

Illinois Environmental Protection Agency

1021 North Grand Avenue East • P.O. Box 19276 • Springfield • Illinois • 62794-9276 • (217) 782-3397

Uncontaminated Soil Certification by Licensed Professional Engineer or Licensed Professional Geologist for Use of Uncontaminated Soil as Fill in a CCDD or Uncontaminated Soil Fill Operation LPC-663

Revised in accordance with 35 III. Adm. Code 1100, as amended by PCB R2012-009 (eff. Aug. 27, 2012)

This certification form is to be used by professional engineers and professional geologists to certify, pursuant to 35 III. Adm. Code 1100.205(a)(1)(B), that soil (i) is uncontaminated soil and (ii) is within a pH range of 6.26 to 9.0. If you have questions about this form, please telephone the Bureau of Land Permit Section at 217/524-3300.

This form may be completed online, saved locally, printed and signed, and submitted to prospective clean construction or demolition debris (CCDD) fill operations or uncontaminated soil fill operations.

	tion Information on of the source of the ur	acontominated as	oil)		
•	94 - I-94 at US 6 / 159th		•	umber. if available:	
Physical Site Location	on (address, including nu Avenue (ISGS Site No. 3	mber and street			-
City: Dolton		State: IL	Zip Code:		
County: Cook		Township:	_		
Lat/Long of approxi	mate center of site in dec	imal degrees (D	D.ddddd) to five decimal	places (e.g., 40.67890, -90.12345):	
Latitude:	Longitude: -				
(Decimal	Degrees)	-Decimal Degre	es)		
Identify how the lat/l	long data were determine	ed:			
	Interpolation O Photo	Interpolation (Survey Other		
IEPA Site Number(s	s), if assigned: BOL:		BOW:	BOA:	
Approximate Start [Date (mm/dd/yyyy): TBI)	Approximate End Da	ate (mm/dd/yyyy): <u>TBD</u>	
Estimated Volume	of debris (cu. Yd.): 113				
II. Owner/Opera	ator Information for	Source Site	Site Operator		
Name:	Illinois Department of	Transportation	Name:	Illinois Department of Transportation	
Street Address:	·	V. Center Court	Street Address:	201 W. Center Court	
PO Box:			PO Box:		
City:	Schaumburg	State: IL	City:	Schaumburg State: IL	
Zip Code:	60196 Phone:	847-705-4627	Zip Code:	60196 Phone: 847-705-4627	
Contact:		Vanessa Ruiz	Contact:	Vanessa Ruiz	
Email, if available:	Vanessa.R	uiz@illinois.gov	Email, if available:	Vanessa.Ruiz@illinois.gov	

This Agency is authorized to require this information under Section 4 and Title X of the Environmental Protection Act (415 ILCS 5/4, 5/39). Failure to disclose this information may result in: a civil penalty of not to exceed \$50,000 for the violation and an additional civil penalty of not to exceed \$10,000 for each day during which the violation continues (415 ILCS 5/42). This form has been approved by the Forms Management Center.

	I-94 at US 6 / 159th St to				Longitude:
	<u>Uno</u>	contaminated S	Soil (<u>Certification</u>	
III. Basis for Certif	fication and Attachm	nents			
	ow, reference the attachm			•	
III. Adm. Code 1100).610(a)]:	•			number and appropriately located 3
	16-2, R16-3, R16-4, AND F THE PRELIMINARY SI				GS SITE 3227V-16. SEE FIGURE LING DETAILS.
established pursual the documentation the analysis; and ce	nt to 35 III. Adm. Code Par of chain of custody contro ertification by an authorize ules for the accreditation o	rt 1100, Subpart F I, a copy of the la d agent of the lab	F and b and oorato	that the soil pH is wit lysis; the accreditatio ry that the analysis ha	mum allowable concentrations hin the range of 6.25 to 9.0,includin n status of the laboratory performing as been performed in accordance ditation [35 III. Adm. Code 1100.201
TESTAMERICA ANALY INVESTIGATION REPO		IDS: 500-259381	I-1. A	_SO SEE FIGURE 4-	1 OF THE PRELIMINARY SITE
Professional Geol	ogist	and Seal of L			l Engineer or Licensed
Professional Geole I, Michael A. Castillo, certify under penalty of the best of my knowled, ILCS 5/22.51 or 22.51a certify that the soil pH is	P.G. law that the information suge and belief, true, accura and 35 III. Adm. Code 11	ubmitted, includin ite and complete. 100.205(a), I certit to 9.0. In additior	(r ig but In ad fy tha n, I ce	name of licensed profe not limited to, all attac ecordance with the Er t the soil from this site rtify that the soil has r	essional engineer or geologist) chments and other information, is to rivironmental Protection Act [415 e is uncontaminated soil. I also not been removed from the site as
Professional Geole I, Michael A. Castillo, certify under penalty of the best of my knowled, ILCS 5/22.51 or 22.51a certify that the soil pH is part of a cleanup or rem Any person who know	P.G. law that the information suge and belief, true, accura and 35 III. Adm. Code 11 within the range of 6.25 thoval of contaminants. All	ubmitted, including te and complete. 100.205(a), I certifute of 9.0. In addition necessary docur	(r In ac In ac fy tha n, I ce menta	name of licensed profer not limited to, all attacked and all attacked and all attacked and all attacked and all attacked. The soil from this site of the soil has retirn is attacked. The soil from this site of the soil has retirn is attacked.	essional engineer or geologist) chments and other information, is to avironmental Protection Act [415 e is uncontaminated soil. I also
Professional Geole I, Michael A. Castillo, certify under penalty of the best of my knowled, ILCS 5/22.51 or 22.51a certify that the soil pH is part of a cleanup or rem Any person who know	P.G. law that the information suge and belief, true, accura and 35 III. Adm. Code 11 within the range of 6.25 thoval of contaminants. All	ubmitted, including the and complete. 100.205(a), I certifute 9.0. In addition necessary docur	(r In ac In ac fy tha n, I ce menta	name of licensed profer not limited to, all attacked and all attacked and all attacked and all attacked and all attacked. The soil from this site of the soil has retirn is attacked. The soil from this site of the soil has retirn is attacked.	essional engineer or geologist) chments and other information, is to avironmental Protection Act [415 e is uncontaminated soil. I also not been removed from the site as
Professional Geole I, Michael A. Castillo, certify under penalty of the best of my knowled, ILCS 5/22.51 or 22.51a certify that the soil pH is part of a cleanup or remark Any person who know EPA commits a Class	P.G. law that the information so ge and belief, true, accura and 35 III. Adm. Code 11 within the range of 6.25 to accord of contaminants. All wingly makes a false, fict 4 felony. A second or secon	ubmitted, includin ite and complete. 100.205(a), I certif to 9.0. In addition necessary docur titious, or fraudu subsequent offer	(rog but In action in acti	name of licensed profer not limited to, all attacked and all attacked and all attacked and all attacked and all attacked. The soil from this site of the soil has retirn is attacked. The soil from this site of the soil has retirn is attacked.	essional engineer or geologist) chments and other information, is to avironmental Protection Act [415 e is uncontaminated soil. I also not been removed from the site as
Professional Geole I, Michael A. Castillo, certify under penalty of the best of my knowled, ILCS 5/22.51 or 22.51a certify that the soil pH is part of a cleanup or remark of a cleanup	P.G. law that the information suge and belief, true, accura and 35 III. Adm. Code 11 within the range of 6.25 thoval of contaminants. All wingly makes a false, fict 4 felony. A second or service we will be a second or service within the range of 6.25 through the second of service within the range of 6.25 through the second of service within the range of 6.25 through the second of second or service within the range of 6.25 through the second of second or service within the second of second or second or service within the second or	ubmitted, includin ite and complete. 100.205(a), I certif to 9.0. In addition necessary docur titious, or fraudu subsequent offer	(rig but In action for the mental in action fo	name of licensed profer not limited to, all attacked and all attacked and all attacked and all attacked and all attacked. The soil from this site of the soil has retirn is attacked. The soil from this site of the soil has retirn is attacked.	essional engineer or geologist) chments and other information, is to avironmental Protection Act [415 e is uncontaminated soil. I also not been removed from the site as
Professional Geole I, Michael A. Castillo, certify under penalty of the best of my knowled, ILCS 5/22.51 or 22.51a certify that the soil pH is part of a cleanup or remark of a cleanup	P.G. law that the information suge and belief, true, accura] and 35 III. Adm. Code 11 swithin the range of 6.25 to a contaminants. All wingly makes a false, fict of the following of the follow	ubmitted, including the and complete. 100.205(a), I certifold to 9.0. In addition necessary docur stitious, or fraudur subsequent offered c.	(rig but In action for the mental in action fo	name of licensed profernot limited to, all attacted to the soil from this site of the soil from this site of the soil from this site of the soil has not the soil sattached. In the soil from this site of the soil has not sattached. In the soil from the soil has not sattached. In the soil from the soil has not sattached.	essional engineer or geologist) chments and other information, is to avironmental Protection Act [415 e is uncontaminated soil. I also not been removed from the site as

Licensed Professional Engineer or Licensed Professional Geologist Signature:

WICHAEI MICHAEI 24 February 2025 Date: OLOGIST MICHAEL A. CASTILLO P.E or P.M. pario15

Summary Table - Residences (ISGS Site No. 3727V-16) Comparison of Detected Constituents to Applicable Reference Concentrations

Soil Analytical Results

FAI 94 - I-94 at US 6 / 159th Street to Michigan City Road Dolton, Cook County, Illinois

Location	Reference	R16-1	R16-1	R16-2	R16-3	R16-3	R16-4	R16-4	R16-5	R16-5
Field Sample ID	Concentrations (MAC Table)	R16-1(0-4)- 103124	R16-1(4-9)- 103124	R16-2(0-2)- 103124	R16-3(0-2)- 103124	R16-3(0-2)- 103124D	R16-4(0-3)- 103124	R16-4(3-6)- 103124	R16-5(0-4)- 103124	R16-5(4-9)- 103124
Sample Date	(MAC Table)	10/31/2024	10/31/2024	10/31/2024	10/31/2024	10/31/2024	10/31/2024	10/31/2024	10/31/2024	10/31/2024
ISGS Site No.		3727V-16	3727V-16	3727V-16	3727V-16	3727V-16	3727V-16	3727V-16	3727V-16	3727V-16
Laboratory pH	<6.25,>9.0	6.9	6.7	7.6	8.5	7.9	8.4	8.3	7.8	7.3
VOCs						No Detections	i			
SVOCs (mg/kg)										
2-Methylnaphthalene		ND	ND	ND	0.019 J	ND	ND	ND	ND	ND
Acenaphthene	570	ND	ND	ND	0.11	ND	ND	ND	ND	ND
Acenaphthylene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Anthracene	12000	ND	ND	ND	0.46 J	0.025 J	ND	ND	ND	ND
Benzo(a)anthracene	0.9 / 11 / 1.8	ND	ND	ND	1.1 J	0.072 J	0.029 J	0.029 J	ND	ND
Benzo(a)pyrene	0.09 / 11 / 2.1	ND	ND	ND	1 J	0.084 J	ND	ND	ND	ND
Benzo(b)fluoranthene	0.9 / 13 / 2.1	ND	ND	ND	1.1 J	0.095 J	ND	ND	ND	ND
Benzo(g,h,i)perylene		ND	ND	ND	0.5 J	0.038 J	ND	ND	ND	ND
Benzo(k)fluoranthene	9	ND	ND	ND	0.56 J	0.042 J	ND	ND	ND	ND
Carbazole	0.6	ND	ND	ND	0.064 J	ND	ND	ND	ND	ND
Chrysene	88	ND	ND	ND	0.91 J	0.058 J	0.018 J	0.017 J	ND	ND
Dibenzo(a,h)anthracene	0.09 / 1.0 / 0.42	ND	ND	ND	0.2	ND	ND	ND	ND	ND
Dibenzofuran		ND	ND	ND	0.064 J	ND	ND	ND	ND	ND
Di-N-Butyl phthalate	2300	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluoranthene	3100	ND	0.02 J	ND	2.2 J	0.13	0.042 J	0.035 J	ND	ND
Fluorene	560	ND	ND	ND	0.15	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	0.9 / 5.8 / 1.6	ND	ND	ND	0.67 J	0.054 J	ND	ND	ND	ND
Naphthalene	1.8	ND	ND	ND	0.015 J	ND	ND	ND	ND	ND
Phenanthrene		ND	ND	ND	1.6 J	0.082 J	0.02 J	0.02 J	ND	ND
Pyrene	2300	ND	ND	ND	2.1 J	0.11 J	0.031 J	0.03 J	ND	ND

Summary Table - Residences (ISGS Site No. 3727V-16) Comparison of Detected Constituents to Applicable Reference Concentrations

Soil Analytical Results

FAI 94 - I-94 at US 6 / 159th Street to Michigan City Road Dolton, Cook County, Illinois

Location	- ·	R16-1	R16-1	R16-2	R16-3	R16-3	R16-4	R16-4	R16-5	R16-5
Field Commission	Reference	R16-1(0-4)-	R16-1(4-9)-	R16-2(0-2)-	R16-3(0-2)-	R16-3(0-2)-	R16-4(0-3)-	R16-4(3-6)-	R16-5(0-4)-	R16-5(4-9)-
Field Sample ID	Concentrations (MAC Table)	103124	103124	103124	103124	103124D	103124	103124	103124	103124
Sample Date	(MAC Table)	10/31/2024	10/31/2024	10/31/2024	10/31/2024	10/31/2024	10/31/2024	10/31/2024	10/31/2024	10/31/2024
ISGS Site No.		3727V-16								
Total Metals (mg/kg)										
Aluminum, Total		1900	2200	2800	3100	2800	2500	2400	2500	1800
Antimony, Total	5	ND								
Arsenic, Total	11.3 / 13,0	1.6	3.1	1.6	2.7	2	2.5	2.3	1.9	3.4
Barium, Total	1500	7.4	8	12	17	14	14	13	9	7.6
Beryllium, Total	22	0.074 J	0.12 J	0.089 J	0.15 J	0.13 J	0.17 J	0.17 J	0.095 J	0.13 J
Cadmium, Total	5.2	ND	ND	ND	0.079 J	0.026 J	0.066 J	0.076 J	ND	ND
Calcium, Total		390 B	580 B^2	530 B^2	4300 J	1400 J	11000 B^2	5000 B^2	440 B	410 B
Chromium, Total	21	3	4.8	2.9	4.7	3.3	3.9	3.3	2.8	12
Cobalt, Total	20	1.2	2	1.3	1.8	1.4	2.8	2	1.5	4
Copper, Total	2900	1.4	3.1	1.9	4.4 J	2.5 J	3.6	3.4	1.6	2.6
Iron, Total	15000 / 15900	2600	3300	3000	5700	3600	4200	3400	3100	4900
Lead, Total	107	2	4	3.3	32 J	9.8 J	8.8	8.9	8.1	3.1
Magnesium, Total	325000	440	790	460	2000 J	730 J	4000	1000	450	500
Manganese, Total	630 / 636	14	26	15	69	46	100	61	29	54
Mercury, Total	0.89	0.029	0.036	0.022	0.023	0.019 J	0.046	0.054	0.011 J	0.032
Nickel, Total	100	2.3	4.6	2.2	3.7	2.6	4.8	3.4	2.4	4.7
Potassium, Total		180	500	200	270	210	400	270	190	260
Selenium, Total	1.3	ND								
Silver, Total	4.4	ND								
Sodium, Total		26 J	56	76	170	140	110	96	130	130
Thallium, Total	2.6	ND	ND	ND	0.3 J	ND	0.52	0.31 J	ND	0.26 J
Vanadium, Total	550	3.8	8	4.3	6	4.9	5.6	4.6	4.4	5
Zinc, Total	5100	8.9	10	14	32 J	18 J	20	26	13	12

Summary Table - Residences (ISGS Site No. 3727V-16) Comparison of Detected Constituents to Applicable Reference Concentrations

Soil Analytical Results

FAI 94 - I-94 at US 6 / 159th Street to Michigan City Road Dolton, Cook County, Illinois

Location	Reference	R16-1	R16-1	R16-2	R16-3	R16-3	R16-4	R16-4	R16-5	R16-5
Field Sample ID	Concentrations	R16-1(0-4)-	R16-1(4-9)-	R16-2(0-2)-	R16-3(0-2)-	R16-3(0-2)-	R16-4(0-3)-	R16-4(3-6)-	R16-5(0-4)-	R16-5(4-9)-
•	(MAC Table)	103124	103124	103124	103124	103124D	103124	103124	103124	103124
Sample Date	` ,	10/31/2024	10/31/2024	10/31/2024	10/31/2024	10/31/2024	10/31/2024	10/31/2024	10/31/2024	10/31/2024
ISGS Site No.		3727V-16								
TCLP Metals (mg/l)										
Arsenic, TCLP	0.05	ND	0.022 J	ND	ND	0.013 J	ND	ND	ND	ND
Barium, TCLP	2	0.1 J	0.12 J	0.22 J	0.44 J	0.26 J	0.25 J	0.17 J	0.19 J	0.074 J
Beryllium, TCLP	0.004	ND								
Cadmium, TCLP	0.005	ND	ND	ND	0.0033 J	ND	0.0022 J	ND	ND	ND
Chromium, TCLP	0.1	0.015 J	0.041	0.034	0.03	0.033	0.015 J	0.012 J	0.027	ND
Cobalt, TCLP	1	ND								
Copper, TCLP	0.65	0.011 J	0.025	0.028	0.037	0.031	0.018 J	0.013 J	0.031	ND
Iron, TCLP	5	5.5	22	23	19	28	9.7	6	23	4.3
Lead, TCLP	0.0075	ND	0.039	0.034	0.28 J	0.08 J	0.03	0.12	0.069	ND
Manganese, TCLP	0.15	0.037	0.17	0.18	3.2 J	0.61 J	1.5	0.68	0.49	0.17
Mercury, TCLP	0.002	ND								
Nickel, TCLP	0.1	0.01 J	0.027	0.026	0.031	0.027	0.022 J	0.014 J	0.025	ND
Selenium, TCLP	0.05	ND								
Silver, TCLP	0.05	ND								
Zinc, TCLP	5	0.039 J	0.064 J	0.2 J	0.39 J	0.23 J	0.11 J	0.2 J	0.19 J	ND
SPLP Metals (mg/l)										
Arsenic, SPLP	0.05	ND	ND	ND	0.014 J	0.017 J	0.023 J	0.01 J	ND	0.018 J
Barium, SPLP	2	0.061 J	ND	0.14 J	0.24 J	0.21 J	0.23 J	0.11 J	0.062 J	0.069 J
Beryllium, SPLP	0.004	ND								
Cadmium, SPLP	0.005	ND								
Chromium, SPLP	0.1	0.025	0.018 J	0.034	0.048	0.041	0.055	0.027	0.012 J	0.019 J
Cobalt, SPLP	1	ND	ND	0.013 J	0.015 J	0.015 J	0.032	0.014 J	ND	0.039
Copper, SPLP	0.65	0.01 J	ND	0.022 J	0.044	0.038	0.061	0.035	0.011 J	0.02 J
Iron, SPLP	5	9.6	10	20	38	34	45	19	9.1	25
Lead, SPLP	0.0075	ND	0.016	0.028	0.31 J	0.16 J	0.16	0.12	0.03	0.021
Manganese, SPLP	0.15	0.055	0.066	0.1	0.47	0.41	0.92	0.37	0.17	0.66
Mercury, SPLP	0.002	ND								
Nickel, SPLP	0.1	0.014 J	0.011 J	0.024 J	0.035	0.029	0.058	0.023 J	ND	0.014 J
Selenium, SPLP	0.05	ND								
Silver, SPLP	0.05	ND								
Zinc, SPLP	5	0.054 J	0.028 J	0.14 J	0.34 J	0.26 J	0.29 J	0.25 J	0.064 J	0.045 J

Notes:

--- - not applicable, value not available, or not analyzed.

Reference concentrations from MAC Table include background values for Chicago corporate limits and MSA counties, as applicable.

ND - Constituent not detected above the reporting limit.

- J Estimated concentration.
- B Compound was found in the blank and the investigative sample.

Shaded values indicate concentration exceeds MAC Table Reference Concentration.

12

14

15

ANALYTICAL REPORT

PREPARED FOR

Attn: Mr. Andris Slesers Weston Solutions Inc 300 Knightsbridge Parkway Suite 360 Lincolnshire, Illinois 60069 Generated 11/14/2024 5:41:36 PM

JOB DESCRIPTION

IDOT- WO 007 FAI 94 Dolton

JOB NUMBER

500-259381-1

Eurofins Chicago 2417 Bond Street University Park IL 60484

Eurofins Chicago

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Chicago Project Manager.

Authorization

Authorized for release by

Authorized for release by Jim Knapp, Senior Project Manager Jim.Knapp@et.eurofinsus.com (630)758-0262 Generated 11/14/2024 5:41:36 PM

13

10

Client: Weston Solutions Inc

Project/Site: IDOT- WO 007 FAI 94 Dolton

Client Sample ID: R16-5(0-4)-103124 Lab Sample ID: 500-259381-4

Date Collected: 10/31/24 09:25 **Matrix: Solid** Date Received: 10/31/24 12:12 Percent Solids: 98.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Acetone	<0.017		0.017	0.0073	mg/Kg	<u></u>	11/01/24 09:18	11/04/24 15:30	
Benzene	<0.0017		0.0017	0.00055	mg/Kg	☆	11/01/24 09:18	11/04/24 15:30	
Bromodichloromethane	<0.0017		0.0017	0.00056	mg/Kg	☆	11/01/24 09:18	11/04/24 15:30	
Bromoform	<0.0017		0.0017	0.0010	mg/Kg	₩	11/01/24 09:18	11/04/24 15:30	
Bromomethane	< 0.0043		0.0043	0.0021	mg/Kg	☆	11/01/24 09:18	11/04/24 15:30	
Carbon disulfide	< 0.0043		0.0043	0.00080	mg/Kg	☆	11/01/24 09:18	11/04/24 15:30	
Carbon tetrachloride	<0.0017		0.0017	0.00059	mg/Kg	☆	11/01/24 09:18	11/04/24 15:30	
Chlorobenzene	< 0.0017		0.0017	0.00073	mg/Kg	☆	11/01/24 09:18	11/04/24 15:30	
Chloroethane	< 0.0043		0.0043	0.0014	mg/Kg	≎	11/01/24 09:18	11/04/24 15:30	
Chloroform	<0.0017		0.0017	0.0012	mg/Kg	₽	11/01/24 09:18	11/04/24 15:30	
Chloromethane	< 0.0043		0.0043	0.00084	mg/Kg	≎	11/01/24 09:18	11/04/24 15:30	
cis-1,2-Dichloroethene	< 0.0017		0.0017	0.00070	mg/Kg	₩	11/01/24 09:18	11/04/24 15:30	
cis-1,3-Dichloropropene	<0.0017		0.0017	0.00070	mg/Kg	₩	11/01/24 09:18	11/04/24 15:30	
Dibromochloromethane	< 0.0017		0.0017	0.00081	mg/Kg	₩	11/01/24 09:18	11/04/24 15:30	
1,1-Dichloroethane	< 0.0017		0.0017	0.00065	mg/Kg	₩	11/01/24 09:18	11/04/24 15:30	
1,2-Dichloroethane	<0.0043		0.0043	0.0011	mg/Kg	₩	11/01/24 09:18	11/04/24 15:30	
1,1-Dichloroethene	< 0.0017		0.0017	0.00071	mg/Kg	≎	11/01/24 09:18	11/04/24 15:30	
1,2-Dichloropropane	< 0.0017		0.0017	0.00045	mg/Kg	≎	11/01/24 09:18	11/04/24 15:30	
1,3-Dichloropropene, Total	<0.0017		0.0017	0.00083	mg/Kg	≎	11/01/24 09:18	11/04/24 15:30	
Ethylbenzene	< 0.0017		0.0017	0.00091	mg/Kg	₩	11/01/24 09:18	11/04/24 15:30	
2-Hexanone	< 0.0043		0.0043	0.0026	mg/Kg	☆	11/01/24 09:18	11/04/24 15:30	
Methylene Chloride	<0.0043		0.0043	0.0019	mg/Kg	₩	11/01/24 09:18	11/04/24 15:30	
Methyl Ethyl Ketone	< 0.0043		0.0043	0.0019	mg/Kg	₩	11/01/24 09:18	11/04/24 15:30	
methyl isobutyl ketone	< 0.0043		0.0043	0.0031	mg/Kg	≎	11/01/24 09:18	11/04/24 15:30	
Methyl tert-butyl ether	<0.0017		0.0017	0.00056	mg/Kg	₩	11/01/24 09:18	11/04/24 15:30	
Styrene	< 0.0017		0.0017	0.00078	mg/Kg	₩	11/01/24 09:18	11/04/24 15:30	
1,1,2,2-Tetrachloroethane	< 0.0017		0.0017	0.00086	mg/Kg	₩	11/01/24 09:18	11/04/24 15:30	
Tetrachloroethene	<0.0017		0.0017	0.00097	mg/Kg	₩	11/01/24 09:18	11/04/24 15:30	
Toluene	< 0.0017		0.0017	0.00035	mg/Kg	₩	11/01/24 09:18	11/04/24 15:30	
trans-1,2-Dichloroethene	< 0.0017		0.0017	0.00066	mg/Kg	≎	11/01/24 09:18	11/04/24 15:30	
trans-1,3-Dichloropropene	<0.0017		0.0017	0.00083	mg/Kg	₩	11/01/24 09:18	11/04/24 15:30	
1,1,1-Trichloroethane	< 0.0017		0.0017	0.00070	mg/Kg	≎	11/01/24 09:18	11/04/24 15:30	
1,1,2-Trichloroethane	< 0.0017		0.0017	0.00065	mg/Kg	₩	11/01/24 09:18	11/04/24 15:30	
Trichloroethene	<0.0017		0.0017	0.00047	mg/Kg	≎	11/01/24 09:18	11/04/24 15:30	
Vinyl chloride	< 0.0017		0.0017	0.00071	mg/Kg	≎	11/01/24 09:18	11/04/24 15:30	
Xylenes, Total	<0.0035		0.0035	0.00060	mg/Kg	₽	11/01/24 09:18	11/04/24 15:30	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	106		75 - 131				11/01/24 09:18	11/04/24 15:30	
Dibromofluoromethane (Surr)	105		75 - 126				11/01/24 09:18	11/04/24 15:30	
1,2-Dichloroethane-d4 (Surr)	97		70 - 134				11/01/24 09:18	11/04/24 15:30	
Toluene-d8 (Surr)	103		75 - 124				11/01/24 09:18	11/04/24 15:30	

Michiga. Offoro 027 0L - Ocili	ivolatile Org		unus (COm	110)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	<0.23		0.23	0.033	mg/Kg	<u></u>	11/04/24 15:03	11/05/24 13:13	1
1,2-Dichlorobenzene	<0.23		0.23	0.019	mg/Kg	₩	11/04/24 15:03	11/05/24 13:13	1
1,3-Dichlorobenzene	<0.23		0.23	0.021	mg/Kg	☆	11/04/24 15:03	11/05/24 13:13	1
1,4-Dichlorobenzene	<0.23		0.23	0.022	mg/Kg	☆	11/04/24 15:03	11/05/24 13:13	1
2,2'-oxybis[1-chloropropane]	< 0.23		0.23	0.033	mg/Kg	☼	11/04/24 15:03	11/05/24 13:13	1

Eurofins Chicago

Page 30 of 102

Client: Weston Solutions Inc

Project/Site: IDOT- WO 007 FAI 94 Dolton

Client Sample ID: R16-5(0-4)-103124 Lab Sample ID: 500-259381-4

Date Collected: 10/31/24 09:25

Date Received: 10/31/24 12:12

Matrix: Solid
Percent Solids: 98.2

Method: SW846 8270E - Sem Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	<0.46	0.46	0.017	mg/Kg	— <u></u>	11/04/24 15:03	11/05/24 13:13	1
2,4,6-Trichlorophenol	<0.46	0.46		mg/Kg		11/04/24 15:03	11/05/24 13:13	1
2,4-Dichlorophenol	<0.46	0.46		mg/Kg	☆	11/04/24 15:03	11/05/24 13:13	1
2,4-Dimethylphenol	<0.46	0.46		mg/Kg	₩	11/04/24 15:03	11/05/24 13:13	1
2,4-Dinitrophenol	<0.94	0.94		mg/Kg		11/04/24 15:03	11/05/24 13:13	1
2,4-Dinitrotoluene	<0.23	0.23		mg/Kg	₩	11/04/24 15:03	11/05/24 13:13	1
2.6-Dinitrotoluene	<0.23	0.23		mg/Kg	₩	11/04/24 15:03	11/05/24 13:13	1
2-Chloronaphthalene	<0.23	0.23		mg/Kg		11/04/24 15:03	11/05/24 13:13	1
2-Chlorophenol	<0.23	0.23		mg/Kg	₩	11/04/24 15:03	11/05/24 13:13	1
2-Methylnaphthalene	<0.094	0.094	0.0093		₩	11/04/24 15:03	11/05/24 13:13	. 1
2-Methylphenol	<0.23	0.23		mg/Kg		11/04/24 15:03	11/05/24 13:13	
2-Nitroaniline	<0.23	0.23		mg/Kg	₩	11/04/24 15:03	11/05/24 13:13	1
2-Nitrophenol	<0.46	0.23	0.023	mg/Kg	¥ Ø	11/04/24 15:03	11/05/24 13:13	1
	<0.23	0.40		mg/Kg	¥	11/04/24 15:03	11/05/24 13:13	
3 & 4 Methylphenol 3,3'-Dichlorobenzidine	<0.23	0.23		mg/Kg		11/04/24 15:03	11/05/24 13:13	1
3-Nitroaniline		0.23						-
	<0.46	0.46	0.021	mg/Kg	· · · · ÷	11/04/24 15:03	11/05/24 13:13	
4,6-Dinitro-2-methylphenol	<0.94			mg/Kg		11/04/24 15:03	11/05/24 13:13	1
4-Bromophenyl phenyl ether	<0.23	0.23		mg/Kg	*	11/04/24 15:03	11/05/24 13:13	1
4-Chloro-3-methylphenol	<0.46	0.46		mg/Kg	.	11/04/24 15:03	11/05/24 13:13	
4-Chloroaniline	<0.94	0.94		mg/Kg	*	11/04/24 15:03	11/05/24 13:13	1
4-Chlorophenyl phenyl ether	<0.23	0.23	0.061	mg/Kg	‡	11/04/24 15:03	11/05/24 13:13	1
4-Nitroaniline	<0.46	0.46		mg/Kg	. .	11/04/24 15:03	11/05/24 13:13	1
4-Nitrophenol	<0.94	0.94		mg/Kg	₩	11/04/24 15:03	11/05/24 13:13	1
Acenaphthene	<0.046	0.046	0.0094	0 0	₩	11/04/24 15:03	11/05/24 13:13	1
Acenaphthylene	<0.046	0.046	0.0079		.	11/04/24 15:03	11/05/24 13:13	
Anthracene	<0.046	0.046	0.0095	0 0	₩	11/04/24 15:03	11/05/24 13:13	1
Benzo[a]anthracene	<0.046	0.046	0.0098		₩	11/04/24 15:03	11/05/24 13:13	1
Benzo[a]pyrene	<0.046	0.046		mg/Kg	.	11/04/24 15:03	11/05/24 13:13	1
Benzo[b]fluoranthene	<0.046	0.046		mg/Kg	₩	11/04/24 15:03	11/05/24 13:13	1
Benzo[g,h,i]perylene	<0.046	0.046		mg/Kg	₩	11/04/24 15:03	11/05/24 13:13	1
Benzo[k]fluoranthene	<0.046	0.046		mg/Kg	.	11/04/24 15:03	11/05/24 13:13	1
Bis(2-chloroethoxy)methane	<0.23	0.23		mg/Kg	₩	11/04/24 15:03	11/05/24 13:13	1
Bis(2-chloroethyl)ether	<0.23	0.23	0.021	mg/Kg	₩	11/04/24 15:03	11/05/24 13:13	1
Bis(2-ethylhexyl) phthalate	<0.23 *-	0.23		mg/Kg	₩	11/04/24 15:03	11/05/24 13:13	1
Butyl benzyl phthalate	<0.23	0.23	0.023	mg/Kg	₩	11/04/24 15:03	11/05/24 13:13	1
Carbazole	<0.23	0.23	0.018	mg/Kg	₩	11/04/24 15:03	11/05/24 13:13	1
Chrysene	<0.046	0.046	0.012	mg/Kg	₩	11/04/24 15:03	11/05/24 13:13	1
Dibenz(a,h)anthracene	<0.046	0.046	0.046	mg/Kg	₽	11/04/24 15:03	11/05/24 13:13	1
Dibenzofuran	<0.23	0.23	0.016	mg/Kg	☼	11/04/24 15:03	11/05/24 13:13	1
Diethyl phthalate	<0.23	0.23	0.021	mg/Kg	₩	11/04/24 15:03	11/05/24 13:13	1
Dimethyl phthalate	<0.23	0.23	0.010	mg/Kg	₩	11/04/24 15:03	11/05/24 13:13	1
Di-n-butyl phthalate	<0.23 *-	0.23	0.015	mg/Kg	₽	11/04/24 15:03	11/05/24 13:13	1
Di-n-octyl phthalate	<0.46	0.46	0.32	mg/Kg	₽	11/04/24 15:03	11/05/24 13:13	1
Fluoranthene	<0.046	0.046	0.011	mg/Kg	₩	11/04/24 15:03	11/05/24 13:13	1
Fluorene	<0.046	0.046		mg/Kg	₽	11/04/24 15:03	11/05/24 13:13	1
Hexachlorobenzene	<0.094	0.094	0.0089		☼	11/04/24 15:03	11/05/24 13:13	1
Hexachlorobutadiene	<0.23	0.23		mg/Kg		11/04/24 15:03	11/05/24 13:13	1
Hexachlorocyclopentadiene	<0.94	0.94		mg/Kg	₩	11/04/24 15:03	11/05/24 13:13	1
Hexachloroethane	<0.23	0.23		mg/Kg	₩	11/04/24 15:03	11/05/24 13:13	1

Eurofins Chicago

Job ID: 500-259381-1

3

4

6

8

10

16

14

<u>u</u>

Client: Weston Solutions Inc

Project/Site: IDOT- WO 007 FAI 94 Dolton

Client Sample ID: R16-5(0-4)-103124 Lab Sample ID: 500-259381-4

Date Collected: 10/31/24 09:25 **Matrix: Solid** Date Received: 10/31/24 12:12 Percent Solids: 98.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Indeno[1,2,3-cd]pyrene	<0.046		0.046	0.045	mg/Kg	<u></u>	11/04/24 15:03	11/05/24 13:13	1
Isophorone	<0.23		0.23	0.024	mg/Kg	₩	11/04/24 15:03	11/05/24 13:13	1
Naphthalene	<0.046		0.046	0.0084	mg/Kg	₩	11/04/24 15:03	11/05/24 13:13	1
Nitrobenzene	<0.046		0.046	0.015	mg/Kg	₩	11/04/24 15:03	11/05/24 13:13	1
N-Nitrosodi-n-propylamine	< 0.094		0.094	0.0092	mg/Kg	₽	11/04/24 15:03	11/05/24 13:13	1
N-Nitrosodiphenylamine	<0.23		0.23	0.028	mg/Kg	₩	11/04/24 15:03	11/05/24 13:13	1
Pentachlorophenol	<0.94		0.94	0.12	mg/Kg	₩	11/04/24 15:03	11/05/24 13:13	1
Phenanthrene	< 0.046		0.046	0.010	mg/Kg	₽	11/04/24 15:03	11/05/24 13:13	1
Phenol	<0.23		0.23	0.020	mg/Kg	₩	11/04/24 15:03	11/05/24 13:13	1
Pyrene	<0.046		0.046	0.013	mg/Kg	≎	11/04/24 15:03	11/05/24 13:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	56		31 - 143				11/04/24 15:03	11/05/24 13:13	1
2-Fluorobiphenyl (Surr)	63		43 - 145				11/04/24 15:03	11/05/24 13:13	1
2-Fluorophenol (Surr)	79		31 - 166				11/04/24 15:03	11/05/24 13:13	1
Nitrobenzene-d5 (Surr)	63		37 - 147				11/04/24 15:03	11/05/24 13:13	1
Phenol-d5 (Surr)	69		30 - 153				11/04/24 15:03	11/05/24 13:13	1
Terphenyl-d14 (Surr)	82		42 - 157				11/04/24 15:03	11/05/24 13:13	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	2500		9.7	3.9	mg/Kg	☆	11/07/24 09:57	11/08/24 13:05	1
Antimony	<0.97		0.97	0.19	mg/Kg	☼	11/07/24 09:57	11/08/24 13:05	1
Arsenic	1.9		0.48	0.17	mg/Kg	₩	11/07/24 09:57	11/08/24 13:05	1
Barium	9.0		0.48	0.055	mg/Kg	₩	11/07/24 09:57	11/08/24 13:05	1
Beryllium	0.095	J	0.19	0.045	mg/Kg	₩	11/07/24 09:57	11/08/24 13:05	1
Cadmium	<0.097		0.097	0.017	mg/Kg	₩	11/07/24 09:57	11/08/24 13:05	1
Calcium	440	В	9.7	1.6	mg/Kg	₩	11/07/24 09:57	11/08/24 13:05	1
Chromium	2.8		0.48	0.24	mg/Kg	₩	11/07/24 09:57	11/08/24 13:05	1
Cobalt	1.5		0.24	0.063	mg/Kg	☼	11/07/24 09:57	11/08/24 13:05	1
Copper	1.6		0.48	0.14	mg/Kg	₩	11/07/24 09:57	11/08/24 13:05	1
Iron	3100		9.7	5.0	mg/Kg	₩	11/07/24 09:57	11/08/24 13:05	1
Lead	8.1		0.24	0.11	mg/Kg	☼	11/07/24 09:57	11/08/24 13:05	1
Magnesium	450		4.8	2.4	mg/Kg	₩	11/07/24 09:57	11/08/24 13:05	1
Manganese	29		0.48	0.070	mg/Kg	☼	11/07/24 09:57	11/08/24 13:05	1
Nickel	2.4		0.48	0.14	mg/Kg	☼	11/07/24 09:57	11/08/24 13:05	1
Potassium	190		24	8.5	mg/Kg	₩	11/07/24 09:57	11/08/24 13:05	1
Selenium	<0.48		0.48	0.28	mg/Kg	☼	11/07/24 09:57	11/08/24 13:05	1
Silver	<0.24		0.24	0.062	mg/Kg	☼	11/07/24 09:57	11/08/24 13:05	1
Sodium	130		48	7.1	mg/Kg	₩	11/07/24 09:57	11/08/24 13:05	1
Thallium	<0.48		0.48	0.24	mg/Kg	☼	11/07/24 09:57	11/08/24 13:05	1
Vanadium	4.4		0.24	0.057	mg/Kg	☼	11/07/24 09:57	11/08/24 13:05	1
Zinc	13		0.97	0.42	mg/Kg	₽	11/07/24 09:57	11/08/24 13:05	1

Method: SW846 6010D - Metals (ICP) - TCLP								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050	0.050	0.010	mg/L		11/08/24 08:48	11/08/24 22:29	1
Barium	0.19 J	0.50	0.050	mg/L		11/08/24 08:48	11/08/24 22:29	1
Beryllium	<0.0040	0.0040	0.0040	mg/L		11/08/24 08:48	11/08/24 22:29	1
Cadmium	<0.0050	0.0050	0.0020	mg/L		11/08/24 08:48	11/08/24 22:29	1

Client: Weston Solutions Inc

Project/Site: IDOT- WO 007 FAI 94 Dolton

Client Sample ID: R16-5(0-4)-103124 Lab Sample ID: 500-259381-4

Date Collected: 10/31/24 09:25 **Matrix: Solid** Date Received: 10/31/24 12:12 Percent Solids: 98.2

Analyte R	esult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium	0.027		0.025	0.010	mg/L		11/08/24 08:48	11/08/24 22:29	1
Cobalt <	0.025		0.025	0.010	mg/L		11/08/24 08:48	11/08/24 22:29	1
Copper	0.031		0.025	0.010	mg/L		11/08/24 08:48	11/08/24 22:29	1
Iron	23		0.40	0.20	mg/L		11/08/24 08:48	11/08/24 22:29	1
Lead	0.069		0.0075	0.0075	mg/L		11/08/24 08:48	11/08/24 22:29	1
Manganese	0.49		0.025	0.010	mg/L		11/08/24 08:48	11/08/24 22:29	1
Nickel	0.025		0.025	0.010	mg/L		11/08/24 08:48	11/08/24 22:29	1
Selenium <	0.050		0.050	0.020	mg/L		11/08/24 08:48	11/08/24 22:29	1
Silver <	0.025		0.025	0.010	mg/L		11/08/24 08:48	11/08/24 22:29	1
Zinc	0.19	J	0.50	0.020	mg/L		11/08/24 08:48	11/08/24 22:29	1
Method: SW846 6010D - Metals (ICP)									
		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Arsenic <	0.050		0.050	0.010	mg/L		11/08/24 08:51	11/08/24 19:17	1
Barium	0.062	J	0.50	0.050	mg/L		11/08/24 08:51	11/08/24 19:17	1
Beryllium <0	.0040		0.0040	0.0040	mg/L		11/08/24 08:51	11/08/24 19:17	1
Cadmium <0	.0050		0.0050	0.0020	mg/L		11/08/24 08:51	11/08/24 19:17	1
Chromium	0.012	J	0.025	0.010	mg/L		11/08/24 08:51	11/08/24 19:17	1
Cobalt <	0.025		0.025	0.010	mg/L		11/08/24 08:51	11/08/24 19:17	1
Copper	0.011	J	0.025	0.010	mg/L		11/08/24 08:51	11/08/24 19:17	1
Iron	9.1		0.40	0.20	mg/L		11/08/24 08:51	11/08/24 19:17	1
Lead	0.030		0.0075	0.0075	mg/L		11/08/24 08:51	11/08/24 19:17	1
Manganese	0.17		0.025	0.010	mg/L		11/08/24 08:51	11/08/24 19:17	1
Nickel <	0.025		0.025	0.010	mg/L		11/08/24 08:51	11/08/24 19:17	1
Selenium <	0.050		0.050	0.020	mg/L		11/08/24 08:51	11/08/24 19:17	1
Silver <	0.025		0.025	0.010	mg/L		11/08/24 08:51	11/08/24 19:17	1
Zinc	0.064	J	0.50	0.020	mg/L		11/08/24 08:51	11/08/24 19:17	1
Method: SW846 7470A - Mercury (CV	/AA)	- TCLP							
		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury <0.0	00020		0.00020	0.00020	mg/L		11/08/24 10:40	11/12/24 16:52	1
Method: SW846 7470A - Mercury (CV									
		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Mercury <0.0	00020		0.00020	0.00020	mg/L		11/08/24 10:40	11/12/24 17:54	1
Method: SW846 7471B - Mercury (CV									
		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.011	J	0.016	0.0067	mg/Kg	₩	11/08/24 16:25	11/13/24 10:36	1
General Chemistry									
	esult	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
pH (SW846 9045D)	7.8		0.2	0.2	SU			11/01/24 13:41	1

Client: Weston Solutions Inc

Project/Site: IDOT- WO 007 FAI 94 Dolton

Client Sample ID: R16-5(4-9)-103124 Lab Sample ID: 500-259381-5

Date Collected: 10/31/24 09:30 **Matrix: Solid** Date Received: 10/31/24 12:12 Percent Solids: 95.3

Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	<0.019		0.019	0.0080	mg/Kg	<u></u>	11/01/24 09:18	11/04/24 15:55	1
Benzene	< 0.0019		0.0019	0.00060	mg/Kg	₩	11/01/24 09:18	11/04/24 15:55	1
Bromodichloromethane	< 0.0019		0.0019	0.00061	mg/Kg	₩	11/01/24 09:18	11/04/24 15:55	1
Bromoform	<0.0019		0.0019	0.0011	mg/Kg	⊅	11/01/24 09:18	11/04/24 15:55	1
Bromomethane	<0.0048		0.0048	0.0023	mg/Kg	☼	11/01/24 09:18	11/04/24 15:55	1
Carbon disulfide	<0.0048		0.0048	0.00087	mg/Kg	₩	11/01/24 09:18	11/04/24 15:55	1
Carbon tetrachloride	<0.0019		0.0019	0.00065	mg/Kg	₩	11/01/24 09:18	11/04/24 15:55	1
Chlorobenzene	< 0.0019		0.0019	0.00080	mg/Kg	₩	11/01/24 09:18	11/04/24 15:55	1
Chloroethane	<0.0048		0.0048	0.0016	mg/Kg	₩	11/01/24 09:18	11/04/24 15:55	1
Chloroform	<0.0019		0.0019	0.0014	mg/Kg	⊅	11/01/24 09:18	11/04/24 15:55	1
Chloromethane	<0.0048		0.0048	0.00092	mg/Kg	☼	11/01/24 09:18	11/04/24 15:55	1
cis-1,2-Dichloroethene	< 0.0019		0.0019	0.00077	mg/Kg	☼	11/01/24 09:18	11/04/24 15:55	1
cis-1,3-Dichloropropene	<0.0019		0.0019	0.00076	mg/Kg	₩	11/01/24 09:18	11/04/24 15:55	1
Dibromochloromethane	< 0.0019		0.0019	0.00088	mg/Kg	☼	11/01/24 09:18	11/04/24 15:55	1
1,1-Dichloroethane	< 0.0019		0.0019	0.00072	mg/Kg	☼	11/01/24 09:18	11/04/24 15:55	1
1,2-Dichloroethane	<0.0048		0.0048	0.0012	mg/Kg	₩	11/01/24 09:18	11/04/24 15:55	1
1,1-Dichloroethene	< 0.0019		0.0019	0.00078	mg/Kg	☼	11/01/24 09:18	11/04/24 15:55	1
1,2-Dichloropropane	< 0.0019		0.0019	0.00049	mg/Kg	☼	11/01/24 09:18	11/04/24 15:55	1
1,3-Dichloropropene, Total	<0.0019		0.0019	0.00091	mg/Kg	₩	11/01/24 09:18	11/04/24 15:55	1
Ethylbenzene	< 0.0019		0.0019	0.0010	mg/Kg	₩	11/01/24 09:18	11/04/24 15:55	1
2-Hexanone	<0.0048		0.0048	0.0029	mg/Kg	₩	11/01/24 09:18	11/04/24 15:55	1
Methylene Chloride	<0.0048		0.0048	0.0020	mg/Kg		11/01/24 09:18	11/04/24 15:55	1
Methyl Ethyl Ketone	<0.0048		0.0048	0.0021	mg/Kg	₩	11/01/24 09:18	11/04/24 15:55	1
methyl isobutyl ketone	<0.0048		0.0048	0.0034	mg/Kg	₩	11/01/24 09:18	11/04/24 15:55	1
Methyl tert-butyl ether	<0.0019		0.0019	0.00061			11/01/24 09:18	11/04/24 15:55	1
Styrene	< 0.0019		0.0019	0.00086	mg/Kg	₩	11/01/24 09:18	11/04/24 15:55	1
1,1,2,2-Tetrachloroethane	< 0.0019		0.0019	0.00094	mg/Kg	☼	11/01/24 09:18	11/04/24 15:55	1
Tetrachloroethene	<0.0019		0.0019	0.0011	mg/Kg		11/01/24 09:18	11/04/24 15:55	1
Toluene	< 0.0019		0.0019	0.00038		☆	11/01/24 09:18	11/04/24 15:55	1
trans-1,2-Dichloroethene	< 0.0019		0.0019	0.00072		₩	11/01/24 09:18	11/04/24 15:55	1
trans-1,3-Dichloropropene	<0.0019		0.0019	0.00091	mg/Kg	₩	11/01/24 09:18	11/04/24 15:55	1
1,1,1-Trichloroethane	< 0.0019		0.0019	0.00077	mg/Kg	₩	11/01/24 09:18	11/04/24 15:55	1
1,1,2-Trichloroethane	< 0.0019		0.0019	0.00071	mg/Kg	☆	11/01/24 09:18	11/04/24 15:55	1
Trichloroethene	<0.0019		0.0019	0.00052			11/01/24 09:18	11/04/24 15:55	1
Vinyl chloride	< 0.0019		0.0019	0.00078	mg/Kg	☆	11/01/24 09:18	11/04/24 15:55	1
Xylenes, Total	<0.0038		0.0038	0.00065	mg/Kg	₩	11/01/24 09:18	11/04/24 15:55	1
Surrogate	%Recovery 0	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103		75 - 131				11/01/24 09:18	11/04/24 15:55	1
Dibromofluoromethane (Surr)	105		75 - 126				11/01/24 09:18	11/04/24 15:55	1
1,2-Dichloroethane-d4 (Surr)	99		70 - 134				11/01/24 09:18	11/04/24 15:55	1
Toluene-d8 (Surr)	99		75 - 124				11/01/24 09:18	11/04/24 15:55	1

Method. Offoto 027 0L - Ochili	voiatile Org		unus (Gon						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	<0.25		0.25	0.035	mg/Kg	<u></u>	11/04/24 15:03	11/05/24 13:39	1
1,2-Dichlorobenzene	<0.25		0.25	0.020	mg/Kg	≎	11/04/24 15:03	11/05/24 13:39	1
1,3-Dichlorobenzene	<0.25		0.25	0.022	mg/Kg	₽	11/04/24 15:03	11/05/24 13:39	1
1,4-Dichlorobenzene	<0.25		0.25	0.023	mg/Kg	₽	11/04/24 15:03	11/05/24 13:39	1
2,2'-oxybis[1-chloropropane]	< 0.25		0.25	0.035	mg/Kg	☼	11/04/24 15:03	11/05/24 13:39	1

Page 34 of 102

Job ID: 500-259381-1

Eurofins Chicago

Client: Weston Solutions Inc

Project/Site: IDOT- WO 007 FAI 94 Dolton

Client Sample ID: R16-5(4-9)-103124 Lab Sample ID: 500-259381-5

Date Collected: 10/31/24 09:30

Matrix: Solid

Date Received: 10/31/24 12:12

Percent Solids: 95.3

Method: SW846 8270E - Sem Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	<0.49	0.49	0.018	mg/Kg	— <u>-</u>	11/04/24 15:03	11/05/24 13:39	1
2,4,6-Trichlorophenol	<0.49	0.49		mg/Kg		11/04/24 15:03	11/05/24 13:39	1
2,4-Dichlorophenol	<0.49	0.49		mg/Kg	₩	11/04/24 15:03	11/05/24 13:39	1
2,4-Dimethylphenol	<0.49	0.49		mg/Kg	₩	11/04/24 15:03	11/05/24 13:39	1
2,4-Dinitrophenol	<0.99	0.99		mg/Kg		11/04/24 15:03	11/05/24 13:39	1
2,4-Dinitrotoluene	<0.25	0.25		mg/Kg	₩	11/04/24 15:03	11/05/24 13:39	1
2,6-Dinitrotoluene	<0.25	0.25		mg/Kg	₩	11/04/24 15:03	11/05/24 13:39	1
2-Chloronaphthalene	<0.25	0.25		mg/Kg		11/04/24 15:03	11/05/24 13:39	
2-Chlorophenol	<0.25	0.25		mg/Kg		11/04/24 15:03	11/05/24 13:39	1
2-Methylnaphthalene	<0.099	0.099	0.0098		~ \$	11/04/24 15:03	11/05/24 13:39	
2-Methylphenol	<0.25	0.25		mg/Kg		11/04/24 15:03	11/05/24 13:39	
2-Nitroaniline	<0.25	0.25		mg/Kg	☆	11/04/24 15:03	11/05/24 13:39	1
2-Nitrophenol	<0.49	0.49		mg/Kg	₩	11/04/24 15:03	11/05/24 13:39	1
-	<0.49	0.49		mg/Kg	¥. ☆	11/04/24 15:03	11/05/24 13:39	
3 & 4 Methylphenol 3,3'-Dichlorobenzidine	<0.25	0.25		mg/Kg	₩	11/04/24 15:03	11/05/24 13:39	1
3-Nitroaniline	<0.49	0.23			₩ ₩	11/04/24 15:03	11/05/24 13:39	
		0.49		mg/Kg			11/05/24 13:39	
4,6-Dinitro-2-methylphenol	<0.99			mg/Kg	₩.	11/04/24 15:03		1
4-Bromophenyl phenyl ether	<0.25	0.25		mg/Kg	*	11/04/24 15:03	11/05/24 13:39	1
4-Chloro-3-methylphenol	<0.49	0.49		mg/Kg	.	11/04/24 15:03	11/05/24 13:39	1
4-Chloroaniline	<0.99	0.99		mg/Kg	*	11/04/24 15:03	11/05/24 13:39	
4-Chlorophenyl phenyl ether	<0.25	0.25		mg/Kg	\$	11/04/24 15:03	11/05/24 13:39	1
4-Nitroaniline	<0.49	0.49		mg/Kg	<u>.</u> .	11/04/24 15:03	11/05/24 13:39	1
4-Nitrophenol	<0.99	0.99		mg/Kg	☼	11/04/24 15:03	11/05/24 13:39	1
Acenaphthene	<0.049	0.049		mg/Kg	☼	11/04/24 15:03	11/05/24 13:39	1
Acenaphthylene	<0.049	0.049	0.0083		.	11/04/24 15:03	11/05/24 13:39	
Anthracene	<0.049	0.049		mg/Kg	₩	11/04/24 15:03	11/05/24 13:39	1
Benzo[a]anthracene	<0.049	0.049		mg/Kg	₩	11/04/24 15:03	11/05/24 13:39	,
Benzo[a]pyrene	<0.049	0.049		mg/Kg		11/04/24 15:03	11/05/24 13:39	
Benzo[b]fluoranthene	<0.049	0.049		mg/Kg	₩	11/04/24 15:03	11/05/24 13:39	•
Benzo[g,h,i]perylene	<0.049	0.049	0.011	mg/Kg	₩	11/04/24 15:03	11/05/24 13:39	1
Benzo[k]fluoranthene	<0.049	0.049	0.019	mg/Kg		11/04/24 15:03	11/05/24 13:39	1
Bis(2-chloroethoxy)methane	<0.25	0.25	0.018	mg/Kg	☼	11/04/24 15:03	11/05/24 13:39	1
Bis(2-chloroethyl)ether	<0.25	0.25	0.023	mg/Kg	☼	11/04/24 15:03	11/05/24 13:39	1
Bis(2-ethylhexyl) phthalate	<0.25 *-	0.25	0.19	mg/Kg	☼	11/04/24 15:03	11/05/24 13:39	1
Butyl benzyl phthalate	<0.25	0.25	0.024	mg/Kg	☼	11/04/24 15:03	11/05/24 13:39	•
Carbazole	<0.25	0.25	0.019	mg/Kg	☼	11/04/24 15:03	11/05/24 13:39	1
Chrysene	<0.049	0.049	0.013	mg/Kg	☼	11/04/24 15:03	11/05/24 13:39	1
Dibenz(a,h)anthracene	<0.049	0.049	0.049	mg/Kg	₩	11/04/24 15:03	11/05/24 13:39	1
Dibenzofuran	<0.25	0.25	0.017	mg/Kg	☼	11/04/24 15:03	11/05/24 13:39	1
Diethyl phthalate	<0.25	0.25	0.022	mg/Kg	☼	11/04/24 15:03	11/05/24 13:39	1
Dimethyl phthalate	<0.25	0.25	0.011	mg/Kg	₩	11/04/24 15:03	11/05/24 13:39	1
Di-n-butyl phthalate	<0.25 *-	0.25	0.015	mg/Kg	☼	11/04/24 15:03	11/05/24 13:39	1
Di-n-octyl phthalate	<0.49	0.49	0.34	mg/Kg	☼	11/04/24 15:03	11/05/24 13:39	1
Fluoranthene	<0.049	0.049	0.011	mg/Kg	₩	11/04/24 15:03	11/05/24 13:39	1
Fluorene	<0.049	0.049		mg/Kg	₩	11/04/24 15:03	11/05/24 13:39	1
Hexachlorobenzene	<0.099	0.099	0.0094		☼	11/04/24 15:03	11/05/24 13:39	1
Hexachlorobutadiene	<0.25	0.25		mg/Kg		11/04/24 15:03	11/05/24 13:39	1
Hexachlorocyclopentadiene	<0.99	0.99		mg/Kg	₩	11/04/24 15:03	11/05/24 13:39	1
Hexachloroethane	<0.25	0.25		mg/Kg	~ \$	11/04/24 15:03	11/05/24 13:39	1

Eurofins Chicago

11/14/2024

Job ID: 500-259381-1

3

5

8

3 40

> 11 12

> 10

Client: Weston Solutions Inc

Project/Site: IDOT- WO 007 FAI 94 Dolton

Lab Sample ID: 500-259381-5 Client Sample ID: R16-5(4-9)-103124

Date Collected: 10/31/24 09:30 **Matrix: Solid** Date Received: 10/31/24 12:12 Percent Solids: 95.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Indeno[1,2,3-cd]pyrene	<0.049		0.049	0.048	mg/Kg	<u></u>	11/04/24 15:03	11/05/24 13:39	1
Isophorone	<0.25		0.25	0.025	mg/Kg	₩	11/04/24 15:03	11/05/24 13:39	1
Naphthalene	< 0.049		0.049	0.0088	mg/Kg	☼	11/04/24 15:03	11/05/24 13:39	1
Nitrobenzene	<0.049		0.049	0.015	mg/Kg	₩	11/04/24 15:03	11/05/24 13:39	1
N-Nitrosodi-n-propylamine	< 0.099		0.099	0.0097	mg/Kg	☼	11/04/24 15:03	11/05/24 13:39	1
N-Nitrosodiphenylamine	<0.25		0.25	0.029	mg/Kg	☼	11/04/24 15:03	11/05/24 13:39	1
Pentachlorophenol	<0.99		0.99	0.12	mg/Kg	₩	11/04/24 15:03	11/05/24 13:39	1
Phenanthrene	< 0.049		0.049	0.011	mg/Kg	☼	11/04/24 15:03	11/05/24 13:39	1
Phenol	<0.25		0.25	0.021	mg/Kg	☼	11/04/24 15:03	11/05/24 13:39	1
Pyrene	<0.049		0.049	0.013	mg/Kg	≎	11/04/24 15:03	11/05/24 13:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	66		31 - 143				11/04/24 15:03	11/05/24 13:39	1
2-Fluorobiphenyl (Surr)	72		43 - 145				11/04/24 15:03	11/05/24 13:39	1
2-Fluorophenol (Surr)	90		31 - 166				11/04/24 15:03	11/05/24 13:39	1
Nitrobenzene-d5 (Surr)	72		37 - 147				11/04/24 15:03	11/05/24 13:39	1
Phenol-d5 (Surr)	79		30 - 153				11/04/24 15:03	11/05/24 13:39	1
Terphenyl-d14 (Surr)	95		42 - 157				11/04/24 15:03	11/05/24 13:39	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	1800		10	4.1	mg/Kg	<u></u>	11/07/24 09:57	11/08/24 13:10	1
Antimony	<1.0		1.0	0.20	mg/Kg	₽	11/07/24 09:57	11/08/24 13:10	1
Arsenic	3.4		0.51	0.17	mg/Kg	₩	11/07/24 09:57	11/08/24 13:10	1
Barium	7.6		0.51	0.058	mg/Kg	₩	11/07/24 09:57	11/08/24 13:10	1
Beryllium	0.13	J	0.20	0.047	mg/Kg	₽	11/07/24 09:57	11/08/24 13:10	1
Cadmium	<0.10		0.10	0.018	mg/Kg	₽	11/07/24 09:57	11/08/24 13:10	1
Calcium	410	В	10	1.7	mg/Kg	₩	11/07/24 09:57	11/08/24 13:10	1
Chromium	12		0.51	0.25	mg/Kg	₩	11/07/24 09:57	11/08/24 13:10	1
Cobalt	4.0		0.25	0.066	mg/Kg	₽	11/07/24 09:57	11/08/24 13:10	1
Copper	2.6		0.51	0.14	mg/Kg	₩	11/07/24 09:57	11/08/24 13:10	1
Iron	4900		10	5.3	mg/Kg	₽	11/07/24 09:57	11/08/24 13:10	1
Lead	3.1		0.25	0.12	mg/Kg	₩	11/07/24 09:57	11/08/24 13:10	1
Magnesium	500		5.1	2.5	mg/Kg	₩	11/07/24 09:57	11/08/24 13:10	1
Manganese	54		0.51	0.074	mg/Kg	₩	11/07/24 09:57	11/08/24 13:10	1
Nickel	4.7		0.51	0.15	mg/Kg	₽	11/07/24 09:57	11/08/24 13:10	1
Potassium	260		25	9.0	mg/Kg	₩	11/07/24 09:57	11/08/24 13:10	1
Selenium	<0.51		0.51	0.30	mg/Kg	₽	11/07/24 09:57	11/08/24 13:10	1
Silver	<0.25		0.25	0.065	mg/Kg	₽	11/07/24 09:57	11/08/24 13:10	1
Sodium	130		51	7.5	mg/Kg	₩	11/07/24 09:57	11/08/24 13:10	1
Thallium	0.26	J	0.51	0.25	mg/Kg	₩	11/07/24 09:57	11/08/24 13:10	1
Vanadium	5.0		0.25	0.060	mg/Kg	☼	11/07/24 09:57	11/08/24 13:10	1
Zinc	12		1.0	0.45	mg/Kg	₩	11/07/24 09:57	11/08/24 13:10	1

Method: SW846 6010D - Metals (ICP) - TCLP									
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Arsenic	<0.050	0.050	0.010	mg/L		11/08/24 08:48	11/08/24 22:34	1	
Barium	0.074 J	0.50	0.050	mg/L		11/08/24 08:48	11/08/24 22:34	1	
Beryllium	<0.0040	0.0040	0.0040	mg/L		11/08/24 08:48	11/08/24 22:34	1	
Cadmium	<0.0050	0.0050	0.0020	mg/L		11/08/24 08:48	11/08/24 22:34	1	

Job ID: 500-259381-1

Eurofins Chicago

Client: Weston Solutions Inc

Project/Site: IDOT- WO 007 FAI 94 Dolton

Client Sample ID: R16-5(4-9)-103124 Lab Sample ID: 500-259381-5

Date Collected: 10/31/24 09:30 **Matrix: Solid** Date Received: 10/31/24 12:12 Percent Solids: 95.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chromium	<0.025		0.025	0.010	mg/L		11/08/24 08:48	11/08/24 22:34	
Cobalt	<0.025		0.025	0.010	mg/L		11/08/24 08:48	11/08/24 22:34	
Copper	<0.025		0.025	0.010	mg/L		11/08/24 08:48	11/08/24 22:34	
ron	4.3		0.40	0.20	mg/L		11/08/24 08:48	11/08/24 22:34	
∟ead	<0.0075		0.0075	0.0075	mg/L		11/08/24 08:48	11/08/24 22:34	
Manganese	0.17		0.025	0.010	mg/L		11/08/24 08:48	11/08/24 22:34	
Nickel	<0.025		0.025	0.010	mg/L		11/08/24 08:48	11/08/24 22:34	
Selenium	< 0.050		0.050	0.020	mg/L		11/08/24 08:48	11/08/24 22:34	
Silver	<0.025		0.025	0.010	mg/L		11/08/24 08:48	11/08/24 22:34	
Zinc	<0.50		0.50	0.020	mg/L		11/08/24 08:48	11/08/24 22:34	
Method: SW846 6010D - I	Metals (ICP) - SP	LP East							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Arsenic	0.018	J	0.050	0.010	mg/L		11/08/24 08:51	11/08/24 19:21	
Barium	0.069	J	0.50	0.050	mg/L		11/08/24 08:51	11/08/24 19:21	
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/08/24 08:51	11/08/24 19:21	
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/08/24 08:51	11/08/24 19:21	
Chromium	0.019	J	0.025	0.010	mg/L		11/08/24 08:51	11/08/24 19:21	
Cobalt	0.039		0.025	0.010	mg/L		11/08/24 08:51	11/08/24 19:21	
Copper	0.020	J	0.025	0.010	mg/L		11/08/24 08:51	11/08/24 19:21	
ron	25		0.40	0.20	mg/L		11/08/24 08:51	11/08/24 19:21	
Lead	0.021		0.0075	0.0075	mg/L		11/08/24 08:51	11/08/24 19:21	
Manganese	0.66		0.025	0.010	mg/L		11/08/24 08:51	11/08/24 19:21	
Nickel	0.014	J	0.025	0.010	mg/L		11/08/24 08:51	11/08/24 19:21	
Selenium	< 0.050		0.050	0.020	mg/L		11/08/24 08:51	11/08/24 19:21	
Silver	<0.025		0.025	0.010	mg/L		11/08/24 08:51	11/08/24 19:21	
Zinc	0.045	J	0.50	0.020	mg/L		11/08/24 08:51	11/08/24 19:21	
Method: SW846 7470A - N	Mercury (CVAA)	- TCLP							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	<0.00020		0.00020	0.00020	mg/L		11/08/24 10:40	11/12/24 16:54	
Method: SW846 7470A - N	Mercury (CVAA)	- SPLP East							
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Mercury	<0.00020		0.00020	0.00020	mg/L		11/08/24 10:40	11/12/24 18:00	
Method: SW846 7471B - I	,								
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Mercury	0.032		0.016	0.0065	mg/Kg	₩	11/08/24 16:25	11/13/24 10:38	
General Chemistry									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
pH (SW846 9045D)	7.3		0.2	0.2	SU			11/01/24 13:43	

Client: Weston Solutions Inc

Project/Site: IDOT- WO 007 FAI 94 Dolton

Client Sample ID: R16-1(0-4)-103124 Lab Sample ID: 500-259381-6

Date Collected: 10/31/24 10:25 **Matrix: Solid** Date Received: 10/31/24 12:12 Percent Solids: 94.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	<0.018		0.018	0.0074	mg/Kg	— <u></u>	11/01/24 09:18	11/04/24 16:21	-
Benzene	<0.0018		0.0018	0.00056	mg/Kg	₩	11/01/24 09:18	11/04/24 16:21	1
Bromodichloromethane	<0.0018		0.0018	0.00057	mg/Kg	₩	11/01/24 09:18	11/04/24 16:21	1
Bromoform	<0.0018		0.0018	0.0010	mg/Kg	₩	11/01/24 09:18	11/04/24 16:21	1
Bromomethane	< 0.0044		0.0044	0.0022	mg/Kg	₩	11/01/24 09:18	11/04/24 16:21	1
Carbon disulfide	< 0.0044		0.0044	0.00082	mg/Kg	☼	11/01/24 09:18	11/04/24 16:21	1
Carbon tetrachloride	<0.0018		0.0018	0.00060	mg/Kg	₩	11/01/24 09:18	11/04/24 16:21	1
Chlorobenzene	<0.0018		0.0018	0.00075	mg/Kg	₩	11/01/24 09:18	11/04/24 16:21	1
Chloroethane	< 0.0044		0.0044	0.0015	mg/Kg	☼	11/01/24 09:18	11/04/24 16:21	1
Chloroform	<0.0018		0.0018	0.0013	mg/Kg	₩	11/01/24 09:18	11/04/24 16:21	1
Chloromethane	<0.0044		0.0044	0.00086	mg/Kg	₩	11/01/24 09:18	11/04/24 16:21	1
cis-1,2-Dichloroethene	<0.0018		0.0018	0.00071	mg/Kg	₩	11/01/24 09:18	11/04/24 16:21	1
cis-1,3-Dichloropropene	<0.0018		0.0018	0.00071	mg/Kg		11/01/24 09:18	11/04/24 16:21	1
Dibromochloromethane	<0.0018		0.0018	0.00082	mg/Kg	₩	11/01/24 09:18	11/04/24 16:21	1
1,1-Dichloroethane	<0.0018		0.0018	0.00067	mg/Kg	₩	11/01/24 09:18	11/04/24 16:21	1
1,2-Dichloroethane	<0.0044		0.0044	0.0011	mg/Kg	₩	11/01/24 09:18	11/04/24 16:21	1
1,1-Dichloroethene	<0.0018		0.0018	0.00073		₩	11/01/24 09:18	11/04/24 16:21	1
1,2-Dichloropropane	<0.0018		0.0018	0.00046	mg/Kg	₩	11/01/24 09:18	11/04/24 16:21	1
1,3-Dichloropropene, Total	<0.0018		0.0018	0.00085		∴	11/01/24 09:18	11/04/24 16:21	1
Ethylbenzene	<0.0018		0.0018	0.00093		₩	11/01/24 09:18	11/04/24 16:21	1
2-Hexanone	<0.0044		0.0044	0.0027		₩	11/01/24 09:18	11/04/24 16:21	1
Methylene Chloride	<0.0044		0.0044	0.0019	mg/Kg		11/01/24 09:18	11/04/24 16:21	1
Methyl Ethyl Ketone	<0.0044		0.0044			₩	11/01/24 09:18	11/04/24 16:21	1
methyl isobutyl ketone	<0.0044		0.0044	0.0032	mg/Kg	₩	11/01/24 09:18	11/04/24 16:21	1
Methyl tert-butyl ether	<0.0018		0.0018	0.00057	mg/Kg	∴	11/01/24 09:18	11/04/24 16:21	1
Styrene	<0.0018		0.0018	0.00080	mg/Kg	₩	11/01/24 09:18	11/04/24 16:21	1
1,1,2,2-Tetrachloroethane	<0.0018		0.0018	0.00088	mg/Kg	₩	11/01/24 09:18	11/04/24 16:21	1
Tetrachloroethene	<0.0018		0.0018	0.00099	mg/Kg		11/01/24 09:18	11/04/24 16:21	1
Toluene	<0.0018		0.0018	0.00036	mg/Kg	₩	11/01/24 09:18	11/04/24 16:21	1
trans-1,2-Dichloroethene	<0.0018		0.0018	0.00067	mg/Kg	₩	11/01/24 09:18	11/04/24 16:21	1
trans-1,3-Dichloropropene	<0.0018		0.0018	0.00085		₩	11/01/24 09:18	11/04/24 16:21	1
1,1,1-Trichloroethane	<0.0018		0.0018	0.00072		₩	11/01/24 09:18	11/04/24 16:21	1
1,1,2-Trichloroethane	<0.0018		0.0018	0.00066		₩	11/01/24 09:18	11/04/24 16:21	1
Trichloroethene	<0.0018		0.0018	0.00048		∴	11/01/24 09:18	11/04/24 16:21	
Vinyl chloride	<0.0018		0.0018	0.00072		₩	11/01/24 09:18	11/04/24 16:21	1
Xylenes, Total	<0.0035		0.0035	0.00061	0 0	₽	11/01/24 09:18		1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	106		75 - 131				11/01/24 09:18	11/04/24 16:21	
Dibromofluoromethane (Surr)	105		75 - 126				11/01/24 09:18	11/04/24 16:21	1
1,2-Dichloroethane-d4 (Surr)	98		70 - 134				11/01/24 09:18	11/04/24 16:21	1
Toluene-d8 (Surr)	102		75 - 124				11/01/24 09:18	11/04/24 16:21	

Method. SWOTO OZI OL - Seni	ivolatile Org	arne compo	unus (Gom	113)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	<0.25		0.25	0.035	mg/Kg	<u></u>	11/04/24 15:03	11/05/24 14:29	1
1,2-Dichlorobenzene	<0.25		0.25	0.020	mg/Kg	₩	11/04/24 15:03	11/05/24 14:29	1
1,3-Dichlorobenzene	<0.25		0.25	0.022	mg/Kg	₩	11/04/24 15:03	11/05/24 14:29	1
1,4-Dichlorobenzene	<0.25		0.25	0.023	mg/Kg	₩	11/04/24 15:03	11/05/24 14:29	1
2,2'-oxybis[1-chloropropane]	<0.25		0.25	0.035	mg/Kg	₩	11/04/24 15:03	11/05/24 14:29	1

Eurofins Chicago

Page 38 of 102

Client: Weston Solutions Inc

Project/Site: IDOT- WO 007 FAI 94 Dolton

Client Sample ID: R16-1(0-4)-103124 Lab Sample ID: 500-259381-6

Date Collected: 10/31/24 10:25 Date Received: 10/31/24 12:12 Lab Sample ID: 500-259381-6 Matrix: Solid

Percent Solids: 94.2

Job ID: 500-259381-1

Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
2,4,5-Trichlorophenol	<0.49	0.49	0.019	mg/Kg	.	11/04/24 15:03	11/05/24 14:29	
2,4,6-Trichlorophenol	<0.49	0.49		mg/Kg	₩	11/04/24 15:03	11/05/24 14:29	
2,4-Dichlorophenol	<0.49	0.49	0.017	mg/Kg	₩	11/04/24 15:03	11/05/24 14:29	
2,4-Dimethylphenol	<0.49	0.49	0.11	mg/Kg	₩	11/04/24 15:03	11/05/24 14:29	
2,4-Dinitrophenol	<1.0	1.0	0.29	mg/Kg	₩	11/04/24 15:03	11/05/24 14:29	
2,4-Dinitrotoluene	<0.25	0.25	0.028	mg/Kg	☼	11/04/24 15:03	11/05/24 14:29	
2,6-Dinitrotoluene	<0.25	0.25	0.017	mg/Kg	☼	11/04/24 15:03	11/05/24 14:29	
2-Chloronaphthalene	<0.25	0.25	0.018	mg/Kg	₩	11/04/24 15:03	11/05/24 14:29	
2-Chlorophenol	<0.25	0.25	0.016	mg/Kg	₩	11/04/24 15:03	11/05/24 14:29	
2-Methylnaphthalene	<0.10	0.10	0.0099	mg/Kg	₩	11/04/24 15:03	11/05/24 14:29	
2-Methylphenol	<0.25	0.25	0.026	mg/Kg	₩	11/04/24 15:03	11/05/24 14:29	
2-Nitroaniline	<0.25	0.25	0.026	mg/Kg	₩	11/04/24 15:03	11/05/24 14:29	
2-Nitrophenol	<0.49	0.49	0.033	mg/Kg	₩	11/04/24 15:03	11/05/24 14:29	
3 & 4 Methylphenol	<0.25	0.25		mg/Kg		11/04/24 15:03	11/05/24 14:29	
3,3'-Dichlorobenzidine	<0.25	0.25		mg/Kg	☼	11/04/24 15:03	11/05/24 14:29	
3-Nitroaniline	<0.49	0.49		mg/Kg	₩	11/04/24 15:03	11/05/24 14:29	
4,6-Dinitro-2-methylphenol	<1.0	1.0		mg/Kg		11/04/24 15:03	11/05/24 14:29	
4-Bromophenyl phenyl ether	<0.25	0.25		mg/Kg	₩	11/04/24 15:03	11/05/24 14:29	
4-Chloro-3-methylphenol	<0.49	0.49		mg/Kg	₩	11/04/24 15:03	11/05/24 14:29	
4-Chloroaniline	<1.0	1.0		mg/Kg	∷ ☆	11/04/24 15:03	11/05/24 14:29	
4-Chlorophenyl phenyl ether	<0.25	0.25		mg/Kg	₩.	11/04/24 15:03	11/05/24 14:29	
4-Nitroaniline	<0.49	0.49		mg/Kg		11/04/24 15:03	11/05/24 14:29	
4-Nitrophenol	<1.0	1.0		mg/Kg	T ☆	11/04/24 15:03	11/05/24 14:29	
Acenaphthene	<0.049	0.049	0.010	mg/Kg	₩	11/04/24 15:03	11/05/24 14:29	
Acenaphthylene	<0.049	0.049	0.0084		₩	11/04/24 15:03	11/05/24 14:29	
Anthracene	<0.049	0.049		mg/Kg		11/04/24 15:03	11/05/24 14:29	
Benzo[a]anthracene	<0.049	0.049		mg/Kg	₩	11/04/24 15:03	11/05/24 14:29	
Benzo[a]pyrene	<0.049	0.049		mg/Kg	₩	11/04/24 15:03	11/05/24 14:29	
Benzo[b]fluoranthene	<0.049	0.049		mg/Kg	¥ ≎	11/04/24 15:03	11/05/24 14:29	
	<0.049	0.049	0.047	0 0		11/04/24 15:03	11/05/24 14:29	
Benzo[g,h,i]perylene				mg/Kg	₩.			
Benzo[k]fluoranthene	<0.049	0.049		mg/Kg	T.	11/04/24 15:03	11/05/24 14:29	
Bis(2-chloroethoxy)methane	<0.25	0.25		mg/Kg	*	11/04/24 15:03	11/05/24 14:29	
Bis(2-chloroethyl)ether	<0.25	0.25		mg/Kg	*	11/04/24 15:03	11/05/24 14:29	
Bis(2-ethylhexyl) phthalate	<0.25 *-	0.25		mg/Kg	<u>.</u>	11/04/24 15:03	11/05/24 14:29	
Butyl benzyl phthalate	<0.25	0.25		mg/Kg	₩	11/04/24 15:03	11/05/24 14:29	
Carbazole	<0.25	0.25		mg/Kg	☼	11/04/24 15:03	11/05/24 14:29	
Chrysene	<0.049	0.049		mg/Kg	.	11/04/24 15:03	11/05/24 14:29	
Dibenz(a,h)anthracene	<0.049	0.049		mg/Kg	₩	11/04/24 15:03	11/05/24 14:29	
Dibenzofuran	<0.25	0.25		mg/Kg	₩	11/04/24 15:03	11/05/24 14:29	
Diethyl phthalate	<0.25	0.25		mg/Kg		11/04/24 15:03	11/05/24 14:29	
Dimethyl phthalate	<0.25	0.25		mg/Kg	₩	11/04/24 15:03	11/05/24 14:29	
Di-n-butyl phthalate	<0.25 *-	0.25		mg/Kg	₩	11/04/24 15:03	11/05/24 14:29	
Di-n-octyl phthalate	<0.49	0.49	0.34	mg/Kg	₩	11/04/24 15:03	11/05/24 14:29	
Fluoranthene	<0.049	0.049		mg/Kg	₩	11/04/24 15:03	11/05/24 14:29	
Fluorene	<0.049	0.049	0.015	mg/Kg	₩	11/04/24 15:03	11/05/24 14:29	
Hexachlorobenzene	<0.10	0.10	0.0095	mg/Kg	₩	11/04/24 15:03	11/05/24 14:29	
Hexachlorobutadiene	<0.25	0.25	0.028	mg/Kg		11/04/24 15:03	11/05/24 14:29	
Hexachlorocyclopentadiene	<1.0	1.0	0.52	mg/Kg	₩	11/04/24 15:03	11/05/24 14:29	
Hexachloroethane	<0.25	0.25		mg/Kg	₩	11/04/24 15:03	11/05/24 14:29	

Eurofins Chicago

2

5

7

9

11

13

14

Client: Weston Solutions Inc

Project/Site: IDOT- WO 007 FAI 94 Dolton

Client Sample ID: R16-1(0-4)-103124 Lab Sample ID: 500-259381-6

Date Collected: 10/31/24 10:25 **Matrix: Solid** Date Received: 10/31/24 12:12 Percent Solids: 94.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Indeno[1,2,3-cd]pyrene	<0.049		0.049	0.048	mg/Kg	<u></u>	11/04/24 15:03	11/05/24 14:29	1
Isophorone	<0.25		0.25	0.025	mg/Kg	₩	11/04/24 15:03	11/05/24 14:29	1
Naphthalene	< 0.049		0.049	0.0089	mg/Kg	☼	11/04/24 15:03	11/05/24 14:29	1
Nitrobenzene	<0.049		0.049	0.016	mg/Kg	₩	11/04/24 15:03	11/05/24 14:29	1
N-Nitrosodi-n-propylamine	<0.10		0.10	0.0097	mg/Kg	☼	11/04/24 15:03	11/05/24 14:29	1
N-Nitrosodiphenylamine	<0.25		0.25	0.029	mg/Kg	☼	11/04/24 15:03	11/05/24 14:29	1
Pentachlorophenol	<1.0		1.0	0.12	mg/Kg	₩	11/04/24 15:03	11/05/24 14:29	1
Phenanthrene	<0.049		0.049	0.011	mg/Kg	☼	11/04/24 15:03	11/05/24 14:29	1
Phenol	<0.25		0.25	0.021	mg/Kg	☼	11/04/24 15:03	11/05/24 14:29	1
Pyrene	<0.049		0.049	0.013	mg/Kg	≎	11/04/24 15:03	11/05/24 14:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	58		31 - 143				11/04/24 15:03	11/05/24 14:29	1
2-Fluorobiphenyl (Surr)	69		43 - 145				11/04/24 15:03	11/05/24 14:29	1
2-Fluorophenol (Surr)	86		31 - 166				11/04/24 15:03	11/05/24 14:29	1
Nitrobenzene-d5 (Surr)	69		37 - 147				11/04/24 15:03	11/05/24 14:29	1
Phenol-d5 (Surr)	74		30 - 153				11/04/24 15:03	11/05/24 14:29	1
Terphenyl-d14 (Surr)	90		42 - 157				11/04/24 15:03	11/05/24 14:29	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	1900		9.8	4.0	mg/Kg	*	11/07/24 09:57	11/08/24 13:23	1
Antimony	<0.98		0.98	0.19	mg/Kg	₩	11/07/24 09:57	11/08/24 13:23	1
Arsenic	1.6		0.49	0.17	mg/Kg	₩	11/07/24 09:57	11/08/24 13:23	1
Barium	7.4		0.49	0.056	mg/Kg	₩	11/07/24 09:57	11/08/24 13:23	1
Beryllium	0.074	J	0.20	0.046	mg/Kg	₩	11/07/24 09:57	11/08/24 13:23	1
Cadmium	<0.098		0.098	0.018	mg/Kg	₩	11/07/24 09:57	11/08/24 13:23	1
Calcium	390	В	9.8	1.7	mg/Kg	₩	11/07/24 09:57	11/08/24 13:23	1
Chromium	3.0		0.49	0.24	mg/Kg	₩	11/07/24 09:57	11/08/24 13:23	1
Cobalt	1.2		0.24	0.064	mg/Kg	₩	11/07/24 09:57	11/08/24 13:23	1
Copper	1.4		0.49	0.14	mg/Kg	₩	11/07/24 09:57	11/08/24 13:23	1
Iron	2600		9.8	5.1	mg/Kg	₩	11/07/24 09:57	11/08/24 13:23	1
Lead	2.0		0.24	0.11	mg/Kg	₩	11/07/24 09:57	11/08/24 13:23	1
Magnesium	440		4.9	2.4	mg/Kg	₩	11/07/24 09:57	11/08/24 13:23	1
Manganese	14		0.49	0.071	mg/Kg	₩	11/07/24 09:57	11/08/24 13:23	1
Nickel	2.3		0.49	0.14	mg/Kg	₩	11/07/24 09:57	11/08/24 13:23	1
Potassium	180		24	8.7	mg/Kg	₩	11/07/24 09:57	11/08/24 13:23	1
Selenium	<0.49		0.49	0.29	mg/Kg	₩	11/07/24 09:57	11/08/24 13:23	1
Silver	<0.24		0.24	0.063	mg/Kg	₩	11/07/24 09:57	11/08/24 13:23	1
Sodium	26	J	49	7.2	mg/Kg	₩	11/07/24 09:57	11/08/24 13:23	1
Thallium	<0.49		0.49	0.24	mg/Kg	₩	11/07/24 09:57	11/08/24 13:23	1
Vanadium	3.8		0.24	0.058	mg/Kg	₩	11/07/24 09:57	11/08/24 13:23	1
Zinc	8.9		0.98	0.43	mg/Kg	₽	11/07/24 09:57	11/08/24 13:23	1

Method: SW846 6010D - Met	tals (ICP) - TCLP							
Analyte	Result Qualifie	er RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050	0.050	0.010	mg/L		11/08/24 08:48	11/08/24 22:47	1
Barium	0.10 J	0.50	0.050	mg/L		11/08/24 08:48	11/08/24 22:47	1
Beryllium	<0.0040	0.0040	0.0040	mg/L		11/08/24 08:48	11/08/24 22:47	1
Cadmium	<0.0050	0.0050	0.0020	mg/L		11/08/24 08:48	11/08/24 22:47	1

Client: Weston Solutions Inc

Project/Site: IDOT- WO 007 FAI 94 Dolton

Client Sample ID: R16-1(0-4)-103124 Lab Sample ID: 500-259381-6

Date Collected: 10/31/24 10:25 **Matrix: Solid** Date Received: 10/31/24 12:12 Percent Solids: 94.2

Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Chromium	0.015	J	0.025	0.010	mg/L		11/08/24 08:48	11/08/24 22:47	
Cobalt	<0.025		0.025	0.010	mg/L		11/08/24 08:48	11/08/24 22:47	
Copper	0.011	J	0.025	0.010	mg/L		11/08/24 08:48	11/08/24 22:47	
Iron	5.5		0.40	0.20	mg/L		11/08/24 08:48	11/08/24 22:47	
Lead	<0.0075		0.0075	0.0075	mg/L		11/08/24 08:48	11/08/24 22:47	
Manganese	0.037		0.025	0.010	mg/L		11/08/24 08:48	11/08/24 22:47	
Nickel	0.010	J	0.025	0.010	mg/L		11/08/24 08:48	11/08/24 22:47	
Selenium	<0.050		0.050	0.020	mg/L		11/08/24 08:48	11/08/24 22:47	
Silver	<0.025		0.025	0.010	mg/L		11/08/24 08:48	11/08/24 22:47	
Zinc	0.039	J	0.50	0.020	mg/L		11/08/24 08:48	11/08/24 22:47	
Method: SW846 6010D - I	Metals (ICP) - SP	LP East							
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Arsenic	<0.050		0.050	0.010	mg/L	_	11/08/24 08:51	11/08/24 19:26	-
Barium	0.061	J	0.50	0.050	mg/L		11/08/24 08:51	11/08/24 19:26	•
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/08/24 08:51	11/08/24 19:26	
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/08/24 08:51	11/08/24 19:26	
Chromium	0.025		0.025	0.010	mg/L		11/08/24 08:51	11/08/24 19:26	
Cobalt	<0.025		0.025	0.010	mg/L		11/08/24 08:51	11/08/24 19:26	
Copper	0.010	J	0.025	0.010	mg/L		11/08/24 08:51	11/08/24 19:26	
Iron	9.6		0.40	0.20	mg/L		11/08/24 08:51	11/08/24 19:26	
Lead	<0.0075		0.0075	0.0075	mg/L		11/08/24 08:51	11/08/24 19:26	
Manganese	0.055		0.025	0.010	mg/L		11/08/24 08:51	11/08/24 19:26	
Nickel	0.014	J	0.025	0.010	mg/L		11/08/24 08:51	11/08/24 19:26	
Selenium	< 0.050		0.050	0.020	mg/L		11/08/24 08:51	11/08/24 19:26	
Silver	<0.025		0.025	0.010	mg/L		11/08/24 08:51	11/08/24 19:26	
Zinc	0.054	J	0.50	0.020	mg/L		11/08/24 08:51	11/08/24 19:26	
Method: SW846 7470A - I	Mercury (CVAA)	- TCLP							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	<0.00020		0.00020	0.00020	mg/L		11/08/24 10:40	11/12/24 16:56	•
Method: SW846 7470A - I									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Mercury	<0.00020		0.00020	0.00020	mg/L		11/08/24 10:40	11/12/24 18:02	•
Method: SW846 7471B - I	Mercury (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	0.029		0.017	0.0071	mg/Kg	<u></u>	11/08/24 16:25	11/13/24 10:39	
General Chemistry									
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
pH (SW846 9045D)	6.9		0.2	0.2	SU			11/01/24 13:45	

Client: Weston Solutions Inc

Project/Site: IDOT- WO 007 FAI 94 Dolton

Lab Sample ID: 500-259381-7 Client Sample ID: R16-1(4-9)-103124

Date Collected: 10/31/24 10:30 **Matrix: Solid** Date Received: 10/31/24 12:12 **Percent Solids: 91.1**

Analyte	Result (Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Acetone	<0.018		0.018	0.0076	mg/Kg	<u></u>	11/01/24 09:18	11/04/24 16:46	1
Benzene	<0.0018		0.0018	0.00057	mg/Kg	₩	11/01/24 09:18	11/04/24 16:46	1
Bromodichloromethane	<0.0018		0.0018	0.00058	mg/Kg	₩	11/01/24 09:18	11/04/24 16:46	1
Bromoform	<0.0018		0.0018	0.0011	mg/Kg	₩	11/01/24 09:18	11/04/24 16:46	1
Bromomethane	< 0.0045		0.0045	0.0022	mg/Kg	₩	11/01/24 09:18	11/04/24 16:46	1
Carbon disulfide	< 0.0045		0.0045	0.00083	mg/Kg	₩	11/01/24 09:18	11/04/24 16:46	1
Carbon tetrachloride	<0.0018		0.0018	0.00061	mg/Kg	₩	11/01/24 09:18	11/04/24 16:46	1
Chlorobenzene	<0.0018		0.0018	0.00076	mg/Kg	₩	11/01/24 09:18	11/04/24 16:46	1
Chloroethane	< 0.0045		0.0045	0.0015	mg/Kg	₩	11/01/24 09:18	11/04/24 16:46	1
Chloroform	<0.0018		0.0018	0.0013	mg/Kg	₩	11/01/24 09:18	11/04/24 16:46	1
Chloromethane	< 0.0045		0.0045	0.00087	mg/Kg	₩	11/01/24 09:18	11/04/24 16:46	1
cis-1,2-Dichloroethene	<0.0018		0.0018	0.00073	mg/Kg	₩	11/01/24 09:18	11/04/24 16:46	1
cis-1,3-Dichloropropene	<0.0018		0.0018	0.00072	mg/Kg	₩	11/01/24 09:18	11/04/24 16:46	1
Dibromochloromethane	<0.0018		0.0018	0.00083	mg/Kg	₩	11/01/24 09:18	11/04/24 16:46	1
1,1-Dichloroethane	<0.0018		0.0018	0.00068	mg/Kg	₩	11/01/24 09:18	11/04/24 16:46	1
1,2-Dichloroethane	<0.0045		0.0045	0.0012	mg/Kg	₩	11/01/24 09:18	11/04/24 16:46	1
1,1-Dichloroethene	<0.0018		0.0018	0.00074	mg/Kg	₩	11/01/24 09:18	11/04/24 16:46	1
1,2-Dichloropropane	<0.0018		0.0018	0.00046	mg/Kg	₩	11/01/24 09:18	11/04/24 16:46	1
1,3-Dichloropropene, Total	<0.0018		0.0018	0.00086	mg/Kg	₩	11/01/24 09:18	11/04/24 16:46	1
Ethylbenzene	<0.0018		0.0018	0.00095	mg/Kg	₩	11/01/24 09:18	11/04/24 16:46	1
2-Hexanone	< 0.0045		0.0045	0.0027	mg/Kg	₩	11/01/24 09:18	11/04/24 16:46	1
Methylene Chloride	<0.0045		0.0045	0.0019	mg/Kg	₩	11/01/24 09:18	11/04/24 16:46	1
Methyl Ethyl Ketone	< 0.0045		0.0045	0.0020	mg/Kg	₩	11/01/24 09:18	11/04/24 16:46	1
methyl isobutyl ketone	< 0.0045		0.0045	0.0032	mg/Kg	₩	11/01/24 09:18	11/04/24 16:46	1
Methyl tert-butyl ether	<0.0018		0.0018	0.00058	mg/Kg	₩	11/01/24 09:18	11/04/24 16:46	1
Styrene	<0.0018		0.0018	0.00081	mg/Kg	₩	11/01/24 09:18	11/04/24 16:46	1
1,1,2,2-Tetrachloroethane	<0.0018		0.0018	0.00089	mg/Kg	₩	11/01/24 09:18	11/04/24 16:46	1
Tetrachloroethene	<0.0018		0.0018	0.0010	mg/Kg	₩	11/01/24 09:18	11/04/24 16:46	1
Toluene	<0.0018		0.0018	0.00036	mg/Kg	₩	11/01/24 09:18	11/04/24 16:46	1
trans-1,2-Dichloroethene	<0.0018		0.0018	0.00068	mg/Kg	₩	11/01/24 09:18	11/04/24 16:46	1
trans-1,3-Dichloropropene	<0.0018		0.0018	0.00086	mg/Kg	₩	11/01/24 09:18	11/04/24 16:46	1
1,1,1-Trichloroethane	<0.0018		0.0018	0.00073	mg/Kg	₩	11/01/24 09:18	11/04/24 16:46	1
1,1,2-Trichloroethane	<0.0018		0.0018	0.00067	mg/Kg	₩	11/01/24 09:18	11/04/24 16:46	1
Trichloroethene	<0.0018		0.0018	0.00049	mg/Kg	₩	11/01/24 09:18	11/04/24 16:46	1
Vinyl chloride	<0.0018		0.0018	0.00074	mg/Kg	₩	11/01/24 09:18	11/04/24 16:46	1
Xylenes, Total	<0.0036		0.0036	0.00062	mg/Kg	☼	11/01/24 09:18	11/04/24 16:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	105		75 - 131				11/01/24 09:18	11/04/24 16:46	1
Dibromofluoromethane (Surr)	111		75 - 126				11/01/24 09:18	11/04/24 16:46	1
1,2-Dichloroethane-d4 (Surr)	103		70 - 134				11/01/24 09:18	11/04/24 16:46	1
Toluene-d8 (Surr)	100		75 - 124				11/01/24 09:18	11/04/24 16:46	1

Method: SW846 8270E - Se	emivolatile Organic C	ompounds (GC/	MS)					
Analyte	Result Qualifie	er RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	<0.27	0.27	0.039	mg/Kg	<u></u>	11/04/24 15:03	11/05/24 14:55	1
1,2-Dichlorobenzene	<0.27	0.27	0.022	mg/Kg	₽	11/04/24 15:03	11/05/24 14:55	1
1,3-Dichlorobenzene	<0.27	0.27	0.024	mg/Kg	₽	11/04/24 15:03	11/05/24 14:55	1
1,4-Dichlorobenzene	<0.27	0.27	0.026	mg/Kg	₩	11/04/24 15:03	11/05/24 14:55	1
2,2'-oxybis[1-chloropropane]	<0.27	0.27	0.039	mg/Kg	≎	11/04/24 15:03	11/05/24 14:55	1

Client: Weston Solutions Inc

Project/Site: IDOT- WO 007 FAI 94 Dolton

Client Sample ID: R16-1(4-9)-103124 Lab Sample ID: 500-259381-7

Method: SW846 8270E - Sem Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	<0.54 Qualifier -			mg/Kg	— <u>=</u>	11/04/24 15:03	11/05/24 14:55	DII Fac
2,4,6-Trichlorophenol	<0.54	0.54		mg/Kg	¥.	11/04/24 15:03	11/05/24 14:55	,
2,4-Dichlorophenol	<0.54	0.54		mg/Kg	₩	11/04/24 15:03	11/05/24 14:55	,
'	<0.54	0.54				11/04/24 15:03		,
2,4-Dimethylphenol				mg/Kg	· · · · · · · · · ·		11/05/24 14:55	
2,4-Dinitrophenol	<1.1	1.1		mg/Kg	*	11/04/24 15:03	11/05/24 14:55	,
2,4-Dinitrotoluene	<0.27	0.27	0.031	mg/Kg	‡	11/04/24 15:03	11/05/24 14:55	1
2,6-Dinitrotoluene	<0.27	0.27		mg/Kg		11/04/24 15:03	11/05/24 14:55	
2-Chloronaphthalene	<0.27	0.27		mg/Kg	Ď.	11/04/24 15:03	11/05/24 14:55	ĺ
2-Chlorophenol	<0.27	0.27		mg/Kg	₩	11/04/24 15:03	11/05/24 14:55	ĺ
2-Methylnaphthalene	<0.11	0.11	0.011	mg/Kg	.	11/04/24 15:03	11/05/24 14:55	
2-Methylphenol	<0.27	0.27	0.028	mg/Kg	₩	11/04/24 15:03	11/05/24 14:55	1
2-Nitroaniline	<0.27	0.27	0.029	mg/Kg	₩	11/04/24 15:03	11/05/24 14:55	1
2-Nitrophenol	<0.54	0.54		mg/Kg		11/04/24 15:03	11/05/24 14:55	1
3 & 4 Methylphenol	<0.27	0.27		mg/Kg	₩	11/04/24 15:03	11/05/24 14:55	1
3,3'-Dichlorobenzidine	<0.27	0.27		mg/Kg	₩	11/04/24 15:03	11/05/24 14:55	1
3-Nitroaniline	<0.54	0.54	0.025	mg/Kg	₩	11/04/24 15:03	11/05/24 14:55	1
4,6-Dinitro-2-methylphenol	<1.1	1.1	0.30	mg/Kg	☼	11/04/24 15:03	11/05/24 14:55	,
4-Bromophenyl phenyl ether	<0.27	0.27	0.037	mg/Kg	☼	11/04/24 15:03	11/05/24 14:55	•
4-Chloro-3-methylphenol	<0.54	0.54	0.021	mg/Kg	☼	11/04/24 15:03	11/05/24 14:55	•
4-Chloroaniline	<1.1	1.1	0.57	mg/Kg	₩	11/04/24 15:03	11/05/24 14:55	
4-Chlorophenyl phenyl ether	<0.27	0.27	0.071	mg/Kg	₩	11/04/24 15:03	11/05/24 14:55	
4-Nitroaniline	<0.54	0.54	0.040	mg/Kg	☼	11/04/24 15:03	11/05/24 14:55	1
4-Nitrophenol	<1.1	1.1	0.20	mg/Kg	₩	11/04/24 15:03	11/05/24 14:55	1
Acenaphthene	<0.054	0.054	0.011	mg/Kg	☼	11/04/24 15:03	11/05/24 14:55	1
Acenaphthylene	<0.054	0.054	0.0092	mg/Kg	☼	11/04/24 15:03	11/05/24 14:55	1
Anthracene	<0.054	0.054	0.011	mg/Kg	₩	11/04/24 15:03	11/05/24 14:55	1
Benzo[a]anthracene	<0.054	0.054	0.011	mg/Kg	☼	11/04/24 15:03	11/05/24 14:55	,
Benzo[a]pyrene	<0.054	0.054	0.052	mg/Kg	₩	11/04/24 15:03	11/05/24 14:55	
Benzo[b]fluoranthene	<0.054	0.054	0.051			11/04/24 15:03	11/05/24 14:55	
Benzo[g,h,i]perylene	<0.054	0.054	0.012	mg/Kg	₩	11/04/24 15:03	11/05/24 14:55	
Benzo[k]fluoranthene	<0.054	0.054	0.021	mg/Kg	₩	11/04/24 15:03	11/05/24 14:55	
Bis(2-chloroethoxy)methane	<0.27	0.27		mg/Kg		11/04/24 15:03	11/05/24 14:55	
Bis(2-chloroethyl)ether	<0.27	0.27		mg/Kg	₩	11/04/24 15:03	11/05/24 14:55	
Bis(2-ethylhexyl) phthalate	<0.27 *-	0.27	0.21	mg/Kg	Ϋ́	11/04/24 15:03	11/05/24 14:55	
Butyl benzyl phthalate	<0.27	0.27		mg/Kg	∵ ⊅	11/04/24 15:03	11/05/24 14:55	
Carbazole	<0.27	0.27		mg/Kg	~ ☆	11/04/24 15:03	11/05/24 14:55	
Chrysene	<0.054	0.054		mg/Kg		11/04/24 15:03	11/05/24 14:55	,
Dibenz(a,h)anthracene	<0.054	0.054		mg/Kg	[™]	11/04/24 15:03	11/05/24 14:55	,
Dibenzofuran	<0.034	0.034		mg/Kg		11/04/24 15:03	11/05/24 14:55	
Diethyl phthalate	<0.27	0.27		mg/Kg	*	11/04/24 15:03	11/05/24 14:55	
					· · · ·			
Dimethyl phthalate	<0.27	0.27		mg/Kg	<u>*</u>	11/04/24 15:03	11/05/24 14:55	,
Di-n-butyl phthalate	<0.27 *-	0.27		mg/Kg	*	11/04/24 15:03	11/05/24 14:55	,
Di-n-octyl phthalate	<0.54	0.54		mg/Kg	· · · ·	11/04/24 15:03	11/05/24 14:55	
Fluoranthene	0.020 J	0.054		mg/Kg	₩.	11/04/24 15:03	11/05/24 14:55	
Fluorene	<0.054	0.054		mg/Kg	*	11/04/24 15:03	11/05/24 14:55	
Hexachlorobenzene	<0.11	0.11		mg/Kg	. .	11/04/24 15:03	11/05/24 14:55	1
Hexachlorobutadiene	<0.27	0.27		mg/Kg	₩	11/04/24 15:03	11/05/24 14:55	1
Hexachlorocyclopentadiene	<1.1	1.1		mg/Kg	₩	11/04/24 15:03	11/05/24 14:55	1
Hexachloroethane	<0.27	0.27	0.027	mg/Kg	☼	11/04/24 15:03	11/05/24 14:55	1

Eurofins Chicago

Job ID: 500-259381-1

3

5

1

3

11

13

14

Ш

Client: Weston Solutions Inc

Project/Site: IDOT- WO 007 FAI 94 Dolton

Lab Sample ID: 500-259381-7 Client Sample ID: R16-1(4-9)-103124

Date Collected: 10/31/24 10:30 **Matrix: Solid** Percent Solids: 91.1 Date Received: 10/31/24 12:12

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Indeno[1,2,3-cd]pyrene	<0.054		0.054	0.053	mg/Kg	₩	11/04/24 15:03	11/05/24 14:55	1
Isophorone	<0.27		0.27	0.028	mg/Kg	☆	11/04/24 15:03	11/05/24 14:55	1
Naphthalene	< 0.054		0.054	0.0098	mg/Kg	₩	11/04/24 15:03	11/05/24 14:55	1
Nitrobenzene	<0.054		0.054	0.017	mg/Kg	☆	11/04/24 15:03	11/05/24 14:55	1
N-Nitrosodi-n-propylamine	<0.11		0.11	0.011	mg/Kg	☆	11/04/24 15:03	11/05/24 14:55	1
N-Nitrosodiphenylamine	<0.27		0.27	0.032	mg/Kg	☼	11/04/24 15:03	11/05/24 14:55	1
Pentachlorophenol	<1.1		1.1	0.14	mg/Kg	₩	11/04/24 15:03	11/05/24 14:55	1
Phenanthrene	< 0.054		0.054	0.012	mg/Kg	☆	11/04/24 15:03	11/05/24 14:55	1
Phenol	<0.27		0.27	0.023	mg/Kg	☼	11/04/24 15:03	11/05/24 14:55	1
Pyrene	<0.054		0.054	0.015	mg/Kg	₽	11/04/24 15:03	11/05/24 14:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	65		31 - 143				11/04/24 15:03	11/05/24 14:55	1
2-Fluorobiphenyl (Surr)	70		43 - 145				11/04/24 15:03	11/05/24 14:55	1
2-Fluorophenol (Surr)	78		31 - 166				11/04/24 15:03	11/05/24 14:55	1
Nitrobenzene-d5 (Surr)	64		37 - 147				11/04/24 15:03	11/05/24 14:55	1
Phenol-d5 (Surr)	70		30 - 153				11/04/24 15:03	11/05/24 14:55	1
Terphenyl-d14 (Surr)	90		42 - 157				11/04/24 15:03	11/05/24 14:55	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	2200		11	4.3	mg/Kg	₩	11/07/24 09:57	11/08/24 14:20	1
Antimony	<1.1		1.1	0.21	mg/Kg	₩	11/07/24 09:57	11/08/24 14:20	1
Arsenic	3.1		0.53	0.18	mg/Kg	☼	11/07/24 09:57	11/08/24 14:20	1
Barium	8.0		0.53	0.060	mg/Kg	₽	11/07/24 09:57	11/08/24 14:20	1
Beryllium	0.12	J	0.21	0.049	mg/Kg	☼	11/07/24 09:57	11/08/24 14:20	1
Cadmium	<0.11		0.11	0.019	mg/Kg	☼	11/07/24 09:57	11/08/24 14:20	1
Calcium	580	B ^2	11	1.8	mg/Kg	₩	11/07/24 09:57	11/08/24 14:20	1
Chromium	4.8		0.53	0.26	mg/Kg	☼	11/07/24 09:57	11/08/24 14:20	1
Cobalt	2.0		0.26	0.069	mg/Kg	☼	11/07/24 09:57	11/08/24 14:20	1
Copper	3.1		0.53	0.15	mg/Kg	₩	11/07/24 09:57	11/08/24 14:20	1
Iron	3300		11	5.5	mg/Kg	☼	11/07/24 09:57	11/08/24 14:20	1
Lead	4.0		0.26	0.12	mg/Kg	☼	11/07/24 09:57	11/08/24 14:20	1
Magnesium	790		5.3	2.6	mg/Kg	₩	11/07/24 09:57	11/08/24 14:20	1
Manganese	26		0.53	0.077	mg/Kg	☼	11/07/24 09:57	11/08/24 14:20	1
Nickel	4.6		0.53	0.15	mg/Kg	☼	11/07/24 09:57	11/08/24 14:20	1
Potassium	500		26	9.3	mg/Kg	₩	11/07/24 09:57	11/08/24 14:20	1
Selenium	<0.53		0.53	0.31	mg/Kg	☼	11/07/24 09:57	11/08/24 14:20	1
Silver	<0.26		0.26	0.068	mg/Kg	☼	11/07/24 09:57	11/08/24 14:20	1
Sodium	56		53	7.8	mg/Kg	₩	11/07/24 09:57	11/08/24 14:20	1
Thallium	<0.53		0.53	0.26	mg/Kg	₩	11/07/24 09:57	11/08/24 14:20	1
Vanadium	8.0		0.26	0.062	mg/Kg	₩	11/07/24 09:57	11/08/24 14:20	1
Zinc	10		1.1	0.46	mg/Kg	₩	11/07/24 09:57	11/08/24 14:20	1

Method: SW846 6010D	- Metals (ICP) - TCLP							
Analyte	Result Qu	ualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.022 J	0.050	0.010	mg/L		11/08/24 08:48	11/08/24 22:52	1
Barium	0.12 J	0.50	0.050	mg/L		11/08/24 08:48	11/08/24 22:52	1
Beryllium	<0.0040	0.0040	0.0040	mg/L		11/08/24 08:48	11/08/24 22:52	1
Cadmium	<0.0050	0.0050	0.0020	mg/L		11/08/24 08:48	11/08/24 22:52	1

Page 44 of 102

Job ID: 500-259381-1

Eurofins Chicago

Client: Weston Solutions Inc

Project/Site: IDOT- WO 007 FAI 94 Dolton

Client Sample ID: R16-1(4-9)-103124 Lab Sample ID: 500-259381-7

Date Collected: 10/31/24 10:30 **Matrix: Solid** Date Received: 10/31/24 12:12 Percent Solids: 91.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chromium	0.041		0.025	0.010	mg/L		11/08/24 08:48	11/08/24 22:52	
Cobalt	<0.025		0.025	0.010	mg/L		11/08/24 08:48	11/08/24 22:52	
Copper	0.025		0.025	0.010	mg/L		11/08/24 08:48	11/08/24 22:52	
ron	22		0.40	0.20	mg/L		11/08/24 08:48	11/08/24 22:52	
Lead	0.039		0.0075	0.0075	mg/L		11/08/24 08:48	11/08/24 22:52	
Manganese	0.17		0.025	0.010	mg/L		11/08/24 08:48	11/08/24 22:52	
Nickel	0.027		0.025	0.010	mg/L		11/08/24 08:48	11/08/24 22:52	
Selenium	<0.050		0.050	0.020	mg/L		11/08/24 08:48	11/08/24 22:52	
Silver	<0.025		0.025	0.010	mg/L		11/08/24 08:48	11/08/24 22:52	
Zinc	0.064	J	0.50	0.020	mg/L		11/08/24 08:48	11/08/24 22:52	
Method: SW846 6010D - Meta									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Arsenic	<0.050		0.050	0.010	•		11/08/24 08:51	11/08/24 19:30	
Barium	<0.50		0.50	0.050	mg/L		11/08/24 08:51	11/08/24 19:30	
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/08/24 08:51	11/08/24 19:30	
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/08/24 08:51	11/08/24 19:30	
Chromium	0.018	J	0.025	0.010	mg/L		11/08/24 08:51	11/08/24 19:30	
Cobalt	<0.025		0.025	0.010	mg/L		11/08/24 08:51	11/08/24 19:30	
Copper	<0.025		0.025	0.010	mg/L		11/08/24 08:51	11/08/24 19:30	
ron	10		0.40	0.20	mg/L		11/08/24 08:51	11/08/24 19:30	
_ead	0.016		0.0075	0.0075	mg/L		11/08/24 08:51	11/08/24 19:30	
Manganese	0.066		0.025	0.010	mg/L		11/08/24 08:51	11/08/24 19:30	
Nickel	0.011	J	0.025	0.010	mg/L		11/08/24 08:51	11/08/24 19:30	
Selenium	<0.050		0.050	0.020	mg/L		11/08/24 08:51	11/08/24 19:30	
Silver	<0.025		0.025	0.010	mg/L		11/08/24 08:51	11/08/24 19:30	
Zinc	0.028	J	0.50	0.020	mg/L		11/08/24 08:51	11/08/24 19:30	
Method: SW846 7470A - Merc	cury (CVAA)	- TCLP							
Analyte	_	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Mercury	<0.00020		0.00020	0.00020	mg/L		11/08/24 10:40	11/12/24 16:58	
Method: SW846 7470A - Merc						_			
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Mercury	<0.00020		0.00020	0.00020	mg/L		11/08/24 10:40	11/12/24 18:04	
Method: SW846 7471B - Mer		Overlities.	DI	MDI	11:4	_	Dunnanad	Amalomad	Dil E
Analyte		Qualifier	RL 0.018		Unit	— <u>D</u>	Prepared	Analyzed	Dil Fa
Mercury	0.036		0.018	0.0074	ilig/rkg	Q	11/08/24 16:25	11/13/24 10:41	
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
pH (SW846 9045D)	6.7		0.2	0.2	SU			11/01/24 13:48	

Client: Weston Solutions Inc

Project/Site: IDOT- WO 007 FAI 94 Dolton

Lab Sample ID: 500-259381-8 Client Sample ID: R16-2(0-2)-103124

Date Collected: 10/31/24 10:35 **Matrix: Solid** Date Received: 10/31/24 12:12 Percent Solids: 96.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	<0.017		0.017	0.0073	mg/Kg	— <u></u>	11/01/24 09:18	11/04/24 17:11	-
Benzene	< 0.0017		0.0017	0.00055	mg/Kg	₩	11/01/24 09:18	11/04/24 17:11	
Bromodichloromethane	< 0.0017		0.0017	0.00056	mg/Kg	₩	11/01/24 09:18	11/04/24 17:11	
Bromoform	<0.0017		0.0017	0.0010	mg/Kg	₩	11/01/24 09:18	11/04/24 17:11	
Bromomethane	< 0.0044		0.0044	0.0022	mg/Kg	₩	11/01/24 09:18	11/04/24 17:11	
Carbon disulfide	< 0.0044		0.0044	0.00080	mg/Kg	☼	11/01/24 09:18	11/04/24 17:11	
Carbon tetrachloride	<0.0017		0.0017	0.00060	mg/Kg	₩	11/01/24 09:18	11/04/24 17:11	
Chlorobenzene	< 0.0017		0.0017	0.00074	mg/Kg	☼	11/01/24 09:18	11/04/24 17:11	
Chloroethane	< 0.0044		0.0044	0.0014	mg/Kg	₩	11/01/24 09:18	11/04/24 17:11	,
Chloroform	<0.0017		0.0017	0.0013	mg/Kg	₩	11/01/24 09:18	11/04/24 17:11	,
Chloromethane	< 0.0044		0.0044	0.00085	mg/Kg	₩	11/01/24 09:18	11/04/24 17:11	
cis-1,2-Dichloroethene	< 0.0017		0.0017	0.00070	mg/Kg	₩	11/01/24 09:18	11/04/24 17:11	
cis-1,3-Dichloropropene	<0.0017		0.0017	0.00070		;	11/01/24 09:18	11/04/24 17:11	
Dibromochloromethane	< 0.0017		0.0017	0.00081	mg/Kg	₩	11/01/24 09:18	11/04/24 17:11	
1,1-Dichloroethane	< 0.0017		0.0017	0.00066	mg/Kg	₩	11/01/24 09:18	11/04/24 17:11	
1,2-Dichloroethane	<0.0044		0.0044	0.0011		₩	11/01/24 09:18	11/04/24 17:11	
1,1-Dichloroethene	< 0.0017		0.0017	0.00072		₩	11/01/24 09:18	11/04/24 17:11	
1,2-Dichloropropane	< 0.0017		0.0017	0.00045		₩	11/01/24 09:18	11/04/24 17:11	
1,3-Dichloropropene, Total	<0.0017		0.0017	0.00084		₩	11/01/24 09:18	11/04/24 17:11	,
Ethylbenzene	< 0.0017		0.0017	0.00092		₩	11/01/24 09:18	11/04/24 17:11	
2-Hexanone	<0.0044		0.0044	0.0027		₩	11/01/24 09:18	11/04/24 17:11	
Methylene Chloride	<0.0044		0.0044			₩	11/01/24 09:18	11/04/24 17:11	,
Methyl Ethyl Ketone	<0.0044		0.0044		mg/Kg	₩	11/01/24 09:18	11/04/24 17:11	
methyl isobutyl ketone	<0.0044		0.0044	0.0031	mg/Kg	₩	11/01/24 09:18	11/04/24 17:11	
Methyl tert-butyl ether	<0.0017		0.0017	0.00056		∴	11/01/24 09:18	11/04/24 17:11	,
Styrene	<0.0017		0.0017	0.00079	0 0	₩	11/01/24 09:18	11/04/24 17:11	
1,1,2,2-Tetrachloroethane	<0.0017		0.0017	0.00087	0 0	₩	11/01/24 09:18	11/04/24 17:11	
Tetrachloroethene	<0.0017		0.0017	0.00098		∴	11/01/24 09:18	11/04/24 17:11	
Toluene	<0.0017		0.0017	0.00035	0 0		11/01/24 09:18	11/04/24 17:11	
trans-1,2-Dichloroethene	<0.0017		0.0017	0.00066	0 0	₩	11/01/24 09:18	11/04/24 17:11	
trans-1,3-Dichloropropene	<0.0017		0.0017	0.00084		∴	11/01/24 09:18	11/04/24 17:11	
1,1,1-Trichloroethane	<0.0017		0.0017			₩	11/01/24 09:18	11/04/24 17:11	
1,1,2-Trichloroethane	<0.0017		0.0017	0.00065	0 0	₩	11/01/24 09:18	11/04/24 17:11	
Trichloroethene	<0.0017		0.0017		mg/Kg		11/01/24 09:18	11/04/24 17:11	
Vinyl chloride	<0.0017		0.0017	0.00071		Ť Ť	11/01/24 09:18	11/04/24 17:11	
Xylenes, Total	<0.0035		0.0035	0.00060	0 0	≎	11/01/24 09:18		,
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	108		75 - 131				11/01/24 09:18		
Dibromofluoromethane (Surr)	106		75 - 126					11/04/24 17:11	
1,2-Dichloroethane-d4 (Surr)	98		70 - 134					11/04/24 17:11	
Toluene-d8 (Surr)	100		75 - 124					11/04/24 17:11	

Method: SW846 8270E - Semivolatile Organic Compounds (GC/MS)
--

Michiga. Offoro 027 0L - Ocili	ivolatile Org	arne compo	unus (COn	110)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	<0.25		0.25	0.036	mg/Kg	<u></u>	11/04/24 15:03	11/05/24 15:20	1
1,2-Dichlorobenzene	<0.25		0.25	0.021	mg/Kg	₩	11/04/24 15:03	11/05/24 15:20	1
1,3-Dichlorobenzene	<0.25		0.25	0.023	mg/Kg	₩	11/04/24 15:03	11/05/24 15:20	1
1,4-Dichlorobenzene	<0.25		0.25	0.024	mg/Kg	₽	11/04/24 15:03	11/05/24 15:20	1
2,2'-oxybis[1-chloropropane]	< 0.25		0.25	0.036	mg/Kg	☼	11/04/24 15:03	11/05/24 15:20	1

Eurofins Chicago

Page 46 of 102

Client: Weston Solutions Inc

Project/Site: IDOT- WO 007 FAI 94 Dolton

Client Sample ID: R16-2(0-2)-103124 Lab Sample ID: 500-259381-8

Date Collected: 10/31/24 10:35

Date Received: 10/31/24 12:12

Matrix: Solid

Percent Solids: 96.0

Method: SW846 8270E - Sem Analyte	Result Qualifier	ŘL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	<0.50	0.50	0.019	mg/Kg	— <u>-</u>	11/04/24 15:03	11/05/24 15:20	1
2,4,6-Trichlorophenol	<0.50	0.50		mg/Kg		11/04/24 15:03	11/05/24 15:20	1
2,4-Dichlorophenol	<0.50	0.50		mg/Kg	₩	11/04/24 15:03	11/05/24 15:20	1
2,4-Dimethylphenol	<0.50	0.50		mg/Kg	₩	11/04/24 15:03	11/05/24 15:20	1
2,4-Dinitrophenol	<1.0	1.0		mg/Kg		11/04/24 15:03	11/05/24 15:20	1
2,4-Dinitrotoluene	<0.25	0.25	0.029	mg/Kg	₩	11/04/24 15:03	11/05/24 15:20	1
2,6-Dinitrotoluene	<0.25	0.25		mg/Kg	₩	11/04/24 15:03	11/05/24 15:20	1
2-Chloronaphthalene	<0.25	0.25		mg/Kg		11/04/24 15:03	11/05/24 15:20	
2-Chlorophenol	<0.25	0.25		mg/Kg	 	11/04/24 15:03	11/05/24 15:20	1
2-Methylnaphthalene	<0.10	0.23		mg/Kg		11/04/24 15:03	11/05/24 15:20	1
2-Methylphenol	<0.25	0.25		mg/Kg		11/04/24 15:03	11/05/24 15:20	
2-Nitroaniline	<0.25	0.25		mg/Kg	☆	11/04/24 15:03	11/05/24 15:20	1
2-Nitrophenol	<0.50	0.50		mg/Kg	☆	11/04/24 15:03	11/05/24 15:20	1
3 & 4 Methylphenol	<0.25	0.25		mg/Kg	¥. ☆	11/04/24 15:03	11/05/24 15:20	
3,3'-Dichlorobenzidine	<0.25	0.25	0.037	mg/Kg		11/04/24 15:03	11/05/24 15:20	1
3,3 -Dichlorobenzidine 3-Nitroaniline	<0.50	0.25			<u>*</u>			
				mg/Kg	· · · · ÷	11/04/24 15:03	11/05/24 15:20	
4,6-Dinitro-2-methylphenol	<1.0	1.0		mg/Kg	₩.	11/04/24 15:03	11/05/24 15:20	1
4-Bromophenyl phenyl ether	<0.25	0.25		0 0	*	11/04/24 15:03	11/05/24 15:20	1
4-Chloro-3-methylphenol	<0.50	0.50	0.020	mg/Kg	<u>.</u>	11/04/24 15:03	11/05/24 15:20	1
4-Chloroaniline	<1.0	1.0		mg/Kg	☼	11/04/24 15:03	11/05/24 15:20	Ź
4-Chlorophenyl phenyl ether	<0.25	0.25		mg/Kg	☼	11/04/24 15:03	11/05/24 15:20	1
4-Nitroaniline	<0.50	0.50		mg/Kg	.	11/04/24 15:03	11/05/24 15:20	1
4-Nitrophenol	<1.0	1.0		mg/Kg	₩	11/04/24 15:03	11/05/24 15:20	1
Acenaphthene	<0.050	0.050		mg/Kg	₩	11/04/24 15:03	11/05/24 15:20	1
Acenaphthylene	<0.050	0.050	0.0086		.	11/04/24 15:03	11/05/24 15:20	1
Anthracene	<0.050	0.050		mg/Kg	₩	11/04/24 15:03	11/05/24 15:20	1
Benzo[a]anthracene	<0.050	0.050		mg/Kg	₩	11/04/24 15:03	11/05/24 15:20	1
Benzo[a]pyrene	<0.050	0.050	0.049	mg/Kg		11/04/24 15:03	11/05/24 15:20	1
Benzo[b]fluoranthene	<0.050	0.050	0.048	mg/Kg	₩	11/04/24 15:03	11/05/24 15:20	,
Benzo[g,h,i]perylene	<0.050	0.050	0.011	mg/Kg	₩	11/04/24 15:03	11/05/24 15:20	,
Benzo[k]fluoranthene	<0.050	0.050	0.019	mg/Kg	☼	11/04/24 15:03	11/05/24 15:20	1
Bis(2-chloroethoxy)methane	<0.25	0.25	0.019	mg/Kg	☼	11/04/24 15:03	11/05/24 15:20	1
Bis(2-chloroethyl)ether	<0.25	0.25	0.023	mg/Kg	☼	11/04/24 15:03	11/05/24 15:20	1
Bis(2-ethylhexyl) phthalate	<0.25 *-	0.25	0.20	mg/Kg	☼	11/04/24 15:03	11/05/24 15:20	1
Butyl benzyl phthalate	<0.25	0.25	0.025	mg/Kg	₩	11/04/24 15:03	11/05/24 15:20	1
Carbazole	<0.25	0.25	0.020	mg/Kg	☼	11/04/24 15:03	11/05/24 15:20	1
Chrysene	<0.050	0.050	0.013	mg/Kg	₩	11/04/24 15:03	11/05/24 15:20	1
Dibenz(a,h)anthracene	<0.050	0.050	0.050	mg/Kg	₩	11/04/24 15:03	11/05/24 15:20	1
Dibenzofuran	<0.25	0.25	0.018	mg/Kg	☼	11/04/24 15:03	11/05/24 15:20	1
Diethyl phthalate	<0.25	0.25	0.023	mg/Kg	☼	11/04/24 15:03	11/05/24 15:20	1
Dimethyl phthalate	<0.25	0.25	0.011	mg/Kg	₩	11/04/24 15:03	11/05/24 15:20	1
Di-n-butyl phthalate	<0.25 *-	0.25		mg/Kg	₩	11/04/24 15:03	11/05/24 15:20	1
Di-n-octyl phthalate	<0.50	0.50		mg/Kg	₩	11/04/24 15:03	11/05/24 15:20	1
Fluoranthene	<0.050	0.050		mg/Kg		11/04/24 15:03	11/05/24 15:20	1
Fluorene	<0.050	0.050		mg/Kg	₩	11/04/24 15:03	11/05/24 15:20	1
Hexachlorobenzene	<0.10	0.10	0.0097		₩	11/04/24 15:03	11/05/24 15:20	1
Hexachlorobutadiene	<0.25	0.25		mg/Kg		11/04/24 15:03	11/05/24 15:20	1
Hexachlorocyclopentadiene	<1.0	1.0		mg/Kg		11/04/24 15:03	11/05/24 15:20	1
Hexachloroethane	<0.25	0.25	0.025	0 0		11/04/24 15:03	11/05/24 15:20	1

Eurofins Chicago

Job ID: 500-259381-1

_

3

5

7

9

11

13

10

Client: Weston Solutions Inc

Project/Site: IDOT- WO 007 FAI 94 Dolton

Client Sample ID: R16-2(0-2)-103124 Lab Sample ID: 500-259381-8

Date Collected: 10/31/24 10:35

Date Received: 10/31/24 12:12

Matrix: Solid
Percent Solids: 96.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Indeno[1,2,3-cd]pyrene	<0.050		0.050	0.049	mg/Kg	₩	11/04/24 15:03	11/05/24 15:20	1
Isophorone	<0.25		0.25	0.026	mg/Kg	₩	11/04/24 15:03	11/05/24 15:20	1
Naphthalene	< 0.050		0.050	0.0091	mg/Kg	☆	11/04/24 15:03	11/05/24 15:20	1
Nitrobenzene	<0.050		0.050	0.016	mg/Kg	₩	11/04/24 15:03	11/05/24 15:20	1
N-Nitrosodi-n-propylamine	<0.10		0.10	0.010	mg/Kg	₩	11/04/24 15:03	11/05/24 15:20	1
N-Nitrosodiphenylamine	<0.25		0.25	0.030	mg/Kg	☼	11/04/24 15:03	11/05/24 15:20	1
Pentachlorophenol	<1.0		1.0	0.13	mg/Kg	₩	11/04/24 15:03	11/05/24 15:20	1
Phenanthrene	< 0.050		0.050	0.011	mg/Kg	☆	11/04/24 15:03	11/05/24 15:20	1
Phenol	<0.25		0.25	0.022	mg/Kg	☼	11/04/24 15:03	11/05/24 15:20	1
Pyrene	<0.050		0.050	0.014	mg/Kg	₽	11/04/24 15:03	11/05/24 15:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	60		31 - 143				11/04/24 15:03	11/05/24 15:20	1
2-Fluorobiphenyl (Surr)	79		43 - 145				11/04/24 15:03	11/05/24 15:20	1
2-Fluorophenol (Surr)	99		31 - 166				11/04/24 15:03	11/05/24 15:20	1
Nitrobenzene-d5 (Surr)	79		37 - 147				11/04/24 15:03	11/05/24 15:20	1
Phenol-d5 (Surr)	84		30 - 153				11/04/24 15:03	11/05/24 15:20	1
Terphenyl-d14 (Surr)	94		42 - 157				11/04/24 15:03	11/05/24 15:20	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	2800		9.9	4.0	mg/Kg	₩	11/07/24 09:57	11/08/24 14:24	1
Antimony	<0.99		0.99	0.19	mg/Kg	₩	11/07/24 09:57	11/08/24 14:24	1
Arsenic	1.6		0.49	0.17	mg/Kg	₩	11/07/24 09:57	11/08/24 14:24	1
Barium	12		0.49	0.056	mg/Kg	₩	11/07/24 09:57	11/08/24 14:24	1
Beryllium	0.089	J	0.20	0.046	mg/Kg	₩	11/07/24 09:57	11/08/24 14:24	1
Cadmium	<0.099		0.099	0.018	mg/Kg	₩	11/07/24 09:57	11/08/24 14:24	1
Calcium	530	B ^2	9.9	1.7	mg/Kg	₩	11/07/24 09:57	11/08/24 14:24	1
Chromium	2.9		0.49	0.24	mg/Kg	₩	11/07/24 09:57	11/08/24 14:24	1
Cobalt	1.3		0.25	0.065	mg/Kg	₩	11/07/24 09:57	11/08/24 14:24	1
Copper	1.9		0.49	0.14	mg/Kg	₩	11/07/24 09:57	11/08/24 14:24	1
Iron	3000		9.9	5.1	mg/Kg	₩	11/07/24 09:57	11/08/24 14:24	1
Lead	3.3		0.25	0.11	mg/Kg	₩	11/07/24 09:57	11/08/24 14:24	1
Magnesium	460		4.9	2.4	mg/Kg	₩	11/07/24 09:57	11/08/24 14:24	1
Manganese	15		0.49	0.072	mg/Kg	₩	11/07/24 09:57	11/08/24 14:24	1
Nickel	2.2		0.49	0.14	mg/Kg	₩	11/07/24 09:57	11/08/24 14:24	1
Potassium	200		25	8.7	mg/Kg	₩	11/07/24 09:57	11/08/24 14:24	1
Selenium	<0.49		0.49	0.29	mg/Kg	₩	11/07/24 09:57	11/08/24 14:24	1
Silver	<0.25		0.25	0.064	mg/Kg	₩	11/07/24 09:57	11/08/24 14:24	1
Sodium	76		49	7.3	mg/Kg	₩	11/07/24 09:57	11/08/24 14:24	1
Thallium	<0.49		0.49	0.25	mg/Kg	₩	11/07/24 09:57	11/08/24 14:24	1
Vanadium	4.3		0.25	0.058	mg/Kg	₩	11/07/24 09:57	11/08/24 14:24	1
Zinc	14		0.99	0.43	mg/Kg	₩	11/07/24 09:57	11/08/24 14:24	1

Method: SW846 6010D - Met	als (ICP) - TCLP							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050	0.050	0.010	mg/L		11/08/24 08:48	11/08/24 22:56	1
Barium	0.22 J	0.50	0.050	mg/L		11/08/24 08:48	11/08/24 22:56	1
Beryllium	<0.0040	0.0040	0.0040	mg/L		11/08/24 08:48	11/08/24 22:56	1
Cadmium	<0.0050	0.0050	0.0020	mg/L		11/08/24 08:48	11/08/24 22:56	1

Eurofins Chicago

Job ID: 500-259381-1

2

4

6

Я

4.0

1 4

12

14

13

Client: Weston Solutions Inc

Project/Site: IDOT- WO 007 FAI 94 Dolton

Lab Sample ID: 500-259381-8 Client Sample ID: R16-2(0-2)-103124

Date Collected: 10/31/24 10:35 **Matrix: Solid** Date Received: 10/31/24 12:12 Percent Solids: 96.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chromium	0.034		0.025	0.010	mg/L		11/08/24 08:48	11/08/24 22:56	
Cobalt	< 0.025		0.025	0.010	mg/L		11/08/24 08:48	11/08/24 22:56	
Copper	0.028		0.025	0.010	mg/L		11/08/24 08:48	11/08/24 22:56	
ron	23		0.40	0.20	mg/L		11/08/24 08:48	11/08/24 22:56	
_ead	0.034		0.0075	0.0075	mg/L		11/08/24 08:48	11/08/24 22:56	
Manganese	0.18		0.025	0.010	mg/L		11/08/24 08:48	11/08/24 22:56	
lickel	0.026		0.025	0.010	mg/L		11/08/24 08:48	11/08/24 22:56	
Selenium	< 0.050		0.050	0.020	mg/L		11/08/24 08:48	11/08/24 22:56	
Silver	<0.025		0.025	0.010	mg/L		11/08/24 08:48	11/08/24 22:56	
Zinc	0.20	J	0.50	0.020	mg/L		11/08/24 08:48	11/08/24 22:56	
Method: SW846 6010D - Metals	(ICP) - SP	LP East							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Arsenic	<0.050		0.050	0.010	mg/L		11/08/24 08:51	11/08/24 19:35	
Barium	0.14	J	0.50	0.050	mg/L		11/08/24 08:51	11/08/24 19:35	
Beryllium	< 0.0040		0.0040	0.0040	mg/L		11/08/24 08:51	11/08/24 19:35	
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/08/24 08:51	11/08/24 19:35	
Chromium	0.034		0.025	0.010	mg/L		11/08/24 08:51	11/08/24 19:35	
Cobalt	0.013	J	0.025	0.010	mg/L		11/08/24 08:51	11/08/24 19:35	
Copper	0.022	J	0.025	0.010	mg/L		11/08/24 08:51	11/08/24 19:35	
ron	20		0.40	0.20	mg/L		11/08/24 08:51	11/08/24 19:35	
.ead	0.028		0.0075	0.0075	mg/L		11/08/24 08:51	11/08/24 19:35	
Manganese	0.10		0.025	0.010	mg/L		11/08/24 08:51	11/08/24 19:35	
Nickel	0.024	J	0.025	0.010	mg/L		11/08/24 08:51	11/08/24 19:35	
Selenium	< 0.050		0.050	0.020	mg/L		11/08/24 08:51	11/08/24 19:35	
Silver	<0.025		0.025	0.010	mg/L		11/08/24 08:51	11/08/24 19:35	
Zinc	0.14	J	0.50	0.020	mg/L		11/08/24 08:51	11/08/24 19:35	
Method: SW846 7470A - Mercur	y (CVAA)	- TCLP							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Mercury	<0.00020		0.00020	0.00020	mg/L		11/08/24 10:40	11/12/24 17:01	
Method: SW846 7470A - Mercur	y (CVAA)	- SPLP East							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Mercury	<0.00020		0.00020	0.00020	mg/L		11/08/24 10:40	11/12/24 18:07	
Method: SW846 7471B - Mercur									
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil F
Mercury	0.022		0.016	0.0066	mg/Kg	₩	11/08/24 16:25	11/13/24 10:43	
General Chemistry									
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil F
pH (SW846 9045D)	7.6		0.2	0.2	SU			11/01/24 13:50	

Client: Weston Solutions Inc

Project/Site: IDOT- WO 007 FAI 94 Dolton

Lab Sample ID: 500-259381-9 Client Sample ID: R16-3(0-2)-103124

Date Collected: 10/31/24 10:40 **Matrix: Solid** Date Received: 10/31/24 12:12 Percent Solids: 97.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Acetone	<0.020		0.020	0.0083	mg/Kg	<u></u>	11/01/24 09:18	11/04/24 17:37	
Benzene	<0.0020		0.0020	0.00063	mg/Kg	₽	11/01/24 09:18	11/04/24 17:37	
Bromodichloromethane	<0.0020		0.0020	0.00064	mg/Kg	₩	11/01/24 09:18	11/04/24 17:37	
Bromoform	<0.0020		0.0020	0.0012	mg/Kg	₩	11/01/24 09:18	11/04/24 17:37	
Bromomethane	< 0.0050		0.0050	0.0024	mg/Kg	₩	11/01/24 09:18	11/04/24 17:37	
Carbon disulfide	< 0.0050		0.0050	0.00092	mg/Kg	₩	11/01/24 09:18	11/04/24 17:37	
Carbon tetrachloride	<0.0020		0.0020	0.00068	mg/Kg	₩	11/01/24 09:18	11/04/24 17:37	
Chlorobenzene	<0.0020		0.0020	0.00084	mg/Kg	₩	11/01/24 09:18	11/04/24 17:37	
Chloroethane	< 0.0050		0.0050	0.0016	mg/Kg	₽	11/01/24 09:18	11/04/24 17:37	
Chloroform	<0.0020		0.0020	0.0014	mg/Kg	₩	11/01/24 09:18	11/04/24 17:37	
Chloromethane	< 0.0050		0.0050	0.00096	mg/Kg	₩	11/01/24 09:18	11/04/24 17:37	
cis-1,2-Dichloroethene	<0.0020		0.0020	0.00080	mg/Kg	₩	11/01/24 09:18	11/04/24 17:37	
cis-1,3-Dichloropropene	<0.0020		0.0020	0.00080	mg/Kg	₩	11/01/24 09:18	11/04/24 17:37	
Dibromochloromethane	<0.0020		0.0020	0.00092	mg/Kg	₩	11/01/24 09:18	11/04/24 17:37	
1,1-Dichloroethane	<0.0020		0.0020	0.00075	mg/Kg	₽	11/01/24 09:18	11/04/24 17:37	
1,2-Dichloroethane	<0.0050		0.0050	0.0013	mg/Kg	₩	11/01/24 09:18	11/04/24 17:37	
1,1-Dichloroethene	< 0.0020		0.0020	0.00082	mg/Kg	₩	11/01/24 09:18	11/04/24 17:37	
1,2-Dichloropropane	< 0.0020		0.0020	0.00051	mg/Kg	₩	11/01/24 09:18	11/04/24 17:37	
1,3-Dichloropropene, Total	<0.0020		0.0020	0.00095	mg/Kg	₩	11/01/24 09:18	11/04/24 17:37	
Ethylbenzene	< 0.0020		0.0020	0.0010	mg/Kg	₩	11/01/24 09:18	11/04/24 17:37	
2-Hexanone	< 0.0050		0.0050	0.0030	mg/Kg	₩	11/01/24 09:18	11/04/24 17:37	
Methylene Chloride	<0.0050		0.0050	0.0021	mg/Kg	₩	11/01/24 09:18	11/04/24 17:37	
Methyl Ethyl Ketone	< 0.0050		0.0050	0.0022	mg/Kg	₩	11/01/24 09:18	11/04/24 17:37	
methyl isobutyl ketone	< 0.0050		0.0050	0.0035	mg/Kg	₩	11/01/24 09:18	11/04/24 17:37	
Methyl tert-butyl ether	<0.0020		0.0020	0.00064	mg/Kg	₩	11/01/24 09:18	11/04/24 17:37	
Styrene	< 0.0020		0.0020	0.00089	mg/Kg	₩	11/01/24 09:18	11/04/24 17:37	
1,1,2,2-Tetrachloroethane	< 0.0020		0.0020	0.00099	mg/Kg	₩	11/01/24 09:18	11/04/24 17:37	
Tetrachloroethene	<0.0020		0.0020	0.0011	mg/Kg	₩	11/01/24 09:18	11/04/24 17:37	
Toluene	< 0.0020		0.0020	0.00040	mg/Kg	₩	11/01/24 09:18	11/04/24 17:37	
trans-1,2-Dichloroethene	< 0.0020		0.0020	0.00075	mg/Kg	₩	11/01/24 09:18	11/04/24 17:37	
trans-1,3-Dichloropropene	<0.0020		0.0020	0.00095	mg/Kg	₩	11/01/24 09:18	11/04/24 17:37	
1,1,1-Trichloroethane	< 0.0020		0.0020	0.00080	mg/Kg	₩	11/01/24 09:18	11/04/24 17:37	
1,1,2-Trichloroethane	< 0.0020		0.0020	0.00074	mg/Kg	₩	11/01/24 09:18	11/04/24 17:37	
Trichloroethene	<0.0020		0.0020	0.00054	mg/Kg	₩	11/01/24 09:18	11/04/24 17:37	
Vinyl chloride	<0.0020		0.0020	0.00081	mg/Kg	₩	11/01/24 09:18	11/04/24 17:37	
Xylenes, Total	<0.0040		0.0040	0.00068	mg/Kg	₽	11/01/24 09:18	11/04/24 17:37	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	110		75 - 131				11/01/24 09:18	11/04/24 17:37	
Dibromofluoromethane (Surr)	107		75 - 126				11/01/24 09:18	11/04/24 17:37	
1,2-Dichloroethane-d4 (Surr)	104		70 - 134				11/01/24 09:18	11/04/24 17:37	
Toluene-d8 (Surr)	101		75 - 124				11/01/24 09:18	11/04/24 17:37	

Method: SW846 8270E - Semivolatile Organic Compounds (GC/MS)
--

Michiga. Offoro 027 0L - Ocili	ivolatile Org	arne compo	unus (Gon	110)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	<0.26		0.26	0.037	mg/Kg	<u></u>	11/04/24 15:03	11/05/24 15:46	1
1,2-Dichlorobenzene	<0.26		0.26	0.021	mg/Kg	₩	11/04/24 15:03	11/05/24 15:46	1
1,3-Dichlorobenzene	<0.26		0.26	0.023	mg/Kg	₩	11/04/24 15:03	11/05/24 15:46	1
1,4-Dichlorobenzene	<0.26		0.26	0.024	mg/Kg	₽	11/04/24 15:03	11/05/24 15:46	1
2,2'-oxybis[1-chloropropane]	<0.26		0.26	0.037	mg/Kg	☼	11/04/24 15:03	11/05/24 15:46	1

Page 50 of 102

Client: Weston Solutions Inc

Project/Site: IDOT- WO 007 FAI 94 Dolton

Client Sample ID: R16-3(0-2)-103124 Lab Sample ID: 500-259381-9

Date Collected: 10/31/24 10:40

Matrix: Solid

Date Received: 10/31/24 12:12

Percent Solids: 97.2

Method: SW846 8270E - Sem Analyte	Result Qu	-	MDL		D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	<0.51	0.51	0.019	mg/Kg	— <u></u>	11/04/24 15:03	11/05/24 15:46	1
2,4,6-Trichlorophenol	<0.51	0.51		mg/Kg		11/04/24 15:03	11/05/24 15:46	1
2,4-Dichlorophenol	<0.51	0.51		mg/Kg	₩	11/04/24 15:03	11/05/24 15:46	1
2,4-Dimethylphenol	<0.51	0.51		mg/Kg	₩	11/04/24 15:03	11/05/24 15:46	1
2,4-Dinitrophenol	<1.0	1.0		mg/Kg		11/04/24 15:03	11/05/24 15:46	1
2,4-Dinitrotoluene	<0.26	0.26		mg/Kg	☆	11/04/24 15:03	11/05/24 15:46	1
2,6-Dinitrotoluene	<0.26	0.26		mg/Kg		11/04/24 15:03	11/05/24 15:46	1
2-Chloronaphthalene	<0.26	0.26		mg/Kg		11/04/24 15:03	11/05/24 15:46	
2-Chlorophenol	<0.26	0.26		mg/Kg		11/04/24 15:03	11/05/24 15:46	1
2-Methylnaphthalene	0.019 J	0.10		mg/Kg	~ \$	11/04/24 15:03	11/05/24 15:46	. 1
2-Methylphenol	<0.26	0.26		mg/Kg		11/04/24 15:03	11/05/24 15:46	
2-Nitroaniline	<0.26	0.26		mg/Kg	₩	11/04/24 15:03	11/05/24 15:46	1
2-Nitrophenol	<0.51	0.51		mg/Kg	¥	11/04/24 15:03	11/05/24 15:46	1
3 & 4 Methylphenol	<0.26	0.31		mg/Kg		11/04/24 15:03	11/05/24 15:46	' 1
3,3'-Dichlorobenzidine	<0.26	0.26		mg/Kg	¥	11/04/24 15:03	11/05/24 15:46	1
3-Nitroaniline	<0.51	0.51		mg/Kg	¥	11/04/24 15:03	11/05/24 15:46	
	<1.0	1.0					11/05/24 15:46	1
4,6-Dinitro-2-methylphenol				mg/Kg	₩.	11/04/24 15:03		1
4-Bromophenyl phenyl ether	<0.26	0.26		mg/Kg	*	11/04/24 15:03	11/05/24 15:46	1
4-Chloro-3-methylphenol	<0.51	0.51		mg/Kg	<u>.</u> .	11/04/24 15:03	11/05/24 15:46	1
4-Chloroaniline	<1.0	1.0		mg/Kg	*	11/04/24 15:03	11/05/24 15:46	1
4-Chlorophenyl phenyl ether	<0.26	0.26		mg/Kg	₩	11/04/24 15:03	11/05/24 15:46	1
4-Nitroaniline	<0.51	0.51		mg/Kg	.	11/04/24 15:03	11/05/24 15:46	1
4-Nitrophenol	<1.0	1.0		mg/Kg	☼	11/04/24 15:03	11/05/24 15:46	1
Acenaphthene	0.11	0.051		mg/Kg	₩	11/04/24 15:03	11/05/24 15:46	1
Acenaphthylene	<0.051	0.051	0.0087		.	11/04/24 15:03	11/05/24 15:46	1
Anthracene	0.46	0.051		mg/Kg	₩	11/04/24 15:03	11/05/24 15:46	1
Benzo[a]anthracene	1.1	0.051		mg/Kg	₩	11/04/24 15:03	11/05/24 15:46	1
Benzo[a]pyrene	1.0	0.051		mg/Kg		11/04/24 15:03	11/05/24 15:46	1
Benzo[b]fluoranthene	1.1	0.051	0.049	mg/Kg	₩	11/04/24 15:03	11/05/24 15:46	1
Benzo[g,h,i]perylene	0.50	0.051	0.011	mg/Kg	₩	11/04/24 15:03	11/05/24 15:46	1
Benzo[k]fluoranthene	0.56	0.051	0.019	mg/Kg	₽	11/04/24 15:03	11/05/24 15:46	1
Bis(2-chloroethoxy)methane	<0.26	0.26	0.019	mg/Kg	₩	11/04/24 15:03	11/05/24 15:46	1
Bis(2-chloroethyl)ether	<0.26	0.26	0.024	mg/Kg	₩	11/04/24 15:03	11/05/24 15:46	1
Bis(2-ethylhexyl) phthalate	<0.26 *-	0.26	0.20	mg/Kg	₩	11/04/24 15:03	11/05/24 15:46	1
Butyl benzyl phthalate	<0.26	0.26	0.025	mg/Kg	₩	11/04/24 15:03	11/05/24 15:46	1
Carbazole	0.064 J	0.26	0.020	mg/Kg	₩	11/04/24 15:03	11/05/24 15:46	1
Chrysene	0.91	0.051	0.013	mg/Kg	₩	11/04/24 15:03	11/05/24 15:46	1
Dibenz(a,h)anthracene	0.20	0.051	0.051	mg/Kg	≎	11/04/24 15:03	11/05/24 15:46	1
Dibenzofuran	0.064 J	0.26	0.018	mg/Kg	₩	11/04/24 15:03	11/05/24 15:46	1
Diethyl phthalate	<0.26	0.26	0.023	mg/Kg	₩	11/04/24 15:03	11/05/24 15:46	1
Dimethyl phthalate	<0.26	0.26	0.011	mg/Kg		11/04/24 15:03	11/05/24 15:46	1
Di-n-butyl phthalate	<0.26 *-	0.26		mg/Kg	₽	11/04/24 15:03	11/05/24 15:46	1
Di-n-octyl phthalate	<0.51	0.51		mg/Kg	₽	11/04/24 15:03	11/05/24 15:46	1
Fluoranthene	2.2	0.051		mg/Kg		11/04/24 15:03	11/05/24 15:46	1
Fluorene	0.15	0.051		mg/Kg	₩	11/04/24 15:03	11/05/24 15:46	1
Hexachlorobenzene	<0.10	0.10	0.0098		₽	11/04/24 15:03	11/05/24 15:46	1
Hexachlorobutadiene	<0.26	0.26		mg/Kg		11/04/24 15:03	11/05/24 15:46	
Hexachlorocyclopentadiene	<1.0	1.0		mg/Kg		11/04/24 15:03	11/05/24 15:46	. 1
Hexachloroethane	<0.26	0.26		mg/Kg	₩	11/04/24 15:03	11/05/24 15:46	1

Eurofins Chicago

3

Job ID: 500-259381-1

_

8

10

12

14

<u>l</u>k

Client: Weston Solutions Inc

Project/Site: IDOT- WO 007 FAI 94 Dolton

Lab Sample ID: 500-259381-9 Client Sample ID: R16-3(0-2)-103124

Date Collected: 10/31/24 10:40 **Matrix: Solid** Date Received: 10/31/24 12:12 Percent Solids: 97.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Indeno[1,2,3-cd]pyrene	0.67		0.051	0.050	mg/Kg	₩	11/04/24 15:03	11/05/24 15:46	1
Isophorone	<0.26		0.26	0.026	mg/Kg	₩	11/04/24 15:03	11/05/24 15:46	1
Naphthalene	0.015	J	0.051	0.0092	mg/Kg	☆	11/04/24 15:03	11/05/24 15:46	1
Nitrobenzene	<0.051		0.051	0.016	mg/Kg	₩	11/04/24 15:03	11/05/24 15:46	1
N-Nitrosodi-n-propylamine	<0.10		0.10	0.010	mg/Kg	☼	11/04/24 15:03	11/05/24 15:46	1
N-Nitrosodiphenylamine	<0.26		0.26	0.030	mg/Kg	₩	11/04/24 15:03	11/05/24 15:46	1
Pentachlorophenol	<1.0		1.0	0.13	mg/Kg	₩	11/04/24 15:03	11/05/24 15:46	1
Phenanthrene	1.6		0.051	0.011	mg/Kg	☼	11/04/24 15:03	11/05/24 15:46	1
Phenol	<0.26		0.26	0.022	mg/Kg	₩	11/04/24 15:03	11/05/24 15:46	1
Pyrene	2.1		0.051	0.014	mg/Kg	₽	11/04/24 15:03	11/05/24 15:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	57		31 - 143				11/04/24 15:03	11/05/24 15:46	1
2-Fluorobiphenyl (Surr)	66		43 - 145				11/04/24 15:03	11/05/24 15:46	1
2-Fluorophenol (Surr)	71		31 - 166				11/04/24 15:03	11/05/24 15:46	1
Nitrobenzene-d5 (Surr)	58		37 - 147				11/04/24 15:03	11/05/24 15:46	1
Phenol-d5 (Surr)	65		30 - 153				11/04/24 15:03	11/05/24 15:46	1
Terphenyl-d14 (Surr)	87		42 - 157				11/04/24 15:03	11/05/24 15:46	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	3100		9.7	4.0	mg/Kg	☆	11/07/24 09:57	11/08/24 14:28	1
Antimony	<0.97		0.97	0.19	mg/Kg	☼	11/07/24 09:57	11/08/24 14:28	1
Arsenic	2.7		0.49	0.17	mg/Kg	₩	11/07/24 09:57	11/08/24 14:28	1
Barium	17		0.49	0.055	mg/Kg	₩	11/07/24 09:57	11/08/24 14:28	1
Beryllium	0.15	J	0.19	0.045	mg/Kg	☼	11/07/24 09:57	11/08/24 14:28	1
Cadmium	0.079	J	0.097	0.017	mg/Kg	☼	11/07/24 09:57	11/08/24 14:28	1
Calcium	4300	B ^2	9.7	1.6	mg/Kg	☼	11/07/24 09:57	11/08/24 14:28	1
Chromium	4.7		0.49	0.24	mg/Kg	☼	11/07/24 09:57	11/08/24 14:28	1
Cobalt	1.8		0.24	0.064	mg/Kg	☼	11/07/24 09:57	11/08/24 14:28	1
Copper	4.4		0.49	0.14	mg/Kg	☼	11/07/24 09:57	11/08/24 14:28	1
Iron	5700		9.7	5.0	mg/Kg	☼	11/07/24 09:57	11/08/24 14:28	1
Lead	32		0.24	0.11	mg/Kg	☼	11/07/24 09:57	11/08/24 14:28	1
Magnesium	2000		4.9	2.4	mg/Kg	₩	11/07/24 09:57	11/08/24 14:28	1
Manganese	69		0.49	0.070	mg/Kg	☼	11/07/24 09:57	11/08/24 14:28	1
Nickel	3.7		0.49	0.14	mg/Kg	☼	11/07/24 09:57	11/08/24 14:28	1
Potassium	270		24	8.6	mg/Kg	₩	11/07/24 09:57	11/08/24 14:28	1
Selenium	<0.49		0.49	0.29	mg/Kg	☼	11/07/24 09:57	11/08/24 14:28	1
Silver	<0.24		0.24	0.063	mg/Kg	☼	11/07/24 09:57	11/08/24 14:28	1
Sodium	170		49	7.2	mg/Kg	₩	11/07/24 09:57	11/08/24 14:28	1
Thallium	0.30	J	0.49	0.24	mg/Kg	☼	11/07/24 09:57	11/08/24 14:28	1
Vanadium	6.0		0.24	0.057	mg/Kg	☼	11/07/24 09:57	11/08/24 14:28	1
Zinc	32		0.97	0.43	mg/Kg	₩	11/07/24 09:57	11/08/24 14:28	1

Method: SW846 6010D -	- Metals (ICP) - TCLP							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050	0.050	0.010	mg/L		11/08/24 08:48	11/08/24 23:01	1
Barium	0.44 J	0.50	0.050	mg/L		11/08/24 08:48	11/08/24 23:01	1
Beryllium	<0.0040	0.0040	0.0040	mg/L		11/08/24 08:48	11/08/24 23:01	1
Cadmium	0.0033 J	0.0050	0.0020	mg/L		11/08/24 08:48	11/08/24 23:01	1

Client: Weston Solutions Inc

Project/Site: IDOT- WO 007 FAI 94 Dolton

Lab Sample ID: 500-259381-9 Client Sample ID: R16-3(0-2)-103124

Date Collected: 10/31/24 10:40 **Matrix: Solid** Date Received: 10/31/24 12:12 Percent Solids: 97.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chromium	0.030		0.025	0.010	mg/L		11/08/24 08:48	11/08/24 23:01	
Cobalt	<0.025		0.025	0.010	mg/L		11/08/24 08:48	11/08/24 23:01	
Copper	0.037		0.025	0.010	mg/L		11/08/24 08:48	11/08/24 23:01	
ron	19		0.40	0.20	mg/L		11/08/24 08:48	11/08/24 23:01	
_ead	0.28		0.0075	0.0075	mg/L		11/08/24 08:48	11/08/24 23:01	
Manganese	3.2		0.025	0.010	mg/L		11/08/24 08:48	11/08/24 23:01	
Nickel	0.031		0.025	0.010	mg/L		11/08/24 08:48	11/08/24 23:01	
Selenium	<0.050		0.050	0.020	mg/L		11/08/24 08:48	11/08/24 23:01	
Silver	<0.025		0.025	0.010	mg/L		11/08/24 08:48	11/08/24 23:01	
Zinc	0.39	J	0.50	0.020	mg/L		11/08/24 08:48	11/08/24 23:01	
Method: SW846 6010D -	· ,								
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Arsenic	0.014		0.050	0.010	•		11/08/24 08:51	11/08/24 19:39	
Barium	0.24	J	0.50	0.050	•		11/08/24 08:51	11/08/24 19:39	
eryllium	<0.0040		0.0040	0.0040			11/08/24 08:51	11/08/24 19:39	
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/08/24 08:51	11/08/24 19:39	
hromium	0.048		0.025	0.010	Ü		11/08/24 08:51	11/08/24 19:39	
obalt	0.015	J	0.025	0.010			11/08/24 08:51	11/08/24 19:39	
Copper	0.044		0.025	0.010	-		11/08/24 08:51	11/08/24 19:39	
ron	38		0.40	0.20	mg/L		11/08/24 08:51	11/08/24 19:39	
.ead	0.31		0.0075	0.0075	mg/L		11/08/24 08:51	11/08/24 19:39	
/langanese	0.47		0.025	0.010	mg/L		11/08/24 08:51	11/08/24 19:39	
lickel	0.035		0.025	0.010	mg/L		11/08/24 08:51	11/08/24 19:39	
Selenium	<0.050		0.050	0.020	mg/L		11/08/24 08:51	11/08/24 19:39	
Silver	<0.025		0.025	0.010	mg/L		11/08/24 08:51	11/08/24 19:39	
Zinc	0.34	J	0.50	0.020	mg/L		11/08/24 08:51	11/08/24 19:39	
Method: SW846 7470A -						_	_		
Analyte -		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil F
lercury	<0.00020		0.00020	0.00020	mg/L		11/08/24 10:40	11/12/24 17:03	
Method: SW846 7470A -	,					_			
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil F
Mercury	<0.00020		0.00020	0.00020	mg/L		11/08/24 10:40	11/12/24 18:09	
Method: SW846 7471B -		0	D.	MDI	11-14	_	B	Anabasal	D:: E
Analyte		Qualifier	RL -		Unit	— <u> </u>	Prepared	Analyzed	Dil F
Mercury	0.023		0.015	0.0063	ing/Kg	☼	11/08/24 16:25	11/13/24 10:45	
General Chemistry	_					_			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F

Client: Weston Solutions Inc Job ID: 500-259381-1

Project/Site: IDOT- WO 007 FAI 94 Dolton

Lab Sample ID: 500-259381-10 Client Sample ID: R16-3(0-2)-103124D

Date Collected: 10/31/24 10:40 **Matrix: Solid** Date Received: 10/31/24 12:12 Percent Solids: 97.6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	<0.018		0.018	0.0076	mg/Kg	<u></u>	11/01/24 09:18	11/04/24 18:02	
Benzene	<0.0018		0.0018	0.00057	mg/Kg	₩	11/01/24 09:18	11/04/24 18:02	1
Bromodichloromethane	<0.0018		0.0018	0.00058	mg/Kg	₩	11/01/24 09:18	11/04/24 18:02	1
Bromoform	<0.0018		0.0018	0.0011	mg/Kg	₩	11/01/24 09:18	11/04/24 18:02	1
Bromomethane	< 0.0045		0.0045	0.0022	mg/Kg	₩	11/01/24 09:18	11/04/24 18:02	1
Carbon disulfide	< 0.0045		0.0045	0.00083	mg/Kg	₩	11/01/24 09:18	11/04/24 18:02	1
Carbon tetrachloride	<0.0018		0.0018	0.00062	mg/Kg	₩	11/01/24 09:18	11/04/24 18:02	1
Chlorobenzene	<0.0018		0.0018	0.00076	mg/Kg	₩	11/01/24 09:18	11/04/24 18:02	1
Chloroethane	< 0.0045		0.0045	0.0015	mg/Kg	₩	11/01/24 09:18	11/04/24 18:02	1
Chloroform	<0.0018		0.0018	0.0013	mg/Kg	₩	11/01/24 09:18	11/04/24 18:02	1
Chloromethane	< 0.0045		0.0045	0.00088	mg/Kg	₩	11/01/24 09:18	11/04/24 18:02	1
cis-1,2-Dichloroethene	<0.0018		0.0018	0.00073	mg/Kg	₩	11/01/24 09:18	11/04/24 18:02	1
cis-1,3-Dichloropropene	<0.0018		0.0018	0.00073	mg/Kg	₩	11/01/24 09:18	11/04/24 18:02	1
Dibromochloromethane	<0.0018		0.0018	0.00084	mg/Kg	₩	11/01/24 09:18	11/04/24 18:02	1
1,1-Dichloroethane	<0.0018		0.0018	0.00068	mg/Kg	₩	11/01/24 09:18	11/04/24 18:02	1
1,2-Dichloroethane	<0.0045		0.0045	0.0012	mg/Kg	₩	11/01/24 09:18	11/04/24 18:02	1
1,1-Dichloroethene	<0.0018		0.0018	0.00074	mg/Kg	₩	11/01/24 09:18	11/04/24 18:02	1
1,2-Dichloropropane	<0.0018		0.0018	0.00047	mg/Kg	₩	11/01/24 09:18	11/04/24 18:02	1
1,3-Dichloropropene, Total	<0.0018		0.0018	0.00087	mg/Kg	₩	11/01/24 09:18	11/04/24 18:02	1
Ethylbenzene	<0.0018		0.0018	0.00095	mg/Kg	₩	11/01/24 09:18	11/04/24 18:02	1
2-Hexanone	< 0.0045		0.0045	0.0028	mg/Kg	₩	11/01/24 09:18	11/04/24 18:02	1
Methylene Chloride	<0.0045		0.0045	0.0019	mg/Kg		11/01/24 09:18	11/04/24 18:02	1
Methyl Ethyl Ketone	< 0.0045		0.0045	0.0020	mg/Kg	₩	11/01/24 09:18	11/04/24 18:02	1
methyl isobutyl ketone	< 0.0045		0.0045	0.0032	mg/Kg	₩	11/01/24 09:18	11/04/24 18:02	1
Methyl tert-butyl ether	<0.0018		0.0018	0.00058			11/01/24 09:18	11/04/24 18:02	1
Styrene	<0.0018		0.0018	0.00082	mg/Kg	₩	11/01/24 09:18	11/04/24 18:02	1
1,1,2,2-Tetrachloroethane	<0.0018		0.0018	0.00090		₩	11/01/24 09:18	11/04/24 18:02	1
Tetrachloroethene	<0.0018		0.0018	0.0010	mg/Kg	₩	11/01/24 09:18	11/04/24 18:02	1
Toluene	<0.0018		0.0018	0.00036	mg/Kg	₩	11/01/24 09:18	11/04/24 18:02	1
trans-1,2-Dichloroethene	<0.0018		0.0018	0.00068	mg/Kg	₩	11/01/24 09:18	11/04/24 18:02	1
trans-1,3-Dichloropropene	<0.0018		0.0018	0.00087			11/01/24 09:18	11/04/24 18:02	1
1,1,1-Trichloroethane	<0.0018		0.0018	0.00073	mg/Kg	₩	11/01/24 09:18	11/04/24 18:02	1
1,1,2-Trichloroethane	<0.0018		0.0018	0.00068	mg/Kg	₩	11/01/24 09:18	11/04/24 18:02	1
Trichloroethene	<0.0018		0.0018	0.00049	mg/Kg		11/01/24 09:18	11/04/24 18:02	1
Vinyl chloride	<0.0018		0.0018	0.00074		₩	11/01/24 09:18	11/04/24 18:02	1
Xylenes, Total	<0.0036		0.0036	0.00062	mg/Kg	≎	11/01/24 09:18	11/04/24 18:02	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	110		75 - 131				11/01/24 09:18	11/04/24 18:02	1
Dibromofluoromethane (Surr)	110		75 - 126				11/01/24 09:18	11/04/24 18:02	1
1,2-Dichloroethane-d4 (Surr)	102		70 - 134				11/01/24 09:18	11/04/24 18:02	1
Toluene-d8 (Surr)	104		75 - 124				11/01/24 09:18	11/04/24 18:02	1

Method: SW846 8270E	- Semivolatile Organic Compounds	(GC/MS))		
A I 4 .	Descrit Occalificati	D.	MIDI	1114	

Analyte	Result Qualifier	ŘL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	<0.24	0.24	0.033	mg/Kg	<u></u>	11/04/24 15:03	11/05/24 16:11	1
1,2-Dichlorobenzene	<0.24	0.24	0.019	mg/Kg	☆	11/04/24 15:03	11/05/24 16:11	1
1,3-Dichlorobenzene	<0.24	0.24	0.021	mg/Kg	☆	11/04/24 15:03	11/05/24 16:11	1
1,4-Dichlorobenzene	<0.24	0.24	0.022	mg/Kg	☆	11/04/24 15:03	11/05/24 16:11	1
2,2'-oxybis[1-chloropropane]	<0.24	0.24	0.034	mg/Kg	₩	11/04/24 15:03	11/05/24 16:11	1

Eurofins Chicago

Client: Weston Solutions Inc

Project/Site: IDOT- WO 007 FAI 94 Dolton

Date Collected: 10/31/24 10:40

Matrix: Solid

Date Received: 10/31/24 12:12

Percent Solids: 97.6

Method: SW846 8270E - Sem Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	<0.47	0.47	0.018	mg/Kg	— <u></u>	11/04/24 15:03	11/05/24 16:11	1
2,4,6-Trichlorophenol	<0.47	0.47		mg/Kg		11/04/24 15:03	11/05/24 16:11	1
2,4-Dichlorophenol	<0.47	0.47		mg/Kg	☆	11/04/24 15:03	11/05/24 16:11	1
2,4-Dimethylphenol	<0.47	0.47		mg/Kg	₩	11/04/24 15:03	11/05/24 16:11	1
2,4-Dinitrophenol	<0.95	0.95		mg/Kg		11/04/24 15:03	11/05/24 16:11	1
2,4-Dinitrotoluene	<0.24	0.24		mg/Kg	₩	11/04/24 15:03	11/05/24 16:11	
2,6-Dinitrotoluene	<0.24	0.24		mg/Kg	₩	11/04/24 15:03	11/05/24 16:11	
2-Chloronaphthalene	<0.24	0.24		mg/Kg		11/04/24 15:03	11/05/24 16:11	
2-Chlorophenol	<0.24	0.24		mg/Kg	₩	11/04/24 15:03	11/05/24 16:11	
2-Methylnaphthalene	<0.095	0.095	0.0094		₩	11/04/24 15:03	11/05/24 16:11	
2-Methylphenol	<0.24	0.24		mg/Kg		11/04/24 15:03	11/05/24 16:11	
2-Nitroaniline	<0.24	0.24		mg/Kg	₩.	11/04/24 15:03	11/05/24 16:11	,
2-Nitrophenol	<0.47	0.47		mg/Kg	₩.	11/04/24 15:03	11/05/24 16:11	
3 & 4 Methylphenol	<0.24	0.24		mg/Kg		11/04/24 15:03	11/05/24 16:11	,
3.3'-Dichlorobenzidine	<0.24	0.24		mg/Kg	₩	11/04/24 15:03	11/05/24 16:11	
3-Nitroaniline	<0.47	0.47	0.030	mg/Kg		11/04/24 15:03	11/05/24 16:11	,
4,6-Dinitro-2-methylphenol	<0.95	0.95		mg/Kg		11/04/24 15:03	11/05/24 16:11	,
4-Bromophenyl phenyl ether	<0.24	0.93		mg/Kg	₩	11/04/24 15:03	11/05/24 16:11	
4-Chloro-3-methylphenol	<0.47	0.47		mg/Kg	¥ \$	11/04/24 15:03	11/05/24 16:11	,
4-Chloroaniline	<0.95	0.47		mg/Kg	¥ ≎	11/04/24 15:03	11/05/24 16:11	,
4-Chlorophenyl phenyl ether	<0.24	0.93	0.49	mg/Kg		11/04/24 15:03	11/05/24 16:11	
4-Nitroaniline	<0.47	0.24		mg/Kg	≎	11/04/24 15:03	11/05/24 16:11	
					· · · · · · · · · · ·			
4-Nitrophenol	< 0.95	0.95		mg/Kg	₩.	11/04/24 15:03	11/05/24 16:11	1
Acenaphthene	<0.047	0.047	0.0095	0 0		11/04/24 15:03	11/05/24 16:11	
Acenaphthylene	<0.047	0.047	0.0079		.	11/04/24 15:03	11/05/24 16:11	
Anthracene	0.025 J	0.047	0.0096	0 0		11/04/24 15:03	11/05/24 16:11	ĺ
Benzo[a]anthracene	0.072	0.047	0.0099		*	11/04/24 15:03	11/05/24 16:11	•
Benzo[a]pyrene	0.084	0.047		mg/Kg	<u>.</u> .	11/04/24 15:03	11/05/24 16:11	
Benzo[b]fluoranthene	0.095	0.047		mg/Kg	*	11/04/24 15:03	11/05/24 16:11	
Benzo[g,h,i]perylene	0.038 J	0.047		0 0	*	11/04/24 15:03	11/05/24 16:11	
Benzo[k]fluoranthene	0.042 J	0.047		mg/Kg	<u>.</u>	11/04/24 15:03	11/05/24 16:11	
Bis(2-chloroethoxy)methane	<0.24	0.24		mg/Kg	*	11/04/24 15:03	11/05/24 16:11	•
Bis(2-chloroethyl)ether	<0.24	0.24		mg/Kg	‡	11/04/24 15:03	11/05/24 16:11	ĺ
Bis(2-ethylhexyl) phthalate	<0.24 *-	0.24		mg/Kg	.	11/04/24 15:03	11/05/24 16:11	
Butyl benzyl phthalate	<0.24	0.24		mg/Kg	₩	11/04/24 15:03	11/05/24 16:11	,
Carbazole	<0.24	0.24		mg/Kg	☼	11/04/24 15:03	11/05/24 16:11	•
Chrysene	0.058	0.047		mg/Kg	.	11/04/24 15:03	11/05/24 16:11	1
Dibenz(a,h)anthracene	<0.047	0.047		mg/Kg	₩	11/04/24 15:03	11/05/24 16:11	,
Dibenzofuran	<0.24	0.24		mg/Kg	₩	11/04/24 15:03	11/05/24 16:11	,
Diethyl phthalate	<0.24	0.24		mg/Kg	.	11/04/24 15:03	11/05/24 16:11	1
Dimethyl phthalate	<0.24	0.24		mg/Kg	₩	11/04/24 15:03	11/05/24 16:11	•
Di-n-butyl phthalate	<0.24 *-	0.24		mg/Kg	₩	11/04/24 15:03	11/05/24 16:11	,
Di-n-octyl phthalate	<0.47	0.47		mg/Kg	*	11/04/24 15:03	11/05/24 16:11	
Fluoranthene	0.13	0.047		mg/Kg	☼	11/04/24 15:03	11/05/24 16:11	,
Fluorene	<0.047	0.047	0.014	mg/Kg	₩	11/04/24 15:03	11/05/24 16:11	•
Hexachlorobenzene	<0.095	0.095	0.0090	mg/Kg	₩	11/04/24 15:03	11/05/24 16:11	
Hexachlorobutadiene	<0.24	0.24	0.026	mg/Kg	☼	11/04/24 15:03	11/05/24 16:11	1
Hexachlorocyclopentadiene	<0.95	0.95	0.50	mg/Kg	₩	11/04/24 15:03	11/05/24 16:11	1
Hexachloroethane	<0.24	0.24	0.023	mg/Kg	☆	11/04/24 15:03	11/05/24 16:11	

Eurofins Chicago

Job ID: 500-259381-1

_

3

5

8

10

12

14

LK

Client: Weston Solutions Inc

Project/Site: IDOT- WO 007 FAI 94 Dolton

Lab Sample ID: 500-259381-10 Client Sample ID: R16-3(0-2)-103124D

Date Collected: 10/31/24 10:40 **Matrix: Solid** Date Received: 10/31/24 12:12 Percent Solids: 97.6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Indeno[1,2,3-cd]pyrene	0.054		0.047	0.046	mg/Kg	<u></u>	11/04/24 15:03	11/05/24 16:11	1
Isophorone	<0.24		0.24	0.024	mg/Kg	₩	11/04/24 15:03	11/05/24 16:11	1
Naphthalene	< 0.047		0.047	0.0085	mg/Kg	₩	11/04/24 15:03	11/05/24 16:11	1
Nitrobenzene	<0.047		0.047	0.015	mg/Kg	₩	11/04/24 15:03	11/05/24 16:11	1
N-Nitrosodi-n-propylamine	< 0.095		0.095	0.0092	mg/Kg	₽	11/04/24 15:03	11/05/24 16:11	1
N-Nitrosodiphenylamine	<0.24		0.24	0.028	mg/Kg	₩	11/04/24 15:03	11/05/24 16:11	1
Pentachlorophenol	<0.95		0.95	0.12	mg/Kg	₩	11/04/24 15:03	11/05/24 16:11	1
Phenanthrene	0.082		0.047	0.010	mg/Kg	₩	11/04/24 15:03	11/05/24 16:11	1
Phenol	<0.24		0.24	0.020	mg/Kg	₩	11/04/24 15:03	11/05/24 16:11	1
Pyrene	0.11		0.047	0.013	mg/Kg	₽	11/04/24 15:03	11/05/24 16:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	61		31 - 143				11/04/24 15:03	11/05/24 16:11	1
2-Fluorobiphenyl (Surr)	80		43 - 145				11/04/24 15:03	11/05/24 16:11	1
2-Fluorophenol (Surr)	101		31 - 166				11/04/24 15:03	11/05/24 16:11	1
Nitrobenzene-d5 (Surr)	80		37 - 147				11/04/24 15:03	11/05/24 16:11	1
Phenol-d5 (Surr)	88		30 - 153				11/04/24 15:03	11/05/24 16:11	1
Terphenyl-d14 (Surr)	94		42 - 157				11/04/24 15:03	11/05/24 16:11	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	2800		10	4.1	mg/Kg	*	11/07/24 09:57	11/08/24 14:33	1
Antimony	<1.0		1.0	0.20	mg/Kg	₩	11/07/24 09:57	11/08/24 14:33	1
Arsenic	2.0		0.50	0.17	mg/Kg	₩	11/07/24 09:57	11/08/24 14:33	1
Barium	14		0.50	0.057	mg/Kg	₩	11/07/24 09:57	11/08/24 14:33	1
Beryllium	0.13	J	0.20	0.047	mg/Kg	₩	11/07/24 09:57	11/08/24 14:33	1
Cadmium	0.026	J	0.10	0.018	mg/Kg	₩	11/07/24 09:57	11/08/24 14:33	1
Calcium	1400	B ^2	10	1.7	mg/Kg	₩	11/07/24 09:57	11/08/24 14:33	1
Chromium	3.3		0.50	0.25	mg/Kg	₩	11/07/24 09:57	11/08/24 14:33	1
Cobalt	1.4		0.25	0.066	mg/Kg	₩	11/07/24 09:57	11/08/24 14:33	1
Copper	2.5		0.50	0.14	mg/Kg	₩	11/07/24 09:57	11/08/24 14:33	1
Iron	3600		10	5.2	mg/Kg	₩	11/07/24 09:57	11/08/24 14:33	1
Lead	9.8		0.25	0.12	mg/Kg	₩	11/07/24 09:57	11/08/24 14:33	1
Magnesium	730		5.0	2.5	mg/Kg	₩	11/07/24 09:57	11/08/24 14:33	1
Manganese	46		0.50	0.073	mg/Kg	₩	11/07/24 09:57	11/08/24 14:33	1
Nickel	2.6		0.50	0.15	mg/Kg	₩	11/07/24 09:57	11/08/24 14:33	1
Potassium	210		25	8.9	mg/Kg	₩	11/07/24 09:57	11/08/24 14:33	1
Selenium	<0.50		0.50	0.30	mg/Kg	₩	11/07/24 09:57	11/08/24 14:33	1
Silver	<0.25		0.25	0.065	mg/Kg	₩	11/07/24 09:57	11/08/24 14:33	1
Sodium	140		50	7.4	mg/Kg	₩	11/07/24 09:57	11/08/24 14:33	1
Thallium	<0.50		0.50	0.25	mg/Kg	₩	11/07/24 09:57	11/08/24 14:33	1
Vanadium	4.9		0.25	0.059	mg/Kg	₩	11/07/24 09:57	11/08/24 14:33	1
Zinc	18		1.0	0.44	mg/Kg	₩	11/07/24 09:57	11/08/24 14:33	1

Method: SW846 6010D - Me	etals (ICP) - TCI	LP							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.013	J	0.050	0.010	mg/L		11/08/24 08:48	11/08/24 23:05	1
Barium	0.26	J	0.50	0.050	mg/L		11/08/24 08:48	11/08/24 23:05	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/08/24 08:48	11/08/24 23:05	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/08/24 08:48	11/08/24 23:05	1

Page 56 of 102

Client: Weston Solutions Inc

Project/Site: IDOT- WO 007 FAI 94 Dolton

Lab Sample ID: 500-259381-10 Client Sample ID: R16-3(0-2)-103124D

Date Collected: 10/31/24 10:40 **Matrix: Solid** Date Received: 10/31/24 12:12 Percent Solids: 97.6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chromium	0.033		0.025	0.010	mg/L		11/08/24 08:48	11/08/24 23:05	
Cobalt	<0.025		0.025	0.010	mg/L		11/08/24 08:48	11/08/24 23:05	
Copper	0.031		0.025	0.010	mg/L		11/08/24 08:48	11/08/24 23:05	
ron	28		0.40	0.20	mg/L		11/08/24 08:48	11/08/24 23:05	
_ead	0.080		0.0075	0.0075	mg/L		11/08/24 08:48	11/08/24 23:05	
Manganese	0.61		0.025	0.010	mg/L		11/08/24 08:48	11/08/24 23:05	
Nickel	0.027		0.025	0.010	mg/L		11/08/24 08:48	11/08/24 23:05	
Selenium	<0.050		0.050	0.020	mg/L		11/08/24 08:48	11/08/24 23:05	
Silver	<0.025		0.025	0.010	mg/L		11/08/24 08:48	11/08/24 23:05	
Zinc	0.23	J	0.50	0.020	mg/L		11/08/24 08:48	11/08/24 23:05	
Method: SW846 6010D - Me									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Arsenic	0.017		0.050	0.010	•		11/08/24 08:51	11/08/24 19:43	
Barium	0.21	J	0.50	0.050	mg/L		11/08/24 08:51	11/08/24 19:43	
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/08/24 08:51	11/08/24 19:43	
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/08/24 08:51	11/08/24 19:43	
hromium	0.041		0.025	0.010	mg/L		11/08/24 08:51	11/08/24 19:43	
Cobalt	0.015	J	0.025	0.010	mg/L		11/08/24 08:51	11/08/24 19:43	
Copper	0.038		0.025	0.010	mg/L		11/08/24 08:51	11/08/24 19:43	
ron	34		0.40	0.20	mg/L		11/08/24 08:51	11/08/24 19:43	
.ead	0.16		0.0075	0.0075	mg/L		11/08/24 08:51	11/08/24 19:43	
/langanese	0.41		0.025	0.010	mg/L		11/08/24 08:51	11/08/24 19:43	
lickel	0.029		0.025	0.010	mg/L		11/08/24 08:51	11/08/24 19:43	
Selenium	<0.050		0.050	0.020	mg/L		11/08/24 08:51	11/08/24 19:43	
Silver	<0.025		0.025	0.010	mg/L		11/08/24 08:51	11/08/24 19:43	
Zinc	0.26	J	0.50	0.020	mg/L		11/08/24 08:51	11/08/24 19:43	
Method: SW846 7470A - Me									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil F
Mercury	<0.00020		0.00020	0.00020	mg/L		11/08/24 10:40	11/12/24 17:09	
Method: SW846 7470A - Me			-			_			
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil F
Mercury	<0.00020		0.00020	0.00020	mg/L		11/08/24 10:40	11/12/24 18:11	
Method: SW846 7471B - Me		Ovelifier	DI	MDI	l lmié		Dramarad	A malumad	Dile
Analyte		Qualifier	RL 0.016		Unit	— <u> </u>	Prepared 11/09/24 16:25	Analyzed	Dil F
Mercury	0.019	F1	0.016	0.0067	ilig/r\g	☼	11/08/24 16:25	11/13/24 10:47	
General Chemistry									
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil F
pH (SW846 9045D)	7.9		0.2	0.2	SU			11/01/24 13:58	

Client: Weston Solutions Inc

Project/Site: IDOT- WO 007 FAI 94 Dolton

Client Sample ID: R16-4(0-3)-103124 Lab Sample ID: 500-259381-11

Date Collected: 10/31/24 10:50 **Matrix: Solid** Date Received: 10/31/24 12:12 Percent Solids: 93.4

Analyte	Result Qu	ualifier RL	MDL		D	Prepared	Analyzed	Dil Fac
Acetone	<0.017	0.017	0.0071	mg/Kg	— <u></u>	11/01/24 09:18	11/04/24 18:27	1
Benzene	< 0.0017	0.0017	0.00053	mg/Kg	₩	11/01/24 09:18	11/04/24 18:27	1
Bromodichloromethane	< 0.0017	0.0017	0.00054	mg/Kg	₩	11/01/24 09:18	11/04/24 18:27	1
Bromoform	<0.0017	0.0017	0.00098	mg/Kg	₩	11/01/24 09:18	11/04/24 18:27	1
Bromomethane	<0.0042	0.0042	0.0021	mg/Kg	₩	11/01/24 09:18	11/04/24 18:27	1
Carbon disulfide	< 0.0042	0.0042	0.00078	mg/Kg	₩	11/01/24 09:18	11/04/24 18:27	1
Carbon tetrachloride	<0.0017	0.0017	0.00057	mg/Kg	₩	11/01/24 09:18	11/04/24 18:27	1
Chlorobenzene	< 0.0017	0.0017	0.00071	mg/Kg	₩	11/01/24 09:18	11/04/24 18:27	1
Chloroethane	< 0.0042	0.0042	0.0014	mg/Kg	₩	11/01/24 09:18	11/04/24 18:27	1
Chloroform	<0.0017	0.0017	0.0012	mg/Kg	₩	11/01/24 09:18	11/04/24 18:27	1
Chloromethane	< 0.0042	0.0042	0.00082	mg/Kg	₩	11/01/24 09:18	11/04/24 18:27	1
cis-1,2-Dichloroethene	< 0.0017	0.0017	0.00068	mg/Kg	₩	11/01/24 09:18	11/04/24 18:27	1
cis-1,3-Dichloropropene	<0.0017	0.0017	0.00068	mg/Kg	₩	11/01/24 09:18	11/04/24 18:27	1
Dibromochloromethane	< 0.0017	0.0017	0.00078	mg/Kg	₩	11/01/24 09:18	11/04/24 18:27	1
1,1-Dichloroethane	< 0.0017	0.0017	0.00063	mg/Kg	₩	11/01/24 09:18	11/04/24 18:27	1
1,2-Dichloroethane	<0.0042	0.0042	0.0011	mg/Kg	₩	11/01/24 09:18	11/04/24 18:27	1
1,1-Dichloroethene	< 0.0017	0.0017	0.00069	mg/Kg	₽	11/01/24 09:18	11/04/24 18:27	1
1,2-Dichloropropane	< 0.0017	0.0017	0.00043	mg/Kg	₩	11/01/24 09:18	11/04/24 18:27	1
1,3-Dichloropropene, Total	<0.0017	0.0017	0.00081	mg/Kg	₩	11/01/24 09:18	11/04/24 18:27	1
Ethylbenzene	< 0.0017	0.0017	0.00089	mg/Kg	₽	11/01/24 09:18	11/04/24 18:27	1
2-Hexanone	< 0.0042	0.0042	0.0026	mg/Kg	₩	11/01/24 09:18	11/04/24 18:27	1
Methylene Chloride	<0.0042	0.0042	0.0018	mg/Kg	₩	11/01/24 09:18	11/04/24 18:27	1
Methyl Ethyl Ketone	< 0.0042	0.0042	0.0019	mg/Kg	₩	11/01/24 09:18	11/04/24 18:27	1
methyl isobutyl ketone	< 0.0042	0.0042	0.0030	mg/Kg	₽	11/01/24 09:18	11/04/24 18:27	1
Methyl tert-butyl ether	<0.0017	0.0017	0.00054	mg/Kg	₽	11/01/24 09:18	11/04/24 18:27	1
Styrene	< 0.0017	0.0017	0.00076	mg/Kg	₽	11/01/24 09:18	11/04/24 18:27	1
1,1,2,2-Tetrachloroethane	< 0.0017	0.0017	0.00084	mg/Kg	₽	11/01/24 09:18	11/04/24 18:27	1
Tetrachloroethene	<0.0017	0.0017	0.00095	mg/Kg	₩	11/01/24 09:18	11/04/24 18:27	1
Toluene	< 0.0017	0.0017	0.00034	mg/Kg	₽	11/01/24 09:18	11/04/24 18:27	1
trans-1,2-Dichloroethene	< 0.0017	0.0017	0.00064	mg/Kg	₩	11/01/24 09:18	11/04/24 18:27	1
trans-1,3-Dichloropropene	<0.0017	0.0017	0.00081	mg/Kg	₩	11/01/24 09:18	11/04/24 18:27	1
1,1,1-Trichloroethane	< 0.0017	0.0017	0.00068	mg/Kg	₽	11/01/24 09:18	11/04/24 18:27	1
1,1,2-Trichloroethane	< 0.0017	0.0017	0.00063	mg/Kg	₽	11/01/24 09:18	11/04/24 18:27	1
Trichloroethene	<0.0017	0.0017	0.00046	mg/Kg	₩	11/01/24 09:18	11/04/24 18:27	1
Vinyl chloride	< 0.0017	0.0017	0.00069	mg/Kg	₽	11/01/24 09:18	11/04/24 18:27	1
Xylenes, Total	<0.0034	0.0034	0.00058	mg/Kg	≎	11/01/24 09:18	11/04/24 18:27	1
Surrogate	%Recovery Qu	ualifier Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	122	75 - 131				11/01/24 09:18	11/04/24 18:27	1
Dibromofluoromethane (Surr)	104	75 - 126				11/01/24 09:18	11/04/24 18:27	1
1,2-Dichloroethane-d4 (Surr)	101	70 - 134				11/01/24 09:18	11/04/24 18:27	1
Toluene-d8 (Surr)	107	75 - 124				11/01/24 09:18	11/04/24 18:27	1

Method: 344040 0270L - Sentivolatile Organic Compounds (Go/Mo)										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	1,2,4-Trichlorobenzene	<0.26		0.26	0.037	mg/Kg		11/04/24 15:03	11/05/24 16:37	1
	1,2-Dichlorobenzene	<0.26		0.26	0.021	mg/Kg	₽	11/04/24 15:03	11/05/24 16:37	1
	1,3-Dichlorobenzene	<0.26		0.26	0.023	mg/Kg	₩	11/04/24 15:03	11/05/24 16:37	1
	1,4-Dichlorobenzene	<0.26		0.26	0.024	mg/Kg	₽	11/04/24 15:03	11/05/24 16:37	1
	2,2'-oxybis[1-chloropropane]	< 0.26		0.26	0.037	mg/Kg	≎	11/04/24 15:03	11/05/24 16:37	1

Eurofins Chicago

Page 58 of 102

Client: Weston Solutions Inc

Project/Site: IDOT- WO 007 FAI 94 Dolton

Client Sample ID: R16-4(0-3)-103124 Lab Sample ID: 500-259381-11

Date Collected: 10/31/24 10:50

Matrix: Solid

Date Received: 10/31/24 12:12

Percent Solids: 93.4

Method: SW846 8270E - Sem Analyte	Result Qualifier	ŘL	MDL		D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	<0.51	0.51	0.019	mg/Kg	— <u>-</u>	11/04/24 15:03	11/05/24 16:37	
2,4,6-Trichlorophenol	<0.51	0.51		mg/Kg		11/04/24 15:03	11/05/24 16:37	1
2,4-Dichlorophenol	<0.51	0.51		mg/Kg	₩	11/04/24 15:03	11/05/24 16:37	1
2,4-Dimethylphenol	<0.51	0.51		mg/Kg	₩	11/04/24 15:03	11/05/24 16:37	1
2,4-Dinitrophenol	<1.0	1.0		mg/Kg		11/04/24 15:03	11/05/24 16:37	
2,4-Dinitrotoluene	<0.26	0.26		mg/Kg	₩	11/04/24 15:03	11/05/24 16:37	
2.6-Dinitrotoluene	<0.26	0.26		mg/Kg	₩	11/04/24 15:03	11/05/24 16:37	
2-Chloronaphthalene	<0.26	0.26		mg/Kg		11/04/24 15:03	11/05/24 16:37	
2-Chlorophenol	<0.26	0.26		mg/Kg	 	11/04/24 15:03	11/05/24 16:37	
2-Methylnaphthalene	<0.10	0.10		mg/Kg		11/04/24 15:03	11/05/24 16:37	
2-Methylphenol	<0.26	0.26		mg/Kg		11/04/24 15:03	11/05/24 16:37	
2-Nitroaniline	<0.26	0.26		mg/Kg	☆	11/04/24 15:03	11/05/24 16:37	
2-Nitrophenol	<0.51	0.51		mg/Kg	Ď.	11/04/24 15:03	11/05/24 16:37	
3 & 4 Methylphenol	<0.26	0.26				11/04/24 15:03	11/05/24 16:37	
3 & 4 Methylphenol 3,3'-Dichlorobenzidine	<0.26	0.26		mg/Kg	☆	11/04/24 15:03	11/05/24 16:37	,
3-Nitroaniline	<0.51	0.26		mg/Kg	₩ ₩	11/04/24 15:03	11/05/24 16:37	
		1.0		mg/Kg			11/05/24 16:37	
4,6-Dinitro-2-methylphenol	<1.0			mg/Kg	₩.	11/04/24 15:03		1
4-Bromophenyl phenyl ether	<0.26	0.26		mg/Kg	*	11/04/24 15:03	11/05/24 16:37	•
4-Chloro-3-methylphenol	<0.51	0.51		mg/Kg	.	11/04/24 15:03	11/05/24 16:37	1
4-Chloroaniline	<1.0	1.0		mg/Kg	*	11/04/24 15:03	11/05/24 16:37	
4-Chlorophenyl phenyl ether	<0.26	0.26		mg/Kg	\$	11/04/24 15:03	11/05/24 16:37	
4-Nitroaniline	<0.51	0.51		mg/Kg	<u>.</u> .	11/04/24 15:03	11/05/24 16:37	1
4-Nitrophenol	<1.0	1.0		mg/Kg	Ď.	11/04/24 15:03	11/05/24 16:37	1
Acenaphthene	<0.051	0.051		mg/Kg	☼	11/04/24 15:03	11/05/24 16:37	1
Acenaphthylene	<0.051	0.051	0.0088		.	11/04/24 15:03	11/05/24 16:37	1
Anthracene	<0.051	0.051		mg/Kg	₩	11/04/24 15:03	11/05/24 16:37	1
Benzo[a]anthracene	0.029 J	0.051		mg/Kg	₩	11/04/24 15:03	11/05/24 16:37	1
Benzo[a]pyrene	<0.051	0.051		mg/Kg		11/04/24 15:03	11/05/24 16:37	1
Benzo[b]fluoranthene	<0.051	0.051		mg/Kg	₩	11/04/24 15:03	11/05/24 16:37	•
Benzo[g,h,i]perylene	<0.051	0.051		mg/Kg	₩	11/04/24 15:03	11/05/24 16:37	•
Benzo[k]fluoranthene	<0.051	0.051	0.020	mg/Kg		11/04/24 15:03	11/05/24 16:37	1
Bis(2-chloroethoxy)methane	<0.26	0.26	0.019	mg/Kg	☼	11/04/24 15:03	11/05/24 16:37	1
Bis(2-chloroethyl)ether	<0.26	0.26	0.024	mg/Kg	☼	11/04/24 15:03	11/05/24 16:37	1
Bis(2-ethylhexyl) phthalate	<0.26 *-	0.26		mg/Kg	☼	11/04/24 15:03	11/05/24 16:37	•
Butyl benzyl phthalate	<0.26	0.26	0.026	mg/Kg	☼	11/04/24 15:03	11/05/24 16:37	•
Carbazole	<0.26	0.26	0.020	mg/Kg	☼	11/04/24 15:03	11/05/24 16:37	1
Chrysene	0.018 J	0.051	0.014	mg/Kg	☼	11/04/24 15:03	11/05/24 16:37	1
Dibenz(a,h)anthracene	<0.051	0.051	0.051	mg/Kg	₩	11/04/24 15:03	11/05/24 16:37	1
Dibenzofuran	<0.26	0.26	0.018	mg/Kg	₩	11/04/24 15:03	11/05/24 16:37	1
Diethyl phthalate	<0.26	0.26	0.024	mg/Kg	☼	11/04/24 15:03	11/05/24 16:37	1
Dimethyl phthalate	<0.26	0.26	0.011	mg/Kg	₩	11/04/24 15:03	11/05/24 16:37	1
Di-n-butyl phthalate	<0.26 *-	0.26	0.016	mg/Kg	☼	11/04/24 15:03	11/05/24 16:37	1
Di-n-octyl phthalate	<0.51	0.51	0.36	mg/Kg	☼	11/04/24 15:03	11/05/24 16:37	1
Fluoranthene	0.042 J	0.051		mg/Kg	₩	11/04/24 15:03	11/05/24 16:37	1
Fluorene	<0.051	0.051		mg/Kg	☼	11/04/24 15:03	11/05/24 16:37	1
Hexachlorobenzene	<0.10	0.10	0.0099		☼	11/04/24 15:03	11/05/24 16:37	1
Hexachlorobutadiene	<0.26	0.26		mg/Kg		11/04/24 15:03	11/05/24 16:37	1
Hexachlorocyclopentadiene	<1.0	1.0		mg/Kg	₩	11/04/24 15:03	11/05/24 16:37	1
Hexachloroethane	<0.26	0.26	0.026		~ \$	11/04/24 15:03	11/05/24 16:37	-

Eurofins Chicago

Job ID: 500-259381-1

2

3

5

8

10

16

Client: Weston Solutions Inc

Project/Site: IDOT- WO 007 FAI 94 Dolton

Lab Sample ID: 500-259381-11 Client Sample ID: R16-4(0-3)-103124

Date Collected: 10/31/24 10:50 **Matrix: Solid** Date Received: 10/31/24 12:12 Percent Solids: 93.4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Indeno[1,2,3-cd]pyrene	<0.051		0.051	0.050	mg/Kg	☆	11/04/24 15:03	11/05/24 16:37	1
Isophorone	<0.26		0.26	0.027	mg/Kg	☆	11/04/24 15:03	11/05/24 16:37	1
Naphthalene	<0.051		0.051	0.0094	mg/Kg	☆	11/04/24 15:03	11/05/24 16:37	1
Nitrobenzene	<0.051		0.051	0.016	mg/Kg	☆	11/04/24 15:03	11/05/24 16:37	1
N-Nitrosodi-n-propylamine	<0.10		0.10	0.010	mg/Kg	☆	11/04/24 15:03	11/05/24 16:37	1
N-Nitrosodiphenylamine	<0.26		0.26	0.031	mg/Kg	☼	11/04/24 15:03	11/05/24 16:37	1
Pentachlorophenol	<1.0		1.0	0.13	mg/Kg	₩	11/04/24 15:03	11/05/24 16:37	1
Phenanthrene	0.020	J	0.051	0.011	mg/Kg	☆	11/04/24 15:03	11/05/24 16:37	1
Phenol	<0.26		0.26	0.022	mg/Kg	☆	11/04/24 15:03	11/05/24 16:37	1
Pyrene	0.031	J	0.051	0.014	mg/Kg	☼	11/04/24 15:03	11/05/24 16:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	53		31 - 143				11/04/24 15:03	11/05/24 16:37	1
2-Fluorobiphenyl (Surr)	69		43 - 145				11/04/24 15:03	11/05/24 16:37	1
2-Fluorophenol (Surr)	86		31 - 166				11/04/24 15:03	11/05/24 16:37	1
Nitrobenzene-d5 (Surr)	69		37 - 147				11/04/24 15:03	11/05/24 16:37	1
Phenol-d5 (Surr)	73		30 - 153				11/04/24 15:03	11/05/24 16:37	1
Terphenyl-d14 (Surr)	82		42 - 157				11/04/24 15:03	11/05/24 16:37	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	2500		9.9	4.0	mg/Kg	<u></u>	11/07/24 09:57	11/08/24 14:37	1
Antimony	<0.99		0.99	0.19	mg/Kg	₽	11/07/24 09:57	11/08/24 14:37	1
Arsenic	2.5		0.49	0.17	mg/Kg	₩	11/07/24 09:57	11/08/24 14:37	1
Barium	14		0.49	0.056	mg/Kg	₩	11/07/24 09:57	11/08/24 14:37	1
Beryllium	0.17	J	0.20	0.046	mg/Kg	₽	11/07/24 09:57	11/08/24 14:37	1
Cadmium	0.066	J	0.099	0.018	mg/Kg	₩	11/07/24 09:57	11/08/24 14:37	1
Calcium	11000	B ^2	9.9	1.7	mg/Kg	₽	11/07/24 09:57	11/08/24 14:37	1
Chromium	3.9		0.49	0.24	mg/Kg	₩	11/07/24 09:57	11/08/24 14:37	1
Cobalt	2.8		0.25	0.065	mg/Kg	₩	11/07/24 09:57	11/08/24 14:37	1
Copper	3.6		0.49	0.14	mg/Kg	₩	11/07/24 09:57	11/08/24 14:37	1
Iron	4200		9.9	5.1	mg/Kg	₩	11/07/24 09:57	11/08/24 14:37	1
Lead	8.8		0.25	0.11	mg/Kg	₩	11/07/24 09:57	11/08/24 14:37	1
Magnesium	4000		4.9	2.5	mg/Kg	₩	11/07/24 09:57	11/08/24 14:37	1
Manganese	100		0.49	0.072	mg/Kg	₩	11/07/24 09:57	11/08/24 14:37	1
Nickel	4.8		0.49	0.14	mg/Kg	₩	11/07/24 09:57	11/08/24 14:37	1
Potassium	400		25	8.8	mg/Kg	₩	11/07/24 09:57	11/08/24 14:37	1
Selenium	< 0.49		0.49	0.29	mg/Kg	₩	11/07/24 09:57	11/08/24 14:37	1
Silver	<0.25		0.25	0.064	mg/Kg	₩	11/07/24 09:57	11/08/24 14:37	1
Sodium	110		49	7.3	mg/Kg	₩	11/07/24 09:57	11/08/24 14:37	1
Thallium	0.52		0.49	0.25	mg/Kg	₩	11/07/24 09:57	11/08/24 14:37	1
Vanadium	5.6		0.25	0.058	mg/Kg	₩	11/07/24 09:57	11/08/24 14:37	1
Zinc	20		0.99	0.43	mg/Kg		11/07/24 09:57	11/08/24 14:37	1

Method: SW846 6010D - Metals (ICP) - TCLP									
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Arsenic	<0.050	0.050	0.010	mg/L		11/08/24 08:48	11/08/24 23:10	1	
Barium	0.25 J	0.50	0.050	mg/L		11/08/24 08:48	11/08/24 23:10	1	
Beryllium	<0.0040	0.0040	0.0040	mg/L		11/08/24 08:48	11/08/24 23:10	1	
Cadmium	0.0022 J	0.0050	0.0020	mg/L		11/08/24 08:48	11/08/24 23:10	1	

Job ID: 500-259381-1

Eurofins Chicago

Client: Weston Solutions Inc

Project/Site: IDOT- WO 007 FAI 94 Dolton

Client Sample ID: R16-4(0-3)-103124 Lab Sample ID: 500-259381-11

Date Collected: 10/31/24 10:50 **Matrix: Solid** Date Received: 10/31/24 12:12 Percent Solids: 93.4

Analyte Resu	lt Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium 0.01	5 J	0.025	0.010	mg/L		11/08/24 08:48	11/08/24 23:10	
Cobalt <0.02	5	0.025	0.010	mg/L		11/08/24 08:48	11/08/24 23:10	
Copper 0.01	8 J	0.025	0.010	mg/L		11/08/24 08:48	11/08/24 23:10	
Iron 9	7	0.40	0.20	mg/L		11/08/24 08:48	11/08/24 23:10	1
Lead 0.03	0	0.0075	0.0075	mg/L		11/08/24 08:48	11/08/24 23:10	
Manganese 1.	5	0.025	0.010	mg/L		11/08/24 08:48	11/08/24 23:10	
Nickel 0.02	2 J	0.025	0.010	mg/L		11/08/24 08:48	11/08/24 23:10	
Selenium <0.05	0	0.050	0.020	mg/L		11/08/24 08:48	11/08/24 23:10	
Silver <0.02	5	0.025	0.010	mg/L		11/08/24 08:48	11/08/24 23:10	
Zinc 0.1	1 J	0.50	0.020	mg/L		11/08/24 08:48	11/08/24 23:10	1
Method: SW846 6010D - Metals (ICP) - S								
	It Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
	3 J	0.050	0.010	_		11/08/24 08:51	11/08/24 19:48	1
	3 J	0.50	0.050	•		11/08/24 08:51	11/08/24 19:48	1
Beryllium <0.004	-	0.0040	0.0040			11/08/24 08:51	11/08/24 19:48	1
Cadmium <0.005	0	0.0050	0.0020	mg/L		11/08/24 08:51	11/08/24 19:48	,
Chromium 0.05	5	0.025	0.010	mg/L		11/08/24 08:51	11/08/24 19:48	•
Cobalt 0.03	2	0.025	0.010	mg/L		11/08/24 08:51	11/08/24 19:48	1
Copper 0.06	1	0.025	0.010	mg/L		11/08/24 08:51	11/08/24 19:48	1
Iron 4	5	0.40	0.20	mg/L		11/08/24 08:51	11/08/24 19:48	1
Lead 0.1	6	0.0075	0.0075	mg/L		11/08/24 08:51	11/08/24 19:48	1
Manganese 0.9	2	0.025	0.010	mg/L		11/08/24 08:51	11/08/24 19:48	1
Nickel 0.05	8	0.025	0.010	mg/L		11/08/24 08:51	11/08/24 19:48	
Selenium <0.05	0	0.050	0.020	mg/L		11/08/24 08:51	11/08/24 19:48	
Silver <0.02	5	0.025	0.010	mg/L		11/08/24 08:51	11/08/24 19:48	
Zinc 0.2	9 J	0.50	0.020	mg/L		11/08/24 08:51	11/08/24 19:48	1
Method: SW846 7470A - Mercury (CVAA	•							
	It Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Mercury <0.0002	0	0.00020	0.00020	mg/L		11/08/24 10:40	11/12/24 17:11	1
Method: SW846 7470A - Mercury (CVAA) - SPLP East							
	lt Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury <0.0002	0	0.00020	0.00020	mg/L		11/08/24 10:40	11/12/24 18:13	
Method: SW846 7471B - Mercury (CVAA	.)							
	It Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Mercury 0.04	6	0.016	0.0068	mg/Kg	₩	11/08/24 16:25	11/13/24 10:58	1
General Chemistry								
	It Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
pH (SW846 9045D) 8.	4	0.2	0.2	SU			11/01/24 14:00	1

Job ID: 500-259381-1

Client: Weston Solutions Inc

Project/Site: IDOT- WO 007 FAI 94 Dolton

Client Sample ID: R16-4(3-6)-103124 Lab Sample ID: 500-259381-12

Date Collected: 10/31/24 10:55

Matrix: Solid

Date Received: 10/31/24 12:12

Percent Solids: 92.4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	<0.019		0.019	0.0079	mg/Kg	— <u></u>	11/01/24 09:18	11/04/24 18:52	
Benzene	< 0.0019		0.0019	0.00059	mg/Kg	☼	11/01/24 09:18	11/04/24 18:52	1
Bromodichloromethane	< 0.0019		0.0019	0.00060	mg/Kg	☼	11/01/24 09:18	11/04/24 18:52	1
Bromoform	<0.0019		0.0019	0.0011	mg/Kg	₩	11/01/24 09:18	11/04/24 18:52	1
Bromomethane	< 0.0047		0.0047	0.0023	mg/Kg	≎	11/01/24 09:18	11/04/24 18:52	1
Carbon disulfide	< 0.0047		0.0047	0.00086	mg/Kg	₽	11/01/24 09:18	11/04/24 18:52	1
Carbon tetrachloride	<0.0019		0.0019	0.00064	mg/Kg		11/01/24 09:18	11/04/24 18:52	1
Chlorobenzene	< 0.0019		0.0019	0.00079	mg/Kg	☼	11/01/24 09:18	11/04/24 18:52	1
Chloroethane	< 0.0047		0.0047	0.0015	mg/Kg	₽	11/01/24 09:18	11/04/24 18:52	1
Chloroform	<0.0019		0.0019	0.0013	mg/Kg	₽	11/01/24 09:18	11/04/24 18:52	1
Chloromethane	< 0.0047		0.0047	0.00091	mg/Kg	☼	11/01/24 09:18	11/04/24 18:52	1
cis-1,2-Dichloroethene	< 0.0019		0.0019		mg/Kg	☼	11/01/24 09:18	11/04/24 18:52	1
cis-1,3-Dichloropropene	<0.0019		0.0019	0.00075			11/01/24 09:18	11/04/24 18:52	1
Dibromochloromethane	< 0.0019		0.0019	0.00087	mg/Kg	☼	11/01/24 09:18	11/04/24 18:52	1
1,1-Dichloroethane	< 0.0019		0.0019	0.00070	mg/Kg	☼	11/01/24 09:18	11/04/24 18:52	1
1,2-Dichloroethane	<0.0047		0.0047	0.0012			11/01/24 09:18	11/04/24 18:52	1
1,1-Dichloroethene	< 0.0019		0.0019	0.00077	mg/Kg	₩	11/01/24 09:18	11/04/24 18:52	1
1,2-Dichloropropane	< 0.0019		0.0019		mg/Kg	₩	11/01/24 09:18	11/04/24 18:52	1
1,3-Dichloropropene, Total	<0.0019		0.0019	0.00090		 ☆	11/01/24 09:18	11/04/24 18:52	1
Ethylbenzene	<0.0019		0.0019		mg/Kg	₩	11/01/24 09:18	11/04/24 18:52	1
2-Hexanone	< 0.0047		0.0047	0.0028	mg/Kg	₩	11/01/24 09:18	11/04/24 18:52	1
Methylene Chloride	<0.0047		0.0047	0.0020	mg/Kg		11/01/24 09:18	11/04/24 18:52	1
Methyl Ethyl Ketone	< 0.0047		0.0047	0.0021	mg/Kg	₩	11/01/24 09:18	11/04/24 18:52	1
methyl isobutyl ketone	< 0.0047		0.0047	0.0033		₩	11/01/24 09:18	11/04/24 18:52	1
Methyl tert-butyl ether	<0.0019		0.0019	0.00060	mg/Kg	 	11/01/24 09:18	11/04/24 18:52	1
Styrene	< 0.0019		0.0019	0.00084		ά	11/01/24 09:18	11/04/24 18:52	1
1,1,2,2-Tetrachloroethane	<0.0019		0.0019		mg/Kg	☆	11/01/24 09:18	11/04/24 18:52	1
Tetrachloroethene	<0.0019		0.0019	0.0010	mg/Kg		11/01/24 09:18	11/04/24 18:52	1
Toluene	<0.0019		0.0019	0.00038	mg/Kg		11/01/24 09:18	11/04/24 18:52	1
trans-1,2-Dichloroethene	<0.0019		0.0019	0.00071	mg/Kg	ά	11/01/24 09:18	11/04/24 18:52	1
trans-1,3-Dichloropropene	<0.0019		0.0019	0.00090			11/01/24 09:18	11/04/24 18:52	1
1,1,1-Trichloroethane	< 0.0019		0.0019	0.00076	0 0		11/01/24 09:18	11/04/24 18:52	
1,1,2-Trichloroethane	< 0.0019		0.0019	0.00070	0 0		11/01/24 09:18	11/04/24 18:52	1
Trichloroethene	< 0.0019		0.0019	0.00070	mg/Kg	T.	11/01/24 09:18	11/04/24 18:52	· · · · · · · · · · · · · · · · · · ·
Vinyl chloride	< 0.0019		0.0019	0.00076	0 0	Ť	11/01/24 09:18	11/04/24 18:52	
Xylenes, Total	< 0.0037		0.0037	0.00064			11/01/24 09:18		1
Aylones, rotal	0.0007		0.0007	0.00001	mg/rtg	T	11/01/21 00:10	11/01/21 10:02	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	120		75 - 131				11/01/24 09:18	11/04/24 18:52	
Dibromofluoromethane (Surr)	106		75 - 126				11/01/24 09:18	11/04/24 18:52	1
1,2-Dichloroethane-d4 (Surr)	102		70 - 134				11/01/24 09:18	11/04/24 18:52	1
Toluene-d8 (Surr)	106		75 - 124				11/01/24 09:18	11/04/24 18:52	1

Method: SW846 8270E - Semivolatile	Organic Cor	npounds (GC/MS)
------------------------------------	-------------	-----------------

Michiga. Offoro 027 0L - Ocili	ivolatile Org	arne compo	unus (Gon	110)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	<0.27		0.27	0.038	mg/Kg	<u></u>	11/04/24 15:03	11/05/24 17:02	1
1,2-Dichlorobenzene	<0.27		0.27	0.021	mg/Kg	₩	11/04/24 15:03	11/05/24 17:02	1
1,3-Dichlorobenzene	<0.27		0.27	0.024	mg/Kg	₩	11/04/24 15:03	11/05/24 17:02	1
1,4-Dichlorobenzene	<0.27		0.27	0.025	mg/Kg	₽	11/04/24 15:03	11/05/24 17:02	1
2,2'-oxybis[1-chloropropane]	< 0.27		0.27	0.038	mg/Kg	☼	11/04/24 15:03	11/05/24 17:02	1

Eurofins Chicago

Job ID: 500-259381-1

3

7

0

10

12

14

Client: Weston Solutions Inc

Project/Site: IDOT- WO 007 FAI 94 Dolton

Client Sample ID: R16-4(3-6)-103124 Lab Sample ID: 500-259381-12

Date Collected: 10/31/24 10:55

Matrix: Solid

Date Received: 10/31/24 12:12

Percent Solids: 92.4

Method: SW846 8270E - Sem Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	<0.53	0.53	0.020	mg/Kg	— <u>-</u>	11/04/24 15:03	11/05/24 17:02	1
2,4,6-Trichlorophenol	<0.53	0.53		mg/Kg		11/04/24 15:03	11/05/24 17:02	1
2,4-Dichlorophenol	<0.53	0.53		mg/Kg	₩	11/04/24 15:03	11/05/24 17:02	1
2,4-Dimethylphenol	<0.53	0.53		mg/Kg	₩	11/04/24 15:03	11/05/24 17:02	1
2,4-Dinitrophenol	<1.1	1.1		mg/Kg		11/04/24 15:03	11/05/24 17:02	1
2,4-Dinitrotoluene	<0.27	0.27		mg/Kg	₩	11/04/24 15:03	11/05/24 17:02	1
2,6-Dinitrotoluene	<0.27	0.27		mg/Kg	₩	11/04/24 15:03	11/05/24 17:02	1
2-Chloronaphthalene	<0.27	0.27		mg/Kg		11/04/24 15:03	11/05/24 17:02	 1
2-Chlorophenol	<0.27	0.27		mg/Kg	 	11/04/24 15:03	11/05/24 17:02	1
2-Methylnaphthalene	<0.11	0.11		mg/Kg		11/04/24 15:03	11/05/24 17:02	1
2-Methylphenol	<0.27	0.27		mg/Kg		11/04/24 15:03	11/05/24 17:02	
2-Nitroaniline	<0.27	0.27		mg/Kg	☆	11/04/24 15:03	11/05/24 17:02	1
2-Nitrophenol	<0.53	0.53		mg/Kg	☆	11/04/24 15:03	11/05/24 17:02	1
3 & 4 Methylphenol	<0.27	0.27		mg/Kg		11/04/24 15:03	11/05/24 17:02	
3.3'-Dichlorobenzidine	<0.27	0.27		mg/Kg	₩	11/04/24 15:03	11/05/24 17:02	1
3,3 -Dichlorobenzialne 3-Nitroaniline	<0.53	0.27						
				mg/Kg	· · · · ÷	11/04/24 15:03	11/05/24 17:02	1
4,6-Dinitro-2-methylphenol	<1.1	1.1		mg/Kg	₩.	11/04/24 15:03	11/05/24 17:02	1
4-Bromophenyl phenyl ether	<0.27	0.27		mg/Kg	*	11/04/24 15:03	11/05/24 17:02	1
4-Chloro-3-methylphenol	<0.53	0.53	0.021	mg/Kg	<u>.</u>	11/04/24 15:03	11/05/24 17:02	1
4-Chloroaniline	<1.1	1.1		mg/Kg	☼	11/04/24 15:03	11/05/24 17:02	1
4-Chlorophenyl phenyl ether	<0.27	0.27		mg/Kg	☼	11/04/24 15:03	11/05/24 17:02	1
4-Nitroaniline	<0.53	0.53		mg/Kg	.	11/04/24 15:03	11/05/24 17:02	1
4-Nitrophenol	<1.1	1.1		mg/Kg	☼	11/04/24 15:03	11/05/24 17:02	1
Acenaphthene	<0.053	0.053		mg/Kg	₩	11/04/24 15:03	11/05/24 17:02	1
Acenaphthylene	<0.053	0.053	0.0090			11/04/24 15:03	11/05/24 17:02	1
Anthracene	<0.053	0.053		mg/Kg	₩	11/04/24 15:03	11/05/24 17:02	1
Benzo[a]anthracene	0.029 J	0.053		mg/Kg	₩	11/04/24 15:03	11/05/24 17:02	1
Benzo[a]pyrene	<0.053	0.053		mg/Kg	₩	11/04/24 15:03	11/05/24 17:02	1
Benzo[b]fluoranthene	<0.053	0.053	0.050	mg/Kg	☼	11/04/24 15:03	11/05/24 17:02	1
Benzo[g,h,i]perylene	<0.053	0.053	0.011	mg/Kg	☼	11/04/24 15:03	11/05/24 17:02	1
Benzo[k]fluoranthene	<0.053	0.053	0.020	mg/Kg	☼	11/04/24 15:03	11/05/24 17:02	1
Bis(2-chloroethoxy)methane	<0.27	0.27	0.020	mg/Kg	☼	11/04/24 15:03	11/05/24 17:02	1
Bis(2-chloroethyl)ether	<0.27	0.27	0.024	mg/Kg	☼	11/04/24 15:03	11/05/24 17:02	1
Bis(2-ethylhexyl) phthalate	<0.27 *-	0.27	0.21	mg/Kg	☼	11/04/24 15:03	11/05/24 17:02	1
Butyl benzyl phthalate	<0.27	0.27	0.026	mg/Kg	₩	11/04/24 15:03	11/05/24 17:02	1
Carbazole	<0.27	0.27	0.021	mg/Kg	☼	11/04/24 15:03	11/05/24 17:02	1
Chrysene	0.017 J	0.053	0.014	mg/Kg	☼	11/04/24 15:03	11/05/24 17:02	1
Dibenz(a,h)anthracene	<0.053	0.053	0.053	mg/Kg	₩	11/04/24 15:03	11/05/24 17:02	1
Dibenzofuran	<0.27	0.27	0.019	mg/Kg	☼	11/04/24 15:03	11/05/24 17:02	1
Diethyl phthalate	<0.27	0.27	0.024	mg/Kg	☼	11/04/24 15:03	11/05/24 17:02	1
Dimethyl phthalate	<0.27	0.27	0.011	mg/Kg	₩	11/04/24 15:03	11/05/24 17:02	1
Di-n-butyl phthalate	<0.27 *-	0.27		mg/Kg	₩	11/04/24 15:03	11/05/24 17:02	1
Di-n-octyl phthalate	<0.53	0.53	0.37	mg/Kg	₩	11/04/24 15:03	11/05/24 17:02	1
Fluoranthene	0.035 J	0.053		mg/Kg		11/04/24 15:03	11/05/24 17:02	1
Fluorene	<0.053	0.053		mg/Kg	₩	11/04/24 15:03	11/05/24 17:02	1
Hexachlorobenzene	<0.11	0.11		mg/Kg	₩	11/04/24 15:03	11/05/24 17:02	1
Hexachlorobutadiene	<0.27	0.27		mg/Kg		11/04/24 15:03	11/05/24 17:02	
Hexachlorocyclopentadiene	<1.1	1.1		mg/Kg	☼	11/04/24 15:03	11/05/24 17:02	1
Hexachloroethane	<0.27	0.27		mg/Kg		11/04/24 15:03	11/05/24 17:02	1

Eurofins Chicago

Job ID: 500-259381-1

2

3

5

7

9

11

13

14

Client: Weston Solutions Inc

Project/Site: IDOT- WO 007 FAI 94 Dolton

Lab Sample ID: 500-259381-12 Client Sample ID: R16-4(3-6)-103124

Date Collected: 10/31/24 10:55 **Matrix: Solid** Date Received: 10/31/24 12:12 Percent Solids: 92.4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Indeno[1,2,3-cd]pyrene	<0.053		0.053	0.051	mg/Kg	₩	11/04/24 15:03	11/05/24 17:02	1
Isophorone	<0.27		0.27	0.027	mg/Kg	₩	11/04/24 15:03	11/05/24 17:02	1
Naphthalene	< 0.053		0.053	0.0096	mg/Kg	☆	11/04/24 15:03	11/05/24 17:02	1
Nitrobenzene	<0.053		0.053	0.017	mg/Kg	☼	11/04/24 15:03	11/05/24 17:02	1
N-Nitrosodi-n-propylamine	<0.11		0.11	0.010	mg/Kg	☼	11/04/24 15:03	11/05/24 17:02	1
N-Nitrosodiphenylamine	<0.27		0.27	0.031	mg/Kg	₩	11/04/24 15:03	11/05/24 17:02	1
Pentachlorophenol	<1.1		1.1	0.13	mg/Kg	₩	11/04/24 15:03	11/05/24 17:02	1
Phenanthrene	0.020	J	0.053	0.011	mg/Kg	☼	11/04/24 15:03	11/05/24 17:02	1
Phenol	<0.27		0.27	0.023	mg/Kg	₩	11/04/24 15:03	11/05/24 17:02	1
Pyrene	0.030	J	0.053	0.014	mg/Kg	₽	11/04/24 15:03	11/05/24 17:02	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	50		31 - 143				11/04/24 15:03	11/05/24 17:02	1
2-Fluorobiphenyl (Surr)	62		43 - 145				11/04/24 15:03	11/05/24 17:02	1
2-Fluorophenol (Surr)	75		31 - 166				11/04/24 15:03	11/05/24 17:02	1
Nitrobenzene-d5 (Surr)	62		37 - 147				11/04/24 15:03	11/05/24 17:02	1
Phenol-d5 (Surr)	65		30 - 153				11/04/24 15:03	11/05/24 17:02	1
Terphenyl-d14 (Surr)	78		42 - 157				11/04/24 15:03	11/05/24 17:02	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	2400		10	4.3	mg/Kg	<u></u>	11/07/24 09:57	11/08/24 14:41	1
Antimony	<1.0		1.0	0.20	mg/Kg	₩	11/07/24 09:57	11/08/24 14:41	1
Arsenic	2.3		0.52	0.18	mg/Kg	₩	11/07/24 09:57	11/08/24 14:41	1
Barium	13		0.52	0.059	mg/Kg	₩	11/07/24 09:57	11/08/24 14:41	1
Beryllium	0.17	J	0.21	0.049	mg/Kg	₩	11/07/24 09:57	11/08/24 14:41	1
Cadmium	0.076	J	0.10	0.019	mg/Kg	₩	11/07/24 09:57	11/08/24 14:41	1
Calcium	5000	B ^2	10	1.8	mg/Kg	₩	11/07/24 09:57	11/08/24 14:41	1
Chromium	3.3		0.52	0.26	mg/Kg	₩	11/07/24 09:57	11/08/24 14:41	1
Cobalt	2.0		0.26	0.068	mg/Kg	₩	11/07/24 09:57	11/08/24 14:41	1
Copper	3.4		0.52	0.15	mg/Kg	₩	11/07/24 09:57	11/08/24 14:41	1
Iron	3400		10	5.4	mg/Kg	₩	11/07/24 09:57	11/08/24 14:41	1
Lead	8.9		0.26	0.12	mg/Kg	₩	11/07/24 09:57	11/08/24 14:41	1
Magnesium	1000		5.2	2.6	mg/Kg	₩	11/07/24 09:57	11/08/24 14:41	1
Manganese	61		0.52	0.075	mg/Kg	₩	11/07/24 09:57	11/08/24 14:41	1
Nickel	3.4		0.52	0.15	mg/Kg	₩	11/07/24 09:57	11/08/24 14:41	1
Potassium	270		26	9.2	mg/Kg	₩	11/07/24 09:57	11/08/24 14:41	1
Selenium	<0.52		0.52	0.31	mg/Kg	₽	11/07/24 09:57	11/08/24 14:41	1
Silver	<0.26		0.26	0.067	mg/Kg	₽	11/07/24 09:57	11/08/24 14:41	1
Sodium	96		52	7.7	mg/Kg	₩	11/07/24 09:57	11/08/24 14:41	1
Thallium	0.31	J	0.52	0.26	mg/Kg	☼	11/07/24 09:57	11/08/24 14:41	1
Vanadium	4.6		0.26	0.061	mg/Kg	☼	11/07/24 09:57	11/08/24 14:41	1
Zinc	26		1.0	0.46	mg/Kg	₩	11/07/24 09:57	11/08/24 14:41	1

Method: SW846 6010D - Metals (ICP) - TCLP									
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Arsenic	<0.050	0.050	0.010	mg/L		11/08/24 08:48	11/08/24 23:14	1	
Barium	0.17 J	0.50	0.050	mg/L		11/08/24 08:48	11/08/24 23:14	1	
Beryllium	<0.0040	0.0040	0.0040	mg/L		11/08/24 08:48	11/08/24 23:14	1	
Cadmium	<0.0050	0.0050	0.0020	mg/L		11/08/24 08:48	11/08/24 23:14	1	

Eurofins Chicago

Page 64 of 102

Job ID: 500-259381-1

Client: Weston Solutions Inc

Project/Site: IDOT- WO 007 FAI 94 Dolton

Client Sample ID: R16-4(3-6)-103124 Lab Sample ID: 500-259381-12

Date Collected: 10/31/24 10:55 **Matrix: Solid** Date Received: 10/31/24 12:12 Percent Solids: 92.4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chromium	0.012	J	0.025	0.010	mg/L		11/08/24 08:48	11/08/24 23:14	
Cobalt	<0.025		0.025	0.010	mg/L		11/08/24 08:48	11/08/24 23:14	
Copper	0.013	J	0.025	0.010	mg/L		11/08/24 08:48	11/08/24 23:14	
ron	6.0		0.40	0.20	mg/L		11/08/24 08:48	11/08/24 23:14	
Lead	0.12		0.0075	0.0075	mg/L		11/08/24 08:48	11/08/24 23:14	
Wanganese	0.68		0.025	0.010	mg/L		11/08/24 08:48	11/08/24 23:14	
Nickel	0.014	J	0.025	0.010	mg/L		11/08/24 08:48	11/08/24 23:14	
Selenium	<0.050		0.050	0.020	mg/L		11/08/24 08:48	11/08/24 23:14	
Silver	<0.025		0.025	0.010	mg/L		11/08/24 08:48	11/08/24 23:14	
Zinc	0.20	J	0.50	0.020	mg/L		11/08/24 08:48	11/08/24 23:14	
Method: SW846 6010D - Metals (ICF	P) - SP	LP East							
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Arsenic	0.010	J	0.050	0.010	_		11/08/24 08:51	11/08/24 19:52	
Barium	0.11	J	0.50	0.050	mg/L		11/08/24 08:51	11/08/24 19:52	
Beryllium <	<0.0040		0.0040	0.0040	mg/L		11/08/24 08:51	11/08/24 19:52	
Cadmium <	<0.0050		0.0050	0.0020	mg/L		11/08/24 08:51	11/08/24 19:52	
Chromium	0.027		0.025	0.010	mg/L		11/08/24 08:51	11/08/24 19:52	
Cobalt	0.014	J	0.025	0.010	mg/L		11/08/24 08:51	11/08/24 19:52	
Copper	0.035		0.025	0.010	mg/L		11/08/24 08:51	11/08/24 19:52	
ron	19		0.40	0.20	mg/L		11/08/24 08:51	11/08/24 19:52	
_ead	0.12		0.0075	0.0075	mg/L		11/08/24 08:51	11/08/24 19:52	
Manganese	0.37		0.025	0.010	mg/L		11/08/24 08:51	11/08/24 19:52	
Nickel	0.023	J	0.025	0.010	mg/L		11/08/24 08:51	11/08/24 19:52	
Selenium	<0.050		0.050	0.020	mg/L		11/08/24 08:51	11/08/24 19:52	
Silver	<0.025		0.025	0.010	mg/L		11/08/24 08:51	11/08/24 19:52	
Zinc	0.25	J	0.50	0.020	mg/L		11/08/24 08:51	11/08/24 19:52	
Method: SW846 7470A - Mercury (C	(AAV	- TCLP							
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Mercury <0	0.00020		0.00020	0.00020	mg/L		11/08/24 10:40	11/12/24 17:13	
Method: SW846 7470A - Mercury (C	(AAV	- SPLP East							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury <0	0.00020		0.00020	0.00020	mg/L		11/08/24 10:40	11/12/24 18:15	
Method: SW846 7471B - Mercury (C	(AAV								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	0.054		0.017	0.0071	mg/Kg	-	11/08/24 16:25	11/13/24 11:00	
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
pH (SW846 9045D)	8.3		0.2	0.2	SU			11/01/24 14:03	

Job ID: 500-259381-1

Definitions/Glossary

Client: Weston Solutions Inc Job ID: 500-259381-1

Project/Site: IDOT- WO 007 FAI 94 Dolton

Qualifiers

	Semi	

Qualifici	quamo: 2000mption
*	LCS and/or LCSD is outside accontance limits, low biased

LCS and/or LCSD is outside acceptance limits, low biased.

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Metals

Qualifier

Qualifier	Qualifier Description
^2	Calibration Blank (ICB and/or CCB) is outside acceptance lir

Calibration Blank (ICB and/or CCB) is outside acceptance limits. MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not 4

applicable.

В Compound was found in the blank and sample. F1 MS and/or MSD recovery exceeds control limits.

F2 MS/MSD RPD exceeds control limits F3 Duplicate RPD exceeds the control limit

Qualifier Description

Duplicate RPD exceeds limit, and one or both sample results are less than 5 times RL, and the absolute difference between results is < F5

the upper reporting limits for both.

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
--------------	---

₩ Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery **CFL** Contains Free Liquid **CFU** Colony Forming Unit **CNF** Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

Method Detection Limit MDL Minimum Level (Dioxin) MI MPN Most Probable Number Method Quantitation Limit MQL

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Page 66 of 102

Accreditation/Certification Summary

Client: Weston Solutions Inc Job ID: 500-259381-1

Project/Site: IDOT- WO 007 FAI 94 Dolton

Laboratory: Eurofins Chicago

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority			Identification Number	Expiration Date		
llinois	NELAF)	IL00035	05-31-25		
The following analytes	s are included in this repor	rt but the laboratory is r	not certified by the governing authori	ty This list may include analy		
for which the agency	does not offer certification		, с с	.,		
for which the agency of Analysis Method	does not offer certification Prep Method	Matrix	Analyte			
for which the agency of Analysis Method 8260D	does not offer certification	Matrix Solid	Analyte 1,3-Dichloropropene, Tota			
for which the agency of Analysis Method	does not offer certification Prep Method	Matrix	Analyte			

4

5

7

8

10

11

13

14

	Address					C	ha	ain	of	Cu	stc	dy	/ Re	ecor	·d	73	4(9	6	ů,	eı	urofins	Enviror Americ	nment Testing
		F	Regul	atory Pro	gram:	□ DW		NPDES		RCR	A [Oth	er											TAL-8210
	Client Contact	Proje	ect Ma	nager: 🗚	-Sles	sers			Site	Cont	act:	C-D	aun	ds	Da	ite: (0/3	111	24			COC No	7340	ale
	Company Name westen Solutions		Email:						Lab	Cont	act:	1.2	(ny	PP	Ca	arrier:								COCs
	Address 300 Knightsbridge PKKEN City/State/Zip Lincolnshire Record	4_		Analysis Tu					П			1	2									Sampler (us_
	City/State/Zip Lincomshire R 60069	1-		DAR DAYS		ORKING I	DAYS		_		ے ا	1	3				100	4	5			For Lab Us Walk-in Clie		
	Phone 317-5au-2518 Fax	-		if different fro	m Below weeks		_		Z		0	Ý t	5				5	Ų.	5			Lab Samplir		
	Project Name W7 POINW				week					-	4	2101/2					17	1.1	ë i			İ		
	Site DOITON, LL]		2	days				le (5	3/5	5						-			Job / SDG N		
	PO#			1	day	-			amp Is/		1	150101110	ñ			5	00-25	59381	coc			500-25	<u> 59381</u>	
	Sample Identification		mple ate	Sample Time	Type (C=Com G=Grab	р,		# of Cont.	Filtered Sample (Y/N)	Sol	SVOC	2012										Sam	nple Specific	c Notes
١	R18 360 5) - 103124	10/31	124	0255	G	1	,	Le	Ħ	X	Х	χ)	×Χ									INCL	UDS	
2	R18-3(5-10) -103124		,	540 C	7	11		Ť	H	\prod			1						\Box		\top		LSPL	P
3	R18-3(10-15)-103124			७९०५							1	П										Mn	4Fe	
4	R16-5 (0-4) - 103124			0925		\Box			П	П		П										1		
5	R14-5(4-9)-103124	\Box		0930					П	П	П													
10	R16-160-4)-103124			1025			T	Т	П	П	П													
7	RILE-114-9)-103124			1030		$\Box I$			П	П														
8	R16-2(0-2)-103124			1035				T																
9	R16-360-2)-103124			1040						П														
10				1040																				
11	1			USOJ					Ш	П			Ш											
12	Rlu-4 (3-6)-103124			1052					Ш			1	Ш											
	Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3;	5=N	aOH; (6= Other _	_	_		4			4					11							4	
	Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Plea	se List	t any E	EPA Waste	Codes f	or the sa	ample	e in th		amp	ie Dis	pos	ai (A	ree may	y be as	ssess	ea it s	samp	ies a	re ret	amed	l longer thai	n i montn)	I
	Comments Section if the lab is to dispose of the sample								_															
	Non Hazard ☐ Flammable ☐ Skin Irritant	L	Poison	В	L] Ur	nknown				Ш	Return	to Clie	ent		Dispo	sal by L	.ab		A	rchive	for	Mon	iths	
	Special Instructions/QC Requirements & Comments:														101	15	ي.							
	Custody Seals Intact Yes No	Cust	tody S	eal No								Coole	r Tem	p (°C)				Corr	'd			Therm ID No	5	
	Relinquished by		pany 108	ton		Date	/Tim	1/1	SA F	lecei	ved by	/					Comp	oany				Date/Time		
	Relinquished by		npany	, 0 10		Date	/Tim	e	F	Recei	ved by	/					Comp	oany				Date/Time		

Date/Time

Company

Relinquished by

Received in Laboratory by

(Maya) (MM)

Page 101 of 102

11/14/2024

1212

Date/Time

Company FETA

Illinois Environmental Protection Agency

1021 North Grand Avenue East • P.O. Box 19276 • Springfield • Illinois • 62794-9276 • (217) 782-3397

Uncontaminated Soil Certification by Licensed Professional Engineer or Licensed Professional Geologist for Use of Uncontaminated Soil as Fill in a CCDD or Uncontaminated Soil Fill Operation LPC-663

Revised in accordance with 35 III. Adm. Code 1100, as amended by PCB R2012-009 (eff. Aug. 27, 2012)

This certification form is to be used by professional engineers and professional geologists to certify, pursuant to 35 III. Adm. Code 1100.205(a)(1)(B), that soil (i) is uncontaminated soil and (ii) is within a pH range of 6.26 to 9.0. If you have questions about this form, please telephone the Bureau of Land Permit Section at 217/524-3300.

This form may be completed online, saved locally, printed and signed, and submitted to prospective clean construction or demolition debris (CCDD) fill operations or uncontaminated soil fill operations.

	cation Information ation of the source of the ur	contaminated so	il\	
•	Al 94 - I-94 at US 6 / 159th		,	umber, if available:
Physical Site Loca	ation (address, including nuty) ty Road (ISGS Site No. 32	mber and street):	<u>, </u>	, <u> </u>
City: Dolto	n	State: IL	Zip Code:	
County: Cook		Township:		
Lat/Long of appro Latitude:	ximate center of site in dec	imal degrees (DD	o.ddddd) to five decimal	places (e.g., 40.67890, -90.12345):
Identify how the la	al Degrees) at/long data were determine ap Interpolation () Photo		,	
IEPA Site Numbe			BOW:	BOA:
Approximate Star	t Date (mm/dd/yyyy): <u>TBI</u>)	Approximate End Da	ate (mm/dd/yyyy): <u>TBD</u>
Estimated Volume	e of debris (cu. Yd.): 1,5	23		
II. Owner/Ope Site Owner	erator Information for	Source Site	Site Operator	
Name:_	Illinois Department o	Transportation	Name:	Illinois Department of Transportation
Street Address:	201 \	V. Center Court	Street Address:	201 W. Center Court
PO Box:			PO Box:	
City:	Schaumburg	State: IL	City:	Schaumburg State: IL
Zip Code:	60196 Phone:	847-705-4627	Zip Code:	60196 Phone: 847-705-4627
Contact:		Vanessa Ruiz	Contact:	Vanessa Ruiz
Email, if available	e: Vanessa.R	uiz@illinois.gov	Email, if available:	Vanessa.Ruiz@illinois.gov

This Agency is authorized to require this information under Section 4 and Title X of the Environmental Protection Act (415 ILCS 5/4, 5/39). Failure to disclose this information may result in: a civil penalty of not to exceed \$50,000 for the violation and an additional civil penalty of not to exceed \$10,000 for each day during which the violation continues (415 ILCS 5/42). This form has been approved by the Forms Management Center.

Project Name: FAI 94 - I-9	4 at US 6 / 159th St to Mic			Latitude:	Longitude: -
	<u>Uncont</u>	aminated So	il Cert	<u>ification</u>	
III. Basis for Certifica	ation and Attachmen	ts			
For each item listed below,	reference the attachments	to this form that	at provi	de the required info	rmation.
a. A Description of the so III. Adm. Code 1100.61		ney were deterr	mined to	be sufficient in nu	mber and appropriately located 35
	SAMPLED ADJACENT TO ESTIGATION REPORT FO				, AND TABLE 4-1 OF THE
established pursuant to the documentation of c the analysis; and certif with the Agency's rules (g), 1100.205(a), 1100	o 35 III. Adm. Code Part 11 chain of custody control, a c ication by an authorized ag s for the accreditation of en .610]:	00, Subpart F a copy of the lab a ent of the labor vironmental and	and that analysis atory th d the so	the soil pH is withing; the accreditation at the analysis has ope of the accreditation.	um allowable concentrations In the range of 6.25 to 9.0,including Instatus of the laboratory performing I been performed in accordance I ation [35 III. Adm. Code 1100.201
TESTAMERICA ANALYTI INVESTIGATION REPOR		: 500-259257-1	. ALSO	SEE FIGURE 4-1	OF THE PRELIMINARY SITE
IV. Certification Stat Professional Geolog		l Seal of Lic	ensed	Professional E	Engineer or Licensed
the best of my knowledge a ILCS 5/22.51 or 22.51a] ar certify that the soil pH is wi	that the information submi and belief, true, accurate and 35 III. Adm. Code 1100.2	nd complete. Ir 205(a), I certify 0. In addition, I	but not accore that the certify	limited to, all attach dance with the Envi soil from this site is that the soil has no	sional engineer or geologist) ments and other information, is to ronmental Protection Act [415 s uncontaminated soil. I also t been removed from the site as
					ally or in writing, to the Illinois ass 3 felony. (415 ILCS 5/44(h))
Company Name:	Weston Solutions, Inc.				
Street Address:	300 Knightsbridge Parkw	ay; Suite 360			
City:	Lincolnshire	State: IL	Zip	Code: 60069	
Phone:	(224) 864-7200				
Michael A. Castillo, P.G.					
Printed Name:					

- 11:1

Licensed Professional Engineer or Licensed Professional Geologist Signature: 24 February 2025

Date:

MICHAEL A. CASTILLO
196.001276

P.E or L.P.G. Seal:

IL 532-2922 LPC 663 Rev. 1/2019

Summary Table - Residences (ISGS Site No. 3727V-17) Comparison of Detected Constituents to Applicable Reference Concentrations Soil Analytical Results

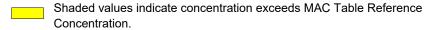
FAI 94 - I-94 at US 6 / 159th Street to Michigan City Road Dolton, Cook County, Illinois

Location	Reference	R17-2	R17-2
Field Sample ID	Concentrations	R17-2(0-5)-103024	R17-2(5-10)-103024
Sample Date	(MAC Table)	10/30/2024	10/30/2024
ISGS Site No.		3727V-17	3727V-17
Laboratory pH	<6.25,>9.0	8.0	8.2
VOCs (mg/kg)	,		· · · · · · · · · · · · · · · · · · ·
Acetone	25	ND	0.007 J
Carbon disulfide	9	ND	0.001 J
SVOCs		No Det	ections
Total Metals (mg/kg)			
Aluminum, Total		1900	3500
Antimony, Total	5	ND	ND
Arsenic, Total	11.3 / 13,0	1.7	4.3
Barium, Total	1500	5.6	13
Beryllium, Total	22	0.14 J	0.28
Cadmium, Total	5.2	0.3 J	ND
Calcium, Total		24000 B	93000 B
Chromium, Total	21	3.9	6.7
Cobalt, Total	20	4.2	4.6
Copper, Total	2900	3.9	8.8
Iron, Total	15000 / 15900	5300	10000
Lead, Total	107	3.4	4
Magnesium, Total	325000	10000	44000
Manganese, Total	630 / 636	130	400
Mercury, Total	0.89	ND	ND
Nickel, Total	100	6	12
Potassium, Total		460	990
Selenium, Total	1.3	ND	ND
Silver, Total	4.4	ND	ND
Sodium, Total		190	280
Thallium, Total	2.6	0.84	2.1
Vanadium, Total	550	6.1	9.3
Zinc, Total	5100	27	31
TCLP Metals (mg/l)			
Arsenic, TCLP	0.05	0.015 J	0.014 J
Barium, TCLP	2	0.11 J	0.41 J
Beryllium, TCLP	0.004	ND	ND
Cadmium, TCLP	0.005	0.004 J	ND
Chromium, TCLP	0.1	0.019 J	0.017 J
Cobalt, TCLP	1	0.01 J	ND
Copper, TCLP	0.65	0.069	0.036
Iron, TCLP	5	18	14
Lead, TCLP	0.0075	0.0082	ND
Manganese, TCLP	0.15	1.7	3.3
Mercury, TCLP	0.002	0.00062	ND
Nickel, TCLP	0.1	0.035	0.047
Selenium, TCLP	0.05	ND	ND
Silver, TCLP	0.05	ND	ND
Zinc, TCLP	5	0.23 J	0.072 J

Summary Table - Residences (ISGS Site No. 3727V-17) Comparison of Detected Constituents to Applicable Reference Concentrations Soil Analytical Results

FAI 94 - I-94 at US 6 / 159th Street to Michigan City Road Dolton, Cook County, Illinois

Location	Reference	R17-2	R17-2		
Field Sample ID	Concentrations	R17-2(0-5)-103024	R17-2(5-10)-103024		
Sample Date	(MAC Table)	10/30/2024	10/30/2024		
ISGS Site No.		3727V-17	3727V-17		
SPLP Metals (mg/l)					
Arsenic, SPLP	0.05	ND	0.011 J		
Barium, SPLP	2	ND	0.25 J		
Beryllium, SPLP	0.004	ND	ND		
Cadmium, SPLP	0.005	ND	ND		
Chromium, SPLP	0.1	0.015 J	0.075		
Cobalt, SPLP	1	0.011 J	0.032		
Copper, SPLP	0.65	0.058	0.043		
Iron, SPLP	5	15	56		
Lead, SPLP	0.0075	0.032	0.029		
Manganese, SPLP	0.15	0.13	0.74		
Mercury, SPLP	0.002	ND	ND		
Nickel, SPLP	0.1	0.012 J	0.084		
Selenium, SPLP	0.05	ND	ND		
Silver, SPLP	0.05	ND	ND		
Zinc, SPLP	5	0.11 J	0.14 J		


Notes:

--- - not applicable, value not available, or not analyzed.

Reference concentrations from MAC Table include background values for Chicago corporate limits and MSA counties, as applicable.

ND - Constituent not detected above the reporting limit.

- J Estimated concentration.
- B Compound was found in the blank and the investigative sample.

ANALYTICAL REPORT

PREPARED FOR

Attn: Mr. Andris Slesers Weston Solutions Inc 300 Knightsbridge Parkway Suite 360 Lincolnshire, Illinois 60069 Generated 11/14/2024 6:13:01 PM

JOB DESCRIPTION

IDOT- WO 007 FAI 94 Dolton

JOB NUMBER

500-259297-1

Eurofins Chicago 2417 Bond Street University Park IL 60484

Eurofins Chicago

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Chicago Project Manager.

Authorization

Authorized for release by

Authorized for release by Jim Knapp, Senior Project Manager Jim.Knapp@et.eurofinsus.com (630)758-0262 Generated 11/14/2024 6:13:01 PM

46

14

Client: Weston Solutions Inc

Project/Site: IDOT- WO 007 FAI 94 Dolton

Client Sample ID: R17-2(0-5)-103024 Lab Sample ID: 500-259297-7

Date Collected: 10/30/24 00:55

Date Received: 10/30/24 12:40

Matrix: Solid
Percent Solids: 80.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	<0.017		0.017	0.0070	mg/Kg	<u></u>	10/30/24 18:54	11/05/24 05:02	1
Benzene	< 0.0017		0.0017	0.00053	mg/Kg	₩	10/30/24 18:54	11/05/24 05:02	1
Bromodichloromethane	< 0.0017		0.0017	0.00054	mg/Kg	₩	10/30/24 18:54	11/05/24 05:02	1
Bromoform	<0.0017		0.0017	0.00098	mg/Kg	₩	10/30/24 18:54	11/05/24 05:02	1
Bromomethane	<0.0042		0.0042	0.0021	mg/Kg	₩	10/30/24 18:54	11/05/24 05:02	1
Carbon disulfide	<0.0042		0.0042	0.00077	mg/Kg	₩	10/30/24 18:54	11/05/24 05:02	1
Carbon tetrachloride	<0.0017		0.0017	0.00057	mg/Kg	₩	10/30/24 18:54	11/05/24 05:02	1
Chlorobenzene	< 0.0017		0.0017	0.00071	mg/Kg	₩	10/30/24 18:54	11/05/24 05:02	1
Chloroethane	<0.0042		0.0042	0.0014	mg/Kg	₩	10/30/24 18:54	11/05/24 05:02	1
Chloroform	<0.0017		0.0017	0.0012	mg/Kg	₩	10/30/24 18:54	11/05/24 05:02	1
Chloromethane	< 0.0042		0.0042	0.00081	mg/Kg	₩	10/30/24 18:54	11/05/24 05:02	1
cis-1,2-Dichloroethene	< 0.0017		0.0017	0.00067	mg/Kg	₩	10/30/24 18:54	11/05/24 05:02	1
cis-1,3-Dichloropropene	<0.0017		0.0017	0.00067	mg/Kg	₩	10/30/24 18:54	11/05/24 05:02	1
Dibromochloromethane	< 0.0017		0.0017	0.00078	mg/Kg	₩	10/30/24 18:54	11/05/24 05:02	1
1,1-Dichloroethane	< 0.0017		0.0017	0.00063	mg/Kg	₩	10/30/24 18:54	11/05/24 05:02	1
1,2-Dichloroethane	<0.0042		0.0042	0.0011	mg/Kg	₩	10/30/24 18:54	11/05/24 05:02	1
1,1-Dichloroethene	< 0.0017		0.0017	0.00069		₩	10/30/24 18:54	11/05/24 05:02	1
1,2-Dichloropropane	< 0.0017	*+	0.0017	0.00043	mg/Kg	₩	10/30/24 18:54	11/05/24 05:02	1
1,3-Dichloropropene, Total	<0.0017		0.0017	0.00080	mg/Kg	₩	10/30/24 18:54	11/05/24 05:02	1
Ethylbenzene	< 0.0017		0.0017	0.00088	mg/Kg	₩	10/30/24 18:54	11/05/24 05:02	1
2-Hexanone	< 0.0042		0.0042	0.0025	mg/Kg	₩	10/30/24 18:54	11/05/24 05:02	1
Methylene Chloride	<0.0042		0.0042	0.0018	mg/Kg	₩	10/30/24 18:54	11/05/24 05:02	1
Methyl Ethyl Ketone	<0.0042	*- *1	0.0042	0.0018	mg/Kg	₩	10/30/24 18:54	11/05/24 05:02	1
methyl isobutyl ketone	< 0.0042		0.0042	0.0030	mg/Kg	₩	10/30/24 18:54	11/05/24 05:02	1
Methyl tert-butyl ether	<0.0017		0.0017	0.00054	mg/Kg	₩	10/30/24 18:54	11/05/24 05:02	1
Styrene	< 0.0017		0.0017	0.00075	mg/Kg	₩	10/30/24 18:54	11/05/24 05:02	1
1,1,2,2-Tetrachloroethane	< 0.0017		0.0017	0.00083	mg/Kg	₩	10/30/24 18:54	11/05/24 05:02	1
Tetrachloroethene	<0.0017		0.0017	0.00094	mg/Kg	₩	10/30/24 18:54	11/05/24 05:02	1
Toluene	< 0.0017		0.0017	0.00034	mg/Kg	₩	10/30/24 18:54	11/05/24 05:02	1
trans-1,2-Dichloroethene	< 0.0017		0.0017	0.00063	mg/Kg	₩	10/30/24 18:54	11/05/24 05:02	1
trans-1,3-Dichloropropene	<0.0017		0.0017	0.00080	mg/Kg	₩	10/30/24 18:54	11/05/24 05:02	1
1,1,1-Trichloroethane	< 0.0017		0.0017	0.00068	mg/Kg	₩	10/30/24 18:54	11/05/24 05:02	1
1,1,2-Trichloroethane	< 0.0017		0.0017	0.00063	mg/Kg	₩	10/30/24 18:54	11/05/24 05:02	1
Trichloroethene	<0.0017		0.0017	0.00045	mg/Kg	₩	10/30/24 18:54	11/05/24 05:02	1
Vinyl chloride	< 0.0017		0.0017	0.00068	mg/Kg	₩	10/30/24 18:54	11/05/24 05:02	1
Xylenes, Total	<0.0033		0.0033	0.00057	mg/Kg	₽	10/30/24 18:54	11/05/24 05:02	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	108		75 - 131				10/30/24 18:54	11/05/24 05:02	1
Dibromofluoromethane (Surr)	108		75 - 126				10/30/24 18:54	11/05/24 05:02	1
1,2-Dichloroethane-d4 (Surr)	101		70 - 134				10/30/24 18:54	11/05/24 05:02	1
Toluene-d8 (Surr)	102		75 - 124				10/30/24 18:54	11/05/24 05:02	1

Michiga. Offoro 027 0L - Ocili	ivolatile Org	arne compo	unus (Gon	110)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	<0.21		0.21	0.029	mg/Kg	<u></u>	11/01/24 15:00	11/04/24 14:46	1
1,2-Dichlorobenzene	<0.21		0.21	0.017	mg/Kg	₩	11/01/24 15:00	11/04/24 14:46	1
1,3-Dichlorobenzene	<0.21		0.21	0.018	mg/Kg	₩	11/01/24 15:00	11/04/24 14:46	1
1,4-Dichlorobenzene	<0.21		0.21	0.019	mg/Kg	₽	11/01/24 15:00	11/04/24 14:46	1
2,2'-oxybis[1-chloropropane]	<0.21		0.21	0.029	mg/Kg	☼	11/01/24 15:00	11/04/24 14:46	1

Eurofins Chicago

Job ID: 500-259297-1

3

5

7

0

10

12

1 /

Client: Weston Solutions Inc

Project/Site: IDOT- WO 007 FAI 94 Dolton

Client Sample ID: R17-2(0-5)-103024 Lab Sample ID: 500-259297-7

Date Collected: 10/30/24 00:55

Date Received: 10/30/24 12:40

Matrix: Solid
Percent Solids: 80.7

Method: SW846 8270E - Sem Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
2,4,5-Trichlorophenol	- Kesuit Qualifier -	0.41		mg/Kg	— -	11/01/24 15:00	11/04/24 14:46	Dil Fai
2,4,6-Trichlorophenol	<0.41	0.41		mg/Kg	[*] .	11/01/24 15:00	11/04/24 14:46	
2,4-Dichlorophenol	<0.41	0.41		mg/Kg	₩	11/01/24 15:00	11/04/24 14:46	
2,4-Dimethylphenol	<0.41	0.41		mg/Kg	₩	11/01/24 15:00	11/04/24 14:46	
2,4-Dinitrophenol	<0.82	0.41		mg/Kg	¥	11/01/24 15:00	11/04/24 14:46	
2.4-Dinitrophenol	<0.21	0.82		mg/Kg	₩ ₩	11/01/24 15:00	11/04/24 14:46	
,	<0.21	0.21		0 0				
2,6-Dinitrotoluene		0.21		mg/Kg	· · · · · · · · · · ·	11/01/24 15:00	11/04/24 14:46	
2-Chloronaphthalene	<0.21			mg/Kg	*	11/01/24 15:00	11/04/24 14:46	
2-Chlorophenol	<0.21	0.21		mg/Kg	‡	11/01/24 15:00	11/04/24 14:46	
2-Methylnaphthalene	<0.082	0.082	0.0082		<u>.</u> .	11/01/24 15:00	11/04/24 14:46	
2-Methylphenol	<0.21	0.21	0.021	mg/Kg	☼	11/01/24 15:00	11/04/24 14:46	•
2-Nitroaniline	<0.21	0.21		mg/Kg	☼	11/01/24 15:00	11/04/24 14:46	•
2-Nitrophenol	<0.41	0.41		mg/Kg	.	11/01/24 15:00	11/04/24 14:46	
3 & 4 Methylphenol	<0.21	0.21		mg/Kg	☼	11/01/24 15:00	11/04/24 14:46	•
3,3'-Dichlorobenzidine	<0.21	0.21		mg/Kg	☼	11/01/24 15:00	11/04/24 14:46	•
3-Nitroaniline	<0.41	0.41		mg/Kg		11/01/24 15:00	11/04/24 14:46	
4,6-Dinitro-2-methylphenol	<0.82	0.82		mg/Kg	₩	11/01/24 15:00	11/04/24 14:46	•
4-Bromophenyl phenyl ether	<0.21	0.21	0.028	mg/Kg	₩	11/01/24 15:00	11/04/24 14:46	
4-Chloro-3-methylphenol	<0.41	0.41	0.016	mg/Kg	☼	11/01/24 15:00	11/04/24 14:46	
1-Chloroaniline	<0.82	0.82	0.43	mg/Kg	☼	11/01/24 15:00	11/04/24 14:46	
1-Chlorophenyl phenyl ether	<0.21	0.21	0.053	mg/Kg	☼	11/01/24 15:00	11/04/24 14:46	
4-Nitroaniline	<0.41	0.41	0.030	mg/Kg	☼	11/01/24 15:00	11/04/24 14:46	•
4-Nitrophenol	<0.82	0.82	0.15	mg/Kg	₩	11/01/24 15:00	11/04/24 14:46	
Acenaphthene	<0.041	0.041	0.0083	mg/Kg	☼	11/01/24 15:00	11/04/24 14:46	,
Acenaphthylene	<0.041	0.041	0.0069	mg/Kg	☼	11/01/24 15:00	11/04/24 14:46	
Anthracene	<0.041	0.041	0.0083	mg/Kg	₩	11/01/24 15:00	11/04/24 14:46	
Benzo[a]anthracene	<0.041	0.041	0.0086	mg/Kg	☼	11/01/24 15:00	11/04/24 14:46	
Benzo[a]pyrene	<0.041	0.041	0.039	mg/Kg	₩	11/01/24 15:00	11/04/24 14:46	
Benzo[b]fluoranthene	<0.041	0.041	0.039	mg/Kg	₩	11/01/24 15:00	11/04/24 14:46	
Benzo[g,h,i]perylene	<0.041	0.041	0.0088	mg/Kg	☼	11/01/24 15:00	11/04/24 14:46	
Benzo[k]fluoranthene	<0.041	0.041	0.015	mg/Kg	₩	11/01/24 15:00	11/04/24 14:46	
Bis(2-chloroethoxy)methane	<0.21	0.21		mg/Kg		11/01/24 15:00	11/04/24 14:46	
Bis(2-chloroethyl)ether	<0.21	0.21		mg/Kg	₩	11/01/24 15:00	11/04/24 14:46	
Bis(2-ethylhexyl) phthalate	<0.21	0.21		mg/Kg	₩	11/01/24 15:00	11/04/24 14:46	
Butyl benzyl phthalate	<0.21	0.21		mg/Kg		11/01/24 15:00	11/04/24 14:46	,
Carbazole	<0.21	0.21		mg/Kg	₩	11/01/24 15:00	11/04/24 14:46	
Chrysene	<0.041	0.041		mg/Kg	₩	11/01/24 15:00	11/04/24 14:46	
Dibenz(a,h)anthracene	<0.041	0.041		mg/Kg		11/01/24 15:00	11/04/24 14:46	
Dibenzofuran	<0.21	0.21		mg/Kg		11/01/24 15:00	11/04/24 14:46	
Diethyl phthalate	<0.21	0.21		mg/Kg	≎	11/01/24 15:00	11/04/24 14:46	
Dimethyl phthalate	<0.21	0.21	0.0089			11/01/24 15:00	11/04/24 14:46	
Di-n-butyl phthalate	<0.21	0.21		mg/Kg		11/01/24 15:00	11/04/24 14:46	
Di-n-octyl phthalate	<0.41	0.41		mg/Kg	☆	11/01/24 15:00	11/04/24 14:46	
Fluoranthene	<0.41						11/04/24 14:46	
	<0.041	0.041 0.041	0.0095		*	11/01/24 15:00		
Fluorene				mg/Kg	*	11/01/24 15:00	11/04/24 14:46	
Hexachlorobenzene	<0.082	0.082	0.0078		· · · ·	11/01/24 15:00	11/04/24 14:46	
Hexachlorobutadiene	<0.21	0.21		mg/Kg	☆	11/01/24 15:00	11/04/24 14:46	
Hexachlorocyclopentadiene	<0.82	0.82		mg/Kg	₩	11/01/24 15:00	11/04/24 14:46	ĺ
Hexachloroethane	<0.21	0.21	0.020	mg/Kg	₩	11/01/24 15:00	11/04/24 14:46	

Eurofins Chicago

11/14/2024

Client: Weston Solutions Inc

Project/Site: IDOT- WO 007 FAI 94 Dolton

Client Sample ID: R17-2(0-5)-103024 Lab Sample ID: 500-259297-7

Date Collected: 10/30/24 00:55 **Matrix: Solid** Date Received: 10/30/24 12:40 Percent Solids: 80.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Indeno[1,2,3-cd]pyrene	<0.041		0.041	0.040	mg/Kg	<u></u>	11/01/24 15:00	11/04/24 14:46	1
Isophorone	<0.21		0.21	0.021	mg/Kg	₩	11/01/24 15:00	11/04/24 14:46	1
Naphthalene	<0.041		0.041	0.0074	mg/Kg	☼	11/01/24 15:00	11/04/24 14:46	1
Nitrobenzene	<0.041		0.041	0.013	mg/Kg	₩	11/01/24 15:00	11/04/24 14:46	1
N-Nitrosodi-n-propylamine	<0.082		0.082	0.0080	mg/Kg	☼	11/01/24 15:00	11/04/24 14:46	1
N-Nitrosodiphenylamine	<0.21		0.21	0.024	mg/Kg	☼	11/01/24 15:00	11/04/24 14:46	1
Pentachlorophenol	<0.82	*-	0.82	0.10	mg/Kg	₩	11/01/24 15:00	11/04/24 14:46	1
Phenanthrene	<0.041		0.041	0.0089	mg/Kg	☼	11/01/24 15:00	11/04/24 14:46	1
Phenol	<0.21		0.21	0.018	mg/Kg	☼	11/01/24 15:00	11/04/24 14:46	1
Pyrene	<0.041		0.041	0.011	mg/Kg	☼	11/01/24 15:00	11/04/24 14:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	75		31 - 143				11/01/24 15:00	11/04/24 14:46	1
2-Fluorobiphenyl (Surr)	78		43 - 145				11/01/24 15:00	11/04/24 14:46	1
2-Fluorophenol (Surr)	77		31 - 166				11/01/24 15:00	11/04/24 14:46	1
Nitrobenzene-d5 (Surr)	73		37 - 147				11/01/24 15:00	11/04/24 14:46	1
Phenol-d5 (Surr)	77		30 - 153				11/01/24 15:00	11/04/24 14:46	1
Terphenyl-d14 (Surr)	82		42 - 157				11/01/24 15:00	11/04/24 14:46	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	1900		12	4.8	mg/Kg	☆	11/01/24 16:47	11/06/24 23:17	1
Antimony	<1.2		1.2	0.23	mg/Kg	☼	11/01/24 16:47	11/06/24 23:17	1
Arsenic	1.7		0.59	0.20	mg/Kg	₩	11/01/24 16:47	11/06/24 23:17	1
Barium	5.6		0.59	0.067	mg/Kg	₩	11/01/24 16:47	11/06/24 23:17	1
Beryllium	0.14	J	0.24	0.055	mg/Kg	☼	11/01/24 16:47	11/06/24 23:17	1
Cadmium	0.30	В	0.12	0.021	mg/Kg	☼	11/01/24 16:47	11/06/24 23:17	1
Calcium	24000	В	12	2.0	mg/Kg	₩	11/01/24 16:47	11/06/24 23:17	1
Chromium	3.9		0.59	0.29	mg/Kg	☼	11/01/24 16:47	11/06/24 23:17	1
Cobalt	4.2		0.29	0.077	mg/Kg	☼	11/01/24 16:47	11/06/24 23:17	1
Copper	3.9		0.59	0.16	mg/Kg	⊅	11/01/24 16:47	11/06/24 23:17	1
Iron	5300		12	6.1	mg/Kg	☼	11/01/24 16:47	11/06/24 23:17	1
Lead	3.4		0.29	0.14	mg/Kg	☼	11/01/24 16:47	11/06/24 23:17	1
Magnesium	10000		5.9	2.9	mg/Kg	₩	11/01/24 16:47	11/06/24 23:17	1
Manganese	130		0.59	0.085	mg/Kg	☼	11/01/24 16:47	11/06/24 23:17	1
Nickel	6.0		0.59	0.17	mg/Kg	☼	11/01/24 16:47	11/06/24 23:17	1
Potassium	460		29	10	mg/Kg	₩	11/01/24 16:47	11/06/24 23:17	1
Selenium	<0.59		0.59	0.35	mg/Kg	☼	11/01/24 16:47	11/06/24 23:17	1
Silver	<0.29		0.29	0.076	mg/Kg	☼	11/01/24 16:47	11/06/24 23:17	1
Sodium	190		59	8.7	mg/Kg	₩	11/01/24 16:47	11/06/24 23:17	1
Thallium	0.84		0.59	0.29	mg/Kg	☼	11/01/24 16:47	11/06/24 23:17	1
Vanadium	6.1		0.29	0.069	mg/Kg	☼	11/01/24 16:47	11/06/24 23:17	1
Zinc	27		1.2		mg/Kg		11/01/24 16:47	11/06/24 23:17	1

Method: SW846 6010D -	Metals (ICP) - TCI	LP							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.015	J	0.050	0.010	mg/L		11/06/24 15:07	11/07/24 15:36	1
Barium	0.11	J	0.50	0.050	mg/L		11/06/24 15:07	11/07/24 15:36	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/06/24 15:07	11/07/24 15:36	1
Cadmium	0.0040	J	0.0050	0.0020	mg/L		11/06/24 15:07	11/07/24 15:36	1

Client: Weston Solutions Inc

Project/Site: IDOT- WO 007 FAI 94 Dolton

Client Sample ID: R17-2(0-5)-103024 Lab Sample ID: 500-259297-7

Date Collected: 10/30/24 00:55 **Matrix: Solid** Date Received: 10/30/24 12:40 Percent Solids: 80.7

Chromium 0.019 J 0.025 0.010 mg/L 11/06/24 15:07 11/07/24 15:36 Cobalt 0.010 J 0.025 0.010 mg/L 11/06/24 15:07 11/07/24 15:36 Copper 0.069 0.025 0.010 mg/L 11/06/24 15:07 11/07/24 15:36 Iron 18 0.40 0.20 mg/L 11/06/24 15:07 11/07/24 15:36 Lead 0.0082 0.0075 0.0075 mg/L 11/06/24 15:07 11/07/24 15:36 Manganese 1.7 0.025 0.010 mg/L 11/06/24 15:07 11/07/24 15:36	17 11/07/24 15:36 1 17 11/07/24 15:36 1
Cobalt 0.010 J 0.025 0.010 mg/L 11/06/24 15:07 11/07/24 15:36 Copper 0.069 0.025 0.010 mg/L 11/06/24 15:07 11/07/24 15:36 Iron 18 0.40 0.20 mg/L 11/06/24 15:07 11/07/24 15:36 Lead 0.0082 0.0075 0.0075 mg/L 11/06/24 15:07 11/07/24 15:36 Manganese 1.7 0.025 0.010 mg/L 11/06/24 15:07 11/07/24 15:36	17 11/07/24 15:36 1 17 11/07/24 15:36 1 17 11/07/24 15:36 1 17 11/07/24 15:36 1 17 11/07/24 15:36 1
Copper 0.069 0.025 0.010 mg/L 11/06/24 15:07 11/07/24 15:36 Iron 18 0.40 0.20 mg/L 11/06/24 15:07 11/07/24 15:36 Lead 0.0082 0.0075 0.0075 mg/L 11/06/24 15:07 11/07/24 15:36 Manganese 1.7 0.025 0.010 mg/L 11/06/24 15:07 11/07/24 15:36	7 11/07/24 15:36 1 17 11/07/24 15:36 1 17 11/07/24 15:36 1 17 11/07/24 15:36 1
Iron 18 0.40 0.20 mg/L 11/06/24 15:07 11/07/24 15:36 Lead 0.0082 0.0075 0.0075 mg/L 11/06/24 15:07 11/07/24 15:36 Manganese 1.7 0.025 0.010 mg/L 11/06/24 15:07 11/07/24 15:36	7 11/07/24 15:36 1 7 11/07/24 15:36 1 7 11/07/24 15:36 1
Lead 0.0082 0.0075 0.0075 mg/L 11/06/24 15:07 11/07/24 15:36 Manganese 1.7 0.025 0.010 mg/L 11/06/24 15:07 11/07/24 15:36	7 11/07/24 15:36 1 7 11/07/24 15:36 1
Manganese 1.7 0.025 0.010 mg/L 11/06/24 15:07 11/07/24 15:36	7 11/07/24 15:36 1
	7 11/07/24 15:36 1
Nickel 0.035 0.025 0.010 mg/L 11/06/24 15:07 11/07/24 15:36	1 11/01/24 13.30 I
Selenium <0.050 0.050 0.020 mg/L 11/06/24 15:07 11/07/24 15:36	7 11/07/24 15:36 1
Silver <0.025 0.025 0.010 mg/L 11/06/24 15:07 11/07/24 15:36	7 11/07/24 15:36 1
Zinc 0.23 J 0.50 0.020 mg/L 11/06/24 15:07 11/07/24 15:36	7 11/07/24 15:36 1
Method: SW846 6010D - Metals (ICP) - SPLP East	
	Analyzed Dil Fac
Arsenic <0.050 0.050 0.010 mg/L 11/06/24 15:09 11/07/24 15:41	9 11/07/24 15:41 1
Barium <0.50 0.50 0.50 mg/L 11/06/24 15:09 11/07/24 15:41	9 11/07/24 15:41 1
Beryllium <0.0040 0.0040 mg/L 11/06/24 15:09 11/07/24 15:41	9 11/07/24 15:41 1
Cadmium <0.0050 0.0050 0.0020 mg/L 11/06/24 15:09 11/07/24 15:41	9 11/07/24 15:41 1
Chromium 0.015 J 0.025 0.010 mg/L 11/06/24 15:09 11/07/24 15:41	9 11/07/24 15:41 1
Cobalt 0.011 J 0.025 0.010 mg/L 11/06/24 15:09 11/07/24 15:41	9 11/07/24 15:41 1
Copper 0.058 0.025 0.010 mg/L 11/06/24 15:09 11/07/24 15:41	9 11/07/24 15:41 1
Iron 15 0.40 0.20 mg/L 11/06/24 15:09 11/07/24 15:41	9 11/07/24 15:41 1
Lead 0.032 0.0075 0.0075 mg/L 11/06/24 15:09 11/07/24 15:41	9 11/07/24 15:41 1
Manganese 0.13 0.025 0.010 mg/L 11/06/24 15:09 11/07/24 15:41	9 11/07/24 15:41 1
Nickel 0.012 J 0.025 0.010 mg/L 11/06/24 15:09 11/07/24 15:41	9 11/07/24 15:41 1
Selenium <0.050 0.050 0.020 mg/L 11/06/24 15:09 11/07/24 15:41	9 11/07/24 15:41 1
Silver <0.025 0.025 0.010 mg/L 11/06/24 15:09 11/07/24 15:41	9 11/07/24 15:41 1
Zinc 0.11 J 0.50 0.020 mg/L 11/06/24 15:09 11/07/24 15:41	9 11/07/24 15:41 1
Method: SW846 7470A - Mercury (CVAA) - TCLP	
	Analyzed Dil Fac
Mercury 0.00062 0.00020 mg/L 11/07/24 11:45 11/08/24 10:17	
Mothod: SMIGAC 7470A Mercum, (CMAA) SDLD Ecot	
Method: SW846 7470A - Mercury (CVAA) - SPLP East Analyte Result Qualifier RL MDL Unit D Prepared Analyzed D	Analyzed Dil Fac
Analyte Result Qualifier RL MDL Unit D Prepared Analyzed D Mercury <0.00020	
- 0.00020 0.00020 Ingit 11/01/24 11.40 11/01/24 00.00	5
Method: SW846 7471B - Mercury (CVAA)	
	Analyzed Dil Fac
Mercury <0.019 0.019 0.0078 mg/Kg \$\times\$ 11/07/24 16:20 11/08/24 10:53	11/08/24 10:53
General Chemistry	
	Analyzed Dil Fac
pH (SW846 9045D) 8.0 0.2 0.2 SU 10/31/24 15:25	_ <u> </u>

Client: Weston Solutions Inc

Project/Site: IDOT- WO 007 FAI 94 Dolton

Client Sample ID: R17-2(5-10)-103024 Lab Sample ID: 500-259297-8

Date Collected: 10/30/24 01:00 **Matrix: Solid** Date Received: 10/30/24 12:40 Percent Solids: 84.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	0.0070	J	0.015	0.0063	mg/Kg	<u></u>	10/30/24 18:54	11/05/24 05:27	
Benzene	<0.0015		0.0015	0.00048	mg/Kg	₩	10/30/24 18:54	11/05/24 05:27	
Bromodichloromethane	<0.0015		0.0015	0.00049	mg/Kg	₩	10/30/24 18:54	11/05/24 05:27	
Bromoform	<0.0015		0.0015	0.00088	mg/Kg	₩	10/30/24 18:54	11/05/24 05:27	
Bromomethane	<0.0038		0.0038	0.0019	mg/Kg	₩	10/30/24 18:54	11/05/24 05:27	
Carbon disulfide	0.0010	J	0.0038	0.00070	mg/Kg	₩	10/30/24 18:54	11/05/24 05:27	
Carbon tetrachloride	<0.0015		0.0015	0.00052	mg/Kg	₩	10/30/24 18:54	11/05/24 05:27	,
Chlorobenzene	<0.0015		0.0015	0.00064	mg/Kg	₩	10/30/24 18:54	11/05/24 05:27	
Chloroethane	<0.0038		0.0038	0.0012	mg/Kg	₩	10/30/24 18:54	11/05/24 05:27	
Chloroform	<0.0015		0.0015	0.0011	mg/Kg	₩	10/30/24 18:54	11/05/24 05:27	
Chloromethane	<0.0038		0.0038	0.00073	mg/Kg	₩	10/30/24 18:54	11/05/24 05:27	,
cis-1,2-Dichloroethene	<0.0015		0.0015	0.00061	mg/Kg	₩	10/30/24 18:54	11/05/24 05:27	
cis-1,3-Dichloropropene	<0.0015		0.0015	0.00061	mg/Kg	₩	10/30/24 18:54	11/05/24 05:27	
Dibromochloromethane	<0.0015		0.0015	0.00070	mg/Kg	₩	10/30/24 18:54	11/05/24 05:27	,
1,1-Dichloroethane	<0.0015		0.0015	0.00057	mg/Kg	₩	10/30/24 18:54	11/05/24 05:27	,
1,2-Dichloroethane	<0.0038		0.0038	0.00098	mg/Kg	₩	10/30/24 18:54	11/05/24 05:27	
1,1-Dichloroethene	<0.0015		0.0015	0.00062	mg/Kg	₽	10/30/24 18:54	11/05/24 05:27	
1,2-Dichloropropane	<0.0015	*+	0.0015	0.00039	mg/Kg	₽	10/30/24 18:54	11/05/24 05:27	
1,3-Dichloropropene, Total	<0.0015		0.0015	0.00073			10/30/24 18:54	11/05/24 05:27	
Ethylbenzene	<0.0015		0.0015	0.00080	mg/Kg	₽	10/30/24 18:54	11/05/24 05:27	
2-Hexanone	<0.0038		0.0038	0.0023		₩	10/30/24 18:54	11/05/24 05:27	
Methylene Chloride	<0.0038		0.0038	0.0016	mg/Kg		10/30/24 18:54	11/05/24 05:27	
Methyl Ethyl Ketone	<0.0038	*- *1	0.0038	0.0017		₽	10/30/24 18:54	11/05/24 05:27	
methyl isobutyl ketone	<0.0038		0.0038	0.0027	mg/Kg	₩	10/30/24 18:54	11/05/24 05:27	
Methyl tert-butyl ether	<0.0015		0.0015	0.00049	mg/Kg	 Ф	10/30/24 18:54	11/05/24 05:27	
Styrene	<0.0015		0.0015	0.00068		₩	10/30/24 18:54	11/05/24 05:27	
1,1,2,2-Tetrachloroethane	<0.0015	*3	0.0015	0.00075	mg/Kg	₩	10/30/24 18:54	11/05/24 05:27	
Tetrachloroethene	<0.0015		0.0015	0.00085	mg/Kg		10/30/24 18:54	11/05/24 05:27	
Toluene	<0.0015		0.0015	0.00030	0 0	₩	10/30/24 18:54	11/05/24 05:27	
trans-1,2-Dichloroethene	<0.0015		0.0015	0.00057	mg/Kg	₩	10/30/24 18:54	11/05/24 05:27	
trans-1,3-Dichloropropene	<0.0015		0.0015	0.00073			10/30/24 18:54	11/05/24 05:27	
1,1,1-Trichloroethane	<0.0015		0.0015	0.00061		₩	10/30/24 18:54	11/05/24 05:27	
1,1,2-Trichloroethane	<0.0015		0.0015	0.00057		₩	10/30/24 18:54	11/05/24 05:27	
Trichloroethene	<0.0015		0.0015	0.00041	mg/Kg		10/30/24 18:54	11/05/24 05:27	,
Vinyl chloride	<0.0015		0.0015	0.00062		₩	10/30/24 18:54	11/05/24 05:27	
Xylenes, Total	<0.0030		0.0030	0.00052	mg/Kg	₩	10/30/24 18:54	11/05/24 05:27	,
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	150	S1+ *3	75 - 131				10/30/24 18:54	11/05/24 05:27	
Dibromofluoromethane (Surr)	116		75 - 126				10/30/24 18:54	11/05/24 05:27	
1,2-Dichloroethane-d4 (Surr)	109		70 - 134				10/30/24 18:54	11/05/24 05:27	
Toluene-d8 (Surr)	125	S1+	75 - 124				10/30/24 18:54	11/05/24 05:27	

Method: SW846 8270E - Semivolatile Organic Compounds (GC/MS)
--

Method. Swoto ozroc - Seni	ivolatile Org	arne compo	unus (Gon	10)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	<0.19		0.19	0.028	mg/Kg	<u></u>	11/01/24 15:00	11/04/24 15:10	1
1,2-Dichlorobenzene	<0.19		0.19	0.016	mg/Kg	₽	11/01/24 15:00	11/04/24 15:10	1
1,3-Dichlorobenzene	<0.19		0.19	0.017	mg/Kg	₽	11/01/24 15:00	11/04/24 15:10	1
1,4-Dichlorobenzene	<0.19		0.19	0.018	mg/Kg	₽	11/01/24 15:00	11/04/24 15:10	1
2,2'-oxybis[1-chloropropane]	< 0.19		0.19	0.028	mg/Kg	₩	11/01/24 15:00	11/04/24 15:10	1

Eurofins Chicago

Client: Weston Solutions Inc

Project/Site: IDOT- WO 007 FAI 94 Dolton

Client Sample ID: R17-2(5-10)-103024 Lab Sample ID: 500-259297-8

Date Collected: 10/30/24 01:00 Date Received: 10/30/24 12:40

Matrix: Solid

Percent Solids: 84.5

Job ID: 500-259297-1

Method: SW846 8270E - Sem Analyte	Result (Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
2,4,5-Trichlorophenol	<0.38	0.38	0.015	mg/Kg	<u></u>	11/01/24 15:00	11/04/24 15:10	
2,4,6-Trichlorophenol	<0.38	0.38	0.013	mg/Kg	₩	11/01/24 15:00	11/04/24 15:10	
2,4-Dichlorophenol	<0.38	0.38	0.014	mg/Kg	₩	11/01/24 15:00	11/04/24 15:10	
2,4-Dimethylphenol	<0.38	0.38	0.087	mg/Kg	₽	11/01/24 15:00	11/04/24 15:10	
2,4-Dinitrophenol	<0.78	0.78	0.22	mg/Kg	₩	11/01/24 15:00	11/04/24 15:10	
2,4-Dinitrotoluene	<0.19	0.19	0.022	mg/Kg	☼	11/01/24 15:00	11/04/24 15:10	
2,6-Dinitrotoluene	<0.19	0.19	0.013	mg/Kg	☼	11/01/24 15:00	11/04/24 15:10	
2-Chloronaphthalene	<0.19	0.19		mg/Kg	₩	11/01/24 15:00	11/04/24 15:10	
2-Chlorophenol	<0.19	0.19	0.012	mg/Kg	₽	11/01/24 15:00	11/04/24 15:10	
2-Methylnaphthalene	<0.078	0.078	0.0078	mg/Kg	₽	11/01/24 15:00	11/04/24 15:10	
2-Methylphenol	<0.19	0.19	0.020	mg/Kg	☼	11/01/24 15:00	11/04/24 15:10	
2-Nitroaniline	<0.19	0.19	0.021	mg/Kg	☼	11/01/24 15:00	11/04/24 15:10	
2-Nitrophenol	<0.38	0.38	0.026	mg/Kg	☼	11/01/24 15:00	11/04/24 15:10	
3 & 4 Methylphenol	<0.19	0.19		mg/Kg		11/01/24 15:00	11/04/24 15:10	
3,3'-Dichlorobenzidine	<0.19	0.19		mg/Kg	₩	11/01/24 15:00	11/04/24 15:10	
3-Nitroaniline	<0.38	0.38		mg/Kg	₩	11/01/24 15:00	11/04/24 15:10	
4,6-Dinitro-2-methylphenol	<0.78	0.78		mg/Kg		11/01/24 15:00	11/04/24 15:10	
4-Bromophenyl phenyl ether	<0.19	0.19	0.026		₩	11/01/24 15:00	11/04/24 15:10	
4-Chloro-3-methylphenol	<0.38	0.38		mg/Kg	☆	11/01/24 15:00	11/04/24 15:10	
4-Chloroaniline	<0.78	0.78	0.41	mg/Kg		11/01/24 15:00	11/04/24 15:10	
4-Chlorophenyl phenyl ether	<0.19	0.19	0.051	mg/Kg	₩	11/01/24 15:00	11/04/24 15:10	
4-Nitroaniline	<0.38	0.38	0.029	mg/Kg	₩	11/01/24 15:00	11/04/24 15:10	
4-Nitrophenol	<0.78	0.78		mg/Kg		11/01/24 15:00	11/04/24 15:10	
Acenaphthene	<0.038	0.038	0.0079	mg/Kg	₩	11/01/24 15:00	11/04/24 15:10	
Acenaphthylene	<0.038	0.038	0.0066		₩.	11/01/24 15:00	11/04/24 15:10	
Anthracene	<0.038	0.038	0.0079	mg/Kg	∷ ☆	11/01/24 15:00	11/04/24 15:10	
Benzo[a]anthracene	<0.038	0.038	0.0082	0 0	₩	11/01/24 15:00	11/04/24 15:10	
Benzo[a]pyrene	<0.038	0.038		mg/Kg	₩.	11/01/24 15:00	11/04/24 15:10	
Benzo[b]fluoranthene	<0.038	0.038	0.037			11/01/24 15:00	11/04/24 15:10	
Benzo[g,h,i]perylene	<0.038	0.038	0.0084	0 0	₩	11/01/24 15:00	11/04/24 15:10	
Benzo[k]fluoranthene	<0.038	0.038		mg/Kg	₩	11/01/24 15:00	11/04/24 15:10	
Bis(2-chloroethoxy)methane	<0.19	0.19		mg/Kg	∴	11/01/24 15:00	11/04/24 15:10	
Bis(2-chloroethyl)ether	<0.19	0.19		mg/Kg	₩	11/01/24 15:00	11/04/24 15:10	
Bis(2-ethylhexyl) phthalate	<0.19	0.19		mg/Kg		11/01/24 15:00	11/04/24 15:10	
Butyl benzyl phthalate	<0.19	0.19		mg/Kg	∴		11/04/24 15:10	
Carbazole	<0.19	0.19		mg/Kg	☼	11/01/24 15:00	11/04/24 15:10	
Chrysene	<0.038	0.038		mg/Kg		11/01/24 15:00	11/04/24 15:10	
Dibenz(a,h)anthracene	<0.038	0.038		mg/Kg		11/01/24 15:00	11/04/24 15:10	
Dibenzofuran	<0.19	0.19		mg/Kg	₩	11/01/24 15:00	11/04/24 15:10	
Diethyl phthalate	<0.19	0.19		mg/Kg	₩	11/01/24 15:00	11/04/24 15:10	
Dimethyl phthalate	<0.19	0.19	0.0084			11/01/24 15:00	11/04/24 15:10	
Di-n-butyl phthalate	<0.19	0.19		mg/Kg	₩	11/01/24 15:00	11/04/24 15:10	
Di-n-octyl phthalate	<0.38	0.38		mg/Kg				
Fluoranthene	<0.038	0.038	0.0090		 *	11/01/24 15:00 11/01/24 15:00	11/04/24 15:10 11/04/24 15:10	
Fluoranthene Fluorene		0.038			☆	11/01/24 15:00	11/04/24 15:10	
	<0.038			mg/Kg	☆			
Hexachlorobenzene	<0.078	0.078	0.0074		· · · · · · · ·	11/01/24 15:00	11/04/24 15:10	
Hexachlorobutadiene	<0.19	0.19		mg/Kg	<i>₩</i>	11/01/24 15:00	11/04/24 15:10	
Hexachlorocyclopentadiene Hexachloroethane	<0.78 <0.19	0.78 0.19		mg/Kg mg/Kg	₽	11/01/24 15:00 11/01/24 15:00	11/04/24 15:10 11/04/24 15:10	

Eurofins Chicago

Client: Weston Solutions Inc

Project/Site: IDOT- WO 007 FAI 94 Dolton

Client Sample ID: R17-2(5-10)-103024 Lab Sample ID: 500-259297-8

Date Collected: 10/30/24 01:00 **Matrix: Solid** Percent Solids: 84.5 Date Received: 10/30/24 12:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Indeno[1,2,3-cd]pyrene	<0.038		0.038	0.038	mg/Kg	₩	11/01/24 15:00	11/04/24 15:10	1
Isophorone	<0.19		0.19	0.020	mg/Kg	☆	11/01/24 15:00	11/04/24 15:10	1
Naphthalene	<0.038		0.038	0.0070	mg/Kg	☆	11/01/24 15:00	11/04/24 15:10	1
Nitrobenzene	<0.038		0.038	0.012	mg/Kg	₩	11/01/24 15:00	11/04/24 15:10	1
N-Nitrosodi-n-propylamine	<0.078		0.078	0.0076	mg/Kg	☼	11/01/24 15:00	11/04/24 15:10	1
N-Nitrosodiphenylamine	<0.19		0.19	0.023	mg/Kg	₩	11/01/24 15:00	11/04/24 15:10	1
Pentachlorophenol	<0.78	*_	0.78	0.097	mg/Kg	₩	11/01/24 15:00	11/04/24 15:10	1
Phenanthrene	< 0.038		0.038	0.0084	mg/Kg	₩	11/01/24 15:00	11/04/24 15:10	1
Phenol	<0.19		0.19	0.017	mg/Kg	₩	11/01/24 15:00	11/04/24 15:10	1
Pyrene	<0.038		0.038	0.011	mg/Kg	₽	11/01/24 15:00	11/04/24 15:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	44		31 - 143				11/01/24 15:00	11/04/24 15:10	1
2-Fluorobiphenyl (Surr)	58		43 - 145				11/01/24 15:00	11/04/24 15:10	1
2-Fluorophenol (Surr)	57		31 - 166				11/01/24 15:00	11/04/24 15:10	1
Nitrobenzene-d5 (Surr)	57		37 - 147				11/01/24 15:00	11/04/24 15:10	1
Phenol-d5 (Surr)	54		30 - 153				11/01/24 15:00	11/04/24 15:10	1
Terphenyl-d14 (Surr)	60		42 - 157				11/01/24 15:00	11/04/24 15:10	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	3500		11	4.7	mg/Kg	☆	11/01/24 16:47	11/06/24 23:22	1
Antimony	<1.1		1.1	0.22	mg/Kg	☼	11/01/24 16:47	11/06/24 23:22	1
Arsenic	4.3		0.57	0.19	mg/Kg	☼	11/01/24 16:47	11/06/24 23:22	1
Barium	13		0.57	0.065	mg/Kg	₩	11/01/24 16:47	11/06/24 23:22	1
Beryllium	0.28		0.23	0.053	mg/Kg	☼	11/01/24 16:47	11/06/24 23:22	1
Cadmium	<0.11		0.11	0.021	mg/Kg	☼	11/01/24 16:47	11/06/24 23:22	1
Calcium	93000	В	110	19	mg/Kg	₩	11/01/24 16:47	11/07/24 12:02	10
Chromium	6.7		0.57	0.28	mg/Kg	☼	11/01/24 16:47	11/06/24 23:22	1
Cobalt	4.6		0.28	0.075	mg/Kg	☼	11/01/24 16:47	11/06/24 23:22	1
Copper	8.8		0.57	0.16	mg/Kg	₩	11/01/24 16:47	11/06/24 23:22	1
Iron	10000		11	5.9	mg/Kg	☼	11/01/24 16:47	11/06/24 23:22	1
Lead	4.0		0.28	0.13	mg/Kg	☼	11/01/24 16:47	11/06/24 23:22	1
Magnesium	44000		57	28	mg/Kg	₩	11/01/24 16:47	11/07/24 12:02	10
Manganese	400		0.57	0.083	mg/Kg	☼	11/01/24 16:47	11/06/24 23:22	1
Nickel	12		0.57	0.17	mg/Kg	☼	11/01/24 16:47	11/06/24 23:22	1
Potassium	990		28	10	mg/Kg	₩	11/01/24 16:47	11/06/24 23:22	1
Selenium	<0.57		0.57	0.33	mg/Kg	☼	11/01/24 16:47	11/06/24 23:22	1
Silver	<0.28		0.28	0.073	mg/Kg	☼	11/01/24 16:47	11/06/24 23:22	1
Sodium	280		57	8.4	mg/Kg	₩	11/01/24 16:47	11/06/24 23:22	1
Thallium	2.1		0.57	0.28	mg/Kg	☼	11/01/24 16:47	11/06/24 23:22	1
Vanadium	9.3		0.28	0.067	mg/Kg	☼	11/01/24 16:47	11/06/24 23:22	1
Zinc	31		1.1	0.50	mg/Kg		11/01/24 16:47	11/06/24 23:22	1

Method: SW846 6010D - Metals (ICP) - TCLP									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.014	J	0.050	0.010	mg/L		11/06/24 15:07	11/07/24 15:40	1
Barium	0.41	J	0.50	0.050	mg/L		11/06/24 15:07	11/07/24 15:40	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/06/24 15:07	11/07/24 15:40	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/06/24 15:07	11/07/24 15:40	1

Job ID: 500-259297-1

Eurofins Chicago

Client: Weston Solutions Inc

Project/Site: IDOT- WO 007 FAI 94 Dolton

Client Sample ID: R17-2(5-10)-103024 Lab Sample ID: 500-259297-8

Date Collected: 10/30/24 01:00 **Matrix: Solid** Date Received: 10/30/24 12:40 Percent Solids: 84.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chromium	0.017	J	0.025	0.010	mg/L		11/06/24 15:07	11/07/24 15:40	
Cobalt	<0.025		0.025	0.010	mg/L		11/06/24 15:07	11/07/24 15:40	
Copper	0.036		0.025	0.010	mg/L		11/06/24 15:07	11/07/24 15:40	
Iron	14		0.40	0.20	mg/L		11/06/24 15:07	11/07/24 15:40	
_ead	<0.0075		0.0075	0.0075	mg/L		11/06/24 15:07	11/07/24 15:40	
Manganese	3.3		0.025	0.010	mg/L		11/06/24 15:07	11/07/24 15:40	
Nickel	0.047		0.025	0.010	mg/L		11/06/24 15:07	11/07/24 15:40	
Selenium	<0.050		0.050	0.020	mg/L		11/06/24 15:07	11/07/24 15:40	
Silver	<0.025		0.025	0.010	mg/L		11/06/24 15:07	11/07/24 15:40	
Zinc	0.072	J	0.50	0.020	mg/L		11/06/24 15:07	11/07/24 15:40	
Method: SW846 6010D - Metals (IC	CP) - SP	LP East							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Arsenic	0.011	J	0.050	0.010	mg/L		11/06/24 15:09	11/07/24 15:45	
Barium	0.25	J	0.50	0.050	mg/L		11/06/24 15:09	11/07/24 15:45	
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/06/24 15:09	11/07/24 15:45	
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/06/24 15:09	11/07/24 15:45	
Chromium	0.075		0.025	0.010	mg/L		11/06/24 15:09	11/07/24 15:45	
Cobalt	0.032		0.025	0.010	mg/L		11/06/24 15:09	11/07/24 15:45	
Copper	0.043		0.025	0.010	mg/L		11/06/24 15:09	11/07/24 15:45	
ron	56		0.40	0.20	mg/L		11/06/24 15:09	11/07/24 15:45	
.ead	0.029		0.0075	0.0075	mg/L		11/06/24 15:09	11/07/24 15:45	
Manganese	0.74		0.025	0.010	mg/L		11/06/24 15:09	11/07/24 15:45	
lickel	0.084		0.025	0.010	mg/L		11/06/24 15:09	11/07/24 15:45	
Selenium	<0.050		0.050	0.020	mg/L		11/06/24 15:09	11/07/24 15:45	
Silver	<0.025		0.025	0.010	mg/L		11/06/24 15:09	11/07/24 15:45	
Zinc	0.14	J	0.50	0.020	mg/L		11/06/24 15:09	11/07/24 15:45	
Method: SW846 7470A - Mercury	(CVAA)	- TCLP							
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Mercury	<0.00020		0.00020	0.00020	mg/L		11/07/24 11:45	11/08/24 10:19	
Method: SW846 7470A - Mercury	(CVAA)	- SPLP East							
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Mercury	<0.00020		0.00020	0.00020	mg/L		11/07/24 11:45	11/08/24 09:00	
Method: SW846 7471B - Mercury	(CVAA)								
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Mercury	<0.018		0.018	0.0076	mg/Kg	₩	11/07/24 16:20	11/08/24 10:55	
General Chemistry									
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
pH (SW846 9045D)	8.2		0.2	0.2	SU			10/31/24 15:28	

Client: Weston Solutions Inc Job ID: 500-259297-1

Project/Site: IDOT- WO 007 FAI 94 Dolton

Client Sample ID: R17-2-103024 Lab Sample ID: 500-259297-9

Date Collected: 10/30/24 01:15

Date Received: 10/30/24 12:40

Matrix: Water

Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Acetone	0.0079	J	0.010	0.0043	mg/L			11/09/24 22:03	1
Benzene	< 0.00050		0.00050	0.00018	mg/L			11/09/24 22:03	1
Bromodichloromethane	< 0.0010		0.0010	0.00057	mg/L			11/09/24 22:03	1
Bromoform	<0.0010		0.0010	0.00096	mg/L			11/09/24 22:03	1
Bromomethane	< 0.0030		0.0030	0.0018	mg/L			11/09/24 22:03	1
Methyl Ethyl Ketone	< 0.0050		0.0050	0.0023	mg/L			11/09/24 22:03	1
Carbon disulfide	<0.0020		0.0020	0.0011	mg/L			11/09/24 22:03	1
Carbon tetrachloride	<0.0010		0.0010	0.00041	mg/L			11/09/24 22:03	1
Chlorobenzene	< 0.0010		0.0010	0.00041	mg/L			11/09/24 22:03	1
Chloroethane	<0.0050		0.0050	0.00047	mg/L			11/09/24 22:03	1
Chloroform	<0.0020		0.0020	0.00092	mg/L			11/09/24 22:03	1
Chloromethane	<0.0050		0.0050	0.00079	mg/L			11/09/24 22:03	1
cis-1,2-Dichloroethene	<0.0010		0.0010	0.00042	mg/L			11/09/24 22:03	1
cis-1,3-Dichloropropene	<0.0010		0.0010	0.00052	mg/L			11/09/24 22:03	1
Dibromochloromethane	<0.0010		0.0010	0.00083	mg/L			11/09/24 22:03	1
1,1-Dichloroethane	<0.0010		0.0010	0.00036	mg/L			11/09/24 22:03	1
1,2-Dichloroethane	< 0.0010		0.0010	0.00058	mg/L			11/09/24 22:03	1
1,1-Dichloroethene	<0.0010		0.0010	0.00048	mg/L			11/09/24 22:03	1
1,2-Dichloropropane	<0.0010		0.0010	0.00037	mg/L			11/09/24 22:03	1
1,3-Dichloropropene, Total	<0.0010		0.0010	0.00063	mg/L			11/09/24 22:03	1
Ethylbenzene	<0.00050		0.00050	0.00020	mg/L			11/09/24 22:03	1
2-Hexanone	<0.0050		0.0050	0.0022	mg/L			11/09/24 22:03	1
Methylene Chloride	< 0.0050		0.0050	0.0036	mg/L			11/09/24 22:03	1
methyl isobutyl ketone	< 0.0050		0.0050	0.0020	mg/L			11/09/24 22:03	1
Methyl tert-butyl ether	<0.0010		0.0010	0.00043	mg/L			11/09/24 22:03	1
Styrene	<0.0010		0.0010	0.00031	mg/L			11/09/24 22:03	1
1,1,2,2-Tetrachloroethane	<0.0010		0.0010	0.00065	mg/L			11/09/24 22:03	1
Tetrachloroethene	<0.0010		0.0010	0.00039	mg/L			11/09/24 22:03	1
Toluene	<0.00050		0.00050	0.00021	mg/L			11/09/24 22:03	1
trans-1,2-Dichloroethene	<0.0010		0.0010	0.00044	mg/L			11/09/24 22:03	1
trans-1,3-Dichloropropene	<0.0010		0.0010	0.00063	mg/L			11/09/24 22:03	1
1,1,1-Trichloroethane	<0.0010	*+	0.0010	0.00045	mg/L			11/09/24 22:03	1
1,1,2-Trichloroethane	<0.0010		0.0010	0.00073	mg/L			11/09/24 22:03	1
Trichloroethene	<0.00050	*+	0.00050	0.00015	mg/L			11/09/24 22:03	1
Vinyl chloride	<0.0010		0.0010	0.00047	mg/L			11/09/24 22:03	1
Xylenes, Total	0.0010		0.0010	0.00030	mg/L			11/09/24 22:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		72 - 124			•		11/09/24 22:03	1
Dibromofluoromethane (Surr)	102		75 - 120					11/09/24 22:03	1
1,2-Dichloroethane-d4 (Surr)	99		75 - 126					11/09/24 22:03	1

Method: SW846 8270E - Ser Analyte	Result Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	<0.0017	0.0017	0.00020	mg/L		11/05/24 06:57	11/05/24 14:26	1
1,2-Dichlorobenzene	<0.0017	0.0017	0.00021	mg/L		11/05/24 06:57	11/05/24 14:26	1
1,3-Dichlorobenzene	<0.0017	0.0017	0.00017	mg/L		11/05/24 06:57	11/05/24 14:26	1
1,4-Dichlorobenzene	<0.0017	0.0017	0.00017	mg/L		11/05/24 06:57	11/05/24 14:26	1
2.2'-oxybis[1-chloropropane]	<0.0017	0.0017	0.00032	ma/L		11/05/24 06:57	11/05/24 14:26	1

Eurofins Chicago

Page 46 of 117

G

3

5

7

9

10

11/14/2024

Client: Weston Solutions Inc Job ID: 500-259297-1

Project/Site: IDOT- WO 007 FAI 94 Dolton

Client Sample ID: R17-2-103024 Lab Sample ID: 500-259297-9

. Matrix: Water

Date Collected: 10/30/24 01:15 Date Received: 10/30/24 12:40

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	<0.0084	0.0084	0.0021	mg/L		11/05/24 06:57	11/05/24 14:26	1
2,4,6-Trichlorophenol	<0.0042	0.0042	0.00060	mg/L		11/05/24 06:57	11/05/24 14:26	1
2,4-Dichlorophenol	<0.0084	0.0084	0.0022	mg/L		11/05/24 06:57	11/05/24 14:26	1
2,4-Dimethylphenol	<0.0084	0.0084	0.0015	mg/L		11/05/24 06:57	11/05/24 14:26	1
2,4-Dinitrophenol	<0.017	0.017	0.0072	mg/L		11/05/24 06:57	11/05/24 14:26	1
2,4-Dinitrotoluene	<0.00084	0.00084	0.00021	mg/L		11/05/24 06:57	11/05/24 14:26	1
2,6-Dinitrotoluene	<0.00084	0.00084	0.000062	mg/L		11/05/24 06:57	11/05/24 14:26	1
2-Chloronaphthalene	<0.0017	0.0017	0.00020	mg/L		11/05/24 06:57	11/05/24 14:26	1
2-Chlorophenol	<0.0042	0.0042	0.00047	mg/L		11/05/24 06:57	11/05/24 14:26	1
2-Methylnaphthalene	<0.0017	0.0017	0.000054	mg/L		11/05/24 06:57	11/05/24 14:26	
2-Methylphenol	<0.0017	0.0017	0.00026	mg/L		11/05/24 06:57	11/05/24 14:26	
2-Nitroaniline	<0.0042	0.0042	0.0011	mg/L		11/05/24 06:57	11/05/24 14:26	•
2-Nitrophenol	<0.0084	0.0084	0.0021	mg/L		11/05/24 06:57	11/05/24 14:26	,
3 & 4 Methylphenol	<0.0017	0.0017	0.00038	mg/L		11/05/24 06:57	11/05/24 14:26	
3,3'-Dichlorobenzidine	<0.0042	0.0042	0.0014	mg/L		11/05/24 06:57	11/05/24 14:26	,
3-Nitroaniline	<0.0084	0.0084	0.0015	mg/L		11/05/24 06:57	11/05/24 14:26	
4,6-Dinitro-2-methylphenol	<0.017	0.017	0.0049	mg/L		11/05/24 06:57	11/05/24 14:26	1
4-Bromophenyl phenyl ether	<0.0042	0.0042	0.00045	-		11/05/24 06:57	11/05/24 14:26	
4-Chloro-3-methylphenol	<0.0084	0.0084	0.0019	_		11/05/24 06:57	11/05/24 14:26	
4-Chloroaniline	<0.0084	0.0084	0.0017	mg/L		11/05/24 06:57	11/05/24 14:26	
4-Chlorophenyl phenyl ether	<0.0042	0.0042	0.00053	_		11/05/24 06:57	11/05/24 14:26	
4-Nitroaniline	<0.0084	0.0084	0.0014	•		11/05/24 06:57	11/05/24 14:26	
4-Nitrophenol	<0.017	0.017	0.0062			11/05/24 06:57	11/05/24 14:26	,
Acenaphthene	<0.00084	0.00084	0.00026	-		11/05/24 06:57	11/05/24 14:26	
Acenaphthylene	<0.00084	0.00084	0.00022	-		11/05/24 06:57	11/05/24 14:26	
Anthracene	<0.00084	0.00084	0.00028			11/05/24 06:57	11/05/24 14:26	
Benzo[a]anthracene	<0.00014	0.00014	0.000047	-		11/05/24 06:57	11/05/24 14:26	
Benzo[a]pyrene	<0.00017	0.00017	0.000083	_		11/05/24 06:57	11/05/24 14:26	
Benzo[b]fluoranthene	<0.00017	0.00017	0.000067			11/05/24 06:57	11/05/24 14:26	
Benzo[g,h,i]perylene	<0.00084	0.00084	0.00031	-		11/05/24 06:57	11/05/24 14:26	
Benzo[k]fluoranthene	<0.00017	0.00017	0.000054	_		11/05/24 06:57	11/05/24 14:26	
Bis(2-chloroethoxy)methane	<0.0017	0.0017	0.00024			11/05/24 06:57	11/05/24 14:26	
Bis(2-chloroethyl)ether	<0.0017	0.0017	0.00024	-		11/05/24 06:57	11/05/24 14:26	
Bis(2-ethylhexyl) phthalate	<0.0084	0.0084	0.0014	-		11/05/24 06:57	11/05/24 14:26	
Butyl benzyl phthalate	<0.0017	0.0017	0.00040				11/05/24 14:26	,
Carbazole	<0.0042	0.0042	0.00030	-			11/05/24 14:26	,
Chrysene	<0.00017	0.00012	0.000057				11/05/24 14:26	,
Dibenz(a,h)anthracene	<0.00025	0.00025	0.000042					,
Dibenzofuran	< 0.0017	0.0017	0.00022	-				,
Diethyl phthalate	<0.0042	0.0042	0.00030	-			11/05/24 14:26	
Dimethyl phthalate	<0.0042	0.0042	0.00026				11/05/24 14:26	
Di-n-butyl phthalate	<0.0042	0.0042	0.00020	-		11/05/24 06:57	11/05/24 14:26	,
Di-n-octyl phthalate	<0.0042	0.0042	0.00088	•		11/05/24 06:57	11/05/24 14:26	,
Fluoranthene	<0.0084	0.00084	0.00038	7		11/05/24 06:57	11/05/24 14:26	
Fluorene	<0.00084	0.00084	0.00038	-		11/05/24 06:57	11/05/24 14:26	
Hexachlorobenzene	<0.00042	0.00084	0.00020	-			11/05/24 14:26	
Hexachlorobutadiene	<0.0042	0.00042					11/05/24 14:26	
			0.00043	-				,
Hexachlorocyclopentadiene Hexachloroethane	<0.017 <0.0042	0.017 0.0042	0.0053 0.00050	-			11/05/24 14:26 11/05/24 14:26	

5

7

9

11

1 4

1,

Client: Weston Solutions Inc

Project/Site: IDOT- WO 007 FAI 94 Dolton

Client Sample ID: R17-2-103024 Lab Sample ID: 500-259297-9

Date Collected: 10/30/24 01:15 **Matrix: Water** Date Received: 10/30/24 12:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Indeno[1,2,3-cd]pyrene	<0.00017		0.00017	0.000063	mg/L		11/05/24 06:57	11/05/24 14:26	1
Isophorone	<0.0017		0.0017	0.00031	mg/L		11/05/24 06:57	11/05/24 14:26	1
Naphthalene	<0.00084		0.00084	0.00026	mg/L		11/05/24 06:57	11/05/24 14:26	1
Nitrobenzene	<0.00084		0.00084	0.00038	mg/L		11/05/24 06:57	11/05/24 14:26	1
N-Nitrosodi-n-propylamine	< 0.00042		0.00042	0.00013	mg/L		11/05/24 06:57	11/05/24 14:26	1
N-Nitrosodiphenylamine	< 0.0017		0.0017	0.00031	mg/L		11/05/24 06:57	11/05/24 14:26	1
Pentachlorophenol	<0.017		0.017	0.0033	mg/L		11/05/24 06:57	11/05/24 14:26	1
Phenanthrene	<0.00084		0.00084	0.00025	mg/L		11/05/24 06:57	11/05/24 14:26	1
Phenol	< 0.0042		0.0042	0.00056	mg/L		11/05/24 06:57	11/05/24 14:26	1
Pyrene	<0.00084		0.00084	0.00036	mg/L		11/05/24 06:57	11/05/24 14:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorophenol (Surr)	43		27 - 110				11/05/24 06:57	11/05/24 14:26	1
Phenol-d5 (Surr)	31		20 - 110				11/05/24 06:57	11/05/24 14:26	1
Nitrobenzene-d5 (Surr)	66		36 - 120				11/05/24 06:57	11/05/24 14:26	1
2-Fluorobiphenyl (Surr)	66		34 - 110				11/05/24 06:57	11/05/24 14:26	1
2,4,6-Tribromophenol (Surr)	79		40 - 145				11/05/24 06:57	11/05/24 14:26	1
Terphenyl-d14 (Surr)	71		40 - 145				11/05/24 06:57	11/05/24 14:26	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	20		0.10	0.025	mg/L		11/05/24 13:30	11/06/24 17:37	1
Antimony	<0.0030		0.0030	0.0013	mg/L		11/05/24 13:30	11/06/24 17:37	1
Arsenic	0.013		0.0010	0.00023	mg/L		11/05/24 13:30	11/06/24 17:37	1
Barium	0.27		0.0025	0.00073	mg/L		11/05/24 13:30	11/06/24 17:37	1
Beryllium	0.0015		0.0010	0.00053	mg/L		11/05/24 13:30	11/07/24 14:56	1
Cadmium	0.00076		0.00050	0.00017	mg/L		11/05/24 13:30	11/06/24 17:37	1
Calcium	250		0.20	0.044	mg/L		11/05/24 13:30	11/06/24 17:37	1
Chromium	0.068		0.0050	0.0011	mg/L		11/05/24 13:30	11/06/24 17:37	1
Cobalt	0.028		0.0010	0.00040	mg/L		11/05/24 13:30	11/06/24 17:37	1
Copper	0.045		0.0020	0.00050	mg/L		11/05/24 13:30	11/06/24 17:37	1
Iron	46		0.10	0.047	mg/L		11/05/24 13:30	11/06/24 17:37	1
Lead	0.040		0.00050	0.00019	mg/L		11/05/24 13:30	11/06/24 17:37	1
Magnesium	79		0.20	0.049	mg/L		11/05/24 13:30	11/06/24 17:37	1
Manganese	1.0		0.0025	0.00079	mg/L		11/05/24 13:30	11/06/24 17:37	1
Nickel	0.049		0.0020	0.00063	mg/L		11/05/24 13:30	11/06/24 17:37	1
Potassium	12		0.50	0.11	mg/L		11/05/24 13:30	11/06/24 17:37	1
Selenium	0.0025		0.0025	0.00098	mg/L		11/05/24 13:30	11/06/24 17:37	1
Silver	<0.00050		0.00050	0.00012	mg/L		11/05/24 13:30	11/06/24 17:37	1
Sodium	300		0.20	0.077	mg/L		11/05/24 13:30	11/06/24 17:37	1
Thallium	<0.0020		0.0020	0.00057	mg/L		11/05/24 13:30	11/06/24 17:37	1
Vanadium	0.051		0.0050	0.0022	mg/L		11/05/24 13:30	11/06/24 17:37	1
Zinc	0.16		0.020	0.0069	mg/L		11/05/24 13:30	11/06/24 17:37	1

Method: SW846 7470A - Mercu	ıry								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.000076	mg/L		11/06/24 11:10	11/07/24 08:48	1

Definitions/Glossary

Client: Weston Solutions Inc Job ID: 500-259297-1

Project/Site: IDOT- WO 007 FAI 94 Dolton

Qualifiers

	AOV

Qualifier

*_	LCS and/or LCSD is outside acceptance limits, low biased.
*+	LCS and/or LCSD is outside acceptance limits, high biased.
*1	LCS/LCSD RPD exceeds control limits.
**	LOTE: A C. C. A. L.

*3 ISTD response or retention time outside acceptable limits.

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

S1+ Surrogate recovery exceeds control limits, high biased.

Qualifier Description

GC/MS Semi VOA

Qualifier	Qualifier Description	
*	LCS and/or LCSD is outside accontance limits	low his

LCS and/or LCSD is outside acceptance limits, low biased.

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Metals

Qualifier	Qualifier Description
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.
В	Compound was found in the blank and sample.
F1	MS and/or MSD recovery exceeds control limits.
F3	Duplicate RPD exceeds the control limit

F5 Duplicate RPD exceeds limit, and one or both sample results are less than 5 times RL, and the absolute difference between results is < the upper reporting limits for both.

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly	used abbreviations ma	y or may not be	present in this report.

₩ Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery **CFL** Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Decision Level Concentration (Radiochemistry) DLC

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit MI Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive **Quality Control** QC

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

Eurofins Chicago

Definitions/Glossary

Client: Weston Solutions Inc Job ID: 500-259297-1

Project/Site: IDOT- WO 007 FAI 94 Dolton

Glossary (Continued)

Abbreviation	These commonly used abbreviations may or may not be present in this report.
	D 1 (1 D 1 D 1 D 1 D 1 D 1 D 1 D 1 D 1 D

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

4

5

8

9

11

13

14

Accreditation/Certification Summary

Client: Weston Solutions Inc Job ID: 500-259297-1

Project/Site: IDOT- WO 007 FAI 94 Dolton

Laboratory: Eurofins Chicago

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Progra	ım	Identification Number	Expiration Date
llinois	NELAF)	IL00035	05-31-25
9	s are included in this report does not offer certification	•	not certified by the governing authori	ty. This list may include analyte
Analysis Method	Prep Method	Matrix	Analyte	
Analysis Melliou			,a., to	
8260D		Water	1,3-Dichloropropene, Tota	 al
	5035	Water Solid		
8260D			1,3-Dichloropropene, Tota	

4

6

10

4.6

13

14

	Address				Cn	iain	Oï	Сu	St	oay	/ K	ecc	ora	1	54	US	4		eurofin		Environment Testing America
		Regul	atory Pro	gram: [] bw [NPDES		RCR	4	Ott	ner										TAL-8210
[Project Ma		A Slese	ers		Site	Cont	act:	J.)	UU					301	202	4	COC No		640au
	Company Name Weston Solutions	Tel/Email:					Lab	Cont	act:	-		na	PP	Carrie	er:					of	2_ COCs
	Address 300 Knights bridge Pekwy		Analysis T				П			10	र्धा								Sampler		
	City/State/Zip Uniomshire 12 60069		DAR DAYS		RKING DAY	S	_	11		Æ	3					1	1 1,		For Lab U Walk-in C		nly:
	Phone 312-590 258	-	F if different fro	m Below weeks			_ z		ŀ	3 3	3							28	Lab Same		
1	Project Name 007 D-94 DO/10N	1 8		week				1	-	2/2				1 1	1 1			Ę	Lab camp	, III i g	<u> </u>
	Site DOLTON, IL			days			S G			30	5							Q.	Job / SDG		
	PO#		1	day			Sample (2	\mathcal{C}	32	5					500-2	59297	00-	500-7	156	SH 10130124
				Sample Type			N S	Vocs	0	ξc	_				l i		/	COG	12M	250	7297
- 1		Sample	Sample	(C=Comp,		# of	Filtered 9	13	5	H	7/5		1		1 1		1	1.1	1		
,	Sample Identification	Date	Time	G=Grab)	Matrix	Cont.	ii a		_	1-			_								Specific Notes
1	R18-1 (0-5)-102924	19/29/24		G	5	Q	Ц	-	_	< <i>X</i>	_								INCL	UP	E TELPISPLIP
2	R18-1(5-10)-102924	10/24/24		G	5	6	Ш	\wedge	Х	γX	×								Mn	+F	ein
3	R18-1-102924	19/29/24		G	W	٥		X	X	X										an	alysis
4	neipblank	10/29/24		q	ω	3		X													
5	R18-2(0-5) -102924	10/29/24		G	3	6	П	X	X	K)	(X										
4	RIB-2 (5-10) -107924	10/20/24	2150	C	5	y	П	x	X	XX	X										
7	R17-2 (0-5) - W3024	10/30/24	0022	9	S	Ce	П	×	X	X	k X						П			\neg	
8	R17 2(5-10) -103024	1930/24	0100	G	S	6	П	X	\mathcal{X}	χ	X									T	
9	R17-2-103024	10/30/24	0115	9	W	4	П	X	X	X			T							T	
60	TRIPBIANK	44/20/24	0115	-67	4	gh	\Box	X	\dashv	\dashv	+	\vdash		\vdash		\perp	\Box			\perp	
0		Doubly		6	5	le	H	X	X	X)	(×	\vdash	+				\Box			\top	
ш		10/30/24		G	5	le	\sqcap	$\overline{\lambda}$	入	X	_		\top				$\top \!$			\top	
``	Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3;																			4	
	Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Pleas	se List any E	EPA Waste	Codes for	the sam	ple in th		ampl	e Di	spos	al (A	fee m	nay be	asse	ssed i	f sam	oles ar	e retain	ed longer th	an 1	month)

Flammable

Special Instructions/QC Requirements & Comments:

Custody Seals Intact

Skin Irritant

Poison B

Custody Seal No Company

cueston

Company

Unknown

Date/Time 1930/24/0/5

Chain of Custody Record 734094

Page 113 of 117

Return to Client

11/14/2024

Archive for_

Therm ID No

Date/Time 10/30/24 1/240

.9 >3.8 _____Corr'd____

Company

Disposal by Lab

Address		Chain o		rironment Testing erica
	Regulatory Program:	□nw □NPDES	RCRA Other	TAL-8210
Client Contact	Project Manager: A . S (8)		ite Contact: C. David Date: 10/30/24 COC No	TAC-02 TO
Company Name weston Solutions	Tel/Email:	L	ab Contact: J. MNOPD Carrier 2 of 2	COCs
Address 300 Knightoriolsa Akwy	Analysis Turnaroun		Sampler	Who and the control of the control o
City/State/Zip Lincolnshire. 19 40000	CALENDAR DAYS W	DRKING DAYS	For Lab Use Only: Walk-in Client Lab Sampling	
Phone 312-590-2518	TAT if different from Below _		Z N 3 Walk-in Client	
Fax	2 weeks	(Z	Lab Sampling Job / SDG No DO - 250/2 Sample Spe	
Project Name OOF I-94 POLION Site DOLLAN I	1 week	Sample (Y / N	g 55 Job / SDG No	
Site DOITORIL	2 days	2		α
	Sample	, , , , , , , , , , , , , , , , , , , ,		
	Type	2	Sample Spe	
Sample Identification	Date Time G=Grab)	# of a	Sample Spe	cific Notes
			INLUDE TOLP	TSPLP Mn
2 R17-1 (8-10) - 103024	19/30/240140 9	S (0	XXXXX INCODE TELL TELL INCODE TELL TELL TELL TELL TELL TELL TELL TE	alysis
		1		
		+-+	╉╂┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼	
				
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3	5=NaOH; 6= Other			
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Plea Comments Section if the lab is to dispose of the sample	se List any EPA Waste Codes fo	or the sample in the	Sample Disposal (A fee may be assessed if samples are retained longer than 1 mor	ith)
Non-Hazard Flammable Skin Irritant	Poison B Unl	known	Return to Client Disposal by Lab Archive for Months	
Special Instructions/QC Requirements & Comments:				
Custody Seals Intact ,	Custody Seal No		Cooler Terms ("C) Obs'd Corr'd Therm ID No	
Relinquished by	Company	Date/Time NIS	Received by Company Date/Timer	
				1865
Relinquished 67 1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/	Company / /s/20/2		Received by Company Date/Time	
Relinquished by	Company	Date/Time	Received in Laboratory by Company Date/Time.	212

Page 114 of 117

11/14/2024

	Address																		450	Cu	11011115	Environn America	ent Testin
		Regul	atory Pro	gram:] wd [NPDES	. [RCR	A	□ot	her											America	TAL-8210
	Client Contact	Project M	anager:	A Nese	285		Site	Con	act:	(,1	MI	sicL	7	Da	te: 10	773	0/2	202	4	C	COC No 7	6409	<u>.</u> 4
	Company Name Weston Solutions	Tel/Email:			-10-0		Lab	Con	act:				(PP						•	-	of	2 co	Cs
	Address 300 Knights bridge PKWU City/State/Zip (Incomoshire It Goved		Analysis T	urnaround	Time		П		П	3//	2				П	Т	П	T	П	5	Sampler		
	City/State/Zip Uncomshire 11 60069	☐ CALEN	DAR DAYS	☐ wor	rking day	'S	П	1		4	3						1	I,			or Lab Use		
	Phone 312-590 288	TA	T if different fr	om Below			2]		215	4						1	de		- 1	Walk-in Client	_	
	Fax			weeks			2 }	-		12	5			-		- 1	8		re e	_ I∟	_ab Sampling		
	Project Name 007 T-99 D0/10N			week			واكا			3	3						R			-	Job / SDG No		
	Site DOITON, IL			days			림	É	5	20	7								×				12-0 124
	I OF			Sample			Sample (Y	2	\geq	3	5					5	00-25	9297	COC		500-251	•	
				Туре			Pa E	lŏ	7	0	7	-)	1 1				500-25	9297	1
	Sample Identification	Sample Date	Sample Time	(C=Comp, G=Grab)	Matrix	# of Cont.	Filtered Sample (Y/N)		Ş	H	5 5	-								$oldsymbol{\perp}$		le Specific N	
	R18-1 (0-5)-102924	10/29/2		G	5	Q	П	λ	X	Λ)	X										INCLUP	PE RU	ISPLP
2	R18-1(5-10)- 102924	10/24/24	2102	G	5	0	П	1	X	y)	ĹΧ										Mn+	Fe in	
3	R18-1-102924	19/29/24		G	ω	la	Ш	Х	Х	X											a	nalysis)
4	neipblank	W/29/24		9	W	3		X															
5	R18-2(0-5) -102924	10/29/24		G	3	6	Ш	_		X)							Ш		Ш				
φ	RIB-2(5-10)-107924	10/20/24		G	5	Ce	Ш	X	X	X)	_	1											
7	R17-2 (0-5) - 103024		0022		S	Ce	Ш	人	X		XX	4										<u> </u>	
Ø	R17 2(5-10) - 103024		0100		S	6	Ш	X	X	<i>x y</i>	<u> </u>									\perp			
9	R17-2-103024	10/30/24		G	w	6	Ц	`	X	X			Ш										
cv	TRIPBIANK	(V)20/24	0115	-67	4	3	╁┼	1	\vdash	\vdash	+	+	-	+	++	+	+	+	+	4			
O	R17-1(0-5)-103024	Bulzy	0135	6	S	le	П	X	X	X,	X >	<					\prod						
11	R17-1 (0-5) - 103024		0135	G	5	le		λ	入	X	χ)	X											
	Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3;	5=NaOH;	6= Other _					L						\perp							8		
	Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Pleas	e List anv I	EPA Waste	Codes for	the sam	ple in th		amp	le Di	ispos	al (A fee	may l	be as	sesse	difs	ample	es ar	e retaiı	ned l	longer than	1 month)	
	Comments Section if the lab is to dispose of the sample		/	_ 5000 101		r	Ĩ																
	☐ Non-Hazard ☐ Flammable ☐ Skin Irritant	Poisor	В	Unkn	own				Returi	n to Cli	ient			Dispo	sal by L	ab		☐ Ar	chive for	r	Month	s	

Date/Time 1930/29/0/5

Date/Time
Date/Time

Page 115 of 117

Special Instructions/QC Requirements & Comments:

Custody Seal No

Company

Company

Company

Custody Seals Intact

Relinquished by

Chain of Custody Record 734094

3.9 <u>>3.8</u>

Company

Company

Therm ID No

Date/Time

Date/Time 10/30/24 1/240

Date/Time

11/14/2024

Address				Cł	nain	of	Cu	sto	dy	Red	cor	d	73	409	95		eı 🤄		rironment i erica	Testing
	Regul	latory Pro	gram:] wd	NPDES		RCRA	. [Other										T	AL-8210
Client Contact	Project M						Conta	act:	C.D	avi	dS	Da	te:	3/30	12	4		COC No		
Company Name weston Solutions	Tel/Email:						Conta			rno		Ca	rrier [.]					2 of 2	_ COCs	Market Company
Address 300 Knight bridge Akwy			urnaround			П	П	Т	2	T	П		П		T			Sampler		
City/State/Zip Lincolnshire, 10 4000		DAR DAYS		KING DAY	'S	_			2 to									For Lab Use Only		
Phone 312-590-2518'	l	T if different fr	_					0	Puvetais									Walk-in Client Lab Sampling	-	
Project Name OUT I-94 POID			weeks week			red Sample (Y/N)	-	16	32		1	- 1	1 1	1 1			1 1	Lab Sampling		
Site DOITONIL	1 1		days			Filtered Sample (Y	2	0	5								11	Job / SDG No		
PO#			day			oldu //		: اک	3/2								1	500-2592	297	
			Sample		***************************************	Sai	الا	0	BA								\perp			CONTRACTOR OF THE PARTY OF THE
	Sample	Sample	Type (C=Comp,		# of	erec	0	3	5	I	11		11				1 1			
Sample Identification	Date	Time	G=Grab)	Matrix		Filt	2	0)	F	0								Sample Spe		
12 R17-1 (8-10) - 103024	10/30/24	0140	િ	S	6		X	Χ×	χ	X								tre in an	1SPLP alysis	Mn
						Ш														
						\sqcap		\neg			\top									
	-					╁	+	+	+	-	+	_	++	++		\vdash	+			
						Ш	\perp				\perp									
						Ш														
						T	\top	T	_		\Box	_	TT							
						╀	+	+		_	++	-	++	+	_	\vdash	+			
						Ш														
						Ш														
						Н		\top		_	$\top \top$	\top	$\top \uparrow$	++			\top			
		<u> </u>				H	+	+	+-		++	_	++	++	\vdash	\vdash	+			
						Ш														
						Ш														
						tt		\top	+		\top	\neg		T			\top			
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3;	5=NaOH:	6= Other				Н	+						\vdash	++						
Possible Hazard Identification:						s	Sampl	e Dis	posal	(A fe	e may	be as	sesse	difsan	iples a	are reta	ained	longer than 1 moi	nth)	
Are any samples from a listed EPA Hazardous Waste? Pleas	se List any	EPA Waste	Codes for	the sam	ple in th	е														
Comments Section if the lab is to dispose of the sample			П		TO STATE OF THE PARTY OF THE PA	_					-	-								
Non-Hazard Flammable Skin Irritant	Poisor	1 8	Unkn	own		丄	ЦВ	eturn	to Clien	:	L	_ Dispo	sal by La	b		Archive	for	Months		
Special Instructions/QC Requirements & Comments:											/									
Custody Seals Intact Yes No	Custody S	Seal No			,					Teng	(°C)	Obs'd		Co	orr'd _			Therm ID No		
Relinquiehed by	Company			Date/T	ime 10/ 0/24	5 F	Receiv	d by	M	h			9	ampan	11	7		Date/fime	1.80	10
Relinquished O VIIIM	Company	9	120/24	Date/T			Receiv							ompan				Date/Time	V = 0	
Relinquished by	Company		0110	Date/T		F	Receiv	ed in	Labor	atory b	ěm	cm	AVC	ompan	EH	7		Date/Time. 1013-0124	1240	

Page 116 of 117

11/14/2024

Illinois Environmental Protection Agency

1021 North Grand Avenue East • P.O. Box 19276 • Springfield • Illinois • 62794-9276 • (217) 782-3397

Uncontaminated Soil Certification by Licensed Professional Engineer or Licensed Professional Geologist for Use of Uncontaminated Soil as Fill in a CCDD or Uncontaminated Soil Fill Operation LPC-663

Revised in accordance with 35 III. Adm. Code 1100, as amended by PCB R2012-009 (eff. Aug. 27, 2012)

This certification form is to be used by professional engineers and professional geologists to certify, pursuant to 35 III. Adm. Code 1100.205(a)(1)(B), that soil (i) is uncontaminated soil and (ii) is within a pH range of 6.26 to 9.0. If you have questions about this form, please telephone the Bureau of Land Permit Section at 217/524-3300.

This form may be completed online, saved locally, printed and signed, and submitted to prospective clean construction or demolition debris (CCDD) fill operations or uncontaminated soil fill operations.

	tion Information		.1 215				
•	on of the source of the un 94 - I-94 at US 6 / 159th S		,	Od Office Phone No	umbor if available:		
				Office Priorie No	umber, ir avallable.		_
•	on (address, including nu In Ave, 15139 East End A		,	e. 15100 - 15123 Corr	nell Ave (ISGS Site No. 3	227V-18)	
City: Dolton	,	State: IL		Zip Code:		- /	
County: Cook		Township:					
Lat/Long of approxi	mate center of site in deci	mal degrees	(DD.do			90.12345):	
Latitude:	Longitude: -						
(Decimal	Degrees) (-Decimal De	grees)				
Identify how the lat/l	long data were determine	d:					
	Interpolation O Photo	Interpolation		Survey Other			
IEPA Site Number(s	s), if assigned: BOL: _			BOW:	BOA:		
Approximate Start [Date (mm/dd/yyyy): TBD)		Approximate End Da	ate (mm/dd/yyyy): TBD	1	
Estimated Volume	of debris (cu. Yd.): 26						
II. Owner/Opera	ator Information for	Source S	ite				
Site Owner				Site Operator			
Name:	Illinois Department of	Transportat	ion	Name:	Illinois Department of	Transportation	<u>n</u>
Street Address:	201 V	/. Center Co	urt	Street Address:	201 W	/. Center Cour	t
PO Box:				PO Box:			
City:	Schaumburg	State:	IL	City:	Schaumburg	State: II	L
Zip Code:	60196 Phone:			Zip Code:	60196 Phone:		_
Contact:		Vanessa R	uiz	Contact:		Vanessa Ruiz	Z
Email, if available:	Vanessa.Ru	ıiz@illinois.g	JOV	Email, if available:	Vanessa.Ru	ıiz@illinois.go	V

This Agency is authorized to require this information under Section 4 and Title X of the Environmental Protection Act (415 ILCS 5/4, 5/39). Failure to disclose this information may result in: a civil penalty of not to exceed \$50,000 for the violation and an additional civil penalty of not to exceed \$10,000 for each day during which the violation continues (415 ILCS 5/42). This form has been approved by the Forms Management Center.

Project Name: FAI 94				
	<u>Unc</u>	ontaminated So	il Certification	
III. Basis for Cer	tification and Attachm	ents		
For each item listed b	elow, reference the attachme	ents to this form the	at provide the required inf	formation.
a. A Description of t III. Adm. Code 11		w they were deterr	mined to be sufficient in n	umber and appropriately located 35
	ERE SAMPLED ADJACENT INVESTIGATION REPORT			1, AND TABLE 4-1 OF THE
established pursu the documentatio the analysis; and with the Agency's (g), 1100.205(a),	ant to 35 III. Adm. Code Part n of chain of custody control, certification by an authorized rules for the accreditation of 1100.610]:	t 1100, Subpart F a , a copy of the lab a d agent of the labou f environmental and	and that the soil pH is with analysis; the accreditation ratory that the analysis ha d the scope of the accred	mum allowable concentrations nin the range of 6.25 to 9.0,including a status of the laboratory performing been performed in accordance itation [35 III. Adm. Code 1100.201
TESTAMERICA ANA INVESTIGATION RE		ID: 500-259381-1.	ALSO SEE FIGURE 4-1 (OF THE PRELIMINARY SITE
		and Oaal of Lin	annad Buatanaianal	Engineer collings of
IV. Certification Professional Geo I, Michael A. Castillo certify under penalty of the best of my knowle ILCS 5/22.51 or 22.57 certify that the soil pH	Statement, Signature and Diogist Do P.G. If law that the information suredge and belief, true, accurated and and 35 III. Adm. Code 110	bmitted, including te and complete. In 00.205(a), I certify to 9.0. In addition,	_(name of licensed profe but not limited to, all attac n accordance with the Ent that the soil from this site I certify that the soil has n	Engineer or Licensed essional engineer or geologist) chments and other information, is to vironmental Protection Act [415 is uncontaminated soil. I also ot been removed from the site as
IV. Certification Professional Geo I, Michael A. Castillo certify under penalty of the best of my knowled ILCS 5/22.51 or 22.57 certify that the soil phe part of a cleanup or re- Any person who knowled	Statement, Signature a blogist b, P.G. of law that the information suredge and belief, true, accurated and 35 III. Adm. Code 110 is within the range of 6.25 to emoval of contaminants. All bowingly makes a false, fiction	bmitted, including to and complete. In 00.205(a), I certify to 9.0. In addition, I necessary docume	(name of licensed profe but not limited to, all attace n accordance with the En- that the soil from this site I certify that the soil has n entation is attached.	essional engineer or geologist) chments and other information, is to vironmental Protection Act [415 is uncontaminated soil. I also
IV. Certification Professional Geo I, Michael A. Castillo certify under penalty of the best of my knowled ILCS 5/22.51 or 22.57 certify that the soil phe part of a cleanup or re- Any person who knowled	Statement, Signature a blogist b, P.G. of law that the information suredge and belief, true, accurated and 35 III. Adm. Code 110 is within the range of 6.25 to emoval of contaminants. All bowingly makes a false, fiction	bmitted, including te and complete. In 00.205(a), I certify to 9.0. In addition, I necessary documentatious, or fraudule subsequent offense	(name of licensed profe but not limited to, all attace n accordance with the En- that the soil from this site I certify that the soil has n entation is attached.	essional engineer or geologist) chments and other information, is to vironmental Protection Act [415 is uncontaminated soil. I also ot been removed from the site as
IV. Certification Professional Geo I, Michael A. Castillo certify under penalty of the best of my knowle ILCS 5/22.51 or 22.57 certify that the soil ph part of a cleanup or re Any person who knowle EPA commits a Class	Statement, Signature a blogist b, P.G. of law that the information suredge and belief, true, accurated and 35 III. Adm. Code 110 is within the range of 6.25 to emoval of contaminants. All bowingly makes a false, fictings 4 felony. A second or sure	bmitted, including the and complete. In 00.205(a), I certify to 9.0. In addition, Inecessary documentations, or fraudule subsequent offense.	(name of licensed profe but not limited to, all attace n accordance with the En- that the soil from this site I certify that the soil has n entation is attached.	essional engineer or geologist) chments and other information, is to vironmental Protection Act [415 is uncontaminated soil. I also ot been removed from the site as
IV. Certification Professional Geo I, Michael A. Castillo certify under penalty of the best of my knowled ILCS 5/22.51 or 22.57 certify that the soil ph part of a cleanup or re Any person who know EPA commits a Class Company Name:	Statement, Signature a blogist b, P.G. of law that the information suredge and belief, true, accurated all and 35 III. Adm. Code 110 is within the range of 6.25 to emoval of contaminants. All bowingly makes a false, fictions 4 felony. A second or suredge with the second or suredge.	bmitted, including the and complete. In 00.205(a), I certify to 9.0. In addition, Inecessary documentations, or fraudule subsequent offense.	(name of licensed profe but not limited to, all attace n accordance with the En- that the soil from this site I certify that the soil has n entation is attached.	essional engineer or geologist) chments and other information, is to vironmental Protection Act [415 is uncontaminated soil. I also ot been removed from the site as
IV. Certification Professional Geo I, Michael A. Castillo certify under penalty of the best of my knowled ILCS 5/22.51 or 22.57 certify that the soil pH part of a cleanup or re Any person who know EPA commits a Class Company Name: Street Address:	Statement, Signature a blogist b, P.G. of law that the information suredge and belief, true, accurated all and 35 III. Adm. Code 110 is within the range of 6.25 to emoval of contaminants. All bowingly makes a false, fictions 4 felony. A second or suredge with the second of second Solutions, Inc. 300 Knightsbridge Pa	bmitted, including te and complete. In 00.205(a), I certify to 9.0. In addition, Inecessary documentations, or fraudule subsequent offense.	(name of licensed profe but not limited to, all attace a accordance with the Enthat the soil from this site I certify that the soil has nentation is attached. Internal statement, or after conviction is a Comparison of the conviction of the con	essional engineer or geologist) chments and other information, is to vironmental Protection Act [415 is uncontaminated soil. I also ot been removed from the site as

Yichula Castello Licensed Professional Engineer or

Licensed Professional Geologist Signature:

24 February 2025

MICHAEL A. CASTILL Date:

Summary Table - Residences (ISGS Site No. 3727V-18) Comparison of Detected Constituents to Applicable Reference Concentrations Soil Analytical Results

FAI 94 - I-94 at US 6 / 159th Street to Michigan City Road Dolton, Cook County, Illinois

Location		R18-3	R18-3	R18-3
	Reference	R18-3(0-5)-	R18-3(5-10)-	R18-3(10-15)-
Field Sample ID	Concentrations	103124	103124	103124
Sample Date	(MAC Table)	10/31/2024	10/31/2024	10/31/2024
ISGS Site No.		3727V-18	3727V-18	3727V-18
Laboratory pH	<6.25,>9.0	8.4	7.4	7.4
VOCs			No Detections	
SVOCs (mg/kg)				
2-Methylnaphthalene		0.029 J	ND	ND
Acenaphthene	570	0.083	ND	ND
Acenaphthylene		0.0096 J	ND	ND
Anthracene	12000	0.28	ND	ND
Benzo(a)anthracene	0.9 / 11 / 1.8	1.1	ND	0.034 J
Benzo(a)pyrene	0.09 / 11 / 2.1	1.2	ND	ND
Benzo(b)fluoranthene	0.9 / 13 / 2.1	1.5	ND	ND
Benzo(g,h,i)perylene		0.63 J	ND	0.024 J
Benzo(k)fluoranthene	9	0.48	ND	ND
Carbazole	0.6	0.058 J	ND	ND
Chrysene	88	0.99	ND	0.016 J
Dibenzo(a,h)anthracene	0.09 / 1.0 / 0.42	0.19	ND	ND
Dibenzofuran		0.039 J	ND	ND
Di-N-Butyl phthalate	2300	0.18 J	ND	ND
Fluoranthene	3100	2.2	ND	0.031 J
Fluorene	560	0.11	ND	ND
Indeno(1,2,3-cd)pyrene	0.9 / 5.8 / 1.6	0.79	ND	ND
Naphthalene	1.8	0.017 J	ND	ND
Phenanthrene		1.2	ND	0.04 J
Pyrene	2300	2.2	ND	0.028 J
Total Metals (mg/kg)				
Aluminum, Total		2700	2000	1800
Antimony, Total	5	0.29 J	ND	0.42 J
Arsenic, Total	11.3 / 13,0	2.4	2.5	3.1
Barium, Total	1500	15 J	6.5	6.3
Beryllium, Total	22	0.22	0.1 J	0.15 J
Cadmium, Total	5.2	0.077 J	ND	ND
Calcium, Total		19000 J	350 B	450 B
Chromium, Total	21	4.3	2.8	95
Cobalt, Total	20	3.1	2.1	3.3
Copper, Total	2900	4.4	0.87	3.6
Iron, Total	15000 / 15900	5100	3400	5100
Lead, Total	107	7.7 J	2.3	4.1
Magnesium, Total	325000	8100 J	450	650
Manganese, Total	630 / 636	120	18	35
Mercury, Total	0.89	0.027	0.016	0.022
Nickel, Total	100	5.4	2.8	18
Potassium, Total		500 J	180	350
Selenium, Total	1.3	ND	ND	ND
Silver, Total	4.4	ND	ND	ND
Sodium, Total		110	65	130
Thallium, Total	2.6	0.68	ND	ND
Vanadium, Total	550	6	4.6	6.1
Zinc, Total	5100	24	7.5	14

Summary Table - Residences (ISGS Site No. 3727V-18) Comparison of Detected Constituents to Applicable Reference Concentrations Soil Analytical Results

FAI 94 - I-94 at US 6 / 159th Street to Michigan City Road Dolton, Cook County, Illinois

Location		R18-3	R18-3	R18-3
	Reference	R18-3(0-5)-	R18-3(5-10)-	R18-3(10-15)-
Field Sample ID	Concentrations	103124	103124	103124
Sample Date	(MAC Table)	10/31/2024	10/31/2024	10/31/2024
ISGS Site No.		3727V-18	3727V-18	3727V-18
TCLP Metals (mg/l)				
Arsenic, TCLP	0.05	ND	ND	ND
Barium, TCLP	2	0.19 J	0.096 J	0.085 J
Beryllium, TCLP	0.004	ND	ND	ND
Cadmium, TCLP	0.005	0.0027 J	ND	ND
Chromium, TCLP	0.1	ND	0.014 J	0.027
Cobalt, TCLP	1	0.02 J	ND	ND
Copper, TCLP	0.65	ND	ND	0.018 J
Iron, TCLP	5	1.9	11	23
Lead, TCLP	0.0075	ND	ND	0.025
Manganese, TCLP	0.15	1.6	0.079	0.23
Mercury, TCLP	0.002	ND	ND	ND
Nickel, TCLP	0.1	0.016 J	0.012 J	0.027
Selenium, TCLP	0.05	ND	ND	ND
Silver, TCLP	0.05	ND	ND	ND
Zinc, TCLP	5	0.089 J	0.03 J	0.084 J
SPLP Metals (mg/l)				
Arsenic, SPLP	0.05	0.026 J	ND	0.011 J
Barium, SPLP	2	0.3 J	0.056 J	0.07 J
Beryllium, SPLP	0.004	ND	ND	ND
Cadmium, SPLP	0.005	ND	ND	ND
Chromium, SPLP	0.1	0.098	0.018 J	0.031
Cobalt, SPLP	1	0.046	ND	0.019 J
Copper, SPLP	0.65	0.11	ND	0.017 J
Iron, SPLP	5	75	14	26
Lead, SPLP	0.0075	0.29 J	0.0082	0.03
Manganese, SPLP	0.15	1 J	0.069	0.27
Mercury, SPLP	0.002	ND	ND	ND
Nickel, SPLP	0.1	0.1	0.013 J	0.026
Selenium, SPLP	0.05	ND	ND	ND
Silver, SPLP	0.05	ND	ND	ND
Zinc, SPLP	5	0.52	0.035 J	0.075 J

Notes:

--- - not applicable, value not available, or not analyzed.

Reference concentrations from MAC Table include background values for Chicago corporate limits and MSA counties, as applicable.

- ND Constituent not detected above the reporting limit.
- J Estimated concentration.
- B Compound was found in the blank and the investigative sample.

Shaded values indicate concentration exceeds MAC Table Reference Concentration.

12

14

15

ANALYTICAL REPORT

PREPARED FOR

Attn: Mr. Andris Slesers Weston Solutions Inc 300 Knightsbridge Parkway Suite 360 Lincolnshire, Illinois 60069 Generated 11/14/2024 5:41:36 PM

JOB DESCRIPTION

IDOT- WO 007 FAI 94 Dolton

JOB NUMBER

500-259381-1

Eurofins Chicago 2417 Bond Street University Park IL 60484

Eurofins Chicago

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Chicago Project Manager.

Authorization

Authorized for release by

Authorized for release by Jim Knapp, Senior Project Manager Jim.Knapp@et.eurofinsus.com (630)758-0262 Generated 11/14/2024 5:41:36 PM

13

Client: Weston Solutions Inc

Project/Site: IDOT- WO 007 FAI 94 Dolton

Client Sample ID: R18-3(0-5)-103124 Lab Sample ID: 500-259381-1

Date Collected: 10/31/24 08:55

Date Received: 10/31/24 12:12

Matrix: Solid
Percent Solids: 95.3

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Acetone	<0.017		0.017	0.0073	mg/Kg	<u></u>	11/01/24 09:18	11/04/24 14:14	
Benzene	< 0.0017		0.0017	0.00055	mg/Kg	☆	11/01/24 09:18	11/04/24 14:14	
Bromodichloromethane	< 0.0017		0.0017	0.00056	mg/Kg	☆	11/01/24 09:18	11/04/24 14:14	
Bromoform	<0.0017		0.0017	0.0010	mg/Kg	₩	11/01/24 09:18	11/04/24 14:14	
Bromomethane	<0.0044		0.0044	0.0021	mg/Kg	☆	11/01/24 09:18	11/04/24 14:14	
Carbon disulfide	<0.0044		0.0044	0.00080	mg/Kg	☆	11/01/24 09:18	11/04/24 14:14	
Carbon tetrachloride	<0.0017		0.0017	0.00059	mg/Kg	☆	11/01/24 09:18	11/04/24 14:14	
Chlorobenzene	< 0.0017		0.0017	0.00074	mg/Kg	☆	11/01/24 09:18	11/04/24 14:14	
Chloroethane	<0.0044		0.0044	0.0014	mg/Kg	≎	11/01/24 09:18	11/04/24 14:14	
Chloroform	<0.0017		0.0017	0.0013	mg/Kg	₽	11/01/24 09:18	11/04/24 14:14	
Chloromethane	<0.0044		0.0044	0.00085	mg/Kg	≎	11/01/24 09:18	11/04/24 14:14	
cis-1,2-Dichloroethene	< 0.0017		0.0017	0.00070	mg/Kg	≎	11/01/24 09:18	11/04/24 14:14	
cis-1,3-Dichloropropene	<0.0017		0.0017	0.00070	mg/Kg	₩	11/01/24 09:18	11/04/24 14:14	
Dibromochloromethane	< 0.0017		0.0017	0.00081	mg/Kg	₩	11/01/24 09:18	11/04/24 14:14	
1,1-Dichloroethane	< 0.0017		0.0017	0.00066	mg/Kg	≎	11/01/24 09:18	11/04/24 14:14	
1,2-Dichloroethane	<0.0044		0.0044	0.0011	mg/Kg	₩	11/01/24 09:18	11/04/24 14:14	
1,1-Dichloroethene	< 0.0017		0.0017	0.00072	mg/Kg	☆	11/01/24 09:18	11/04/24 14:14	
1,2-Dichloropropane	< 0.0017		0.0017	0.00045	mg/Kg	₩	11/01/24 09:18	11/04/24 14:14	
1,3-Dichloropropene, Total	<0.0017		0.0017	0.00084	mg/Kg	≎	11/01/24 09:18	11/04/24 14:14	
Ethylbenzene	< 0.0017		0.0017	0.00092	mg/Kg	☆	11/01/24 09:18	11/04/24 14:14	
2-Hexanone	<0.0044		0.0044	0.0026	mg/Kg	☆	11/01/24 09:18	11/04/24 14:14	
Methylene Chloride	<0.0044		0.0044	0.0019	mg/Kg	₩	11/01/24 09:18	11/04/24 14:14	
Methyl Ethyl Ketone	<0.0044		0.0044	0.0019	mg/Kg	☆	11/01/24 09:18	11/04/24 14:14	
methyl isobutyl ketone	<0.0044		0.0044	0.0031	mg/Kg	☆	11/01/24 09:18	11/04/24 14:14	
Methyl tert-butyl ether	<0.0017		0.0017	0.00056	mg/Kg	≎	11/01/24 09:18	11/04/24 14:14	
Styrene	< 0.0017		0.0017	0.00078	mg/Kg	≎	11/01/24 09:18	11/04/24 14:14	
1,1,2,2-Tetrachloroethane	< 0.0017		0.0017	0.00087	mg/Kg	☆	11/01/24 09:18	11/04/24 14:14	
Tetrachloroethene	<0.0017		0.0017	0.00098			11/01/24 09:18	11/04/24 14:14	
Toluene	< 0.0017		0.0017	0.00035	mg/Kg	≎	11/01/24 09:18	11/04/24 14:14	
trans-1,2-Dichloroethene	< 0.0017		0.0017	0.00066	mg/Kg	≎	11/01/24 09:18	11/04/24 14:14	
trans-1,3-Dichloropropene	<0.0017		0.0017	0.00084	mg/Kg	≎	11/01/24 09:18	11/04/24 14:14	
1,1,1-Trichloroethane	< 0.0017		0.0017	0.00071	mg/Kg	☆	11/01/24 09:18	11/04/24 14:14	
1,1,2-Trichloroethane	<0.0017		0.0017	0.00065	mg/Kg	≎	11/01/24 09:18	11/04/24 14:14	
Trichloroethene	<0.0017		0.0017	0.00047	mg/Kg	₩	11/01/24 09:18	11/04/24 14:14	
Vinyl chloride	< 0.0017		0.0017	0.00071	mg/Kg	☆	11/01/24 09:18	11/04/24 14:14	
Xylenes, Total	<0.0035		0.0035	0.00060	mg/Kg	₩	11/01/24 09:18	11/04/24 14:14	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	119		75 - 131				11/01/24 09:18	11/04/24 14:14	
Dibromofluoromethane (Surr)	103		75 - 126				11/01/24 09:18	11/04/24 14:14	
1,2-Dichloroethane-d4 (Surr)	97		70 - 134				11/01/24 09:18	11/04/24 14:14	
Toluene-d8 (Surr)	109		75 - 124				11/01/24 09:18	11/04/24 14:14	

Method: SW846 8270E - Semivolatile Organic Compounds (GC/MS)
--

Method. Swoto ozroc - Seni	ivolatile Org	ariic Compo	ulius (GC/II	113)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	<0.26		0.26	0.037	mg/Kg	<u></u>	11/04/24 15:03	11/05/24 11:57	1
1,2-Dichlorobenzene	<0.26		0.26	0.021	mg/Kg	₩	11/04/24 15:03	11/05/24 11:57	1
1,3-Dichlorobenzene	<0.26		0.26	0.023	mg/Kg	₩	11/04/24 15:03	11/05/24 11:57	1
1,4-Dichlorobenzene	<0.26		0.26	0.024	mg/Kg	₩	11/04/24 15:03	11/05/24 11:57	1
2,2'-oxybis[1-chloropropane]	< 0.26		0.26	0.037	mg/Kg	₩	11/04/24 15:03	11/05/24 11:57	1

Eurofins Chicago

Page 18 of 102

6

Job ID: 500-259381-1

3

7

9

11

4 4

13

11/14/2024

Client: Weston Solutions Inc

Project/Site: IDOT- WO 007 FAI 94 Dolton

Client Sample ID: R18-3(0-5)-103124 Lab Sample ID: 500-259381-1

Date Collected: 10/31/24 08:55

Date Received: 10/31/24 12:12

Matrix: Solid
Percent Solids: 95.3

Method: SW846 8270E - Ser Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	<0.51		0.51		mg/Kg	— <u>=</u>	11/04/24 15:03	11/05/24 11:57	1
2,4,6-Trichlorophenol	<0.51		0.51		mg/Kg		11/04/24 15:03	11/05/24 11:57	· · · · · · · · · · · · · · · · · · ·
2,4-Dichlorophenol	<0.51		0.51		mg/Kg	☆	11/04/24 15:03	11/05/24 11:57	1
2,4-Dimethylphenol	<0.51		0.51		mg/Kg	☆	11/04/24 15:03	11/05/24 11:57	1
2,4-Dinitrophenol	<1.0		1.0		mg/Kg		11/04/24 15:03	11/05/24 11:57	
2,4-Dinitrotoluene	<0.26		0.26		mg/Kg	::: ::::::::::::::::::::::::::::::::::	11/04/24 15:03	11/05/24 11:57	1
2,6-Dinitrotoluene	<0.26		0.26		mg/Kg	₩	11/04/24 15:03	11/05/24 11:57	1
2-Chloronaphthalene	<0.26		0.26		mg/Kg		11/04/24 15:03	11/05/24 11:57	
2-Chlorophenol	<0.26		0.26		mg/Kg		11/04/24 15:03	11/05/24 11:57	1
2-Methylnaphthalene	0.029	1	0.10		mg/Kg	₩	11/04/24 15:03	11/05/24 11:57	1
2-Methylphenol	<0.26		0.26		mg/Kg		11/04/24 15:03	11/05/24 11:57	
2-Nitroaniline	<0.26		0.26		mg/Kg	₩	11/04/24 15:03	11/05/24 11:57	1
2-Nitrophenol	<0.51		0.20		mg/Kg	₩	11/04/24 15:03	11/05/24 11:57	1
3 & 4 Methylphenol								11/05/24 11:57	
3 & 4 Metnyipnenoi 3,3'-Dichlorobenzidine	<0.26 <0.26		0.26 0.26		mg/Kg	Ω	11/04/24 15:03 11/04/24 15:03	11/05/24 11:57	1
3,3 -Dichioropenzidine 3-Nitroaniline	<0.51		0.26		mg/Kg mg/Kg	∵	11/04/24 15:03	11/05/24 11:57	1
								11/05/24 11:57	
4,6-Dinitro-2-methylphenol	<1.0		1.0		mg/Kg	ψ.	11/04/24 15:03		1
4-Bromophenyl phenyl ether	<0.26		0.26		mg/Kg	‡	11/04/24 15:03	11/05/24 11:57	1
4-Chloro-3-methylphenol	<0.51		0.51		mg/Kg		11/04/24 15:03	11/05/24 11:57	
4-Chloroaniline	<1.0		1.0		mg/Kg	₩.	11/04/24 15:03	11/05/24 11:57	1
4-Chlorophenyl phenyl ether	<0.26		0.26		mg/Kg	₽	11/04/24 15:03	11/05/24 11:57	1
4-Nitroaniline	<0.51		0.51		mg/Kg	<u>.</u> .	11/04/24 15:03	11/05/24 11:57	1
4-Nitrophenol	<1.0		1.0		mg/Kg	☼	11/04/24 15:03	11/05/24 11:57	1
Acenaphthene	0.083		0.051		mg/Kg	₽	11/04/24 15:03	11/05/24 11:57	1
Acenaphthylene	0.0096	J	0.051		mg/Kg		11/04/24 15:03	11/05/24 11:57	1
Anthracene	0.28		0.051	0.011	mg/Kg	☼	11/04/24 15:03	11/05/24 11:57	1
Benzo[a]anthracene	1.1		0.051	0.011	mg/Kg	☼	11/04/24 15:03	11/05/24 11:57	1
Benzo[a]pyrene	1.2		0.051		mg/Kg	.	11/04/24 15:03	11/05/24 11:57	1
Benzo[b]fluoranthene	1.5		0.051	0.049	mg/Kg	☼	11/04/24 15:03	11/05/24 11:57	1
Benzo[g,h,i]perylene	0.63		0.051	0.011	mg/Kg	₩	11/04/24 15:03	11/05/24 11:57	1
Benzo[k]fluoranthene	0.48		0.051		mg/Kg	₩	11/04/24 15:03	11/05/24 11:57	1
Bis(2-chloroethoxy)methane	<0.26		0.26	0.019	mg/Kg	☼	11/04/24 15:03	11/05/24 11:57	1
Bis(2-chloroethyl)ether	<0.26		0.26	0.024	mg/Kg	☼	11/04/24 15:03	11/05/24 11:57	1
Bis(2-ethylhexyl) phthalate	<0.26	*_	0.26	0.20	mg/Kg	₩	11/04/24 15:03	11/05/24 11:57	1
Butyl benzyl phthalate	<0.26		0.26	0.026	mg/Kg	☼	11/04/24 15:03	11/05/24 11:57	1
Carbazole	0.058	J	0.26	0.020	mg/Kg	☼	11/04/24 15:03	11/05/24 11:57	1
Chrysene	0.99		0.051	0.014	mg/Kg	₩	11/04/24 15:03	11/05/24 11:57	1
Dibenz(a,h)anthracene	0.19		0.051	0.051	mg/Kg	₩	11/04/24 15:03	11/05/24 11:57	1
Dibenzofuran	0.039	J	0.26	0.018	mg/Kg	≎	11/04/24 15:03	11/05/24 11:57	1
Diethyl phthalate	<0.26		0.26	0.024	mg/Kg	≎	11/04/24 15:03	11/05/24 11:57	1
Dimethyl phthalate	<0.26		0.26	0.011	mg/Kg	☼	11/04/24 15:03	11/05/24 11:57	1
Di-n-butyl phthalate	0.18	J *-	0.26	0.016	mg/Kg	☼	11/04/24 15:03	11/05/24 11:57	1
Di-n-octyl phthalate	<0.51		0.51	0.36	mg/Kg	☼	11/04/24 15:03	11/05/24 11:57	1
Fluoranthene	2.2		0.051	0.012	mg/Kg	≎	11/04/24 15:03	11/05/24 11:57	1
Fluorene	0.11		0.051		mg/Kg	₩	11/04/24 15:03	11/05/24 11:57	1
Hexachlorobenzene	<0.10		0.10	0.0099		₩	11/04/24 15:03	11/05/24 11:57	1
Hexachlorobutadiene	<0.26		0.26		mg/Kg		11/04/24 15:03	11/05/24 11:57	1
Hexachlorocyclopentadiene	<1.0		1.0		mg/Kg	₽	11/04/24 15:03	11/05/24 11:57	1
Hexachloroethane	<0.26		0.26		mg/Kg	☆	11/04/24 15:03	11/05/24 11:57	1

Eurofins Chicago

Job ID: 500-259381-1

6

8

10

12

14

Client: Weston Solutions Inc

Project/Site: IDOT- WO 007 FAI 94 Dolton

Lab Sample ID: 500-259381-1 Client Sample ID: R18-3(0-5)-103124

Date Collected: 10/31/24 08:55 **Matrix: Solid** Date Received: 10/31/24 12:12 Percent Solids: 95.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Indeno[1,2,3-cd]pyrene	0.79		0.051	0.050	mg/Kg	<u></u>	11/04/24 15:03	11/05/24 11:57	1
Isophorone	<0.26		0.26	0.027	mg/Kg	☆	11/04/24 15:03	11/05/24 11:57	1
Naphthalene	0.017	J	0.051	0.0093	mg/Kg	≎	11/04/24 15:03	11/05/24 11:57	1
Nitrobenzene	<0.051		0.051	0.016	mg/Kg	☆	11/04/24 15:03	11/05/24 11:57	1
N-Nitrosodi-n-propylamine	<0.10		0.10	0.010	mg/Kg	☆	11/04/24 15:03	11/05/24 11:57	1
N-Nitrosodiphenylamine	<0.26		0.26	0.031	mg/Kg	≎	11/04/24 15:03	11/05/24 11:57	1
Pentachlorophenol	<1.0		1.0	0.13	mg/Kg	₽	11/04/24 15:03	11/05/24 11:57	1
Phenanthrene	1.2		0.051	0.011	mg/Kg	≎	11/04/24 15:03	11/05/24 11:57	1
Phenol	<0.26		0.26	0.022	mg/Kg	≎	11/04/24 15:03	11/05/24 11:57	1
Pyrene	2.2		0.051	0.014	mg/Kg	₩	11/04/24 15:03	11/05/24 11:57	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	67		31 - 143				11/04/24 15:03	11/05/24 11:57	1
2-Fluorobiphenyl (Surr)	76		43 - 145				11/04/24 15:03	11/05/24 11:57	1
2-Fluorophenol (Surr)	86		31 - 166				11/04/24 15:03	11/05/24 11:57	1
Nitrobenzene-d5 (Surr)	70		37 - 147				11/04/24 15:03	11/05/24 11:57	1
Phenol-d5 (Surr)	77		30 - 153				11/04/24 15:03	11/05/24 11:57	1
Terphenyl-d14 (Surr)	98		42 - 157				11/04/24 15:03	11/05/24 11:57	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	2700		9.7	4.0	mg/Kg	₩	11/07/24 09:57	11/08/24 12:34	1
Antimony	0.29	J F1	0.97	0.19	mg/Kg	₩	11/07/24 09:57	11/08/24 12:34	1
Arsenic	2.4		0.48	0.17	mg/Kg	₩	11/07/24 09:57	11/08/24 12:34	1
Barium	15		0.48	0.055	mg/Kg	₩	11/07/24 09:57	11/08/24 12:34	1
Beryllium	0.22		0.19	0.045	mg/Kg	₩	11/07/24 09:57	11/08/24 12:34	1
Cadmium	0.077	J	0.097	0.017	mg/Kg	₩	11/07/24 09:57	11/08/24 12:34	1
Calcium	19000	В	9.7	1.6	mg/Kg	₩	11/07/24 09:57	11/08/24 12:34	1
Chromium	4.3		0.48	0.24	mg/Kg	₩	11/07/24 09:57	11/08/24 12:34	1
Cobalt	3.1		0.24	0.063	mg/Kg	₩	11/07/24 09:57	11/08/24 12:34	1
Copper	4.4		0.48	0.14	mg/Kg	₩	11/07/24 09:57	11/08/24 12:34	1
Iron	5100		9.7	5.0	mg/Kg	₩	11/07/24 09:57	11/08/24 12:34	1
Lead	7.7	F1 F2	0.24	0.11	mg/Kg	₩	11/07/24 09:57	11/08/24 12:34	1
Magnesium	8100		4.8	2.4	mg/Kg	₩	11/07/24 09:57	11/08/24 12:34	1
Manganese	120		0.48	0.070	mg/Kg	₩	11/07/24 09:57	11/08/24 12:34	1
Nickel	5.4		0.48	0.14	mg/Kg	₩	11/07/24 09:57	11/08/24 12:34	1
Potassium	500	F1	24	8.6	mg/Kg	₩	11/07/24 09:57	11/08/24 12:34	1
Selenium	<0.48		0.48	0.28	mg/Kg	₩	11/07/24 09:57	11/08/24 12:34	1
Silver	<0.24		0.24	0.062	mg/Kg	₩	11/07/24 09:57	11/08/24 12:34	1
Sodium	110		48	7.2	mg/Kg	₩	11/07/24 09:57	11/08/24 12:34	1
Thallium	0.68		0.48	0.24	mg/Kg	₩	11/07/24 09:57	11/08/24 12:34	1
Vanadium	6.0		0.24	0.057	mg/Kg	₩	11/07/24 09:57	11/08/24 12:34	1
Zinc	24		0.97	0.43	mg/Kg	₩	11/07/24 09:57	11/08/24 12:34	1

Method: SW846 6010D -	Metals (ICP) - TCLP							
Analyte	Result Qua	lifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050	0.050	0.010	mg/L		11/08/24 08:48	11/08/24 22:02	1
Barium	0.19 J	0.50	0.050	mg/L		11/08/24 08:48	11/08/24 22:02	1
Beryllium	<0.0040	0.0040	0.0040	mg/L		11/08/24 08:48	11/08/24 22:02	1
Cadmium	0.0027 J	0.0050	0.0020	mg/L		11/08/24 08:48	11/08/24 22:02	1

Page 20 of 102

Client: Weston Solutions Inc

Project/Site: IDOT- WO 007 FAI 94 Dolton

Client Sample ID: R18-3(0-5)-103124 Lab Sample ID: 500-259381-1

Date Collected: 10/31/24 08:55 **Matrix: Solid** Date Received: 10/31/24 12:12 Percent Solids: 95.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chromium	<0.025		0.025	0.010	mg/L		11/08/24 08:48	11/08/24 22:02	
Cobalt	0.020	J	0.025	0.010	mg/L		11/08/24 08:48	11/08/24 22:02	
Copper	<0.025		0.025	0.010	mg/L		11/08/24 08:48	11/08/24 22:02	
Iron	1.9		0.40	0.20	mg/L		11/08/24 08:48	11/08/24 22:02	
_ead	< 0.0075		0.0075	0.0075	mg/L		11/08/24 08:48	11/08/24 22:02	
Manganese	1.6		0.025	0.010	mg/L		11/08/24 08:48	11/08/24 22:02	
Nickel	0.016	J	0.025	0.010	mg/L		11/08/24 08:48	11/08/24 22:02	
Selenium	<0.050		0.050	0.020	mg/L		11/08/24 08:48	11/08/24 22:02	
Silver	<0.025		0.025	0.010	mg/L		11/08/24 08:48	11/08/24 22:02	
Zinc	0.089	J	0.50	0.020	mg/L		11/08/24 08:48	11/08/24 22:02	
Method: SW846 6010D - Metals (IC	CP) - SP	LP East							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Arsenic	0.026	J	0.050	0.010	mg/L		11/08/24 08:51	11/08/24 18:42	
Barium	0.30	J	0.50	0.050	mg/L		11/08/24 08:51	11/08/24 18:42	
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/08/24 08:51	11/08/24 18:42	
Cadmium	< 0.0050		0.0050	0.0020	mg/L		11/08/24 08:51	11/08/24 18:42	
Chromium	0.098		0.025	0.010	mg/L		11/08/24 08:51	11/08/24 18:42	
Cobalt	0.046		0.025	0.010	mg/L		11/08/24 08:51	11/08/24 18:42	
Copper	0.11		0.025	0.010	mg/L		11/08/24 08:51	11/08/24 18:42	
ron	75		0.40	0.20	mg/L		11/08/24 08:51	11/08/24 18:42	
.ead	0.29	F1	0.0075	0.0075	mg/L		11/08/24 08:51	11/08/24 18:42	
langanese	1.0	F1	0.025	0.010	mg/L		11/08/24 08:51	11/08/24 18:42	
lickel	0.10		0.025	0.010	mg/L		11/08/24 08:51	11/08/24 18:42	
Selenium	<0.050		0.050	0.020	mg/L		11/08/24 08:51	11/08/24 18:42	
ilver	<0.025		0.025	0.010	mg/L		11/08/24 08:51	11/08/24 18:42	
linc	0.52		0.50	0.020	mg/L		11/08/24 08:51	11/08/24 18:42	
Method: SW846 7470A - Mercury (CVAA)	- TCLP							
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Mercury	<0.00020		0.00020	0.00020	mg/L		11/08/24 10:40	11/12/24 15:53	
Method: SW846 7470A - Mercury (
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
1ercury ·	<0.00020		0.00020	0.00020	mg/L		11/08/24 10:40	11/12/24 17:43	
Method: SW846 7471B - Mercury (
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Mercury	0.027		0.016	0.0065	mg/Kg	₽	11/08/24 16:25	11/13/24 10:27	
General Chemistry									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
oH (SW846 9045D)	8.4		0.2	0.2	SU			11/01/24 13:31	

Client: Weston Solutions Inc

Project/Site: IDOT- WO 007 FAI 94 Dolton

Client Sample ID: R18-3(5-10)-103124 Lab Sample ID: 500-259381-2

Date Collected: 10/31/24 09:00 **Matrix: Solid** Date Received: 10/31/24 12:12 Percent Solids: 97.3

Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	<0.018		0.018	0.0074	mg/Kg	₩	11/01/24 09:18	11/04/24 14:40	1
Benzene	<0.0018		0.0018	0.00056	mg/Kg	₩	11/01/24 09:18	11/04/24 14:40	1
Bromodichloromethane	<0.0018		0.0018	0.00057	mg/Kg	₩	11/01/24 09:18	11/04/24 14:40	1
Bromoform	<0.0018		0.0018	0.0010	mg/Kg	₩	11/01/24 09:18	11/04/24 14:40	1
Bromomethane	<0.0044		0.0044	0.0022	mg/Kg	₩	11/01/24 09:18	11/04/24 14:40	1
Carbon disulfide	<0.0044		0.0044	0.00081	mg/Kg	☆	11/01/24 09:18	11/04/24 14:40	1
Carbon tetrachloride	<0.0018		0.0018	0.00060	mg/Kg	₩	11/01/24 09:18	11/04/24 14:40	1
Chlorobenzene	<0.0018		0.0018	0.00075	mg/Kg	₩	11/01/24 09:18	11/04/24 14:40	1
Chloroethane	<0.0044		0.0044	0.0015	mg/Kg	☆	11/01/24 09:18	11/04/24 14:40	1
Chloroform	<0.0018		0.0018	0.0013	mg/Kg	₩	11/01/24 09:18	11/04/24 14:40	1
Chloromethane	<0.0044		0.0044	0.00086	mg/Kg	☆	11/01/24 09:18	11/04/24 14:40	1
cis-1,2-Dichloroethene	<0.0018		0.0018	0.00071	mg/Kg	₩	11/01/24 09:18	11/04/24 14:40	1
cis-1,3-Dichloropropene	<0.0018		0.0018	0.00071	mg/Kg	₩	11/01/24 09:18	11/04/24 14:40	1
Dibromochloromethane	<0.0018		0.0018	0.00082	mg/Kg	₩	11/01/24 09:18	11/04/24 14:40	1
1,1-Dichloroethane	<0.0018		0.0018	0.00067	mg/Kg	₩	11/01/24 09:18	11/04/24 14:40	1
1,2-Dichloroethane	<0.0044		0.0044	0.0011	mg/Kg	₩	11/01/24 09:18	11/04/24 14:40	1
1,1-Dichloroethene	<0.0018		0.0018	0.00073	mg/Kg	☆	11/01/24 09:18	11/04/24 14:40	1
1,2-Dichloropropane	<0.0018		0.0018	0.00046	mg/Kg	☆	11/01/24 09:18	11/04/24 14:40	1
1,3-Dichloropropene, Total	<0.0018		0.0018	0.00085	mg/Kg	₩	11/01/24 09:18	11/04/24 14:40	1
Ethylbenzene	<0.0018		0.0018	0.00093	mg/Kg	☆	11/01/24 09:18	11/04/24 14:40	1
2-Hexanone	<0.0044		0.0044	0.0027	mg/Kg	☆	11/01/24 09:18	11/04/24 14:40	1
Methylene Chloride	<0.0044		0.0044	0.0019	mg/Kg	₩	11/01/24 09:18	11/04/24 14:40	1
Methyl Ethyl Ketone	<0.0044		0.0044	0.0019	mg/Kg	₩	11/01/24 09:18	11/04/24 14:40	1
methyl isobutyl ketone	<0.0044		0.0044	0.0031	mg/Kg	☆	11/01/24 09:18	11/04/24 14:40	1
Methyl tert-butyl ether	<0.0018		0.0018	0.00057	mg/Kg	₩	11/01/24 09:18	11/04/24 14:40	1
Styrene	<0.0018		0.0018	0.00080	mg/Kg	☆	11/01/24 09:18	11/04/24 14:40	1
1,1,2,2-Tetrachloroethane	<0.0018		0.0018	0.00088	mg/Kg	₩	11/01/24 09:18	11/04/24 14:40	1
Tetrachloroethene	<0.0018		0.0018	0.00099	mg/Kg	₩	11/01/24 09:18	11/04/24 14:40	1
Toluene	<0.0018		0.0018	0.00036	mg/Kg	₩	11/01/24 09:18	11/04/24 14:40	1
trans-1,2-Dichloroethene	<0.0018		0.0018	0.00067	mg/Kg	₩	11/01/24 09:18	11/04/24 14:40	1
trans-1,3-Dichloropropene	<0.0018		0.0018	0.00085	mg/Kg	₩	11/01/24 09:18	11/04/24 14:40	1
1,1,1-Trichloroethane	<0.0018		0.0018	0.00072	mg/Kg	☆	11/01/24 09:18	11/04/24 14:40	1
1,1,2-Trichloroethane	<0.0018		0.0018	0.00066	mg/Kg	₩	11/01/24 09:18	11/04/24 14:40	1
Trichloroethene	<0.0018		0.0018	0.00048	mg/Kg	₩	11/01/24 09:18	11/04/24 14:40	1
Vinyl chloride	<0.0018		0.0018	0.00072	mg/Kg	₩	11/01/24 09:18	11/04/24 14:40	1
Xylenes, Total	<0.0035		0.0035	0.00061	mg/Kg	₩	11/01/24 09:18	11/04/24 14:40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	106		75 - 131					11/04/24 14:40	1
Dibromofluoromethane (Surr)	105		75 - 126				11/01/24 09:18	11/04/24 14:40	1
1,2-Dichloroethane-d4 (Surr)	97		70 - 134				11/01/24 09:18	11/04/24 14:40	1
Toluene-d8 (Surr)	104		75 - 124				11/01/24 09:18	11/04/24 14:40	1

Method: SW846 8270E	- Semivolatile Organic Compounds	(GC/MS))
Analyta	Popult Qualifier	DI	87

Method. SWOTO OZI OL - Seni	ivolatile Org	arne compo	unus (Gom	10)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	<0.25		0.25	0.035	mg/Kg	<u></u>	11/04/24 15:03	11/05/24 12:23	1
1,2-Dichlorobenzene	<0.25		0.25	0.020	mg/Kg	₩	11/04/24 15:03	11/05/24 12:23	1
1,3-Dichlorobenzene	<0.25		0.25	0.022	mg/Kg	₩	11/04/24 15:03	11/05/24 12:23	1
1,4-Dichlorobenzene	<0.25		0.25	0.023	mg/Kg	₩	11/04/24 15:03	11/05/24 12:23	1
2,2'-oxybis[1-chloropropane]	< 0.25		0.25	0.036	mg/Kg	₩	11/04/24 15:03	11/05/24 12:23	1

Eurofins Chicago

Page 22 of 102

Client: Weston Solutions Inc

Project/Site: IDOT- WO 007 FAI 94 Dolton

Client Sample ID: R18-3(5-10)-103124 Lab Sample ID: 500-259381-2

Date Collected: 10/31/24 09:00

Matrix: Solid

Date Received: 10/31/24 12:12

Percent Solids: 97.3

Method: SW846 8270E - Sem Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	<0.49	0.49	0.019	mg/Kg	— <u></u>	11/04/24 15:03	11/05/24 12:23	1
2,4,6-Trichlorophenol	<0.49	0.49		mg/Kg		11/04/24 15:03	11/05/24 12:23	1
2,4-Dichlorophenol	<0.49	0.49		mg/Kg	₩	11/04/24 15:03	11/05/24 12:23	1
2,4-Dimethylphenol	<0.49	0.49		mg/Kg	₩	11/04/24 15:03	11/05/24 12:23	1
2,4-Dinitrophenol	<1.0	1.0		mg/Kg		11/04/24 15:03	11/05/24 12:23	1
2,4-Dinitrotoluene	<0.25	0.25		mg/Kg	₩	11/04/24 15:03	11/05/24 12:23	1
2,6-Dinitrotoluene	<0.25	0.25		mg/Kg	₩	11/04/24 15:03	11/05/24 12:23	1
2-Chloronaphthalene	<0.25	0.25		mg/Kg		11/04/24 15:03	11/05/24 12:23	
2-Chlorophenol	<0.25	0.25		mg/Kg	₩.	11/04/24 15:03	11/05/24 12:23	1
2-Methylnaphthalene	<0.10	0.23		mg/Kg	₩	11/04/24 15:03	11/05/24 12:23	1
2-Methylphenol	<0.25	0.25		mg/Kg		11/04/24 15:03	11/05/24 12:23	
2-Nitroaniline	<0.25	0.25		mg/Kg	₩	11/04/24 15:03	11/05/24 12:23	1
2-Nitrophenol	<0.49	0.49		mg/Kg	₩	11/04/24 15:03	11/05/24 12:23	1
3 & 4 Methylphenol	<0.25	0.49		mg/Kg	¥	11/04/24 15:03	11/05/24 12:23	
3,3'-Dichlorobenzidine	<0.25	0.25	0.030	mg/Kg	¥ Ø	11/04/24 15:03	11/05/24 12:23	1
3-Nitroaniline	<0.49	0.23			¥ Ø	11/04/24 15:03	11/05/24 12:23	
	<1.0	1.0		mg/Kg mg/Kg				
4,6-Dinitro-2-methylphenol						11/04/24 15:03	11/05/24 12:23	1
4-Bromophenyl phenyl ether	<0.25	0.25		mg/Kg	*	11/04/24 15:03	11/05/24 12:23	1
4-Chloro-3-methylphenol	<0.49	0.49		mg/Kg	.	11/04/24 15:03	11/05/24 12:23	
4-Chloroaniline	<1.0	1.0		mg/Kg	*	11/04/24 15:03	11/05/24 12:23	1
4-Chlorophenyl phenyl ether	<0.25	0.25		mg/Kg	*	11/04/24 15:03	11/05/24 12:23	1
4-Nitroaniline	<0.49	0.49		mg/Kg	<u>.</u> .	11/04/24 15:03	11/05/24 12:23	1
4-Nitrophenol	<1.0	1.0		mg/Kg	₩	11/04/24 15:03	11/05/24 12:23	1
Acenaphthene	<0.049	0.049		mg/Kg	₩	11/04/24 15:03	11/05/24 12:23	1
Acenaphthylene	<0.049	0.049	0.0084		.	11/04/24 15:03	11/05/24 12:23	
Anthracene	<0.049	0.049		mg/Kg	₩	11/04/24 15:03	11/05/24 12:23	1
Benzo[a]anthracene	<0.049	0.049		mg/Kg	₩	11/04/24 15:03	11/05/24 12:23	1
Benzo[a]pyrene	<0.049	0.049		mg/Kg	<u></u>	11/04/24 15:03	11/05/24 12:23	1
Benzo[b]fluoranthene	<0.049	0.049		mg/Kg	₩	11/04/24 15:03	11/05/24 12:23	1
Benzo[g,h,i]perylene	<0.049	0.049	0.011	mg/Kg	₩	11/04/24 15:03	11/05/24 12:23	1
Benzo[k]fluoranthene	<0.049	0.049		mg/Kg		11/04/24 15:03	11/05/24 12:23	1
Bis(2-chloroethoxy)methane	<0.25	0.25		mg/Kg	₩	11/04/24 15:03	11/05/24 12:23	1
Bis(2-chloroethyl)ether	<0.25	0.25	0.023	mg/Kg	₩	11/04/24 15:03	11/05/24 12:23	1
Bis(2-ethylhexyl) phthalate	<0.25 *-	0.25	0.19	mg/Kg	₩	11/04/24 15:03	11/05/24 12:23	1
Butyl benzyl phthalate	<0.25	0.25	0.025	mg/Kg	₩	11/04/24 15:03	11/05/24 12:23	1
Carbazole	<0.25	0.25	0.020	mg/Kg	₩	11/04/24 15:03	11/05/24 12:23	1
Chrysene	<0.049	0.049	0.013	mg/Kg	₩	11/04/24 15:03	11/05/24 12:23	1
Dibenz(a,h)anthracene	<0.049	0.049	0.049	mg/Kg	₽	11/04/24 15:03	11/05/24 12:23	1
Dibenzofuran	<0.25	0.25	0.018	mg/Kg	₩	11/04/24 15:03	11/05/24 12:23	1
Diethyl phthalate	<0.25	0.25	0.023	mg/Kg	₩	11/04/24 15:03	11/05/24 12:23	1
Dimethyl phthalate	<0.25	0.25	0.011	mg/Kg	₩	11/04/24 15:03	11/05/24 12:23	1
Di-n-butyl phthalate	<0.25 *-	0.25	0.016	mg/Kg	₩	11/04/24 15:03	11/05/24 12:23	1
Di-n-octyl phthalate	<0.49	0.49	0.35	mg/Kg	₩	11/04/24 15:03	11/05/24 12:23	1
Fluoranthene	<0.049	0.049	0.012	mg/Kg	₩	11/04/24 15:03	11/05/24 12:23	1
Fluorene	<0.049	0.049		mg/Kg	₽	11/04/24 15:03	11/05/24 12:23	1
Hexachlorobenzene	<0.10	0.10	0.0095		☼	11/04/24 15:03	11/05/24 12:23	1
Hexachlorobutadiene	<0.25	0.25		mg/Kg		11/04/24 15:03	11/05/24 12:23	1
Hexachlorocyclopentadiene	<1.0	1.0		mg/Kg	₩	11/04/24 15:03	11/05/24 12:23	1
Hexachloroethane	<0.25	0.25	0.025		₩	11/04/24 15:03	11/05/24 12:23	1

Eurofins Chicago

Job ID: 500-259381-1

2

3

5

0

10

12

14

<u>lk</u>

Client: Weston Solutions Inc

Project/Site: IDOT- WO 007 FAI 94 Dolton

Client Sample ID: R18-3(5-10)-103124 Lab Sample ID: 500-259381-2

Date Collected: 10/31/24 09:00 **Matrix: Solid** Date Received: 10/31/24 12:12 Percent Solids: 97.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Indeno[1,2,3-cd]pyrene	<0.049		0.049	0.048	mg/Kg	<u></u>	11/04/24 15:03	11/05/24 12:23	1
Isophorone	<0.25		0.25	0.026	mg/Kg	₩	11/04/24 15:03	11/05/24 12:23	1
Naphthalene	<0.049		0.049	0.0090	mg/Kg	₩	11/04/24 15:03	11/05/24 12:23	1
Nitrobenzene	<0.049		0.049	0.016	mg/Kg	₩	11/04/24 15:03	11/05/24 12:23	1
N-Nitrosodi-n-propylamine	<0.10		0.10	0.0098	mg/Kg	₩	11/04/24 15:03	11/05/24 12:23	1
N-Nitrosodiphenylamine	<0.25		0.25	0.029	mg/Kg	₩	11/04/24 15:03	11/05/24 12:23	1
Pentachlorophenol	<1.0		1.0	0.12	mg/Kg	₩	11/04/24 15:03	11/05/24 12:23	1
Phenanthrene	<0.049		0.049	0.011	mg/Kg	₩	11/04/24 15:03	11/05/24 12:23	1
Phenol	<0.25		0.25	0.022	mg/Kg	₩	11/04/24 15:03	11/05/24 12:23	1
Pyrene	<0.049		0.049	0.014	mg/Kg	≎	11/04/24 15:03	11/05/24 12:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	64		31 - 143				11/04/24 15:03	11/05/24 12:23	1
2-Fluorobiphenyl (Surr)	79		43 - 145				11/04/24 15:03	11/05/24 12:23	1
2-Fluorophenol (Surr)	100		31 - 166				11/04/24 15:03	11/05/24 12:23	1
Nitrobenzene-d5 (Surr)	83		37 - 147				11/04/24 15:03	11/05/24 12:23	1
Phenol-d5 (Surr)	84		30 - 153				11/04/24 15:03	11/05/24 12:23	1
Terphenyl-d14 (Surr)	99		42 - 157				11/04/24 15:03	11/05/24 12:23	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	2000		10	4.1	mg/Kg	☆	11/07/24 09:57	11/08/24 12:57	1
Antimony	<1.0		1.0	0.20	mg/Kg	☼	11/07/24 09:57	11/08/24 12:57	1
Arsenic	2.5		0.51	0.17	mg/Kg	☼	11/07/24 09:57	11/08/24 12:57	1
Barium	6.5		0.51	0.058	mg/Kg	₩	11/07/24 09:57	11/08/24 12:57	1
Beryllium	0.10	J	0.20	0.047	mg/Kg	☼	11/07/24 09:57	11/08/24 12:57	1
Cadmium	<0.10		0.10	0.018	mg/Kg	₩	11/07/24 09:57	11/08/24 12:57	1
Calcium	350	В	10	1.7	mg/Kg	☼	11/07/24 09:57	11/08/24 12:57	1
Chromium	2.8		0.51	0.25	mg/Kg	☼	11/07/24 09:57	11/08/24 12:57	1
Cobalt	2.1		0.25	0.066	mg/Kg	☼	11/07/24 09:57	11/08/24 12:57	1
Copper	0.87		0.51	0.14	mg/Kg	₩	11/07/24 09:57	11/08/24 12:57	1
Iron	3400		10	5.3	mg/Kg	☼	11/07/24 09:57	11/08/24 12:57	1
Lead	2.3		0.25	0.12	mg/Kg	☼	11/07/24 09:57	11/08/24 12:57	1
Magnesium	450		5.1	2.5	mg/Kg	₩	11/07/24 09:57	11/08/24 12:57	1
Manganese	18		0.51	0.074	mg/Kg	₩	11/07/24 09:57	11/08/24 12:57	1
Nickel	2.8		0.51	0.15	mg/Kg	☼	11/07/24 09:57	11/08/24 12:57	1
Potassium	180		25	9.0	mg/Kg	₩	11/07/24 09:57	11/08/24 12:57	1
Selenium	<0.51		0.51	0.30	mg/Kg	☼	11/07/24 09:57	11/08/24 12:57	1
Silver	<0.25		0.25	0.065	mg/Kg	☼	11/07/24 09:57	11/08/24 12:57	1
Sodium	65		51	7.5	mg/Kg	₩	11/07/24 09:57	11/08/24 12:57	1
Thallium	<0.51		0.51	0.25	mg/Kg	☼	11/07/24 09:57	11/08/24 12:57	1
Vanadium	4.6		0.25	0.060	mg/Kg	☼	11/07/24 09:57	11/08/24 12:57	1
Zinc	7.5		1.0	0.45	mg/Kg	₩	11/07/24 09:57	11/08/24 12:57	1

Method: SW846 6010D - Me	tals (ICP) - TCLP							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050	0.050	0.010	mg/L		11/08/24 08:48	11/08/24 22:20	1
Barium	0.096 J	0.50	0.050	mg/L		11/08/24 08:48	11/08/24 22:20	1
Beryllium	<0.0040	0.0040	0.0040	mg/L		11/08/24 08:48	11/08/24 22:20	1
Cadmium	<0.0050	0.0050	0.0020	mg/L		11/08/24 08:48	11/08/24 22:20	1

Page 24 of 102

Client: Weston Solutions Inc

Project/Site: IDOT- WO 007 FAI 94 Dolton

Client Sample ID: R18-3(5-10)-103124 Lab Sample ID: 500-259381-2

Date Collected: 10/31/24 09:00 **Matrix: Solid** Date Received: 10/31/24 12:12 Percent Solids: 97.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chromium	0.014	J	0.025	0.010	mg/L		11/08/24 08:48	11/08/24 22:20	
Cobalt	<0.025		0.025	0.010	mg/L		11/08/24 08:48	11/08/24 22:20	
Copper	<0.025		0.025	0.010	mg/L		11/08/24 08:48	11/08/24 22:20	
ron	11		0.40	0.20	mg/L		11/08/24 08:48	11/08/24 22:20	
_ead	<0.0075		0.0075	0.0075	mg/L		11/08/24 08:48	11/08/24 22:20	
Manganese	0.079		0.025	0.010	mg/L		11/08/24 08:48	11/08/24 22:20	
Nickel	0.012	J	0.025	0.010	mg/L		11/08/24 08:48	11/08/24 22:20	
Selenium	< 0.050		0.050	0.020	mg/L		11/08/24 08:48	11/08/24 22:20	
Silver	<0.025		0.025	0.010	mg/L		11/08/24 08:48	11/08/24 22:20	
Zinc	0.030	J	0.50	0.020	mg/L		11/08/24 08:48	11/08/24 22:20	
Method: SW846 6010D - Metals	(ICP) - SP	LP East							
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Arsenic	<0.050		0.050	0.010	mg/L		11/08/24 08:51	11/08/24 18:59	
Barium	0.056	J	0.50	0.050	Ü		11/08/24 08:51	11/08/24 18:59	
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/08/24 08:51	11/08/24 18:59	
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/08/24 08:51	11/08/24 18:59	
Chromium	0.018	J	0.025	0.010	mg/L		11/08/24 08:51	11/08/24 18:59	
Cobalt	<0.025		0.025	0.010	mg/L		11/08/24 08:51	11/08/24 18:59	
Copper	<0.025		0.025	0.010	mg/L		11/08/24 08:51	11/08/24 18:59	
ron	14		0.40	0.20	mg/L		11/08/24 08:51	11/08/24 18:59	
_ead	0.0082		0.0075	0.0075	mg/L		11/08/24 08:51	11/08/24 18:59	
Manganese	0.069		0.025	0.010	mg/L		11/08/24 08:51	11/08/24 18:59	
Nickel	0.013	J	0.025	0.010	mg/L		11/08/24 08:51	11/08/24 18:59	
Selenium	<0.050		0.050	0.020	mg/L		11/08/24 08:51	11/08/24 18:59	
Bilver	<0.025		0.025	0.010	mg/L		11/08/24 08:51	11/08/24 18:59	
Zinc	0.035	J	0.50	0.020	mg/L		11/08/24 08:51	11/08/24 18:59	
Method: SW846 7470A - Mercury									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Mercury	<0.00020		0.00020	0.00020	mg/L		11/08/24 10:40	11/12/24 16:48	
Method: SW846 7470A - Mercury									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Mercury	<0.00020		0.00020	0.00020	mg/L		11/08/24 10:40	11/12/24 17:50	
Method: SW846 7471B - Mercur									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Mercury	0.016		0.016	0.0065	mg/Kg	₽	11/08/24 16:25	11/13/24 10:28	
General Chemistry									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
pH (SW846 9045D)	7.4		0.2	0.2	SU			11/01/24 13:36	

Client: Weston Solutions Inc

Project/Site: IDOT- WO 007 FAI 94 Dolton

Client Sample ID: R18-3(10-15)-103124 Lab Sample ID: 500-259381-3

Date Collected: 10/31/24 09:05 **Matrix: Solid** Date Received: 10/31/24 12:12 Percent Solids: 95.3

Analyte	Result C	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Acetone	<0.019		0.019	0.0078	mg/Kg	<u></u>	11/01/24 09:18	11/04/24 15:05	1
Benzene	<0.0019		0.0019	0.00059	mg/Kg	₩	11/01/24 09:18	11/04/24 15:05	1
Bromodichloromethane	<0.0019		0.0019	0.00060	mg/Kg	₩	11/01/24 09:18	11/04/24 15:05	1
Bromoform	<0.0019		0.0019	0.0011	mg/Kg	₩	11/01/24 09:18	11/04/24 15:05	1
Bromomethane	<0.0047		0.0047	0.0023	mg/Kg	₩	11/01/24 09:18	11/04/24 15:05	1
Carbon disulfide	<0.0047		0.0047	0.00086	mg/Kg	₩	11/01/24 09:18	11/04/24 15:05	1
Carbon tetrachloride	<0.0019		0.0019	0.00063	mg/Kg	₩	11/01/24 09:18	11/04/24 15:05	1
Chlorobenzene	<0.0019		0.0019	0.00079	mg/Kg	₩	11/01/24 09:18	11/04/24 15:05	1
Chloroethane	<0.0047		0.0047	0.0015	mg/Kg	☆	11/01/24 09:18	11/04/24 15:05	1
Chloroform	<0.0019		0.0019	0.0013	mg/Kg	₩	11/01/24 09:18	11/04/24 15:05	1
Chloromethane	<0.0047		0.0047	0.00090	mg/Kg	☆	11/01/24 09:18	11/04/24 15:05	1
cis-1,2-Dichloroethene	<0.0019		0.0019	0.00075	mg/Kg	₩	11/01/24 09:18	11/04/24 15:05	1
cis-1,3-Dichloropropene	<0.0019		0.0019	0.00075	mg/Kg	₩	11/01/24 09:18	11/04/24 15:05	1
Dibromochloromethane	<0.0019		0.0019	0.00086	mg/Kg	₩	11/01/24 09:18	11/04/24 15:05	1
1,1-Dichloroethane	<0.0019		0.0019	0.00070	mg/Kg	₩	11/01/24 09:18	11/04/24 15:05	1
1,2-Dichloroethane	<0.0047		0.0047	0.0012	mg/Kg	₩	11/01/24 09:18	11/04/24 15:05	1
1,1-Dichloroethene	< 0.0019		0.0019	0.00077	mg/Kg	☆	11/01/24 09:18	11/04/24 15:05	1
1,2-Dichloropropane	< 0.0019		0.0019	0.00048	mg/Kg	☆	11/01/24 09:18	11/04/24 15:05	1
1,3-Dichloropropene, Total	<0.0019		0.0019	0.00089	mg/Kg	₩	11/01/24 09:18	11/04/24 15:05	1
Ethylbenzene	< 0.0019		0.0019	0.00098	mg/Kg	☆	11/01/24 09:18	11/04/24 15:05	1
2-Hexanone	<0.0047		0.0047	0.0028	mg/Kg	☼	11/01/24 09:18	11/04/24 15:05	1
Methylene Chloride	<0.0047		0.0047	0.0020	mg/Kg	₩	11/01/24 09:18	11/04/24 15:05	1
Methyl Ethyl Ketone	<0.0047		0.0047	0.0020	mg/Kg	☆	11/01/24 09:18	11/04/24 15:05	1
methyl isobutyl ketone	<0.0047		0.0047	0.0033	mg/Kg	☼	11/01/24 09:18	11/04/24 15:05	1
Methyl tert-butyl ether	<0.0019		0.0019	0.00060	mg/Kg	₩	11/01/24 09:18	11/04/24 15:05	1
Styrene	< 0.0019		0.0019	0.00084	mg/Kg	☼	11/01/24 09:18	11/04/24 15:05	1
1,1,2,2-Tetrachloroethane	< 0.0019		0.0019	0.00092	mg/Kg	☼	11/01/24 09:18	11/04/24 15:05	1
Tetrachloroethene	<0.0019		0.0019	0.0010	mg/Kg	₩	11/01/24 09:18	11/04/24 15:05	1
Toluene	< 0.0019		0.0019	0.00037	mg/Kg	☼	11/01/24 09:18	11/04/24 15:05	1
trans-1,2-Dichloroethene	< 0.0019		0.0019	0.00070	mg/Kg	₩	11/01/24 09:18	11/04/24 15:05	1
trans-1,3-Dichloropropene	<0.0019		0.0019	0.00089	mg/Kg	☼	11/01/24 09:18	11/04/24 15:05	1
1,1,1-Trichloroethane	< 0.0019		0.0019	0.00075	mg/Kg	₩	11/01/24 09:18	11/04/24 15:05	1
1,1,2-Trichloroethane	< 0.0019		0.0019	0.00070	mg/Kg	☼	11/01/24 09:18	11/04/24 15:05	1
Trichloroethene	<0.0019		0.0019	0.00051	mg/Kg	₩	11/01/24 09:18	11/04/24 15:05	1
Vinyl chloride	< 0.0019		0.0019	0.00076	mg/Kg	☼	11/01/24 09:18	11/04/24 15:05	1
Xylenes, Total	<0.0037		0.0037	0.00064	mg/Kg	₽	11/01/24 09:18	11/04/24 15:05	1
Surrogate	%Recovery	Qualifier L	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	107	7	75 - 131				11/01/24 09:18	11/04/24 15:05	1
Dibromofluoromethane (Surr)	107	7	75 - 126				11/01/24 09:18	11/04/24 15:05	1
1,2-Dichloroethane-d4 (Surr)	98	7	70 - 134				11/01/24 09:18	11/04/24 15:05	1
Toluene-d8 (Surr)	104	7	75 - 124				11/01/24 09:18	11/04/24 15:05	1

Method: SW846 8270E - Semivola	tile Org	anic Compoi	ınds (GC/M	IS)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	<0.26		0.26	0.037	mg/Kg	<u></u>	11/04/24 15:03	11/05/24 12:48	1
1,2-Dichlorobenzene	<0.26		0.26	0.021	mg/Kg	₽	11/04/24 15:03	11/05/24 12:48	1
1,3-Dichlorobenzene	<0.26		0.26	0.023	mg/Kg	₽	11/04/24 15:03	11/05/24 12:48	1

1,4-Dichlorobenzene 11/04/24 15:03 11/05/24 12:48 < 0.26 0.26 0.024 mg/Kg 0.26 11/04/24 15:03 11/05/24 12:48 2,2'-oxybis[1-chloropropane] <0.26 0.037 mg/Kg

Page 26 of 102

Client: Weston Solutions Inc

Project/Site: IDOT- WO 007 FAI 94 Dolton

Client Sample ID: R18-3(10-15)-103124 Lab Sample ID: 500-259381-3

Date Collected: 10/31/24 09:05

Date Received: 10/31/24 12:12

Matrix: Solid
Percent Solids: 95.3

Method: SW846 8270E - Sem Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	<0.51	0.51	0.019	mg/Kg	— <u>-</u>	11/04/24 15:03	11/05/24 12:48	
2,4,6-Trichlorophenol	<0.51	0.51		mg/Kg		11/04/24 15:03	11/05/24 12:48	1
2,4-Dichlorophenol	<0.51	0.51		mg/Kg	₩	11/04/24 15:03	11/05/24 12:48	1
2,4-Dimethylphenol	<0.51	0.51		mg/Kg	₩	11/04/24 15:03	11/05/24 12:48	1
2,4-Dinitrophenol	<1.0	1.0		mg/Kg		11/04/24 15:03	11/05/24 12:48	
2,4-Dinitrotoluene	<0.26	0.26		mg/Kg	₩	11/04/24 15:03	11/05/24 12:48	
2,6-Dinitrotoluene	<0.26	0.26	0.018	0 0	₩	11/04/24 15:03	11/05/24 12:48	
2-Chloronaphthalene	<0.26	0.26	0.019			11/04/24 15:03	11/05/24 12:48	
2-Chlorophenol	<0.26	0.26		mg/Kg	 	11/04/24 15:03	11/05/24 12:48	
2-Methylnaphthalene	<0.10	0.10	0.010	0 0		11/04/24 15:03	11/05/24 12:48	
2-Methylphenol	<0.26	0.26		mg/Kg		11/04/24 15:03	11/05/24 12:48	
2-Nitroaniline	<0.26	0.26		mg/Kg	☆	11/04/24 15:03	11/05/24 12:48	
2-Nitrophenol	<0.51	0.51		mg/Kg	☆	11/04/24 15:03	11/05/24 12:48	,
-	<0.26	0.26		mg/Kg	¥. ☆	11/04/24 15:03	11/05/24 12:48	
3 & 4 Methylphenol 3,3'-Dichlorobenzidine	<0.26	0.26		mg/Kg	₩	11/04/24 15:03	11/05/24 12:48	,
3-Nitroaniline	<0.51	0.20		mg/Kg	₩ ₩	11/04/24 15:03	11/05/24 12:48	
	<1.0	1.0						
4,6-Dinitro-2-methylphenol				mg/Kg	₩.	11/04/24 15:03	11/05/24 12:48	1
4-Bromophenyl phenyl ether	<0.26	0.26		mg/Kg	*	11/04/24 15:03	11/05/24 12:48	1
4-Chloro-3-methylphenol	<0.51	0.51		mg/Kg	.	11/04/24 15:03	11/05/24 12:48	1
4-Chloroaniline	<1.0	1.0		mg/Kg	*	11/04/24 15:03	11/05/24 12:48	
4-Chlorophenyl phenyl ether	<0.26	0.26		mg/Kg	\$	11/04/24 15:03	11/05/24 12:48	1
4-Nitroaniline	<0.51	0.51		mg/Kg	<u>.</u> .	11/04/24 15:03	11/05/24 12:48	1
4-Nitrophenol	<1.0	1.0		mg/Kg	Ď.	11/04/24 15:03	11/05/24 12:48	1
Acenaphthene	<0.051	0.051		mg/Kg	☼	11/04/24 15:03	11/05/24 12:48	1
Acenaphthylene	<0.051	0.051	0.0088		.	11/04/24 15:03	11/05/24 12:48	1
Anthracene	<0.051	0.051		mg/Kg	₩	11/04/24 15:03	11/05/24 12:48	1
Benzo[a]anthracene	0.034 J	0.051		mg/Kg	₩	11/04/24 15:03	11/05/24 12:48	,
Benzo[a]pyrene	<0.051	0.051		mg/Kg		11/04/24 15:03	11/05/24 12:48	1
Benzo[b]fluoranthene	<0.051	0.051		mg/Kg	₩	11/04/24 15:03	11/05/24 12:48	•
Benzo[g,h,i]perylene	0.024 J	0.051		mg/Kg	₩	11/04/24 15:03	11/05/24 12:48	1
Benzo[k]fluoranthene	<0.051	0.051	0.020	mg/Kg	.	11/04/24 15:03	11/05/24 12:48	1
Bis(2-chloroethoxy)methane	<0.26	0.26	0.019	mg/Kg	₩	11/04/24 15:03	11/05/24 12:48	1
Bis(2-chloroethyl)ether	<0.26	0.26	0.024	mg/Kg	₩	11/04/24 15:03	11/05/24 12:48	1
Bis(2-ethylhexyl) phthalate	<0.26 *-	0.26		mg/Kg	☼	11/04/24 15:03	11/05/24 12:48	1
Butyl benzyl phthalate	<0.26	0.26	0.026	mg/Kg	☼	11/04/24 15:03	11/05/24 12:48	•
Carbazole	<0.26	0.26	0.020	mg/Kg	☼	11/04/24 15:03	11/05/24 12:48	1
Chrysene	0.016 J	0.051	0.014	mg/Kg	☼	11/04/24 15:03	11/05/24 12:48	1
Dibenz(a,h)anthracene	<0.051	0.051	0.051	mg/Kg	₩	11/04/24 15:03	11/05/24 12:48	1
Dibenzofuran	<0.26	0.26	0.018	mg/Kg	☼	11/04/24 15:03	11/05/24 12:48	1
Diethyl phthalate	<0.26	0.26	0.024	mg/Kg	☼	11/04/24 15:03	11/05/24 12:48	1
Dimethyl phthalate	<0.26	0.26	0.011	mg/Kg	₩	11/04/24 15:03	11/05/24 12:48	1
Di-n-butyl phthalate	<0.26 *-	0.26	0.016	mg/Kg	☼	11/04/24 15:03	11/05/24 12:48	1
Di-n-octyl phthalate	<0.51	0.51	0.36	mg/Kg	☼	11/04/24 15:03	11/05/24 12:48	1
Fluoranthene	0.031 J	0.051	0.012	mg/Kg	₩	11/04/24 15:03	11/05/24 12:48	1
Fluorene	<0.051	0.051		mg/Kg	₩	11/04/24 15:03	11/05/24 12:48	1
Hexachlorobenzene	<0.10	0.10	0.0099		₩	11/04/24 15:03	11/05/24 12:48	1
Hexachlorobutadiene	<0.26	0.26		mg/Kg		11/04/24 15:03	11/05/24 12:48	1
Hexachlorocyclopentadiene	<1.0	1.0		mg/Kg	☼	11/04/24 15:03	11/05/24 12:48	1
Hexachloroethane	<0.26	0.26	0.026			11/04/24 15:03	11/05/24 12:48	

Eurofins Chicago

Job ID: 500-259381-1

2

3

5

7

9

11

Client: Weston Solutions Inc

Project/Site: IDOT- WO 007 FAI 94 Dolton

Client Sample ID: R18-3(10-15)-103124 Lab Sample ID: 500-259381-3

Date Collected: 10/31/24 09:05 **Matrix: Solid** Date Received: 10/31/24 12:12 Percent Solids: 95.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Indeno[1,2,3-cd]pyrene	<0.051		0.051	0.050	mg/Kg	₩	11/04/24 15:03	11/05/24 12:48	1
Isophorone	<0.26		0.26	0.027	mg/Kg	₩	11/04/24 15:03	11/05/24 12:48	1
Naphthalene	< 0.051		0.051	0.0093	mg/Kg	₩	11/04/24 15:03	11/05/24 12:48	1
Nitrobenzene	<0.051		0.051	0.016	mg/Kg	₩	11/04/24 15:03	11/05/24 12:48	1
N-Nitrosodi-n-propylamine	<0.10		0.10	0.010	mg/Kg	☼	11/04/24 15:03	11/05/24 12:48	1
N-Nitrosodiphenylamine	<0.26		0.26	0.031	mg/Kg	₩	11/04/24 15:03	11/05/24 12:48	1
Pentachlorophenol	<1.0		1.0	0.13	mg/Kg	☼	11/04/24 15:03	11/05/24 12:48	1
Phenanthrene	0.040	J	0.051	0.011	mg/Kg	☼	11/04/24 15:03	11/05/24 12:48	1
Phenol	<0.26		0.26	0.022	mg/Kg	☼	11/04/24 15:03	11/05/24 12:48	1
Pyrene	0.028	J	0.051	0.014	mg/Kg	₽	11/04/24 15:03	11/05/24 12:48	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	67		31 - 143				11/04/24 15:03	11/05/24 12:48	1
2-Fluorobiphenyl (Surr)	72		43 - 145				11/04/24 15:03	11/05/24 12:48	1
2-Fluorophenol (Surr)	83		31 - 166				11/04/24 15:03	11/05/24 12:48	1
Nitrobenzene-d5 (Surr)	68		37 - 147				11/04/24 15:03	11/05/24 12:48	1
Phenol-d5 (Surr)	74		30 - 153				11/04/24 15:03	11/05/24 12:48	1
Terphenyl-d14 (Surr)	99		42 - 157				11/04/24 15:03	11/05/24 12:48	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	1800		10	4.1	mg/Kg	₩	11/07/24 09:57	11/08/24 13:01	1
Antimony	0.42	J	1.0	0.19	mg/Kg	₩	11/07/24 09:57	11/08/24 13:01	1
Arsenic	3.1		0.50	0.17	mg/Kg	₩	11/07/24 09:57	11/08/24 13:01	1
Barium	6.3		0.50	0.057	mg/Kg	₩	11/07/24 09:57	11/08/24 13:01	1
Beryllium	0.15	J	0.20	0.047	mg/Kg	₩	11/07/24 09:57	11/08/24 13:01	1
Cadmium	<0.10		0.10	0.018	mg/Kg	₩	11/07/24 09:57	11/08/24 13:01	1
Calcium	450	В	10	1.7	mg/Kg	₩	11/07/24 09:57	11/08/24 13:01	1
Chromium	95		0.50	0.25	mg/Kg	₩	11/07/24 09:57	11/08/24 13:01	1
Cobalt	3.3		0.25	0.066	mg/Kg	₩	11/07/24 09:57	11/08/24 13:01	1
Copper	3.6		0.50	0.14	mg/Kg	₩	11/07/24 09:57	11/08/24 13:01	1
Iron	5100		10	5.2	mg/Kg	₩	11/07/24 09:57	11/08/24 13:01	1
Lead	4.1		0.25	0.12	mg/Kg	₩	11/07/24 09:57	11/08/24 13:01	1
Magnesium	650		5.0	2.5	mg/Kg	₩	11/07/24 09:57	11/08/24 13:01	1
Manganese	35		0.50	0.073	mg/Kg	₩	11/07/24 09:57	11/08/24 13:01	1
Nickel	18		0.50	0.15	mg/Kg	₩	11/07/24 09:57	11/08/24 13:01	1
Potassium	350		25	8.9	mg/Kg	₩	11/07/24 09:57	11/08/24 13:01	1
Selenium	<0.50		0.50	0.29	mg/Kg	₩	11/07/24 09:57	11/08/24 13:01	1
Silver	<0.25		0.25	0.065	mg/Kg	₩	11/07/24 09:57	11/08/24 13:01	1
Sodium	130		50	7.4	mg/Kg	₩	11/07/24 09:57	11/08/24 13:01	1
Thallium	<0.50		0.50	0.25	mg/Kg	☼	11/07/24 09:57	11/08/24 13:01	1
Vanadium	6.1		0.25	0.059	mg/Kg	☼	11/07/24 09:57	11/08/24 13:01	1
Zinc	14		1.0	0.44	mg/Kg	₩	11/07/24 09:57	11/08/24 13:01	1

Method: SW846 6010D - Met	als (ICP) - TCLP							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050	0.050	0.010	mg/L		11/08/24 08:48	11/08/24 22:25	1
Barium	0.085 J	0.50	0.050	mg/L		11/08/24 08:48	11/08/24 22:25	1
Beryllium	<0.0040	0.0040	0.0040	mg/L		11/08/24 08:48	11/08/24 22:25	1
Cadmium	<0.0050	0.0050	0.0020	mg/L		11/08/24 08:48	11/08/24 22:25	1

Client: Weston Solutions Inc

Project/Site: IDOT- WO 007 FAI 94 Dolton

Client Sample ID: R18-3(10-15)-103124 Lab Sample ID: 500-259381-3

Date Collected: 10/31/24 09:05 **Matrix: Solid** Date Received: 10/31/24 12:12 Percent Solids: 95.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa	
Chromium	0.027		0.025	0.010	mg/L		11/08/24 08:48	11/08/24 22:25		
Cobalt	<0.025		0.025	0.010	mg/L		11/08/24 08:48	11/08/24 22:25		
Copper	0.018	J	0.025	0.010	mg/L		11/08/24 08:48	11/08/24 22:25		
ron	23		0.40	0.20	mg/L		11/08/24 08:48	11/08/24 22:25		
_ead	0.025		0.0075	0.0075	mg/L		11/08/24 08:48	11/08/24 22:25		
Manganese	0.23		0.025	0.010	mg/L		11/08/24 08:48	11/08/24 22:25		
Nickel	0.027		0.025	0.010	mg/L		11/08/24 08:48	11/08/24 22:25		
Selenium	<0.050		0.050	0.020	mg/L		11/08/24 08:48	11/08/24 22:25		
Silver	<0.025		0.025	0.010	mg/L		11/08/24 08:48	11/08/24 22:25		
Zinc	0.084	J	0.50	0.020	mg/L		11/08/24 08:48	11/08/24 22:25		
Method: SW846 6010D - Meta	` '									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa	
Arsenic	0.011		0.050	0.010	_		11/08/24 08:51	11/08/24 19:12		
Barium	0.070	J	0.50	0.050	J		11/08/24 08:51	11/08/24 19:12		
Beryllium	<0.0040		0.0040	0.0040			11/08/24 08:51	11/08/24 19:12		
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/08/24 08:51	11/08/24 19:12		
Chromium	0.031		0.025	0.010	mg/L		11/08/24 08:51	11/08/24 19:12		
Cobalt	0.019	J	0.025	0.010	mg/L		11/08/24 08:51	11/08/24 19:12		
Copper	0.017	J	0.025	0.010	mg/L		11/08/24 08:51	11/08/24 19:12		
ron	26		0.40	0.20	mg/L		11/08/24 08:51	11/08/24 19:12		
_ead	0.030		0.0075	0.0075	mg/L		11/08/24 08:51	11/08/24 19:12		
/langanese	0.27		0.025	0.010	mg/L		11/08/24 08:51	11/08/24 19:12		
Nickel	0.026		0.025	0.010	mg/L		11/08/24 08:51	11/08/24 19:12		
Selenium	<0.050		0.050	0.020	mg/L		11/08/24 08:51	11/08/24 19:12		
Silver	<0.025		0.025	0.010	mg/L		11/08/24 08:51	11/08/24 19:12		
Zinc	0.075	J	0.50	0.020	mg/L		11/08/24 08:51	11/08/24 19:12		
Method: SW846 7470A - Merc										
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa	
Mercury	<0.00020		0.00020	0.00020	mg/L		11/08/24 10:40	11/12/24 16:50		
Method: SW846 7470A - Merc	cury (CVAA)	- SPLP East								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F	
lercury	<0.00020		0.00020	0.00020	mg/L		11/08/24 10:40	11/12/24 17:52		
Method: SW846 7471B - Merc	cury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F	
lercury	0.022		0.016	0.0066	mg/Kg	☆	11/08/24 16:25	11/13/24 10:34		
General Chemistry										
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa	
oH (SW846 9045D)	7.4		0.2	0.2	SU			11/01/24 13:38		

Job ID: 500-259381-1

11/14/2024

Definitions/Glossary

Client: Weston Solutions Inc Job ID: 500-259381-1

Project/Site: IDOT- WO 007 FAI 94 Dolton

Qualifiers

	Semi	

Qualifici	quamo: 2000mption
*	LCS and/or LCSD is outside accontance limits, low biased

*- LCS and/or LCSD is outside acceptance limits, low biased.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Metals

Qualifier

Qualifier	Qualifier Description
^2	Calibration Blank (ICB and/or CCB) is outside acceptance lir

Calibration Blank (ICB and/or CCB) is outside acceptance limits.
 MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not

applicable.

B Compound was found in the blank and sample.
F1 MS and/or MSD recovery exceeds control limits.

F2 MS/MSD RPD exceeds control limits F3 Duplicate RPD exceeds the control limit

Qualifier Description

F5 Duplicate RPD exceeds limit, and one or both sample results are less than 5 times RL, and the absolute difference between results is <

the upper reporting limits for both.

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
--------------	---

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Chicago

Page 66 of 102

3

4

5

6

Ω

9

10

12

14

Accreditation/Certification Summary

Client: Weston Solutions Inc Job ID: 500-259381-1

Project/Site: IDOT- WO 007 FAI 94 Dolton

Laboratory: Eurofins Chicago

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Progra	am	Identification Number	Expiration Date				
llinois	NELAF)	IL00035	05-31-25				
The following analytes	s are included in this repor	rt but the laboratory is r	not certified by the governing authori	ty This list may include analy				
for which the agency	does not offer certification		, с с	.,				
for which the agency of Analysis Method	does not offer certification Prep Method	Matrix	Analyte					
for which the agency of Analysis Method 8260D	does not offer certification	Matrix Solid	Analyte 1,3-Dichloropropene, Tota					
for which the agency of Analysis Method	does not offer certification Prep Method	Matrix	Analyte					

4

5

7

8

10

11

13

14

	Address					C	ha	ain	of	Cu	stc	dy	/ Re	ecoi	rd	73	34	09	6	*	è e	urofin	S	Enviror Americ	nment Testing a
		R	Regula	atory Pro	gram:	□ DW		NPDES		RCR	A [Oth	er												TAL-8210
	Client Contact	Proje	ect Ma	nager: 🗚	-Sles	sers			Site	Cont	act:	C-D	avi	ds	D	ate:	(01	311	24			COC No	7	340	ale
	Company Name westen Solutions		mail:						Lab	Cont	act:	1.2	Ina	PP	C	Carrier	:						of _		OCs
	Address 300 Knightsbridge PKKEN City/State/Zip Lincomshire R 60069	4_		Analysis Tu					П			1	2									Sampler	_		<u>us</u>
	City/State/Zip Lincol/Shire R 60069	1 -		DAR DAYS		ORKING I	DAYS		_		ے ا	1	3				100	SEP22	-5			For Lab L Walk-in C			
	Phone 317-5au-2518 Fax	-		if different fro	m Below weeks		_		Z		0	Ý t	5				9	Ψ.	5			Lab Samp			
	Project Name W7 POIDW				week					-	4	2101/2					- 7		8						
	Site DOITON, LL]		2	days				le (5	3/5	5	ŀ			-					Job / SDG			
	PO#			1	day	-			amp IS/		1	150101110	ñ				500-2	5938	1 COC	1		500-2	50	1381	
	Sample Identification		nple ate	Sample Time	Type (C=Com G=Grab	р,		# of Cont.	Filtered Sample (Y/N)	Soci	SVOC	2012										Sa	ample	e Specific	: Notes
١	R18 360 5) - 103124	10/31	124	0255	G	1	,	Le	Ħ	X	Х	χ)	×Χ									INC	LV	108	
2	R18-3(5-10) -103124			5 900	Ť	\top		Ť	H	\prod		1	1			\top		\dagger			\top			SPL	P
3	R18-3(10-15)-103124			0905							1													Fe	
4	R16-5 (0-4) - 103124			0925		\Box			П	П		П											1		
5	R14-5(4-9)-103124			0930																					
10	R16-160-4)-103124			1025	1	11	1		11	П	111														
7	RILE-114-9)-103124			(030						П															
8				1035				\perp		Ш	Ш		Ш												
9	R16-360-2)-103124			1040					Ш	Ц	Ш		Ш										\perp		
10	71. 6 - 6	\sqcup		1040					Ц	Ц	Ш	Ш	Ш										L		
11				USOJ					Ш	Ш	Ш		Ш												
12	, , , , , , , , , , , , , , , , , , , ,			1052					Ш			1	Ш										_		
	Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3;	5=N	aOH; 6	6= Other _	-	_		V	\Box		V				Ļ								1		
	Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Plea	se List	t any E	EPA Waste	Codes f	or the sa	ample	e in th		amp	ie Dis	pos	al (A	ree ma	ıy be a	assess	sed if	sam	oles a	ire re	tained	l longer th	ian 1	i montn)	
	Comments Section if the lab is to dispose of the sample		1			····			_																
	□ Non Hazard □ Flammable □ Skin Irritant		Poison	В	L] Ur	nknown	***************************************			Ш	Return	to Clie	ent		Disp	oosal by	Lab			Archiv	e for	M	onths		
	Special Instructions/QC Requirements & Comments:														(0)	175	0								
	Custody Seals Intact Yes No	Cust	ody S	eal No								Coole	r Tem	ıp (°C)				_ Cor	r'd			Therm ID I	No _		
	Relinquished by		ipany 108	ton		Date V/2	/Tim	J'V	ON F	lecei	ved by	/					Com	pany				Date/Time	е		
	Relinduished by		pany	, 0 1 -		Date	/Tim	e	F	Recei	ved by	/					Com	pany				Date/Time	е		

Date/Time

Company

Relinquished by

Received in Laboratory by

(Maya) (MM)

Page 101 of 102

11/14/2024

1212

Date/Time

Company FETA