LOOPS NEXT TO SHOULDERS PROVIDE A PAVEMENT REPLACEMENT NOTE WHICH SHOULD EQUAL 3' (900 mm) X WIDTH OF PAVED SHOULDER. * * UNIT DUCT IS TO BE SHOWN ON PLAN SHEETS BUT SHALL NOT BE INCLUDED IN THE PAY ITEMS. * = (600 mm) # LEFT TURN LANES WITH MEDIANS VOLUME DENSITY ("FAR OUT" DETECTION) ON SAME APPROACH (PROTECTED / PERMITTED LEFT TURN PHASING) HANDHOLE LOCATION MAY VARY DEPENDING ON GEOMETRICS AND DESIGN OF TRAFFIC SIGNALS. HEAVY-DUTY HANDHOLES TO BE USED WHEN THE MEDIAN IS MOUNTABLE. REFER TO STANDARD 814001 TO ENSURE THAT HANDHOLE TITS IN MEDIAN. NOTE: DUAL LEFT TURNS NOT SHOWN REFER TO PLAN SHEET FOR DETECTOR LOOP REPLACEMENT LEFT TURN LANES WITHOUT MEDIANS VOLUME DENSITY ("FAR OUT" DETECTION) ON SAME APPROACH (PROTECTED / PERMITTED LEFT TURN PHASING) SCALE: NONE ARTERIAL-VOLUME DENSITY ("FAR OUT" DETECTION) CROSS STREET-NON VOLUME DENSITY ("UPTIGHT" PRESENCE DETECTION) STATE OF ILLINOIS **DEPARTMENT OF TRANSPORTATION** #### NOTES: #### VEHICLES LOOP DETECTORS - * ALL LEAD IN CABLE SHALL BE TWO CONDUCTOR NO. 14 TWISTED, SHIFLDED. - * EACH DETECTOR LOOP SHALL HAVE ITS OWN SAW CUT FROM THE LOOP TO THE EDGE OF PAVEMENT OR TO A HANDHOLE IN THE PAVEMENT. - * EACH DETECTOR LOOP SHALL HAVE ITS OWN ONE INCH (25 mm) UNIT DUCT BETWEEN THE EDGE OF PAVEMENT AND THE FIRST HANDHOLE OR JUNCTION BOX, EACH UNIT DUCT RUN SHALL BE SHOWN ON THE PLANS BY THE DESIGNER, BUT SHALL NOT BE PAID FOR SEPARATLY. THIS ITEM IS INCIDENTAL TO THE PAY ITEM FOR DETECTOR LOOPS. - * ONE DIMENSION OF <u>ALL</u> DETECTOR LOOPS SHALL BE SIX FEET (1.8 m) - * EACH LANE OF NON-LOCKING, PRESENCE DETECTION AND EACH LANE OF A DOUBLE LEFT TURN LANE REQUIRES A SEPARATE INDUCTIVE LOOP DETECTOR AND LEAD IN CABLE. - * WHEN NON-LOCKING, PRESENCE DETECTION IS USED, MORE THAN ONE LOOP PER LANE IS REQUIRED BEHIND THE STOP BAR (i.e. 1-1/2, 1-3/4, 2). - * WHEN SYSTEM LOOPS ARE REQUIRED ON AN APPROACH OF AN INTERSECTION, THE LOOPS USED FOR VOLUME DENSITY AND INTERSECTION TIMING SHALL ALSO BE USED AS SYSTEM DETECTORS. EACH ONE OF THESE TYPE OF LOOPS REQUIRES A SEPARATE TWO CONDUCTOR NO. 14 TWISTED SHIELDED CABLE AND A SEPARATE INDUCTIVE LOOP DETECTOR WHEN NEW CONTROLLERS ARE UTILIZED. THE DESIGNER SHALL LABEL THESE TYPES OF LOOPS AS "INTERSECTION AND SAMPLING (SYSTEM) DETECTORS" ON THE SIGNAL LAYOUT, THE INTERCONNECT PLAN AND THE SYSTEM CABLE PLAN. WHEN AN EXISTING CONTROLLER IS UTILIZED FOR THIS TYPE OF DETECTION, THE PAY ITEM "INDUCTIVE LOOP DETECTOR WITH SYSTEM OUTPUT" SHOULD BE USED. ### PLACEMENT OF DETECTORS THE FOLLOWING FIGURES REPRESENT THE MOST COMMON DETECTOR LOOP LOCATIONS AND SIZES. ADJUSTMENTS WILL BE NECESSARY FOR SPECIFIC GEOMETRIC CONSIDERATIONS. LOCATIONS AND DEMENSIONS OF DETECTOR LOOPS ARE REQUIRED ON <u>ALL</u> SIGNAL LAYOUT PLAN SHEETS. "FAR OUT" DETECTION REFERS TO LOCKING, PRESENCE TYPE DETECTION LOCATED IN THRU LANES, RIGHT TURN LANES, AND RIGHT TURN LANE TAPER AREAS (IF APPLICABLE), USUALLY 250' (75 m) IN ADVANCE OF STOP BARS. "UPTIGHT" DETECTION REFERS TO NON-LOCKING PRESENCE TYPE DETECTION LOCATED IN ALL LANES AND 10'-15' (3.0 m-4.5 m) BEHIND THE CROSSING STREET'S EDGE OF PAVEMENT EXTENDED. #### NOTE: ALL DETAILS AND NOTES SHOWN ARE FROM THE I.D.O.T. DISTRICT 1 TRAFFIC SIGNAL DESIGN GUIDELINES DATED JANUARY 1995 THIS DRAWING HAS BEEN PREPARED TO ASSIST THE RESIDENT ENGINEER FOR ALL ROADWAY RESURFACING OR S.M.A.R.T. PROJECTS WHERE THE DIMENSIONS ARE NOT SHOWN ON THE PLANS AND THE FINAL LOCATIONS FOR CROSSWALKS OR STOP BARS ARE NOT DETERMINED. | DISTRICT 1 - DETECTOR LOOP INSTALLATION | | | | | | | | | | | | | |---|-----|----|-----|-----|--------|------------|-------|------|--|--|--|--| | | DE | TΑ | ILS | FOF | ROADW | AY RESURFA | ACING | | | | | | |
SHEET | NO. | 1 | OF | 1 | SHEETS | STA. | TO | STA. | | | | | | F.A.U
RTE. | SECTION | COUNTY | TOTAL
SHEETS | SHEE
NO. | |---------------|---------------------------------|------------|-----------------|-------------| | 3775 | 0101 RS-04 | COOK | 17 | 17 | | | TS-07 | CONTRACT | NO. GOAS 1 | | | FED. R | DAD DIST. NO. 1 ILLINOIS FED. A | ID PROJECT | | |