	578.36		578.43	0.000446	2.64	872.02	242.50	0.18
1	2040	200-yr	1700.00	568.76	577.92	574.69	578.25	0.001314	4.82	373.32	313.72	0.32
1	2026	200-yr	1700.00	568.58	577.89	572.59	578.24	0.001331	4.70	361.67	40.66	0.28
1	2000		Culvert									
1	1977	200-yr	1700.00	568.50	577.20	572.51	577.60	0.003061	5.03	338.19	108.45	0.31
1	1966	200-yr	1700.00	568.85	576.60	574.45	577.41	0.006802	7.20	236.07	269.97	0.52
1	1708	200-yr	1700.00	567.93	574.77		575.45	0.008296	7.29	362.90	179.13	0.56
1	1485	200-yr	1700.00	567.02	573.60		573.97	0.005777	6.10	479.74	141.86	0.46
1	1144	200-yr	1700.00	564.82	569.90	569.90	570.97	0.022049	9.34	275.51	128.58	0.86
1	939	200-yr	1700.00	562.46	567.52	566.69	567.73	0.007903	5.11	654.56	353.14	0.51

HEC-RAS Plan: Proposed 1 River: Ryans Creek Reach: 1 Profile: 200-yr

Reach	River Sta	Profile	E.G. Elev	W.S. Elev	Vel Head	Frctn Loss	C & E Loss	Q Left	Q Channel	Q Right	Top Width
			(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft)
1	3022	200-yr	578.83	578.75	0.08	0.15	0.00	673.83	740.15	286.02	215.89
1	2772	200-yr	578.68	578.57	0.10	0.15	0.01	863.93	722.30	113.76	228.59
1	2508	200-yr	578.52	578.46	0.06	0.08	0.00	1078.09	565.54	56.37	233.78
1	2275	200-yr	578.43	578.36	0.07	0.15	0.03	889.50	674.97	135.54	242.50
1	2040	200-yr	578.25	577.92	0.33	0.01	0.00	230.62	1401.64	67.74	313.72
1	2026	200-yr	578.24	577.89	0.34				1700.00		40.66
1	2000		Culvert								
1	1977	200-yr	577.60	577.20	0.39	0.06	0.12		1700.00		108.45
1	1966	200-yr	577.41	576.60	0.81	1.90	0.06		1700.00		269.97
1	1708	200-yr	575.45	574.77	0.68	1.39	0.09	68.37	1378.54	253.09	179.13
1	1485	200-yr	573.97	573.60	0.37	2.93	0.07	17.50	972.39	710.11	141.86
1	1144	200-yr	570.97	569.90	1.07	2.53	0.26	10.30	1305.34	384.35	128.58
1	939	200-yr	567.73	567.52	0.21			10.08	769.77	920.16	353.14

HEC-RAS Plan: Proposed 1 River: Ryans Creek Reach: 1 Profile: 200-yr

Reach	River Sta	Profile	E.G. US.	W.S. US.	E.G. IC	E.G. OC	Min El Weir Flow	Q Culv Group	Q Weir	Delta WS	Culv Vel US	Culv Vel DS
			(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(ft)	(ft/s)	(ft/s)
1	2000 Culvert #3	200-yr	578.24	577.89	576.18	578.23	579.31	414.17		0.69	6.72	6.72
1	2000 Culvert #1	200-yr	578.24	577.89	575.88	578.26	579.31	871.66		0.69	6.85	6.85
1	2000 Culvert #2	200-yr	578.24	577.89	576.18	578.23	579.31	414.17		0.69	6.72	6.72

	ings and Notes for Plan : Proposed 1
Location:	River: Ryans Creek Reach: 1 RS: 2508 Profile: 200-yr
Warning:	Divided flow computed for this cross-section.
Location:	River: Ryans Creek Reach: 1 RS: 2275 Profile: 200-yr
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or
	greater than 1.4. This may indicate the need for additional cross sections.
Location:	River: Ryans Creek Reach: 1 RS: 2040 Profile: 200-yr
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was
	used.
Location:	River: Ryans Creek Reach: 1 RS: 2026 Profile: 200-yr
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface
	was used.
Location:	River: Ryans Creek Reach: 1 RS: 1977 Profile: 200-yr
Warning:	Divided flow computed for this cross-section.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or
	greater than 1.4. This may indicate the need for additional cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface
	was used.
Location:	River: Ryans Creek Reach: 1 RS: 1966 Profile: 200-yr
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This
	may indicate the need for additional cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was
	used.
Location:	River: Ryans Creek Reach: 1 RS: 1708 Profile: 200-yr
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This
	may indicate the need for additional cross sections.
Location:	River: Ryans Creek Reach: 1 RS: 1485 Profile: 200-yr
Warning:	The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional
	cross sections.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or
	greater than 1.4. This may indicate the need for additional cross sections.
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This
	may indicate the need for additional cross sections.
Location:	River: Ryans Creek Reach: 1 RS: 1144 Profile: 200-yr
Warning:	The energy equation could not be balanced within the specified number of iterations. The program used
	critical depth for the water surface and continued on with the calculations.
Warning:	The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional
	cross sections.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or
	greater than 1.4. This may indicate the need for additional cross sections.
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This
	may indicate the need for additional cross sections.
Warning:	During the standard step iterations, when the assumed water surface was set equal to critical depth, the
	calculated water surface came back below critical depth. This indicates that there is not a valid
	subcritical answer. The program defaulted to critical depth.

HEC-RAS Plan: Proposed 1 River: Ryans Creek Reach: 1 Profile: 500-yr

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
1	3022	500-yr	2375.00	569.16	580.36	576.69	580.43	0.000322	2.65	1166.93	247.17	0.16
1	2772	500-yr	2375.00	569.81	580.26		580.34	0.000401	2.78	1147.63	264.96	0.18
1	2508	500-yr	2375.00	570.47	580.19		580.25	0.000246	2.17	1315.31	247.13	0.14
1	2275	500-yr	2375.00	569.61	580.15		580.20	0.000248	2.32	1341.79	301.14	0.14
1	2040	500-yr	2375.00	568.76	580.11	575.47	580.15	0.000182	2.15	1683.75	413.97	0.12
1	2026	500-yr	2375.00	568.58	579.81	573.58	580.08	0.000983	4.51	776.69	417.15	0.24
1	2000		Culvert									
1	1977	500-yr	2375.00	568.50	578.52	573.49	578.97	0.003240	5.60	584.00	207.38	0.32
1	1966	500-yr	2375.00	568.85	577.47	575.41	578.67	0.008492	8.80	269.92	300.21	0.59
1	1708	500-yr	2375.00	567.93	575.62		576.36	0.008069	7.93	490.45	194.92	0.56
1	1485	500-yr	2375.00	567.02	574.42		574.86	0.006074	6.86	597.66	145.91	0.48
1	1144	500-yr	2375.00	564.82	570.45	570.45	571.75	0.023372	10.57	347.83	132.31	0.91
1	939	500-yr	2375.00	562.46	568.03	567.03	568.27	0.007912	5.65	843.21	387.61	0.52

HEC-RAS Plan: Proposed 1 River: Ryans Creek Reach: 1 Profile: 500-yr

Reach	River Sta	Profile	E.G. Elev	W.S. Elev	Vel Head	Frctn Loss	C & E Loss	Q Left	Q Channel	Q Right	Top Width
			(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft)
1	3022	500-yr	580.43	580.36	0.07	0.09	0.00	1014.02	835.00	525.98	247.17
1	2772	500-yr	580.34	580.26	0.08	0.08	0.01	1323.66	793.04	258.30	264.96
1	2508	500-yr	580.25	580.19	0.05	0.05	0.00	1600.23	647.78	126.99	247.13
1	2275	500-yr	580.20	580.15	0.05	0.04	0.00	1360.63	752.64	261.73	301.14
1	2040	500-yr	580.15	580.11	0.04	0.00	0.07	1053.22	817.56	504.22	413.97
1	2026	500-yr	580.08	579.81	0.27			355.20	1986.70	33.10	417.15
1	2000		Culvert								
1	1977	500-yr	578.97	578.52	0.45	0.07	0.23	178.86	2196.14		207.38
1	1966	500-yr	578.67	577.47	1.20	2.08	0.23		2375.00		300.21
1	1708	500-yr	576.36	575.62	0.74	1.41	0.09	145.12	1739.20	490.68	194.92
1	1485	500-yr	574.86	574.42	0.44	3.02	0.09	36.32	1256.27	1082.41	145.91
1	1144	500-yr	571.75	570.45	1.30	2.59	0.32	22.59	1702.11	650.30	132.31
1	939	500-yr	568.27	568.03	0.25			17.77	988.81	1368.43	387.61

HEC-RAS Plan: Proposed 1 River: Ryans Creek Reach: 1 Profile: 500-yr

Reach	River Sta	Profile	E.G. US.	W.S. US.	E.G. IC	E.G. OC	Min El Weir Flow	Q Culv Group	Q Weir	Delta WS	Culv Vel US	Culv Vel DS
			(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(ft)	(ft/s)	(ft/s)
1	2000 Culvert #3	500-yr	580.09	579.81	577.20	580.07	579.31	509.77	285.32	1.29	8.28	8.28
1	2000 Culvert #1	500-yr	580.09	579.81	576.99	580.10	579.31	1070.15	285.32	1.29	8.41	8.41
1	2000 Culvert #2	500-yr	580.09	579.81	577.20	580.07	579.31	509.77	285.32	1.29	8.28	8.28

Location:	River: Ryans Creek Reach: 1 RS: 2040 Profile: 500-yr
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or
	greater than 1.4. This may indicate the need for additional cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was
	used.
Location:	River: Ryans Creek Reach: 1 RS: 2026 Profile: 500-yr
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface
	was used.
Location:	River: Ryans Creek Reach: 1 RS: 1977 Profile: 500-yr
Warning:	The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional
	cross sections.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or
	greater than 1.4. This may indicate the need for additional cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface
	was used.
Location:	River: Ryans Creek Reach: 1 RS: 1966 Profile: 500-yr
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This
	may indicate the need for additional cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was
	used.
Location:	River: Ryans Creek Reach: 1 RS: 1708 Profile: 500-yr
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This
	may indicate the need for additional cross sections.
Location:	River: Ryans Creek Reach: 1 RS: 1485 Profile: 500-yr
Warning:	The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional
	cross sections.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or
	greater than 1.4. This may indicate the need for additional cross sections.
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This
	may indicate the need for additional cross sections.
Location:	River: Ryans Creek Reach: 1 RS: 1144 Profile: 500-yr
Warning:	The energy equation could not be balanced within the specified number of iterations. The program used
	critical depth for the water surface and continued on with the calculations.
Warning:	The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional
	cross sections.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or
	greater than 1.4. This may indicate the need for additional cross sections.
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This
	may indicate the need for additional cross sections.
Warning:	During the standard step iterations, when the assumed water surface was set equal to critical depth, the
	calculated water surface came back below critical depth. This indicates that there is not a valid
	subcritical answer. The program defaulted to critical depth.

HEC-RAS

EXISTING VS. PROPOSED COMPARISONS

Reach	River Sta	ek Reach: 1 Profile	Plan	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
				(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
1	3022	10-yr	Existing 1	408.00	569.16	575.56	572.23	575.67	0.000911	2.67	185.06	126.26	0.2
1	3022	10-yr	Proposed 1	408.00	569.16	575.55	572.23	575.66	0.000923	2.68	183.67	125.84	0.2
	3022	50-yr	Existing 1	866.00	569.16	577.01	573.71	577.09	0.000664	2.75	443.93	195.39	0.2
1	3022	50-yr	Proposed 1	866.00	569.16	576.83	573.71	576.93	0.000814	2.98	409.90	193.12	0.2
1	3022	100-yr	Existing 1	1250.00	569.16	579.15	574.79	579.18	0.000201	1.89	889.82	220.50	0.1
1	3022	100-yr	Proposed 1	1250.00	569.16	577.71	574.79	577.80	0.000665	2.99	583.52	203.99	0.2
1	3022 3022	500-yr	Existing 1	2375.00	569.16	580.64	576.69	580.71	0.000271	2.48	1239.65	258.65	0.1
1	3022	500-yr	Proposed 1	2375.00	569.16	580.36	576.69	580.43	0.000322	2.65	1166.93	247.17	0.1
1	2772	10-yr	Existing 1	408.00	569.81	575.22		575.36	0.001708	3.20	162.03	107.46	0.3
1	2772	10-yr	Proposed 1	408.00	569.81	575.20		575.34	0.001759	3.24	159.89	107.08	0.3
1	2772	50-yr	Existing 1	866.00	569.81	576.77		576.88	0.001071	3.11	366.10	160.33	0.2
1	2772	50-yr	Proposed 1	866.00	569.81	576.53		576.67	0.001402	3.45	328.39	152.46	0.3
1	2772	100-yr	Existing 1	1250.00	569.81	579.09		579.13	0.000271	2.05	843.18	244.78	0.1
1	2772	100-yr	Proposed 1	1250.00	569.81	577.45		577.58	0.001152	3.50	484.68	192.00	0.2
1	2772	500-yr	Existing 1	2375.00	569.81	580.57		580.63	0.000325	2.57	1228.71	266.72	0.1
1	2772	500-yr	Proposed 1	2375.00	569.81	580.26		580.34	0.000401	2.78	1147.63	264.96	0.1
1	2508	10-yr	Existing 1	408.00	570.47	574.91		574.99	0.001038	2.59	214.38	140.69	0.2
1	2508	10-yr	Proposed 1	408.00	570.47	574.88		574.96	0.001098	2.65	209.33	139.91	0.2
1	2508	50-yr	Existing 1	866.00	570.47	576.61		576.67	0.000548	2.36	492.67	191.27	0.1
1	2508	50-yr	Proposed 1	866.00	570.47	576.31		576.38	0.000750	2.66	436.59	180.17	0.2
1	2508	100-yr	Existing 1	1250.00	570.47	579.05		579.07	0.000144	1.50	1034.86	240.77	0.1
1	2508	100-yr	Proposed 1	1250.00	570.47	577.27		577.34	0.000610	2.66	627.61	214.77	0.2
1	2508	500-yr	Existing 1	2375.00	570.47	580.51		580.56	0.000205	2.04	1393.86	248.88	0.1
1	2508	500-yr	Proposed 1	2375.00	570.47	580.19		580.25	0.000246	2.17	1315.31	247.13	0.1
1	2275	10-1/2	Existing 1	408.00	560.64	574.41		574.62	0.002748	3.81	119.53	90.50	0.4
1	2275 2275	10-yr 10-yr	Existing 1 Proposed 1	408.00	569.61 569.61	574.41		574.62	0.002748	3.81	119.53	90.50	0.4
1	2275	50-yr	Existing 1	408.00	569.61	576.44		576.53	0.003075	2.83	431.17	203.69	0.42
1	2275	50-yr	Proposed 1	866.00	569.61	576.04		576.53	0.000812	3.44	351.77	188.20	0.23
1	2275	100-yr	Existing 1	1250.00	569.61	579.01		579.04	0.000146	1.61	1032.20	248.79	0.1
1	2275	100-yr	Proposed 1	1250.00	569.61	577.10		577.20	0.000814	3.10	574.40	229.31	0.24
1	2275	500-yr	Existing 1	2375.00	569.61	580.47		580.52	0.000203	2.15	1442.46	315.54	0.13
1	2275	500-yr	Proposed 1	2375.00	569.61	580.15		580.20	0.000248	2.32	1341.79	301.14	0.14
1	2040	10-yr	Existing 1	408.00	568.76	573.96	571.69	574.11	0.001650	3.13	135.94	71.37	0.3
1	2040	10-yr	Proposed 1	408.00	568.76	573.79	571.69	573.96	0.002039	3.34	125.75	61.74	0.34
1	2040	50-yr	Existing 1	866.00	568.76	576.15	573.13	576.32	0.001000	3.47	267.00	195.29	0.2
1	2040	50-yr	Proposed 1	866.00	568.76	575.62	573.13	575.85	0.001482	3.94	235.61	164.73	0.32
1	2040	100-yr	Existing 1	1250.00	568.76	578.84	574.08	578.98	0.000452	3.07	428.75	355.47	0.19
1	2040	100-yr	Proposed 1	1250.00	568.76	576.66	574.08	576.95	0.001474	4.48	297.71	233.48	0.33
1	2040	500-yr	Existing 1	2375.00	568.76	580.45	575.47	580.48	0.000145	1.96	1825.55	434.58	0.1
1	2040	500-yr	Proposed 1	2375.00	568.76	580.11	575.47	580.15	0.000182	2.15	1683.75	413.97	0.12
	0000	10	E 1 0 1	400.00	500.50	570.07	574.50	574.00	0.004040	0.07	444.00		-
1	2026 2026	10-yr	Existing 1	408.00	568.58	573.87	571.58	574.08	0.001843	3.67	111.02	27.74	0.32
1	2026	10-yr 50-yr	Proposed 1 Existing 1	408.00 866.00	568.58 568.58	573.83 575.82	570.13 572.93	573.90 576.23	0.000448	5.18	199.75 167.26	39.07 30.05	0.1
1	2026	50-yr	Proposed 1	866.00	568.58	575.65	572.93	575.81	0.002488	3.19	271.31	30.03	0.3
1	2026	100-yr	Existing 1	1250.00	568.58	578.50	573.84	578.89	0.0000005	5.05	247.35	122.22	0.3
1	2026	100-yr	Proposed 1	1250.00	568.58	576.67	571.85	576.92	0.001107	4.01	312.05	40.18	0.25
1	2026	500-yr	Existing 1	2375.00	568.58	580.08	576.02	580.40	0.001552	5.32	753.90	492.60	0.3
1	2026	500-yr	Proposed 1	2375.00	568.58	579.81	573.58	580.08	0.000983	4.51	776.69	417.15	0.24
		,											
1	2000			Bridge									1
1	1977	10-yr	Existing 1	408.00	568.61	573.60	571.53	573.83	0.003792	3.79	107.58	28.92	0.34
1	1977	10-yr	Proposed 1	408.00	568.50	573.75	570.05	573.81	0.000845	2.04	199.96	39.23	0.1
1	1977	50-yr	Existing 1	866.00	568.61	575.15	572.85	575.65	0.005799	5.69	152.12	30.53	0.4
1	1977	50-yr	Proposed 1	866.00	568.50	575.44	571.05	575.61	0.001592	3.24	267.13	39.95	0.2
1	1977	100-yr	Existing 1	1250.00	568.61	575.88	573.73	576.68	0.008047	7.20	173.60	31.29	0.5
1	1977	100-yr	Proposed 1	1250.00	568.50	576.34	571.77	576.60	0.002284	4.13	303.01	40.33	0.2
1	1977	500-yr	Existing 1	2375.00	568.61	577.29	575.88	579.17	0.014423	11.00	215.86	108.51	0.7
	1977	500-yr	Proposed 1	2375.00	568.50	578.52	573.49	578.97	0.003240	5.60	584.00	207.38	0.3
1	1966	10-yr	Existing 1	408.00	568.85	573.56	571.65	573.75	0.003987	3.47	117.50	39.00	0.3
1	1966	10-yr 10-yr	Proposed 1	408.00	568.85	573.56	571.65	573.75	0.003987	3.47	117.50	39.00	0.3
	1966	50-yr	Existing 1	866.00	568.85	575.15	572.93	575.51	0.003987	4.83	179.28	155.14	0.3
1	1966	50-yr	Proposed 1	866.00	568.85	575.15	572.93	575.51	0.004417	4.83	179.28	155.14	0.4
1	1966	100-yr	Existing 1	1250.00	568.85	575.91	573.72	576.46	0.005524	5.98	208.94	242.51	0.4
1	1966	100-yr	Proposed 1	1250.00	568.85	575.91	573.72	576.46	0.005524	5.98	208.94	242.51	0.4
 1	1966	500-yr	Existing 1	2375.00	568.85	577.47	575.41	578.67	0.008492	8.80	269.92	300.21	0.5
1	1966	500-yr	Proposed 1	2375.00	568.85	577.47	575.41	578.67	0.008492	8.80	269.92	300.21	0.5
1	1708	10-yr	Existing 1	408.00	567.93	572.24		572.50	0.005764	4.08	100.44	38.29	0.4
1	1708	10-yr	Proposed 1	408.00	567.93	572.24		572.50	0.005764	4.08	100.44	38.29	0.4
1	1708	50-yr	Existing 1	866.00	567.93	573.42	571.98	573.95	0.008132	5.94	177.17	132.58	0.5
1	1708	50-yr	Proposed 1	866.00	567.93	573.42	571.98	573.95	0.008132	5.94	177.17	132.58	0.5
1	1708	100-yr	Existing 1	1250.00	567.93	574.10		574.73	0.008383	6.70	268.44	161.89	0.5
1	1708	100-yr	Proposed 1	1250.00	567.93	574.10		574.73	0.008383	6.70	268.44	161.89	0.5
1	1708	500-yr	Existing 1	2375.00	567.93	575.62		576.36	0.008069	7.93	490.45	194.92	0.5
1	1708	500-yr	Proposed 1	2375.00	567.93	575.62		576.36	0.008069	7.93	490.45	194.92	0.5
	1485	10-yr	Existing 1	408.00	567.02	571.20		571.40	0.004977	3.87	157.73	116.41	0.3
	1485	10-yr	Proposed 1	408.00	567.02	571.20		571.40	0.004977	3.87	157.73	116.41	0.3

HEC-DAS	River: Rvans Creek	Poach: 1	(Continued)

Reach	River Sta	Profile	Plan	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
				(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
1	1485	50-yr	Existing 1	866.00	567.02	572.36		572.61	0.004928	4.75	307.67	134.73	0.41
1	1485	50-yr	Proposed 1	866.00	567.02	572.36		572.61	0.004928	4.75	307.67	134.73	0.41
1	1485	100-yr	Existing 1	1250.00	567.02	572.97		573.28	0.005473	5.48	390.89	138.68	0.44
1	1485	100-yr	Proposed 1	1250.00	567.02	572.97		573.28	0.005473	5.48	390.89	138.68	0.44
1	1485	500-yr	Existing 1	2375.00	567.02	574.42		574.86	0.006074	6.86	597.66	145.91	0.48
1	1485	500-yr	Proposed 1	2375.00	567.02	574.42		574.86	0.006074	6.86	597.66	145.91	0.48
1	1144	10-yr	Existing 1	408.00	564.82	568.09	567.66	568.58	0.018348	5.66	77.96	65.09	0.71
1	1144	10-yr	Proposed 1	408.00	564.82	568.09	567.66	568.58	0.018348	5.66	77.96	65.09	0.71
1	1144	50-yr	Existing 1	866.00	564.82	568.90	568.90	569.73	0.022817	7.68	151.55	117.92	0.83
1	1144	50-yr	Proposed 1	866.00	564.82	568.90	568.90	569.73	0.022817	7.68	151.55	117.92	0.83
1	1144	100-yr	Existing 1	1250.00	564.82	569.45	569.45	570.36	0.021237	8.39	218.32	125.14	0.83
1	1144	100-yr	Proposed 1	1250.00	564.82	569.45	569.45	570.36	0.021237	8.39	218.32	125.14	0.83
1	1144	500-yr	Existing 1	2375.00	564.82	570.45	570.45	571.75	0.023372	10.57	347.83	132.31	0.91
1	1144	500-yr	Proposed 1	2375.00	564.82	570.45	570.45	571.75	0.023372	10.57	347.83	132.31	0.91
1	939	10-yr	Existing 1	408.00	562.46	565.98	565.43	566.11	0.007910	3.46	204.15	212.75	0.46
1	939	10-yr	Proposed 1	408.00	562.46	565.98	565.43	566.11	0.007910	3.46	204.15	212.75	0.46
1	939	50-yr	Existing 1	866.00	562.46	566.70	566.05	566.87	0.007907	4.19	390.77	297.29	0.48
1	939	50-yr	Proposed 1	866.00	562.46	566.70	566.05	566.87	0.007907	4.19	390.77	297.29	0.48
1	939	100-yr	Existing 1	1250.00	562.46	567.11	566.38	567.30	0.007901	4.66	517.99	325.46	0.50
1	939	100-yr	Proposed 1	1250.00	562.46	567.11	566.38	567.30	0.007901	4.66	517.99	325.46	0.50
1	939	500-yr	Existing 1	2375.00	562.46	568.03	567.03	568.27	0.007912	5.65	843.21	387.61	0.52
1	939	500-yr	Proposed 1	2375.00	562.46	568.03	567.03	568.27	0.007912	5.65	843.21	387.61	0.52

IL Route 102 (FAP 631) over Ryans Creek Will County

SECTION 14

Scour Analysis

Scour Calculations IL Route 102 over Ryans Creek Existing Structure FHWA HEC-18 April, 2013 Prepared By: DCC Date: 28-Apr-15 revised 01-SEP-15, 22-DEC-15 Checked By: CD Date: 19-Jan-16

SCOUR 100-yr

Total Scour = Long-term degradration + General Scour + Local Scour

Long term Degradation

Sheet 2 of the 1929 plans indicate the top of footing was constructed at elev 152.3' and the channel bed is at elev 154.6. So the footing was originally 2.3 feet below the channel bed back in 1929. Currently the west top of footing is exposed and the center of the channel is at the bottom of the footing or below. So the channel bottom has 2.3' of degradation (scour) since originally constructed.

Long term Degradation = 2.3'

General Scour

Use Upstream HEC-RAS RS 2040

All flow through the structure - No Overtoppin	g		
There are no piers		From HEC-F	RAS Output
Upstream Channel width W1		41.11	
Bridge Opening Width W2		20'	
Total 100-yr Discharge = 1250 cfs is all contain	ed in channel	1250	
Upstream Channel Discharge Q1 =		1009	
Upstream Floodplain Discharge Q2 =		1250	
Upstream channel flow depth Y1		7.99	
Average depth in contracted section Y2		8.5	
Existing Depth in contracted section before sco	our Yo	8.5	
D ₅₀ Taken from Boring Log No. BSB-01	D ₅₀ =	1mm=	0.00328'
Determine if live bed or clear-water scour	(HEC-18 Section 6.1)		
$Vc = Ku * \gamma^{1/6} * D^{1/3}$			
Vc = 11.17 * (7.99^1/6)*(0.0033^1/3)			
Vc = 2.35			
Vova – 1250			

Vavg = 1250 7.99*41.11 > 2.45 fps Use live-bed scour V= 3.81 fps

					r Calculation					
			IL Route 1	LO2 over Ry	ans Creek E	xisting Structu	re			
		FHWA HEC-	18 April, 20	13		Prepared By:	DCC			
						Date:	28-Apr-15	revised 01-SEP-15, 22-DEC-15	, ,	
						Checked By:	CD			
		SCOUR	1	.00-yr			19-Jan-16			
		Live Bed Co Y2/Y1=(ntraction S Q2/Q1)^6/3		2)^k1					
		K1 = 0.64			W1 = 41.1	11	Yo=8.50			
		Q1 = Q2			W2 = 20		Y1=7.99			
		Y2/Y1=	1.91 91*7.99 15.2 f		1.11/20)^0.6 Ys:	4] = 6.7				
	LT	Local Scour Abutment S Vertical Wa L=227.6	cour lls with win		ection 8.6.1) K2=0.97	Fr=0.3	L'=213.8	Ae=637.5	Y1 = 8.10	ya= 2.80
	RT	L1=100.6	k	(1=0.82	K2=0.97	Fr=0.07	L'=94.5	Ae=337.9	Y1 = 8.31	ya= 3.36
	LT	L'/y1 = 2	213.8/8.1=	27	6 > 25 Use	e Hire Equation				
	RT	•	4.5/8.3=			e Froelich Equa				
		L/y1 - 5								
RT	Froelich	Ys/ya=2.27* Ys/ya= Ys=	'K1*K2*(L'/ 2.50 8.4	ya)^0.43*F	r^0.61+1					
LT	Hire Eq	Ys/y1 = 4*Fr Ys/y1= Ys=	r^0.33*K1/(3.9 31.59).55*K2						
Le Rig	ft ght	Total Scour Total Scour								

Scour Calculations IL Route 102 over Ryans Creek Existing Structure

FHWA HEC-18 April, 2013		Prepared By: DCC
		Date: 28-Apr-15 revised 01-SEP-15, 22-DEC-15, 9/15/16, 11/13/2016
		Checked By: CD
SCOUR	130-yr	Date: 19-Jan-16 revisions 9/16/2016, 11/14/2016

Total Scour = Long-term degradration + General Scour + Local Scour

Long term Degradation

Sheet 2 of the 1929 plans indicate the top of footing was constructed at elev 152.3' and the channel bed is at elev 154.6. So the footing was originally 2.3 feet below the channel bed back in 1929. Currently the west top of footing is exposed and the center of the channel is at the bottom of the footing or below. So the channel bottom has 2.3' of degradation (scour) since originally constructed.

	Long term Degradation = 2.3'	
General Scour		
Use Upstream HEC-RAS RS 2040		
Pressure flow through the structure with no overtopping		
There are no piers		
Upstream Channel width W1	41.11	From HEC-RAS Output
Bridge Opening Width W2	20'	
Total 130-yr Discharge = 1375 cfs is all contained in channel	1375	
Upstream Channel Discharge Q1 =	531	
Upstream Floodplain Discharge Q2 =	1375	
Upstream channel flow depth Y1	10.26	
Average Depth in contracted section Y2	8.50	
Existing Depth in contracted section before scour Yo	8.50	
D ₅₀ Taken from Boring Log No. BSB-01	D ₅₀ = 1mm=	0.00328 ft

Determine	e if live bed or clear-water scour	(HEC-18 Section 6.1)
Vc =	Ku * y^1/6 * D^1/3	
Vc =	11.17 * (10.26^1/6)*(0.0033^1/3)	
Vc =	2.45	

Vavg =	1375		
-	10.26*41.11	_	
V=	3.20	5 fps > 2.45 fps	Use live-bed scour

				Scour Calculat					
				er Ryans Cree	k Existing S	structure			
		PRESSURE FLOW NO OVER	RTOPPING		130-yr				
		Live Bed No Overtopping							
		Pressure flow through the	structure w	/ith no overto	pping				
		Upstream Channel width \	V1				4	1.11	
		Bridge Opening Width W2						20'	
		Total 130-yr Discharge = 1	375 cfs is all	l contained in	channel		1	375	
		Upstream Channel Dischar	ge Q1 =					531	From HEC-RAS Output
		Upstream Floodplain Disch	arge Q2 =				1	375	hue=hu(no overtopping) =
		Upstream channel flow de	pth hu (Y1)				1	0.26	(578.84-568.58)
		Bridge Opening Height hb					:	8.50	
		Deck Thickness (T)					:	2.55	
		Upstream channel velocity	(V=Q1/(W2	1*hu)			1.512	2478	
		K1 = 0.64							
		Y2 = Y1(Q2/Q1)^6/7 (w1/v Y2= 23.19	v2)^k1						
		t=0.5(hb-h1/hu^2)^0.2*(1 t= 2.45 Ys = Y2+t-hb Ys = 23.19+2.45-8.5 Ys= 17.14	-(hw/h1)^-C).1)-hb	where:	h1 = 10.26-8.5	5 = 1.76	hw=0	
RT	Froelich	Local Scour Abutment Scour Vertical Walls with wingwa		(HEC-18 - Sec	tion 8.6.1)				
		L=246	1115	K1=0.82	K2=0.97	Fr=0 32	L'=246.0	Ae=764	Y1 = 8.45
LT	Hire Eq			NI 0.02	NE 0.57	11 0.52	2 210.0		11 0.15
		L1=105.4		K1=0.82	K2=0.97	Fr=0.09	L'=105.4	Ae=401.2	Y1 =8.66
Lef	t	L'/y1 = 246/8.45=		29.3	1 > 25. Use	Hire Equation			
Rig	ht	L'/y1 = 105.4/8.66=		12.2	<mark>2 < 25. Use</mark>	Froelich Equat	ion		
LT		Ys/ya=2.27*K1*K2*(L'/ya)			RT	••	D.33*K1/0.55*K2		
		Ys/ya=	2.733			Ys/y1=	4.0		
		Ys=	10.4			Ys=	33.8		
		Total Scour = 2.3 +17.14 +	<mark>33.8= 53.2'</mark>				53.24		
		<mark>Total Scour = 2.3 +17.14 +</mark>	10. <mark>4=29.</mark> 8'				29.84		

Scour Calculations IL Route 102 over Ryans Creek Existing Structure

 FHWA HEC-18 April, 2013
 Prepared By: DCC

 Date:
 28-Apr-15 revised 01-SEP-15, 22-DEC-15

 Checked By:
 CD

 SCOUR
 200-yr
 Date:
 19-Jan-16

Total Scour = Long-term degradration + General Scour + Local Scour

Long term Degradation

Sheet 2 of the 1929 plans indicate the top of footing was constructed at elev 152.3' and the channel bed is at elev 154.6. So the footing was originally 2.3 feet below the channel bed back in 1929. Currently the west top of footing is exposed and the center of the channel is at the bottom of the footing or below. So the channel bottom has 2.3' of degradation (scour) since originally constructed.

Long term Degradation = 2.3'

|--|

	<u> </u>					
Use Upstream	n HEC-RAS RS 20	940				
All flow throug	gh the structure	- No Overtopping				
There are no p	piers					
Upstream Cha	nnel width W1				41.11	From HEC-RAS Output
Bridge Openin	ng Width W2				20'	
Total 100-yr D	ischarge = 1700	cfs is all contained	l in channel		1700	
Upstream Cha	annel Discharge (Q1 =			603.4	
Upstream Floo	odplain Discharg	e Q2 =			1552	
Upstream cha	nnel flow depth	Y1			9.09	
Average depth	n in contracted se	ection Y2			8.6	
Existing Depth	n in contracted se	ection before scou	ir Yo		8.6	
D ₅₀ Taken fror	n Boring Log No.	BSB-01		D ₅₀ =	1mm=	0.00328 ft
Determine if l	live bed or clear-	water scour		(HEC-18 Section 6.1)		
Vc= Ku	* y^1/6 * D^1/3					
Vc = 11.	.17 * (9.09^1/6)*	(0.0033^1/3)				
Vc =		2.40				
Vavg =	603					
	9.09*41.11					
V=		1.61 fps	< 2.40 fps	Use clear-water scour Eq	's	

			Scour Calcula	ations				
			over Ryans Cre	ek Existing Structure				
		FHWA HEC-18 April, 2013		Prepared	•		_	
						ed 01-SEP-15, 22-DEC-1	.5	
		SCOUR	200-yr	Checked E	3y: CD Ite: 19-Jan-16			
		3000k	200-yi	Da	ite. 19-jaii-10			
		Clear-water Contraction Scour Y2= ((Ku*Q^2)/(Dm^2/3*W Ys = Y2 - Yo	^2))^3/7					
		Ku = 0.0077		W = 41.1		Yo=8.60		
		Q1 = 603.4		Dm = 1.25*D50=	0.0041	Y1=9.09		
				Din 1.25 050	0.0011	11 9.09		
		Y2= ((0.0077*603.4^2)/(.00	41^2/3*20^2))^	3/7				
		Y2= 11	.08					
		Ys = Y2 - Yo	Ys=11.08-8.6	6 Ys= 2.5				
	LT	Local Scour Abutment Scour Vertical Walls with wingwalls L=265.6	(HEC-18 - Se K1=0.82	ction 8.6.1) K2=0.97 Fr=0.27	L'=249.6	Ae=907	Y1 = 9.2	ya= 3.41
	L1	L-203.0	K1-0.02	R2-0.37 11-0.27	L -245.0	AC-307	11 - 5.2	ya- 3.41
	RT	L1=110.3	K1=0.82	K2=0.97 Fr=0.09	L'=103.6	Ae=453.3	Y1 = 9.42	ya= 4.11
	LT	L'/y1 = 249.6/9.2=	27	.1 > 25. Use Hire Equat	<mark>ion</mark>			
	RT	L'/y1 = 103.6/9.42=	11	.0 < 25. Use Froelich Eq	luation			
RT	Froelich	• •	r^0.61+1 665 1.0					
LT	Hire Eq	-	3.8 88					
Le [.] Rig	ft ght	Total Scour = 2.3 + 2.5 +35.9= 40.7 Total Scour = 2.3 + 2.5 +11.0= 15.8						

HEC-18 Analysis inputs from HEC-RAS 100-year Event

ile Type V	iew Heip		
Title: Existin	ng Scour 100-	yr event	
River: Ryan	s Creek	▼ F	Profile:
Reach: 1		▼ F	River Sta.
Contraction	Pier Abutme	ent	
	LOB	Channel	ROB
Y1:	5.42	7.99	4.97
V1:	2.44	3.07	2.30
Y0:	0.00	8.50	0.00
Q2:		1250.00	
W2:	0.00	20.00	0.00
D50:	1.00	1.00	1.00
Equation:	Defaul 🔻	Defaul 🔻	Defaul
Live Bed Spe	cific Data		
Q1:	184.79	1009.24	55.97
W1:	14.00	41.11	4.89
K1: K1.	0.640	0.640	0.640

🐨 Hydraulic Design - Bridge Scour File Type View Help Title: Existing Scour 100-yr event Ryans Creek ▼ Profile: 100-yr River: ▼ River Sta.: 2000 Reach: 1 Contraction | Pier Abutment | Left Right 324.00 344.00 Toe sta at Bridge: 363.36 390.71 Toe sta at App: 227.55 Length: 8.10 8.31 Y1: 0.82 - Vert. with wing walls 💌 K1: 70.00 70.00 Skew (deg): 0.97 0.97 K2: Equation: Default • Froehlich's Eqn. Specific Data 213.83 94.50 Ľ: 2.80 3.36 Ya: 307.86 252.18 Qe: 637.50 337.89 Ae: HIRE Eqn. Specific Data 5.21 V1: 4.90

200-year Event

ile Type Vi	ew Help			
Title: Existin	ng Scour 200-	yr event		
River: Ryan:	s Creek	– [Profile: 20	0-
Reach: 1		•	River Sta.: 20	00
Contraction	Pier Abutme	ent		
	LOB	Channel	ROB	
Y1:	3.31	9.09	3.72	
V1:	0.85	1.62	0.96	
Y0:	8.60	8.60	8.60	
Q2:	143.84	1552.21	0.76	
W2:	0.00	20.00	0.00	
D50:	1	1	1	
Equation:	Defaul 🔻	Defaul 🗸	Defaul 🔻	
Live Bed Spe	cific Data			ī
Q1:	737.05	603.39	359.55	
W1:	261.23	41.11	100.86	
K1: K1.	. 0.590	0.590	0.590	

Title: Existing Sco	our 200-yr event	
River: Ryans Cree		▼ Profile: 2
Reach: 1		▼ River Sta.: 2
Contraction Pier	Abutment	
	Left	Right
Toe sta at Bridge:	324.00	344.00
Toe sta at App:	363.36	390.71
Length:	265.59	110.26
Y1:	9.20	9.42
K1:	0.82 - Vert. wit	h wing walls 🖉 💌
Skew (deg):	70.00	70.00
K2:	0.97	0.97
Equation:	Default	•
Froehlich's Eqn. Sp L': Ya:	258.94 3.41	105.18
Qe:	809.47	479.35
Ae:	906.84	453.29

HEC-18 Analysis inputs from HEC-RAS 130-year Event

要 Hydraulio	: Design - Bric	lge Scour	
File Type	View Help		
Title: Exis	ting Scour 130 y	r e∨ent	
River: Rya	ins Creek	▼ F	Profile: 130-y
Reach: 1		▼ F	River Sta.: 2000
Contraction	Pier Abutma	ent	
	LOB	Channel	ROB
Y1:	3.01	8.54	3.34
V1:	0.78	1.51	0.87
Y0:	0.00	8.50	0.00
Q2:		1375.00	
W2:	0.00	20.00	0.00
D50:	1.00	1.00	1.00
Equation:	Defaul 💌	Defaul 💌	Defaul 💌
⊺Live Bed S	pecific Data —		
Q1:	563.55	531.06	280.40
W1:	241.66	41.11	96.02
K1: K1	0.640	0.640	0.640
Approach X	'S River Sta.:	2040	•

😾 Hydraulic Desig	gn - Bridge S	Scour
File Type View	Help	
Title: Existing Sco	our 130 yr eve	nt
River: Ryans Crea	ek 🛛	Profile: 13
Reach: 1		▼ River Sta.: 20
Contraction Pier	Abutment	
	Left	Right
Toe sta at Bridge:	324.00	344.00
Toe sta at App:	363.36	390.71
Length:	246.02	105.42
Y1:	8.45	8.66
K1:	0.82 - Vert. v	with wing walls 💽
Skew (deg):	90.00	90.00
K2:	1.00	1.00
Equation:	Default	▼
⊺Froehlich's Eqn. Sp	pecific Data	
L':	246.02	105.42
Ya:	3.11	3.81
Qe:	619.87	401.83
Ae:	764.03	401.16
⊺ ∏HIRE Eqn. Specific	: Data	
V1:	5.34	5.34

			S	Scour Calculations
			IL Route 102 ove	er Ryans Creek Existing Structure
		FHWA HEC-1		Prepared By: DCC
			•	Date: 4-Jan-16
				Checked By: CD
		SCOUR	100-yr	Date: 19-Jan-16
		Live-Bed Scour		
		-	utment is close t	o the channel.
LEFT	L=	231		
	Bf =	241		
	L/Bf =	96% >7	75% use Live-Bed	scour calculation
	yo=	8.5		Flow depth prior to scour
	y0 y1=	7.99		Upstream Flow Depth
	q1=	1250/41	30.49	opsicall now Depth
	q1- q2f=	1009/20 =	50.45	
	421-	1009/20 -	50.45	
	yc=	y1 (q2/q1)^6	/7	Flow depth including live-bed contraction scour
	yc=	12.30	,	
	q2/q1=	1.65		
	From Fig	;ure 8.10, α = 1.	45	
	ymax= α		17.8	Max Flow depth resulting from Scour
	, ys=ymax	•	9.3	Abutment Scour Depth
	Ys=9.3	,-		
RIGHT	L=	86		
	Bf =	100		
	L/Bf =	86% >7	75% use Live-Bed	scour calculation
	Same Ca	lcs as above		
	yo=	8.5		
	y0= y1=	8.31		
	y1= q1=	1250/41	30.49	
	•			
	q2f=	1250/20 =	62.5	
	yc=	y1 (q2/q1)^6	/7	
	yc=	15.37		
	q2/q1=	2		
	From Eig	;ure 8.10, α = 1.	23	
	ymax= α		18.9	
	ys=ymax	•	10.4	
	<u>Ys=10.4</u>	-	10.4	
	13-10.4			

				Scour Calculations
				over Ryans Creek Existing Structure
		FHWA HEC	C-18 April, 2013	Prepared By: DCC
				Date: 4-Jan-16
				Checked By: CD
		SCOUR	Pressure flow	Date: 19-Jan-16
			130-yr	
	NCHRP	Live-Bed Sco	ur	
	Scour oc	curing when	abutment is close	to the channel.
LEFT	L=	258		
	Bf =	263		
	L/Bf =	98%	>75% use Live-Be	ed scour calculation
	yo=	8.6		Flow depth prior to scour
	y1=	8.6		Estimated Upstream Flow Depth
	q1=	1400/41.1	34.06	
	q2f=	1400/20 =	70	
	yc=	y1 (q2/q1)	^6/7	Flow depth including live-bed contraction scour
	yc=	20.73		
	q2/q1=	2		
	From Fig	ure 8.10, α =	1.23	
	ymax= α	*ус	25.50	Max Flow depth resulting from Scour
	ys=ymax	-yo	16.90	Abutment Scour Depth
	<u>Ys=16.9'</u>			

 RIGHT
 L=
 86

 Bf =
 100
 L/Bf =
 86% >75% use Live-Bed scour calculation

 Same Calcs as above
 Same Calcs as above
 Same Calcs as above

			S	cour Calculations
			IL Route 102 ove	r Ryans Creek Existing Structure
		FHWA HEC-1		Prepared By: DCC
			•	Date: 4-Jan-16
				Checked By: CD
		SCOUR	200-yr	Date: 19-Jan-16
			•	
	NCHRP	Live-Bed Scour		
	Scour oc	curing when ab	utment is close to	the channel.
LEFT	L=	265.6		
	Bf =	269		
	L/Bf =	99% >7	5% use Live-Bed	scour calculation
	yo=	8.6		Flow depth prior to scour
	, y1=	9.09		Average Upstream Flow Depth
	, q1=	1700/41	41.46	
	q2f=	1700/20 =	85	
	9-1	1,00,20	00	
	yc=	y1 (q2/q1)^6	/7	Flow depth including live-bed contraction scour
	yc= yc=	16.82	, ,	now departmentaling interbed contraction scoul
	yc-	10.02		
	q2/q1=	2.05		
	From Fig	ure 8.10, α = 1.	73	
	ymax= α		20.7	Max Flow depth resulting from Scour
	•	•		· _
	ys=ymax	-у0	12.1	Abutment Scour Depth
	<u>Ys=12.1</u>			
RIGHT	L=	86		
RIGHT	L= Bf =	100		
	ы – L/Bf =		150/ use Live Red	
	-		5% use live-beu	scour calculation
	Same Ca	lcs as above		
		0 Г		
	уо= \/1_	8.5		
	y1=	9.42	14 16	
	q1=	1700/41	41.46	
	q2f=	1700/20 =	85	
		v1 (~2 /~1)AC	17	
	yc=	y1 (q2/q1)^6	//	
	yc=	17.06		
	q2/q1=	2		
			22	
	-	ure 8.10, α = 1.		
	ymax= α	-	21.0	
	ys=ymax	-уо	12.5	
	<u>Ys=12.5</u>			

Figure 8.5. Orientation of embankment angle, 2, to the flow.

Figure 8.6. Abutment shape.

Table 8.1. Abutment Shape Coe	fficients.
Description	K ₁
Vertical-wall abutment	1.00
Vertical-wall abutment with wing walls	0.82
Spill-through abutment	0.55

Figure 8.10. Scour amplification factor for wingwall abutments and live-bed conditions (NCHRP 2010b).

If the projected length of the embankment, L, is less than 75 percent of the width of the floodplain (B_f), scour condition (b) in Figure 8.7 occurs and the contraction scour calculation is performed using a clear-water scour calculation (see Chapter 6). The clear-water contraction scour equation also uses unit discharge (q), which can be estimated either by discharge divided by width or by the product of velocity and depth. Two clear-water contraction scour equations may be applied. The first equation is the standard equation based on grain size:

$$y_{c} = \left(\frac{q_{2f}}{K_{u}D_{50}^{1/3}}\right)^{6/7}$$
(8.6)

WANGENGINC 2552402.GPJ WANGENG.GDT 3/25/15

Table A.8. Sediment Particles Grade Scale.											
	Size		Mesh	imate Sieve Openings er Inch	Class						
Millimeters	Millimeters	Microns Inches Tyler Standard				Name					
4000-2000			160-80			Very large boulders					
2000-1000			80-40			Large boulders					
1000-500			40-20			Medium boulders					
500-250			20-10			Small boulders					
250-130			10-5			Large cobbles					
130-64			5-2.5			Small cobbles					
64-32			2.5-1.3			Very coarse gravel					
32-16			1.3-0.6			Coarse gravel					
<mark>16-8</mark>			<mark>0.6-0.3</mark>	<mark>2.5</mark>		Medium gravel					
8-4			0.3-0.16	5	5	Fine gravel					
4-2			0.16-0.08	9	10	Very fine gravel					
2-1	2.00-1.00	2000-1000		16	18	Very coarse sand					
1-1/2	1.00-0.50	1000-500		32	35	Coarse sand					
<mark>1/2-1/4</mark>	0.50-0.25	<mark>500-250</mark>		<mark>60</mark>	<mark>60</mark>	Medium sand					
1/4-1/8	0.25 0.125	250-125		115	120	Fine sand					
1/8-1/16	0.125-0.062	125-62		250	230	Very fine sand					
1/16-1/32	0062-0031	62-31				Coarse silt					
1/32-1/64	0.031-0.016	31-16				Medium silt					
1/64-1/128	0.016-0.008	Will us	e an avera	age partio	cle size of 1	mm Fine silt					
1/128-1/256	0.008-0.004	8-4				Very fine silt					
1/256-1/512	0.004-0.0020	4-2				Coarse clay					
1/512-1/1024	0.0020-0.0010	2-1				Medium clay					
1/1024-1/2048	0.0010-0.0005	1-0.5				Fine clay					
1/2048-1/4096	0.0005-0.0002	0.5-0.24				Very fine clay					

EXAMPLE 102 OVER RYANS CREEK SURVEY UNDER BRIDGE March 19, 2015

+ = C/L DIAPHEAGMS

UPDATED: 9-9-09 BY : 1/1/, S.M.

Illinois Department of Transportation Structures Information Management System Master Structure Report (S-107)

Date: 1/16/2014 Page 1

Structure Number: 099-0170 District: 1

			Inventory Dat	ta			
Facility Carried:	IL 102	Bridge Name:			Sufficiency Rating:	48.7 Structure Length	1: 24.3
Feature Crossed:	RYANS CREEK	Location: 6 M	S OF IL 53		HBP Eligible:	Yes AASHTO Bridge	Length: 21.3
Bridge Remarks:					Replaced By:	Length of Long	Span: 22.3
Bridge Status:	1 OPEN - NO RESTRICT	StatusDate: 04/1	988		Replaces:	Bridge Roadway	Width: 40.5
Status Remarks:					Last Update Date: 08/	21/2012 Appr Roadway V	Vidth: 24.0
Maint County:	099 WILL Maint Tow	nship: 20 WESLEY	(Parallel Structure:	None Deck Width:	41.0
Maint Responsibility:	01 I.D.O.T.				Multi-Level Structure Nbr:	Sidewalk Width	Right: 0.0
Service On/Under:	1 HIGHWAY	/ 5 WATER	RWAY		Skew Direction:	Left Sidewalk Width	Left: 0.0
Reporting Agency:	1 I.D.O.T BUREAU OF MAINTEN				Skew Angle: 20 D 0	M 0 S Navigation Cor	ntrol: 0 No
Main Span Matl/Type:	A PRECAST CONCRETE/NOT PR	ES / 29 CHANNEL E	BEAM		Structure Flared:	No Navigation Hor	riz Clear: 0
Nbr Of Main Spans:	1 Nbr Of Approach Spans:)			Historical Significance:	No Navigation Ver	t Clear: 0
Approaches					Border Bridge State:	Culvert Fill D	epth: 0.0
Near #1 Matl/Type:					Bdr State SN:	Number Culv	vert Cells: 0
Near #2 Matl/Type:					Bdr State % Responsibi	ility: 0 Culvert Open	ning Area: 0.0
Far #1 Matl/Type:		/			Structural Steel Wt:	0 Culvert Cell I	Height: 0.00
Far #2 Matl/Type:					Substructure Material:	Culvert Cell V	
Median Width/Type:	0 Ft. / 0 None			Rated By:			D FACTOR
	0 None / 0 None		· · · · ·		Load Rating Date: 08/10/20	12 ***Railroad Cros	sing Info***
	0 No Toll		5 5	280 (46)		Crossing 1 Nbr:	
Latitude: 41 D 14		4 M 45.90 S Desig	gn Load: 02 HS20			Crossing 1 Nbr:	
Deck Structure Type:	D PCAST REIN CN DK BM	Deck Structure	Thickness:	11.0 SD: Y	′ FO : Y	RR Lateral Underclear:	
Sidewalks Under Struct	ture: 0 None					RR Vertical Underclear	": 0 Ft 0 In
	Key Route On D				Key Rout	e Under Data	
Key Route Nbr: FEDER	RAL-AID PRIMARY 0631	Station: 6.0800				Station:	
Appurtenances Main R	oute 00000	Segment:				Segment:	
Inventory County: 09	99 WILL	Linked: Y				Linked:	
Township/Road Dist 20	WESLEY N	latl. Hwy System:	Not on NHS			Natl. Hwy System:	
Municipality 0000		nventory Direction:				Inventory Direction:	
Urban Area: None		Curr AADT Yr/Count:	2013 / 2100			Curr AADT Yr/Count:	/
Functional Class: 4	MINOR ARTERIAL E	st Truck Percentage:	20			Est Truck Percentage:	
** CLEARANCES ** Sou	uth/East North/West N	lumber Of Lanes:	2	South/East	North/West	Number Of Lanes:	
Max Rdwy Width: 4	0.5	One Or Two Way:	2 Two-Way			One Or Two Way:	
Horizontal: 4	0.5 0.0 E	Sypass Length:	0			Bypass Length:	
Min Vertical: 99	Ft 11 In 00 Ft 00 In F	uture AADT Yr/Cnt:	2032 / 2883	Ft	In Ft In	Future AADT Yr/Cnt:	/
10 Ft Vertical: 99	Ft 11 In 00 Ft 00 In E	Designated Truck Rte:	CLASS II	Ft	In Ft In	Designated Truck Rte:	
Lateral:	s	pecial Systems:	No		Ft Ft	Special Systems:	
	*** Marked Route On	Data ***			*** Marked Ro	ute Under Data ***	
	Designation	Kind	Number		Designation	Kind	Number
Route #1: 1 Mainlin		te Highway	102				
Route #2: 1 Mainlin							
Route #3: 1 Mainlin	ne la						

Illinois Department of Transportation Structures Information Management System Master Structure Report (S-107)

Structure Number: 099	0-0170 District:	1		
		Data Related to Ins	pection Information	
***Inspection I	ntervals ***		vable Posting Limits ***	Bridge Posting Level:
	Underwater: 0 MOS	One Truck At A Time: 0	Combination Type 3S-1: To	
Fracture Critical: 0 MOS	Special: Y	Single Unit Vehicles: LL Tons	Combination Type 3S-2:	ns
	•		aisal Information	
Inspection Date:	11/08/2013 Inspec	tion Temperature: 48 Deg. F	Insp by (Name): GawendaPE	** Actual Posted Limits **
Deck:		DITION - MINOR DETERIORATION	Insp by (Name):	Single Unit Vehicles:
Superstructure:		I - SIGNIFICANT SECTION LOSS	Utilities Attached: N N/A	Combination Type 3S-1: Tons
Substructure:		NOR SECTION LOSS, CRACKS	N N/A	Combination Type 3S-2: Tons
Culvert:	N NOT APPLICABLE		N N/A	One Truck At A Time: 0
Channel and Protection:	6 SATISFACTORY CON	DITION - MINOR DETERIORATION	Deck Wearing Surf: R	Last Paint Type:
Structural Evaluation:	3 INTOLERABLE - HIGH	PRIORITY FOR CORRECTION	Deck Membrane: A WATERP	ROOF MEM SYST
Deck Geometry:	6 EQUAL TO PRESENT	MINIMUM CRITERIA	Deck Protection: J NONE	
Underclearance-Vert/Lat.:	N NOT APPLICABLE		Total Deck Thick: 10.0	
Waterway Adequacy:	5 BETTER THAN ADEQ	UATE TO BE LEFT IN PLACE	Last Paint Date:	
Approach Roadway Align:	8 EQUAL TO PRESENT	DESIRABLE CRITERIA	Inspection Remarks:	
Bridge Railing Appraisal:	2 Doesn't Meet Standard	s	58 - Scattered HL longit cracks & isol H	L random/diag cracks NB & SB, moderate tine
Approach Guardrail:	223 Not Acceptable No	t Acceptable Acceptable		king along bottom of bms(3" +/- up) w/several rust
Pier Navig Protection:	N N/A		stained areas. Bm 1,2,5,7,8,9 from wes	t has spall w/exposed cor
		Underwater Inspection	Appraisal Information	
Inspection Date: 08/25/200)4			
Temperature: 81	Inspection Method:	PV Probe	Visual	
Inspected By: M Valentin	e, CW Inspected By:	Appraisal Rating:	5 FAIR - MAJOR DETERIORATION	N IN UNDERWATER UNITS
Inspection Remarks: 04) E	& W footing entirely exposed.			
	Scou	r Critical Information		Miscellaneous
Rating: 7 SCOUR PROBLE	EM CORRECTED	Evaluation Method:	8 Rational Analysis	Fracture Critical Members: No
Analysis Date: 12/13/199	95	Analysis By:	KRAMARZ	Microfilm Data Recorded: Yes
	Construction Infor	mation	v	Vaterway Information
Year: 1929 Origi		Reconstructed	Flood Design Frequency:	YRS Drainage Area: Acre
Route: SBI-113	Sta: 742+30	Sta:	Flood Design Q (CFS):	
Section Nbr: 111N-B			Flood Design Nat H W E:	Flood Base Q (CFS):
Contract Nbr:			Flood Des Open Prop:	SF Flood Base Nat H W E:
Fed Aid Pr #: 0000000000	000			
Built By: 1 I.D.O.T.			<u> </u>	
		Proposed In	nprovement	
Cost Est	imate Year:	Length:		*** Costs in Dollars ***
Type of V				Bridge Cost:
Done By				Roadway Cost:
Remarks				Total Project Cost:

Date: 1/16/2014

Page 2

Illinois Route 102 (FAP 631) over Ryans Creek Will County

SECTION 15

Survey Notes

SOKKIN Statistical and **FIELD BOOK** and the second No. 8152-00

CP14 IR CAP (FOUND) MARKED CWA 26 ON WEST SIDE PTE 102 AT N'4 END GUARDRAIL 3005 NORTH OF CREEK.	CP12 IR/CAP Sovi Ely RTE 102 ABOUT 1000' Ely RTE 102 ABOUT 1000' Ely RTE 102 CP13 IP/CAP RTE 102 ENGT SIDE OPP South END ENARD RAIL	RTE 102 WILL County Monday July 21, 2014 DAVE, APT CHRIS TOP HUMP (DAVE, APT CHRIS TOPS DAVE, APT CHRIS TOPS DAVE, APT CHRIS TOPS CP 10 IR/CAP SEX BRIDGE CUMEPT EAST OF RTE 102 SS CREEK
CP12 NGS VERTICIPUL MF 0322 CP19 RN 192 Dun Conchendural TU CP20 NGS HORASATRA NE 2546 RTE20 POON 7000W	A C F S C	BRIDEE PLATE: BRIDEE PLATE: BY STA 742+30 REBUILT 1972 BY STATE OF JULNOIS SBJ ET RITE 113 SEZ. 111 N(W & RS) SEL BRIDEE WCATED ON CUARD RNL SEL BRIDEE UCATED ON CUARD RNL

010	117	116	512	214	213	212	211	210	205	208	207	206	205	204	203	202		201 -	700-	HT Juio		5.6	
	275	4+00	Sta	05+5	6400	6450	7+50	8 +00	8+50	9400	0750	10400	10+50	11400	11+50	0 12+00	511005	A " " " ABOUT 300 T NON	C PTE 102	0.00	ITE CZI ID UD		
														LVZ	516	rn Ln	Dere C	" ABOUT	AT C BR	4 Internation		C D 140 14	
														2100	2450	27 3700		300+0	L BBai	STATE O		0(14)	
					-													S	+00				
																PTE	TIND			REO		REO	
																102 OVER	8N			REOBSERNE		EODSERVA	
				· · · · · · · · · · · · · · · · · · ·												Stendo de	7			CP 14 R		0713.	
																1	OF WRLL			RECORD A		Percen	
																				S141V		X5 CP136	20/1//
					_		-		_	-	-	-	-	-			-			Ã		141	

4.68	t6.00 5.31	+ 7.19 + 6.58	S
J.J. C		6.586	AVE
		168.585	1
-5.98 -5.02 -4.06 5.02	55 L	2,59	TT S A
	1.563 884	579	AVE ELEV.
573.65	5719.325 C	579.305	
CUR IR C	IR CAP CP	CLAVSEN & WH WINGWALL.	Streamuco
CAP CP	WHITE	LL & UH 17	<u> </u>
	BM ABO	Ph B M	SCRUPTION
	× # 504.34	0 5 5	REM
		REIPCE	EMARKS

.

TO FINISH Pro ROADWAY LEVEL	1115 LAST POINT FILE B	5	24 SET IP(CND WID SIDES	CP6	1118 LAST POINT 1 1119-1122 SET CP 3, 4, 5 LA
	B IN OPO	CP2S Why spe	LOW XSECTION		LARCE NANDS WESTERLY
SEEMS TOBE OUT	E LRAE	t IN CPEERS	CP 29 CAPPED IR	CN SOC D.S	WIED JULY 30, 2014 SET CP 21, 28 & 29 FOR Q STREAM PRO
DR blest Bet VEPY	994 994 994 994 994 994 994 994 994 994	186.51 25	19 SI	CROSS SECTION ICH 15 SOZ. QL	Propulsy Side Mat

6201 W. Touhy Avenue, Suite 6 • Chicago, Illinois 60646 p: 773.756.3388 • f: 773.756.3387

p: 773.756.3388 • f: 773.756.3387

6201 W. Touhy Avenue, Suite 6 • Chicago, Illinois 60646 p: 773.756.3388 • f: 773.756.3387

SECTION 16

Estimated Water Surface Elevation (EWSW) Data

IL ROUTE 102 ACROSS RYANS CREEK

Data Survey for EWSE

DCC 11/3/2014

Channel Surveyed Edge **Top of Bank Elevation River Sta** Invert of Water Left Right 3022 569.16 570.48 575.25 575.98 569.81 2772 570.48 577.14 575.54 2508 570.17 570.48 579.02 575.10 2275 569.61 570.00 576.16 574.43 568.76 2040 570.00 573.31 573.76 568.58 570.00 579.02 578.93 2026 1977 568.61 570.00 577.34 578.99 1966 568.85 570.00 573.74 574.18 1708 567.93 568.93 572.40 572.68 1485 567.02 567.95 571.05 571.18 1144 564.82 565.80 568.17 568.81 939 562.46 563.46 565.29 566.45

RYANS CREEK

Illinois Route 102 (FAP 631) over Ryans Creek Will County

SECTION 17

Correspondence Notes

Will County Division of Transportation

16841 W. LARAWAY ROAD JOLIET, ILLINOIS 60433 (815) 727-8476 Fax (815) 727-9806

August 21, 2015

BRUCE D. GOULD, PE **DIRECTOR OF TRANSPORTATION** COUNTY ENGINEER

> Mr. John Fortmann, P.E. **Deputy Director of Highways Region One Engineer** Illinois Department of Transportation 201 West Center Court Schaumburg, IL 60196-1096

BUREAU OF PROGRAMMING RECEIVED

AUG 2 6 2015

DISTRICT #1

Attn: Ms. Esther Winograd

Subject

Phase 1 Study IL Route 102 over Ryans Creek

Dear Ms. Winograd:

The Will County Division of Transportation is in receipt of the request for information concerning the above mention project.

Please be advised that the Will County Division of Transportation has no information regarding said project because the above said location does not involve roadways that are under the jurisdiction of this department.

If there are any questions, please feel free to contact the undersigned or the Director of Transportation / County Engineer, Bruce Gould.

Sincerely,

Bruce D. Gould, P.E. Director of Transportation County Engineer By

Eric K. Wesel, P.E. Permit Engineer

EKW:ekw

P \Permits\Correspondence - General\2015\2015-08-21 IDOT (Winograd) docx

August 17, 2015

Mr. Bruce Gould, P.E. Director of Transportation and Engineering Will County Division of Transportation 16841 W. Laraway Road Joliet, IL. 60433

Dear Mr. Gould:

This is to confirm the telephone conversation on July 13, 2015 between yourself and Esther Winograd of my staff relative to the drainage study to be prepared as part of Phase I Study for the IL 102 over Ryans Creek project (see attached map). We are requesting the appropriate drainage information for incorporation into the drainage study.

In particular, we request the following:

- Storm sewer plans
- Combined sewer atlas
- Utility plans
- Contour mapping
- Proposed and current drainage improvements
- Identification of flooding experience associated with the highway or adjacent properties
- Local ordinances

If you have any questions or need additional information, please contact me or Esther Winograd, Hydraulics Analysis Engineer, at (847) 705-4475.

Very truly yours,

John Fortmann, P.E. Deputy Director of Highways, Region One Engineer

Attachment

bcc: John Fortmann Jose Rios

S:\Gen\WP\HYD\H&H\EW\projects\IL 102 Ryans Ck\reginfolocal.docx

IL 102 over Ryans Creek

Gin the go? Use **m.bing.com** to find mads, directions, businesses, and more

33

Winograd, Esther B

From: Sent: To: Subject: Attachments: Wojcik, Rick F Tuesday, July 28, 2015 8:20 AM Winograd, Esther B FW: Hydraulics Memo 0990170-724103832-0001.pdf; img-727144859-0001.pdf

-----Original Message-----From: Mastny, Steve C Sent: Monday, July 27, 2015 2:59 PM To: Wojcik, Rick F Cc: Wilson, Sarah M; Valentine, Michael A Subject: FW: Hydraulics Memo

Hi Rick,

The attached memo requests information regarding flooding or other drainage related problems at IL-102 over Ryan's Cr (099-0170). As you may be aware, we had a fairly significant scour problem at this structure in the late 90's. Specifically, in July, 1996, a rain event caused a contraction scour hole under the structure, which was filled with RR 5 riprap under emergency contract (see attached for more details). The streambed has remained reasonably stable over the past decade plus, although the top of the footings are sometimes exposed.

If you need any other information, please let me know.

Thanks,

Steve

Steve Mastny, P.E. IDOT - District One South Area Bridge Inspection Engineer <u>steve.mastny@illinois.gov</u> 847-956-1494

-----Original Message-----From: Wilson, Sarah M Sent: Friday, July 24, 2015 11:11 AM To: Mastny, Steve C Subject: Hydraulics Memo

Please prepare a reply and copy me on the response.

Thanks

Illinois Department of Transportation

Memorandum

Devite	IL 102	
July 27, 2015		
Drainage Study		
Pete Harmet		
James Stumpner	Attn:	Dionne Winesberry Sarah Wilson
	Pete Harmet Drainage Study	Pete Harmet Drainage Study July 27, 2015

We are in the process of collecting information from the various sources that pertain to flooding or erosion at the subject location (Please refer to the attached location for the study limits).

Will 099-0170

We have reviewed the Pavement Flooding Prioritization listing:

County:

Structure No.:

The area is identified to have pavement flooding. The area is not included in the listing.

Please review your records and provide any additional information you may have regarding flooding, drainage complaints and/or erosion and siltation problems for the concerned area.

Because of the major drainage structure (SN 099-0170) located within the project limits, please also have your Bridge Maintenance Section check their records for any flooding occurrences or drainage related problems such as debris and/or icing at the subject structure.

Your early consideration of this request is greatly appreciated.

By: Ruhel F. Win

Richard F. Wojcik, P.E. Hydraulics Section Chief

Memorandum

	anuum		λ.	DCPT- OF TR	ANS - DIST 1 EIVED
То:	Roy Fonda	Attn:	Ed Krama	arz NOV	0 8 '96
From:	Wally Kos			BUR. CINEF	NOTE ACT
Subject:	Scour Rating*			AREA I	00
Date:	November 1, 1996			AREA M	- de la
	 * S/N: 099-0170 IL 102/Ryans Creek 			ONTRACTS	- Ano

We concur with your rating of 7 for the subject structure with the conditions to be coded. Because of the high velocities projected at the subject crossing, the calculated riprap size for scour countermeasure is <u>RR 7</u> while the scour hole was filled with RR 5. We therefore recommend to enter category 93B5 with coding #4 and #6 (i.e. underwater inspection category for spread footing and scour critical monitoring program).

By: C. X. Chinliang Wang Hydraulics Section Chief

cc: Bruce Dinkheller/Ed Frank

J. STUMPNER

s:\wp\hydraul\gc61101a.doc

Dawn C. Cosentino

From: Sent: To: Subject: Attachments: Winograd, Esther B <Esther.Winograd@illinois.gov> Monday, March 30, 2015 10:09 AM Dawn C. Cosentino FW: IL 102 over Ryans Creek, SN 099-0170 Scan from D1 District Bridge Office

Hi Dawn

Please include the emails below and attachment in the Hydraulic Report. It provides scour related information. Thanks

Esther Winograd Hydraulic Section Bureau of programming IDOT-DOH 201 West Center Court, Schaumburg, IL 60196-1096 tel; 847/705-4475

From: Mastny, Steve C Sent: Friday, March 27, 2015 8:45 AM To: Wilson, Sarah M; Winograd, Esther B Subject: RE: IL 102 over Ryans Creek, SN 099-0170

Sorry it took so long, but we dug the attached memo out of our files that has some bearing.

Steve

From: Wilson, Sarah M Sent: Monday, March 02, 2015 12:04 PM To: Winograd, Esther B Cc: Mastny, Steve C Subject: RE: IL 102 over Ryans Creek, SN 099-0170

That's correct – an inspector discovered the scour hole was some 2.5 ft below the bottom of the footing, so we used an emergency process to get the hole filled up asap.

From: Winograd, Esther B Sent: Monday, March 02, 2015 11:57 AM To: Wilson, Sarah M Subject: RE: IL 102 over Ryans Creek, SN 099-0170

Sarah-My recollection is that the riprap was place to fill a scour hole, but without a scour countermeasure design, as an emergency. Can you confirm? The attachments were not clear on this subject. Thanks From: Wilson, Sarah M Sent: Monday, March 02, 2015 10:47 AM To: Winograd, Esther B Cc: Mastny, Steve C Subject: RE: IL 102 over Ryans Creek, SN 099-0170

Rip rap was placed in 1996 – I don't have any information in my file indicating that the RR5 wasn't adequate. Steve – do you have anything?

Attached is the cross section from 2009, and 2013.

From: Winograd, Esther B Sent: Thursday, February 26, 2015 10:57 AM To: Wilson, Sarah M Subject: IL 102 over Ryans Creek, SN 099-0170

Hi Sarah,

I am working on the hydraulic report for the subject structure and I am looking for some history regarding scour. This structure had an actual scour problem which was remedied with RR 5 riprap thrown in to fill the hole (probably about 10 years ago +/-?).

Do you have a date for when it was actually done?

Also, after some analysis it was concluded that RR 5 is not adequate for this location.

Was any additional riprap placed? Do you have information on the conditions of the riprap and a current stream x-section under the bridge to show the current conditions of the streambed/riprap?

Your timely input will be much appreciated. Thanks

fsther Winograd 847/705-4475

099-0169 099-0170

Wilson, Sarah M

From: Sent: To: Subject: Mastny, Steve C Wednesday, May 09, 2012 6:55 AM Wilson, Sarah M Re: ARTERIAL INCIDENT- road closed due to flooding IL 102 from Rivals Road South to Old Chicago/South Chicago Road

Yes, I was able to drive all the way through a bit after lunch, although there was still quite a bit of water on the pavement. Both of our structures on 102 in the area are fine. The Kankakee River is rather high, as are some of the tributaries, but driving 102 and 113 and stopping at our structures, nothing is a huge concern.

From: Wilson, Sarah M
Sent: Wednesday, May 09, 2012 06:41 AM
To: Mastny, Steve C
Subject: FW: ARTERIAL INCIDENT- road closed due to flooding IL 102 from Rivals Road South to Old Chicago/South Chicago Road

Did you get a chance to get down to this area?

From: Fleischmann, Robert M
Sent: Tuesday, May 08, 2012 8:54 PM
To: DOT.D1ELEIncident; DOT.D1.ELE-Executive Notification; DOT.Communications Center; ELE-ComCenter; Hill, Lawrence C; Jucius, Cory; Winesberry, Dionne
Subject: RE: ARTERIAL INCIDENT- road closed due to flooding IL 102 from Rivals Road South to Old Chicago/South Chicago Road

Maint advised that the water has gone down and the road is now open. Water on pavement signs are posted

From: DOT.D1ELEIncident
Sent: Monday, May 07, 2012 3:18 PM
To: DOT.D1.ELE-Executive Notification; DOT.Communications Center; ELE-ComCenter; Hill, Lawrence C; Jucius, Cory; Winesberry, Dionne
Subject: ARTERIAL INCIDENT- road closed due to flooding IL 102 from Rivals Road South to Old Chicago/South Chicago Road

INCIDENT: road closed due to flooding

LOCATION: IL 102 from Rivals Road South to Old Chicago/South Chicago Road

City/ County: Town of Ritchie,

BLOCKAGE: road closed due to the overflowing water from a tributary of the Kankakee River

RESPONSE: IDOT ISP 5 on scene

En route

HANDLING:

Estimated DURATION:

DETAILS:

Bob Fleischmann

IDOT District One ComCenter Sup. 847 705 4602

(Send all ComCenter mail to elecc@dot.il.gov)

c

Illinois Route 102 (FAP 631) over Ryans Creek Will County

SECTION 18

Alternatives Analysis
Alt 1. Closed Abutment

Route:	II Route 102	2 (FAP 631)			E	xisting SN: 0	99-0170		
Waterway:	Ryans Cree	ek			Pro	posed SN:			
Section:	111 N-B-I				P	repared by: D	awn Cosentino	Date	10/27/2015
County:	Will				C	hecked by:		Date	:
				E	xisting Overtopp	ing Elev. = 57	79.17 at \$	Sta. 740+68	
Drainage Area =	6.59 square	miles		Pro	posed Overtopp	ing Elev. = 57	79.17 at \$	Sta. 740+68	
Flood Event	Freq.	Discharge	Waterway	Opening - ft ²	Natural	Не	ad - ft	Headwater	Elevation – ft
	Yr.	ft ³ /s	Existing	Proposed	H.W.E ft	Existing	Proposed	Existing	Proposed
10-year	10	408	96	134	573.8	0.2	0.0	574.0	573.8
Design	50	866	126	179	575.3	0.8	0.2	576.1	575.5
Base	100	1250	140	200	576.0	2.7	0.5	578.7	576.5
Scour Design Check	200	1700	152	219	576.6	3.2	1.7	579.8	578.3
Overtop Existing	200	1700	152		576.6	3.2			
Overtop Proposed				236			2.5	579.8	579.1
Max. Calc.	500	2375	164	236	577.4	2.9	2.5	580.3	579.1
Datum: All-Time H.W Surveyed Normal V							ear Velocity throuيar Velocity throug ar Velocity through	Proposed Structu 2-Yr. Flow Ra	ure = 2.7 ft/s ate = $242 \text{ ft}^3/\text{s}$
		EXIS	TING STRUC	TURE			PRO	DPOSED STRUC	TURE
Ту	/pe: Single	Span Concrete	e Deck Beam	Bridge		Туре:	Single Span PPC	Deck Beam 17"	
Length/Wi	dth: 21.3' o	n skew, 20.0' p	erpendicular t	to flow	I	Length Of Span:	34' on skew, 30'	perpendicular	
# Spans/Ce	ells: <u>1 – Le</u> r	ngth along stre	am/abutments	s = 43.93'		# Spans:	1 – Length along	stream/abutment	s =
Low Cho	ord: 577.20	1			Lo	w Chord: Beam:	577.50'		
Sk	ew: 20 deg	rees (relative t	o road)			Skew:	28 degrees (relat	tive to road)	
Clearar	nce: 1.90'	·				Clearance:			
		(u/s) 568.61	(d/s)		В		568.58 (u/s) 568	8.61 (d/s)	
-		at STA 740+6			_	-	578.97 at STA 74		
	ard: 2.87'		-			Freeboard:			
		/s) N/A (d/s)				riceboard.	0.17		
	2113. <u>IN/A</u> (U/	3 INA (U/3)							

NOTE: Proposed Structure Details Are Preliminary; Subject To Refinement In TSL Stage.

WATERWAY OPENING - The effective waterway opening should be calculated at the upstream face of the structure based on the Natural Highwater Elevation for a given frequency. It should represent actual existing conditions, not as-built or cleaned out. It is determined by calculating the flow area under the Natural High Water Elevation (N.H.W.E.) at the surveyed bridge opening section. It is not based on the Existing H.W.E. or the Proposed H.W.E. This value is not the value you can find in the Hydraulic Software output. It is calculated separately from any Hydraulic Software. Pier area below the N.H.W.E. should be subtracted from the total opening area. An adjustment for improperly skewed piers may be required which will increase the pier area and reduce the net opening.

	Α	В	С	D	E	C+(D*E)
Flood Frequency	Natural	Bridge	Area Under	Bridge Span	NHWE-	Waterway Opening
	H.W.E.	U/S Flowline	elev 569.93*	W (ft)	569.93	(sq. ft.)
10-year	573.8	568.58	18	20.0	3.86	96
50-year	575.3	568.58	18	20.0	5.36	126
100-year	576.0	568.58	18	20.0	6.06	140
200-year	576.6	568.58	18	20.0	6.68	152
500-year	577.4	568.58	18	20.0	7.27	164

WATERWAY OPENING (sq. ft.) - EXISTING

*See attached opening exhibit

WATERWAY OPENING (sq. ft.) - PROPOSED

	Α	В	С	D	E	C+(D*E)
Flood Frequency	Natural	Bridge	Area Under	Bridge Span	NHWE-	Waterway Opening
	H.W.E.	U/S Flowline	elev 569.93*	W (ft)	569.93	(sq. ft.)
10-year	573.8	568.58	18	30	3.86	134
50-year	575.3	568.58	18	30	5.36	179
100-year	576.0	568.58	18	30	6.06	200
200-year	576.6	568.58	18	30	6.68	219
500-year	577.4	568.58	18	30	7.27	236

IL Route 102 (FAP 631) over Ryans Creek Tuesday, October 27, 2015

HEAD (ft) - EXISTING

	(A)	(B)	(C)	Head Elevs	(C)	(D)	(C)	Head Elevs	(E)	(F)	(C)	Head Elevs	(G)	(H)	(C)	Head Elevs	(G)	(H)	(C)	Head Elevs
	Existing	Natural	Head (ft)	(NHWE +Largest	Existing	Natural	Head (ft)	(NHWE +Largest	Existing	Natural	Head (ft)	(NHWE +Largest	Existing	Natural	Head (ft)	(NHWE +Largest	Existing	Natural	Head (ft)	(NHWE +Largest
	Condition	Condition	(A - B)	Created Head)	Condition	Condition	(A - B)	Created Head)	Condition	Condition	(A - B)	Created Head)	Condition	Condition	(A - B)	Created Head)	Condition	Condition	(A - B)	Created Head)
Cross Section Station		10-	year Flood Frequen	су		50-year Flood Frequency				100)-year Flood Frequen	су			200-year Flood Frequer	ю			500-year Flood Frequency	,
3022	575.54	575.54	0.0		576.89	576.65	0.0		579.09	577.30	1.8		580.05	577.93	2.1		580.60	578.66	1.9	
2772	575.19	575.18	0.0		576.62	576.24	0.4		579.03	576.88	2.1		580.00	577.49	2.5	I	580.53	578.22	2.3	
2508	574.85	574.83	0.0		576.42	575.88	0.0		578.99	576.51	2.5		579.95	577.11	2.8	Î	580.47	577.85	2.6	
2275	574.39	574.30	0.1		576.31	575.58	0.7		578.96	576.26	2.7		579.93	576.89	3.0	Î	580.43	577.63	2.8	
2040	573.96	573.78	0.2	1	576.15	575.36	0.8	1	578.84	576.11	2.7		579.94	576.77	3.2	Ì	580.45	577.57	2.9	
2026	573.87	573.77	0.1	574.0	575.82	575.30	0.5	576.1	578.50	576.00	2.5	578.7	579.60	576.62	3.0	579.8	580.08	577.41	2.7	580.3

HEAD (ft) - PROPOSED

	(A) Proposed	(B) Natural	(C) Head (ft)	Head Elevs (NHWE +Largest	(C) Proposed	(D) Natural	(C) Head (ft)	Head Elevs (NHWE +Largest	(E) Proposed	(F) Natural	(C) Head (ft)	Head Elevs (NHWE +Largest	(G) Proposed	(H) Natural	(C) Head (ft)	Head Elevs (NHWE +Largest	(G) Proposed	(H) Natural	(C) Head (ft)	Head Elevs (NHWE +Largest
	Condition	Condition	(A - B)	Created Head)	Condition	Condition	(A - B)	Created Head)	Condition	Condition	(A - B)	Created Head)	Condition	Condition	(A - B)	Created Head)	Condition	Condition	(A - B)	Created Head)
Upstream Channel Cross Section Station		10-у	ear Flood Frequenc	Sy		50	-year Flood Frequend	су		100-	year Flood Frequen	су			200-year Flood Frequen	ncy			500-year Flood Frequenc	у
3022	575.54	575.54	0.0		576.70	576.65	0.1		577.49	577.30	0.2		578.88	577.93	1.0		580.29	578.66	1.6	
2772	575.18	575.18	0.0		576.32	576.24	0.1		577.16	576.88	0.3		578.73	577.49	1.2	Ī	580.19	578.22	2.0	
2508	574.82	574.83	0.0		576.01	575.88	0.1		576.91	576.51	0.4		578.62	577.11	1.5	Ī	580.12	577.85	2.3	
2275	574.29	574.30	0.0		575.79	575.58	0.2		576.78	576.26	0.5	1	578.57	576.89	1.7	I	580.07	577.63	2.4	
2040	573.75	573.78	0.0		575.53	575.36	0.2	1	576.50	576.11	0.4	1	578.31	576.77	1.5	1	580.09	577.57	2.5	
2026	573.79	573.77	0.0	573.7	575.54	575.30	0.2	575.5	576.49	576.00	0.5	576.5	578.19	576.62	1.6	578.2	579.80	577.41	2.4	579.9

IL Route 102 (FAP 631) over Ryans Creek Tuesday, October 27, 2015 Proposed 30' Closed Abutment Bridge

Hydraulic Design Data						
Contraction Scour						
	Left	Channel	Right	 	 	
nput Data						
Average Depth (ft):	4.88	7.46	4.44			
Approach Velocity (ft/s):	3.51	4.53	3.29			
Br Average Depth (ft):	0.00	8.60	0.00			
BR Opening Flow (cfs):		1700.00				
BR Top WD (ft):	0.00	30.00	0.00			
Grain Šize D50 (mm):	5.00	5.00	5.00			
Approach Flow (cfs):	239.94	1388.56	71.50			
Approach Top WD (ft):	14.00	41.11	4.89			
K1 Coefficient:	0.590	0.640	0.590			
Results						
Scour Depth Ys (ft):		2.25				
Critical Velocity (it/s):		3.98				
Equation:		Live				
Abutment Scour						
	Left	Right				
nput Data		2				
Station at Toe (ft):	321.00	351.00				
Toe Sta at appr (ft):	367.00	393.11				
Abutment Length (ft):	22.00	11.89				
Depth at Toe (ft):	9.56	9.61				
K1 Shape Coef:	0.82 - Vert.	with wing walls				
Degree of Skew (degrees):	90.00	90.00				
K2 Skew Coef:	1.00	1.00				
Projected Length L' (ft):	15.36	7.29				
Avg Depth Obstructed Ya (ft):	5.82	6.22				
Flow Obstructed Qe (cfs):	510.15	307.94				
Area Obstructed Ae (sq ft):	128.00	73.91				
Results						
Scour Depth Ys (ft):	13.57	12.10				
Qe/Ae = Ve:	3.99	4.17				
Froude #:	0.29	0.29				
Equation:	Froehlich	Froehlich				
Combined Scour Depths						
Left abutment scour + contraction s	cour (ft):	15.82				
Right abutment scour + contraction		14.35				
-				0		
Print File				Close		

Alt.2 Open Abutment

Route:	II Route 102	2 (FAP 631)			I	Existing SN: _(099-0170		
Waterway:	Ryans Cree	ek			Pr	oposed SN:			
Section:	111 N-B-I				F	Prepared by: _I	Dawn Cosentino	Date	10/27/2015
County:	Will				(Checked by:		Date	
				E	xisting Overtop	ping Elev. = 5	579.17 at \$	Sta. 740+68	
Drainage Area =	6.59 square	miles		Pro	posed Overtop	ping Elev. = 5	579.24 at 3	Sta. 740+16	
Flood Event	Freq.	Discharge	Waterway	Opening - ft ²	Natural	H	ead - ft	Headwater	Elevation – ft
Flood Event	Yr.	ft³/s	Existing	Proposed	H.W.E ft	Existing	Proposed	Existing	Proposed
10-year	10	408	96	169	573.8	0.2	0.0	574.0	573.8
Design	50	866	126	238	575.3	0.8	0.2	576.1	575.5
Base	100	1250	140	273	576.0	2.7	0.3	578.7	576.3
Scour Design Check	200	1700	152	297	576.6	3.2	0.6	579.8	577.2
Overtop Existing	200	1700	152		576.6	3.2			
Overtop Proposed				327	577.4		2.0	579.8	579.4
Max. Calc.	500	2375	164	327	577.4	2.9	2.0	580.3	579.4
Datum: All-Time H.V Surveyed Normal V		May, 2012 - /	Approximately	7579.5 ft			Year Velocity throu ear Velocity through	Proposed Structu	
			TING STRUC	TURE			PRO	DPOSED STRUC	
T	ype: Single	Span Concrete	e Deck Beam	Bridge		Type:	Single Span PPC	Deck Beam 28"	
Length/Wi	idth: 21.3' o	n skew, 20.0' p	perpendicular t	to flow		Length Of Span	60' on skew, 52'	perpendicular	
# Spans/C	ells: 1 – Lei	ngth along stre	am/abutments	s = 43.93'		# Spans:	1 – Length along	stream/abutments	s = 43.93
Low Ch	ord: 577.20	1			Lo	ow Chord: Beam	577.50'		
Sk	kew: 20 deg	rees (relative t	o road)			Skew	28 degrees (relat	ive to road)	
	nce: 1.90'	•	·			Clearance		·	
	-	(u/s) 568.61	(d/s)		E		568.58 (u/s) 568	.61 (d/s)	
-		at STA 740+6			-	-	578.94 at STA 74		
	ard: 2.87'		-			Freeboard		··· · •	
		/s) N/A (d/s)				i recoodidi			
Cartert inve		e, it, it (0,0)							

NOTE: Proposed Structure Details Are Preliminary; Subject To Refinement In TSL Stage.

WATERWAY OPENING - The effective waterway opening should be calculated at the upstream face of the structure based on the Natural Highwater Elevation for a given frequency. It should represent actual existing conditions, not as-built or cleaned out. It is determined by calculating the flow area under the Natural High Water Elevation (N.H.W.E.) at the surveyed bridge opening section. It is not based on the Existing H.W.E. or the Proposed H.W.E. This value is not the value you can find in the Hydraulic Software output. It is calculated separately from any Hydraulic Software. Pier area below the N.H.W.E. should be subtracted from the total opening area. An adjustment for improperly skewed piers may be required which will increase the pier area and reduce the net opening.

	A	В	С	D	E	C+(D*E)
Flood Frequency	Natural	Bridge	Area Under	Bridge Span	NHWE-	Waterway Opening
	H.W.E.	U/S Flowline	elev 569.93*	W (ft)	569.93	(sq. ft.)
10-year	573.8	568.58	18	20.0	3.86	96
50-year	575.3	568.58	18	20.0	5.36	126
100-year	576.0	568.58	18	20.0	6.06	140
200-year	576.6	568.58	18	20.0	6.68	152
500-year	577.4	568.58	18	20.0	7.27	164

WATERWAY OPENING (sq. ft.) - EXISTING

*See attached openign exhibit

WATERWAY OPENING (sq. ft.) - PROPOSED

	А	В	С	D	E	C+(D*E)
Flood Frequency	Natural	Bridge	(A-B)	Bridge Span	Bridge Span	Waterway Opening
	H.W.E.	U/S Flowline	height	Wbottom (ft)	Wtop (ft)	(sq. ft.)
10-year	573.8	568.58	5.2	22	43	169
50-year	575.3	568.58	6.7	22	49	238
100-year	576.0	568.58	7.4	22	52	273
200-year	576.6	568.58	8.0	22	52	297
500-year	577.4	568.58	8.8	22	52	327

IL Route 102 (FAP 631) over Ryans Creek Tuesday, October 27, 2015 PR Open Abutment

HEAD (ft) - EXISTING

	(A)	(B)	(C)	Head Elevs	(C)	(D)	(C)	Head Elevs	(E)	(F)	(C)	Head Elevs	(G)	(H)	(C)	Head Elevs	(G)	(H)	(C)	Head Elevs
	Existing	Natural	Head (ft)	(NHWE +Largest	Existing	Natural	Head (ft)	(NHWE +Largest	Existing	Natural	Head (ft)	(NHWE +Largest	Existing	Natural	Head (ft)	(NHWE +Largest	Existing	Natural	Head (ft)	(NHWE +Largest
	Condition	Condition	(A - B)	Created Head)	Condition	Condition	(A - B)	Created Head)	Condition	Condition	(A - B)	Created Head)	Condition	Condition	(A - B)	Created Head)	Condition	Condition	(A - B)	Created Head)
Cross Section Station		10-1	year Flood Frequen	су		50-у	ear Flood Frequen	су		100)-year Flood Freque	ncy		2	00-year Flood Frequen	су			500-year Flood Frequency	,
3022	575.54	575.54	0.0		576.89	576.65	0.0		579.09	577.30	1.8		580.05	577.93	2.1		580.60	578.66	1.9	
2772	575.19	575.18	0.0	1	576.62	576.24	0.4		579.03	576.88	2.1		580.00	577.49	2.5		580.53	578.22	2.3	
2508	574.85	574.83	0.0		576.42	575.88	0.0		578.99	576.51	2.5		579.95	577.11	2.8		580.47	577.85	2.6	
2275	574.39	574.30	0.1		576.31	575.58	0.7		578.96	576.26	2.7		579.93	576.89	3.0		580.43	577.63	2.8	
2040	573.96	573.78	0.2		576.15	575.36	0.8		578.84	576.11	2.7		579.94	576.77	3.2		580.45	577.57	2.9	
2026	573.87	573.77	0.1	574.0	575.82	575.30	0.5	576.1	578.50	576.00	2.5	578.7	579.60	576.62	3.0	579.8	580.08	577.41	2.7	580.3

HEAD (ft) - PROPOSED

	(A)	(B)	(C)	Head Elevs	(C)	(D)	(C)	Head Elevs	(E)	(F)	(C)	Head Elevs	(G)	(H)	(C)	Head Elevs	(G)	(H)	(C)	Head Elevs
	Proposed	Natural	Head (ft)	(NHWE +Largest	Proposed	Natural	Head (ft)	(NHWE +Largest	Proposed	Natural	Head (ft)	(NHWE +Largest	Proposed	Natural	Head (ft)	(NHWE +Largest	Proposed	Natural	Head (ft)	(NHWE +Largest
	Condition	Condition	(A - B)	Created Head)	Condition	Condition	(A - B)	Created Head)	Condition	Condition	(A - B)	Created Head)	Condition	Condition	(A - B)	Created Head)	Condition	Condition	(A - B)	Created Head)
Upstream Channel															· · ·				-	-
Cross Section	on 10-year Flood Frequency 5			50-ye	ear Flood Frequend	cy		100	-year Flood Frequer	су		:	200-year Flood Frequend	cy .			500-year Flood Frequency	/		
Station		-	-	-		-	-	-				-				-				
3022	575.54	575.54	0.0		576.67	576.65	0.0		577.40	577.30	0.1		578.15	577.93	0.2		579.88	578.66	1.2	
2772	575.18	575.18	0.0		576.29	576.24	0.0		577.04	576.88	0.2		577.82	577.49	0.3		579.75	578.22	1.5	
2508	574.82	574.83	0.0		575.95	575.88	0.1		576.75	576.51	0.2		577.56	577.11	0.4		579.65	577.85	1.8	
2275	574.29	574.30	0.0		575.70	575.58	0.1		576.59	576.26	0.3		577.44	576.89	0.6		579.59	577.63	2.0	
2040	573.74	573.78	0.0		575.46	575.36	0.1		576.35	576.11	0.2	1	577.15	576.77	0.4		579.33	577.57	1.8	
2026	573.77	573.77	0.0	573.7	575.45	575.30	0.2	575.5	576.31	576.00	0.3	576.3	577.03	576.62	0.4	577.0	579.15	577.41	1.7	579.2

IL Route 102 (FAP 631) over Ryans Creek Thursday, October 29, 2015 Proposed Open Abutment

Alt 3. Double Box Culvert

Route:	IL Route 102 (FAP 631)				Existing	SN: 09	99-0170			
Waterway:	Ryans Creek					Proposed	SN: Pe	ending			
	111 N-B-I					Prepared			entino	Date:	10/21/2015
County:	Will					Checked				Date:	
					Existina Over	topping Elev	= 579.	17	at St	ta. 740+68	
Drainage Area	a = 6.59 sq. mi.			I	Proposed Overt	opping Elev.	= 579.		at Si	ta. 740+68	
Flood	Event	Discha	arge (cfs)	Waterway O	pening (sq.ft.)	Natural		Hea	d – ft.	Headwater E	levation – ft.
FIOOU	Eveni	Existing	Proposed	Existing	Proposed	H.W.E. ft.	Exis	ting	Proposed	Existing	Proposed
	Main Channel	408	254	96	62.5						
10	Relief Structure		154		37.9	573.8	0.2		0.1	574.0	573.9
	TOTAL	408	408	96	100						
	Main Channel	866	529	126	80.5	_					
50	Relief Structure		337	100	51.4	575.3	0.8		0.7	576.1	576.0
	TOTAL	866	866	126	132						
	Main Channel	1250	762	140	88.9						
100	Relief Structure	1050	488	140	57.7	576.0	2.7		1.4	578.7	577.4
	TOTAL	1250	1250	140	147						
	Main Channel Relief Structure	1700	1031 669	152	96. 63.				• <i>i</i>		
200		1700	1700	152	159	576.6	3.2		2.4	579.8	579.0
	TOTAL										
	Main Channel Relief Structure	1700	1123 731	152	96 63				0.0	570.0	570.4
Overtopping	TOTAL	1700	1854	152	159	576.6	3.2		2.8	579.8	579.4
	Main Channel	2375	1123	164	96						
500	Relief Structure	2375	731	104	63	577.4	2.9		2.8	580.3	580.2
500	TOTAL	2375	1854	164	159	577.4	2.9		2.0	500.5	500.2
Datum:	TOTAL	2010						10_Vear V	elocity through Ex	vistina Structure =	= 4 ft/s
	ime H.W.E. & Da	te: ft							ocity through Pro		
	Normal Water Lev									2-Yr. Flow Rate =	
Surveyeur		XISTING ST							OSED STRUCT		- 242 1175
Main Ch	annel Type: S			Ream Bridge		Main Channe			- 12' x 9' RC Box		
	ength/Width: 2								kew, 21' on perpe		
	Spans/Cells: 1							2			
	Low Chord: 5		ig ou ou na uou			Low Chord		577.58			
			lative to road)						es (relative to roa	ad)	
	Clearance: 1	.90'				Cle	arance:	N/A		•	
Bridg	ge Flow Line: 5								ı/s) 568.5(d/s)		
	Low E.O.P: <u>5</u>		740+68						u/s) 567.5(d/s): E	MBEDMENT DEF	PTH 1ft
-	Freeboard: 2								at STA 740+68		
Cl	ulvert Inverts: N		(d/s)				eboard:	2.97'			
Exist Relief Str						Relief Structur					
	And Flowline: <u>N</u> d Structure Detai		nary: Subject	O Refinement l	n TSL Stage		s/Cells:	567 58 i	nvert 569.58 flowl	ine	
	a onuoraro Delar				I ICL Oldyc.		iowinie.	307.301			

WATERWAY OPENING - The effective waterway opening should be calculated at the upstream face of the structure based on the Natural Highwater Elevation for a given frequency. It should represent actual existing conditions, not as-built or cleaned out. It is determined by calculating the flow area under the Natural High Water Elevation (N.H.W.E.) at the surveyed bridge opening section. It is not based on the Existing H.W.E. or the Proposed H.W.E. This value is not the value you can find in the Hydraulic Software output. It is calculated separately from any Hydraulic Software. Pier area below the N.H.W.E. should be subtracted from the total opening area. An adjustment for improperly skewed piers may be required which will increase the pier area and reduce the net opening.

WATERWAY OPENING (sq. ft.) - EXISTING

	Α	В	С	D	E	C+(D*E)
Flood Frequency	Natural	Bridge	Area Under	Bridge Span	NHWE-	Waterway Opening
	H.W.E.	U/S Flowline	elev 569.93*	W (ft)	569.93	(sq. ft.)
10-year	573.8	568.58	18	20.0	3.86	96
50-year	575.3	568.58	18	20.0	5.36	126
100-year	576.0	568.58	18	20.0	6.06	140
200-year	576.6	568.58	18	20.0	6.68	152
500-year	577.4	568.58	18	20.0	7.27	164

*See attached openign exhibit

WATERWAY OPENING (sq. ft.) - PROPOSED Twin (2) 12' x 10' RC Box Culverts depressed 1 foot. Culvert 2 buried 2'. On a 28 degree skew

	A	В	С	D=(A-B)*C	E	F	G=(A-E)*F	D+G
Flood Frequency	Natural	Culvert #1	Culvert Span	Waterway Opening #1	Culvert #2	Culvert Span	Waterway Opening #2	Total Waterway Opening
	H.W.E.	U/S Flowline	W (ft)	(Sq. Ft.)	U/S Flowline	W (ft)	(Sq. Ft.)	(sq. ft.)
10-year	573.8	568.58	12.0	62.52	569.58	9	37.89	100
50-year	575.3	568.58	12.0	80.52	569.58	9	51.39	132
100-year	576.0	568.58	12.0	88.92	569.58	9	57.69	147
200-year	576.6	568.58	12.0	96.00	569.58	9	63.00	159
500-year	577.4	568.58	12.0	96.00	569.58	9	63.00	159

IL Route 102 (FAP 631) over Ryans Creek Twin (2)-12' x 10' Box Culverts

HEAD (ft) - EXISTING

	(A)	(B)	(C)	Head Elevs	(C)	(D)	(C)	Head Elevs	(E)	(F)	(C)	Head Elevs	(G)	(H)	(C)	Head Elevs	(G)	(H)	(C)	Head Elevs
	Existing	Natural	Head (ft)	(NHWE +Largest	Existing	Natural	Head (ft)	(NHWE +Largest	Existing	Natural	Head (ft)	(NHWE +Largest	Existing	Natural	Head (ft)	(NHWE +Largest	Existing	Natural	Head (ft)	(NHWE +Largest
	Condition	Condition	(A - B)	Created Head)	Condition	Condition	(A - B)	Created Head)	Condition	Condition	(A - B)	Created Head)	Condition	Condition	(A - B)	Created Head)	Condition	Condition	(A - B)	Created Head)
Cross Section Station		10-1	year Flood Frequend	су		50	-year Flood Frequen	су		100)-year Flood Frequer	су		:	200-year Flood Frequer	су			500-year Flood Frequen	су
3022	575.54	575.54	0.0		576.89	576.65	0.0		579.09	577.30	1.8		580.05	577.93	2.1		580.60	578.66	1.9	
2772	575.19	575.18	0.0		576.62	576.24	0.4		579.03	576.88	2.1		580.00	577.49	2.5		580.53	578.22	2.3	
2508	574.85	574.83	0.0		576.42	575.88	0.0		578.99	576.51	2.5		579.95	577.11	2.8		580.47	577.85	2.6	-
2275	574.39	574.30	0.1		576.31	575.58	0.7		578.96	576.26	2.7		579.93	576.89	3.0		580.43	577.63	2.8	-
2040	573.96	573.78	0.2	1	576.15	575.36	0.8	1	578.84	576.11	2.7		579.94	576.77	3.2		580.45	577.57	2.9	1
2026	573.87	573.77	0.1	574.0	575.82	575.30	0.5	576.1	578.50	576.00	2.5	578.7	579.60	576.62	3.0	579.8	580.08	577.41	2.7	580.3

HEAD (ft) - PROPOSED

	(A)	(B)	(C)	Head Elevs	(C)	(D)	(C)	Head Elevs	(E)	(F)	(C)	Head Elevs	(G)	(H)	(C)	Head Elevs	(G)	(H)	(C)	Head Elevs
	Proposed	Natural	Head (ft)	(NHWE +Largest	Proposed	Natural	Head (ft)	(NHWE +Largest	Proposed	Natural	Head (ft)	(NHWE +Largest	Proposed	Natural	Head (ft)	(NHWE +Largest	Proposed	Natural	Head (ft)	(NHWE +Largest
	Condition	Condition	(A - B)	Created Head)	Condition	Condition	(A - B)	Created Head)	Condition	Condition	(A - B)	Created Head)	Condition	Condition	(A - B)	Created Head)	Condition	Condition	(A - B)	Created Head)
Upstream Channel Cross Section Station	Inction 10-year Flood Frequency 50-year Flood Frequency				су		10	0-year Flood Frequen	су			200-year Flood Frequen	су			500-year Flood Frequency	у			
3022	575.54	575.54	0.0		576.85	576.65	0.2		577.99	577.30	0.7		579.45	577.93	1.5		580.58	578.66	1.9	
2772	575.18	575.18	0.0		576.56	576.24	0.3		577.81	576.88	0.9		579.35	577.49	1.9	Ĩ	580.50	578.22	2.3	
2508	574.84	574.83	0.0		576.34	575.88	0.5		577.69	576.51	1.2		579.29	577.11	2.2	Ĩ	580.44	577.85	2.6	
2275	574.34	574.30	0.0	1	576.22	575.58	0.6		577.63	576.26	1.4		579.25	576.89	2.4	İ	580.40	577.63	2.8	
2040	573.86	573.78	0.1	1	576.05	575.36	0.7		577.44	576.11	1.3		579.04	576.77	2.3	İ	580.42	577.57	2.8	
2026	573.77	573.77	0.0	573.9	575.70	575.30	0.4	575.7	576.92	576.00	0.9	576.9	578.35	576.62	1.7	578.9	580.02	577.41	2.6	580.3

IL Route 102 (FAP 631) over Ryans Creek Tuesday, October 27, 2015 Twin (2) 12' x 9' Box Culvert

Alt 4. Precast Multi-Cell Culverts

Route:	IL Route 102 (FAP 631)				Existing	SN: 09	9-0170			
-	Ryans Creek	,				Proposed		ending			
	111 N-B-I					Prepared	by: Da	awn Cose	entino	Date:	10/21/2015
County:	Will					Checked				Date:	
					Existina Over	tonning Elev	= 579.	17	at St	a. 740+68	
Drainage Area	a = 6.59 sq. mi.			I	Proposed Overt		= 579.		at St		
Flood	Event	Discha	arge (cfs)	Waterway O	pening (sq.ft.)	Natural		Hea	d – ft.	Headwater E	levation – ft.
FIOOU	Event	Existing	Proposed	Existing	Proposed	H.W.E. ft.	Exis	ting	Proposed	Existing	Proposed
	Main Channel	408	208	96	63						
10	Relief Structure		200		80	573.8	0.2		0.0	574.0	573.8
	TOTAL	408	408	96	143						
	Main Channel	866	388	126	80.5						
50	Relief Structure	000	478	100	108.5	575.3	0.8		0.3	576.1	575.6
	TOTAL	866	866	126	189						
100	Main Channel Relief Structure	1250	577 673	140	88.9 122	570.0	0.7		0.0	570 7	570.0
100	TOTAL	1250	1250	140	211	576.0	2.7		0.8	578.7	576.8
	Main Channel	1230	773	152	96.						
200	Relief Structure	1700	927	152	133	576.6	3.2		1.5	579.8	578.1
200	TOTAL	1700	1700	152	229	570.0	5.2		1.5	575.0	570.1
	Main Channel	1700	1007	152	96						
Overtopping	Relief Structure		1224	102	133	576.6	3.2		2.7	579.8	579.3
overtopping	TOTAL	1700	1854	152	229						
	Main Channel	2375	1007	164	96						
500	Relief Structure		1224		133	577.4	2.9		2.7	580.3	580.1
	TOTAL	2375	2231	164	229						
Datum:								10-Year V	elocity through Ex	kisting Structure =	- 4 ft/s
All-T	ime H.W.E. & Da	te: ft					10)-Year Vel	locity through Pro	posed Structure =	= 3.4 ft/s
Surveyed N	Normal Water Lev	vel: ft								2-Yr. Flow Rate =	: 242 ft ³ /s
	E	XISTING ST	RUCTURE					PROP	OSED STRUCT	URE(S)	
	annel Type: S					Main Channe		(1)- 12' >	< 9'	, , ,	
	ength/Width: 2							36' on sł	kew, 33' on perper	ndicular	
#	Spans/Cells: 1		ig stream/abut	ments = 43.93'				1			
	Low Chord: 5					Low Chord				N	
		0 degrees (rel	ative to road)						ees (relative to roa	ad)	
Bride	Clearance: 1.	.90 68 58 (µ/s) 56	S8 61 (d/s)				arance: w Line:		ı/s) 568.5(d/s)		
Dhu	Low E.O.P: 5					Invert If			ı/s) 567.5(d/s): El		PTH 1ft
	Freeboard: 2		140:00				/ F.O.P:	578.87 a	at STA 740+68		
Cı	ulvert Inverts: N		d/s)			Fre	eboard:	2.97'			
Exist Relief Stru	ucture Type: N		· · · · · · · · · · · · · · · · · · ·			Relief Structur			9' RC Box Culver	ts	
Dimensions A	And Flowline: N						s/Cells:	2			
NOTE: Propose	d Structure Detai	ls Are Prelimi	hary: Subject 7	To Refinement Ir	n TSL Stage.	Invert And F	lowline:	567.58 ii	nvert 569.58 flowli	ine	

WATERWAY OPENING - The effective waterway opening should be calculated at the upstream face of the structure based on the Natural Highwater Elevation for a given frequency. It should represent actual existing conditions, not as-built or cleaned out. It is determined by calculating the flow area under the Natural High Water Elevation (N.H.W.E.) at the surveyed bridge opening section. It is not based on the Existing H.W.E. or the Proposed H.W.E. This value is not the value you can find in the Hydraulic Software output. It is calculated separately from any Hydraulic Software. Pier area below the N.H.W.E. should be subtracted from the total opening area. An adjustment for improperly skewed piers may be required which will increase the pier area and reduce the net opening.

WATERWAY OPENING (sq. ft.) - EXISTING

	Α	В	С	D	E	C+(D*E)
Flood Frequency	Natural	Bridge	Area Under	Bridge Span	NHWE-	Waterway Opening
	H.W.E.	U/S Flowline	elev 569.93*	W (ft)	569.93	(sq. ft.)
10-year	573.8	568.58	18	20.0	3.86	96
50-year	575.3	568.58	18	20.0	5.36	126
100-year	576.0	568.58	18	20.0	6.06	140
200-year	576.6	568.58	18	20.0	6.68	152
500-year	577.4	568.58	18	20.0	7.27	164

*See attached openign exhibit

WATERWAY OPENING (sq. ft.) - PROPOSED Twin (2) 12' x 10' RC Box Culverts depressed 1 foot. Culvert 2 buried 2'. On a 28 degree skew

	A	В	C	D=(A-B)*C	E	F	G=(A-E)*F	Н		J=(A-E)*F	D+G+J	1
Flood Frequency	Natural	Culvert #1	Culvert Span	Waterway Opening #1	Culvert #2	Culvert Span	Waterway Opening #2	Culvert #3	Culvert Spa	Waterway Opening #2	/aterway C	Jpeni
	H.W.E.	U/S Flowline	W (ft)	(Sq. Ft.)	U/S Flowline	W (ft)	(Sq. Ft.)	U/S Flowline	W (ft)	(Sq. Ft.)	(sq. ft.)	
10-year	573.8	568.58	12.0	62.52	569.58	9	37.89	569.58	10	42.10	143	1
50-year	575.3	568.58	12.0	80.52	569.58	9	51.39	569.58	10	57.10	189]
100-year	576.0	568.58	12.0	88.92	569.58	9	57.69	569.58	10	64.10	211]
200-year	576.6	568.58	12.0	96.00	569.58	9	63.00	569.58	10	70.00	229]
500-year	577.4	568.58	12.0	96.00	569.58	9	63.00	569.58	10	70.00	229]

IL Route 102 (FAP 631) over Ryans Creek 1) 12' x 9" and (2)-10' x 9' Box Culverts

ning

HEAD (ft) - EXISTING

	(A)	(B)	(C)	Head Elevs	(C)	(D)	(C)	Head Elevs	(E)	(F)	(C)	Head Elevs	(G)	(H)	(C)	Head Elevs	(G)	(H)	(C)	Head Elevs
	Existing	Natural	Head (ft)	(NHWE +Largest	Existing	Natural	Head (ft)	(NHWE +Largest	Existing	Natural	Head (ft)	(NHWE +Largest	Existing	Natural	Head (ft)	(NHWE +Largest	Existing	Natural	Head (ft)	(NHWE +Largest
	Condition	Condition	(A - B)	Created Head)	Condition	Condition	(A - B)	Created Head)	Condition	Condition	(A - B)	Created Head)	Condition	Condition	(A - B)	Created Head)	Condition	Condition	(A - B)	Created Head)
Cross Section Station		10-у	ear Flood Frequent	су		50	-year Flood Frequen	су		100)-year Flood Frequen	ncy			200-year Flood Frequer	ю			500-year Flood Frequency	у
3022	575.54	575.54	0.0		576.89	576.65	0.0		579.09	577.30	1.8		580.05	577.93	2.1		580.60	578.66	1.9	
2772	575.19	575.18	0.0		576.62	576.24	0.4		579.03	576.88	2.1		580.00	577.49	2.5	Î	580.53	578.22	2.3	ľ
2508	574.85	574.83	0.0		576.42	575.88	0.0		578.99	576.51	2.5		579.95	577.11	2.8	Î	580.47	577.85	2.6	ľ
2275	574.39	574.30	0.1		576.31	575.58	0.7		578.96	576.26	2.7		579.93	576.89	3.0	Î	580.43	577.63	2.8	ľ
2040	573.96	573.78	0.2	1	576.15	575.36	0.8	1	578.84	576.11	2.7	1	579.94	576.77	3.2	Ì	580.45	577.57	2.9	ľ
2026	573.87	573.77	0.1	574.0	575.82	575.30	0.5	576.1	578.50	576.00	2.5	578.7	579.60	576.62	3.0	579.8	580.08	577.41	2.7	580.3

HEAD (ft) - PROPOSED

	(A) Broposod	(B)	(C)	Head Elevs (NHWE +Largest	(C) Proposed	(D)	(C) Head (ft)	Head Elevs (NHWE +Largest	(E) Proposed	(F) Natural	(C) Head (ft)	Head Elevs (NHWE +Largest	(G) Proposed	(H) Natural	(C) Head (ft)	Head Elevs (NHWE +Largest	(G) Proposed	(H) Natural	(C) Head (ft)	Head Elevs (NHWE +Largest
		Condition	Head (ft) (A - B)		Condition		()			Condition			Proposed Condition	Condition	()	Created Head)	Proposed Condition		(A - B)	Created Head)
Upstream Channel Cross Section Station		10-у	vear Flood Frequen	су		50	-year Flood Frequend	су		10	0-year Flood Frequen	псу			200-year Flood Frequen	су			500-year Flood Frequenc	у
3022	575.54	575.54	0.0		576.74	576.65	0.1		577.64	577.30	0.3		578.71	577.93	0.8		580.42	578.66	1.8	
2772	575.18	575.18	0.0		576.39	576.24	0.1		577.37	576.88	0.5		578.54	577.49	1.0		580.33	578.22	2.1	ľ
2508	574.82	574.83	0.0		576.11	575.88	0.2		577.18	576.51	0.7		578.41	577.11	1.3	Ĩ	580.27	577.85	2.4	
2275	574.29	574.30	0.0		575.93	575.58	0.3		577.08	576.26	0.8		578.35	576.89	1.5	Î	580.23	577.63	2.6	ľ
2040	573.75	573.78	0.0	1	575.70	575.36	0.3		576.84	576.11	0.7	1	578.07	576.77	1.3	İ	580.24	577.57	2.7	
2026	573.65	573.77	0.0	573.7	575.31	575.30	0.0	575.3	576.17	576.00	0.2	576.2	577.10	576.62	0.5	577.9	578.49	577.41	1.1	580.1

IL Route 102 (FAP 631) over Ryans Creek Tuesday, October 27, 2015 (1) 12' x 9' and (2) 10' x 9' Box Culverts

Alt 5. Three-Sided Culvert

3-Sided Bridge Waterway Information Table

-		2 (FAP 631)				· ·	099-0170		
Waterway: Section: County:	111 N-B-I	k			F	oposed SN: Prepared by: Checked by:	Dawn Cosentino	Date: Date:	10/27/2015
Drainage Area =	squar	e miles			isting Overtop oosed Overtop			Sta. 740+68 Sta. 740+68	
Flood Event	Freq.	Discharge	Waterway (Opening - ft ²	Natural		Head - ft	Headwater	Elevation – ft
	Yr.	ft ³ /s	Existing	Proposed	H.W.E ft	Existing	Proposed	Existing	Proposed
	10	408	96	104	573.8	0.2	0.0	574.0	573.8
Design	50	866	126	151	575.3	0.8	0.3	576.1	575.6
Base	100	1250	140	165	576.0	2.7	0.8	578.7	576.8
Scour Design Check	200	1700	152	184	576.6	3.2	1.4	579.8	578.0
Overtop Existing	200	1700	152		576.6	3.2		579.8	
Overtop Proposed	500	2375		216	577.4		2.6		580.0
Max. Calc.	500	2375	164	216	577.4	2.9	2.6	580.3	580.0

Datum:

All-Time H.W.E. & Date: May, 2012 Appx 579.5 ft Surveyed Normal Water Level: 570.0 ft

EXISTING STRUCTURE

10-Year Velocity through Existing Structure = 4 ft/s

10-Year Velocity through Proposed Structure = 4 ft/s

2-Yr. Flow Rate = $242 \text{ ft}^3/\text{s}$

PROPOSED STRUCTURE

Туре:	Single Span Concrete	3-Sided Culvert Type:	Flat Top (Flat Top or Arch)
Length/Width:	21.3 on skew, 20 perpendicular	Length Of Span:	length = 43.9, width 36 on skew, 34 perpendicular
# Spans/Cells:	1 - Length along abutments = 43.93	# Cells:	1
Low Beam:	577.2	Top Of Crown Elev: Beam:	576.58
Skew:	20 (relative to road)	Skew:	28 (relative to road)
Clearance:	1.9	Flow Line Elev:	568.58 (u/s) 568.61 (d/s)
Bridge Flow Line:	568.58 (u/s) 568.61 (d/s)	Low E.O.P:	578.87
Low E.O.P:	578.97	Freeboard:	
Freeboard:	2.87		
Culvert Inverts:	N/A (u/s) (d/s)		

NOTE: Proposed Structure Details Are Preliminary; Subject To Refinement In TSL Stage.

HEAD (ft) - EXISTING

	(A)	(B)	(C)	Head Elevs	(C)	(D)	(C)	Head Elevs	(E)	(F)	(C)	Head Elevs	(G)	(H)	(C)	Head Elevs	(G)	(H)	(C)	Head Elevs
	Existing	Natural	Head (ft)	(NHWE +Largest	Existing	Natural	Head (ft)	(NHWE +Largest	Existing	Natural	Head (ft)	(NHWE +Largest	Existing	Natural	Head (ft)	(NHWE +Largest	Existing	Natural	Head (ft)	(NHWE +Largest
	Condition	Condition	(A - B)	Created Head)	Condition	Condition	(A - B)	Created Head)	Condition	Condition	(A - B)	Created Head)	Condition	Condition	(A - B)	Created Head)	Condition	Condition	(A - B)	Created Head)
Cross Section Station		10-	year Flood Frequen	су		50	-year Flood Frequen	су		100	-year Flood Frequen	ю		:	200-year Flood Frequer	ю			500-year Flood Frequence	су
3022	575.54	575.54	0.0		576.89	576.65	0.0		579.09	577.30	1.8		580.05	577.93	2.1		580.60	578.66	1.9	
2772	575.19	575.18	0.0		576.62	576.24	0.4		579.03	576.88	2.1		580.00	577.49	2.5	Ï	580.53	578.22	2.3	
2508	574.85	574.83	0.0		576.42	575.88	0.0		578.99	576.51	2.5		579.95	577.11	2.8	Ī	580.47	577.85	2.6	
2275	574.39	574.30	0.1		576.31	575.58	0.7		578.96	576.26	2.7		579.93	576.89	3.0	Ī	580.43	577.63	2.8	
2040	573.96	573.78	0.2	1	576.15	575.36	0.8	1	578.84	576.11	2.7	1	579.94	576.77	3.2	Î	580.45	577.57	2.9	1
2026	573.87	573.77	0.1	574.0	575.82	575.30	0.5	576.1	578.50	576.00	2.5	578.7	579.60	576.62	3.0	579.8	580.08	577.41	2.7	580.3

HEAD (ft) - PROPOSED

	(A)	(B)	(C)	Head Elevs	(C)	(D)	(C)	Head Elevs	(E)	(F)	(C)	Head Elevs	(G)	(H)	(C)	Head Elevs	(G)	(H)	(C)	Head Elevs
	Proposed	Natural	Head (ft)	(NHWE +Largest	Proposed	Natural	Head (ft)	(NHWE +Largest	Proposed	Natural	Head (ft)	(NHWE +Largest	Proposed	Natural	Head (ft)	(NHWE +Largest	Proposed	Natural	Head (ft)	(NHWE +Largest
	Condition	Condition	(A - B)	Created Head)	Condition	Condition	(A - B)	Created Head)	Condition	Condition	(A - B)	Created Head)	Condition	Condition	(A - B)	Created Head)	Condition	Condition	(A - B)	Created Head)
Upstream Channel Cross Section Station	10-year Flood Frequency				50-year Flood Frequency			100-year Flood Frequency			200-year Flood Frequency			500-year Flood Frequency						
3022	575.54	575.54	0.0		576.73	576.65	0.1		577.63	577.30	0.3		578.70	577.93	0.8		580.40	578.66	1.7	
2772	575.18	575.18	0.0		576.37	576.24	0.1		577.35	576.88	0.5		578.52	577.49	1.0	Ĩ	580.31	578.22	2.1	
2508	574.82	574.83	0.0		576.08	575.88	0.2		577.15	576.51	0.6		578.39	577.11	1.3	Ī	580.24	577.85	2.4	
2275	574.28	574.30	0.0		575.89	575.58	0.3		577.05	576.26	0.8		578.33	576.89	1.4	Î	580.20	577.63	2.6	
2040	573.72	573.78	0.0	1	575.66	575.36	0.3		576.81	576.11	0.7		578.05	576.77	1.3	Î	580.22	577.57	2.6	
2026	573.62	573.77	0.0	573.8	575.26	575.30	0.0	575.3	576.13	576.00	0.1	576.1	577.06	576.62	0.4	577.9	578.45	577.41	1.0	580.1

IL Route 102 (FAP 631) over Ryans Creek Tuesday, October 27, 2015 Three Sided Culvert 32' x 8'

SECTION 19

 $\mathsf{C}\mathsf{D}$