Structural Geotechnical Report

Proposed Retaining Wall #4 SN 099-W125 IDOT PTB 198-003 FAI-80 over Des Plaines River Bridge Will County, Illinois

Prepared for

Illinois Department of Transportation Contract Number: D-91-204-19

> Project Design Engineer Team WSP USA

Geotechnical Consultant

Revised June 4, 2025 December 9, 2022

735 Remington Road Schaumburg, IL 60173 Tel: 630.994.2600 www.gsg-consultants.com

June 4, 2025

David Skaleski, P.E. Project Manager WSP USA 30 N. LaSalle Street, Suite 4200 Chicago, Illinois 60602

Structural Geotechnical Report Proposed Retaining Wall #4 FAI-80 over Des Plaines River Bridge Will County, IL PTB 198-003

Dear Mr. Skaleski:

Attached is a copy of the Structural Geotechnical Report for the above referenced project. The report provides a description of the site investigation, site conditions, and foundation and construction recommendations. The site investigation for the proposed retaining wall included advancing fifteen (15) soil borings to depths between 2 and 15 feet and collecting 10-foot rock cores at nine borings.

Should you have any questions or require additional information, please call us at 630-994-2600.

Sincerely,

Rachel Miller, P.E. Senior Project Engineer

Dawn Edgell.

Dawn Edgell, P.E. Geotechnical Department Manager

TABLE OF CONTENTS

1.0	INTROD	UCTION	1
	1.1 1.2	Existing Conditions Proposed Retaining Wall Information	
2.0	SITE SUE	3SURFACE CONDITIONS	4
	2.1 2.2 2.3 2.4 2.5	Subsurface Exploration and Laboratory Testing Subsurface Bedrock Conditions Laboratory Testing Program Subsurface Soil Conditions Groundwater Conditions	5 7 7
3.0	3.1 3.2	HNICAL ANALYSES Settlement Seismic Parameters	9 9
4.0	4.1	HNICAL WALL DESIGN RECOMMENDATIONS Retaining Wall Type Recommendations	11
	4.2 4.3 4.4 4.5	Retaining Wall Design Recommendations MSE Wall Bearing Resistance Recommendations Overall Stability Slope Stability Results	14 18
5.0	CONSTR	RUCTION CONSIDERATIONS	
	5.1 5.2 5.3 5.4 5.5	Site Preparation Existing Utilities and Structures Site Excavation Borrow Material and Compaction Requirements Groundwater Management	20 21 21
6.0	LIMITAT	TONS	24

<u>Exhibits</u>

Exhibit 1	Project Location Map
Exhibit 2	Existing Site Conditions at Proposed Retaining Wall Location
Exhibit 3	Structural Fill Placement Below MSE Wall

<u>Tables</u>

- Table 1 Retaining Wall Summary
- Table 2Summary of Subsurface Exploration Borings
- Table 3 Rock Quality Designation
- Table 4 Rock Core Summary and Classification
- Table 5
 Anticipated Embankment Settlement
- Table 6Seismic Parameters
- Table 7LRFD Load Factors for Retaining Wall Analysis
- Table 8 Lateral Soil Parameters
- Table 9
 Equivalent Height of Soil for Vehicular Loading on Retaining Walls Parallel to Traffic
- Table 10 Recommended Bearing Resistance
- Table 11 Recommended Undercuts
- Table 12 MSE Retaining Wall Description
- Table 13a Stability Analysis Results 0.7H
- Table 13bStability Analysis Results 0.9H

Appendices

- Appendix A General Plan and Elevation (approved June 14, 2024)
 - Roadway Profile, Cross Sections Center Street Ramp C
- Appendix B Soil Boring Location Plan and Soil Boring Profile
- Appendix C Soil Boring Logs
- Appendix D Laboratory Results
- Appendix E Slope Stability Analyses Exhibits
- Appendix F Summary of Soil Parameters

Structural Geotechnical Report Proposed Retaining Wall #4 SN 099-W125 FAI-80 over Des Plaines River Bridge Will County, Illinois IDOT PTB 198-003

1.0 INTRODUCTION

GSG Consultants, Inc. (GSG) completed a geotechnical investigation for the proposed retaining wall SN 099-W125 as part of the FAI-80 over Des Plaines project in the City of Joliet in Will County, Illinois. The purpose of the investigation was to explore the subsurface conditions, to determine engineering properties of the subsurface soil, and develop design and construction recommendations for the proposed retaining wall. **Exhibit 1** shows the general project location.

Exhibit 1 – Project Location Map (Source: USGS Topographic Maps, usgs.gov)

1.1 Existing Conditions

It is understood the Ramp C and I-80 westbound alignment will be demolished and reconstructed approximately 140 feet to the north. Retaining Wall #4 will be constructed to support a portion of the new Ramp C embankment and to separate the new ramp from the mainline I-80 roadway. According to the approved GPE dated June 14, 2024, the retaining wall will be in a fill section where the new embankment will be constructed. The western portion of the proposed wall will

FAI-80 over Des Plaines River Bridge, Will County Proposed Retaining Wall #4

be constructed within the area of the existing I-80 interchange with Center Street, and the eastern portion of the wall will be within the neighboring residential area to the north, where new right of way has been obtained. **Exhibits 2a, 2b and 2c** show the existing conditions where the proposed retaining wall will be constructed.

Exhibit 2a – Existing Shelby Street, Looking Northwest

Exhibit 2b – Existing Raynor Avenue, Looking East

FAI-80 over Des Plaines River Bridge, Will County Proposed Retaining Wall #4

Exhibit 2c – Proposed Project Area, Aerial

1.2 Proposed Retaining Wall Information

Based on the GPE drawings provided by WSP, approved June 14, 2024, (see **Appendix A**) and a review of site topography, the proposed wall will be in a fill section along the newly constructed Ramp C embankment. The Ramp C embankment and Retaining Wall #4 will be constructed during the same construction stage. Retaining Wall #4 will have a maximum total wall height of up to approximately 18.7 feet, bearing at 3.5 feet below grade with a maximum exposed height of 15.2 feet. The proposed retaining wall will be approximately 519.4 feet in length and is anticipated to be a MSE wall. **Table 1** presents a summary of the proposed structure.

Wall Name	Wall Stations*	Approximate Length (ft)	Maximum Anticipated Wall Height (ft)
Retaining Wall #4	Sta. 9+25.00 to Sta. 14+45.00	519' 5"	18.7

* Based on Ramp C Stationing

A separate Roadway Geotechnical Report will be prepared for the design and construction recommendations of the new Ramp C embankment.

Proposed Retaining Wall #4

FAI-80 over Des Plaines River Bridge, Will County

2.0 SITE SUBSURFACE CONDITIONS

This section describes the subsurface exploration program and laboratory testing program completed as part of this project. The proposed locations and depths of the soil borings were selected in accordance with IDOT requirements and reviewed with WSP based on the provided plans. The borings were completed in the field based on field conditions and accessibility.

2.1 Subsurface Exploration and Laboratory Testing

The site subsurface exploration for the proposed retaining wall structure was conducted between August 18 and October 27, 2022, and between March 20 and April 29, 2025. The investigation included advancing fifteen (15) borings along the proposed alignment to depths between 2.0 and 15.0 feet, including 10-foot rock cores at 9 locations. The borings were terminated upon encountering auger refusal on bedrock. The locations of these soil borings were adjusted in the field as necessary based on existing structures, utilities, and access. Elevations and as-drilled locations for the borings were gathered by GSG's field crew using GPS surveying equipment. The approximate as-drilled locations of the soil borings are shown on the Soil Boring Location Plan & Soil Boring Profile (Appendix B). Table 2 presents a summary of the borings completed for the proposed retaining wall analysis.

Boring ID	Station [†]	Offset (ft) †	Northing	Easting	Depth (ft)	Surface Elevation (ft)
RWB-28	10+12.02	14.41 RT	1765398.750	1049291.571	14.5*	571.45
RWB-29	10+5.46	25.76 LT	1765358.066	1049290.353	6.0**	571.33
RWB-30	9+23.32	35.99 LT	1765331.474	1049367.913	15.0*	570.69
RWB-32	14+73.32	32.94 LT	1765439.154	1048829.597	14.0*	589.06
RWB-33	14+23.12	32.90 LT	1765429.739	1048878.902	6.0**	587.09
RWB-34	13+52.49	32.57 LT	1765420.090	1048930.975	15.0*	592.09
RWB-35	13+17.68	33.11 LT	1765409.670	1048982.420	8.0**	589.01
RWB-48	11+96.23	39.70 LT	1765380.317	1049100.452	14.0*	579.53
RWB-49	11+65.05	31.80 LT	1765382.202	1049132.564	3.0**	577.90
RWB-50	11+23.60	20.20 LT	1765385.777	1049175.449	15.0*	576.22
RWB-51	10+72.47	46.04 LT	1765350.776	1049220.795	17.0*	574.74
RWB-52	10+28.75	29.50 LT	1765358.781	1049266.855	2.0**	573.43

Table 2 – Summary of Subsurface Exploration Borin

PTB 198-003

FAI-80 over Des Plaines River Bridge, Will County Proposed Retaining Wall #4

Boring ID	Station [†]	Offset (ft) †	Northing	Easting	Depth (ft)	Surface Elevation (ft)
RWB-53	9+75.76	39.37 LT	1765338.961	1049316.513	12.0*	572.70
RWB-54	9+22.71	25.49 LT	1765341.600	1049370.771	2.0**	572.26
RWB-55	8+70.43	24.30 LT	1765338.945	1049421.870	11.5*	571.42

* Depth includes Bedrock Core (10 feet)

** Terminated upon encountering practical auger refusal

[†] Based on proposed Ramp C Stationing

Copies of the Soil Boring Logs are provided in Appendix C.

The soil borings were drilled using truck mounted Diedrich D-50 (hammer efficiency 96%), ATV mounted Diedrich D-50 (hammer efficiency 91%), Mobile B-57 (hammer efficiency 89%), CME-75 (hammer efficiency 79%), and 2025 Diedrich D-50 (hammer efficiency 98%) drill rigs, each equipped with 3¼-inch I.D. hollow stem augers and an automatic hammer. Soil sampling was performed according to AASHTO T 206, "Penetration Test and Split Barrel Sampling of Soils." Soil samples were obtained at 2.5-foot intervals to the boring termination depths or auger refusal on bedrock. Water level measurements were made in each boring when evidence of free groundwater was detected on the drill rods or in the samples. The boreholes were also checked for free water immediately after auger removal, and before filling the open boreholes with soil cuttings and surface patching with asphalt where necessary to match the existing pavement.

GSG's field representative inspected, visually classified and logged the soil samples during the subsurface exploration activities and performed unconfined compressive strength tests on cohesive soil samples using a calibrated Rimac compression tester and a calibrated hand penetrometer in accordance with IDOT procedures and requirements. Representative soil samples were collected from each sample interval and were placed in jars and returned to the laboratory for further testing and evaluation.

2.2 Subsurface Bedrock Conditions

GSG collected rock core runs from nine of the soil borings with the use of either a five-foot or a ten-foot, diamond bit, NX-5 split core barrel during the investigation. The bedrock cores were evaluated in the field for texture, physical condition, recovery percentage, and Rock Quality Designation (RQD). The extracted bedrock cores were visually inspected, classified and the Rock

FAI-80 over Des Plaines River Bridge, Will County Proposed Retaining Wall #4

Quality Designation (RQD) was determined according to ASTM D 6032, "Standard Test Method for Determining Rock Quality Designation (RQD) of Rock Core" and as per the IDOT geotechnical manual by totaling all sections with a length in excess of four inches (4") and dividing it by the total length of the core run. The RQD is given a classification based upon the numeric value as indicated in **Table 3**. Photographs of the rock cores are included with the respective soil borings in **Appendix C**.

Rock Quality Designation (RQD)	Descriptions
< 25%	Very Poor
25 – 50%	Poor
51 – 75%	Fair
76 – 90%	Good
91 – 100%	Excellent

Table 3 – Rock Quality Designation Summary

Table 4 provides the RQD values of the rock cores extracted during the site investigation. Photographs of the cores are included with the boring logs in **Appendix C**.

Boring Number	Length (ft)	Core Depth (feet)	Type of Rock	RQD (%)	RQD Description	Depth (ft)/ Compressive Strength (psi)
RWB-28	10	4.5 – 14.5	Limestone	42.9 Poor		7.5-8/6,516
RWB-30	10	5.0 – 15.0	Limestone	27.1	Poor	14-14.5/8,417
RWB-32	10	4.0 - 14.0	Limestone	37.0	Poor	12-12.5/5,398
RWB-34	10	5.0 – 15.0	Limestone	34.0	Poor	11-11.5/15,194
RWB-48	10	4.0 - 14.0	Limestone	55.0	Fair	n/a*
RWB-50	10	5.0 – 15.0	Limestone	28.8	Poor	n/a*
RWB-51	10	7.0 – 17.0	Limestone	58.3	Fair	n/a*
RWB-53	10	2.0 - 12.0	Limestone	26.3	Poor	n/a*
RWB-55	10	1.5 – 11.5	Limestone	10.8	Very Poor	n/a*

Table 4 – Rock Core Summary and Classification

*Minimum length of sample was not obtained to complete lab testing

2.3 Laboratory Testing Program

All samples were inspected in the laboratory to verify the field classifications. A laboratory testing program was undertaken to characterize and determine engineering properties of the subsurface soils encountered in the area. The following laboratory tests were performed on representative soil and rock samples:

- Moisture content ASTM D2216 / AASHTO T-265
- Unconfined Compression Strength on Rock ASTM D2938

The laboratory tests were performed in accordance with test procedures outlined in the most current IDOT Geotechnical Manual, and per ASTM and AASHTO requirements. Based on the laboratory test results, the soils encountered were classified according to the AASHTO classification systems. The results of the laboratory testing program are shown along with the field test results in the Soil Boring Logs **(Appendix C)** and in the Laboratory Results (**Appendix D)**.

2.4 Subsurface Soil Conditions

This section provides a brief description of the soils encountered in the borings performed in the vicinity of the proposed retaining wall. Variations in the general subsurface soil profile were noted during the drilling activities. Detailed descriptions of the subsurface soils are provided in the soil boring logs and are shown graphically in the Boring Location Plan & Soil Boring Profile. The soil boring logs provide specific conditions encountered at each boring location and include soil descriptions, stratifications, penetration resistance, elevations, location of the samples, and laboratory test data. Unless otherwise noted, soil descriptions indicated on boring logs are visual identifications. The stratifications shown on the boring logs represent the conditions only at the actual boring locations and represent the approximate boundary between subsurface materials; however, the actual transition may be gradual.

The surface elevations of the borings ranged between El. 570.7 and 592.1 feet. The borings initially encountered 3 to 12 inches of topsoil; between 3 and 9 inches of asphalt pavement underlain by 3 to 9 inches of aggregate subbase; or 1 inch of asphalt and gravel subbase. Beneath the surficial topsoil and pavement, brown and gray silty clay fill, sand fill, or sandy loam fill materials were generally encountered to depths of 1.5 to 7 feet (El. 567.3 to 590.6 feet). Very dense brown and gray sand, gravel, and sand with gravel materials were then encountered to

depths of 1.5 to 8 feet (El. 567.7 to 587.1 feet), terminating at the surface of bedrock. About 0.5 to 2 feet of weathered rock was observed at boring locations RWB-28, 29, 30, 48, 52, 53, and 54 prior to encountering auger refusal on solid bedrock. Rock cores were then collected from nine of the soil boring locations.

2.5 Groundwater Conditions

Water levels were checked in each boring to determine the general groundwater conditions present at the site and were measured while drilling and after each boring was completed. Groundwater was not encountered during or immediately after drilling at the fifteen boring locations. None of the borings were left open after the completion of drilling.

Based on lack of observed water, it is anticipated that the long-term groundwater level may be at an approximate elevation of 567.3 to 587.1 feet or within the bedrock. Perched water may also be present within the fill materials observed at the surface of the borings. Water level readings were made in the boreholes at times and under conditions shown on the boring logs and stated in the text of this report. However, it should be noted that fluctuations in groundwater level may occur due to variations in the rainfall, other climatic conditions, or other factors not evident at the time measurements were made and reported herein.

3.0 GEOTECHNICAL ANALYSES

This section provides GSG's geotechnical analysis for the design of the proposed retaining wall and embankment based on the results of the field exploration, laboratory testing, and geotechnical analysis. Subsurface conditions between borings may vary from those encountered at the boring locations. If structure locations, loadings, or elevations are changed, we request that GSG be contacted so that we may re-evaluate our recommendations.

3.1 Settlement

Based on the Center Street Ramp C Cross Sections drawings, it is anticipated that up to about 21.5 feet of new fill may be required to construct the new Ramp C embankment between Ramp C Station 9+25.00 to 14+45.00.

Based on the proposed new embankment fill of up to 21.5 feet, an analysis was performed to evaluate the anticipated amount of total settlement in the area behind Retaining Wall #4. The maximum estimated settlement for the proposed retaining wall within the native soils was calculated as shown in **Table 5.** The settlement estimates do not include the settlement within the new embankment fill itself, only the settlement within the existing soils (caused by adding embankment fill). Based on the predominantly granular nature of the native soils below the embankment, it is anticipated that most of the settlement will occur during the construction phase of the project.

Assumed Embankment Length Along Wall (ft)	Assumed Embankment Width (ft)	Max. Embankment Height (ft)	Max. Anticipated Settlement (in)	Differential Settlement (in)
519.4	100	21.5	0.84	0.75

Table 5 – Anticipated Embankment Settlement

3.2 Seismic Parameters

The seismic hazard for the site was analyzed per the IDOT Geotechnical Manual, IDOT Bridge Design Manual, and AASHTO LRFD Bridge Design Specifications. The Seismic Soil Site Class was determined per the requirements of All Geotechnical Manual Users (AGMU) Memo 9.1, Design Guide for Seismic Site Class Determination, and the "Seismic Site Class Determination" Excel

spreadsheet provided by IDOT. A global Site Class Definition was determined for this project, and was found to be Soil Site Class C. The Seismic Performance Zone (SPZ) was determined using Figure 2.3.10-2 in the IDOT Bridge Manual and was found to be Seismic Performance Zone 1.

The AASHTO Seismic Design Parameters program was used to determine the peak ground acceleration coefficient (PGA), and the short (S_{DS}) and long (S_{D1}) period design spectral acceleration coefficients for each of the proposed structures. For this section of the project, the S_{DS} and the S_{D1} were determined using 2020 AASHTO Guide Specifications as shown in **Table 6**. Given the site location and materials encountered, the potential for liquefaction is minimal.

Building Code Reference	PGA	S _{DS}	S _{D1}
2020 AASHTO Guide for LRFD Seismic Bridge Design	0.049g	0.125g	0.068g

Table 6 – Seismic Parameters

4.0 GEOTECHNICAL WALL DESIGN RECOMMENDATIONS

This section provides retaining wall design parameters including recommendations on foundation type, bearing capacity, settlement, and lateral earth pressures. The foundations for the proposed retaining walls must provide sufficient support to resist the dead and live loads, as well as seismic loading.

4.1 Retaining Wall Type Recommendations

It is anticipated that the proposed new Ramp C embankment will be a new fill area. The new Retaining Wall #4 will be constructed along a portion of the Ramp C embankment, between the new ramp and the mainline I-80 roadway. A MSE wall or prefabricated modular gravity wall are feasible options for Wall #4.

Based on the proposed wall height, provided drawings and location of the wall within a fill area, GSG concurs with the design plan to use a MSE wall for Retaining Wall #4. Advantages of the MSE wall include a relatively rapid construction schedule that does not require specialized labor or equipment, provided excavation for the reinforcement is not extensive. This type of retaining wall can accommodate relatively large total and differential settlements without distress, and the reinforcement materials are light and easy to handle.

GSG evaluated the global and external stability, and settlement to determine the suitability of the retaining wall for this section of the project. The wall section should be analyzed to determine that adequate factors of safety are achieved relative to sliding and overturning failure.

4.2 Retaining Wall Design Recommendations

The engineering analyses performed for evaluation of the retaining wall options followed the current AASHTO Load and Resistance Factor Design (LRFD) Methodology as required by IDOT. LRFD methodology incorporates the use of load factors and resistance factors to account for uncertainty in applied loads and load resistance of structure elements separately. The AASHTO LRFD Bridge Design Specifications outline load factors and combinations for various strength, extreme event, service, and fatigue limit states. Section 11, which outlines geotechnical criteria for retaining walls, of the AASHTO Specifications requires the evaluation of bearing resistance failure, lateral sliding, and overturning at the strength limit state and excessive vertical displacement, excessive lateral displacement, and overall stability at the service limit state. The

FAI-80 over Des Plaines River Bridge, Will County Proposed Retaining Wall #4

selected wall should also be evaluated with respect to the collision load. **Table 7** outlines the load factors used in the evaluation of the retaining wall in accordance with AASHTO Specification Tables 3.4.1-1 and 3.4.1-2.

	Type of Load	Sliding and	Bearing	Sliding and	Bearing	Settlement
		Eccentricity	Resistance	Eccentricity	Resistance	Service I
		Strength	Strength I	Extreme II	Extreme II	
Load Factors for	Dead Load of Structural	0.90	1.25	1.00	1.00	1.00
Vertical Loads	Components (DC)					
	Vertical Earth Pressure	1.00	1.35	1.00	1.00	1.00
	Load (EV)					
	Earth Surcharge Load (ES)		1.50			
	Live Load Surcharge (LS)		1.75		0.50	1.00
	Horizontal Earth Pressure	1.50		1.00	1.00	1.00
	Load (EH)					
Load Factors for	Active		1.50			
Horizontal	At-Rest		1.35			
Loads	AEP for anchored walls		1.35			
	Earth Surcharge (ES)	1.50	1.50			
	Live Load Surcharge (LS)	1.75	1.75	0.50	0.50	1.00
Load Factor for				1.00	1.00	
Vehicular						
Collision						

Table 7 - LRFD Load Factors for Retaining Wall Analysis

4.2.1 Lateral Earth Pressures and Loading

The wall should be designed to withstand earth and live lateral earth pressures. The lateral earth pressures on retaining walls depend on the type of wall (i.e., restrained or unrestrained), the type of backfill and the method of placement against the wall, and the magnitude of surcharge weight on the ground surface adjacent to the wall. The active earth pressure coefficient (Ka), and the passive earth pressure coefficient (Kp) were determined in accordance with AASHTO Section 3.11.5.3 and 3.11.5.4. **Table 8** presents the soil design properties for the retaining wall for the anticipated soil types at the site. Additional soil parameters for the site are included in **Appendix F**.

PTB 198-003

.

FAI-80 over Des Plaines River Bridge, Will County Proposed Retaining Wall #4

			Long-term/Drai	ned
Depth Range, Elevation Range (feet)	Soil Description	Active Earth Pressure Coefficient (K _a)	Passive Earth Pressure Coefficient (K _p)	At-Rest Earth Pressure Coefficient (K _o)
	New Engineered Clay Fill	0.41	2.46	0.58
	New Engineered Granular Fill	0.33	3.00	0.50
0-19.5 (590-570.5)	Light Brown and Gray Very Dense Sand with Gravel / Gravel with Sand	0.17	5.82	0.29
19.5-20.5 (570.5-569.5)	Light Brown and Gray Very Dense Weathered Limestone	0.18	5.54	0.31
0-2.5 (590-587.5) RWB-34, RWB-35 only	Fill Brown and Gray Silty Clay	0.41	2.46	0.58
19.5-22.5 (570.5-567.5) RWB-29 only	Fill Brown and Gray Silty Clay	0.41	2.46	0.58
14-17 (576-573) RWB-49, RWB-50 only	Fill Dark Brown Silty Clay	· · · · · · · · · · · · · · · · · · ·		0.58
13-18 (577-572) RWB-48, RWB-51 only	Fill Brown, Gray, and Black Sand / Sandy Loam	0.33	3.00	0.50

Table 8 – Lateral Soil Parameters

Although not anticipated, traffic and other surcharge loads should be included in the retaining wall design as applicable. A live load surcharge shall be applied where vehicular load is expected

to act on the surface of the backfill within a distance equal to one-half the wall height behind the back face of the wall in accordance with AASHTO 3.11.6.4. The live load surcharge may be estimated as a uniform horizontal earth pressure due to an equivalent height (H_{eq}) of soil. **Table 9** provides the equivalent heights of soil for vehicular loadings on retaining walls.

Retaining Wall Height (ft)	H _{eq} Distance from Wall Bac	k face to Edge of Traffic
	0 feet	1.0 feet or Further
5	5.0 feet	2.0 feet
10	3.5 feet	2.0 feet
≥20	2.0 feet	2.0 feet

Table 9 - Equivalent Height of Soil for Vehicular	r Loading on Retaining Walls Parallel to Traffic
---	--

Reference: AASHTO LRFD Table 3.11.6.4-2

The retaining wall design should include a drainage system to allow movement of any water behind the wall and not allow hydrostatic pressures to develop in the active soil wedge behind the wall. This could be accomplished by placing a Geocomposite Wall Drain over the entire length of the back face of the wall connected to a perforated drainpipe and backfilling a minimum of 2 feet of free draining materials, Porous Granular Embankment, as measured laterally from the back of the wall. The size of the perforated pipe should be determined based on hydraulic analyses. The backfill should be placed in accordance with the IDOT SSRBC.

Heavy compaction equipment should not be allowed closer than five (5) feet to the retaining wall to prevent inducing high lateral earth pressures and causing wall yielding and/or other damage. The passive lateral earth pressure coefficient (Kp) from the upper 3.5 feet of level backfill at the toe of the wall should be neglected unless the soil is confined or protected by a concrete slab or well-drained pavement. The passive lateral earth pressure coefficient from the upper 3.5 feet of soil for a descending slope at the wall toe should also be neglected, regardless of any surface protection.

4.3 MSE Wall Bearing Resistance Recommendations

It is anticipated that the MSE wall will bear on new granular engineered fill over suitable, very dense native sand and gravel. Bearing resistance for the retaining wall shall be evaluated at the strength limit state using load factors (See Table 8), and factored bearing resistance. The bearing resistance factor, ϕb , for a MSE wall is 0.65 per AASHTO Table 11.5.7-1. The bearing resistance

FAI-80 over Des Plaines River Bridge, Will County Proposed Retaining Wall #4

shall be checked for the extreme limit state with a resistance factor of 1.0. **Table 10** presents the proposed bearing elevations and recommended bearing resistances of suitable materials to support the wall system.

Soil Borings	Approx. Station Limits	Approximate Bearing Elevation (feet)	Nominal Resistance (ksf)	Factored Bearing Resistance (ksf)	Bearing Resistance for 1-inch Settlement Service Limit (ksf)	Bearing Resistance for 2-inch Settlement Service Limit (ksf)	Anticipated Bearing Soil
RWB-30, 54, 55	9+25 to 10+00	584.5 – 586.1	19.5	12.7	8.8	12.7	Granular Engineered Fill over Native Very Dense Gravel or Weathered Limestone
RWB-29, 51, 52, 53	10+00 to 11+00	582.7 – 584.2	18.2	11.8	5.7	10.0	Granular Engineered Fill over Sandy Loam Fill, Native Very Dense Gravel, or Weathered Limestone
RWB-48, 49, 50	11+00 to 12+50	581.9 – 585.2	18.2	11.8	11.8	11.8	Granular Engineered Fill over Sand Fill, Weathered Limestone or Limestone
RWB-34 & 35	12+50 to 13+75	587.7 – 597.4	24.7	16.1	14.1	16.1	Granular Engineered Fill over Native Very Dense Gravel or Sand
RWB-32 & 33	13+75 to 14+45	600.1 – 605.2	34.1	22.2	7.6	13.4	Granular Engineered Fill over Native Very Dense Gravel or Sand with Gravel

Table 10 – Recommended Bearing Resistance

The minimum depth of the leveling pad should be 3.5 feet below the final exterior grade to alleviate the effects of frost. A MSE reinforcement width of 0.9H (17 feet) was used for bearing and settlement calculations, based on the results of the slope stability analysis discussed in *Section 4.5*.

4.3.1 Subgrade Undercut Areas

The subgrade soils at bearing grade should be evaluated per the guidelines provided in Section 8.9 of IDOT Geotechnical Manual (2020) for suitability/workability prior to placing any portion of the proposed structures. According to Section 540, IDOT SSRBC (2022) a minimum of 6-inches of porous granular material should be provided as bedding material, which will serve as a working platform.

GSG recommends undercutting any existing silty clay fill soils along the wall alignment. The observed sand fill and sandy loam fill exhibited SPT N-values of greater than 50 bpf and may remain in-place. Undercuts to depths of up to 5.0 feet below existing site grades may be anticipated to reach the very dense native sand and gravel. The undercut depth should be verified in the field during construction and backfilled with compacted granular engineered fill to support the proposed retaining wall. Anticipated undercut depths are presented in **Table 11**.

Soil Borings	Station Limits	Undercut Depth Below <u>Existing</u> <u>Grade</u> (Elevation, feet)	Approximate Bearing Elevation (feet)*	Comments
RWB-29	10+25 to 9+90	4.0 (567.5)	584.5	Existing unsuitable fill Low strength <1.5 tsf
RWB-34	14+00 to 13+25	1.5 (590.5)	594.5	Existing unsuitable fill Trace roots
RWB-35	13+25 to 12+50	5.0 (584.0)	592.5	Existing unsuitable fill Trace brick debris
RWB-49	11+80 to 11+50	3.0 (575.0)	582.0 Existing unsuitable fi Trace roots	
RWB-50	11+50 to 11+00	5.0 (571.0)	582.5	Existing unsuitable fill Trace concrete

Table 11 – Recommended Undercu	uts
--------------------------------	-----

* Assumed bearing elevation at about El. 581.9 to El. 605.2 feet based on the GPE drawings

Settlement generally depends on the foundation size and bearing resistance, as well as the strength and compressibility characteristics of the underlying bearing soil.

Undercut areas should be replaced with structural fill in accordance with IDOT Standard Specifications for Road and Bridge Construction. The lateral limit of the structural fill should extend a minimum of 1 foot beyond the edge of the MSE wall leveling pad, then an additional 1 foot laterally for every 2 feet of structural fill depth as depicted in **Exhibit 3**. The structural fill should be placed and compacted to a minimum of 95% of the maximum dry density, as determined by AASHTO T-180: Standard Test Methods for Moisture-Density Relations of Soil and Soil-Aggregate Mixtures (ASTM D1557) in accordance with IDOT standard construction requirements.

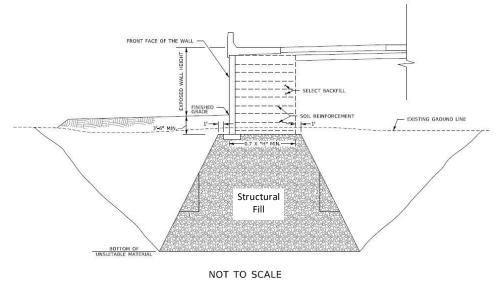


Exhibit 3 - Structural Fill Placement below MSE Wall

4.3.2 Sliding and Overturning Stability

The wall base width should be sufficient to resist sliding. The frictional resistance shall include the friction between granular backfill for the wall and supportive cohesive or granular soils, and the friction between the wall foundation and bearing soils.

The factored resistance against sliding should be calculated using equation 10.6.3.4-1 in the AASHTO LRFD manual. A sliding resistance factor, ϕ , of 1.0 (Table 11.5.7-1) shall be applied to the nominal sliding resistance of soil-on-soil beneath the MSE wall. A maximum frictional coefficient of 0.53 (tan 28 degrees) could be used for determining the sliding resistance for the soil to soil interfaces. The width of the MSE wall (length of the reinforcing) must be wide enough to resist overturning forces. The location of the resultant forces shall be within the middle two-

thirds of the MSE base width. Based on the wall geometry and anticipated loads, the minimum wall base width and soil reinforcement length may extend beyond the minimum values specified in AASHTO Manual Section 11.10.2.1.

4.4 Overall Stability

Based on the drawings provided by WSP, the following parameters in **Table 12** were used to evaluate the overall stability of the wall.

0	•
Maximum height of the retaining wall (H)	18.7 feet
Minimum length of reinforcement 0.7xH (initial assumption)	13.5 feet
Unit weight of the retained soil (embankment)	125 pcf
Unit weight of MSE wall backfill	120 pcf
Assumed embankment width	40 feet
Slope behind embankment	1V:3H
Slope below MSE wall	1V:3.1H down, then 1V:4.1H up

Table 12 – MSE Retaining Wall Description

The actual wall width and total height of the wall should be based on structural analysis performed by a Licensed Structural Engineer in the State of Illinois.

4.5 Slope Stability Results

Slide2 is a comprehensive slope stability analysis software used to evaluate the global slope stability of the proposed retaining wall based on the limit equilibrium method. Circular failure analyses were evaluated using the simplified Bishop analysis method for the proposed wall and slope geometries.

A circular analysis was evaluated for both short-term (undrained) and long-term (drained) conditions for the proposed retaining wall. Based on the GPE drawings, the retaining wall will have a maximum height of 18.7 feet. The top of the retaining wall leveling pad is anticipated to be about 3.5 feet below the front face of the wall, at about El. 582.5 feet near station 12+15. The results of the analysis are shown in **Table 13a**.

PTB 198-003

FAI-80 over Des Plaines River Bridge, Will County Proposed Retaining Wall #4

Station	Proposed Profile	Failure Type	Factor of Safety	Required Minimum Factor of Safety
12+15	18.7 ft MSE Wall, 0.7H	Circular – Short- Term	1.8	1.5
12+13	Reinforcement	Circular – Long- Term	1.4	1.5

Table 13a – Stability Analysis Results – 0.7H

Based on the analyses performed, the proposed retaining wall with a reinforcement length of 0.7H (13.5 feet) does not meet the minimum factor of safety of 1.5 for the long-term condition. An increased MSE reinforcement length was modeled to achieve the necessary factor of safety. The results are presented in **Table 13b**.

Station	Proposed Profile	Failure Type	Factor of Safety	Required Minimum Factor of Safety				
12+15	18.7 ft MSE Wall, 0.9H	Circular – Short- Term	1.9	1.5				
12+13	Reinforcement	Circular – Long- Term	1.5	1.5				

Table 13b – Stability Analysis Results – 0.9H

Based on the analyses performed, the proposed 18.7-foot-tall retaining wall with a reinforcement length of 0.9H (17 feet) meets the minimum factor of safety of 1.5 for the short- and long-term conditions. Copies of the Slope Stability analysis exhibits are included in **Appendix E**.

5.0

Proposed Retaining Wall #4

FAI-80 over Des Plaines River Bridge, Will County

CONSTRUCTION CONSIDERATIONS

All work performed for the proposed project should conform to the requirements in the IDOT Standard Specifications for Road and Bridge Construction (SSRBC) (2022). Any deviation from the requirements in the manuals above should be approved by the design engineer.

5.1 Site Preparation

All trees, pavements, vegetation, landscaping, and surface topsoil should be cleared and removed from the vicinity of the proposed foundations. It is anticipated that several structures may be demolished in the area of the new wall and embankment. Any foundations that will impact construction should also be removed. Where possible, the engineer may require proof-rolling of the subgrade with a 35-ton loaded truck or other pneumatic-tired vehicle of similar size and weight. The purpose of the proof-rolling is to locate soft, weak, or excessively wet soils present at the time of construction. Proof-rolling should be performed during a time of good weather and not while the site is wet, frozen, or severely desiccated. Any unsuitable materials observed during the evaluation and proof-rolling operations should be undercut and replaced with compacted structural fill and/or stabilized in-place. The possible need for, and extent of, undercutting and/or in-place stabilization required can best be determined by the geotechnical engineer at the time of construction. Once the site has been properly prepared, at grade construction may proceed.

Foundation aggregate fill should not be placed upon wet or frozen subgrade soils. If the subgrade or structural fill becomes frozen, desiccated, wet, disturbed, softened, or loose, the affected materials should be scarified, dried and moisture conditioned, and compacted to the full depth of the affected area or the soils should be removed. Rainfall and runoff can soften soils and affect the load bearing capacity of the soils. All water entering foundation excavation should be removed prior to placement backfill materials above the wall bottom.

5.2 Existing Utilities and Structures

Before proceeding with construction, all existing underground utility lines or structures that will interfere with construction should be completely relocated from the proposed construction areas. Where possible, existing utility lines that are to be abandoned in place should be removed and/or plugged with cement grout. All excavations resulting from underground utilities or structure removal activities should be cleaned of loose and disturbed materials, including all

previously placed backfill, and backfilled with suitable fill materials in accordance with the requirements of this section. During the clearing and stripping operations, positive surface drainage should be maintained to prevent the accumulation of water.

5.3 Site Excavation

Site excavations are expected to encounter various types of soils as described in the Subsurface Exploration section of this report. The contractor will be responsible for providing a safe excavation during the construction activities of the project. All excavations should be conducted in accordance with applicable federal, state, and local safety regulations, including, but not limited to the Occupational Safety and Health Administration (OSHA) excavation safety standards. Excavation stability and soil pressures on temporary shoring are dependent on soil conditions, depth of excavations, installation procedures, and the magnitude of any surcharge loads on the ground surface adjacent to the excavation. Excavation near existing structures and underground utilities should be performed with extreme care to avoid undermining existing structures. Excavations should not extend below the level of adjacent existing foundations or utilities unless underpinning or other support is installed. It is the responsibility of the contractor for field determinations of applicable conditions and providing adequate shoring (if needed) for all excavation activities.

5.4 Borrow Material and Compaction Requirements

If borrow material is to be used for onsite construction, it should conform to Section 204 "Borrow and Furnish Excavations" of the IDOT Construction Manual (2021). The fill material should be free of organic matter and debris and should be placed and compacted in accordance with the Construction Manual. Earth-moving operations should be avoided during excessively cold or wet weather to avoid freezing of softening subgrade soils.

Suitable structural fill materials shall be of a nature that will compact and develop stability satisfactory to the geotechnical engineer. Structural fill shall consist of crushed limestone or recycled concrete consistent with IDOT CA-6 gradation or medium plasticity silty clays. Suitable structural fill should meet the IDOT SSRBC requirements.

Should fill be placed during cool, wet seasons, the use of granular fill may be necessary since weather conditions will make compaction of cohesive soils more difficult. If water seepage while excavating and backfilling procedures, or where wet conditions are encountered such that the water cannot be removed with conventional sump and pump procedures, GSG recommends placing open grade stone similar to IDOT CA-7 to stabilize the bottom of the excavation. The CA-7 stone should be placed 12 inches above the water level, in 12-inch lifts, and should be compacted with the use of a heavy smooth drum roller or heavy vibratory plate compactor until stable. The remaining portion of the excavation should be backfilled using approved engineered fill.

GSG recommends that foundation excavations, subgrade preparation, and structural fill placement and compaction be inspected by a GSG geotechnical engineer to verify the type and strength of soil materials present at the site and their conformance with the geotechnical recommendations in this report.

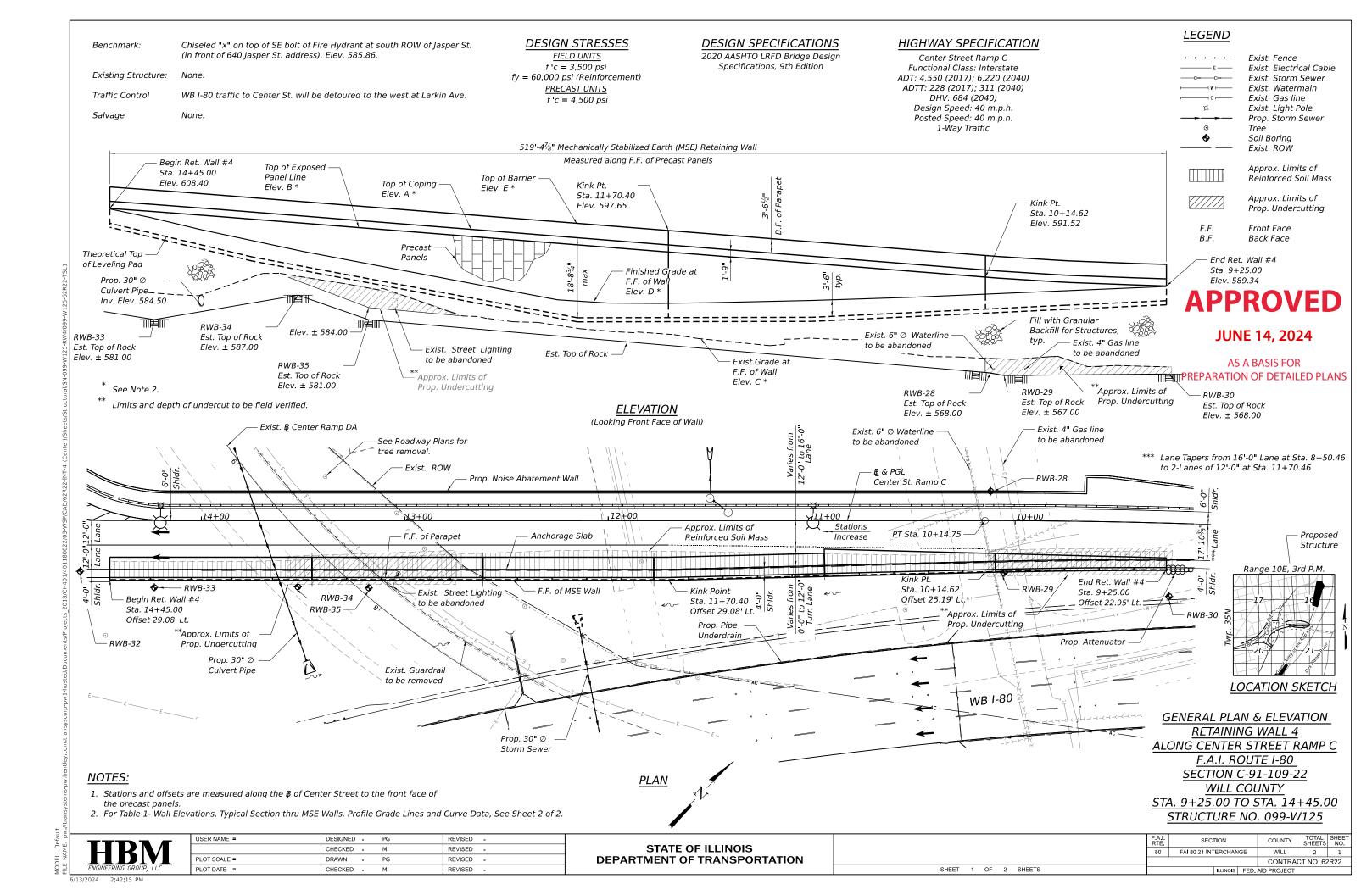
5.5 Groundwater Management

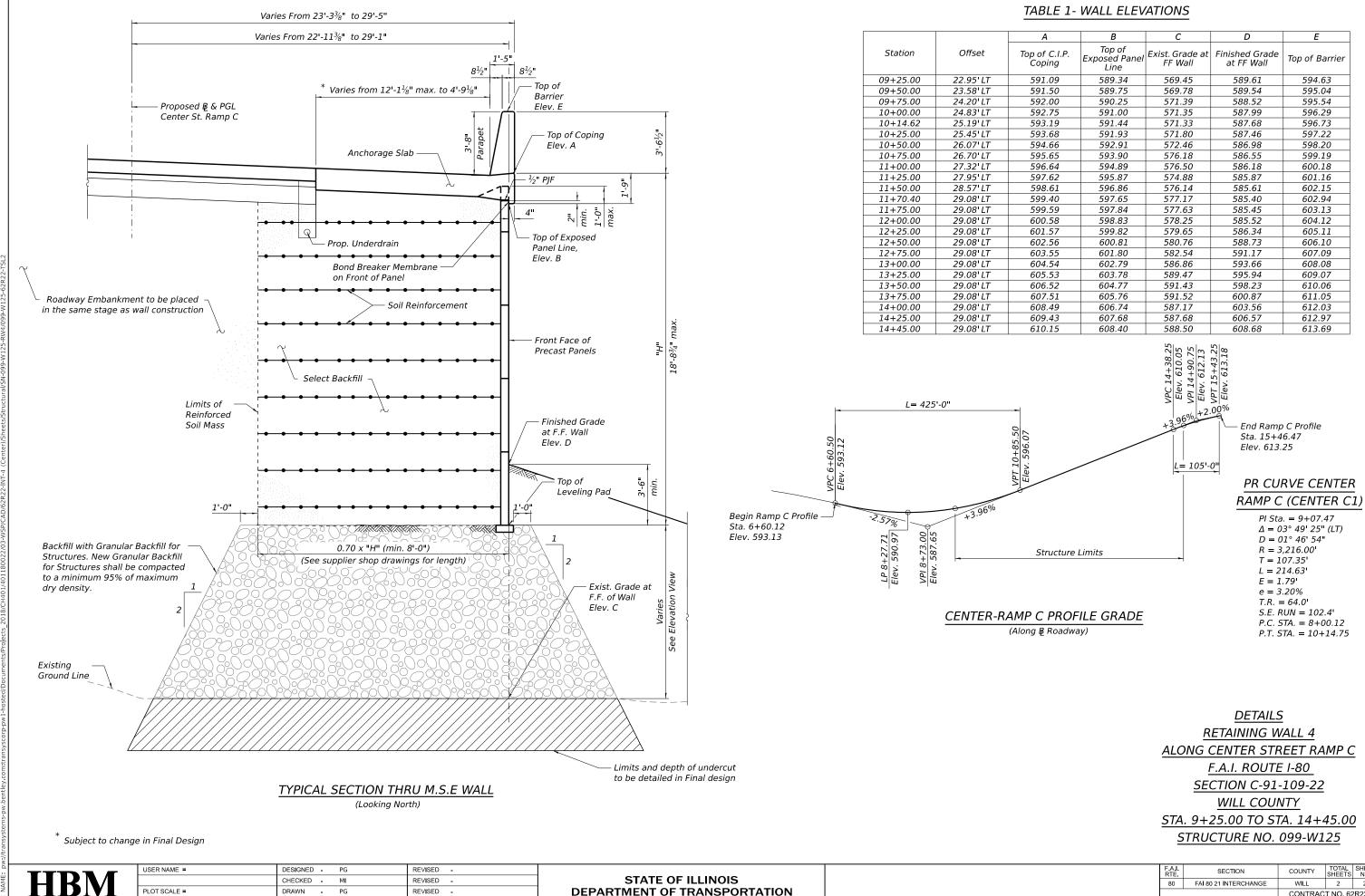
Long term groundwater may be at an approximate elevation of 567.3 to 587.1 feet or deeper, within the bedrock. GSG does not anticipate that groundwater related issues occur during construction activity, however, perched water may be encountered within the existing fill materials. If rainwater run-off or groundwater is accumulated at the base of excavations, the contractor should remove accumulated water using conventional sump pit and pump procedures and maintain a dry and stable excavation. The location of the sump should be determined by the contractor based on field conditions. During earthmoving activities at the site, grading should be performed to ensure that drainage is maintained throughout the construction period. Water should not be allowed to accumulate in the foundation area either during or after construction. Undercut and excavated areas should be sloped toward one corner to facilitate removal of any collected rainwater or surface run-off. Grades should be sloped away from the excavations to minimize runoff from entering.

If water seepage occurs during excavations or where wet conditions are encountered such that the water cannot be removed with conventional sumping, we recommend placing open grade stone similar to IDOT CA-7 to stabilize the bottom of the excavation below the water table. The CA-7 stone should be placed 12 inches above the water table, in 12-inch lifts, and should be

FAI-80 over Des Plaines River Bridge, Will County Proposed Retaining Wall #4

compacted with the use of a heavy smooth drum roller or heavy vibratory plate compactor until stable. The remaining portion of the excavation beneath the footings should be backfilled using approved structural fill.



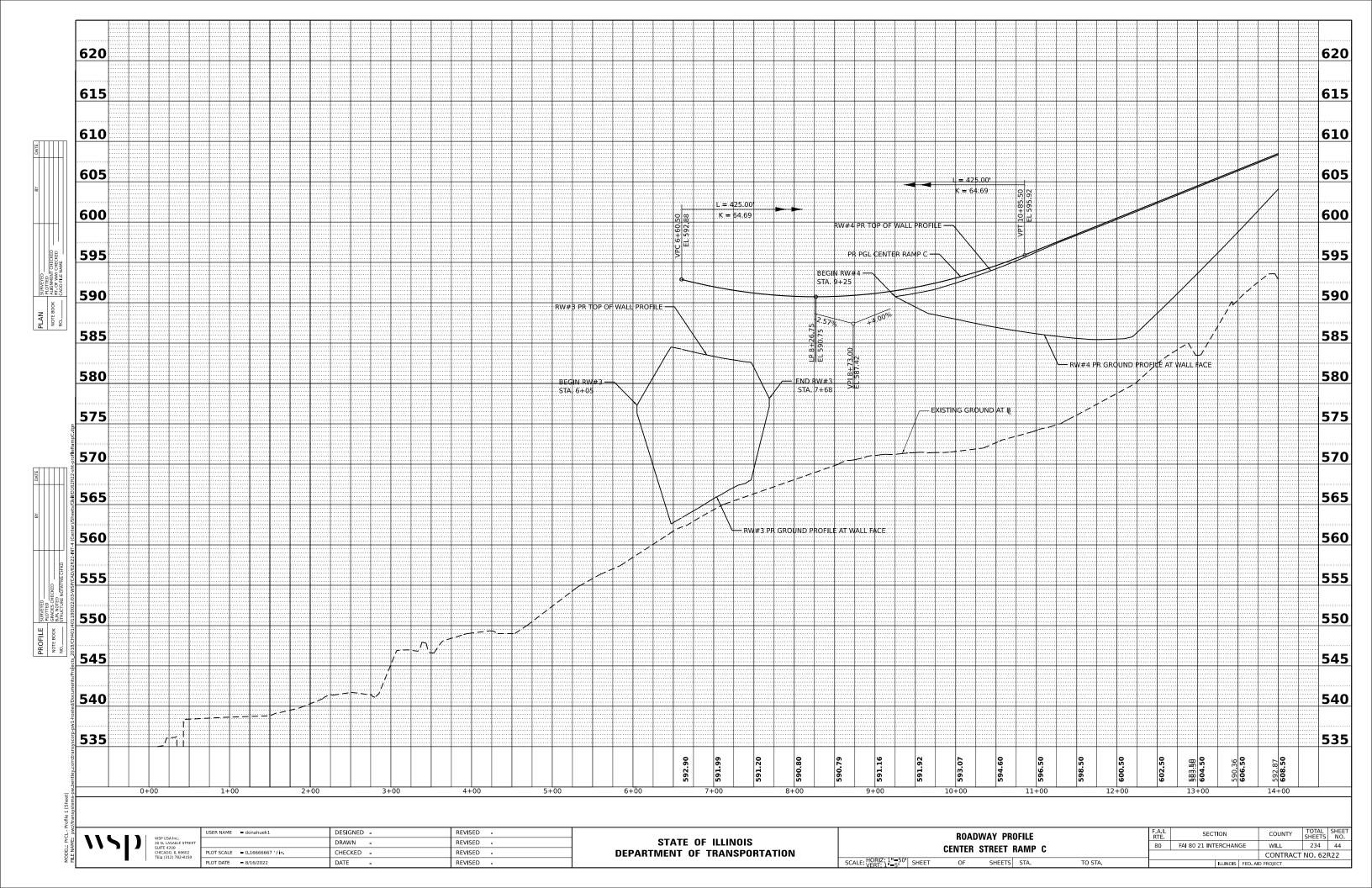

6.0 LIMITATIONS

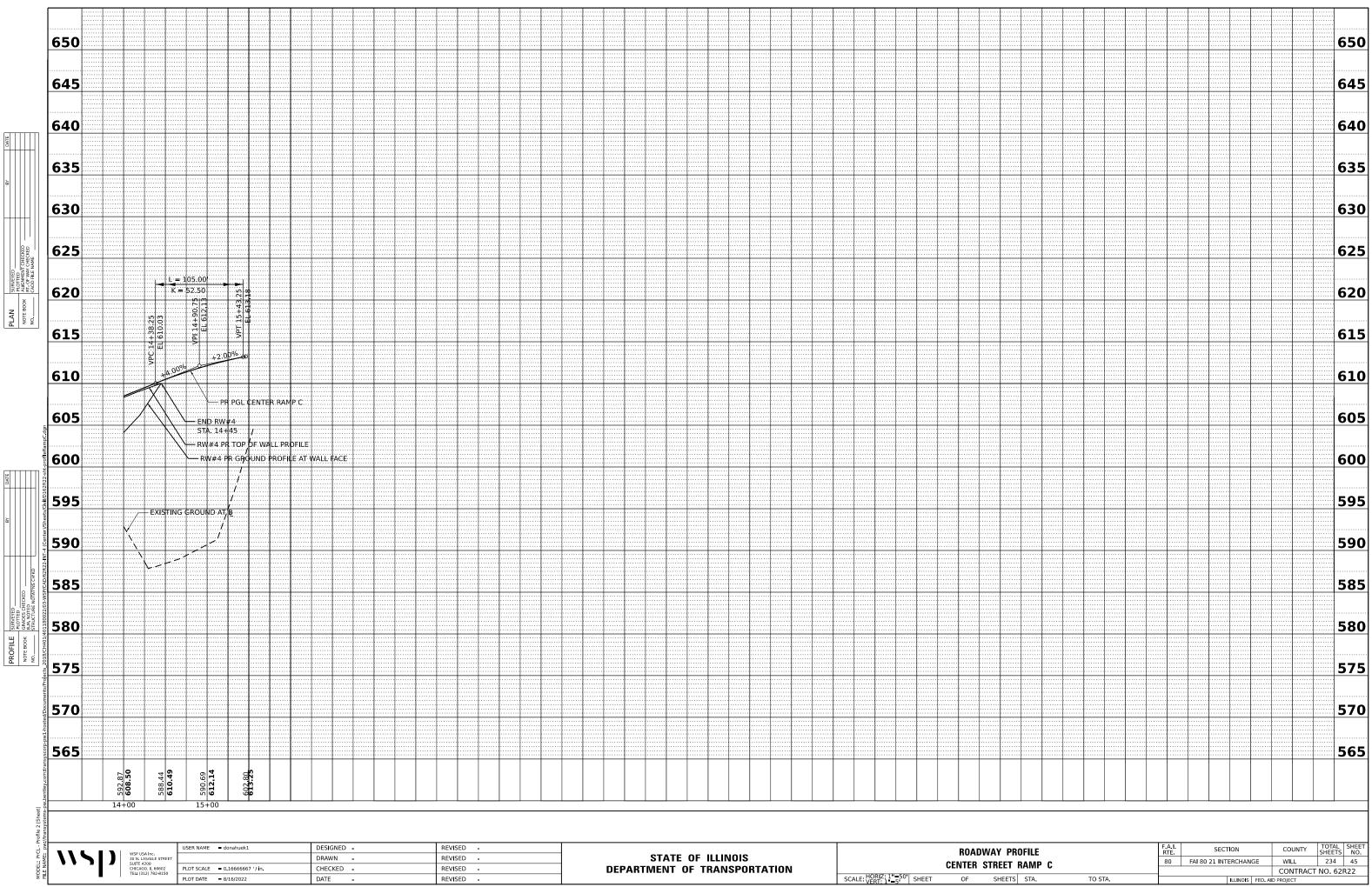
This report has been prepared for the exclusive use of the Illinois Department of Transportation (IDOT) and its Design Section Engineer consultant. The recommendations provided in the report are specific to the project described herein and are based on the information obtained at the soil boring locations within the proposed retaining wall area. The analyses have been performed and the recommendations provided in this report are based on subsurface conditions determined at the location of the borings. This report may not reflect all variations that may occur between boring locations or at some other time, the nature and extent of which may not become evident until the time of construction. If variations in subsurface conditions become evident after submission of this report, it will be necessary to evaluate their nature and review the recommendations presented herein.

Appendix A General Plan and Elevation (approved June 14, 2024)

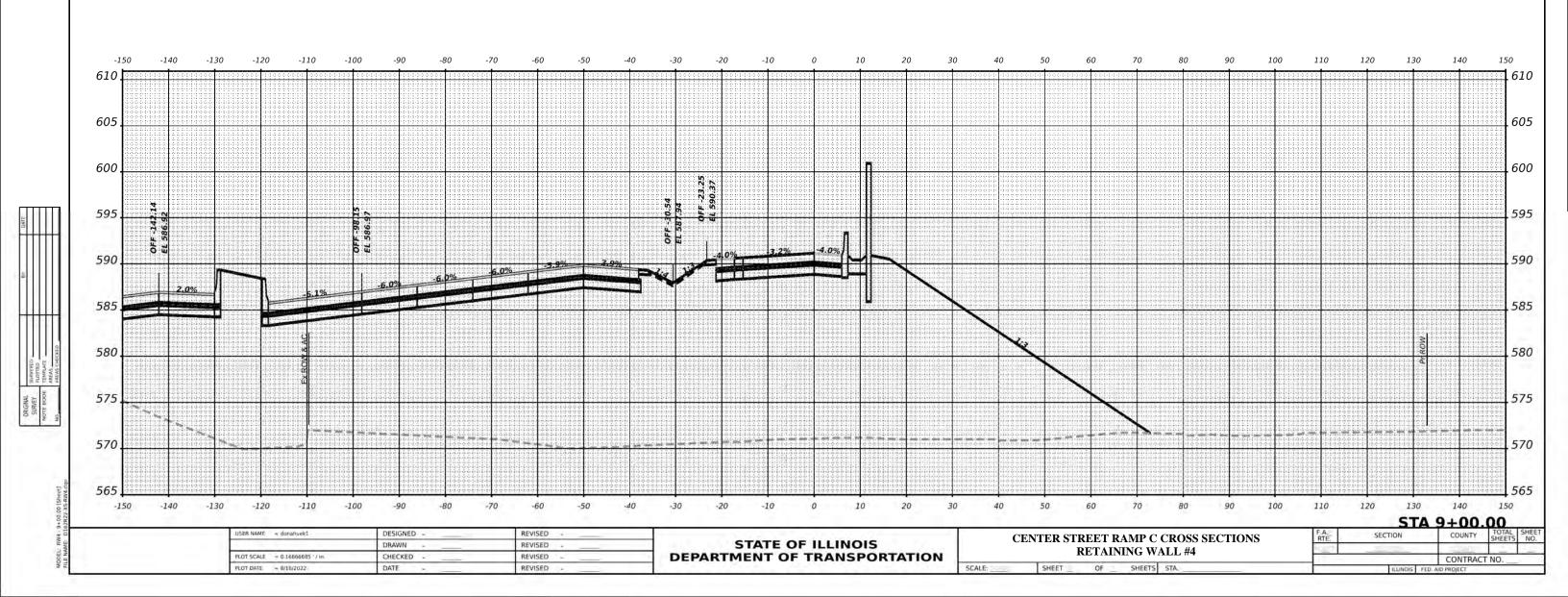
Roadway Profile, Cross Sections Center Street Ramp C

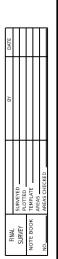
6/13/2024 2:43:07 PM

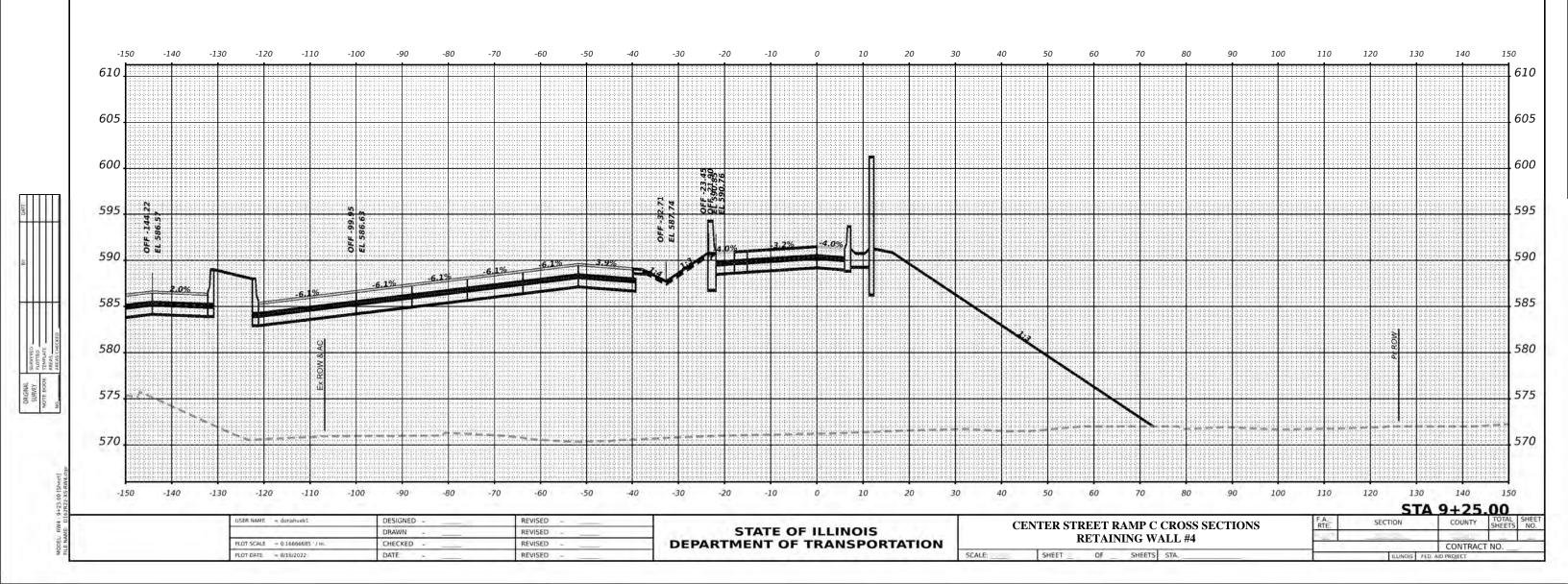

PLOT DATE =

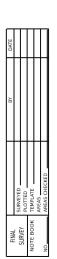

CHECKED - MI

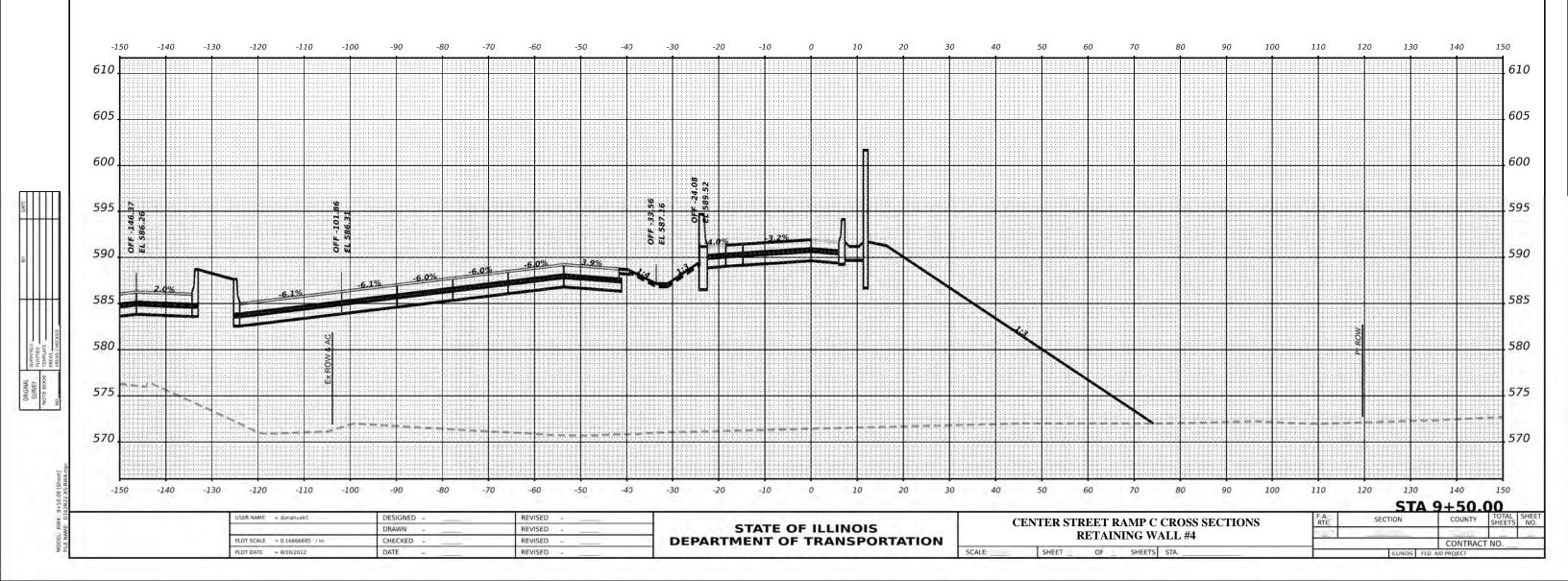
REVISED -

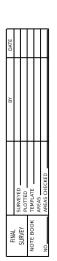

A	В	С	D	Е
Top of C.I.P. Coping	Top of Exposed Panel Line	Exist. Grade at FF Wall	Finished Grade at FF Wall	Top of Barrier
591.09	589.34	569.45	589.61	594.63
591.50	589.75	569.78	589.54	595.04
592.00	590.25	571.39	588.52	595.54
592.75	591.00	571.35	587.99	596.29
593.19	591.44	571.33	587.68	596.73
593.68	591.93	571.80	587.46	597.22
594.66	592.91	572.46	586.98	598.20
595.65	593.90	576.18	586.55	599.19
596.64	594.89	576.50	586.18	600.18
597.62	595.87	574.88	585.87	601.16
598.61	596.86	576.14	585.61	602.15
599.40	597.65	577.17	585.40	602.94
599.59	597.84	577.63	585.45	603.13
600.58	598.83	578.25	585.52	604.12
601.57	599.82	579.65	586.34	605.11
602.56	600.81	580.76	588.73	606.10
603.55	601.80	582.54	591.17	607.09
604.54	602.79	586.86	593.66	608.08
605.53	603.78	589.47	595.94	609.07
606.52	604.77	591.43	598.23	610.06
607.51	605.76	591.52	600.87	611.05
608.49	606.74	587.17	603.56	612.03
609.43	607.68	587.68	606.57	612.97
610.15	608.40	588.50	608.68	613.69

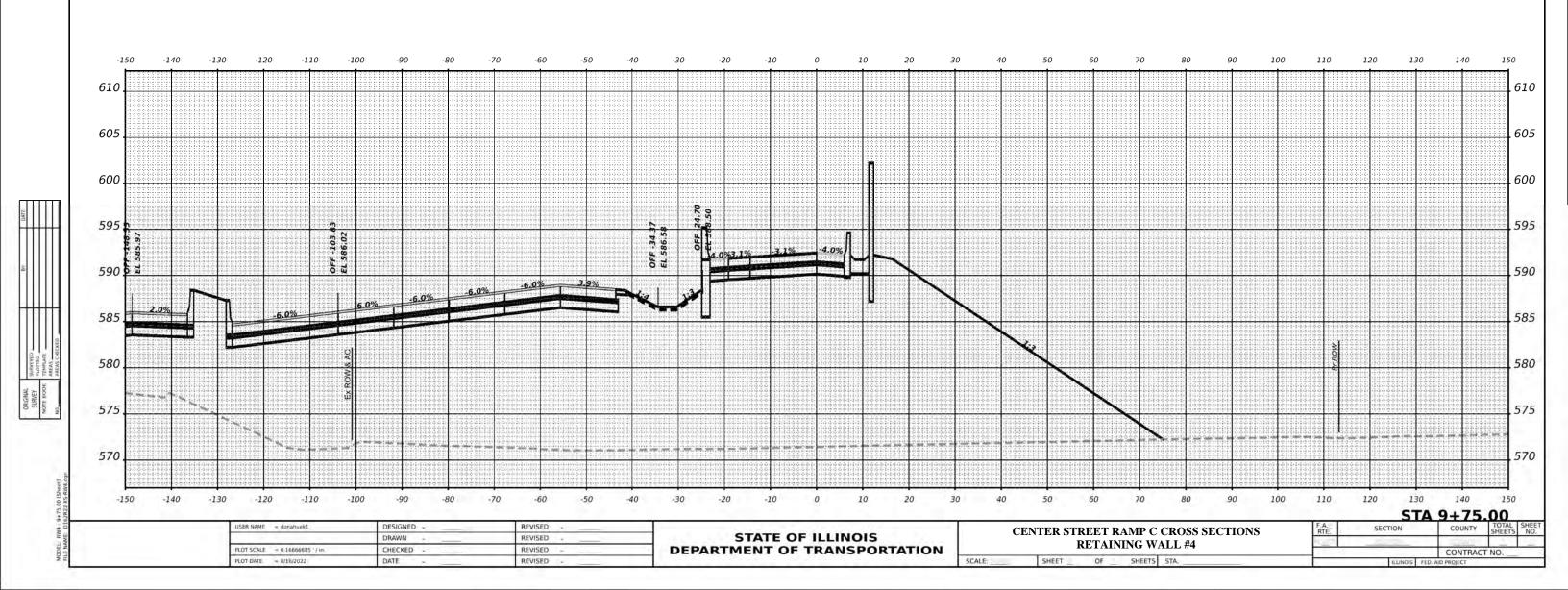

	F.A.I. RTE	SECTION		COUNTY	TOTAL SHEETS	SHEET NO.
	80	FAI 80 21 INTERCHANGE		WILL	2	2
				CONTRACT NO. 62R		2R22
2 SHEETS			D. AID PROJECT			

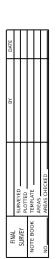


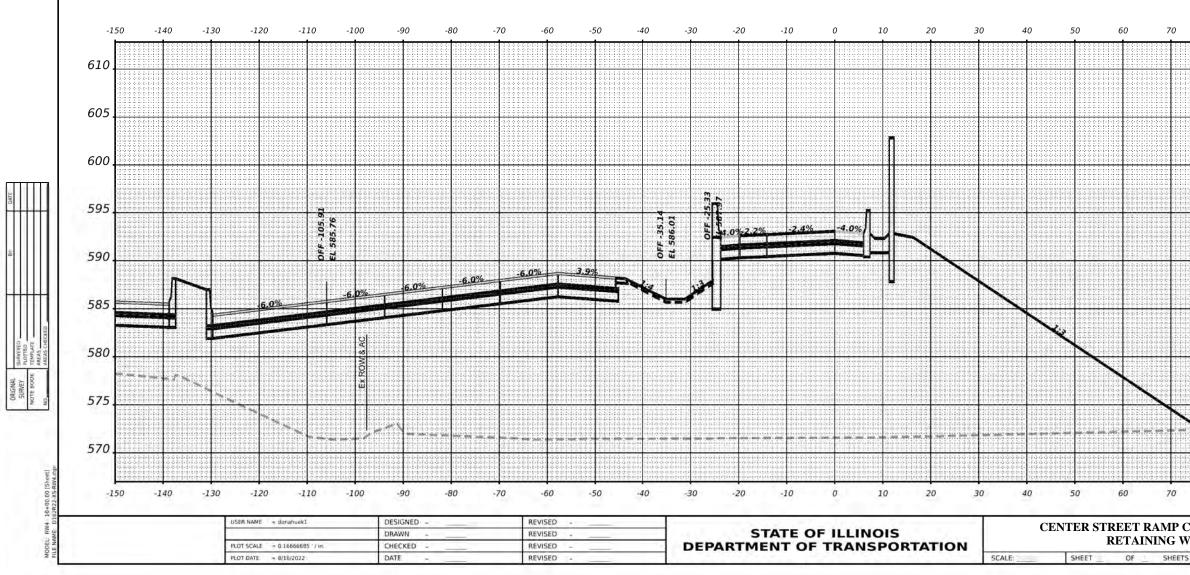


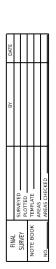

ROFILE RAMP C		F.A.I. RTE	SECTION		COUNTY	TOTAL SHEETS	SHEET NO.		
		80	FAI 80 21 INTERCHANGE			WILL	234	45	
						CONTRACT	NO. 62	۶22	
5	STA.	TO STA.			ILLINOIS FE	ED. AI	PROJECT		

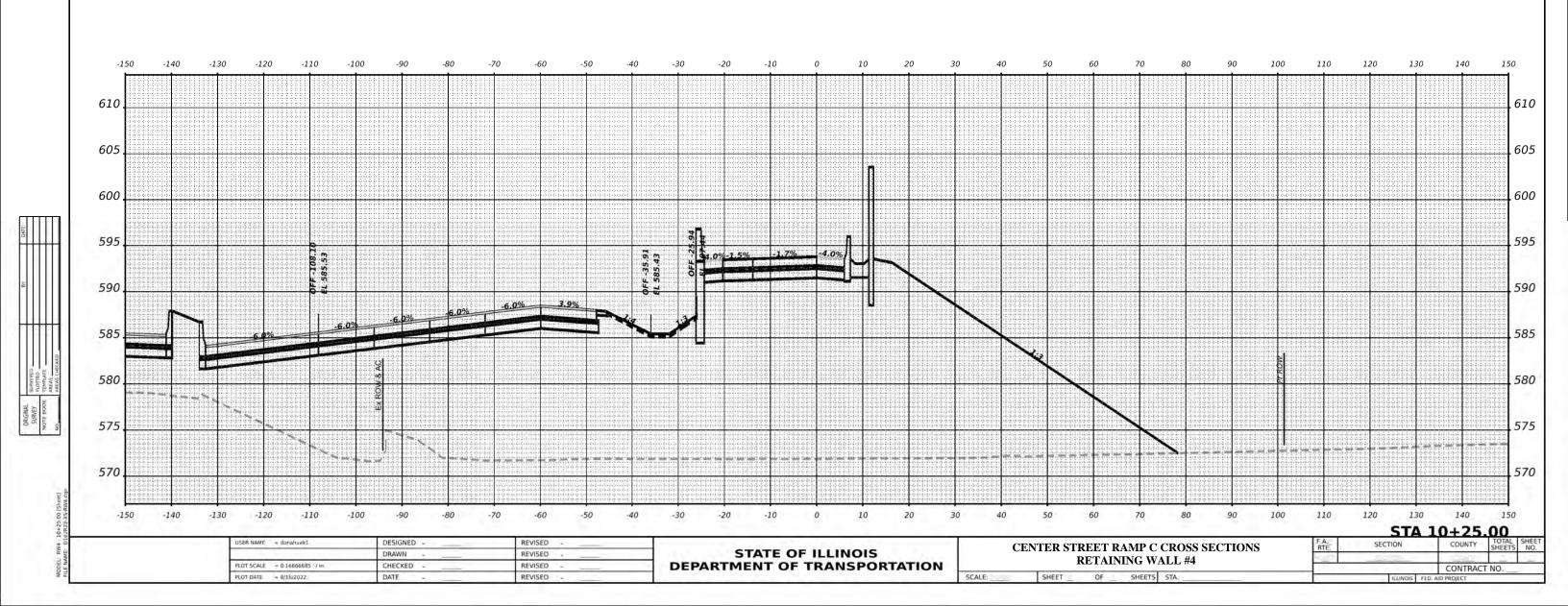


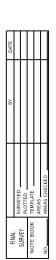


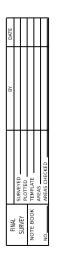




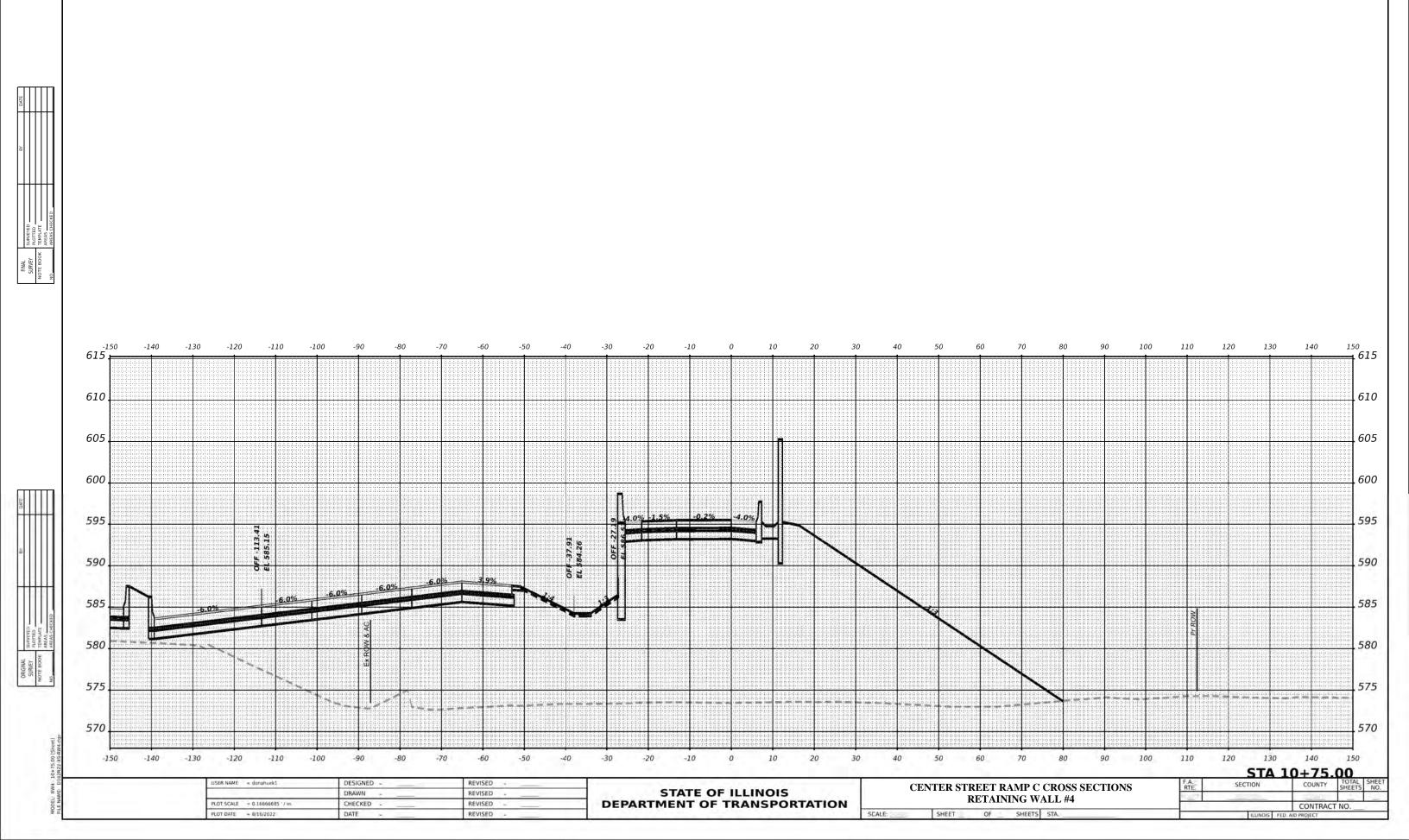


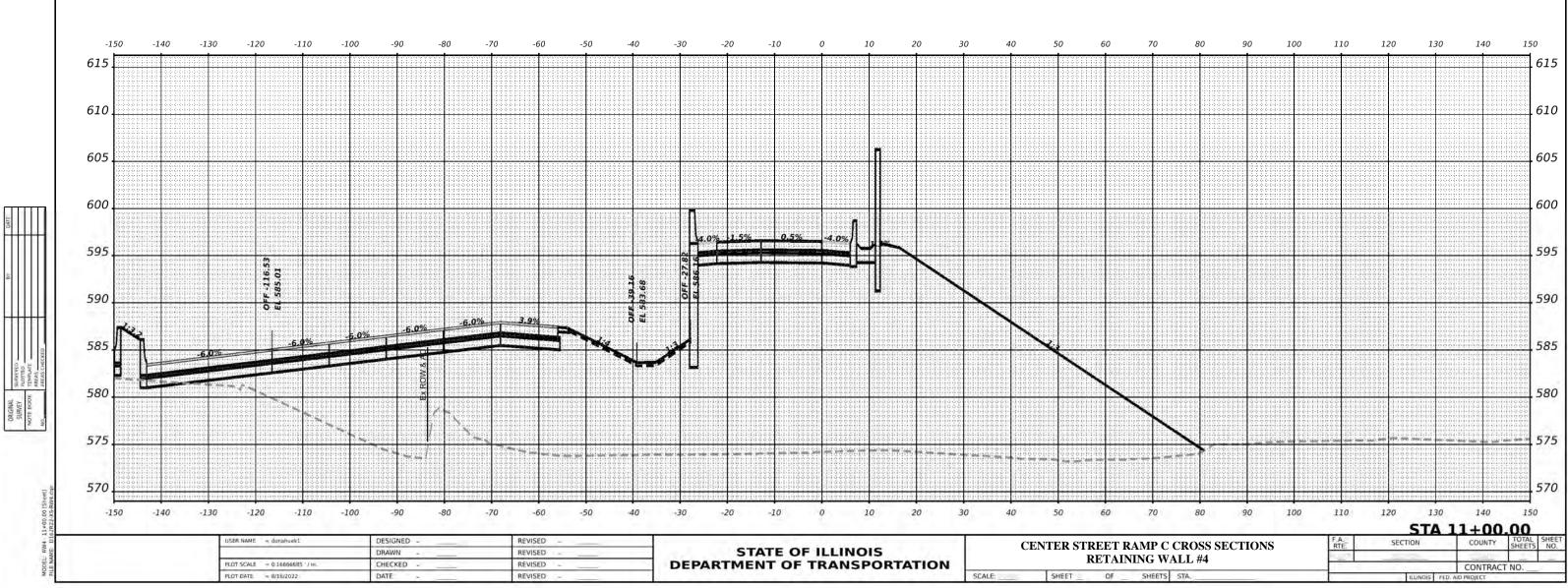


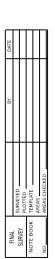


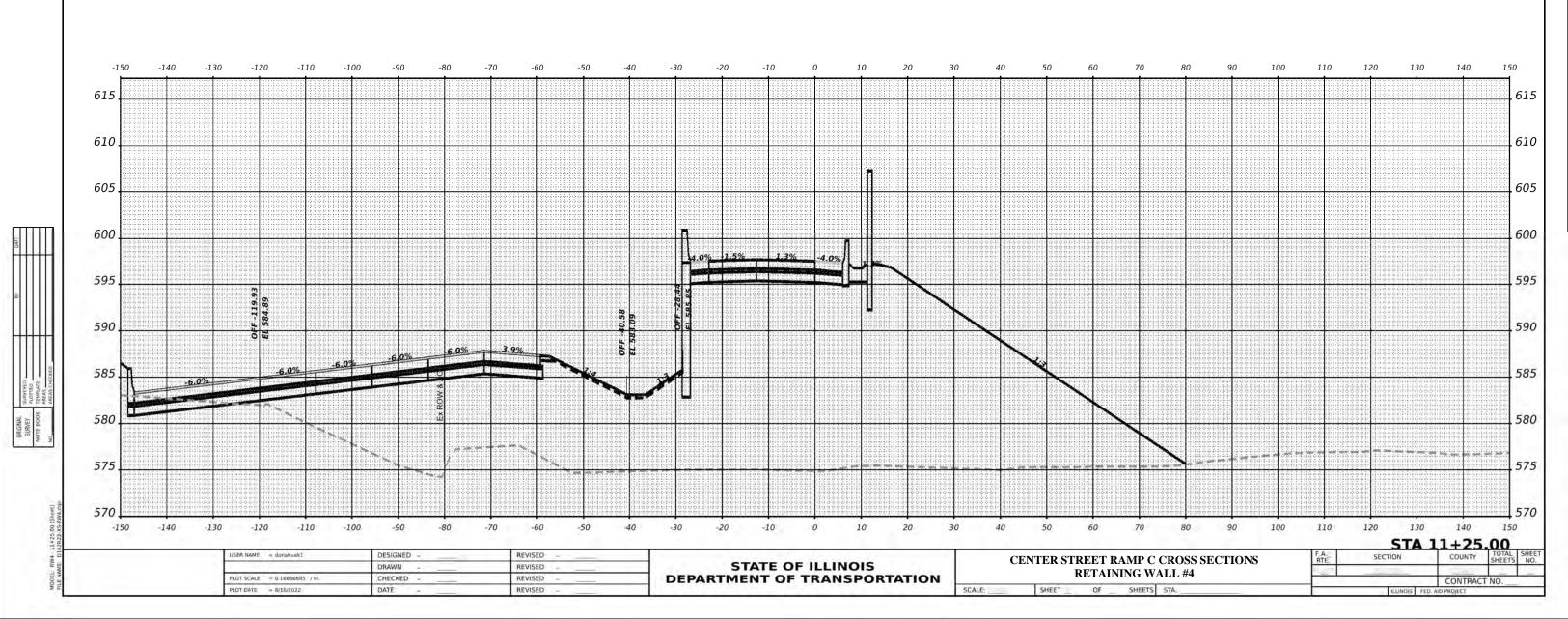


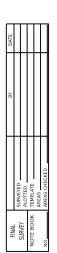
80 •	90	100	110	120	130	140	150
							610
							. 605
			· · · · · · · · · · · · · · · · · · ·				. 600
							. 595
							10000 10000 10000 10000
							. 590
							. 585
			T-ROW				
			5				. 580
							.575
							.570
80	90	100	110	120	130	140	150
			F.A. RTE,		STA 1	0+00.	.00
CROSS SE ALL #4	S SECTIONS			SECTI	ON	COUNTY	TOTAL SHEE SHEETS NO
s sta.				Ť	LLINOIS FED. A	CONTRACT	T NO

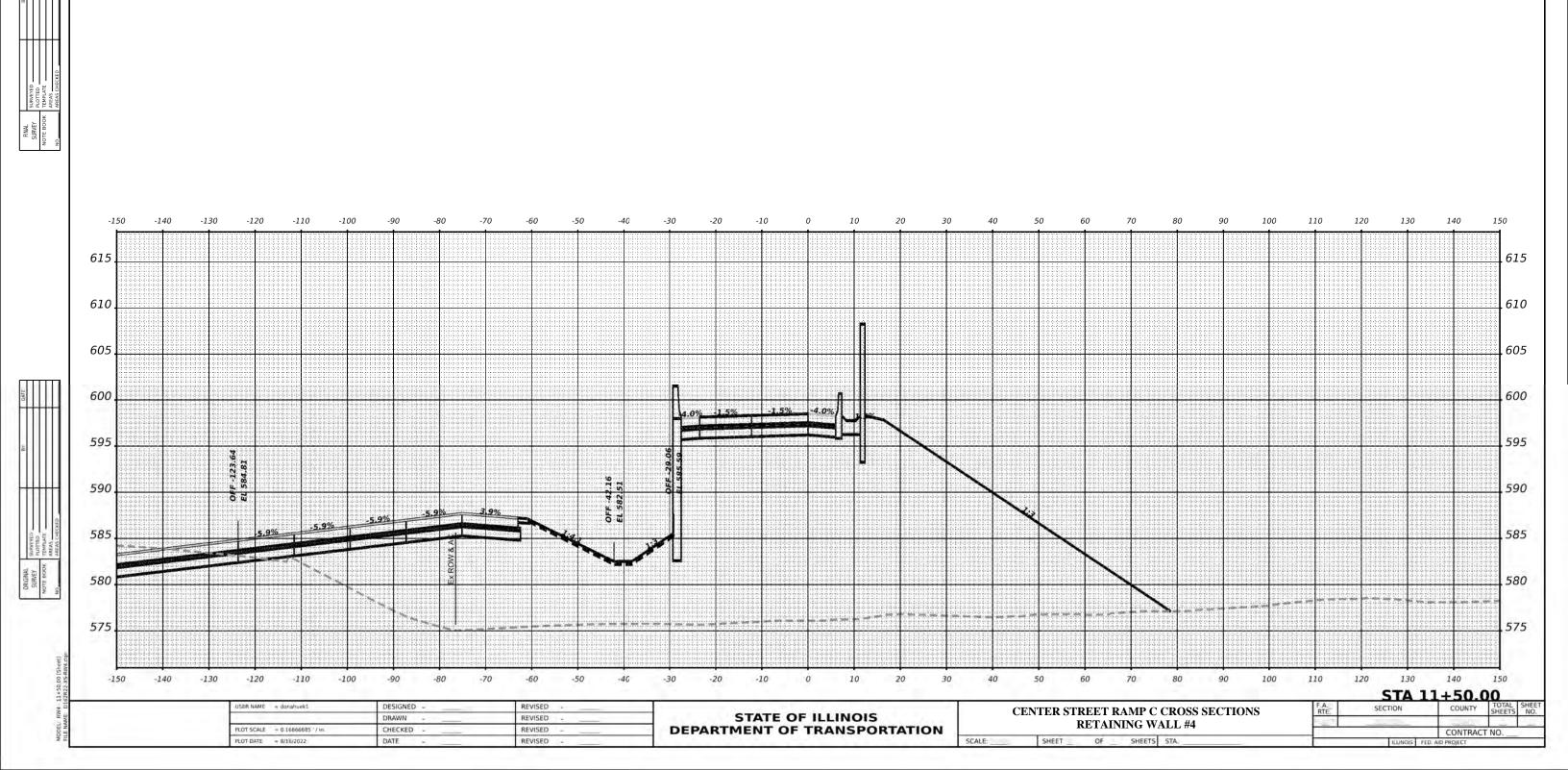


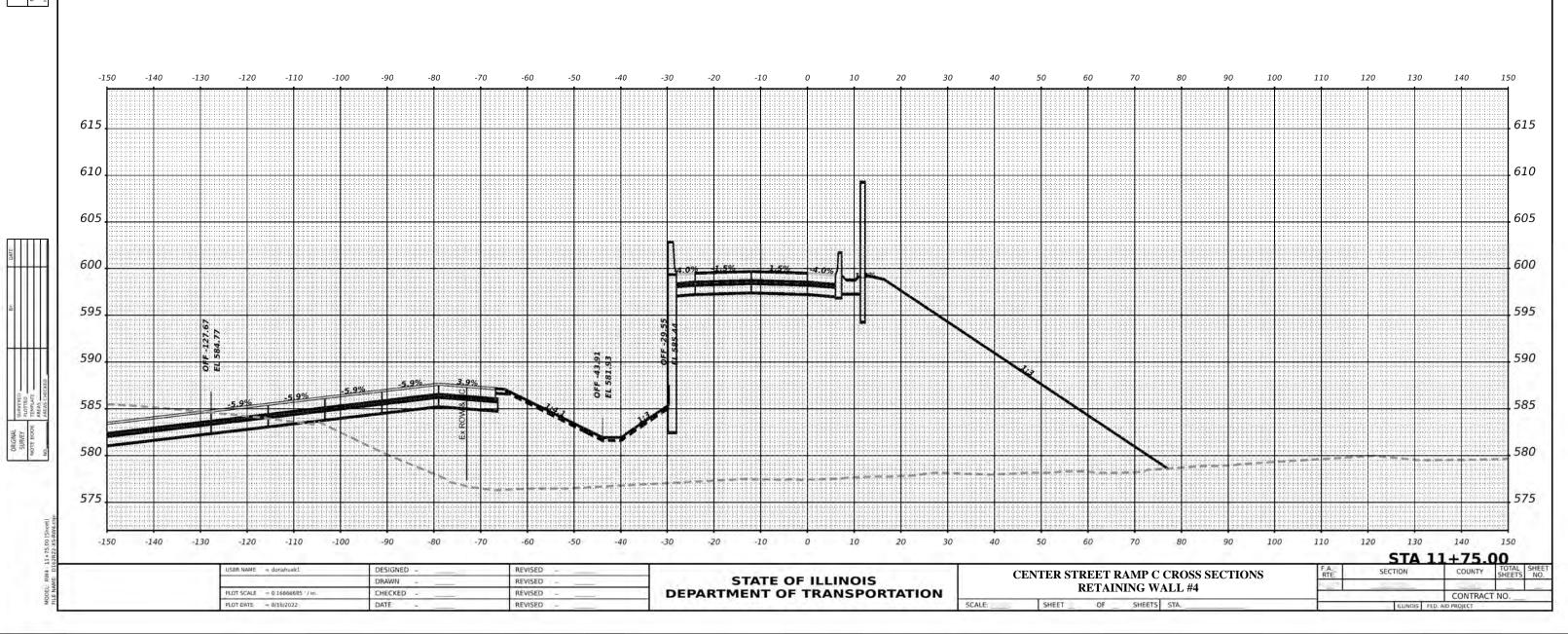


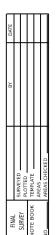


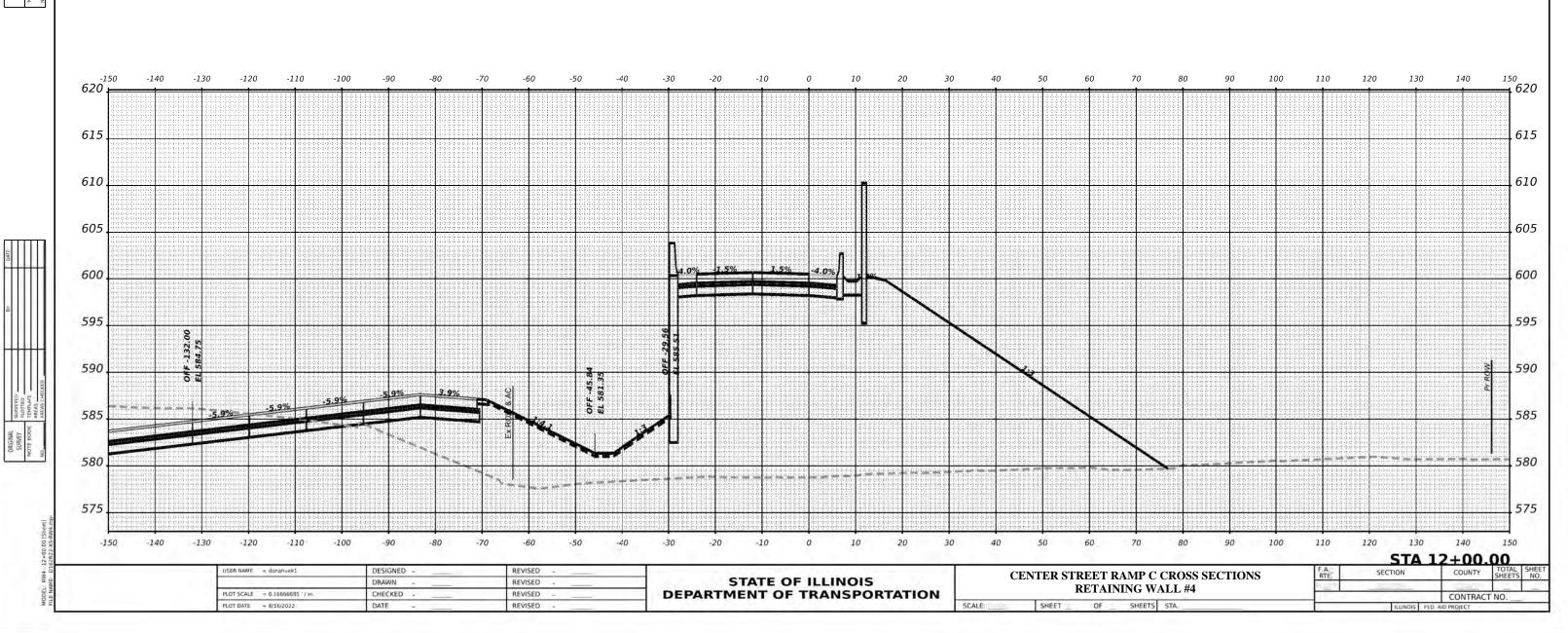


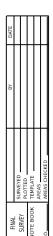

80	90	100	110	120	130	140	150
							610
							605
					- 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2		
							600
					61111-06001 		1444
							595
		-1					590
							585
		1					
	Pc ROW						580
							1404
							575
001-000000 1-1-00000 1-1-0000							
							570
		1.00000011				1112000111	1000 1000 1000
80	90	100	110	120	130 5TA 1	¹⁴⁰ 0+50.	150
CROSS SI	ECTION	IS	F.A. RTE.	SEC		COUNTY	TOTAL SHE SHEETS NO
LL #4			PO27		-	CONTRAC	T NO

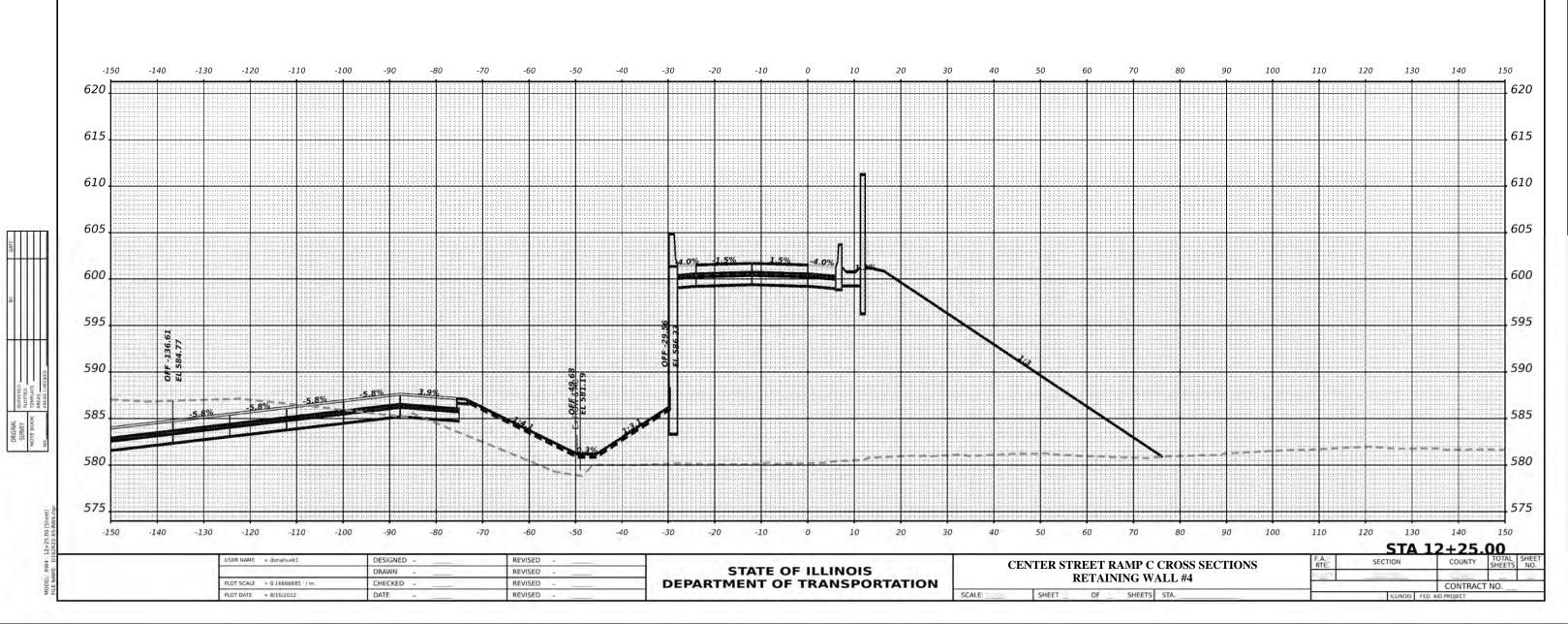


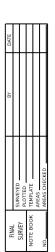


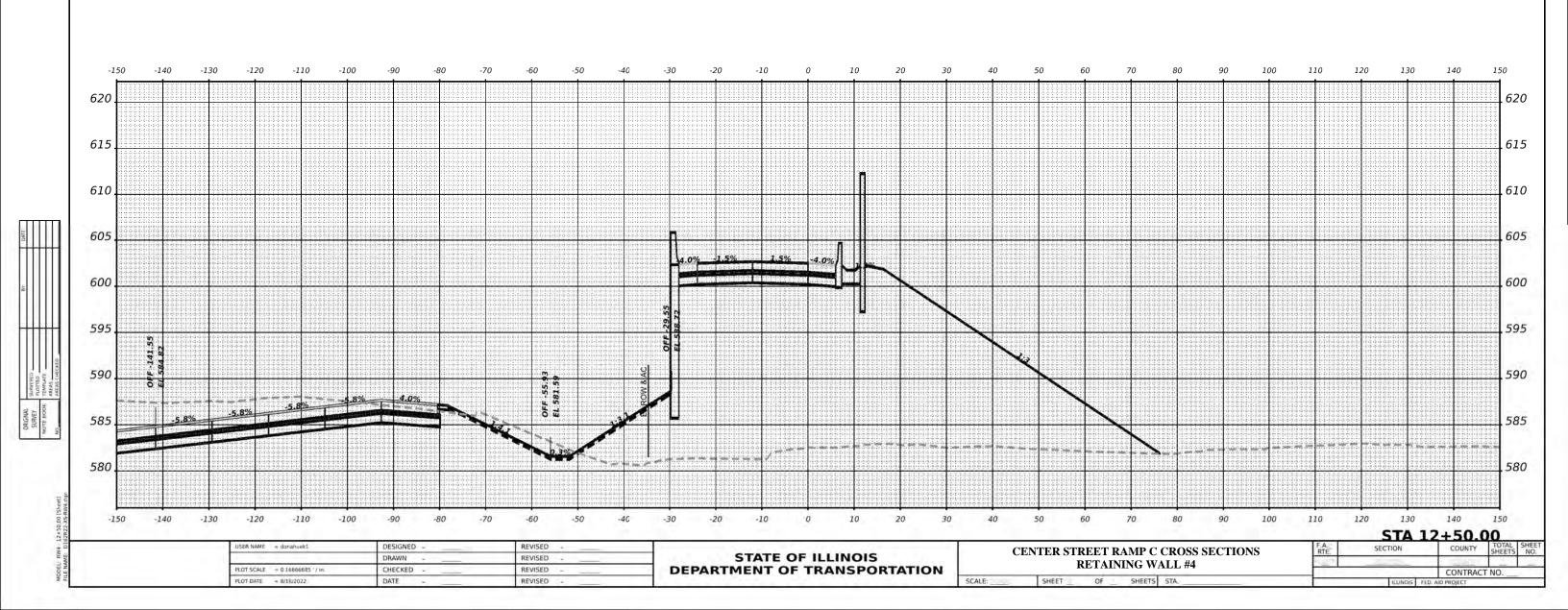


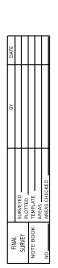


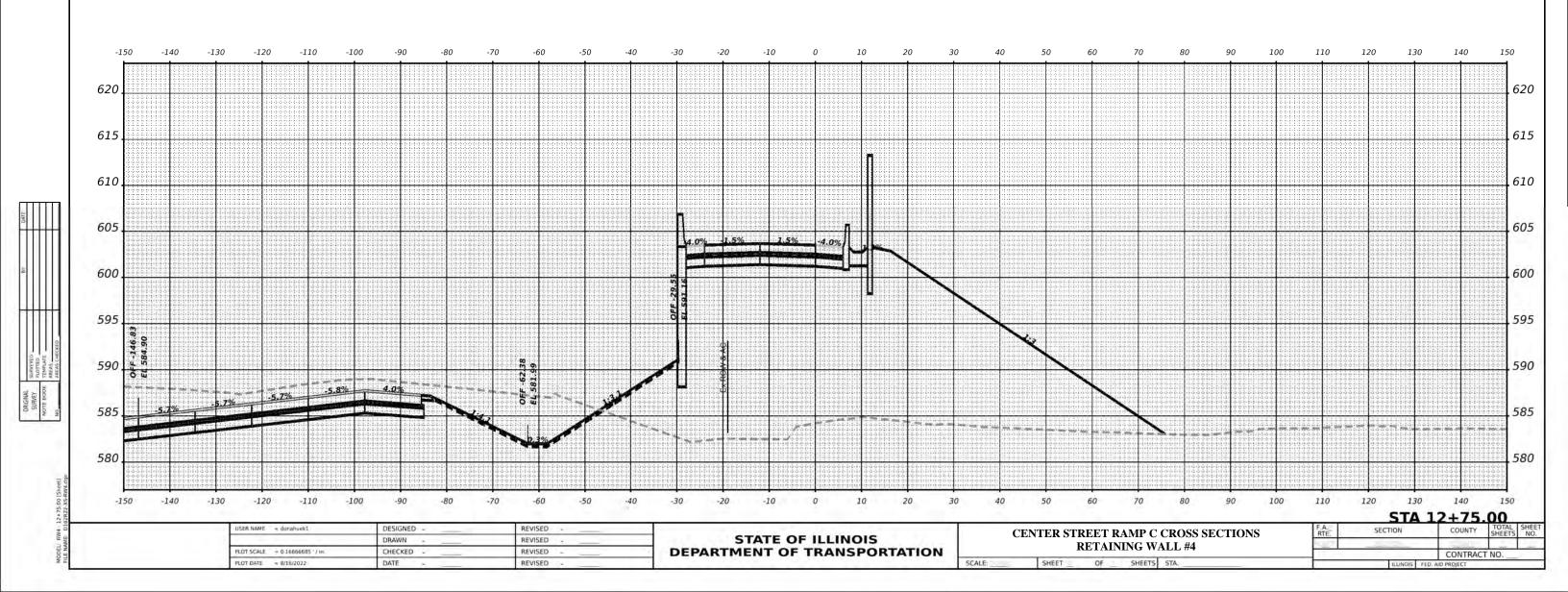


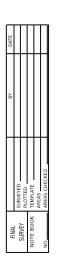

IE

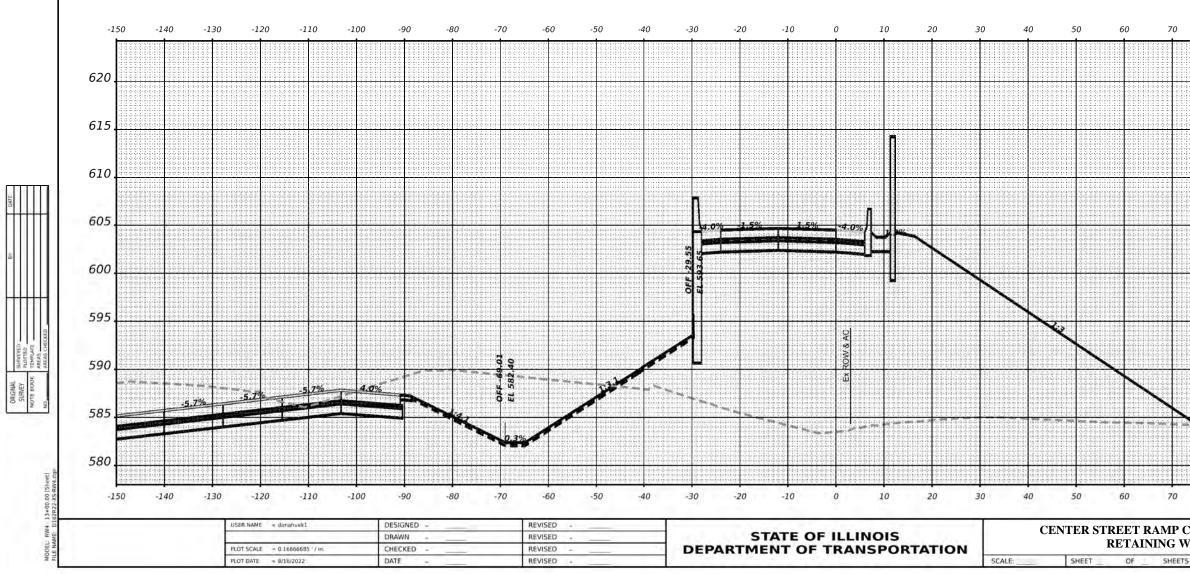


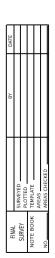


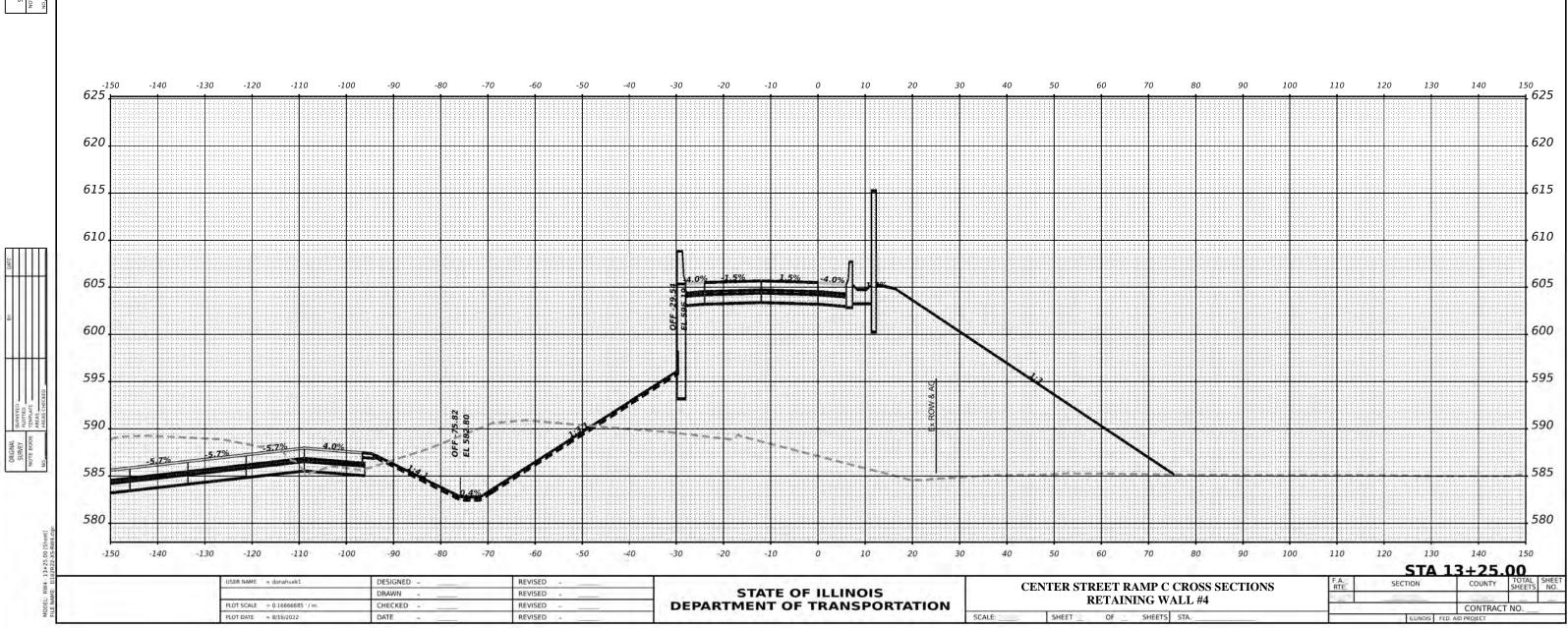


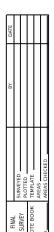


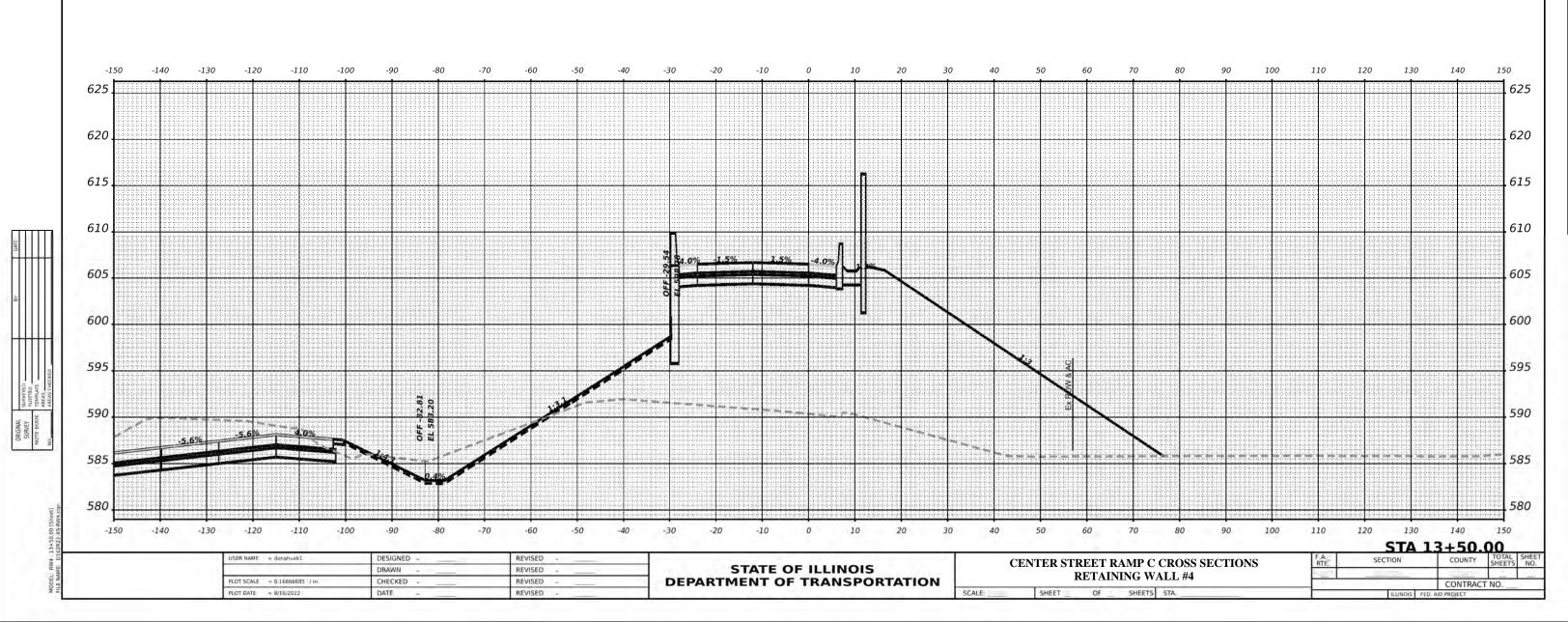


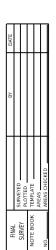


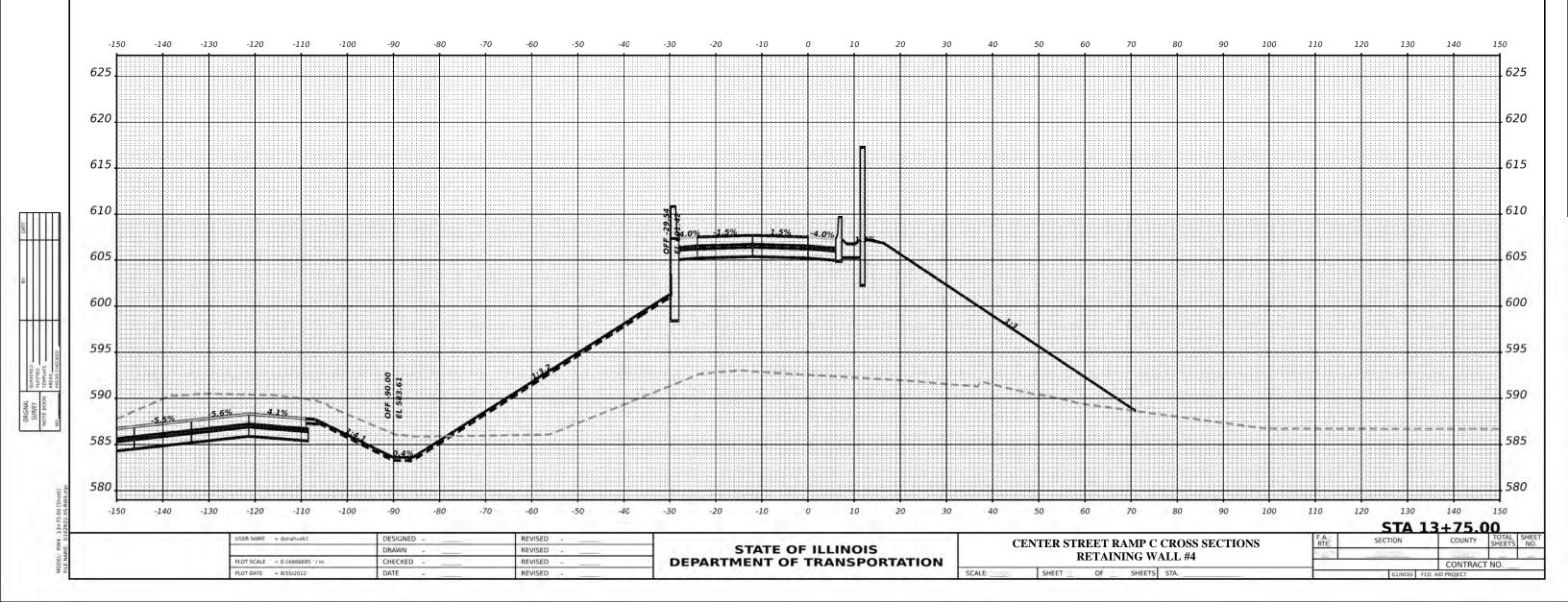


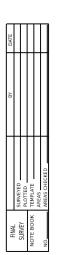


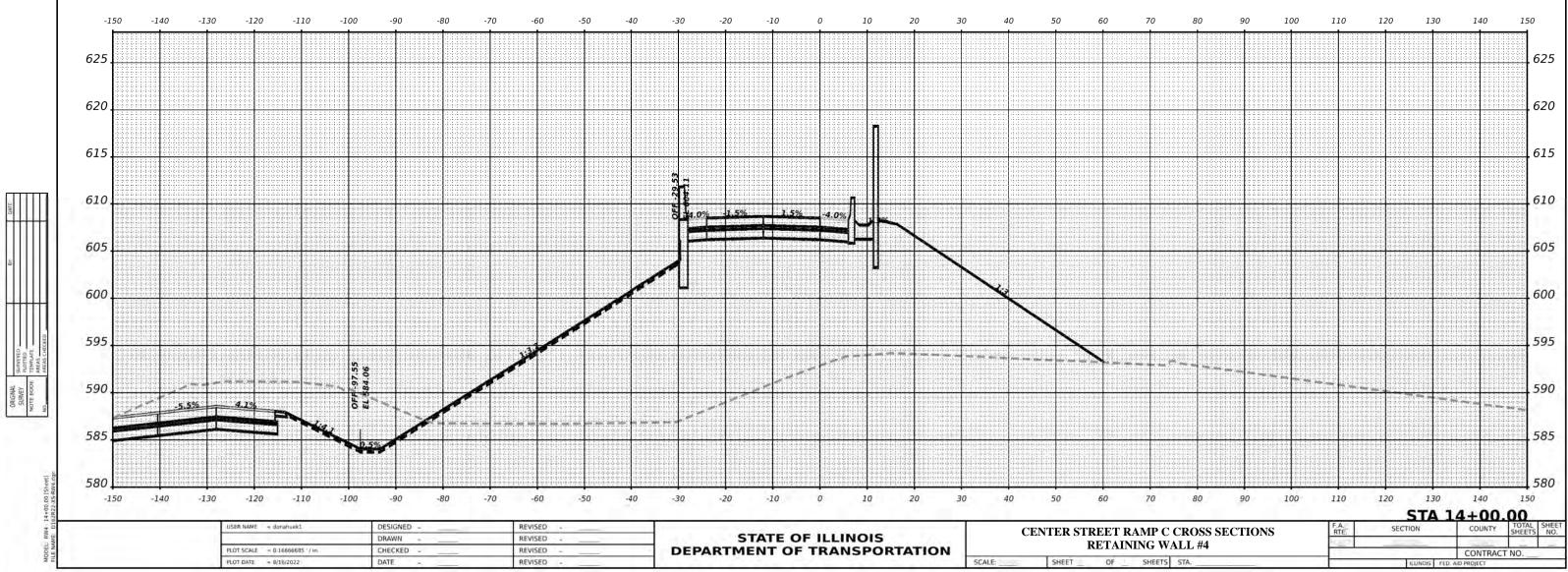


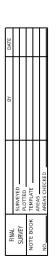


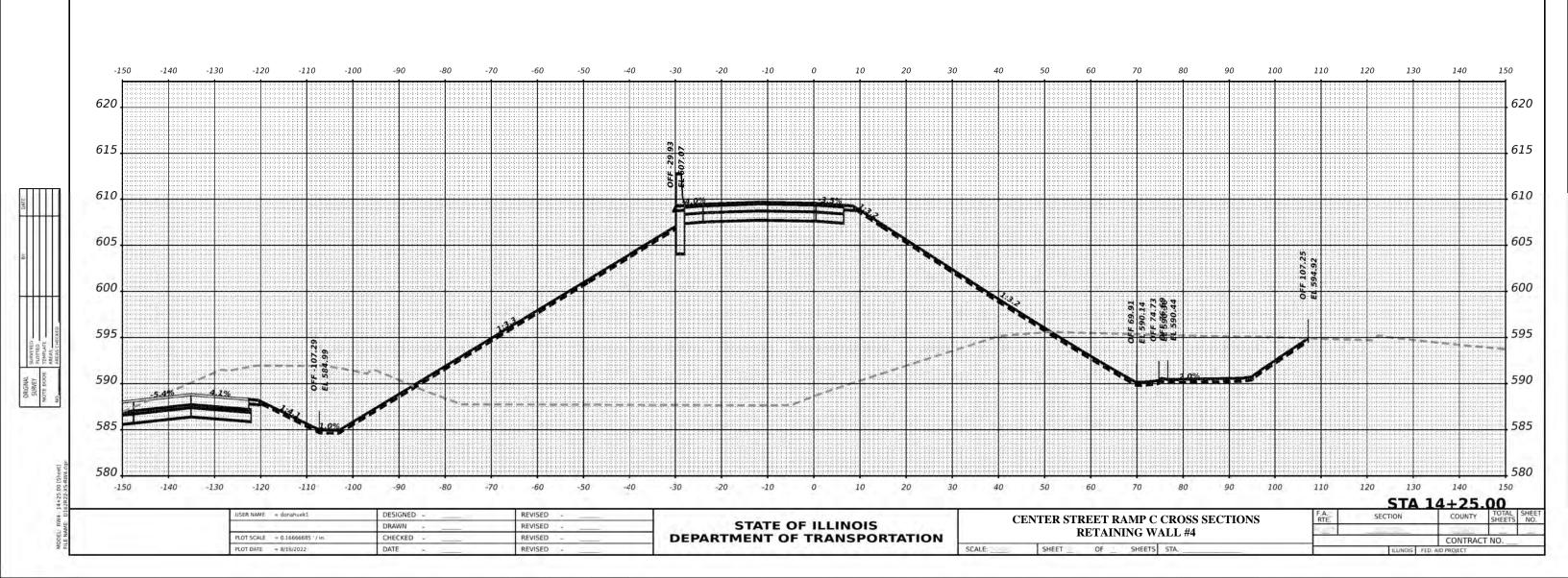


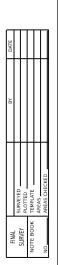

80	9	0	100	110	120	130	140	150
			-	110	120	150	140	150
								0000
								620
								0000
	00000000		2 - 0 0 0 0 1 2 3 3	00000000000		0.0111.000000	-01-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	. 615
			5 - 6 6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				· [·] ·] ·] ·] ·] ·] ·] ·] ·]	0000
	000000000 0000000	000000000) - 0 0 0 0 1 1 3 4 2 0 0 0 0 1 1 1 2	00000000000	0000 10000	0.01010-00000 0001010-000000	· [+]+3+3+4+4+4+4+4+4+4+4+4+4+4+4+4+4+4+4+4	610
								010
12221	(221010)	****						2222
0001-1-104 0001-1-104	1001-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	00010110		00-1-1-100	0010 10000 0010 10000	1-1-1-1-0001-1 1111111-0001-1	-1-100-01-1-1- 91000-01-1-1-	0000
								605
00000000000	100000	10000000	3-0-0-0-1-1-1-0-0		0000 00000	04400-040004	110000000000000000000000000000000000000	10000
	0000000	00010100		00110100			-1-1-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-	10046
11211 01				12144444				10000
55535 (55) 556655 (55)		55555555		0000000000				600
144 H	10011111						1-1-1-0-0-0-1-1-	14446
								10000
3.5.5.2.2. (23.)	00000000	55555555		00.000000	00212 (20300) 00223 (20300)		100000000000000000000000000000000000000	111122 111122
6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,	3461-11-1- 9465-1-1-1-	00000000000 9990000000)-611114/ 		66111 (14466 96911 (14666	1-1-1-1-4-4-4-1-1 5-1-1-1-4-4-4-5-5-1	111100-00111	595
								0000
36525 (3)		55555555		000000000	66245 (16666) 66665 (16666)			111000
00064) (100 99944 (199	saaaann sear-r-bh	0000000000 000000000	5-6000000 5-60000	100041100 1000-10100	6660 (10366 9614 (19996	66111-00061 66-1-1-00061-1	100000000000 10000000000	10000 10000
11111	1000000	999900000		10000000	1000 00000			. 590
101111111	441.111	355225513	5 6 3 3 4 4 4 4	44.11.144	5646 (64356)	3.2.1.1.3.3.5.2.1	10103-00324	1111
수수수하다 귀구? 우수수하다 귀구?	661-11-11-1 6661-11-11-1	0.0.0101010 0.000101010		66-11-100 99-1-1-100	66888 86666 9988 19999	111111-00011 111111-00011	11100-00110 11100-0010	10,0,4,6, 10,0,4,6,
								0000
	HERE IN	44688114	hand help help help	-6-01-64		ininin (and and and	a falla de la d	585
76.0% (***) (**	1.000 (ideal / ideal 2.000 (-1-1-1-1)	0001110	5-666666644 5-66666644	00111100	0000 00000	111111-1-0-0-0-1-1	111000000000	0000
	10011111	99910114		20101100				0000
54423	355	10000		34.16.43				TOP
449999 (Q)	1999 919 1999 1999 1999 1999 1999	0000001010			0000 000000 00000 00000	P.P.P.P. 0000	-1-100-00-0-1-1-	580
		99990400			0000 01000 0000 00000			0000
80	9	0	100	110	120	130	140	150
							3+00.	.00
GDOCC	anar	IONG		F.A. RTE.	SECTIO		COUNTY	TOTAL SHE SHEETS NO
CROSS	SECT	IONS		RTE,	JECHO		COUNT	SHEETS NO
ALL #4				1.201	and the second	-	CONTRACT	
STA.							CONTRACT	NU

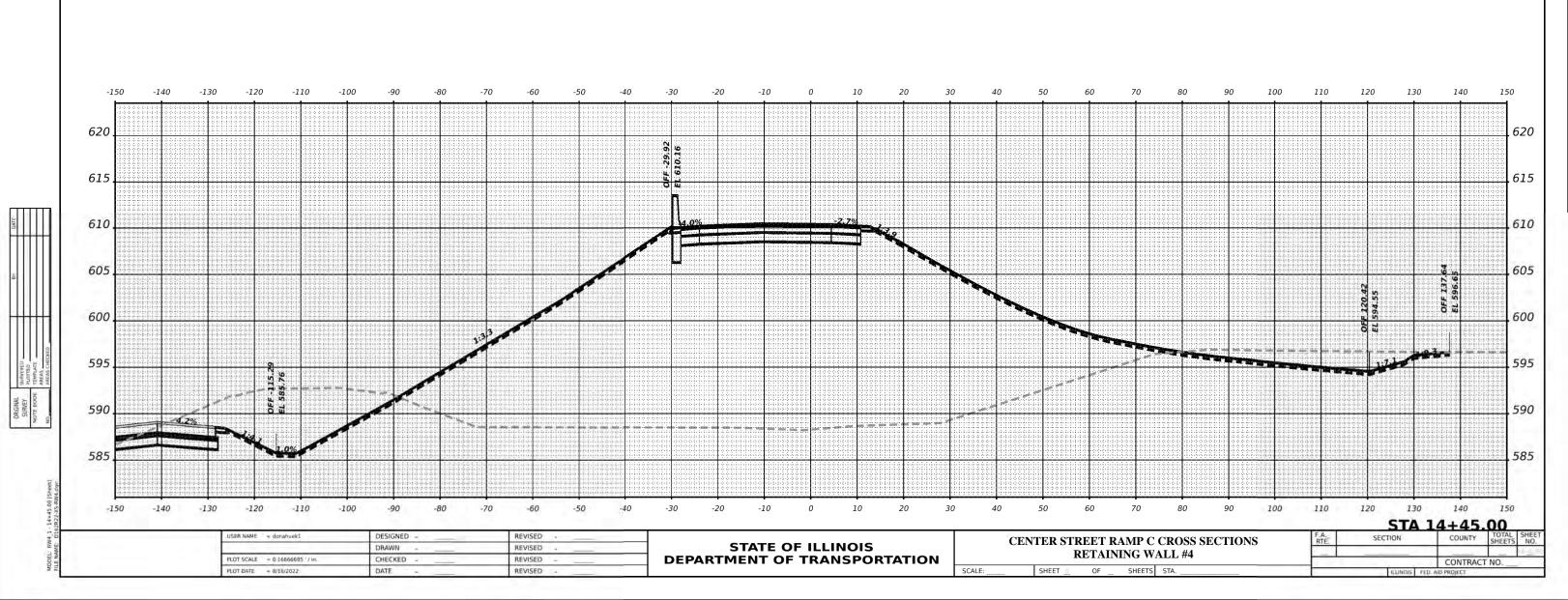


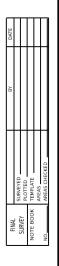


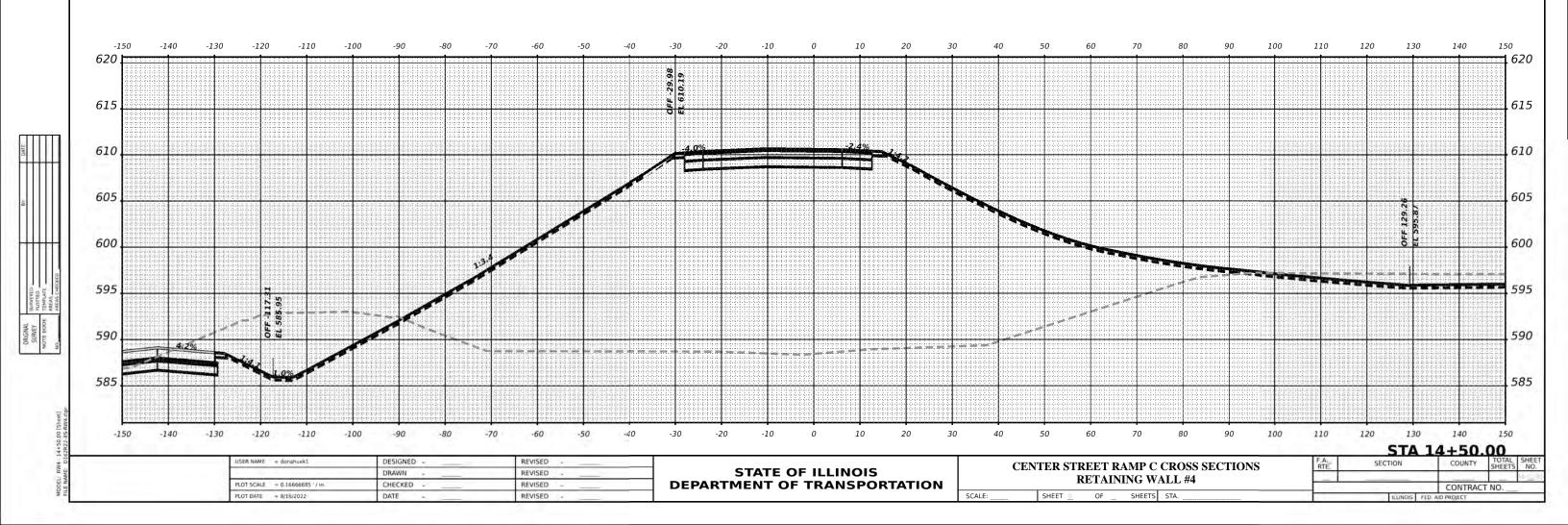


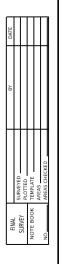


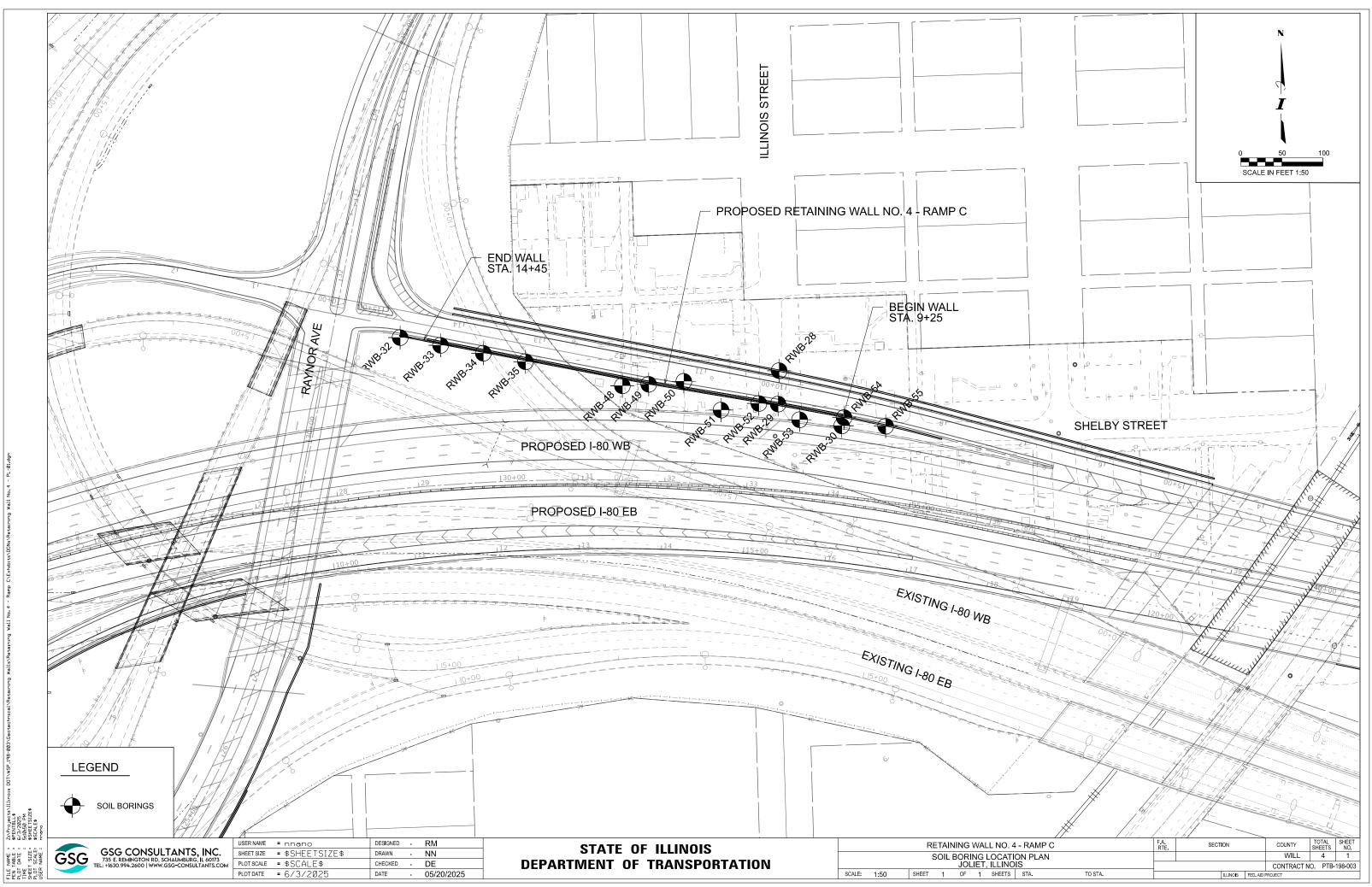


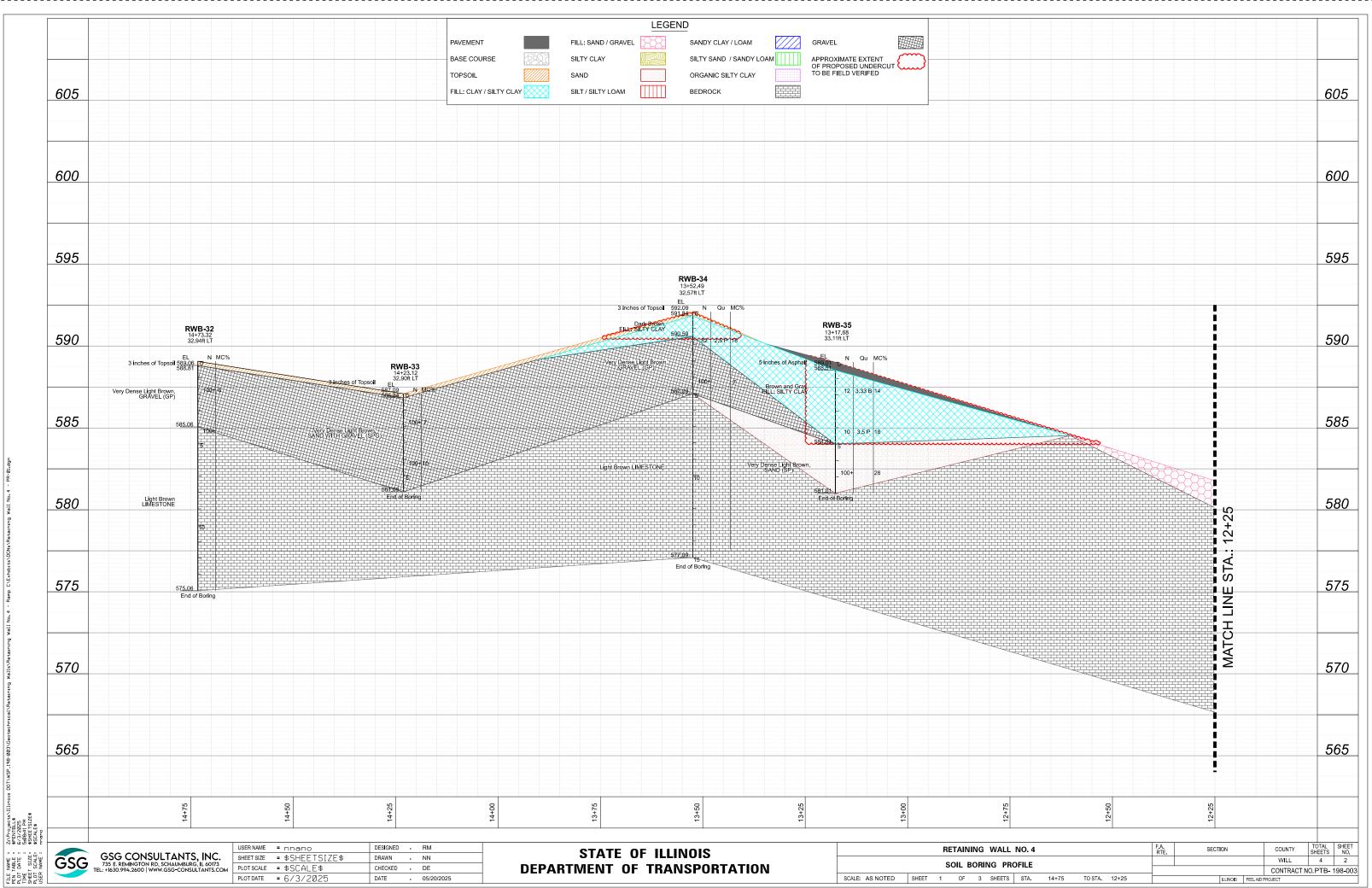


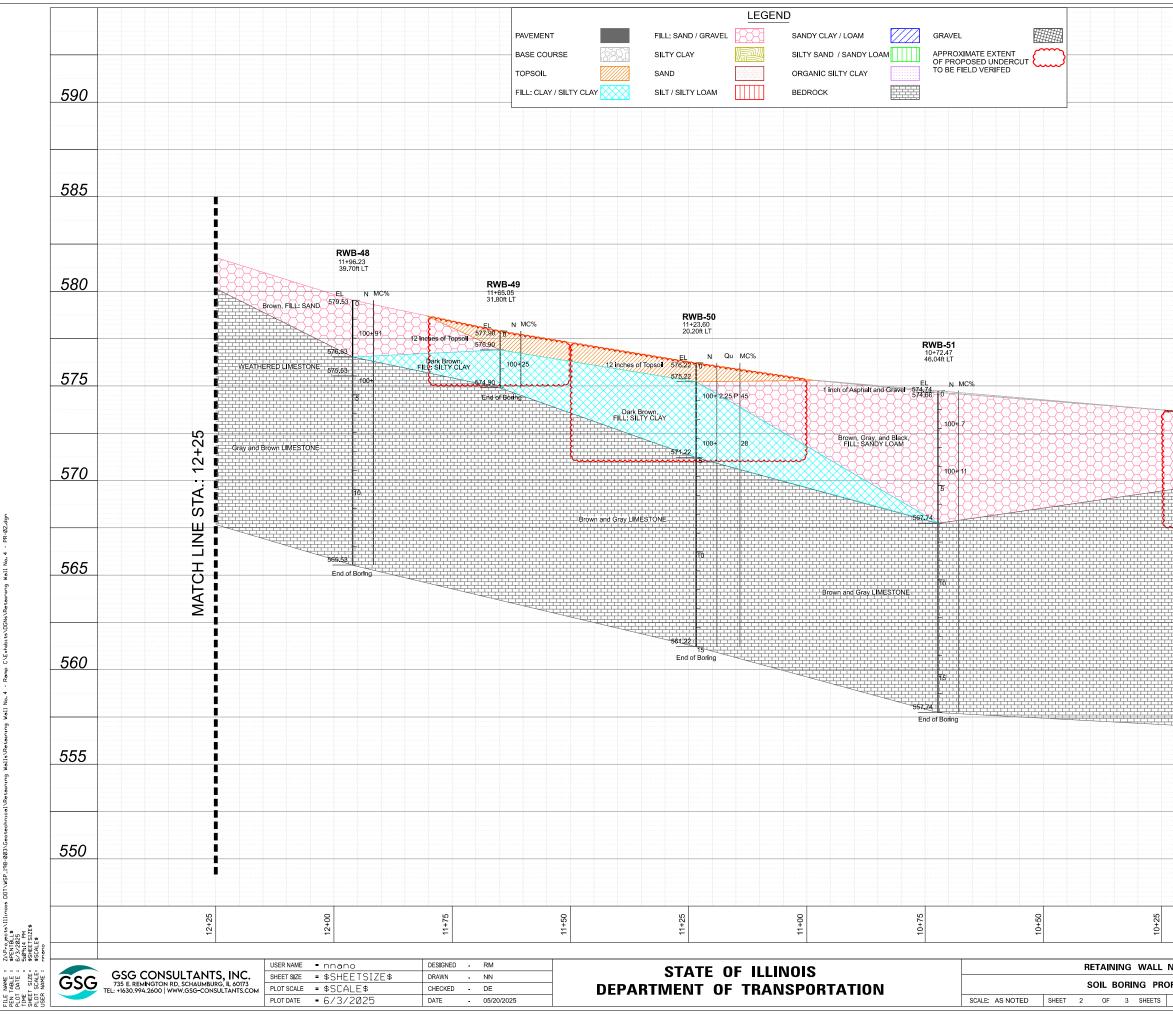


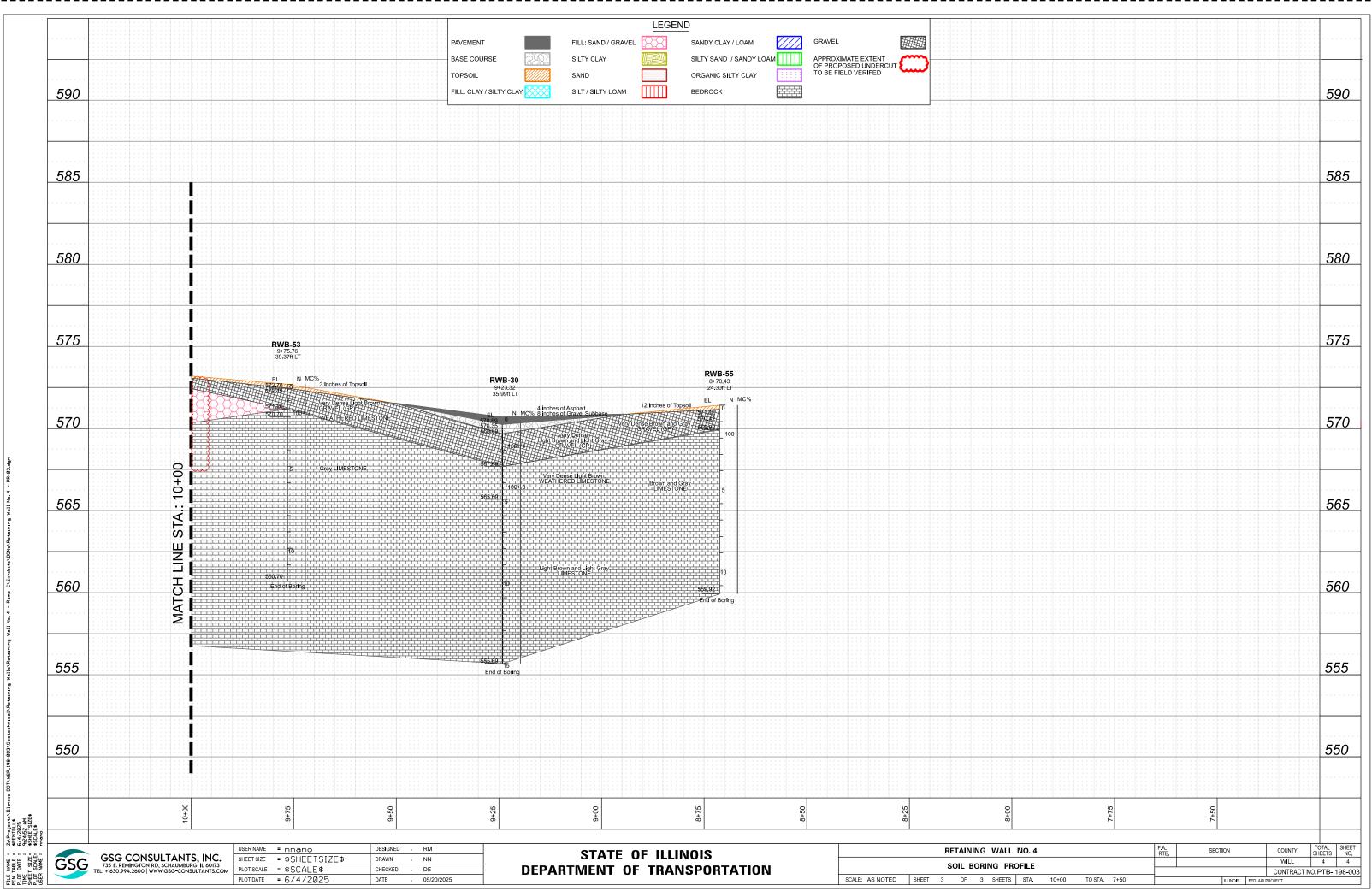









Appendix B Soil Boring Location Plan and Soil Boring Profile



. 4 E A. 12+25 TO STA. 10+	+00	F.A. RTE. SECTION COUNTY S				
10+00				1	TOTAL SHEET SHEETS NO.	
•						
					550	
					555	
	MAT					
					560	
	10+00				565	
	0					
					570	
					575	
					580	
1					585	
					505	
					590	

Appendix C Soil Boring Logs

Illinois Department of Transportation Division of Highways GSG Consultants

SOIL BORING LOG

Page $\underline{1}$ of $\underline{1}$

ROUTE	I-80	DE	_ DESCRIPTION				Retaining Wall No.	4	_ LOGGED BY	AA
						<u>, SEC.</u>	<u>16, TWP. 35 N, RNG. 1</u>	0 E,		
COUNTY	Will D	DRILLING RIG DRILLING METHOD				Mobi	de , Longitude le B-57 HSA	HAMMER T	<u>uto</u> 39	
STRUCT. NO. Station	099-W125		D E P	B L O	U C S	M O I	Surface Water Elev Stream Bed Elev	N/A	ft	
Station Offset	RWB-28 10+12.0163 14.41ft RT		T H (ft)	W S (/6")	Qu (tsf)	S T (%)	Groundwater Elev.: First Encounter _ Upon Completion _ After Hrs	Dry N/A	ft ft	
	ce Elev. 571.45			(,,,)	(ເອເ)	(70)	After Hrs	<u> </u>	π	
	ohalt gregate Subbase	571.20 570.45								
Very Dense,				28						
Light Brown, M GRAVEL, with	oist sand (GP)			50/2"		5				
Light Brown, M		567.95		50/2"						
WEATHERED	LIMESTONE	566.95								
	Slightly Weathered, leavily Fractured,		5							
Run 1: 4.5' - 14 Recovery: 100	.5'									
RQD: 42.9% (F	oor)									
			-10							
		556.95								
End of Boring			-15							
			-20							

Retaining Wall #4 RWB-28 Will County, IL

Boring No.	Run	Depth (ft)	Recovery (%)	RQD (%)	RQD Classification	Compressive Strength (psi)	Description
RWB- 28	1	4.5' – 14.5'	100.0	42.9	Poor	6,516	Light Brown and Light Gray Limestone Slightly Weathered, Moderately to Heavily Fractured, Trace Sand, Trace Vugs

SOIL BORING LOG

Illinois Department of Transportation

Division of Highways GSG Consultants

Page $\underline{1}$ of $\underline{1}$

Date 10/19/22

ROUTE I-80	DE			Retaining Wall No. 4 - Ramp C		C Sta 8+00	_ LOGGED BY	AA	
SECTIONC-91-109-22					<u>, SEC.</u>	<u>16, TWP. 35 N, RNG. 1</u>	0 E,		
COUNTY Will DI	DRI RILLING	LLIN 9 ME	g rig Thod		Latitude , Longitude Diedrich D-50 HSA		HAMMER TY HAMMER EF	PE <u>Auto</u> F (%) 96	
STRUCT. NO099-W125 Station		D E P	B L O	U C S	M O I	Surface Water Elev Stream Bed Elev	N/A f	ť	
BORING NO. RWB-29 Station 10+5.4610 Offset 25.76ft LT Ground Surface Elev. 571.33		T H (ft)	W S (/6")	Qu (tsf)	S T (%)	Groundwater Elev.: First Encounter _ Upon Completion _ After Hrs	Dry f N/A f N/A f	ť	
9 inches of Asphalt 3 inches of Aggregate Subbase	570.58							<u>.</u>	
Dark Brown and Dark Gray, Moist to Very Moist FILL: SILTY CLAY, with sand and gravel	-570.33		7 18 50/3"	0.8 P	26				
	567.33		50/5"						
Gray, Moist WEATHERED LIMESTONE		-5		0.5 P	16				
Auger refusal at 6 feet End of Boring	565.33								

Illinois Department of Transportation

SOIL BORING LOG

Page <u>1</u> of <u>1</u> Date <u>10/27/22</u>

ROUTE	I-80	DE					Retaining Wall No.	4	LOGGED BY	AA
	C-91-109-22		_ L	OCAT		1	16, TWP. 35 N, RNG. 1	0 E,		
	D	DRII RILLING	LLIN 9 ME	g rig Thod		Mobi	de , Longitude le B-57 HSA	HAMMER TYP HAMMER EFF		
	099-W125		D E P	B L O	U C S	M O I	Surface Water Elev Stream Bed Elev			
Station Offset	RWB-30 9+23.3189 35.99ft LT		T H	W S (/6")	Qu (tsf)	S T (%)	Upon Completion	Dry ft N/A ft		
	ce Elev. 570.69	ft	(ft)	(/0)	((5))	(%)	After Hrs	<u> </u>		
4 inches of Asp 8 inches of Gra		570.35 569.69								
Very Dense				6						
Light Brown and GRAVEL, with (GP)	d Light Gray, Dry sand, some silt			23 50/0"		4				
		567.69								
Very Dense Light Brown, Dr WEATHERED	y LIMESTONE			15		0				
			_	50/3"		3				
		565.69	-5							
	Slightly to athered, leavily Fractured, Fractures, Trace									
Recovery: 95% RQD: 27.1% (F		555.69	 							
End of Boring										

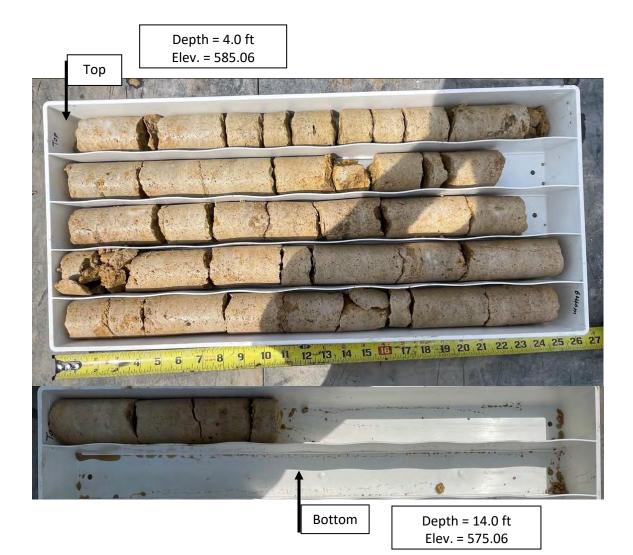
The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

Retaining Wall #4 RWB-30 Will County, IL

Boring No.	Run	Depth (ft)	Recovery (%)	RQD (%)	RQD Classification	Compressive Strength (psi)	Description
RWB- 30	1	5.0' – 15.0'	95.0	27.1	Poor	8,417	Light Brown and Light Gray Limestone Slightly to Moderately Weathered, Moderately to Heavily Fractured, Trace Vertical Fractures, Trace Sand, Trace Vugs

Illinois Department of Transportation Division of Highways GSG Consultants

SOIL BORING LOG


Date ______8/19/22___

Page $\underline{1}$ of $\underline{1}$

ROUTEI-80	DE					Retaining Wall No.	LOGGED BYKA			
SECTIONC-91-109-22					<u>, SEC.</u>	17, TWP. 35 N, RNG. 1	0 E,			
COUNTY D	DRI	LLIN	G RIG	Di	edrich	de , Longitude D-50 ATV	HAMMER TYPE Auto			
D	RILLING	S ME	THOD			HSA	_ HAMMER EFF (%) 91			
STRUCT. NO. 099-W125		D	в	υ	м	Surface Water Flow	NI/A	#		
Station		Е	L	Ċ	0	Surface Water Elev Stream Bed Elev.	Ν/Α	ft		
		Р	0	S	1			it.		
BORING NO RWB-32		Т	W		S	Groundwater Elev.:				
Station 14+73.3173		н	S	Qu	Т		Dry	ft		
Offset 32.94ft LT						Upon Completion	N/Á	ft		
Ground Surface Elev. 589.06	ft	(ft)	(/6")	(tsf)	(%)	Upon Completion _ After Hrs	N/A	ft		
3 inches of Topsoil		-								
Very Dense		_	r.							
Light Brown, Moist			7							
GRAVEL, some sand, some silt,			50/4"		6					
trace clay (GP)										
	585.06		50/3"							
Light Brown	505.00									
LIMESTONE, Slightly Weathered,		-5	r.							
Moderately to Heavily Fractured,										
Trace Sand, Trace Clay at 7 feet,										
Some Vugs										
Run 1: 4' - 14'										
Recovery: 100%										
RQD: 37% (Poor)										
		-10								
			r.							
			r.							
	575.06									
End of Boring										
		-15								
		_								
		-20								

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

Retaining Wall #4 RWB-32 Will County, IL

Boring No.	Run	Depth (ft)	Recovery (%)	RQD (%)	RQD Classification	Compressive Strength (psi)	Description
RWB- 32	1	4.0' – 14.0'	100.0	37.0	Poor	5,398	Light Brown Limestone Slightly Weathered, Moderately to Heavily Fractured, Trace Sand, Trace Clay at 7 feet, Some Vugs

Illinois Department of Transportation Division of Highways GSG Consultants

SOIL BORING LOG

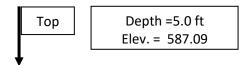
Date ______8/19/22___

Page $\underline{1}$ of $\underline{1}$

SECTION C-91-109-22 LOCATION SEC. 17, TWP. 35 N, RNG. 10 E, LatitudeLongitude HAMMER TYPE Auto COUNTY Will DRILLING RIG DRILLING RIG DRILLING RIG DRILLING RIG DRILLING RIG DRILLING RIG DRILLING RIG DRING NO. HAMMER TYPE Auto STEUCT. NO. 099-W125 D D U M Surface Water Elev. N/A ft BORING NO. RWB-33 T N Surface Water Elev. N/A ft Ground Surface Elev. 587.09 ft (ft) (ft) (ft) First Encounter Dry. ft Yery Dense 50/3* - - - - - SAMD WITH GRAVEL, some silt, race roots (SPG) - 5 - - - - - - 10 - - - - - - - - 10 - - - - - - - - - - - - - </th <th>ROUTE</th> <th>I-80</th> <th>_ DES</th> <th colspan="4">DESCRIPTION Retaining Wa</th> <th>Retaining Wall No. 4</th> <th colspan="3">Wall No. 4 LOGGED BY</th> <th>KA</th>	ROUTE	I-80	_ DES	DESCRIPTION Retaining Wa				Retaining Wall No. 4	Wall No. 4 LOGGED BY			KA
STRUCT. NO. 099-W125 B U C Surface Water Elev. N/A ft BORING NO. RWB:33 T Station 14+23,1214 V N/A ft Offset 32.90fLT (ft)						ION _	<u>, SEC.</u>	17, TWP. 35 N, RNG. 10	0 E,			
STRUCT. NO. 099-W125 D B U C O Surface Water Elev. N/A ft BORING NO. RWB-33 T T W Sufface Water Elev. N/A ft Ground Surface Elev. 14+23,1214 T W Sufface Water Elev. N/A ft Ground Surface Elev. 587.09 ft (ft) (ff) (ff) (ff) (ff) (ff) (ff) (ff) (ff) Sufface Water Elev. N/A ft 3 inches of Topsoil 566.64 - <th>COUNTY</th> <th>Will</th> <th>DRIL</th> <th>LIN</th> <th>G RIG</th> <th>Di</th> <th>edrich</th> <th>D-50 ATV</th> <th colspan="2">HAMMER TYPE</th> <th></th> <th></th>	COUNTY	Will	DRIL	LIN	G RIG	Di	edrich	D-50 ATV	HAMMER TYPE			
Station 005 MTLD E L C O Stream Bod Elev. NNA_ft BORING NO. RWB-33 T W S Stream Bod Elev. NNA_ft Ground Surface Elev. 32.90ft LT (ft) (ft) (ft) (ft) Groundwater Elev.: First Encounter Dry_ft Upon Completion N/A ft 3 inches of Topsoil 586-84- - - Light Brown, Moist 590/3* - - SAND WITH GRAVEL, some silt, 9 7 50/3* - - 50/3* - - - - 50/3* - - - - 581.09 - - - Auger Refusal @ 6 feet - - - - - - - - - - - - - - - - - - - - - - - - - - - - -		DF	RILLING	6 ME	THOD			HSA	HAMMER EI	FF (%)	91	
BORING NO								Surface Water Elev.	N/A	ft		
BORING NO. RWB-33 Station 14+23.1214 Offset 32.90fLT Ground Surface Elev.: 587.09 ft (ft) (/6") (tsf) (%) 3 inches of Topsoil 686.84 Light Brown, Moist SAND WITH GRAVEL, some silt, 9 5 50/3" 7 50/3" 7	Station							Stream Bed Elev.	N/A	ft		
Station 14+23.1214 14+23.1214 Gried H S Qu T Ground Surface Elev. 32.90ft LT 30 mod Surface Elev. ft (ft) (ft) (ft) 3 inches of Topsoil 566.64 5 - - - Very Dense Light Brown, Moist SAND WITH GRAVEL, some silt, trace clay, trace roots (SPG) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -					-	3		Groundwater Flow				
3 inches of Topsoil 5 5 5 Yery Dense 5 5 5 Light Brown, Moist 9 7 SAND WITH GRAVEL, some silt, 9 7 trace clay, trace roots (SPG) 5 50/3" Auger Refusal @ 6 feet - -	Station	14+23 1214				Qu		First Encounter	Dry	ft		
3 inches of Topsoil 5 5 5 Yery Dense 5 5 5 Light Brown, Moist 9 7 SAND WITH GRAVEL, some silt, 9 7 trace clay, trace roots (SPG) 5 50/3" Auger Refusal @ 6 feet - -	Offset	32.90ft LT						Upon Completion	<u>N/A</u>	ft		
Very Dense Light Brown, Moist SAND WITH GRAVEL, some silt, trace clay, trace roots (SPG) 50/3" 	Ground Surface	Elev. 587.09	ft		(/6")	(tsf)	(%)	After Hrs	N/A	ft		
Very Dense Light Brown, Moist SAND WITH GRAVEL, some silt, trace clay, trace roots (SPG) 50/3" 	3 inches of Topso	pil ,	/ 586.84									
SĀND WITH GRAVEL, some silt, trace clay, trace roots (SPG) 9 7 - 50/3" - - 50/3" - - - 10 - - 10 - - 10 - - 10 - - 10 - - 10 - - - - - 10 - - -	Very Dense											
trace clay, trace roots (SPG)	SAND WITH GRA	AVEL some silt.										
Auger Refusal @ 6 feet							7					
					50/5							
-5 - Auger Refusal @ 6 feet - End of Boring - -					50/3"							
Auger Refusal @ 6 feet							10					
Auger Refusal @ 6 feet End of Boring				-5								
Auger Refusal @ 6 feet End of Boring												
End of Boring	Augor Dofusal @	6 foot	581.09									
	End of Boring	0 leel		_								
	5											
				-10								
				_								
				_								
				-15								
-20				-20								

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

Illinois Department of Transportation


SOIL BORING LOG

Page <u>1</u> of <u>1</u>

Date 8/25/22

ROUTE	I-80	DE	_ DESCRIPTION				Retaining Wall No. 4			_ LOGGED BY	
SECTION	C 01 100 22			0047		SEC	16 TWD 25 N DNC 1	0 5			
						<u>, S⊑C.</u> Latitu	<u>16, TWP. 35 N, RNG. 1</u> de . Longitude	0 E,			
			DRILLING RIG			edrich	de , Longitude D-50 ATV	HAMMER TYPE			
	L			THOD			HSA		FF (%)	91	
STRUCT. NO.			D	В	U	M	Surface Water Elev.	N/A	ft		
Station			E P	L O	C S	0	Stream Bed Elev.	N/A	ft		
			Г Т	w	3	S	Oreconderator Flores				
BORING NO1	<u>RVVB-34</u>		Ĥ	s	Qu	T	Groundwater Elev.: First Encounter	Dry	#		
Offset	32.57ft LT						Upon Completion				
Ground Surface Ele) ft	(ft)	(/6")	(tsf)	(%)	After Hrs.	N/A	ft		
3 inches of Topsoil											
Dark Brown, Moist											
FILL: SILTY CLAY, s	some gravel,	590.59		16							
Very Dense				32	2.5	18					
Light Brown, Moist to				50	Р						
GRAVEL, some silt,	little sand										
(GP)				50/2"							
				30/2		7					
		587.09	-5			'					
Light Brown		507.09	-0								
LIMESTONE, Moder											
Slightly Weathered, Moderately to Heavily Fractured, Some Vertical Fractures, Trace Sand, Some Vugs)									
Run 1: 5' - 15'											
Recovery: 100% RQD: 34% (Poor)											
			-10								
			_								
			_								
		E77 00	45								
End of Boring		577.09	-15								
5											

Retaining Wall #4 RWB-34 Will County, IL

Depth = 15.0 ft	
Deptil = 15.0 It	
Elev. = 577.09	Bottom

Boring No.	Run	Depth (ft)	Recovery (%)	RQD (%)	RQD Classification	Compressive Strength (psi)	Description
RWB- 34	1	5.0' – 15.0'	100.0	34.0	Poor	15,194	Light Brown Limestone Moderately to Slightly Weathered, Moderately to Heavily Fractured, Some Vertical Fractures, Trace Sand, Some Vugs

Illinois Department of Transportation

SOIL BORING LOG

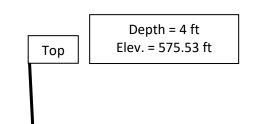
Date 8/18/22

Page <u>1</u> of <u>1</u>

ROUTE 1-80 DESCRIPTION Retaining Wall No. 4 LOGGED BY DD SECTION <u>C-91-109-22</u> LOCATION <u>, SEC. 16, TWP. 35 N, RNG. 10 E,</u> Latitude , Longitude Mobile B-57 DRILLING RIG Auto HAMMER TYPE COUNTY Will ____ — DRILLING METHOD HSA HAMMER EFF (%) 89 D R U Μ STRUCT. NO. 099-W125 Surface Water Elev. N/A ft Е L С 0 Station _____ Stream Bed Elev. N/A ft Ρ S ο L BORING NO. RWB-35 т W S Groundwater Elev.: н S Qu т
 Station
 13+17.6762

 Offset
 33.11ft LT
 First Encounter Dry ft Upon Completion N/A ft (ft) (/6") (%) (tsf) Ground Surface Elev. 589.01 ft After _____ Hrs. N/A ft 5 inches of Asphalt 588.51 Brown and Gray, Moist FILL: SILTY CLAY, trace gravel, 3 sand. brick 4 3.3 14 8 В 4 4 18 3.5 6 Р 584.01 -5 Very Dense Light Brown, Wet SAND, trace gravel, trace 4 organics (SP) 27 28 50/4" 581.01 Auger Refusal @ 8 feet End of Boring -20

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)


Page $\underline{1}$ of $\underline{1}$

Date 3/27/25

ROUTE	I-80	DE			R	etaining Wall No. 4 - Ra	amp C	LOGGED BY	DV	
SECTION	C-91-109-22		L		ION	SEC.	16, TWP. 35 N, RNG. 1	0 F.		
						Latitu	de Longitude			
COUNTY	Will D		LLIN 2 ME			CN	IE-75 HSA			
	D							HAMMER EFF	(%) 78.8	
STRUCT. NO.	099-W125		D	B	U	M	Surface Water Elev.	N/A ft		
Station			E	L	C	0	Stream Bed Elev.	N/A ft		
			P T	O W	S	I S				
BORING NO.	RWB-48 (Wall 4))	H	S	Qu	T	Groundwater Elev.:	- -		
Station	11+96.23 39.70ft LT				Qu	•		Dryft		
	ce Elev579.53		(ft)	(/6'')	(tsf)	(%)	Upon Completion _ After Hrs	<u> </u>		
Brown, Wet			()	. ,	. ,			<u> </u>		
FILL: SAND, wi	ith gravel									
,	5			8						
				50/3"		91				
		576.53								
WEATHERED	LIMESTONE	510.55		1						
		575.53		50/2"						
Auger refusal a		<u></u>								
Gray and Brow			-5							
LIMESTONE, r	htly to moderately									
fractured, trace										
Run 1: 4' - 14' Recovery: 95.0	0/			-						
RQD: 55.0% (F	∞ air)			-						
1100.070 (1				-						
				-						
				-						
				-						
			-10	-						
				-						
				-						
		565.53		1						
End of Boring		000.00		1						
-			-15							
				1						
]						
				ļ						
				ļ						
				-						
			-20							

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

Retaining Wall #4 – Ramp C Boring Number: RWB-48 Will County, IL

Depth = 14 ft	
Elev. = 565.53 ft	Bottom

Boring No.	Run	Depth (ft)	Recovery (%)	RQD (%)	RQD Classification	Description
RWB-48	1	4'-14'	95.0	55.0	Fair	Gray and Brown Limestone Slightly Weathered, Moderately to Heavily Fractured, Trace Shale

SOIL BORING LOG

Page $\underline{1}$ of $\underline{1}$

ROUTE	I-80	DE	SCRI	PTION	I	R	etaining Wall No. 4 - Ra	amp C	LOGGED BY _	AK
						<u>, SEC.</u> Latitu	<u>16, TWP. 35 N, RNG. 1</u>	0 E,		
	Will D	DRII RILLING	LLIN ME	g rig Thod		Diedri	de , Longitude ch D-50 HSA	HAMMER TYP HAMMER EFF	E <u>Aut</u> (%) 97.	<u>ე</u> 7
	099-W125		D E P	B L O	U C S	M O I	Surface Water Elev Stream Bed Elev	N/A ft		
Station Offset	RWB-49 (Wall 4 11+65.05 31.80ft LT		T H	W S	Qu	S T	Upon Completion	Dry ft N/A ft		
	ace Elev. 577.90	ft	(ft)	(/6")	(tsf)	(%)	After Hrs	<u> </u>		
12 inches of T	opsoil									
		576.90								
Dark Brown, M FILL: SILTY C	loist LAY, little gravel,			50/4"		25				
trace roots	, , ,					20				
		574.90								
Auger refusal	at 3 feet	5								
End of Boring										
			-5							
			-10							
			-15							
			_							
			-20	1						

SOIL BORING LOG

Page $\underline{1}$ of $\underline{1}$

ROUTE	I-80	_ DES	SCRI	PTION	I	R	etaining Wall No. 4 - R	amp C	LOGGED B	Y <u>AK</u>
						<u>, SEC.</u>	16, TWP . 35 N, RNG . 1	0 E,		
	Vill DR	DRII RILLING	LIN ME	g rig Thod		Diedri	de , Longitude ch D-50 HSA	HAMMER TY HAMMER EF	ΈΕ Έ (%)	<u>Auto</u> 97.7
STRUCT. NO Station	099-W125		D E P	B L O	U C S	M O I	Surface Water Elev Stream Bed Elev	N/A f	t	
BORING NO Station Offset Ground Surface E	11+23.60 20.20ft LT		T H (ft)	W S (/6")	Qu (tsf)	S T (%)	Groundwater Elev.: First Encounter Upon Completion After Hrs.	<u> </u>	t	
12 inches of Topsoi		"	. ,	. ,	. ,	. ,			•	
Dark Brown, Very M FILL: SILTY CLAY,	loist	575.22		50/4"	2.3	45				
gravel, trace concre					2.3 P	45				
				50/5"						
						28				
Auger refusal at 5 fe	eet /	571.22	-5							
Brown and Gray LIMESTONE, slight moderately to heavi some vugs	ly weathered,									
Run 1: 5' - 15' Recovery: 100% RQD: 28.8% (Poor)										
			-10							
		561.22	-15							
End of Boring		01.22								

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

Retaining Wall #4 – Ramp C RWB-50 Will County, IL

Boring No.	Run	Depth (ft)	Recovery (%)	RQD (%)	RQD Classification	Description
RWB-50	1	5' – 15'	100	28.8	Poor	Brown and Gray Limestone Slightly Weathered, Moderately to Heavily Fractured, Some Vugs

Illinois Department of Transportation

SOIL BORING LOG

Page <u>1</u> of <u>1</u>

Date 3/21/25

ROUTE I-80	DE\$	SCRI	PTION	I	R	etaining Wall No. 4 - Ra	amp C	LOGGED BY	AK
SECTIONC-91-109-2					<u>, SEC.</u>	16, TWP. 35 N, RNG. 1	0 E,		
COUNTYWill	DRII DRILLING	LIN ME	g rig Thod		Diedri	de , Longitude ch D-50 HSA	HAMMER TYP	PE <u>Auto</u> F (%) 97.7	
STRUCT. NO099-W125 Station		D E P	B L O	U C S	M O I	Surface Water Elev Stream Bed Elev	N/A ft		
BORING NO. RWB-51 Station 10+72.47 Offset 46.04ft LT Ground Surface Elev. 574.7	 74 ft	T H (ft)	W S (/6")	Qu (tsf)	S T (%)	Groundwater Elev.: First Encounter _ Upon Completion _ After Hrs.	<u>Dry</u> ft <u>N/A</u> ft N/A ft		
1 inch of Asphalt and Gravel			(-)	()			<u> </u>		
Brown, Gray, and Black, Moist FILL: SANDY LOAM, some gravel, trace concrete			50/5"		7				
			50/5"						
			50/5		11				
		-5							
	567.74								
Auger refusal at 7 feet Brown and Gray LIMESTONE, slightly weathered moderately to heavily fractured, some vugs									
Run 1: 7' to 17' Recovery: 96.7% RQD: 58.3% (Fair)		-10							
		-15							
End of Poring	557.74								
End of Boring									

Retaining Wall #4 – Ramp C RWB-51 Will County, IL

Depth = 17 ft Elev. = 557.74 ft

Bottom

Boring No.	Run	Depth (ft)	Recovery (%)	RQD (%)	RQD Classification	Description
RWB-51	1	7' – 17'	96.7	58.3	Fair	Brown and Gray Limestone Slightly Weathered, Moderately to Heavily Fractured, Some Vugs

Illinois Department of Transportation

SOIL BORING LOG

Page <u>1</u> of <u>1</u>

Date 3/20/25

ROUTE	I-80	DES	SCRI	PTION	I	R	Retaining Wall No. 4 - Ra	amp C	LOGGED BY	SB
						<u>, SEC.</u> Latitu	<u>16, TWP. 35 N, RNG. 1</u> de Longitude	0 E,		
	Will		ME	g rig Thod		Mobi	de , Longitude le B-57 HSA	HAMMER TY	PE <u>Aut</u> F (%) 89	<u>:0</u>)
STRUCT. NO) . 099-W125		D E P	B L O	U C S	M O I	Surface Water Elev Stream Bed Elev	N/A ft	t	
BORING NO Station Offset Ground Su		ff	T H (ft)	W S (/6")	Qu (tsf)	S T (%)	Groundwater Elev.: First Encounter Upon Completion After Hrs.	Dryft N/Aft N/Aft		
	opsoil			()	(10.)	(70)		<u> </u>		
Very Dense Light Brown GRAVEL, w		<u>571.93</u> 571.43		50/3"						
Auger refusa	al at 2 feet	/	_							
End of Borin		-								
			20							

SOIL BORING LOG

Page <u>1</u> of <u>1</u>

Date	3/20/25
Duit	0/20/20

ROUTE	I-80	DES	SCR	PTION	I	F	Retaining Wall No. 4 - R	amp C	LOGGED BY	SB
						<u>, SEC.</u>	16, TWP. 35 N, RNG. 1	0 E,		
COUNTY	Will I	DRIL	LIN	G RIG		Latitu Mobi	lde , Longitude le B-57 HSA	HAMMER TYP	E Auto)
			ME	THOD			HSA	_ HAMMER EFF	(%) 89	
	099-W125		D	В	U C	M	Surface Water Elev.	<u>N/A</u> ft		
Station			E P	L O	S	0	Stream Bed Elev.	<u> </u>		
BORING NO.	RWB-53		Т	w		S	Groundwater Elev.:			
Station	9+75.76 39.37ft LT		н	S	Qu	Т	First Encounter	Dry ft		
Offset Ground Surf	<u>39.37ft L1</u> ace Elev. <u>572.7</u>	0 ft	(ft)	(/6'')	(tsf)	(%)	Upon Completion _ After Hrs.	<u> </u>		
	psoil	<u>,572.45</u>		(-)	()	(,,,,		<u> </u>		
Very Dense	p3011									
Light Brown, N	1oist	571.20		50/5"						
GRAVEL, with	sand, trace clay	570.70				7				
	LIMESTONE									
Auger refusal	at 2 feet									
Gray	slightly to									
moderately we	athered,	-								
some vugs	heavily fractured,	-	-5							
Run 1: 2' - 12' Recovery: 100		-								
RQD: 26.3% (
		-								
			-10							
		-								
		-								
		F00 T 0								
End of Boring		560.70								
		-								
			-15							
		-	-15							
		-								
		-								
		-								
		-								
1			20	1	1	1	11			

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

Retaining Wall #4 – Ramp C RWB-53 Will County, IL

Boring No.	Run	Depth (ft)	Recovery (%)	RQD (%)	RQD Classification	Description
RWB-53	1	2' – 12'	100	26.3	Poor	Brown and Gray Limestone Slightly to Moderately Weathered, Moderately to Heavily Fractured, Some Vugs

SOIL BORING LOG

Page $\underline{1}$ of $\underline{1}$

ROUTE	I-80	DE				R	etaining Wall No. 4 - Ra	amp C	LOGGED BY	SB
						<u>, SEC.</u>	16, TWP. 35 N, RNG. 1	0 E,		
COUNTY	Will D		LLIN 3 ME	g rig Thod		Mobi	de , Longitude le B-57 HSA	HAMMER TYP		
STRUCT. NO.	099-W125		D E P	B L O	U C S	M O I	Surface Water Elev Stream Bed Elev	N/A ft	(70) 00	
Offset	RWB-54 9+22.71 25.49ft LT e Elev. 572.26	 ft	T H (ft)	W S (/6")	Qu (tsf)	S T (%)	Groundwater Elev.: First Encounter Upon Completion After Hrs.	ft ft N/Aft		
4 inches of Tops		, <u> </u>		. ,	. ,	. ,		<u> </u>		
Very Dense Brown, Wet GRAVEL, trace (GP) WEATHERED L	clay, trace roots	570.76 570.26		50/3"		22				
WEATHERED L Auger refusal at End of Boring										

SOIL BORING LOG

Page <u>1</u> of <u>1</u>

Date	4/29/25
------	---------

ROUTE	I-80	DI	ESCR	IPTION	۱	F	Retaining Wall No. 4 - R	Ramp C	LOGGED BY	DV
						<u>, SEC.</u>	16, TWP. 35 N, RNG .	10 E,		
COUNTY	Will	DR — DRILLIN		G RIG		Latitu Mobi	ide , Longitude le B-57 /UD ROTARY	HAMMER TYF HAMMER EFF	PE <u>Auto</u> F (%) 89	
	099-W1		D E P	B L O	U C S	M O I	Surface Water Elev. Stream Bed Elev.	N/Aft		
Station Offset	RWB-5 8+70.4 24.30ft I	<u>3</u> LT	T H (ft)	W S (/6")	Qu (tsf)	S T (%)	Groundwater Elev.: First Encounter Upon Completion	ft N/Aft		
12 inches of	face Elev. 5	<u>/1.42</u> ft	(11)	(,0)	(ເວເ)	(/0)	After Hrs.	<u>Ν/Α_</u> π		
12 mones of	ropson	570.42		-						
Very Dense Brown and G GRAVEL, wit Auger refusa	ray, Moist h sand (GP) at 1.5 feet	569.9		6 50/2"						
Brown and G LIMESTONE moderately w fractured, sor	, slightly to eathered, heavi	ily		-						
Run 1: 1.5' - Recovery: 10 RQD: 10.8%	0%		5 	-						
				-						
			 -10	-						
		559.92		-						
End of Boring	J			-						
				-						
				-						
				-						
			20							

Retaining Wall #4 – Ramp C RWB-55 Will County, IL

Depth = 11.5 ft Elev. = 559.92 ft

Bottom

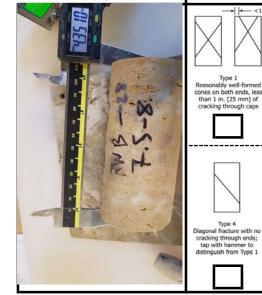
Boring No.	Run	Depth (ft)	Recovery (%)	RQD (%)	RQD Classification	Description
RWB-55	1	1.5' – 11.5'	100	10.8	Very Poor	Brown and Gray Limestone Slightly to Moderately Weathered, Heavily Fractured, Some Vugs

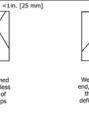
Appendix D Laboratory Test Results

Compressive Strength of Rock by ASTM D7012 - Method C

GSG CONSULTANTS, INC.

735 Remington Road, Schaumburg, IL 60173 Tel: 630.994.2600, www.gsg-consultants.com


Project Name:	W	/SP_198-003 I-80		Project I	No:	21-200	7
Boring ID:		RWB-28		<u>Bull</u>	<u> </u>	MC/CS	
Sample Depth (ft):		7.5-8		Tester:	AJ	Tester:	AJ
Lithological Descrip	tion:	Sandy ston	e	Date:	11/02/22	Date:	11/02/22
Formation Name:			Load Direction:	Vertical	Ang	le Drilled:	Vertical
Appearance (e.g. crac	ks, shearing, spalling):					-	


Bulk Density Determination

	1	2	3	Average		Container ID		22
Height, <i>in</i> .	4.3520	4.3475	4.3425	4.3473		cont	ainer, g	469.2
Diameter, in.	1.9860	1.9885	1.9855	1.9867		container + wet rock, g		1034.8
Specimen Mas	Specimen Mass, g 584.7 Ratio		(2.0-2.5)		container + dry soil, g		1019.2	
Bulk Density, µ	Bulk Density, <i>pcf</i> 165.3 2			19		moi	sture content, <i>w%</i>	2.8
Preparation C	Check			Yes	N	lo	Reason/Readings If No:	
Ends Flat with	in 0.02 mm	prior to capping?	1	Х				
Ends perpendicular to side within 0.25 degrees?				Х				
Ends parallel t	o each oth	er within 0.25 deg	rees?	Х				

Axial Loading Remarks Seating Load (≤1000 psi) 1000 Best efforts have been made for the specimen to meet the required tolerances of D4543. See IH3 Procedure for efforts Rate of Loading (73-145 psi/s) 75 made. Time to Failure (2-15 min) 1 min 24 sec Load @ Failure, lbf 20,200 Uniaxial Compressive Strength, psi 6,516

After Preparation

Type 5 Side fractures at top or bottom (occur commonly with unbonded caps)

Type 3 Columnar vertical cracking through both ends, no well-formed cones Х

Type 6 Similar to Type 5 but end of cylinder is pointed

After Break (check applicable appearance)

Sketch if Other:

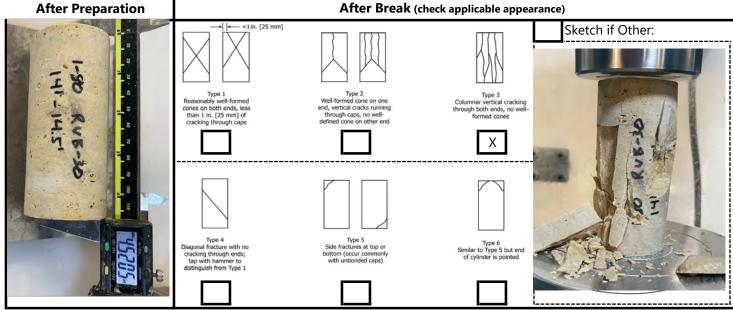
Moisture Condition - D2216

Compressive Strength of Rock by ASTM D7012 - Method C

GSG CONSULTANTS, INC.

735 Remington Road, Schaumburg, IL 60173 Tel: 630.994.2600, www.gsg-consultants.com

Moisture Condition - D2216


Project Name:	WSP_198-003 I-80		Project N	No:	21-200	7
Boring ID:	RWB-30		Bulk	<u>:/Prep</u>	MC/CS	
Sample Depth (ft):	14-14.5		Tester:	SM	Tester:	SM
Lithological Description:	Limestone		Date:	11/02/22	Date:	11/02/22
Formation Name:	Load	d Direction:	Vertical	Angl	e Drilled:	Vertical
Appearance (e.g. cracks, shearing, s	spalling):	-	holes		-	

Bulk Density Determination

	1	2	3	Average		Con	tainer ID	24	
Height, <i>in</i> .	4.5130	4.5105	4.5110	4.5110 4.5115		container, g		471.2	
Diameter, <i>in</i> .	1.9835	1.9825	1.9845	1.9835	container + wet rock, g		tainer + wet rock, g	1071.7	
Specimen Mas	Specimen Mass, g 606.0 Ratio		(2.0-2.5)		container + dry soil, g		1057.1		
Bulk Density, <i>pcf</i> 165.6 2.			27		moi	sture content, <i>w</i> %	2.5		
Preparation C	Check			Yes	Ν	١o	Reason/Readings If No:		
Ends Flat with	in 0.02 mm	prior to capping?	1	Х					
Ends perpend	Ends perpendicular to side within 0.25 degrees?								
Ends parallel t	o each othe	er within 0.25 deg	rees?	Х					

Axial Loading		Remarks	
Seating Load (≤1000 psi)			n made for the specimen to meet the
Rate of Loading (73-145 psi/s)	15	· .	of D4543. See IH3 Procedure for efforts
Time to Failure (2-15 min)	1 min 47 sec	made.	
Load @ Failure, <i>lbf</i>	26,009		
Uniaxial Compressive Strength, psi	8,417		

After Preparation

Compressive Strength of Rock by ASTM D7012 - Method C

GSG CONSULTANTS, INC.

735 Remington Road, Schaumburg, IL 60173 Tel: 630.994.2600, www.gsg-consultants.com

21-2007

Tester:

Angle Drilled:

Date:

MC/CS

SM

10/26/22

Vertical

Project Name:		WSP_198-003 I-80		Project I	No:
Boring ID:		RWB-32		- Bull	
Sample Depth (ft):		12-12.5		- Tester:	SI
Lithological Descrip	otion:	Limestone		Date:	10/2
Formation Name:			Load Direction:	Vertical	
Appearance (e.g. crad	cks, shearing, spalling):	-	cracks and l	noles	

Moisture Condition - D2216

SM

10/26/22

-							
	1	2	3	Average	Co	ontainer ID	OREO
Height, <i>in</i> .	3.3420) 3.3450	3.3455	3.3442	container, g		226.5
Diameter, in.	1.9840) 1.9855	1.9860	1.9852	СС	ontainer + wet rock, g	646.0
Specimen Mas	ss, g	420.0	Rati	O (2.0-2.5)	СС	ontainer + dry soil, g	642.0
Bulk Density, µ	ocf	154.6		1.68	m	oisture content, <i>w</i> %	1.0
Preparation C	Preparation Check			Yes	No	Reason/Readings If No	:
Ends Flat within 0.02 mm prior to capping?			Х				
	Ends perpendicular to side within 0.25 degrees?						
Ends perpend	icular to si	de within 0.25 de	grees?	X			
		de within 0.25 de ner within 0.25 de	5	X X			

Axial Loading		
		Remarks
Seating Load (≤1000 psi)	1000	Test Speciman non-comformancy with standard D7012 for
Rate of Loading (73-145 psi/s)	75	Lengh to diameter ratio requirements due to lack of available
Time to Failure (2-15 min)	1 min 8 sec	specimens , The results may differ from results obtained from a test specimen that meets the requirements Lengh to
Load @ Failure, <i>lbf</i>	16,708	diameter ratio.
Uniaxial Compressive Strength, psi	5,398	

After Preparation

Bulk Density Determination

Compressive Strength of Rock by ASTM D7012 - Method C

GSG CONSULTANTS, INC.

735 Remington Road, Schaumburg, IL 60173 Tel: 630.994.2600, www.gsg-consultants.com

Moisture Condition - D2216

21-2007

Tester:

Date: Drilled:

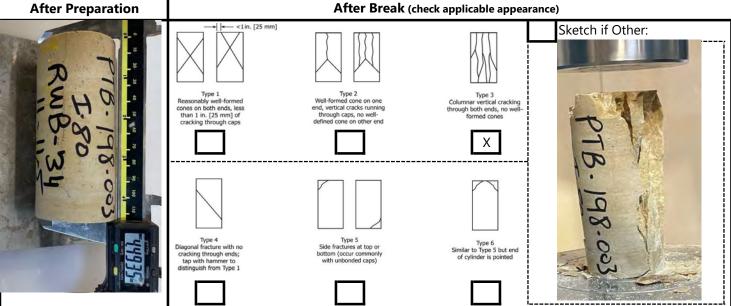
MC/CS

SM

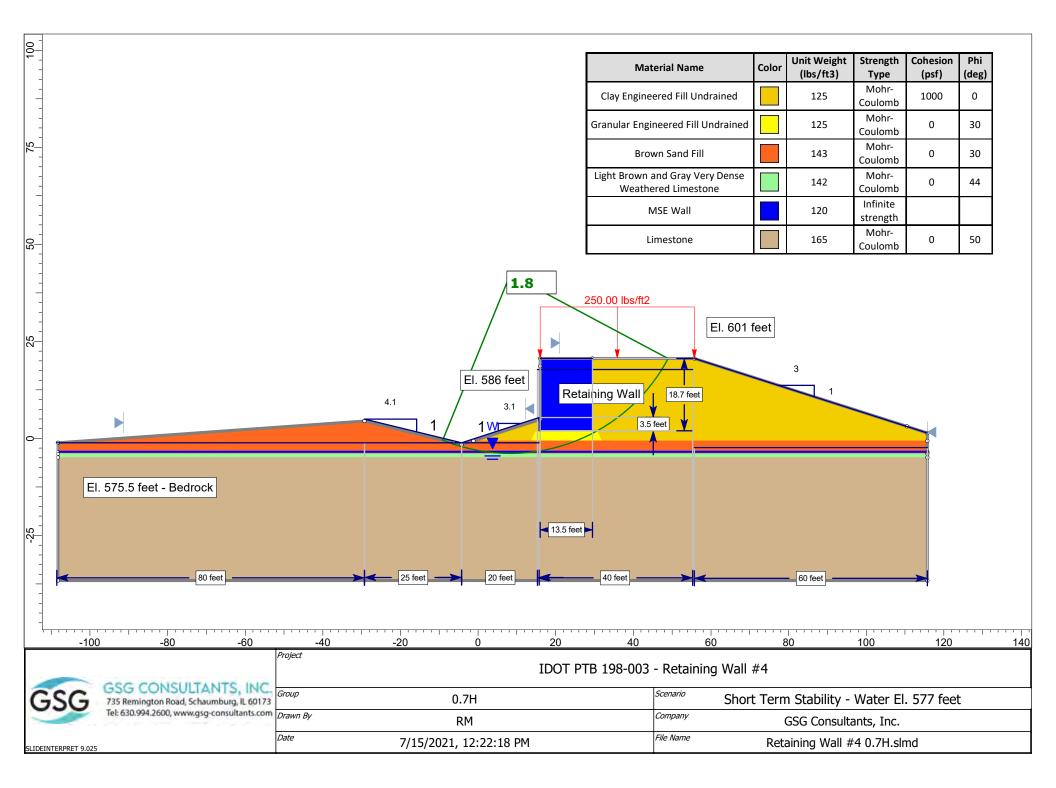
10/26/22

Vertical

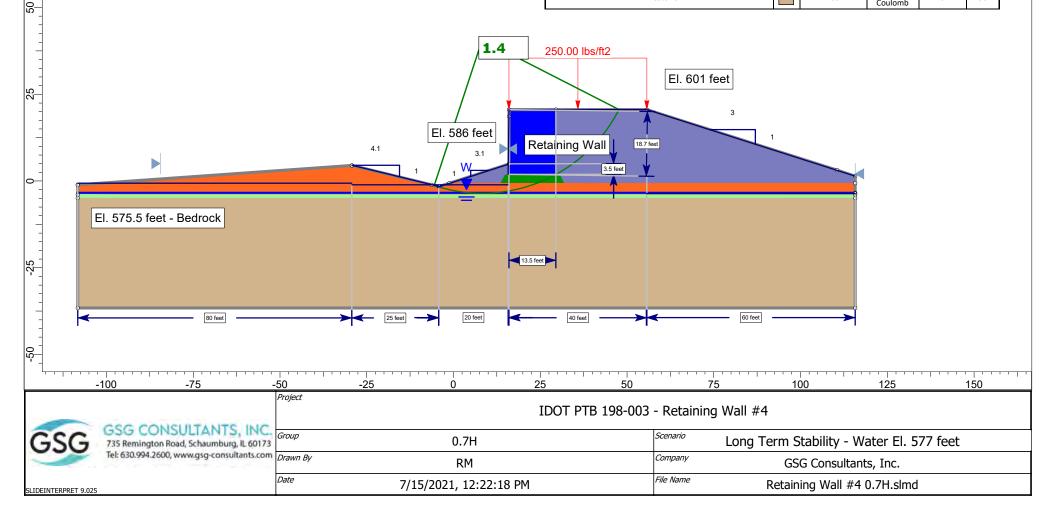
Project Name:	WSP_198-003 I-80		Project I	No:	
Boring ID:	RWB-34		<u>Bull</u>	<td></td>	
Sample Depth (ft):	11-11.5		Tester:	SM	
Lithological Description:	Limestone		Date:	10/26/22	-
– Formation Name:		Load Direction:	Vertical	Ang	_ Jle I
Appearance (e.g. cracks, shearing,	spalling):	-	cracks		


Bulk Density Determination

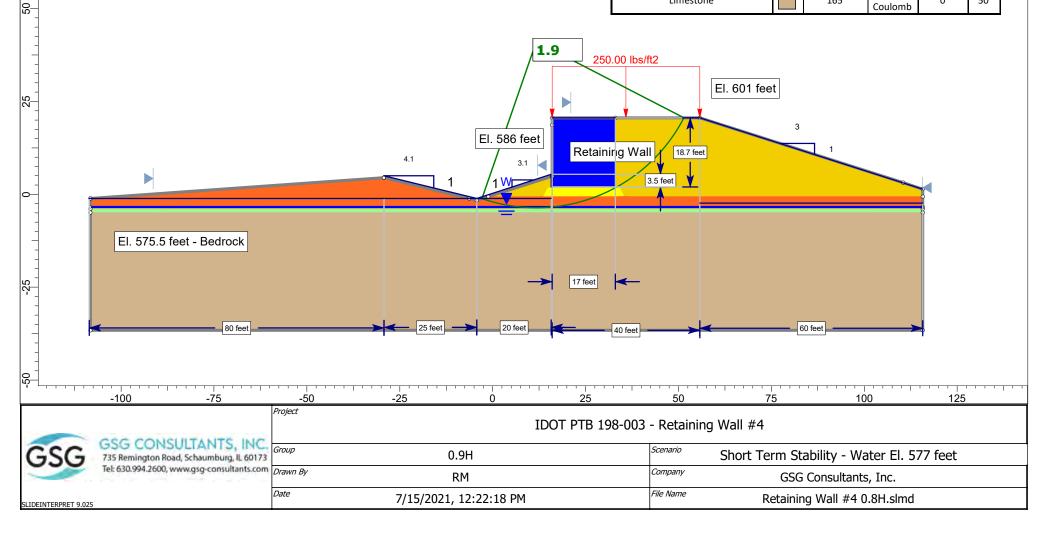
•								
	1	2	3	Average	è	Con	itainer ID	BLOOD
Height, <i>in</i> .	4.4840	4.5025	4.4855	4.4907	4.4907		tainer, g	226.9
Diameter, in.	1.9835	1.9845	1.9855	1.9845	1.9845 cont		tainer + wet rock, g	758.3
Specimen Mas	ss, g	607.9	Ratio) (2.0-2.5)		container + dry soil, g		746.9
Bulk Density, p	ocf	166.8	2	.26	moisture		sture content, w%	2.2
Preparation Check			Yes	N	10	Reason/Readings If No:	:	
Ends Flat within 0.02 mm prior to capping?			Х					
Ends perpendicular to side within 0.25 degrees?			Х					
Ends parallel to each other within 0.25 degrees?			Х					


Axial Loading

		Remarks
Seating Load (≤1000 psi)		Best efforts have been made for the specimen to meet the
Rate of Loading (73-145 psi/s)	15	required tolerances of D4543. See IH3 Procedure for efforts
Time to Failure (2-15 min)	3 min 12 sec	made.
Load @ Failure, <i>lbf</i>	46,995	
Uniaxial Compressive Strength, psi	15,194	

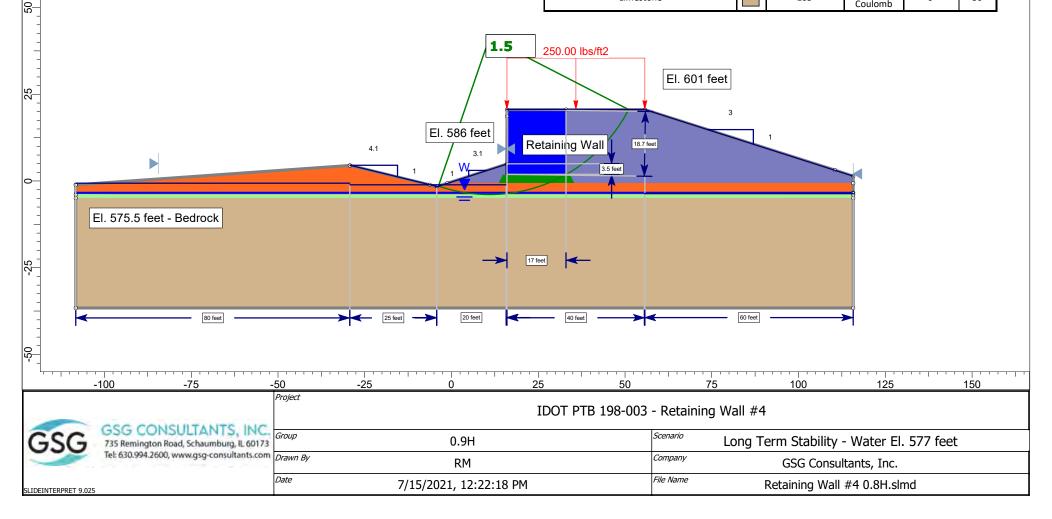

After Preparation

Appendix E Slope Stability Analysis Exhibits


Material Name	Color	Unit Weight (lbs/ft3)	Strength Type	Cohesion (psf)	Phi (deg)
Brown Sand Fill		143	Mohr- Coulomb	0	30
Light Brown and Gray Very Dense Weathered Limestone		142	Mohr- Coulomb	0	44
Clay Engineered Fill Drained		125	Mohr- Coulomb	50	25
Granular Engineered Fill Drained		125	Mohr- Coulomb	0	30
Light Brown and Gray Very Dense Sand with Gravel/Gravel with Sand Drained		146	Mohr- Coulomb	0	45
MSE Wall		120	Infinite strength		
Limestone		165	Mohr- Coulomb	0	50

8

ŝ


Material Name	Color	Unit Weight (Ibs/ft3)	Strength Type	Cohesion (psf)	Phi (deg)
Clay Engineered Fill Undrained		125	Mohr- Coulomb	1000	0
Granular Engineered Fill Undrained		125	Mohr- Coulomb	0	30
Brown Sand Fill		143	Mohr- Coulomb	0	30
Light Brown and Gray Very Dense Weathered Limestone		142	Mohr- Coulomb	0	44
MSE Wall		120	Infinite strength		
Limestone		165	Mohr- Coulomb	0	50

8

ŝ

Material Name	Color	Unit Weight (lbs/ft3)	Strength Type	Cohesion (psf)	Phi (deg)
Brown Sand Fill		143	Mohr- Coulomb	0	30
Light Brown and Gray Very Dense Weathered Limestone		142	Mohr- Coulomb	0	44
Clay Engineered Fill Drained		125	Mohr- Coulomb	50	25
Granular Engineered Fill Drained		125	Mohr- Coulomb	0	30
MSE Wall		120	Infinite strength		
Limestone		165	Mohr- Coulomb	0	50

8

ſΩ_

Appendix F Summary of Soil Parameters

Depth /		In situ	Undra	ined	Draiı	ned
Elevation Range (feet)	Soil Description	Unit Weight γ (pcf)	Cohesion c (psf)	Friction Angle φ (°)	Cohesion c (psf)	Friction Angle φ (°)
	New Engineered Clay Fill	125	1,000	0	50	25
	New Engineered Granular Fill	125	0	30	0	30
0-19.5 (590-570.5)	Light Brown and Gray Very Dense Sand with Gravel / Gravel with Sand	143	0	45	0	45
19.5-20.5 (570.5-569.5)	Light Brown and Gray Very Dense Weathered Limestone	142	0	44	0	44
0-2.5 (590-587.5) RWB-34, RWB-35	Fill Brown and Gray Silty Clay	135	3,100	0	310	25
19.5-22.5 (570.5-567.5) RWB-29 only	Fill Brown and Gray Silty Clay	125	650	0	65	25
14-17 (576-573) RWB-49, RWB-50	Fill Dark Brown Silty Clay	132	2,300	0	230	25
13-18 (577-572) RWB-48, RWB-51	Fill Brown, Gray, and Black Sand / Sandy Loam	143	0	30	0	30

Table F-1 – Summary of Soil Parameters